

NBS SPECIAL PUBLICATION 321

An Author and Permuted Title Index to Selected Statistical Journals

DEPARTMENT OF CONMERCE National Bureau of Standards

An Author and Permuted Title Index to Selected Statistical Journals

Brian L. Joiner, N. F. Laubscher, Eleanor S. Brown, and Bert Levy

¹ Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

² National Research Institute for Mathematical Sciences,

South African C.S.I.R., Box 395, Pretoria, South Africa

³ Harry Diamond Laboratories, U.S. Army Materiel Command, Washington, D.C. 20438

U.S., National Bureau of Standards, Special Publication 321

Nat. Bur. Stand. (U.S.), Spec. Publ. 321, 510 pages (Sept. 1970) CODEN: XNBSA

Issued Sept. 1970

144,266 QC100 ,U57 No,321

Contents

Introduction How to use the index	Pag II
Coverage and related indexes	IV
Permuted title index	
Author index	355
Bibliographic listing	433

Library of Congress Catalog Card Number: 75-604267

An Author and Permuted Title Index to Selected Statistical Journals Brian L. Joiner, N. F. Laubscher, Eleanor S. Brown, and Bert Levy

Over 5,000 articles appearing in the indicated issues of the following journals are indexed: Annals of Mathematical Statistics (1961–1969), Biometrics (1965–1969 #3), Biometrika (1951–1969), Journal of the American Statistical Association (1956–1969), Journal of the Royal Statistical Society, Series B (1954–1969 #2), South African Statistical Journal (1967–1969 #2), Technometrics (1959–1969). The articles indexed correspond to those appearing since the most recent cumulative subject index was published for the first six named journals, while for Technometrics all articles have been included even though a subject index exists for the first seven volumes. The index consists of three sections, an author index, a permuted title index and a bibliographic listing. In the permuted title index each article is listed under every important word appearing in its title. This index should consequently serve many of the functions of a conventional subject index. The author index is similar to a conventional author index.

Key words: Bibliography; computer indexing; index; key word in context; KWIC; permuted title index; statistics.

Introduction

How to Use the Index

The index consists of three sections, a permuted title index, an author index, and a bibliographic listing. In the **permuted title**, or **title word** (key word in context) index, every article appearing in any of the seven journals during the included years, is listed in alphabetical order under all important words in its title. Each title reads from left to right except when the word being indexed occurs near the end or beginning of a long title, in which case it was sometimes necessary to "wrap" the title around to the other side of the page. When a title is too long to fit on one line a portion at the beginning and/or end may be chopped off.

This index may be used to retrieve an article if any part of its title is known or to find all articles whose titles include a particular word or phrase. It should consequently serve many of the same functions as a subject index. Some entries in the permuted title index corresponding to words considered of no indexing value have been omitted but no attempt has been made to eliminate all such nonsense entries. Entries corresponding to words that are sometimes hyphenated and sometimes not (e.g. non-linear versus nonlinear) may be slightly separated in the permuted title index. Numeral entries are given last after the letter Z.

The **location** of each article is specified by an abbreviation of the journal name, the last two digits of the year in which the article was published, and the page on which the article begins. For example, BIOKA65 365 means that the article begins on page 365 of the 1965 issue of *Biometrika*. For some prepublication entries page numbers were not available and the issue number has been used instead.

In the **author index** every article is listed under each of its authors' names. Each author's name is followed by as much of the title as will fit on one computer line and by the "location" of the article. Authors will be found under the prefix when their last name is preceded by any of the following prefixes: DE, DEL, DEN, DER, DES, DI, LA, LE, ST, VAN, and VON. Authors may be listed with their given names in full and with one or more of their given names shortened to initials. This, plus the fact that authors whose names are followed by suffixes, such as JR, SR, II, and III, sometimes publish with the suffix dropped, means that occasionally several listings for the same author may become slightly separated.

The **bibliography** consists of a chronological listing of the table of contents of the seven journals for the included years and may be used to obtain any information that has had to be chopped from a long entry in either the title word or author sections.

In some cases it has been necessary to translate titles that were originally hand set using special fonts into the all-capital format required by the computer. For example "2" factorial experiments are given as "2-TO-THE-N." A few titles have been annotated to improve their informativeness. Such annotations are always enclosed in parentheses and preceded by a + sign. "Notes" and "queries" are indexed with the main articles in this index, queries being identified as such. Book reviews are not covered. Corrigenda locations are given in two different ways, sometimes as part of the "title" of the article and sometimes as a completely separate entry. In either event, corrigenda should be readily locatable in one or more of the three sections. The indexes have been checked for obvious errors but

no exhaustive proofreading has been attempted. It may also be noted that this index was prepared for the most part from the tables of contents appearing on the covers of the journals, which in some cases do not agree exactly with the titles and authors appearing inside the journal.

Coverage and Related Indexes

All articles, notes, queries, corrigenda, and obituaries appearing in the following journals during the indicated years are indexed. For all seven journals the years correspond one-for-one with volume years.

Abbreviation	Journal Name	Years	Volumes
AMS	Biometrics Biometrika Journal of the American Statistical Association Journal of the Royal Statistical Society, Series B	1961-1969	32-40
BIOCS		1965-1969 #3*	21-25 #3*
BIOKA		1951-1969	38-56
JASA		1956-1969	51-64
JRSSB		1954-1969 #2	16-31 #2
SASJ		1967-1969 #2	1-3 #2
TECH		1959-1969	1-11

^{*}A portion of the contents of the fourth issue for volume 25, 1969, is also included.

Existing indexes to these journals include the following: A comprehensive index to AMS covering volumes 1-31 (1930-1960) including sections on authors, subject matter, tables, citations, and news items; an author and subject index to BIOCS covering volumes 1-20 (1945-1964), (each volume of BIOCS since 1964 includes annual author and subject indexes); a subject index to BIOKA covering volumes 1-37 (1901-1950) and an author index covering volumes 1-48 (1901-1961); two author and subject indexes to JASA, the first covering volumes 1-34 (1888-1939) and the second covering volumes 35-50 (1940-1955), and an author index to JASA covering volumes 51-60 (1956-1965); combined author and subject indexes for JRSSB which are included in two general indexes to the Journal of the Royal Statistical Society covering JRSSB volumes 1-6 (1934-1939) and volume 7-15 (1940-1941 and 1946 thru 1953) respectively, (volumes 16-22 (1954-1960) of JRSSB contain annual combined author and subject indexes); and author and subject indexes to TECH covering volumes 1-7 (1959–1965).

The computer program used to prepare this index has been used previously in the preparation of volumes 1 and 2 of Computer Literature Bibliography, NBS Miscellaneous Publication 266 and Special Publication 309 respectively, by W. W. Youden. After this index was well under way we learned that John W. Tukey and coworkers at Princeton University and the Bell Telephone Laboratories have done extensive research on methods for improving the format and sorting order of permuted title indexes and have a working draft of an index to virtually all of the statistical literature appearing up to and including 1966.

The basic input to the computer program is a set of approximately 16,000 punched cards quite closely resembling the bibliographic listing. Most of the punched cards for AMS, BIOCS, JASA, JRSSB,

and SASI were provided by N. F. Laubscher, who wishes to acknowledge several of his assistants for their help. All of the cards for BIOKA and TECH and some of the cards for the other five journals were prepared by Eleanor S. Brown. Computer time was provided by Bert Levy and B. M. Kurkjian (then at Harry Diamond Laboratories and now at Headquarters, Army Materiel Command). Rubin Wagner of NBS arranged to have the index electronically phototypset thereby improving readability considerably. The editors of the seven journals contributed to the currentness of this index by supplying prepublication copies of the tables of contents of their journals. Other helpful assistance was provided by Sam Bonnano of Harry Diamond Laboratories, R. L. Chamberlain of Iowa State University, and James J. Filliben and Miss Bonnie Connor of the National Bureau of Standards. Brian L. Joiner served as initiator and coordinator.

This index was initiated for internal use at the National Bureau of Standards and evolved into a cooperative effort of the National Bureau of Standards, the National Research Institute for Mathematical Sciences of the South African Council for Scientific and Industrial Research, and the Harry Diamond Laboratories. Copies in the computer listing form were distributed to a limited number of individuals many of whom indicated that they found it quite useful and asked how copies could be obtained. Since it was prohibitively expensive to distribute more copies in the computer listing form, the decision was made to make it available for distribution as an NBS Special Publication.

The computer program used to prepare this index was written by the late W. W. Youden of the National Bureau of Standards to whom we wish to acknowledge our indebtedness. Without his program this index would not have been undertaken.

TITLE WORD INDEX

TITLE	WORD INDEX	A D -	ACC
ON THE DERIVATION AND APPLICABILITY OF NEYMAN'S TYPE	A DISTRIBUTION	BIOKA5B	32
BIVARIATE CENERALIZATIONS OF NEYMAN'S TYPE		BIOKA66	241
OF THE METHOD OF MOMENTS AND THE CRAM-CHARLIER TYPE			5B
ESTIMATION FOR THE NECATIVE BINOMIAL AND NEYMAN TYPE NOTE ON MR QUENOUILLE'S EDCEWORTH TYPE		BIOKA62 BIOKA59	
	A.P.O. RULE IN SEQUENTIAL ESTIMATION WITH QUADRATIC	AMS 69	417
THE REGIONS OF UNIMODALITY AND POSITIVITY IN THE		JASA 57	
	ABILITIES FITTED TO PLANT BREEDING DATA	BIOCS67	45
	ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON-		987
QUERY, COMPLETED RUNS OF LENCTH K	ABOVE SAMPLE MEANS IN A BIVARIATE NORMAL DISTRIBUTION	TECH 67	682 1350
	ABSENCE OF TANCENCIES IN CAUSSIAN SAMPLE PATHS	AMS 6B	261
	ABSENTEEISM /TEST FOR SMALL EXPECTATIONS IN CONTING		365
NEW TECHNIQUES FOR THE ANALYSIS OF		BIOKA54	77
NORMAL DISTRIBUTION INTEGRAL THE NON-	ABSOLUTE AND INCOMPLETE MOMENTS OF THE MULTIVARIATE -ABSOLUTE CONVERCENCE OF CIL-PELAEZ' INVERSION	BIOKA61 AMS 61	77 33B
	ABSOLUTE DEVIATION IN CONFIDENCE INTERVALS FOR A NORM		663
CONFIDENCE INTERVALS BASED ON THE MEAN		JASA 65	257
	ABSOLUTE MAXIMUM FOR CERTAIN BROWNIAN MOTIONS	AMS 65	311
	ABSOLUTE MOMENT OF A SUM OF RANDOM VARIABLES, 1 LESS ABSOLUTE MOMENTS OF THE MULTIVARIATE NORMAL DISTRIBUT	AMS 65	299 20
DISTRIBUTION AND POWER OF THE		JASA 67	
ESTIMATORS OF A LOCATION PARAMETER IN THE	ABSOLUTELY CONTINUOUS CASE	AMS 64	949
	ABSOLUTELY CONTINUOUS COMPONENTS AND RENEWAL THEORY	AMS 66	271
	ABSOLUTELY CONVERCENT COEFFICIENTS /HE STRONC LAW O ABSORBENT MARKOV CHAINS TO SIB MATINC POPULATIONS	AMS 61 BIOCS69	5B3 17
THE RANDOM WALK BETWEEN A REFLECTING AND AN		AMS 61	
SOME STOCHASTIC PROCESSES WITH	ABSORBING BARRIERS	JRSSB61	
SOME PROBLEMS OF STATISTICAL INFERENCE IN		BIOKA65	127
IES IN A SAMPLE OF AN ANIMAL POPULATION IN WHICH THE	ABSORBING STATES, A CENETIC EXAMPLE ABUNDANCES OF SPECIES ARE LOC-NORMALLY DISTRIBUTED	AMS 61 BIOKA51	716 427
		TECH 66	
		JASA 66	995
		TECH 62 TECH 62	
THE REAL STABLE CHARACTERISTIC FUNCTIONS AND CHAOTIC		JRSSB61	
ESTIMATING THE FRACTION OF		TECH 65	43
	ACCEPTANCE CRITERION IS THE VARIANCE	TECH 68	99
ABOUT THE NORMAL DISTRIBUTION WITH APPLICATIONS IN	ACCEPTANCE PROCEDURES ACCEPTANCE SAMPLING TWO THEOREMS FOR INFERENCES	TECH 60	435 B9
	ACCEPTANCE SAMPLING BASED ON LIFE TESTS	JASA 61	
PROCEDURES AND TABLES FOR EVALUATING DEPENDENT MIXED		TECH 69	
NUMBER FOR TRUNCATED SINGLE AND DOUBLE ATTRIBUTES ON THE EQUIVALENCE OF BINOMIAL AND INVERSE BINOMIAL		TECH 68	6B5 1 1 9
	ACCEPTANCE SAMPLING PLANS BASED ON THE THEORY OF RUNS		177
QUARE AND T-SQUARE TESTS AND THEIR APPLICATION TO AN			519
	ACCEPTANCE SAMPLING PROCEDURES FOR GENERAL SPECIFICAT ACCEPTANCE SAMPLING WITH EMPHASIS ON NON-NORMALITY	JASA 65 TECH 69	905
		TECH 60	353
	ACCEPTANCE SCHEMES FOR LARGE BATCHES OF ITEMS WHERE T	BIOKA68	393
		BIOCS66	6B4
ACCURACY REQUIREMENTS FOR ECONOMICALLY OPTIMUM		JASA 59 JASA 56	447 243
INCENTIVE CONTRACTS AND PRICE DIFFERENTIAL		JASA 64	
F/ ERRATA, 'THE EFFECT OF SEQUENTIAL BATCHING FOR	ACCEPTANCE-REJECTION SAMPLING UPON SAMPLE ASSURANCE O	TECH 61	131
	ACCEPTANCE, REJECTION SAMPLING UPON SAMPLE ASSURANCE		19
FURTHER NOTES ON THE ANALYSIS OF ON A CONTAGIOUS DISTRIBUTION SUGGESTED FOR		BIOKA53 BIOCS67	214 241
A PROBLEM IN THE COMBINATION OF	ACCIDENT FREQUENCIES	BIOKA5B	331
UNIQUENESS OF A RESULT IN THE THEORY OF		BIOKA57	530
DISTRIBUTION WITH SPECIAL REFERENCE TO THE THEORY OF	ACCIDENT PRONENESS ACCIDENT PRONENESS ON A DISCRETE	BIOKA67	
A TEST FOR 'INTRINSIC CORRELATION' IN THE THEORY OF		JRSSB66	
NOTE ON A UNIQUENESS RELATION IN CERTAIN	ACCIDENT PRONENESS MODELS	JASA 67	
A MATHEMATICAL MODEL WITH APPLICATIONS TO A STUDY OF		JASA 65	
A CLASS OF DISTRIBUTIONS APPLICABLE TO THE TIME INTERVALS BETWEEN INDUSTRIAL		JASA 61 BIOKA52	
ONS IN CONTINGENCY TABLES, WITH SPECIAL REFERENCE TO	ACCIDENTS AND ABSENTEEISM /TEST FOR SMALL EXPECTATI	BIOKA59	365
ON THE EFFECT OF REMOVING PERSONS WITH N OR MORE		BIOKA65	
	ACCIDENTS, A NOTE ON MACUIRE, PEARSON AND WYNN'S ACCORDING TO SIMPLE BIRTH AND DEATH PROCESSES	BIOKA53 BIOKA53	
	ACCURACY AND STRUCTURE OF INDUSTRY EXPECTATIONS IN	JASA 58	
SHRINKAGE TO AN INTERVAL	ACCURACY BORROWING IN THE ESTIMATION OF THE MEAN BY	JASA 68	
	ACCURACY OF A PRODUCTION INDEX ACCURACY OF AN APPROXIMATION TO THE POWER OF THE CHI-	JASA 56	
	ACCURACY OF AN APPROXIMATION TO THE POWER OF THE CHI-		
	ACCURACY OF CENSUS LITERACY STATISTICS IN IRAN	JASA 59	

ACC - ALL TITLE WORD INDEX

```
THE FORECASTING ACCURACY OF CONSUMER ATTITUDE DATA
                                                                                                            JASA 69 NO 4
                THE FOLDED NORMAL DISTRIBUTION, III. ACCURACY OF ESTIMATION BY MAXIMUM LIKELIHOOD
                                                                                                            TECH 62
                                                                                                                    249
SOUTHEAST ASIAN COUNTRIES
                                                 THE ACCURACY OF INTERNATIONAL TRADE DATA, THE CASE OF
                                                                                                            JASA 69
                                                                                                                     452
                                       ASSESSING THE ACCURACY OF MULTIVARIATE OBSERVATIONS
                                                                                                            JASA 66
                                                                                                                     403
                                     ON THE RELATIVE ACCURACY OF SOME SAMPLING TECHNIQUES
                                                                                                            JASA 58
                                                                                                                      98
                INFLUENCE OF THE INTERVIEWER ON THE ACCURACY OF SURVEY RESULTS
                                                                                                            JASA 58
                                                                                                                     635
                                             ON THE ACCURACY OF WEIGHTED MEANS AND RATIOS
                                                                                                            BIOKA56
                                                                                                                     304
COMPLEX SYSTEMS
                                                     ACCURACY REQUIREMENTS FOR ACCEPTANCE TESTING OF
                                                                                                            JASA 59
                                                                                                                     447
                             SELECTED ECONOMIC DATA, ACCURACY VS. REPORTING SPEED
                                                                                                            JASA 68
                                                                                                                     436
                               A STOCHASTIC MODEL OF ACHE TRANSPORTATION IN THE PERIPHERAL NERVE TRUNKS
                                                                                                            BIOKA62
                                                                                                                     447
ND INVERSE BINOMIAL ACCEPTANCE SAMPLINC PLANS AND AN ACKNOWLEDCEMENT
                                                                         ON THE EQUIVALENCE OF BINOMIAL A TECH 63
                                                                                                                     119
OF MAXIMUM LIKELIHOOD ESTIMATION' 60 120B
                                                    ACKNOWLEDCEMENT OF PRIORITY FOR 'AN OPTIMUM PROPERTY
                                                                                                             AMS 61 1343
   GENERAL MODELS FOR QUANTAL RESPONSE TO THE JOINT ACTION OF A MIXTURE OF DRUGS
                                                                                                            BIOKA64
                                                                                                                     413
                MODELS FOR THE NON-INTERACTIVE JOINT ACTION OF A MIXTURE OF STIMULI IN BIOLOGICAL ASSAY
RETTE SMOKING AND A STOCHASTIC MODEL FOR THE MODE OF ACTION OF CARCINOGENS
                                                                             /UNG CANCER INCIDENCE TO CICA BIOCS65
                                                                                                                     839
                    TWO-STAGE NORMAL SAMPLING IN TWO-ACTION PROBLEMS WITH LINEAR ECONOMICS
                                                                                                            JASA 69 NO.4
XTURES OF POISONS UNDER CONDITIONS OF SIMPLE SIMILAR ACTION, THE ANALYSIS OF UNCONTROLLED DATA
                                                                                                 /ES TO MI BIOKA58
                                                                                                                      74
F A RADIO-ACTIVE TRACER EXPERIMENT TO DETERMINE ROOT ACTIVITY IN POTATO PLANTS /E STATISTICAL ANALYSIS O BIOCS6B
                                                                                                                     717
  ESTIMATING THE SERVICE LIFE OF HOUSEHOLD GOODS BY ACTUARIAL METHODS, CORR. 57 578
                                                                                                            JASA 57
                                                                                                                     175
 ESTIMATION OF SURVIVORSHIP IN CHRONIC DISEASE, THE 'ACTUARIAL' METHOD
                                                                                                            JASA 5B
                                                                                                                     420
                                                     ADAPTATION OF KARBER'S METHOD FOR ESTIMATING THE EXPO BIOCS67
NENTIAL PARAMETER FROM QUANTAL DATA, AND ITS RELA/
                                                                                                                     739
TO MISSPECIFICATION IN THE 'PARTIAL ADJUSTMENT' AND 'ADAPTIVE EXPECTATIONS' MODELS /ALL SAMPLE BIAS DUE
                                                                                                            JASA 66
                                                                                                                    1130
                                                     ADAPTIVE NONPARAMETRIC CLASSIFICATION
                                                                                                            TECH 69 NO.4
                        SOME STATISTICAL ASPECTS OF ADAPTIVE OPTIMIZATION AND CONTROL (WITH DISCUSSION)
                                                                                                            JRSSB62
                                                                                                                    297
                                                  AN ADAPTIVE PROCEDURE FOR SEQUENTIAL CLINICAL TRIALS
                                                                                                            JASA 69
                                                                                                                     759
  ON THE SAMPLE FUNCTIONS OF PROCESSES WHICH CAN BE ADDED TO A GAUSSIAN PROCESS
                                                                                                             AMS 63
                                                                                                                     329
                                                  ON ADDELMAN'S 2-TO-THE-(17-9) RESOLUTION V PLAN
                                                                                                            TECH 66
                                                                                                                     705
   THE FREQUENCY JUSTIFICATION OF SEQUENTIAL TESTS, ADDENDUM
                                                                                                            BIOKA53
                                                                                                                     46R
                                                     ADDENDUM, THE LIMITING DISTRIBUTION OF KAMAT'S TEST
STATISTIC
                                                                                                            BIOKA56
                                                                                                                     3B6
ANALYSIS
                                                     ADDING A POINT TO VECTOR DIAGRAMS IN MULTIVARIATE
                                                                                                            BIOKA68
                                                                                                                     5B2
                                                  ON ADDING INDEPENDENT STOCHASTIC PROCESSES
                                                                                                             AMS 64
                                                                                                                     872
ION ANALYSIS
                EXTENSION OF COCHRAN'S FORMULAE FOR ADDITION OR OMISSION OF A VARIATE IN MULTIPLE RECRESS
                                                                                                            JASA 63
                                                                                                                     527
                                                     ADDITIVE COMBINING ABILITIES FITTED TO PLANT BREEDING BIOCS67
                                                                                                                      45
SQUARE
                                         FOUR FACTOR ADDITIVE DESIGNS MORE GENERAL THAN THE GRECO-LATIN
                                                                                                            TECH 62
                                        THREE FACTOR ADDITIVE DESIGNS MORE GENERAL THAN THE LATIN SQUARE
                                                                                                            TECH 62
                          SOME REMARKS ON CONTINUOUS ADDITIVE FUNCTIONALS
                                                                                                             AMS 67 1655
                                                     ADDITIVE FUNCTIONALS AND EXCESSIVE FUNCTIONS
                                                                                                             AMS 65
                                                                                                                    409
DEPENDENT SOLUTION FOR AN INFINITE DAM WITH DISCRETE ADDITIVE INPUTS
                                                                                                  THE TIME- JRSSB61
                                                                                                                     173
                               REPRESENTING FINITELY ADDITIVE INVARIANT PROBABILITIES
                                                                                                             AMS 68 2131
VARIANCE UNBIASED ESTIMATION AND CERTAIN PROBLEMS OF ADDITIVE NUMBER THEORY
                                                                                                             AMS 63 1050
                                                                                                   MINIMUM
UFFICIENT CONDITIONS FOR THE EXISTENCE OF A FINITELY ADDITIVE PROBABILITY MEASURE
                                                                                                         S
                                                                                                             AMS 67
                                                                                                                     780
ON THRIFTY STRATEGIES AND MARTINGALES IN A FINITELY ADDITIVE SETTING WILLIAM D. SUDDERTH
                                                                                                     A NOTE
                                                                                                             AMS 69 NO.6
OF STOCHASTIC SYSTEMS. ARBITRARY SYSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS ERROR
                                                                                               ESTIMATION
                                                                                                             AMS 6B
                                                                                                                     7B5
                                                 NON-ADDITIVITIES IN A LATIN SQUARE DESIGN
                                                                                                            JASA 57
                                                                                                                     21B
            THE INTERPRETATION OF THE EFFECTS OF NON-ADDITIVITY IN THE LATIN SQUARE
                                                                                                            BIOKA5B
                                                                                                                      69
                                                 NON-ADDITIVITY IN TWO-WAY ANALYSIS OF VARIANCE
                                                                                                            JASA 61
                                                                                                                     B7B
                                        PRESIDENTIAL ADDRESS
                                                                                                            JASA 66
 PATTERNS IN RESIDUALS, A TEST FOR RECRESSION MODEL ADEQUACY IN RADIONUCLIDE ASSAY
                                                                                                            TECH 65
                                                                                                                     60.3
ARIANCE IN SMALL SAMPLES, A MONTE CARLO STUDY OF THE ADEQUACY OF THE ASYMPTOTIC APPROXIMATION
                                                                                                /YSIS OF V
                                                                                                           BTOCS69
                                                                                                                     593
DISTRIBUTIONS IN GENETICS
                                                 THE ADEQUACY OF THE DIFFUSION APPROXIMATION TO CERTAIN
                                                                                                            BIOCS65
                                                                                                                     386
FLUCTUATIONS
                                 THE CONSISTENCY AND ADEQUACY OF THE POISSON-MARKOFF MODEL FOR DENSITY
                                                                                                            BIOKA57
                                                                                                                      43
                                                     ADEQUATE SUBFIELDS AND SUFFICIENCY
                                                                                                             AMS 67
                                                                                                                     155
 THE DETECTION OF A CORRELATION BETWEEN THE SEXES OF ADJACENT SIBS IN HUMAN FAMILIES
                                                                                                            JASA 65
                                                                                                                    1035
                                                     ADJOINT MATRICES FOR POLYNOMIAL RECRESSION (CORRECTIO BIOCS6B
                                                                                                                     401
                             EXPERIMENTAL DESIGNS TO ADJUST FOR TIME TRENDS
                                                                                                            TECH 60
                                                                                                                      67
                    NOTE ON MULTIPLE COMPARISONS FOR ADJUSTED MEANS IN THE ANALYSIS OF COVARIANCE
                                                                                                            BIOKA5B
                                                                                                                     256
                           ANALYSIS OF OUTLIERS WITH ADJUSTED RESIDUALS
                                                                                                            TECH 67
                                                                                                                     541
             ALTERNATIVE AXIOMATIZATIONS OF SEASONAL ADJUSTMENT
                                                                                                            JASA 66
OBSERVATIONAL STUDIES
                                THE EFFECTIVENESS OF ADJUSTMENT BY SUBCLASSIFICATION IN REMOVING BIAS IN
                                                                                                            BIOCS6B
                                                                                                                     295
           MULTIPLE LINEAR REGRESSION ANALYSIS WITH ADJUSTMENT FOR CLASS DIFFERENCES
                                                                                                            JASA 61
                                        A METHOD OF ADJUSTMENT FOR DEFECTIVE DATA
                                                                                                            JASA 5B
I-SQUARE TEST FOR HETEROGENEITY OF PROPORTIONS AFTER ADJUSTMENT FOR STRATIFICATION (ADDENDUM 67 197)
                                                                                                        /CH JRSSB66
                                                                                                                     150
LINEAR APPROXIMATIONS TO THE CENSUS AND BLS SEASONAL ADJUSTMENT METHODS
                                                                                                            JASA 6B
                                                                                                                     445
                                            SEASONAL ADJUSTMENT OF DATA FOR ECONOMETRIC ANALYSIS
                                                                                                            JASA 67
                                                                                                                     137
REGRESSION ANALYSIS
                                            SEASONAL ADJUSTMENT OF ECONOMIC TIME SERIES AND MULTIPLE
                                                                                                            JASA 63
                                                                                                                     993
        MINIMUM VARIANCE, LINEAR, UNBIASED SEASONAL ADJUSTMENT OF ECONOMIC TIME SERIES, CORR. 65 1250
                                                                                                                     6B1
                                                                                                            JASA 64
       EVALUATION OF BLS AND CENSUS REVISED SEASONAL ADJUSTMENT PROCEDURES
                                                                                                   SPECTRAL JASA 68
                                                                                                                     472
 SAMPLE BIAS DUE TO MISSPECIFICATION IN THE 'PARTIAL ADJUSTMENT' AND 'ADAPTIVE EXPECTATIONS' MODELS
                                                                                                      /ALL JASA 66 1130
                                            SEASONAL ADJUSTMENTS BY ELECTRONIC COMPUTER METHODS
                                                                                                            JASA 57
                                                                                                                     415
SSION TECHNIQUES APPLIED TO SEASONAL CORRECTIONS AND ADJUSTMENTS FOR CALENDAR SHIFTS
                                                                                                      REGRE JASA 56
                                                                                                                     615
 POPULATIONS, I
                                                     ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE
                                                                                                             AMS 65 1707
 POPULATIONS, II
                                                     ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE
                                                                                                             AMS 65 1723
 POPULATIONS. III
                                                     ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE
                                                                                                             AMS 65 1730
 POPULATIONS, IV
                                                     ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE
                                                                                                             AMS 66 1658
 POPULATIONS. V
                                                     ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE
                                                                                                             AMS 69
                                                                                                                    672
FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS
                                                     ADMISSIBILITY AND DISTRIBUTION OF SOME PROBABILISTIC
                                                                                                             AMS 6B 1646
              GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY AND THE EXPONENTIAL FAMILY
                                                                                                             AMS 67
                                                                                                                     BIB
IZED DESIGNS, OF BALANCED DESIGNS
                                              ON THE ADMISSIBILITY AT INFINITY, WITHIN THE CLASS OF RANDOM
                                                                                                             AMS 6B 197B
THE PROBLEM OF A ONE WAY CLASSIFICATION
                                              ON THE ADMISSIBILITY OF A RANDOMIZED SYMMETRICAL DESIGN FOR
                                                                                                             AMS 69
                                                                                                                     356
                                                     ADMISSIBILITY OF CONFIDENCE INTERVALS
                                                                                                             AMS 66
                                                                                                                     629
        ON A NECESSARY AND SUFFICIENT CONDITION FOR ADMISSIBILITY OF ESTIMATORS WHEN STRICTLY CONVEX LOSS
                                                                                                             AMS 6B
 TS 11/
                                                                                                                     23
LOCATION PARAMETERS
                                              ON THE ADMISSIBILITY OF INVARIANT ESTIMATORS OF ONE OR MORE
                                                                                                             AMS 66 10B7
                                                                                                             AMS 66 1809
LATIONS
                    ON A THEOREM OF KARLIN REGARDING ADMISSIBILITY OF LINEAR ESTIMATES IN EXPONENTIAL POPU
                                       A NOTE ON THE ADMISSIBILITY OF POOLING IN THE ANALYSIS OF VARIANCE
                                                                                                             AMS 68 1744
LOCATION PARAMETER
                                                     ADMISSIBILITY OF QUANTILE ESTIMATES OF A SINGLE
                                                                                                             AMS 64 1019
                              OPTIMUM PROPERTIES AND ADMISSIBILITY OF SEQUENTIAL TESTS
                                                                                                             AMS 63
```

```
AMS 64 789
                                               ON THE ADMISSIBILITY OF SOME TESTS OF MANOVA
MEAN OF A FINITE POPULATION
                                                      ADMISSIBILITY OF THE SAMPLE MEAN AS ESTIMATE OF THE
                                                                                                               AMS 6B 606
                                                      ADMISSIBILITY OF THE USUAL CONFIDENCE SETS FOR THE ME
                                                                                                               AMS 69 1042
AN OF A UNIVARIATE OR BIVARIATE NORMAL POPULATION
                                                      ADMISSIBLE AND MINIMAX ESTIMATES OF PARAMETERS IN
                                                                                                               AMS 61
                                                                                                                       136
TRUNCATED SPACES
D OTHER FULLY INVARIANT TESTS FOR CLASSICAL MULTI/
                                                     ADMISSIBLE BAYES CHARACTER OF T-SQUARED, R-SQUARED AN
                                                                                                               AMS 65
                                                                                                                      747
                                                      ADMISSIBLE DESIGNS FOR POLYNOMIAL SPLINE RECRESSION
                                                                                                               AMS 69 1557
                    ON A THEOREM OF KARLIN RECARDING ADMISSIBLE ESTIMATES FOR EXPONENTIAL POPULATIONS
                                                                                                               AMS 69
                                                                                                                      216
                                                  ALL ADMISSIBLE LINEAR ESTIMATES OF THE MEAN VECTOR
                                                                                                               AMS 66
                                                                                                                       45B
                                        ON A CLASS OF ADMISSIBLE PARTITIONS
                                                                                                               AMS 66
                                                                                                                       1B9
                                                      ADMISSIBLE TESTS IN MULTIVARIATE ANALYSIS OF VARIANCE
                                                                                                               AMS 67
                                                                                                                       698
IDENCE INTERVALS FOR THE PARAMETER OF A DISTRIBUTION ADMITTING A SUFFICIENT STATISTIC WHEN THE RANCE DEPEN JRSSB55
                                                                                                                       B6
    EXACT FORMS OF SOME INVARIANTS FOR DISTRIBUTIONS ADMITTING SUFFICIENT STATISTICS
                                                                                                              BIOKA55
                                                                                                                       533
                                                                                         /VATURE OF THE LIKE BIOKA60
LIHOOD SURFACE OF A SAMPLE DRAWN FROM A DISTRIBUTION ADMITTING SUFFICIENT STATISTICS
                                                                                                                       203
                   CANNIBALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN EXPERIMENT AND A STOCHASTIC
                                                                                                              BTOCS6B
                                                                                                                       247
                                          SOME RECENT ADVANCES IN SAMPLING THEORY
                                                                                                              JASA 63
                                                                                                                       737
            GRAPHIC METHODS BASED UPON PROPERTIES OF ADVANCING CENTROIDS
                                                                                                              JASA 59
                                                                                                                       66B
        FURTHER COMMENTS ON THE 'FINAL REPORT OF THE ADVISORY COMMITTEE ON WEATHER CONTROL'
                                                                                                              JASA 61
                                                                                                                       5B0
              LINEAR RELATIONSHIPS BETWEEN VARIABLES AFFECTED BY ERRORS
                                                                                                              BIOCS66
                                                                                                                       252
IZED BLOCK DESIGN AN EMPIRICAL STUDY INTO FACTORS AFFECTING THE F-TEST UNDER PERMUTATION FOR THE RANDOM JASA 6B
                                                                                                                       902
A GUIDE TO THE LITERATURE ON STATISTICS OF RELIGIOUS AFFILIATION WITH REFERENCES TO RELATED SOCIAL STUDIES JASA 59
                                 STATISTICS IN SOUTH AFRICA
                                                                                                              SASJ 6B
                                                                                                                       109
                                           THE SOUTH AFRICAN STATISTICAL ASSOCIATION, A SKETCH OF ITS
                                                                                                              SASJ 67
   WEIGHT-HEICHT RELATIONSHIPS OF YOUTHS OF MILITARY AGE
                                                                                                     CURRENT JASA 62
                                                                                                                       B95
                         ASYMPTOTIC PROPERTIES OF AN AGE DEPENDENT BRANCHING PROCESS
                                                                                                               AMS 65 1565
                             AN INTEGRAL EQUATION IN AGE DEPENDENT BRANCHING PROCESSES
                                                                                                               AMS 65 1569
                  MONOTONE CONVERGENCE OF MOMENTS IN ACE DEPENDENT BRANCHING PROCESSES
                                                                                                               AMS 66 1806
                ON THE SUPERCRITICAL ONE DIMENSIONAL AGE DEPENDENT BRANCHING PROCESSES
                                                                                                               AMS 69
                                                                                                                       743
                            ON THE INTERPRETATION OF ACE DISTRIBUTIONS
                                                                                                              JASA 67
                                                                                                                       B62
  AND ESTIMATING PARAMETERS IN HUMAN CENETICS IF THE AGE OF ONSET IS RANDOM
                                                                                          TESTING HYPOTHESES BIOKA63
                                                                                                                       265
                                                      AGE PATTERNS OF MORTALITY OF AMERICAN NEGROES, 1900- JASA 69
02 TO 1959-61
                                                                                                                       433
                                                  THE ACE REPLACEMENT PROBLEM
                                                                                                              TECH 67
                                                                                                                       83
                                                   AN AGE-DEPENDENT BIRTH AND DEATH PROCESS
                                                                                                              BIOKA55
                                                                                                                       291
OF ULTIMATE EXTINCTION
                                                      AGE-DEPENDENT BRANCHINC PROCESSES UNDER A CONDITION
                                                                                                              BIOKA6B
                                                                                                                       291
OF EXTINCTION FOR BIRTH-AND-DEATH PROCESSES THAT ARE AGE-DEPENDENT OR PHASE-DEPENDENT THE PROBABILITIES
                                                                                                              BIOKA67
                                                                                                                       579
                  A DEMOGRAPHIC MODEL FOR ESTIMATING ACE-ORDER SPECIFIC FERTILITY RATES
                                                                                                              JASA 63
                                                                                                                       774
                                                                                                              JASA 6B
                            ON MEASURING THE EXTREME ACED IN THE POPULATION
                                                                                                                        29
                  A SCREENING SYSTEM FOR ANTI-CANCER ACENTS BASED ON THE THERAPEUTIC INDEX
                                                                                                              BIOCS65
                          ON FORMING STRATA OF EQUAL AGGREGATE SIZE
                                                                                                              JASA 64
                                                                                                                       4B1
    ESTIMATORS AS A TOOL IN ALLOCATING PREDETERMINED AGGRECATES
                                                                                                       AITKEN JASA 69
                                                                                                                       913
MATING SEEMINGLY UNRELATED REGRESSIONS AND TESTS FOR AGCRECATION BIAS
                                                                                AN EFFICIENT METHOD OF ESTI JASA 62
                                   SOME CRITERIA FOR AGING
                                                                                                              JASA 69 NO.4
                                    A LIFE TABLE THAT AGREES WITH THE DATA. II
                                                                                                              JASA 68
                                                                                                                      1253
  PROBLEMS OF SAMPLE ALLOCATION AND ESTIMATION IN AN AGRICULTURAL SURVEY
                                                                                                              JRSSB54
                                                                                                                       223
              AN ECONOMETRIC MODEL FOR UNITED STATES ACRICULTURE
                                                                                                              JASA 59
                                                                                                                       556
                             MODEL BUILDING WITH THE AID OF STOCHASTIC PROCESSES
                                                                                                              TECH 64
                                                                                                                       133
                                             COMPUTER AIDED DESIGN OF EXPERIMENTS
                                                                                                              TECH 69
                                                                                                                       137
                                                      AIDS FOR FITTING THE GAMMA DISTRIBUTION BY MAXIMUM
LIKELIHOOD
                                                                                                              TECH 60
                                                                                                                        55
            A CROSS-SECTION ANALYSIS OF NON-BUSINESS AIR TRAVEL
                                                                                                              JASA 5B
                                                                                                                       92B
   MEASUREMENT OF COST-QUANTITY RELATIONSHIPS IN THE AIRCRAFT INDUSTRY
                                                                                                A NOTE ON THE JASA 6B 1247
                                                      AITKEN ESTIMATORS AS A TOOL IN ALLOCATING PREDETERMIN JASA 69
ED AGGREGATES
                                                                                                                       913
IVE BINOMIAL FREQUENCY FUNCTIONS IN CURVE FITTING BY AITKEN'S METHOD //YNOMIALS OF THE POSITIVE AND NECAT BIOKA61

IVE BINOMIAL FREQUENCY FUNCTIONS IN CURVE FITTING BY AITKEN'S METHOD //POLYNOMIALS OF POSITIVE AND NECAT BIOKA61
                                                                                                                       115
                                                                                                                      476
                                   THE RELATIONSHIP ALGEBRA AND THE ANALYSIS OF VARIANCE OF A PARTIALLY B
ALANCED INCOMPLETE BLOCK DESIGN
                                                                                                              AMS 65
                                                                                                                      1815
                               SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCHASTIC PROCESSES
                                                                                                               AMS 6B
                                                                                                                      164
F SIGNIFICANCE ON THE DIMENSIONALITY OF NORMAL MU/ ALGEBRAIC THEORY OF THE COMPUTINC ROUTINE FOR TESTS O JRSSB56
                                                                                                                        70
                    ON QUALITATIVE PROBABILITY SIGMA-ALGEBRAS
                                                                                                               AMS 64 17B7
   CONDITIONAL PROBABILITY ON SIGMA-COMPLETE BOOLEAN ALGEBRAS
                                                                                                               AMS 69
                                                                                                                      970
                CONVERGENCE PROPERTIES OF A LEARNING ALGORITHM
                                                                                                               AMS 64 1819
                                   THE INVERSE YATES ALGORITHM
                                                                                                              TECH 66
                                                                                                                       177
                             NOTES. CHECKS ON YATES'S ALGORITHM
                                                                                                              BIOCS67
                                                                                                                       573
OWER N FACTORIAL EXPERIMENT AS CALCULATED BY YATES'S ALGORITHM
                                                                  /EFFECTS AND INTERACTIONS IN A 2 TO THE P BIOCS67
                                      THE INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS
                                      THE INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS, AN ADDENDUM JRSSB60
                                                                                                                       372
                                                   AN ALGORITHM FOR HIERARCHICAL CLASSIFICATIONS
 DISPERSION MATRIX IN MULTIVARIATE ANALYSIS
                                                   AN ALCORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE JASA 67
                                                                                                                       114
INTO GAUSSIAN COMPONENTS
                                                   AN ALGORITHM FOR THE DECOMPOSITION OF A DISTRIBUTION
                                                                                                              BIOCS69
                                                   AN ALGORITHM FOR THE DETERMINATION OF THE ECONOMIC DESIG JASA 6B
N OF X-CHARTS BASED ON DUNCAN'S MODEL
                                                                                                                       304
                  THE EXTENSION OF YATES' 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL EXPERIMENT
                                                                                                              TECH 6B
                                                                                                                       575
 TIMES-3-TO-THE-M DESIGNS AND TWO-FACTOR INTERACTION ALIASING
                                                                          ORTHOGONAL MAIN-EFFECT 2-TO-THE-N- TECH 68
                                                                                                                       559
                                                      ALIASING IN PARTIALLY CONFOUNDED FACTORIAL
EXPERIMENTS
                                                                                                              BIOKA61
                                                                                                                       218
                                        ON A CLASS OF ALIGNED RANK ORDER TESTS IN TWO-WAY LAYOUTS
                                                                                                               AMS 6B 1115
                                A METHOD FOR JUDGING ALL CONTRASTS IN THE ANALYSIS OF VARIANCE (CORR. 69
                                                                                                              BIOKA53
229) (CORR. 69 229)
                                                                                                                       B7
OF RESPONSE TO SELECTION IN BREEDING PROGRAMMES WHEN ALL DAUGHTERS OF SELECTED PARENTS ARE RETAINED
                                                                                                                       553
                                                                                                        /ON
                                                                                                             BIOCS69
TIC COMPONENTS FOR NON-INBRED DIPLOID SPECIES HAVING ALL DIGENIC EPISTATIC VARIANCES OF EQUAL MAGNITUDE
                                                                                                              BTOCS69
                                                                                                                       545
                       A RANK SUM TEST FOR COMPARING ALL PAIRS OF TREATMENTS
EFFICIENT CALCULATION OF ALL POSSIBLE RECRESSIONS
                                                                                                                       197
                                                                                                              TECH 60
                                                                                                              TECH 6B
                                                                                                                       769
OD ESTIMATOR IS UNBIASED AND OF MINIMUM VARIANCE FOR ALL SAMPLE SIZES /NS FOR WHICH THE MAXIMUM-LIKELIHO BIOKAS6
                                                                                                                       200
RTHOGONAL MAIN-EFFECT PLANS PERMITTING ESTIMATION OF ALL TWO-FACTOR INTERACTIONS FOR THE 2-TO-THE-N TIMES TECH 69 NO.4
             THE MATCHED PAIRS DESIGN IN THE CASE OF ALL-OR-NONE RESPONSES
                                                                                                              BIOCS6B
                                                                                                                       339
      MATCHING WITH MULTIPLE CONTROLS IN THE CASE OF ALL-OR-NONE RESPONSES
                                                                                                  INDIVIDUAL BIOCS69
                                                                                                                       339
              ON THE PROBLEM OF SELF-INCOMPATABILITY ALLELES
                                                                                                              BIOCS66
                                                                                                                       111
                    EQUILIBRIA UNDER SELECTION FOR K ALLELES
                                                                                                              BIOCS66
                                                                                                                       121
               EQUILIBRIUM UNDER SELECTION AT A MULTI-ALLELIC SEX-LINKED LOCUS (ACKNOWLEDGEMENT 68 1025)
                                                                                                              BT0CS68
                                                                                                                       187
IN A SEQUENCE OF TWO ALTERNATIVES. I. WILCOXON'S AND ALLIED TEST STATISTICS
                                                                                             NON-RANDOMNESS
                                                                                                             BIOKA5B
                                                                                                                       166
                             A NOTE ON WILCOXON'S AND ALLIED TESTS
                                                                                                              BTOKA56
                                                                                                                       485
```

ALL - ANA TITLE WORD INDEX

```
THE LADY TASTING TEA, AND ALLIED TOPICS
                                                                                                             JASA 59 776
                      AITKEN ESTIMATORS AS A TOOL IN ALLOCATING PREDETERMINED AGGRECATES
                                                                                                             JASA 69
                                                                                                                      913
                                  PROBLEMS OF SAMPLE ALLOCATION AND ESTIMATION IN AN AGRICULTURAL SURVEY
                                                                                                             JRSSB54 223
                                A PROBLEM OF OPTIMUM ALLOCATION ARISING IN CHEMICAL ANALYSES BY MULTIPLE
                                                                                                             TECH 61
                                                                                                                      509
                                              RANDOM ALLOCATION DESICNS II, APPROXIMATE THEORY FOR SIMPLE
                                                                                                             AMS 61 3B7
RANDOM ALLOCATION
                                    A NOTE ON OPTIMUM ALLOCATION FOR A ONE-WAY LAYOUT
                                                                                                             BIOKA62
                                                                                                                      563
                                    THE USE OF RANDOM ALLOCATION FOR THE CONTROL OF SELECTION BIAS
                                                                                                             BIOKA69 NO.3
                                              OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS, AN ANALYTICAL
SOLUTION
                                                                                                             JRSSB67
        A NOTE ON THE CAIN IN PRECISION FOR OPTIMAL ALLOCATION IN RECRESSION AS APPLIED TO EXTRAPOLATION TECH 69
IN S-/
                                             OPTIMAL ALLOCATION IN STRATIFIED AND MULTISTACE SAMPLES USING JASA 68
 PRIOR INFORMATION
                                             OPTIMUM ALLOCATION OF SAMPLING UNITS TO STRATA WHEN THERE ARE JASA 65
 R RESPONSES OF INTEREST
                                         THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN SYSTEMS
                                                                                                             TECH 61
                                                                                                                      399
                                        A NOTE ON AN ALLOCATION PROBLEM
                                                                                                             JRSSB69
DISCUSSION)
                                                      ALLOCATION RULES AND THEIR ERROR RATES (WITH
                                                                                                             JRSSB66
                 SOME CONSIDERATIONS IN MULTIVARIATE ALLOMETRY
                                                                                                             BIOCS66
                                    WEIGHTED PROBITS ALLOWING FOR A NON-ZERO RESPONSE IN THE CONTROLS
                                                                                                             BIOKA56
  COMBINATION OF ESTIMATES FROM SIMILAR EXPERIMENTS, ALLOWING FOR INTER-EXPERIMENT VARIATION
                                                                                                         THE JASA 67
                                                 THE ALMOST FULL DAM WITH POISSON INPUT
                                                                                                             JRSSB66 329
                                                  THE ALMOST FULL DAM WITH POISSON INPUT, FURTHER RESULTS
                                                                                                             JRSSB66 448
                                   ON INVARIANCE AND ALMOST INVARIANCE
                                                                                                              AMS 68 1573
                                                      ALMOST LINEARLY-OPTIMUM COMBINATION OF UNBIASED
                                                                                                             JASA 61
ESTIMATES
                                   AN INEQUALITY AND ALMOST SURE CONVERCENCE
                                                                                                              AMS 69 1091
EPENDENT AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST SURE CONVERCENCE OF LINEAR COMBINATIONS OF IND
                                                                                                             AMS 6B 1549
INDEPENDENT RANDOM VARIABLES
                                                      ALMOST SURE CONVERCENCE OF QUADRATIC FORMS IN
                                                                                                              AMS 6B 1502
                           NECESSARY CONDITIONS FOR ALMOST SURE EXTINCTION OF BRANCHING PROCESS WITH RAND
OM ENVIRONMENT
                                                                                                             AMS 68 2136
RVES FOR FIXED EFFECTS ANALYSIS OF VARIANCE F TESTS, ALPHA EQUALS 0.01 AND 0 05 /ATING CHARACTERISTIC CU JASA 57 345
FOR SELECTING THE T POPULATION WITH THE LARCEST ALPHA-QUANTILE NONPARAMETRIC PROCEDURES AMS 67 1804
A SUBSET CONTAINING THE POPULATION WITH THE LARCEST ALPHA-QUANTILE /PARAMETRIC PROCEDURES FOR SELECTING. AMS 67 1788
                                   NOTE ON DYNKIN'S 'ALPHA, XI' SUBPROCESS OF STANDARD MARKOV PROCESS
                                                                                                              AMS 67 1647
                                                                  /STRUCTURES UNDER WHICH CERTAIN SIMPLE L JASA 69 NO.4
EAST SQUARES AND ANALYSIS OF VARIANCE PROCEDURES ARE ALSO BEST
OF ONE-SIDED KOLMOCOROV AND SMIRNOV TESTS FOR NORMAL ALTERNATIONS
                                                                                  ON THE PITMAN EFFICIENCY
                                                                                                             AMS 66 940
T POWERFUL TEST FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE /T AND THE MOST STRINCENT SOMEWHERE MOS AMS 6B 531
                                                      ALTERNATIVE ANALYSIS OF CONTINCENCY TABLES
                                                                                                             JRSSB66
                                                                                                                      164
        ON THE COMPARISON OF SEVERAL MEAN VALUES, AN ALTERNATIVE APPROACH
                                                                                                             BIOKAŠ1 330
          ASYMPTOTICALLY NONPARAMETRIC INFERENCE, AN ALTERNATIVE APPROACH TO LINEAR MODELS
                                                                                                              AMS 63 1494
                                                      ALTERNATIVE AXIOMATIZATIONS OF SEASONAL ADJUSTMENT
                                                                                                             JASA 66 800
                              DISCRIMINATION BETWEEN ALTERNATIVE BINARY RESPONSE MODELS
                                                                                                             BIOKA67
                                                                                                                      573
FFICIENT IN SHORT AUTOREGRESSIVE SEQUENCES
                                                      ALTERNATIVE DEFINITIONS OF THE SERIAL CORRELATION COE JASA 58 881
 A CLASSIFICATION PROBLEM IN WHICH INFORMATION ABOUT ALTERNATIVE DISTRIBUTIONS IS BASED ON SAMPLES
                                                                                                              AMS 62 213
                                                      ALTERNATIVE EFFICIENCIES FOR SIGNED RANK TESTS
                                                                                                              AMS 65 1759
SAMPLE PROBLEM
                                             ON SOME ALTERNATIVE ESTIMATES FOR SHIFT IN THE P-VARIATE ONE
                                                                                                              AMS 64 1079
EQUATION
                                 THE EFFICIENCIES OF ALTERNATIVE ESTIMATORS FOR AN ASYMPTOTIC REGRESSION BIOKA58 370
                         SMALL SAMPLE PROPERTIES OF ALTERNATIVE ESTIMATORS OF SEEMINGLY UNRELATED REGRESS JASA 68 1180
  FOR TESTING A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS A SEQUENTIAL PROCEDURE JRSSB69 NO.2
 TESTS FOR RANDOMNESS IN A SERIES OF EVENTS WHEN THE ALTERNATIVE IS A TREND
                                                                                                             JRSSB56 234
INFOUALITIES
                                                      ALTERNATIVE PROOFS FOR CERTAIN UPCROSSING
                                                                                                              AMS 67 735
MOST STRINGENT SOMEWHERE MOST POWERFUL TESTS AGAINST ALTERNATIVE RESTRICTED BY A NUMBER OF LINEAR INEQUALI
                                                                                                              AMS 66 1161
                                                AN ALTERNATIVE SYSTEM FOR THE CLASSIFICATION OF MATHEMAT BIOCS65 181
ICAL MODELS FOR QUANTAL RESPONSES TO MIXTURES/
 MONTE CARLO RESULTS
                                                      ALTERNATIVE TESTS FOR HETEROCENEITY OF VARIANCE, SOME BIOKA66
                                                                                                                      229
                          ANALYSIS OF VARIANCE AS AN ALTERNATIVE TO FACTOR ANALYSIS
                                                                                                             JRSSB57 31B
               THE USE OF CONTROL OBSERVATIONS AS AN ALTERNATIVE TO INCOMPLETE BLOCK DESIGNS
                                                                                                             JRSSB62 464
EXPERIMENTS WITH MIXTURES
                                                  AN ALTERNATIVE TO THE SIMPLEX-LATTICE DESIGN FOR
                                                                                                             JRSSB69 NO.2
                 TESTING HOMOCENEITY ACAINST ORDERED ALTERNATIVES
                                                                                                              AMS 63 945
            ON MODELS AND HYPOTHESES WITH RESTRICTED ALTERNATIVES
                                                                                                             JASA 65 1153
                     TESTING OF MEANS WITH DIFFERENT ALTERNATIVES
                                                                                                             TECH 68
                      MINIMAX RESULTS FOR IFRA SCALE ALTERNATIVES
                                                                                                              AMS 69 177B
   A OISTRIBUTION-FREE K-SAMPLE TEST ACAINST ORDERED ALTERNATIVES
                                                                                                             BIOKA54 133
                   A TEST OF HOMOGENEITY FOR ORDERED ALTERNATIVES
                                                                                                             BIOKA59
                                                                                                                       36
        A NON-NULL RANKINC MODEL FOR A SEQUENCE OF M ALTERNATIVES
                                                                                                             BIOKA61
   FOR RANDOMNESS OF DIRECTIONS ACAINST TWO CIRCULAR ALTERNATIVES
                                                                                                       TESTS JASA 69 2B0
    NORMALITY OF SIMPLE LINEAR RANK STATISTICS UNDER ALTERNATIVES
                                                                                                  ASYMPTOTIC AMS 6B
OF MANN-WHITNEY TEST FOR EXPONENTIAL AND RECTANCULAR ALTERNATIVES
                                                                                                EXACT POWER
                                                                                                             AMS 66 945
ONNECTED WITH GOODNESS-OF-FIT TESTS FOR EQUIPROBABLE ALTERNATIVES
                                                                                                TWO TABLES C BIOKA68
                                                                                                                     441
 THE EQUALITY OF COVARIANCE MATRICES ACAINST CERTAIN ALTERNATIVES
                                                                                     SIMULTANEOUS TESTS FOR AMS 68 1303
   THE ONE SAMPLE WILCOXON TEST FOR NON-NORMAL SHIFT ALTERNATIVES
                                                                                     SMALL SAMPLE POWER FOR
                                                                                                              AMS 65 1767
                                                                                    THE ASYMPTOTIC RELATIVE JASA 65 410
  EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST SCALAR ALTERNATIVES
 LOCATION IN MULTIVARIATE POPULATIONS FOR RESTRICTED ALTERNATIVES
                                                                                  ON THE PROBLEM OF TESTING AMS 66
 THE MANN-WHITNEY-WILCOXON U-STATISTIC UNDER LEHMANN ALTERNATIVES
                                                                              TABLES OF THE DISTRIBUTION OF TECH 67 666
UTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES
                                                                        RECURSIVE CENERATION OF THE DISTRIB AMS 66
                                                                                                                     2B4
 OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES
                                                                    /A PROPERTY OF A TEST FOR THE EQUALITY
                                                                                                              AMS 62 1463
ND MASSEY'S TWO SAMPLE TESTS AGAINST SOME PARAMETRIC ALTERNATIVES
                                                                     /TOTIC RELATIVE EFFICIENCY OF MOOD'S A
                                                                                                              AMS 62 1375
     A TEST OF HOMOCENEITY OF MEANS UNDER RESTRICTED ALTERNATIVES (WITH DISCUSSION)
                                                                                                             JRSSB61 239
           RANK TESTS FOR RANDOMIZED BLOCKS WHEN THE ALTERNATIVES HAVE AN 'A PRIORI' ORDERING
                                                                                                              AMS 67
                                                                                                                      B67
THEORY AND NONPARAMETRIC
                            TESTINC AGAINST ORDERED ALTERNATIVES IN MODEL I ANALYSIS OF VARIANCE, NORMAL
                                                                                                              AMS 67 1740
                ON CHERNOFF-SAVAGE TESTS FOR ORDERED ALTERNATIVES IN RANOOMIZEO BLOCKS
                                                                                                              AMS 6B 967
   TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE SPECIFICITY
                                                                                                              AMS 62 432
                                                      ALTERNATIVES TO A LATIN SQUARE
                                                                                                             BIOCS68
HYPOTHESIS OF EQUAL CELL FREQUENCIES
                                                 TWO ALTERNATIVES TO THE STANDARD CHI-SQUARE-TEST OF THE BIOKA62 107
                 NON-RANDOMNESS IN A SEQUENCE OF TWO ALTERNATIVES. I. WILCOXON'S AND ALLIED TEST STATISTIC BIOKA58
                   A TEST OF HOMOGENEITY FOR ORDERED ALTERNATIVES. II
                                                                                                             BTOKA59 32B
                 NON-RANDOMNESS IN A SEQUENCE OF TWO ALTERNATIVES. II. RUNS TEST
                                                                                                             BIOKA5B
                                                                                                                     253
K-ORDER SEQUENTIAL PROBABILITY RATIO TEST ON LEHMANN ALTERNATIVES, CORR. 67 1309
                                                                                     STOPPING TIME OF A RAN AMS 66 1154
   NORMALITY OF SIMPLE LINEAR RANK STATISTICS UNDER ALTERNATIVES,
                                                                    ΙI
                                                                                                 ASYMPTOTIC
                                                                                                              AMS 69 NO.6
FINITE SET OF REAL NUMBERS
                                        THE COMPLETE AMALCAMATION INTO BLOCKS, BY WEIGHTED MEANS, OF A
                                                                                                            BIOKA59 317
       THE RANDOMIZATION BASES OF THE PROBLEM OF THE AMALGAMATION OF WEICHTED MEANS
                                                                                                             JRSSB61 423
                        ACE PATTERNS OF MORTALITY OF AMERICAN NEGROES, 1900-02 TO 1959-61
                                                                                                             JASA 69 433
```

TITLE WORD INDEX ALL ANA

STATISTICS THE	AMERICAN STATISTICAL ASSOCIATION AND FEDERAL	JASA 64	1
		JASA 57	
	AMERICAN STATISTICIANS OF THE NINETEENTH CENTURY II AMOUNT OF DUPLICATION SOME NONRESPONSE		
		JRSSB56	
	AMOUNT OF INFORMATION SUPPLIED BY CENSORED SAMPLES OF		
	AMOUNT OF INFORMATION SUPPLIED BY TRUNCATED SAMPLES OF		
INHALATION IN RELATION TO TYPE AND		JASA 59	
		JRSSB64	
	AMPLITUDE SPECTRA FOR STOCHASTIC PROCESSES WITH QUASI		
	ANALIZING A 2-TO-THE-M FACTORIAL EXPERIMENT		
A DISTRIBUTION	ANALOCOUS TO THE BOREL-TANNER	BIOKA61	167
SOME SEQUENTIAL	ANALOCS OF STEIN'S TWO-STACE TEST	BIOKA62	
ON AN		BIOKA64	
CRESSION, WITH APPLICATION TO MANIFOLD. / THE RANK	ANALOCUE OF PRODUCT-MOMENT PARTIAL CORRELATION AND RE		
	ANALOCUE OF STUDENT'S T-DISTRIBUTION /BABILITY INTE		
	ANALOCUE OF TCHEBYCHEFF'S INEQUALITY IN TERMS OF THE		
		BIOKA63	
A K-SAMPLE	ANALOGUE OF WATSON'S U-SQUARE STATISTIC	BIOKA66	
ON THE COMPLEX	ANALOCUES OF T-SQUARED AND R-SQUARED TESTS	AMS 65	664
AND THE SPHERE		BIOKA63	В1
A PROBLEM OF OPTIMUM ALLOCATION ARISINC IN CHEMICAL	ANALYSES BY MULTIPLE ISOTOPE DILUTION	TECH 61	509
SOME	ANALYSES OF INCOME-FOOD RELATIONSHIPS	JASA 58	905
EVALUATION OF CHEMICAL	ANALYSES ON TWO ROCKS	TECH 59	409
ION OF HERITABILITY ESTIMATES OBTAINED FROM VARIANCE	ANALYSES' CORRECTION TO 'COEFFICIENTS OF VARIAT	BIOCS65	265
		BIOKA66	397
		BIOCS67	
	ANALYSING UNTRANSFORMED DATA FROM THE NEGATIVE BINOMI		
LINEAR PROCRAMMING TECHNIQUES FOR REGRESSION		JASA 59	
BIBLIOGRAPHY ON SEQUENTIAL		JASA 60	
VARIATIONS FLOW		TECH 60	
AN APPROACH TO TIME SERIES		AMS 61	
A MODEL FOR MIGRATION		JASA 61	
THIRD ORDER ROTATABLE DESIGNS IN THREE FACTORS.		TECH 62	
ASYMPTOTIC THEORY FOR PRINCIPAL COMPONENT		AMS 63	
ON AN ANALOG OF REGRESSION		AMS 63	
A NOTE ON RESIDUAL		JASA 63	
BAYESIAN ESTIMATION IN MULTIVARIATE		AMS 65	
HYPERGEOMETRIC FUNCTIONS IN SEQUENTIAL		AMS 65	
UNIFIED LEAST SQUARES		JASA 65	
THE ANALYSIS OF DISTURBANCES IN REGRESSION		JASA 65	
A REAPPRAISAL OF THE PERIODOGRAM IN SPECTRAL		TECH 65	
INEQUALITY RESTRICTIONS IN REGRESSION		JASA 66	
SEASONAL ADJUSTMENT OF DATA FOR ECONOMETRIC THE ASSESSMENT OF PRIOR DISTRIBUTIONS IN BAYESIAN		JASA 67	
QUERY, RESIDUAL		JASA 67 TECH 67	
SELECTION OF THE BEST SUBSET IN REGRESSION		TECH 67	
DIVIDEND POLICY, AN EMPIRICAL		JASA 6B	
ESTIMATION OF ERROR RATES IN DISCRIMINANT		TECH 6B	1
ONE SIDED PROBLEMS IN MULTIVARIATE		AMS 69	
SOME EXACT TESTS IN MULTIVARIATE		BIOKA52	17
TESTS OF SIGNIFICANCE IN CANONICAL		BIOKA52	58
DISCRIMINATION IN TIME-SERIES		BIOKA52	
CAPTURE-RECAPTURE		BIOKA53	
TESTS OF SIGNIFICANCE IN CANONICAL		BIOKA59	59
JUMP	ANALYSIS	BIOKA59	386
DEPARTURES FROM ASSUMPTION IN SEQUENTIAL		BIOKA61	
A THEOREM IN TREND	ANALYSIS	BIOKA61	224
BAYESIAN SEQUENTIAL		BIOKA61	
LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT		BIOKA61	
SOME GENERAL RESULTS IN SEQUENTIAL	ANALYSIS	BIOKA64	
THE DISCARDING OF VARIABLES IN MULTIVARIATE		BIOKA67	
ADDING A POINT TO VECTOR DIAGRAMS IN MULTIVARIATE		BIOKA68	
ANALYSIS OF VARIANCE AS AN ALTERNATIVE TO FACTOR		JRSSB57	
ON THE EXACT DISTRIBUTION OF A TEST IN MULTIVARIATE		JRSSB58	
THE INTERACTION ALGORITHM AND PRACTICAL FOURIER		JRSSB58	
MULTIVARIATE QUANTAL		JRSSB5B JRSSB59	
BANDWIDTH AND RESOLVABILITY IN STATISTICAL SPECTRAL		JRSSB67	
MODELS OF THE SECOND KIND IN RECRESSION MISSING DATA IN RECRESSION		JRSSB6B	67
A METHOD FOR CLUSTER		BIOCS65	
MATRIX AND MULTIPLE DECREMENT IN POPULATION		BIOCS67	
A COMPARISON OF SOME METHODS OF CLUSTER		BIOCS67	
MISSING VALUES IN LINEAR MULTIPLE DISCRIMINANT		BIOCS6B	
A DISCONTINUITY IN MIXED MODEL		BIOCS69	
THE POWER OF A TEST IN COVARIANCE		BIOCS69	
NOTE ON AN APPROXIMATE FACTORIZATION IN DISCRIMINANT		BIOKA67	
NON-CENTRAL DISTRIBUTION PROBLEMS IN MULTIVARIATE	ANALYSIS SOME	AMS 63	1270
APPLICATIONS OF MATRIX DERIVATIVES IN MULTIVARIATE		JASA 67	607
CONSEQUENCES OF SUPERIMPOSED ERROR IN TIME SERIES		BIOKA60	33
FURTHER NOTES ON DISTURBANCE ESTIMATES IN RECRESSION			169
PROBLEMS INVOLVING LINEAR HYPOTHESES IN MULTIVARIATE		BIOKA59	49
ON DIRECTION AND COLLINEARITY FACTORS IN CANONICAL		BIOKA62	
USE OF INCOMPLETE PRIOR INFORMATION IN REGRESSION		JASA 63	
THEOREM AND THE USE OF PRIOR KNOWLEDGE IN REGRESSION			
GROUPING, REGRESSION AND CORRELATION IN ENGEL CURVE	ANALYSIS EFFICIENT	JASA 64	233

ANA - ANA TITLE WORD INDEX

```
OF SEPARATE FAMILIES OF HYPOTHESES IN TIME SERIES ANALYSIS
                                                                                                    SOME TESTS BIOKA67
    OF STANDARDIZATION ON AN APPROXIMATION IN FACTOR ANALYSIS
                                                                                                    THE EFFECT BIOKA51
ANALYSIS PROBLEM IN CONSTRAINED QUADRATIC REGRESSION ANALYSIS
                                                                                                  A NUMERICAL TECH 62
 DISTRIBUTION OF A STATISTIC IN PRINCIPAL COMPONENTS ANALYSIS
                                                                                                  THE NON-NULL BIOKAGE
                                                                                                                         590
           OF CORRECT CLASSIFICATION IN DISCRIMINANT ANALYSIS
                                                                                                 PROBABILITIES BIOCS66
                                                                                                                         90B
IN THE STUDY OF VARIANCE FLUCTUATIONS IN TIME SERIES ANALYSIS
                                                                                              FOURIER METHODS TECF 69
                                                                                                                         103
EHAVIOR OF DENSITIES WITH APPLICATIONS TO SEQUENTIAL ANALYSIS
                                                                                           ON THE ASYMPTOTIC B AMS 65
                                                                                                                         615
      OF THE LATENT VECTORS FOR PRINCIPAL COMPONENTS ANALYSIS
                                                                                           ON THE DISTRIBUTION AMS 65 1875
     OF THE LARGEST RDOT OF A MATRIX IN MULTIVARIATE ANALYSIS
                                                                                           ON THE DISTRIBUTION AMS 67
                                                                                                                         616
     OF ECONOMIC TIME SERIES AND MULTIPLE REGRESSION ANALYSIS
                                                                                           SEASONAL ADJUSTMENT JASA 63
                                                                                                                         993
THE LARCEST OF SIX RODTS OF A MATRIX IN MULTIVARIATE ANALYSIS
                                                                                      ON THE DISTRIBUTION OF BIOKA59
                                                                                                                         237
  DIRECTION AND COLLINEARITY FACTORS IN DISCRIMINANT ANALYSIS
                                                                                      DN THE DISTRIBUTIONS OF AMS 68
                                                                                                                         B55
 ERRORS IN CLASSICAL LINEAR LEAST-SQUARES REGRESSION ANALYSIS
                                                                                      TESTS FOR SPECIFICATION JRSSB69 ND 2
  OF THE LARGEST ROOT OF A MATRIX IN MULTIVARIATE ANALYSIS LARGEST OF SEVEN ROOTS OF A MATRIX IN MULTIVARIATE ANALYSIS
                                                                                      UPPER PERCENTACE POINTS BIOKA67
                                                                                                                         189
                                                                                   ON THE DISTRIBUTION OF THE BIOKA64
                                                                                                                         270
 LATENT ROOT AND VECTOR METHODS USED IN MULTIVARIATE ANALYSIS
                                                                                  SOME DISTANCE PROPERTIES OF BIOKAGE
                                                                                                                         325
     OF A MIXED MODEL WITH APPLICATION TO REGRESSION ANALYSIS
                                                                                 BAYESIAN COMPARISON OF MEANS BIOKA66
                                                                                                                          11
CONNECTION BETWEEN ANALYSIS OF VARIANCE AND SPECTRUM ANALYSIS
                                                                                 DISCUSSION, EMPHASIZING THE TECH 61
                                                                                                                         191
      LIKELIHOOD AND THE METHOD OF MOMENTS IN PROBIT ANALYSIS
                                                                                NOTES. EQUIVALENCE OF MAXIMUM BIDCS67
                                                                                                                         154
IENCY AND INVARIANCE WITH APPLICATIONS IN SEQUENTIAL ANALYSIS
                                                                              THE RELATIONSHIP BETWEEN SUFFIC AMS 65
                                                                                                                         575
   IN DERIVING TESTS OF SIGNIFICANCE IN MULTIVARIATE ANALYSIS
                                                                            THE CONSTRUCTION OF A MATRIX USED BIDKA64
                                                                                                                         503
    OR THE SMALLEST ROOT OF A MATRIX IN MULTIVARIATE ANALYSIS
                                                                           ON THE DISTRIBUTION OF THE LARGEST BIOKA56
                                                                                                                         122
    OF THE GENERAL LINEAR HYPOTHESIS IN MULTIVARIATE ANALYSIS
                                                                           POWER OF THE LIKELIHOOD-RATIO TEST BIDKA64
                                                                                                                         467
  FUNCTIONS OF THE ROOTS OF A MATRIX IN MULTIVARIATE ANALYSIS
                                                                          THE MOMENTS OF ELEMENTARY SYMMETRIC AMS 61 1152
 A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE ANALYSIS
                                                                       AN ALGORITHM FOR OBTAINING THE ZERD OF JASA 67
                                                                                                                        114
NCTIONS FOR TWO PROBLEMS IN MULTIVARIATE STATISTICAL ANALYSIS
                                                                      A CLASS OF TESTS WITH MONOTONE POWER FU AMS 65 1794
RMINANT OF A NON-CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS
                                                                      AN ASYMPTOTIC DISTRIBUTION FOR THE DETE SASJ 68
                                                                                                                          77
TIDN OR OMISSION OF A VARIATE IN MULTIPLE REGRESSION ANALYSIS
                                                                     EXTENSION OF COCHRAN'S FORMULAE FOR ADDI JASA 63
 MATRICES IN RELATION TO A BEST LINEAR DISCRIMINATOR ANALYSIS
                                                                     TESTS FOR THE EQUALITY OF TWO COVARIANCE
                                                                                                                         191
RALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARIATE ANALYSIS
                                                                    /INTRODUCTION TO SOME NON-PARAMETRIC GENE BIOKA56
ZED B STATISTIC AND F STATISTICS AND IN MULTIVARIATE ANALYSIS
                                                                    THE SMALLEST LATENT RDOT OF THE GENERALI AMS 67 1152
E CORRESPONDING LATENT VECTOR FOR PRINCIPAL COMPONENT ANALYSIS
                                                                   /IBUTION OF THE LARGEST LATENT ROOT AND TH
TION TO A STRESS VS. STRENGTH PROBLEM IN RELIABILITY ANALYSIS
                                                                   /ICATIONS OF THE BIVARIATE NORMAL DISTRIBU TECH 64
                                                                                                                         325
THE PROBABILITY OF MISCLASSIFICATION IN DISCRIMINANT ANALYSIS
                                                                   /OD OF OBTAINING CONFIDENCE INTERVALS FDR BIOCS67
                                                                                                                         639
IDN IN MULTIPLE REGRESSION AND MULTIVARIATE DISTANCE ANALYSIS
                                                                   /S OF JORDAN'S PROCEDURE FOR MATRIX INVERS JRSSB63
                                                                                                                         352
IENCY OF STATISTICAL TESTS IN TIME SERIES REGRESSION ANALYSIS
                                                                   /VALUE METHOD FOR ADJUDGING RELATIVE EFFIC BIOKA66
                                                                                                                         1D9
                                   MULTIPLE COVARIATE ANALYSIS (CORR. 66 962)
                                                                                                                BIOCS65
                                                                                                                         957
            THE USE OF RANDOM WORK SAMPLING FOR COST ANALYSIS AND CONTROL, CORR. 58 1031
                                                                                                                JASA 58
                                                                                                                         382
                                         LATENT CLASS ANALYSIS AND DIFFERENTIAL MORTALITY
                                                                                                                JASA 62
                                                                                                                         430
DIALLEL AND RELATED POPULATIONS
                                                       ANALYSIS AND INTERPRETATION OF THE VARIETY CROSS
                                                                                                                BIOCS66
                                                                                                                         439
                    STEPWISE LEAST SQUARES, RESIDUAL ANALYSIS AND SPECIFICATION ERROR
                                                                                                                         998
                                                                                                                JASA 61
                                             INTERVAL ANALYSIS AND THE LOGARITHMIC TRANSFORMATION
                                                                                                                JRSSB5B
                                                                                                                         1B7
                                          PERIODOGRAM ANALYSIS AND VARIANCE FLUCTUATIONS
                                                                                                                JRSSB63
                                                                                                                         442
THE ANALYSIS OF VARIANCE
                                           SEQUENTIAL ANALYSIS APPLIED TO CERTAIN EXPERIMENTAL DESIGNS IN
                                                                                                                BIOKA56
                                                                                                                         388
   SOME EXPERIMENTAL SAMPLING RESULTS FOR REGRESSION ANALYSIS APPLIED TO GAMA RAY SPECTROMETER DATA, 2
                                                                                                                         353
                                                                                                                BIOCS68
   SOME EXPERIMENTAL SAMPLING RESULTS FOR RECRESSION ANALYSIS APPLIED TO GAMMA RAY SPECTROMETER DATA, 1
                                                                                                                BIOCS67
                                                                                                                          11
Y OF A SIMPLE SYSTEM
                                    PROBIT ANALYSIS AS A TECHNIQUE FOR BOILDWAIL COMPLEX GAUS
STATISTICAL ANALYSIS BASED ON A CERTAIN MULTIVARIATE COMPLEX GAUS
                                               PROBIT ANALYSIS AS A TECHNIQUE FOR ESTIMATING THE RELIABILIT TECH 67
                                                                                                                         197
SIAN DISTRIBUTION, AN INTRODUCTION
                                                                                                                AMS 63
                                                                                                                         152
                               CLASSICAL STATISTICAL ANALYSIS BASED ON A CERTAIN MULTIVARIATE COMPLEX GAUS
SIAN DISTRIBUTION
                                                                                                                AMS 65
                                                                                                                          98
               THE EXTENT OF REPEATED MIGRATION, AND ANALYSIS BASED ON THE DANISH POPULATION REGISTER
                                                                                                                JASA 64 1121
          TESTS FOR SERIAL CORRELATION IN RECRESSION ANALYSIS BASED ON THE PERIODOCRAM OF LEAST-SQUARES RE BIOKA69
SIDUALS
                                                                                                                           1
                                          TIME SERIES ANALYSIS BY MDDIFIED LEAST-SQUARES TECHNIQUES
                                                                                                                JASA 66
                                                                                                                         152
                                             SPECTRAL ANALYSIS COMBINING A BARTLETT WINDOW WITH AN ASSOCIAT TECH 61
ED INNER WINDOW
                                                                                                                         235
                             AN APPROXIMATE METHOD DF ANALYSIS FOR A TWD-WAY LAYOUT
                                                                                                               BIOCS65
                                                                                                                         376
                              MULTIPLE CLASSIFICATION ANALYSIS FOR ARBITRARY EXPERIMENTAL DESIGN
                                                                                                                TECH 68
                                                                                                                         13
ULATIONS OF 'DRDSOPHILIA SUBDESCURA' CD/ VECTORIAL ANALYSIS FOR GENETIC CLINES IN BODY DIMENSIONS IN PDP BIOCS66
                                                                                                                         469
                             LEAST SQUARES REGRESSION ANALYSIS FOR TREND-REDUCED TIME SERIES
                                                                                                               JRSSB55
                                                                                                                          91
                                    ABOUT SENSITIVITY ANALYSIS IN LINEAR PROGRAMMING MODELS
                                                                                                                SASJ 67
                                                                                                                          33
                                           REGRESSION ANALYSIS IN SAMPLE SURVEYS, CORR. 63 1162
                                                                                                               JASA 62
                                                                                                                         59D
                                              SPECTRAL ANALYSIS IN THE PRESENCE OF VARIANCE FLUCTUATIONS
                                                                                                               JRSSB64
                                                                                                                         354
                                                QUICK ANALYSIS METHODS FOR RANDOM BALANCE SCREENING
EXPERIMENTS
                                                                                                               TECH 59
                                                                                                                         195
                    SOME ASPECTS OF THE STATISTICAL ANALYSIS OF 'SPLIT PLOT' EXPERIMENTS IN COMPLETELY RA JASA 69
NDOMIZED LAYOUTS
                                                                                                                         4B5
CENESIS

A SUGCESTED METHOD OF ANALYSIS OF A CERTAIN CLASS OF EXPERIMENTS IN CARCINO BIOCS66
BLOCK DESIGNS WITH MORE THAN TWO ASSOCIATE CLASSES ANALYSIS OF A CLASS OF PARTIALLY BALANCED INCOMPLETE AMS 61
ED INCOMPLETE BLO/ ON THE F-TEST IN THE INTRABLOCK ANALYSIS OF A CLASS OF TWO ASSOCIATE PARTIALLY BALANC JASA 65
                                                                                                                         142
                                                                                                                         B00
                                                                                                                         285
                                                                                                                         216
N CROSSES MISSING
                                          NOTES. THE ANALYSIS OF A DIALLEL CROSSING EXPERIMENT WITH CERTAI BIOCS65
 ON AN ELECTRONIC CALCULATOR
                                                  THE ANALYSIS OF A FACTORIAL EXPERIMENT (WITH CONFOUNDINC) JRSSB54
                                                                                                                         242
                                    THE RANDOMIZATION ANALYSIS OF A GENERALIZED RANDOMIZED BLOCK DESIGN
                                                                                                               BIOKA55
                                                                                                                          70
                      CORRICENDA, 'THE RANDOMIZATION ANALYSIS OF A GENERALIZED RANDOMIZED BLOCK DESIGN'
                                                                                                               BIOKA56
                                                                                                                         235
ING ERROR VARIANCE AND SOME TREATMENTS IN COMMON ANALYSIS OF A GROUP OF BALANCED BLOCK EXPERIMENTS HAV BLOCS68
                                                                                                                         3B9
 ON THE DISTRIBUTION OF THE F-TYPE STATISTICS IN THE ANALYSIS OF A GROUP OF EXPERIMENTS
                                                                                                               JRSSB66
                                                                                                                         526
                    THE ROBUSTNESS OF THE COVARIANCE ANALYSIS OF A ONE-WAY CLASSIFICATION
                                                                                                               BIOKA64
                                                                                                                         365
 THREE-PARAMETER LOGNORMAL DISTRIBUTION AND BAYESIAN ANALYSIS OF A POINT-SOURCE EPIDEMIC
                                                                                                           THE JASA 63
                                                                                                                         72
                                 MULTIPLE REGRESSION ANALYSIS OF A POISSON PROCESS
                                                                                                               JASA 61
                                                                                                                         235
MINE ROOT ACTIVITY IN POTA/
                               NOTES. THE STATISTICAL ANALYSIS OF A RADIO-ACTIVE TRACER EXPERIMENT TO DETER BIOCS6B
                                                                                                                         717
SUBJECTS
                                 THE QUANTAL RESPONSE ANALYSIS OF A SERIES OF BIOLOGICAL ASSAYS ON THE SAME BIOKAGO
                                                                                                                          23
MODEL.
                                             BAYESIAN ANALYSIS OF A THREE-COMPONENT HIERARCHICAL DESIGN
                                                                                                               BIOKA67
R'S 'EXACT' SIGNIFICANCE TEST
                                       EXACT BAYESIAN ANALYSIS OF A TWO-BY-TWO CONTINGENCY TABLE, AND FISHE
                                                                                                               JRSSB69
                                                                                                                        NO.2
                               NEW TECHNIQUES FOR THE ANALYSIS OF ABSENTEEISM DATA
                                                                                                               BIOKA54
                                                                                                                         77
                                 FURTHER NOTES ON THE ANALYSIS OF ACCIDENT DATA
                                                                                                                         214
                                                                                                               BIOKA53
                        SUSCEPTIBLES THE MATHEMATICAL ANALYSIS OF AN EPIDEMIC WITH TWO KINDS OF
                                                                                                               BIOCS6B
                                                                                                                        557
                                      ANTE-DEPENDENCE ANALYSIS OF AN ORDERED SET OF VARIABLES
                                                                                                                AMS 62
                                                                                                                        201
                   SOME EXPERIMENTS IN THE NUMERICAL ANALYSIS OF ARCHAEOLOGICAL DATA
                                                                                                               BIOKA66
                                                                                                                        311
DISCUSSION)
                                                  THE ANALYSIS OF ASSOCIATION AMONG MANY VARIABLES (WITH
                                                                                                               JRSSB67
                                                                                                                         199
                               USE OF SCORES FOR THE ANALYSIS OF ASSOCIATION IN CONTINGENCY TABLES
                                                                                                               BIOKA52
                                                                                                                        274
 POINTS OF THE BETA DISTRIBUTION FOR USE IN BAYESIAN ANALYSIS OF BERNOULLI PROCESSES
                                                                                                   PERCENTAGE TECH 66
                                                                                                                         6B7
```

	ANALYSIS	OF	BINARY SEQUENCES (WITH DISCUSSION) (CORR. CATECORICAL DATA BY LINEAR MODELS	BIOCS69	489
			CATECORICAL DATA.	BIOKA65	
ICATION ON THE PROPERTIES OF CHI-SQUARE-TESTS IN THE	ANALYSIS	0F	CATECORICAL DATA. /EFFECT OF MISCLASSIF	BIOKA65	95
THE COMPOUND MULTINOMIAL DISTRIBUTION AND BAYESIAN					
THE VALUE OF ORTHOCONAL POLYNOMIALS IN THE					
			CHANCEOVER DESIGNS WITH COMPLETE BALANCE		
				BIOKA63	
	ANALYSIS	OF	COMPETITION EXPERIMENTS COMPLEX PROBLEMS	BIOCS65	
				TECH 60	
N) A BRANCHINC POISSON PROCESS MODEL FOR THE	ANALYSIS	OF	COMPUTER FAILURE PATTERNS (WITH DISCUSSIO	JRSSB64	398
SURVEYS	ANALYSIS	0F	CONSISTENCY OF RESPONSE IN HOUSEHOLD	JASA 61	320
THE BAYESIAN	ANALYSIS	OF	CONTINGENCY TABLES	AMS 64	1622
ALTERNATIVE	ANALYSIS	OF	CONTINCENCY TABLES	JRSSB66	164
				JASA 67	
ON MULTIPLE COMPARISONS FOR ADJUSTED MEANS IN THE				BIOKA58	
ON WOLLILDE COMLANISONS LOW ADDODIED MENNS IN THE					
MUD. DACMODITAL			COVARIANCE BASED ON GENERAL RANK SCORES		
			CROP PRODUCTIVITY	JRSSB54	
I-INDEPENDENCE, AND INTERACTIONS IN CONTINGEN/ THE	ANALYSIS	OF.	CROSS-CLASSIFIED DATA, INDEPENDENCE, QUAS		
QUERY, REGRESSION	ANALYSIS	0F	CUMULATIVE DATA	TECH 64	
MATRIX INVERSION, ITS INTEREST AND APPLICATION IN	ANALYSIS	OF		JASA 59	
PROBABILITY PLOTTING METHODS FOR THE	ANALYSIS	0F	DATA	BIOKA68	1
A BAYESIAN APPROACH TO THE	ANALYSIS	OF	DATA FROM CLINICAL TRIALS DATA WHEN THE RESPONSE IS A CURVE	JASA 65	Bl
	ANALYSIS	OF	DATA WHEN THE RESPONSE IS A CURVE	TECH 66	229
A THEORETICAL	ANALYSIS	OF	DELAYS AT AN UNCONTROLLED INTERSECTION	BIOKA62	163
DISTRIBUTION AN					
SEQUENTIAL	ANALYSIS	OF	DEPARTURES FROM THE EXPONENTIAL DEPENDENT OBSERVATIONS. I	BIOKA65	157
ON ONE OF THE CHARACTERS	AMAI VOTO	OF	DICEPPORTON WITH INCOMPLETE OPCODUATIONS	IDCCDEC	050
THE	ANALYSTS	OF	DISTURBANCES IN REGRESSION ANALYSIS	JASA 65	1067
MEANS OF STOCHASTIC MODELS	ANAI VCTC	OF	DISTURBANCES IN REGRESSION ANALYSIS EFFECTS OF ANTIBIOTICS ON BACTERIA BY	BINCESS	761
A THEORETICAL DISTRIBUTION AN SEQUENTIAL ON ONE OF THE CHARACTERS MEANS OF STOCHASTIC MODELS DISTRIBUTIONS SOME PROBLEMS IN THE STATISTICAL DESIGN AND TWO TYPES OF FAILURE FOR VERY LARGE SAMPLES D 2-CUBE) QUERY, A GENERAL COMPUTER PROGRAMME FOR THE	VIVETOTO	OF	EMPIRICAL RIVARIATE EVADEMVA	1464 64	704
COME DEODIEMS IN THE STATEMENT	ANALISIS	10	ENTITION DAMA (WIND DICOUCTON)	JASA 64	794
SOME PROBLEMS IN THE STATISTICAL	ANALISIS	10	EFIDENIC DATA (WITH DISCUSSION)	JKSSBSS	35
MAN WARES OF BATTINGS	ANALISIS	10	EXTERIMENTS WITH WINTOKES	AMS GO	1517
TWO TIFES OF FAILURE	ANALISIS	10	EXPONENTIALLI DISTRIBUTED LIFE-TIMES WITH	JK22B29	411
LOW ARIT PRICE SHILLES	ANALYCIC	10	DACRODIAL EXPEDIMENT (PARTALLY CONFOUNDS	JASA 66	300
D 2-CODE) QUENT,	ANALISIS	10	FACTORIAL EXPERIMENT (FARTIALLY CONFOUNDE	TECH 67	170
A GENERAL COMPUTER PROGRAMME FOR THE	ANALISIS	OF	PACTORIAL EXPERIMENT (FARTIALLI CONFOUNDE	BIOCS66	490 E07
A GENERAL COMPUTER PROGRAMME FOR THE	ANALISIS	OF	PACHODIAL EXPEDIMENTS AND THE HEE OF	PIOCOPP	140
PUNCH CARDS, CORR. 56 650 TABULAR ONE TRANSFORMATIONS OF THE DATA ON THE	ANALISIS	OF	EVENOUS TYLE EXPEDITMENTS AND THE OSE OF	JASA SO	261
ONE TRANSPORMATIONS OF THE DATA	ANALYSTS	OF	FACTORIAL EXPERIMENTS WITHOUT REPLICATION	DECH EO	7.47
THE LOG (-LOG) TRANSFORMATION IN THE					
			GAMMA RAY PULSE-HEIGHT SPECTRA		
			GAUSSIAN VECTOR PROCESS IN THE PRESENCE		
OF VARIANCE PLOCIDATIONS CROSS SPECIFIED	ANALISIS	OF	GROUP DIVISIBLE DESIGNS		
COMPTNING INDEA AND INDER DIOCK	ANALISIS	OF	CROUP DIVISIBLE DESIGNS	JASA 64	
COMBINING INTRA AND INTER BLOCK	ANALISIS	OF		TECH 66 BIOCS69	
NOTES. A NOTE ON THE	ANALYCIC	OF	CROWNIN AND DOSE RESTONSE CURVES	BIOCS68	
PARAMETERS ARE STOCHASTIC AND ITS APPLICATION TO THE					
THE THE STUCKASTIC AND ITS AFFEIGHTON TO THE	ANAL VCTC	OF	THEOMPLETE PLACE DESIGNS	DIUNAGO	204
OF PAIRED COMPARISONS. RANK TABLES FOR THE METHOD OF PAIRED COMPARISONS RANK	ANALISIS	OF	INCOMPLETE DEOCK DESIGNS	DIOVAGO	204
TABLEC FOR THE METHOD OF PATRED COMPARTCONS PANK	ANALISIS	OF	INCOMPLETE BLOCK DESIGNS, I. THE METHOD	DIOKASA	524
TABLES FOR THE METHOD OF PA/ CORRIGENDA, 'THE RANK	ANALISIS	OF	THOUMPLETE BLOCK DESIGNS, II. ADDITIONAL	DIOKAS4	002
-SAMPLE RESULTS ON ESTIMATION AND POWER FOR/ RANK					
				BIOKA65	
			INDUSTRY STRUCTURE, AN APPLICATION TO		
				TECH 67	
INOMIALS WITH A VARIABLE CHANCE OF INFECTION FOR THE					
STATISTICAL STATISTICAL	ANALYSIS	UF	INTROGRESSION	BIOCS66	
ON THE DISTRIBUTION OF SOME STATISTICS USEFUL IN THE	ANALYSIS	UF	JUINTLY STATIONARY TIME SERIES	AMS 68	
CORVATORES IN ONE DIRECTION THE	ANALYSIS	UF.	LATIN SQUARE DESIGNS WITH INDIVIDUAL	JRSSB58	
				TECH 59	
				TECH 59	
WITH SPECIAL REFERENCE TO THE BALANCED I/ BAYESIAN					
				TECH 67	
			MULTIFACTOR CLASSIFICATIONS WITH UNEQUAL		
				BIOKA57	
				JASA 58	
S METHOD OF INVERSION OF PARTITIONED MATRICES IN THE					
CO/ ESTIMATION OF MEANS AND STANDARD ERRORS IN THE					
				TECH 67	
			PAIRED COMPARISON DESIGNS WITH INCOMPLETE		
			PERSISTENCE IN A CHAIN OF MULTIPLE EVENTS		
DIFFERENT RATIOS OF SPECIES			PLANT COMPETITION EXPERIMENTS FOR POINT PROCESSES (WITH DISCUSSION)		
VIROLOGY THE SPECTRAL H RATES DEPEND UPON SEVERAL FACTORS FOR SPIEC A STATISTICAL A STATISTICAL	ANALYSIS	UF	POISSON PROPERTIES (WITH DISCUSSION)	JK22B63	264
WINDLUGI THE	ANALYSIS	UF	POPULATION CROSSES WITH AN APPLICATION IN	BIUKA64	217
THE	ANALYSIS	OF	POPULATION GROWTH WHEN THE BIRTH AND DEAT	B100569	NU.4
RODOUT AND ITS COMM CHERTS, OF SELECT A STATISTICAL	AMALISIS	Oi	I NOVIDIONAL BUILDANDE OF GROUD WATTOWNED	Onon OO	0-1
USE OF TRANSFORMATIONS AND MAXIMUM LIKELIHOOD IN THE					
			QUANTAL RESPONSE ASSAYS WITH DOSAGE		
			QUANTAL RESPONSE DATA IN WHICH THE MEASUR		
NOTES. FURTHER	ANALYSIS	OF	R. A. FISHER'S ENUMERATIONS IN GENETICS	BIOCS65	1012
ARIANCE. II. EFFECT OF AUTOCORRELATED ER/ BAYESIAN	ANALYSIS	OF	KANDOM-EFFECT MODELS IN THE ANALYSIS OF V	RIOKY999	477
			RELATIONSHIPS BETWEEN AUTOCORRELATED TIME		
COMPUTER (WITH DISCUSSION) ROUTINE	ANALYSIS	UF	REPLICATED EXPERIMENTS ON AN ELECTRONIC	JK55B57	234

ANA - ANG TITLE WORD INDEX

```
THE EXAMINATION AND ANALYSIS OF RESIDUALS
                                                                                                              TECH 63 141
                                          RECRESSION ANALYSIS OF SEASONAL DATA
                                                                                                              JASA 64 402
                                            HARMONIC ANALYSIS OF SEASONAL VARIATION WITH AN APPLICATION TO JASA 62
HOG PRODUCTION
                                                                                                                       655
                                                  ANALYSIS OF SENSITIVITY EXPERIMENTS WHEN THE LEVELS
OF STIMULUS CANNOT BE CONTROLLED, CORR. 56 650
                                                                                                              JASA 56
                                                                                                                       257
                      METHODS OF CONSTRUCTION AND ANALYSIS OF SERIALLY BALANCED SEQUENCES
                                                                                                              JRSSB57
                                                                                                                       2B6
                          A NOTE ON A METHOD FOR THE ANALYSIS OF SIGNIFICANCE EN MASSE
                                                                                                              TECH 6B
                                                                                                                       5R6
                                ON THE STRUCTURE AND ANALYSIS OF SINCULAR FRACTIONAL REPLICATES
                                                                                                              AMS 6B
                                                                                                                       657
                             ON THE GONSTRUCTION AND ANALYSIS OF SOME CONFOUNDED ASYMMETRICAL FACTORIAL
DESIGNS
                                                                                                              BIOCS65
                                                                                                                       94B
                             CONSTRUCTION AND ANALYSIS OF SOME NEW SERIES OF CONFOUNDED ASYMMETRICA BIOCS67
L FACTORIAL DESIGNS
                                                                                                                       813
EXPONENTIAL POPULATION
                                                   AN ANALYSIS OF SOME RELAY FAILURE DATA FROM A COMPOSITE TECH 61
                                                                                                                       423
                       GENERAL CONSIDERATIONS IN THE ANALYSIS OF SPECTRA
                                                                                                              TECH 61
                                                                                                                       133
                                                  THE ANALYSIS OF STATIONARY PROCESSES WITH MIXED SPECTRA, JRSSB62
                                                                                                                       215
                                                      ANALYSIS OF STATIONARY PROCESSES WITH MIXED SPECTRA,
                                                                                                              JRSSB62
 COMPONENTS
                          A GRAPHICAL METHOD FOR THE ANALYSIS OF STATISTICAL DISTRIBUTIONS INTO TWO NORMAL BIOKA53
                                      ON MATHEMATICAL ANALYSIS OF STYLE
                                                                                                              BIOKA52
                                                                                                                       122
                                      PROBLEMS IN THE ANALYSIS OF SURVEY DATA, AND A PROPOSAL
                                                                                                              JASA 63
                                                                                                                       415
                                                      ANALYSIS OF SURVIVAL DATA BY REGRESSION TECHNIQUES
                                                                                                              TECH 63
                                                                                                                       161
NCE POLICIES A GENERAL METHOD FOR THE RELIABILITY ANALYSIS OF SYSTEMS UNDER VARIOUS PREVENTIVE MAINTENA AMS 62
                                                                                                                       137
                     SOME ASPECTS OF THE STATISTICAL ANALYSIS OF THE 'MIXED MODEL'
                                                                                                              BIOGS6B
                                                                                                                        27
BY GAUSE WITH POPULATIONS OF THE PROTOZOA PAR/ AN ANALYSIS OF THE DATA FOR SOME EXPERIMENTS CARRIED OUT BIOKAS7
                                                                                                                       314
RELIABILITY
                         A MARKOVIAN MODEL FOR THE ANALYSIS OF THE EFFECTS OF MARGINAL TESTING ON SYSTEM AMS 62
                                                                                                                       754
                                         MAIN-EFFECT ANALYSIS OF THE CENERAL NON-ORTHOGONAL LAYOUT WITH
ANY NUMBER OF FACTORS
                                                                                                               AMS 65
                                                                                                                        88
                                       A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF BREAST CANCER
                                                                                                              BIOCS69
                                                                                                                        95
                                             HARMONIC ANALYSIS OF THE HUMAN FACE
                                                                                                              BIOCS65
                                                                                                                       491
HER MEAN NOR PRECISION KNOWN
                                             BAYESIAN ANALYSIS OF THE INDEPENDENT MULTINORMAL PROCESS. NEIT JASA 65
                                                                                                                       347
                                             BAYESIAN ANALYSIS OF THE RECRESSION MODEL WITH AUTO-CORRELATED JASA 64
ERRORS
                                                                                                                       763
                                         A STOCHASTIC ANALYSIS OF THE SIZE DISTRIBUTION OF FIRMS, CORR. 59 JASA 58
                                                                                                                       B93
810
                                         A STOCHASTIC ANALYSIS OF THE SPATIAL CLUSTERING OF RETAIL ESTABLIS JASA 65 1094
HMENTS
                           SOME GOMMENTS ON SPECTRAL ANALYSIS OF TIME SERIES
                                                                                                              TECH 61
                                         THE SPECTRAL ANALYSIS OF TIME SERIES (WITH DISCUSSION)
                                                                                                              JRSSB57
                                 SOME REMARKS ON THE ANALYSIS OF TIME-SERIES
                                                                                                              BIOKA67
                                                                                                                        25
                                                   AN ANALYSIS OF TRANSFORMATIONS (WITH DISGUSSION)
                                                                                                              JRSSB64
                                                                                                                       211
                                         THE SPECTRAL ANALYSIS OF TWO-DIMENSIONAL POINT PROCESSES
                                                                                                              BIOKA64
                                                                                                                       299
                           CORRICENDA, 'THE SPECTRAL ANALYSIS OF TWO-DIMENSIONAL POINT PROCESSES'
                                                                                                              BIOKA65
                                                                                                                       305
                                                  THE ANALYSIS OF TWO-DIMENSIONAL STATIONARY PROCESSES WITH BIOKA64
DISCONTINUOUS SPECTRA
ISONS UNDER CONDITIONS OF SIMPLE SIMILAR ACTION, THE ANALYSIS OF UNCONTROLLED DATA /ES TO MIXTURES OF PO BIOKASB
                                                                                                                        74
                           NON-ADDITIVITY IN TWO-WAY ANALYSIS OF VARIANCE
                                                                                                              JASA 61
                                                                                                                       R78
                                ROBUST ESTIMATION IN ANALYSIS OF VARIANCE
                                                                                                               AMS 63
                                                                                                                       957
             PROGRAMMING UNIVARIATE AND MULTIVARIATE ANALYSIS OF VARIANCE
                                                                                                              TECH 63
                                                                                                                        95
                                    ORTHOGONALITY IN ANALYSIS OF VARIANCE
                                                                                                               AMS 64
                                                                                                                       705
                              PSEUDO-INVERSES IN THE ANALYSIS OF VARIANCE
                                                                                                               AMS 64
                                                                                                                       R95
                    ADMISSIBLE TESTS IN MULTIVARIATE ANALYSIS OF VARIANCE
                                                                                                               AMS 67
                                                                                                                       698
       A NOTE ON THE ADMISSIBILITY OF POOLING IN THE ANALYSIS OF VARIANCE
                                                                                                               AMS 68 1744
                      A NOTE ON ROBUST ESTIMATION IN ANALYSIS OF VARIANCE
                                                                                                               AMS 68 1486
  A MULTIPLE COMPARISON RANK PROCEDURE FOR A ONE-WAY ANALYSIS OF VARIANCE
                                                                                                              SASJ 69
                                                                                                                        35
                FURTHER APPLICATIONS OF RANGE TO THE ANALYSIS OF VARIANCE
                                                                                                              BIOKA51
                                                                                                                       393
            CONFIDENCE INTERVALS FOR DISTANCE IN THE ANALYSIS OF VARIANCE
                                                                                                              BIOKA58 360
                                ORDERED TESTS IN THE ANALYSIS OF VARIANCE
                                                                                                              BIOKA61
                                                                                                                       325
        SIMULTANIOUS TEST PROCEDURES IN MULTIVARIATE ANALYSIS OF VARIANCE
                                                                                                              BIOKA68
                                                                                                                       4B9
HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVARIATE ANALYSIS OF VARIANCE
                                                                                                              JRSSB63
                                                                                                                       358
                     ON INFERRING ORDER RELATIONS IN ANALYSIS OF VARIANCE
                                                                                                              BIOCS65
       OF WEIGHTING FACTORS IN LINEAR REGRESSION AND ANALYSIS OF VARIANCE
                                                                                                  ESTIMATION TECH 64
   FOR COMBINATION OF INDEPENDENT EXPERIMENTS IN THE ANALYSIS OF VARIANCE
                                                                                                RANK METHODS AMS 62
  STATISTICAL INDEPENDENCE OF QUADRATIC FORMS IN THE ANALYSIS OF VARIANCE
                                                                                                A NOTE ON THE BIOKA51
                                                                                                                       482
   OF OPTIMAL DESIGNS FOR THE ONE-WAY CLASSIFICATION ANALYSIS OF VARIANCE
                                                                                           THE CONSTRUCTION JRSSB61
  DISTRIBUTIONS OF TWO TEST CRITERIA IN MULTIVARIATE ANALYSIS OF VARIANCE
                                                                                          ON THE NON-CENTRAL AMS 68
NORMALITY ON THE POWER FUNCTION OF THE F-TEST IN THE ANALYSIS OF VARIANCE
                                                                                          THE EFFECT OF NON- BIOKA51
   PROPERTY OF THE THREE MAIN TESTS FOR MULTIVARIATE ANALYSIS OF VARIANCE
                                                                                         ON THE MONOTONICITY JRSSB64
                                                                                                                        77
      APPLIED TO CERTAIN EXPERIMENTAL DESIGNS IN THE ANALYSIS OF VARIANCE
                                                                                         SEQUENTIAL ANALYSIS BIOKA56 388
                                                                                    THE LIMITING POWER OF C AMS 63 1432
ATEGORICAL DATA CHI-SQUARE TESTS ANALOGOUS TO NORMAL ANALYSIS OF VARIANCE
           A METHOD FOR JUDGING ALL CONTRASTS IN THE ANALYSIS OF VARIANCE (CORR. 69 229) (CORR. 69 229) BIOKA53
                                                                                                                      87
E OF COMPONENTS OF VARIANCE IN THE UNBALANCED NESTED ANALYSIS OF VARIANCE (CORRECTION 6B 1025) /NIFICANC BIOCS68
                                       MODELS IN THE ANALYSIS OF VARIANCE (WITH DISCUSSION)
TRODUCTION TO SOME NON-PARAMETRIC GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARIATE ANALYSIS /1

ON CONFIDENCE BOUNDS ASSOCIATED WITH MULTIVALIDE ANALYSIS OF VARIANCE AND MULTIVARIATE ANALYSIS /1
                                                                                                             JRSSB60
                                                                                                                      195
                                                                                                          /IN BIOKA56
                                                                                                                      361
   ON CONFIDENCE BOUNDS ASSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND NONINDEPENDENCE BETWEEN TWO AMS 66 1736
     DISCUSSION, EMPHASIZING THE CONNECTION BETWEEN ANALYSIS OF VARIANCE AND SPECTRUM ANALYSIS
                                                                                                             TECH 61 191
                                                     ANALYSIS OF VARIANCE AS AN ALTERNATIVE TO FACTOR
                                                                                                              JRSSB57
                                                                                                                      318
                                  SOME OPERATORS FOR ANALYSIS OF VARIANCE CALCULATIONS
                                                                                                             TECH 69 511
HE OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECTS ANALYSIS OF VARIANCE F TESTS. ALPHA EQUALS 0.01 AND 0 JASA 57
                                                                                                                       345
CORR. 64 1296
                                        MULTIVARIATE ANALYSIS OF VARIANCE FOR A SPECIAL COVARIANCE CASE. JASA 63
                                                                                                                       660
              FACTORIAL EXPERIMENTATION IN SCHEFFE'S ANALYSIS OF VARIANCE FOR PAIRED COMPARISONS
                                                                                                                       529
                                                                                                              JASA 58
                                                  ON ANALYSIS OF VARIANCE FOR THE K-SAMPLE PROBLEM
                                                                                                              AMS 66 1747
                                              TWO-WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROP BIOCS65
ORTIONATE SUBCLASS FREQUENCIES
                                                                                                                      308
                                   DISTRIBUTION-FREE ANALYSIS OF VARIANCE FOR THE TWO-WAY CLASSIFICATION SASJ 67
                                                                                                                        67
IXED EFFECTS MODEL WITH OBSERVATIONS WITHIN A/ THE ANALYSIS OF VARIANCE FOR THE TWO-WAY CLASSIFICATION F BIOKAGO NO.3
                                       CHAIN-POOLING ANALYSIS OF VARIANCE FOR TWO-LEVEL FACTORIAL REPLICAT TECH 69 NO.4
ION-FREE EXPERIMENTS
ION-FREE EXPERIMENTS CHAIN-POOLINC ANALYSIS OF VARIANCE FOR TWO-LEVEL FACTORIAL REPLICAT TECH 69 NO.4
STUDY OF THE ADEQUACY OF THE ASYMP/ NON-PARAMETRIC ANALYSIS OF VARIANCE IN SMALL SAMPLES, A MONTE CARLO BIOCS69 593
         MAXIMUM-LIKELIHOOD ESTIMATION FOR THE MIXED ANALYSIS OF VARIANCE MODEL
                                                                                                              RIOKA67
                                                                                                                        9.3
WTH CURVE PROBLEMS A GENERALIZED MULTIVARIATE ANALYSIS OF VARIANCE MODEL USEFULL ESPECIALLY FOR GRO BIOKA64
                                                                                                                       313
WIN CURVE PROBLEMS

A GENERALIZED MOSTIVATIVE ANALYSIS OF VARIANCE OF A PARTIALLY BALANCED INCOMPLE AMS 65 1815

SUBSAMPLES

THE RELATIONSHIP ALGEBRA AND THE ANALYSIS OF VARIANCE OF DATA FROM STRATIFIED

JASA 68 64
NAL CLASSIFICATIONS
                                                  THE ANALYSIS OF VARIANCE OF DESICNS WITH MANY NON-ORTHOGO JRSSB66
                                                                                                                      110
                                                      ANALYSIS OF VARIANCE OF DISPROPORTIONATE DATA WHEN
INTERACTION IS PRESENT
                                                                                                              BIOGS65
                                                                                                                       115
FREQUENCIES
                                                      ANALYSIS OF VARIANCE OF PROPORTIONS WITH UNEQUAL
                                                                                                              JASA 63 1133
                                                  THE ANALYSIS OF VARIANCE OF SOME NON-ORTHOGONAL DESIGNS BIOKA69
WITH SPLIT PLOTS
                                                                                                                      43
 AND RANDOM MODELS
                                     COMPARISON OF ANALYSIS OF VARIANGE POWER FUNCTION IN THE PARAMETRIG BIOKA52 427
```

TITLE WORD INDEX ANA - ANC

UCTURES UNDER WHICH CERTAIN SIMPLE LEAST SQUARES AND				
ON THE DISTRIBUTION OF VARIOUS SUMS OF SQUARES IN AN				
		OF VARIANCE TECHNIQUE FOR BLOCK DESIGNS	SASJ 68	9
ON THE BAYES CHARACTER OF A STANDARD MODEL II	ANALYSIS	OF VARIANCE TEST	AMS 69	1094
EFFECT OF NON-NORMALITY ON THE POWER OF THE	ANALYSIS	OF VARIANCE TEST	BIOKA59	114
SAMPLES) AN	ANALYSIS	OF VARIANCE TEST FOR NORMALITY (COMPLETE	BIOKA65	591
A CLASS OF DISTRIBUTION-FREE			SASJ 67	75
A COMPUNICACIÓN OR MUR DOWERS OR MUS MUN MINISTRA		an wintime means		
'A COMPARISON OF THE POWERS OF TWO MULTIVARIATE 'A COMPARISON OF THE POWERS OF TWO MULTIVARIATE	ANALVSTS	OF VARIANCE TESTS ! CORRICENDA	BIOKAGZ	546
RAL F-DISTRIBUTI/ CHARTS OF THE POWER FUNCTION FOR	ANAL VSTS	OF VARIANCE TESTS DERIVED FROM THE NON-CENT	BIOKAGO	110
		OF VARIANCE TO REPEATED MEASUREMENTS EXPERIM		
		OF VARIANCE UNDER RANDOM AND MIXED MODELS	JASA 67	
OBUSTNESS OF THE T-SQUARE-SUB-O TEST IN MULTIVARIATE				71
/ BAYESIAN ANALYSIS OF RANDOM-EFFECT MODELS IN THE				37
/ BAYESIAN ANALYSIS OF RANDOM-EFFECT MODELS IN THE				
UNEQUAL CROUP VARIANCES IN THE FIXED-EFFECTS ONE-WAY			BIOKA66	27
TESTING AGAINST ORDERED ALTERNATIVES IN MODEL I	ANALYSIS	OF VARIANCE, NORMAL THEORY AND NONPARAMETRIC	AMS 67	1740
THE STATISTICAL FOURIER PROCEDURES BASED ON RANKS FOR CERTAIN PROBLEMS IN	ANALISIS	OF VARIANCES	JRSSB65	159
		OF VITAL STATISTICS BY CENSUS TRACT		
			AMS 64	
		OF 2X2 TABLES	JASA 57	18
ANALYSIS A NUMERICAL	ANALYSIS	PROBLEM IN CONSTRAINED QUADRATIC RECRESSION		426
APPLICATION OF METHODS IN SEQUENTIAL	ANALYSIS	TO DAM THEORY	AMS 63	
USING FACTOR	ANALYSIS	TU ESTIMATE PARAMETERS	JASA 69	
THE GENERALIZATION OF PROBIT	ANALYSIS	TO DAM THEORY TO ESTIMATE PARAMETERS TO THE CASE OF MULTIPLE RESPONSES USING LOCAL PROPERTIES OF SMOOTHLY HETEROMORE	BIOKA57	131
THE STOCKASTIC SERIES STRIBITORE	MIMPLOID	OSING LOCAL INOURNIES OF SWOOTHEL HELENOWOK		454
PERTIES OF THE LEAST SQUARES ESTIMATOR IN REGRESSION				
		WHEN THE CONTROL VARIABLE IS FALLIBLE		
A STRUCTURAL RECRESSION APPROACH TO COVARIANCE				
		WHEN THE INITIAL SAMPLES ARE MISCLASSIFIED		
OF LINEAR HYPOTHESES IN UNIVARIATE AND MULTIVARIATE				19
		WHEN THERE IS PRIOR INFORMATION ABOUT SUPPLE		172
		WITH ADJUSTMENT FOR CLASS DIFFERENCES		
SEQUENTIAL	ANALYSIS	WITH DELAYED OBSERVATIONS WITH DEPENDENT VARIABLE CENSORED	JASA 64	1006
		WITH MISSING OBSERVATIONS AMONG THE INDEPEND		834
		WITH RANDOMLY MISSED OBSERVATIONS, THE		971
SPECTRAL	ANALYSIS	WITH RECULARLY MISSED OBSERVATIONS WITH UNEQUAL ERROR		455
			BIOCS69	
IMATION IN CORRELATION STUDIES COVARIANCE	ANALYSIS	WITH UNEQUAL SUBCLASS NUMBERS, COMPONENT EST	BIOCS68	49
TESTS OF THE WILKS-LAWLEY HYPOTHESIS IN MULTIVARIATE NCTIONS OF THE ROOTS OF TWO MATRICES IN MULTIVARIATE GEST CHARACTERISTIC ROOT OF A MATRIX IN MULTIVARIATE	ANALYSIS	. A COMPARISON OF	BIOKA65	149
NCTIONS OF THE ROOTS OF TWO MATRICES IN MULTIVARIATE	ANALYSIS	ON ELEMENTARY SYMMETRIC FU	BIOKA65	499
GEST CHARACTERISTIC ROOT OF A MAIRIX IN MODITVARIATE	ANALISIS.	ON THE DISTRIBUTION OF THE LAR	BIOKA65	405
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE	ANALYSIS	. GENERAL THEORY AND THE CASE OF SIMPLE ORDER	AMS 63	1347
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE HAZARD	ANALYSIS ANALYSIS	. GENERAL THEORY AND THE CASE OF SIMPLE ORDER . I	AMS 63 BIOKA64	1347 175
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE HAZARD SERIAL CORRELATION IN REGRESSION	ANALYSIS ANALYSIS ANALYSIS	. GENERAL THEORY AND THE CASE OF SIMPLE ORDER . I . I .	AMS 63 BIOKA64 BIOKA55	1347 175 327
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE HAZARD SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION	ANALYSIS ANALYSIS ANALYSIS ANALYSIS	. GENERAL THEORY AND THE CASE OF SIMPLE ORDER . I . I. . II	AMS 63 BIOKA64 BIOKA55 BIOKA56	1347 175 327 436
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE HAZARD SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT	ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS	. GENERAL THEORY AND THE CASE OF SIMPLE ORDER . I . I. . II . PART I. DESCRIPTION AND USE OF TABLES. PART	AMS 63 BIOKA64 BIOKA55 BIOKA56 BIOKA57	1347 175 327 436 411
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE HAZARD SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE-COVARIANCE AND CANONICAL	ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS	. GENERAL THEORY AND THE CASE OF SIMPLE ORDER I . I	AMS 63 BIOKA64 BIOKA55 BIOKA56 BIOKA57 BIOCS68	1347 175 327 436 411 845
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE HAZARD SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE-COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER	ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS	. GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. I II II II PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM	AMS 63 BIOKA64 BIOKA55 BIOKA56 BIOKA57 BIOCS68 JRSSB60	1347 175 327 436 411 845 372
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE HAZARD SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE-COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER	ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS	. GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. I II II II PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM	AMS 63 BIOKA64 BIOKA55 BIOKA56 BIOKA57 BIOCS68 JRSSB60	1347 175 327 436 411 845 372
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE HAZARD SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION OF SERIAL CORRELATION IN REGRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE-COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR	ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. I. I. II. PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE	AMS 63 BIOKA64 BIOKA55 BIOKA56 BIOKA57 BIOCS68 JRSSB60 BIOCS65 BIOCS65	1347 175 327 436 411 845 372 190 405
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE HAZARD SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE-COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE	ANALYSIS	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. I. I. II. PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C	AMS 63 BIOKA64 BIOKA55 BIOKA56 BIOKA57 BIOCS68 JRSSB60 BIOCS65 BIOCS65 BIOKA51	1347 175 327 436 411 845 372 190 405 345
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE BERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE-COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FRACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL	ANALYSIS	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. I. I. II. PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C	AMS 63 BIOKA64 BIOKA55 BIOKA56 BIOKA57 BIOCS65 JRSSB60 BIOCS65 BIOCS65 BIOCS65 BIOKA51 JASA 61	1347 175 327 436 411 845 372 190 405 345 98
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE-COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL THE FUTURE OF DATA	ANALYSIS	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. I. I. II. PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C	AMS 63 BIOKA64 BIOKA55 BIOKA56 BIOKA57 BIOCS68 JRSSB60 BIOCS65 BIOCS65 BIOKA51 JASA 61 AMS 62	1347 175 327 436 411 845 372 190 405 345 98
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE HAZARD SERIAL CORRELATION IN RECRESSION SERIAL CORRELATION IN RECRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE-COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL THE FUTURE OF DATA SEQUENTIAL	ANALYSIS	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. I. I. II. PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C	AMS 63 BIOKA64 BIOKA56 BIOKA56 BIOKS68 JRSSB60 BIOCS65 BIOCS65 BIOKA51 JASA 61 AMS 62 TECH 68	1347 175 327 436 411 845 372 190 405 345 98 1 125
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE BERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE—COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL THE FUTURE OF DATA SEQUENTIAL MODEL BUILDING FOR PREDICTION IN REGRESSION	ANALYSIS	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. II. II PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 CORR. 62 812 DIRECT METHOD I SEQUENTIAL	AMS 63 BIOKA64 BIOKA56 BIOKA57 BIOCS68 JRSSB60 BIOCS65 BIOCS65 BIOKA51 JASA 61 AMS 62 TECH 68 AMS 63	1347 175 327 436 411 845 372 190 405 345 98 1 125 462
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE—COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL THE FUTURE OF DATA SEQUENTIAL MODEL BUILDING FOR PREDICTION IN REGRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT	ANALYSIS	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. II. PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 CORR. 62 812 DIRECT METHOD I SEQUENTIAL NECESSARY SAMPLE SIZE, AND A RELATION WITH	AMS 63 BIOKA64 BIOKA56 BIOKA57 BIOCS68 JRSSB60 BIOCS65 BIOCS65 BIOKA51 JASA 61 AMS 62 TECH 68 AMS 63 BIOCS68	1347 175 327 436 411 845 372 190 405 345 98 1 125 462 823
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE HAZARD SERIAL CORRELATION IN RECRESSION SERIAL CORRELATION IN RECRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE—COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL THE FUTURE OF DATA SEQUENTIAL MODEL BUILDING FOR PREDICTION IN REGRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT ON 'ESTIMATION OF ERROR RATES IN DISCRIMINANT	ANALYSIS	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. II. PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 CORR. 62 812 DIRECT METHOD I SEQUENTIAL NECESSARY SAMPLE SIZE, AND A RELATION WITH	AMS 63 BIOKA64 BIOKA56 BIOKA57 BIOCS68 JRSSB60 BIOCS65 BIOCS65 BIOKA51 JASA 61 AMS 62 TECH 68 AMS 63 BIOCS68	1347 175 327 436 411 845 372 190 405 345 98 1 125 462 823 204
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE BERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE-COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL THE FUTURE OF DATA SEQUENTIAL MODEL BUILDING FOR PREDICTION IN REGRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT ON 'ESTIMATION OF ERROR RATES IN DISCRIMINANT 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT	ANALYSIS	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. II. PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 CORR. 62 812 DIRECT METHOD I SEQUENTIAL NECESSARY SAMPLE SIZE, AND A RELATION WITH	AMS 63 BIOKA64 BIOKA56 BIOKA57 BIOCS68 JRSSB60 BIOCS65 BIOCS65 BIOKA51 JASA 61 AMS 62 TECH 68 AMS 63 BIOCS68	1347 175 327 436 411 845 372 190 405 345 98 1 125 462 823 204 284
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE BERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE—COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL THE FUTURE OF DATA SEQUENTIAL MODEL BUILDING FOR PREDICTION IN REGRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT ON 'ESTIMATION OF ERROR RATES IN DISCRIMINANT 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFULL IN MULTIVARIATE	ANALYSIS	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. II. II PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 CORR. 62 812 DIRECT METHOD I SEQUENTIAL NECESSARY SAMPLE SIZE, AND A RELATION WITH COMMENTARY CORRICENDA. NOTE ON 'THE JACOBIANS OF C	AMS 63 BIOKA64 BIOKA55 BIOKA55 BIOKA56 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOCS65 TECH 68 AMS 62 TECH 68 BIOCS68 TECH 68 BIOCS68 BIOCS68	1347 175 327 436 411 845 372 190 405 345 98 1 125 462 823 204 284 43
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE BERIAL CORRELATION IN RECRESSION SERIAL CORRELATION IN RECRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE-COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL MODEL BUILDING FOR PREDICTION IN RECRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT ON 'ESTIMATION OF ERROR RATES IN DISCRIMINANT 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFULL IN MULTIVARIATE ('RIDGE	ANALYSIS	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. II. II PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 CORR. 62 812 DIRECT METHOD I SEQUENTIAL NECESSARY SAMPLE SIZE, AND A RELATION WITH COMMENTARY CORRIGENDA. NOTE ON 'THE JACOBIANS OF C	AMS 63 BIOKA64 BIOKA65 BIOKA56 BIOKA56 BIOCS68 JRSSB60 BIOCS65 BIOCS65 BIOKA51 JASA 61 AMS 62 TECH 68 BIOCS68 TECH 68 BIOCS65 TECH 68	1347 175 327 436 411 845 372 190 405 345 98 1 125 462 823 204 284 43 469
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE BERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE—COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL THE FUTURE OF DATA MODEL BUILDING FOR PREDICTION IN REGRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT ON 'ESTIMATION OF ERROR RATES IN DISCRIMINANT 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFULL IN MULTIVARIATE 'RIDGE	ANALYSIS	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. II. PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 CORR. 62 812 DIRECT METHOD I SEQUENTIAL NECESSARY SAMPLE SIZE, AND A RELATION WITH COMMENTARY CORRIGENDA. NOTE ON 'THE JACOBIANS OF C OF RESPONSE SURFACES AL GRADUATION OF FERTILITY RATES	AMS 63 BIOKA64 BIOKA55 BIOKA55 BIOKA56 BIOKA57 BIOCS68 JRSSB60 BIOCS65 BIOCS65 BIOKA51 JASA 61 AMS 62 TECH 68 AMS 63 BIOCS68 TECH 68 BIOKA62 BIOKA63 TECH 63 BIOKA63	1347 175 327 436 411 845 372 190 405 345 98 1 125 462 823 204 284 43 469 461
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE BERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE-COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL THE FUTURE OF DATA SEQUENTIAL MODEL BUILDINC FOR PREDICTION IN REGRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT ON 'ESTIMATION OF ERROR RATES IN DISCRIMINANT 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFULL IN MULTIVARIATE 'RIDGE DISTRIBUTIONS SOME	ANALYSIS	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. II. PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 CORR. 62 812 DIRECT METHOD I SEQUENTIAL NECESSARY SAMPLE SIZE, AND A RELATION WITH COMMENTARY OF RESPONSE SURFACES AL GRADUATION OF FERTILITY RATES AL GRADUATION OF FERTILITY RATES AL GRADUATION OF FERTILITY RATES	AMS 63 BIOKA64 BIOKA56 BIOKA56 BIOKA57 BIOCS68 BIOCS65 BIOCS65 BIOCS65 BIOCS65 CECHO 68 AMS 62 TECH 68 AMS 63 BIOCS68 TECH 66 BIOKA51 TECH 64 BIOKA53 TECH 66 JIOKA53	1347 175 327 436 411 845 372 190 405 345 98 1 125 462 823 204 284 43 469 461 569
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE BERIAL CORRELATION IN RECRESSION SERIAL CORRELATION IN RECRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE—COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL MODEL BUILDING FOR PREDICTION IN REGRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT 'LINEAR AND NON—LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE ERTAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE 'LINEAR AND NON—LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFULL IN MULTIVARIATE 'RIDGE DISTRIBUTIONS SOME OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS. AN	ANALYSIS ANALYTICA	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. II. II PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 CORR. 62 812 DIRECT METHOD I SEQUENTIAL NECESSARY SAMPLE SIZE, AND A RELATION WITH COMMENTARY CORRIGENDA. NOTE ON 'THE JACOBIANS OF C OF RESPONSE SURFACES AL CRADUATION OF FERTILITY RATES AL PROPERTIES OF BIVARIATE EXTREMAL AL SOLUTION	AMS 63 BIOKA64 BIOKA55 BIOKA55 BIOKA56 BIOCS68 BIOCS65 BIOCS65 BIOCS65 JASA 61 AMS 62 TECH 68 BIOCS68 TECH 68 BIOCS68 TECH 68 BIOKA62 BIOKA63 TECH 63 JASA 67 JASA 67 JASA 567 JASA 567 JASS 567	1347 175 327 436 411 845 372 190 405 345 98 1 125 462 823 204 284 43 469 461 569 115
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE HAZARD SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE—COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL THE FUTURE OF DATA MODEL BUILDING FOR PREDICTION IN REGRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT ON 'ESTIMATION OF ERROR RATES IN DISCRIMINANT 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFULL IN MULTIVARIATE PRIDGE DISTRIBUTIONS OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS, AN DESIGNING SOME MULTI—FACTOR	ANALYSIS ANALYTIC ANALYTIC ANALYTIC ANALYTIC	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I I I I PART I DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 (CORR. 62 812 DIRECT METHOD I SEQUENTIAL I SEQUENTIAL I SEQUENTIAL OCOMMENTARY COMMENTARY COMMENTARY CORRIGENDA. NOTE ON 'THE JACOBIANS OF C OF RESPONSE SURFACES AL GRADUATION OF FERTILITY RATES AL PROPERTIES OF BIVARIATE EXTREMAL AL SOLUTION AL STUDIES	AMS 63 BIOKA64 BIOKA55 BIOKA55 BIOKA56 BIOKA57 BIOCS68 JRSSB60 BIOCS65 BIOCS65 BIOCKA51 JASA 61 AMS 62 TECH 68 AMS 63 BIOCS68 TECH 68 BIOKA62 BIOKA62 BIOKA63 JASA 67 JASA 67 JASA 67	1347 175 327 436 411 845 372 190 405 345 98 1 125 462 823 204 284 43 469 461 569 115 115
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE BERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE-COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL THE FUTURE OF DATA SEQUENTIAL MODEL BUILDING FOR PREDICTION IN REGRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT ON 'ESTIMATION OF ERROR RATES IN DISCRIMINANT 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFULL IN MULTIVARIATE 'RIDGE DISTRIBUTIONS OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS, AN DESIGNING SOME MULTI-FACTOR A DOUBLE SAMPLING SCHEME FOR	ANALYSIS ANALYTIC ANALYTIC ANALYTIC ANALYTIC ANALYTIC ANALYTIC	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. II. PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 CORR. 62 812 DIRECT METHOD I SEQUENTIAL NECESSARY SAMPLE SIZE, AND A RELATION WITH COMMENTARY COMMENTARY OF RESPONSE SURFACES AL GRADUATION OF FERTILITY RATES AL PROPERTIES OF BIVARIATE EXTREMAL AL SURVEYS	AMS 63 BIOKA64 BIOKA55 BIOKA55 BIOKA56 BIOKA57 BIOCS66 BIOCS65 BIOCS65 BIOCS65 TECH 68 AMS 63 BIOCS68 TECH 68 BIOKA62 BIOKA62 BIOKA53 TECH 63 JASA 67 JASA 67 JASA 67 JASA 67	1347 175 327 436 411 845 372 190 405 345 98 1 125 462 823 204 284 43 469 461 569 115 121 985
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE BAZARD SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE—COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL THE FUTURE OF DATA SEQUENTIAL MODEL BUILDING FOR PREDICTION IN REGRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT ON 'ESTIMATION OF ERROR RATES IN DISCRIMINANT 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFULL IN MULTIVARIATE 'RIDGE DISTRIBUTIONS OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS, AN DESIGNING SOME MULTI-FACTOR A DOUBLE SAMPLING TO	ANALYSIS ANALYTIC	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. II. II PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 CORR. 62 812 DIRECT METHOD I SEQUENTIAL NECESSARY SAMPLE SIZE, AND A RELATION WITH COMMENTARY COMMENTARY OF RESPONSE SURFACES AL GRADUATION OF FERTILITY RATES AL FROPERTIES OF BIVARIATE EXTREMAL AL SOLUTION AL STUDIES AL SURVEYS AL SURVEYS	AMS 63 BIOKA64 BIOKA55 BIOKA55 BIOKA56 BIOKA57 BIOCS68 JRSSB60 BIOCS65 BIOCS65 BIOCKA51 JASA 61 AMS 62 TECH 68 AMS 63 BIOCS68 TECH 68 BIOKA62 BIOKA62 BIOKA63 JASA 67 JASA 67 JASA 67	1347 175 327 436 411 845 372 190 405 345 98 1 125 462 823 204 43 469 461 569 115 1121 985 85
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE BAZARD SERIAL CORRELATION IN RECRESSION SERIAL CORRELATION IN RECRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE—COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL MODEL BUILDING FOR PREDICTION IN RECRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT ON 'ESTIMATION OF ERROR RATES IN DISCRIMINANT 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE FRIDGE DISTRIBUTIONS OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS, AN DESIGNING SOME MULTI-FACTOR A DOUBLE SAMPLING SCHEME FOR AN APPLICATION OF SEQUENTIAL SAMPLING TO	ANALYSIS ANALYTIC	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. I. II PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 CORR. 62 812 DIRECT METHOD I SEQUENTIAL NECESSARY SAMPLE SIZE, AND A RELATION WITH COMMENTARY CORRIGENDA. NOTE ON 'THE JACOBIANS OF C OF RESPONSE SURFACES AL GRADUATION OF FERTILITY RATES AL PROPERTIES OF BIVARIATE EXTREMAL AL SOLUTION AL STUDIES AL SURVEYS AL SURVEYS AL SURVEYS AL SURVEYS AL SURVEYS AL SURVEYS WITH CLUSTER SAMPLINC	AMS 63 BIOKA64 BIOKA65 BIOKA56 BIOKA56 BIOKS65 BIOCS68 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOCS68 BIOCS68 TECH 68 BIOCS68 TECH 68 BIOCS68 TECH 68 JIOCS68 TECH 63 JASA 67 JASA 67 JASA 67 JASA 67 JASA 67 JASA 67 JASA 66 JASS 66	1347 175 327 436 411 415 372 190 405 345 98 1 125 462 823 204 284 43 469 461 569 115 1121 985 8264
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE BAZARD SERIAL CORRELATION IN RECRESSION SERIAL CORRELATION IN RECRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE—COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL MODEL BUILDING FOR PREDICTION IN RECRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT ON 'ESTIMATION OF ERROR RATES IN DISCRIMINANT 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE FRIDGE DISTRIBUTIONS OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS, AN DESIGNING SOME MULTI-FACTOR A DOUBLE SAMPLING SCHEME FOR AN APPLICATION OF SEQUENTIAL SAMPLING TO	ANALYSIS ANALYTIC	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. I. I. PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 CORR. 62 812 DIRECT METHOD I SEQUENTIAL NECESSARY SAMPLE SIZE, AND A RELATION WITH OF RESPONSE SURFACES AL GRADUATION OF FERTILITY RATES AL PROPERTIES OF BIVARIATE EXTREMAL AL SOLUTION AL STUDIES AL SURVEYS AL SURVEYS AL SURVEYS WITH CLUSTER SAMPLINC AL TECHNIQUE FOR INCOMPLETE BLOCK EXPERIMENTS	AMS 63 BIOKA64 BIOKA65 BIOKA56 BIOKA56 BIOKS65 BIOCS68 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOCS68 BIOCS68 TECH 68 BIOCS68 TECH 68 BIOCS68 TECH 68 JIOCS68 TECH 63 JASA 67 JASA 67 JASA 67 JASA 67 JASA 67 JASA 67 JASA 66 JASS 66	1347 175 327 436 411 190 405 372 190 405 345 98 81 125 462 823 204 284 43 469 461 569 115 885 885 885 885 885 885 885 885 885
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE BERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE-COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL THE FUTURE OF DATA SEQUENTIAL MODEL BUILDING FOR PREDICTION IN REGRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT ON 'ESTIMATION OF BERROR RATES IN DISCRIMINANT 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFULL IN MULTIVARIATE REDGE DISTRIBUTIONS OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS. AN DESIGNING SOME MULTI-FACTOR A DOUBLE SAMPLING SCHEME FOR AN APPLICATION OF SEQUENTIAL SAMPLING TO	ANALYSIS ANALYTIC	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. II PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 CORR. 62 812 DIRECT METHOD I NECESSARY SAMPLE SIZE, AND A RELATION WITH COMMENTARY OF RESPONSE SURFACES AL GRADUATION OF FERTILITY RATES AL GRADUATION OF FERTILITY RATES AL SURVEYS AL SURVEYS AL SURVEYS WITH CLUSTER SAMPLINC AL TECHNIQUE FOR INCOMPLETE BLOCK EXPERIMENTS	AMS 63 BIOKA64 BIOKA56 BIOKA56 BIOKA56 BIOKA57 BIOCS68 BIOCS65 BIOCS65 BIOCS65 BIOKA51 JASA 61 AMS 62 TECH 68 BIOKA62 BIOKA62 BIOKA53 JASA 67 JRSSB67 JASA 65 BIOKA665 BIOKA665 BIOKA65 BIOKA665 BIOKA665 BIOKA665 BIOKA665 BIOKA665 BIOKA665 BIOKA665 BIOKA665	1347 175 327 436 411 190 405 372 190 405 345 98 1 125 462 823 204 43 469 115 569 115 85 85 264 49
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE BAZARD SERIAL CORRELATION IN RECRESSION SERIAL CORRELATION IN RECRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE—COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL MODEL BUILDING FOR PREDICTION IN REGRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE RETAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE ON 'ESTIMATION OF ERROR RATES IN DISCRIMINANT 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFULL IN MULTIVARIATE OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS, AN DESIGNING SOME MULTI-FACTOR A DOUBLE SAMPLING SCHEME FOR AN APPLICATION OF SEQUENTIAL SAMPLING TO SOME STATISTICAL ASPECTS OF THE ECONOMICS OF ESTIMATION OF POWER SPECTRA BY A WAVE	ANALYSIS ANALYTIC ANA	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. II PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 CORR. 62 812 DIRECT METHOD I NECESSARY SAMPLE SIZE, AND A RELATION WITH COMMENTARY OF RESPONSE SURFACES AL GRADUATION OF FERTILITY RATES AL GRADUATION OF FERTILITY RATES AL SURVEYS AL SURVEYS AL SURVEYS WITH CLUSTER SAMPLINC AL TECHNIQUE FOR INCOMPLETE BLOCK EXPERIMENTS	AMS 63 BIOKA64 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA57 BIOCS68 BIOCS65 BIOCS65 BIOCS65 BIOCS65 CECH 63 BIOCS66 BIOKA51 CECH 63 JASA 66 JASA 67 JASA 67 JASA 67 JASA 66 BIOKA66 BIOKA66 BIOKA66 CECH 59	1347 175 327 436 411 190 345 98 1 125 462 224 481 469 461 1569 115 1121 985 264 829 264 469 461 569 461 155 264 829 469 461 569 469 469 469 469 469 469 469 469 469 4
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE BERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE-COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL THE FUTURE OF DATA MODEL BUILDING FOR PREDICTION IN REGRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE 'RIDGE DISTRIBUTIONS OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS, AN OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS, AN DESIGNING SOME MULTI-FACTOR A DOUBLE SAMPLING SCHEME FOR AN APPLICATION OF SEQUENTIAL SAMPLING TO SOME STATISTICAL ASPECTS OF THE ECONOMICS OF ESTIMATION OF POWER SPECTRA BY A WAVE RESTRICTION	ANALYSIS ANALYTIC ANALYZIN ANA	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. II. II PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 CORR. 62 812 DIRECT METHOD I SEQUENTIAL NECESSARY SAMPLE SIZE, AND A RELATION WITH COMMENTARY CORRIGENDA. NOTE ON 'THE JACOBIANS OF C OF RESPONSE SURFACES AL GRADUATION OF FERTILITY RATES AL PROPERTIES OF BIVARIATE EXTREMAL AL SOLUTION AL STUDIES AL SURVEYS AL SURVEYS AL SURVEYS AL SURVEYS WITH CLUSTER SAMPLINC AL TECHNIQUE FOR INCOMPLETE BLOCK EXPERIMENTS AL TESTINC	AMS 63 BIOKA64 BIOKA56 BIOKA56 BIOKA56 BIOKA57 BIOCS68 JRSSB60 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOCS66 BIOCS67 JASA 61 AMS 62 TECH 68 BIOCS68 BIOCS68 BIOCS68 BIOCS68 BIOCS68 TECH 63 JASA 67 JASA 67 JASA 66 BIOCS68 BIOCS66	1347 175 327 436 411 190 405 372 190 405 345 98 823 125 462 823 462 284 443 469 461 569 115 1121 985 85 85 85 85 85 85 85 85 86 86 86 86 86 86 86 86 86 86 86 86 86
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE BERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE-COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL THE FUTURE OF DATA MODEL BUILDING FOR PREDICTION IN REGRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE 'RIDGE DISTRIBUTIONS OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS, AN OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS, AN DESIGNING SOME MULTI-FACTOR A DOUBLE SAMPLING SCHEME FOR AN APPLICATION OF SEQUENTIAL SAMPLING TO SOME STATISTICAL ASPECTS OF THE ECONOMICS OF ESTIMATION OF POWER SPECTRA BY A WAVE RESTRICTION	ANALYSIS ANALYTIC ANALYTIC ANALYTIC ANALYTIC ANALYTIC ANALYTIC ANALYTIC ANALYTIC ANALYTIC ANALYZIN ANA	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. I. I. I. I. I. I. PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 CORR. 61 1005 CORR. 62 812 CORRECT METHOD SEQUENTIAL SEQUENTIAL NECESSARY SAMPLE SIZE, AND A RELATION WITH COMMENTARY CORMEDNDA. NOTE ON 'THE JACOBIANS OF C CORRECTION OF FERTILITY RATES AL PROPERTIES OF BIVARIATE EXTREMAL AL SOLUTION AL STUDIES AL SURVEYS WITH CLUSTER SAMPLINC AL TECHNIQUE FOR INCOMPLETE BLOCK EXPERIMENTS AL TESTINC G Á SET OF TIME SERIES SUBJECT TO A LINEAR G LOG-NORMALLY DISTRIBUTED SURVIVAL DATA WITH	AMS 63 BIOKA64 BIOKA56 BIOKA56 BIOKA56 BIOKA57 BIOCS68 JRSSB60 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOCS66 BIOCS67 JASA 61 AMS 62 TECH 68 BIOCS68 BIOCS68 BIOCS68 BIOCS68 BIOCS68 TECH 63 JASA 67 JASA 67 JASA 66 BIOCS68 BIOCS66	1347 175 3227 436 411 199 405 3345 98 1 125 462 823 204 2284 43 469 115 1121 985 85 264 115 1121 985 85 264 553 553 534
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE BAZARD SERIAL CORRELATION IN RECRESSION SERIAL CORRELATION IN RECRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE—COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL MODEL BUILDING FOR PREDICTION IN REGRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE RETAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE ON 'ESTIMATION OF ERROR RATES IN DISCRIMINANT 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS, AN DESIGNING SOME MULTI-FACTOR A DOUBLE SAMPLING SCHEME FOR AN APPLICATION OF SEQUENTIAL SAMPLING TO SOME STATISTICAL ASPECTS OF THE ECONOMICS OF ESTIMATION OF POWER SPECTRA BY A WAVE RESTRICTION SOME TECHNIQUES FOR A SIMPLIFICATION OF THE BLUS PROCEDURE FOR	ANALYSIS ANALYTIC ANALYZIN ANA	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. I. I. I. I. II. PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 CORR. 62 812 DIRECT METHOD I SEQUENTIAL COMMENTARY COMMENTARY COMMENTARY CORRIGENDA. NOTE ON 'THE JACOBIANS OF C OF RESPONSE SURFACES AL CRADUATION OF FERTILITY RATES AL PROPERTIES OF BIVARIATE EXTREMAL AL SOLUTION AL STUDIES AL SURVEYS AL SURVEYS WITH CLUSTER SAMPLINC AL TECHNIQUE FOR INCOMPLETE BLOCK EXPERIMENTS AL TESTINC SA SET OF TIME SERIES SUBJECT TO A LINEAR GLOG-NORMALLY DISTRIBUTED SURVIVAL DATA WITH GRECKESSION DISTURBANCES	AMS 63 BIOKA64 BIOKA56 BIOKA56 BIOKA56 BIOKA57 BIOCS68 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOCS66 BIOKA51 JASA 61 AMS 62 TECH 68 BIOKA62 BIOKA53 TECH 63 JASA 66 JASA 67 JASA 66 JASA 67 JASA 65 BIOKA66 JRSSB67 JASA 65 BIOKA66 TECH 63 JRSSB67 JASA 65	1347 175 327 436 411 190 405 345 98 1 125 462 204 284 43 469 461 1569 115 1121 985 264 829 320 461 1569 461 1569 462 463 463 464 465 465 465 465 465 465 465 465 465
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE HAZARD SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE-COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL THE FUTURE OF DATA SEQUENTIAL MODEL BUILDINC FOR PREDICTION IN REGRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT ON 'ESTIMATION OF ERROR RATES IN DISCRIMINANT 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFULL IN MULTIVARIATE 'RIDGE DISTRIBUTIONS OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS, AN DESIGNING SOME MULTI-FACTOR A DOUBLE SAMPLING SCHEME FOR AN APPLICATION OF SEQUENTIAL SAMPLING TO SOME STATISTICAL ASPECTS OF THE ECONOMICS OF ESTIMATION OF POWER SPECTRA BY A WAVE RESTRICTION SOME STATISTICAL ASPECTS OF THE ECONOMICS OF ESTIMATION OF POWER SPECTRA BY A WAVE RESTRICTION INCOMPLETE FOLLOW-UP A SIMPLIFICATION OF THE BLUS PROCEDURE FOR TABLES SIMPLE METHODS FOR FACTORS A MULTIPLICATIVE MODEL FOR	ANALYSIS ANALYTIC ANALYTIC ANALYTIC ANALYTIC ANALYTIC ANALYTIC ANALYTIC ANALYTIC ANALYTIC ANALYZIN ANA	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. I. I. PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 CORR. 62 812 DIRECT METHOD I SEQUENTIAL NECESSARY SAMPLE SIZE, AND A RELATION WITH COMMENTARY CORMICTION OF RESPONSE SURFACES AL GRADUATION OF FERTILITY RATES AL PROPERTIES OF BIVARIATE EXTREMAL AL SURVEYS AL SURVEYS AL SURVEYS AL SURVEYS AL SURVEYS WITH CLUSTER SAMPLINC AL TECHNIQUE FOR INCOMPLETE BLOCK EXPERIMENTS AL TECHNIQUE FOR INCOMPLETE BLOCK EXPERIMENTS AL TECHNIQUE FOR INCOMPLETE BLOCK EXPERIMENTS AL TECHNIQUE FOR INCOMPLETE SURVIVAL DATA WITH GRECRESSION DISTURBANCES G A SET OF TIME SERIES SUBJECT TO A LINEAR G LOG-NORMALLY DISTRIBUTED SURVIVAL DATA WITH GRECRESSION DISTURBANCES G THREE-FACTOR INTERACTION IN CONTINGENCY G VARIANCES WHICH ARE AFFECTED BY SEVERAL	AMS 63 BIOKA64 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA57 BIOCS68 BIOCS66 BIOCS66 BIOKA51 JASA 61 AMS 62 TECH 68 BIOKA62 BIOKA62 BIOKA62 BIOKA62 BIOKA63 JASA 67 JASA 67 JASA 67 JASA 65 BIOKA66 BIOKA66 BIOKA66 JASA 67 JASA 66 JASA 67 JASA 65 BIOCS66 TECH 63 JASA 63 JASA 64 JASA 64 JASA 66	1347 175 3227 436 411 190 405 372 190 405 3345 98 1 125 462 283 3469 204 284 43 469 115 1121 1985 85 264 829 35 369 1122 1121 1121 1121 1121 1121 1121 11
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE AZARD SERIAL CORRELATION IN RECRESSION SERIAL CORRELATION IN RECRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE—COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL MODEL BUILDING FOR PREDICTION IN REGRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT ON 'ESTIMATION OF ERROR RATES IN DISCRIMINANT 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE ERTAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS, AN DESIGNING SOME MULTI—FACTOR A DOUBLE SAMPLING SCHEME FOR AN APPLICATION OF SEQUENTIAL SAMPLING TO SOME STATISTICAL ASPECTS OF THE ECONOMICS OF ESTIMATION OF POWER SPECTRA BY A WAVE RESTRICTION INCOMPLETE FOLLOW-UP A METHOD OF A SIMPLIFICATION OF THE BLUS PROCEDURE FOR TABLES FACTORS A MULTIPLICATIVE MODEL FOR IMENTS WITH APPLICATIONS SYSTEMATIC METHODS FOR	ANALYSIS ANALYTIC ANA	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. I. I. I. I. II PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 (CORR. 62 812 DIRECT METHOD I SEQUENTIAL COMMENTARY COMMENTARY COMMENTARY COMMENTARY CORRIGENDA. NOTE ON 'THE JACOBIANS OF C OF RESPONSE SURFACES AL CRADUATION OF FERTILITY RATES AL PROPERTIES OF BIVARIATE EXTREMAL AL SOLUTION AL STUDIES AL SURVEYS AL SURVEYS WITH CLUSTER SAMPLINC AL TECHNIQUE FOR INCOMPLETE BLOCK EXPERIMENTS AL TESTINC SA SET OF TIME SERIES SUBJECT TO A LINEAR GLOG-NORMALLY DISTRIBUTED SURVIVAL DATA WITH GRECRESSION DISTURBANCES THREF-FACTOR INTERACTION IN CONTINGENCY SURVEINE WHICH ARE AFFECTED BY SEVERAL SURVEYS WHICH ARE AFFECTED BY SEVERAL EXPER	AMS 63 BIOKA65 BIOKA65 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKS66 BIOKA61 JASA 61 AMS 62 TECH 68 BIOKA62 BIOKA62 BIOKA64 BIOKA64 BIOKA62 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA65 JASA 66 JASA 67 JASA 66 JRSSB65 BIOKA66 JRSSB65 BIOKA66 JRSSB66 JRSSB66 JRSSB66 JRSSB66 JRSSB66 JRSSB66 JRSSB66 JRSSB66 JASA 64 JASA 64 JASA 64 JASA 66 JASA 64 JASA 66 JASA 64 JASA 66 TECH 67	1347 175 327 436 411 190 345 98 405 345 98 1 125 462 204 284 43 469 461 156 1121 985 264 829 320 461 125 264 345 345 345 345 345 345 345 345 345 34
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE HAZARD SERIAL CORRELATION IN RECRESSION SERIAL CORRELATION IN RECRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE—COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL THE FUTURE OF DATA MODEL BUILDING FOR PREDICTION IN RECRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT ON 'ESTIMATION OF ERROR RATES IN DISCRIMINANT 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE RETAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE 'RIDGE DISTRIBUTIONS OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS, AN DESIGNING SOME MULTI-FACTOR A DOUBLE SAMPLING SCHEME FOR AN APPLICATION OF SEQUENTIAL SAMPLING TO SOME STATISTICAL ASPECTS OF THE ECONOMICS OF ESTIMATION OF POWER SPECTRA BY A WAVE RESTRICTION INCOMPLETE FOLLOW-UP A SIMPLIFICATION OF THE BLUS PROCEDURE FOR TABLES FACTORS A MULTIPLICATIVE MODEL FOR TABLES FACTORS S MAYBEL OF AN SUMME THEHODS FOR FACTORS S BY BAYES' THEOREM AN EXAMPLE OF AN	ANALYSIS ANALYTIC ANALYZIN ANA	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. I. I. I. I. II. PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 62 812 / DIRECT METHOD I SEQUENTIAL I SEQUENTIAL I SEQUENTIAL I SEQUENTIAL I SEQUENTIAL I SEQUENTIAL I COMMENTARY CORRIGENDA. NOTE ON 'THE JACOBIANS OF C OF RESPONSE SURFACES AL GRADUATION OF FERTILITY RATES AL PROPERTIES OF BIVARIATE EXTREMAL AL SOLUTION AL STUDIES AL SURVEYS WITH CLUSTER SAMPLINC AL TECHNIQUE FOR INCOMPLETE BLOCK EXPERIMENTS AND THE COMBINATION OF TWO SAMPLE EXPER STATISTIC AND THE COMBINATION OF TWO SAMPLE	AMS 63 BIOKA65 BIOKA65 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKS66 BIOKA61 JASA 61 AMS 62 TECH 68 BIOKA62 BIOKA62 BIOKA64 BIOKA64 BIOKA62 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA65 JASA 66 JASA 67 JASA 66 JRSSB65 BIOKA66 JRSSB65 BIOKA66 JRSSB66 JRSSB66 JRSSB66 JRSSB66 JRSSB66 JRSSB66 JRSSB66 JRSSB66 JASA 64 JASA 64 JASA 64 JASA 66 JASA 64 JASA 66 JASA 64 JASA 66 TECH 67	1347 175 327 436 411 190 405 345 98 1 125 462 204 284 43 469 461 1569 115 1121 985 264 829 320 461 125 264 345 345 345 345 345 345 345 345 345 34
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE HAZARD SERIAL CORRELATION IN RECRESSION SERIAL CORRELATION IN RECRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE—COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL THE FUTURE OF DATA MODEL BUILDING FOR PREDICTION IN RECRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT ON 'ESTIMATION OF ERROR RATES IN DISCRIMINANT 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE RETAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE 'RIDGE DISTRIBUTIONS OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS, AN DESIGNING SOME MULTI-FACTOR A DOUBLE SAMPLING SCHEME FOR AN APPLICATION OF SEQUENTIAL SAMPLING TO SOME STATISTICAL ASPECTS OF THE ECONOMICS OF ESTIMATION OF POWER SPECTRA BY A WAVE RESTRICTION INCOMPLETE FOLLOW-UP A SIMPLIFICATION OF THE BLUS PROCEDURE FOR TABLES FACTORS A MULTIPLICATIVE MODEL FOR TABLES FACTORS S MAYBEL OF AN SUMME THEHODS FOR FACTORS S BY BAYES' THEOREM AN EXAMPLE OF AN	ANALYSIS ANALYTIC ANALYZIN ANA	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. I. I. I. I. II PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 (CORR. 62 812 DIRECT METHOD I SEQUENTIAL COMMENTARY COMMENTARY COMMENTARY COMMENTARY CORRIGENDA. NOTE ON 'THE JACOBIANS OF C OF RESPONSE SURFACES AL CRADUATION OF FERTILITY RATES AL PROPERTIES OF BIVARIATE EXTREMAL AL SOLUTION AL STUDIES AL SURVEYS AL SURVEYS WITH CLUSTER SAMPLINC AL TECHNIQUE FOR INCOMPLETE BLOCK EXPERIMENTS AL TESTINC SA SET OF TIME SERIES SUBJECT TO A LINEAR GLOG-NORMALLY DISTRIBUTED SURVIVAL DATA WITH GRECRESSION DISTURBANCES THREF-FACTOR INTERACTION IN CONTINGENCY SURVEINE WHICH ARE AFFECTED BY SEVERAL SURVEYS WHICH ARE AFFECTED BY SEVERAL EXPER	AMS 63 BIOKA65 BIOKA65 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKS66 BIOKA61 JASA 61 AMS 62 TECH 68 BIOKA62 BIOKA62 BIOKA64 BIOKA64 BIOKA62 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA65 JASA 66 JASA 67 JASA 66 JRSSB65 BIOKA66 JRSSB65 BIOKA66 JRSSB66 JRSSB66 JRSSB66 JRSSB66 JRSSB66 JRSSB66 JRSSB66 JRSSB66 JASA 64 JASA 64 JASA 64 JASA 66 JASA 64 JASA 66 JASA 64 JASA 66 TECH 67	1347 175 327 436 411 190 345 98 81 1125 462 823 204 284 43 469 461 115 1121 985 564 829 49 49 49 49 49 49 49 49 49 49 49 49 49
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE BAZARD SERIAL CORRELATION IN RECRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE—COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL MODEL BUILDING FOR PREDICTION IN REGRESSION ON 'ESTIMATION OF ERROR RATES IN DISCRIMINANT 'LINEAR AND NON—LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE RETAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE ON 'ESTIMATION OF ERROR RATES IN DISCRIMINANT 'LINEAR AND NON—LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE 'RIDGE DISTRIBUTIONS OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS. AN DESIGNING SOME MULTI—FACTOR A DOUBLE SAMPLING SCHEME FOR AN APPLICATION OF SEQUENTIAL SAMPLING TO SOME STATISTICAL ASPECTS OF THE ECONOMICS OF ESTIMATION OF POWER SPECTRA BY A WAVE RESTRICTION INCOMPLETE FOLLOW-UP A METHOD OF A SIMPLIFICATION OF THE BLUS PROCEDURE FOR INCOMPLETE FOLLOW-UP A METHOD OF A SIMPLIFICATION OF THE BLUS PROCEDURE FOR TABLES SIMPLE METHODS FOR SYSTEMATIC METHODS FOR SETIMATION PROBLEMS THE STATISTICAL WORK OF OSKAR	ANALYSIS ANALYTIC ANALYZIN ANALYZIN ANALYZIN ANALYZIN ANCILLARY ANCILLARY ANCILLARY ANCILLARY	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I. I. I. II PART I. DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 (CORR. 62 812 DIRECT METHOD SEQUENTIAL COMMENTARY COMMENTARY COMMENTARY CORRIGENDA. NOTE ON 'THE JACOBIANS OF C OF RESPONSE SURFACES AL CRADUATION OF FERTILITY RATES AL FORDERTIES OF BIVARIATE EXTREMAL AL SOLUTION AL STUDIES AL SURVEYS AL SURVEYS WITH CLUSTER SAMPLINC AL TECHNIQUE FOR INCOMPLETE BLOCK EXPERIMENTS AL TESTINC GA SET OF TIME SERIES SUBJECT TO A LINEAR COGNOMENTALY DISTRIBUTED SURVIVAL DATA WITH RECRESSION DISTURBANCES THEE-FACTOR INTERACTION IN CONTINGENCY OVARIANCES WHICH ARE AFFECTED BY SEVERAL SURVERS VARIANCES WHICH ARE AFFECTED BY SEVERAL STATISTIC AND THE COMBINATION OF TWO SAMPLE OF STATISTICS AND PREDICTION OF THE LOSS IN	AMS 63 BIOKA65 BIOKA65 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKS65 BIOKA51 JASA 61 JASA 62 TECH 68 BIOKA62 BIOKA62 BIOKA62 BIOKA64 TECH 68 JASA 66 JASA 66 JASA 67 JASA 66 JASA 68 JASA 64 JASA 68 JASA 64 JASA 68 JASA 64 JASA 66 TECH 67 AMS 61	1347 175 327 436 411 190 405 345 98 1 125 462 204 284 43 469 461 1121 985 264 823 204 284 43 469 461 513 204 224 245 616 616 617 756
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE BERIAL CORRELATION IN RECRESSION SERIAL CORRELATION IN RECRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE—COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL MODEL BUILDING FOR PREDICTION IN RECRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT ON 'ESTIMATION OF ERROR RATES IN DISCRIMINANT 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE RETAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS, AN DESIGNING SOME MULTI-FACTOR A DOUBLE SAMPLING SCHEME FOR AN APPLICATION OF SEQUENTIAL SAMPLING TO SOME STATISTICAL ASPECTS OF THE ECONOMICS OF ESTIMATION OF POWER SPECTRA BY A WAVE RESTRICTION INCOMPLETE FOLLOW-UP A SIMPLIFICATION OF THE BLUS PROCEDURE FOR TABLES SIMPLE METHODS FOR TABLES A MULTIPLICATION FOR THE BLUS PROCEDURE FOR TABLES SIMPLE METHODS FOR FACTORS A MULTIPLICATION SYSTEMATIC METHODS FOR FACTORS S BY BAYES' THEOREM AN EXAMPLE OF AN ESTIMATION PROBLEMS THE STATISTICAL WORK OF OSKAR SIGN OF MIXTURE EXPERIMENTS' BY R.A. MCLEAN AND V.L.	ANALYSIS ANALYTIC ANA	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I I I I I I I I I I I I I I I I I I	AMS 63 BIOKA64 BIOKA65 BIOKA56 BIOKA56 BIOKA56 BIOKS65 BIOKA51 BIOCS68 BIOCS68 BIOCS68 BIOCS68 BIOCS68 BIOCS68 BIOCS68 BIOCS68 BIOCS68 TECH 68 AMS 63 BIOCS68 TECH 68 BIOKA62 BIOKA62 BIOKA63 JASA 67 JASA 67 JASA 66 JRSSB65 BIOCS66 TECH 69 TECH 69 JASA 63 JASA 64 JASA 64 JASA 66 JASA 67 TECH 67 TECH 67 TECH 67 TECH 67 AMS 61 AMS 61 AMS 61 AMS 61 AMS 61 AMS 661 TECH 66	1347 175 327 436 411 190 345 98 81 125 462 224 469 461 1569 115 1121 985 564 823 204 461 1569 461 153 345 985 613 5342 319 461 1756 616 617 617 617 617 617 617 617 617 61
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE BAZARD SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION SERIAL CORRELATION IN REGRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE—COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL THE FUTURE OF DATA SEQUENTIAL MODEL BUILDING FOR PREDICTION IN REGRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE 'RIDGE DISTRIBUTIONS OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS, AN DESIGNING SOME MULTI—FACTOR A DOUBLE SAMPLING SCHEME FOR AN APPLICATION OF SEQUENTIAL SAMPLING TO SOME STATISTICAL ASPECTS OF THE ECONOMICS OF ESTIMATION OF POWER SPECTRA BY A WAVE RESTRICTION SOME TECHNIQUES FOR AN APPLICATION OF THE BLUS PROCEDURE FOR INCOMPLETE FOLLOW-UP A SIMPLE METHODS FOR FACTORS A MULTIPLICATIVE MODEL FOR TABLES SIMPLE METHODS FOR FACTORS A MULTIPLICATIVE MODEL FOR IMENTS WITH APPLICATIONS SYSTEMATIC METHODS FOR AN EXAMPLE OF AN ESTIMATION PROBLEMS THE STATISTICAL WORK OF OSKAR SIGN OF MIXTURE EXPERIMENTS' BY R.A. MCLEAN AND V.L. DISTRIBUTION OF THE	ANALYSIS ANALYTIC ANA	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I I I I I I I I I PART I DESCRIPTION AND USE OF TABLES. PART A METHOD FOR SELECTING THE MOST EFFECTIVE D AN ADDENDUM AN INTRODUCTION TO ESSENTIALS. 1. THE PURPO AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE BASED ON LECTURES BY P.L. HSU /BIANS OF C CORR. 61 1005 (CORR. 62 812 DIRECT METHOD I SEQUENTIAL COMMENTARY CORRIGENDA, I SEQUENTIAL NECESSARY SAMPLE SIZE, AND A RELATION WITH COMMENTARY CORRIGENDA. OF THE JACOBIANS OF C CORR. 62 812 DIRECT METHOD IN THE JACOBIANS OF C COMMENTARY COMMENTA	AMS 63 BIOKA64 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA51 BIOCS65 BIOCS65 BIOCS65 BIOCS67 CONTROL	1347 175 327 436 411 190 405 372 190 405 345 98 823 462 284 43 469 461 569 49 49 115 1121 985 85 85 85 1125 462 284 43 245 245 245 245 245 245 245 245 245 245
IZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE BERIAL CORRELATION IN RECRESSION SERIAL CORRELATION IN RECRESSION STIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ISCRIMINATO/ MULTIVARIATE—COVARIANCE AND CANONICAL THE INTERACTION ALGORITHM AND PRACTICAL FOURIER SE AND UNDERLYING MODELS FACTOR OF FACTOR ANALYSIS IN RESEARCH FACTOR ERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE RESIDUAL MODEL BUILDING FOR PREDICTION IN REGRESSION D PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT 'LINEAR AND NON—LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE RETAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE ON 'ESTIMATION OF ERROR RATES IN DISCRIMINANT 'LINEAR AND NON—LINEAR MULTIPLE COMPARISONS IN LOGIT ERTAIN MATRIX TRANSFORMATION USEFULL IN MULTIVARIATE 'RIDGE DISTRIBUTIONS OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS. AN DESIGNING SOME MULTI—FACTOR A DOUBLE SAMPLING SCHEME FOR AN APPLICATION OF SEQUENTIAL SAMPLING TO SOME STATISTICAL ASPECTS OF THE ECONOMICS OF ESTIMATION OF POWER SPECTRA BY A WAVE RESTRICTION INCOMPLETE FOLLOW—UP A METHOD OF A SIMPLIFICATION OF THE BLUS PROCEDURE FOR INCOMPLETE FOLLOW—UP A METHOD FOR SIMPLE METHODS FOR SIMPLE METHODS FOR FACTORS A MULTIPLICATIVE MODEL FOR SYSTEMATIC METHODS FOR SYSTEMA	ANALYSIS ANALYTIC ANA	GENERAL THEORY AND THE CASE OF SIMPLE ORDER I I I I I I I I I I I I I I I I I I I	AMS 63 BIOKA64 BIOKA65 BIOKA56 BIOKA56 BIOKA56 BIOKS65 BIOKA51 BIOCS68 BIOCS68 BIOCS68 BIOCS68 BIOCS68 BIOCS68 BIOCS68 BIOCS68 BIOCS68 TECH 68 AMS 63 BIOCS68 TECH 68 BIOKA62 BIOKA62 BIOKA63 JASA 67 JASA 67 JASA 66 JRSSB65 BIOCS66 TECH 69 TECH 69 JASA 63 JASA 64 JASA 64 JASA 66 JASA 67 TECH 67 TECH 67 TECH 67 TECH 67 AMS 61 AMS 61 AMS 61 AMS 61 AMS 61 AMS 661 TECH 66	1347 175 3277 436 411 1990 405 3745 988 1 125 462 283 345 989 115 1121 985 85 869 11121 985 869 115 1122 985 87 264 829 49 553 534 245 245 245 245 245 245 245 245 245 24

ANC - APP TITLE WORD INDEX

```
A TABLE FOR COMPUTING WORKING ANGLES
                  AN OCCUPATION TIME THEOREM FOR THE ANCULAR COMPONENT OF PLANE BROWNIAN MOTION
                                                RICHT ANCULAR DESIGNS
                                                                                                                AMS 63 1057
                                     CENERALIZED RICHT ANCULAR DESIGNS
                                        TABLES OF THE ANCULAR TRANSFORMATION
                                                                                                               BIOKA53
                                SOME PROPERTIES OF AN ANCULAR TRANSFORMATION FOR THE CORRELATION COEFFICIEN BIOKAS6
                                                   AN ANCULAR TRANSFORMATION FOR THE SERIAL CORRELATION
COEFFICIENT
                                                                                                                         261
                            FURTHER PROPERTIES OF AN ANCULAR TRANSFORMATION OF THE CORRELATION COEFFICIENT BIOKAST
                           A RECRESSION TECHNIQUE FOR ANCULAR VARIATES
                                                                                                               BIOCS69 NO.4
ARE LO/ THE EXPECTED FREQUENCIES IN A SAMPLE OF AN ANIMAL POPULATION IN WHICH THE ABUNDANCES OF SPECIES
                                                                                                               BIOKA51 427
        OF A METHOD OF ESTIMATING THE SIZE OF MOBILE ANIMAL POPULATIONS
                                                                                              SOME PROPERTIES BIOKA69
                                                                                                                         407
                             A MATHEMATICAL THEORY OF ANIMAL TRAPPINC
                                                                                                               BIOKA51
                                                                                                                         307
                 CONTRIBUTIONS TO THE MATHEMATICS OF ANIMAL TRAPPING
                                                                                                               BIOCS66
                                                                                                                         925
   ESTIMATES OF SURVIVAL FROM THE SICHTING OF MARKED ANIMALS
                                                                                                               BIOKA64
                                                                                                                         429
      KARL PEARSON, AN APPRECIATION ON THE HUNDREDTH ANNIVERSARY OF IIS BIRTH
                                                                                                                JASA 58
                                                                                                                          23
                                THE IDENTIFICATION OF ANNUAL PEAK PERIODS FOR A DISEASE
                                                                                                               BIOCS65
                                                                                                                         645
                                        COMPARISON OF ANOVA AND HARMONIC COMPONENTS OF VARIANCE
                                                                                                               TECH 69
                                                                                                                          75
                   THE SPECTRUM OF A MODEL II NESTED ANOVA AND ITS APPLICATIONS
                                                                                                               TECH 69
                                                                                                                          91
     ON EXPECTATIONS, VARIANCES, AND CONVARIANCES OF ANOVA MEAN SQUARES BY 'SYNTHESIS' NOTES. ESTIMATION AFTER PRELIMINARY TESTING IN ANOVA MODEL I
                                                                                                               BIOCS6B
                                                                                                                         963
                                                                                                                         752
                                                                                                               BIOCS65
         EXPECTATIONS, VARIANCES AND COVARIANCES OF 'ANOVA' MEAN SQUARES BY 'SYNTHESIS'
                                                                                                               BIOCS67
                                                                                                                         105
                 DISCUSSION OF THE PAPERS OF MESSRS. ANSCOMBE AND DANIEL
                                                                                                                         157
                                                                                                               TECH 60
                                   AUTHOR'S REPLY TO ANSCOMBE'S COMMENTS
                                                                                                               TECH 65
                                                                                                                         169
   SEQUENTIAL MEDICAL TRIALS, SOME COMMENTS ON F. J. ANSCOMBE'S PAPER
                                                                                                               JASA 63
                                                                                                                         3B4
RESPONSE, A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS
                                                                                                  RANDOMIZED
                                                                                                                          63
                                                                                                               JASA 65
                                                   EX ANTE AND EX POST DATA IN INVENTORY INVESTMENT
                                                                                                               JASA 61
                                                                                                                         51B
                               ANTE-DEPENDENCE ANALYSIS OF AN ORDERED SET OF A SCREENING SYSTEM FOR ANTI-CANCER ACENTS BASED ON THE THERAPEUTIC INDEX
VARIABLES
                                                                                                                AMS 62
                                                                                                                         201
                                                                                                               BIOCS65
                                                                                                                         150
                               ANALYSIS OF EFFECTS OF ANTIBIOTICS ON BACTERIA BY MEANS OF STOCHASTIC MODELS BIOCS66
                                                                                                                         761
STATES MANUFACTURING 1947-1960
                                                      ANTICIPATIONS AND INVESTMENT BEHAVIOR IN UNITED
                                                                                                               JASA 69
                                                                                                                          67
 COMPARATIVE SAMPLING ACCEPTANCE SCHEMES IN TESTING ANTICENICITY OF VACCINES
                                                                                                               BIOCS66
                                                                                                                         684
                 THE COMPUTATION OF THE UNRESTRICTED AOQL WHEN DEFECTIVE MATERIAL IS REMOVED BUT NOT REPLA JASA 69
                                                                                                                         665
ON OF THE ERRORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A SCALE PARAMETER /THE JOINT DISTRIBUTI BIOKA61
                                                                                                                         125
DERINC AND VARIATION OF THE LONG-TAILED FIELD MOUSE, APODEMUS SYLVATICUS. III WANDERINC POWER AND DISTRIB BIOKA52
                                                                                                                         3B9
                                   SAMPLING RATES AND APPEARANCE OF STATIONARY CAUSSIAN PROCESSES
                                                                                                               TECH 66
                                                                                                                         91
                                                       APPENDIX TO 'EQUATORIAL DISTRIBUTIONS ON A SPHERE'
                                                                                                               BIOKA65
                                                                                                                         200
                               ON THE DERIVATION AND APPLICABILITY OF NEYMAN'S TYPE A DISTRIBUTION
                                                                                                               BIOKA58
                                                                                                                          32
ARISON OF TWO SORTS OF TEST FOR A CHANCE OF LOCATION APPLICABLE TO TRUNCATED DATA
                                                                                                        A COMP JRSSB57
A MEDIAN TEST WITH SEQUENTIAL APPLICATION F A STATIONARY BIRTH-DEATH PROCESS. AND ITS ECONOMIC APPLICATION
                                                                                                               BIOKA63
                                                                     /ONSHIP BETWEEN THE MEAN AND VARIANCE O BIOKA62
                                                                                                                         253
TERIA FOR THE CONTINUITY OF PROCESSES WITH A V/ AN APPLICATION FOR THE SOBOLEV IMBEDDING THEOREMS TO CRI AMS 69
            MATRIX INVERSION. ITS INTEREST AND APPLICATION IN ANALYSIS OF DATA
                              A DYNAMIC PROGRAMMING APPLICATION IN ANALYSIS OF DATA
A DYNAMIC PROGRAMMING APPLICATION IN PRODUCTION LINE INSPECTION
                                                                                                                         73
ILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL CARIES PROCESS
                                                                                                             / BIOCS66
      A CENERALIZATION OF THE BALLOT PROBLEM AND ITS APPLICATION IN THE THEORY OF QUEUES
          THE ANALYSIS OF POISSON RECRESSION WITH AN APPLICATION IN VIROLOCY
                                                   AN APPLICATION OF A BALANCED INCOMPLETE BLOCK DESIGN
                                                                                                               TECH 61
NONLINEAR RECRESSION PROBLEMS
                                                       APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO TECH 68
                              SOME PROPERTIES AND AN APPLICATION OF A STATISTIC ARISING IN TESTING CORRELA AMS 69 1736
BIVARIATE EXTREME VALUE THEORY
                                                      APPLICATION OF AN ESTIMATOR OF HICH EFFICIENCY IN
                                                                                                               JASA 69 NO.4
                                                   THE APPLICATION OF AUTOMATIC COMPUTERS TO SAMPLING EXPERI JRSSB54 39
MENTS (WITH DISCUSSION)
                                                   AN APPLICATION OF BIORTHONORMAL EXPANSIONS IN THEORY OF JRSSB68
STOCHASTIC PROCESSES
                                                                                                                        334
IONS OF CENERALIZED CLASSI/ REMARKS CONCERNINC THE APPLICATION OF EXACT FINITE SAMPLE DISTRIBUTION FUNCT JASA 63
                                                                                                                        943
MUNICATION'
            COMMENTS TO, EDWARD C. POSNER, 'THE APPLICATION OF EXTREME VALUE THEORY TO ERROR FREE COM TECH 66 363
                                                   THE APPLICATION OF EXTREME VALUE THEORY TO ERROR-FREE
COMMUNICATION
                DESIGNS FOR THE SEQUENTIAL APPLICATION OF FACTORS
                                                                                                               TECH 65 517
                                                                                                               TECH 64
                                                                                                                        365
                                                      APPLICATION OF FINITE ABSORBENT MARKOV CHAINS TO SIB BIOCS69
MATINC POPULATIONS WITH SELECTION
                                                                                                                         17
IN QUEUES
                                           NOTE ON AN APPLICATION OF FOUR MOMENT INEQUALITIES TO A PROBLEM TECH 65
                                                                                                                        435
SION OF PARTITIONED MATRICES IN THE ANALYSIS OF N/ APPLICATION OF GREENBERC AND SARHAN'S METHOD OF INVER JASA 65 1200
EXISTENCE OF ORTHOCONAL LATIN SQUARES ON THE APPLICATION OF GROUP THEORY TO THE EXISTENCE AND NON- BIOKAGO NO.3

RAICHT-LINE RELATIONS WHEN BOTH VAR/ A GENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE ESTIMATION OF ST TECH 69 255
 PROBLEM OF CRIZZLE WITH A NOTATION ON THE PROBLE/ APPLICATION OF MINIMUM LOGIT CHI-SQUARE ESTIMATE TO A BIOCSGB
                                                                                                                         75
REPEATED MEASUREMENTS EXPERIMENTS
                                                       APPLICATION OF MULTIVARIATE ANALYSIS OF VARIANCE TO BIOCS66
PHOTOGRAPHIC PROCESSING
                                                    AN APPLICATION OF MULTIVARIATE QUALITY CONTROL TO
                                                                                                               JASA 57
                                                                                                                        186
                                                    AN APPLICATION OF NUMERICAL INTEGRATION TECHNIQUES TO
STATISTICAL TOLERANCING
                                                                                                               TECH 67
                                                                                                                        441
                                        A NOTE ON THE APPLICATION OF QUENOUILLE'S METHOD OF BIAS REDUCTION BIOKA59
TO THE ESTIMATION OF RATIOS
                                                                                                                        477
                                                   THE APPLICATION OF RANDOM BALANCE DESIGNS
                                                                                                               TECH 59
                                                                                                                        139
                                         ERRATA. 'THE APPLICATION OF RANDOM BALANCE DESIGNS'
                                                                                                               TECH 59 419
      SAMPLINC MIXTURES OF MULTI-SIZED PARTICLES, AN APPLICATION OF RENEWAL THEORY
                                                                                                               TECH 69
                                                                                                                        285
EVOLUTIONARY OPERATION
                                                   AN APPLICATION OF SEQUENTIAL SAMPLING TO ANALYTICAL
                                                                                                                         B5
                                                                                                               BIOKA66
                                           SEQUENTIAL APPLICATION OF SIMPLEX DESIGNS IN OPTIMISATION AND
                                                                                                               TECH 62
                                                                                                                        441
ION OF PROBABILITY DISTRIBUTIONS
                                                       APPLICATION OF SPECIAL FUNCTIONS IN THE CHARACTERIZAT SASJ 69
                                                                                                                         27
                                                    AN APPLICATION OF STEPWISE REGRESSION TO NON-LINEAR
ESTIMATION
                                                                                                               TECH 6B
                                                                                                                          63
                                                      APPLICATION OF STOCHASTIC APPROXIMATION TO PROCESS
CONTROL
                                                                                                               JRSSR65
                                                                                                                        321
                              A NOTE ON THE APPLICATION OF THE COMBINATION OF PROBABILITIES TEST
TO A SET OF 2-BY-2 TABLES
                                                                                                               BIOKA55
                                                                                                                        404
                                                   AN APPLICATION OF THE DISTRIBUTION OF THE RANKING
CONCORDANCE COEFFICIENT
                                                                                                               BIOKA51
                                                                                                                         3.3
                                                   AN APPLICATION OF VARIABLE WEIGHT DISTRIBUTED LACS
                                                                                                               JASA 67 1277
ALITY FOR THE SAMPLE COEFFICIENT OF VARIATION AND AN APPLICATION OF VARIABLES SAMPLING
                                                                                            AN INEQU TECH 65
                                                                                                                         67
     SOME INFERENCES ABOUT GAMMA PARAMETERS WITH AN APPLICATION TO A RELIABILITY PROBLEM
                                                                                                               JASA 63
                                                                                                                        670
N FOR GENERALIZED POWER SERIES DISTRIBUTIONS AND ITS APPLICATION TO A TRUNCATED BINOMIAL DISTRIBUTION
                                                                                                            /O BIOKA62
                                                                                                                        227
  SEQUENTIAL CHI-SQUARE AND T-SQUARE TESTS AND THEIR APPLICATION TO AN ACCEPTANCE SAMPLING PROBLEM
                                                                                                              TECH 61
                                                                                                                        519
 THE POISSON APPROXIMATION FOR BINOMIAL EVENTS, WITH APPLICATION TO BACTERIAL ENDOCARDITIS DATA /USE OF BIOCS66
                                                                                                                         74
FOR THE UNBALANCED TWO-WAY CROSS CLASSIFICATION WITH APPLICATION TO BALANCED INCOMPLETE BLOCK DESIGNS / AMS 69
                                                                                                                        40B
DURE FOR RANKING MEANS OF FINITE POPULATIONS WITH AN APPLICATION TO BULK SAMPLING PROBLEMS /MPLING PROCE TECH 67 355 SOLUTION OF A SET OF SIMULTANEOUS EQUATIONS WITH AN APPLICATION TO EXPERIMENTAL DESIGN /REGION FOR THE BIOKA54 190
  THE STATISTICAL ANALYSIS OF INDUSTRY STRUCTURE, AN APPLICATION TO FOOD INDUSTRIES
                                                                                                               JASA 61 925
```

TITLE WORD INDEX ANG - APP

HARMONIC ANALYSIS OF SEASONAL VARIATION WITH AN DUCT-MOMENT PARTIAL CORRELATION AND REGRESSION, WITH			
	APPLICATION TO HOW PRODUCTION	JASA 62	655
		BIOKA59	241
ADTOUG DOWNATORS OF THE LOCAT AND ITS VARIANCE WITH	APPLICATION TO QUANTAL BIOASSAY ON THE BIAS OF V		181
BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH			11
ROXIMATION TO THE NORMAL DISTRIBUTION FUNCTION, WITH	APPLICATION TO SIMULATION A USEFUL APP	TECH 67	647
MODEL FOR TWO COMPETING SPECIES OF TRIBULIUM AND ITS	APPLICATION TO SOME EXPERIMENTAL DATA A STOCHASTIC	BTOKA62	1
	APPLICATION TO STATISTICS OF AN ELEMENTARY THEOREM IN		85
	APPLICATION TO SURVEY SAMPLING	JRSSB69 N	10.2
WITH THE UNIFORM DISTRIBUTION, PERCENTAGE POINTS AND	APPLICATION TO TESTING FOR RANDOMNESS OF DIRECTIONS	BIOKA66	235
	APPLICATION TO THE ANALYSIS OF GROWTH CURVES. /LEAS	RIOKAGE	447
		JASA 69 N	
THE BIAS OF MOMENT ESTIMATORS WITH AN	APPLICATION TO THE NEGATIVE BINOMIAL DISTRIBUTION	BIOKA62	193
RIA FOR BEST SUBSTITUTE INTERVAL ESTIMATORS, WITH AN	APPLICATION TO THE NORMAL DISTRIBUTION CRITE	JASA 64 1	1133
THE RANDOM WALK (IN CONTINUOUS TIME) AND ITS	ADDITORTION TO THE THEODY OF OURIES	DIOMAGO	
	ADDITION TO THE THEORY OF WORDED	BEOMAGO .	
APPROXIMATIONS TO THE NON-CENTRAL T, WITH	APPLICATIONS	TECH 63	295
REDUCING A RANDOM SAMPLE TO A SMALLER SET, WITH	APPLICATIONS	JASA 67	510
BOUNDS OF THE PROBABILITY OF A UNION OF EVENTS, WITH	APPLICATIONS	AMS 68 2	2154
THE SPECTRUM OF A MODEL II NESTED ANOVA AND ITS	APPLICATIONS	TECH 69	91
HIERARCHICAL BIRTH AND DEATH PROCESSES. II.	ADDITCARTONG	DIONACO	245
	AFFLIGATIONS	DIONAGO .	
INVERSE CUMULATIVE APPROXIMATION AND	APPLICATIONS	BIOKA68	29
MULTIDIMENSIONAL-INTEGRAL IDENTITIES WITH BAYESIAN	APPLICATIONS THREE	AMS 68 1	1615
DIVISIBLE DISTRIBUTIONS, RECENT RESULTS AND	APPLICATIONS INFINITELY	AMS 62	68
PROCESS, TABLES OF THE STOGHASTIC EPIDEMIG CURVE AND	APPLICATIONS THE LOGISTIC	IRSSR60	332
STRIBUTION FOR AN OCCUPANCY PROBLEM WITH STATISTICAL		TECH CI	79
	AN ASIMPTOTIC DI	TECH 61	
TO THE MULTINOMIAL DISTRIBUTION, SOME PROPERTIES AND	APPLICATIONS AN APPROXIMATION	RIOKW20	93
OF THE MULTIVARIATE NORMAL DISTRIBUTION WITH SOME	APPLICATIONS INCOMPLETE AND ABSOLUTE MOMENTS	BIOKA53	20
TO-THE-N-TIMES-3-TO-THE-M FACTORIAL EXPERIMENTS WITH	APPLICATIONS SYSTEMATIC METHODS FOR ANALYZING 2-	TECH 67	245
OF ORDER STATISTICS OF DEPENDENT VARIABLES, AND SOME			2B3
	APPLICATIONS (WITH DISCUSSION)	BIOCS69 N	
FOR INFERENCES ABOUT THE NORMAL DISTRIBUTION WITH	APPLICATIONS IN ACCEPTANCE SAMPLING TWO THEOREMS		В9
ORDER STATISTICS	APPLIGATIONS OF A BALLOT THEOREM IN PHYSICS AND IN	JRSSB65	130
	APPLICATIONS OF A MODEL FOR BINARY REGRESSION		562
	APPLICATIONS OF A NEW GRAPHIC METHOD IN STATISTICAL		
MEASUREMENT			
			368
SOME	APPLICATIONS OF EXPONENTIAL ORDERED SCORES	JRSSB64	103
ON IN MULTIPLE REGRESSION AND MULTIVARIATE DISTAN/	APPLICATIONS OF JORDAN'S PROCEDURE FOR MATRIX INVERSI	JRSSB63	352
ANALYSIS SOME	APPLICATIONS OF MATRIX DERIVATIVES IN MULTIVARIATE		607
PROBLEMS IN STATISTICS SOME			57B
PODULATION OFFICE			
POPULATION GENETICS SOME	APPLICATIONS OF MULTIPLE-TYPE BRANCHING PROCESSES IN	JRSSB68	164
ON IN MULTIPLE REGRESSION AND MULTIVARIATE DISTAN/ ANALYSIS SOME PROBLEMS IN STATISTICS SOME POPULATION GENETICS SOME OF UNBIASED RATIO-TYPE ESTIMATION	APPLICATIONS OF MULTIPLE-TYPE BRANCHING PROCESSES IN APPLICATIONS OF MULTIVARIATE POLYKAYS TO THE THEORY APPLICATIONS OF NON-PARAMETRIC METHODS IN DILUTION (-APPLICATIONS OF NONORTHOGONAL DESIGNS TO SITUATIONS W	JASA 57	511
DIRECT) ASSAYS SOME FURTHER	APPLICATIONS OF NON-PARAMETRIC METHODS IN DILUTION (-	BIOCS65 '	799
HERE TREATMENTS OR BLOCKS ARE OF UNFOLIAL S/ NOTES	APPLICATIONS OF NONORTHOGONAL DESIGNS TO SITUATIONS W	BIOCSES (
THE COURT OF THEIR CHARLE OF CHECKE ST.	ADDITIONS OF PROPARTITMY CENERATING BUNGSTONALS SO	IDCCDCC C	
THE STUDY OF INPUT-OUTPUT STREAMS SOME	APPLICATIONS OF PROBABILITY GENERATING FUNCTIONALS TO		321
	APPLICATIONS OF PROBABILITY THEORY IN CRIMINALISTICS	JASA 65	70
II	APPLICATIONS OF PROBABILITY THEORY IN GRIMINALISTICS.	JASA 65 1	.028
FURTHER	APPLICATIONS OF RANGE TO THE ANALYSIS OF VARIANCE	BIOKA51 3	393
	APPLICATIONS OF THE BIVARIATE NORMAL DISTRIBUTION TO		325
S. I. BLOCK AND DIRECT PRODUCT DESIGN	APPLICATIONS OF THE CALCULUS OF FACTORIAL ARRANGEMENT		63
RE-RECAPTURE METHOD. III.AN EXAMPLE OF THE PRACTICAL	APPLICATIONS OF THE METHOD /D BY MEANS OF THE CAPTU	BIOKA53	137
A SURVEY OF PROPERTIES AND	APPLICATIONS OF THE NONCENTRAL T-DISTRIBUTION	TECH 6B 4	445
		TECH 66	351
MATRIX		TECH 69 NO	
CURRICULUM	APPLICATIONS OF TIME-SHARED COMPUTERS IN A STATISTICS		192
	APPLICATIONS OF TRUNCATED DISTRIBUTIONS IN PROCESS		
START-UPS AND INVENTORY CONTROL		TECH 61 4	429
	APPLICATIONS OF TWO APPROXIMATIONS TO THE MULTINOMIAL		429 463
DISTRIBUTION SOME		BIOKAGO 4	463
DISTRIBUTION SOME SOME	APPLICATIONS OF ZERO-ONE PROCESSES	BIOKAGO 4 JRSSB55 2	463 243
DISTRIBUTION SOME SOME COME SOME SOME CHILDREN A MATHEMATICAL MODEL WITH	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON	BIOKAGO 4 JRSSB55 2 JASA 65 10	463 243 .046
DISTRIBUTION SOME SOME SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES. WITH	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY	BIOKAGO 4 JRSSB55 2 JASA 65 10 BIOKA55	463 243 .046 102
DISTRIBUTION SOME SOME SOME CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES, WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS	BIOKAGO 4 JRSSB55 2 JASA 65 10 BIOKA55 1 JASA 69 5	463 243 .046 102 969
DISTRIBUTION SOME SOME SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES. WITH	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS	BIOKAGO 4 JRSSB55 2 JASA 65 10 BIOKA55	463 243 .046 102 969
DISTRIBUTION SOME SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES. WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING	BIOKAGO 4 JRSSB55 2 JASA 65 10 BIOKA55 1 JASA 69 5	463 243 .046 102 969 .591
DISTRIBUTION SOME SOME SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES, WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD, WITH	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION	BIOKA60 4 JRSSB55 2 JASA 65 10 BIOKA55 1 JASA 69 9 AMS 68 15 JASA 67 12	463 243 .046 102 969 .591
DISTRIBUTION SOME SOME SOME SOME GCHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES. WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD. WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS A MULT	BIOKAGO 4 JRSSB55 2 JASA 65 10 BIOKA55 3 JASA 69 9 AMS 68 18 JASA 67 12 BIOKA67 2	463 243 .046 102 969 .591 .230 251
DISTRIBUTION SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES. WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD, WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS A MULT APPLICATIONS TO PROBLEMS IN MATHEMATICAL STATISTICS	BIOKAGO 4 JRSSB55 2 JASA 65 10 BIOKA55 3 JASA 69 9 AMS 68 18 JASA 67 12 BIOKA67 2 JRSSB62 3	463 243 .046 102 969 .591 .230 251 152
DISTRIBUTION SOME SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES, WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD, WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LINEAR CRATERS A MULT APPLICATIONS TO PROBLEMS IN MATHEMATICAL STATISTICS APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS /CER	BIOKAGO 4 JRSSB55 2 JASA 65 10 BIOKA55 1 JASA 69 9 AMS 68 12 JASA 67 12 BIOKAG7 2 JRSSB62 1	463 243 .046 102 969 .591 .230 251 152 853
DISTRIBUTION SOME SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES. WITH LEMMA FOR PROVING THE EQUALITY OF TWO MARRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD. WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS A MULT APPLICATIONS TO PROBLEMS IN MATHEMATICAL STATISTICS APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS /CER APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS	BIOKA60 4 JRSSB55 2 JASA 65 1 BIOKA55 1 JASA 69 9 AMS 68 18 JASA 67 12 BIOKA67 2 JRSSB62 1 JASA 69 9	463 243 .046 102 969 .591 .230 251 152 .853 986
DISTRIBUTION SOME SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES, WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD, WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS A MULT APPLICATIONS TO PROBLEMS IN MATHEMATICAL STATISTICS APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS /CER APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS	BIOKAGO 4 JRSSB55 2 JASA 65 10 BIOKA55 1 JASA 69 9 AMS 68 12 JASA 67 12 BIOKAG7 2 JRSSB62 1	463 243 .046 102 969 .591 .230 251 152 .853 986
DISTRIBUTION SOME SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES. WITH LEMMA FOR PROVING THE EQUALITY OF TWO MARRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD. WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS A MULT APPLICATIONS TO PROBLEMS IN MATHEMATICAL STATISTICS APPLICATIONS TO SOME SIMULTANEOUS CONFIDENCE BOUNDS /CER APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS APPLICATIONS TO STATISTICS	BIOKA60 4 JRSSB55 2 JASA 65 1 BIOKA55 1 JASA 69 9 AMS 68 18 JASA 67 12 BIOKA67 2 JRSSB62 1 JASA 69 9	463 243 .046 102 969 .591 .230 251 152 .853 986 483
DISTRIBUTION G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES. WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD. WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS EXTREMA OF QUADRATIC FORMS WITH CORRIGENDA, 'EXTREMA OF QUADRATIC FORMS WITH	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS A MULT APPLICATIONS TO FROBLEMS IN MATHEMATICAL STATISTICS APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS /CER APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS	BIOKAGO / JRSSB55 / 2 JASA 65 10 BIOKAG5 / 3 JASA 69 15 JASA 67 12 JRSSB62 / JASA 69 15	463 243 .046 102 969 .591 .230 251 152 .853 986 483 474
DISTRIBUTION SOME SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES. WITH LEMMA FOR PROVING THE EQUALITY OF TWO MARRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD. WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS EXTREMA OF QUADRATIC FORMS WITH CORRIGENDA, 'EXTREMA OF QUADRATIC FORMS WITH SES WITH MULTI-DIMENSIONAL TIME/ INEQUALITIES WITH	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LINEAR CRATERS A MULT APPLICATIONS TO PROBLEMS IN MATHEMATICAL STATISTICS APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS /CER APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCES	BIOKAGO / JRSSB55 / 2 JASA 65 16 BIOKAG5 1 JASA 69 9	463 243 .046 102 969 .591 .230 251 152 .853 986 483 474 681
DISTRIBUTION G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES, WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS, A GENERAL METHOD, WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS EXTREMA OF QUADRATIC FORMS WITH CORRIGENDA, 'EXTREMA OF QUADRATIC FORMS WITH SES WITH MULTI-DIMENSIONAL TIME/ INEQUALITIES WITH THE INVERTED DIRICHLET DISTRIBUTION WITH	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS A MULT APPLICATIONS TO PROBLEMS IN MATHEMATICAL STATISTICS APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS / CER APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS' APPLICATIONS TO STATISTICS' APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCES APPLICATIONS, CORR. 65 1251	BIOKAGO / JRSSB55 / 2 JASA 65 / 1 LS BIOKAG5 / 2 JASA 67 1 LS BIOKAG7 / 2 JRSSB62 / 3 AMS 67 1 LS BIOKAG1 / 4 AMS 69 8 BIOKAG5 / 4 AMS 69 69 JASA 65 67 JASA 69 JASA 65 67 JASA 66 69 JASA 66 67 JASA	463 243 .046 102 969 .591 .230 251 152 .853 986 483 474 681 793
DISTRIBUTION SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES. WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD. WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS EXTREMA OF QUADRATIC FORMS WITH CORRIGENDA, 'EXTREMA OF QUADRATIC FORMS WITH SES WITH MULTI-DIMENSIONAL TIME/ INEQUALITIES WITH THE INVERTED DIRICHLET DISTRIBUTION WITH ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T, WITH	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS A MULT APPLICATIONS TO FORDLEMS IN MATHEMATICAL STATISTICS APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS /CER APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCES APPLICATIONS, CORR. 65 1251 APPLICATIONS'	BIOKAGO	463 243 .046 102 969 .591 .230 251 152 .853 986 483 474 681 793 482
DISTRIBUTION SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES. WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD. WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS EXTREMA OF QUADRATIC FORMS WITH CORRIGENDA, 'EXTREMA OF QUADRATIC FORMS WITH SES WITH MULTI-DIMENSIONAL TIME/ INEQUALITIES WITH THE INVERTED DIRICHLET DISTRIBUTION WITH ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T, WITH	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS A MULT APPLICATIONS TO FORDLEMS IN MATHEMATICAL STATISTICS APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS /CER APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCES APPLICATIONS, CORR. 65 1251 APPLICATIONS'	BIOKAGO / JRSSB55 / 2 JASA 65 / 1 LS BIOKAG5 / 2 JASA 67 1 LS BIOKAG7 / 2 JRSSB62 / 3 AMS 67 1 LS BIOKAG1 / 4 AMS 69 8 BIOKAG5 / 4 AMS 69 69 JASA 65 67 JASA 69 JASA 65 67 JASA 66 69 JASA 66 67 JASA	463 243 .046 102 969 .591 .230 251 152 .853 986 483 474 681 793 482
DISTRIBUTION SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATTAL POINT PROCESSES. WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD, WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS EXTREMA OF QUADRATIC FORMS WITH CORRIGENDA, 'EXTREMA OF QUADRATIC FORMS WITH SES WITH MULTI-DIMENSIONAL TIME/ INEQUALITIES WITH THE INVERTED DIRICHLET DISTRIBUTION WITH ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T, WITH A NOTE ON TESTS OF HOMOGENEITY	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS A MULT APPLICATIONS TO FROBLEMS IN MATHEMATICAL STATISTICS APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS /CER APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS' APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCES APPLICATIONS, CORR. 65 1251 APPLICATIONS' APPLICATIONS' APPLICATIONS'	BIOKAGO	463 243 .046 102 969 .591 .230 251 152 .853 986 483 474 681 793 482 368
DISTRIBUTION G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES. WITH LEMMA FOR PROVING THE EQUALITY OF TWO MARRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD, WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS EXTREMA OF QUADRATIC FORMS WITH CORRIGENDA, 'EXTREMA OF QUADRATIC FORMS WITH SES WITH MULTI-DIMENSIONAL TIME/ INEQUALITIES WITH THE INVERTED DIRICHLET DISTRIBUTION WITH ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T, WITH A NOTE ON TESTS OF HOMOGENEITY	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS APPLICATIONS TO FROBLEMS IN MATHEMATICAL STATISTICS APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS /CER APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCES APPLICATIONS, CORR. 65 1251 APPLICATIONS' APPLICATIONS	BIOKAGO / JRSSB55 2 2 3 2 3 4 5 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	463 243 .046 102 969 .591 .230 251 152 .853 986 483 474 681 793 482 368 341
DISTRIBUTION SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES, WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD, WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS EXTREMA OF QUADRATIC FORMS WITH CORRIGENDA, 'EXTREMA OF QUADRATIC FORMS WITH SES WITH MULTI-DIMENSIONAL TIME/ INEQUALITIES WITH THE INVERTED DIRICHLET DISTRIBUTION WITH ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T, WITH A NOTE ON TESTS OF HOMOGENEITY OF 2-TO-THE-P FACTORIAL EXPERIMENTS WITH THE FACTORS	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS A MULT APPLICATIONS TO FORDLEMS IN MATHEMATICAL STATISTICS APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS /CER APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCES APPLICATIONS, CORR. 65 1251 APPLICATIONS' APPLIED AFTER SEQUENTIAL SAMPLING APPLIED MULTIPLEX SAMPLING APPLIED SEQUENTIALLY FRACTIONAL REPLICATION	BIOKAGO / JRSSB55 / 2 JASA 65	463 243 .046 102 969 .591 .230 251 152 .853 986 483 474 681 793 482 368 341 644
DISTRIBUTION SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES. WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD, WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS EXTREMA OF QUADRATIC FORMS WITH CORRIGENDA, 'EXTREMA OF QUADRATIC FORMS WITH SES WITH MULTI-DIMENSIONAL TIME/ THE INVERTED DIRICHLET DISTRIBUTION WITH ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T, WITH A NOTE ON TESTS OF HOMOGENEITY OF 2-TO-THE-P FACTORIAL EXPERIMENTS WITH THE FACTORS IS OF VARIANCE	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS A MULT APPLICATIONS TO LUNAR CRATERS A MULT APPLICATIONS TO PROBLEMS IN MATHEMATICAL STATISTICS APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCES APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCES APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCES APPLICATIONS' APPLIED AFTER SEQUENTIAL SAMPLING APPLIED BEQUENTIALLY FRACTIONAL REPLICATION APPLIED TO CERTAIN EXPERIMENTAL DESIGNS IN THE ANALYS	BIOKAGO / JRSSB55 / 2 JASA 65 10 BIOKAG5 / 3 JASA 69 S S S S S S S S S S S S S S S S S S	463 243 .046 102 969 .591 .230 251 152 .853 .986 .483 .474 .681 .793 .482 .368 .341 .644 .388
DISTRIBUTION SOME SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES. WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD, WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS EXTREMA OF QUADRATIC FORMS WITH CORRIGENDA, 'EXTREMA OF QUADRATIC FORMS WITH SES WITH MULTI-DIMENSIONAL TIME/ INEQUALITIES WITH THE INVERTED DIRICHLET DISTRIBUTION WITH ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T, WITH A NOTE ON TESTS OF HOMOGENEITY OF 2-TO-THE-P FACTORIAL EXPERIMENTS WITH THE FACTORS IS OF VARIANCE SEQUENTIAL ANALYSIS IN PRECISION FOR OPTIMAL ALLOCATION IN REGRESSION AS	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS APPLICATIONS TO PROBLEMS IN MATHEMATICAL STATISTICS APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS /CER APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCES APPLICATIONS, CORR. 65 1251 APPLICATIONS, CORR. 65 1251 APPLICATIONS, CORR. 65 1251 APPLICATIONS APPLIED AFTER SEQUENTIAL SAMPLING APPLIED MULTIPLEX SAMPLING APPLIED MULTIPLEX SAMPLING APPLIED TO CERTAIN EXPERIMENTAL DESIGNS IN THE ANALYS APPLIED TO EXTRAPOLATION IN S-N FATIGUE TESTING /N	BIOKAGO	463 243 046 102 969 591 230 251 152 853 986 483 474 681 793 368 341 644 388 389
DISTRIBUTION SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES, WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS, A GENERAL METHOD, WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS EXTREMA OF QUADRATIC FORMS WITH CORRIGENDA, 'EXTREMA OF QUADRATIC FORMS WITH THE INVERTED DIRICHLET DISTRIBUTION WITH ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T, WITH A NOTE ON TESTS OF HOMOGENEITY OF 2-TO-THE-P FACTORIAL EXPERIMENTS WITH THE FACTORS IS OF VARIANCE SEQUENTIAL ANALYSIS IN PRECISION FOR OPTIMAL ALLOCATION IN REGRESSION AS A BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS A MULT APPLICATIONS TO FORDLEMS IN MATHEMATICAL STATISTICS APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS / CER APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS' APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCES APPLICATIONS, CORR. 65 1251 APPLICATIONS' APPLIED AFTER SEQUENTIAL SAMPLING APPLIED MULTIPLEX SAMPLING APPLIED SEQUENTIALLY FRACTIONAL REPLICATION APPLIED TO CERTAIN EXPERIMENTAL DESIGNS IN THE ANALYS APPLIED TO EXTRAPOLATION IN S-N FATIGUE TESTING /N APPLIED TO THE COMPARISON OF VARIANCES	BIOKAGO / JRSSB55 / 2 JASA 65 10 BIOKAG5 / 3 JASA 69 S S S S S S S S S S S S S S S S S S	463 243 046 102 969 591 230 251 152 853 986 483 474 681 793 368 341 644 388 389
DISTRIBUTION SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES, WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS, A GENERAL METHOD, WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS EXTREMA OF QUADRATIC FORMS WITH CORRIGENDA, 'EXTREMA OF QUADRATIC FORMS WITH THE INVERTED DIRICHLET DISTRIBUTION WITH ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T, WITH A NOTE ON TESTS OF HOMOGENEITY OF 2-TO-THE-P FACTORIAL EXPERIMENTS WITH THE FACTORS IS OF VARIANCE SEQUENTIAL ANALYSIS IN PRECISION FOR OPTIMAL ALLOCATION IN REGRESSION AS A BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS A MULT APPLICATIONS TO FORDLEMS IN MATHEMATICAL STATISTICS APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS / CER APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS' APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCES APPLICATIONS, CORR. 65 1251 APPLICATIONS, CORR. 65 1251 APPLIED AFTER SEQUENTIAL SAMPLING APPLIED MULTIPLEX SAMPLING APPLIED MULTIPLEX SAMPLING APPLIED TO CERTAIN EXPERIMENTAL DESIGNS IN THE ANALYS APPLIED TO EXTRAPOLATION IN S-N FATICUE TESTING /N APPLIED TO THE COMPARISON OF VARIANCES	BIOKAGO / JRSSB55 / 2 JASA 69 / 5 AMS 67 12 BIOKAG7 / 2 JASA 67 12 BIOKAG7 / 2 JASA 67 12 BIOKAG9 / 4 AMS 69 / 3 SIOKAG9 / 4 AMS 69 JASA 65 / 5 TECH 64 / 4 JURSSB60 / 5 TECH 64 / 5 JASA 68 / 6 SIOKAG6 / 5 TECH 64 / 5 JASA 68 / 6 SIOKAG6 / 5 TECH 64 / 5 JECH 63 / 5 JASA 68 / 6 SIOKAG6 / 5 TECH 64 / 5 JECH 63 / 5 JECH 65 / 5 TECH 64 / 5 JECH 65 / 5 TECH 65 / 5 JECH 65 JECH 65 / 5 JECH 65 / 5 JECH 65 J	463 243 046 102 969 259 152 853 986 474 483 484 483 341 681 793 482 368 341 644 388 389 153
DISTRIBUTION SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES, WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD, WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS EXTREMA OF QUADRATIC FORMS WITH CORRIGENDA. 'EXTREMA OF QUADRATIC FORMS WITH SES WITH MULTI-DIMENSIONAL TIME/ INEQUALITIES WITH THE INVERTED DIRICHLET DISTRIBUTION WITH ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T, WITH A NOTE ON TESTS OF HOMOGENEITY OF 2-TO-THE-P FACTORIAL EXPERIMENTS WITH THE FACTORS IS OF VARIANCE SEQUENTIAL ANALYSIS IN PRECISION FOR OPTIMAL ALLOCATION IN REGRESSION AS A BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS ON CERTAIN SUGGESTED FORMULAE	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS A MULT APPLICATIONS TO FROBLEMS IN MATHEMATICAL STATISTICS APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS /CER APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCES APPLICATIONS, CORR. 65 1251 APPLIED AFTER SEQUENTIAL SAMPLING APPLIED AFTER SEQUENTIAL SAMPLING APPLIED SEQUENTIALLY FRACTIONAL REPLICATION APPLIED TO CERTAIN EXPERIMENTAL DESIGNS IN THE ANALYS APPLIED TO CERTAIN EXPERIMENTAL DESIGNS IN THE ANALYS APPLIED TO THE COMPARISON OF VARIANCES APPLIED TO THE SEQUENTIAL T-TEST	BIOKAGO / JRSSB55 / 2 JASA 69 / 5 SB55 / 5 JASA 69 / 5 SB55 / 5 JASA 69 / 5 SB55 / 5	463 243 046 102 969 259 152 853 986 483 474 4681 793 482 368 341 644 83 89 153 97
DISTRIBUTION SOME SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES. WITH LEMMA FOR PROVING THE EQUALITY OF TWO MARRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD. WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS EXTREMA OF QUADRATIC FORMS WITH CORRIGENDA. 'EXTREMA OF QUADRATIC FORMS WITH THE INVERTED DIRICHLET DISTRIBUTION WITH ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T, WITH A NOTE ON TESTS OF HOMOGENEITY OF 2-TO-THE-P FACTORIAL EXPERIMENTS WITH THE FACTORS IS OF VARIANCE SEQUENTIAL ANALYSIS IN PRECISION FOR OPTIMAL ALLOCATION IN REGRESSION AS A BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS ON CERTAIN SUGGESTED FORMULAE A DIFFERENCE EQUATION TECHNIQUE	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS A MULT APPLICATIONS TO PROBLEMS IN MATHEMATICAL STATISTICS APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS /CER APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCES APPLICATIONS, CORR. 65 1251 APPLICATIONS' APPLIED AFTER SEQUENTIAL SAMPLING APPLIED MULTIPLEX SAMPLING APPLIED TO CERTAIN EXPERIMENTAL DESIGNS IN THE AMALYS APPLIED TO EXTRAPOLATION IN S-N FATIGUE TESTING /N APPLIED TO THE SEQUENTIAL T-TEST APPLIED TO THE SIMPLE QUEUE	BIOKAGO	463 243 .046 102 .591 .230 251 152 986 483 474 681 793 482 338 341 644 388 389 97 165
DISTRIBUTION SOME SOME C CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES. WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD, WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS EXTREMA OF QUADRATIC FORMS WITH SES WITH MULTI-DIMENSIONAL TIME/ INEQUALITIES WITH THE INVERTED DIRICHLET DISTRIBUTION WITH ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T. WITH A NOTE ON TESTS OF HOMOGENEITY OF 2-TO-THE-P FACTORIAL EXPERIMENTS WITH THE FACTORS IS OF VARIANCE SEQUENTIAL ANALYSIS IN PRECISION FOR OPTIMAL ALLOCATION IN REGRESSION AS A BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS ON CERTAIN SUGGESTED FORMULAE A DIFFERENCE EQUATION TECHNIQUE TERVAL DISTRIBUTI/ A DIFFERENCE EQUATION TECHNIQUE	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS A MULT APPLICATIONS TO FROBLEMS IN MATHEMATICAL STATISTICS APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS / CER APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCES APPLICATIONS, CORR. 65 1251 APPLICATIONS, CORR. 65 1251 APPLIED MULTIPLEX SAMPLING APPLIED MULTIPLEX SAMPLING APPLIED MULTIPLEX SAMPLING APPLIED TO CERTAIN EXPERIMENTAL DESIGNS IN THE ANALYS APPLIED TO EXTRAPOLATION IN S-N FATIGUE TESTING /N APPLIED TO THE COMPARISON OF VARIANCES APPLIED TO THE SIMPLE QUEUE WITH ARBITRARY ARRIVAL IN	BIOKAGO / JRSSB55 / 2 JASA 69 / 5 AMS 67 12 BIOKAG7 / 2 JASA 69 / 5 AMS 67 BIOKAG9 / 4 BIOKAG9 / 5 AMS 67 BIOKAG9 / 5 AMS 67 BIOKAG9 / 5 AMS 67 AMS 67 AMS 67 AMS 67 AMS 67 AMS 67 AMS 68 AMS 6	463 243 0.46 102 969 591 230 251 152 853 986 483 474 479 368 388 389 153 464 388 389 153 165 165
DISTRIBUTION SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES, WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS, A GENERAL METHOD, WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS EXTREMA OF QUADRATIC FORMS WITH CORRIGENDA, 'EXTREMA OF QUADRATIC FORMS WITH THE INVERTED DIRICHLET DISTRIBUTION WITH ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T, WITH A NOTE ON TESTS OF HOMOGENEITY OF 2-TO-THE-P FACTORIAL EXPERIMENTS WITH THE FACTORS IS OF VARIANCE SEQUENTIAL ANALYSIS IN PRECISION FOR OPTIMAL ALLOCATION IN REGRESSION AS A BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS ON CERTAIN SUGGESTED FORMULAE A DIFFERENCE EQUATION TECHNIQUE TERVAL DISTRIBUTI/ A DIFFERENCE EQUATION TECHNIQUE OUTLIERS IN PATTERNED EXPERIMENTS. A STRATEGIC	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS A MULT APPLICATIONS TO LUNAR CRATERS A MULT APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS /CER APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS' APPLICATIONS TO STATISTICS' APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCES APPLICATIONS, CORR. 65 1251 APPLICATIONS, CORR. 65 1251 APPLIED AFTER SEQUENTIAL SAMPLING APPLIED SEQUENTIALLY FRACTIONAL REPLICATION APPLIED SEQUENTIALLY FRACTIONAL REPLICATION APPLIED TO EXTRAPOLATION IN S-N FATIGUE TESTING /N APPLIED TO THE COMPARISON OF VARIANCES APPLIED TO THE SEQUENTIAL T-TEST APPLIED TO THE SIMPLE QUEUE APPLIED TO THE SIMPLE QUEUE WITH ARBITRARY ARRIVAL IN APPRAISAL	BIOKAGO / JRSSB55 / 2 JASA 69 / 5 BIOKAGO / 3 JASA 68 / 5 BIOKAGO	463 243 0.046 1002 969 591 152 251 152 853 986 474 4681 793 482 368 341 644 388 398 97 163 97 166 91
DISTRIBUTION SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES, WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS, A GENERAL METHOD, WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS EXTREMA OF QUADRATIC FORMS WITH CORRIGENDA, 'EXTREMA OF QUADRATIC FORMS WITH THE INVERTED DIRICHLET DISTRIBUTION WITH ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T, WITH A NOTE ON TESTS OF HOMOGENEITY OF 2-TO-THE-P FACTORIAL EXPERIMENTS WITH THE FACTORS IS OF VARIANCE SEQUENTIAL ANALYSIS IN PRECISION FOR OPTIMAL ALLOCATION IN REGRESSION AS A BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS ON CERTAIN SUGGESTED FORMULAE A DIFFERENCE EQUATION TECHNIQUE TERVAL DISTRIBUTI/ A DIFFERENCE EQUATION TECHNIQUE OUTLIERS IN PATTERNED EXPERIMENTS. A STRATEGIC	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS A MULT APPLICATIONS TO FROBLEMS IN MATHEMATICAL STATISTICS APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS / CER APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCES APPLICATIONS, CORR. 65 1251 APPLICATIONS, CORR. 65 1251 APPLIED MULTIPLEX SAMPLING APPLIED MULTIPLEX SAMPLING APPLIED MULTIPLEX SAMPLING APPLIED TO CERTAIN EXPERIMENTAL DESIGNS IN THE ANALYS APPLIED TO EXTRAPOLATION IN S-N FATIGUE TESTING /N APPLIED TO THE COMPARISON OF VARIANCES APPLIED TO THE SIMPLE QUEUE WITH ARBITRARY ARRIVAL IN	BIOKAGO / JRSSB55 / 2 JASA 69 / 5 BIOKAGO / 3 JASA 68 / 5 BIOKAGO	463 243 0.046 1002 969 591 152 251 152 853 986 474 4681 793 482 368 341 644 388 398 97 163 97 166 91
DISTRIBUTION SOME SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES. WITH LEMMA FOR PROVING THE EQUALITY OF TWO MARRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GEMERAL METHOD. WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS EXTREMA OF QUADRATIC FORMS WITH CORRIGENDA, 'EXTREMA OF QUADRATIC FORMS WITH THE INVERTED DIRICHLET DISTRIBUTION WITH THE INVERTED DIRICHLET DISTRIBUTION WITH ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T, WITH A NOTE ON TESTS OF HOMOGENEITY OF 2-TO-THE-P FACTORIAL EXPERIMENTS WITH THE FACTORS IS OF VARIANCE SEQUENTIAL ANALYSIS IN PRECISION FOR OPTIMAL ALLOCATION IN REGRESSION AS A BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS ON CERTAIN SUGGESTED FORMULAE A DIFFERENCE EQUATION TECHNIQUE TERVAL DISTRIBUTI/ A DIFFERENCE EQUATION TECHNIQUE OUTLIERS IN PATTERNED EXPERIMENTS. A STRATEGIC C COMPUTER FROM THE POINT OF VIEW OF THE USER AND	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO PROBLEMS IN MATHEMATICAL STATISTICS APPLICATIONS TO SOME SIMULTANEOUS CONFIDENCE BOUNDS /CER APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCES APPLICATIONS, CORR. 65 1251 APPLICATIONS' APPLIED AFTER SEQUENTIAL SAMPLING APPLIED MULTIPLEX SAMPLING APPLIED SEQUENTIALLY FRACTIONAL REPLICATION APPLIED TO CERTAIN EXPERIMENTAL DESIGNS IN THE ANALYS APPLIED TO THE COMPARISON OF VARIANCES APPLIED TO THE SEQUENTIAL T-TEST APPLIED TO THE SIMPLE QUEUE APPLIED TO THE SIMPLE QUEUE APPLIED TO THE SIMPLE QUEUE WITH ARBITRARY ARRIVAL IN APPRAISAL APPRAISAL APPRAISAL APPRAISAL APPRAISAL OF LEAST SQUARES PROGRAMS FOR THE ELECTRONI	BIOKAGO	463 243 0.46 969 5591 152 853 986 483 474 681 793 482 341 644 388 3153 97 165 168 91 819
DISTRIBUTION SOME SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES. WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD, WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS EXTREMA OF QUADRATIC FORMS WITH SES WITH MULTI-DIMENSIONAL TIME/ INEQUALITIES WITH THE INVERTED DIRICHLET DISTRIBUTION WITH ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T, WITH A NOTE ON TESTS OF HOMOGENEITY OF 2-TO-THE-P FACTORIAL EXPERIMENTS WITH THE FACTORS IS OF VARIANCE SEQUENTIAL ANALYSIS IN PRECISION FOR OPTIMAL ALLOCATION IN RECRESSION AS A BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS ON CERTAIN SUGGESTED FORMULAS A DIFFERENCE EQUATION TECHNIQUE OUTLIERS IN PATTERNED EXPERIMENTS. A STRATEGIC C COMPUTER FROM THE POINT OF VIEW OF THE USER AN BIRTH	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS APPLICATIONS TO LUNAR CRATERS APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS /CER APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS APPLICATIONS TO STATISTICS' APPLICATIONS TO STATISTICS' APPLICATIONS TO STATISTICS' APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCES APPLICATIONS, CORR. 65 1251 APPLICATIONS, CORR. 65 1251 APPLIED AFTER SEQUENTIAL SAMPLING APPLIED MULTIPLEX SAMPLING APPLIED MULTIPLEX SAMPLING APPLIED TO CERTAIN EXPERIMENTAL DESIGNS IN THE ANALYS APPLIED TO EXTRAPOLATION IN S-N FATIGUE TESTING /N APPLIED TO THE SEQUENTIAL T-TEST APPLIED TO THE SUMPLE QUEUE APPLIED TO THE SIMPLE QUEUE APPRAISAL APPALED APPRAISAL APPRAISAL APPRAISAL APPRAISAL APPRAISAL APPRAISA	BIOKAGO / JRSSB55 / 2 JASA 69 / 5 AMS 67 L9 JASA 667 L9 JASA 667 L9 JASA 65 MECHANIS (19 JASA 66 MECHANIS (19 JASA 66 MECHANIS (19 JASA 67 MECHANIS (19 JASA	463 243 0.046 1002 969 591 152 230 2251 152 853 474 681 482 368 341 474 482 368 389 153 97 165 168 91 819 23
DISTRIBUTION G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES. WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD, WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS EXTREMA OF QUADRATIC FORMS WITH CORRIGENDA, 'EXTREMA OF QUADRATIC FORMS WITH THE INVERTED DIRICHLET DISTRIBUTION WITH ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T, WITH A NOTE ON TESTS OF HOMOGENEITY OF 2-TO-THE-P FACTORIAL EXPERIMENTS WITH THE FACTORS IS OF VARIANCE IS OF VARIANCE SEQUENTIAL ANALYSIS IN PRECISION FOR OPTIMAL ALLOCATION IN REGRESSION AS A BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS ON CERTAIN SUGGESTED FORMULAE A DIFFERENCE EQUATION TECHNIQUE TERVAL DISTRIBUTI/ A DIFFERENCE EQUATION TECHNIQUE OUTLIERS IN PATTERNED EXPERIMENTS. A STRATEGIC C COMPUTER FROM THE POINT OF VIEW OF THE USER AN APRIL, 1966)	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS A MULT APPLICATIONS TO LUNAR CRATERS APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS /CER APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS' APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCES APPLICATIONS, CORR. 65 1251 APPLICATIONS, CORR. 65 1251 APPLIED AFTER SEQUENTIAL SAMPLING APPLIED MULTIPLEX SAMPLING APPLIED MULTIPLEX SAMPLING APPLIED TO CERTAIN EXPERIMENTAL DESIGNS IN THE ANALYS APPLIED TO EXTRAPOLATION IN S-N FATIGUE TESTING /N APPLIED TO THE COMPARISON OF VARIANCES APPLIED TO THE SEQUENTIAL T-TEST APPLIED TO THE SIMPLE QUEUE WITH ARBITRARY ARRIVAL IN APPRAISAL APPRAISAL OF LEAST SQUARES PROGRAMS FOR THE ELECTRONI APPRECIATION ON THE HUNDREDTH ANNIVERSARY OF HIS APPRECIATION ON THE HUNDREDTH ANNIVERSARY OF HIS APPRECIATION ON TOTOKAR HEINISCH (70TH SIRTHDAY, 23RD	BIOKAGO / JRSSB55 / 2 JASA 69 / 5 AMS 67 12 BIOKAG7 / 2 JASA 67 12 BIOKAG7 / 2 JASA 67 12 BIOKAG9 / 4 AMS 69 / 5 AMS 67 12 BIOKAG9 / 4 AMS 69 JASA 65 / 5 TECH 64 / 2 JASA 68 / 6 BIOKAG6 / 3 JASA 67 / 3 JASA 68	463 243 0.046 1.02 969 5.591 1.52 8.53 986 8.474 6.81 7.93 4.82 3.68 3.41 6.44 8.38 9.1 1.65 1.65 1.66 9.1 8.19 9.1 8.19 9.1
DISTRIBUTION G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES. WITH LEMMA FOR PROVING THE EQUALITY OF TWO MARRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD. WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS EXTREMA OF QUADRATIC FORMS WITH CORRIGENDA, 'EXTREMA OF QUADRATIC FORMS WITH THE INVERTED DIRICHLET DISTRIBUTION WITH THE INVERTED DIRICHLET DISTRIBUTION WITH ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T, WITH A NOTE ON TESTS OF HOMOGENEITY OF 2-TO-THE-P FACTORIAL EXPERIMENTS WITH THE FACTORS IS OF VARIANCE SEQUENTIAL ANALYSIS IN PRECISION FOR OPTIMAL ALLOCATION IN REGRESSION AS A BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS ON CERTAIN SUGGESTED FORMULAE A DIFFERENCE EQUATION TECHNIQUE TERVAL DISTRIBUTI/ A DIFFERENCE EQUATION TECHNIQUE OUTLIERS IN PATTERNED EXPERIMENTS. A STRATEGIC C COMPUTER FROM THE POINT OF VIEW OF THE USER AN BIRTH KARL PEARSON, AN APRIL, 1966) WEAK	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS A MULT APPLICATIONS TO FROBLEMS IN MATHEMATICAL STATISTICS APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS /CER APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS' APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCES APPLICATIONS, CORR. 65 1251 APPLICATIONS, CORR. 65 1251 APPLIED AFTER SEQUENTIAL SAMPLING APPLIED MULTIPLEX SAMPLING APPLIED SEQUENTIALLY FRACTIONAL REPLICATION APPLIED TO CERTAIN EXPERIMENTAL DESIGNS IN THE ANALYS APPLIED TO THE COMPARISON OF VARIANCES APPLIED TO THE SEQUENTIAL T-TEST APPLIED TO THE SIMPLE QUEUE WITH ARBITRARY ARRIVAL IN APPRAISAL APPRAISAL APPRAISAL APPRAISAL APPRAISAL OF LEAST SQUARES PROGRAMS FOR THE ELECTRONI APPRECIATION ON THE HUNDREDTH ANNIVERSARY OF HIS APPRECIATION, OTTOKAR HEINISCH (70TH 8IRTHDAY, 23RD APPROCHABILITY IN A TWO-PERSON GAME	BIOKAGO	463 243 0046 102 969 5591 152 853 986 483 474 482 368 1644 388 389 165 168 197 165 168 191 819 23 789
DISTRIBUTION SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES. WITH LEMMA FOR PROVING THE EQUALITY OF TWO MARRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD. WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS EXTREMA OF QUADRATIC FORMS WITH SES WITH MULTI-DIMENSIONAL TIME/ INEQUALITIES WITH THE INVERTED DIRICHLET DISTRIBUTION WITH ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T, WITH A NOTE ON TESTS OF HOMOGENEITY OF 2-TO-THE-P FACTORIAL EXPERIMENTS WITH THE FACTORS IS OF VARIANCE SEQUENTIAL ANALYSIS IN PRECISION FOR OPTIMAL ALLOCATION IN REGRESSION AS A BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS ON CERTAIN SUGGESTED FORMULAE A DIFFERENCE EQUATION TECHNIQUE TERVAL DISTRIBUTI/ A DIFFERENCE EQUATION TECHNIQUE OUTLIERS IN PATTERNED EXPERIMENTS. A STRATEGIC C COMPUTER FROM THE POINT OF VIEW OF THE USER AN BIRTH KARL PEARSON, AN APRIL, 1966) WEAK MULTINOMIAL DISTRIBUTION AND THE DETERMINATION OF	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS APPLICATIONS TO LUNAR CRATERS APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS / CER APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS' APPLICATIONS TO STATISTICS' APPLICATIONS TO STATISTICS' APPLICATIONS, CORR. 65 1251 APPLICATIONS, CORR. 65 1251 APPLIED AFTER SEQUENTIAL SAMPLING APPLIED MULTIPLEX SAMPLING APPLIED MULTIPLEX SAMPLING APPLIED TO CERTAIN EXPERIMENTAL DESIGNS IN THE ANALYS APPLIED TO EXTRAPOLATION IN S-N FATIGUE TESTING /N APPLIED TO THE COMPARISON OF VARIANCES APPLIED TO THE SEQUENTIAL T-TEST APPLIED TO THE SIMPLE QUEUE APPRAISAL APPRAISAL APPRAISAL APPRAISAL OF LEAST SQUARES PROGRAMS FOR THE ELECTRONI APPRECIATION, OTTOKAR HEINISCH (70TH SIRTHDAY, 23RD APPROCAHBILITY IN A TWO-PERSON GAME APPROPRIATE SCORES A PROPERTY OF THE	BIOKAGO	463 243 0.046 102 969 591 152 853 474 681 482 368 389 197 165 168 193 23 195 23 195 265
DISTRIBUTION SOME SOME G CHILDREN A MATHEMATICAL MODEL WITH SPATIAL POINT PROCESSES. WITH LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH ON A GENERALIZED SAVAGE STATISTIC WITH OPTIMAL ROBUSTNESS. A GENERAL METHOD, WITH IVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH TAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR THE EQUAL PROBABILITY TEST AND ITS EXTREMA OF QUADRATIC FORMS WITH SES WITH MULTI-DIMENSIONAL TIME/ INEQUALITIES WITH THE INVERTED DIRICHLET DISTRIBUTION WITH ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T, WITH A NOTE ON TESTS OF HOMOGENEITY OF 2-TO-THE-P FACTORIAL EXPERIMENTS WITH THE FACTORS IS OF VARIANCE SEQUENTIAL ANALYSIS IN PRECISION FOR OPTIMAL ALLOCATION IN REGRESSION AS A BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS ON CERTAIN SUGGESTED FORMULAE A DIFFERENCE EQUATION TECHNIQUE TERVAL DISTRIBUTI/ A DIFFERENCE EQUATION TECHNIQUE OUTLIERS IN PATTERNED EXPERIMENTS. A STRATEGIC C COMPUTER FROM THE POINT OF VIEW OF THE USER AN BIRTH KARL PEARSON, AN APRIL, 1966) WEAK MULTINOMIAL DISTRIBUTION AND THE DETERMINATION OF	APPLICATIONS OF ZERO-ONE PROCESSES APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMON APPLICATIONS TO ECOLOGY APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS APPLICATIONS TO LIFE TESTING APPLICATIONS TO LIFE TESTING APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION APPLICATIONS TO LUNAR CRATERS A MULT APPLICATIONS TO FROBLEMS IN MATHEMATICAL STATISTICS APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS /CER APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS APPLICATIONS TO STATISTICS' APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCES APPLICATIONS, CORR. 65 1251 APPLICATIONS, CORR. 65 1251 APPLIED AFTER SEQUENTIAL SAMPLING APPLIED MULTIPLEX SAMPLING APPLIED SEQUENTIALLY FRACTIONAL REPLICATION APPLIED TO CERTAIN EXPERIMENTAL DESIGNS IN THE ANALYS APPLIED TO THE COMPARISON OF VARIANCES APPLIED TO THE SEQUENTIAL T-TEST APPLIED TO THE SIMPLE QUEUE WITH ARBITRARY ARRIVAL IN APPRAISAL APPRAISAL APPRAISAL APPRAISAL APPRAISAL OF LEAST SQUARES PROGRAMS FOR THE ELECTRONI APPRECIATION ON THE HUNDREDTH ANNIVERSARY OF HIS APPRECIATION, OTTOKAR HEINISCH (70TH 8IRTHDAY, 23RD APPROCHABILITY IN A TWO-PERSON GAME	BIOKAGO	463 243 243 969 969 2591 152 230 251 152 986 483 474 4681 793 482 341 163 388 341 165 168 91 165 168 91 23 195 265

APP - ARC TITLE WORD INDEX

```
D T (TRIMMINC-WINSORIZATION 2)
                                                         APPROXIMATE BEHAVIOR OF THE DISTRIBUTION OF WINSORIZE TECH 6B
THE FITTING OF MULTIVARIATE AUTOREGRESSIONS, AND THE APPROXIMATE CANONICAL FACTORIZATION OF A SPECTRAL DEN BIOKA63 129
                                                          APPROXIMATE CONFIDENCE INTERVALS
              COMPARISON OF TWO METHODS OF OBTAINING APPROXIMATE CONFIDENCE INTERVALS FOR SYSTEM RELIABILI TECH 6B
                                                                                                                                37
                                                         APPROXIMATE CONFIDENCE INTERVALS III. A BIAS
APPROXIMATE CONFIDENCE INTERVALS. II. MORE THAN ONE
CORRECTION
                                                                                                                     BIOKA55
                                                                                                                               201
UNKNOWN PARAMETER
                                                                                                                     BIOKA53
                                                                                                                               306
                                                          APPROXIMATE CONFIDENCE LIMITS FOR COMPONENTS OF
VARIANCE
                                                                                                                     BIOKA57
                                                                                                                              159
                                                         APPROXIMATE CONFIDENCE LIMITS FOR THE COEFFICIENT OF
VARIATION IN GAMMA DISTRIBUTIONS
                                                                                                                   BIOCS65
                                                                                                                               733
                                                         APPROXIMATE CONFIDENCE LIMITS FOR THE RELATIVE RISK JRSSB62 APPROXIMATE CONFIDENCE LIMITS FOR THE RELIABILITY OF TECH 65
(CORR. 63 234)
                                                                                                                               454
SERIES AND PARALLEL SYSTEMS
                                                                                                                               495
ARIATE BEHRENS-FISHER PROBLEM
                                                      AN APPROXIMATE DEGREES OF FREEDOM SOLUTION TO THE MULTIV BIOKA65
                                                                                                                              139
                                                         APPROXIMATE DESION OF DIGITAL FILTERS
                                                                                                                     TECH 65
                                                                                                                               3B7
                                                          APPROXIMATE DISTRIBUTION FOR LARCEST AND FOR SMALLEST SASJ 69 NO.2
 OF A SET OF INDEPENDENT OBSERVATIONS
                                                          APPROXIMATE DISTRIBUTION OF EXTREMES FOR NONSAMPLE JASA 64 429
CASES
                                                    THE APPROXIMATE DISTRIBUTION OF SERIAL CORRELATION
COEFFICIENTS
                                                                                                                     BIOKA56
                                                                                                                              169
TWO STATIONARY LINEAR MARKOV SERIES
THE APPROXIMATE DISTRIBUTION OF THE CORRELATION BETWEEN BIOKA62
TWO STATIONARY LINEAR MARKOV SERIES II. THE APPROXIMATE DISTRIBUTION OF THE CORRELATION BETWEEN BIOKA65
                                                                                                                               379
                                                                                                                               301
                      EXACT AND APPROXIMATE DISTRIBUTIONS FOR THE MADELIAN ANALYSIS
A NOTE ON AN APPROXIMATE FACTORIZATION IN DISCRIMINANT ANALYSIS
                                              EXACT AND APPROXIMATE DISTRIBUTIONS FOR THE WILCOXON STATISTIC JASA 61
                                                                                                                               293
                                                                                                                     BIOKA67
                                                                                                                               665
E PROBABILITY INTEGRAL OF THE NON-CENTRAL CHI SQU/ APPROXIMATE FORMULAE FOR THE PERCENTAGE POINTS AND TH BIOKA54 538
                                                         APPROXIMATE FORMULAE FOR THE STATISTICAL DISTRIBUTION BIOKA58
S OF EXTREME VALUES
                                                                                                                               447
           SOME MODIFIED KOLMOGOROV-SMIRNOV TESTS OF APPROXIMATE HYPOTHESES AND THEIR PROPERTIES
                                                                                                                    AMS 62 513
                                                 TESTING APPROXIMATE HYPOTHESES IN THE COMPOSITE CASE, CORR.
                                                                                                                      AMS 62 1356
                                                                                                                   BIOKA59 214
FUNCTION
                                                          APPROXIMATE LINEARIZATION OF THE INCOMPLETE BETA-
                                                          APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATES FROM GROUPED TECH 67
                                                                                                                               599
STANCES BETWEEN PERCENTACE POINTS OF FREQUENCY CU/
                                                         APPROXIMATE MEANS AND STANDARD DEVIATIONS BASED ON DI BIOKA65 533
                                                      AN APPROXIMATE METHOD OF ANALYSIS FOR A TWO-WAY LAYOUT BIOCS65
EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' TEST FOR APPROXIMATE NUMERICAL RATIONALITY A SUBJECTIVE JASA 69
EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' TEST FOR APPROXIMATE NUMERICAL RATIONALITY' /'A SUBJECTIVE JASA 69
 OF TENDENCY
                                              EXACT AND APPROXIMATE POWER FUNCTION OF THE NON-PARAMETRIC TEST AMS 62 471
OLMO OROV-SMIRNOV CRITERION D-SU/ ON THE EXACT AND APPROXIMATE SAMPLING DISTRIBUTION OF THE TWO SAMPLE K JASA 69 NO.4
    OF ASSOCIATION FOR CROSS CLASSIFICATIONS, 111. APPROXIMATE SAMPLING THEORY
                                                                                                        MEASURES JASA 63 310
                                                      AN APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION OF JRSSB63 432

APPROXIMATE SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE JRSSB60 376
RENEWAL THEORY
STOCHASTIC PROCESSES
 ESTIMATOR
                                                         APPROXIMATE SPECIFICATION AND THE CHOICE OF A K-CLASS JASA 67 1265
NT OPERATORS FOR POWER-SERIES DISTRIBUTIONS, AND THE APPROXIMATE STABILIZATION OF VARIANCE BY TRANSFORMATI JASA 6B 321
                                              AN APPROXIMATE TEST FOR DIRECTIONS. I

EXACT AND APPROXIMATE TESTS FOR DIRECTIONS. II
                                                     AN APPROXIMATE TEST FOR SERIAL CORRELATION IN POLYNOMIAL BIOKAGO 111
 RECRESSION
                                              EXACT AND APPROXIMATE TESTS FOR DIRECTIONS. II
                                                         APPROXIMATE TESTS FOR M RANKINGS
                                                                                                                     BTOKA60 476
                                            SOME SIMPLE APPROXIMATE TESTS FOR POISSON VARIATES
                                                                                                                   BIOKA53 354
                         RANDOM ALLOCATION DESIGNS II, APPROXIMATE THEORY FOR SIMPLE RANDOM ALLOCATION
                                                                                                                     AMS 61 3B7
                                             TESTING THE APPROXIMATE VALIDITY OF STATISTICAL HYPOTHESES
                                                                                                                     JRSSB54 261
SIZE
                                   SAMPLING PLANS WHICH APPROXIMATELY MINIMIZE THE MAXIMUM EXPECTED SAMPLE
                                                                                                                    JASA 64
                                                                                                                               67
                                                         APPROXIMATELY OPTIMAL STRATIFICATION
                                                                                                                     JASA 68 1298
FIRST THREE MOME/ USE OF THE PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND BIOKA68 559
SAMPLING DISTRIBUTIONS
                                                         APPROXIMATING THE GENERAL NON-NORMAL VARIANCE-RATIO BIOKA64 83
                                                         APPROXIMATING THE LOWER BINOMIAL CONFIDENCE LIMIT
(CORR 69 669)
                                                                                                                    JASA 68 1413
                                                         APPROXIMATING THE NECATIVE BINOMIAL
                                                                                                                    TECH 66 345
                                              ERRATA, 'APPROXIMATING THE NECATIVE BINOMIAL'
                                                                                                                    TECH 67 498
                                                     ON APPROXIMATING THE POINT BINOMIAL, CORR 56 651
                                                                                                                    JASA 56 293
                                                                                                                 BIOKA63
MOMENTS
                              SOME PROBLEMS ARISING IN APPROXIMATING TO PROBABILITY DISTRIBUTIONS USING
                                                                                                                              95
                                 A GENERAL METHOD FOR APPROXIMATING TO THE DISTRIBUTION OF LIKELIHOOD RATIO BIOKA56
                                                                                                                              295
DISPERSION BY A POWER OF CHI-SQUARE

A NOTE ON APPROXIMATING TO THE DISTRIBUTION

A NOTE ON APPROXIMATING TO THE NON-CENTRAL F DISTRIBUTION
                                                        APPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF BIOKA53 336
               ON ASYMPTOTIC NORMALITY IN STOCHASTIC APPROXIMATION
TIONS, POISSON LIMITING FORMS AND DERIVED METHODS OF APPROXIMATION
                                                                                            THE MATCHINC DISTRIBU JRSSB5B
                                                                                                                               73
ON-FREE TEST STATISTIC FOR DISPERSION AND ITS NORMAL APPROXIMATION /RITICAL VALUES FOR MOOD'S DISTRIBUTI TECH 68 497
MONTE CARLO STUDY OF THE ADEQUACY OF THE ASYMPTOTIC APPROXIMATION /YSIS OF VARIANCE IN SMALL SAMPLES, A BIOCS69 593
MONTE CARLO STUDY OF THE ADEQUACY OF THE ASIMITOTIC AFFORMMENT TO IT A COMPLETE BIOKAGE
MULTINOMIAL DISTRIBUTION COMPARED WITH THE X-SQUARE APPROXIMATION AND APPLICATIONS

BIOKAGE
AND GE
                                                                                                                              29
                               A STATISTICAL BASIS FOR APPROXIMATION AND OPTIMIZATION
                                                                                                                     AMS 66
                                                                                                                               59
O BACTERIAL ENDOCARD/ A CENERAL USE OF THE POISSON APPROXIMATION FOR BINOMIAL EVENTS, WITH APPLICATION T BIOCS66
                                                                                                                              74
  RELATED TAIL PROBABILITIES, I A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON JASA 68 1416
RELATED TAIL PROBABILITIES, II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON JASA 68 1457
                              ON METHODS OF ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIONS
                                                                                                                    BIOKA67
                                                                                                                             367
                                                                                                                      AMS 69 299
                                             STOCHASTIC APPROXIMATION FOR SMOOTH FUNCTIONS
                              AN IMPROVEMENT TO WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIAL TESTS JRSSB54
                            FORMULAE TO IMPROVE WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIAL TESTS JRSSB65
                                                                                                                              74
                                                     AN APPROXIMATION FOR STUDENT'S T-DISTRIBUTION
WILCOXON TEST FOR SYMMETRY
                                                      AN APPROXIMATION FOR THE EXAGT DISTRIBUTION OF THE
                                                                                                                    JASA 64 899
                                  NOTE ON A GHI SQUARE APPROXIMATION FOR THE MULTIVARIATE SIGN TEST
                                                                                                                    JRSSB65
 INTEGRAL.
                                                     AN APPROXIMATION FOR THE SYMMETRIG, QUADRIVARIATE NORMAL BIOKA56
                                         A NEW BINOMIAL APPROXIMATION FOR USE IN SAMPLING FROM FINITE
POPULATIONS
                                                                                                                    JASA 60
                                                                                                                              718
                 THE EFFEGT OF STANDARDIZATION ON AN APPROXIMATION IN FAGTOR ANALYSIS
                                                                                                                    BIOKA51
                                                                                                                              337
                              ON THE USE OF THE NORMAL APPROXIMATION IN THE TREATMENT OF STOCHASTIG PROCESSE JRSSB57
                                                                                                                              268
                                  A DYNAMIG STOCHASTIG APPROXIMATION METHOD
                                                                                                                     AMS 65 1695
                ON THE CHOICE OF DESIGN IN STOCHASTIC APPROXIMATION METHODS
                                                                                                                     AMS 68 457
                                            STOCHASTIG APPROXIMATION OF MINIMA WITH IMPROVED ASYMPTOTIC
                                                                                                                     AMS 67 191
                                               UNIFORM APPROXIMATION OF MINIMAX POINT ESTIMATES
                                                                                                                     AMS 64 1031
                                                     AN APPROXIMATION OF STUDENT'S T
                                                                                                                   TECH 65 71
 BINOMIAL USEFUL IN LIFE TESTING
                                                      AN APPROXIMATION OF THE NEGATIVE MOMENTS OF THE POSITIVE TECH 60 227
                                         A PERTURBATION APPROXIMATION OF THE SIMPLE STOCHASTIC EPIDEMIC IN A BIOKA68 199
LARGE POPULATION
              ON GONVERGENCE OF THE KIEFER-WOLFOWITZ APPROXIMATION PROGEDURE
                                       KIEFER-WOLFOWITZ APPROXIMATION PROGEDURE

SOME STOCHASTIC APPROXIMATION PROGEDURES FOR USE IN PROCESS CONTROL

AMS 67 1031

AMS 64 1136
 NOTE ON THE MAXIMUM SAMPLE EXCURSIONS OF STOGHASTIG APPROXIMATION PROCESSES
                                                                                                                  A AMS 66 513
```

ON DVORETZKY STOCHASTIC	APPROXIMATION THEOREMS	AMS 66	1534
FINITE CAMES	APPROXIMATION TO BAYES RISK IN SEQUENCES OF NON-	AMS 69	467
	APPROXIMATION TO CERTAIN DISTRIBUTIONS IN CENETICS	BIOCS65	386
	APPROXIMATION TO MACHINE INTERFERENCE WITH MANY APPROXIMATION TO OPTIMAL SAMPLINC RECIONS	JRSSB57 AMS 69	
		JRSSB65	321
LOCNORMAL	APPROXIMATION TO PROCESS CONTROL APPROXIMATION TO PRODUCTS AND QUOTIENTS	BIOKA56	
	AFFROATMATION TO THE DEHRENS-FISHER DISTRIBUTIONS.	BIOKA65	267
PROBABILITY FUNCTIONS NORMAL	APPROXIMATION TO THE CHI-SQUARE AND NON-CENTRAL F APPROXIMATION TO THE CUMULATIVE T-DISTRIBUTION	BIOKAGO TECH 66	411 35B
SQUARE NOTE ON AN	APPROXIMATION TO THE DISTRIBUTION OF NON-CENTRAL CHI-		364
	APPROXIMATION TO THE DISTRIBUTION OF NON-CENTRAL T	BIOK A5B	484
	APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE	AMS 64	
BOR GROUPWELL BEGE IT BEGES OF GOVERGEED INLESS	APPROXIMATION TO THE DISTRIBUTION OF SAMPLE SIZE FOR APPROXIMATION TO THE DISTRIBUTION OF THE SAMPLE SIZE	DIOMAGO	130 190
BINOMIALS, CONDITIONAL ON FIXED SUM NORMAL	APPROXIMATION TO THE DISTRIBUTION OF TWO INDEPENDENT	AMS 63	1593
STIC IN THE CENERAL CASE A FURTHER	APPROXIMATION TO THE DISTRIBUTION OF THE SAMPLE SIZE APPROXIMATION TO THE DISTRIBUTION OF TWO INDEPENDENT APPROXIMATION TO THE DISTRIBUTION OF WILCOXON'S STATI APPROXIMATION TO THE EXPECTED SIZE OF A SELECTED APPROXIMATION TO THE CENERALIZED BEHRENS-FISHER DISTR APPROXIMATION TO THE MULTINOMIAL DISTRIBUTION, SOME APPROXIMATION TO THE NORMAL DISTRIBUTION FUNCTION, APPROXIMATION TO THE POWER OF THE CHI-SQUARE COODNESS	JRSSB54	255
SUBSET ASYMPTOTIC	APPROXIMATION TO THE EXPECTED SIZE OF A SELECTED APPROXIMATION TO THE CENERALIZED BEHRENS-FISHER DISTR	BIOKA69	207 No. 3
PROPERTIES AND APPLICATIONS AN	APPROXIMATION TO THE CEMERALIZED BEARENS-FISHER DISTR	BIOKAGO	93
WITH APPLICATION TO SIMULATION A USEFUL	APPROXIMATION TO THE NORMAL DISTRIBUTION FUNCTION.	TECH 67	647
OF FIT TEST WITH SMALL BUT EQUAL/ ACCURACY OF AN	APPROXIMATION TO THE POWER OF THE CHI-SQUARE COODNESS	JASA 6B	912
A DISTRIBUTION FOR SMALL VALUES OF THE SHAFE F/ AN	APPROXIMATION TO THE PROBABILITY INTECRAL OF THE CAMM APPROXIMATION TO THE RANCE SCALE FACTORS AND	DIUNAOS	276 449
	APPROXIMATION TO THE RENEWAL FUNCTION	BIOKA64	
PROBLEMS AN	APPROXIMATION TO THE SAMPLE SIZE IN SELECTION	AMS 69	492
N WHEN ZERO DIFFERENCES ARE PRESENT THE NORMAL	APPROXIMATION TO THE SICNED-RANK SAMPLINC DISTRIBUTIO APPROXIMATION TO THE SYMMETRICAL INCOMPLETE BETA	JASA 67	106B 204
	APPROXIMATION TO THE WILCOXON-MANN-WHITNEY	JASA 69	591
NORMAL POPULATIONS AN	APPROXIMATION TO TWO-SIDED TOLERANCE LIMITS FOR	TECH 66	115
ATIONS (ACKNOWLEDCEMENT 67 587) LINEAR	APPROXIMATION USING THE CRITERION OF LEAST TOTAL DEVI	JRSSB67	101
ON STOCHASTIC ON THE MULTIPLYING FACTORS FOR VARIOUS CHI-SQUARE	APPROXIMATIONS APPROXIMATIONS A NOTE	AMS 63 JRSSB54	343 296
AND COMPARISON WITH POINT ESTIMATES AND LARCE SAMPLE		JASA 69	46B
	APPROXIMATIONS DATA AND THE INVESTMENT DECISION	JASA 65	503
CRITICAL VALUES IT STATISTICS U-SQUARE-SUB-N AND W-SQ/ CHI-SQUARE	APPROXIMATIONS FOR MEAN SQUARE SUCCESSIVE DIFFERENCE APPROXIMATIONS FOR THE DISTRIBUTIONS OF GOODNESS-OF-F		397 630
MARKOV CHAINS	APPROXIMATIONS FOR THE ENTROPY FOR FUNCTIONS OF	AMS 62	930
STATISTIC +(TEST FOR NORMALITY) NUMBERICAL RESULTS AND DIFFUSION	APPROXIMATIONS FOR THE MOMENTS OF ORDER STATISTICS	JASA 69	
NUMERICAL RESULTS AND DIFFUSION	APPROXIMATIONS FOR THE NULL DISTRIBUTION OF THE W- APPROXIMATIONS IN A CENETIC PROCESS	BIOKA63	861 241
INTERPOLATIONS AND	APPROXIMATIONS RELATED TO THE NORMAL RANGE		4B0
	APPROXIMATIONS TO A DISTRIBUTION /TS OF ELEMENTARY APPROXIMATIONS TO DISCRETE DATA INFERENCE FOR	AMS 68	1274 335
HYPERCEOMETRIC SERIES	APPROXIMATIONS TO DISTRIBUTION FUNCTIONS WHICH ARE	BIOKA6B	243
ON THE MOMENTS OF THE TRACE OF A MATRIX AND	APPROXIMATIONS TO ITS NON-CENTRAL DISTRIBUTION	AMS 66	
CHEBYSHEV POLYNOMIAL AND OTHER NEW	APPROXIMATIONS TO MILLS' RATIO APPROXIMATIONS TO MILLS' RATIO	AMS 63 JASA 69	B92 647
TRRATIONAL FRACTION	APPROXIMATIONS TO MILLS' RATIO	BIOKA64	339
PROBABILITIES		AMS 63	191
	APPROXIMATIONS TO SAMPLINC DISTRIBUTIONS OF THE MEAN APPROXIMATIONS TO THE BINOMIAL DISTRIBUTION	AMS 63	
	APPROXIMATIONS TO THE CENSUS AND BLS SEASONAL	JASA 6B	445
SEQUENTIAL TESTS		BIOKA69	
		BIOCS66 BIOKA69	179 219
SOME COMMENTS ON THE ACCORDET OF BOX S	APPROXIMATIONS TO THE DISTRIBUTION OF QUADRATIC FORMS		677
	APPROXIMATIONS TO THE DISTRIBUTION OF THE RANCE IN SM	BIOKA52	130
	APPROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES -APPROXIMATIONS TO THE KRUSKAL-WALLIS H TEST		349 225
USINC CROUPED DATA		BIOKA66	2B2
RECIPROCALS OF OBSERVATIONS	APPROXIMATIONS TO THE MEAN AND STANDARD DEVIATION OF		
SOME APPLICATIONS OF TWO	APPROXIMATIONS TO THE MOMENTS OF THE SAMPLE MEDIAN APPROXIMATIONS TO THE MULTINOMIAL DISTRIBUTION		
DISTRIBUTION	APPROXIMATIONS TO THE NON-CENTRAL CHI-SQUARE	BIOKA63	199
APPLICATIONS		TECH 63	
	'APPROXIMATIONS TO THE NON-CENTRAL T, WITH APPLICATION APPROXIMATIONS TO THE PROBABILITY INTEGRAL AND CERTAI		
DISTRIBUTION OF RANGE	APPROXIMATIONS TO THE PROBABILITY INTEGRAL OF THE	BIOKA52	417
		BIOKA66 BIOKA63	
	APPROXIMATIONS TO THE UPPER 5 PERCENT POINTS OF FISHE		
ASTIC MODELS FOR BIOLOGICAL SYSTEMS A NOTE ON SOME	APPROXIMATIONS TO THE VARIANCE IN DISCRETE-TIME STOCH	BIOKA60	196
	APPROXIMATIONS. /LE COMPARISONS FOR BALANCED SINGLE APPROXIMATOR FOR THE CLASS MARKS OF A GROUPED FREQUEN		
		BIOCS6B	
RANKING PROCEDURES FOR	ARBITRARILY RESTRICTED OBSERVATION	BIOCS67	65
A GENERALIZED WILCOXON TEST FOR COMPARING	ARBITRARILY SINGLY-CENSORED SAMPLES ARBITRARY ARRIVAL INTERVAL DISTRIBUTION /DIFFERENCE	BIOKA65	
	ARBITRARY DISTRIBUTIONS THE EXPECTED		
MULTIPLE CLASSIFICATION ANALYSIS FOR	ARBITRARY EXPERIMENTAL DESIGN	TECH 68	13
		AMS 64 AMS 6B	
	ARBITRARY SYSTEM PROCESS WITH ADDITIVE WHITE NOISE OB		
	ARBITRARY TIES IN BOTH RANKINGS		33
EXPECTED	ARC LENGTH OF A CAUSSIAN PROCESS ON A FINITE INTERVAL	DCGCCNU	201

```
AN EXTENSION OF THE ARC SINE LAW
                                                                                                                                                       AMS 62 681
                         SOME INVARIANT LAWS RELATED TO THE ARC SINE LAW
                                                                                                                                                       AMS 68 258
                          ON A CENERALIZATION OF THE FINITE ARC-SINE LAW
                                                                                                                                                       AMS 62
                                                                                                                                                                  909
         SOME EXPERIMENTS IN THE NUMERICAL ANALYSIS OF ARCHAEOLOCICAL DATA
                                                                                                                                                      BIOKA66
                                                                                                                                                                 311
                                                                                                                                     PROCESSINC JASA 60
             UNDERDEVELOPED DATA FROM AN UNDERDEVELOPED AREA
             USE OF A REGRESSION TECHNIQUE TO PRODUCE AREA BREAKDOWNS OF THE MONTHLY NATIONAL ESTIMATES OF JASA 66
METROPOLITAN AREAS
THE METROPOLITAN AREA CONCEPT, AN EVALUATION OF THE 1950 STANDARD
SIZE WHEN THE SIZ/ SEVERAL METHODS OF RE-DESIGNING AREA SAMPLES UTILIZING PROBABILITIES PROPORTIONAL TO
        OF COVERACE PROBLEMS ASSOCIATED WITH POINT AND AREA TARCETS
                                                                                                                                        A SURVEY TECH 69
                                                                                                                                                                  561
   THE NORMAL PROBABILITY FUNCTION, TABLES OF CERTAIN AREA-ORDINATE RATIOS AND OF THEIR RECIPROCALS
                                                                                                                                                     BTOKA55
                                                                                                                                                                 217
                       ESTIMATION OF CROP YIELDS FOR SMALL AREAS
                                                                                                                                                     BIOCS66 374
                                                                   TAIL AREAS OF THE T-DISTRIBUTION FROM A MILLS' RATIO-LIKE
                                                                                                                                                    AMS 63
EXPANSION
                                                                                                                                                                335
GRATION OF EMPLOYED PERSONS TO AND FROM METROPOLITAN AREAS OF THE UNITED STATES
                                                                                                                                           THE MI JASA 67 1418
                  ON THE NORMAL STATIONARY PROCESS. AREAS OF THE ARITHMETIC MEAN

AN UNBIASED ESTIMATOR FOR POWERS OF THE ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE

AND ARITHMETIC MEAN STUDIES IN THE HISTORY OF P BIOKASE BROWN OF 
                         ON THE NORMAL STATIONARY PROCESS, AREAS OUTSIDE GIVEN LEVELS
                                                                                                                                                                189
                                                                                                                                                                 154
ROBABILITY AND STATISTICS. VII. THE PRINCIPLE OF THE ARITHMETIC MEAN
                                                                                                                                                                  130
NC BAYES AND MINIMAX PROCEDURES FOR ESTIMATING THE ARITHMETIC MEAN OF A POPULATION WITH TWO-STAGE SAMPLI AMS 66 1186
                               ESTIMATORS FOR THE PRODUCT OF ARITHMETIC MEANS
                                                                                                                                                    JRSSB62
               A CHART FOR SEQUENTIALLY TESTING OBSERVED ARITHMETIC MEANS FROM LOCNORMAL POPULATIONS ACAINST A TECH 6B
                                        NOTES.ON ESTIMATING THE ARITHMETIC MEANS OF LOCNORMALLY-DISTRIBUTED POPULATIO BIOCS65
NS
 CONSECUTIVE MEMBERS OF A SERIES OF RANDOM VARIABLES ARRANCED IN ORDER OF SIZE THE DIFFERENCE BETWEEN BIOKAS7
                                                                                                                                                                 211
                                       A CALCULUS FOR FACTORIAL ARRANCEMENTS
                                                                                                                                                      AMS 62
                                                                                                                                                                  600
                                                           EDITORIAL ARRANCEMENTS
                                                                                                                                                     BIOKA65
                                                                                                                                                                    1
  DESIGN OF AN EXPERIMENT IN WHICH CERTAIN TREATMENT ARRANCEMENTS ARE INADMISSIBLE
                                                                                                                                               THE BIOKA54
                                                                                                                                                                 287
             APPLICATIONS OF THE CALCULUS FOR FACTORIAL ARRANCEMENTS II. TWO WAY ELIMINATION OF HETERO ENEITY AMS 64
                                                                                                                                                                 65B
   UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS WITH CONFOUNDINC
                                                                                                                                                    JASA 67
                                                                                                                                                                 638
                                                                                                                                                      AMS 62
                                     SYMMETRICAL UNEQUAL BLOCK ARRANCEMENTS WITH TWO UNEQUAL BLOCK SIZES
                                                                                                                                                                 620
               APPLICATIONS OF THE CALCULUS OF FACTORIAL ARRANCEMENTS I BLOCK AND DIRECT PRODUCT DESIGN
                                                                                                                                                     BIOKA63 63
                                                     ON ORTHOCONAL ARRAYS
                                                                                                                                                      AMS 66 1355
  SOME METHODS OF CONSTRUCTION OF PARTIALLY BALANCED ARRAYS
                                                                                                                                                 ON AMS 61 1181
                    SOME MAIN-EFFECT PLANS AND ORTHOCONAL ARRAYS OF STRENCTH TWO
                                                                                                                                                       AMS 61 1167
          QUEUEINC AT A SINGLE SERVING POINT WITH GROUP ARRIVAL
                                                                                                                                                      JRSSB60 285
TECHNIQUE APPLIED TO THE SIMPLE QUEUE WITH ARBITRARY ARRIVAL INTERVAL DISTRIBUTION /DIFFERENCE EQUATION JRSSB58
                                                                                                                                                                 168
                               POISSON PROCESSES WITH RANDOM ARRIVAL RATE
                                                                                                                                                                 924
                             A QUEUEING PROBLEM IN WHICH THE ARRIVAL TIMES OF THE CUSTOMERS ARE SCHEDULED
                                                                                                                                                     JRSSB60
                                                                                                                                                                 108
                  SOME RESULTS FOR THE QUEUE WITH POISSON ARRIVALS
                                                                                                                                                     JRSSB60
                                                                                                                                                                 1.04
         ON A GENERALIZED QUEUEINC SYSTEM WITH POISSON ARRIVALS
                                                                                                                                                     JRSSR66
                                                                                                                                                                 456
NCLE-SERVER QUEUEING SYSTEM WITH CENERAL INDEPENDENT ARRIVALS AND ERLANGIAN SERVICE-TIME /TION TO THE SI JRSSB60
                                                                                                                                                                  89
                                            A QUEUE WITH RANDOM ARRIVALS AND SCHEDULED BULK DEPARTURES
                                                                                                                                                     JRSSB68
                       A QUEUE WITH RANDOM ARRIVALS AND SCHEDULED BULK DEPARTURES
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL INTELLIGENCE AND ALLIED TOPICS
                                                                                                                                                                 1.85
                                                                                                                                                                 736
                                     THE JOINT DISTRIBUTION OF ASCENDING PAIRS AND ASCENDING RUNS IN A RANDOM SEQUEN BIOKA67
         THE JOINT DISTRIBUTION OF ASCENDING PAIRS AND ASCENDING RUNS IN A RANDOM SEQUENCE
                                                                                                                                                     BIOKA67
                                                                                                                                                                 330
                     A PROPERTY OF THE METHOD OF STEEPEST ASCENT
                                                                                                                                                      AMS 64
                                                                                                                                                                 435
        THAN MALE MORTALITY IN SOME COUNTRIES OF SOUTH ASIA. A DIGEST
                                                                                                                                 HICHER FEMALE JASA 69 NO.4
  OF INTERNATIONAL TRADE DATA. THE CASE OF SOUTHEAST ASIAN COUNTRIES
                                                                                                                                  THE ACCURACY JASA 69 452
                    AN ESTIMATION PROBLEM IN QUANTITATIVE ASSAY
                                                                                                                                                     BIOKA54
                                                                                                                                                                 338
 PRIOR INFORMATION TO DESIGN A ROUTINE PARALLEL LINE ASSAY
                                                                                                                                           USE OF BIOCS67
                                                                                                                                                                 257
                                                                                                                   PATTERNS IN RESIDUALS, TECH 65
A TEST FOR REGRESSION MODEL ADEQUACY IN RADIONUCLIDE ASSAY
A TEST FOR REGRESSION MODEL ADEQUACY IN RADIONUCLIDE ASSAY

JOINT ACTION OF A MIXTURE OF STIMULI IN BIOLOGICAL ASSAY

QUANTAL RESPONSES TO MIXTURES OF DRUGS IN BIOLOCICAL ASSAY

//E CLASSIFICATION OF MATHEMATICAL MODELS FOR BIOCS65
                                                                                                                                                                 603
                                                                                                                                                                  49
                                                                                                                                                                 181
                                                                                                                                                     BIOCS66
                                                           THE CHICK ASSAY OF LYSINE
                                                                                                                                                                  58
                                              PLANNING A QUANTAL ASSAY OF POTENCY
                                                                                                                                                     BIOCS66
                                                                                                                                                                 322
      OF NON-PARAMETRIC METHODS IN DILUTION (-DIRECT) ASSAYS
                                                                                                               SOME FURTHER APPLICATIONS BIOCS65
                                                                                                                                                                 799
ESTIMATION OF RELATIVE POTENCY IN DILUTION (-DIRECT) ASSAYS /FOR USING DISTRIBUTION-FREE METHODS IN THE BIOCS66
 QUANTAL RESPONSE ANALYSIS OF A SERIES OF BIOLOCICAL ASSAYS ON THE SAME SUBJECTS
                                                                                                                                               THE BIOKAGO
                                ANALYSIS OF QUANTAL RESPONSE ASSAYS WITH DOSACE ERRORS
                                                                                                                                                     BIOCS67
                                            EXTREMES IN A RANDOM ASSEMBLY
                                                                                                                                                     BIOKA67
                                                                                                                                                                 273
                                                                         ASSESSING THE ACCURACY OF MULTIVARIATE OBSERVATIONS
                                                                                                                                                                 403
                                                                                                                                                     JASA 66
SAMPLES
                                                           THE JOINT ASSESSMENT OF NORMALITY OF SEVERAL INDEPENDENT
                                                                                                                                                     TECH 6B
                                                                                                                                                                 B25
ANALYSIS
                                                                   THE ASSESSMENT OF PRIOR DISTRIBUTIONS IN BAYESIAN
                                                                                                                                                     JASA 67
                                                                                                                                                                 776
       SCORING RULES AND THE EVALUATION OF PROBABILITY ASSESSORS
                                                                                                                                                     JASA 69 1073
                  CONSUMERS' PROPENSITIES TO HOLD LIQUID ASSETS
                                                                                                                                                     JASA 60 469
ODS EXPENDITURES. WITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND INTENTIONS CONSUMER DURABLE GO JASA 63
                                                                                                                                                                 64R
                                                        A METHOD OF ASSIGNING CONFIDENCE LIMITS TO LINEAR COMBINATIONS OF BIOKA55
                                                                                                                                                                 471
                                   QUERY, INADMISSIBLE RANDOM ASSICNMENTS
                                                                                                                                                    TECH 64 103
EPORTED BY A SAMPLE OF FAMILIES WHO RECEIVED WELFARE ASSISTANCE DURING 1959
                                                                                                                 THE VALIDITY OF INCOME R JASA 62
                                                                                                                                                                 6B0
CONSTRUCTION OF PARTIALLY BALANCED DESIGNS WITH TWO ASSOCIATE CLASSES BALANCED INCOMPLETE BLOCK DESIGNS WITH MORE THAN TWO ASSOCIATE CLASSES ANA
                                                                                                              ON A GEOMETRICAL METHOD OF AMS 61 1177
                                                                                                     ANALYSIS OF A CLASS OF PARTIALLY
                                                                                                                                                      AMS 61
 F-TEST IN THE INTRABLOCK ANALYSIS OF A CLASS OF TWO ASSOCIATE PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS JASA 65
 AND SECOND MOMENTS OF THE RANDOMIZATION TEST IN TWO ASSOCIATE PBIB DESIGNS
                                                                                                                                            FIRST JASA 69 NO.4
                                                                         ASSOCIATED DIRECTIONS
                                                                                                                                                    BIOCS69 NO.4
COMPARISONS. THE EXTENSION OF A UNIVARIATE MODEL AND ASSOCIATED ESTIMATION AND TEST PROCEDURES /PAIRED BIOKA69
                                                                                                                                                                 81
GENERALIZED MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS SPECTRAL TECH 61 25

OF MAXIMUM LIKELIHOOD ESTIMATORS WHEN SAMPLING FROM ASSOCIATED POPULATIONS THE ASYMPTOTIC PROPERTIES BIOKA62 205

IN A RANK-ORDER AND THE STOPPING TIME OF SOME ASSOCIATED SPRT'S THE INFORMATION AMS 68 1661

OF THE DATE OF TWO PANCES AND POWER OF THE ASSOCIATED TEST PERCENTACE BIOKA63 187
                                          GENERALIZED MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS
                                                                                                                                                      AMS 69
PLETE
                                  THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST PROCEDURE, WHEN DATA ARE INCOM JASA 61
                                                                                                                                                                 125
                                                     DISTRIBUTIONS ASSOCIATED WITH CELL POPULATIONS
                                                                                                                                                   BIOKA69
                                                                                                                                                                 391
                                         LIMITING DISTRIBUTIONS ASSOCIATED WITH CERTAIN STOCHASTIC LEARNING MODELS
                                                                                                                                                     AMS 62 1281
                                      ON A DISTRIBUTION ASSOCIATED WITH CERTAIN STOCHASTIC PROCESSES
ON DOMINATING AN AVERAGE ASSOCIATED WITH DEPENDENT CAUSSIAN VECTORS
                                                                                                                                                    JRSSB68 160
                                                                                                                                                     AMS 68 1844
                                   SECOND PAPER ON STATISTICS ASSOCIATED WITH THE RANDOM DISOREINTATION OF CUBES
                                                                                                                                                    BIOKA58 229
```

TITLE WORD INDEX ARC - ASY

COME CTATICTICS	ACCOUTATED WITH THE DANDOM DISORIENTATION OF CURES	DIOMAES	205
ORDINAL MEASURES OF	ASSOCIATED WITH THE RANDOM DISORIENTATION OF CUBES	BIOKA57 JASA 58	
ON A MEASURE OF	ASSOCIATION	AMS 64	
RADON-NIKODYM DERIVATIVE TO THE PROBLEM OF MEASURING	ASSOCIATION /THE RELEVANCE OF THE DISPERSION OF A	JRSSB65	108
THE ANALYSIS OF	ASSOCIATION AMONC MANY VARIABLES (WITH DISCUSSION)	JRSSB67	
	ASSOCIATION AND ESTIMATION IN CONTINCENCY TABLES	JASA 68	1
THE AMERICAN STATISTICAL	ASSOCIATION AND FEDERAL STATISTICS ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSI	JASA 64	1
	ASSOCIATION BETWEEN TWO BINARY CHARACTERISTICS IN TWO		
TE SAMPLINC THEORY MEASURES OF	ASSOCIATION FOR CROSS CLASSIFICATIONS, II. FURTHER ASSOCIATION FOR CROSS CLASSIFICATIONS, 111. APPROXIMA	JASA 63	310
TICE OF COOPER FOR THE ANALYSIS OF	ACCOUTANTON IN CONTINCENCY TABLES	DIOMAGO	074
THE ESTIMATION AND COMPARISON OF STRENCTHS OF	ASSOCIATION IN CONTINGENCY TABLES	BIOKA53	105
THE EFFECT OF NON-SAMPLING ERRORS ON MEASURES OF DESIGNS	ASSOCIATION IN 2-BY-2 CONTINCENCY TABLES	JASA 69	852
DESIGNS	ASSOCIATION IN CONTINGENCY TABLES ASSOCIATION IN 2-BY-2 CONTINCENCY TABLES ASSOCIATION MATRICES AND THE KRONECKER PRODUCT OF ASSOCIATION RANDOM VARIABLES, WITH APPLICATIONS ASSOCIATION SCHEME TO THREE ASSOCIATE CLASSES	AMS 67	1466
AN EXTENSION OF THE TRIANCULAR	ASSOGIATION SCHEME TO THREE ASSOCIATE CLASSES	JRSSB66	361
PARAMETERS OF PARTIALLY BALANCED INCOMPLETE BLOCK	ASSOCIATION SCHEMES A NOTE ON THE ASSOCIATION SCHEMES ON OBTAINING BALANCED	AMS 65	331
INCOMPLETE BLOCK DESIGNS FROM PARTIALLY BALANCED	ASSOCIATION SCHEMES ON OBTAINING BALANCED	AMS 67	618
MARKET ORIENTATION OF PRODUCTI/ MEASURING SPATIAL	ASSOCIATION WITH SPECIAL CONSIDERATION OF THE CASE OF	JASA 56	597
DISTRIBUTION OF THE SAMPLE VERSION OF THE MEASURE OF	ASSOCIATION, A SECTOR OF 113 ORIGINS AND GROWIN	JASA 66	440
THE DETECTION OF PARTIAL	ASSOCIATION, A SKETCH OF ITS ORIGINS AND GROWTH ASSOCIATION, GAMMA ASSOCIATION, GAMMA ASSOCIATION, 1, THE 2 BY 2 CASE ASSOCIATION, 2. THE GENERAL CASE ASSUMINC HOMOGENEOUS COEFFICIENTS OF VARIATION ASSUMINC NORMALITY FOR C.SUM SCHEMES	JRSSB64	313
THE DETECTION OF PARTIAL	ASSOCIATION, 2. THE GENERAL CASE	JRSSB65	111
A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS	ASSUMINC HOMOGENEOUS COEFFICIENTS OF VARIATION	AMS 69	1374
AN EXAMPLE OF ERRORS INCURRED BY ERRONEOUSLY	ASSUMING NORMALITY FOR COSUM SCHEMES ASSUMING THE WRONG DEGREE IN POLYNOMIAL RECRESSION	TECH 67	457
	ASSUMPTION (WITH DISCUSSION) /ORY IN THE DERIVATION		NU.4
DEPARTURES FROM	ASSUMPTION IN SEQUENTIAL ANALYSIS	BIOKA61	
LUATION OF H 106 CONTINUOUS SAMPLING PLANS UNDER THE	ASSUMPTION IN SEQUENTIAL ANALYSIS ASSUMPTION OF WORST CONDITIONS THE EVA	JASA 66	833
S EXPONENTIAL, PART/ TESTS FOR THE VALIDITY OF THE	ASSUMPTION THAT THE UNDERLYING DISTRIBUTION OF LIFE I	TECH 60	В3
	ASSUMPTION-FREE ESTIMATORS USING U STATISTICS AND A		
NON-LINEAR REGRESSION WITH MINIMAL	ASSUMPTIONS MILITUARIATE	JASA 62	1054
FOR DUMMY VARIATE REGRESSION UNDER NORMALITY	ASSUMPTIONS ASSUMPTIONS ASSUMPTIONS ASYMPTOTIC VARIANCES ASYMPTOTIC VARIANCES	JASA 67	1305
A BAYESIAN APPROACH TO THE IMPORTANCE OF	ASSUMPTIONS APPLIED TO THE COMPARISON OF VARIANCES	BIOKA64	153
	ASSUMPTIONS OF FIXED AND MIXED VARIATES THE		
	ASSUMPTIONS OF THE MODELS ON THE SENSITIVITY OF ASSUMPTIONS THAT THE UNDERLYING DISTRIBUTION OF LIFE		
			61
	ASSURANCE OF TOTAL PRODUCT QUALITY /SEQUENTIAL BAT		19
TCHING FOR ACCEPTANCE-REJECTION SAMPLINC UPON SAMPLE	ASSURANCE OF TOTAL PRODUCT QUALITY' /SEQUENTIAL BA	TECH 61	131
ON EVALUATION OF WARRANTY	ASSURANCE WHEN LIFE HAS A WEIBULL DISTRIBUTION	BIOKA69	NO.3
THE THE			2 77
ON THE CONSTRUCTION AND ANALYSIS OF SOME CONFOUNDED	ASYMMETRICAL FACTORIAL DESIGNS	AMS 69	137
ON THE CONSTRUCTION AND ANALYSIS OF SOME CONFOUNDED UCTION AND ANALYSIS OF SOME NEW SERIES OF CONFOUNDED	ASYMMETRICAL FACTORIAL DESIGNS ASYMMETRICAL FACTORIAL DESIGNS CONSTR	AMS 69 BIOCS65 BIOCS67	137 948 813
ON THE GONSTRUCTION AND ANALYSIS OF SOME CONFOUNDED UCTION AND ANALYSIS OF SOME NEW SERIES OF CONFOUNDED ORTHOGONAL MAIN-EFFECT PLANS FOR	ASYMMETRICAL FACTORIAL DESIGNS ASYMMETRICAL FACTORIAL DESIGNS ASYMMETRICAL FACTORIAL DESIGNS CONSTR ASYMMETRICAL FACTORIAL EXPERIMENTS	AMS 69 BIOCS65 BIOCS67 TECH 62	137 948 813 21
ON THE GONSTRUCTION AND ANALYSIS OF SOME CONFOUNDED UCTION AND ANALYSIS OF SOME NEW SERIES OF CONFOUNDED ORTHOGONAL MAIN-EFFECT PLANS FOR ERRATA, 'ORTHOGONAL MAIN-EFFECT PLANS FOR	ASYMMETRICAL FACTORIAL DESIGNS ASYMMETRICAL FACTORIAL DESIGNS CONSTR ASYMMETRICAL FACTORIAL EXPERIMENTS ASYMMETRICAL FACTORIAL EXPERIMENTS	AMS 69 BIOCS65 BIOCS67 TECH 62 TECH 62	137 948 813 21 440
ON THE GONSTRUCTION AND ANALYSIS OF SOME CONFOUNDED UCTION AND ANALYSIS OF SOME NEW SERIES OF CONFOUNDED ORTHOGONAL MAIN-EFFECT PLANS FOR ERRATA, 'ORTHOGONAL MAIN-EFFECT PLANS FOR SYMMETRICAL AND	ASYMMETRICAL FACTORIAL DESIGNS ASYMMETRICAL FACTORIAL DESIGNS ASYMMETRICAL FACTORIAL DESIGNS CONSTR ASYMMETRICAL FACTORIAL EXPERIMENTS ASYMMETRICAL FACTORIAL EXPERIMENTS ASYMMETRICAL FRACTIONAL FACTORIAL PLANS ASYMMETRICAL FRACTIONAL FACTORIAL PLANS	AMS 69 BIOCS65 BIOCS67 TECH 62 TECH 62 TECH 62	137 948 813 21 440 47
ON THE GONSTRUCTION AND ANALYSIS OF SOME CONFOUNDED UCTION AND ANALYSIS OF SOME NEW SERIES OF CONFOUNDED ORTHOGONAL MAIN-EFFECT PLANS FOR ERRATA, 'ORTHOGONAL MAIN-EFFECT PLANS FOR SYMMETRICAL AND TRANSFORMATIONS PRODUCER AND CONSUMER RISKS FOR	ASYMMETRICAL FACTORIAL DESIGNS ASYMMETRICAL FACTORIAL DESIGNS ASYMMETRICAL FACTORIAL DESIGNS CONSTR ASYMMETRICAL FACTORIAL EXPERIMENTS ASYMMETRICAL FACTORIAL EXPERIMENTS' ASYMMETRICAL FRACTIONAL FACTORIAL PLANS ASYMMETRICAL ROTATABLE DESIGNS AND ORTHOGONAL ASYMMETRICAL TESTS AND SPECIFICATION LIMITS	AMS 69 BIOCS65 BIOCS67 TECH 62 TECH 62 TECH 68 JASA 66	137 948 813 21 440 47 313 505
SAMPLES, A MONTE CARLO STODE OF THE ADEQUACE OF THE	ASSYMMETRIC CAUCHY PROCESSES ON THE LINE ASYMMETRIC ASCENTIAL DESIGNS ASYMMETRICAL FACTORIAL DESIGNS ASYMMETRICAL FACTORIAL DESIGNS ASYMMETRICAL FACTORIAL EXPERIMENTS ASYMMETRICAL FACTORIAL EXPERIMENTS ASYMMETRICAL FRACTIONAL FACTORIAL PLANS ASYMMETRICAL ROTATABLE DESIGNS AND ORTHOGONAL ASYMMETRICAL TESTS AND SPECIFICATION LIMITS ASYMMETRICAL TESTS AND SPECIFICATION LIMITS ASYMPTOTIC APPROXIMATION /YSIS OF VARIANCE IN SMALL	DI00203	137 948 813 21 440 47 313 505 593
SAMPLES, A MONTE CARLO STODE OF THE ADEQUACE OF THE	ASIMITOTIC AFFROXIMATION /1515 OF VARIANCE IN SMALL	DI00203	137 948 813 21 440 47 313 505 593
SAMPLES, A MONTE CARLO STODE OF THE ADEQUACE OF THE	ASIMITOTIC AFFROXIMATION /1515 OF VARIANCE IN SMALL	DI00203	137 948 813 21 440 47 313 505 593
SAMPLES, A MONTE CARLO STODE OF THE ADEQUACE OF THE	ASIMITOTIC AFFROXIMATION /1515 OF VARIANCE IN SMALL	DI00203	137 948 813 21 440 47 313 505 593
SAMPLES, A MONTE CARLO STODE OF THE ADEQUACE OF THE	ASIMITOTIC AFFROXIMATION /1515 OF VARIANCE IN SMALL	DI00203	137 948 813 21 440 47 313 505 593
SAMPLES, A MONTE CARLO STODE OF THE ADEQUACE OF THE	ASIMITOTIC AFFROXIMATION /1515 OF VARIANCE IN SMALL	DI00203	137 948 813 21 440 47 313 505 593
SAMPLES, A MONTE CARLO STODE OF THE ADEQUACE OF THE	ASIMITOTIC AFFROXIMATION /1515 OF VARIANCE IN SMALL	DI00203	137 948 813 21 440 47 313 505 593
SAMPLES, A MONTE CARLO STODE OF THE ADEQUACE OF THE	ASIMITOTIC AFFROXIMATION /1515 OF VARIANCE IN SMALL	DI00203	137 948 813 21 440 47 313 505 593
SELECTED SUBSET THE DISCRETE CASE II DISCRETE CASE II ON THE DISCRETE CASE SEQUENTIAL ANALYSIS CERTAIN ONE—SIDED TESTS NS IN MULTIPLE LINEAR RECRESSION ON THE	ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF DENSITIES WITH APPLICATIONS TO ASYMPTOTIC BEHAVIOR OF EXPECTED SAMPLE SIZE IN ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOR OF POSTERIOR DISTRIBUTIONS	BIOKA69 BIOKA69 AMS 69 AMS 65 AMS 64 AMS 65 AMS 64 AMS 69 JRSSB69	137 948 813 21 440 47 313 505 593 367 207 665 454 846 615 36 NO.6 80
SELECTED SUBSET THE DISCRETE CASE II DISCRETE CASE ON THE SEQUENTIAL ANALYSIS SEQUENTIAL ANALYSIS SIN MULTIPLE LINEAR RECRESSION ON THE ON THE	ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF DENSITIES WITH APPLICATIONS TO ASYMPTOTIC BEHAVIOR OF EXPECTED SAMPLE SIZE IN ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOUR OF POSTERIOR DISTRIBUTIONS ASYMPTOTIC BEHAVIOUR OF QUEUES	BIOKA67 BIOKA69 AMS 69 AMS 65 AMS 64 AMS 63 AMS 65 AMS 65 AMS 69 JRSSB69 JRSSB69	137 948 813 21 440 47 313 505 593 367 207 665 454 846 1386 615 36 NO.6 80 464
SELECTED SUBSET THE DISCRETE CASE II DISCRETE CASE SEQUENTIAL ANALYSIS CERTAIN ONE-SIDED TESTS NS IN MULTIPLE LINEAR RECRESSION MATCH BOX PROBLEM ON THE ON THE	ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES 'ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF DENSITIES WITH APPLICATIONS TO ASYMPTOTIC BEHAVIOR OF EXPECTED SAMPLE SIZE IN ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOUR OF POSTERIOR DISTRIBUTIONS ASYMPTOTIC BEHAVIOUR OF QUEUES ASYMPTOTIC BEHAVIOUR OF QUEUES ASYMPTOTIC DISTRIBUTION FOR A GENERALIZED BANACH	BIOKA67 BIOKA69 AMS 69 AMS 65 AMS 64 AMS 63 AMS 65 AMS 64 AMS 69 JRSSB69 JRSSB63 JASA 67	137 948 813 21 440 47 313 505 593 367 207 665 454 846 615 36 NO.6 80 464 1252
SELECTED SUBSET THE DISCRETE CASE II DISCRETE CASE II ON THE SEQUENTIAL ANALYSIS CERTAIN ONE—SIDED TESTS NS IN MULTIPLE LINEAR RECRESSION ON THE ON THE STATISTICAL APPLICATIONS ON THE APPLICATIONS AN	ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF DENSITIES WITH APPLICATIONS TO ASYMPTOTIC BEHAVIOR OF EXPECTED SAMPLE SIZE IN ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOUR OF POSTERIOR DISTRIBUTIONS ASYMPTOTIC BEHAVIOUR OF QUEUES	BIOKA67 BIOKA69 AMS 69 AMS 65 AMS 64 AMS 65 AMS 64 AMS 69 JRSSB69 JRSSB69 JRSSB63 JRSSB67 TECH 61	137 948 813 21 440 47 313 505 593 367 207 665 454 846 1386 615 36 NO.6 80 464
SELECTED SUBSET DISCRETE CASE II DISCRETE CASE ON THE SEQUENTIAL ANALYSIS CERTAIN ONE-SIDED TESTS NS IN MULTIPLE LINEAR RECRESSION MATCH BOX PROBLEM STATISTICAL APPLICATIONS CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS AN THE WIENER PROCESS ON THE	ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF DENSITIES WITH APPLICATIONS TO ASYMPTOTIC BEHAVIOR OF EXPECTED SAMPLE SIZE IN ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOUR OF POSTERIOR DISTRIBUTIONS ASYMPTOTIC BEHAVIOUR OF QUEUES ASYMPTOTIC DISTRIBUTION FOR A GENERALIZED BANACH ASYMPTOTIC DISTRIBUTION FOR THE DETERMINANT OF A NON- ASYMPTOTIC DISTRIBUTION FOR THE DETERMINANT OF A NON- ASYMPTOTIC DISTRIBUTION FOR THE DETERMINANT OF A NON-	BIOKA67 BIOKA69 AMS 69 AMS 65 AMS 64 AMS 65 AMS 64 AMS 69 JRSSB63 JASA 67 TECH 61 ECH 61 AMS 69	137 948 813 21 440 47 313 505 593 367 207 665 454 814 615 36 No. 6 80 464 1252 77 1409
SANTES, A MONTE CARLO STOFF OF THE ADEQUACT OF THE NS ON METHODS OF SELECTED SUBSET THE DISCRETE CASE II ON THE SEQUENTIAL ANALYSIS ON THE CERTAIN ONE-SIDED TESTS NS IN MULTIPLE LINEAR RECRESSION MATCH BOX PROBLEM STATISTICAL APPLICATIONS CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS AN THE WIENER PROCESS ON THE STATISTICS FROM BIVARIATE POPULATIONS	ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF DENSITIES WITH APPLICATIONS TO ASYMPTOTIC BEHAVIOR OF EXPECTED SAMPLE SIZE IN ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOUR OF POSTERIOR DISTRIBUTIONS ASYMPTOTIC BEHAVIOUR OF QUEUES ASYMPTOTIC DISTRIBUTION FOR A GENERALIZED BANACH ASYMPTOTIC DISTRIBUTION FOR AN OCCUPANCY PROBLEM WITH ASYMPTOTIC DISTRIBUTION FOR THE DETERMINANT OF A NON- ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF ASYMPTOTIC DISTRIBUTION OF DISTRANCES BETWEEN ORDER	BIOKA67 BIOKA69 AMS 69 AMS 65 AMS 64 AMS 63 AMS 64 AMS 69 JRSSB69 JRSSB69 JRSSB67 TECH 61 SASJ 68 AMS 69 AMS 69	137 948 813 21 440 47 313 505 593 367 207 665 454 846 1386 615 36 NO.6 80 4252 79 77 1409 748
SANTESS, A MONTE CARLO STOFF OF THE ADEQUACT OF THE NS ON METHODS OF SELECTED SUBSET THE DISCRETE CASE II ON THE SEQUENTIAL ANALYSIS ON THE CERTAIN ONE—SIDED TESTS NS IN MULTIPLE LINEAR RECRESSION ON THE ON THE MATCH BOX PROBLEM STATISTICAL APPLICATIONS AN CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS AN THE WIENER PROCESS ON THE STATISTICS FROM BIVARIATE POPULATIONS BLY CENSORED SAMPLES, OF THE PARAMETERS OF THE FIRST	ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC APPROXIMATION TO THE EXPECTED SIZE OF A ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF DENSITIES WITH APPLICATIONS TO ASYMPTOTIC BEHAVIOR OF EXPECTED SAMPLE SIZE IN ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOUR OF POSTERIOR DISTRIBUTIONS ASYMPTOTIC BEHAVIOUR OF QUEUES ASYMPTOTIC DISTRIBUTION FOR A GENERALIZED BANACH ASYMPTOTIC DISTRIBUTION FOR AN OCCUPANCY PROBLEM WITH ASYMPTOTIC DISTRIBUTION FOR THE DETERMINANT OF A NON- ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF ASYMPTOTIC DISTRIBUTION OF DISTRACES BETWEEN ORDER ASYMPTOTIC DISTRIBUTION OF DISTRACES BETWEEN ORDER ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOU	BIOKA67 BIOKA69 AMS 69 AMS 65 AMS 65 AMS 65 AMS 65 AMS 69 JRSSB69 JRSSB67 TECH 61 SASJ 68 AMS 69 AMS 64 JASA 68	137 948 813 21 440 47 313 505 593 367 207 665 454 846 1386 615 36 NO.6 80 464 1252 79 77 1409 77 1408 889
SELECTED SUBSET THE DISCRETE CASE II DISCRETE CASE ON THE SEQUENTIAL ANALYSIS CERTAIN ONE-SIDED TESTS NS IN MULTIPLE LINEAR RECRESSION MATCH BOX PROBLEM STATISTICAL APPLICATIONS CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS AN THE WIENER PROCESS STATISTICS FROM BIVARIATE POPULATIONS BLY CENSORED SAMPLES, OF THE PARAMETERS OF THE FIRST CTIONS OF ORDER STATISTICS WITH APPLICATIONS TO E/	ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF DENSITIES WITH APPLICATIONS TO ASYMPTOTIC BEHAVIOR OF EXPECTED SAMPLE SIZE IN ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOUR OF POSTERIOR DISTRIBUTIONS ASYMPTOTIC BEHAVIOUR OF QUEUES ASYMPTOTIC DISTRIBUTION FOR A GENERALIZED BANACH ASYMPTOTIC DISTRIBUTION FOR AN OCCUPANCY PROBLEM WITH ASYMPTOTIC DISTRIBUTION FOR THE DETERMINANT OF A NON- ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF ASYMPTOTIC DISTRIBUTION OF DISTRANCES BETWEEN ORDER	BIOKA67 BIOKA69 AMS 69 AMS 65 AMS 64 AMS 63 AMS 65 JRSSB69 JRSSB69 JRSSB69 JRSSB69 JRSSB69 JRSSB69 JRSSB69 JRSSB69 JRSSB69 JRSSB69 JRSSB69 JRSSB69 JRSSB69 JRSSB69 JRSSB69 AMS 64 AMS 64 AMS 64	137 948 813 21 440 47 313 505 593 367 207 665 454 846 615 36 NO.6 80 NO.6 80 77 71 1409 748 889 52
SELECTED SUBSET THE DISCRETE CASE II DISCRETE CASE II ON THE SEQUENTIAL ANALYSIS CERTAIN ONE—SIDED TESTS NS IN MULTIPLE LINEAR RECRESSION MATCH BOX PROBLEM STATISTICAL APPLICATIONS CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS THE WIENER PROCESS STATISTICS FROM BIVARIATE POPULATIONS BLY CENSORED SAMPLES, OF THE PARAMETERS OF THE FIRST CTIONS OF ORDER STATISTICS WITH APPLICATIONS TO E/ ORS IN A LINEAR MODEL WITH AUTOREGRESSIVE DISTURB/ A NOTE ON THE	ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC APPROXIMATION TO THE EXPECTED SIZE OF A ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF DENSITIES WITH APPLICATIONS TO ASYMPTOTIC BEHAVIOR OF EXPECTED SAMPLE SIZE IN ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOR OF POSTERIOR DISTRIBUTIONS ASYMPTOTIC BEHAVIOUR OF QUEUES ASYMPTOTIC DISTRIBUTION FOR A GENERALIZED BANACH ASYMPTOTIC DISTRIBUTION FOR AN OCCUPANCY PROBLEM WITH ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF ASYMPTOTIC DISTRIBUTION OF DISTRACES BETWEEN ORDER ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF LINEAR COMBINATIONS OF FUN ASYMPTOTIC DISTRIBUTION OF LINEAR COMBINATIONS OF FUN ASYMPTOTIC DISTRIBUTION OF MAXIMUM LIKELHOOD ESTIMAT ASYMPTOTIC DISTRIBUTION OF SAMPLE QUANTILES	BIOKA67 BIOKA69 AMS 69 AMS 66 AMS 66 AMS 66 AMS 67 AMS 69 JRSSB69 JRSSB67 TECH 61 SASJ 68 AMS 69 AMS 69 AMS 69 JASA 68 AMS 69 JASA 68	137 948 813 21 440 47 313 505 593 367 207 207 207 846 1386 1386 1386 1386 1454 80 464 1252 77 71 1409 52 583 5570
NS ON METHODS OF SELECTED SUBSET DISCRETE CASE II ON THE DISCRETE CASE ON THE DISCRETE CASE ON THE SEQUENTIAL ANALYSIS ON THE CERTAIN ONE-SIDED TESTS NS IN MULTIPLE LINEAR RECRESSION ON THE MATCH BOX PROBLEM STATISTICAL APPLICATIONS CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS AN THE WIENER PROCESS STATISTICS FROM BIVARIATE POPULATIONS BLY CENSORED SAMPLES, OF THE PARAMETERS OF THE FIRST CTIONS OF ORDER STATISTICS WITH APPLICATIONS TO E/ ORS IN A LINEAR MODEL WITH AUTOREGRESSIVE DISTURB/ OF THE TWO-SAMPLE RANK VECTOR THE	ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTION ASYMPTOTIC APPROXIMATION TO THE EXPECTED SIZE OF A ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF DENSITIES WITH APPLICATIONS TO ASYMPTOTIC BEHAVIOR OF DENSITIES WITH APPLICATIONS TO ASYMPTOTIC BEHAVIOR OF FORSITIES WITH APPLICATIONS TO ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOR OF POSTERIOR DISTRIBUTIONS ASYMPTOTIC BEHAVIOR OF QUEUES ASYMPTOTIC DISTRIBUTION FOR A GENERALIZED BANACH ASYMPTOTIC DISTRIBUTION FOR AN OCCUPANCY PROBLEM WITH ASYMPTOTIC DISTRIBUTION FOR THE DETERMINANT OF A NON- ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF ASYMPTOTIC DISTRIBUTION OF DISTANCES BETWEEN ORDER ASYMPTOTIC DISTRIBUTION OF DISTANCES BETWEEN ORDER ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF CHARMER VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF MAXIMUM LIKELIHOOD ESTIMAT ASYMPTOTIC DISTRIBUTION OF MAXIMUM LIKELIHOOD ESTIMAT ASYMPTOTIC DISTRIBUTION OF SAMPLE QUANTILES ASYMPTOTIC DISTRIBUTION OF SAMPLE QUANTILES ASYMPTOTIC DISTRIBUTION OF SAMPLE QUANTILES	BIOKA67 BIOKA69 AMS 69 AMS 64 AMS 65 AMS 65 AMS 65 AMS 64 AMS 65 JRSSB63 JASA 67 TECH 61 SASJ 68 AMS 64 AMS 66 AMS 66 AMS 66 AMS 69 JRSSB63 JASA 67 TECH 61 AMS 66 AMS 66 AMS 66 AMS 66	137 948 813 21 440 47 313 505 593 367 207 207 454 846 1386 80 464 1252 79 77 1409 748 889 52 583 570 1011
SELECTED SUBSET THE DISCRETE CASE II DISCRETE CASE SEQUENTIAL ANALYSIS CERTAIN ONE-SIDED TESTS NS IN MULTIPLE LINEAR RECRESSION MATCH BOX PROBLEM STATISTICAL APPLICATIONS CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS AN CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS AN THE WIENER PROCESS STATISTICS FROM BIVARIATE POPULATIONS STATISTICS FROM BIVARIATE POPULATIONS BLY CENSORED SAMPLES, OF THE PARAMETERS OF THE FIRST CTIONS OF ORDER STATISTICS WITH APPLICATIONS TO E/ ORS IN A LINEAR MODEL WITH AUTOREGRESSIVE DISTURB/ A NOTE ON THE OF THE TWO-SAMPLE RANK VECTOR ON THE INFLUENCE OF MOMENTS ON THE	ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES: ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF EXPECTED SAMPLE SIZE IN ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOR OF QUEUES ASYMPTOTIC DISTRIBUTION FOR A GENERALIZED BANACH ASYMPTOTIC DISTRIBUTION FOR THE DETERMINANT OF A NON- ASYMPTOTIC DISTRIBUTION OF TOR THE DETERMINANT OF ANON- ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF ASYMPTOTIC DISTRIBUTION OF DISTRANCES BETWEEN ORDER ASYMPTOTIC DISTRIBUTION OF DISTRANCES BETWEEN ORDER ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF SAMPLE QUANTILES ASYMPTOTIC DISTRIBUTION OF SAMPLE QUANTILES ASYMPTOTIC DISTRIBUTION OF SAMPLE QUANTILES ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS	BIOKA67 BIOKA69 AMS 69 AMS 65 AMS 64 AMS 63 AMS 64 AMS 63 JASA 67 TECH 61 SASJ 68 AMS 64 JASA 67 AMS 66 AMS 66 AMS 69 AMS 66 AMS 69 AMS 60 AMS 64 AMS 68	137 948 813 21 440 47 313 505 593 367 207 665 454 846 615 36 NO.6 80 NO.6 80 1252 79 77 1409 748 889 52 583 570 1011
SELECTED SUBSET THE DISCRETE CASE II ON THE SEQUENTIAL ANALYSIS CERTAIN ONE-SIDED TESTS NS IN MULTIPLE LINEAR RECRESSION MATCH BOX PROBLEM STATISTICAL APPLICATIONS CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS AN ON THE STATISTICAL APPLICATIONS CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS STATISTICS FROM BIVARIATE POPULATIONS BLY CENSORED SAMPLES, OF THE PARAMETERS OF THE FIRST CTIONS OF ORDER STATISTICS WITH APPLICATIONS TO E/ ORS IN A LINEAR MODEL WITH AUTOREGRESSIVE DISTURB/ A NOTE ON THE OF THE TWO—SAMPLE RANK VECTOR ON THE INFLUENCE OF MOMENTS ON THE OF FIT CRITERIA FOR MARKOV CHAINS AND MAR/ ON THE	ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF EXPECTED SAMPLE SIZE IN ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOUR OF QUEUES ASYMPTOTIC DISTRIBUTION FOR A GENERALIZED BANACH ASYMPTOTIC DISTRIBUTION FOR AN OCCUPANCY PROBLEM WITH ASYMPTOTIC DISTRIBUTION FOR AN OCCUPANCY PROBLEM WITH ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF ASYMPTOTIC DISTRIBUTION OF DISTANCES BETWEEN ORDER ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF MAXIMUM LIKELIHOOD ESTIMAT ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS ASYMPTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' GOODNESS	BIOKA67 BIOKA69 AMS 69 AMS 69 AMS 64 AMS 63 AMS 65 AMS 65 JRSSB63 JJRSSB63 JJRSSB63 JJASA 67 TECH 61 SASJ 68 AMS 64 AMS 69 AMS 69 AMS 64 AMS 69 AMS 66 AMS 66 AMS 67 AAMS 68 AMS 66 AMS 67 AAMS 68 AMS 67 AMS 68 AMS 67 AMS 68	137 948 813 21 440 47 313 505 593 367 207 207 207 454 846 615 36 665 454 846 464 1252 77 71 409 52 583 570 1011 1042 49
NS ON METHODS OF SELECTED SUBSET THE DISCRETE CASE II ON THE DISCRETE CASE II ON THE DISCRETE CASE ON THE SEQUENTIAL ANALYSIS ON THE CERTAIN ONE-SIDED TESTS NS IN MULTIPLE LINEAR RECRESSION MATCH BOX PROBLEM STATISTICAL APPLICATIONS CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS AN THE WIENER PROCESS ON THE STATISTICS FROM BIVARIATE POPULATIONS STATISTICS FROM BIVARIATE POPULATIONS BLY CENSORED SAMPLES, OF THE PARAMETERS OF THE FIRST CTIONS OF ORDER STATISTICS WITH APPLICATIONS TO E/ ORS IN A LINEAR MODEL WITH AUTOREGRESSIVE DISTURB/ A NOTE ON THE OF THE TWO-SAMPLE RANK VECTOR ON THE INFLUENCE OF MOMENTS ON THE OF FIT CRITERIA FOR MARKOV CHAINS AND MAR/ ON THE SAMPLE FROM A LINEAR STOCHASTIC PROCESS JOINT	ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES ASYMPTOTIC BEHAVIOR OF BAYES: ESTIMATES ASYMPTOTIC BEHAVIOR OF BAYES: ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES: ESTIMATES ASYMPTOTIC BEHAVIOR OF EXPECTED SAMPLE SIZE IN ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOR OF POSTERIOR DISTRIBUTIONS ASYMPTOTIC DISTRIBUTION FOR A GENERALIZED BANACH ASYMPTOTIC DISTRIBUTION FOR AN OCCUPANCY PROBLEM WITH ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF ASYMPTOTIC DISTRIBUTION OF DISTRANCES BETWEEN ORDER ASYMPTOTIC DISTRIBUTION OF DISTRANCES BETWEEN ORDER ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF FAREME VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF SAMPLE QUANTILES ASYMPTOTIC DISTRIBUTION OF SAMPLE QUANTILES ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS ASYMPTOTIC DISTRIBUTION OF THE WEDIAN AND A U-	BIOKA67 BIOKA69 AMS 69 AMS 65 AMS 64 AMS 63 AMS 65 AMS 65 JRSSB69 JRSSB69 JRSSB69 JASA 67 TECH 61 SASJ 68 AMS 64 JASA 66 AMS 69 AMS 64 JRSSB68	137 948 813 21 440 47 313 505 593 367 207 665 4846 1386 80 80 101 1252 79 77 1409 748 889 52 583 570 101 101 1042 49 1296 144
NS ON METHODS OF SELECTED SUBSET THE DISCRETE CASE II ON THE DISCRETE CASE ON THE SEQUENTIAL ANALYSIS ON THE CERTAIN ONE-SIDED TESTS NS IN MULTIPLE LINEAR RECRESSION MATCH BOX PROBLEM STATISTICAL APPLICATIONS CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS AN THE WIENER PROCESS ON THE STATISTICS FROM BIVARIATE POPULATIONS BLY CENSORED SAMPLES, OF THE PARAMETERS OF THE FIRST CTIONS OF ORDER STATISTICS WITH APPLICATIONS TO E/ ORS IN A LINEAR MODEL WITH AUTOREGRESSIVE DISTURB/ OF THE TWO-SAMPLE RANK VECTOR ON THE INFLUENCE OF MOMENTS ON THE OF FIT CRITERIA FOR MARKOV CHAINS AND MAR/ ON THE SAMPLE FROM A LINEAR STOCHASTIC PROCESS STATISTIC A DENUMERABLE NUMBER OF STATES SOME	ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF EXPECTED SAMPLE SIZE IN ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOUR OF QUEUES ASYMPTOTIC BEHAVIOUR OF POSTERIOR DISTRIBUTIONS ASYMPTOTIC DISTRIBUTION FOR A GENERALIZED BANACH ASYMPTOTIC DISTRIBUTION FOR THE DETERMINANT OF A NON- ASYMPTOTIC DISTRIBUTION OF THE DETERMINANT OF A NON- ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF LINEAR COMBINATIONS OF FUN ASYMPTOTIC DISTRIBUTION OF SAMPLE QUANTILES ASYMPTOTIC DISTRIBUTION OF SAMPLE QUANTILES ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS ASYMPTOTIC DISTRIBUTION OF SUMS OF RANDOM VARIABLES ASYMPTOTIC DISTRIBUTION OF THE WEDGEN VARIABLES ASYMPTOTIC DISTRIBUTION OF THE MEDIAN AND A U— ASYMPTOTIC DISTRIBUTION OF THE MEDIAN AND A U—	BIOKA67 BIOKA69 AMS 69 AMS 69 AMS 64 AMS 63 AMS 65 AMS 65 JASS 66 JASS 66 AMS 69 JRSSB69 JRSSB69 JASA 67 TECH 61 SASJ 68 AMS 64 JASA 68 AMS 64 AMS 63 AMS 64 AMS 65 AMS 65 AMS 65 AMS 65 AMS 67 AMS 69 AMS 64 JASA 68 AMS 66 AMS 67 AMS 69 AMS 66 AMS 67 AMS 69 AMS 66 AMS 67 AMS 67 AMS 67 AMS 68 AMS 67 AMS 68 AMS 61 AMS 64 AMS 67 AMS 67 AMS 68 AMS 61 AMS 64	137 948 813 21 440 47 313 505 593 367 207 665 454 846 615 36 80 NO.6 80 80 77 71 409 748 889 77 1409 748 889 1011 1012 49 1296 49 49 49 49 49 49 49 49 49 40 40 40 40 40 40 40 40 40 40 40 40 40
SELECTED SUBSET THE DISCRETE CASE II ON THE DISCRETE CASE II ON THE SEQUENTIAL ANALYSIS ON THE SEQUENTIAL ANALYSIS NS IN MULTIPLE LINEAR RECRESSION MATCH BOX PROBLEM STATISTICAL APPLICATIONS CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS AN THE WIENER PROCESS STATISTICS FROM BIVARIATE POPULATIONS BLY CENSORED SAMPLES, OF THE PARAMETERS OF THE FIRST CTIONS OF ORDER STATISTICS WITH APPLICATIONS TO B/ ORS IN A LINEAR MODEL WITH AUTOREGRESSIVE DISTURB/ OF THE TWO—SAMPLE RANK VECTOR OF THE TWO—SAMPLE RANK VECTOR OF THE TWO—SAMPLE RANK VECTOR OF THE TRO—SAMPLE RANK VECTOR OF THE TRO—SAMPLE RANK VECTOR OF THE TRO—SAMPLE RANK VECTOR ON THE SAMPLE FROM A LINEAR STOCHASTIC PROCESS SOME PROBLEM TO NOTHE SOME ROBER STATISTIC SOME	ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF EXPECTED SAMPLE SIZE IN ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOUR OF POSTERIOR DISTRIBUTIONS ASYMPTOTIC DEHAVIOUR OF QUEUES ASYMPTOTIC DISTRIBUTION FOR A GENERALIZED BANACH ASYMPTOTIC DISTRIBUTION FOR AN OCCUPANCY PROBLEM WITH ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF ASYMPTOTIC DISTRIBUTION OF DISTANCES BETWEEN ORDER ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS ASYMPTOTIC DISTRIBUTION OF SUMS OF RANDOM VARIABLES ASYMPTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' GOODNESS ASYMPTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' GOODNESS ASYMPTOTIC DISTRIBUTION OF THE MEDIAN AND A U- ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH ASYMPTOTIC DISTRIBUTION FOR THE COUPON COLLECTOR'S	BIOKA67 BIOKA67 BIOKA69 AMS 69 AMS 69 AMS 64 AMS 63 AMS 65 AMS 65 JRSSB69 JJRSSB67 TECH 61 SASJ 68 AMS 64 JASA 68 AMS 69 JRSSB68 AMS 69 JRSSB68 AMS 64 JASA 68 AMS 67 AMS 69 JRSSB68 AMS 67 AMS 69 JRSSB68 AMS 67 AMS 69 AMS 63 AMS 64 JRSSB68	137 948 813 21 440 47 313 505 593 367 207 207 207 1386 665 454 846 1386 80 464 1252 77 71 1409 52 583 570 1011 1042 49 1296 1144 49 1296 1144 49 1296 1144 49 1296 1144 1296 1144 1146 1146 1146 1146 1146 1146 11
SELECTED SUBSET THE DISCRETE CASE II ON THE DISCRETE CASE II ON THE SEQUENTIAL ANALYSIS ON THE CERTAIN ONE-SIDED TESTS NS IN MULTIPLE LINEAR RECRESSION ON THE MATCH BOX PROBLEM STATISTICAL APPLICATIONS CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS AN CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS AND THE STATISTICS FROM BIVARIATE POPULATIONS BLY CENSORED SAMPLES, OF THE PARAMETERS OF THE FIRST CTIONS OF ORDER STATISTICS WITH APPLICATIONS TO E/ ORS IN A LINEAR MODEL WITH AUTOREGRESSIVE DISTURB/ OF THE TWO-SAMPLE RANK VECTOR ON THE INFLUENCE OF MOMENTS ON THE OF FIT CRITERIA FOR MARKOV CHAINS AND MAR/ ON THE SAMPLE FROM A LINEAR STOCHASTIC PROCESS ON THE SAMPLE FROM A LINEAR STOCHASTIC PROCESS ON THE STATISTIC JOINT A DENUMERABLE NUMBER OF STATES SOME PROBLEM FOR SMALLER PERCENTILES OF A GAMMA DISTRIBUTION	ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF EXPECTED SAMPLE SIZE IN ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOUR OF QUEUES ASYMPTOTIC BEHAVIOUR OF POSTERIOR DISTRIBUTIONS ASYMPTOTIC DISTRIBUTION FOR A GENERALIZED BANACH ASYMPTOTIC DISTRIBUTION FOR THE DETERMINANT OF A NON- ASYMPTOTIC DISTRIBUTION OF THE DETERMINANT OF A NON- ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF LINEAR COMBINATIONS OF FUN ASYMPTOTIC DISTRIBUTION OF SAMPLE QUANTILES ASYMPTOTIC DISTRIBUTION OF SAMPLE QUANTILES ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS ASYMPTOTIC DISTRIBUTION OF SUMS OF RANDOM VARIABLES ASYMPTOTIC DISTRIBUTION OF THE WEDGEN VARIABLES ASYMPTOTIC DISTRIBUTION OF THE MEDIAN AND A U— ASYMPTOTIC DISTRIBUTION OF THE MEDIAN AND A U—	BIOKA67 BIOKA67 BIOKA69 AMS 69 AMS 69 AMS 64 AMS 63 AMS 65 AMS 65 JRSSB69 JJRSSB67 TECH 61 SASJ 68 AMS 64 JASA 68 AMS 69 JRSSB68 AMS 69 JRSSB68 AMS 64 JASA 68 AMS 67 AMS 69 JRSSB68 AMS 67 AMS 69 JRSSB68 AMS 67 AMS 69 AMS 63 AMS 64 JRSSB68	137 948 813 21 440 47 313 505 593 367 207 207 4846 1386 615 36 No.6 464 1252 79 77 1409 748 889 52 583 570 1011 1042 42 85 1104 1042 42 1044 1044 1044 1044 1044 1
SELECTED SUBSET THE DISCRETE CASE II ON THE DISCRETE CASE II ON THE SEQUENTIAL ANALYSIS ON THE CERTAIN ONE-SIDED TESTS NS IN MULTIPLE LINEAR RECRESSION ON THE MATCH BOX PROBLEM STATISTICAL APPLICATIONS CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS AN CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS AND THE STATISTICS FROM BIVARIATE POPULATIONS BLY CENSORED SAMPLES, OF THE PARAMETERS OF THE FIRST CTIONS OF ORDER STATISTICS WITH APPLICATIONS TO E/ ORS IN A LINEAR MODEL WITH AUTOREGRESSIVE DISTURB/ OF THE TWO-SAMPLE RANK VECTOR ON THE INFLUENCE OF MOMENTS ON THE OF FIT CRITERIA FOR MARKOV CHAINS AND MAR/ OF THE TWO-SAMPLE RANK VECTOR ON THE INFLUENCE OF MOMENTS ON THE OF FIT CRITERIA FOR MARKOV CHAINS AND MAR/ ON THE SAMPLE FROM A LINEAR STOCHASTIC PROCESS ON THE STATISTIC JOINT A DENUMERABLE NUMBER OF STATES SOME PROBLEM FOR SMALLER PERCENTILES OF A GAMMA DISTRIBUTION TESTS FOR REGRESSION PARAMETERS	ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF EXPECTED SAMPLE SIZE IN ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOUR OF QUEUES ASYMPTOTIC DISTRIBUTION FOR A GENERALIZED BANACH ASYMPTOTIC DISTRIBUTION FOR A OCCUPANCY PROBLEM WITH ASYMPTOTIC DISTRIBUTION OF THE DETERMINANT OF A NON- ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF MAXIMUM LIKELHOOD ESTIMAT ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS ASYMPTOTIC DISTRIBUTION OF SUMS OF RANDOM VARIABLES ASYMPTOTIC DISTRIBUTION OF THE WEDIAN AND A U- ASYMPTOTIC DISTRIBUTION OF THE MEDIAN AND A U- ASYMPTOTIC EFFICIENCY OF A CLASS OF NON-PARAMETRIC	BIOKA67 BIOKA69 AMS 69 AMS 69 AMS 64 AMS 63 AMS 65 AMS 65 AMS 65 AMS 66 AMS 69 JRSSB63 JJASA 67 TECH 61 SASJ 68 AMS 69 AMS 64 JJASA 68 AMS 69 JRSSB68 AMS 67 JRSSB68 AMS 67 JRSSB68 AMS 69 AMS 69 JRSSB68 AMS 69 AMS 66	137 948 813 21 440 47 313 505 593 367 207 207 207 846 665 454 846 1252 77 71 409 1011 1042 49 1044 49 1044 49 1044 49 1044 49 1044 49 1044 49 1044 49 1044 49 1044 49 49 49 49 49 49 49 49 49 49 49 49 4
NS ON METHODS OF SELECTED SUBSET THE DISCRETE CASE II ON THE DISCRETE CASE II ON THE SEQUENTIAL ANALYSIS ON THE CERTAIN ONE-SIDED TESTS NS IN MULTIPLE LINEAR RECRESSION MATCH BOX PROBLEM STATISTICAL APPLICATIONS CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS AN CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS AN THE WIENER PROCESS STATISTICS FROM BIVARIATE POPULATIONS BLY CENSORED SAMPLES, OF THE PARAMETERS OF THE FIRST CTIONS OF ORDER STATISTICS WITH APPLICATIONS TO E/ ORS IN A LINEAR MODEL WITH AUTOREGRESSIVE DISTURB/ OF THE TWO-SAMPLE RANK VECTOR ON THE INFLUENCE OF MOMENTS ON THE SAMPLE FROM A LINEAR STOCHASTIC PROCESS SOM THE SAMPLE FROM A LINEAR STOCHASTIC PROCESS ON THE STATISTIC A DENUMERABLE NUMBER OF STATES SOME FOR SMALLER PERCENTILES OF A GAMMA DISTRIBUTION TESTS FOR REGRESSION PARAMETERS TS ON A DISTRIBUTION-FREE METHOD OF ESTIMATING	ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTION ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTION ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES: ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES: ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF DENSITIES WITH APPLICATIONS TO ASYMPTOTIC BEHAVIOR OF POSITIES WITH APPLICATIONS TO ASYMPTOTIC BEHAVIOR OF FUNCTIONS ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOR OF POSTERIOR DISTRIBUTIONS ASYMPTOTIC BEHAVIOR OF QUEUES ASYMPTOTIC DISTRIBUTION FOR A GENERALIZED BANACH ASYMPTOTIC DISTRIBUTION FOR AN OCCUPANCY PROBLEM WITH ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF MAXIMUM LIKELIHOOD ESTIMAT ASYMPTOTIC DISTRIBUTION OF SAMPLE QUANTILES ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS ASYMPTOTIC DISTRIBUTION OF THE AUTOCORRELATIONS OF A ASYMPTOTIC DISTRIBUTION OF THE PISSUAGE GOODNESS ASYMPTOTIC DISTRIBUTION OF THE AUTOCORRELATIONS OF A ASYMPTOTIC DISTRIBUTION OF THE MEDIAN AND A U- ASYMPTOTIC DISTRIBUTION OF THE AUTOCORRELATIONS OF A ASYMPTOTIC DISTRIBUTION OF THE MEDIAN AND A U- ASYMPTOTIC DISTRIBUTION OF THE MEDIAN AND A U- ASYMPTOTIC DISTRIBUTION OF THE AUTOCORRELATIONS OF A ASYMPTOTIC DISTRIBUTION OF THE MEDIAN AND A U- ASYMPTOTIC DISTRIBUTION OF THE AUTOCORRELATIONS OF A ASYMPTOTIC DISTRIBUTON OF THE AUTOCORRELATIONS OF A ASYMPTOTIC DISTRIBUTON OF THE AUTOCORRELATIONS OF A ASYMPTO	BIOKA67 BIOKA69 AMS 69 AMS 66 AMS 66 AMS 66 AMS 66 AMS 67 AMS 66	137 948 813 21 440 47 313 505 593 367 207 207 4846 1386 615 36 NO.6 615 36 1252 79 77 1409 72 1409 52 583 570 1011 1042 49 1285 467 1044 47 1044 48 467 1044 47 1044 48 48 48 48 48 48 48 48 48 48 48 48 4
SELECTED SUBSET THE DISCRETE CASE II ON THE DISCRETE CASE II ON THE DISCRETE CASE ON THE SEQUENTIAL ANALYSIS CERTAIN ONE-SIDED TESTS NS IN MULTIPLE LINEAR RECRESSION ON THE MATCH BOX PROBLEM STATISTICAL APPLICATIONS CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS AN THE WIENER PROCESS STATISTICS FROM BIVARIATE POPULATIONS BLY CENSORED SAMPLES, OF THE PARAMETERS OF THE FIRST CTIONS OF ORDER STATISTICS WITH APPLICATIONS TO E/ ORS IN A LINEAR MODEL WITH AUTOREGRESSIVE DISTURB/ A NOTE ON THE OF THE TWO-SAMPLE RANK VECTOR ON THE INFLUENCE OF MOMENTS ON THE OF FIT CRITERIA FOR MARKOV CHAINS AND MAR/ ON THE STATISTIC JOINT A DENUMERABLE NUMBER OF STATES SOME PROBLEM FOR SMALLER PERCENTILES OF A GAMMA DISTRIBUTION TESTS FOR REGRESSION PARAMETERS TS ON A DISTRIBUTION—FREE METHOD OF ESTIMATING ESTIMATINC THE MEAN ON THE	ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIO ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES; ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES; ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF DENSITIES WITH APPLICATIONS TO ASYMPTOTIC BEHAVIOR OF EXPECTED SAMPLE SIZE IN ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC DISTRIBUTION FOR A GENERALIZED BANACH ASYMPTOTIC DISTRIBUTION FOR AN OCCUPANCY PROBLEM WITH ASYMPTOTIC DISTRIBUTION FOR THE DETERMINANT OF A NON- ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF ASYMPTOTIC DISTRIBUTION OF DISTRANCES BETWEEN ORDER ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF SAMPLE QUANTILES ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS ASYMPTOTIC DISTRIBUTION OF THE WEDIAN AND A U- ASYMPTOTIC DISTRIBUTION OF THE MEDIAN AND A U- ASYMPTOTIC DISTRIBUTION OF THE MEDIAN AND A U- ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH ASYMPTOTIC DISTRIBUTION FOR THE COUPON COLLECTOR'S ASYMPTOTIC DISTRIBUTION FOR THE COUPON COLLECTOR'S ASYMPTOTIC EFFICIENCY OF A CLASS OF NON-PARAMETRIC TES	BIOKA67 BIOKA69 BIOKA69 AMS 65 AMS 65 AMS 664 AMS 663 AMS 664 AMS 663 JASS 667 TECH 61 SASJ 68 AMS 69 AMS 661	137 948 813 21 440 47 313 505 593 367 207 665 484 8188 889 52 583 570 1101 11042 49 1296 144 285 1835 1835 1835 1835 1835 1835 1835 18
SELECTED SUBSET THE DISCRETE CASE II ON THE DISCRETE CASE II ON THE SEQUENTIAL ANALYSIS ON THE CERTAIN ONE-SIDED TESTS NS IN MULTIPLE LINEAR RECRESSION MATCH BOX PROBLEM STATISTICAL APPLICATIONS CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS AN CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS AND THE STATISTICAL APPLICATIONS CENTRAL B STATISTIC IN MULTIVARIATE OF THE FIRST CENTRAL B STATISTIC IN MULTIVARIATE OF THE FIRST CENTRAL B STATISTIC IN MULTIVARIATE OF THE FIRST CTIONS OF ORDER STATISTICS WITH APPLICATIONS TO E/ ORS IN A LINEAR MODEL WITH AUTOREGRESSIVE DISTURE/ A NOTE ON THE OF THE TWO-SAMPLE RANK VECTOR ON THE INFLUENCE OF MOMENTS ON THE OF FIT CRITERIA FOR MARKOV CHAINS AND MAR/ ON THE SAMPLE FROM A LINEAR STOCHASTIC PROCESS ON THE STATISTIC A DENUMERABLE NUMBER OF STATES SOME FROBLEM FOR SMALLER PERCENTILES OF A GAMMA DISTRIBUTION TESTS FOR REGRESSION PARAMETERS TS ON A DISTRIBUTION-FREE METHOD OF ESTIMATING ESTIMATING THE MEAN ON THE SIMATOR SEQUENCE (CORR. 67 196) A NOTE ON THE	ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTION ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTION ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES: ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF BAYES: ESTIMATES IN THE ASYMPTOTIC BEHAVIOR OF DENSITIES WITH APPLICATIONS TO ASYMPTOTIC BEHAVIOR OF POSITIES WITH APPLICATIONS TO ASYMPTOTIC BEHAVIOR OF FUNCTIONS ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIO ASYMPTOTIC BEHAVIOR OF POSTERIOR DISTRIBUTIONS ASYMPTOTIC BEHAVIOR OF QUEUES ASYMPTOTIC DISTRIBUTION FOR A GENERALIZED BANACH ASYMPTOTIC DISTRIBUTION FOR AN OCCUPANCY PROBLEM WITH ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOU ASYMPTOTIC DISTRIBUTION OF MAXIMUM LIKELIHOOD ESTIMAT ASYMPTOTIC DISTRIBUTION OF SAMPLE QUANTILES ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS ASYMPTOTIC DISTRIBUTION OF THE AUTOCORRELATIONS OF A ASYMPTOTIC DISTRIBUTION OF THE PISSUAGE GOODNESS ASYMPTOTIC DISTRIBUTION OF THE AUTOCORRELATIONS OF A ASYMPTOTIC DISTRIBUTION OF THE MEDIAN AND A U- ASYMPTOTIC DISTRIBUTION OF THE AUTOCORRELATIONS OF A ASYMPTOTIC DISTRIBUTION OF THE MEDIAN AND A U- ASYMPTOTIC DISTRIBUTION OF THE MEDIAN AND A U- ASYMPTOTIC DISTRIBUTION OF THE AUTOCORRELATIONS OF A ASYMPTOTIC DISTRIBUTION OF THE MEDIAN AND A U- ASYMPTOTIC DISTRIBUTION OF THE AUTOCORRELATIONS OF A ASYMPTOTIC DISTRIBUTON OF THE AUTOCORRELATIONS OF A ASYMPTOTIC DISTRIBUTON OF THE AUTOCORRELATIONS OF A ASYMPTO	BIOKA67 BIOKA69 AMS 69 AMS 69 AMS 64 AMS 63 AMS 65 AMS 65 JRSSB69 JRSSB69 JRSSB69 JRSSB69 JRSSB69 AMS 64 AMS 65 AMS 65 AMS 65 AMS 66 AMS 66 AMS 66 AMS 66 JRSSB68 AMS 61 AMS 66 AMS 66 AMS 66 AMS 66 JRSSB68	137 948 813 21 440 47 313 505 593 367 207 207 207 486 665 454 846 615 36 665 80 464 1252 77 77 1409 52 583 570 1011 1042 49 1126 49 1126 49 1126 49 1126 49 1127 49 1128 1128 1128 1128 1128 1128 1128 112

ASY - AUT TITLE WORD INDEX

```
POWERFUL RANK TESTS
                                                      ASYMPTOTIC EFFICIENCY OF CERTAIN LOCALLY MOST
                                                                                                             AMS 61
                                                      ASYMPTOTIC EFFICIENCY OF CERTAIN RANK TESTS FOR
COMPARATIVE EXPERIMENT
                                                                                                             AMS 67
                                                                                                                      90
                                                      ASYMPTOTIC EFFICIENCY OF CLASS OF C-SAMPLE TESTS
                                                                                                             AMS 64 102
                                                  THE ASYMPTOTIC EFFICIENCY OF DANIELS'S GENERALIZED
CORRELATION CORRECTENT
                                                                                                             BIOKA63 499
CORRELATION COEFFICIENTS
                                                 THE ASYMPTOTIC EFFICIENCY OF DANIELS'S CENERALIZED
                                                                                                             JRSSB61 128
                                       A NOTE ON THE ASYMPTOTIC EFFICIENCY OF FRIEDMAN'S CHI-SQUARE-SUB-R-
TEST
                                                                                                            BIOKA67
                                                                                                                      677
                                         ON THE ASYMPTOTIC EFFICIENCY OF LEAST SQUARES ESTIMATORS AMS 66 1676
                                                                                                              AMS 67 1753
                                                     ASYMPTOTIC EFFICIENCY OF MULTIVARIATE NORMAL SCORE
 AN EXAMPLE OF LARCE DISCREPANCY BETWEEN MEASURES OF ASYMPTOTIC EFFICIENCY OF TESTS
                                                                                                              AMS 6B 179
FOR A BALANCED INCOMPLETE BLOCK DESIGN THE ASYMPTOTIC EFFICIENCY OF THE CHI-SQUARE-SUB R-TEST
                                                                                                             BIOKA59
                                               ON THE ASYMPTOTIC EFFICIENCY OF THE KOLMO OROV SMIRNOV TEST JASA 65 B43
                                                      ASYMPTOTIC EFFICIENCY OF THE TWO SAMPLE KOLMOCOROV-
                                                                                                            JASA 67
                                                                                                                      932
S OF WILCOXON'S TWO SAMPLE TEST
                                                     ASYMPTOTIC EFFICIENCY OF TWO NONPARAMETRIC GOMPETITOR JASA 67
                                                                                                                      939
                                                 THE ASYMPTOTIC ERROR OF ITERATIONS
                                                                                                              AMS 6B 266
ETRIC TWO-WAY CLASSIFICATION WITH PRESCRIBED MAXIMUM ASYMPTOTIC ERROR PROBABILITY
                                                                                        SEQUENTIAL NONPARAM
                                                                                                             AMS 69 445
                                                  AN ASYMPTOTIC EXPANSION FOR POSTERIOR DISTRIBUTIONS
                                                                                                              AMS 67 1B99
                                                  AN ASYMPTOTIC EXPANSION FOR THE DISTRIBUTION OF THE
LINEAR DISCRIMINANT FUNCTION
                                                                                                              AMS 63 1286
                                                  AN ASYMPTOTIC EXPANSION FOR THE DISTRIBUTION OF THE LATE AMS 65 1153
NT ROOTS OF THE ESTIMATED GOVARIANCE MATRIX
INTECRAL AND MILL'S RATIO
                                               A NEW ASYMPTOTIC EXPANSION FOR THE NORMAL PROBABILITY
                                                                                                           JRSSB62 177
OF A DENSITY
                                                      ASYMPTOTIC EXPANSIONS ASSOCIATED WITH THE N'TH POWER
                                                                                                             AMS 67 1266
FUNCTIONS
                                                      ASYMPTOTIC EXPANSIONS FOR A CLASS OF DISTRIBUTION
                                                                                                              AMS 63 1302
FOR LINEAR AUTOREGRESSIVE SCHEMES
                                                      ASYMPTOTIC EXPANSIONS FOR TESTS OF COODNESS OF FIT
                                                                                                             BIOKA64 459
THE SERIAL CORRELATION COEFFICIENT
                                                      ASYMPTOTIC EXPANSIONS FOR THE MEAN AND VARIANCE OF
                                                                                                             BIOKA61
                                                                                                                      85
TION OF CORRELATION COEFFICIENT
                                                      ASYMPTOTIC EXPANSIONS FOR THE MOMENTS OF THE DISTRIBU BIOKA66
                                         CENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER TYPE
                                                                                                              AMS 68 1264
ELIHOOD RATIO CRITERIA FOR COVARIANCE MATRIX

ASYMPTOTIC EXPANSIONS OF THE DISTRIBUTIONS OF THE LIK AMS 69 NO.6

F THE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE/

ASYMPTOTIC EXPANSIONS OF THE NON-NULL DISTRIBUTIONS O

AMS 69 942
OCEDURES FOR RANKING PROBLEM A COMPARISON OF THE ASYMPTOTIC EXPECTED SAMPLE SIZES OF TWO SEQUENTIAL PR
                                                                                                             . AMS 69 NO 6
                                                     ASYMPTOTIC EXTREMES FOR M-DEPENDENT RANDOM VARIABLES
                                                                                                              AMS 64 1322
                                                  AN ASYMPTOTIC FORMULA FOR THE DIFFERENCES OF THE POWERS
                                                                                                             AMS 61 249
NOTES ESTIMATION OF NON-LINEAR PARAMETERS FOR A NON-ASYMPTOTIC FUNCTION
                                                                                                             BIOCS68 439
                                                     ASYMPTOTIC INFERENCE IN MARKOV PROCESSES
                                                                                                              AMS 65 97B
STATISTICS FROM MULTIVARIATE DISTRIBUTIONS
                                                      ASYMPTOTIC JOINT DISTRIBUTION OF LINEAR SYSTEMATIC
                                                                                                             JASA 69 300
RECRESSION PARAMETER
                                                     ASYMPTOTIC LINEARITY OF A RANK STATISTIC IN
                                                                                                              AMS 69 NO.6
                                           LOCAL AND ASYMPTOTIC MINIMAX PROPERTIES OF MULTIVARIATE TESTS
                                                                                                              AMS 64 21
                                                  ON ASYMPTOTIC MOMENTS OF EXTREME STATISTICS
                                                                                                              AMS 64 1738
ARES ESTIMATORS FOR FAMILIES OF LINEAR REGRESSIONS ASYMPTOTIC NORMALITY AND CONSISTENCY OF THE LEAST SQU
                                                                                                             AMS 63 447
                                                      ASYMPTOTIC NORMALITY IN NONPARAMETRIC METHODS
                                                                                                              AMS 68 905
                                                   ON ASYMPTOTIC NORMALITY IN STOCHASTIC APPROXIMATION
                                                                                                              AMS 6B 1327
                                                      ASYMPTOTIC NORMALITY OF BISPECTRAL ESTIMATES
                                                                                                              AMS 66 1257
                                                      ASYMPTOTIC NORMALITY OF CERTAIN TEST STATISTICS OF
EXPONENTIALITY
                                                                                                             BIOKA64 253
                                                      ASYMPTOTIC NORMALITY OF LINEAR COMBINATIONS OF
FUNCTIONS OF ORDER STATISTICS
                                                                                                             AMS 69 NO.6
                         AN ELEMENTARY PROOF OF ASYMPTOTIC NORMALITY OF LINEAR FUNCTIONS OF ORDER
                                                                                                              AMS 6B 263
                                              ON THE ASYMPTOTIC NORMALITY OF ONE-SIDED STOPPING RULES
                                                                                                              AMS 68 1493
DEPENDENT PROCESSES
                                                      ASYMPTOTIC NORMALITY OF SAMPLE QUANTILES FOR M-
                                                                                                              AMS 6B 1724
                                                      ASYMPTOTIC NORMALITY OF SIMPLE LINEAR RANK STATISTICS AMS 68 325
UNDER ALTERNATIVES
UNDER ALTERNATIVES, II
                                                      ASYMPTOTIC NORMALITY OF SIMPLE LINEAR RANK STATISTICS AMS 69 NO.6
                                       A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON JASA 61 687
D WITH THE TWO-SAMPLE PROBLEM
                                                 THE ASYMPTOTIC NORMALITY OF TWO TEST STATISTICS ASSOCIATE AMS 63 1513
                                             EPSILON ASYMPTOTIC OPTIMALITY OF EMPIRICAL BAYES ESTIMATORS BIOKA69 220
                                                     ASYMPTOTIC OPTIMUM PROPERTIES OF CERTAIN SEQUENTIAL
                                                                                                             AMS 68 1244
E PARAMETERS OF THE NECATIVE EXPONENTIAL DISTRIBU/ ASYMPTOTIC OPTIMUM QUANTILES FOR THE ESTIMATION OF TH AMS 66 143
                                               LOCAL ASYMPTOTIC POWER AND EFFICIENCY OF TESTS OF KOLMOCORO AMS 67 1705
V-SMIRNOV TYPE
IRST AND SECOND DIFFERENCES, FOR SERIAL CORRELATI/ ASYMPTOTIC POWER OF CERTAIN TEST CRITERIA, BASED ON F AMS 62 186
                                                     ASYMPTOTIC POWER OF GHI SQUARE TESTS FOR LINEAR
TRENDS IN PROPORTIONS
                                                                                                           BIOCS68 315
  ELEMENTARY METHOD OF OBTAINING LOWER BOUNDS ON THE ASYMPTOTIC POWER OF RANK TESTS
                                                                                                         AN AMS 68 2128
THE PROBIT AND LOCIT TRANSFORMATIONS, CORR. 64 12/ ASYMPTOTIC POWER OF TESTS OF LINEAR HYPOTHESES USINC JASA 62 877
TESTS ON THE ASYMPTOTIC POWER OF THE ONE-SAMPLE KOLMOCOROV-SMIRNOV AMS 65 1000
CORRELATIONS
                                                 THE ASYMPTOTIC POWERS OF CERTAIN TESTS BASED ON MULTIPLE JRSSB56 227
FOR TIME SERIES
                                                  THE ASYMPTOTIC POWERS OF CERTAIN TESTS OF COODNESS OF FIT JRSSB58
                                                  THE ASYMPTOTIC POWERS OF MULTIVARIATE TESTS WITH GROUPED JRSSB68 338
DATA
                                                     ASYMPTOTIC PROPERTIES OF AN AGE DEPENDENT BRANCHING
                                                                                                             AMS 65 1565
PROCESS
PLANS (CORR. 67 586)
                                                      ASYMPTOTIC PROPERTIES OF BAYESIAN SINGLE SAMPLING
                                                                                                            JRSSB67 162
S WHEN SAMPLING FROM ASSOCIATED POPULATIONS
                                                 THE ASYMPTOTIC PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATOR BIOKA62
                                                                                                                     2.05
                                                     ASYMPTOTIC PROPERTIES OF NON-LINEAR LEAST SQUARES AMS 69
WEIBULL PARAMETERS
                                                      ASYMPTOTIC PROPERTIES OF SEVERAL ESTIMATORS OF
                                                                                                            TECH 65
                                                                                                                     423
OF CIRCULAR ERROR
                                                     ASYMPTOTIC PROPERTIES OF SOME ESTIMATORS OF QUANTILES JASA 66 618
                                                     ASYMPTOTIC PROPERTIES OF SPECTRAL ESTIMATES OF SECOND BIOKA69 375
 ORDER
 IN BIO-ASSAY
                                                     ASYMPTOTIC PROPERTIES OF THE BLOCK UP-AND-DOWN METHOD AMS 67 1822
                                     A NOTE ON SOME ASYMPTOTIC PROPERTIES OF THE LOCARITHMIC SERIES
DISTRIBUTION
                                                                                                          BIOKA61 212
  THE EFFICIENCIES OF ALTERNATIVE ESTIMATORS FOR AN ASYMPTOTIC RECRESSION EQUATION
                                                                                                            RIOK 458
                                                                                                                     370
TESTS FOR TESTING TREND IN DISPERSI/ A NOTE ON THE ASYMPTOTIC RELATIVE EFFICIENCES OF COX AND STUART'S BIOKAGS 381
TESTS AGAINST SCALAR ALTERNATIVES THE ASYMPTOTIC RELATIVE EFFICIENCY OF COODNESS-OF-FIT JASA 65 410
 TWO SAMPLE TESTS ACAINST SOME PARAMETRIG ALTERNA/ ASYMPTOTIC RELATIVE EFFICIENCY OF MOOD'S AND MASSEY'S AMS 62 1375
         THE AVERAGE CRITICAL VALUE METHOD AND THE ASYMPTOTIC RELATIVE EFFICIENCY OF TESTS
                                                                                                           BIOKA67
                                                                                                                     308
ORRELATION COEFFICI/ THE RELATION BETWEEN PITMAN'S ASYMPTOTIC RELATIVE EFFICIENCY OF TWO TESTS AND THE C AMS 63 1442
ON OF CLASSICAL RENEWAL THEORY
                                                     ASYMPTOTIC RENEWAL RESULTS FOR A NATURAL CENERALIZATI JRSSB67
                                                                                                                    141
A SET OF CORRELATION COEFFICIENTS FOR EQUALITY SOME ASYMPTOTIC RESULTS
                                                                                               ON TESTINC BIOKA68 513
                                                     ASYMPTOTIC SEQUENTIAL DESIGN OF EXPERIMENTS WITH TWO
                                                                                                            JRSSB66
RANDOM VARIABLES
                                                                                                                      73
TRUNCATION PARAMETERS
                                                     ASYMPTOTIC SHAPES FOR SEQUENTIAL TESTING OF
                                                                                                             AMS 68 2038
                                                     ASYMPTOTIC SHAPES OF BAYES SEQUENTIAL TESTING REGIONS
                                                                                                             AMS 62
                                                                                                                    224
                                                     ASYMPTOTIC SOLUTIONS OF THE SEQUENTIAL COMPOUND
                                                                                                             AMS 63 1079
DECISION PROBLEM
    STOCHASTIC APPROXIMATION OF MINIMA WITH IMPROVED ASYMPTOTIC SPEED
                                                                                                             AMS 67
                                                                                                                     191
                                             ON THE ASYMPTOTIC SUFFICIENCY OF CERTAIN ORDER STATISTICS
                                                                                                            JRSSB62 167
                                          ON OPTIMAL ASYMPTOTIC TESTS OF COMPOSITE STATISTICAL HYPOTHESES
                                                                                                             AMS 67 1845
                                                     ASYMPTOTIC THEORY FOR PRINCIPAL COMPONENT ANALYSIS
                                                                                                             AMS 63 122
```

TITLE WORD INDEX ASY - AUT

OF A CIRCULAR DISTRIBUTION	ASYMPTOTIC THEORY OF A CLASS OF TESTS FOR UNIFORMITY		
	ASYMPTOTIC THEORY OF FIXED-SIZE SEQUENTIAL CONFIDENCE		
	ASYMPTOTIC THEORY OF FIXED-WIDTH SEQUENTIAL CONFIDENC		57
SIMPLE ESTIMATE OF LOCATION THE	ASYMPTOTIC THEORY OF CALTON'S TEST AND A RELATED		73
PROBABILITIES FROM A FINITE POPULATION	ASYMPTOTIC THEORY OF REJECTIVE SAMPLING WITH VARYING	AMS 64 149	
	ASYMPTOTIC VALUES OF CERTAIN COVERACE PROBABILITIES		
RENEWAL PROCESSES	ASYMPTOTIC VALUES OF THE FIRST TWO MOMENTS IN MARKOV		
	ASYMPTOTIC VARIANCE OF THE SAMPLE QUANTILES AND MID-	JRSSB61 45	
ON FISHER'S BOUND FOR		AMS 64 154	
	ASYMPTOTIC VARIANCES AND COVARIANCES OF MAXIMUM-LIKEL		
UNDER NORMALITY ASSUMPTIONS	ASYMPTOTIC VARIANCES FOR DUMMY VARIATE REGRESSION	JASA 67 130	
	ASYMPTOTIC VARIANCES OF METHOD OF MOMENTS ESTIMATES O		
	ASYMPTOTICALLY BAYES SEQUENTIAL TESTS ASYMPTOTICALLY DISTRIBUTION-FREE MULTIPLE COMPARISON	AMS 67 139 AMS 66 73	
	ASYMPTOTICALLY EFFICIENT GONFIDENCE BOUND FOR RELIABI		
	ASYMPTOTICALLY EFFICIENT CONSISTENT ESTIMATES OF THE		
RANKINGS	ASYMPTOTICALLY EFFICIENT TESTS BY THE METHOD OF N	JRSSB68 31	
	ASYMPTOTICALLY EXTINCT SEQUENTIAL PROCEDURES FOR	JRSSB66 37	
NAME OF THE PROPERTY OF THE PR		AMS 66 61	
PROBLEM LOCALLY AND	ASYMPTOTICALLY MINIMAX TESTS OF A MULTIVARIATE	AMS 68 17	
CROUPED DATA	ASYMPTOTICALLY MOST POWERFUL RANK ORDER TESTS FOR	AMS 67 122	
SAMPLE PROBLEM WITH CENSORED DATA	ASYMPTOTICALLY MOST POWERFUL RANK TESTS FOR THE TWO-		
	ASYMPTOTICALLY MOST POWERFUL RANK-ORDER TESTS	AMS 62 112	4
PROCESSES	ASYMPTOTICALLY MOST POWERFUL TESTS IN MARKOV	AMS 69 120	7
LTIPLIER TESTS OF LINEAR HYPOTHESES. LOCALLY	ASYMPTOTICALLY MOST STRINGENT TESTS AND LAGRANGIAN MU ASYMPTOTICALLY NEARLY EFFICIENT ESTIMATORS OF MULTIVA	BIOKA65 45	9
RIATE LOCATION PARAMETERS			-
'S T-SQUARE, CORR. 65 1583 ON SOME MODELS WITH ONE OBSERVATION PER CELL	ASYMPTOTICALLY NONPARAMETRIC COMPETITORS OF HOTELLING		
	ASYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR		
E APPROACH TO LINEAR MODELS	ASYMPTOTICALLY NONPARAMETRIC INFERENCE, AN ALTERNATIV	AMS 63 149 AMS 67 B4	
CONTRIBUTED TO	ASYMPTOTICALLY NORMAL	AMS 67 B4 AMS 67 41	-
IN SEQUENTIAL ESTIMATION	ASYMPTOTICALLY NORMAL ASYMPTOTICALLY OPTIMAL BAYES AND MINIMAX PROCEDURES	AMS 67 41	
	ASYMPTOTICALLY OPTIMAL BAYES AND MINIMAX PROCEDURES ASYMPTOTICALLY OPTIMAL FIXED SAMPLE SIZE PROCEDURE FO		
	ASYMPTOTICALLY OPTIMAL SEQUENTIAL DESIGN FOR COMPARIN		
INCREASING FAILURE RATE AVERAGE	ASYMPTOTICALLY OPTIMAL STATISTICS IN SOME MODELS WITH		
DISTRIBUTIONS	ASYMPTOTICALLY OPTIMAL TESTS FOR MULTIVARIATE NORMAL	AMS 67 182	
FOR RANDOMIZED EXPERIMENTS WITH NONCONTROLLED PRE/	ASYMPTOTICALLY OPTIMAL TESTS OF COMPOSITE HYPOTHESES		
DESIGN		AMS 63 70)5
DISTRIBUTIONS	ASYMPTOTICALLY OPTIMUM TESTS FOR MULTINOMIAL	AMS 65 36	9
	ASYMPTOTICALLY ROBUST ESTIMATORS OF LOCATION	JASA 67 95	0
THE	ASYMPTOTICALLY UNBIASED PRIOR DISTRIBUTION	AMS 65 113	7
GRITIGAL PROBABILITY IN THE ONE-QUADRANT ORIENTED-	-ATOM PERCOLATION PROCESS A LOWER BOUND FOR THE		
	ATTACHMENT OF YOUNG PEOPLE, CORR. 66 1248	JASA 66 11	
STOCHASTIC PHAGE	ATTACHMENT TO BACTERIA	BI0CS65 13	. 1
OF THE PARAMETER IN THE STOCHASTIC MODEL FOR PHAGE	ATTACHMENT TO BACTERIA ESTIMATION	AMS 68 1B	3
BULK SAMPLING. PROBLEMS AND LINES OF	ATTACK	TECH 62 31	9
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER	ATTITUDE DATA	TECH 62 31 JASA 69 NO.	9
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER TEN YEARS OF CONSUMER	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD	TECH 62 31 JASA 69 NO. JASA 63 89	9 4
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER TEN YEARS OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF	ATTIACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES	TECH 62 31 JASA 69 NO. JASA 63 89 JASA 58 72	3 9 4 9
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER TEN YEARS OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE	TECH 62 31 JASA 69 NO. JASA 63 89 JASA 58 72 JASA 64 98	3 9 4 9 9
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER TEN YEARS OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE	TECH 62 31 JASA 69 NO. JASA 63 89 JASA 58 72 JASA 64 98	3 9 4 9 9
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER TEN YEARS OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE	TECH 62 31 JASA 69 NO. JASA 63 89 JASA 58 72 JASA 64 98	3 9 4 9 9
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER TEN YEARS OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTRACTED TO STABLE LAWS	TECH 62 31 JASA 69 NO. JASA 63 89 JASA 58 72 JASA 64 98	3 9 4 9 9
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED DISTANCE BETWEEN POPULATIONS ON THE BASIS OF	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES -ATTITUDINAL VARIABLES THE PREDICTIVE ATTRACTED TO STABLE LAWS ATTRIBUTE LONGEST ATTRIBUTE DATA	TECH 62 31 JASA 69 NO. JASA 63 85 JASA 58 72 JASA 64 98 JASA 64 98 AMS 6B 138 BIOKA61 46 BIOCS 6B 85	33 9 4 99 10 37 92 97 31 31
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER TEN YEARS OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED DISTANCE BETWEEN POPULATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTRACTED TO STABLE LAWS ATTRIBUTE LONGEST ATTRIBUTE LIFE TESTING, CORR. 63 1161	TECH 62 31 JASA 63 80 JASA 58 72 JASA 64 98 JASA 64 98 JASA 64 98 AMS 6B 138 BIOKA61 46 BIOCS6B 85 JASA 62 66	33 9 4 99 10 37 32 37 31 31 31 39
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER TEN YEARS OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED DISTANCE BETWEEN POPULATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES -ATTITUDINAL VARIABLES THE PREDICTIVE ATTRACTED TO STABLE LAWS ATTRIBUTE ATTRIBUTE DATA ATTRIBUTE LIFE TESTING, CORR. 63 1161 ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS	TECH 62 31 JASA 69 NO. JASA 63 87 JASA 64 98 JASA 64 98 JASA 64 98 AMS 6B 138 BIOKA61 46 BIOCS6B 86 TECH 68 66	33 9 4 99 10 37 92 37 31 31 31 39
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED DISTANCE BETWEEN POPULATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES THE PREDICTIVE ATTRACTED TO STABLE LAWS ATTRIBUTE ATTRIBUTE LIFE TESTING, CORR. 63 1161 ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S	TECH 62 31 JASA 69 NO. JASA 63 87 JASA 64 98 JASA 64 98 JASA 64 98 AMS 6B 138 BIOKA61 46 BIOCS6B 85 JASA 62 66 TECH 68 66 TECH 67 40	33 9 4 99 10 37 32 37 31 31 31 39 4 19
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED DISTANCE BETWEEN POPULATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING VALIDATINC RESULTS OF SAMPLING INSPECTION BY	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES -ATTITUDINAL VARIABLES THE PREDICTIVE ATTRACTED TO STABLE LAWS ATTRIBUTE LONGEST ATTRIBUTE DATA ATTRIBUTE LIFE TESTING, CORR. 63 1161 ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES	TECH 62 31 JASA 69 NO. JASA 63 89 JASA 63 72 JASA 64 98 JASA 64 98 AMS 64 138 BIOKA61 46 BIOCS6B 85 JASA 62 66 TECH 68 64 TECH 68 64 TECH 67 40	33 9 4 99 10 37 37 31 51 59 58 7 11 33
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED DISTANCE BETWEEN POPULATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING VALIDATINC RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLINC IN CURTAILED SAMPLING PLANS BY	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTRACTED TO STABLE LAWS ATTRIBUTE LONGEST ATTRIBUTE DATA ATTRIBUTE LIFE TESTING, CORR. 63 1161 ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES ATTRIBUTES	TECH 62 31 JASA 69 NO. JASA 58 72 JASA 64 98 JASA 64 98 AMS 64 98 AMS 64 98 AMS 66 138 BIOKA61 46 BIOCS 6B 85 JASA 62 66 TECH 68 66 TECH 67 63 2 TECH 68 85	33 9 4 99 10 37 31 31 31 31 31 31 31 31 31 31 31 31 31
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED DISTANCE BETWEEN POPULATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING VALIDATINC RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLING IN CURTAILED SAMPLING PLANS BY OF FRACTION DEFECTIVE IN CURTAILED SAMPLING PLANS BY	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTRACTED TO STABLE LAWS ATTRIBUTE ATTRIBUTE DATA ATTRIBUTE LIFE TESTING, CORR. 63 1161 ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ESTIMATION	TECH 62 31 JASA 69 NO. JASA 63 87 JASA 64 98 JASA 64 98 JASA 64 98 AMS 6B 138 BIOKA61 46 BIOCS6B 85 JASA 62 66 TECH 68 66 TECH 67 40 TECH 63 2 TECH 67 21	33 9 4 99 10 37 31 11 19 18 17 1 13 4 9
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED DISTANCE BETWEEN POPULATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING VALIDATINC RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLING IN CURTAILED SAMPLING PLANS BY VERAGE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES -ATTITUDINAL VARIABLES -ATTITUDINAL VARIABLES -ATTRIBUTE DATA ATTRIBUTE DATA ATTRIBUTE LIFE TESTING, CORR. 63 1161 ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES ATTRI	TECH 62 31 JASA 69 N0. JASA 63 89 JASA 64 98 JASA 64 98 JASA 64 98 AMS 68 138 BIOKA61 46 BIOCS6B 85 JASA 62 66 TECH 68 66 TECH 67 40 TECH 63 2 TECH 68 85 TECH 67 21 TECH 67 68 68	33 9 4 9 9 10 37 9 1 3 1 4 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED DISTANCE BETWEEN POPULATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING VALIDATINC RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLING IN CURTAILED SAMPLING PLANS BY OF FRACTION DEFECTIVE IN CURTAILED SAMPLING PLANS BY VERAGE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE ON TWO SUCCESSIVE CENS/ METHOD OF CONSTRUCTION OF	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTRIBUTE ATTRACTED TO STABLE LAWS ATTRIBUTE LONGEST ATTRIBUTE DATA ATTRIBUTE LIFE TESTING, CORR. 63 1161 ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ACCEPTANCE SAMPLING PLANS THE A ATTRITION LIFE TABLES FOR THE SINGLE POPULATION BASED	TECH 62 31 JASA 69 NO. JASA 58 72 JASA 64 98 JASA 64 98 AMS 64 98 AMS 64 138 BIOKA61 65 66 TECH 68 66 TECH 67 63 2 TECH 67 68 85 JASA 62 66 TECH 67 67 TECH 67 68 85 TECH 67 68 85 JASA 67 143	33 9 4 9 9 0 37 12 37 13 14 9 15 3 4 9 15 3
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED DISTANCE BETWEEN POPULATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING VALIDATINC RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLING IN CURTAILED SAMPLING PLANS BY OF FRACTION DEFECTIVE IN CURTAILED SAMPLING PLANS BY VERAGE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE ON TWO SUCCESSIVE CENS/ METHOD OF CONSTRUCTION OF	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTRIBUTE ATTRACTED TO STABLE LAWS ATTRIBUTE LONGEST ATTRIBUTE LIFE TESTING, CORR. 63 1161 ATTRIBUTE LIFE TESTING, CORR. 63 1161 ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ACCEPTANCE SAMPLING PLANS ATTRIBUTES ACCEPTANCE SAMPLING PLANS ATTRITON LIFE TABLES FOR THE SINGLE POPULATION BASED (ATY'S FORMULAE AND MADOW'S CENTRAL LIMIT) /ING MOME	TECH 62 31 JASA 69 NO. JASA 58 72 JASA 64 98 JASA 64 98 AMS 64 98 AMS 64 138 BIOKA61 65 66 TECH 68 66 TECH 67 63 2 TECH 67 68 85 JASA 62 66 TECH 67 67 TECH 67 68 85 TECH 67 68 85 JASA 67 143	33 9 4 9 9 0 37 2 37 31 19 8 37 1 3 4 9 5 3 9
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS HOVING A SPECIFIED DISTANCE BETWEEN POPULATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING VALIDATINC RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLINC IN CURTAILED SAMPLING FLANS BY VERAGE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE ON TWO SUCCESSIVE CENS/ METHOD OF CONSTRUCTION OF NTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION ON THE USE OF CORRELATION TO	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTRIBUTE ATTRACTED TO STABLE LAWS ATTRIBUTE LONGEST ATTRIBUTE LIFE TESTING, CORR. 63 1161 ATTRIBUTE LIFE TESTING, CORR. 63 1161 ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ACCEPTANCE SAMPLING PLANS ATTRIBUTES ACCEPTANCE SAMPLING PLANS ATTRITON LIFE TABLES FOR THE SINGLE POPULATION BASED (ATY'S FORMULAE AND MADOW'S CENTRAL LIMIT) /ING MOME	TECH 62 31 JASA 69 N0. JASA 63 89 JASA 64 98 JASA 64 98 JASA 64 98 AMS 6B 138 BIOKA61 46 BIOCS6B 85 JASA 62 66 TECH 68 66 TECH 68 67 40 TECH 68 68 51	33 9 4 9 9 0 37 31 1 1 9 1 3 3 4 9 5 3 9 0
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING VALIDATINC RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLING IN CURTAILED SAMPLING PLANS BY VERAGE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE ON TWO SUCCESSIVE CENS/ METHOD OF CONSTRUCTION OF NTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION TO N SIMPLE LEAST SQUARES AND ANALYSIS OF/ PARAMETRIG	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTRIBUTE ATTRACTED TO STABLE LAWS ATTRIBUTE LONGEST ATTRIBUTE DATA ATTRIBUTE LIFE TESTING, CORR. 63 1161 ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ACCEPTANCE SAMPLING PLANS ATTRIBUTE ACCEPTANCE SAMPLING PLANS ATTRIBUTES THE ABLES FOR THE SINGLE POPULATION BASED (ATY'S FORMULAE AND MADOW'S CENTRAL LIMIT) /ING MOME AUGMENT DATA AUGMENTATIONS AND ERROR STRUCTURES UNDER WHICH CERTAI AUGMENTED DESIGNS	TECH 62 31 JASA 69 NO. JASA 58 72 JASA 64 98 JASA 64 98 AMS 6B 138 BIOKA61 46 BIOCS 6B 85 JASA 62 66 TECH 68 66 TECH 63 2 TECH 68 85 TECH 67 21 TECH 6B 68 JASA 67 143 BIOKA61 19 JASA 62 80 NO. TECH 66 1B	33 9 4 9 9 0 37 13 14 9 15 3 9 9 0 4
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED DISTANCE BETWEEN POPULATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING VALIDATINC RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLINC IN CURTAILED SAMPLING PLANS BY OF FRACTION DEFECTIVE IN CURTAILED SAMPLING PLANS BY VERAGE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE ON TWO SUCCESSIVE CENSY METHOD OF CONSTRUCTION OF NTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION ON THE USE OF CORRELATION TO N SIMPLE LEAST SQUARES AND ANALYSIS OF/ PARAMETRIG A NOTE ON	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTRACTED TO STABLE LAWS ATTRIBUTE ATTRIBUTE ATTRIBUTE DATA ATTRIBUTE LIFE TESTING, CORR. 63 1161 ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES AUGMENTATIONS AND ERROR STRUCTURES UNDER WHICH CERTAI AUGMENTATIONS AND ERROR STRUCTURES UNDER WHICH CERTAI AUGMENTED DESIGNS AUGMENTING EXISTINC DATA IN MULTIPLE REGRESSION	TECH 62 31 JASA 69 N0. JASA 63 89 JASA 64 98 JASA 64 98 AMS 68 138 BIOKA61 46 BIOCS 68 86 TECH 68 66 TECH 63 2 TECH 68 85 TECH 67 40 TECH 68 85 TECH 67 143 JASA 62 12 JASA 69 N0. TECH 66 1B TECH 66 1B	3 9 4 9 9 0 37 2 7 1 1 1 9 8 7 1 3 4 9 5 3 9 0 4 4 3
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED DISTANCE BETWEEN POPULATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING VALIDATINC RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLINC IN CURTAILED SAMPLING PLANS BY VERAGE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE ON TWO SUCCESSIVE CENS/ METHOD OF CONSTRUCTION OF NTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION ON THE USE OF CORRELATION TO N SIMPLE LEAST SQUARES AND ANALYSIS OF/ PARAMETRIG A NOTE ON	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTRIBUTE TO STABLE LAWS ATTRIBUTE DATA ATTRIBUTE DATA ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES ACCEPTANCE SAMPLING PLANS THE A ATTRIBUTE ACCEPTANCE SAMPLING PLANS ATTRIBUTES ACCEPTANCE SAMPLING PLANS THE A ATTRIBUTES ACCEPTANCE SAMPLING PLANS ATTRIBUTES ACCEPTANCE SAMPLING PLANS ATTRIBUTES AUGMENT DATA AUGMENT DATA AUGMENTATIONS AND ERROR STRUCTURES UNDER WHICH CERTAI AUGMENTED DESIGNS AUGMENTING EXISTINC DATA IN MULTIPLE REGRESSION AUGMENTING 2-TO-THE-(N-1) DESIGNS	TECH 62 31 JASA 69 N0. JASA 63 89 JASA 64 98 JASA 64 98 AMS 64 98 AMS 64 98 BIOKAG1 64 66 TECH 68 67 40 TECH 63 2 TECH 68 68 JASA 67 143 BIOKAG1 64 68 JASA 62 2 JASA 62 2 JASA 62 2 JASA 62 2 JASA 62 12 JASA 62 12 JASA 62 12 JASA 64 143 TECH 66 18 TECH 66 18 TECH 66 46	3 9 4 9 9 0 3 7 2 3 7 1 1 1 9 8 7 1 3 4 9 5 3 9 0 4 4 3 9
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING VALIDATING RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLING IN CURTAILED SAMPLING PLANS BY OF FRACTION DEFECTIVE IN CURTAILED SAMPLING PLANS BY VERAGE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE ON TWO SUCCESSIVE CENS/ METHOD OF CONSTRUCTION OF NTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION OF	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTRIBUTE TO STABLE LAWS ATTRIBUTE DATA ATTRIBUTE LIFE TESTING, CORR. 63 1161 ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES ACCEPTANCE SAMPLING PLANS THE A ATTRITION LIFE TABLES FOR THE SINGLE POPULATION BASED (ATY'S FORMULAE AND MADOW'S CENTRAL LIMIT) /ING MOME AUGMENT DATA AUGMENTATIONS AND ERROR STRUCTURES UNDER WHICH CERTAI AUGMENTED DESIGNS AUGMENTING EXISTINC DATA IN MULTIPLE REGRESSION AUGMENTING 2-TO-THE-(N-1) DESIGNS AURELIA AND PARAMECIUM CAUDATUM /MENTS CARRIED OUT	TECH 62 31 JASA 69 N0. JASA 58 72 JASA 64 98 JASA 64 98 AMS 68 138 BIOKA61 62 66 TECH 63 66 TECH 63 2 TECH 63 2 TECH 66 68 JASA 67 143 BIOKA61 19 JASA 69 N0. TECH 66 1B TECH 66 1B TECH 66 1B TECH 66 1B TECH 66 46 BIOKA57 31	3 9 4 9 9 0 7 12 7 11 11 9 8 7 11 3 4 9 5 3 9 0 4 4 3 9 4
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED DISTANCE BETWEEN POPULATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING VALIDATINC RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLINC IN CURTAILED SAMPLING PLANS BY OF FRACTION DEFECTIVE IN CURTAILED SAMPLING PLANS BY VERACE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE ON TWO SUCCESSIVE CENS/ METHOD OF CONSTRUCTION OF NTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION ON THE USE OF CORRELATION TO N SIMPLE LEAST SQUARES AND ANALYSIS OF/ PARAMETRIG A NOTE ON BY GAUSE WITH POPULATIONS OF THE PROTOZOA PARAMECIUM	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTRACTED TO STABLE LAWS ATTRIBUTE ATTRIBUTE ATTRIBUTE DATA ATTRIBUTE LIFE TESTING, CORR. 63 1161 ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES AUTRIBUTES ATTRIBUTES AUTRIBUTES AUT	TECH 62 31 JASA 69 NO. JASA 58 72 JASA 64 98 JASA 64 98 AMS 6B 138 BIOKA61 46 BIOCS 6B 86 TECH 68 66 TECH 63 42 TECH 67 21 TECH 68 66 JASA 67 143 BIOKA61 19 JASA 69 NO. TECH 66 18 TECH 66 18 TECH 66 18 TECH 66 7 TECH 66 7 TECH 66 18 TECH 66 31 TECH 66 31 TECH 65 31	39499072711198713495390443949
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS NOT THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING VALIDATING RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLING IN CURTAILED SAMPLING PLANS BY OF FRACTION DEFECTIVE IN CURTAILED SAMPLING PLANS BY VERAGE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE ON TWO SUCCESSIVE CENS/ METHOD OF CONSTRUCTION OF NTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION ON ON THE USE OF CORRELATION TO N SIMPLE LEAST SQUARES AND ANALYSIS OF/ PARAMETRIG A NOTE ON BY GAUSE WITH POPULATIONS OF THE PROTOZOA PARAMECIUM CURTIUS SNODGRASS LETTERS, A STATISTICAL TEST OF	ATTACK ATTITUDE DATA ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTRIBUTE TO STABLE LAWS ATTRIBUTE TO STABLE LAWS ATTRIBUTE DATA ATTRIBUTE DATA ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES AUTHORISH AUGMENT DATA AUGMENT DATA AUGMENT DATA AUGMENTED DESIGNS AUGMENTING EXISTINC DATA IN MULTIPLE REGRESSION AUGMENTING EXISTINC DATA IN MULTIPLE REGRESSION AUGMENTING 2-TO-THE-(N-1) DESICNS AUHON'S REPLY TO ANSCOMBE'S COMMENTS AUTHORSHIP MARK TWAIN AND THE QUINTUS	TECH 62 31 JASA 69 NO. JASA 63 89 JASA 64 98 JASA 64 98 JASA 64 98 AMS 68 138 BIOKA61 46 BIOCS6B 85 JASA 62 66 TECH 68 67 40 TECH 68 68 JASA 67 143 BIOKA61 143 BIOKA61 12 TECH 66 12 JASA 69 NO. TECH 66 17 TECH 66 18 TECH 66 146 BIOKA57 31 TECH 65 16 JASA 63 8	3 9 4 9 0 7 2 7 1 1 1 9 8 7 1 3 4 9 5 3 9 0 4 4 3 9 4 9 5
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING VALIDATINC RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLING IN CURTAILED SAMPLING PLANS BY VERAGE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE ON TWO SUCCESSIVE CENS/ METHOD OF CONSTRUCTION OF NTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION TO N SIMPLE LEAST SQUARES AND ANALYSIS OF/ PARAMETRIG A NOTE ON BY GAUSE WITH POPULATIONS OF THE PROTOZOA PARAMECIUM CURTIUS SNODGRASS LETTERS, A STATISTICAL TEST OF INFERENCE IN AN	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES -ATTITUDINAL VARIABLES -ATTITUDINAL VARIABLES -ATTRIBUTE TO STABLE LAWS ATTRIBUTE DATA ATTRIBUTE DATA ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES ACCEPTANCE SAMPLING PLANS ATTRIBUTES ACTRIBUTES AUGMENTA DATA AUGMENTATIONS AND ERROR STRUCTURES UNDER WHICH CERTAI AUGMENTAD DATA AUGMENTATIONS AND ERROR STRUCTURES UNDER WHICH CERTAI AUGMENTING EXISTINC DATA IN MULTIPLE REGRESSION AUGMENT	TECH 62 31 JASA 69 N0. JASA 63 89 JASA 62 98 JASA 64 98 AMS 68 138 BIOKA61 62 66 TECH 63 64 TECH 63 64 TECH 66 68 JASA 67 143 BIOKA61 19 JASA 62 92 JASA 69 N0. TECH 66 1B TECH 68 64 TECH 68 77 TECH 68 64 TECH 68 77 TECH 66 1B TECH 66 66 TECH 68 77 TECH 66 66 TECH 68 78 TECH 66 66 TECH 68 78 TECH 68 68 TECH	3 9 4 9 0 7 2 7 1 1 1 9 8 7 1 3 4 9 5 3 9 0 4 4 3 9 4 9 5 5
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED DISTANCE BETWEEN POPULATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING VALIDATINC RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLINC IN CURTAILED SAMPLING PLANS BY OF FRACTION DEFECTIVE IN CURTAILED SAMPLING PLANS BY VERACE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE ON TWO SUCCESSIVE CENS/ METHOD OF CONSTRUCTION OF NTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION ON THE USE OF CORRELATION TO N SIMPLE LEAST SQUARES AND ANALYSIS OF/ PARAMETRIG A NOTE ON BY GAUSE WITH POPULATIONS OF THE PROTOZOA PARAMECIUM CURTIUS SNODGRASS LETTERS, A STATISTICAL TEST OF INFERENCE IN AN BAYESIAN ANALYSIS OF THE RECRESSION MODEL WITH	ATTACK ATTITUDE DATA ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTREDITE ATTREBUTE ATTRIBUTE ATTRIBUTE LIFE TESTING, CORR. 63 1161 ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES AUTHORISHES ATTRIBUTES AUTHORISH PROBLEMS AUGMENT DATA AUGMENTATIONS AND ERROR STRUCTURES UNDER WHICH CERTAI AUGMENTED DESIGNS AUGMENTING EXISTINC DATA IN MULTIPLE REGRESSION AUGMENTA AND PARAMECIUM CAUDATUM /MENTS CARRIED OUT AUTHORSHIP MARK TWAIN AND THE QUINTUS AUTHORSHIP MARK TWAIN AND THE QUINTUS AUTHORSHIP MARK TWAIN AND THE QUINTUS	TECH 62 31 JASA 69 NO. JASA 58 72 JASA 64 98 JASA 64 98 AMS 6B 138 BIOKA61 46 BIOCS 6B 85 JASA 62 66 TECH 63 66 TECH 63 2 TECH 63 2 TECH 68 68 JASA 67 143 BIOKA61 19 JASA 62 69 NO. TECH 66 1B TECH 66 1B TECH 66 1B TECH 66 7 TECH 66 1B TECH 66 1B TECH 66 1B TECH 65 16 JASA 63 27 JASA 63 27 JASA 63 27 JASA 63 27 JASA 64 76	3 9 4 9 0 7 2 7 1 1 1 9 8 7 1 3 4 9 5 3 9 0 4 4 3 9 4 9 5 5 3
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED DISTANCE BETWEEN POPULATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING VALIDATINC RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLINC IN CURTAILED SAMPLING PLANS BY OF FRACTION DEFECTIVE IN CURTAILED SAMPLING PLANS BY VERAGE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE ON TWO SUCCESSIVE CENS/ METHOD OF CONSTRUCTION OF NTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION TO N SIMPLE LEAST SQUARES AND ANALYSIS OF/ PARAMETRIG A NOTE ON BY GAUSE WITH POPULATIONS OF THE PROTOZOA PARAMECIUM CURTIUS SNODGRASS LETTERS, A STATISTICAL TEST OF INFERENCE IN AN BAYESIAN ANALYSIS OF THE RECRESSION MODEL WITH ON HOTELLING'S WEIGHING DESIGNS UNDER	ATTACK ATTITUDE DATA ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTRIBUTE TO STABLE LAWS ATTRIBUTE LIFE TESTING, CORR. 63 1161 ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES AUGMENT ABLES FOR THE SINCLE POPULATION BASED (ATY'S FORMULAE AND MADOW'S CENTRAL LIMIT) /ING MOME AUGMENT DATA AUGMENTATIONS AND ERROR STRUCTURES UNDER WHICH CERTAI AUGMENTING EXISTINC DATA IN MULTIPLE REGRESSION AUGMENTING EXISTINC DATA IN MULTIPLE REGRESSION AUGMENTING EXISTINC DATA IN MULTIPLE REGRESSION AUGMENTING 2-TO-THE-(N-1) DESIGNS AUGMENTING 2-TO-THE-(N-1) DESIGNS AUGMENTING SEPLY TO ANSCOMBE'S COMMENTS AUTHORSHIP MARK TWAIN AND THE QUINTUS AUTHORSHIP PROBLEM AUTO-CORRELATED ERRORS AUTO-CORRELATED ERRORS	TECH 62 31 JASA 69 NO. JASA 63 89 JASA 64 98 JASA 64 98 JASA 64 98 AMS 6B 138 BIOKAG1 46 BIOCSGB 85 JASA 62 66 TECH 68 67 40 TECH 68 68 JASA 67 143 BIOKAG1 43 BIOKAG1 43 BIOKAG1 67 143 BIOKAG1 67 143 BIOKAG1 67 143 BIOKAG1 16 68 JASA 68 70 TECH 66 16 16 JASA 63 8 JASA 63 8 JASA 63 8 JASA 63 76 JASA 64 76 AMS 65 182	3 9 4 9 0 7 2 7 1 1 1 9 8 7 1 3 4 9 5 3 9 0 4 4 3 9 4 9 5 5 3 9
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED DISTANCE BETWEEN POPULATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN RISK THE DETERMINATION OF SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING VALIDATINC RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLINC IN CURTAILED SAMPLING PLANS BY VERAGE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE ON TWO SUCCESSIVE CENS/ METHOD OF CONSTRUCTION OF NTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION ON THE USE OF CORRELATION TO N SIMPLE LEAST SQUARES AND ANALYSIS OF/ PARAMETRIG A NOTE ON BY GAUSE WITH POPULATIONS OF THE PROTOZOA PARAMECIUM CURTIUS SNODGRASS LETTERS, A STATISTICAL TEST OF INFERENCE IN AN BAYESIAN ANALYSIS OF THE RECRESSION MODEL WITH ON HOTELLING'S WEICHING DESIGNS UNDER HER ORDER SCHEM/ TESTS OF HYPOTHESES IN THE LINEAR	ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTRIBUTE TO STABLE LAWS ATTRIBUTE DATA ATTRIBUTE DATA ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES ACCEPTANCE SAMPLING PLANS THE A ATTRIBUTE ACCEPTANCE SAMPLING PLANS ATTRIBUTES ACCEPTANCE SAMPLING PLANS THE A ATTRIBUTES ACCEPTANCE SAMPLING PLANS AUGMENT DATA AUGMENT DATA AUGMENT DATA AUGMENT DATA AUGMENTIONS AND ERROR STRUCTURES UNDER WHICH CERTAI AUGMENTING EXISTINC DATA IN MULTIPLE REGRESSION AUGMENTING EXISTINC DATA IN MULTIPLE REGRESSION AUGMENTINC 2-TO-THE-(N-1) DESICNS AURBELIA AND PARAMECIUM CAUDATUM /MENTS CARRIED OUT AUTHOR'S REPLY TO ANSCOMBE'S COMMENTS AUTHORSHIP MARK TWAIN AND THE QUINTUS AUTHORSHIP MARK TWAIN AND THE QUINTUS AUTHORSHIP MARK TWAIN AND THE QUINTUS AUTHORSHIP MARK TWAIN AND THE AUTHORSHIP MARK TWAIN AND THE QUINTUS AUTHORSHIP MARK TWAIN AND THE QUIN	TECH 62 31 JASA 69 NO. JASA 63 89 JASA 64 98 JASA 64 98 JASA 64 98 AMS 6B 138 BIOKAG1 46 BIOCSGB 85 JASA 62 66 TECH 68 67 40 TECH 68 68 JASA 67 143 BIOKAG1 43 BIOKAG1 43 BIOKAG1 67 143 BIOKAG1 67 143 BIOKAG1 67 143 BIOKAG1 16 68 JASA 68 70 TECH 66 16 16 JASA 63 8 JASA 63 8 JASA 63 8 JASA 63 76 JASA 64 76 AMS 65 182	3 9 4 9 0 7 2 7 1 1 1 9 8 7 1 3 4 9 5 3 9 0 4 4 3 9 4 9 5 5 3 9 6
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED DISTANCE BETWEEN POPULATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING VALIDATINC RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLINC IN CURTAILED SAMPLING PLANS BY OF FRACTION DEFECTIVE IN CURTAILED SAMPLING PLANS BY VERAGE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE ON TWO SUCCESSIVE CENS/ METHOD OF CONSTRUCTION OF NTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION TO N SIMPLE LEAST SQUARES AND ANALYSIS OF/ PARAMETRIG A NOTE ON BY GAUSE WITH POPULATIONS OF THE PROTOZOA PARAMECIUM CURTIUS SNODGRASS LETTERS, A STATISTICAL TEST OF INFERENCE IN AN BAYESIAN ANALYSIS OF THE RECRESSION MODEL WITH ON HOTELLING'S WEIGHING DESIGNS UNDER	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTRIBUTE ATTRACTED TO STABLE LAWS ATTRIBUTE DATA ATTRIBUTE LIFE TESTING, CORR. 63 1161 ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES ACCEPTANCE SAMPLING PLANS THE A ATTRITION LIFE TABLES FOR THE SINGLE POPULATION BASED ATT'S FORMULAE AND MADOW'S CENTRAL LIMIT) /ING MOME AUGMENT DATA AUGMENTATIONS AND ERROR STRUCTURES UNDER WHICH CERTAI AUGMENTING EXISTINC DATA IN MULTIPLE REGRESSION AUGMENTING EXISTINC DATA IN MULTIPLE REGRESSION AUGMENTING 2-TO-THE-(N-1) DESIONS AURELIA AND PARAMECIUM CAUDATUM /MENTS CARRIED OUT AUTHOR'S REPLY TO ANSCOMBE'S COMMENTS AUTHORSHIP MARK TWAIN AND THE QUINTUS AUTHORSHIP MARK TWAIN AND THE QUINTUS AUTHORSHIP PROBLEM AUTO-CORRELATED ERRORS AUTO-CORRELATED ERRORS AUTO-CORRELATION OF ERRORS AUTO-CORRELATION OF ERRORS AUTO-CORRELATION OF ERRORS AUTO-CORRELATED	TECH 62 31 JASA 69 NO. JASA 63 89 JASA 64 98 JASA 64 98 AMS 68 138 BIOKA61 46 BIOCS6B 85 JASA 62 66 TECH 68 63 2 TECH 68 85 TECH 68 85 TECH 67 143 BIOKA61 19 JASA 69 NO. TECH 66 18 TECH 66 18 TECH 66 18 TECH 68 7 TECH 66 18 TECH 66 18 TECH 66 32 JASA 63 7 TECH 65 16 JASA 63 7 TECH 65 18 JASA 65 182 BIOKA56 188	3 9 4 9 0 7 2 7 1 1 1 9 8 7 1 3 4 9 5 3 9 0 4 4 3 9 4 9 5 5 3 9 6 9
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED DISTANCE BETWEEN POPULATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING VALIDATINC RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLINC IN CURTAILED SAMPLING FLANS BY VERAGE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE ON TWO SUCCESSIVE CENS/ METHOD OF CONSTRUCTION OF NTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION ON THE USE OF CORRELATION TO N SIMPLE LEAST SQUARES AND ANALYSIS OF/ PARAMETRIC A NOTE ON BY GAUSE WITH POPULATIONS OF THE PROTOZOA PARAMECIUM CURTIUS SNODGRASS LETTERS, A STATISTICAL TEST OF INFERENCE IN AN BAYESIAN ANALYSIS OF THE RECRESSION MODEL WITH ON HOTELLING'S WEICHING DESIGNS UNDER HER ORDER SCHEM/ TESTS OF HYPOTHESES IN THE LINEAR THE ESTIMATION OF SLOPE WHEN THE ERRORS ARE THE FITTING OF REGRESSION CURVES WITH CT MODELS IN THE ANALYSIS OF VARIANCE. II. EFFECT OF	ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTRIBUTE TO STABLE LAWS ATTRIBUTE DATA ATTRIBUTE DATA ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES AUGMENT DATA AUGMENT DATA AUGMENT DATA AUGMENT DATA AUGMENTED DESIGNS AUGMENTING EXISTINC DATA IN MULTIPLE REGRESSION AUTHOR'S REPLY TO ANSCOMBE'S COMMENTS AUTHOR'S REPLY TO ANSCOMBE'S COMMENTS AUTHORSHIP MARK TWAIN AND THE QUINTUS AUTO-CORRELATED ERRORS AUTO-CORRELATED ERRORS AUTO-CORRELATED BERORS AUTO-CORRELATED	TECH 62 31 JASA 69 NO. JASA 63 89 JASA 64 98 JASA 64 98 AMS 68 138 BIOKA61 68 68 GECH 68 67 TECH 68 68 JASA 62 66 TECH 67 40 TECH 68 68 JASA 67 143 BIOKA61 68 183 BIOKA61 68 68 JASA 67 143 BIOKA61 68 7 TECH 68 68 JASA 67 143 BIOKA56 63 83 JASA 63 7 TECH 66 18 INTECH 65 16 INTECH 65 16 INTECH 65 18	3 9 4 9 0 7 2 7 1 1 1 9 8 7 1 3 4 9 5 3 9 0 4 4 3 9 4 9 5 5 3 9 6 9 8 7
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING VALIDATINC RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLING IN CURTAILED SAMPLING PLANS BY VERAGE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE ON TWO SUCCESSIVE CENS/ METHOD OF CONSTRUCTION OF NTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION TO N SIMPLE LEAST SQUARES AND ANALYSIS OF/ PARAMETRIG ON THE USE OF CORRELATION TO N SIMPLE LEAST SQUARES AND ANALYSIS OF/ PARAMETRIG A NOTE ON BY GAUSE WITH POPULATIONS OF THE PROTOZOA PARAMECIUM CURTIUS SNODGRASS LETTERS, A STATISTICAL TEST OF INFERENCE IN AN BAYESIAN ANALYSIS OF THE RECRESSION MODEL WITH ON HOTELLING'S WEICHING DESIGNS UNDER HER ORDER SCHEM/ TESTS OF HYPOTHESES IN THE LINEAR THE ESTIMATION OF SLOPE WHEN THE ERRORS ARE THE FITTING OF REGRESSION CURVES WITH CT MODELS IN THE ANALYSIS OF VARIANCE. II. EFFECT OF VERAL TWO-STACE RECRESSION METHODS IN THE CONTEXT OF	ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES -ATTITUDINAL VARIABLES -ATTITUDINAL VARIABLES -ATTITUDINAL VARIABLES -ATTRIBUTE	TECH 62 31 JASA 69 NO. JASA 63 89 JASA 64 98 JASA 64 98 AMS 68 138 BIOKA61 62 66 TECH 63 62 TECH 63 64 TECH 63 64 TECH 66 68 JASA 62 143 BIOKA61 19 JASA 62 166 TECH 66 66 LECH 67 70 TECH 66 18 TECH 67 70 TECH 66 18 TECH 66 18 TECH 67 70 TECH 66 18 TECH 67 16 JASA 63 27 JASA 64 76 AMS 65 18 JRSSB62 19 BIOKA56 46 BIOKA56 46 BIOKA56 46 BIOKA56 46 BIOKA56 46	3 9 4 9 0 7 2 7 1 1 1 9 8 7 1 3 4 9 5 3 9 0 4 4 3 9 4 9 5 5 3 9 6 9 8 7 3
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED DISTANCE BETWEEN POPULATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING VALIDATINC RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLINC IN CURTAILED SAMPLING PLANS BY OF FRACTION DEFECTIVE IN CURTAILED SAMPLING PLANS BY VERAGE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE ON TWO SUCCESSIVE CENSY METHOD OF CONSTRUCTION OF NTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION ON THE USE OF CORRELATION TO N SIMPLE LEAST SQUARES AND ANALYSIS OF/ PARAMETRIG A NOTE ON BY GAUSE WITH POPULATIONS OF THE PROTOZOA PARAMECIUM CURTIUS SNODGRASS LETTERS, A STATISTICAL TEST OF INFERENCE IN AN BAYESIAN ANALYSIS OF THE RECRESSION MODEL WITH ON HOTELLING'S WEICHING DESIGNS UNDER HER ORDER SCHEM/ TESTS OF HYPOTHESES IN THE LINEAR THE ESTIMATION OF SLOPE WHEN THE ERRORS ARE THE FITTING OF REGRESSION CURVES WITH CT MODELS IN THE ANALYSIS OF VARIANCE. II. EFFECT OF STIMATORS OF REGRESSION COEFFICIENTS FOR THE CASE OF	ATTITUDE DATA ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTREBUTE ATTREBUTE ATTRIBUTE ATTRIBUTE LIFE TESTING, CORR. 63 1161 ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES AUGMENT DATA AUGMENTANTIONS AND ERROR STRUCTURES UNDER WHICH CERTAI AUGMENTATIONS AND ERROR STRUCTURES UNDER WHICH CERTAI AUGMENTAD DESIGNS AUGMENTING EXISTINC DATA IN MULTIPLE REGRESSION AUTHORSHIP MARK TWAIN AND THE QUINTUS AUTHORSHIP MARK TWAIN AND THE QUINTUS AUTHORSHIP MARK TWAIN AND THE QUINTUS AUTHORSHIP PROBLEM AUTO-CORRELATED ERRORS AUTO-CORRELATED ERRORS AUTO-CORRELATED ERRORS AUTO-CORRELATED ERRORS AUTO-CORRELATED ERRORS AUTO-CORRELATED ERRORS SMALL-SAMPLE PROPERTIES OF SE AUTOCORRELATED RESIDUALS MAXIMUM LIKELIHOOD E	TECH 62 31 JASA 69 NO. JASA 63 89 JASA 64 98 JASA 64 98 AMS 68 138 BIOKA61 46 BIOCS 6B 86 TECH 63 62 TECH 63 42 TECH 68 68 JASA 67 143 BIOKA61 19 JASA 67 143 BIOKA61 19 JASA 69 NO. TECH 66 18 TECH 66 18 TECH 66 18 TECH 66 18 TECH 67 21 TECH 68 77 TECH 66 18 TECH 67 31	3.94990727111987134953904439495539698731
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS AND THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING VALIDATINC RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLINC IN CURTAILED SAMPLING PLANS BY OF FRACTION DEFECTIVE IN CURTAILED SAMPLING PLANS BY VERAGE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE ON TWO SUCCESSIVE CENS/ METHOD OF CONSTRUCTION OF NTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION ON THE USE OF CORRELATION TO N SIMPLE LEAST SQUARES AND ANALYSIS OF/ PARAMETRIG A NOTE ON BY GAUSE WITH POPULATIONS OF THE PROTOZOA PARAMECIUM CURTIUS SNODGRASS LETTERS, A STATISTICAL TEST OF INFERENCE IN AN BAYESIAN ANALYSIS OF THE RECRESSION MODEL WITH ON HOTELLING'S WEICHING DESIGNS UNDER HER ORDER SCHEM/ TESTS OF HYPOTHESES IN THE LINEAR THE ESTIMATION OF SLOPE WHEN THE ERRORS ARE THE FITTING OF REGRESSION CURVES WITH CT MODELS IN THE ANALYSIS OF VARIANCE. II. EFFECT OF VERAL TWO—STACE RECRESSION METHODS IN THE CONTEXT OF STIMATORS OF REGRESSION COEFFICIENTS FOR THE CASE OF VARIABLES THE ESTIMATION OF FRELATIONSHIPS WITH	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES -ATTITUDINAL VARIABLES -ATTITUDINAL VARIABLES -ATTITUDINAL VARIABLES -ATTRIBUTE TO STABLE LAWS ATTRIBUTE LIFE TESTING, CORR. 63 1161 ATTRIBUTE DATA ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES	TECH 62 31 JASA 69 NO. JASA 63 89 JASA 64 98 JASA 64 98 AMS 68 138 BIOKA61 64 66 BIOCS 68 85 JASA 62 66 TECH 63 62 TECH 68 68 JASA 67 143 BIOKA61 67 143 BIOKA61 68 7 TECH 66 68 JASA 62 7 JASA 62 9 JASA 62 9 JASA 63 7 TECH 66 16 JASA 63 7 TECH 66 16 JASA 63 7 TECH 65 16 JASA 63 7 JASA 64 7 TECH 65 18 JRSSB62 19 BIOKA66 47 JASA 69 5 INCKA66 5 INC	3.9.4.9.07.27.1.1.9.8.7.1.3.4.9.5.3.9.0.4.4.3.9.4.9.5.5.3.9.6.9.8.7.3.1.1
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED DISTANCE BETWEEN POPULATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING VALIDATINC RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLINC IN CURTAILED SAMPLING PLANS BY VERAGE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE ON TWO SUCCESSIVE CENS/ METHOD OF CONSTRUCTION OF NTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION ON THE USE OF CORRELATION TO N SIMPLE LEAST SQUARES AND ANALYSIS OF/ PARAMETRIG A NOTE ON BY GAUSE WITH POPULATIONS OF THE PROTOZOA PARAMECIUM CURTIUS SNODGRASS LETTERS, A STATISTICAL TEST OF INFERENCE IN AN BAYESIAN ANALYSIS OF THE RECRESSION MODEL WITH ON HOTELLING'S WEICHING DESIGNS UNDER HER ORDER SCHEM/ TESTS OF HYPOTHESES IN THE LINEAR THE ESTIMATION OF SLOPE WHEN THE ERRORS ARE THE FITTING OF REGRESSION CURVES WITH CT MODELS IN THE ANALYSIS OF VARIANCE. II. EFFECT OF VERAL TWO—STACE RECRESSION METHODS IN THE CONTEXT OF STIMATORS OF RECRESSION COEFFICIENTS FOR THE CASE OF VARIABLES THE ESTIMATION OF RELATIONSHIPS BETWEEN	ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTRIBUTE TO STABLE LAWS ATTRIBUTE DATA ATTRIBUTE DATA ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES ACCEPTANCE SAMPLING PLANS THE A ATTRIBUTON LIFE TABLES FOR THE SINGLE POPULATION BASED (ATY'S FORMULAE AND MADOW'S CENTRAL LIMIT) /ING MOME AUGMENT DATA AUGMENTATIONS AND ERROR STRUCTURES UNDER WHICH CERTAI AUGMENTING EXISTINC DATA IN MULTIPLE REGRESSION AUGMENTING EXISTINC DATA IN MULTIPLE REGRESSION AUGMENTING EXISTINC DATA IN MULTIPLE REGRESSION AUGMENTINC 2-TO-THE-(N-1) DESICNS AURHOR'S REPLY TO ANSCOMBE'S COMMENTS AUTHORSHIP MARK TWAIN AND THE QUINTUS AUTO-CORRELATED ERRORS AUTO-CORRELATED ATTA AUTOCORRELATED BERORS AUTO-CORRELATED BERORS /SIAN ANALYSIS OF RANDOM-EFFE AUTOCORRELATED ERRORS SMALL-SAMPLE PROPERTIES OF SE AUTOCORRELATED ERRORS SMALL-SAMPLE PROPERTIES OF SE AUTOCORRELATED RESIDUALS MAXIMUM LIKELHOOD E AUTOCORRELATED TIME SERIES	TECH 62 31 JASA 69 NO. JASA 63 89 JASA 64 98 JASA 64 98 AMS 68 138 BIOKA61 62 66 TECH 63 62 TECH 63 62 TECH 68 68 JASA 67 143 BIOKA61 19 JASA 69 NO. TECH 66 18 TECH 68 68 JASA 67 143 BIOKA61 19 JASA 62 2 JASA 62 2 JASA 63 7 TECH 66 18 TECH 68 7 TECH 68 18 JASA 63 7 TECH 66 18 JASA 63 8 JASA 63 8 JASA 63 18 JASA 63 18 JASA 63 18 JASA 63 18 JASA 64 76 AMS 65 182 BIOKA56 18 JINSSB62 19 BIOKA56 47 JASA 69 15 JASA 69 15 JASA 69 15 JASA 64 76 AMS 65 182 BIOKA56 47 JASA 69 25 TECH 65 18 JRSSB62 19 BIOKA56 47 JASA 69 25 TECH 65 18 JRSSB69 9 JRSSB59 9	3.94907271198713495390443949553969873110
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED DISTANCE BETWEEN POPULATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING VALIDATINC RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLING IN CURTAILED SAMPLING PLANS BY OF FRACTION DEFECTIVE IN CURTAILED SAMPLING PLANS BY VERACE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE ON TWO SUCCESSIVE CENS/ METHOD OF CONSTRUCTION OF NTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION ON THE USE OF CORRELATION TO N SIMPLE LEAST SQUARES AND ANALYSIS OF/ PARAMETRIG A NOTE ON BY GAUSE WITH POPULATIONS OF THE PROTOZOA PARAMECIUM CURTIUS SNODGRASS LETTERS, A STATISTICAL TEST OF INFERENCE IN AN BAYESIAN ANALYSIS OF THE RECRESSION MODEL WITH ON HOTELLING'S WEICHING DESIGNS UNDER HER ORDER SCHEM/ TESTS OF HYPOTHESES IN THE LINEAR THE ESTIMATION OF SLOPE WHEN THE ERRORS ARE THE FITTING OF REGRESSION CURVES WITH CT MODELS IN THE ANALYSIS OF VARIANCE. II. EFFECT OF STIMATORS OF REGRESSION MEFINDS IN THE CASE OF VARIABLES THE ESTIMATION OF RELATIONSHIPS BETWEEN NOTE ON BIAS IN THE ESTIMATION OF	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLE ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTRIBUTE ATTRIBUTE ATTRIBUTE ATTRIBUTE LIFE TESTING, CORR. 63 1161 ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES ATTRIBUTES AUGMENTATION LIFE TABLES FOR THE SINGLE POPULATION BASED ATT'S FORMULAE AND MADOW'S CENTRAL LIMIT) /ING MOME AUGMENT DATA AUGMENTATIONS AND ERROR STRUCTURES UNDER WHICH CERTAI AUGMENTED DESIGNS AUGMENTING EXISTINC DATA IN MULTIPLE REGRESSION AUTHOR'S REPLY TO ANSCOMBE'S COMMENTS AUTHORSHIP MARK TWAIN AND THE QUINTUS AUTHORSHIP MARK TWAIN AND THE QUINTUS AUTHOCORRELATED ERRORS AUTO-CORRELATED BERORS AUTO-CORRELATED BERORS AUTO-CORRELATED DATA AUTOCORRELATED BERORS SMALL-SAMPLE PROPERTIES OF SE AUTOCORRELATED TIME SERIES AUTOCORRELATED	TECH 62 31 JASA 69 NO. JASA 63 89 JASA 64 98 JASA 64 98 AMS 68 138 BIOKA61 62 66 TECH 63 66 TECH 63 66 TECH 63 66 TECH 66 18 JASA 67 143 BIOKA61 19 JASA 67 143 BIOKA61 19 JASA 69 NO. TECH 66 18 TECH 66 66 BIOKA57 31 TECH 66 18 TECH 67 70 TECH 66 18 JASA 63 27 JASA 63 27 JASA 63 12 JASA 63 12 JASA 63 27 JASA 64 76 AMS 65 18 JASA 63 27 JASA 64 76 AMS 65 18 JRSSB62 19 BIOKA56 18 JRSSB62 19 BIOKA56 9 25 TECH 65 5 5 JRSSB56 24 BIOKA56 9 24	3.949072711987134953904439495539698731103
BULK SAMPLING. PROBLEMS AND LINES OF THE FORECASTINC ACCURACY OF CONSUMER RANKING METHODS AND THE MEASUREMENT OF S THE PREDICTIVE ABILITY OF CONSUMER STUDIES OF INTERVIEWER VARIANCE FOR ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON- CONVOLUTIONS OF DISTRIBUTIONS RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED DISTANCE BETWEEN POPULATIONS ON THE BASIS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN BAYESIAN SINGLE SAMPLING RISK THE DETERMINATION OF SINGLE SAMPLING VALIDATINC RESULTS OF SAMPLING INSPECTION BY CENSORED SAMPLINC IN CURTAILED SAMPLING PLANS BY VERAGE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE ON TWO SUCCESSIVE CENS/ METHOD OF CONSTRUCTION OF NTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION ON THE USE OF CORRELATION TO N SIMPLE LEAST SQUARES AND ANALYSIS OF/ PARAMETRIG A NOTE ON BY GAUSE WITH POPULATIONS OF THE PROTOZOA PARAMECIUM CURTIUS SNODGRASS LETTERS, A STATISTICAL TEST OF INFERENCE IN AN BAYESIAN ANALYSIS OF THE RECRESSION MODEL WITH ON HOTELLING'S WEICHING DESIGNS UNDER HER ORDER SCHEM/ TESTS OF HYPOTHESES IN THE LINEAR THE ESTIMATION OF SLOPE WHEN THE ERRORS ARE THE FITTING OF REGRESSION CURVES WITH CT MODELS IN THE ANALYSIS OF VARIANCE. II. EFFECT OF VERAL TWO—STACE RECRESSION METHODS IN THE CONTEXT OF STIMATORS OF RECRESSION COEFFICIENTS FOR THE CASE OF VARIABLES THE ESTIMATION OF RELATIONSHIPS BETWEEN	ATTACK ATTITUDE DATA ATTITUDE SURVEYS, THEIR FORECASTING RECORD ATTITUDES ATTITUDES ATTITUDES ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTITUDINAL VARIABLES ATTRIBUTE ATTRIBUTE ATTRIBUTE ATTRIBUTE LIFE TESTING, CORR. 63 1161 ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S ATTRIBUTES AUGMENT DATA AUGMENT DATA AUGMENT DATA AUGMENT DATA AUGMENTING EXISTINC DATA IN MULTIPLE REGRESSION AUTHORSHIP ARAMECIUM CAUDATUM /MENTS CARRIED OUT AUTHORSHIP PROBLEM AUTO-CORRELATED ERRORS AUTO-CORRELATED BERORS AUTO-CORRELATED BERORS AUTO-CORRELATED BERORS AUTO-CORRELATED BERORS SMALL-SAMPLE PROPERTIES OF SE AUTOCORRELATED RESIDUALS MAXIMUM LIKELTHOOD E AUTOCORRELATED RESIDUALS BY THE USE OF INSTRUMENTAL AUTOCORRELATED TIME SERIES AUTOCORRELATION BETWEEN SUCCESSIVE RESULTS	TECH 62 31 JASA 69 NO. JASA 63 89 JASA 64 98 JASA 64 98 AMS 68 138 BIOKA61 62 66 TECH 63 62 TECH 63 62 TECH 68 68 JASA 67 143 BIOKA61 19 JASA 69 NO. TECH 66 18 TECH 68 68 JASA 67 143 BIOKA61 19 JASA 62 2 JASA 62 2 JASA 63 7 TECH 66 18 TECH 68 7 TECH 68 18 JASA 63 7 TECH 66 18 JASA 63 8 JASA 63 8 JASA 63 18 JASA 63 18 JASA 63 18 JASA 63 18 JASA 64 76 AMS 65 182 BIOKA56 18 JINSSB62 19 BIOKA56 47 JASA 69 15 JASA 69 15 JASA 69 15 JASA 64 76 AMS 65 182 BIOKA56 47 JASA 69 25 TECH 65 18 JRSSB62 19 BIOKA56 47 JASA 69 25 TECH 65 18 JRSSB69 9 JRSSB59 9	3.94907271119871349539044394955396987311033

AUT - BAL TITLE WORD INDEX

```
THE AUTOCORRELATION FUNCTION AND THE SPECTRAL DENSITY
FUNCTION
                                                                                                             BIOKA55 151
DISTRIBUTED MODULO 1
                                                  THE AUTOCORRELATION FUNCTION OF A SEQUENCE UNIFORMLY
                                                                                                              AMS 63 1243
                           BIAS IN THE ESTIMATION OF AUTOCORRELATIONS
                                                                                                             BIOKA54 390
               ON THE ASYMPTOTIC DISTRIBUTION OF THE AUTOCORRELATIONS OF A SAMPLE FROM A LINEAR STOCHASTIC AMS 64 1296
                                                 THE AUTOMATIC COMPUTER IN INDUSTRY
                                                                                                             JASA 56
                                                                                                                      565
                                  THE APPLICATION OF AUTOMATIC COMPUTERS TO SAMPLING EXPERIMENTS (WITH
                                                                                                             JRSSB54
                                     A PROCEDURE FOR AUTOMATIC DATA EDITING
                                                                                                             JASA 67
                                                                                                                      341
      STATISTICAL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL
                                                                                                             TECH 65
                                                                                                                      283
 FUTURE DEVELOPMENTS
                               THE PRESENT STATUS OF AUTOMATIC PRODUCTION AND CONTROL DEVICES AND EXPECTED TECH 66
                                                                                                                       73
                                                      AUTOMATIC PROGRAMMING FOR AUTOMATIC COMPUTERS
                                                                                                                      744
                                                                                                             JASA 59
  CONTROLLING DIMENSION IN CENTERLESS-CRINDING WITH AUTOMATIC RESET DEVICE
                                                                                                             TECH 69
                                                                                                                     115
         ESTIMATING MACHINING ERRORS IN SET-UPS WITH AUTOMATIC RESETTING
                                                                                                             TECH 64
                                                                                                                      423
            THE EFFICIENCY OF AUTOMATIC WINDING MACHINES WITH CONSTANT PATROLLING INITIAL STOCK AND CONSUMER INVESTMENT IN AUTOMOBILES
                                                                                                             JRSSB59
                                                                                                                      381
                                                                                                             JASA 63
                                                                                                                      7B9
 THE GASOLINE OCTANE NUMBER REQUIREMENT OF NEW MODEL AUTOMOBILES
                                                                                  STATISTICAL ESTIMATION OF TECH 60
                                                                                                                        5
                                         ON A FACTOR AUTOMORPHISM OF A NORMAL DYNAMICAL SYSTEM
                                                                                                              AMS 66 1528
                             PARAMETER ESTIMATES AND AUTONOMOUS CROWTH, CORR. 59 $12
                                                                                                                      389
                                          THE USE OF AUTOREGRESSION IN FITTING AN EXPONENTIAL CURVE
                                                                                                             BIOKA58
                                                                                                                      389
IZATION OF A SPECT/ ON THE FITTING OF MULTIVARIATE AUTORECRESSIONS, AND THE APPROXIMATE CANONICAL FACTOR BIOKAG3
                                                                                                                      129
TIONARITY CONDITIONS FOR STOCHASTIC PROCESSES OF THE AUTOREGRESSIVE AND MOVINC-AVERAGE TYPE
                                                                                                        STA BIOKA56
                                                                                                                      215
MAXIMUM LIKELIHOOD ESTIMATORS IN A LINEAR MODEL WITH AUTORECRESSIVE DISTURBANCES /TOTIC DISTRIBUTION OF
                                                                                                             AMS 69
                                                                                                                      583
              FINITE SAMPLE MONTE CARLO STUDIES. AND AUTOREGRESSIVE ILLUSTRATION
                                                                                                             JASA 67
                                                                                                                      801
                   TESTS OF HYPOTHESES IN THE LINEAR AUTOREGRESSIVE MODEL. PART I.
                                                                                                             BIOKA54
                                                                                                                      405
ON THE COVARIANCE DETERMINANTS OF MOVING-AVERAGE AND AUTOREGRESSIVE MODELS
                                                                                                             BIOKA60 194
                        A NOTE ON PREDICTION FROM AN AUTOREGRESSIVE PROCESS USING PISTIMETRIC PROBABILITY JRSSB60
                                                                                                                       97
           LARGE-SAMPLE ESTIMATION OF PARAMETERS FOR AUTOREGRESSIVE PROCESSES WITH MOVINC-AVERAGE RESIDUAL BIOKA62
                                                                                                                     117
   PROPERTIES OF TESTS OF GOODNESS-OF-FIT FOR LINEAR AUTORECRESSIVE SCHEMES
                                                                                                   SAMPLING JRSSB62
                                                                                                                      492
  EXPANSIONS FOR TESTS OF GOODNESS OF FIT FOR LINEAR AUTORECRESSIVE SCHEMES
                                                                                                  ASYMPTOTIC BIOKA64
ENCIES OF METHODS OF ESTIMATING PARAMETERS IN LINEAR AUTOREGRESSIVE SCHEMES
                                                                                         COMPARATIVE EFFICI BIOKA61
                                                                                                                      427
       CONFIDENCE INTERVALS FOR PARAMETERS IN MARKOV AUTORECRESSIVE SCHEMES (WITH DISCUSSION)
                                                                                                            JRSSB54
TIONS OF THE SERIAL CORRELATION COEFFICIENT IN SHORT AUTOREGRESSIVE SEQUENCES ALTERNATIVE DEFINI JASA 58
                 NOTE ON THE VARIATE DIFFERENCES OF AUTORECRESSIVE SERIES
                                                                                                             BIOKA51
                                                                                                                      479
              THE ESTIMATION OF MIXED MOVING-AVERAGE AUTOREGRESSIVE SYSTEMS
                                                                                                             BIOKA69 NO.3
                                 PREDICTION OF AN AUTOREGRESSIVE VARIABLE SUBJECT BOTH TO DISTURBANCES JASA 65 164
AND TO ERRORS OF OBSERVATION
               THE COVARIANCE MATRIX OF A CONTINUOUS AUTOREGRESSIVE VECTOR TIME-SERIES
                                                                                                              AMS 63 1259
                  THE IDENTIFICATION OF VECTOR MIXED AUTOREGRESSIVE-MOVING AVERAGE SYSTEMS
                                                                                                             BTOKA69 223
                         ON A METHOD OF USING MULTI-AUXILIARY INFORMATION IN SAMPLE SURVEYS
                                                                                                             JASA 65
                                                                                                                      270
FROM A STRATUM (ADDENDUM 6/ OPTIMUM UTILIZATION OF AUXILIARY INFORMATION, (PI)PS SAMPLING OF TWO UNITS JRSSB67
                                                                                                                      374
                                               TESTS AUXILIARY TO CHI-SQUARED TESTS IN A MARKOV CHAIN
                                                                                                             AMS 63
                                                                                                                       56
          ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES
                                                                                                             JASA 62
                                                                                                                      1B4
            A STATISTICAL TEST FOR EQUALITY OF TWO AVAILABILITIES
                                                                                                             TECH 6B
                                                                                                                      594
                       A CONFIDENCE INTERVAL FOR THE AVAILABILITY RATIO
                                                                                                             TECH 67
                                                                                                                      465
    FITTING OF SOME CONTAGIOUS DISTRIBUTIONS TO SOME AVAILABLE DATA BY THE MAXIMUM LIKELIHOOD METHOD (CORR BIOCS65
                                    STATISTICAL DATA AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF
RECREATION
                                                                                                            JASA 59
                                                                                                                      281
IPALES, SON UTILISATION EN GENETIQUE ET SES RAPPORTS AVEC L'ANALYSE DISCRIMINATOIRE //N COMPOSANTES PRINC BIOCS66
                                                                                                                      343
   OF THE COVARIANCE MATRIX OF A FIRST ORDER MOVING AVERAGE
                                                                                             ON THE INVERSE BIOKA69 NO.3
                                                                              ASYMPTOTICALLY OPTIMAL ST AMS 67 1731
ATISTICS IN SOME MODELS WITH INCREASING FAILURE RATE AVERAGE
                                    ON DOMINATING AN AVERAGE ASSOCIATED WITH DEPENDENT CAUSSIAN VECTORS
                                                                                                             AMS 6B 1844
    DENUMERABLE STATE MARKOVIAN DECISION PROCESSES, AVERAGE COST CRITERION
                                                                                                              AMS 66 1545
RELATIVE EFFICIENCY OF TESTS
                                                 THE AVERAGE CRITICAL VALUE METHOD AND THE ASYMPTOTIC
                                                                                                            BIOKA67
                                                                                                                      308
EFFICIENCY OF STATISTICAL TESTS IN TIME SERIE/ THE AVERAGE CRITICAL VALUE METHOD FOR ADJUDGING RELATIVE BIOKAGE
                                                                                                                      1.09
                      THE USE OF AN ITERATED MOVING AVERAGE IN MEASURING SEASONAL VARIATIONS
                                                                                                             JASA 62
                                      CORRECTING THE AVERAGE RANK CORRELATION COEFFICIENT FOR TIES IN
                                                                                                                      872
                                                                                                             JASA 64
CORRECTION THE AVERAGE RANK CORRELATION METHODS AND TO THE DISTRIBUT JASA 63
                                                                                                                      756
       SOME STATISTICAL CHARACTERISTICS OF A PEAK TO AVERAGE RATIO
                                                                                                             TECH 65
                                                                                                                      379
                                                     AVERAGE RENEWAL LOSS RATES
                                                                                                              AMS 63
                                           A MOVING AVERACE REPRESENTATION FOR RANDOM VARIABLES COVARIANC BIOKA65
E STATIONARY ON A FINITE TIME INTERVAL
 V-MASK IS USED
                                                THE AVERAGE RUN LENGTH OF THE CUMULATIVE SUM CHART WHEN A JRSSB61
                                                                                                                     149
CONTROL SCHEMES
                                                     AVERACE RUN LENGTHS IN CUMULATIVE CHART QUALITY
                                                                                                             TECH 61
                                                                                                                      11
ATTRIBUTES ACCEPTANCE SAMPLING PLANS
                                                 THE AVERAGE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE TECH 6B
                                                                                                                      6B5
HE DETERMINATION OF THE OPERATINC CHARACTERISTIC AND AVERAGE SAMPLE NUMBER OF A SIMPLE SEQUENTIAL TEST

TESTS

LOWER BOUNDS FOR AVERAGE SAMPLE NUMBER OF SEQUENTIAL MULTIHYPOTHESIS
                                                                                                           / JRSSB67
                                                                                                                     24B
                                                                                                             AMS 67 1343
FOR GALCULATING THE OPERATING GHARACTERISTIC AND THE AVERAGE SAMPLE NUMBER OF SOME SEQUENTIAL TESTS /AE JRSSB5B 379
EDURE FOR DETERMINING UPPER AND LOWER LIMITS FOR THE AVERACE SAMPLE RUN LENGTH OF A CUMULATIVE SUM SCHEME
                                                                                                            JRSSB67
                                                                                                                      263
            THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SAVING
                                                                                                             JASA 64
                                                                                                                     737
IDENTIFICATION OF VECTOR MIXED AUTOREGRESSIVE-MOVING AVERAGE SYSTEMS
                                                                                                                      223
                                                                                                            BIOKA69
GE TAU WITH A CRITE/ A NOTE ON CALCULATING TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION OF AVERA JASA 62
                                                                                                                     567
                                           A NOTE ON AVERAGE TAU AS A MEASURE OF GONCORDANCE
                                                                                                             JASA 60
                                                                                                                     331
       CONTROL CHART TESTS BASED ON GEOMETRIC MOVING AVERAGES
                                                                                                             TECH 59
                                                                                                                     239
                       A LIMIT LAW CONCERNING MOVING AVERAGES
                                                                                                             AMS 64
                                                                                                                      424
         PREDICTION BY EXPONENTIALLY WEIGHTED MOVING AVERAGES AND RELATED METHODS
                                                                                                             JRSSB61
                                                                                                                     414
                    CONSIDERING STATISTICAL AND TIME AVERAGES IN A RECULATION PROBLEM
                                                                                                                      475
                                                                                                             JRSSB67
                                         ALTERNATIVE AXIOMATIZATIONS OF SEASONAL ADJUSTMENT
                                                                                                                      800
                                                                                                            JASA 66
                                              ON THE AXIOMS OF INFORMATION THEORY
                                                                                                             AMS 64
                                                                                                                      415
THE RANGE OF THE DEVIATIONS ABOUT THE REDUCED MAJOR AXIS /R ESTIMATING THE CORRELATION COEFFICIENT FROM BIOKA53 F A/ INTERVAL ESTIMATION OF THE SLOPE OF THE MAJOR AXIS OF A BIVARIATE NORMAL DISTRIBUTION IN THE CASE O BIOCS68
                                                                                                                     21B
                                                                                                                     679
           THE DISPLACED POISSON DISTRIBUTION-REGION B
                                                                                                            JASA 67
                                                                                                                      643
 FOR THE SOLUTION OF THE EXPONENTIAL EQUATION \exp(B)-B/(1-P)=1
                                                                                                      TABLE BIOKA63
                                                                                                                     177
OXIMATIONS TO THE UPPER 5 PERCENT POINTS OF FISHER'S B DISTRIBUTION AND NON-CENTRAL CHI-SQUARE
                                                                                                       APPR BIOKA57
                                                                                                                      52B
ING THE NORMAL DISTRIBUTION WITH COVARIANCE MATRIX A+B IN TERMS OF ONE WITH COVARIANCE MATRIX A
                                                                                                  EXPRESS BIOKA63 535
ROOT AND THE SMALLEST LATENT ROOT OF THE GENERALIZED B STATISTIC AND F STATISTICS AND IN MULTIVARIATE ANAL AMS 67 1152
IC DISTRIBUTION FOR THE DETERMINANT OF A NON-GENTRAL B STATISTIG IN MULTIVARIATE ANALYSIS AN ASYMPTOT SASJ 6B
                                                                                                                     77
                      A FAVORABLE SIDE BET IN NEVADA BAGGARAT
                                                                                                            JASA 66
    SURVEY OF HISTOGOMPATIBILITY TESTING, BIOLOGICAL BACKGROUND PROBABILISTIC AND STATISTICAL MODELS AND P BIOGS69 207
 SOME FEATURES OF THE GENERATION TIMES OF INDIVIDUAL BACTERIA
                                                                                                            BIOKA55
                                                                                                                      16
                      STOGHASTIG PHAGE ATTACHMENT TO BAGTERIA
                                                                                                            BIOGS65
```

TITLE WORD INDEX AUT - BAL

```
IN THE STOCHASTIC MODEL FOR PHACE ATTACHMENT TO BACTERIA
                                                                               ESTIMATION OF THE PARAMETER AMS 6B
 LIMITED CENOME EXPRESSION DURING VIRAL INFECTION OF BACTERIA /MATION OF THE NUMBER OF CRITICAL SITES IN BIOCS69
                                                                                                                     537
               ANALYSIS OF EFFECTS OF ANTIBIOTICS ON BACTERIA BY MEANS OF STOCHASTIC MODELS
                                                                                                            BIOCS66
      THE ESTIMATION OF CONCENTRATION OF VIRUSES AND BACTERIA FROM DILUTION COUNTS
                                                                                                            BIOCS65
                                                                                                                     600
DETERMINISTIC REMOVALS
                            THE EXTINCTION OF A BACTERIAL COLONY BY PHAGES, A BRANCHINC PROCESS WITH BIOKA62
                                                                                                                     272
                        THE EFFECT OF OVERLAPPING IN BACTERIAL COUNTS OF INCUBATED COLONIES
                                                                                                            BIOKA53
                                                                                                                     220
PROXIMATION FOR BINOMIAK EVENTS, WITH APPLICATION TO BACTERIAL ENDOCARDITIS DATA /USE OF THE POISSON AP BIOCS66
                                                      BACTERIAL EXTINCTION TIME AS AN EXTREME VALUE
PHENOMENON
                                                                                                            BIOCS67
                                        MODELS FOR A BACTERIAL CROWTH PROCESS WITH REMOVALS
                                                                                                            JRSSB63
NOTES. ON THE DILUTION ERRORS INVOLVED IN ESTIMATING BACTERIAL NUMBERS BY THE PLATING METHOD
                                                                                                            BIOCS67
                                                                                                                     158
                 A MODEL FOR CHEMICAL MUTACENESIS IN BACTERIOPHACE
                                                                                                            BIOCS65
                                                                                                                     B75
   ON A MEASURE OF TEST EFFICIENCY PROPOSED BY R. R. BAHADUR
                                                                                                             AMS 64 1537
                                     ON A THEOREM OF BAHADUR AND COODMAN
                                                                                                             AMS 66
UIPER ONE-SAMPLE AND TWO-SAMPLE STATISTICS
                                             EXACT BAHADUR EFFICIENCIES FOR THE KOLMOCOROV-SMIRNOV AND K
                                                                                                             AMS 67 1475
                               NULL DISTRIBUTION AND BAHADUR EFFICIENCY OF THE HODGES BIVARIATE SIGN TEST
                                                                                                             AMS 62 BO3
ABILITIES FOR SAMPLING WITHOUT REPLACEMENT AND EXACT BAHADUR EFFICIENCY OF THE TWO-SAMPLE NORMAL SCORES TE BIOKA68 371
                                                  ON BAHADUR'S REPRE ENTATION OF SAMPLE QUANTIKES
                                                                                                             AMS 67 1323
                                           A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL
STOCHASTIC EPIDEMIC
                                                                                                            BTOK 455
                                                                                                                     123
     THE OUTCOME OF A STOCHASTIC EPIDEMIC, A NOTE ON BAILEY'S PAPER
                                                                                                            BIOKA55
                                                                                                                     116
              DEMAND FOR MANUFACTURERS' SERVICES FOR BAKERY PRODUCTS AND FRUITS AND VEGETABLES
                                                                                                            JASA 65 740
                    A GENERALIZATION OF A THEOREM OF BALAKRISHNAN
                                                                                                             AM 61 1337
                                        SUPPLEMENTED BALANCE
                                                                                                            BIOKA60 263
                           THE APPLICATION OF RANDOM BALANCE DESIGNS
                                                                                                            TECH 59
                                                                                                                     139
                  ERRATA, 'THE APPLICATION OF RANDOM BALANCE DESIGNS'
                                                                                                            TECH 59
                                                                                                                     419
                                              RANDOM BALANCE EXPERIMENTATION
                                                                                                            TECH 59
                                                                                                                     111
   THE ANALYSIS OF CHANGEOVER DESIGNS WITH COMPLETE BALANCE FOR FIRST RESIDUAL EFFECTS
                                                                                                            BIOCS67
                                                                                                                     57B
                   QUICK ANALYSIS METHODS FOR RANDOM BALANCE SCREENING EXPERIMENTS
                                                                                                            TECH 59
                                                                                                                     195
                           CORRICENDA, 'SUPPLEMENTED BALANCE'
                           GROUP SCREENING UTILIZING BALANCED AND PARTIALLY BALANCED INCOMPLETE BLOCK
                                                                                                            BIOCS65
       ON SOME METHODS OF CONSTRUCTION OF PARTIALLY BALANCED ARRAYS
                                                                                                             AMS 61 11B1
SOME TREATMENTS IN COMMON
                             ANALYSIS OF A GROUP OF BALANCED BLOCK EXPERIMENTS HAVINC ERROR VARIANCE AND
                                                                                                           BIOCS68
                                                                                                                     389
HIP OF GENERALIZED POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE FINITE POPULATIONS
                                                                                                 RELATIONS
                                                                                                            AMS 68
                                                     BALANCED CONFOUNDING OF FACTORIAL EXPERIMENTS
                                                                                                            BIOKA66
                                                                                                                     507
                                    ON A PROPERTY OF BALANCED DESIGNS
                                                                                                            BIOKA61
                                                                                                                     215
        THE COMBINATION OF INFORMATION IN GENERALLY BALANCED DESIGNS
                                                                                                            JRSSB6B
                                                                                                                     303
INFINITY, WITHIN THE CLASS OF RANDOMIZED DESIGNS, OF BALANCED DESIGNS
                                                                                  ON THE ADMISSIBILITY AT
                                                                                                             AMS 6B 1978
OR 7 TREATMENTS
                                            FOUR-WAY BALANCED DESIGNS BASED ON YOUDEN SQUARES WITH 5, 6,
                                                                                                            BIOCS67
                                                                                                                     803
OF TREATMENTS
                                 THE CONSTRUCTION OF BALANCED DESIGNS FOR EXPERIMENTS INVOLVING SEQUENCES
                                                                                                           BIOKA52
                                                                                                                      32
DESIGNS SOME NEW FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND RELATED TECH 67
ON A GEOMETRICAL METHOD OF CONSTRUCTION OF PARTIALLY BALANCED DESIGNS WITH TWO ASSOCIATE CLASSES

AMS 61
                                                                                                                     229
                                                                                                             AMS 61 1177
                                                     BALANCED DESIGNS WITH UNEQUAL NUMBERS OF REPLICATES
                                                                                                             AMS 64
                                                                                                                     B97
                                                     BALANCED FACTORIAL DESIGNS
                                                                                                            JRSSB66
                                                                                                                     559
                                           SEQUENCES BAKANCED FOR PAIRS OF RESIDUAL EFFECTS
                                                                                                            JASA 67
                                                                                                                     205
                                  CHANGEOVER DESIGNS BALANCED FOR THE LINEAR COMPONENT OF FIRST RESIDUAL
EFFECTS
                                                                                                            BTOKA68
                                                                                                                     297
                                            A DESIGN BALANCED FOR TREND
                                                                                                            BIOKA68 535
                                                                                                            JASA 69 1014
            ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK
               A NOTE ON THE PARAMETERS OF PARTIALLY BALANCED INCOMPLETE BLOCK ASSOCIATION SCHEMES
                                                                                                             AMS 65 331
                                 AN APPLICATION OF A BALANCED INCOMPLETE BLOCK DESIGN
                                                                                                            TECH 61
                                                                                                                     51
PTOTIC EFFICIENCY OF THE CHI-SQUARE-SUB-R-TEST FOR A BALANCED INCOMPLETE BLOCK DESIGN
                                                                                                   THE ASYM BIOKA59 475
EQUENCES OF RANDOMIZATION IN A CENERALIZATION OF THE BAKANCED INCOMPLETE BLOCK DESIGN
                                                                                                  SOME CONS AMS 63 1569
                                                                                                             AMS 65 1815
 AKGEBRA AND THE ANALYSIS OF VARIANCE OF A PARTIALLY BALANCED INCOMPLETE BLOCK DESIGN
                                                                                          THE RELATIONSHIP
 TWO RANDOM COMPONENTS WITH SPECIAL REFERENCE TO THE BALANCED INCOMPLETE BLOCK DESIGN
                                                                                        /INEAR MODELS WITH BIOKA68
NULL-DISTRIBUTION OF THE F-STATISTIC IN A RANDOMIZED BALANCED INCOMPLETE BLOCK DESIGN UNDER THE NEYMAN MOD AMS 63 1558
                                   AN INEQUALITY FOR BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                             AMS 61 90B
                   THE EXISTENCE AND CONSTRUCTION OF BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                             AMS 61
             MULTIPLE COMPARISIONS WITH A CONTROL IN BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                            TECH 61
                                                                                                                     103
     ON THE PARAMETERS AND INTERSECTION OF BLOCKS OF BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                             AMS 62 1200
           CONSTRUCTION OF ROTATABLE DESIGNS THROUGH BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                             AMS 62 1421
                 ON THE DUALS OF SYMMETRIC PARTIALLY-BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                             AMS 63 528
                  EXTENDED GROUP DIVISIBLE PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                             AMS 64
                                                                                                                     681
                             ON A CLASS OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                             AMS 65 1B07
                               INDUCTIVE METHODS FOR BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                             AMS 66 1348
                                         A SERIES OF BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                             AMS 68 681
                                           A NOTE ON BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                             AMS 69
                                                                                                                     679
                 AN EXTENSION PROPERTY OF A CLASS OF BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                            BIOKA57
                                                                                                                     27B
                                              NESTED BAKANCED INCOMPLETE BLOCK DESIGNS
                                                                                                            BIOKA67
                                                                                                                     479
              NOTES. CYCLIC GENERATION OF ROBINSON'S BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                            BIOCS67
                                                                                                                     574
      TREATMENTS BETWEEN BLOCKS OF CERTAIN PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                     COMMON AMS 68
                                                                                                                     999
 THE GEOMETRY OF QUADRICS FOR CONSTRUCTING PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                             APPLICATION OF
                                                                                                            AMS 62 1175
CED TWO-WAY CROSS CLASSIFICATION WITH APPLICATION TO BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                           /FOR THE UNBALAN
                                                                                                             AMS 69
                                                                                                                     40B
                                                                                           /THE NUMBER OF C
OMMON TREATMENTS BETWEEN BLOCKS OF CERTAIN PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                             AMS 66
                                                                                                                     739
                                                                                           /USING AN INCORR BIOKA68
ECT VALUE OF SIGMA-SQUARE-SUB-B-OVER-SIGMA-SQUARE IN BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                                     254
EATMENTS BETWEEN ANY TWO BLOCKS OF CERTAIN PARTIALLY BALANCED INCOMPLETE BKOCK DESIGNS
                                                                                          /BER OF COMMON TR AMS 65
                                                                                                                     337
                                                                                          /EST IN THE INTRA JASA 65
BLOCK ANALY IS OF A CLASS OF TWO ASSOCIATE PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                                     2B5
R THE NUMBER OF DISJOINT BKOCKS IN CERTAIN PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                          AN UPPER BOUND FO AMS 64
                                                                                                                     39B
E SYMMETRICAL AND UNSYMMETRICAL TRIANCULAR PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS AND BALANCED INCOMP
                                                                                                            AMS 63
                                                                                                                     348
CE THEOREMS
                                  DUALS OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS AND SOME NONEXISTEN AMS 66 104B
                       ON THE EFFICIENCY OF MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO-ASSAYS
                                                                                                            BIOCS69
                                                                                                                     591
SEED ORCHARDS
                                   THE USE OF CYCLIC BALANCED INCOMPLETE BLOCK DESIGNS FOR DIRECTIONAL
                                                                                                            BIOCS67
                                                                                                                     761
 SEED ORCHARDS
                                   THE USE OF CYCLIC BALANCED INCOMPLETE BLOCK DESIGNS FOR NON-DIRECTIONAL BIOCS69
                                                                                                                     561
TREATMENTS
                                               SOME BALANCED INCOMPLETE BLOCK DESIGNS FOR TWO SETS OF
                                                                                                          BIOKA66
                                                                                                                     497
                                                                                                                     61B
NCED ASSOCIATION SCHEMES
                                        ON OBTAINING BALANCED INCOMPLETE BLOCK DESIGNS FROM PARTIALLY BALA AMS 67
                                   BALANCED SETS OF BALANCED INCOMPLETE BLOCK DESIGNS OF BLOCK SIZE THREE TECH 65
                                                                                                                     561
C OF BLOCKS INTO REPLICATIONS
                                                     BALANCED INCOMPLETE BLOCK DESIGNS WITH DOUBLE CROUPIN BIOCS66
                                                                                                                     368
ASSOCIATE CLASSES ANALYSIS OF A CLASS OF PARTIALLY BALANCED INCOMPLETE BKOCK DESIGNS WITH MORE THAN TWO
                                                                                                            AMS 61
                                                                                                                     B00
8, N1=12, N2=/ A NOTE ON CONSTRUCTION OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH PARAMETERS V=2
                                                                                                             AMS 66 1783
```

BAL - BAY TITLE WORD INDEX

```
TDENTICAL BLOCKS
                                                       BALANCED INCOMPLETE BLOCK DESIGNS WITH SETS OF
ARE DESIGN PROPERTIES
                          A NEW FAMILY OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH SOME LATIN SQU AMS 67
                                                                                                                        571
                                            PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH TWO-WAY CLASSI
FICATION OF TREATMENTS
                                                                                                               AMS 69
                                                                                                                        175
        ON THE BLOCK STRUCTURES OF CERTAIN PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS, CORR. 67 624
                                                                                                               AMS 66 1016
                COMPARISON OF COMBINED ESTIMATORS IN BALANCED INCOMPLETE BLOCKS
                                                                                                                AMS 66 1832
                            A METHOD OF CONSTRUCTING BALANCED INCOMPLETE DESIGNS
                                                                                                              BIOKA65 285
                                                       BALANCED L-RESTRICTIONAL PRIME POWERED LATTICE
                                                                                                               AMS 67 1127
DESIGNS
THE ESTIMATION OF RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQUARES PROBLEMS AND THE ROBUSTNESS OF BIOKA62
                                                                                                                        83
TIONS OF VARIANCE COMPONENTS I. EMPIRICAL STUDIES OF BALANCED NESTED DESIGN
                                                                                           SAMPLING DISTRIBU TECH 66
                                                                                                                       457
MATION OF MULTIVARIATE COVARIANCE COMPONENTS FOR THE BALANCED ONE-WAY LAYOUT
                                                                                      MAXIMUM LIKELIHOOD ESTI AMS 69 1100
    METHODS OF GONSTRUCTION AND ANALYSIS OF SERIALLY BALANCED SEQUENCES
                                                                                                              JRSSB57 2B6
                                                                                                                       1293
CONSTRUCTION OF CYCLIC COLLINEATIONS FOR OBTAINING A BALANCED SET OF L-RESTRICTIONAL PRIME-POWERED LATTICE AMS 67
                                                       BALANCED SETS OF BALANCED INCOMPLETE BLOCK DESIGNS OF TECH 65
 BLOCK SIZE THREE
                  SHORT-CUT MULTIPLE COMPARISONS FOR BALANCED SINCLE AND DOUBLE CLASSIFICATIONS. PART 1,
                                                                                                              TECH 65
                                                                                                                         95
                  SHORT-CUT MULTIPLE COMPARISONS FOR BALANCED SINGLE AND DOUBLE CLASSIFICATIONS. PART 2. D BIOKA65
ERIVATIONS AND/
                                                   ON BALANCED UNEQUAL BLOCK DESIGNS
                                                                                                              BIOKA62
                                                                                                                        561
                                        QUEUEING WITH BALKING
                                                                                                              BIOKA57
                                                                                                                        360
            A NOTE ON THE QUEUEING SYSTEM M-M-1 WITH BALKING
                                                                                                                        643
                                                                                                               BIOKA65
                                       QUEUEING WITH BALKING, II.
                                                                                                              BIOKA60
                                                                                                                        285
                            ON THE MEAN DURATION OF A BALL AND CELL GAME, A FIRST PASSACE PROBLEM
A CENERALIZATION OF THE BALLOT PROBLEM AND ITS APPLICATION IN THE THEORY OF
                                                                                                               AMS 66
                                                                                                                        517
DUEUES
                                                                                                              JASA 62
                                                                                                                        327
                                  AN APPLICATION OF A BALLOT THEOREM IN ORDER STATISTICS
                                                                                                                AMS 64 1356
                                   APPLICATIONS OF A BALLOT THEOREM IN PHYSICS AND IN ORDER STATISTICS
                                                                                                               JRSSB65
                                                                                                                        130
 BASED ON SINGLY CENSORED SA/
                                ON THE EFFICIENCY OF BAN ESTIMATES OF THE PARAMETERS OF NORMAL POPULATIONS BIOKA62
                                                                                                                        570
           ASYMPTOTIC DISTRIBUTION FOR A GENERALIZED BANACH MATCH BOX PROBLEM
                                                                                                              JASA 67 1252
                        THE ROBBINS-ISBELL TWO-ARMED-BANDIT PROBLEM WITH FINITE MEMORY
                                                                                                               AMS 65 1375
                  RANDOMIZED RULES FOR THE TWO-ARMED BANDIT WITH FINITE MEMORY
                                                                                                               AMS 68 2103
                     CONTRIBUTIONS TO THE 'TWO-ARMED BANDIT' PROBLEM
                                                                                                               AMS 62 B47
                                 A NOTE ON CONFIDENCE BANDS FOR A RECRESSION LINE OVER A FINITE RANGE
                                                                                                              JASA 68 1028
                            LINEAR SECMENT CONFIDENCE BANDS FOR SIMPLE LINEAR MODELS
                                                                                                              JASA 67 403
                                   SHORTER CONFIDENCE BANDS IN LINEAR REGRESSION
                                                                                                               JASA 67 1050
                                           CONFIDENCE BANDS IN LINEAR REGRESSION WITH CONSTRAINTS ON THE
INDEPENDENT VARIABLES
                                                                                                               JASA 6B 1020
                                           CONFIDENCE BANDS IN STRAIGHT LINE RECRESSION
                                                                                                              JASA 64 182
ANALYSIS
                                                       BANDWIDTH AND RESOLVABILITY IN STATISTICAL SPEGTRAL
                                                                                                              JRSSB59
                                                                                                                        169
                                                                                                                        152
                                                       BANDWIDTH AND VARIANCE IN ESTIMATION OF THE SPECTRUM JRSSB58
 DIMENSIONAL RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER
                                                                                                          ONE AMS 63
                                                                                                                        405
  RANDOM WALK BETWEEN A REFLECTING AND AN ABSORBING BARRIER
                                                                                                          THE AMS 61
                                                                                                                       765
            SOME STOCHASTIC PROCESSES WITH ABSORBING BARRIERS
                                                                                                              JRSSB61
                                                                                                                        319
                     COMMENT ON THE NOTES BY NEYMAN, BARTLETT AND WELCH IN THIS JOURNAL (VOL. 18, NO. 2,
                                                                                                              JRSSB57
                                        A NOTE ON THE BARTLETT DECOMPOSITION OF A WISHART MATRIX
                                                                                                              JRSSB64
                       SPECTRAL ANALYSIS COMBINING A BARTLETT WINDOW WITH AN ASSOCIATED INNER WINDOW
                                                                                                              TECH 61
                                                                                                                        235
LES OF PERCENTACE POINTS FOR HARTLEY'S CORRECTION TO BARTLETT'S CRITERION FOR TESTING THE HOMOGENEITY OF A BIOKA62
                                                                                                                        487
MPUTATION AND USE OF A TABLE OF PERCENTAGE POINTS OF BARTLETT'S M
                                                                                                    ON THE CO BIOKA69
                                                                                                                        273
 VARIANCES
                                                   ON BARTLETT'S TEST AND LEHMANN'S TEST FOR HOMOCENEITY OF
                                                                                                               AMS 69 NO.6
                  THE PROCRESS OF THE SCORE DURING A BASEBALL GAME
                                                                                                              JASA 61 703
                                    QUERY, ERROR RATE BASES
                                                                                                              TECH 65 260
THE NORMALITY AND VARIANCES OF RESID/
                                         ORTHONORMAL BASES OF ERROR SPACES AND THEIR USE FOR INVESTICATING JASA 67 1022
                                    THE RANDOMIZATION BASES OF THE PROBLEM OF THE AMALGAMATION OF WEICHTED JRSSB61
                                                                                                                        423
                                        A STATISTICAL BASIS FOR APPROXIMATION AND OPTIMIZATION
                                                                                                               AMS 66
                                                                                                                         59
                                                    A BASIS FOR THE SELECTION OF A RESPONSE SURFACE DESIGN
                                                                                                              JASA 59
                                                                                                                        622
                                            SELECTION BASIS IN ESTIMATION OF THE CENETIC CORRELATION
                                                                                                              BIOCS6B
                                                                                                                        951
                 DISTANCE BETWEEN POPULATIONS ON THE BASIS OF ATTRIBUTE DATA
                                                                                                              BTOCS6B
 A GENERAL SIMULATION PROGRAMME FOR MATERIAL FLOW IN BATCH CHEMICAL PLANTS
                                                                                                              TECH 61
                                                                                                                        497
                                         QUEUES WITH BATCH DEPARTURES I
                                                                                                               AMS 61 1324
                                          QUEUES WITH BATCH DEPARTURES II
                                                                                                               AMS 64 1147
PRIO/ SERIAL SAMPLING ACCEPTANCE SCHEMES FOR LARGE BATCHES OF ITEMS WHERE THE MEAN QUALITY HAS A NORMAL BIOKA68 393
E ASSURANCE OF/ ERRATA, 'THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE-REJECTION SAMPLING UPON SAMPL TECH 61
LE ASSURANCE OF TOTAL PR/ THE EFFECT OF SEQUENTIAL BATCHINC FOR ACCEPTANCE, REJECTION SAMPLING UPON SAMP TECH 60
                                                                                                                        131
                                                                                                                        19
                                               QUERY, BAULE'S EQUATION +(LEAST SQUARES ESTIMATE OF SOIL
CONTENT
                                                                                                              BIOCS69 159
METIC MEAN OF A POPULATION WITH TWO-STAGE SAMPLING BAYES AND MINIMAX PROCEDURES FOR ESTIMATING THE ARITH AMS 66 1186
                               ASYMPTOTICALLY OPTIMAL BAYES AND MINIMAX PROCEDURES IN SEQUENTIAL ESTIMATION AMS 6B 422
                 THE TWO MEANS PROBLEM A SECONDARILY BAYES APPROACH
                                                                                                              BIOKA67
                                                                                                                        85
                                        THE EMPIRICAL BAYES APPROACH ESTIMATING POSTERIOR QUANTILES
                                                                                                              BIOKA67
                                                                                                                        672
                                                    A BAYES APPROACH FOR COMBINING CORRELATED ESTIMATES
                                                                                                              JASA 65
                                                                                                                        602
     A SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES APPROACH TO SOME STATISTICAL DECISION PROBLEMS BIOKA67
                                        THE EMPIRICAL BAYES APPROACH TO STATISTICAL DEGISION PROBLEMS
                                                                                                               AMS 64
                              ON THE SMOOTH EMPIRICAL BAYES APPROACH TO TESTING OF HYPOTHESES AND THE COMPO BIOKAGB
                                                                                                                         ВЗ
UND DECISION PROBLEM
HYPOTHESES
                                         AN EMPIRICAL BAYES APPROACH TO THE TESTING OF CERTAIN PARAMETRIC
                                                                                                               AMS 63 1370
                                        THE EMPIRICAL BAYES APPROACH. ESTIMATING THE PRIOR DISTRIBUTION
                                                                                                              BIOKA67 326
                                          ON THE BAYES CHARACTER OF A STANDARD MODEL II ANALYSIS OF AMS 69 1094
ADMISSIBLE BAYES CHARACTER OF T-SQUARED, R-SQUARED AND OTHER FUL AMS 65 747
VARIANCE TEST
LY INVARIANT TESTS FOR CLASSICAL MULTI/
                            A SIMPLE APPROACH TO THE BAYES CHOICE CRITERION, THE METHOD OF EXTREME PROBABI JASA 64 1227
                 THE RELATIONSHIP BETWEEN NEYMAN AND BAYES CONFIDENCE INTERVALS FOR THE HYPERGEOMETRIC PAR TECH 68 199
EXPONENTIAL FAMILY
                                          CENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY AND THE
                                                                                                               AMS 67 818
                                                                                                               AMS 67 1907
                                            A NOTE ON BAYES ESTIMATES
                       ON THE ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE DISCRETE CASE II
                                                                                                               AMS 65 454
68 597)
                                     SMOOTH EMPIRICAL BAYES ESTIMATION FOR CONTINUOUS DISTRIBUTIONS (CORR.
                                                                                                             BIOKA67
                                                                                                                        435
IONS
                                     SMOOTH EMPIRICAL BAYES ESTIMATION FOR ONE-PARAMETER DISCRETE DISTRIBUT BIOKAG6
                                                                                                                       417
                                            EMPIRICAL BAYES ESTIMATION FOR THE POISSON DISTRIBUTION
                                                                                                              BIOKA69 349
                                    ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE POPULATIONS,
                                                                                                               AMS 65 1707
                                    ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE POPULATIONS, II
                                                                                                               AMS 65 1723
                                    ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE POPULATIONS, III
                                                                                                               AMS 65 1730
                                    ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE POPULATIONS, IV
                                                                                                               AMS 66 1658
                                    ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE POPULATIONS, V
                                                                                                               AMS 69 672
                                                      BAYES ESTIMATION WITH CONVEX LOSS
                                                                                                               AMS 63 839
          EPSILON ASYMPTOTIC OPTIMALITY OF EMPIRICAL BAYES ESTIMATORS
                                                                                                              BIOKA69 220
```

TITLE WORD INDEX BAL - BAY

THE USE OF EMPIRICAL EMPIRICAL		
MODEL EMPIRICAL	BAYES ESTIMATORS IN A LINEAR RECRESSION MODEL BAYES ESTIMATORS IN A MULTIPLE LINEAR RECRESSION	BIOKA68 525
	BAYES ESTIMATORS IN A MULTIPLE LINEAR RECRESSION	BIOKA69 367
BOUNDS FOR THE FREQUENCY OF MISLEADING	BAYES INFERENCE	AMS 63 1109
OBSERVATIONS	BAYES PROCEDURES FOR A PROBLEM WITH CHOICE OF BAYES RISK IN SEQUENCES OF NON-FINITE GAMES BAYES RULE FOR THE SYMMETRIC MULTIPLE COMPARISONS	AMS 64 1128
APPROXIMATION TO	BAYES RISK IN SEQUENCES OF NON-FINITE GAMES	AMS 69 467
PROBLEM	BAYES RULE FOR THE SYMMETRIC MULTIPLE COMPARISONS	JASA 69 NO.4
PROBLEM A AND RELATED STUDENT-T PROBLEMS	BAYES RULES FOR A COMMON MULTIPLE COMPARISONS PROBLEM	AMS 61 1013
THE OUTER NEEDLE OF SOME	BAYES SEQUENTIAL CONTINUATION RECIONS	BIOKA66 455
IMENTS FOR THE ESTIMATION OF A SUBCROUP OF PRE-AS/	BAYES SEQUENTIAL DESIGN OF FRACTIONAL FACTORIAL EXPER	AMS 68 973
	BAYES SEQUENTIAL DESIGN WITH TWO RANDOM VARIABLES	
ETNITE PODII ATTONS	BAYES SEGUENTIAL DESIGNS OF FIVED SIZE SAMPLES FROM	.TASA 69 NO 4
BOUNDS ON THE MAXIMUM SAMPLE SIZE OF A	BAYES SEQUENTIAL PROCEDURE	AMS 65 859
A	BAYES SEQUENTIAL SAMPLING INSPECTION	AMS 65 1387
ASYMPTOTIC SHAPES OF	BAYES SEQUENTIAL TESTING RECIONS	AMS 62 224
INTECRATED RISK OF ASYMPTOTICALLY	BAYES SEQUENTIAL PROCEDURE BAYES SEQUENTIAL SAMPLINC INSPECTION BAYES SEQUENTIAL TESTINC RECIONS BAYES SEQUENTIAL TESTINC RECIONS BAYES SEQUENTIAL TESTS BAYES SOLUTION OF SEQUENTIAL DECISION PROBLEM FOR BAYES SOLUTION OF SEQUENTIAL DECISION PROBLEM FOR	AMS 67 1399
AN EMPTRICAL	BAYES SMOOTHING TECHNIQUE	BIOK469 361
MARKOV DEPENDENT OBSERVATIONS	BAVES SOLUTION OF SECUENTIAL DECISION PROBLEM FOR	AMS 64 1656
MARKOV DELENDENT OBSERVATIONS CENERAL TOPO	BAYES SOLUTIONS IN ESTIMATION PROBLEMS	AMS 63 751
A MODIFIED	BAVES STOPPING PHI F	AMS 63 1404
SOME EMPIRICAL		BIOKA69 133
TOWARDS A THEORY OF CENERALIZED	BAVES TESTS	AMS 68 1
THEORY OF CENERALIZED	DATES TESTS FOR EVPONENTIAL PAMILIES	AMS 69 270
APTI TOV AND STATISTICS IN DIOCRAPHICAL NOTE FOR T	BAYES' ESSAY TOWARDS SOLVING A PROBLEM IN THE DOCTRIN	
ASYMPTOTIC BEHAVIOR OF		AMS 64 846
UN AUTE VCAMDAUATU DEHVATOR OL	BAYES' ESTIMATES IN THE DISCRETE CASE	AMS 63 1386
ON THE WOLMLIGHTO DEHINATOR OF	BAYES' METHOD FOR BOOKIES	AMS 69 1177
PROBABILITIES A PRIORI SOME EXAMPLES OF		JRSSB62 118
FIDUCIAL DISTRIBUTIONS AND		JRSSB58 102
STATISTIC AND THE COMBINATION OF TWO SAMPLES BY		
	BAYES' THEOREM FOR SAMPLING FROM A POPULATION	
SERIAL SAMPLING ACCEPTANCE SCHEMES DERIVED FROM		TECH 60 353
A FURTHER LOOK AT ROBUSTNESS VIA		BIOKA62 419
DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTIONS VIA		JRSSB65 290
REGRESSION ANALYSIS	BAYES'S THEOREM AND THE USE OF PRIOR KNOWLEDCE IN	
CORRIGENDA, 'A FURTHER LOOK AT ROBUSTNESS VIA		BIOKA63 546
THE ASSESSMENT OF PRIOR DISTRIBUTIONS IN		
THE ASSESSMENT OF PRIOR DISTRIBUTIONS IN		JASA 67 776 JASA 63 72
DESIGN MODEL	BAYESIAN ANALYSIS OF A THREE-COMPONENT HIERARCHICAL BAYESIAN ANALYSIS OF A TWO-BY-TWO CONTINGENCY TABLE.	BION#64 108
AND FISHER'S 'EXACT' SIGNIFICANCE TEST EXACT	BAYESIAN ANALYSIS OF A TWO-BY-TWO CONTINGENCY TABLE,	JRSSB69 NU.2
	BAYESIAN ANALYSIS OF BERNOULLI PROCESSES P	
	BAYESIAN ANALYSIS OF CATERGORICAL DATA FROM FINITE PO	
	BAYESIAN ANALYSIS OF CONTINGENCY TABLES	AMS 64 1622
	BAYESIAN ANALYSIS OF LINEAR MODELS WITH TWO RANDOM CO	
	BAYESIAN ANALYSIS OF RANDOM-EFFECT MODELS IN THE ANAL	
	BAYESIAN ANALYSIS OF RANDOM-EFFECT MODELS IN THE ANAL	
	BAYESIAN ANALYSIS OF THE INDEPENDENT MULTINORMAL PROC	
CORRELATED ERRORS	BAYESIAN ANALYSIS OF THE RECRESSION MODEL WITH AUTO-	
DISCUSSION) RELATIONSHIPS BETWEEN	BAYESIAN AND CONFIDENCE LIMITS FOR PREDICTIONS (WITH	JRSSB64 176
A COMPARISON OF SOME	BAYESIAN AND FREQUENTIST INFERENCES.	BIOKA65 19
A COMPARISON OF SOME	BAYESIAN AND FREQUENTIST INFERENCES. II	RT 0K 406 565
THREE MULTIDIMENSIONAL-INTEGRAL IDENTITIES WITH	BAYESIAN APPLICATIONS	AMS 68 1615
	BAYESIAN APPROACH TO CALIBRATION	JRSSB68 396
, A		
A A	BAYESIAN APPROACH TO CLASSIFICATION	JRSSB66 568
ESTIMATION A	BAYESIAN APPROACH TO CLASSIFICATION BAYESIAN APPROACH TO LIFE TESTING AND RELIABILITY	JRSSB66 568 JASA 67 48
ESTIMATION A	BAYESIAN AND FREQUENTIST INFERENCES. BAYESIAN AND FREQUENTIST INFERENCES. II BAYESIAN APPLICATIONS BAYESIAN APPROACH TO CALIBRATION BAYESIAN APPROACH TO CLASSIFICATION BAYESIAN APPROACH TO LIFE TESTING AND RELIABILITY BAYESIAN APPROACH TO MULTIPLE COMPARISONS	JRSSB66 568 JASA 67 48 TECH 65 171
ESTIMATION A	BAYESIAN APPROACH TO LIFE TESTING AND RELIABILITY BAYESIAN APPROACH TO MULTIPLE COMPARISONS BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS	JRSSB66 568 JASA 67 48 TECH 65 171 AMS 64 825
ESTIMATION A A A A	BAYESIAN APPROACH TO CLASSIFICATION BAYESIAN APPROACH TO LIFE TESTING AND RELIABILITY BAYESIAN APPROACH TO MULTIPLE COMPARISONS BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS	JRSSB66 568 JASA 67 48 TECH 65 171 AMS 64 825 BIOKA68 119
ESTIMATION A CLINICAL TRIALS A A A A A A A A A A A A A	BAYESIAN APPROACH TO LIFE TESTING AND RELIABILITY BAYESIAN APPROACH TO MULTIPLE COMPARISONS BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM	JRSSB66 568 JASA 67 48 TECH 65 171 AMS 64 825 BIOKA68 119 JASA 65 81
ESTIMATION A CLINICAL TRIALS APPLIED TO THE COMPARISON OF VARIANCES A	BAYESIAN APPROACH TO LIFE TESTING AND RELIABILITY BAYESIAN APPROACH TO MULTIPLE COMPARISONS BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS	JRSSB66 568 JASA 67 48 TECH 65 171 AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA64 63
ESTIMATION A CLINICAL TRIALS APPLIED TO THE COMPARISON OF VARIANCES A APPLICATION TO RECEPSION ANALYSIS	BAYESIAN APPROACH TO LIFE TESTING AND RELIABILITY BAYESIAN APPROACH TO MULTIPLE COMPARISONS BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS BAYESIAN BIO-ASSAY	JRSSB66 568 JASA 67 48 TECH 65 171 AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA64 153 AMS 64 886
ESTIMATION A CLINICAL TRIALS APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS APPLICATION TO REGRESSION ANALYSIS APPLICATION TO REGRESSION ANALYSIS	BAYESIAN APPROACH TO LIFE TESTING AND RELIABILITY BAYESIAN APPROACH TO MULTIPLE COMPARISONS BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS BAYESIAN BIO-ASSAY BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH	JRSSB66 568 JASA 67 48 TECH 65 171 AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA64 153 AMS 64 886 BIOKA66 12
ESTIMATION A CLINICAL TRIALS APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINGUIAL DAB AMPTEDES	BAYESIAN APPROACH TO LIEE TESTING AND RELIABILITY BAYESIAN APPROACH TO MULTIPLE COMPARISONS BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS BAYESIAN BIO-ASSAY BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH BAYESIAN CONFIDENCE LIMITS FOR RELIABILITY OF REDUNDA	JRSSB66 568 JASA 67 48 TECH 65 171 AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA64 153 AMS 64 886 BIOKA66 11 TECH 68 29
ESTIMATION A CLINICAL TRIALS APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINOMIAL PARAMETERS LINSENSCITULITY TO NOW OPERMAL DESCENTIN	BAYESIAN APPROACH TO LIFE TESTING AND RELIABILITY BAYESIAN APPROACH TO MULTIPLE COMPARISONS BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS BAYESIAN BIO-ASSAY BAYESIAN COMPARTSON OF MEANS OF A MIXED MODEL WITH BAYESIAN CONFIDENCE LIMITS FOR RELIABILITY OF REDUNDA BAYESIAN CONFIDENCE LIMITS FOR THE PRODUCT OF N	JRSSB66 568 JASA 67 48 TECH 65 171 AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA64 153 AMS 64 886 BIOKA66 11 TECH 68 29 BIOKA66 584
CLINICAL TRIALS APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINOMIAL PARAMETERS INSENSITIVITY TO NON-OPTIMAL DESIGN IN	BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS BAYESIAN BIO-ASSAY BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH BAYESIAN CONFIDENCE LIMITS FOR RELIABILITY OF REDUNDA BAYESIAN CONFIDENCE LIMITS FOR THE PRODUCT OF N BAYESIAN DECISION THEORY	AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA64 153 AMS 64 886 BIOKA66 11 TECH 68 29 BIOKA66 611 JASA 65 584
THREE MULTIDIMENSIONAL-INTEGRAL IDENTITIES WITH A ESTIMATION A CLINICAL TRIALS APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINOMIAL PARAMETERS INSENSITIVITY TO NON-OPTIMAL DESIGN IN ROBUSTNESS OF UNIFORM	BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS BAYESIAN BIO-ASSAY BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH BAYESIAN CONFIDENCE LIMITS FOR RELIABILITY OF REDUNDA BAYESIAN CONFIDENCE LIMITS FOR THE PRODUCT OF N BAYESIAN DECISION THEORY BAYESIAN ENCODINC	AMS 64 825 BIOKA66 153 AMS 64 886 BIOKA66 11 TECH 68 29 BIOKA66 611 JASA 65 584 TECH 63 121
CLINICAL TRIALS APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO RECRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINOMIAL PARAMETERS INSENSITIVITY TO NON-OPTIMAL DESIGN IN ROBUSTNESS OF UNIFORM	BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS BAYESIAN BID-ASSAY BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH BAYESIAN CONFIDENCE LIMITS FOR RELIABILITY OF REDUNDA BAYESIAN CONFIDENCE LIMITS FOR THE PRODUCT OF N BAYESIAN DECISION THEORY BAYESIAN ENCODINC BAYESIAN ESTIMATION IN MULTIVARIATE ANALYSIS	AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA64 153 AMS 64 886 BIOKA66 11 TECH 68 29 BIOKA66 611 JASA 65 584 TECH 63 121 AMS 65 150
CLINICAL TRIALS APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINOMIAL PARAMETERS INSENSITIVITY TO NON-OPTIMAL DESIGN IN ROBUSTNESS OF UNIFORM RELATIONSHIP THE	BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS BAYESIAN BIO-ASSAY BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH BAYESIAN CONFIDENCE LIMITS FOR RELIABILITY OF REDUNDA BAYESIAN CONFIDENCE LIMITS FOR THE PRODUCT OF N BAYESIAN DECISION THEORY BAYESIAN ENCODINC BAYESIAN ENCODINC BAYESIAN ESTIMATION IN MULTIVARIATE ANALYSIS BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL	AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA64 153 AMS 64 886 BIOKA66 11 TECH 68 29 BIOKA66 611 JASA 65 584 TECH 63 121 AMS 65 150 JRSSB68 190
CLINICAL TRIALS APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINOMIAL PARAMETERS INSENSITIVITY TO NON-OPTIMAL DESIGN IN ROBUSTNESS OF UNIFORM RELATIONSHIP RESPONSES THE	BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH BAYESIAN COMPIDENCE LIMITS FOR RELIABILITY OF REDUNDA BAYESIAN CONFIDENCE LIMITS FOR THE PRODUCT OF N BAYESIAN DECISION THEORY BAYESIAN ESTIMATION IN MULTIVARIATE ANALYSIS BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF COMMON PARAMETERS FROM SEVERAL	AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA64 153 AMS 64 886 BIOKA66 11 TECH 68 29 BIOKA66 61 JASA 65 584 TECH 63 121 AMS 65 150 JRSSB68 190 BIOKA65 355
CLINICAL TRIALS A APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINOMIAL PARAMETERS INSENSITIVITY TO NON-OPTIMAL DESIGN IN ROBUSTNESS OF UNIFORM RELATIONSHIP RESPONSES THE SPECIAL REFERENCE TO THE BIVARIATE NORMAL DISTRIB/	BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS BAYESIAN COMPARTSON OF MEANS OF A MIXED MODEL WITH BAYESIAN COMFIDENCE LIMITS FOR RELIABILITY OF REDUNDA BAYESIAN CONFIDENCE LIMITS FOR THE PRODUCT OF N BAYESIAN DECISION THEORY BAYESIAN ENCODINC BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF COMMON PARAMETERS FROM SEVERAL BAYESIAN ESTIMATION OF LATENT ROOTS AND VECTORS WITH	AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA64 153 AMS 64 886 BIOKA66 11 TECH 68 29 BIOKA66 611 JASA 65 584 TECH 63 121 AMS 65 150 JRSSB68 190 BIOKA65 355 BIOKA69 97
CLINICAL TRIALS APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINOMIAL PARAMETERS INSENSITIVITY TO NON-OPTIMAL DESIGN IN ROBUSTNESS OF UNIFORM RELATIONSHIP RESPONSES THE	BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN BID-ASSAY BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH BAYESIAN COMFIDENCE LIMITS FOR RELIABILITY OF REDUNDA BAYESIAN CONFIDENCE LIMITS FOR THE PRODUCT OF N BAYESIAN DECISION THEORY BAYESIAN ENCODINC BAYESIAN ESTIMATION IN MULTIVARIATE ANALYSIS BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF COMMON PARAMETERS FROM SEVERAL BAYESIAN ESTIMATION OF LATENT ROOTS AND VECTORS WITH BAYESIAN ESTIMATION OF LATENT ROOTS AND VECTORS WITH	AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA64 153 AMS 64 886 BIOKA66 11 TECH 68 29 BIOKA66 611 JASA 65 584 TECH 63 121 AMS 65 150 JRSSB68 190 BIOKA65 355 BIOKA69 97 JASA 68 174
CLINICAL TRIALS APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINOMIAL PARAMETERS INSENSITIVITY TO NON-OPTIMAL DESIGN IN ROBUSTNESS OF UNIFORM RELATIONSHIP RESPONSES THE SPECIAL REFERENCE TO THE BIVARIATE NORMAL DISTRIB/ MODEL	BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH BAYESIAN COMFIDENCE LIMITS FOR RELIABILITY OF REDUNDA BAYESIAN CONFIDENCE LIMITS FOR THE PRODUCT OF N BAYESIAN DECISION THEORY BAYESIAN ENCODINC BAYESIAN ESTIMATION IN MULTIVARIATE ANALYSIS BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF COMMON PARAMETERS FROM SEVERAL BAYESIAN ESTIMATION OF MEANS FOR THE RANDOM EFFECT	AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA64 153 AMS 64 886 BIOKA66 11 TECH 68 29 BIOKA66 611 JASA 65 584 TECH 63 121 AMS 65 150 BIOKA65 355 BIOKA69 97 JASA 68 174 AMS 68 1289
CLINICAL TRIALS APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINOMIAL PARAMETERS INSENSITIVITY TO NON-OPTIMAL DESIGN IN ROBUSTNESS OF UNIFORM RELATIONSHIP RESPONSES THE SPECIAL REFERENCE TO THE BIVARIATE NORMAL DISTRIB/ MODEL ON THE	BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH BAYESIAN COMFIDENCE LIMITS FOR RELIABILITY OF REDUNDA BAYESIAN CONFIDENCE LIMITS FOR THE PRODUCT OF N BAYESIAN DECISION THEORY BAYESIAN ENCODINC BAYESIAN ESTIMATION IN MULTIVARIATE ANALYSIS BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF COMMON PARAMETERS FROM SEVERAL BAYESIAN ESTIMATION OF COMMON PARAMETERS FROM SEVERAL BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF MULTIVARIATE REGRESSION	AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA64 153 AMS 64 886 BIOKA66 11 TECH 68 29 BIOKA66 611 JASA 65 584 TECH 63 121 AMS 65 150 JRSSB68 190 BIOKA65 355 BIOKA69 97 JASA 68 174 AMS 68 1289 JRSSB64 277
CLINICAL TRIALS A APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINOMIAL PARAMETERS INSENSITIVITY TO NON-OPTIMAL DESIGN IN ROBUSTNESS OF UNIFORM RELATIONSHIP RESPONSES THE SPECIAL REFERENCE TO THE BIVARIATE NORMAL DISTRIB/ MODEL ON THE NORMAL DISTRIBUTION	BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH BAYESIAN COMFIDENCE LIMITS FOR RELIABILITY OF REDUNDA BAYESIAN DECISION THEORY BAYESIAN ENCODINC BAYESIAN ESTIMATION IN MULTIVARIATE ANALYSIS BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF COMMON PARAMETERS FROM SEVERAL BAYESIAN ESTIMATION OF LATENT ROOTS AND VECTORS WITH BAYESIAN ESTIMATION OF MEANS FOR THE RANDOM EFFECT BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF MULTIVARIATE REGRESSION BAYESIAN ESTIMATION OF PARAMETERS OF A MULTIVARIATE	AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA66 15 BIOKA66 11 TECH 68 29 BIOKA66 611 JASA 65 584 TECH 63 121 AMS 65 150 JRSSB68 190 BIOKA65 355 BIOKA69 97 JASA 68 1289 JRSSB64 277 JRSSB65 279
CLINICAL TRIALS APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINOMIAL PARAMETERS INSENSITIVITY TO NON-OPTIMAL DESIGN IN ROBUSTNESS OF UNIFORM RELATIONSHIP RESPONSES THE SPECIAL REFERENCE TO THE BIVARIATE NORMAL DISTRIB/ MODEL NORMAL DISTRIBUTION DISTRIBUTION	BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH BAYESIAN COMFIDENCE LIMITS FOR RELIABILITY OF REDUNDA BAYESIAN CONFIDENCE LIMITS FOR THE PRODUCT OF N BAYESIAN DECISION THEORY BAYESIAN ENCODINC BAYESIAN ESTIMATION IN MULTIVARIATE ANALYSIS BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF LATENT ROOTS AND VECTORS WITH BAYESIAN ESTIMATION OF MEANS FOR THE RANDOM EFFECT BAYESIAN ESTIMATION OF MEANS FOR THE RANDOM EFFECT BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF PARAMETERS OF A MULTIVARIATE BAYESIAN ESTIMATION OF THE VARIANCE OF A NORMAL	AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA64 153 AMS 64 886 BIOKA66 11 TECH 68 29 BIOKA66 611 JASA 65 584 TECH 63 121 AMS 65 150 BIOKA65 355 BIOKA65 355 BIOKA69 97 JASA 68 174 AMS 68 1289 JRSSB64 277 JRSSB65 279 JRSSB64 63
CLINICAL TRIALS APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINOMIAL PARAMETERS INSENSITIVITY TO NON-OPTIMAL DESIGN IN ROBUSTNESS OF UNIFORM RELATIONSHIP RESPONSES THE SPECIAL REFERENCE TO THE BIVARIATE NORMAL DISTRIB/ MODEL ON THE NORMAL DISTRIBUTION DISTRIBUTION DISTRIBUTION MAXIMUM LIKELIHOOD AND	BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH BAYESIAN COMFIDENCE LIMITS FOR RELIABILITY OF REDUNDA BAYESIAN CONFIDENCE LIMITS FOR THE PRODUCT OF N BAYESIAN DECISION THEORY BAYESIAN ENCODINC BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF COMMON PARAMETERS FROM SEVERAL BAYESIAN ESTIMATION OF LATENT ROOTS AND VECTORS WITH BAYESIAN ESTIMATION OF MEANS FOR THE RANDOM EFFECT BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF PARAMETERS OF A MULTIVARIATE BAYESIAN ESTIMATION OF TEVANIANCE OF A NORMAL BAYESIAN ESTIMATION OF THE VARIANCE OF A NORMAL BAYESIAN ESTIMATION OF TRANSITION PROBABILITIES	AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA66 15 BIOKA66 11 TECH 68 29 BIOKA66 611 JASA 65 584 TECH 63 121 AMS 65 150 JRSSB68 190 BIOKA65 355 BIOKA69 97 JASA 68 1289 JRSSB64 277 JRSSB65 279
CLINICAL TRIALS A APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINOMIAL PARAMETERS INSENSITIVITY TO NON-OPTIMAL DESIGN IN ROBUSTNESS OF UNIFORM RELATIONSHIP RESPONSES THE SPECIAL REFERENCE TO THE BIVARIATE NORMAL DISTRIB/ MODEL ON THE NORMAL DISTRIBUTION DISTRIBUTION DISTRIBUTION AMAXIMUM LIKELIHOOD AND A	BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH BAYESIAN COMFIDENCE LIMITS FOR RELIABILITY OF REDUNDA BAYESIAN DECISION THEORY BAYESIAN ENCODINC BAYESIAN ESTIMATION IN MULTIVARIATE ANALYSIS BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF COMMON PARAMETERS FROM SEVERAL BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF FUNCTIONAL BAYESIAN ESTIMATION OF FUNCTIONAL BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF FUNCTIONAL RESPECT BAYESIAN ESTIMATION OF FUNCTIONAL RESPECT BAYESIAN ESTIMATION OF FUNCTIONAL RESPECT BAYESIAN ESTIMATION OF TRANSITION PROBABILITIES BAYESIAN ESTIMATION OF TRANSITION PROBABILITIES BAYESIAN ESTIMATION OF TRANSITION PROBABILITIES	AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA64 153 AMS 64 886 BIOKA66 11 TECH 68 29 BIOKA66 611 JASA 65 584 TECH 63 121 AMS 65 150 JRSSB68 190 JASA 68 174 AMS 68 1289 JRSSB64 277 JRSSB64 277 JRSSB64 277 JRSSB64 63 JASA 68 1164
CLINICAL TRIALS APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINOMIAL PARAMETERS INSENSITIVITY TO NON-OPTIMAL DESIGN IN ROBUSTNESS OF UNIFORM RELATIONSHIP RESPONSES THE SPECIAL REFERENCE TO THE BIVARIATE NORMAL DISTRIB/ MODEL NORMAL DISTRIBUTION DISTRIBUTION DISTRIBUTION AMAXIMUM LIKELIHOOD AND A MULTIPARAMETER	BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS BAYESIAN BIO-ASSAY BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH BAYESIAN CONFIDENCE LIMITS FOR RELIABILITY OF REDUNDA BAYESIAN DECISION THEORY BAYESIAN DECISION THEORY BAYESIAN ESTIMATION IN MULTIVARIATE ANALYSIS BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF LATENT ROOTS AND VECTORS WITH BAYESIAN ESTIMATION OF MEANS FOR THE RANDOM EFFECT BAYESIAN ESTIMATION OF MEANS FOR THE RANDOM EFFECT BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF PARAMETERS OF A MULTIVARIATE BAYESIAN ESTIMATION OF THE VARIANCE OF A NORMAL BAYESIAN ESTIMATION OF THE VARIANCE OF A NORMAL BAYESIAN ESTIMATION OF THE VARIANCE OF A NORMAL BAYESIAN ESTIMATION OF TRANSITION PROBABILITIES BAYESIAN INDIFFERENCE PROCEDURES (WITH DISCUSSION)	AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA64 153 AMS 64 886 BIOKA66 11 TECH 68 29 BIOKA66 611 JASA 65 584 TECH 63 121 AMS 65 150 BIOKA65 355 BIOKA65 355 BIOKA65 355 BIOKA65 279 JASA 68 1162 JASA 68 1162 JASA 65 1104 JASSB64 277
CLINICAL TRIALS APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINOMIAL PARAMETERS INSENSITIVITY TO NON-OPTIMAL DESIGN IN ROBUSTNESS OF UNIFORM RELATIONSHIP RESPONSES THE SPECIAL REFERENCE TO THE BIVARIATE NORMAL DISTRIB/ MODEL ON THE NORMAL DISTRIBUTION DISTRIBUTION DISTRIBUTION MAXIMUM LIKELIHOOD AND AMALITIPARAMETER A GENERALIZATION OF	BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH BAYESIAN COMFIDENCE LIMITS FOR RELIABILITY OF REDUNDA BAYESIAN CONFIDENCE LIMITS FOR THE PRODUCT OF N BAYESIAN DECISION THEORY BAYESIAN ENCODINC BAYESIAN ESTIMATION IN MULTIVARIATE ANALYSIS BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF LATENT ROOTS AND VECTORS WITH BAYESIAN ESTIMATION OF MEANS FOR THE RANDOM EFFECT BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF MILTIVARIATE REGRESSION BAYESIAN ESTIMATION OF MILTIVARIATE REGRESSION BAYESIAN ESTIMATION OF THE VARIANCE OF A MULTIVARIATE BAYESIAN ESTIMATION OF TRANSITION PROBABILITIES BAYESIAN ESTIMATION OF TRANSITION PROBABILITIES BAYESIAN INDIFFERENCE PROCEDURES (WITH DISCUSSION) BAYESIAN INDIFFERENCE (WITH DISCUSSION)	AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA64 153 AMS 64 886 BIOKA66 11 TECH 68 29 BIOKA66 611 JASA 65 584 TECH 63 121 AMS 65 150 JRSSB68 190 JASA 68 174 AMS 68 1289 JRSSB64 277 JRSSB64 277 JRSSB64 277 JRSSB64 63 JASA 68 1164
CLINICAL TRIALS APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINOMIAL PARAMETERS INSENSITIVITY TO NON-OPTIMAL DESIGN IN ROBUSTNESS OF UNIFORM RELATIONSHIP RESPONSES THE SPECIAL REFERENCE TO THE BIVARIATE NORMAL DISTRIB/ MODEL ON THE NORMAL DISTRIBUTION DISTRIBUTION DISTRIBUTION MAXIMUM LIKELIHOOD AND A MULTIPARAMETER A GENERALIZATION OF ON SOME EXTENSIONS OF	BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH BAYESIAN COMFIDENCE LIMITS FOR RELIABILITY OF REDUNDA BAYESIAN CONFIDENCE LIMITS FOR THE PRODUCT OF N BAYESIAN DECISION THEORY BAYESIAN ENCODINC BAYESIAN ESTIMATION IN MULTIVARIATE ANALYSIS BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF COMMON PARAMETERS FROM SEVERAL BAYESIAN ESTIMATION OF LATENT ROOTS AND VECTORS WITH BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF MULTIVARIATE REGRESSION BAYESIAN ESTIMATION OF PARAMETERS OF A MULTIVARIATE BAYESIAN ESTIMATION OF THE VARIANCE OF A NORMAL BAYESIAN ESTIMATION OF TRANSITION PROBABILITIES BAYESIAN INDIFFERENCE PROCEDURE BAYESIAN INDIFFERENCE PROCEDURE BAYESIAN INDIFFERENCE PROCEDURE BAYESIAN INDIFFERENCE PROCEDURE BAYESIAN INFERENCE PROPOSED BY MR LINDLEY	AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA66 153 AMS 64 886 BIOKA66 11 TECH 68 29 BIOKA66 611 JASA 65 584 TECH 63 121 AMS 65 150 BIOKA65 355 BIOKA65 97 JASA 68 1289 JRSSB64 2777 JRSSB64 277 JRSSB64 277 JRSSB65 279 JASA 68 1104 JASA 65 1104 JASA 65 1104 JASA 65 1104 JASSA 69 29 JRSSB68 205
CLINICAL TRIALS A APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINOMIAL PARAMETERS INSENSITIVITY TO NON-OPTIMAL DESIGN IN ROBUSTNESS OF UNIFORM RELATIONSHIP RESPONSES THE SPECIAL REFERENCE TO THE BIVARIATE NORMAL DISTRIB/ MODEL ON THE NORMAL DISTRIBUTION DISTRIBUTION DISTRIBUTION MAXIMUM LIKELIHOOD AND A MULTIPARAMETER A GENERALIZATION OF ON SOME EXTENSIONS OF	BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH BAYESIAN COMFIDENCE LIMITS FOR RELIABILITY OF REDUNDA BAYESIAN DECISION THEORY BAYESIAN ENCODINC BAYESIAN ESTIMATION IN MULTIVARIATE ANALYSIS BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF COMMON PARAMETERS FROM SEVERAL BAYESIAN ESTIMATION OF LATENT ROOTS AND VECTORS WITH BAYESIAN ESTIMATION OF MIXENS FOR THE RANDOM EFFECT BAYESIAN ESTIMATION OF MIXENS DISTRIBUTIONS BAYESIAN ESTIMATION OF TRANSITION PROBABILITIES BAYESIAN ESTIMATION OF TRANSITION PROBABILITIES BAYESIAN INDIFFERENCE PROCEDURE BAYESIAN INDIFFERENCE PROCEDURES (WITH DISCUSSION) BAYESIAN INFERENCE (WITH DISCUSSION) BAYESIAN INFERENCE PROCEDED BY MR LINDLEY BAYESIAN INFERENCE PROCEDED BY MR LINDLEY	AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA64 886 BIOKA66 11 TECH 68 29 BIOKA66 61 JASA 65 584 TECH 63 121 AMS 65 150 JRSSB68 190 BIOKA69 97 JASA 68 174 AMS 68 1289 JRSSB64 277 JRSSB65 279 JRSSB64 277 JRSSB65 279 JRSSB64 174 JRSSB65 1104 JRSSB69 29 JRSSB69 29 JRSSB69 299
CLINICAL TRIALS APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINOMIAL PARAMETERS INSENSITIVITY TO NON-OPTIMAL DESIGN IN ROBUSTNESS OF UNIFORM RELATIONSHIP RESPONSES THE SPECIAL REFERENCE TO THE BIVARIATE NORMAL DISTRIB/ MODEL ON THE NORMAL DISTRIBUTION DISTRIBUTION DISTRIBUTION MAXIMUM LIKELIHOOD AND MULTIPARAMETER A GENERALIZATION OF ON SOME EXTENSIONS OF STATEMENTS (WITH DISCUSSION) CONFIDENCE PROPERTIES OF	BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN BIO-ASSAY BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH BAYESIAN COMFIDENCE LIMITS FOR RELIABILITY OF REDUNDA BAYESIAN CONFIDENCE LIMITS FOR THE PRODUCT OF N BAYESIAN DECISION THEORY BAYESIAN DECISION THEORY BAYESIAN ESTIMATION IN MULTIVARIATE ANALYSIS BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF MEANS FOR THE RANDOM EFFECT BAYESIAN ESTIMATION OF MEANS FOR THE RANDOM EFFECT BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF FARAMETERS OF A MULTIVARIATE BAYESIAN ESTIMATION OF THE VARIANCE OF A NORMAL BAYESIAN ESTIMATION OF TRANSITION PROBABILITIES BAYESIAN ESTIMATION OF TRANSITION PROBABILITIES BAYESIAN INDIFFERENCE PROCEDURES (WITH DISCUSSION) BAYESIAN INDIFFERENCE PROCEDURES (WITH DISCUSSION) BAYESIAN INFERENCE (WITH DISCUSSION) BAYESIAN INFERENCE PROPOSED BY MR LINDLEY BAYESIAN INFERENCE FORDSED BY MR LINDLEY BAYESIAN INTERPRETATION OF STANDARD INFERENCE BAYESIAN INTERPRETATION OF STANDARD INFERENCE	AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA66 111 TECH 68 29 BIOKA66 611 JASA 65 584 TECH 63 121 AMS 65 150 JRSSB68 190 JASA 68 174 AMS 68 1284 JRSSB64 277 JRSSB64 277 JRSSB64 277 JRSSB64 63 JASA 68 164 JASA 68 162 JASA 65 1104 JRSSB69 29 JRSSB68 205 JRSSB68 205 JRSSB68 205 JRSSB68 205 JRSSB68 205 JRSSB68 209 JRSSB66 299 JRSSB65 169
CLINICAL TRIALS APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINOMIAL PARAMETERS INSENSITIVITY TO NON-OPTIMAL DESIGN IN ROBUSTNESS OF UNIFORM RELATIONSHIP RESPONSES THE SPECIAL REFERENCE TO THE BIVARIATE NORMAL DISTRIB/ MODEL ON THE NORMAL DISTRIBUTION DISTRIBUTION DISTRIBUTION MAXIMUM LIKELIHOOD AND A MULTIPARAMETER A GENERALIZATION OF ON SOME EXTENSIONS OF STATEMENTS (WITH DISCUSSION) CONFIDENCE PROPERTIES OF LEARNING FROM EXPERIENCE	BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN BIO-ASSAY BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH BAYESIAN COMFIDENCE LIMITS FOR RELIABILITY OF REDUNDA BAYESIAN CONFIDENCE LIMITS FOR THE PRODUCT OF N BAYESIAN DECISION THEORY BAYESIAN DECISION THEORY BAYESIAN ESTIMATION IN MULTIVARIATE ANALYSIS BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF MEANS FOR THE RANDOM EFFECT BAYESIAN ESTIMATION OF MEANS FOR THE RANDOM EFFECT BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF FARAMETERS OF A MULTIVARIATE BAYESIAN ESTIMATION OF THE VARIANCE OF A NORMAL BAYESIAN ESTIMATION OF TRANSITION PROBABILITIES BAYESIAN ESTIMATION OF TRANSITION PROBABILITIES BAYESIAN INDIFFERENCE PROCEDURES (WITH DISCUSSION) BAYESIAN INDIFFERENCE PROCEDURES (WITH DISCUSSION) BAYESIAN INFERENCE (WITH DISCUSSION) BAYESIAN INFERENCE PROPOSED BY MR LINDLEY BAYESIAN INFERENCE FORDSED BY MR LINDLEY BAYESIAN INTERPRETATION OF STANDARD INFERENCE BAYESIAN INTERPRETATION OF STANDARD INFERENCE	AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA64 153 AMS 64 886 BIOKA66 11 TECH 68 29 BIOKA66 61 JASA 65 584 TECH 63 121 AMS 65 150 JRSSB68 190 JRSSB68 174 AMS 68 1289 JRSSB64 277 JRSSB65 279 JRSSB64 63 JASA 68 1162 JASA 65 1104 JRSSB69 29 JRSSB69 295 JRSSB69 299 JRSSB68 205 JRSSB68 205 JRSSB68 205 JRSSB68 205 JRSSB68 535 AMS 69 NO.6
CLINICAL TRIALS APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINOMIAL PARAMETERS INSENSITIVITY TO NON-OPTIMAL DESIGN IN ROBUSTNESS OF UNIFORM RELATIONSHIP RESPONSES THE SPECIAL REFERENCE TO THE BIVARIATE NORMAL DISTRIB/ MODEL ON THE NORMAL DISTRIBUTION DISTRIBUTION DISTRIBUTION MAXIMUM LIKELIHOOD AND A MULTIPARAMETER A GENERALIZATION OF ON SOME EXTENSIONS OF STATEMENTS (WITH DISCUSSION) CONFIDENCE PROPERTIES OF LEARNING FROM EXPERIENCE DISCUSSION) SUBJECTIVE	BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH BAYESIAN COMFIDENCE LIMITS FOR RELIABILITY OF REDUNDA BAYESIAN DECISION THEORY BAYESIAN DECISION THEORY BAYESIAN ENCODINC BAYESIAN ESTIMATION IN MULTIVARIATE ANALYSIS BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF COMMON PARAMETERS FROM SEVERAL BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF FARAMETERS OF A MULTIVARIATE BAYESIAN ESTIMATION OF THE VARIANCE OF A NORMAL BAYESIAN ESTIMATION OF TRANSITION PROBABILITIES BAYESIAN ESTIMATION OF TRANSITION PROBABILITIES BAYESIAN INDIFFERENCE PROCEDURE BAYESIAN INDIFFERENCE PROCEDURE BAYESIAN INDIFFERENCE PROCEDURE BAYESIAN INFERENCE (WITH DISCUSSION) BAYESIAN INFERENCE PROPOSED BY MR LINDLEY BAYESIAN INFERENCE PROPOSED BY MR LINDLEY BAYESIAN INTERVAL ESTIMATED BAYESIAN INTERVAL ESTIMATES BAYESIAN MODEL OF DECISION—MAKING AS A RESULT OF BAYESIAN MODEL SIN SAMPLING FINITE POPULATIONS (WITH	AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA64 153 AMS 64 886 BIOKA66 11 TECH 68 29 BIOKA66 61 JASA 65 584 TECH 63 121 AMS 65 150 JRSSB68 190 JRSSB68 174 AMS 68 1289 JRSSB64 277 JRSSB65 279 JRSSB64 63 JASA 68 1162 JASA 65 1104 JRSSB69 29 JRSSB69 295 JRSSB69 299 JRSSB68 205 JRSSB68 205 JRSSB68 205 JRSSB68 205 JRSSB68 535 AMS 69 NO.6
CLINICAL TRIALS APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINOMIAL PARAMETERS INSENSITIVITY TO NON-OPTIMAL DESIGN IN ROBUSTNESS OF UNIFORM RELATIONSHIP RESPONSES THE SPECIAL REFERENCE TO THE BIVARIATE NORMAL DISTRIB/ MODEL ON THE NORMAL DISTRIBUTION DISTRIBUTION DISTRIBUTION MAXIMUM LIKELIHOOD AND MULTIPARAMETER A GENERALIZATION OF ON SOME EXTENSIONS OF STATEMENTS (WITH DISCUSSION) CONFIDENCE PROPERTIES OF LEARNING FROM EXPERIENCE DISCUSSION) SUBJECTIVE DISCUSSION) THE	BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS BAYESIAN BIO-ASSAY BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH BAYESIAN COMFIDENCE LIMITS FOR RELIABILITY OF REDUNDA BAYESIAN CONFIDENCE LIMITS FOR THE PRODUCT OF N BAYESIAN DECISION THEORY BAYESIAN ESTIMATION IN MULTIVARIATE ANALYSIS BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF LATENT ROOTS AND VECTORS WITH BAYESIAN ESTIMATION OF MEANS FOR THE RANDOM EFFECT BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF THE PROBLEMS FOR MULTIVARIATE BEGRESSION BAYESIAN ESTIMATION OF THE VARIANCE OF A MOUTHLY AREA BAYESIAN ESTIMATION OF THE VARIANCE OF A NORMAL BAYESIAN ESTIMATION OF TRANSITION PROBABILITIES BAYESIAN INDIFFERENCE PROCEDURE BAYESIAN INDIFFERENCE PROCEDURES (WITH DISCUSSION) BAYESIAN INFERENCE PROPOSED BY MR LINDLEY BAYESIAN INFERENCE PROPOSED BY MR LINDLEY BAYESIAN INTERPERTATION OF STANDARD INFERENCE BAYESIAN MODEL OF DECISION—MAKING AS A RESULT OF BAYESIAN MODELS IN SAMPLING FINITE POPULATIONS (WITH BAYESIAN MODELS IN SAMPLING FINITE POPULATIONS (WITH	AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA66 11 TECH 68 29 BIOKA66 611 JASA 65 584 TECH 63 121 AMS 65 150 JRSSB68 190 JASA 68 174 AMS 68 1289 JRSSB64 277 JRSSB65 279 JRSSB64 63 JRSSB64 63 JRSSB69 104 JRSSB69 29 JRSSB69 29 JRSSB68 299 JRSSB68 169 JRSSB68 705
CLINICAL TRIALS APPLIED TO THE COMPARISON OF VARIANCES APPLICATION TO REGRESSION ANALYSIS NT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAI/ BINOMIAL PARAMETERS INSENSITIVITY TO NON-OPTIMAL DESIGN IN ROBUSTNESS OF UNIFORM RELATIONSHIP RESPONSES THE SPECIAL REFERENCE TO THE BIVARIATE NORMAL DISTRIB/ MODEL ON THE NORMAL DISTRIBUTION DISTRIBUTION DISTRIBUTION MAXIMUM LIKELIHOOD AND A MULTIPARAMETER A GENERALIZATION OF ON SOME EXTENSIONS OF STATEMENTS (WITH DISCUSSION) CONFIDENCE PROPERTIES OF LEARNING FROM EXPERIENCE DISCUSSION) SUBJECTIVE MULTIPARAMETER PROBLEMS FROM A	BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS BAYESIAN BIO-ASSAY BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH BAYESIAN COMFIDENCE LIMITS FOR RELIABILITY OF REDUNDA BAYESIAN CONFIDENCE LIMITS FOR THE PRODUCT OF N BAYESIAN DECISION THEORY BAYESIAN ESTIMATION IN MULTIVARIATE ANALYSIS BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL BAYESIAN ESTIMATION OF LATENT ROOTS AND VECTORS WITH BAYESIAN ESTIMATION OF MEANS FOR THE RANDOM EFFECT BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS BAYESIAN ESTIMATION OF THE PROBLEMS FOR MULTIVARIATE BEGRESSION BAYESIAN ESTIMATION OF THE VARIANCE OF A MOUTHLY AREA BAYESIAN ESTIMATION OF THE VARIANCE OF A NORMAL BAYESIAN ESTIMATION OF TRANSITION PROBABILITIES BAYESIAN INDIFFERENCE PROCEDURE BAYESIAN INDIFFERENCE PROCEDURES (WITH DISCUSSION) BAYESIAN INFERENCE PROPOSED BY MR LINDLEY BAYESIAN INFERENCE PROPOSED BY MR LINDLEY BAYESIAN INTERPERTATION OF STANDARD INFERENCE BAYESIAN MODEL OF DECISION—MAKING AS A RESULT OF BAYESIAN MODELS IN SAMPLING FINITE POPULATIONS (WITH BAYESIAN MODELS IN SAMPLING FINITE POPULATIONS (WITH	AMS 64 825 BIOKA68 119 JASA 65 81 BIOKA66 153 AMS 64 886 BIOKA66 11 TECH 68 29 BIOKA66 611 JASA 65 584 TECH 63 121 AMS 65 150 JRSSB68 355 BIOKA69 97 JASA 68 174 AMS 68 1289 JRSSB64 277 JRSSB65 279 JRSSB64 277 JRSSB65 279 JRSSB66 160 JASA 68 1162 JASA 68 1162 JASA 68 1762 JRSSB69 29 JRSSB69 29 JRSSB69 29 JRSSB68 205 JRSSB68 205 JRSSB68 205 JRSSB68 205 JRSSB68 535 AMS 69 NO.6 JRSSB69 NO.6 JRSSB69 NO.6 JRSSB69 NO.6 JRSSB69 NO.6 JRSSB69 NO.6 JRSSB69 NO.6

BAY - BIA TITLE WORD INDEX

```
PARAMETERS
                            ON CONFIDENCE POINTS AND BAYESIAN PROBABILITY POINTS IN THE CASE OF SEVERAL
                                                                                                           JRSSB65
                                                     BAYESIAN SEQUENTIAL ANALYSIS
                                                                                                           BIOKA61
IN THE FIXED-EFFECTS ONE-WAY ANALYSIS OF VARIANCE, A BAYESIAN SIDELIGHT
                                                                                  UNEQUAL CROUP VARIANCES
ONS (WITH DISCUSSION)
                                                   A BAYESIAN SICNIFICANCE TEST FOR MULTINOMIAL DISTRIBUTI JRSSB67
US PRIOR DISTRIBUTIONS
                                                     BAYESIAN SINGLE SAMPLING ATTRIBUTE PLANS FOR CONTINUO TECH 6B
                                                                                                                    667
                            ASYMPTOTIC PROPERTIES OF BAYESIAN SINCLE SAMPLINC PLANS (CORR. 67 5B6)
                                                                                                           JRSSB67
                                                                                                                    162
SCHEME
                                 SOME REMARKS ON THE BAYESIAN SOLUTION OF THE SINGLE SAMPLING INSPECTION
                                                                                                           TECH 60 341
           THE ROLE OF EXPERIMENTAL RANDOMIZATION IN BAYESIAN STATISTICS, FINITE SAMPLING AND TWO BAYESIAN BIOKA69 NO.3
                                                SOME BAYESIAN STRATIFIED TWO-PHASE SAMPLING RESULTS
                                                                                                           BIOKA68 131
                                                     BAYESIAN STRATIFIED TWO-PHASE SAMPLING RESULTS. K
GHARACTERISTICS
                                                                                                           BIOKAGB 587
                                                   A BAYESIAN STUDY OF THE MULTINOMIAL DISTRIBUTION
                                                                                                            AMS 67 1423
                                                   A BAYESIAN TEST OF SOME CLASSICAL HYPOTHESES, WITH APPL JASA 66 577
IGATIONS TO SEQUENTIAL CLINICAL TRIALS
                                                                                                           JRSSB64 161
                                                     BAYESIAN TOLERANCE REGIONS (WITH DISCUSSION)
TION IN BAYESIAN STATISTICS, FINITE SAMPLING AND TWO BAYESIANS
                                                                       THE ROLE OF EXPERIMENTAL RANDOMIZA BIOKA69 NO.3
                                                  ON BEALE'S MEASURES OF NON-LINEARITY
                                                                                                           TECH 65
                                                                                                                    623
                                                                                                                     99
        MORTALITY PATTERNS IN EICHT STRAINS OF FLOUR BEETLE
                                                                                                           BIOCS65
       CANNIBALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN EXPERIMENT AND A STOCHASTIC MODEL
                                                                                                           BIOCS68
            ECONOMETRIC EXPLORATION OF INDIAN SAVING BEHAVIOR
                                                                                                           JASA 69
                                           LIPSCHITZ BEHAVIOR AND INTEGRABILITY OF CHARACTERISTIC
                                                                                                            AMS 67
                                                                                                                     32
                        ANTICIPATIONS AND INVESTMENT BEHAVIOR IN UNITED STATES MANUFACTURING 1947-1960
                                                                                                           JASA 69
                                                                                                                     67
                                            STIRLING BEHAVIOR IS ASYMPTOTICALLY NORMAL
                                                                                                            AMS 67
                                                                                                                    410
                                      THE ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN
                                                                                                            AMS 69
                                                                                                                    665
TRAFFIC
                                       THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE
                                                                                                            AMS 61
                                                                                                                    230
                                    ON THE TRANSIENT BEHAVIOR OF A QUEUEING SYSTEM WITH BULK SERVICE AND
FINITE CAPACITY
                                                                                                            AMS 62
                                                                                                                   973
RRENT INPUT AND CAMMA SERVICE TIME
                                     THE TRANSIENT BEHAVIOR OF A SINCLE SERVER QUEUINC PROCESS WITH RECU
                                                                                                            AMS 61 1286
                                   ON THE ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE DISCRETE CASE II
                                                                                                             AMS 65
                                                                                                                    454
                                          ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES
                                                                                                             AMS 64
                                                                                                                    846
                                   ON THE ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES IN THE DISCRETE CASE
                                                                                                             AMS 63 1386
                                                                                                            AMS 65
 ANALYSIS
                                   ON THE ASYMPTOTIC BEHAVIOR OF DENSITIES WITH APPLICATIONS TO SEQUENTIAL
                                                                                                                    615
                                          ASYMPTOTIC BEHAVIOR OF EXPECTED SAMPLE SIZE IN CERTAIN ONE-SIDED AMS 64
                                                                                                                     36
                                                THE BEHAVIOR OF LIKELIHOOD RATIOS OF STOCHASTIC PROCESSES
 RELATED BY GROUPS OF TRANSFORMATIONS
                                                                                                            AMS 65
                                        ON THE LOCAL BEHAVIOR OF MARKOV TRANSITION PROBABILITIES
                                                                                                            AMS 68 2123
 INCORRECT, CORR. 66 745
                                            LIMITING BEHAVIOR OF POSTERIOR DISTRIBUTIONS WHEN THE MODEL IS
                                                                                                            AMS 66
                                                                                                                     51
                                         APPROXIMATE BEHAVIOR OF THE DISTRIBUTION OF WINSORIZED T (TRIMMIN TECH 68
G-WINSORIZATION 2)
                                                                                                                     83
                                          ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIONS IN MULTI AMS 69 NO.6
PLE LINEAR RECRESSION
                        A TWO-STATE MARKOV MODEL FOR BEHAVIORAL CHANGE
                                                                                                           JASA 68 993
                                    QUASI-STATIONARY BEHAVIOUR OF A LEFT-CONTINUOUS RANDOM WALK ON THE TRANSIENT BEHAVIOUR OF A SIMPLE QUEUE
                                                                                                                    532
                                                                                                            AMS 69
                                                                                                           JRSSB60
                                                                                                                    277
DEATH PROCESS
                                                THE BEHAVIOUR OF AN ESTIMATOR FOR A SIMPLE BIRTH AND
                                                                                                           BTOKA56
                                                                                                                     23
 MEANS UNDER VARIANCE HETEROCENEITY
                                        SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE HYPOTHESIS OF EQUAL BIOKAGO
                                                                                                                    345
 MEANS UNDER VARIANCE H/ CORRIGENDA, 'SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE HYPOTHESIS OF EQUAL BIOKA61
                                                                                                                    230
                                        ON THE LIMIT BEHAVIOUR OF EXTREME ORDER STATISTICS
                                   ON THE ASYMPTOTIC BEHAVIOUR OF POSTERIOR DISTRIBUTIONS
                                                                                                           JRSSB69
                                                                                                                     80
                                         THE ERGODIC BEHAVIOUR OF RANDOM WALKS
                                                                                                                    391
                                                 THE BEHAVIOUR OF SOME SIGNIFICANCE TESTS UNDER EXPERIMENT BIOKA69
AL RANDOMIZATION
BETWEEN TWO ESTIMATED RESPONSES
                                                 THE BEHAVIOUR OF THE VARIANCE FUNCTION OF THE DIFFERENCE JRSSB67
JECTS STATISTICAL TESTING OF DIFFERENCES IN CASUAL BEHAVIOUR OF TWO MORPHOLOCICALLY INDISTINGUISHABLE OB BIOCS67
                                                                                                                    137
                                                     BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS (WITH
DISCUSSION)
                                                                                                           JRSSB59
                                                                                                                     36
                                       NEW TABLES OF BEHREN'S TEST OF SIGNIFICANCE
                                                                                                           JRSSB56
                                                                                                                    212
                                                 THE BEHRENS-FISHER DISTRIBUTION AND WEICHTED MEANS
                                                                                                           JRSSB59
                                                                                                                     73
                    APPROXIMATION TO THE GENERALIZED BEHRENS-FISHER DISTRIBUTION INVOLVING THREE VARIATES
                                                                                                           BIOKA69 NO.3
                                APPROXIMATION TO THE BEHRENS-FISHER DISTRIBUTIONS.
                                                                                                           BIOKA65 267
                                                                                                            AMS 63 1596
    USE OF THE WILCOXON STATISTIC FOR A GENERALIZED BEHRENS-FISHER PROBLEM
                       A SEQUENTIAL ANALOQUE OF THE BEHRENS-FISHER PROBLEM
                                                                                                            AMS 67 1384
  CONFIDENCE INTERVAL OF PREASSIGNED LENGTH FOR THE BEHRENS-FISHER PROBLEM
                                                                                                            AMS 67 1175
           SOME REMARKS ON SCHEFFE'S SOLUTION TO THE BEHRENS-FISHER PROBLEM
                                                                                                           JASA 69 NO.4
     DEGREES OF FREEDOM SOLUTION TO THE MULTIVARIATE BEHRENS-FISHER PROBLEM
                                                                                            AN APPROXIMATE BIOKA65
  COMPARISON OF TWO TEST PROCEDURES PROPOSED FOR THE BEHRENS-FISHER PROBLEM
                                                                                     A CONFIDENCE INTERVAL JASA 66
    ON SOME NONPARAMETRIC ESTIMATES FOR SHIFT IN THE BEHRENS-FISHER SITUATION
                                                                                                            AMS 66
         BOUNDS ON THE DISTRIBUTION FUNCTIONS OF THE BEHRENS-FISHER STATISTIC
                                                                                                            AMS 66
                   SOME SCHEFFE-TYPE TESTS FOR SOME BEHRENS-FISHER-TYPE REGRESSION PROBLEMS
                                                                                                           JASA 65 1163
ENCE BETWEEN THE MEA/ AN EXACT DISTRIBUTION OF THE BEHRENS-FISHER-WELCH STATISTIC FOR TESTING THE DIFFER JRSSB61 377
         NOTE ON A PAPER BY RAY AND PITMAN +(FISHER-BEHRENS-STATISTIC)
                                                                                                           JRSSB62
                                                                                                                    537
                   TABLE OF 0.1 PERCENTAGE POINTS OF BEHRENS'S D
                                                                                                           BTOK A66
                                                                                                                    267
              ON RANDOMIZED RANK SCORE PROCEDURE OF BELL AND DOKSUM
                                                                                                            AMS 66 1697
         QUERY, COMPLETED RUNS OF LENCTH K ABOVE AND BELOW MEDIAN
                                                                                                           TECH 67
                                                                                                                   682
                                                  'N BENADERING VIR 'N MAGREEKS WAARSKYNLIKHEIDSVERDELING SASJ 69 NO.2
              A NOTE ON THE ASYMPTOTIC EFFICIENCY OF BENNETT'S BIVARIATE SICN TEST
                                                                                                           JRSSB66
                                                                                                            AMS 65
                                                     BERNARD FRIEDMAN'S URN
   HISTORY OF PROBABILITY AND STATISTICS. XI. DANIEL BERNOULLI ON MAXIMUM LIKELIHOOD
                                                                                           STUDIES IN THE BIOKA61
   BETA DISTRIBUTION FOR USE IN BAYESIAN ANALYSIS OF BERNOULLI PROCESSES PERCENTAGE POINTS OF THE TECH 66
               ON THE EFFICIENCY OF MATCHED PAIRS IN BERNOULLI TRIALS
                                                                                                           BIOKA68
                                         NOTE ON THE BERRY-ESSEN THEOREM
  SELECTING A SUBSET OF K POPULATIONS CONTAINING THE BEST
                                                                                                           AMS 67 1072
SQUARES AND ANALYSIS OF VARIANCE PROCEDURES ARE ALSO BEST
                                                             /STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST JASA 69 NO.4
                               ON THE CHOICE OF THE BEST AMONCST THREE NORMAL POPULATIONS WITH KNOWN
                                                                                                           BIOKA58 436
                                       DETECTION OF BEST AND OUTLYING NORMAL POPULATIONS WITH KNOWN
VARIANCES
                                                                                                           BIOKA61
                                                                                                                    457
ANONICAL FORMS, NON-NECATIVE COVARIANCE MATRICES AND BEST AND SIMPLE LEAST SQUARES LINEAR ESTIMATORS IN LI
                                                                                                            AMS 67 1092
TESTS OF AN IMPORTANT/ A SIMPLE METHOD OF DERIVING BEST CRITICAL REGIONS SIMILAR TO THE SAMPLE SPACE IN BIOKA53 231
                            A NOTE ON THE 'NECESSARY BEST ESTIMATOR'
                                                                                                           JASA 69 NO.4
 ONE OF THE HYPOTHESES
                             INADMISSIBILITY OF THE BEST INVARIANT TEST WHEN THE MOMENT IS INFINITE UNDER AMS 69 14B3
NORMAL DISTRIBUTION UNDER/
                             INADMISSIBILITY OF THE BEST INVARIATE ESTIMATOR OF EXTREME QUANTILES OF THE
                                                                                                           AMS 69 1801
                                                    BEST K OF 2K-1 COMPARISONS
                                                                                                           JASA 66 329
                 CRAPHICAL PROCEDURE FOR FITTING THE BEST LINE TO A SET OF POINTS
                                                                                                           TECH 60 477
EQUALITY OF TWO COVARIANCE MATRICES IN RELATION TO A BEST LINEAR DISCRIMINATOR ANALYSIS
                                                                                           TESTS FOR THE
                                                                                                           AMS 64 191
METERS OF SINCLE EXPONENTIAL DISTRIBUT/ TABLES FOR BEST LINEAR ESTIMATES BY ORDER STATISTICS OF THE PARA JASA 57
```

TITLE WORD INDEX BAY - BIA

STRUCTION OF GOOD LINEAR UNBIASED ESTIMATES FROM THE BEST LINEAR ESTIMATES FOR A SMALLER SAMPLE SIZE /ON	TECH 65	543
E PARAMETERS OF A DOUBLE EXPONENTIAL POPULATION BEST LINEAR ESTIMATES UNDER SYMMETRIC CENSORING OF TH	JASA 66	248
WEIBULL DISTRIBUTION TABLES FOR OBTAINING THE BEST LINEAR INVARIANT ESTIMATES OF PARAMETERS OF THE		
CONDITION THAT ORDINARY LEAST-SQUARES ESTIMATORS BE BEST LINEAR UNBIASED A NECESSARY AND SUFFICIENT		
STATIONARY PROCESSES BEST LINEAR UNBIASED ESTIMATION FOR MULTIVARIATE	TECH 68	523
THE LOGISTIC DISTRIBUTION USING ORDER STATISTICS BEST LINEAR UNBIASED ESTIMATORS OF THE PARAMETERS OF	TECH 67	43
LINEAR REGRESSION MODEL BEST LINEAR UNBIASED PREDICTION IN THE GENERALIZED	JASA 62	369
A MULTI-STAGE PROCEDURE FOR THE SELECTION OF THE BEST OF SEVERAL POPULATIONS	JASA 62	7B5
SEQUENTIAL PROCEDURES FOR SELECTION OF THE BEST ONE OF SEVERAL BINOMIAL POPULATIONS	AMS 67	117
	BIOKA64	49
A BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS	AMS 64	B25
ALES AND A CHARACTERISTIC PROPERTY A BEST POSSIBLE KOLMOGOROFF-TYPE INEQUALITY FOR MARTING		764
THE C/ A SHORT-CUT GRAPHIC METHOD FOR FITTING THE BEST STRAIGHT LINE TO A SERIES OF POINTS ACCORDING TO	JASA 57	13
SELECTION OF THE BEST SUBSET IN REGRESSION ANALYSIS	TECH 67	531
ION TO THE NORMAL DISTRIBUTION CRITERIA FOR BEST SUBSTITUTE INTERVAL ESTIMATORS, WITH AN APPLICAT	JASA 64	1133
SELECTION OF THE BEST TREATMENT IN A PAIRED-COMPARISON EXPERIMENT	AMS 63	75
ER OF TRAWINSKI AND DAVID ENTITLED 'SELECTION OF THE BEST TREATMENT IN A PAIRED-COMPARISON EXPERIMENT'	AMS 63	92
LEAST SQUARES AND BEST TUBLASED ESTIMATES	AMS 62	266
	JASA 56	266
	JASA 66	
	JASA 66	313
GENERATION OF RANDOM SAMPLES FROM THE BETA AND F DISTRIBUTIONS	TECH 63	269
THE NON-CENTRAL MULTIVARIATE BETA DISTRIBUTION	AMS 61	104
ADDITIONAL PERCENTAGE POINTS FOR THE INCOMPLETE BETA DISTRIBUTION	BIOKA63	449
NORMALITY MULTIVARIATE BETA DISTRIBUTION AND A TEST FOR MULTIVARIATE	JRSSB68	511
ES SOME RESULTS ON THE NON-CENTRAL MULTIVARIATE BETA DISTRIBUTION AND MOMENTS OF TRACES OF TWO MATRIC		
		6B7
	TECH 67	607
UPPER PERCENTAGE POINTS OF THE GENERALIZED BETA DISTRIBUTION. I	BIOKA57	237
UPPER PERCENTAGE POINTS OF THE GENERALIZED BETA DISTRIBUTION. II	BIOKA57	441
UPPER PERCENTAGE POINTS OF THE GENERALIZED BETA DISTRIBUTION. III	BIOKA58	492
VARIATIONS OF THE NON-CENTRAL T AND BETA DISTRIBUTIONS	AMS 64	
THE NON-CENTRAL CHI-SQUARED AND BETA DISTRIBUTIONS	BIOKA63	542
	JASA 69	230
ULTIPLE CORRELATION MATRIX, NON-CENTRAL MULTIVARIATE BETA DISTRIBUTIONS ON THE DISTRIBUTION OF A M	AMC CD	
		227
WISHART DISTRIBUTIONS, CORR. 66 297 MULTIVARIATE BETA DISTRIBUTIONS AND INDEPENDENCE PROPERTIES OF THE		261
	BIOKA52	204
SAMPLING THE USE OF INCOMPLETE BETA FUNCTIONS FOR PRIOR DISTRIBUTIONS IN BINOMIAL	TECH 65	335
SOME STRIKING PROPERTIES OF BINOMIAL AND BETA MOMENTS	AMS 69	1753
THE NONCENTRAL MULTIVARIATE BETA TYPE TWO DISTRIBUTION	SASJ 69	NO.2
SIMPLIFIED BETA-APPROXIMATIONS TO THE KRUSKAL-WALLIS H TEST	JASA 59	225
COMPOUND MULTINOMIAL DISTRIBUTION, THE MULTIVARIATE BETA-DISTRIBUTION, AND CORRELATIONS AMONG PROPORTIONS	BTOKA62	65
APPROXIMATE LINEARIZATION OF THE INCOMPLETE BETA-FUNCTION	BIOKA59	214
N A CHART FOR THE INCOMPLETE BETA-FUNCTION AND THE CUMULATIVE BINOMIAL DISTRIBUTIO		423
	BIOKAGO	173
	BIOKA51	
		4
POINTS OF PEARSON CURVES, FOR GIVEN ROOT(BETA-1) AND BETA-2 EXPRESSED IN STANDARD MEASURE /F PERCENTAGE	BIOKA63	459
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN	BIOKA63 BIOKA51	459 4
	BIOKA63 BIOKA51	459 4
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT(BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE / PERCENTAGE	BIOKA63 BIOKA51	459 4 669
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT(BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE / PERCENTAGE	BIOKA63 BIOKA51 BIOKA65 JASA 68	459 4 669 1457
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT(BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE /PERCENTAGE II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, RELATED TAIL PROBABILITIES, I A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, RELATED TAIL PROBABILITIES, I	BIOKA63 BIOKA51 BIOKA65 JASA 68 JASA 68	459 4 669 1457 1416
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT(BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE / PERCENTAGE A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS	BIOKA63 BIOKA51 BIOKA65 JASA 68 JASA 68 AMS 67	459 4 669 1457 1416 1278
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT(BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE! /PERCENTAGE II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, RELATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WHICH PRODUCT IS BETTER	BIOKA63 BIOKA51 BIOKA65 JASA 68 JASA 68 AMS 67 TECH 69	459 4 669 1457 1416 1278 309
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT(BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE! /PERCENTAGE II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, RELATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WITH CONFOUNDING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS	BIOKA63 BIOKA51 BIOKA65 JASA 68 JASA 68 AMS 67 TECH 69 JASA 67	459 4 669 1457 1416 1278 309 638
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE /PERCENTAGE IA NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WHICH PRODUCT IS BETTER WITH CONFOUNDING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER ESTIMATORS	BIOKA63 BIOKA51 BIOKA65 JASA 68 JASA 68 AMS 67 TECH 69 JASA 67 JASA 63	459 4 669 1457 1416 1278 309 638 172
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE /PERCENTAGE II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WHICH PRODUCT IS BETTER WITH CONFOUNDING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER ESTIMATORS	BIOKA63 BIOKA51 BIOKA65 JASA 68 JASA 68 AMS 67 TECH 69 JASA 67 JASA 63 AMS 64	459 4 669 1457 1416 1278 309 638 172 1064
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE! /PERCENTAGE II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WHICH PRODUCT IS BETTER WITH CONFOUNDING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO GETAIN UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE BEVERIDGE WHEAT PRICE INDEX	BIOKA63 BIOKA51 BIOKA65 JASA 68 JASA 68 AMS 67 TECH 69 JASA 67 JASA 67 JASA 63 AMS 64 JRSSB55	459 4 669 1457 1416 1278 309 638 172 1064 22B
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE /PERCENTAGE II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WHICH PRODUCT IS BETTER WITH CONFOUNDING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO GETAIN UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE BEVERIDGE WHEAT PRICE INDEX ON AN ANALOGUE OF BHATTACHARYA BOUND	BIOKA63 BIOKA51 BIOKA65 JASA 68 JASA 68 AMS 67 TECH 69 JASA 67 JASA 67 JASA 63 AMS 64 JRSSB55 BIOKA64	459 4 669 1457 1416 1278 309 638 172 1064 22B 268
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE /PERCENTAGE IN A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WHICH PRODUCT IS BETTER WITH CONFOUNDING WHICH PRODUCT IS BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO GETAIN UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE BEVERIDGE WHEAT PRICE INDEX ON AN ANALOGUE OF BHATTACHARYA BOUND PANEL MORTALITY AND PANEL BIAS	BIOKA63 BIOKA51 BIOKA65 JASA 68 JASA 68 AMS 67 TECH 69 JASA 67 JASA 63 AMS 64 JRSSB55 BIOKA64 JASA 59	459 4 669 1457 1416 1278 309 638 172 1064 22B 268 52
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE / PERCENTAGE II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WHICH PRODUCT IS BETTER WITH CONFOUNDING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE BEVERIDGE WHEAT PRICE INDEX ON AN ANALOGUE OF BHATTACHARYA BOUND PANEL MORTALITY AND PANEL BIAS SOME EXTENSIONS OF THE IDEA OF BIAS	BIOKA63 BIOKA51 BIOKA65 JASA 68 JASA 68 JASA 67 TECH 69 JASA 67 JASA 63 AMS 64 JRSSB55 BIOKA64 JASA 59 AMS 61	459 4 669 1457 1416 1278 309 638 172 1064 22B 268 52 436
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE /PERCENTAGE II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WITH CONFOUNDING WIFFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE BEVERIDGE WHEAT PRICE INDEX ON AN ANALOGUE OF BHATTACHARYA BOUND PANEL MORTALITY AND PANEL BIAS SOME EXTENSIONS OF THE IDEA OF BIAS OF RANDOM ALLOCATION FOR THE CONTROL OF SELECTION BIAS THE USE	BIOKA63 BIOKA51 BIOKA65 JASA 68 JASA 67 TECH 69 JASA 67 JASA 67 JASA 64 JRSSB55 BIOKA64 JASA 59 AMS 61 BIOKA669	459 4 669 1457 1416 1278 309 638 172 1064 22B 268 52 436 NO.3
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE /PERCENTAGE II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WITH CONFOUNDING WIFFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE BEVERIDGE WHEAT PRICE INDEX ON AN ANALOGUE OF BHATTACHARYA BOUND PANEL MORTALITY AND PANEL BIAS SOME EXTENSIONS OF THE IDEA OF BIAS OF RANDOM ALLOCATION FOR THE CONTROL OF SELECTION BIAS THE USE	BIOKA63 BIOKA51 BIOKA65 JASA 68 JASA 67 TECH 69 JASA 67 JASA 67 JASA 64 JRSSB55 BIOKA64 JASA 59 AMS 61 BIOKA669	459 4 669 1457 1416 1278 309 638 172 1064 22B 268 52 436 NO.3
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE /PERCENTAGE II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WITH CONFOUNDING WIFFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE BEVERIDGE WHEAT PRICE INDEX ON AN ANALOGUE OF BHATTACHARYA BOUND PANEL MORTALITY AND PANEL BIAS SOME EXTENSIONS OF THE IDEA OF BIAS OF RANDOM ALLOCATION FOR THE CONTROL OF SELECTION BIAS THE USE	BIOKA63 BIOKA51 BIOKA65 JASA 68 JASA 67 TECH 69 JASA 67 JASA 67 JASA 64 JRSSB55 BIOKA64 JASA 59 AMS 61 BIOKA669	459 4 669 1457 1416 1278 309 638 172 1064 22B 268 52 436 NO.3
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE /PERCENTAGE II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WITH CONFOUNDING WIFFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE BEVERIDGE WHEAT PRICE INDEX ON AN ANALOGUE OF BHATTACHARYA BOUND PANEL MORTALITY AND PANEL BIAS SOME EXTENSIONS OF THE IDEA OF BIAS OF RANDOM ALLOCATION FOR THE CONTROL OF SELECTION BIAS THE USE	BIOKA63 BIOKA51 BIOKA65 JASA 68 JASA 67 TECH 69 JASA 67 JASA 67 JASA 64 JRSSB55 BIOKA64 JASA 59 AMS 61 BIOKA669	459 4 669 1457 1416 1278 309 638 172 1064 22B 268 52 436 NO.3
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE /PERCENTAGE IN A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WHICH PRODUCT IS BETTER WITH CONFOUNDING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE BETTER ESTIMATORS ON AN ANALOGUE OF PANEL MORTALITY AND PANEL BLAS SOME EXTENSIONS OF THE IDEA OF BLAS OF RANDOM ALLOCATION FOR THE CONTROL OF SELECTION BIAS A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS THE PARAMETERS OF THE GAMMA DISTRIBUTION AND THEIR BIAS MAXIMUM LIKELIHOOD ESTIMATION OF MICH METHOD OF ESTIMATION OF MGLY UNRELATED RECRESSIONS AND TE TS FOR AGGREGATION BIAS AN EFFICIENT METHOD OF ESTIMATION OF SEMENTATION OF MGLY UNRELATED RECRESSIONS AND TE TS FOR AGGREGATION BIAS AN EFFICIENT METHOD OF ESTIMATION OF SEMENTATION OF MGLY UNRELATED RECRESSIONS AND TE TS FOR AGGREGATION BIAS AN EFFICIENT METHOD OF ESTIMATION OF SEMENTATION OF MGLY UNRELATED RECRESSIONS AND TE TS FOR AGGREGATION BIAS AN EFFICIENT METHOD OF ESTIMATION OF SEMENTATION OF MGLY UNRELATED RECRESSIONS AND TE TS FOR AGGREGATION BIAS AN EFFICIENT METHOD OF ESTIMATION OF MICH METHOD OF M	BIOKA63 BIOKA51 BIOKA65 JASA 68 JASA 67 TECH 69 JASA 67 JASA 67 JASA 64 JRSSB55 BIOKA64 JASA 59 AMS 61 BIOKA669	459 4 669 1457 1416 1278 309 638 172 1064 22B 268 52 436 NO.3 63 NO.4 34B
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE /PERCENTAGE II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WITH CONFOUNDING WIFFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS ON AN ANALOGUE OF BHATTACHARYA BOUND PANEL MORTALITY AND PANEL BIAS SOME EXTENSIONS OF THE IDEA OF BIAS OF RANDOM ALLOCATION FOR THE CONTROL OF SELECTION BIAS A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS ASURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS ANALOGUE ESTIMATION OF SET MAXIMUM LIKELIHOOD ESTIMATION OF NGLY UNRELATED RECRESSIONS AND TE TS FOR AGGREGATION BIAS A PEFFICIENT METHOD OF SETIMATION SEEMI APPROXIMATE CONFIDENCE INTERVALS III. A BIAS CORRECTION	BIOKA63 BIOKA65 BIOKA65 JASA 68 JASA 68 JASA 67 TECH 69 JASA 67 JASA 63 AMS 64 JASA 59 BIOKA64 JASA 59 BIOKA64 JASA 61 BIOKA64 JASA 65 JASA 65 JASA 65 JASA 65 JASA 65	459 4 669 1457 1416 1278 309 638 172 1064 22B 268 52 436 NO.3 63 NO.4 34B 201
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE /PERCENTAGE IN A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WHICH PRODUCT IS BETTER WITH CONFOUNDING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO GETAIN UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE BEVERIDGE WHEAT PRICE INDEX ON AN ANALOGUE OF BHATTACHARYA BOUND PANEL MORTALITY AND PANEL BIAS SOME EXTENSIONS OF THE IDEA OF BIAS OF RANDOM ALLOCATION FOR THE CONTROL OF SELECTION BIAS A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS AN EFFICIENT METHOD OF ESTIMATION OF MGLY UNRELATED REGRESSIONS AND TE TS FOR AGGREGATION BIAS AN EFFICIENT METHOD OF ESTIMATION OF MGLY UNRELATED REGRESSIONS AND TE TS FOR AGGREGATION BIAS AN EFFICIENT METHOD OF ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION OF MGLY UNRELATED REGRESSIONS AND TE TS FOR AGGREGATION BIAS AN EFFICIENT METHOD OF ESTIMATION OF APPROXIMATE CONFIDENCE INTERVALS III. A BIAS CORRECTION NT' AND 'ADAPTIVE EXPECTATIONS' MODE/ SMALL SAMPLE BIAS DUE TO MISSPECIFICATION IN THE 'PARTIAL ADJUSTME	BIOKA63 BIOKA65 JASA 68 JASA 68 JASA 67 TECH 69 JASA 67 JASA 63 JASA 63 JASA 65 BIOKA64 JASA 65 BIOKA65 TECH 69 JASA 62 BIOKA65 JASA 62 BIOKA65 JASA 62	459 4 669 1416 1278 309 638 172 1064 22B 268 52 436 NO.3 63 NO.4 34B 201 1130
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2. EXPRESSED IN STANDARD MEASURE /PERCENTAGE I A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WHICH PRODUCT IS BETTER WITH CONFOUNDING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER ESTIMATORS IN FACTORIAL ARRANGEMENTS USE OF INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE BETTER ESTIMATORS ON AN ANALOGUE OF PANEL MORTALITY AND PANEL BIAS SOME EXTENSIONS OF THE IDEA OF BIAS OF RANDOM ALLOCATION FOR THE CONTROL OF SELECTION BIAS A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS RANDOMIZED RESPONSE, THE PARAMETERS OF THE GAMMA DISTRIBUTION AND THEIR BIAS APPROXIMATE CONFIDENCE INTERVALS III. A BIAS CORRECTION NT' AND 'ADAPTIVE EXPECTATIONS' MODE/ SMALL SAMPLE BIAS DESTIMATION OF RESPONSE MINIMUM BIAS ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE	BIOKA63 BIOKA65 BIOKA65 JASA 68 JASA 68 JASA 67 TECH 69 JASA 67 JASA 63 AMS 64 JASA 59 BIOKA64 JASA 59 JASA 65 TECH 69 JASA 66 TECH 66	459 4 669 1416 1278 309 638 172 1064 22B 268 52 436 NO.3 63 NO.4 34B 201 1130 461
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE / PERCENTAGE II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WHICH PRODUCT IS BETTER WITH CONFOUNDING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO GETAIN UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERIODOCRAM OF THE BEVENDE WHEAT PRICE INDEX ON AN ANALOGUE OF PANEL MORTALITY AND PANEL BIAS SOME EXTENSIONS OF THE IDEA OF BIAS OF RANDOM ALLOCATION FOR THE CONTROL OF SELECTION BIAS A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS THE PARAMETERS OF THE GAMMA DISTRIBUTION AND THEIR BIAS MILY UNRELATED RECRESSIONS AND TE TS FOR AGGREGATION BIAS APPROXIMATE CONFIDENCE INTERVALS III. A BIAS CORRECTION NT' AND 'ADAPTIVE EXPECTATIONS' MODE/ SMALL SAMPLE BIAS DUE TO MISSPECIFICATION IN THE 'PARTIAL ADJUSTME SURFACES MINIMUM BIAS ESTIMATORS OF THE UNITED STATES NONWHITE POPUL ATOM OF THE ONLY OF THE	BIOKA63 BIOKA65 BIOKA65 JASA 68 JASA 68 JASA 67 TECH 69 JASA 67 JASA 63 AMS 64 JASA 59 AMS 64 JASA 59 TECH 69 JASA 65 TECH 69 JASA 65 TECH 69 JASA 66 TECH 69 JASA 66	459 4 669 1457 1416 1278 309 638 172 1064 22B 268 52 436 NO.3 63 NO.4 34B 201 1130 461
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE / PERCENTAGE II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WITH CONFOUNDING WIFFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE BEVERIDEG WHEAT PRICE INDEX ON AN ANALOGUE OF BHATTACHARYA BOUND PANEL MORTALITY AND PANEL BIAS OF RANDOM ALLOCATION FOR THE CONTROL OF SELECTION BIAS A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS ASURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS ARANDOMIZED RESPONSE, THE DAMMA DISTRIBUTION AND THEIR BIAS APPROXIMATE CONFIDENCE INTERVALS III. A BIAS CORRECTION NT' AND 'ADAPTIVE EXPECTATIONS' MODE/ SMALL SAMPLE BIAS SULE TO MISSPECIFICATION IN THE 'PARTIAL ADJUSTME SURFACES MINIMUM BIAS ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE BIAS IN ESTIMATES OF THE UNITED STATES NONWHITE POPUL NOTES ON BIAS IN ESTIMATES OF THE UNITED STATES NONWHITE POPUL	BIOKA63 BIOKA65 BIOKA65 JASA 68 JASA 68 JASA 67 TECH 69 JASA 67 JASA 63 AMS 64 JASA 59 AMS 61 BIOKA69 JASA 65 JASA 65 JASA 65 JASA 66 TECH 69 JASA 66 TECH 69 JASA 66 BIOKA65 JASA 66 BIOKA65 JASA 66 BIOKA65	459 4 669 1457 1416 1278 638 172 1064 228 52 436 NO.3 63 NO.4 34B 201 1130 461 44 353
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2. EXPRESSED IN STANDARD MEASURE /FERCENTAGE IN A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WHICH PRODUCT IS BETTER WITH CONFOUNDING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE BETTER ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE BETTER ESTIMATORS ON AN ANALOGUE OF PANEL MORTALITY AND PANEL BIAS SOME EXTENSIONS OF THE IDEA OF BIAS OF RANDOM ALLOCATION FOR THE CONTROL OF SELECTION BIAS A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS RANDOMIZED RESPONSE, THE PARAMETERS OF THE GAMMA DISTRIBUTION AND THEIR BIAS MAXIMUM LIKELIHOOD ESTIMATION OF MILE PROCESSIONS AND TE TS FOR AGGREGATION BIAS AN EFFICIENT METHOD OF ESTIMATION OF MILE PROCESSIONS AND TE TS FOR AGGREGATION BIAS AN EFFICIENT METHOD OF ESTIMATION OF MILE PROCESSIONS AND TE TS FOR AGGREGATION BIAS AN EFFICIENT METHOD OF ESTIMATION OF MILE PROCESSIONS AND TE TS FOR AGGREGATION BIAS AN EFFICIENT METHOD OF ESTIMATION OF MILE SURFACES MINIMUM BIAS ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE BIAS IN ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE BIAS IN ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE BIAS IN LULTINOMIAL CLASSIFICATION	BIOKA63 BIOKA65 BIOKA65 JASA 68 JASA 68 JASA 67 TECH 69 JASA 67 JASA 63 AMS 64 JASA 59 AMS 64 BIOKA64 JASA 65 BIOKA69 JASA 66 TECH 69 JASA 66 TECH 69 JASA 61 BIOKA65 BIOKA65 BIOKA66	459 4 669 1457 1416 1278 309 638 172 1064 22B 268 52 436 NO.3 63 NO.4 34B 201 1130 441 353 298
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE /FERCENTAGE II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WHICH PRODUCT IS BETTER WITH CONFOUNDING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO GETAIN UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERIODOCRAM OF THE BEVENTINGE WHEAT PRICE INDEX ON AN ANALOGUE OF PANEL MORTALITY AND PANEL BIAS SOME EXTENSIONS OF THE IDEA OF BIAS THE VISE A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS RANDOMIZED RESPONSE, THE PARAMETERS OF THE GAMMA DISTRIBUTION AND THEIR BIAS AND ESTIMATION OF SMALL SAMPLE BIAS AN EFFICIENT METHOD OF ESTIMATION GENERAL PROVING BIAS IN ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE ATION AS INDICATED BY TRENDS IN DEATH RATES MINIMUM BIAS ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE ATION AS INDICATED BY TRENDS IN DEATH RATES ENESS OF ADJUSTMENT BY SUBCLASSIFICATION IN REMOVING BIAS IN DISSERVATIONAL STUDIES THE EFFECTIV	BIOKA63 BIOKA65 BIOKA65 JASA 68 JASA 68 JASA 67 TECH 69 JASA 67 JASA 63 AMS 64 JASA 59 AMS 64 JASA 59 JASA 65 BIOKA64 JASA 65 BIOKA69 JASA 66 TECH 69 JASA 66 TECH 69 JASA 66 BIOKA55 JASA 66 BIOKA56 JASA 66 BIOKA56	459 4 669 1457 1416 1278 638 172 1064 22B 268 52 436 NO.3 63 NO.3 63 NO.4 41 1130 44 353 298 295
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE / PERCENTAGE II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WITH CONFOUNDING WINFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE BEVERIDEG WHEAT PRICE INDEX ON AN ANALOGUE OF BHATTACHARYA BOUND PANEL MORTALITY AND PANEL BIAS SOME EXTENSIONS OF THE IDEA OF BIAS OF RANDOM ALLOCATION FOR THE CONTROL OF SELECTION BIAS A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS RANDOMIZED RESPONSE, THE PARAMETERS OF THE GAMMA DISTRIBUTION AND THEIR BIAS MCLY UNRELATED RECRESSIONS AND TE TS FOR AGGREGATION BIAS A PPROXIMATE CONFIDENCE INTERVALS III. A BIAS CORRECTION NT' AND 'ADAPTIVE EXPECTATIONS' MODE/ SMALL SAMPLE BIAS DUE TO MISSPECIFICATION IN THE 'PARTIAL ADJUSTME SUFFACES ANINHUM BIAS ESTIMATES OF THE UNITED STATES NONWHITE POPUL NOTES ON BIAS IN ESTIMATES OF THE UNITED STATES NONWHITE POPUL BIAS IN ESTIMATES OF THE UNITED STATES NONWHITE POPUL BIAS IN DESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE BIAS IN ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE BIAS IN ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE BIAS IN ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE BIAS IN DESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE BIAS IN DESERVATIONAL CLASSIFICATION ENESS OF ADJUSTMENT BY SUBCLASSIFICATION IN REMOVING BIAS IN PSEUDO-RANDOM NUMBERS THE EFFECTIVE BIAS IN PSEUDO-RANDOM NUMBERS	BIOKA63 BIOKA63 BIOKA65 BIOKA65 JASA 68 JASA 68 JASA 67 TECH 69 JASA 67 JASA 63 AMS 64 JASA 59 AMS 61 BIOKA64 JASA 65 TECH 69 JASA 66 TECH 69 JASA 66 TECH 69 JASA 66 BIOKA55 JASA 66 BIOKA56 JASA 61 BIOKA56 JASA 66	459 4 669 1457 1416 1278 309 638 172 1064 228 52 436 NO.3 63 NO.3 63 NO.4 34B 201 1130 461 44 353 29B 29B 610
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2. EXPRESSED IN STANDARD MEASURE /PERCENTAGE IN A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WITH CONFOUNDING UNIFORMLY BETTER WITH CONFOUNDING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE SETTER ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE SETTER ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE SETTER ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE SETTER ESTIMATORS FANDOM ALLOCATION FOR THE CONTROL OF SELECTION BIAS A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS RANDOMIZED RESPONSE, THE PARAMETERS OF THE GAMMA DISTRIBUTION AND THEIR BIAS MAXIMUM LIKELIHOOD ESTIMATION OF NGLY UNRELATED REGRESSIONS AND TE TS FOR AGGREGATION BIAS AN EFFICIENT METHOD OF ESTIMATING SEEMI APPROXIMATE CONFIDENCE INTERVALS III. A BIAS CORRECTION NOT AND 'ADAPTIVE EXPECTATIONS' MODE/ SMALL SAMPLE BIAS DUE TO MISSPECIFICATION IN THE 'PARTIAL ADJUSTME SURFACES ATION AS INDICATED BY TRENDS IN DEATH RATES MINIMUM BIAS ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE AT IN SITUATION BIAS IN ESTIMATION BIAS IN ESTIMATES OF THE UNITED STATES NONWHITE POPUL BIAS IN ESTIMATION BIAS IN ESTIMATION BIAS IN ESTIMATION BIAS IN DESENVATIONAL STUDIES THE EFFECTIVE BIAS IN DESENVATIONAL STUDIES THE EFFECTIVE BIAS IN SURVEYS THE RATIO BIAS IN SURVEYS BIAS IN SURVEYS BIAS IN SURVEYS THE EFFECTIVE BIAS IN SURVEYS	BIOKA63 BIOKA65 JASA 68 JASA 68 JASA 67 TECH 69 JASA 67 JASA 63 AMS 64 JASA 65 BIOKA64 JASA 65 TECH 69 JASA 62 BIOKA66 JASA 62 BIOKA66 JASA 62 BIOKA66 JASA 62 BIOKA66 JASA 62 BIOKA66 JASA 61 BIOKA66 JASA 61 BIOKA66 JASA 61 BIOKA66 JASA 61 JASA 61 JASA 61 JASA 61 JASA 61 JASA 61 JASA 63 JASA 61 JASA 63 JASA 64	459 4 669 1457 1416 1278 309 638 172 1064 22B 268 436 NO.3 63 NO.4 34B 201 1130 461 44 353 29B 295 610 863
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT(BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE! /PERCENTAGE /	BIOKA63 BIOKA65 BIOKA65 JASA 68 JASA 68 JASA 67 TECH 69 JASA 67 JASA 63 AMS 64 JASA 59 BIOKA64 JASA 65 BIOKA69 JASA 66 TECH 69 JASA 66 TECH 69 JASA 61 BIOKA66 TECH 69 JASA 61 BIOKA66	459 4 669 1457 1416 1278 309 638 172 1064 228 268 52 436 NO.3 63 NO.4 34B 201 1130 441 353 298 295 610 610 610 610 610 610 610 610
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT(BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE' /PERCENTAGE /	BIOKA63 BIOKA65 BIOKA65 JASA 68 JASA 68 JASA 67 TECH 69 JASA 67 JASA 63 JASA 64 JASSA 59 AMS 61 BIOKA64 JASA 65 TECH 69 JASA 65 TECH 69 JASA 66 BIOKA55 JASA 66 BIOKA56 JASA 61 BIOKA56 JASA 61 BIOKA56 JASA 64 BIOKA56 JASA 64	459 4 669 1457 1416 1278 309 638 172 1064 22B 268 52 436 NO.3 63 NO.3 63 NO.4 41 353 29B 610 B63 403 390
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT(BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE! /PERCENTAGE /	BIOKA63 BIOKA65 BIOKA65 JASA 68 JASA 68 JASA 67 TECH 69 JASA 67 JASA 63 JASA 64 JASSA 59 AMS 61 BIOKA64 JASA 65 TECH 69 JASA 65 TECH 69 JASA 66 BIOKA55 JASA 66 BIOKA56 JASA 66 BIOKA56 JASA 61 BIOKA56 JASA 66 BIOKA56 JASA 61 BIOKA56 JASA 64 BIOKA56 JASA 64 BIOKA56	459 4 669 1457 1416 1278 309 638 172 1064 22B 268 52 436 NO.3 63 NO.3 63 NO.4 41 353 29B 610 B63 403 390
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT(BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE' /PERCENTAGE /	BIOKA63 BIOKA65 BIOKA65 JASA 68 AMS 67 TECH 69 JASA 63 AMS 64 JASA 63 AMS 64 JASA 65 BIOKA64 JASA 65 TECH 69 JASA 65 TECH 69 JASA 62 BIOKA66 JASA 66 BIOKA66 JASA 66 BIOKA66 JASA 66 JASA 66 BIOKA66 JASA 68 BIOKA66 JASA 68 BIOKA66 JASA 68 BIOKA66 JASA 68 BIOKA66 JASA 68 BIOKA66 JASA 68 BIOKA66 JASA 68 BIOKA66 JASA 68 BIOKA66 JASA 68 BIOKA66 JASA 68 BIOKA66 BIOKA64 BIOKA64	459 4 669 1457 1416 1278 309 638 172 1064 22B 268 436 NO.3 63 NO.4 34B 201 1130 461 44 353 29B 29B 295 610 B63 403 390 87
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE /D 0.5 PERCENTACE II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WHICH PRODUCT IS BETTER WHICH PRODUCT IS BETTER WITH CONFOUNDING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE BEVERIDGE WHEAT PRICE INDEX ON AN ANALGUE OF BHATTACHARYA BOUND PANEL MORTALITY AND PANEL BIAS OF RANDOM ALLOCATION FOR THE CONTROL OF SELECTION BIAS A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS A SURVEY TECHNIQUE FOR CHIMINATING EVASIVE ANSWER BIAS A SURVEY TECHNIQUE FOR CONFIDENCE INTERVALS III. A BIAS CORRECTION NOT'S AND 'ADAPTIVE EXPECTATIONS' MODE/ SMALL SAMPLE BIAS DUE TO MISSPECIFICATION IN THE 'PARTIAL ADJUSTME APPROXIMATE CONFIDENCE INTERVALS III. A BIAS CORRECTION NOTES ON BIAS IN ESTIMATION BLASS IN SERVIMATION OF THE EFFECTIV BIAS IN ESTIMATION OF THE UNITED STATES NONWHITE POPUL BIAS IN SERVIMATION OF THE UNITED STATES NONWHITE POPUL BIAS IN SERVIMATION OF AUTOCORRELATION BIAS IN SURVEYS BIAS IN SERVIMATION OF AUTOCORRELATION THE EFFECTIV BIAS IN THE ESTIMATION OF AUTOCORRELATION BIAS IN THE ESTIMATION OF AUTOCORRELATION THE BIAS OF FUNCTIONS OF CHARACTERISTIC ROOTS OF A RANDOM NEGATIVE BINOMIAL DISTRIBUTION MATRIX ON THE BIAS OF FUNCTIONS OF CHARACTERISTIC ROOTS OF A RANDOM NEGATIVE BINOMIAL DISTRIBUTION THE BIAS OF FUNCTIONS OF CHARACTERISTIC ROOTS OF A RANDOM NEGATIVE BINOMIAL DISTRIBUTION THE BIAS OF FUNCTIONS OF CHARACTERISTIC ROOTS OF A RANDOM NEGATIVE BINOMIAL DISTRIBUTION THE BIAS OF FUNCTIONS OF CHARACTERISTIC ROOTS OF A RANDOM NEGATIVE BINOMIAL DISTRIBUTION THE BIAS OF FUNCTIONS OF CHARACTERISTIC ROOT	BIOKA63 BIOKA65 BIOKA65 JASA 68 JASA 68 JASA 67 TECH 69 JASA 67 JASA 63 AMS 64 JASA 59 AMS 64 JASA 59 JASA 69 JASA 66 BIOKA65 JASA 66 TECH 69 JASA 61 BIOKA66 TECH 69 JASA 61 BIOKA66 BIOCS6B JASA 61 BIOKA66 BIOCS6B JASA 61 BIOKA66 BIOCS6B JASA 61 BIOKA66 BIOCS6B JASA 61 BIOKA66 BIOCS6B JASA 61 BIOKA66 BIOCS6B BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56	459 4 669 1457 1416 1278 309 638 172 1064 22B 268 52 436 NO.3 63 NO.4 34B 201 1130 441 353 29B 295 610 863 803 803 803 803 803 803 803 80
T POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2) EXPRESSED IN STANDARD MEASURE /D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2. EXPRESSED IN STANDARD MEASURE / PERCENTAGE II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, RELATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WHICH PRODUCT IS BETTER WITH CONFOUNDING	BIOKA63 BIOKA65 BIOKA65 JASA 68 JASA 68 JASA 67 TECH 69 JASA 67 JASA 63 AMS 64 JASA 59 AMS 61 BIOKA64 JASA 65 BIOKA69 JASA 65 BIOKA69 JASA 66 BIOKA55 JASA 66 BIOKA56 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66	459 4 669 1457 1416 1278 309 638 172 1064 228 268 52 436 NO.3 63 NO.4 34B 201 1130 461 44 353 295 610 863 87 390 87 193 193 193 193 193 193 193 193
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA—1 AND BETA—2) EXPRESSED IN STANDARD MEASURE '/D O.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT(BETA—1) AND BETA—2, EXPRESSED IN STANDARD MEASURE' /PERCENTAGE II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WHICH PRODUCT IS BETTER WHICH PRODUCT IS BETTER WHICH PRODUCT IS BETTER UNIFORMLY BETTER COMMINED ESTIMATORS IN FACTORIAL ARRANGEMENTS OF INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE BEVERIDGE WHEAT PRICE INDEX ON AN ANALOGUE OF BHATTACHARYA BOUND FANEL MORTALITY AND PANEL BIAS SOME EXTENSIONS OF THE 10EA OF BIAS OF RANDOM ALLOCATION FOR THE CONTROL OF SELECTION BIAS RANDOMIZED RESPONSE, THE PARAMETERS OF THE CAMMAD ISTRIBUTION AND THEIR BIAS AND ETTER ESTIMATORS AND TETS FOR AGGRECATION BIAS AN EFFICIENT METHOD OF ESTIMATION OF MILL SAMPLE BIAS APPROXIMATE CONFIDENCE INTERVALS III. A BIAS CORRECTION NOT AND 'ADAPTIVE EXPECTATIONS' MODE/ SMALL SAMPLE BIAS DUE TO MISSPECIFICATION IN THE 'PARTIAL ADJUSTME MINIMUM BIAS ESTIMATION OF BIAS IN ESTIMATION OF RESPONSE ATION AS INDICATED BY TRENDS IN DEATH RATES ANDOTE ON BIAS IN SETIMATION OF AUTOCORRELATION BIAS IN SETIMATION OF AUTOCORRELATION BIAS IN SURVEYS BIAS IN STRUCTURE STIMATION OF AUTOCORRELATION BIAS IN SURVEYS BIAS IN SURVEYS ON THE BIAS OF MOMENT ESTIMATION OF AUTOCORRELATION THE EFFECTIV BIAS IN THE ESTIMATION OF AUTOCORRELATION BIAS IN THE ESTIMATION OF AUTOCORRELATION TO THE BIAS OF MOMENT ESTIMATORS WITH AN APPLICATION TO THE DAY ON THE BIAS OF MOMENT ESTIMATORS WITH AN APPLICATION TO THE DAY ON THE BIAS OF MOMENT ESTIMATORS WITH AN APPLICATION TO THE DAY ON THE BIAS OF MOMENT ESTIMATORS WITH AN APPLICATION TO THE LOCATION AND ACCALE PARAMETERS GIVEN A TYPE II CENS/ THE BIAS OF MOMENT ESTIMATORS OF VARIANCE IN THE LOCATION BIAS OF THE MOMENT ESTIMATORS OF VARIANCE IN THE BIAS OF THE MOM	BIOKA63 BIOKA65 JASA 68 JASA 68 JASA 67 TECH 69 JASA 67 JASA 63 JASA 69 JASA 69 JASA 65 TECH 69 JASA 55 TECH 69 JASA 62 BIOKA65 JASA 62 BIOKA65 JASA 62 BIOKA65 JASA 66 BIOKA65 JASA 66 BIOKA65 JASA 66 BIOKA65 JASA 66 BIOKA65 JASA 68 BIOKA65 JASA 68 BIOKA65 JASA 68 BIOKA65 JASA 68 BIOKA65 BIOKA65 BIOKA66 BIOKA66 BIOKA66 BIOKA66	459 4 669 1457 1416 1278 309 638 172 1064 228 52 436 NO.3 63 NO.3 63 NO.4 44 353 295 610 863 403 403 403 87 193 193 193 193 194 195 195 195 195 195 195 195 195
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN STANDARD MEASURE '/D 0.5 PERCEN POINTS OF PEARSON CURVES, FOR GIVEN ROOT(BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE' /PERCENTAGE I A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, RELATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WHICH PRODUCT IS BETTER WHICH PRODUCT IS BETTER WHICH PRODUCT IS BETTER WITH CONFOUNDING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERIODOCRAM OF THE BEVERIDE WHEAT PRICE INDEX ON AN ANALOGUE OF BHATTACHARYA BOUND PANEL MORTALITY AND PANEL BIAS SOME EXTENSIONS OF THE IDEA OF BIAS OF RANDOM ALLOCATION FOR THE CONTROL OF SELECTION BIAS RANDOMIZED RESPONSE, THE PARAMETERS OF THE GAMMA DISTRIBUTION AND THE BIAS A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS AFROXIMATE CONFIDENCE INTERVALS III. A BIAS CORRECTION NT' AND 'ADAPTIVE EXPECTATIONS' MODE/ SMALL SAMPLE BIAS SOME EXTENSIONS AND TE TS FOR AGGREGATION BIAS APPROXIMATE CONFIDENCE INTERVALS III. A BIAS CORRECTION NOTES ON BIAS IN ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE ATION AS INDICATED BY TRENDS IN DEATH RATES MINIMUM BIAS ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE BIAS IN ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE ATION AS INDICATED BY TRENDS IN DEATH RATES BIAS IN SETIMATION OF AUTOCORRELATION BIAS IN THE ESTIMATION OF AUTOCORRELATION BIAS IN THE ESTIMATION OF AUTOCORRELATION OF A RANDOM NUMBERS THE RATIO BIAS IN THE ESTIMATION OF AUTOCORRELATION OF A RANDOM NUMBERS THE BIAS OF FUNCTIONS OF CHARACTERISTIC ROOTS OF A RANDOM NUMBERS THE MASS OF FUNCTIONS OF CHARACTERISTIC ROOTS OF A RANDOM NUMBERS THE MASS OF FUNCTIONS OF CHARACTERISTIC ROOTS OF VARIANCE IN THE BIAS OF FUNCTIONS OF CHARACTERISTIC ROOTS OF VARIANCE IN THE BIAS OF THE ONE-SAMPLE CRAMBER-VON MISES	BIOKA63 BIOKA65 BIOKA65 JASA 68 AMS 67 JASA 69 JASA 69 JASA 63 JASA 63 JASA 69 JASA 69 JASA 69 JASA 66 JASA 66 JASA 66 BIOKA65 JASA 66 BIOKA65 JASA 61 BIOKA65 JASA 61 JASA 61 JASA 61 JASA 62 BIOKA54 BIOKA54 BIOKA54 BIOKA54 BIOKA54 BIOKA54 BIOKA54 BIOKA54 BIOKA54 BIOKA54	459 4 669 1457 1416 1278 309 638 172 1064 22B 268 436 NO.3 663 NO.4 34B 201 1130 441 353 610 461 44 359 610 87 193 313 448
T POINTS OF PEARSON CURVES (WITH ARGUMENT BETA—1 AND BETA—2) EXPRESSED IN STANDARD MEASURE DO 0.5 PERCENTAGE POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA—1) AND BETA—2) EXPRESSED IN STANDARD MEASURE DO 0.5 PERCENTAGE I A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS. WHICH PRODUCT IS BETTER WITH CONFOUNDING CONSTRUCTING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE BEVERIDGE WHEAT PRICE INDEX ON AN ANALOGUE OF BHAITACHARYA BOUND PANEL MORTALITY AND PANEL BIAS SOME EXTENSIONS OF THE IDEA OF BIAS OF RANDOM ALOCATION FOR THE CONTROL OF SELECTION BIAS A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS ASSURED FOR ELIMINATING EVASIVE ANSWER BIAS AND TETS FOR ACGREGATION BIAS AND APPROXIMATE CONTIDENCE INTERVALS III. A BIAS CORRECTION NOT! AND 'ADAPTIVE EXPECTATIONS' MODE/ SMALL SAMPLE BIAS SOLE EXPENSED IN SAMPLE BIAS OF THE UNITED STATES NONWHITE POPUL ATTOM AS INDICATED BY TRENDS IN DEATH RATES ATTOM AS INDICATED BY TRENDS IN DEATH RATES AND OTHER COMMON, REKATED TAIL PROBABILITIES, A BETT AND OTHER COMMON, REKATED TAIL PROBABILITIES, I BETA—A AND OTHER COMMON, REKATED TAIL PROBABILITIES, I BETA—A AND OTHER COMMON, REKATED TAIL PROBABILITIES, I BETT AND OTHER COMMON, RELATED TAIL PROBABILITIES, I BETT AND OTHER COMMON, RELATED TAIL PROBABILITIES, I BETT AND OTHER COMMON, RELATED TAIL PROBABILITIES, I BETT AND OTHER COMBINED TAIL PROBABILITIES, I THE ESTIMATION	BIOKA63 BIOKA65 BIOKA65 JASA 68 JASA 68 JASA 67 TECH 69 JASA 67 JASA 63 AMS 64 JASA 59 AMS 61 BIOKA64 JASA 65 BIOKA66 JASA 66 TECH 69 JASA 66 TECH 69 JASA 61 BIOKA66	459 4 669 1457 1416 1278 309 638 172 1064 22B 268 52 436 NO.3 63 NO.4 34B 201 1130 461 44 353 29B 295 610 863 873 113 113 113 113 113 113 113 1
POINTS OF PEARSON CURVES (WITH ARGUMENT BETA—1 AND BETA—2) EXPRESSED IN STANDARD MEASURE '/ PERCENTAGE II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WHICH PRODUCT IS BETTER WHICH PRODUCT IS BETTER WITH CONFOUNDING CONSTRUCTING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS USE OF INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE BEVERFILE ESTIMATORS A NOTE ON THE PERIODOGRAM OF THE BEVERFILE WHICH PROBUCT IS BETTER ESTIMATORS ON AN ANALOGUE OF BHATTACHARYA BOUND PANEL MORTALITY AND PANEL SOME EXTENSIONS OF THE IDEA OF BIAS OF RANDOM ALLOCATION FOR THE CONTROL OF SELECTION BIAS A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS THE PARAMETERS OF THE GAMMA DISTRIBUTION AND THEIR BIAS THE PARAMETERS OF THE GAMMA DISTRIBUTION AND THEIR BIAS OF MILL SAMPLE BIAS DUE TO MISSPECIFICATION IN THE 'PARTIAL ADJUSTME SURFACES MINIMUM BIAS SOME EXTENSIONS OF SALESTIMATION OF BIAS AN EFFICIENT METHOD OF ESTIMATING SEMIL APPROXIMATE CONFIDENCE INTERVALS III. A BIAS CORRECTION NOT ADAPTIVE EXPECTATIONS' MODE/ SMALL SAMPLE BIAS DUE TO MISSPECIFICATION IN THE 'PARTIAL ADJUSTME SURFACES MINIMUM BIAS ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE ATION AS INDICATED BY TRENDS IN DEATH RATES NOTE ON BIAS IN SURVEYS THE RATIO BIAS IN SURVEYS THE RATIO BIAS IN SURVEYS THE RATIO BIAS IN FRUED-RANDOM NUMBERS THE RATIO BIAS IN THE ESTIMATION OF AUTOCORRELATION NOT HE BIAS OF FUNCTIONS OF CHARACTERISTIC ROOTS OF A RANDOM NEGATIVE BINOMIAL DISTRIBUTION ON THE BIAS OF FUNCTIONS OF CHARACTERISTIC ROOTS OF A RANDOM NEGATIVE BINOMIAL DISTRIBUTION ON THE BIAS OF SOME LEAST-SQUARES ESTIMATORS OF VARIANCE IN HE BIAS OF FUNCTIONS OF CHARACTERISTIC ROOTS OF A RANDOM NEGATIVE BINOMIAL DISTRIBUTION ON THE BIAS OF FUNCTIONS OF CHARACTERISTIC ROOTS OF A RANDOM NEGATIVE BINOMIAL DISTRIBUTION A TYPE I	BIOKA63 BIOKA65 BIOKA65 JASA 68 AMS 67 TECH 69 JASA 67 JASA 63 AMS 64 JASA 59 AMS 61 BIOKA64 JASA 65 BIOKA64 JASA 65 JASA 66 BIOKA65 JASA 66 BIOKA65 JASA 66 BIOKA66 JASA 61 BIOKA66 JASA 61 BIOKA66	459 4 669 1457 1416 1278 309 638 172 1064 22B 268 52 436 NO.3 63 NO.3 463 NO.3 444 353 295 610 863 403 390 87 193 193 448 248 248 248 258 268 278 288 295 610 878 871 871 872 873 874 875 877 877 877 877 877 877 877
POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1) AND BETA-2) EXPRESSED IN STANDARD MEASURE / PERCENPOINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE / PERCENTAGE I A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WHICH PRODUCT IS BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS UNFOCKING THE PRODUCT IS BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS BAT IS BETTER WHICH PRODUCT IS BETTER BETTER STIMATORS BHAT ACREMENTS FILE SETIMATORS A NOTE ON BIAS IN BETTER ESTIMATOR IN THE PROCUED INTERNATION OF AND AND AND EXPERIMENTAL DESICN FOR RESPONSE, WHICH PRODUCT IS BETTER HE AND IS AN EFFICIENT METHOD OF PRODUCT IN THE PRODUCT IN THE PROPOLATION OF AND	BIOKA63 BIOKA65 BIOKA65 JASA 68 AMS 67 JASA 69 JASA 63 AMS 64 JASA 63 AMS 64 JASA 65 BIOKA64 JASA 65 TECH 69 JASA 65 TECH 69 JASA 62 BIOKA65 JASA 66 JASA 66 BIOKA54 BIOKA54 BIOKA54 BIOKA54 BIOKA54 BIOKA54 BIOKA68	459 4 669 1457 1416 1278 309 638 172 1064 22B 268 52 436 NO.4 34B 201 1130 461 44 353 29B 29B 29B 610 863 403 390 87 193 193 193 193 193 193 193 193
POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1) AND BETA-2) EXPRESSED IN STANDARD MEASURE // PERCENTAGE II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WHICH PRODUCT IS BETTER WHICH PRODUCT IS BETTER WITH CONFOUNDING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS USE OF INTER-BLOCK INFORMATION TO GETAIN UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO GETAIN UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO GETAIN UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERFECORAN OF THE IDEA OF BLASS ON AN ANALOGUE OF BHAITACHARYA BOUND PANEL MORTALITY AND PANEL BIAS SOME EXTENSIONS OF THE IDEA OF BLASS THE PARAMETERS OF THE CAMMA DISTRIBUTION AND THEIR BIAS A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS THE PARAMETERS OF THE CAMMA DISTRIBUTION AND THEIR BIAS AND APPROXIMATE CONFIDENCE INTERVALS III. A BIAS CORRECTION NOT ADAPTIVE EXPECTATIONS' MODE/ SMALL SAMPLE BIAS AN EFFICIENT METHOD OF ESTIMATION OF RESPONSE, ATION AS INDICATED BY TRENDS IN DEATH RATES MINIMAL BIAS ESTIMATION OF AUTOCORRELATION NOTE ON BIAS IN SURVEYS ATION AS INDICATED BY TRENDS IN DEATH RATES MATERIAL MA	BIOKA63 BIOKA65 BIOKA65 JASA 68 AMS 67 TECH 69 JASA 67 JASA 63 AMS 64 JRSSB55 BIOKA64 JASA 59 AMS 61 BIOKA69 JASA 66 BIOKA66 TECH 69 JASA 66 TECH 69 JASA 61 BIOKA66 TECH 69 JASA 61 BIOKA66	459 4 669 1457 1416 1278 309 638 172 1064 22B 268 52 436 NO.3 63 NO.4 34B 201 1130 441 353 390 87 193 313 448 246 181 732 571 477
POINTS OF PEARSON CURVES (WITH ARGUMENT BETA—1 AND BETA—2) EXPRESSED IN STANDARD MEASURE '/ PERCENTAGE II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WHICH PRODUCT IS BETTER WITH CONFOUNDING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS CONSTRUCTING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS USE OF INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERIODOCRAM OF THE BEVEVALE BITS OF RANDOM ALLOCATION FOR THE CONTROL OF SELECTION BIAS SOME EXTENSIONS OF THE IDEA OF BIAS SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS MAXIMUM LIKELIHOOD ESTIMATION OF NOTE ON THE PARAMETERS OF THE GAMMA DISTRIBUTION AND THEIR BIAS MAXIMUM LIKELIHOOD FESTIMATION OF RESPONSE, THE PARAMETERS OF THE GAMMA DISTRIBUTION AND THEIR BIAS SOME EXTENSIONS MODE/ SMALL SAMPLE BIAS SOME EXTENSIONS MODE/ SMALL SAMPLE BIAS SOME EXTENSIONS MODE/ SMALL SAMPLE BIAS SOME FOR EXPENSIONS AND TE TS FOR AGGREGATION BIAS A PREFICIENT METHOD OF ESTIMATION OF NOTE ON BIAS IN STIMATED OF ESTIMATION OF RESPONSE ATION AS INDICATED BY TRENDS IN DEATH RATES ATION AS INDICATED BY TRENDS IN DEATH RATES MATINI AND "ADAPTIVE EXPECTATIONS" MODE/ SMALL SAMPLE BIAS DUE TO MISSPECIFICATION IN THE 'PARTIAL ADJUSTME BIAS IN LUTINOMIAL CLASSIFICATION SHAP SHAP SHAP SHAP SHAP SHAP SHAP SHAP	BIOKA63 BIOKA65 BIOKA65 JASA 68 JASA 68 JASA 67 TECH 69 JASA 67 JASA 67 JASA 68 JASA 67 JASA 68 JASA 69 JASA 69 JASA 69 JASA 69 BIOKA65 JASA 69 JASA 69 JASA 69 BIOKA65 JASA 60 BIOKA66 JASA 60 BIOKA65 JASA 60 BIOKA66	459 4 669 1457 1416 1278 309 638 172 1064 22B 268 52 436 NO.3 63 NO.3 461 1130 441 353 295 610 863 104 403 390 87 193 193 193 193 193 193 193 193
POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1) AND BETA-2) EXPRESSED IN STANDARD MEASURE // PERCENTAGE II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, REKATED TAIL PROBABILITIES, I HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS WHICH PRODUCT IS BETTER WHICH PRODUCT IS BETTER WITH CONFOUNDING UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS USE OF INTER-BLOCK INFORMATION TO GETAIN UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO GETAIN UNIFORMLY BETTER ESTIMATORS USE OF INTER-BLOCK INFORMATION TO GETAIN UNIFORMLY BETTER ESTIMATORS A NOTE ON THE PERFECORAN OF THE IDEA OF BLASS ON AN ANALOGUE OF BHAITACHARYA BOUND PANEL MORTALITY AND PANEL BIAS SOME EXTENSIONS OF THE IDEA OF BLASS THE PARAMETERS OF THE CAMMA DISTRIBUTION AND THEIR BIAS A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS THE PARAMETERS OF THE CAMMA DISTRIBUTION AND THEIR BIAS AND APPROXIMATE CONFIDENCE INTERVALS III. A BIAS CORRECTION NOT ADAPTIVE EXPECTATIONS' MODE/ SMALL SAMPLE BIAS AN EFFICIENT METHOD OF ESTIMATION OF RESPONSE, ATION AS INDICATED BY TRENDS IN DEATH RATES MINIMAL BIAS ESTIMATION OF AUTOCORRELATION NOTE ON BIAS IN SURVEYS ATION AS INDICATED BY TRENDS IN DEATH RATES MATERIAL MA	BIOKA63 BIOKA65 BIOKA65 JASA 68 JASA 68 JASA 67 TECH 69 JASA 67 JASA 67 JASA 68 JASA 67 JASA 68 JASA 69 JASA 69 JASA 69 JASA 69 BIOKA65 JASA 69 JASA 69 JASA 69 BIOKA65 JASA 60 BIOKA66 JASA 60 BIOKA65 JASA 60 BIOKA66	459 4 669 1457 1416 1278 309 638 172 1064 22B 268 52 436 NO.3 63 NO.3 461 1130 441 353 295 610 863 104 403 390 87 193 193 193 193 193 193 193 193

BIA - BIR TITLE WORD INDEX

```
INCOMPLETELY SPECIFIED MODELS
                                                     BIASES IN PREDICTION BY RECRESSION FOR CERTAIN
                                                                                                           BIOKA63 391
       THE WILCOXON TWO-SAMPLE STATISTIC, TABLES AND BIBLIOGRAPHY
                                                                                                           JASA 63 10B6
    ON THE DEFINITION OF FIDUCIAL PROBABILITY WITH A BIBLIOGRAPHY
                                                                                          EXAMPLES BEARING AMS 62 1349
                                                   A BIBLIOGRAPHY ON LIFE TESTING AND RELATED TOPICS
                                                                                                           BIOKA58
                        A SUPPLEMENT TO MENDENHALK'S BIBLIOGRAPHY ON LIFE TESTING AND RELATED TOPICS,
                                                                                                      CORR JASA 64 1231
                                                     BIBLIOCRAPHY ON SEQUENTIAL ANALYSIS
                                                                                                           JASA 60
                                                                                                                   561
                                                     BIBLIOGRAPHY ON SIMULATION, GAMING, ARTIFICIAL
INTELLIGENCE AND ALLIED TOPICS
                                                                                                           JASA 60
                                                                                                                    736
 RELATED TOPICS
                                                     BIBLIOGRAPHY ON THE MULTIVARIATE NORMAL INTEGRALS AND
                                                                                                           AMS 63
                                                                                                                    829
                                                   A BIBLIOCRAPHY ON THE THEORY OF QUEUES
                                                                                                           BIOKA57
                                                                                                                    490
                                                 THE BIG MATCH
                                                                                                            AMS 68
                                                                                                                    159
                  ON THE LINE, GRAPH OF THE COMPLETE BIGRAPH
                                                                                                            AMS 63
                                                                                                                    664
                                             ON SOME BILHARZIA INFECTION AND IMMUNISATION MODELS
                                                                                                           SASI 68
                                                                                                                     61
                                          CENESIS OF BIMODAL DISTRIBUTIONS
                                                                                                           TECH 64
                                                                                                                    357
     QUADRATICS IN MARKOV-CHAIN FREQUENCIES. AND THE BINARY CHAIN OF ORDER 2
                                                                                                           JRSSB63
                                                                                                                    3 R 3
 ON COMPARING INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACTERISTICS IN TWO DIFFERENT POPULATIONS
                                                                                                           JASA 61
                                                                                                                    889
        ON THE FOUNDATIONS OF STATISTICAL INFERENCE, BINARY EXPERIMENTS
                                                                                                            AMS 61
                                                                                                                    414
                                                                                                            AMS 63
                                 A MARKOV PROCESS ON BINARY NUMBERS
        STATISTICAL PROPERTIES OF A CERTAIN PERIODIC BINARY PROCESS
                                                                                                            TECH 66
             TWO FURTHER APPLICATIONS OF A MODEL FOR BINARY RECRESSION
                                                                                                           BIOKA58
                  DISCRIMINATION BETWEEN ALTERNATIVE BINARY RESPONSE MODELS
                                                                                                           BTOKA67
                          THE RECRESSION ANALYSIS OF BINARY SEQUENCES (WITH DISCUSSION) (CORR. 59 23B)
                                                                                                           JRSSB5B
                                                                                                                    215
                          APPROXIMATING THE NECATIVE BINOMIAL
                                                                                                           TECH 66
                                                                                                                    345
  ESTIMATION OF PARAMETERS OF A TRUNCATED POISSONIAN BINOMIAL
                                                                                                           BIOCS68
                                                                                                                    377
ORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR THE BINOMIAL
                                                                        EXISTENCE AND UNIQUENESS OF A UNIF BIOKA56
                                                                                                                    465
         ON THE EQUIVALENCE OF BINOMIAL AND INVERSE BINOMIAL ACCEPTANCE SAMPLING PLANS AND AN ACKNOWLEDGE TECH 63
MENT
                                                                                                                    119
    TABLES OF SIMULTANEOUS CONFIDENCE LIMITS FOR THE BINOMIAL AND AND POISSON DISTRIBUTIONS
                                                                                                           BIOKA69
                                                                                                                    452
                         SOME STRIKING PROPERTIES OF BINOMIAL AND BETA MOMENTS
                                                                                                            AMS 69 1753
                                SEQUENTIAL TESTS FOR BINOMIAL AND EXPONENTIAL POPULATIONS
                                                                                                           BIOKA54
                                                                                                                   252
                                  MODIFIED SAMPLINC, BINOMIAL AND HYPERCEOMETRIC CASES
                                                                                                           TECH 69 NO.4
NS AND AN ACKNOWLEDGEMENT
                               ON THE EQUIVALENCE OF BINOMIAL AND INVERSE BINOMIAL ACCEPTANCE SAMPLINC PLA TECH 63 119
                     TESTING FOR HOMOGENEITY. I. THE BINOMIAL AND MULTINOMIAL DISTRIBUTIONS
                                                                                                           BIOKA66
MOMENTS ESTIMATES OF THE PARAMETERS OF THE TRUNCATED BINOMIAL AND NEGATIVE BINOMIAL DISTRIBUTIONS
                                                                                                           JASA 61
                                                                                                                    990
                                  ON STABILIZING THE BINOMIAL AND NEGATIVE BINOMIAL VARIANCES
                                                                                                           JASA 61
CY OF CERTAIN METHODS OF ESTIMATION FOR THE NEGATIVE BINOMIAL AND NEYMAN TYPE A DISTRIBUTIONS
                                                                                                  EFFICIEN BIOKA62
                                                                                                                    215
MPLING, TWO DECISION PROBLEMS WITH LINEAR LOSSES FOR BINOMIAL AND NORMAL RANDOM VARIABLES.
                                                                                            SEQUENTIAL SA BIOKA65
OD OF ANALYSING UNTRANSFORMED DATA FROM THE NECATIVE BINOMIAL AND OTHER CONTAGIOUS DISTRIBUTIONS A METH BIOKA68
                                                                                                                    163
          SHORTER INTERVALS FOR THE PARAMETER OF THE BINOMIAL AND POISSON DISTRIBUTIONS
                                                                                                           BIOKA57
                                                                                                                    436
             THE GENERALIZED MEAN DIFFERENCES OF THE BINOMIAL AND POISSON DISTRIBUTIONS
                                                                                                           BTOKA59
                                                                                                                    223
 TABLES OF THE FREEMAN-TUKEY TRANSFORMATIONS FOR THE BINOMIAL AND POISSON DISTRIBUTIONS
                                                                                                           BIOKA61
                                                                                                                    433
IBED BOUND ON THE VARIANCE FOR THE PARAMETERS IN THE BINOMIAL AND POISSON DISTRIBUTIONS BASED ON TWO-STACE JASA 66
                                                                                                                    220
FINITE POPULATIONS
                                               A NEW BINOMIAL APPROXIMATION FOR USE IN SAMPLING FROM
                                                                                                           JASA 60
                                                                                                                    718
     ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS, THE BINOMIAL CASE
                                                                                                  SPECTRAL AMS 65
                                                                                                                    971
                                         NOTE ON TWO BINOMIAL COEFFICIENT SUMS FOUND BY RIORDAN
                                                                                                            AMS 63
                                                                                                                   333
                             APPROXIMATING THE LOWER BINOMIAL CONFIDENCE LIMIT (CORR. 69 669)
                                                                                                           JASA 6B 1413
 TABLE OF TWELVE PROBABILITY LEVELS OF THE SYMMETRIC BINOMIAL CUMULATIVE DISTRIBUTION FOR SAMPLE SIZES TO JASA 59 164
                 TABLES OF CONFIDENCE LIMITS FOR THE BINOMIAL DISTRIBUTION
                                                                                                           JASA 60
                              A NOTE ON THE NEGATIVE BINOMIAL DISTRIBUTION
                                                                                                           TECH 62
   ON ESTIMATING THE PARAMETER OF A DOUBLY TRUNCATED BINOMIAL DISTRIBUTION
                                                                                                           JASA 66
                                                                                                                    259
                ESTIMATION OF THE PARAMETER N IN THE BINOMIAL DISTRIBUTION
                                                                                                           JASA 6B
                                                                                                                    150
                       QUERY, TOLERANCE LIMITS FOR A BINOMIAL DISTRIBUTION
                                                                                                           TECH 69
                                                                                                                    201
                              THE TRUNCATED NEGATIVE BINOMIAL DISTRIBUTION
                                                                                                           BTOKA55
                                                                                                                     58
                 A NOTE ON THE MEAN DEVIATION OF THE BINOMIAL DISTRIBUTION
                                                                                                           BIOKA57
                                                                                                                    532
SIMPLIFIED METHODS OF FITTING THE TRUNCATED NECATIVE BINOMIAL DISTRIBUTION
                                                                                                           BTOK A5B
                                                                                                                     59
          INTERVAL ESTIMATION FOR THE PARAMETER OF A BINOMIAL DISTRIBUTION
                                                                                                           BTOKA5B
                                                                                                                   275
                              A NOTE ON THE NEGATIVE BINOMIAL DISTRIBUTION
                                                                                                           BIOKA64
                                                                                                                    264
 FOR THE INCOMPLETE BETA-FUNCTION AND THE CUMULATIVE BINOMIAL DISTRIBUTION
                                                                                                   A CHART BIOKA51
                                                                                                                    423
MERICAL COMPARISONS OF SEVERAL APPROXIMATIONS TO THE BINOMIAL DISTRIBUTION
                                                                                                   SOME NU JASA 69 NO.4
                                                                                                                   193
      ESTIMATORS WITH AN APPLICATION TO THE NEGATIVE BINOMIAL DISTRIBUTION
                                                                                        THE BIAS OF MOMENT BIOKA62
RECIPROCAL OF A VARIABLE FROM A DECAPITATED NEGATIVE BINOMIAL DISTRIBUTION
                                                                              /STANDARD DEVIATIONS OF THE JASA 62
                                                                                                                    139
IES DISTRIBUTIONS AND ITS APPLICATION TO A TRUNCATED BINOMIAL DISTRIBUTION
                                                                             ON FOR GENERALIZED POWER SER BIOKA62
                                                                                                                    227
OF P FOR A CONTINUOUS PRIOR DISTRIBUTION THE MIXED BINOMIAL DISTRIBUTION AND THE POSTERIOR DISTRIBUTION
                                                                                                          JRSSB6B
                                                                                                                    359
                  ON THE EVALUATION OF THE NEGATIVE BINOMIAL DISTRIBUTION WITH EXAMPLES
                                                                                                           TECH 60
                                                                                                                    501
                                TWO ESTIMATES OF THE BINOMIAL DISTRIBUTION, (CORR. 64 1B2)
                                                                                                            AMS 64
                                                                                                                    809
  CORRICENDA TO A NOTE ON THE MEAN DEVIATION OF THE BINOMIAL DISTRIBUTION'
                                                                                                           BIOKA5B
                                                                                                                    587
            ESTIMATING THE PARAMETERS OF MIXTURES OF BINOMIAL DISTRIBUTIONS
                                                                                                           JASA 64
                                                                                                                    510
   ESTIMATORS FOR THE PARAMETERS OF A MIXTURE OF TWO BINOMIAL DISTRIBUTIONS
                                                                                                    MOMENT AMS 62
                                                                                                                    444
   PARAMETERS OF THE LOGARITHMIC SERIES AND NEGATIVE BINOMIAL DISTRIBUTIONS
                                                                                         ON ESTIMATING THE BIOKA69
                                                                                                                    411
                                            NECATIVE BINOMIAL DISTRIBUTIONS WITH A COMMON K
                                                                                                           BIOKA58
                                                                                                                    37
     A CENERAL USE OF THE POISSON APPROXIMATION FOR BINOMIAL EVENTS, WITH APPLICATION TO BACTERIAL ENDOCA BIOCS66
                                                                                                                     74
 ORTHOCONAL POLYNOMIALS OF THE POSITIVE AND NECATIVE BINOMIAL FREQUENCY FUNCTIONS IN CUPVE FITTING BY AITK BIOKAG1
                                                                                                                    115
                                        POISSON AND BINOMIAL FREQUENCY SURFACES
                                                                                                           BTOKA66
                                                                                                                    617
DEFECTIVES
                                                     BINOMIAL GROUP-TESTING WITH AN UNKNOWN PROPORTION OF
                                                                                                           TECH 66
                                                                                                                    631
 NUMERICAL STUDIES IN THE SEQUENTIAL ESTIMATION OF A BINOMIAL PARAMETER
                                                                                                           BIOKA58
     OPTIMUM PROCEDURES FOR UNBIASED ESTIMATION OF A BINOMIAL PARAMETER
                                                                                                SEQUENTIAL TECH 64
      SHORTEST UNBIASED CONFIDENCE INTERVALS FOR THE BINOMIAL PARAMETER
                                                                                         TABLE OF NEYMAN- BIOKA60 381
         CONFIDENCE INTERVALS FOR THE PRODUCT OF TWO BINOMIAL PARAMETERS
                                                                                                           JASA 57
                                                                                                                    4B2
    BAYESIAN CONFIDENCE LIMITS FOR THE PRODUCT OF N BINOMIAL PARAMETERS
                                                                                                           BIOKA66
                                                                                                                    611
FOR THE SIGN TEST WHEN OBSERVATIONS ARE ESTIMATES OF BINOMIAL PARAMETERS
                                                                                                   TABLES
                                                                                                          JASA 59
                                                                                                                    784
                                                                                                                    217
                       ERRORS OF CLASSIFICATION IN A BINOMIAL POPULATION
                                                                                                           JASA 65
 AND VARIANCE OF THE SMALLER OF TWO DRAWINGS FROM A BINOMIAL POPULATION
                                                                                               ON THE MEAN BIOKA62
                                                                                                                    566
                  ERRATA, 'MISCLASSIFIED DATA FROM A BINOMIAL POPULATION
                                                                                                           TECH 66
                                                                                                                    215
                                OPTIMUM SAMPLING IN BINOMIAL POPULATIONS
                                                                                                           JASA 57
     NOTE ON A THREE-DECISION TEST FOR COMPARINC TWO BINOMIAL POPULATIONS
                                                                                                           BIOKA59 106
 PROCEDURES FOR SELECTION OF THE BEST ONE OF SEVERAL BINOMIAL POPULATIONS
                                                                                                SEQUENTIAL AMS 67
                                                                                                                    117
                                                                                                           BIOKA66
                        CLOSED SEQUENTIAL TESTS FOR BINOMIAL PROBABILITIES
                                                                                                                     73
JAN'S EQUATION
                            MONOTONE CONVERGENCE OF BINOMIAL PROBABILITIES AND A GENERALIZATION OF RAMANU AMS 68 1191
```

LIKELIHOOD ESTIMATION MONOTONE CONVERGENCE OF	BINOMIAL PROBABILITIES WITH AN APPLICATION TO MAXIMUM	AMS 67	1583
ON ESTIMATING	BINOMIAL RESPONSE RELATIONS	BIOKA56	461
QUERY. COMPARISON OF SAMPLE SIZES IN INVERSE	BINOMIAL SAMPLING	TECH 67	337
A NOTE ON DIRECT AND INVERSE		BIOKA63	544
INCOMPLETE BETA FUNCTIONS FOR PRIOR DISTRIBUTIONS IN	BINOMIAL SAMPLING THE USE OF	TECH 65	335
A NOTE ON SIMPLE	BINOMIAL SAMPLING PLANS	AMS 61	906
INFORMATION		BIOKA57	
THE MOST ECONOMICAL	BINOMIAL SEQUENTIAL PROBABILITY RATIO TEST	BIOKA60	
TESTING FOR HOMOGENEITY OF A	BINOMIAL BARIES	BIOKA68	426
CORRECTION TO IA CONCERNATIVE PROPERTY OF	BINOMIAL TABLES	B100266	404
TECHE POP A MARIABLE CHANCE OF INEECTION IN CHAIN	BINOMIAL TESIS, OU 1502	AMS 61	1343
A MENDEL TAN MARKADE WITH	BINOMIAL TABLES BINOMIAL TESTS' 60 1205 -BINOMIAL THEORY SIGNIFICANCE BINOMIAL TRANSITION PROBABILITIES	BIOKAGE	332
PSTIMATION OF THE PROBABILITY OF ZERO FAILURES IN M	BINUMINI ADIVIC	BIOKAGO	27
PPROXIMATION OF THE NEGATIVE MOMENTS OF THE POSITIVE	BINOMIAL INTRES	TECH CO	212
RELATIONS FOR THE INVERSE MOMENTS OF THE POSITIVE	BINOMIAL CORTOR IN LIFE LEGILING AN A	1424 63	168
THE RECIPROCAL OF THE DECAPITATED NEGATIVE	BINOMIAL VARIABLE CORR 63 1162	JASA 62	906
A SINGULARITY IN THE ESTIMATION OF	BINOMIAL VARIANCE	BIOM 52	262
A NOTE ON CRAIG'S PAPER ON THE MINIMUM OF	BINOMIAL THEORY SIGNIFICANCE BINOMIAL TRANSITION PROBABILITIES BINOMIAL TRAILS BINOMIAL USEFUL IN LIFE TESTING AN A BINOMIAL VARIABLE RECURRENCE BINOMIAL VARIABLE, CORR. 63 1162 BINOMIAL VARIANCE BINOMIAL VARIANCE BINOMIAL VARIANCE BINOMIAL VARIATES BINOMIAL WHEN EXPECTATIONS ARE SMALL	BTOK A66	614
ON TESTING FOR GOODNESS-OF-FIT OF THE NEGATIVE	BINOMIAL WHEN EXPECTATIONS ARE SMALL	BTOCS69	143
THE PROCESS CURVE AND THE EQUIVALENT MIXED	BINOMIAL WITH TWO COMPONENTS	BIOCS69 JRSSB59	63
A MEAN-SQUARE-ERROR CHARACTERIZATION OF	BINOMIAL-TYPE DISTRIBUTIONS	AMS 67	620
ON APPROXIMATING THE POINT	BINOMIAL, CORR. 56 651	JASA 56	293
BABILITIES, I A NORMAL APPROXIMATION FOR	BINOMIAL, F, BETA, AND OTHER COMMON, RELATED TAIL PRO	JASA 68	1416
BABILITIES, II A NORMAL APPROXIMATION FOR	BINOMIAL, F. BETA, AND OTHER COMMON, RELATED TAIL PRO	JASA 68	1457
DISTRIBUTIONS TRANSFORMATIONS OF THE	BINOMIAL, F, BETA, AND OTHER COMMON, RELATED TAIL PRO BINOMIAL, F, BETA, AND OTHER COMMON, RELATED TAIL PRO BINOMIAL, NEGATIVE BINOMIAL, POISSON AND CHI-SQUARE	BIOKA54	302
ISTRIBUTION/ CORRIGENDA TO 'TRANSFORMATIONS OF THE	BINOMIAL, NEGATIVE BINOMIAL, POISSON AND CHI-SQUARE D	BIOKA56	235
	BINOMIAL, POISSON, AND EXPONENTIAL DISTRIBUTIONS /Q		
ERRATA, 'APPROXIMATING THE NEGATIVE		TECH 67	
ANALISIS OF INTRA-HOUSEHOLD EPI/ THE USE OF CHAIN-	-BINOMIALS WITH A VARIABLE CHANCE OF INFECTION FOR THE	BIOKA53	279
APPROXIMATION TO THE DISTRIBUTION OF TWO INDEPENDENT MISCLASSIFIED DATA FROM A	-BINOMIALS WITH A VARIABLE CHANCE OF INFECTION FOR THE BINOMIALS, CONDITIONAL ON FIXED SUM NORMAL BIO-ASSAY BIO-ASSAY BIO-ASSAY BIO-ASSAY BIO-ASSAYS BIO-ASSAYS ON THE EFFICIENCY BIOASSAY BIOASSAY BIOASSAY	AMS 63	1593
	BIO-ASSAY	TECH 60	109
RANDOM WALK DESIGN IN	BIO-VCCVA	AMD 64	886
PROPERTIES OF THE BLOCK UP-AND-DOWN METHOD IN	BIO-ASSAY ASVMPTOTIC	AMS 67	1 822
INCOMPLETE BLOCK DESIGNS FOR	BIO-ASSAYS	BIOCSEE	706
OF MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR	BIO-ASSAYS ON THE EFFICIENCY	BIOCS69	591
THE MULTIPLE SAMPLE UP-AND-DOWN METHOD IN	BIOASSAY	JASA 69	147
SOME PROPERTIES OF THE SPEARMAN ESTIMATOR IN	BIOASSAY	BIOKA61	293
THE MEANING OF			
E LOGIT AND ITS VARIANCE WITH APPLICATION TO QUANTAL	BIOASSAY ON THE BIAS OF VARIOUS ESTIMATORS OF TH	BIOKA67	181
CONCENTRATION A LARGE-SAMPLE	BIOASSAY DESIGN WITH RANDOM DOSES AND UNCERTAIN	BIOKA55	307
RESPONSE CRITERIA FOR THE	BIOASSAY OF VITAMIN K BIOASSAY WITH QUANTAL RESPONSES	BIOCS69	NO.4
		JRSSB56	
	BIOGRAPHICAL NOTE FOR T. BAYES' ESSAY TOWARDS SOLVING		
	BIOLOGICAL AND PHYSICAL DECAY OF CHAMBER AEROSOLS		
INTERACTIVE JOINT ACTION OF A MIXTURE OF STIMULI IN	BIOLOGICAL ASSAY MODELS FOR THE NON-	BIOKA66	49
MODELS FOR QUANTAL RESPONSES TO MIXTURES OF DRUGS IN	BIOLOGICAL ASSAY /E CLASSIFICATION OF MATHEMATICAL	BIOCS65	181
	BIOLOGICAL ASSAYS ON THE SAME SUBJECTS BIOLOGICAL BACKGROUND PROBABILISTIC AND STATISTICAL M		
	BIOLOGICAL EXAMPLES OF SMALL EXPECTED FREQUENCIES		
A SYSTEM OF MODELS FOR THE LIFE CYCLE OF A	BIOLOGICAL ORGANISM	BIOKA68	
ON A METHOD OF ESTIMATING		BIOKA53	
A STOCHASTIC MODEL FOR DISTRIBUTIONS OF	BIOLOGICAL RESPONCE TIMES	BIOCS65	
ON THEORETICAL MODELS FOR COMPETITIVE AND PREDATORY	BIOLOGICAL SYSTEMS	BIOKA57	27
	BIOLOGICAL SYSTEMS A NOTE ON SOME APPROXIMATIONS TO		196
	BIOLOGICAL SYSTEMS BY NUMERICAL METHODS A STO		16
		JRSSB56	56
	BIOMETRIKA TABLES (NO. 11)' /MENT ON SIR RONALD FIS		
	BIOMETRIKA, 1901-1951		
	BIOMETRY AND STATISTICS, 1890-1894 /ABILITY AND STA		
AL NORMAL DISTRIBUTION	BIOMETRY IN THE UNIVERSITY BIORTHOGONAL AND DUAL CONFIGURATIONS AND THE PECIPEOC	BIOCS68	303
PROCESSES AN APPLICATION OF	BIORTHOGONAL AND DUAL CONFIGURATIONS AND THE RECIPROC BIORTHONORMAL EXPANSIONS IN THEORY OF STOCHASTIC BIPARTITE GRAPH	IRSSRES	334
ON THE LINE GRAPH OF THE COMPLETE	BIPARTITE GRAPH	AMS 64	883
POLYKAYS, AN EXTENTION OF SIMPLE POLYKAYS AND	BIPOLYKAYS, CORR. 66 746 GENERALIZED	AMS 66	226
A NOTE ON THE	BIPARTITE GRAPH BIPOLYKAYS, CORR. 66 746 GENERALIZED BIRKHOFF ERGODIC THEOREM BIRTH KARL PEARSON, BIRTH AND DEATH PROCESS BIRTH AND DEATH PROCESS BIRTH AND DEATH PROCESS	AMS 67	922
AN APPRECIATION ON THE HUNDREDTH ANNIVERSARY OF HIS	BIRTH KARL PEARSON.	JASA 58	23
A MULTI-DIMENSIONAL LINEAR GROWTH	BIRTH AND DEATH PROCESS	AMS 68	727
AN AGE-DEPENDENT	BIRTH AND DEATH PROCESS	BIOKA55	291
THE BEHAVIOUR OF AN ESTIMATOR FOR A SIMPLE FERENCES BETWEEN SPECIES GROWING ACCORDING TO SIMPLE	BIRTH AND DEATH PROCESS	BIOKA56	23
			370
FERENCES BETWEEN SPECIES GROWING ACCORDING TO SIMPLE	BIRTH AND DEATH PROCESSES POPULATION DIF	BIOKA53	
FERENCES BETWEEN SPECIES GROWING ACCORDING TO SIMPLE HIERARCHICAL	BIRTH AND DEATH PROCESSES POPULATION DIF	BIOKA60	235
FERENCES BETWEEN SPECIES GROWING ACCORDING TO SIMPLE HIERARCHICAL HIERARCHICAL	BIRTH AND DEATH PROCESSES POPULATION DIF BIRTH AND DEATH PROCESSES. I. THEORY BIRTH AND DEATH PROCESSES. II. APPLICATIONS	BIOKA60 BIOKA60	235 245
FERENCES BETWEEN SPECIES GROWING ACCORDING TO SIMPLE HIERARCHICAL HIERARCHICAL THE ANALYSIS OF POPULATION GROWTH WHEN THE	BIRTH AND DEATH PROCESSES POPULATION DIF BIRTH AND DEATH PROCESSES. I. THEORY BIRTH AND DEATH PROCESSES. II. APPLICATIONS BIRTH AND DEATH RATES DEPEND UPON SEVERAL FACTORS	BIOKA60 BIOKA60 BIOCS69	235 245 NO.4
FERENCES BETWEEN SPECIES GROWING ACCORDING TO SIMPLE HIERARCHICAL HIERARCHICAL THE ANALYSIS OF POPULATION GROWTH WHEN THE PROBABILISTIC SOLUTION OF THE SIMPLE	BIRTH AND DEATH PROCESSES POPULATION DIF BIRTH AND DEATH PROCESSES. I. THEORY BIRTH AND DEATH PROCESSES. II. APPLICATIONS BIRTH AND DEATH RATES DEPEND UPON SEVERAL FACTORS BIRTH PROCESS	BIOKA60 BIOKA60 BIOCS69 BIOKA64	235 245 NO.4 258
FERENCES BETWEEN SPECIES GROWING ACCORDING TO SIMPLE HIERARCHICAL HIERARCHICAL THE ANALYSIS OF POPULATION GROWTH WHEN THE PROBABILISTIC SOLUTION OF THE SIMPLE FUNCTIONAL FOR THE CUMULATIVE POPULATION IN A SIMPLE	BIRTH AND DEATH PROCESSES POPULATION DIF BIRTH AND DEATH PROCESSES. I. THEORY BIRTH AND DEATH PROCESSES. II. APPLICATIONS BIRTH AND DEATH RATES DEPEND UPON SEVERAL FACTORS BIRTH PROCESS BIRTH-AND-DEATH PROCESS /HE PROBABILITY GENERATING	BIOKA60 BIOKA60 BIOCS69 BIOKA64 BIOKA64	235 245 NO.4 258 245
FERENCES BETWEEN SPECIES GROWING ACCORDING TO SIMPLE HIERARCHICAL HIERARCHICAL THE ANALYSIS OF POPULATION GROWTH WHEN THE PROBABILISTIC SOLUTION OF THE SIMPLE FUNCTIONAL FOR THE CUMULATIVE POPULATION IN A SIMPLE ON THE HOMOGENEOUS	BIRTH AND DEATH PROCESSES POPULATION DIF BIRTH AND DEATH PROCESSES. I. THEORY BIRTH AND DEATH PROCESSES. II. APPLICATIONS BIRTH AND DEATH RATES DEPEND UPON SEVERAL FACTORS BIRTH PROCESS BIRTH-AND-DEATH PROCESS /HE PROBABILITY GENERATING BIRTH-AND-DEATH PROCESS AND ITS INTEGRAL	BIOKA60 BIOKA60 BIOCS69 BIOKA64 BIOKA64 BIOKA66	235 245 NO.4 258 245 61
FERENCES BETWEEN SPECIES GROWING ACCORDING TO SIMPLE HIERARCHICAL HIERARCHICAL THE ANALYSIS OF POPULATION GROWTH WHEN THE PROBABILISTIC SOLUTION OF THE SIMPLE FUNCTIONAL FOR THE CUMULATIVE POPULATION IN A SIMPLE ON THE HOMOGENEOUS HASE-DEPENDENT THE PROBABILITIES OF EXTINCTION FOR CARCINGGENESIS	BIRTH AND DEATH PROCESSES POPULATION DIF BIRTH AND DEATH PROCESSES. I. THEORY BIRTH AND DEATH PROCESSES. II. APPLICATIONS BIRTH AND DEATH RATES DEPEND UPON SEVERAL FACTORS BIRTH PROCESS PROCESS PROCESS FOR THE PROBABILITY GENERATING BIRTH-AND-DEATH PROCESS AND ITS INTEGRAL BIRTH-AND-DEATH PROCESSES THAT ARE AGE-DEPENDENT OR PROCESSES. AND THE THEORY OF	BIOKA60 BIOKA60 BIOCS69 BIOKA64 BIOKA64 BIOKA66 BIOKA67	235 245 NO.4 258 245 61 579
FERENCES BETWEEN SPECIES GROWING ACCORDING TO SIMPLE HIERARCHICAL HIERARCHICAL THE ANALYSIS OF POPULATION GROWTH WHEN THE PROBABILISTIC SOLUTION OF THE SIMPLE FUNCTIONAL FOR THE CUMULATIVE POPULATION IN A SIMPLE ON THE HOMOGENEOUS HASE-DEPENDENT THE PROBABILITIES OF EXTINCTION FOR CARCINGGENESIS	BIRTH AND DEATH PROCESSES POPULATION DIF BIRTH AND DEATH PROCESSES. I. THEORY BIRTH AND DEATH PROCESSES. II. APPLICATIONS BIRTH AND DEATH RATES DEPEND UPON SEVERAL FACTORS BIRTH PROCESS PROCESS PROCESS FOR THE PROBABILITY GENERATING BIRTH-AND-DEATH PROCESS AND ITS INTEGRAL BIRTH-AND-DEATH PROCESSES THAT ARE AGE-DEPENDENT OR PROCESSES. AND THE THEORY OF	BIOKA60 BIOKA60 BIOCS69 BIOKA64 BIOKA64 BIOKA66 BIOKA67	235 245 NO.4 258 245 61 579
FERENCES BETWEEN SPECIES GROWING ACCORDING TO SIMPLE HIERARCHICAL HIERARCHICAL THE ANALYSIS OF POPULATION GROWTH WHEN THE PROBABILISTIC SOLUTION OF THE SIMPLE FUNCTIONAL FOR THE CUMULATIVE POPULATION IN A SIMPLE ON THE HOMOGENEOUS HASE-DEPENDENT THE PROBABILITIES OF EXTINCTION FOR CARCINGGENESIS	BIRTH AND DEATH PROCESSES POPULATION DIF BIRTH AND DEATH PROCESSES. I. THEORY BIRTH AND DEATH PROCESSES. II. APPLICATIONS BIRTH AND DEATH RATES DEPEND UPON SEVERAL FACTORS BIRTH PROCESS BIRTH-AND-DEATH PROCESS /HE PROBABILITY GENERATING BIRTH-AND-DEATH PROCESS AND ITS INTEGRAL BIRTH-AND-DEATH PROCESSES THAT ARE AGE-DEPENDENT OR P BIRTH-AND-DEATH PROCESSES, AND THE THEORY OF BIRTH-DEATH MODEL FOR MICROBIAL INFECTIONS BIRTH-DEATH PROCESS	BIOKA60 BIOKA60 BIOCS69 BIOKA64 BIOKA64 BIOKA66 BIOKA67 BIOKA60 JRSSB65 BIOK A65	235 245 NO.4 258 245 61 579 13 338 581
FERENCES BETWEEN SPECIES GROWING ACCORDING TO SIMPLE HIERARCHICAL HIERARCHICAL THE ANALYSIS OF POPULATION GROWTH WHEN THE PROBABILISTIC SOLUTION OF THE SIMPLE FUNCTIONAL FOR THE CUMULATIVE POPULATION IN A SIMPLE ON THE HOMOGENEOUS HASE-DEPENDENT THE PROBABILITIES OF EXTINCTION FOR CARCINOGENESIS THE BASIC	BIRTH AND DEATH PROCESSES POPULATION DIF BIRTH AND DEATH PROCESSES. I. THEORY BIRTH AND DEATH PROCESSES. II. APPLICATIONS BIRTH AND DEATH RATES DEPEND UPON SEVERAL FACTORS BIRTH PROCESS BIRTH PROCESS /HE PROBABILITY GENERATING BIRTH-AND-DEATH PROCESS AND ITS INTEGRAL BIRTH-AND-DEATH PROCESSES THAT ARE AGE-DEPENDENT OR P BIRTH-AND-DEATH PROCESSES, AND THE THEORY OF BIRTH-DEATH MODEL FOR MICROBIAL INFECTIONS BIRTH-DEATH PROCESS	BIOKA60 BIOKA60 BIOCS69 BIOKA64 BIOKA64 BIOKA66 BIOKA67 BIOKA60 JRSSB65 BIOK A65	235 245 NO.4 258 245 61 579 13 338 581
FERENCES BETWEEN SPECIES GROWING ACCORDING TO SIMPLE HIERARCHICAL HIERARCHICAL THE ANALYSIS OF POPULATION GROWTH WHEN THE PROBABILISTIC SOLUTION OF THE SIMPLE ON THE HOMOGENEOUS HASE-DEPENDENT THE PROBABILITIES OF EXTINCTION FOR CARCINOGENESIS THE DISTRIBUTION OF RESPONSE TIMES IN A STRIBUTION OF INANIMATE MARKS OVER A NON-HOMOGENEOUS ONSHIP BETWEEN THE MEAN AND VARIANCE OF A STATIONARY	BIRTH AND DEATH PROCESSES POPULATION DIF BIRTH AND DEATH PROCESSES. I. THEORY BIRTH AND DEATH PROCESSES. II. APPLICATIONS BIRTH AND DEATH RATES DEPEND UPON SEVERAL FACTORS BIRTH PROCESS BIRTH-AND-DEATH PROCESS /HE PROBABILITY GENERATING BIRTH-AND-DEATH PROCESSES THAT ARE AGE-DEPENDENT OR P BIRTH-AND-DEATH PROCESSES, AND THE THEORY OF BIRTH-DEATH MODEL FOR MICROBIAL INFECTIONS BIRTH-DEATH PROCESS THE DI BIRTH-DEATH PROCESS THE DI BIRTH-DEATH PROCESS, AND ITS ECONOMIC APPLICATION /	BIOKAGO BIOKAGO BIOCSG9 BIOKAG4 BIOKAG4 BIOKAG6 BIOKAG7 BIOKAG0 JRSSBG5 BIOKAG5 BIOKAG9 BIOKAG9	235 245 NO.4 258 245 61 579 13 338 581 225 253
FERENCES BETWEEN SPECIES GROWING ACCORDING TO SIMPLE HIERARCHICAL HIERARCHICAL THE ANALYSIS OF POPULATION GROWTH WHEN THE PROBABILISTIC SOLUTION OF THE SIMPLE ON THE HOMOGENEOUS HASE-DEPENDENT THE CUMULATIVE POPULATION IN A SIMPLE ON THE HOMOGENEOUS THE BASIC THE DISTRIBUTION OF RESPONSE TIMES IN A STRIBUTION OF INANIMATE MARKS OVER A NON-HOMOGENEOUS ONSHIP BETWEEN THE MEAN AND VARIANCE OF A STATIONARY DISTRIBUTED POPULATIONS STOCHASTIC	BIRTH AND DEATH PROCESSES POPULATION DIF BIRTH AND DEATH PROCESSES. I. THEORY BIRTH AND DEATH PROCESSES. II. APPLICATIONS BIRTH AND DEATH RATES DEPEND UPON SEVERAL FACTORS BIRTH PROCESS BIRTH-AND-DEATH PROCESS /HE PROBABILITY GENERATING BIRTH-AND-DEATH PROCESS AND ITS INTEGRAL BIRTH-AND-DEATH PROCESSES THAT ARE AGE-DEPENDENT OR P BIRTH-AND-DEATH PROCESSES, AND THE THEORY OF BIRTH-DEATH MODEL FOR MICROBIAL INFECTIONS BIRTH-DEATH PROCESS BIRTH-DEATH PROCESS BIRTH-DEATH PROCESS, AND ITS ECONOMIC APPLICATION / BIRTH-DEATH AND MIGRATION PROCESSES FOR SPATIALLY	BIOKA60 BIOKA60 BIOCS69 BIOKA64 BIOKA64 BIOKA66 BIOKA67 BIOKA60 JRSSB65 BIOKA69 BIOKA69 BIOKA68	235 245 NO.4 258 245 61 579 13 338 581 225 253 189
FERENCES BETWEEN SPECIES GROWING ACCORDING TO SIMPLE HIERARCHICAL HIERARCHICAL THE ANALYSIS OF POPULATION GROWTH WHEN THE PROBABILISTIC SOLUTION OF THE SIMPLE ON THE HOMOGENEOUS HASE-DEPENDENT THE CUMULATIVE POPULATION IN A SIMPLE ON THE HOMOGENEOUS THE BASIC THE DISTRIBUTION OF RESPONSE TIMES IN A STRIBUTION OF INANIMATE MARKS OVER A NON-HOMOGENEOUS ONSHIP BETWEEN THE MEAN AND VARIANCE OF A STATIONARY DISTRIBUTED POPULATIONS STOCHASTIC	BIRTH AND DEATH PROCESSES POPULATION DIF BIRTH AND DEATH PROCESSES. I. THEORY BIRTH AND DEATH PROCESSES. II. APPLICATIONS BIRTH AND DEATH RATES DEPEND UPON SEVERAL FACTORS BIRTH PROCESS BIRTH-AND-DEATH PROCESS /HE PROBABILITY GENERATING BIRTH-AND-DEATH PROCESSES THAT ARE AGE-DEPENDENT OR P BIRTH-AND-DEATH PROCESSES, AND THE THEORY OF BIRTH-DEATH MODEL FOR MICROBIAL INFECTIONS BIRTH-DEATH PROCESS THE DI BIRTH-DEATH PROCESS THE DI BIRTH-DEATH PROCESS, AND ITS ECONOMIC APPLICATION /	BIOKA60 BIOKA60 BIOCS69 BIOKA64 BIOKA64 BIOKA66 BIOKA67 BIOKA60 JRSSB65 BIOKA69 BIOKA69 BIOKA68	235 245 NO.4 258 245 61 579 13 338 581 225 253 189

BIR - BLO TITLE WORD INDEX

```
APPRECIATION, OTTOKAR HEINISCH (70TH BIRTHDAY, 23RD APRIL, 1966)
                                                                                                           BIOCS66 195
A CHANCE MECHANISM OF THE VARIATION IN THE NUMBER OF BIRTHS PER COUPLE
                                                                                                           JASA 6B 209
ROBABILITY MODELS FOR THE VARIATION IN THE NUMBER OF BIRTHS PER COUPLE
                                                                                                         P JASA 63 721
                            ASYMPTOTIC NORMALITY OF BISPECTRAL ESTIMATES
                                                                                                            AMS 66 1257
                ESTIMATION OF THE BISPECTRUM
THE STATISTICAL SIGNIFICANCE OF ODD BITS OF INFORMATION
                                                                                                            AMS 65 1120
                                                                                                           BIOKA52 22B
ACTERIZATIONS OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND MULTIVARIATE DISTRIBUTIONS
                                                                                                    CHAR AMS 6B 433
                   A REPRESENTATION OF THE SYMMETRIC BIVARIATE CAUCHY DISTRIBUTION
                                                                                                            AMS 62 1256
                        AN INEQUALITY FOR A CLASS OF BIVARIATE CHI-SQUARE DISTRIBUTIONS
                                                                                                           JASA 69 333
      OF SOME CORRELATION COEFFICIENTS FOR A CENERAL BIVARIATE DISTRIBUTION
                                                                                           THE PERFORMANCE BIOKAGO
                                                                                                                    307
                 CORRELATIONS AND CANONICAL FORMS OF BIVARIATE DISTRIBUTIONS
                                                                                                            AMS 63 532
                           POLYNOMIAL EXPANSIONS OF BIVARIATE DISTRIBUTIONS
                                                                                                            AMS 64 120B
                                          A CLASS OF BIVARIATE DISTRIBUTIONS
                                                                                                           JASA 65 516
                         A NOTE ON CONTINGENCY-TYPE BIVARIATE DISTRIBUTIONS
                                                                                                           BTOKA6B
                                                                                                                    262
  OF SOME TESTS OF INDEPENDENCE FOR CONTINCENCY-TYPE BIVARIATE DISTRIBUTIONS
                                                                                          THE PERFORMANCE BIOKA69
                                                                                                                   449
 FOR DISTRIBUTION FUNCTIONS OF ORDER STATISTICS FROM BIVARIATE DISTRIBUTIONS
                                                                                     A RECURRENCE RELATION JASA 69
                                                                                                                   600
              SOME CONTRIBUTIONS TO CONTINGENCY-TYPE BIVARIATE DISTRIBUTIONS (CORR. 6B 597)
                                                                                                           BTOKA67
                                                                                                                    235
                      CORRECTION. 'THE STRUCTURE OF BIVARIATE DISTRIBUTIONS', 5B 719
                                                                                                            AMS 64 1388
                DISTRIBUTION OF RADICAL ERROR IN THE BIVARIATE ELLIPTICAL NORMAL DISTRIBUTION
                                                                                                           TECH 62 138
                                                     BIVARIATE EXPONENTIAL DISTRIBUTIONS
                                                                                                           JASA 60 698
                                                   A BIVARIATE EXTENSION OF THE EXPONENTIAL DISTRIBUTION
                                                                                                           JASA 61 971
                               ANALYSIS OF EMPIRICAL BIVARIATE EXTREMAL DISTRIBUTIONS
                                                                                                           JASA 64 794
                       SOME ANALYTICAL PROPERTIES OF BIVARIATE EXTREMAL DISTRIBUTIONS
                                                                                                           JASA 67
                                                                                                                    569
   APPLICATION OF AN ESTIMATOR OF HICH EFFICIENCY IN BIVARIATE EXTREME VALUE THEORY
                                                                                                           JASA 69 NO.4
           THE CANONICAL CORRELATION COEFFICIENTS OF BIVARIATE CAMMA DISTRIBUTIONS
                                                                                                            AMS 69 1401
                         STATISTICAL INFERENCE WITH BIVARIATE CAMMA DISTRIBUTIONS
                                                                                                           BIOKA69 NO.3
    ESTIMATION OF THE CROSS-SPECTRUM OF A STATIONARY BIVARIATE CAUSSIAN PROCESS FROM ITS ZEROS
                                                                                                           JRSSB68 145
 WITH TABLES FOR CERTAIN SPECIAL CASES A BIVARIATE CENERALIZATION OF STUDENT'S T-DISTRIBUTION, BIOKA54 153
DISTRIBUTION
                                                     BIVARIATE CENERALIZATIONS OF NEYMAN'S TYPE A
                                                                                                           BIOKA66 241
                                TWO APPLICATIONS OF BIVARIATE K-STATISTICS
                                                                                                           BIOKA51 368
SAMPLING DISTRIBUTION
                                                     BIVARIATE K-STATISTICS AND CUMULANTS OF THEIR JOINT
                                                                                                           BIOKA51
                                                                                                                   179
                                                     BIVARIATE LOCISTIC DISTRIBUTIONS
                                                                                                           JASA 61
                ON THE PROBLEM OF ESTIMATION FOR THE BIVARIATE LOGNORMAL DISTRIBUTION
                                                                                                           BIOKA64 522
                        ON THE BIVARIATE MOMENTS OF GROUP ASPECIAL CASE OF A BIVARIATE NON-CENTRAL T-DISTRIBUTION
                                              ON THE BIVARIATE MOMENTS OF ORDER STATISTICS FROM A LOGISTIC AMS 66 1002
TRIBUTION OF RECRESSION COEFFICIENTS IN SAMPLES FROM BIVARIATE NON-NORMAL POPULATIONS. I. THEORETICAL INVE BIOKAGO
                                      SAMPLING FROM BIVARIATE NON-NORMAL UNIVERSES BY MEANS OF COMPOUND BIOKA52
NORMAL DISTRIBUTIONS
            ESTIMATION OF PARAMETERS OF A TRUNCATED BIVARIATE NORMAL DISTRIBUTION
                                                                                                           JASA 63
                                                                                                                    519
                            MOMENTS OF A TRUNCATED BIVARIATE NORMAL DISTRIBUTION
                                                                                                           JRSSB61
                                                                                                                    405
                                                                                                    ON THE AMS 68 1350
  PROPORTION OF OBSERVATIONS ABOVE SAMPLE MEANS IN A BIVARIATE NORMAL DISTRIBUTION
  BETWEEN THE SAMPLE VARIANCES IN A SINCLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION
                                                                                              CORRELATION BIOKA68 433
TENT ROOTS AND VECTORS WITH SPECIAL REFERENCE TO THE BIVARIATE NORMAL DISTRIBUTION /IAN ESTIMATION OF LA BIOKA69
                                                                                                                     97
OF A CONTINCENCY TABLE SOME PROPERTIES OF THE BIVARIATE NORMAL DISTRIBUTION CONSIDERED IN THE FORM BIOKAST
ERVAL ESTIMATION OF THE SLOPE OF THE MAJOR AXIS OF A BIVARIATE NORMAL DISTRIBUTION IN THE CASE OF A SMALL BIOCSGB
                                                                                                                    679
 OF RANK CORREL/ CORRELATION IN A SINGLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION IV. EMPIRICAL VARIANCES BIOKA68
                                                                                                                    437
                                    INTECRAL OF THE BIVARIATE NORMAL DISTRIBUTION OVER AN OFFSET CIRCLE JASA 62
                                                                                                                    75B
                     A TABLE OF THE INTECRAL OF THE BIVARIATE NORMAL DISTRIBUTION OVER AN OFSET CIRCLE
                                                                                                           JRSSB60
H PROBLEM IN RELIABILITY ANAL/ APPLICATIONS OF THE BIVARIATE NORMAL DISTRIBUTION TO A STRESS VS. STRENGT TECH 64
                   CORRELATION IN A SINGLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION. II. RANK CORRELATION BIOKA65
                  CORRELATION IN A SINCLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION. III. CORRELATION BETWE BIOKA66
                                                 THE BIVARIATE NORMAL INTEGRAL
                                                                                                           BIOKA51
                                                                                                                    475
CIONS UNDER SPHERICAL NORMAL DISTRIBUTIONS, III. THE BIVARIATE NORMAL INTECRAL
                                                                                PROBABILITY CONTENT OF RE AMS 61
                                                                                                                   171
SUAL CONFIDENCE SETS FOR THE MEAN OF A UNIVARIATE OR BIVARIATE NORMAL POPULATION
                                                                                   ADMISSIBILITY OF THE U AMS 69 1042
                                 ESTIMATION FOR THE BIVARIATE POISSON DISTRIBUTION
                                                                                                          BT0KA64 241
N OF KENDALL'S TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPULATION WITH CORRELATION RHO /TRIBUTIO BIOKA63
                                                                                                                    53B
  A CLASS OF NONPARAMETRIC TESTS FOR INDEPENDENCE IN BIVARIATE POPULATIONS
                                                                                                            AMS 64
                                                                                                                   138
TRIBUTION OF DISTANCES BETWEEN ORDER STATISTICS FROM BIVARIATE POPULATIONS
                                                                                            ASYMPTOTIC DIS AMS 64 748
R COORDINATES FOLLOWS SOME KNOWN DISTRIBUTION ON BIVARIATE RANDOM VARIABLES WHERE THE QUOTIENT OF THEI AMS 64 1673
                          ON THE DISTRIBUTION OF THE BIVARIATE RANCE
                                                                                                           TECH 67 476
                                              QUERY, BIVARIATE SAMPLES WITH MISSINC VALUES
                                                                                                           TECH 67
                                              QUERY, BIVARIATE SAMPLES WITH MISSING VALUES, II
                                                                                                                   B67
                                                                                                           JASA 58
                                               A NEW BIVARIATE SIGN TEST
                                                                                                                    448
    A NOTE ON THE ASYMPTOTIC EFFICIENCY OF BENNETT'S BIVARIATE SICN TEST
                                                                                                           JRSSB66
                                                                                                                   146
  DISTRIBUTION AND BAHADUR EFFICIENCY OF THE HODGES BIVARIATE SIGN TEST
                                                                                                      NULL AMS 62
                                                                                                                    803
EL/ CORRECTIONS TO 'A RELATIONSHIP BETWEEN HODGES' BIVARIATE SIGN TEST AND A NON-PARAMETRIC TEST OF DANI AMS 61
                                                                                                                    619
                                        ON HODGES'S BIVARIATE SIGN TEST AND A TEST FOR UNIFORMITY OF A BIOKA69
CIRCULAR DISTRIBUTION
                                                                                                                    446
                                                  A BIVARIATE SIGN TEST FOR LOCATION
                                                                                                            AMS 66 1771
                          SMALL SAMPLE POWER OF THE BIVARIATE SIGN TEST OF BLUMEN AND HODCES
                                                                                                            AMS 64 1576
                                                   A BIVARIATE SIGNED RANK TEST
                                                                                                           TRSSR64
                                                                                                                   457
                                                     BIVARIATE STRUCTURAL RELATION
                                                                                                           BIOKA57
                                                                                                                     84
                                 CRITICAL VALUES FOR BIVARIATE STUDENT T-TESTS
                                                                                                           JASA 69
                                                                                                                    637
                                  AN INEQUALITY ON A BIVARIATE STUDENT'S 'T' DISTRIBUTION
                                                                                                           JASA 67 603
                                                     BIVARIATE SYMMETRY TESTS, PARAMETRIC AND
NONPARAMETRIC
                                                                                                            AMS 69
                                                                                                                    259
                                                   A BIVARIATE T DISTRIBUTION, CORR. 67 1594
NDER UNEQUAL VARI/ SOME EMPIRICAL DISTRIBUTIONS OF BIVARIATE T-SQUARE AND HOMOSCEDASTICITY CRITERION M U JASA 63 1048
                      A NON-PARAMETRIC TEST FOR THE BIVARIATE TWO-SAMPLE LOCATION PROBLEM
                                                                                                                   320
                                                                                                          JRSSB67
 SMALL SAMPLE POWER OF A NON-PARAMETRIC TEST FOR THE BIVARIATE TWO-SAMPLE LOCATION PROBLEM IN THE NORMAL C JRSSB6B NULL DISTRIBUTION OF A NON-PARAMETRIC TEST FOR THE BIVARIATE TWO-SAMPLE PROBLEM ON THE JRSSB69
                                                                                                                     98
                                                   A BIVARIATE WARNING-TIME, FAILURE-TIME DISTRIBUTION
                                                                                                           JASA 67
                                                                                                                   5B9
                                                   A BLACK BOX OR A COMPREHENSIVE MODEL
                                                                                                           TECH 68
                                                                                                                   219
THE OPTIMUM STRATEGY IN BLACKJACK, CORR. 59 810
OF THE EFFECTIVENESS OF VOIDING AS A DEFENCE AGAINST BLADDER INFECTION
                                                                                                           JASA 56
                                                                                                                   429
                                                                               A QUANTITATIVE DISCUSSION BIOCS66
                                                                                                                    53
                                                  A BLANCED INCOMPLETE BLOCK DESIGN
                                                                                                           AMS 65 711
   OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK
                                                                                                ESTIMATORS JASA 69 1014
                           COMBINING INTRA AND INTER BLOCK ANALYSIS OF GROUP DIVISIBLE DESIGNS
                                                                                                          TECH 66 1BB
ATIONS OF THE CALCULUS OF FACTORIAL ARRANGEMENTS. I. BLOCK AND DIRECT PRODUCT DESIGN
                                                                                                   APPLIC BIOKA63
                                                                                                                    63
```

```
SYMMETRICAL UNEQUAL BLOCK ARRANCEMENTS WITH TWO UNEQUAL BLOCK SIZES
                                                                                                               AMS 62
  ON THE PARAMETERS OF PARTIALLY BALANCED INCOMPLETE BLOCK ASSOCIATION SCHEMES
                                                                                                      A NOTE AMS 65 331
  NOTE ON THE MISSINC PLOT PROCEDURE IN A RANDOMIZED BLOCK DESICN
                                                                                                               JASA 61
                                                                                                                        933
             AN APPLICATION OF A BALANCED INCOMPLETE BLOCK DESIGN
                                                                                                               TECH 61
                                 A BLANCED INCOMPLETE BLOCK DESIGN
                                                                                                                AMS 65
                                                                                                                        711
    HETEROCENEITY OF ERROR VARIANCES IN A RANDOMIZED BLOCK DESIGN
                                                                                                               BIOKA57
  RANDOMIZATION ANALYSIS OF A CENERALIZED RANDOMIZED BLOCK DESIGN
                                                                                                           THE BIOKASS
 THE CHI-SQUARE-SUB-R-TEST FOR A BALANCED INCOMPLETE BLOCK DESIGN
                                                                               THE ASYMPTOTIC EFFICIENCY OF BIOKA59
                                                                               SOME CONSEQUENCES OF RANDOMIZ AMS 63 1569
ATION IN A CENERALIZATION OF THE BALANCED INCOMPLETE BLOCK DESICN
LYSIS OF VARIANCE OF A PARTIALLY BALANCED INCOMPLETE BLOCK DESIGN
                                                                       THE RELATIONSHIP ALCEBRA AND THE ANA AMS 65 1815
TING THE F-TEST UNDER PERMUTATION FOR THE RANDOMIZED BLOCK DESIGN
                                                                       AN EMPIRICAL STUDY INTO FACTORS AFFEC JASA 68
                                                                                                                        902
TS WITH SPECIAL REFERENCE TO THE BALANCED INCOMPLETE BLOCK DESIGN
                                                                     /INEAR MODELS WITH TWO RANDOM COMPONEN BIOKA6B
                                                                                                                        101
HE F-TEST UNDER PERMUTATION IN THE SIMPLE RANDOMIZED BLOCK DESIGN
                                                                      /MONTE CARLO RESULTS ON THE POWER OF T BIOKAG6
                                                                                                                        199
 THE F-STATISTIC IN A RANDOMIZED BALANCED INCOMPLETE BLOCK DESIGN UNDER THE NEYMAN MODEL /ISTRIBUTION OF AMS 63 1558
  RANDOMIZATION ANALYSIS OF A GENERALIZED RANDOMIZED BLOCK DESIGN'
                                                                                             CORRICENDA, 'THE BIOKA56
                                                                                                                       235
                          THE ANALYSIS OF INCOMPLETE BLOCK DESIGNS
                                                                                                               JASA 57
                                                                                                                        204
               AN INEQUALITY FOR BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                               AMS 61
                                                                                                                        90B
             A PROCEDURE FOR CONSTRUCTING INCOMPLETE BLOCK DESIGNS
                                                                                                               TECH 64 389
         ON A CLASS OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                               AMS 65 1807
                     ROBUST ESTIMATION IN INCOMPLETE BLOCK DESIGNS
                                                                                                                AMS 66 1331
           INDUCTIVE METHODS FOR BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                               AMS 66 134B
                                  ON PARTIALLY LINKED BLOCK DESIGNS
                                                                                                                AMS 66 1401
                   ON ROBUST ESTIMATION IN INCOMPLETE BLOCK DESIGNS
                                                                                                               AMS 67 15B7
                     A SERIES OF BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                                AMS 68 681
       SOME EXAMPLES OF MULTI-DIMENSIONAL INCOMPLETE BLOCK DESIGNS
                                                                                                               AMS 68 1577
                       A NOTE ON BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                               AMS 69
                                                                                                                       679
            THE EFFICIENCY OF BLOCKING IN INCOMPLETE BLOCK DESIGNS
                                                                                                               BIOKA60
                                                                                                                        273
                                  ON BALANCED UNEQUAL BLOCK DESIGNS
                                                                                                               BIOKA62
                                                                                                                        561
                          NESTED BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                               BTOKA67
                                                                                                                        479
                         CYCLIC INCOMPLETE BLOCK DESIGNS
ON JOHN'S CYCLIC INCOMPLETE BLOCK DESIGNS
                                                                                                               JRSSB66
                                                                                                                        345
                                                                                                               JRSSB67
                                                                                                                        243
DISTRIBUTION-FREE ANALYSIS OF VARIANCE TECHNIQUE FOR BLOCK DESIGNS
                                                                                                              SASJ 6B
                                                                                                                         9
EXTENSION PROPERTY OF A CLASS OF BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                           AN BIOKA57
                                                                                                                        278
                                                                                                              AMS 63
THE DUALS OF SYMMETRIC PARTIALLY-BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                          ON
                                                                                                                        528
  EXISTENCE AND CONSTRUCTION OF BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                          THE AMS 61
                                                                                                                        361
 GYCLIC CENERATION OF ROBINSON'S BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                       NOTES. BIOCS67
                                                                                                                        574
       CROUP DIVISIBLE PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                     EXTENDED AMS 64
                                                                                                                        681
 COMPARISIONS WITH A CONTROL IN BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                     MULTIPLE TECH 61
                                                                                                                        103
GONTROL OBSERVATIONS AS AN ALTERNATIVE TO INCOMPLETE BLOCK DESIGNS
                                                                                                 THE USE OF JRSSB62 464
CONSTRUCTION AMS 62 1421
    OF ROTATABLE DESIGNS THROUGH BALANCED INCOMPLETE BLOCK DESIGNS
UTILIZING BALANCED AND PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                             GROUP SCREENING BIOCS65
     BLOCKS OF GERTAIN PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                  COMMON TREATMENTS BETWEEN AMS 68
DRICS FOR CONSTRUCTING PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                          APPLICATION OF THE GEOMETRY OF QUA AMS 62 1175
ASSIFICATION WITH APPLICATION TO BALANCED INCOMPLETE BLOCK DESIGNS
                                                                        /FOR THE UNBALANCED TWO-WAY CROSS CL AMS 69 408
QUARE-SUB-B-OVER-SIGMA-SQUARE IN BALANCED INCOMPLETE BLOCK DESIGNS
                                                                        /USING AN INCORRECT VALUE OF SICMA-S BIOKA68
                                                                                                                        254
 TWO BLOCKS OF CERTAIN PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                      /BER OF COMMON TREATMENTS BETWEEN ANY AMS 65
                                                                                                                        337
                                                                      /EST IN THE INTRABLOCK ANALYSIS OF A JASA 65
CLASS OF TWO ASSOCIATE PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                                        285
SYMMETRICAL TRIANGULAR PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS AND BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                              AMS 63
                                                                                                                       348
              DUALS OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS AND SOME NONEXISTENCE THEOREMS
                                                                                                               AMS 66 1048
                                           INCOMPLETE BLOCK DESIGNS FOR BIO-ASSAYS
                                                                                                              BIOCS66 706
  ON THE EFFICIENCY OF MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO-ASSAYS
                                                                                                              BIOCS69
                                                                                                                       591
               THE USE OF CYCLIC BALANCED INCOMPLETE BLOCK DESIGNS FOR DIRECTIONAL SEED ORCHARDS
                                                                                                              RIOCS67
                                                                                                                        761
               THE USE OF CYCLIC BALANCED INCOMPLETE BLOCK DESIGNS FOR NON-DIRECTIONAL SEED ORCHARDS
                                                                                                              BIOCS69
                                                                                                                       561
                            SOME BALANCED INCOMPLETE BLOCK DESIGNS FOR TWO SETS OF TREATMENTS
                                                                                                              BTOKA66
                                                                                                                        497
SCHEMES
                    ON OBTAINING BALANCED INCOMPLETE BLOGK DESIGNS FROM PARTIALLY BALANCED ASSOCIATION
                                                                                                               AMS 67
                                                                                                                        618
                BALANCED SETS OF BALANCED INCOMPLETE BLOCK DESIGNS OF BLOCK SIZE THREE
                                                                                                              TECH 65
                                                                                                                        561
REPLICATIONS.
                                 BALANCED INCOMPLETE BLOCK DESIGNS WITH DOUBLE GROUPING OF BLOCKS INTO
                                                                                                              BTOCS66
                                                                                                                       368
                                                                                                              AMS 61
ANALYSIS OF A CLASS OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH MORE THAN TWO ASSOCIATE CLASSES
                                                                                                                        800
                                                                                                              AMS 66 1783
OTE ON CONSTRUCTION OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH PARAMETERS V=2B, N1=12, N2=15 AND
                                 BALANCED INCOMPLETE BLOCK DESIGNS WITH SETS OF IDENTICAL BLOCKS
                                                                                                              TECH 69
       A NEW FAMILY OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH SOME LATIN SQUARE DESIGN PROPERTIE AMS 67 571
NUMBER OF TREATMENTS
                                A NOTE ON INCOMPLETE BLOCK DESICNS WITH THE NUMBER OF BLOCKS EQUAL TO THE
                                                                                                               AMS 65 1B77
                      PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH TWO-WAY CLASSIFICATION OF TREATMEN AMS 69
                         RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. I. THE METHOD OF PAIRED COMPARISONS.
F PAIRED COMPARISONS RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. II. ADDITIONAL TABLES FOR THE METHOD 0 BIOKA54
F PA/ CORRICENDA, 'THE RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. II. ADDITIONAL TABLES FOR THE METHOD 0 BIOKA64
MATION AND POWER FOR/ RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. III. SOME LARGE—SAMPLE RESULTS ON ESTI BIOKA55
                                                                                                                        450
SONS WHEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK EXPERIMENT WITH ADDITIONAL REPLICATION OF A CON BIOCS66
                                                                                                                        632
                CENSORED OBSERVATIONS IN RANDOMIZED BLOCK EXPERIMENTS
                                                                                                              JRSSB59
                                                                                                                       214
                 ANALYTICAL TECHNIQUE FOR INCOMPLETE BLOCK EXPERIMENTS
                                                                                                              BIOCS66
                                                                                                                       829
TMENTS IN COMMON ANALYSIS OF A GROUP OF BALANCED BLOCK EXPERIMENTS HAVING ERROR VARIANCE AND SOME TREA BIOCS68
                                                                                                                       389
               A NOTE ON THE ANALYSIS OF INCOMPLETE BLOCK EXPERIMENTS.
                                                                                                              BIOKA65
                                                                                                                        633
                                        USE OF INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER
ESTIMATORS
                                                                                                               AMS 64 1064
        SETS OF BALANCED INCOMPLETE BLOCK DESIGNS OF BLOCK SIZE THREE
                                                                                                    BALANCED TECH 65
                                                                                                                      561
                                              ON THE BLOCK STRUCTURE OF SINGULAR GROUP DIVISIBLE DESIGNS
                                                                                                               AMS 66 1398
                                              ON THE BLOCK STRUCTURES OF CERTAIN PARTIALLY BALANCED INCOMP AMS 66 1016
LETE BLOCK DESIGNS, CORR. 67 624
                                                                                                               AMS 67 1822
                        ASYMPTOTIC PROPERTIES OF THE BLOCK UP-AND-DOWN METHOD IN BIO-ASSAY
                                   THE EFFICIENCY OF BLOCKING IN INCOMPLETE BLOCK DESIGNS
                                                                                                              BIOKA60 273
                                                      BLOCKING OF 3-TIMES-2-TO-THE-(N-K)
                                                                                                              TECH 64 371
                                 THE EFFECT OF FIELD BLOCKING ON GAIN FROM SELECTION
                                                                                                              BIOCS66 843
                     EXPERIMENTING WITH ORCANISMS AS BLOCKS
                                                                                                              BIOKA57
                                                                                                                       141
                         ON A PROPERTY OF INCOMPLETE BLOCKS
                                                                                                              JRSSB59 172
     INCOMPLETE BLOCK DESIGNS WITH SETS OF IDENTICAL BLOCKS
                                                                                                    BALANCED TECH 69
       OF COMBINED ESTIMATORS IN BALANCED INCOMPLETE BLOCKS
                                                                                                   COMPARISON AMS 66 1B32
                                                                                                   EFFICIENCY JASA 63
 OF THE WILCOXON TWO-SAMPLE STATISTIC FOR RANDOMIZED BLOCKS
 SAVAGE TESTS FOR ORDERED ALTERNATIVES IN RANDOMIZED BLOCKS
                                                                                                 ON CHERNOFF- AMS 68
```

```
REPLICATES OF THE TWO TO THE POWER OF M DESIGNS WITH BLOCKS
                                                                             ON CONSTRUCTING THE FACTORIAL AMS 62 1440
ORTHOCONAL DESIGNS TO SITUATIONS WHERE TREATMENTS OR BLOCKS ARE OF UNEQUAL STATUS OR SIZE /ATIONS OF NON BIOCS66
                                                                                                                       629
 DESIGNS AN UPPER BOUND FOR THE NUMBER OF DISJOINT BLOCKS IN CERTAIN PARTIALLY BALANCED INGOMPLETE BLOCK AMS 64
                                                                                                                       39R
               ON THE PARAMETERS AND INTERSECTION OF BLOCKS OF BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                               AMS 62 1200
 FOR THE NUMBER OF COMMON TREATMENTS BETWEEN ANY TWO BLOCKS OF CERTAIN PARTIALLY BALANCED INCOMPLETE BLOCK AMS 65
                                                                                                                       337
HE BOUNDS OF THE NUMBER OF COMMON TREATMENTS BETWEEN BLOCKS OF CERTAIN PARTIALLY BALANCED INCOMPLETE BLOCK
                                                                                                               AMS 66
                                                                                                                       739
                           COMMON TREATMENTS BETWEEN BLOCKS OF CERTAIN PARTIALLY BALANCED INCOMPLETE BLOCK
                                                                                                               AMS 68
                                                                                                                       999
HE BOUNDS OF THE NUMBER OF COMMON TREATMENTS BETWEEN BLOCKS OF SEMI-REGULAR GROUP DIVISIBLE DESIGNS ON T JASA 64
                                                                                                                       867
     OF A 2-TO-THE-(17-9) RESOLUTION V PLAN IN EIGHT BLOCKS OF 32
                                                                                                 CONSTRUCTION TECH 65
                           RANK TESTS FOR RANDOMIZED BLOCKS WHEN THE ALTERNATIVES HAVE AN 'A PRIORI'
                                                                                                                       867
                      THE COMPLETE AMALCAMATION INTO BLOCKS, BY WEIGHTED MEANS, OF A FINITE SET OF REAL
NUMBERS
                                                                                                              BIOKA59
                                                                                                                       317
RIABILITY DUE TO COINCIDENT PASSAGE IN AN ELECTRONIC BLOOD CELL COUNTER
                                                                                          A STUDY OF THE VA BIOCS67
                                                                                                                       671
                               SPECTRAL EVALUATION OF BLS AND CENSUS REVISED SEASONAL ADJUSTMENT PROCEDURES JASA 68
                                                                                                                       472
 EDITING OF SURVEY DATA, FIVE YEARS OF EXPERIENCE IN BLS MANPOWER SURVEYS
                                                                                                     COMPUTER JASA 66
                                                                                                                       375
             LINEAR APPROXIMATIONS TO THE CENSUS AND BLS SEASONAL ADJUSTMENT METHODS
                                                                                                              JASA 68
                                                                                                                       445
    SMALL SAMPLE POWER OF THE BIVARIATE SICN TEST OF BLUMEN AND HODGES
                                                                                                               AMS 64 1576
                                            A NOTE ON BLUS ESTIMATION
                                                                                                              JASA 69
                                                                                                                       949
                                  ON THE POWER OF THE BLUS PROCEDURE
                                                                                                              JASA 68 1227
                              A SIMPLIFICATION OF THE BLUS PROCEDURE FOR ANALYZING REGRESSION DISTURBANCES JASA 6B
                                                                                                                       242
POWER OF THE DURBIN-WATSON TEST AND THE POWER OF THE BLUS TEST
                                                                           A COMPARISON BETWEEN THE
                                                                                                              JASA 69
                                                                                                                       93B
MERICAL RATIONALITY A SUBJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' TEST FOR APPROXIMATE NU JASA 69
MERICAL/ DISCUSSION OF 'A SUBJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' TEST FOR APPROXIMATE NU JASA 69
CURA' CO/ VECTORIAL ANALYSIS FOR GENETIC CLINES IN BODY DIMENSIONS IN POPULATIONS OF 'DROSOPHILIA SUBOBS BIOCS66
                                                                                                                        23
                    NOTE ON A 'MULTIVARIATE' FORM OF BONFERRONI'S INEQUALITIES
                                                                                                               AMS 69
                                                                                                                       692
 THE HISTORY OF PROBABILITY AND STATISTICS. XII. THE BOOK OF FATE
BOOK REVIEWS, 10 YEAR INDEX (1959-196B)
                                                                                                  STUDIES IN BIOKA61
                                                                                                                       220
                                                                                                              TECH 69
                                                                                                                       223
        MODEL OF BOOK USE AND ITS APPLICATION TO THE BOOK STORACE PROBLEM
                                                                                                A STATISTICAL JASA 69 NO 4
                              A STATISTICAL MODEL OF BOOK USE AND ITS APPLICATION TO THE BOOK STORACE
PROBLEM
                                                                                                              JASA 69 NO.4
                                   BAYES' METHOD FOR BOOKIES
                                                                                                               AMS 69 1177
                              SOME SOVIET STATISTICAL BOOKS OF 1957
                                                                                                              JASA 59
                                                                                                                        12
                                                                                                               AMS 69
           CONDITIONAL PROBABILITY ON SICMA-COMPLETE BOOLEAN ALGEBRAS
                                                                                                                       970
                                  A DERIVATION OF THE BOREL DISTRIBUTION
                                                                                                              BIOKA61
                                                                                                                       222
                                                    A BOREL SET NOT CONTAINING A GRAPH
                                                                                                               AMS 68 1345
                                A SHARPER FORM OF THE BOREL-CANTELLI LEMMA AND THE STRONG LAW
                                                                                                               AMS 65
                                                                                                                       800
                     A DISTRIBUTION ANALOGOUS TO THE BOREL-TANNER
                                                                                                              BIOKA61
                                                                                                                       167
                                                  THE BOREL-TANNER DISTRIBUTION
                                                                                                              BIOKA60
                                                                                                                       143
TO AN INTERVAL
                                             ACCURACY BORROWING IN THE ESTIMATION OF THE MEAN BY SHRINKAGE JASA 68
                                                                                                                       953
                     ON AN ANALOGUE OF BHATTACHARYA BOUND
                                                                                                                       268
                                                                                                              BIOKA64
                                          ON FISHER'S BOUND FOR ASYMPTOTIC VARIANCES
                                                                                                               AMS 64 1545
RIBU/ AN EXACT ASYMPTOTICALLY EFFICIENT CONFIDENCE BOUND FOR RELIABILITY IN THE CASE OF THE WEIBULL DIST TECH 66
                                                                                                                       135
T ORIENTED-ATOM PERCOLATION PROCESS A LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE-QUADRAN JRSSB63
                                                                                                                       401
                                                                                                               AMS 61
MARKOV PROCESSES
                                                  A BOUND FOR THE LAW OF LARCE NUMBERS FOR DISCRETE
                                                                                                                       336
RTIALLY BALANCED INCOMPLETE BLOCK DESIGNS AN UPPER BOUND FOR THE NUMBER OF DISJOINT BLOCKS IN CERTAIN PA AMS 64
                                                                                                                       39B
                                             AN UPPER BOUND FOR THE SAMPLE STANDARD DEVIATION
                                                                                                              TECH 62
                                                                                                                       134
                                   ERRATA, ' AN UPPER BOUND FOR THE SAMPLE STANDARD DEVIATION
                                                                                                              TECH 62
                                                                                                                       440
                                    ERRATA, 'AN UPPER BOUND FOR THE SAMPLE STANDARD DEVIATION'
                                                                                                              TECH 63
                                                                                                                       417
                                                   A BOUND FOR THE VARIATION OF CAUSSIAN DENSITIES
                                                                                                               AMS 69 NO.6
                                                LOWER BOUND FORMULAS FOR THE MEAN INTERCORRELATION
                                                                                                              JASA 59
                                                                                                                       275
TOCHASTIC PROCESSES WITH ABSOLUTEL/ AN EXPONENTIAL BOUND ON THE STRONG LAW OF LARGE NUMBERS FOR LINEAR S AMS 61
                                                                                                                       5B3
IAL AND POISSON DISTRI/ ESTIMATORS WITH PRESCRIBED BOUND ON THE VARIANCE FOR THE PARAMETERS IN THE BINOM JASA 66
                                                                                                                       220
WITH A SAMPLE FROM A NORMAL POPULATION WHEN AN UPPER BOUND TO THE STANDARD DEVIATION IS KNOWN /ROCEDURE JASA 60
                                                                                                                        94
ERROR CORRECTING CODES
                                                 ON A BOUND USEFUL IN THE THEORY OF FACTORIAL DESIGNS AND
                                                                                                               AMS 64
                                                                                                                       408
                         THE OTHER SIDE OF THE LOWER BOUND. A NOTE WITH A CORRECTION
                                                                                                              JASA 61
                                                                                                                       670
                                                      BOUNDARIES FOR CLOSED (WEDCE) SEQUENTIAL T TEST PLANS BIOKA66
                                                                                                                       431
TEST STATISTIC WHEN THE TRUE PARAMETER IS 'NEAR' THE BOUNDARIES OF THE HYPOTHESIS RECIONS /LIHOOD RATIO AMS 6B 2044
                                                                                          A WIENER-HOPF TYPE
  METHOD FOR A GENERAL RANDOM WALK WITH A TWO-SIDED BOUNDARY
                                                                                                               AMS 63 1168
 OF TWO POISSON VARIAB/ ON A LOCALLY MOST POWERFUL BOUNDARY RANDOMIZED SIMILAR TEST FOR THE INDEPENDENCE AMS 61
                                                                                                                       809
                                                     BOUNDED EXPECTED UTILITY
                                                                                                               AMS 67 1054
                                        EXISTENCE OF BOUNDED LENGTH CONFIDENCE INTERVALS
                                                                                                               AMS 63 1474
OF A DISTRIBUTION FUNCTION, II
                                                     BOUNDED LENGTH CONFIDENCE INTERVALS FOR THE P-POINT
                                                                                                               AMS 66 581
OF A DISTRIBUTION FUNCTION, III
                                                      BOUNDED LENGTH CONFIDENCE INTERVALS FOR THE P-POINT
                                                                                                              AMS 66
                                                                                                                       5B6
 RECRESSION FUNCTION
                                                      BOUNDED LENGTH CONFIDENCE INTERVALS FOR THE ZERO OF A AMS 62
                                                                                                                       237
                PROBABILITY INEQUALITIES FOR SUMS OF BOUNDED RANDOM VARIABLES
                                                                                                              JASA 63
                                                                                                                        13
              SOME KOLMOGOROFF-TYPE INEQUALITIES FOR BOUNDED RANDOM VARIABLES
                                                                                                              BIOKA67
                                                                                                                       641
PROBABILITY INEQUALITY FOR THE SUM OF INDEPENDENT, BOUNDED RANDOM VARIABLES PROBABILITY INEQUALITIES FOR THE SUM OF INDEPENDENT, BOUNDED RANDOM VARIABLES.
                                                                                                 A ONE-SIDED BIOKAGS
                                                                                                                       565
                                                                                 /UNDS ON THE MOMENTS AND BIOKA65
                                                                                                                       559
   REQUIRED TO ESTIMATE THE RATIO OF VARIANCES WITH BOUNDED RELATIVE ERROR
                                                                                                 SAMPLE SIZE JASA 63 1044
NTIAL DISTRIBUTION
                                       ESTIMATES OF BOUNDED RELATIVE ERROR FOR THE MEAN LIFE OF AN EXPONE TECH 61 107
NORMAL DISTRIBUTIONS
                                         ESTIMATES OF BOUNDED RELATIVE ERROR FOR THE RATIO OF VARIANCES OF JASA 56
                                                                                                                       481
OF LARCE DEVIATIONS FROM THE EXPECTATION FOR SUMS OF BOUNDED, INDEPENDENT RANDOM VARIABLES /PROBABILITY BIOKA63
                                                                                                                       528
    FURTHER CONTRIBUTIONS TO MULTIVARIATE CONFIDENCE BOUNDS
                                                                                                              BIOKA57
                                                                                                                       399
                               ON SHARPENING SCHEFFE BOUNDS
                                                                                                              JRSSB67
                                                                                                                       110
          SMIRNOV TESTS OF FIT BASED ON SOME GENERAL BOUNDS
                                                                                                 KOLMOGOROV- JASA 68 919
NS AND THEIR APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS
                                                               /CERTAIN INEQUALITIES FOR NORMAL DISTRIBUTIO AMS 67 1853
                                                      BOUNDS AND APPROXIMATIONS FOR THE MOMENTS OF ORDER
                                                                                                            JASA 69 NO.4
NCE AND NONINDEPENDENCE BETWEEN TWO/
                                       ON CONFIDENCE BOUNDS ASSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIA AMS 66 1736
                                         PROBABILITY BOUNDS FOR A UNION OF HYPERSPHERICAL CONES
                                                                                                             JRSSB65
                                                                                                                       57
MULTIHYPOTHESIS TESTS
                                                LOWER BOUNDS FOR AVERAGE SAMPLE NUMBER OF SEQUENTIAL
                                                                                                              AMS 67 1343
                                            TABLES OF BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE
                                                                                                              JASA 65 872
ΤT
                                                      BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE.
                                                                                                              AMS 64 1258
                                                      BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE, I AMS 64 1234
             ON NON-REGULAR ESTIMATION, I. VARIANCE BOUNDS FOR ESTIMATORS OF LOCATION PARAMETERS
                                                                                                             JASA 69 1056
                                                                                                              AMS 65 1055
                                                 SOME BOUNDS FOR EXPECTED VALUES OF ORDER STATISTICS
SYMPTOTIC THEORY OF FIXED-SIZE SEQUENTIAL CONFIDENCE BOUNDS FOR LINEAR REGRESSION PARAMETERS ON THE A AMS 65 463
 RECRESSION PROBLEMS
                                                LOWER BOUNDS FOR MINIMUM COVARIANCE MATRICES IN TIME SERIES AMS 64 362
                            SICNIFICANCE PROBABILITY BOUNDS FOR RANK ORDERINGS
                                                                                                               AMS 64 891
```

TITLE WORD INDEX BLO - BUL

	BOUNDS FOR REGRESSION PARAMETERS AND MEAN VECTOR	JRSSB67 1	132
SOME OPTIMUM CONFIDENCE	BOUNDS FOR ROOTS OF DETERMINANTAL EQUATIONS	AMS 65 4	468
LINC WITH VARYING PROBABILITIES FROM A FINITE POP/	BOUNDS FOR THE ERROR-VARIANCE OF AN ESTIMATOR IN SAMP	JASA 68	91
PROBABILITY RATIO TEST	BOUNDS FOR THE EXPECTED SAMPLE SIZE IN A SEQUENTIAL	JRSSB60 3	360
INFERENCE	BOUNDS FOR THE FREQUENCY OF MISLEADINC BAYES	AMS 63 11	109
		BIOKA55 2	
Y TWO BLOCKS OF CERTAIN PARTIALLY BALANCED INCOMP/	BOUNDS FOR THE NUMBER OF COMMON TREATMENTS BETWEEN AN		337
	BOUNDS FOR THE RATIO OF RANGE TO STANDARD DEVIATION		
THE USE OF SAMPLE RANCES IN SETTING EXACT CONFIDENCE	BOUNDS FOR THE STANDARD DEVIATION OF A RECTANCULAR PO	JASA 61 6	601
STATISTIC	BOUNDS FOR THE VARIANCE OF KENDALL'S RANK CORRELATION		
		BIOKA65 6	
	BOUNDS OF SERIAL CORRELATIONS	AMS 62 14	
	BOUNDS OF THE NUMBER OF COMMON TREATMENTS BETWEEN BLO		
CKS OF CERTAIN PARTIALLY BALANC/ COMPARISON OF THE	BOUNDS OF THE NUMBER OF COMMON TREATMENTS BETWEEN BLO	AMS 66 7	739
FOUR MOMENTS ARE GIVEN TABLE OF THE	BOUNDS OF THE PROBABILITY INTEGRAL WHEN THE FIRST	BIOKAGO 3	399
APPLICATIONS	BOUNDS OF THE PROBABILITY INTEGRAL WHEN THE FIRST BOUNDS OF THE PROBABILITY OF A UNION OF EVENTS, WITH BOUNDS ON A MEASURE OF SKEWNESS	AMS 68 21	104
DETERMINING	DOUNDS ON A MEASURE OF SREWNESS	AMC 60 14	15Z
PROBLEMS	BOUNDS ON A MEASURE OF SKEWNESS BOUNDS ON EXPECTED VALUES OF CERTAIN FUNCTIONS BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY	AMS 65 5	565
110 Dalino	BOUNDS ON MOMENTS OF MARTINCALES	AMS 68 17	719
	BOUNDS ON MOMENTS OF SUMS OF RANDOM VARIABLES	AMS 69 15	506
RESSIVE C/ EXACT THREE, ORDER STATISTIC CONFIDENCE	BOUNDS ON RELIABLE LIFE FOR A WEIBULL MODEL WITH PROG		
AN ELEMENTARY METHOD OF OBTAINING LOWER	BOUNDS ON THE ASYMPTOTIC POWER OF RANK TESTS	AMS 68 21	12B
	BOUNDS ON THE DISTRIBUTION FUNCTIONS OF THE BEHRENS-	AMS 66 63	639
THE RENEWAL FUNCTION	BOUNDS ON THE ERROR IN THE LINEAR APPROXIMATION TO		
SEQUENTIAL PROCEDURE	BOUNDS ON THE MAXIMUM SAMPLE SIZE OF A BAYES		
	BOUNDS ON THE MOMENTS AND PROBABILITY INEQUALITIES FO		
	BOUNDS ON THE PROBABILITY OF ERROR FOR A DISCRETE		
	BOUNDS ON THE SAMPLE SIZE DISTRIBUTION FOR A CLASS OF		
	BOUNDS, AND CONFIDENCE LIMITS, FOR THE PROBABILITY TH		
	BOUNDS, BASED ON ONE ORDER STATISTIC FOR THE PARAMETE		
ON 'FURTHER CONTRIBUTIONS TO MULTIVARIATE CONFIDENCE	BOUNDS, BASED ON ONE ORDER STATISTIC FOR THE PARAMETE	BIOKASB 51	
'FURTHER CONTRIBUTIONS TO MULTIVARIATE CONFIDENCE			
A BLACK	BOX OR A COMPREHENSIVE MODEL	TECH 6B 2	
DISTRIBUTION FOR A GENERALIZED BANACH MATCH	BOX PROBLEM ASYMPTOTIC		
SOME COMMENTS ON THE ACCURACY OF	BOX'S APPROXIMATIONS TO THE DISTRIBUTION OF M		
	BRADLEY-TERRY MODEL (CORR. 68 1550) TIES IN PA		
NON-HOMOGENEOUS	BRANCHING POISSON PROCESS MODEL FOR THE ANALYSIS OF BRANCHING POISSON PROCESSES BRANCHING PROBABILITIES BRANCHING PROCESS MODEL FOR THE ANALYSIS OF BRANCHING PROCESS	JRSSB67 34	343
ON MULTI-TYPE GALTON-WATSON PROCESSES WITH RANDOM	BRANCHING PROBABILITIES A NOTE	BIOKA6B 58	589
ASYMPTOTIC PROPERTIES OF AN AGE DEPENDENT	BRANCHING PROCESS	AMS 65 156	565
THE STATIONARY MEASURE OF THE CRITICAL CASE SIMPLE	BRANCHING PROCESS PROPERTIES OF	AMS 67 9	977
A	BRANCHING PROCESS ALLOWING IMMIGRATION	1K22R02 IS	198
	BRANCHING PROCESS ALLOWING IMMIGRATION, A REMARK ON T		
	BRANCHINC PROCESS ALLOWING IMMIGRATION'		
LIFETIMES A	BRANCHING PROCESS IN WHICH INDIVIDUALS HAVE VARIABLE	BIOKA64 26	262
THE EXTINCTION OF A BACTERIAL COLUNY BY PHAGES, A	BRANCHING PROCESS WITH DETERMINISTIC REMOVALS	ME 67 20	261
MECESSARY COMPLETIONS FOR ALMOST SUPE EXTENSION OF	DRANCHING PROCESS WITH MEAN LESS THAN ONE	AMS 6R 21	136
A PROPERTY CONDITIONS FOR ABMOST SORE EXITACTION OF	BRANCHING PROCESS WITHOUT REBRANCHING	AMS 69 18	350
AN INTEGRAL EQUATION IN AGE DEPENDENT	BRANCHING PROCESSES	AMS 65 150	569
MONOTONE CONVERGENCE OF MOMENTS IN ACE DEPENDENT	BRANCHING PROCESSES	AMS 66 1B0	306
A IMU IS	BRANCHING PROCESSES		
SEOWET		AMS 67 91	919
SOME RESULTS ON MULTITYPE CONTINUOUS TIME MARKOV	BRANCHING PROCESSES	AMS 67 93 AMS 68 34	919 347
SOME RESULTS ON MULTITYPE CONTINUOUS TIME MARKOV ON THE SUPERCRITICAL ONE DIMENSIONAL AGE DEPENDENT	BRANCHING PROCESSES BRANCHING PROCESSES	AMS 67 93 AMS 68 34 AMS 69 74	919 347 743
SOME RESULTS ON MULTITYPE CONTINUOUS TIME MARKOV ON THE SUPERCRITICAL ONE DIMENSIONAL AGE DEPENDENT INTECRALS OF	BRANCHING PROCESSES BRANCHING PROCESSES BRANCHING PROCESSES	AMS 67 9: AMS 68 34 AMS 69 74 BIOKA67 26	91 9 3 4 7 7 4 3 2 6 3
	DIANGITING TROOPSES	OTODDO	
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA	BIOCS67 73	739
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS	BIOCS67 73 AMS 68 1BC	739 301
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE-TYPE	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS BRANCHING PROCESSES IN POPULATION GENETICS	BIOCS67 73 AMS 68 1BC JRSSB6B 16	739 301 164
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE-TYPE ON	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES IN RANDOM ENVIRONMENTS	BIOCS67 73 AMS 68 1BC JRSSB6B 16 AMS 69 BI	739 301 164 314
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE-TYPE ON MIT THEOREM OF EVERETT, ULAM AND HARRIS ON MULTITYPE	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES IN RANDOM ENVIRONMENTS BRANCHING PROCESSES TO A BRANCHING PROCESS WITH COUNT	BIOCS67 73 AMS 68 180 JRSSB6B 16 AMS 69 BI AMS 67 99	739 301 164 314
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE-TYPE ON MIT THEOREM OF EVERETT, ULAM AND HARRIS ON MULTITYPE EXTINCTION AGE-DEPENDENT LIMIT DISTRIBUTIONS OF A	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES IN RANDOM ENVIRONMENTS BRANCHING PROCESSES TO A BRANCHING PROCESS WITH COUNT BRANCHING PROCESSES UNDER A CONDITION OF ULTIMATE BRANCHING STOCHASTIC PROCESS	BIOCS67 73 AMS 68 1BC JRSSB6B 16 AMS 69 B1 AMS 67 99 BIOKA68 29 AMS 64 55	739 301 164 314 992 291
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE—TYPE ON MIT THEOREM OF EVERETT, ULAM AND HARRIS ON MULTITYPE EXTINCTION LIMIT DISTRIBUTIONS OF A L T/ USE OF A REGRESSION TECHNIQUE TO PRODUCE AREA	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES IN RANDOM ENVIRONMENTS BRANCHING PROCESSES TO A BRANCHING PROCESS WITH COUNT BRANCHINC PROCESSES UNDER A CONDITION OF ULTIMATE BRANCHING STOCHASTIC PROCESS BREAKDOWNS OF THE MONTHLY NATIONAL ESTIMATES OF RETAI	BIOCS67 73 AMS 68 1BC JRSSB6B 16 AMS 69 B1 AMS 67 99 BIOKA68 29 AMS 64 55 JASA 66 49	739 301 164 314 992 291 557
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE-TYPE ON MIT THEOREM OF EVERETT, ULAM AND HARRIS ON MULTITYPE EXTINCTION LIMIT DISTRIBUTIONS OF A LT/ USE OF A REGRESSION TECHNIQUE TO PRODUCE AREA DISTRIBUTION-FREE TESTS IN TIME-SERIES BASED ON THE	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES IN RANDOM ENVIRONMENTS BRANCHING PROCESSES TO A BRANCHING PROCESS WITH COUNT BRANCHING PROCESSES UNDER A CONDITION OF ULTIMATE BRANCHING STOCHASTIC PROCESS BREAKDOWNS OF THE MONTHLY NATIONAL ESTIMATES OF RETAI BREAKINC OF RECORDS (WITH DISCUSSION)	BIOCS67 73 AMS 68 1BC JRSSB6B 16 AMS 69 B1 AMS 67 95 BIOKA68 25 AMS 64 55 JASA 66 45 JRSSB54	739 301 164 314 992 291 557 496
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE-TYPE ON MIT THEOREM OF EVERETT, ULAM AND HARRIS ON MULTITYPE EXTINCTION AGE-DEPENDENT LIMIT DISTRIBUTIONS OF A L T/ USE OF A REGRESSION TECHNIQUE TO PRODUCE AREA DISTRIBUTION-FREE TESTS IN TIME-SERIES BASED ON THE A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES IN RANDOM ENVIRONMENTS BRANCHING PROCESSES TO A BRANCHING PROCESS WITH COUNT BRANCHING STOCHASTIC PROCESS BREAKDOWNS OF THE MONTHLY NATIONAL ESTIMATES OF RETAI BREAKING OF RECORDS (WITH DISCUSSION) BREAKING OF RECORDS	BIOCS67 73 AMS 68 1BC JRSSB6B 16 AMS 69 B1 AMS 67 99 BIOKA68 29 AMS 64 55 JASA 66 49 JRSSB54 BIOCS69 9	739 301 164 314 992 291 557 496 1
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE—TYPE ON MIT THEOREM OF EVERETT, ULAM AND HARRIS ON MULTITYPE EXTINCTION AGE—DEPENDENT LIMIT DISTRIBUTIONS OF A L T/ USE OF A REGRESSION TECHNIQUE TO PRODUCE AREA DISTRIBUTION—FREE TESTS IN TIME—SERIES BASED ON THE A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF ADDITIVE COMBINING ABILITIES FITTED TO PLANT	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES TO A BRANCHING PROCESS WITH COUNT BRANCHING PROCESSES UNDER A CONDITION OF ULTIMATE BRANCHING STOCHASTIC PROCESS BREAKDOWNS OF THE MONTHLY NATIONAL ESTIMATES OF RETAI BREAKING OF RECORDS (WITH DISCUSSION) BREAST CANCER BREEDING DATA	BIOCS67 73 AMS 68 1BC JRSSB6B 16 AMS 69 BI AMS 67 95 BIOKA68 25 AMS 64 55 JASA 66 45 JRSSB54 BIOCS69 95 BIOCS67 44	739 301 164 314 992 291 557 496 1 95 45
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE—TYPE ON THE ORDER OF EVERETT, ULAM AND HARRIS ON MULTITYPE EXTINCTION LIMIT DISTRIBUTIONS OF A LIMIT DISTRIBUTIONS OF A LIMIT DISTRIBUTIONS OF A LIMIT DISTRIBUTION—FREE TESTS IN TIME—SERIES BASED ON THE AMATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF ADDITIVE COMBINING ABILITIES FITTED TO PLANT RENTS/ THE PREDICTION OF RESPONSE TO SELECTION IN	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES IN RANDOM ENVIRONMENTS BRANCHING PROCESSES TO A BRANCHING PROCESS WITH COUNT BRANCHING PROCESSES UNDER A CONDITION OF ULTIMATE BRANCHING STOCHASTIC PROCESS BREAKDOWNS OF THE MONTHLY NATIONAL ESTIMATES OF RETAI BREAKING OF RECORDS (WITH DISCUSSION) BREAST CANCER BREEDING DATA BREEDING PROGRAMMES WHEN ALL DAUCHTERS OF SELECTED PA	BIOCS67 73 AMS 68 180 JRSSB6B 16 AMS 69 81 AMS 67 95 BIOKA68 25 AMS 64 55 JASA 66 45 JRSSB54 BIOCS69 4 BIOCS67 4 BIOCS69 55	739 301 164 314 992 291 557 496 1 95 45
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE-TYPE ON MIT THEOREM OF EVERETT, ULAM AND HARRIS ON MULTITYPE EXTINCTION LIMIT DISTRIBUTIONS OF A LIMIT DISTRIBUTIONS OF A DISTRIBUTION-FREE TESTS IN TIME-SERIES BASED ON THE A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF ADDITIVE COMBINING ABILITIES FITTED TO PLANT RENTS/ THE PREDICTION OF RESPONSE TO SELECTION IN LEADING	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES IN RANDOM ENVIRONMENTS BRANCHING PROCESSES TO A BRANCHING PROCESS WITH COUNT BRANCHING PROCESSES UNDER A CONDITION OF ULTIMATE BRANCHING STOCHASTIC PROCESS BREAKDOWNS OF THE MONTHLY NATIONAL ESTIMATES OF RETAI BREAKINC OF RECORDS (WITH DISCUSSION) BREAST CANCER BREEDINC DATA BREEDINC PROCESMES WHEN ALL DAUCHTERS OF SELECTED PA BRITISH STATISTICIANS OF THE NINETEENTH CENTURY	BIOCSG7 73 AMS 68 1B0 JRSSB6B 16 AMS 69 98 BIOKA68 29 AMS 64 55 JASA 66 49 JRSSB54 BIOCSG9 9 BIOCSG7 48 BIOCSG7 55 JASA 60 3	739 301 164 314 992 291 557 496 1 95 45 553 38
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE-TYPE ON MIT THEOREM OF EVERETT, ULAM AND HARRIS ON MULTITYPE EXTINCTION AGE-DEPENDENT LIMIT DISTRIBUTIONS OF A L T/ USE OF A REGRESSION TECHNIQUE TO PRODUCE AREA DISTRIBUTION-FREE TESTS IN TIME-SERIES BASED ON THE A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF ADDITIVE COMBINING ABILITIES FITTED TO PLANT RENTS/ THE PREDICTION OF RESPONSE TO SELECTION IN LEADING THE FIRST 1,945	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES IN RANDOM ENVIRONMENTS BRANCHING PROCESSES TO A BRANCHING PROCESS WITH COUNT BRANCHING STOCHASTIC PROCESS BREAKDOWNS OF THE MONTHLY NATIONAL ESTIMATES OF RETAI BREAKINC OF RECORDS (WITH DISCUSSION) BREAST CANCER BREEDINC DATA BREEDING PROGRAMMES WHEN ALL DAUCHTERS OF SELECTED PA BRITISH STATISTICIANS OF THE NINETEENTH CENTURY BRITISH STEAMSHIPS	BIOCS67 73 AMS 68 180 JRSSB6B 16 AMS 69 81 AMS 67 95 BIOKA68 25 AMS 64 55 JASA 66 45 JRSSB54 BIOCS69 4 BIOCS67 4 BIOCS69 55	739 301 164 314 992 291 557 496 1 95 45 553 38
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE—TYPE ON MIT THEOREM OF EVERETT, ULAM AND HARRIS ON MULTITYPE EXTINCTION LIMIT DISTRIBUTIONS OF A LIMIT DISTRIBUTION OF A LIMIT DISTRIBUTION FREE TESTS IN TECHNIQUE TO PRODUCE AREA DISTRIBUTION—FREE TESTS IN TIME—SERIES BASED ON THE A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF ADDITIVE COMBINING ABILITIES FITTED TO PLANT RENTS/ THE PREDICTION OF RESPONSE TO SELECTION IN LEADING THE FIRST 1,945 THE FIRST 1,945 THE FORVEX HULL OF PLANE	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES IN RANDOM ENVIRONMENTS BRANCHING PROCESSES TO A BRANCHING PROCESS WITH COUNT BRANCHING PROCESSES UNDER A CONDITION OF ULTIMATE BRANCHING STOCHASTIC PROCESS BREAKDOWNS OF THE MONTHLY NATIONAL ESTIMATES OF RETAI BREAKING OF RECORDS (WITH DISCUSSION) BREAST CANCER BREEDING DATA BREEDING PROGRAMMES WHEN ALL DAUCHTERS OF SELECTED PA BRITISH STATISTICIANS OF THE NINETEENTH CENTURY BRITISH STEAMSHIPS BROWNIAN MOTION	BIOCS67 73 AMS 68 1BG JRSSB68 16 AMS 69 B1 AMS 67 99 BIOKA68 25 JASA 66 45 JASA 66 45 JASA 66 45 JRSSB54 BIOCS67 4 BIOCS69 55 BIOCS67 55 JASA 66 35 AMS 64 55 BIOCS69 55 AMS 64 55 BIOCS69 55 BIOCS67 4	739 301 164 314 392 291 557 496 1 95 45 553 38 660 527
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE-TYPE ON MIT THEOREM OF EVERETT, ULAM AND HARRIS ON MULTITYPE EXTINCTION AGE-DEPENDENT LIMIT DISTRIBUTIONS OF A L T/ USE OF A REGRESSION TECHNIQUE TO PRODUCE AREA DISTRIBUTION-FREE TESTS IN TIME-SERIES BASED ON THE A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF ADDITIVE COMBINING ABILITIES FITTED TO PLANT RENTS/ THE PREDICTION OF RESPONSE TO SELECTION IN LEADING THE FIRST 1,945	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES IN RANDOM ENVIRONMENTS BRANCHING PROCESSES TO A BRANCHING PROCESS WITH COUNT BRANCHING PROCESSES UNDER A CONDITION OF ULTIMATE BRANCHING STOCHASTIC PROCESS BREAKDOWNS OF THE MONTHLY NATIONAL ESTIMATES OF RETAI BREAKINC OF RECORDS (WITH DISCUSSION) BREAST CANCER BREEDINC DATA BREEDINC PROCRAMMES WHEN ALL DAUCHTERS OF SELECTED PA BRITISH STATISTICIANS OF THE NINETEENTH CENTURY BRITISH STEAMSHIPS BROWNIAN MOTION BROWNIAN MOTION	BIOCS67 73 AMS 68 1BG JRSSB68 16 AMS 69 BI AMS 67 99 BIOKA68 29 AMS 66 49 JRSSB54 BIOCS69 59 BIOCS69 59 BIOCS69 59 JASA 60 33 JASA 68 36 AMS 63 32	739 301 164 314 392 291 557 496 1 95 45 553 38 60 527
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE—TYPE ON THE MARKOV SOME APPLICATIONS OF MULTIPLE—TYPE EXTINCTION LIMIT DISTRIBUTIONS OF A LIMIT DISTRIBUTIONS OF A LIMIT DISTRIBUTION OF A LIMIT DISTRIBUTION—FREE TESTS IN TIME—SERIES BASED ON THE A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF ADDITIVE COMBINING ABILITIES FITTED TO PLANT RENTS/ THE PREDICTION OF RESPONSE TO SELECTION IN LEADING THE FIRST 1,945 THE CONVEX HULL OF PLANE THE LOOSE SUBGRDINATION OF DIFFERENTIAL PROCESSES TO THE EXISTENCE OF CERTAIN STOPPING TIMES ON TIME THEOREM FOR THE ANGULAR COMPONENT OF PLANE	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES IN RANDOM ENVIRONMENTS BRANCHING PROCESSES TO A BRANCHING PROCESS WITH COUNT BRANCHING PROCESSES UNDER A CONDITION OF ULTIMATE BRANCHING STOCHASTIC PROCESS BREAKDOWNS OF THE MONTHLY NATIONAL ESTIMATES OF RETAI BREAKING OF RECORDS (WITH DISCUSSION) BREAST CANCER BREEDING DATA BREEDING PROGRAMMES WHEN ALL DAUCHTERS OF SELECTED PA BRITISH STEAMSHIPS BROWNIAN MOTION BRANCHING PROCESSES BRANCHING BRANCHING PROCESSES BRANCHING BRANCHING PROCESSES BRANCHING	BIOCS67 73 AMS 68 1BG JRSSB68 16 JRSSB68 16 AMS 67 95 BIOKA68 25 JASA 66 45 JRSSB54 BIOCS69 55 BIOCS69 55 JASA 60 3 AMS 63 32 AMS 63 32 AMS 63 32 AMS 69 16C AMS 67 2	739 739 739 739 739 739 749 749 749 749 749 749 749 74
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE—TYPE ON THE PREVIOUS OF A PPLICATION OF MULTIPLE—TYPE EXTINCTION LIMIT DISTRIBUTIONS OF A LIMIT DISTRIBUTIONS OF A LIMIT DISTRIBUTIONS OF A LIMIT DISTRIBUTION—FREE TESTS IN TIME—SERIES BASED ON THE A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF ADDITIVE COMBINING ABILITIES FITTED TO PLANT RENTS/ THE PREDICTION OF RESPONSE TO SELECTION IN LEADING THE FIRST 1,945 THE CONVEX HULL OF PLANE THE LOOSE SUBORDINATION OF DIFFERENTIAL PROCESSES TO THE EXISTENCE OF CERTAIN STOPPING TIMES ON TIME THEOREM FOR THE ANGULAR COMPONENT OF PLANE THE RELATION OF THE EQUIVALENCE CONDITIONS FOR THE	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES IN RANDOM ENVIRONMENTS BRANCHING PROCESSES TO A BRANCHING PROCESS WITH COUNT BRANCHING PROCESSES UNDER A CONDITION OF ULTIMATE BRANCHING STOCHASTIC PROCESS BREAKDOWNS OF THE MONTHLY NATIONAL ESTIMATES OF RETAI BREAKING OF RECORDS (WITH DISCUSSION) BREAST CANCER BREEDING DATA BREEDING PROGRAMMES WHEN ALL DAUCHTERS OF SELECTED PA BRITISH STATISTICIANS OF THE NINETEENTH CENTURY BRITISH STEAMSHIPS BROWNIAN MOTION TO THE EQUIVALENCE CONDITIONS FOR CER	BIOCS67 73 AMS 68 1BG JRSSB68 16 AMS 69 BI AMS 67 99 BIOKA68 29 AMS 64 58 JASA 66 49 JRSSB54 BIOCS69 95 BIOCS69 55 JASA 60 3 JASA 60 3 JASA 60 3 AMS 69 160 AMS 69 71 AMS 69 71 AMS 69 NO.	739 739 8001 1664 8314 9992 991 557 496 1 95 45 553 38 860 827 603 715 25
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE—TYPE ON A CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE—TYPE ON A CONTINUOUS TIME MARKOV ON A CONTINUOUS TIME MARKOV ON A CONTINUOUS TIME MARKOV ON MULTITYPE EXTINCTION A CE—DEPENDENT LIMIT DISTRIBUTIONS OF A LIMIT DISTRIBUTION OF A RECRESSION TECHNIQUE TO PRODUCE AREA DISTRIBUTION—FREE TESTS IN TIME—SERIES BASED ON THE A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF ADDITIVE COMBINING ABILITIES FITTED TO PLANT RENTS/ THE PREDICTION OF RESPONSE TO SELECTION IN LEADING THE FIRST 1,945 THE CONVEX HULL OF PLANE THE CONVEX HULL OF PLANE THE EXISTENCE OF CERTAIN STOPPING TIMES ON TIME THEOREM FOR THE ANGULAR COMPONENT OF PLANE THE ELATION OF THE EQUIVALENCE CONDITIONS FOR THE DISTRIBUTION OF THE BOULTE MAXIMUM FOR CERTAIN	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES IN RANDOM ENVIRONMENTS BRANCHING PROCESSES TO A BRANCHING PROCESS WITH COUNT BRANCHING PROCESSES UNDER A CONDITION OF ULTIMATE BRANCHING STOCHASTIC PROCESS BREAKDOWNS OF THE MONTHLY NATIONAL ESTIMATES OF RETAI BREAKINC OF RECORDS (WITH DISCUSSION) BREAST CANCER BREEDINC DATA BREEDINC PROCRAMMES WHEN ALL DAUCHTERS OF SELECTED PA BRITISH STATISTICIANS OF THE NINETEENTH CENTURY BRITISH STEAMSHIPS BROWNIAN MOTION BROWNIAN MOTION BROWNIAN MOTION BROWNIAN MOTION BROWNIAN MOTION TO THE EQUIVALENCE CONDITIONS FOR CER BROWNIAN MOTION TO THE EQUIVALENCE CONDITIONS FOR CER	BIOCS67 73 AMS 68 1BG JRSSB68 16 AMS 69 B1 AMS 67 98 BIOKA68 29 AMS 64 58 JASA 66 49 JRSSB54 BIOCS69 9 BIOCS69 55 JASA 60 3 JASA 58 36 AMS 69 16C AMS 69 71 AMS 67 72 AMS 69 NO. AMS 65 31	739 739 8001 1664 8314 9992 991 557 496 1 95 45 553 38 660 827 603 715 25 0.66
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE—TYPE ON MIT THEOREM OF EVERETT, ULAM AND HARRIS ON MULTITYPE EXTINCTION LIMIT DISTRIBUTIONS OF A L T/ USE OF A REGRESSION TECHNIQUE TO PRODUCE AREA DISTRIBUTION—FREE TESTS IN TIME—SERIES BASED ON THE A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF ADDITIVE COMBINING ABILITIES FITTED TO PLANT RENTS/ THE PREDICTION OF RESPONSE TO SELECTION IN LEADING THE FIRST 1,945 THE LOOSE SUBORDINATION OF DIFFERENTIAL PROCESSES TO THE EXISTENCE OF CERTAIN STOPPING TIMES ON TIME THEOREM FOR THE ANGULAR COMPONENT OF PLANE THE RELATION OF THE BUILVALENCE CONDITIONS FOR THE DISTRIBUTION OF THE BUILVALENCE CONDITIONS FOR THE DISTRIBUTION OF THE BUILVALENCE CONDITIONS FOR THE DISTRIBUTION OF THE ABSOLUTE MAXIMUM FOR CERTAIN A PERSISTENCE PROBLEM IN RENEWAL THEORY, ROBERT THE	DRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES IN RANDOM ENVIRONMENTS BRANCHING PROCESSES TO A BRANCHING PROCESS WITH COUNT BRANCHING PROCESSES UNDER A CONDITION OF ULTIMATE BRANCHING STOCHASTIC PROCESS BREAKDOWNS OF THE MONTHLY NATIONAL ESTIMATES OF RETAI BREAKING OF RECORDS (WITH DISCUSSION) BREAST CANCER BREEDING DATA BREEDING PROGRAMMES WHEN ALL DAUCHTERS OF SELECTED PA BRITISH STATISTICIANS OF THE NINETEENTH CENTURY BRITISH STEAMSHIPS BROWNIAN MOTION BROWNIAN MOTION BROWNIAN MOTION BROWNIAN MOTION BROWNIAN MOTION THE EQUIVALENCE CONDITIONS FOR CER BROWNIAN MOTION TO THE EQUIVALENCE CONDITIONS FOR CER BROWNIAN MOTION TO THE EQUIVALENCE CONDITIONS FOR CER BROWNIAN MOTIONS BRUCE'S SP ER	BIOCS67 73 AMS 68 1BG JRSSB68 16 AMS 69 B1 AMS 67 95 BIOKA68 25 JASA 66 45 JASA 66 45 BIOCS67 4 BIOCS69 55 BIOCS69 55 AMS 63 32 AMS 63 32 AMS 63 32 AMS 69 1C AMS 69 1C AMS 69 71 AMS 67 2 AMS 69 70 AMS 67 2 AMS 69 NO. AMS 65 1BIOKA66 25	739 8001 1664 8314 9992 2991 5557 496 1 95 45 553 38 660 560 560 57 560 560 560 560 560 560 560 560
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE—TYPE ON THE MARKOV SOME APPLICATIONS OF MULTIPLE—TYPE AND A CE—DEPENDENT LIMIT DISTRIBUTION OF A CE—DEPENDENT LIMIT DISTRIBUTION OF A LIMIT DISTRIBUTION OF A LIMIT DISTRIBUTION—FREE TESTS IN TIME—SERIES BASED ON THE A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF ADDITIVE COMBINING ABILITIES FITTED TO PLANT RENTS/ THE PREDICTION OF RESPONSE TO SELECTION IN LEADING THE FIRST 1,945 THE CONVEX HULL OF PLANE THE EXISTENCE OF CERTAIN STOPPING TIMES ON TIME THEOREM FOR THE ANGULAR COMPONENT OF PLANE THE RELATION OF THE ANGULAR COMPONENT OF PLANE THE RELATION OF THE ASSOLUTE MAXIMUM FOR CERTAIN A PERSISTENCE PROBLEM IN RENEWAL THEORY, ROBERT THE OF THE PAPERS OF MESSRS. SATTERTHWAITE AND	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES IN RANDOM ENVIRONMENTS BRANCHING PROCESSES TO A BRANCHING PROCESS WITH COUNT BRANCHING PROCESSES UNDER A CONDITION OF ULTIMATE BRANCHING STOCHASTIC PROCESS BREAKDOWNS OF THE MONTHLY NATIONAL ESTIMATES OF RETAI BREAKING OF RECORDS (WITH DISCUSSION) BREAST CANCER BREEDING DATA BREEDING PROGRAMMES WHEN ALL DAUCHTERS OF SELECTED PA BRITISH STEAMSHIPS BROWNIAN MOTION BROWNIAN MOTIONS BRUCE'S SP ER BUUNE DISCUSSION	BIOCS67 73 AMS 68 1B JRSSB68 16 AMS 69 B1 AMS 67 99 BIOKA68 29 AMS 64 49 JRSSB54 BIOCS69 9 BIOCS69 5 BIOCS	739 8001 1664 8314 9992 2991 5557 496 1 95 553 38 660 662 7715 660 661 6715 671
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE—TYPE ON A CEPTURE OF EVERETT, ULAM AND HARRIS ON MULTITYPE EXTINCTION ACE—DEPENDENT LIMIT DISTRIBUTIONS OF A LIMIT DISTRIBUTIONS OF A LIMIT DISTRIBUTION—FREE TESTS IN TIME—SERIES BASED ON THE A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF ADDITIVE COMBINING ABILITIES FITTED TO PLANT RENTS/ THE PREDICTION OF RESPONSE TO SELECTION IN LEADING THE FIRST 1,945 THE CONVEX HULL OF PLANE THE CONVEX HULL OF PLANE THE EXISTENCE OF CERTAIN STOPPING TIMES ON TIME THEOREM FOR THE ANGULAR COMPONENT OF PLANE THE RELATION OF THE EQUIVALENCE CONDITIONS FOR THE DISTRIBUTION OF THE BOULAR COMPONENT OF PLANE THE RELATION OF THE BUIVALENCE CONDITIONS FOR THE DISTRIBUTION OF THE ABSOLUTE MAXIMUM FOR CERTAIN A PERSISTENCE PROBLEM IN RENEWAL THEORY, ROBERT THE OF THE PAPERS OF MESSRS. SATTERTHWAITE AND A USEFUL METHOD FOR MODEL	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES IN RANDOM ENVIRONMENTS BRANCHING PROCESSES TO A BRANCHING PROCESS WITH COUNT BRANCHING STOCHASTIC PROCESS BREAKDOWNS OF THE MONTHLY NATIONAL ESTIMATES OF RETAI BREAKINC OF RECORDS (WITH DISCUSSION) BREAKST CANCER BREEDINC DATA BREEDINC DATA BREEDING PROGRAMMES WHEN ALL DAUCHTERS OF SELECTED PA BRITISH STATISTICIANS OF THE NINETEENTH CENTURY BRITISH STEAMSHIPS BROWNIAN MOTION BROWNIAN MOTION BROWNIAN MOTION BROWNIAN MOTION BROWNIAN MOTION TO THE EQUIVALENCE CONDITIONS FOR CER BROWNIAN MOTIONS BRUCE'S SP ER BUDNE DISCUSSION	BIOCS67 73 AMS 68 1BG JRSSB68 16 AMS 69 BI AMS 67 99 BIOKA68 29 AMS 64 55 JASA 66 49 JRSSB54 BIOCS69 54 BIOCS69 55 JASA 60 3 JASA 60 3 JASA 63 32 AMS 69 160 AMS 69 71 AMS 67 20 AMS 67 80 AMS 65 31 BIOKA66 25 TECH 59 30	739 301 164 314 3992 291 357 496 1 995 445 553 338 360 327 503 715 256 311 311 311 311 311 311 311 31
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE—TYPE ON MIT THEOREM OF EVERETT, ULAM AND HARRIS ON MULTITYPE EXTINCTION LIMIT DISTRIBUTIONS OF A L T/ USE OF A REGRESSION TECHNIQUE TO PRODUCE AREA DISTRIBUTION-FREE TESTS IN TIME—SERIES BASED ON THE A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF ADDITIVE COMBINING ABILITIES FITTED TO PLANT RENTS/ THE PREDICTION OF RESPONSE TO SELECTION IN LEADING THE FIRST 1,945 THE CONVEX HULL OF PLANE THE LOOSE SUBORDINATION OF DIFFERENTIAL PROCESSES TO THE EXISTENCE OF CERTAIN STOPPING TIMES ON TIME THEOREM FOR THE ANGULAR COMPONENT OF PLANE THE RELATION OF THE EQUIVALENCE CONDITIONS FOR THE DISTRIBUTION OF THE ABSOLUTE MAXIMUM FOR CERTAIN A PERSISTENCE PROBLEM IN RENEWAL THEORY, ROBERT THE OF THE PAPERS OF MESSRS. SATTERTHWATTE AND A USEFUL METHOD FOR MODEL	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES IN RANDOM ENVIRONMENTS BRANCHING PROCESSES TO A BRANCHING PROCESS WITH COUNT BRANCHING PROCESSES UNDER A CONDITION OF ULTIMATE BRANCHING STOCHASTIC PROCESS BREAKDOWNS OF THE MONTHLY NATIONAL ESTIMATES OF RETAI BREAKING OF RECORDS (WITH DISCUSSION) BREAST CANCER BREEDING DATA BREEDING PROGRAMMES WHEN ALL DAUGHTERS OF SELECTED PA BRITISH STATISTICIANS OF THE NINETEENTH CENTURY BRITISH STEAMSHIPS BROWNIAN MOTION BROWNIAN MOTION BROWNIAN MOTION BROWNIAN MOTION BROWNIAN MOTION AN OCCUPATION BROWNIAN MOTION THE EQUIVALENCE CONDITIONS FOR CER BROWNIAN MOTIONS BROWNIAN MOTIONS BRUCE'S SP ER BUDNE DISCUSSION BUILDING BUILDING WITH THE AID OF STOCHASTIC PROCESSES	BIOCS67 73 AMS 68 1BG JRSSB68 16 AMS 69 B1 AMS 67 99 BIOKA68 29 BIOKA68 29 BIOCS67 4 BIOCS69 5 BIOCS69 5 BIOCS69 5 BIOCS69 5 AMS 63 32 AMS 63 32 AMS 63 32 AMS 69 10 AMS 69 10 AMS 69 71 AMS 67 2 AMS 69 71 AMS 67 2 AMS 69 10 BIOKA66 25 TECH 59 15 TECH 64 13	739 801 164 1814 1992 1995 1995 1995 195 195 195 195
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE—TYPE OF MIT THEOREM OF EVERETT, ULAM AND HARRIS ON MULTITYPE EXTINCTION LIMIT DISTRIBUTIONS OF A LIMIT DISTRIBUTIONS OF A LIMIT DISTRIBUTIONS OF A LIMIT DISTRIBUTION—FREE TESTS IN TIME—SERIES BASED ON THE A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF ADDITIVE COMBINING ABILITIES FITTED TO PLANT RENTS/ THE PREDICTION OF RESPONSE TO SELECTION IN LEADING THE FIRST 1,945 THE CONVEX HULL OF PLANE THE CONVEX HULL OF PLANE THE EXISTENCE OF CERTAIN STOPPING TIMES ON TIME THEOREM FOR THE ANGULAR COMPONENT OF PLANE THE RELATION OF THE BUILVALENCE CONDITIONS FOR THE DISTRIBUTION OF THE BUILVALENCE CONDITIONS FOR THE OF THE PAPERS OF MESSRS. SATTERTHWAITE AND A USEFUL METHOD FOR MODEL MODDEL MODDEL LIGHT	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES IN RANDOM ENVIRONMENTS BRANCHING PROCESSES TO A BRANCHING PROCESS WITH COUNT BRANCHING PROCESSES UNDER A CONDITION OF ULTIMATE BRANCHING STOCHASTIC PROCESS BREAKDOWNS OF THE MONTHLY NATIONAL ESTIMATES OF RETAI BREAKING OF RECORDS (WITH DISCUSSION) BREAST CANCER BREEDING DATA BREEDING PROGRAMMES WHEN ALL DAUGHTERS OF SELECTED PA BRITISH STATISTICIANS OF THE NINETEENTH CENTURY BRITISH STEAMSHIPS BROWNIAN MOTION TO THE EQUIVALENCE CONDITIONS FOR CER BROWNIAN MOTIONS BRUCE'S SP ER BUDNE BULLDING BUILLDING BUILLDING BUILLDING BUILLDING BURNIAN THE AID OF STOCHASTIC PROCESSES BULB STATISTICS, CORR. 66 1248	BIOCS67 73 AMS 68 1BG JRSSB68 16 AMS 69 BI AMS 67 99 BIOKA68 29 AMS 66 49 JRSSB54 BIOCS69 59 BIOCS69 59 BIOCS69 59 AMS 63 32 AMS 63 32 AMS 69 16C AMS 69 71 AMS 69 70 AMS 69 71 BIOKA66 25 TECH 59 15 TECH 62 33 JASA 66 63	739 801 164 1814 1992 1995 199
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE—TYPE OF MEDICAL OF MULTIPLE—TYPE EXTINCTION ACE—DEPENDENT LIMIT DISTRIBUTIONS OF A LIMIT DISTRIBUTIONS OF A LIMIT DISTRIBUTION—FREE TESTS IN TIME—SERIES BASED ON THE A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF ADDITIVE COMBINING ABILITIES FITTED TO PLANT RENTS/ THE PREDICTION OF RESPONSE TO SELECTION IN LEADING THE FIRST 1.945 THE CONVEX HULL OF PLANE THE EXISTENCE OF CERTAIN STOPPING TIMES ON TIME THEOREM FOR THE ANGULAR COMPONENT OF PLANE THE RELATION OF THE ANGULAR COMPONENT OF PLANE THE RELATION OF THE ANGULAR COMPONENT OF PLANE THE RELATION OF THE ABSOLUTE MAXIMUM FOR CERTAIN A PERSISTENCE PROBLEM IN RENEWAL THEORY, ROBERT THE OF THE PAPERS OF MESSRS. SATTERTHWAITE AND A USEFUL METHOD FOR MODEL MODEL LIGHT	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES IN RANDOM ENVIRONMENTS BRANCHING PROCESSES UNDER A CONDITION OF ULTIMATE BRANCHING STOCHASTIC PROCESS BREAKDOWNS OF THE MONTHLY NATIONAL ESTIMATES OF RETAI BREAKING OF RECORDS (WITH DISCUSSION) BREAST CANCER BREEDING PROGRAMMES WHEN ALL DAUCHTERS OF SELECTED PA BRITISH STATISTICIANS OF THE NINETEENTH CENTURY BRITISH STEAMSHIPS BROWNIAN MOTION BROWNIAN MOTIONS BUCE'S SP BR BULL STATISTICS, CORR. 66 1248 BULL STATISTICS, CORR. 66 1248 BULL DEPARTURES	BIOCS67 73 AMS 68 1BG JRSSB68 16 AMS 69 B1 AMS 67 99 BIOKA68 29 BIOKA68 29 BIOCS67 4 BIOCS69 5 BIOCS69 5 BIOCS69 5 BIOCS69 5 AMS 63 32 AMS 63 32 AMS 63 32 AMS 69 10 AMS 69 10 AMS 69 71 AMS 67 2 AMS 69 71 AMS 67 2 AMS 69 10 BIOKA66 25 TECH 59 15 TECH 64 13	739 301 164 314 314 315 45 45 45 45 45 45 45 45 45 4
NTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV SOME APPLICATIONS OF MULTIPLE—TYPE ON AGE—DEPENDENT ON MIT THEOREM OF EVERETT, ULAM AND HARRIS ON MULTITYPE EXTINCTION LIMIT DISTRIBUTIONS OF A L T/ USE OF A REGRESSION TECHNIQUE TO PRODUCE AREA DISTRIBUTION—FREE TESTS IN TIME—SERIES BASED ON THE A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF ADDITIVE COMBINING ABILITIES FITTED TO PLANT RENTS/ THE PREDICTION OF RESPONSE TO SELECTION IN LEADING THE FIRST 1,945 THE CONVEX HULL OF PLANE THE CONVEX HULL OF PLANE THE EXISTENCE OF CERTAIN STOPPING TIMES ON TIME THEOREM FOR THE ANGULAR COMPONENT OF PLANE THE RELATION OF THE EQUIVALENCE CONDITIONS FOR THE DISTRIBUTION OF THE ABSOLUTE MAXIMUM FOR CERTAIN A PERSISTENCE PROBLEM IN RENEWAL THEORY, ROBERT THE OF THE PAPERS OF MESSRS. SATTERTHWAITE AND A USEFUL METHOD FOR MODEL MODEL LICHT A QUEUE WITH RANDOM ARRIVALS AND SCHEDULED A RENEWAL PROBLEM WITH	BRANCHING PROCESSES /EXPONENTIAL PARAMETER FROM QUA BRANCHING PROCESSES AND RELATED LIMIT THEOREMS BRANCHING PROCESSES IN POPULATION GENETICS BRANCHING PROCESSES IN RANDOM ENVIRONMENTS BRANCHING PROCESSES TO A BRANCHING PROCESS WITH COUNT BRANCHING PROCESSES UNDER A CONDITION OF ULTIMATE BRANCHING STOCHASTIC PROCESS BREAKDOWNS OF THE MONTHLY NATIONAL ESTIMATES OF RETAI BREAKING OF RECORDS (WITH DISCUSSION) BREAST CANCER BREEDING DATA BREEDING PROCRAMMES WHEN ALL DAUCHTERS OF SELECTED PA BRITISH STATISTICIANS OF THE NINETEENTH CENTURY BRITISH STEAMSHIPS BROWNIAN MOTION BROWNIAN MOTION BROWNIAN MOTION BROWNIAN MOTION BROWNIAN MOTION AN OCCUPATION BROWNIAN MOTION THE EQUIVALENCE CONDITIONS FOR CER BROWNIAN MOTIONS BRUCE'S SP ER BUDNE DISCUSSION BULLDING WITH THE AID OF STOCHASTIC PROCESSES BULB STATISTICS, CORR. 66 1248 BULK ORDERING OF COMPONENTS	BIOCS67 73 AMS 68 1BG JRSSB68 16 AMS 69 BI AMS 67 99 BIOKA68 29 AMS 66 49 JRSSB54 BIOCS69 55 JASA 60 33 JASA 68 36 AMS 69 16G AMS 69 72 AMS 69 NO. AMS 65 31 BIOKA66 25 TECH 62 36 JRSSB68 18	739 801 164 814 195 4557 496 1 95 553 338 660 527 503 715 557 101 105 105 105 105 105 105 105

BUL - CEN TITLE WORD INDEX

```
JRSS859
                      A CONTRIBUTION TO THE THEORY OF BULK QUEUES
                                   A CENERAL CLASS OF BULK QUEUES WITH POISSON INPUT
                                                                                                                          759
C MEANS OF FINITE POPULATIONS WITH AN APPLICATION TO BULK SAMPLINC PROBLEMS /MPLINC PROCEDURE FOR RANKIN TECH 67
                                                       BULK SAMPLING PROBLEMS AND LINES OF ATTACK
                           ON QUEUEINC PROCESSES WITH BULK SERVICE
                                                                                                                 JRSSB54
                                                                                                                           80
 ON THE TRANSIENT BEHAVIOR OF A QUEUEINC SYSTEM WITH BULK SERVICE AND FINITE CAPACITY
                                                                                                                  AMS 62
                                       WAITING TIME IN BULK SERVICE QUEUES
                                                                                                                 JRSSB55
                                                                                                                          256
                 ON LIMITING DISTRIBUTIONS ARISING IN BULK SERVICE QUEUES
                                                                                                                 JRSSB56
                                                                                                                          265
                                                     A BULK-SERVICE QUEUEING PROBLEM WITH VARIABLE CAPACITY JRSSB61
                                                                                                                          143
         A COMPARISON OF A MODIFIED 'HANNAN' AND THE BUREAU OF LABOR STATISTICS
                                                                                                                 JASA 65
                                                                                                                          442
           THE USE OF ROTATING SAMPLES IN THE CENSUS BUREAU'S MONTHLY SURVEYS
                                                                                                                 JASA 63
                                                                                                                          454
                              AN INVESTIGATION OF THE BURN-IN PROBLEM
                                                                                                                 TECH 66
                                                                                                                           61
          STATISTICAL ESTIMATION PROCEDURES FOR THE 'BURN-IN' PROCESS
                                                                                                                 TECH 68
                                                                                                                           51
                     A CROSS-SECTION ANALYSIS OF NON-BUSINESS AIR TRAVEL
                                                                                                                 JASA 58
                                                                                                                          928
                                                   THE BUSY PERIOD IN RELATION TO THE QUEUEING PROCESS GI-M- BIOKA59
SEVERAL TYPES
                                                ON THE BUSY PERIOD OF A FACILITY WHICH SERVES CUSTOMERS OF
                                                                                                                JRSSB65
                                             CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERI JASA 66
MENT IN SURVEY DESIGN
         TABLES OF PERCENTAGE POINTS OF ROOT'B1' AND B2 IN NORMAL SAMPLES, A ROUNDING OFF
                                                                                                                BTOKA65
                                                                                                                          282
                    ASYMPTOTIC EFFICIENCY OF GLASS OF C-SAMPLE TESTS
                                                                                                                  AMS 64
                                                                                                                          102
CTIONS IN A 2 TO THE POWER N FACTORIAL EXPERIMENT AS CALCULATED BY YATES'S ALCORITHM /EFFECTS AND INTERA BIOCS67
                                                                                                                          571
                                 NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND PRODUCTS TECH 62
                                                                                                                          419
                                A COMPUTER METHOD FOR CALCULATING KENDALL'S TAU WITH UNGROUPED DATA
                                                                                                                JASA 66
                                                                                                                          436
 MEANS, FURTHER DISCUSSION OF ITERATIVE METHODS FOR CALCULATING TABLES ON THE COMPARISON OF TWO BIOKA54
                                                                                                                          361
ISTRIBUTION OF AVERAGE TAU WITH A CRITE/ A NOTE ON CALCULATING TAU AND AVERAGE TAU AND ON THE SAMPLING D JASA 62
CY TABLES WITH SMALL MARGINAL/ A SIMPLE METHOD OF CALGULATING THE EXACT PROBABILITY IN 2-BY-2 CONTINGEN BIOKA55
                                                                                                                          567
                                                                                                                          522
ACE SAMPLE NUMBER OF SOME SEQUENTIAL/ FORMULAE FOR CALCULATING THE OPERATING CHARACTERISTIC AND THE AVER JRSSB5B
S FROM A NORMAL DISTRIBUTION
                                          FACTORS FOR GALCULATING TWO-SIDED PREDICTION INTERVALS FOR SAMPLE JASA 69
                                             EFFICIENT CALCULATION OF ALL POSSIBLE RECRESSIONS
                                                                                                               TECH 68
                                A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES
                                                                                                                BIOKA66
                                                                                                                          5BB
                                                ON THE CALCULATION OF CERTAIN CONSTRAINED MAXIMA
                                                                                                                TECH 62
                                                                                                                          135
FROM A 2-BY-N TABLE

THE RAPID CALCULATION OF CHI-SQUARE AS A TEST OF HOMOGENEITY

BIOKA55

PE STATISTICS INCLUDING A TABLE OF SIGNIFICAN/
THE CALCULATION OF DISTRIBUTIONS OF KOLMOGOROV-SMIRNOV TY

AMS 68

ENCY TABLES

NOTES. RAPID CALCULATION OF EXACT PROBABILITIES FOR 2-BY-3 CONTING BIOCS68
                                                                                                                          519
                                                                                                                          233
                                                                                                                          714
FROM A DISCRETE POPULATION'
                                          CORRECTION, 'CALCULATION OF EXACT SAMPLING DISTRIBUTION OF RANGES AMS 67
                                                                                                                          2B0
                                              QUERY, CALCULATION OF THE SAMPLING DISTRIBUTION OF THE RANGE TECH 65
                                                                                                                           73
                                                                                                                 AMS 68 1711
USE OF THE LAPLACE-BELTRAMI OPERATOR
                                                       CALCULATION OF ZONAL POLYNOMIAL COEFFICIENTS BY THE
             SOME OPERATORS FOR ANALYSIS OF VARIANCE CALCULATIONS
                                                                                                                TECH 69
      EXPERIMENT (WITH CONFOUNDING) ON AN ELECTRONIC CALCULATOR

STUDIES IN THE ANALYSIS OF A FACTURIAL UNDODUCED STUDIES IN THE HISTORY OF PROBABILITY BIOKASE

AMS 62
                                                                                                                           77
                                                                                  THE ANALYSIS OF A FACTORIAL JRSSB54
 AND STATISTICS. II. THE BEGINNINGS OF A PROBABILITY CALCULUS
                                                    A CALCULUS FOR FACTORIAL ARRANGEMENTS
                                                                                                                  AMS 62
                                 APPLICATIONS OF THE CALCULUS FOR FACTORIAL ARRANCEMENTS II. TWO WAY ELIMI
NATION OF HETEROGENEITY
                                                                                                                  AMS 64
                                                                                                                          65B
CT PRODUCT DESIGN
                                  APPLICATIONS OF THE CALCULUS OF FACTORIAL ARRANCEMENTS. I. BLOCK AND DIRE BIOKA63
                                                                                                                           63
 APPLIED TO SEASONAL CORRECTIONS AND ADJUSTMENTS FOR CALENDAR SHIFTS
                                                                                         REGRESSION TECHNIQUES JASA 56
                                                                                                                          615
         CLASSICAL AND INVERSE REGRESSION METHODS OF CALIBRATION
                                                                                                                TECH 67
                                                                                                                          425
                     A NOTE ON RECRESSION METHODS IN CALIBRATION
                                                                                                                 TECH 69
                                                                                                                         189
                              A BAYESIAN APPROACH TO CALIBRATION
                                                                                                                 JRSSB6B
                                                                                                                          396
         CLASSICAL AND INVERSE RECRESSION METHODS OF CALIBRATION IN EXTRAPOLATION
                                                                                                                TECH 69
                                                                                                                         605
                ESTIMATION OF A LINEAR FUNCTION FOR A CALIBRATION LINE, CONSIDERATION OF A RECENT PROPOSAL TECH 69 NO.4
                                            NOTE ON A CALIBRATION PROBLEM
                                                                                                                BIOKA69 NO.3
                                THE NEW DESIGN OF THE CANADIAN LABOUR FORCE SURVEY
                                                                                                                 JASA 67
         ANALYSIS OF THE GROWTH AND SPREAD OF BREAST GANCER
                                                                                                 A MATHEMATICAL BIOCS69
                                                                                                                BIOCS65
                         A SCREENING SYSTEM FOR ANTI-CANCER AGENTS BASED ON THE THERAPEUTIC INDEX
                                                                                                                          150
 SPECIAL REFERENCE TO THE CIGARETTE SMOKING AND LUNG CANCER CONTROVERSY /STICAL INFERENCE IN HEALTH WITH JASA 69
                                                                                                                          739
C MODEL FOR THE MO/ EMPERICAL RELATIONSHIP OF LUNG CANCER INCIDENCE TO CIGARETTE SMOKING AND A STOCHAST BIOCSGS
PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED CANCER PATIENTS

A TWO- JASA 65
                                                                                                                          839
                                                                                                                          16
ARTICULAR REFERENCE TO THE STUDY OF SMOKING AND LUNG CANCER, CORR. 60 754 /ING EXPONENTIAL RISKS, WITH P JASA 60
                                                                                                                          415
                                     SMOKING AND LUNG CANCER, SOME OBSERVATIONS ON TWO RECENT REPORTS
                                                                                                                JASA 58
                                                                                                                           2B
                                                      CANNIBALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES BIOCS68
 AN EXPERIMENT AND A STOCHASTIC MODEL
                                                                                                                          247
 PRIOR DISTRIBUTIONS, AN EXAMPLE IN WHICH THE FORMER CANNOT BE ASSOCIATED WITH THE LATTER /RIBUTIONS AND JRSSB56
                                                                                                                          217
                             TESTS OF SIGNIFICANCE IN CANONICAL ANALYSIS
                                                                                                                BIOKA52
                                                                                                                           58
                             TESTS OF SIGNIFICANCE IN CANONICAL ANALYSIS
                                                                                                                BIOKA59
                                                                                                                           59
     A NOTE ON DIRECTION AND COLLINEARITY FACTORS IN CANONICAL ANALYSIS
                                                                                                                BIOKA62
                                                                                                                          255
FFEGTIVE DISCRIMINATO/ MULTIVARIATE-COVARIANCE AND CANONICAL ANALYSIS, A METHOD FOR SELECTING THE MOST E BIOCS6B
                                                                                                                          B45
       ON THE NONCENTRAL DISTRIBUTION OF THE LARGEST CANONICAL GORRELATION COEFFICIENT
 DISTRIBUTIONS
                                                   THE CANONICAL CORRELATION COEFFICIENTS OF BIVARIATE GAMMA
                                                                                                                 AMS 69
                 KOLMOGOROV'S REMARK ON THE HOTELLING CANONICAL CORRELATIONS
                                                                                                                BIOKA66
                                                                                                                         585
OF MULTIVARIATE AUTOREGRESSIONS, AND THE APPROXIMATE CANONICAL FACTORIZATION OF A SPECTRAL DENSITY MATRIX BIOKAG3
                                                                                                                          129
                                     CORRELATIONS AND CANONICAL FORMS OF BIVARIATE DISTRIBUTIONS
                                                                                                                  AMS 63
                                                                                                                          532
 8EST AND SIMPLE LEAST SQUARES LINEAR ESTIMATO/ ON CANONICAL FORMS, NON-NEGATIVE COVARIANCE MATRICES AND AMS 67 1092
                A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES
                                                                                                                         588
                                                                                                                BIOKA66
                         A SHARPER FORM OF THE BOREL-CANTELLI LEMMA AND THE STRONG LAW
                                                                                                                 AMS 65
                                                                                                                          800
                                       ON THE GLIVENKO-CANTELLI THEOREM FOR INFINITE INVARIANT MEASURES
                                                                                                                 AMS 67 1273
                                       THE CONCEPT OF CAPACITY
                                                                                                                JASA 62
                                                                                                                          826
LENGTH DISTRIBUTION FOR QUEUEING SYSTEMS WITH FINITE CAPACITY
                                                                                            THE ERGODIC QUEUE JRSS866
                                                                                                                          190
   OF A QUEUEING SYSTEM WITH BULK SERVICE AND FINITE CAPACITY
                                                                                    ON THE TRANSIENT SEHAVIOR AMS 62
                                                                                                                          973
                                   ON A NEW METHOD OF CAPACITY ESTIMATION
                                                                                                                JASA 64
                                                                                                                          529
                                                  THE CAPACITY OF AN UNCONTROLLED INTERSECTION
                                                                                                                8IOKA67
                                                                                                                          657
                                 STOCHASTIC MODELS OF CAPITAL INVESTMENT (WITH DISCUSSION)
                                                                                                                JRSSB69
SCOOLING, EXPERIENCE, AND CAINS AND LOSSES IN HUMAN CAPITAL THROUGH MIGRATION
                                                                                                                JASA 67
                                                                                                                          875
THE PROBABILITY OF COVERING A SPHERE WITH N CIRCULAR CAPS.
                                                                                                                BIOKA65
                                                                                                                          323
        FILL WEIGHT VARIATION RELEASE AND CONTROL OF CAPSULES, TABLETS, AND STERILE SOLIDS
                  THE ESTIMATION OF DEATH-RATES FROM CAPTURE-MARK-RECAPTURE SAMPLING
                                                                                                                8I0KA52
                                                                                                                          181
                                                      CAPTURE-RECAPTURE ANALYSIS
                                                                                                                8TOKA53
ARE STRATIFIED
                                        THE TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND SAMPLING
                                                                                                                BTOKA61
                                                                                                                          241
N-STOCHASTIC MODEL. EXPLICIT ESTIMATES FROM CAPTURE-RECAPTURE DATA WITH 80TH DEATH AND IMMIGRATIO 810KA65 225
```

TITLE WORD INDEX BUL - CEN

```
LATION PARAMETERS FROM DATA OBTAINED BY MEANS OF THE CAPTURE-RECAPTURE METHOD. I. THE MAXIMUM LIKELIHOOD E BIOKAS1
                                                                                                                         269
LATION PARAMETERS FROM DATA OBTAINED BY MEANS OF THE CAPTURE-RECAPTURE METHOD. II. THE ESTIMATION OF TOTAL BIOKA52
LATION PARAMETERS FROM DATA OBTAINED BY MEANS OF THE CAPTURE-RECAPTURE METHOD. III. AN EXAMPLE OF THE PRACT BIOKA53
                                                                                                                          363
                                                                                                                          137
                              LIKELIHOOD FUNCTION FOR CAPTURE-RECAPTURE SAMPLES
                                                                                                                BTOKA56
                                                                                                                          488
   RELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES
                                                                                                 A NOTE ON THE JASA 59
                                                                                                                          575
NOTYPIQUES DANS LA SELECTION PAR INDEX SUR PLUSIEURS CARACTERES
                                                                                   PONDERATION DES VALEURS CE BIOCS69
                                                                                                                          295
UENCES, INTERPRETATION DU DETERMINISME CENETIQUE DES CARACTERES QUANTITATIFS ET RECHERCHE DE 'CENES MAJEUR BIOCS68
                                                                                                                          277
        BIRTH-AND-DEATH PROCESSES, AND THE THEORY OF CARCINOGENESIS
                                                                                                                BTOKA60
                                                                                                                          1.3
    OF ANALYSIS OF A CERTAIN CLASS OF EXPERIMENTS IN CARCINOCENESIS
                                                                                           A SUGCESTED METHOD BIOCS66
                                                                                                                          142
INC AND A STOCHASTIC MODEL FOR THE MODE OF ACTION OF CARCINOCENS /UNC CANCER INCIDENCE TO CICARETTE SMOK BIOCS65
                                                                            STUDIES IN THE HISTORY BIOKAS7
  OF PROBABILITY AND STATISTICS, V.A NOTE ON PLAYING CARDS
                                                                                                                          260
       OF FAGTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650
                                                                                              TABULAR ANALYSIS JASA 56
                                                                                                                          149
 OF POISSON-TYPE CHARACTERISTIC FUNCTIONS OF SEVERAL CARIABLES
                                                                                            ON FINITE PRODUCTS AMS 69
                                                                                                                          434
OV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL CARIES PROCESS /ILITY APPROACH TO IRREVERSIBLE MARK BIOCS66
                                                                                                                          791
                                   A POOR MAN'S MONTE CARLO (WITH DISCUSSION)
                                                                                                                JRSSB54
                                                                                                                          23
PLOYING SATTERTHWAITE'S SYNTHETIC MEAN SQ/ A MONTE CARLO INVESTIGATION OF THE SIZE AND POWER OF TESTS EM BIOKA68
                                                                                                                          431
 IN ESTIMATING THE DISTRIBUTION OF A RATIO BY MONTE CARLO METHODS
                                                                                  USE OF WILGOXON TEST THEORY AMS 62 1194
                                   A SIMPLIFIED MONTE CARLO SIGNIFICANCE TEST PROCEDURE
                                                                                                                JRSSB68
                                                                                                                         582
TIONARY GAUSSIAN ORNSTEIN-UHLENBECK PROCESS BY MONTE CARLO SIMULATION /E-TIME MAXIMA AND MINIMA OF A STA JASA 68 1517
CLUSTER PROBLEM

A MONTE CARLO SOLUTION OF A TWO-DIMENSIONAL UNSTRUCTURED BIOKAG7 625
                      SEQUENTIAL RANK TESTS I. MONTE CARLO STUDIES OF THE TWO-SAMPLE PROCEDURE
                                                                                                                TECH 65
                                                                                                                          463
                                                                                                                JASA 67
                                  FINITE SAMPLE MONTE CARLO STUDIES. AND AUTOREGRESSIVE ILLUSTRATION
                                                                                                                          801
                                              A MONTE CARLO STUDY COMPARING VARIOUS TWO-SAMPLE TESTS FOR
DIFFERENCES IN MEAN
                                                                                                                TECH 68
                                                                                                                          509
ETRIC ANALYSIS OF VARIANCE IN SMALL SAMPLES, A MONTE CARLO STUDY OF THE ADEQUACY OF THE ASYMPTOTIC APPROXI BIOCS69
                                                                                                                          593
 PAR/ AN ANALYSIS OF THE DATA FOR SOME EXPERIMENTS CARRIED OUT BY GAUSE WITH POPULATIONS OF THE PROTOZOA BIOKAS7
                                                                                                                          314
                                 THE ULTIMATE SIZE OF CARRIER-BORNE EPIDEMICS
              A MODEL FOR THE SPREAD OF EPIDEMICS BY CARRIERS
                                                                                                                BTOCS65
                                                                                                                          481
            DESIGNS FOR SEQUENCES OF TREATMENTS WITH CARRY-OVER EFFECTS
                                                                                                                BIOCS66
                                                                                                                          292
ONS UNDER UNCERTAINTY, PARTS I, II, AND III ON CASH EQUIVALENTS AND INFORMATION EVALUATION IN DECISI JASA 68
                                                                                                                          252
ABLE OBJECTS STATISTICAL TESTING OF DIFFERENCES IN CASUAL BEHAVIOUR OF TWO MORPHOLOGICALLY INDISTINGUISH BIOCS67
                                                                                                                         137
                                           MODELS FOR CATALOGUING PROBLEMS
                                                                                                                 AMS 67 1255
                                     A TEST FOR EQUAL CATCHABILITY
                                                                                                                BIOCS66
                                                                                                                         330
                                       SOME TESTS FOR CATEGORICAL DATA
                                                                                                                 AMS 61
                                                                                                                          72
         TEST PROGEDURES FOR MULTIPLE COMPARISONS ON CATEGORICAL DATA
                                                                                                  SIMULTANEOUS JASA 66 1081
  EQUIVALENCE OF TWO TEST CRITERIA FOR HYPOTHESES IN CATEGORICAL DATA
                                                                                                 A NOTE ON THE JASA 66
                                                                                                                         228
                                           ANALYSIS OF CATEGORICAL DATA BY LINEAR MODELS
                                                                                                                BIOCS69
                                                                                                                          489
 ANALYSIS OF VARIANCE
                                THE LIMITING POWER OF CATEGORICAL DATA CHI-SQUARE TESTS ANALOGOUS TO NORMAL AMS 63 1432
                                          ING POWER OF CATEGORICAL DATA.

ANALYSIS OF CATEGORICAL DATA.

/EFFECT OF MISCLASSIFICATION ON T BIOKA65
BIOKA57
                                                                                                                BIOKA65
                                                                                                                         654
HE PROPERTIES OF CHI-SQUARE-TESTS IN THE ANALYSIS OF CATEGORICAL DATA.
                                                                                                                          95
        ON THE ANALYSIS OF MULTIPLE REGRESSION IN K CATEGORIES
                                                                                                                          67
SEQUENTIAL DESIGN FOR COMPARING SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL
                                                                                      /ASYMPTOTICALLY OPTIMAL
                                                                                                                 AMS 63
                                                                                                                        1486
                                                                                   /CALLY OPTIMAL FIXED SAMP AMS 64 1571
LE SIZE PROCEDURE FOR GOMPARING SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL
UENTIAL PROGEDURE FOR COMPARING SEVERAL EXPERIMENTAL CATEGORIES WITH A STANDARD OR CONTROL
                                                                                                         A SEQ AMS 62
                                                                                                                         438
                 MULTINOMIAL SAMPLING WITH PARTIALLY CATEGORIZED DATA
                                                                                                                         542
                                                                                                                JASA 68
ND MULTINOMIAL DISTRIBUTION AND BAYESIAN ANALYSIS OF CATERGORICAL DATA FROM FINITE POPULATIONS /E COMPOU JASA 69
                                                                                                                          216
           VARIANCE OF THE MEDIAN OF SAMPLES FROM A CAUCHY DISTRIBUTION
                                                                                                                         322
                                                                                                                JASA 60
         A REPRESENTATION OF THE SYMMETRIC BIVARIATE CAUCHY DISTRIBUTION
                                                                                                                 AMS 62 1256
                            A CHARACTERIZATION OF THE CAUCHY DISTRIBUTION
                                                                                                                 AMS 62 1267
 ANOTHER CHARACTERISTIC PROPERTY OF THE CAUCHY DISTRIBUTION ORDER STATISTICS ESTIMATORS OF THE LOCATION OF THE CAUCHY DISTRIBUTION
                                                                                                                         289
                                                                                                                 AMS 66
                                                                                                                JASA 66 1205
ON THE ESTIMATION OF THE LOCATION PARAMETER OF THE CAUCHY DISTRIBUTION DISTRIBUTED FUNCTIONS AND A CHARACTERIZATION OF THE CAUCHY DISTRIBUTION
                                                                                                         A NOTE JASA 66
                                                                                                                         852
                                                                                                        CAUCHY- AMS 69 1083
                                      THE ASYMMETRIC CAUCHY PROCESSES ON THE LINE
                                                                                                                 AMS 69
                                                                                                                         137
                          A NOTE ON ESTIMATION FROM A CAUCHY SAMPLE
                                                                                                                JASA 64
                                                                                                                          460
                                                                                                                AMS 69 1083
OF THE CAUCHY DISTRIBUTION
                                                       CAUCHY-DISTRIBUTED FUNCTIONS AND A CHARACTERIZATION
                                                                                                                 AMS 67
                                                       CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES
                                                                                                                         916
NS OF THE PROTOZOA PARAMECIUM AURELIA AND PARAMECIUM CAUDATUM /MENTS CARRIED OUT BY GAUSE WITH POPULATIO BIOKAS7
                                                                                                                         314
  A NOTE ON THE STATISTICAL TESTABILITY OF 'EXPLICIT CAUSAL CHAINS' AGAINST THE CLASS OF 'INTERDEPENDENT' JASA 65 1080
POPULATION ESTIMATION BASED ON GHANGE OF COMPOSITION CAUSED BY A SELECTIVE REMOVAL
                                                                                                                BIOKA55
    FOR SOME LINEAR MODELS WITH ONE OBSERVATION PER CELL
                                                                                            ROBUST PROCEDURES
                                                                                                                AMS 67
RENCE IN SOME LINEAR MODELS WITH ONE OBSERVATION PER CELL
                                                                            ASYMPTOTICALLY NONPARAMETRIC INFE AMS 64
                                                                            A STUDY OF THE VARIABILITY BIOCS67
    DUE TO COINCIDENT PASSAGE IN AN ELECTRONIC BLOOD CELL COUNTER
                                                                                                                          671
 STANDARD CHI-SQUARE-TEST OF THE HYPOTHESIS OF EQUAL CELL FREQUENCIES
                                                                                      TWO ALTERNATIVES TO THE BIOKA62
                                                                                                                         107
                  ON THE MEAN DURATION OF A BALL AND CELL GAME, A FIRST PASSAGE PROBLEM
                                                                                                                 AMS 66
                                                                                                                          517
                       DISTRIBUTIONS ASSOCIATED WITH CELL POPULATIONS
                                                                                                                BIOKA69
                                                                                                                         391
                  SMOOTHED ESTIMATES FOR MULTINOMIAL CELL PROBABILITIES
                                                                                                                 AMS 68
                                                                                                                         561
                                                                                                                TECH 62
                                         ON THE EMPTY CELL TEST
                                                                                                                         235
                              INDICES OF SYNCHRONY IN CELLULAR CULTURES
                                                                                                                BIOCS67
                                                                                                                         693
         REGRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED
                                                                                                                BIOCS65
                                                                                                                         300
                                                                                                         A NON- BIOKA66
PARAMETRIC COMPARISON OF TWO SAMPLES ONE OF WHICH IS CENSORED
                                                                                                                         599
TENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED POINT, CORR. 60 755
                                                                                                           EX JASA 60
                                                                                                                         125
                       ON TWO K-SAMPLE RANK TESTS FOR CENSORED DATA
                                                                                                                 AMS 67 1520
 POWERFUL RANK TESTS FOR THE TWO-SAMPLE PROBLEM WITH CENSORED DATA
                                                                                          ASYMPTOTICALLY MOST AMS 65 1243
                            STATISTICAL TREATMENT OF CENSORED DATA . PART I. FUNDAMENTAL FORMULAE
                                                                                                                BTOKA54 228
                                                                                                                BIOKA65
   A GENERALIZED TWO-SAMPLE WILCOXON TEST FOR DOUBLY-CENSORED DATA.
                                                                                                                         650
                                                                                   /PARAMETERS OF MIXED EXPON BIOKA58
ENTIALLY DISTRIBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE TEST DATA
                                                                                                                         504
BLES ARE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED NORMAL DATA /ENT ESTIMATORS WHEN THE VARIA BIOKA62
                                                                                                                         155
                     THE ESTIMATION OF THE MEAN OF A CENSORED NORMAL DISTRIBUTION BY ORDERED VARIABLES
                                                                                                                BIOKA56
                                                                                                                         482
        THE FITTING OF GROUPED TRUNCATED AND GROUPED CENSORED NORMAL DISTRIBUTIONS
                                                                                                                BIOKA52
                                                                                                                         252
 ESTIMATING THE MEAN AND STANDARD DEVIATION FROM A CENSORED NORMAL SAMPLE

OF THE LOGATION AND SGALE ARAMETERS GIVEN A TYPE II CENSORED NORMAL SAMPLE /XIMUM LIKELIHOOD ESTIMATES BIOKA61
                                                                                                                         155
                                                                                                                          448
                                                       CENSORED OBSERVATIONS IN RANDOMIZED BLOCK EXPERIMENTS JRSSB59
                                                                                                                         214
 FOR THE NORMAL DISTRIBUTION WHEN SAMPLES ARE SINGLY CENSORED OR TRUNCATED SIMPLIFIED ESTIMATORS TECH 59
                                                                                                                         217
  OF THE NORMAL POPULATION PARAMETERS GIVEN A SINGLY CENSORED SAMPLE
                                                                                                    ESTIMATION BIOKA59
                                                                                                                         150
  OF THE NORMAL POPULATION PARAMETERS GIVEN A TYPE I CENSORED SAMPLE
                                                                                                    ESTIMATION BIOKA61
                                                                                                                         367
```

CEN - CHA TITLE WORD INDEX

```
AND STANDARD DEVIATION OF A NORMAL POPULATION FROM A CENSORED SAMPLE
                                                                                       ESTIMATION OF THE MEAN BIOKA52 260
                             CONFIDENCE INTERVALS FROM CENSORED SAMPLES
                                                                                                                    AMS 61
                                                                                                                             B28
                     A THEOREM ON RANK ORDERS FOR TWO CENSORED SAMPLES
                                                                                                                    AMS 65 316
      THE PARAMETERS OF LOG-NORMAL DISTRIBUTION FROM CENSORED SAMPLES
                                                                                                       ESTIMATING JASA 68
                                                                                                                            134
      WILCOXON TEST FOR COMPARING ARRITRARILY SINGLY-CENSORED SAMPLES
                                                                                                    A GENERALIZED BIOKA65
                                                                                                                             203
   LIKELIHOOD ESTIMATES. SINGLY TRUNCATED AND SINGLY CENSORED SAMPLES
                                                                                               TABLES FOR MAXIMUM TECH 61
                                                                                                                             535
TERS OF TWO PARAMETER EXPONENTIAL DISTRIBUTIONS FROM CENSORED SAMPLES
                                                                                        ESTIMATION OF THE PARAME TECH 60
                                                                                                                             403
SCALE PARAMETERS FOR THE RECTANGULAR POPULATION FROM CENSORED SAMPLES
                                                                                    ESTIMATION OF LOCATION AND JRSSB59 356
 A MULTIVARIATE NORMAL POPULATION FROM TRUNCATED AND CENSORED SAMPLES
                                                                                     ESTIMATION OF PARAMETERS OF JRSSB60
                                                                                                                             307
IN THE WEIBULL DISTRIBUTION BASED ON COMPLETE AND ON CENSORED SAMPLES
                                                                                 MAXIMUM LIKELIHOOD ESTIMATION TECH 65
GAMMA AND WEIBULL POPULATIONS FROM COMPLETE AND FROM CENSORED SAMPLES
                                                                               ESTIMATION OF THE PARAMETERS OF TECH 65
GLE EXPONENTIAL DISTRIBUTIONS FROM SINGLY AND DOUBLY CENSORED SAMPLES
                                                                              /ATISTICS OF THE PARAMETERS OF SIN JASA 57
                                                                                                                             58
THE PARAMETERS OF NORMAL POPULATIONS BASED ON SINGLY CENSORED SAMPLES
                                                                              /E EFFICIENCY OF BAN ESTIMATES OF BIOKA62
                                                                                                                             570
                                                                             /F THE PARAMETERS OF THE EXPONENTI AMS 66 1717
AL DISTRIBUTION BASED ON OPTIMUM ORDER STATISTICS IN CENSORED SAMPLES
METER GENERALIZED GAMMA POPULATION FROM COMPLETE AND CENSORED SAMPLES
                                                                             /OF THE PARAMETERS OF A FOUR- PARA TECH 67
                                                                                                                             159
MATING THE PARAMETERS OF EXPONENTIAL DISTRIBUTION IN CENSORED SAMPLES
                                                                              /OPTIMUM ORDER STATISTICS FOR ESTI TECH 67
                                                                                                                             279
AMETERS OF NORMAL POPULATIONS FROM SINGLY AND DOUBLY CENSORED SAMPLES (CORR. 69 229) /IMATION OF THE PAR BIOKA66
                                                                                                                             205
                         MOMENTS OF SAMPLE MOMENTS OF CENSORED SAMPLES FROM A NORMAL POPULATION
                                                                                                                  BIOKA5B
                                                                                                                             211
         CORRICENDA TO 'MOMENTS OF SAMPLE MOMENTS OF CENSORED SAMPLES FROM A NORMAL POPULATION'
                                                                                                                   BIOKASB 587
DISTRIBUTIONS
  ISTRIBUTIONS PROGRESSIVELY CENSORED SAMPLES FROM LOG-NORMAL AND LOGISTIC TECH 69
SOLUTION OF ESTIMATING EQUATIONS FOR TRUNCATED AND CENSORED SAMPLES FROM NORMAL POPULATIONS ON THE BIOKA57
                                                                                                                   TECH 69 NO.4
                                                                                                                             225
                                                         CENSORED SAMPLES FROM TRUNCATED NORMAL DISTRIBUTIONS BIOKA55
                                         PROGRESSIVELY CENSORED SAMPLES IN LIFE TESTING
ATION OF/ ON THE AMOUNT OF INFORMATION SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS IN THE ESTIM BIOKA62
EE-PARAMETER LOGNORMAL POPULATIONS FROM COMPLETE AND CENSORED SAMPLES, (CORR. 66 1247, CORR. 68 1549) /R JASA 66
                                                                                                                             B42
                             CONFIDENCE INTERVALS FROM CENSORED SAMPLES, II
                                                                                                                   TECH 66
                                                                                                                             291
                  MAXIMUM-LIKELIHOOD ESTIMATION, FROM CENSORED SAMPLES, OF THE PARAMETERS OF A LOCISTIC DIS JASA 67
PTOTIC/ MAXIMUM-LIKELIHOOD ESTIMATION, FROM DOUBLY CENSORED SAMPLES, OF THE PARAMETERS OF THE FIRST ASYM JASA 68
                                                                                                                             889
D COVARIANCES OF MAXIMUM-LIKELIHOOD ESTIMATORS, FROM CENSORED SAMPLES, OF THE PARAMETERS OF WEIBULL AND GA AMS 67
                                                                                                                             557
NDITIONAL MAXIMUM-LIKELIHOOD ESTIMATION, FROM SINCLY CENSORED SAMPLES, OF THE SCALE PARAMETERS OF TYPE II TECH 6B
                                                                                                                             349
ARAMETERS BY ORDER STATISTICS FROM SINCLY AND DOUBLY CENSORED SAMPLES, PART I. THE NORMAL DISTRIBUTION UP
                                                                                                                    AMS 39
                                                                                                                             325
IN THE WEIBULL DISTRIBUTION BASED ON COMPLETE AND ON CENSORED SAMPLES' / MAXIMUM LIKELIHOOD ESTIMATION TECH 66
CAMMA AND WEIBULL POPULATIONS FROM COMPLETE AND FROM CENSORED SAMPLES' / ESTIMATION OF THE PARAMETERS OF TECH 67
                                                                                                                             570
                                                                                                                             195
                                                         CENSORED SAMPLING IN CURTAILED SAMPLING PLANS 8Y
               A NOTE ON TOLERANCE LIMITS WITH TYPE I CENSORING
                                                                                                                   TECH 6B
 TWO-SAMPLE TESTS IN SMALL SAMPLES WITH AND WITHOUT CENSORING
                                                                                        THE PERFORMANCE OF SOME BIOKA69
                                                                                                                             127
TION OF SEVERAL NON-PARAMETRIC TEST STATISTICS UNDER CENSORING
N RELIABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE CENSORINC /REE, ORDER STATISTIC CONFIDENCE BOUNDS 0 JASA 69
                                                                      RECURSIVE GENERATION OF THE DISTRIBU JASA 68
                                                                                                                             353
                                                                                                                             306
               BEST LINEAR ESTIMATES UNDER SYMMETRIC CENSORING OF THE PARAMETERS OF A DOUBLE EXPONENTIAL P JASA 66
OPULATION.
                                                                                                                             248
                    THE MULTI-SAMPLE SINCLE RECAPTURE CENSUS
                                                                                                                   BTOKA62
                                                                                                                             339
                         LINEAR APPROXIMATIONS TO THE CENSUS AND BLS SEASONAL ADJUSTMENT METHODS
                                                                                                                   JASA 6B
                                                                                                                             445
                   THE USE OF ROTATING SAMPLES IN THE CENSUS BUREAU'S MONTHLY SURVEYS
                                                                                                                   JASA 63
                                                                                                                             454
                                    ERRORS IN THE 1960 CENSUS ENUMERATION OF NATIVE WHITES
                                                                                                                   JASA 64
                                                                                                                             437
DEATH
                                THE MULTIPLE-RECAPTURE CENSUS II. ESTIMATION WHEN THERE IS IMMIGRATION OR
                                                                                                                   BIOKA59
                                                                                                                             336
                                       THE ACCURACY OF CENSUS LITERACY STATISTICS IN IRAN
                                                                                                                   JASA 59
 MEMORIAL MEETING FOR WILLIAM N HURWITZ. CHANGES IN CENSUS METHODS
                                                                                 WASHINGTON STATISTICAL SOCIETY JASA 69
                      SPECTRAL EVALUATION OF BLS AND CENSUS REVISED SEASONAL ADJUSTMENT PROCEDURES
                                                                                                                   JASA 68
 NET MIGRATION
                                          EVALUATION OF CENSUS SURVIVAL RATES IN ESTIMATING INTERCENSAL STATE JASA 62
                                                                                                                             B41
                                          A NOTE ON THE CENSUS SURVIVAL RATIO METHOD OF ESTIMATING NET
MIGRATION
                                                                                                                             175
                                                                                                                   JASA 62
                      ANALYSIS OF VITAL STATISTICS BY CENSUS TRACT
                                                                                                                   JASA 59
                                                                                                                             730
                     THE TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND SAMPLING ARE STRATIFIED
                                                                                                                   BTOKA61
                                                                                                                             241
                     A NOTE ON THE MULTIPLE-RECAPTURE CENSUS.
                                                                                                                   BTOKA65
                                                                                                                             249
                                THE MULTIPLE-RECAPTURE CENSUS. I. ESTIMATION OF A CLOSED POPULATION
                                                                                                                   BTOKA5B
                                                                                                                             343
            CONTROL OF QUALITY OF CODINC IN THE 1960 CENSUSES
                                                                                                                   JASA 64
                                                                                                                             120
O, ERRORS IN RECORDING CHILDLESS CASES IN POPULATION CENSUSES
                                                                   /URE OF ENUMERATORS TO MAKE ENTRIES OF ZER JASA 61
                                                                                                                             909
ES FOR THE SINGLE POPULATION BASED ON TWO SUCCESSIVE CENSUSES (CORR. 68 1550) /ON OF ATTRITION LIFE TABL JASA 67 1433
                                  THE TWENTY-SEVEN PER CENT RULE
                                                                                                                    AMS 64
                                                                                                                             214
                                                        CENTENARY LECTURE, KARL PEARSON, 1857-1957
                                                                                                                   BIOKA57
                              CONTROLLING DIMENSION IN CENTERLESS-GRINDING WITH AUTOMATIC RESET DEVICE
                                                                                                                   TECH 69
                                                                                                                             115
                                SOME INEQUALITIES FOR CENTRAL AND NON-CENTRAL DISTRIBUTIONS
                                                                                                                    AMS 65 1521
REPRESENTATIONS OF THE CENTRAL CASE
RIBUTIONS OF QUADRATIC FORMS IN NORMAL VARIABLES, I, CENTRAL CASE
SERIES REPRESENTATIONS OF DISTRIBUT

NON-CENTRAL CASE
SERIES REPRESENTATIONS OF DISTRIBUT
                                REPRESENTATIONS OF THE CENTRAL AND NON-CENTRAL T DISTRIBUTIONS
                                                                                                                   8T0KA64
                                                                                                                             451
                                                                              SERIES REPRESENTATIONS OF DIST AMS 67
                                                                                                                             823
IONS OF QUADRATIC FORMS IN NORMAL VARIABLES, II, NON-CENTRAL CASE SERIES REPRESENT A CONTOUR-INTEGRAL DERIVATION OF THE NON-CENTRAL CHI-SQUARE DISTRIBUTION
                                                                                                                             838
                                                                                                                    AMS 67
                                                                                                                            796
                                                                                                                    AMS 62
                           LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES
                                                                                                                    AMS 66 480
THE TRACE OF A MATRIX AND APPROXIMATIONS TO ITS NON-CENTRAL DISTRIBUTION
                                                                                               ON THE MOMENTS OF
                                                                                                                    AMS 66 1312
ANALYSTS
                                               SOME NON-CENTRAL DISTRIBUTION PROBLEMS IN MULTIVARIATE
                                                                                                                    AMS 63 1270
                 ON THE GONVERGENCE OF MOMENTS IN THE CENTRAL LIMIT THEOREM
                                                                                                                    AMS 65
                                                                                                                            808
                           ON A STOPPING RULE AND THE CENTRAL LIMIT THEOREM
                                                                                                                    AMS 67 1915
                           ON GONVERGENCE RATES IN THE CENTRAL LIMIT THEOREM
                                                                                                                    AMS 69
                                                                                                                            475
            MOMENTS OF A STOPPING RULE RELATED TO THE CENTRAL LIMIT THEOREM
                                                                                                                    AMS 69 1236
                                                     THE CENTRAL LIMIT THEOREM FOR CENERALIZED RANDOM FIELDS
                                                                                                                    AMS 69
                                  THE REMAINDER IN THE GENTRAL LIMIT THEOREM FOR MIXING STOCHASTIC PROCESSES
                                                                                                                    AMS 69
                                                                                                                    AMS 61
                                                       A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES
                                                                                                                            677
                                         A MULTIVARIATE CENTRAL LIMIT THEOREM FOR RANDOM LINEAR VECTOR FORMS
                                                                                                                    AMS 66 1825
RANDOM INTERSEGTION OF TWO GRAPHS (CORR. 69 151/ A CENTRAL LIMIT THEOREM FOR THE NUMBER OF EDGES IN THE NEW CONDITIONS FOR CENTRAL LIMIT THEOREMS (CORR. 69 1855)
                                                                                                                    AMS 69
                                                                                                                            144
                                                                                                                    AMS 69
                                                                                                                            319
RANDOM VARTABLES
                                      CENTRAL LIMIT THEOREMS FOR FAMILIES OF SEQUENCES OF CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES
                                                                                                                    AMS 63 439
                                                                                                                    AMS 68 1158
FROM A FINITE POPULATION (ATY'S FORMULAE AND MADOW'S CENTRAL LIMIT) /INC MOMENTS OF THE MEAN IN SAMPLES
                                                                                                                            199
                                                                                                                   BIOKA61
                                               THE NON-CENTRAL MULTIVARIATE BETA DISTRIBUTION
                                                                                                                    AMS 61
                                                                                                                            104
EFINITE AND OF INDEFINITE QUADRATIC FORMS FROM A NON-CENTRAL NORMAL DISTRIBUTION
                                                                                               DISTRIBUTION OF D
                                                                                                                    AMS 63 186
   DISTRIBUTION OF A DEFINITE QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. 63 673
                                                                                                                    AMS 61
                                                                                                                            883
THE DISTRIBUTION OF THE PRODUCT OF TWO CENTRAL OR NON-CENTRAL CHI-SQUARE VARIATES AMPLES FROM 80 1016
A FINITE POPULATION (ATY'S FORMULAE AND MADOW/ THE CENTRAL SAMPLING MOMENTS OF THE MEAN IN SAMPLES FROM BIOKA61 199
                                VARIATIONS OF THE NON-CENTRAL T AND BETA DISTRIBUTIONS
```

TITLE WORD INDEX CEN - CHA

THE COMPUTATION OF PERCENTACE POINTS OF THE NON-CENTRAL T-DISTRIBUTION TABLES TO FACILITA		
DISTRIBUTION A CENTRAL TOLERANCE RECION FOR THE MULTIVARIATE NORMA	JRSSB6B	599
GRAPHIC METHODS BASED UPON PROPERTIES OF ADVANCINC CENTROIDS	JASA 59	66B
LEADING AMERICAN STATISTICIANS IN THE NINETEENTH CENTURY	JASA 57	301
LEADING BRITISH STATISTICIANS OF THE NINETEENTH CENTURY	JASA 60	
LEADING AMERICAN STATISTICIANS OF THE NINETEENTH CENTURY II		
	JASA 58	
TESTS AUXILIARY TO CHI-SQUARED TESTS IN A MARKOV CHAIN	AMS 63	
AN INTRINSICALLY DETERMINED MARKOV CHAIN	AMS 67	
THE ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN	AMS 69	665
THE TAIL FIELD OF A MARKOV CHAIN	AMS 69	127
SOME DISTRIBUTION AND MOMENT FORMULAE FOR THE MARKOV CHAIN	JRSSB55	235
INVARIANCE PRINCIPLES FOR FUNCTIONALS OF A MARKOV CHAIN SO	ME AMS 67	1
ATIONARY PROCESS TO BE A FUNCTION OF A FINITE MARKOV CHAIN SUFFICIENT CONDITIONS FOR A	T AMS 63	1033
THE COMPARISON OF SEVERAL REALIZATIONS OF A MARKOFF CHAIN ATIONARY PROCESS TO BE A FUNCTION OF A FINITE MARKOV CHAIN OF RANDOM VARIABLES DEFINED ON A FINITE MARKOV CHAIN A CONVEXITY PROPERTY IN THE THEO	OV AME CI	1000
OF RANDOM VARIABLES DEFINED ON A FINITE MARKOV CHAIN A CONVENT FROMERIT IN THE THEOR	TO CMA I)	1200
REALIZATION OF A NON-HOMOGENEOUS FINITE-STATE MARKOV CHAIN /-SUB-T), WHERE (Y-SUB-0, Y-SUB-1,) IS		
ESTIMATOR OF AN UNKNOWN PARAMETER IN A SIMPLE MARKOV CHAIN /IENCY CONDITIONS FOR THE MAXIMUM-LIKELIHOO		
THE TAIL SIGMA-FIELD OF A MARKOV CHAIN AND A THEOREM OF OREY	AMS 64	
THE FREQUENCY COUNT OF A MARKOV CHAIN AND THE TRANSITION TO CONTINUOUS TIME	AMS 61	41
ESTIMATION OF PARAMETERS IN A TRANSIENT MARKOV CHAIN ARD THE TRANSITION TO CONTINUOUS TIME REAL TRANSIENT MARKOV CHAIN ARISING IN A RELIABILITY CROWTH MODEL NO TRANSPORTION PROPERTY THE CAMP PARAMETERS TO A FINANCIAL TRANSPORT THE CAMP PARAMETERS TO THE POLITICISM.	AMS 69	1542
ND TRANSITION PROBABILITIES OF A FINITE-STATE MARKOV CHAIN FROM THE SAME DATA /IMATING THE EQUILIBRIUM	A BIOCS68	185
THE ANALYSIS OF PERSISTENCE IN A CHAIN OF MULTIPLE EVENTS	BIOKA64	405
DEPENDENCE PERSISTENCE IN A CHAIN OF MULTIPLE EVENTS WHEN THERE IS SIMPLE	BIOKA62	351
IN MARKOV-CHAIN FREQUENCIES. AND THE BINARY CHAIN OF ORDER 2 QUADRATI	CS JRSSB63	383
ON MARKOV CHAIN POTENTIALS	AMS 61	
INFERENCE ON A GENETIC MODEL OF THE MARKOV CHAIN TYPE	BIOKA63	
IFICANCE TESTS FOR A VARIABLE CHANCE OF INSECTION IN CHAIN-RINGHTAL THEORY	SN BIOKA56	
IN MARKOV-CHAIN FREQUENCIES, AND THE BINARY CHAIN OF ORDER 2 QUADRATI ON MARKOV CHAIN POTENTIALS INFERENCE ON A GENETIC MODEL OF THE MARKOV CHAIN TYPE IFICANCE TESTS FOR A VARIABLE CHANCE OF INFECTION IN CHAIN-BINOMIAL THEORY OR THE ANALYSIS OF INTRA-HOUSEHOLD EPI/ THE USE OF CHAIN-BINOMIALS WITH A VARIABLE CHANCE OF INFECTION PACTORIAL REPLICATION-EPRE EXPERIMENTS CHAITM-POOLING ANALYSIS OF VARIANCE FOR TWO-LEVEL		
ON THE ANALYSIS OF INTRA-HOUSEHOLD EFF/ PACTORIAL REPLICATION-PREE EXPERIMENTS CHAIN-POOLING ANALYSIS OF VARIANCE FOR TWO-LEVEL		
THOUGHT NEW DIGHT TON THE DAY BRITAINS		
ESTIMATOR OF AN UNKNOWN PARAMETER IN A SIMPLE MARKOV CHAIN' /ENCY CONDITIONS FOR THE MAXIMUM-LIKELIHOO		
SOME PROPERTIES OF REGULAR MARKOV CHAINS	AMS 61	
TESTS FOR CONTINGENCY TABLES AND MARKOV CHAINS	TECH 62	
FUNCTIONS OF FINITE MARKOV CHAINS	AMS 63	
SOME THEOREMS ON FUNCTIONALS OF MARKOV CHAINS	AMS 64	1275
ON STOCHASTIC PROCESSES DERIVED FROM MARKOV CHAINS	AMS 65	1286
SOME LIMIT THEOREMS FOR NON-HOMOGENEOUS MARKOV CHAINS	AMS 66	1224
A SYSTEM OF DENUMERABLY MANY TRANSIENT MARKOV CHAINS	AMS 66	406
A NOTE ON LIMIT THEOREMS FOR THE ENTROPY OF MARKOV CHAINS	AMS 66	522
FUNCTIONS OF FINITE MARKOV CHAINS	AMS 67	
OPTIMAL STOPPING FOR FUNCTIONS OF MARKOV CHAINS	AMS 68	
PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS	AMS 69	
A NOTE ON SEQUENCES OF CONTINUOUS PARAMETER MARKOV CHAINS	AMS 69	
A TEST FOR MARKOFF CHAINS	BIOKA54	
THE LIKELIHOOD RATIO TEST FOR MARKOFF CHAINS	BIOKA55	
	BIOKASS	
A NOTE ON SUFFICIENCY IN REGULAR MARKOV CHAINS		
	AP AMS 62	
	RA AMS 65	524
TEST OF THE CHI-SQUARE THEORY FOR PROBABILITY CHAINS A SAMPLI		2 2 0
	IC BIOKA52	118
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS SIMPLIFI	D BIOKA58	181
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS SIMPLIFIED PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS EXCHANGEABLE	D BIOKA58 LE AMS 64	181 429
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS IDENTIFICATION OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS	ED BIOKA58 LE AMS 64 DN AMS 67	181 429 201
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESIGNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS TRUNCATED SEQUENTI.	ED BIOKA58 LE AMS 64 ON AMS 67 AL BIOCS68	181 429 201 159
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESIGNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS STATISTICAL INFERENCE TRUNCATED SEQUENTI.	ED BIOKA58 LE AMS 64 DN AMS 67 AL BIOCS68 CE AMS 66	181 429 201 159 1554
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE—CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESIGNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS SOME THEOREMS CONCERNING THE STRONG	ED BIOKA58 LE AMS 64 DN AMS 67 AL BIOCS68 EE AMS 66 IG AMS 64	181 429 201 159 1554 566
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESIGNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS STATISTICAL INFERENCE TRUNCATED SEQUENTI.	ED BIOKA58 LE AMS 64 DN AMS 67 AL BIOCS68 EE AMS 66 IG AMS 64	181 429 201 159 1554 566
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE—CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESIGNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS SOME THEOREMS CONCERNING THE STRONG	ED BIOKA58 LE AMS 64 EN AMS 67 AL BIOCS68 EE AMS 66 IG AMS 64 RO AMS 68 JRSSB59	181 429 201 159 1554 566 1646 36
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE—CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESICNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS BABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS ADMISSIBILITY AND DISTRIBUTION OF SOME PROBABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS OF STATISTICAL INFERENCY CHAINS SOME THEOREMS CONCERNING THE STROIT	D BIOKA58 JE AMS 64 DN AMS 67 AL BIOCS68 JE AMS 66 JG AMS 64 RO AMS 68	181 429 201 159 1554 566 1646 36
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESICNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS BABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS WITH DISCUSSION) SIMPLIFIE EXCHANGES EXCHANGES TRUNCATED SEQUENTI. SOME THEOREMS CONCERNING THE STROID ADMISSIBILITY AND DISTRIBUTION OF SOME PROPRIES WITH DISCUSSION)	ED BIOKA58 LE AMS 64 EN AMS 67 AL BIOCS68 EE AMS 66 IG AMS 64 RO AMS 68 JRSSB59	181 429 201 159 1554 566 1646 36 276
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESICNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS (WITH DISCUSSION) SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS AND CERTAIN RANDOM WALKS	ED BIOKA58 LE AMS 64 DN AMS 67 LL BIOCS68 LE AMS 64 LG AMS 64 LG AMS 68 JRSSB59 BIOKA56 AMS 68	181 429 201 159 1554 566 1646 36 276
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESIGNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS AND CERTAIN RANDOM WALKS FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES	D BIOKA58 LE AMS 64 DN AMS 67 LL BIOCS68 LE AMS 66 LG AMS 68 JRSSB59 BIOKA56 AMS 68 T AMS 61	181 429 201 159 1554 566 1646 36 276 1020
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESICNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS FUNCTIONS OF FINITE MARKOV CHAINS AND CERTAIN RANDOM WALKS FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND THE CHAPMAN-KOLMOGOROV EQUATION COLLAPSED MARKOV CHAINS AND THE CHAPMAN-KOLMOGOROV EQUATION	D BIOKA58 LE AMS 64 DN AMS 67 LL BIOCS68 LE AMS 66 LG AMS 68 JRSSB59 BIOKA56 AMS 68 T AMS 61	181 429 201 159 1554 566 1646 36 276 1020 49 233
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESICNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS FUNCTIONS OF FINITE MARKOV CHAINS AND CERTAIN RANDOM WALKS FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTION OF COLLAPSED MARKOV CHAINS AND THE CHAPMAN-KOLMOGOROV EQUATION DISTRIBUTIONS DIMENSIONAL CHAINS INVOLVING RECTANGULAR AND NORMAL ERROR-	ED BIOKA58 JE AMS 64 NN AMS 67 ED AMS 66 GD AMS 66 JRSSB59 BIOKA56 AMS 68 JRSSB59 BIOKA56 AMS 68 AMS 68 AMS 68	181 429 201 159 1554 566 1646 36 276 1020 49 233 404
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESICNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS FUNCTIONS OF FINITE MARKOV CHAINS AND CERTAIN RANDOM WALKS FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTION OF DISTRIBUTIONS COLLAPSED MARKOV CHAINS AND THE CHAPMAN-KOLMOGOROV EQUATION DISTRIBUTIONS DIMENSIONAL CHAINS INVOLVINC RECTANGULAR AND NORMAL ERROR-PATHS AND CHAINS OF RANDOM STRAIGHT-LINE SEGMENTS	D BIOKA58 LE AMS 64 LE AMS 67 LL BIOCS68 DE AMS 66 LG AMS 64 LG AMS 64 LG AMS 64 LG AMS 65 LG AMS 65 LG AMS 66 LG AMS 66 LG AMS 66 LG AMS 68	181 429 201 159 1554 566 1646 36 276 1020 49 233 404 303
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESICNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS FUNCTIONS OF FINITE MARKOV CHAINS AND CERTAIN RANDOM WALKS FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTION OF COLLAPSED MARKOV CHAINS AND THE CHAPMAN-KOLMOGOROV EQUATION DISTRIBUTIONS DIMENSIONAL CHAINS INVOLVING RECTANGULAR AND NORMAL ERROR-	ED BIOKA58 LE AMS 64 LE AMS 64 NN AMS 67 LL BIOCS68 LE AMS 66 LE AMS 66 LE AMS 66 JRSSB59 BIOKA56 AMS 68 T AMS 61 AMS 63 TECH 63 TECH 66	181 429 201 159 1554 566 1646 36 276 1020 49 233 404 303 17
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESICNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS FUNCTIONS OF FINITE MARKOV CHAINS FUNCTIONS OF FINITE MARKOV CHAINS AND CERTAIN RANDOM WALKS FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTION OF COLLAPSED MARKOV CHAINS AND THE CHAPMAN-KOLMOGOROV EQUATION DISTRIBUTIONS DIMENSIONAL CHAINS INVOLVING RECTANGULAR AND NORMAL ERROR-PATHS AND CHAINS OF SANDOM STRAIGHT-LINE SEGMENTS APPLICATION OF FINITE ABSORBENT MARKOV CHAINS TO SIB MATTING POPULATIONS WITH SELECTION SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES	ED BIOKA58 LE AMS 64 LE AMS 64 LE BIOCS68 LE AMS 66 LE AMS 66 LE AMS 66 LE AMS 68 LE AMS 61 LE AMS 63 LE CH 66 LE BIOCS69	181 429 201 159 1554 566 1646 36 276 1020 49 233 404 303 17 285
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESICNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS FUNCTIONS OF FINITE MARKOV CHAINS COLLAPSED MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND THE CHAPMAN-KOLMOGOROV EQUATION OF DIMENSIONAL CHAINS INVOLVING RECTARGULAR AND NORMAL ERROR-PATHS AND CHAINS OF RANDOM STRAIGHT-LINE SEGMENTS APPLICATION OF FINITE ABSORBENT MARKOV CHAINS TO SIB MATING POPULATIONS WITH SELECTION SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A BSORBING STATES, A GENETIC EXAMPLE	D BIOKA58 LE AMS 64 LE AMS 64 LE BIOCS68 LE AMS 66 LE AMS 66 LE AMS 66 LE AMS 68 JRSSB59 BIOKA56 AMS 61 AMS 63 TECH 63 TECH 66 BIOCS69 BIOKA56 AMS 61	181 429 201 159 1554 566 1646 36 276 1020 49 233 404 303 17 285 716
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESIONS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS FUNCTIONS OF FINITE MARKOV CHAINS AND CERTAIN RANDOM WALKS FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTION OF COLLAPSED MARKOV CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTION OF PATHS AND CHAINS OF RANDOM STRAIGHT-LINE SECMENTS APPLICATION OF FINITE ABSORBENT MARKOV CHAINS TO SIB MATING POPULATIONS WITH SELECTION SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DEDUNDERABLE NUMBER OF STATES MARKOV CHAINS WITH A DEPUNDERABLE NUMBER OF STATES A PATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL CLAINS	ED BIOKA58 LE AMS 64 LE AMS 64 LE AMS 67 LL BIOCS68 LE AMS 66 LE AMS 66 LE AMS 68 LE BIOCS68	181 429 201 159 1554 566 1646 36 276 1020 49 233 404 303 17 285 716 791
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESICNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS FUNCTIONS OF FINITE MARKOV CHAINS HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS COLLAPSED MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTION OF COLLAPSED MARKOV CHAINS AND THE CHAPMAN-KOLMOGOROV EQUATION DISTRIBUTIONS DIMENSIONAL CHAINS INVOLVING RECTANGULAR AND NORMAL ERROR-PATHS AND CHAINS APPLICATION OF FINITE ABSORBENT MARKOV CHAINS TO SIB MATTING POPULATIONS WITH SELECTION SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES A PATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL	ED BIOKA58 LE AMS 64 LE AMS 64 LE AMS 67 LL BIOCS68 LE AMS 66 LE AMS 66 LE AMS 66 LE AMS 68 LE AMS 61 LE CH 63 LE CH 64 LE C	181 429 201 159 1554 566 1646 36 276 1020 49 233 404 303 17 285 716 791 127
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESICNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS FUNCTIONS OF FINITE MARKOV CHAINS AND CERTAIN RANDOM WALKS FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND THE CHAPMAN-KOLMOGOROV EQUATION DISTRIBUTIONS DIMENSIONAL CHAINS INVOLVING RECTANGULAR AND NORMAL ERROR- PATHS AND CHAINS OF SANDOM STRAIGHT-LINE SEGMENTS APPLICATION OF FINITE ABSORBENT MARKOV CHAINS TO SIB MATING POPULATIONS WITH SELECTION SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES MARKOV CHAINS WITH A BEORBING STATES, A GENETIC EXAMPLE A PATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS. SOME THORYOR IN STUDYING THE DENTAL C. STATISTICAL IMPERENCE IN ABSORBING MARKOV CHAINS, CORR. 61 1343	ED BIOKA58 LE AMS 64 LE AMS 67 LL BIOCS68 ED AMS 66 LG AMS 64 LG AMS 64 LG AMS 64 LG AMS 63 LG AMS 64 LG AMS 64 LG AMS 65 LG AMS 64 LG AMS 65 LG AMS 64 LG AMS 65 LG AMS 65 LG AMS 65 LG AMS 66	181 429 201 159 1554 566 1646 36 276 1020 49 233 404 303 17 285 716 791 127
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESICNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS FUNCTIONS OF FINITE MARKOV CHAINS OCILLAPSED MARKOV CHAINS AND CERTAIN RANDOM WALKS FUNCTIONS OF FINITE MARKOV CHAINS AND CERTAIN RANDOM WALKS FUNCTIONS OF FINITE MARKOV CHAINS AND CERTAIN RANDOM WALKS COLLAPSED MARKOV CHAINS AND THE CHAPMAN-KOLMOGOROV EQUATION DISTRIBUTIONS DIMENSIONAL CHAINS OF RANDOM STRAIGHT-LINE SEGMENTS APPLICATION OF FINITE ABSORBENT MARKOV CHAINS OF RANDOM STRAIGHT-LINE SEGMENTS APPLICATION OF FINITE ABSORBENT MARKOV CHAINS WITH A BESORBING STATES, A GENETIC EXAMPLE A PATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WITH A DEPULATION IN STUDYING THE DENTAL COF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS. CORRICENDA TO 'THE LIKELTHOOD RATIO TEST FOR MARKOV CHAINS, CORR. 61 1343 CORRICENDA TO 'THE LIKELTHOOD RATIO TEST FOR MARKOV CHAINS, CORR. 61 1343	ED BIOKA58 LE AMS 64 LE AMS 64 LE AMS 67 LL BIOCS68 LE AMS 66 LE AMS 66 LE AMS 68 JRSSB59 BIOKA56 AMS 68 T AMS 61 AMS 63 TECH 63 TECH 63 TECH 66 BIOCS69 BIOKA56 AMS 61 LE BIOKA56 AMS 61 LE BIOKA56 AMS 61 BIOKA57	181 429 201 159 1554 566 1646 276 1020 49 233 404 303 17 285 716 791 127 301
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESICNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS FUNCTIONS OF FIT CRITERIA FOR MARKOV CHAINS AND CERTAIN RANDOM WALKS FUNCTIONS OF FIT CRITERIA FOR MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTION OF COLLAPSED MARKOV CHAINS AND THE CHAPMAN-KOLMOGOROV EQUATION DISTRIBUTIONS DIMENSIONAL CHAINS INVOLVING RECTANGULAR AND NORMAL ERROR— PATHS AND CHAINS OF RANDOM STRAIGHT—LINE SEGMENTS APPLICATION OF FINITE ABSORBENT MARKOV CHAINS TO SIB MATING POPULATIONS WITH SELECTION SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DENUMBERABLE NUMBER OF STATES MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS, CORR. 61 1343 CORRICENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOFF CHAINS' E ON THE STATISTICAL TESTABILITY OF 'EXPLICIT CAUSAL CHAINS' AGAINST THE CLASS OF 'INTERDEPENDENT' MODELS' BYPHICAL TRUNCATE AND CORRESSION OF THE STATISTICAL TESTABILITY OF 'EXPLICIT CAUSAL CHAINS' AGAINST THE CLASS OF 'INTERDEPENDENT' MODELS' BYPHICATIONS OF TABLE TO THE CHAPMAN THE CLASS OF 'INTERDEPENDENT' MODELS' BYPHICATIONS OF TABLE TO THE CHAPMAN THE CLASS OF 'INTERDEPENDENT' MODELS' BYPHICATIONS OF TABLE TO THE CAUSAL CHAINS' AGAINST THE CLASS OF 'INTERDEPENDENT' MODELS' BYPHICATIONS OF THE CHAPM	ED BIOKA58 LE AMS 64 LE AMS 64 LE AMS 67 LL BIOCS68 LE AMS 66 LE AMS 66 LE AMS 66 LE AMS 68 LE AMS 61 LE AMS 63 LE CH 66 LE BIOCS69 LE BIOKA56 LE BIOKA56 LE BIOKA56 LE BIOKA56 LE BIOKA57 LE BIOKA	181 429 201 159 1554 566 1646 276 1020 49 233 404 303 17 285 716 791 127 127 123 301 1080
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESICNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS SUFFICIENCY CONDITIONS OF FINITE MARKOV CHAINS SUFFICIENCY CONDITIONS OF FINITE MARKOV CHAINS FUNCTIONS OF FINITE MARKOV CHAINS AND CERTAIN RANDOM WALKS FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTION OF COLLAPSED MARKOV CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTION OF DISTRIBUTIONS DIMENSIONAL CHAINS AND THE CHAPMAN-KOLMOGOROV EQUATION DISTRIBUTIONS DIMENSIONAL CHAINS NO FRANDOM STRAIGHT-LINE SEGMENTS APPLICATION OF FINITE ABSORBENT MARKOV CHAINS TO SIB MATTING POPULATIONS WITH SELECTION SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES APATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF THE STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS WITH AND C. OR THE STATISTICAL I	ED BIOKA58 LE AMS 64 LE AMS 64 LE AMS 64 LE AMS 64 LE AMS 67 LL BIOCS68 LE AMS 66 LE AMS 66 LE AMS 68 LE AMS 61 LE AMS 68 LE BIOCS69 LE BIOKA65	181 429 201 159 1554 566 1646 276 1020 49 233 404 303 17 285 716 791 127 12 301 1080 551
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESIGNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABELISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS FUNCTIONS OF FINITE MARKOV CHAINS AND CERTAIN RANDOM WALKS FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND THE CHAPMAN-KOLMOGOROV EQUATION OF DIMENSIONAL CHAINS INVOLVING RECTANGULAR AND NORMAL ERROR- PATHS AND CHAINS OF RANDOM STRAIGHT-LINE SEGMENTS APPLICATION OF FINITE ABSORBENT MARKOV CHAINS TO SIB MATING POPULATIONS WITH SELECTION SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A BSORBING STATES, A GENETIC EXAMPLE A PATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WITH A BSORBING STATES, A GENETIC EXAMPLE A PATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS, CORR. 61 1343 CORRICENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOF CHAINS, CORR. 61 1343 CORRICENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOF CHAINS, CORR. 61 1343 CORRICENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOF CHAINS, CORR. 61 1343 CORRICENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOF CHAINS, CORR. 61 1343 CORRICENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOF CHAINS, CORR. 61 1343 CORRICENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOF CHAINS, CORR. 61 1343 CORRICENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOF CHAINS, CORR. 61 1343 CORRICENDA TO 'THE CLASS OF 'INTERDEPENDENT' MODELS ON THE CUMULATIVE EFFECT OF CHANCE A BENOSOLS MATHEMATICAL INFORMA	DE BIOKA58 LE AMS 64 LE AMS 64 LE AMS 67 LL BIOCS68 LE AMS 66 LE AMS 66 LE AMS 68 LE AMS 61 LE AMS 68 LE AMS 61 LE BIOCS69 LE BIOCS66 LE BIOCS66 LE BIOCS65 LE B	181 429 201 159 1554 566 1646 36 276 1020 49 233 404 303 17 285 716 791 127 12 301 1080 551 269
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESICNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS SUFFICIENCY CONDITIONS OF FINITE MARKOV CHAINS FUNCTIONS OF FINITE MARKOV CHAINS OCILLAPSED MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTION OF COLLAPSED MARKOV CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTION OF DIMENSIONAL CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTION OF PATHS AND CHAINS OF RANDOM STRAIGHT-LINE SEGMENTS APPLICATION OF FINITE ABSORBENT MARKOV CHAINS TO SIB MATING POPULATIONS WITH SELECTION SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DENUMBERABLE NUMBER OF STATES APATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WITH A DENUMBERABLE NUMBER OF STATES MARKOV CHAINS WITH A DENUMBERABLE NUMBER OF STATES MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL METHODS IN MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. CORRICENDA TO 'THE LIKELTHOOD RATIO TEST FOR MARKOV CHAINS' E ON THE STATISTICAL TESTABILITY OF 'EXPLICIT CAUSAL CHAINS' E ON THE STATISTICAL TESTABILITY OF 'EXPLICIT CAUSAL CHAINS' ON THE CUMULATIVE EFFECT OF CHANCE MECHANISM OF THE VARIATION IN THE NUMBER OF	ED BIOKA58 LE AMS 64 LE AMS 64 LE AMS 67 LL BIOCS68 LE AMS 66 LE AMS 66 LE AMS 68 LE AMS 61 LE AMS 63 LE CH 66 LE BIOCS69 LE BIOKA56 LE B	181 429 201 159 1554 566 1646 36 276 1020 49 233 404 303 17 285 716 791 127 127 127 129 301 1080 551 269 209
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESICNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS BABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS FUNCTIONS OF FINITE MARKOV CHAINS AND CERTAIN RANDOM WALKS FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTION OF COLLAPSED MARKOV CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTION OF DIMENSIONAL CHAINS AND THE CHAPMAN-KOLMOGOROV EQUATION DISTRIBUTIONS DIMENSIONAL CHAINS TO SIB MATTING POPULATIONS WITH SELECTION SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES APPLICATION OF FINITE ABSORBENT MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES A PATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES STATISTICAL METHODS IN MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. CORRICENDA TO 'THE LIKELHOOD RATIO TEST FOR MARKOFF CHAINS' FOR THE CUMULATIVE EFFECT OF CHANCE DEVIATIONS ON THE CUMULATIVE EFFECT OF CHANCE DEVIATIONS BIRTHS PER COUPLE ON THE CUMULATIVE EFFECT OF CHANCE DEVIATIONS OF THE ANALYSIS OF INTER-HOUSE	DE BIOKA58 LE AMS 64 LE AMS 64 LE AMS 64 LE AMS 67 LL BIOCS68 LE AMS 66 LE AMS 66 LE AMS 66 LE AMS 66 LE AMS 68 LE AMS 68 LE AMS 68 LE AMS 68 LE AMS 61 LE AMS 61 LE AMS 61 LE AMS 61 LE BIOCS66 LE BIOKA56 LE BI	181 429 201 159 1554 566 1646 36 276 1020 49 233 404 303 17 285 716 791 127 12 301 1080 551 269 209 279
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESIGNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS FUNCTIONS OF FINITE MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS FUNCTIONS OF FINITE MARKOV CHAINS OCALAPSED MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FINITE ABSORBENT MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES APPLICATION OF FINITE ABSORBENT MARKOV CHAINS INVOLVING RECTANGULAR AND NORMAL ERROR- PATHS AND CHAINS INVOLVING RECTANGULAR AND NORMAL ERROR- PATHS AND CHAINS OF RANDOM STRAIGHT-LINE SEGMENTS APPLICATION OF FINITE ABSORBENT MARKOV CHAINS TO SIB MATING POPULATIONS WITH SELECTION SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES APATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES APATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES STATISTICAL METHODS IN MARKOV CHAINS, CORR. 61 1343 CORRICENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOFF CHAINS' E ON THE STATISTICAL TESTABILITY OF 'EXPLICIT CAUSAL CHAINS, CORR. 61 1343 CORRICENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOFF CHAINS' ON THE CUMULATIVE EFFECT OF CHANGE MECHANISM OF THE VARIATION IN THE NUMBER OF SIGNIFICANCE TESTS FOR A VARIABLE CHANCE OF INFECTION FOR THE ANALYSIS OF INTRA-HOUSEI SIGNIFICANCE TESTS FOR A VARIABLE CHANCE OF INFECTION IN CHAIN-BINOMIAL THEORY	ED BIOKA58 LE AMS 64 LE AMS 64 LE AMS 67 LL BIOCS68 EE AMS 66 LE AMS 66 LE AMS 68 JRSSB59 BIOKA56 AMS 68 T ECH 66 BIOCS69 BIOKA56 BIOKA56 BIOKA56 BIOKA56 LE BIOCS66 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56	181 429 201 159 1554 566 276 1020 49 233 404 303 17 285 716 791 127 301 1080 551 269 209 279 332
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESICNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HONGGENEOUS MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HONGGENEOUS MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS FUNCTIONS OF FINITE MARKOV CHAINS AND CERTAIN RANDOM WALKS FUNCTIONS OF FINITE MARKOV CHAINS AND CERTAIN RANDOM WALKS FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTION OF COLLAPSED MARKOV CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTION OF DIMENSIONAL CHAINS INVOLVING RECTANGULAR AND NORMAL ERROR-PATHS AND CHAINS OF RANDOM STRAIGHT-LINE SEGMENTS APPLICATION OF FINITE ABSORBENT MARKOV CHAINS OF RANDOM STRAIGHT-LINE SEGMENTS APPLICATION OF FINITE ABSORBENT MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES MARKOV CHAINS WITH ABSORBING STATES, A GENETIC EXAMPLE A PATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES MARKOV CHAINS WITH ABSORBING STATES, A GENETIC EXAMPLE A PATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS. SUTH A DENUMERABLE NUMBER OF STATES CORRICENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOV CHAINS. CORR. 61 1343 CORRICENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOV CHAINS. CORR. 61 1343 CORRICENDA TO 'THE BIOLOGICAL AND PHYSICAL DECAY OF CHAMBER AEROSOLS MATHEMATICAL E ON THE CUMULATIVE EFFECT OF CHAMBER AEROSOLS MATHEMATICAL E ON THE CUMULATIVE EFFECT OF CHAMBER AEROSOLS MATHEMATICAL E SIGNIFICANCE TESTS FOR A VARIABLE CHANCE OF INFECTION IN CHAIN-BINOMIAL THEORY ESSAY TOWARDS SOLVING A PROBLEM IN THE DOCTRINE OF CHANCES. /STIC	ED BIOKA58 LE AMS 64 LE AMS 64 LE AMS 67 LL BIOCS68 LE AMS 66 LE AMS 66 LE AMS 66 LE AMS 68 LE AMS 61 LE AMS 63 LE CH 66 LE BIOCS66 LE BIO	181 429 201 159 1554 566 1646 36 276 1020 49 233 404 303 17 285 716 791 127 127 301 1080 551 209 279 332 293
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESICNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS ADD EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTION OF DIMENSIONAL CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTION OF DIMENSIONAL CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTION OF PATHS AND CHAINS AND THE CHAPMAN-KOLMOGROV EQUATION DISTRIBUTIONS DIMENSIONAL CHAINS INVOLVING RECTANGULAR AND NORMAL ERROR-PATHS AND CHAINS OF RANDOM STRATGHT-LINE SECMENTS APPLICATION OF FINITE ABSORBENT MARKOV CHAINS OF RANDOM STRATGHT-LINE SECMENTS APPLICATION OF FINITE ABSORBENT MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES MARKOV CHAINS WITH A BESORBING STATES, A GENETIC EXAMPLE A PATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES CORRICENDA TO 'THE LIKELTHOOD RATIO TEST FOR MARKOV CHAINS. SOME PROBLEM STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS. ON THE CUMULATIVE EFFECT OF CHANCE DEVIATIONS BIRTHS PER COUPLE A CHANCE MECHANISM OF THE VARIATION IN THE NUMBER OF LABOR AS A CHANCE OF INFECTION FOR THE ANALYSIS OF INTRA-HOUSE SINTIFICANCE TESTS FOR A VARIABLE CHANCE OF INFECTION FOR THE ANALYSIS OF INTRA-HOUSE SSAY TOWARDS SOLVING A PROBLEM IN THE DOCTRINE OF CHANCES. (FEPRODUCED FROM PHIL. TRANS. ROY. SOC. 176 ESSAY TOWARDS SOLVING A PROBLEM IN THE DOCTRINE OF CHANCES. (FEPRODUCED FROM PHIL. TRANS. R	ED BIOKA58 LE AMS 64 LE AMS 64 LE AMS 67 LL BIOCS68 LE AMS 66 LE AMS 66 LE AMS 66 LE AMS 66 LE AMS 68 LE AMS 61 LE AMS 63 LE CH 66 LE BIOCS69 LE BIOKA56 LE BIOKA58 LE BIOKA56 LE BIO	181 429 201 159 1554 566 1646 36 276 1020 49 233 404 303 17 285 716 791 127 127 127 129 301 1080 551 269 279 332 293 296
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESICNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS SUFFICIENCY CONDITIONS OF FINITE MARKOV CHAINS ADD EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND CERTAIN RANDOM WALKS FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTION OF COLLAPSED MARKOV CHAINS AND THE CHAPMAN-KOLMOGRORV EQUATION DISTRIBUTIONS DIMENSIONAL CHAINS INVOLVING RECTANGULAR AND NORMAL ERROR- PATHS AND CHAINS OF RANDOM STRAIGHT-LINE SEGMENTS APPLICATION OF FINITE ABSORBENT MARKOV CHAINS OF RANDOM STRAIGHT-LINE SEGMENTS APPLICATION OF FINITE MARKOV CHAINS WITH A DENUMBERABLE NUMBER OF STATES MARKOV CHAINS WITH A DENUMBERABLE NUMBER OF STATES OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS WITH A DENUMBERABLE NUMBER OF STATES CORRICENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOFF CHAINS' STATISTICAL METHODS IN MARKOV CHAINS, CORR. 61 1343 CORRICENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOFF CHAINS, CORR. 61 1343 CORRICENDA TO 'THE BIOLOGICAL AND PHYSICAL DECAY OF CHANGE MECHANISM OF THE VARIATION IN THE NUMBER OF DEPTH OF THE USE OF CHAIN-BINOMIALS WITH A VARIABLE CHANCE OF INFECTION FOR THE ANALYSIS OF INTRA-HOUSE SIGNIFICANCE TESTS FOR A VARIABLE CHANCE OF INFECTION FOR THE ANALYSIS OF INTRA-HOUSE SIGNIFICANCE TESTS FOR A VARIABLE CHANCE OF INFECTION FOR THE ANALYSIS OF INTRA-HOUSE SIGNIFICANCE TESTS FOR A VARIABLE CHANCE OF INFECTION FOR THE ANALYSIS OF INTRA-HOUSE ON AN	ED BIOKA58 LE AMS 64 LE AMS 64 LE AMS 67 LL BIOCS68 LE AMS 66 LE AMS 66 LE AMS 66 LE AMS 68 JRSSB59 BIOKA56 AMS 61 AMS 61 AMS 63 TECH 66 BIOCS69 BIOKA56 BIOKA56 LE BIOCS66 LE BIOKA56 LE BIOKA57 JASA 65 LE BIOKA53 LE BIOKA54 LE BIOKA	181 429 201 159 1554 566 36 276 1020 49 233 404 303 17 285 716 791 127 301 1080 551 269 209 279 332 293 293 293 293
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESIGNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMGENEOUS MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS FUNCTIONS OF FINITE MARKOV CHAINS AND CERTAIN RANDOM WALKS FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTION OF DISTRIBUTIONS DIMENSIONAL CHAINS INVOLVING RECTANGULAR AND NORMAL ERROR- PATHS AND CHAINS OF MARKOV CHAINS TO SIB MATING POPULATIONS WITH SELECTION SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS TO SIB MATING POPULATIONS WITH SELECTION SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DEPUNDERABLE NUMBER OF STATES A PATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL METHODS IN MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL METHODS IN MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. CORRICENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOFF CHAINS' E ON THE STATISTICAL TEST ABILITY OF 'EXPLICIT CAUSAL CHAINS' ON THE CUMULATIVE EFFECT OF CHANCE DEVIATIONS ON THE CUMULATIVE FFFECT OF CHANCE DEVIATIONS ON THE ROUGHLAND WALKS SIGNIFICANCE TESTS FOR A VARIABLE CHANCE OF INFECTION IN CHAIN-BINOMIAL THEORY ESSAY TOWARDS SOLVING A PROBLEM IN THE DOCTRINE OF CHANCES. ON AN INDEX OF QUALITY CHANCE A TWO-STATE MARKOV MODEL FOR BEHAVIORAL CHANCE A TWO-STATE MARKOV MODEL FOR BEHAVIORAL CHANCE A TWO-STATE MARKOV MODEL FOR BEHAVIORAL CHANCE ON AN INDEX OF QUALITY CHANCE ON AN INDEX OF QUALITY CHANCE ON AN INDEX OF QUALI	D BIOKA58 LE AMS 64 LE AMS 64 LE AMS 67 LL BIOCS68 LE AMS 66 LE AMS 66 LE AMS 66 LE AMS 68 LE AMS 61 LE BIOCS69 LE BIOCS69 LE BIOKA56 LE BIOCS66 LE BIOCS65 LE BIOCS66 LE BI	181 429 201 159 1554 566 276 1020 49 233 404 303 17 285 716 791 127 301 1080 551 269 209 279 332 293 293 293 293
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS OF STATE-CALCULABLE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESIGNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS SUFFICIENCY CONDITIONS OF FINITE MARKOV CHAINS AND CERTAIN RANDOM WALKS FUNCTIONS OF FIT CRITERIA FOR MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND THE CHAPMAN-ROLDMOGOROV EQUATION OF COLLAPSED MARKOV CHAINS AND THE CHAPMAN-ROLDMOGOROV EQUATION OF DISTRIBUTION OF FINITE ABSORBENT MARKOV CHAINS OF RANDOM STRAIGHT-LINE SEGMENTS APPLICATION OF FINITE ABSORBENT MARKOV CHAINS WITH ABSORBING STATES, A GENETIC EXAMPLE A PATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WITH ABSORBING STATES, A GENETIC EXAMPLE OF STATISTICAL METHODS IN MARKOV CHAINS, OF RANDOM STRAIGHT-LINE SEGMENTS CORRICENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOF CHAINS, 'CORR. 61 1343 CORRICENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOV CHAINS, 'CORR. 61 1343 CORRICENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOF CHAINS, 'CORR. 61 1343 CORRICENDA TO 'THE DISCIGLAL AND PHYSICAL DECAY OF CHAMBER AEROSOLS ON THE CUMULATIVE EFFECT OF CHANCE DEVIATIONS BIRTHS PER COUPLE ON THE CUMULATIVE EFFECT OF CHANCE DEVIATIONS A CHANCE MECHANICAL OF THE MARKOV CHAINS, 'CORR. 61 1343 CORRICENDA TO 'THE USE OF CHAIN-BINOMIALS WITH A VARIABLE CHANCE OF INFECTION FOR THE ANALYSIS OF INTRA-HOUSE SAY TOWARDS SOL	ED BIOKA58 LE AMS 64 LE AMS 64 LE AMS 67 LL BIOCS68 LE AMS 66 LE AMS 66 LE AMS 66 LE AMS 66 LE AMS 68 LE AMS 61 LE AMS 68 LE AMS 61 LE BIOKA56 LE BIO	181 429 201 159 1554 566 1646 36 276 1020 49 233 404 303 17 285 716 791 127 127 301 1080 551 209 279 332 296 535 993
RUNS TESTS AND LIKELTHOOD RATIO TESTS FOR MARKOF CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESIONS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS AND CERTAIN RANDOM WALKS FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES COLLAPSED MARKOV CHAINS AND THE CHAPMAN-KOULMOGOROV EQUATION OF SOME PATHS AND CHAINS AND THE CHAPMAN-KOULMOGOROV EQUATION OF SOME PATHS AND CHAINS AND THE CHAPMAN-KOULMOGOROV EQUATION OF SOME ASYMPTOTIC DISTRIBUTION OF FINITE ABSORBENT MARKOV CHAINS SOME TRICHT-LINE SECMENTS APPLICATION OF FINITE ABSORBENT MARKOV CHAINS TO SIB MATING POPULATIONS WITH SELECTION SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES APATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES APATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. ON THE CUMULATIVE EFFECT OF CHAINS 'CHAMBER ARROSOLS MATHEMATICAL BY THE DENTAL C. BIRTHS PER COUPLE ON THE CUMULATIVE EFFECT OF CHANCE DEVIATIONS BIRTHS PER COUPLE A CHANCE MARKOV MODEL FOR BEHAVIORAL CHANCE ON AN INDEX OF QUALITY CHAPSE CHANCE CONSTRAINTS AND NORMAL DEVIATES (REPRODUCED FROM PHIL. TRANS. ROY. SOC. 176 CHANCE CONSTRAINTS AND NORMAL DEVIATES	ED BIOKA58 LE AMS 64 LE AMS 64 LE AMS 64 LE BIOCS68 LE AMS 66 LE AMS 66 LE AMS 66 LE AMS 68 JRSSB59 BIOKA56 AMS 63 TECH 63 TECH 63 TECH 66 BIOCS69 BIOKA56 BIOKA56 SBIOKA56 LE BIOCS65 LE BIOCS65 LE BIOCS65 LE BIOKA57 LE BIOKA57 LE BIOKA57 LE BIOKA57 LE BIOKA57 LE BIOKA58 LE B	181 429 201 159 1554 566 1646 36 276 1020 49 233 404 303 17 285 716 791 127 12 301 1080 551 269 279 332 293 32 293 535 935 11
RUNS TESTS AND LIKELTHOOD RATIO TESTS FOR MARKOFF CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESIONS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI—MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS ADMISSIBILITY AND DISTRIBUTION OF SOME PI BEHAVIOUR SEQUENCES AS SEMI—MARKOV CHAINS AND CERTAIN RANDOM WALKS FUNCTIONS OF FINITE MARKOV CHAINS AND CERTAIN RANDOM WALKS FUNCTIONS OF FIT CRITERIA FOR MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI—SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND THE CHAPMAN—KOLMGORROV EQUATION DISTRIBUTIONS DIMMNSIONAL CHAINS SOME THEOREMS / OTIC DISTRIBUTION OF COLLAPSED MARKOV CHAINS AND THE CHAPMAN—KOLMGORROV EQUATION DISTRIBUTION OF FINITE ABSORBENT MARKOV CHAINS AND THE CHAPMAN—KOLMGORROV EQUATION SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH ADENUMERABLE NUMBER OF STATES APPLICATION OF FINITE ABSORBENT MARKOV CHAINS WITH ADENUMERABLE NUMBER OF STATES MARKOV CHAINS WITH ADENUMERABLE NUMBER OF STATES APATH—PROBABILITY APPROACH TO TRREVERSIBLE MARKOV CHAINS WITH ADENUMERABLE NUMBER OF STATES MARKOV CHAINS WITH ADENUMERABLE NUMBER OF STATES APATH—PROBABILITY APPROACH TO TRREVERSIBLE MARKOV CHAINS WITH ADENUMERABLE NUMBER OF STATES MARKOV CHAINS WITH ADENUMERABLE NUMBER OF STATES CORRICENDA TO 'THE LIKELTHOOD RATIO TEST FOR MARKOY CHAINS WITH ADENUMERABLE NUMBER OF STATES CORRICENDA TO 'THE LIKELTHOOD RATIO TEST FOR MARKOFF CHAINS' E ON THE STATISTICAL TESTABLITY OF 'EXPLICIT CAUSAL CHAINS' ON THE CUMULATIVE EFFECT OF CHANCE DEVIATIONS BIRTHS PER COUPLE ON THE COMPLIANT OF THE MARKOY CHAINS OF THE CHANCE OF THE ANALYSIS OF INTERDEPENDENT' MODELS SIGNIFICANCE TESTS FOR A VARIABLE CHANCE OF INFECTION FOR THE ANALYSIS OF INTER—HOUSE! SIGNIFICANCE TESTS FOR A VARIABLE CHANCE OF INFE	D BIOKA58 LE AMS 64 LE AMS 64 LE AMS 67 LL BIOCS68 LE AMS 66 LE AMS 66 LE AMS 66 LE AMS 68 LE AMS 61 LE AMS 68 LE AMS 61 LE BIOCS69 LE BIOKA56 LE BIOKA56 LE BIOKA56 LE BIOKA55 LE BIOKA56 LE BIOKA56 LE BIOKA58 LE BIO	181 429 201 159 1554 566 276 1020 49 233 404 303 17 285 716 791 127 301 1080 551 269 279 332 293 293 293 293 293 11 34 35 36 36 36 36 37 36 37 36 37 37 37 37 37 37 37 37 37 37 37 37 37
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESICNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS FUNCTIONS OF FINITE MARKOV CHAINS OF FINITE MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS AND CERTAIN RANDOW WALKS FUNCTIONS OF FINITE MARKOV CHAINS AND CERTAIN RANDOW WALKS FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND THE CHAPMAN-KOLMOGOROV EQUATION DISTRIBUTIONS DIMENSIONAL CHAINS SHOWLOW REAL OF FANDOM STRAIGHT-LINE SEGMENTS APPLICATION OF FINITE ABSORBENT MARKOV CHAINS SHOULT RECTANGULAR AND NORMAL ERROR- PATH- AND CHAINS OF RANDOM STRAIGHT-LINE SEGMENTS APPLICATION OF FINITE ABSORBENT MARKOV CHAINS TO SIE MATTIC POPULATIONS WITH SELECTION SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DENUMBERABLE NUMBER OF STATES A PATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WITH A DENUMBERABLE NUMBER OF STATES CORRICENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS ON THE CUMULATIVE EFFECT OF CHANGE DEVIATIONS BIRTHS PER COUPLE A CHANGE MARKOV CHAINS AND PROBLEM OF THE VARIATION IN THE NUMBER OF CHANGE OF INFECTION IN CHAIN-BINOMIAL THEORY ESSAY TOWARDS SOLVING A PROBLEM IN THE DOCTRINE OF CHANGES. /STICS. IX. BIOGRAPHICAL NOTE FOR T. BAYS ESSAY TOWARDS SOLVING A PROBLEM IN THE DOCTRINE OF CHANGES. /STICS. IX. BIOGRAPHICAL NOTE FOR T. BAYS ESSAY TOWARDS SOLVING A PROBLEM IN THE DOCTRINE OF CHANGES. /STICS. IX. BIOGRAPHICAL NOTE FOR T. BAYS ESSAY TOWARDS SOLVING A PROBLEM IN THE	ED BIOKA58 LE AMS 64 LE AMS 64 LE AMS 67 LL BIOCS68 LE AMS 66 LE AMS 66 LE AMS 66 LE AMS 68 LE AMS 61 LE AMS 61 LE AMS 61 LE BIOCS66 LE BI	181 429 201 159 1554 566 276 1020 49 233 404 303 17 285 716 791 127 127 301 1080 551 209 279 332 293 296 535 993 1 134 524 524 8
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESICNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN RECULAR MARKOV CHAINS SUFFICIENCY CONDITIONS IN RECULAR MARKOV CHAINS FUNCTIONS OF FINITE MARKOV CHAINS OCCILARSED MARKOV CHAINS AND CERTAIN RANDOW MALKS FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND THE CHAPMAN-ROLMOGOROV EQUATION DISTRIBUTIONS DIMENSIONAL CHAINS AND THE CHAPMAN-ROLMOGOROV EQUATION OF PATHS AND CHAINS OF RANDOM STRAIGHT-LINE SECMENTS APPLICATION OF FINITE ABSORBENT MARKOV CHAINS STORED FOR AND NORMAL ERROR- PATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WITH A DENUMBERBLE NUMBER OF STATES MARKOV CHAINS WITH A DENUMBERBLE NUMBER OF STATES MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C. OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS. SOME PROBLEM CORRICENDA TO 'THE LIKELTHOOD RATIO TEST FOR MARKOF CHAINS. CORRICENDA TO 'THE LIKELTHOOD RATIO TEST FOR MARKOV CHAINS. SOME PROBLEM ON THE CUMULATIVE EFFECT OF CHANCE DEVIATIONS BIRTHS PER COUPLE ON THE STATISTICAL TESTSBILLTY OF 'EXPLICIT CAUSAL CHAINS' A CHANCE MERCANDER AS A CHAINS BY THE ANALYSIS OF INTRA-HOUSE! SIGNIFICANCE TESTS FOR A VARIABLE CHANCE OF INFECTION FOR THE ANALYSIS OF INTRA-HOUSE! SESSAY TOWARDS SOLVING A PROBLEM IN THE DOCTRINE OF CHANCES. ON AN INDEX OF QUALITY CHANCE A TWO-STATE MARKOV MODEL FOR EMALVORAL CHAINS. A THAN THE DOCTRINE OF CHANCES. A TEST FOR A CHANCE IN A PARAMETER OCCUR	ED BIOKA58 LE AMS 64 LE AMS 64 N AMS 67 LL BIOCS68 ED AMS 66 CD AMS 68 JRSSB59 BIOKA56 AMS 63 TECH 63 TECH 63 TECH 66 BIOCS69 BIOKA56 AMS 61 AMS 61 AMS 63 TECH 66 BIOCS69 BIOKA56 AMS 61 BIOKA56 AMS 61 BIOKA57 SIDKA56 JASA 65 JASA 65 JASA 65 JASA 68 JASA 69 JASA 69 JASA 69 JASA 69 BIOKA55 BIOKA55 BIOKA58	181 429 201 159 1554 566 1646 36 276 1020 49 233 404 303 17 285 716 791 127 127 129 301 1080 551 269 279 332 293 296 535 993 11 134 523 248 181
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESICNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS AND CERTAIN RANDOW WALKS FUNCTIONS OF FINITE MARKOV CHAINS AND CERTAIN RANDOW WALKS FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND MARKOV SEQUENCES / OTIC DISTRIBUTION OF COLLAPSED MARKOV CHAINS AND MARKOV SEQUENCES / OTIC DISTRIBUTION OF FATHS AND CHAINS AND THE HAPMAN-HOLMOGOOV EQUATION DISTRIBUTIONS DIMENSIONAL CHAINS APPLICATION OF FINITE ABSOREENT MARKOV CHAINS OF RANDOM STRAIGHT-LINE SEGMENTS APPLICATION OF FINITE ABSOREENT MARKOV CHAINS TO SIE MATING POPULATIONS WITH SELECTION SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DENUMBERABLE NUMBER OF STATES MARKOV CHAINS WITH A DENUMBRABLE NUMBER OF STATES APATH-PROBABLITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL C, OF STATISTICAL INFERENCE IN ABSOREING MARKOV CHAINS, CORR. 61 1343 CORRICENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOV CHAINS, CORR. 61 1343 CORRICENDA TO 'THE LIKELHOOD RATIO TEST FOR MARKOV CHAINS, CORR. 61 1343 CORRICENDA TO THE USE OF CHAIN-BINOMIAL SWITH A SORBING STATES, A GENETIC EXAMPLE FOR A CHANCE MERCHANISM OF THE VARIATION IN THE NUMBER OF CHANCE OF THE CHANCES. (FINITE ADAPTIC AND APPLICATION OF THE ANALYSIS OF INTERA-HOUSE AND APPLICATION OF THE MARKOV CHAINS WITH AS DESTROYED OF CHANCE OF CHANCE OF INFECTION FOR THE ANALYSIS OF INTERA-HOUSE OF CHANCE OF CHANCE OF CHANCES. (FERTION OF THE ANA	ED BIOKA58 LE AMS 64 LE AMS 64 LE AMS 64 LE BIOCS68 LE AMS 66 LE AMS 66 LE AMS 66 LE AMS 68 LE AMS 61 LE BIOCS69 LE BIOCS66 LE BIOCS66 LE BIOCS65 LE BIOC	181 429 201 159 1554 566 276 1020 49 233 404 303 17 285 716 791 127 301 1080 551 269 279 332 293 293 293 293 293 293 293 293 29
RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOF CHAINS PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS DESICNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS BABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS SUFFICIENCY CONDITIONS IN RECULAR MARKOV CHAINS SUFFICIENCY CONDITIONS IN RECULAR MARKOV CHAINS FUNCTIONS OF FINITE MARKOV CHAINS OCCILARSED MARKOV CHAINS AND CERTAIN RANDOW MALKS FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES HE 'PSI-SQUARED' COODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND THE CHAPMAN-ROLMOGOROV EQUATION DISTRIBUTIONS DIMENSIONAL CHAINS AND THE CHAPMAN-ROLMOGOROV EQUATION OF PATHS AND CHAINS OF RANDOM STRAIGHT-LINE SECMENTS APPLICATION OF FINITE ABSORBENT MARKOV CHAINS TO SIB MATING POPULATIONS WITH SELECTION SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DEBUNDERABLE NUMBER OF STATES MARKOV CHAINS WITH A DEBUNDERABLE NUMBER OF STATES A PATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WITH A DEBUNDERABLE NUMBER OF STATES A PATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WITH A DEBUNDERABLE NUMBER OF STATES CORRICENDA TO 'THE LIKELTHOOD RATIO TEST FOR MARKOV CHAINS. CORRICENDA TO 'THE LIKELTHOOD RATIO TEST FOR MARKOV CHAINS. CORRICENDA TO 'THE LIKELTHOOD RATIO TEST FOR MARKOV CHAINS. CORRICENDA TO 'THE STABILITY OF 'EXPLICIT CAUSAL CHAINS' E ON THE STATISTICAL TESTABILITY OF 'EXPLICIT CAUSAL CHAINS' ON THE CUMULATIVE EFFECT OF CHANCE OF INFECTION IN CHAIN-BINOMIAL THEORY PRESENTATION OF THE BIOLOGICAL AND PHYSICAL DECAY OF CHAMBER ABROSOLS ON THE CUMULATIVE EFFECT OF CHANCE OF INFECTION FOR THE ANALYSIS OF INTRA-HOUSE! SIGNIFICANCE OF CHAIN-BI	DE BIOKA58 LE AMS 64 LE AMS 64 LE AMS 64 LE BIOCS68 LE AMS 66 LE AMS 66 LE AMS 66 LE AMS 68 LE AMS 61 LE BIOCS69 LE BIOCS66 LE BIOCS66 LE BIOCS65 LE BIOC	181 429 201 159 1554 566 276 1020 49 233 404 303 17 285 716 791 127 301 1080 551 269 279 332 293 293 293 293 293 293 293 293 29

CHA - CHI TITLE WORD INDEX

```
A RANDOM TIME CHANCE RELATINC SEMI-MARKOV AND MARKOV PROCESSES
                                                                                                            AMS 68 35B
NC PROBABILITIES PROPORTIONAL TO SIZE WHEN THE SIZES CHANCE SICNIFICANTLY /ESICNINC AREA SAMPLES UTILIZI JASA 68 12B0
                                      THE TWO-PERIOD CHANGE-OVER DESIGN AND ITS USE IN CLINICAL TRAILS
                                                                                                          BIOCS65 467
FOUR EQUALLY SPACED LEVELS (CORR. 67 586)
                                               A CHANCE-OVER DESIGN FOR TESTING A TREATMENT FACTOR AT
                                                                                                          JRSSB67
                                              CYCLIC CHANCE-OVER DESIGNS
                                                                                                           BIOKA69
                                SOME OBSERVATIONS ON CHANCE-OVER TRIALS
                                                                                                           BIOCS69
                                                                                                                   413
  VALUE OF ORTHOCONAL POLYNOMIALS IN THE ANALYSIS OF CHANCE-OVER TRIALS WITH DAIRY COWS
                                                                                                       THE 8IOCS67
                                      INCOME, INCOME CHANCE, AND DURABLE COODS DEMAND
                                                                                                           JASA 64 1194
                                                     CHANCEOVER DESIGNS BALANCED FOR THE LINEAR COMPONENT
OF FIRST RESIDUAL EFFECTS
                                                                                                          BTOKA68
                                                                                                                   297
                                    THE ANALYSIS OF CHANCEOVER DESIGNS WITH COMPLETE BALANCE FOR FIRST
RESIDUAL EFFECTS
                                                                                                           BIOCS67
                                                                                                                    578
                                             FACTOR CHANCES AND LINEAR TRENDS IN EICHT-RUN TWO LEVEL
FACTORIAL DESIGNS
                                                                                                           TECH 68
                                                                                                                    301
CAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. CHANGES IN CENSUS METHODS WASHINGTON STATISTI JASA 69 NO.4
                                                                                                                   797
ESTABLISHMENT OUTPUT 1939-195B
                                                     CHANCES IN CONCENTRATION OF DOMESTIC MANUFACTURING
                                                                                                          JASA 62
                            THE MEASUREMENT OF PRICE CHANCES IN CONSTRUCTION
                                                                                                           JASA 69
                                                                                                                   771
CURINC AT UNKNOWN TI/
                       TEST PROCEDURES FOR POSSIBLE CHANCES IN PARAMETERS OF STATISTICAL DISTRIBUTIONS OC AMS 66 1196
                                        ON DETECTING CHANGES IN THE MEAN OF NORMAL VARIATES
                                                                                                            AMS 69
FORMATION
                                                     CHANCES IN THE RATE AND COMPONENTS OF HOUSEHOLD
                                                                                                          JASA 60
                                                     CHANCES IN THE SIZE DISTRIBUTION OF DIVIDEND INCOME
                                                                                                          JASA 61
                                                                       ESTIMATING THE CURRENT
 MEAN OF A NORMAL DISTRIBUTION WHICH IS SUBJECTED TO CHANCES IN TIME
                                                                                                          AMS 64
    PROBLEMS ABOUT PARAMETERS WHICH ARE SUBJECTED TO CHANCES OVER TIME
                                                                                                INFERENCE
                                                                                                            AMS 68
                 SOME EXPERIMENTAL DESIGNS OF USE IN CHANGING FROM ONE SET OF TREATMENTS TO ANOTHER, PART JRSS857
                                                                                                                    154
                 SOME EXPERIMENTAL DESIGNS OF USE IN CHANCING FROM ONE SET OF TREATMENTS TO ANOTHER, PART
  EXISTENCE/
                                                                                                          JRSSB57
                                                                                                                    163
EQUENTIAL LIFE FOR THE EXPONENTIAL DISTRIBUTION WITH CHANCING PARAMETER
                                                                                                        S TECH 66
                                                                                                                   217
                                 THE ESTIMATION OF A CHANCINC SEASONAL PATTERN, CORR. 66 1247
                                                                                                          JASA 64 1063
  INFORMATION AND STATISTICAL INFERENCE IN A RAPIDLY CHANCING WORLD
                                                                               THE QUALITY OF STATISTICAL JASA 67
                ON THE CODING THEOREM FOR NOISELESS CHANNEL
                                                                                                            AMS 61
  THE PROBABILITY OF ERROR FOR A DISCRETE MEMORYLESS CHANNEL
                                                                                    EXPONENTIAL BOUNDS ON
                                                                                                            AMS 61
                                                                                                                   577
                   CONVERCENCE THEOREMS FOR MULTIPLE CHANNEL LOSS PROBABILITIES
                                                                                                            AMS 63
                                                                                                                    260
TINUOUS TIME SOLUTION OF THE EQUATIONS OF THE SINCLE CHANNEL QUEUE WITH A CENERAL CLASS OF SERVICE-TIME DI JRSSB58
               A FINITE CRITERION FOR INDECOMPOSABLE CHANNELS
                                                                                                                   337
                                                                                                            AMS 63
        THE REAL STABLE CHARACTERISTIC FUNCTIONS AND CHAOTIC ACCELERATION
                                                                                                           JRSSB61
                                                                                                                   180
                                             ON THE CHAPMAN-KOLMOCOROV EQUATION
                                                                                                            AMS 61 1333
                     COLLAPSED MARKOV CHAINS AND THE CHAPMAN-KOLMOCOROV EQUATION
                                                                                                            AMS 63 233
                                       ON THE BAYES CHARACTER OF A STANDARD MODEL II ANALYSIS OF VARIANCE
                                                                                                           AMS 69 1094
 TEST
                                            MINIMAX CHARACTER OF HOTELLINC'S T-SQUARED TEST IN THE
SIMPLEST CASE
                                                                                                            AMS 63 1524
                                   ADMISSIBLE BAYES CHARACTER OF T-SQUARED, R-SQUARED AND OTHER FULLY INV
ARIANT TESTS FOR CLASSICAL MULTI/
                                                                                                            AMS 65 747
                                    ON THE MONOTONIC CHARACTER OF THE POWER FUNCTIONS OF TWO MULTIVARIATE
                                                                                                            AMS 61 1145
                                            MINIMAX CHARACTER OF THE R-SQUARED-TEST IN THE SIMPLEST CASE
                                                                                                            AMS 64 1475
                              REMARK ON THE OPTIMUM CHARACTER OF THE SEQUENTIAL PROBABILITY RATIO TEST
                                                                                                            AMS 66
    FREQUENCIES OF INTECERS WITH A CIVEN PARTITIONAL CHARACTERISTIC
                                                                                             THE LIMITING JRSSB59
CREENBERC'S INDEX OF LINCUISTIC DIVERSITY AND YULE'S CHARACTERISTIC
                                                                       THE MATHEMATICAL RELATION BETWEEN BIOKA58
H CAN BE USED FOR THE DETERMINATION OF THE OPERATING CHARACTERISTIC AND AVERACE SAMPLE NUMBER OF A SIMPLE JRSSB67
SEQUENTIAL/
             FORMULAE FOR CALCULATING THE OPERATING CHARACTERISTIC AND THE AVERACE SAMPLE NUMBER OF SOME JRSSB58
                                                                                                                   379
BLES WHEN THE PRODUCER'S AND CONSUM/ THE OPERATINC CHARACTERISTIC CURVE FOR SEQUENTIAL SAMPLING BY VARIA JASA 56
                                                                                                                   108
                       OPTIMALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABIL JASA 64
ITY RATIO TEST
                                                                                                                    464
HE 10 PERCENT AND 50 PERCENT POINTS OF THE OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECTS ANALYSIS OF V JASA 57
                                                                                                                   345
OF PATTERNED MATRICES EVALUATION OF DETERMINANTS, CHARACTERISTIC EQUATIONS AND THEIR ROOTS FOR A CLASS JRSSB60
                                                                                                                   348
 THE EXPONENTIAL CASE
                                   EXACT OPERATING CHARACTERISTIC FOR TRUNCATED SEQUENTIAL LIFE TESTS IN
                                                                                                          AMS 62 1403
    REDUCTION OF THE MULTIVARIATE NORMAL INTECRAL TO CHARACTERISTIC FORM
                                                                                                          BIOKA67
                                                                                                                   293
DISTRIBUTION
                                        NOTE ON THE CHARACTERISTIC FUNCTION OF A SERIAL-CORRELATION
                                                                                                          BIOKA5B
IN COMPLEX NORMAL VARIABLES
                                                THE CHARACTERISTIC FUNCTION OF HERMITIAN QUADRATIC FORMS BIOKAGO
                                                                                                                   199
                ON THE ORDER AND THE TYPE OF ENTIRE CHARACTERISTIC FUNCTIONS
                                                                                                           AMS 62
                                                                                                                  123B
             LIPSCHITZ BEHAVIOR AND INTECRABILITY OF CHARACTERISTIC FUNCTIONS
                                                                                                            AMS 67
                        SOME INTEGRAL TRANSFORMS OF CHARACTERISTIC FUNCTIONS
                                                                                                           AMS 68 1923
                                          A NOTE ON CHARACTERISTIC FUNCTIONS
                                                                                                           AMS 69
                                                                                                                  303
                                    THE REAL STABLE CHARACTERISTIC FUNCTIONS AND CHAOTIC ACCELERATION
                                                                                                          JRSSB61
                                                                                                                   180
                  ON FINITE PRODUCTS OF POISSON-TYPE CHARACTERISTIC FUNCTIONS OF SEVERAL CARIABLES
                                                                                                           AMS 69
                                                                                                                   434
   KOLMOGOROFF-TYPE INEQUALITY FOR MARTINGALES AND A CHARACTERISTIC PROPERTY
                                                                                          A BEST POSSIBLE
                                                                                                                   764
                                                                                                           AMS 69
                                            ANOTHER CHARACTERISTIC PROPERTY OF THE CAUCHY DISTRIBUTION
                                                                                                           AMS 66
                                                                                                                   289
                                                  A CHARACTERISTIC PROPERTY OF THE MULTIVARIATE NORMAL
DISTRIBUTION
                                                                                                           AMS 66 1829
                 ON THE DISTRIBUTION OF THE LARGEST CHARACTERISTIC ROOT OF A MATRIX IN MULTIVARIATE ANALY BIOKA65 405
COMPL/
        DISTRIBUTION OF THE LARCEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL HYPOTHESIS CONCERNING
                                                                                                           AMS 64 1807
                        ON THE BIAS OF FUNCTIONS OF CHARACTERISTIC ROOTS OF A RANDOM MATRIX
                                                                                                          8I0KA65
                                                                                                                    87
                               SOME INEQUALITIES ON CHARACTERISTIC ROOTS OF MATRICES
                                                                                                          BIOKA63
                                                                                                                   522
                   CORRIGENDA, 'SOME INEQUALITIES ON CHARACTERISTIC ROOTS OF MATRICES'
                                                                                                          8I0KA65
                                                                                                                   669
ATE/ SOME DISTRIBUTION PROBLEMS CONNECTED WITH THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARI AMS 67
                                                                                                                   944
                       PAIRED COMPARISONS FOR PAIRED CHARACTERISTICS
                                                                                                            AMS 68
                                                                                                                   200
   8AYESIAN STRATIFIED TWO-PHASE SAMPLING RESULTS, K CHARACTERISTICS
                                                                                                          BIOKA68
                                                                                                                   587
 CENERAL SYSTEM OF DISTRIBUTIONS, I. ITS CURVE-SHAPE CHARACTERISTICS II. THE SAMPLE MEDIAN
                                                                                                     ON A JASA 68
                                                                                                                   627
PARINC INTENSITIES OF ASSOCIATION BETWEEN TWO 8INARY CHARACTERISTICS IN TWO DIFFERENT POPULATIONS ON COM JASA 61
                                                                                                                   889
                                   SOME STATISTICAL CHARACTERISTICS OF A PEAK TO AVERAGE RATIO
                                                                                                          TECH 65
RATES, OCCURRENCES PER PERSON YEAR OF EXPOSURE
                                                    CHARACTERISTICS OF A RATIO USED TO ESTIMATE FAILURE
                                                                                                          8I0CS66
                                                                                                                   310
                                         ON CERTAIN CHARACTERISTICS OF SOME DISCRETE DISTRIBUTIONS
                                                                                                          BIOKA60
                                                                                                                   473
                                          OPERATING CHARACTERISTICS OF SOME SEQUENTIAL DESIGN RULES
                                                                                                           AMS 68 1176
                               APPROXIMATIONS TO THE CHARACTERISTICS OF SOME SEQUENTIAL TESTS
                                                                                                          BIOKA69
                                                                                                                   203
TS OF A SYMMETRIC RANDOM MATRIX UNDER/ ON CERTAIN CHARACTERISTICS OF THE DISTRIBUTION OF THE LATENT ROO AMS 61
                                                                                                                   864
                   VALIDATION OF CONSUMER FINANCIAL CHARACTERISTICS, COMMON STOCK
                                                                                                          JASA 69
                                                                                                                   415
MARKOV CHAINS
                                                   A CHARACTERIZATION OF A CLASS OF FUNCTIONS OF FINITE
                                                                                                           AMS 65
                                                                                                                   524
                                 A MEAN-SQUARE-ERROR CHARACTERIZATION OF BINOMIAL-TYPE DISTRIBUTIONS
                                                                                                           AMS 67
                                                                                                                   620
CONSTANTS
                                                  A CHARACTERIZATION OF CERTAIN SEQUENCES OF NORMINC
                                                                                                           AMS 68
                                                                                                                  391
                                  MAXIMUM LIKELIHOOD CHARACTERIZATION OF DISTRIBUTIONS
                                                                                                           AMS 61 1214
DISTRIBUTIONS
                                                     CHARACTERIZATION OF GEOMETRIC AND EXPONENTIAL
                                                                                                           AMS 66 1790
                                                                                                           AMS 64 735
                                                     CHARACTERIZATION OF MULTISAMPLE DISTRIBUTION-FREE
NORMAL DISTRIBUTIONS USING ORDER STATISTICS
                                                    CHARACTERIZATION OF NORMAL AND CENERALIZED TRUNCATED
                                                                                                           AMS 66 1011
                                                   A CHARACTERIZATION OF NORMALITY
                                                                                                           AMS 67 1924
             APPLICATION OF SPECIAL FUNCTIONS IN THE CHARACTERIZATION OF PROBABILITY DISTRIBUTIONS
                                                                                                          SASJ 69
```

TITLE WORD INDEX CHA - CHI

	CHARACTERIZATION OF SYMMETRIC STABLE PROCESSES WITH		
	CHARACTERIZATION OF THE CAUCHY DISTRIBUTION	AMS 62 AMS 69	
	CHARACTERIZATION OF THE CAUCHY DISTRIBUTION CHARACTERIZATION OF THE EXPONENTIAL DISTRIBUTION	AMS 64	
	CHARACTERIZATION OF THE EXPONENTIAL-TYPE DISTRIBUTION	BIOKA63	205
A TOWN TO LINE	CHARACTERIZATION OF THE INVERSE CAUSSIAN DISTRIBUTION	AMS 62 AMS 62	
	CHARACTERIZATION OF THE MULTIVARIATE NORMAL CHARACTERIZATION OF THE UNIFORM DISTRIBUTION ON A	AMS 62	
	CHARACTERIZATION OF THE UPPER AND LOWER CLASSES IN	AMS 69	
	CHARACTERIZATION OF THE WEAK CONVERCENCE OF MEASURES	AMS 61	
	CHARACTERIZATION OF THE WISHART DISTRIBUTION CHARACTERIZATION OF WEAR-OUT FOR COMPONENTS AND	AMS 62 AMS 66	
PROBABILITY DISTRIBUTIONS	CHARACTERIZATION THEOREMS FOR SOME UNIVARIATE		
PROBABILITY DISTRIBUTIONS	CHARACTERIZATION THEOREMS FOR SOME UNIVARIATE	JRSSB66	
OF BIVARIATE AND MULTIVARIATE DISTRIBUTIONS	CHARACTERIZATIONS OF CONDITIONAL EXPECTATIONS CHARACTERIZATIONS OF INDEPENDENCE IN CERTAIN FAMILIES		
OF LINEAR STATISTICS ON ANOTHER LINEAR STATISTIC	CHARACTERIZATIONS OF INDEFENDENCE IN CERTAIN FAMILIES CHARACTERIZATIONS OF NORMALITY BY CONSTANT RECRESSION		
CONDITIONAL MOMENTS	CHARACTERIZATIONS OF SOME DISTRIBUTIONS BY	AMS 65	
N A PARAMETER BY RECURRENCE RELATIONS FOR FUNCTIO/	CHARACTERIZATIONS OF THE LINEAR EXPONENTIAL FAMILTY I CHARACTERIZATIONS OF THE NORMAL DISTRIBUTION	AMS 69 AMS 68	
	CHARACTERIZING THE CHI SQUARE DISTRIBUTION BY THE	JASA 66	976
	CHARACTERIZING THE EXPONENTIAL DISTRIBUTION	BIOCS6B	437
ON OPTIMUM STRATIFICATION WITH TWO	CHARACTERS THE NORMAL DISTRIBUTION BY STUDENT'S	BIOKA66 AMS 63	603 866
ISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE			
	CHARLES JORDAN, 1871-1959	AMS 61	1
SMALL SAMPLE PROBABILITY LIMITS FOR THE RANGE ANS FROM LOGNORMAL POPULATIONS AGAINST A GIVEN/ A	CHART (CORR. 6B 1549) CHART FOR SEQUENTIALLY TESTING OBSERVED ARITHMETIC ME	JASA 67	
	CHART FOR SEQUENTIALLY TESTING OBSERVED ARITHMETIC ME CHART FOR THE INCOMPLETE BETA-FUNCTION AND THE CUMULA		605 423
A COMPARISON OF SOME CONTROL	CHART PROCEDURES	TECH 66	411
AVERAGE RUN LENGTHS IN CUMULATIVE	CHART QUALITY CONTROL SCHEMES CHART TESTS BASED ON CEOMETRIC MOVING AVERAGES	TECH 61 TECH 59	11 239
	CHART WITH WARNING LINES	BIOKA62	171
CUMULATIVE SUM	CHARTS	TECH 61	1
WHEN AND HOW TO USE CU-SUM		TECH 63	1
THE ECONOMIC DESIGN OF CUMULATIVE SUM CONTROL THEORETICAL APPROACH TO CUMULATIVE SUM CONTROL		TECH 6B	479 835
CONTROL	CHARTS AND STOCHASTIC PROCESSES (WITH DISCUSSION)	JRSSB59	239
	CHARTS AND THE MINIMIZATION OF COSTS (WITH	JRSSB63	49
	CHARTS AND THE WEIBULL DISTRIBUTION CHARTS FOR THE FOLDED NORMAL DISTRIBUTION	TECH 66 TECH 63	481 451
	CHARTS FOR THE MEAN OF A NORMAL POPULATION	JRSSB54	
		91/22004	131
TESTS, DERIVED FROM THE NON-CENTRAL F-DISTRIBUTI/	CHARTS OF THE POWER FUNCTION FOR ANALYSIS OF VARIANCE	BIOKA51	112
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE	BIOKA51 JASA 57	112 345
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN		BIOKA51 JASA 57 JASA 56 BIOKA55	112 345 228 243
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHEATING	BIOKA51 JASA 57 JASA 56 BIOKA55 AMS 69	112 345 228 243 1477
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH— EXTENSIONS TO CONTINUOUS	BIOKA51 JASA 57 JASA 56 BIOKA55 AMS 69 AMS 61	112 345 228 243 1477 6B7
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO NEW	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH- EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO	BIOKA51 JASA 57 JASA 56 BIOKA55 AMS 69 AMS 61 AMS 63 JASA 69	112 345 228 243 1477 6B7 892 647
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO NEW A SIMPLE SOLUTION FOR OPTIMAL	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH- EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV RECRESSION EXTRAPOLATION	BIOKA51 JASA 57 JASA 56 BIOKA55 AMS 69 AMS 61 AMS 63 JASA 69 AMS 66	112 345 228 243 1477 6B7 892 647 720
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO A SIMPLE SOLUTION FOR OPTIMAL INEQUALITIES OF	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH- EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO	BIOKA51 JASA 57 JASA 56 BIOKA55 AMS 69 AMS 61 AMS 63 JASA 69	112 345 228 243 1477 6B7 892 647 720
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO NEW A SIMPLE SOLUTION FOR OPTIMAL INEQUALITIES OF RANDOM VARIABLES ON A COMPUTATIONS A	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH- EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV REGRESSION EXTRAPOLATION CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV-TYPE INEQUALITY FOR SUMS OF INDEPENDENT CHECK ON CROSS ERRORS IN CERTAIN VARIANCE	BIOKA51 JASA 57 JASA 56 BIOKA55 AMS 69 AMS 61 AMS 63 JASA 66 AMS 69 AMS 69 AMS 69 AMS 66 JASA 59	112 345 228 243 1477 6B7 892 647 720 NO.6 248 741
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO A SIMPLE SOLUTION FOR OPTIMAL INEQUALITIES OF RANDOM VARIABLES ON A COMPUTATIONS A THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH— EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV—TYPE INEQUALITY FOR SUMS OF INDEPENDENT CHECK ON CROSS ERRORS IN CERTAIN VARIANCE CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO	BIOKA51 JASA 57 JASA 56 BIOKA55 AMS 69 AMS 61 AMS 63 JASA 69 AMS 66 AMS 66 AMS 66 JASA 59 BIOCS67	112 345 228 243 1477 6B7 892 647 720 NO.6 248 741 571
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO A SIMPLE SOLUTION FOR OPTIMAL INEQUALITIES OF RANDOM VARIABLES ON A COMPUTATIONS ON A THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING NOTES.	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH- EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV REGRESSION EXTRAPOLATION CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV-TYPE INEQUALITY FOR SUMS OF INDEPENDENT CHECK ON CROSS ERRORS IN CERTAIN VARIANCE	BIOKA51 JASA 57 JASA 56 BIOKA55 AMS 69 AMS 61 AMS 63 JASA 66 AMS 69 AMS 69 AMS 69 AMS 66 JASA 59	112 345 228 243 1477 6B7 892 647 720 NO.6 248 741
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO NEW A SIMPLE SOLUTION FOR OPTIMAL INEQUALITIES OF RANDOM VARIABLES ON A COMPUTATIONS A THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING NOTES. A PROBLEM OF OPTIMUM ALLOCATION ARISING IN EVALUATION OF	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH— EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV REGRESSION EXTRAPOLATION CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV—TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV—TYPE INEQUALITY FOR SUMS OF INDEPENDENT CHECK ON CROSS ERRORS IN CERTAIN VARIANCE CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO CHECKS ON YATES'S ALGORITHM CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION CHEMICAL ANALYSES ON TWO ROCKS	BIOKA51 JASA 57 JASA 56 BIOKA55 AMS 69 AMS 61 AMS 66 AMS 66 AMS 66 AMS 66 JASA 59 BIOCS67 BIOCS67 TECH 61 TECH 59	112 345 228 243 1477 6B7 892 647 720 NO.6 248 741 571 573 509 409
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO A SIMPLE SOLUTION FOR OPTIMAL INEQUALITIES OF RANDOM VARIABLES ON A COMPUTATIONS A THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING NOTES. A PROBLEM OF OPTIMUM ALLOCATION ARISING IN EVALUATION OF METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH— EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV—TYPE INEQUALITY FOR SUMS OF INDEPENDENT CHECK ON CROSS ERRORS IN CERTAIN VARIANCE CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO CHECKS ON YATES'S ALGORITHM CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION CHEMICAL ANALYSES ON TWO ROCKS CHEMICAL DATA	BIOKA51 JASA 57 JASA 56 BIOKA55 AMS 69 AMS 63 JASA 69 AMS 66 AMS 66 AMS 66 AMS 66 BIOCS67 BIOCS67 TECH 61 TECH 59 TECH 69	112 345 228 243 1477 687 892 647 720 NO.6 248 741 571 573 509 409 411
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO NEW A SIMPLE SOLUTION FOR OPTIMAL INEQUALITIES OF RANDOM VARIABLES ON A COMPUTATIONS A PROBLEM OF OPTIMUM ALLOCATION ARISING IN NOTES. A PROBLEM OF OPTIMUM ALLOCATION ARISING IN EVALUATION OF METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND OPTIMIZATION OF QUALITY CONTROL IN THE A MODEL FOR	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH— EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV REGRESSION EXTRAPOLATION CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV—TYPE INEQUALITY FOR SUMS OF INDEPENDENT CHECK ON CROSS ERRORS IN CERTAIN VARIANCE CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO CHECKS ON YATES'S ALGORITHM CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION CHEMICAL ANALYSES ON TWO ROCKS CHEMICAL DATA A CHEMICAL LABORATORY	BIOKA51 JASA 57 JASA 56 BIOKA55 AMS 69 AMS 61 AMS 66 AMS 66 AMS 66 AMS 66 JASA 59 BIOCS67 BIOCS67 TECH 61 TECH 59	112 345 228 243 1477 687 892 647 720 NO.6 248 741 571 573 509 409 411 519
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO NEW A SIMPLE SOLUTION FOR OPTIMAL INEQUALITIES OF RANDOM VARIABLES ON A COMPUTATIONS A PROBLEM OF OPTIMUM ALLOCATION ARISING IN NOTES. A PROBLEM OF OPTIMUM ALLOCATION ARISING IN EVALUATION OF METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND OPTIMIZATION OF QUALITY CONTROL IN THE A MODEL FOR	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH— EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV REGRESSION EXTRAPOLATION CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV—TYPE INEQUALITY FOR SUMS OF INDEPENDENT CHECK ON CROSS ERRORS IN CERTAIN VARIANCE CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO CHECKS ON YATES'S ALGORITHM CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION CHEMICAL ANALYSES ON TWO ROCKS CHEMICAL DATA A CHEMICAL LABORATORY	BIOKA51 JASA 57 JASA 56 BIOKA55 AMS 69 AMS 63 JASA 69 AMS 66 AMS 66 JASA 59 BIOCS67 BIOCS67 TECH 61 TECH 69 TECH 66 BIOCS65 TECH 61	112 345 228 243 1477 687 892 647 720 NO.6 248 741 573 509 409 411 519 875 497
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO A SIMPLE SOLUTION FOR OPTIMAL INEQUALITIES OF RANDOM VARIABLES ON A COMPUTATIONS AND THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING NOTES. A PROBLEM OF OPTIMUM ALLOCATION ARISING IN EVALUATION OF METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND OPTIMIZATION OF QUALITY CONTROL IN THE A MODEL FOR SIMULATION PROCRAMME FOR MATERIAL FLOW IN BATCH SEQUENTIAL COMBINATION	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH— EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV REGRESSION EXTRAPOLATION CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV—TYPE INEQUALITY FOR SUMS OF INDEPENDENT CHECK ON CROSS ERRORS IN CERTAIN VARIANCE CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO CHECKS ON YATES'S ALCORITHM CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION CHEMICAL ANALYSES ON TWO ROCKS CHEMICAL DATA A CHEMICAL LABORATORY CHEMICAL LABORATORY CHEMICAL LABORATORY CHEMICAL MUTAGENESIS IN BACTERIOPHAGE CHEMICAL PLANTS A CENERAL CHEMICAL PLANTS A CENERAL CHEMICAL PLANTS A CENERAL CHEMICAL PLANTS	BIOKA51 JASA 56 JASA 56 BIOKA55 AMS 69 AMS 61 AMS 63 JASA 69 AMS 66 AMS 66 JASA 59 BIOCS67 TECH 61 TECH 69 TECH 66 BIOCS65 TECH 66 BIOCS65	112 345 228 243 1477 6B7 892 647 720 NO.6 248 741 571 573 509 409 411 519 B75 497 730
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO NEW A SIMPLE SOLUTION FOR OPTIMAL INEQUALITIES OF RANDOM VARIABLES ON A COMPUTATIONS A THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING NOTES. A PROBLEM OF OPTIMUM ALLOCATION ARISING IN EVALUATION OF METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND OPTIMIZATION OF QUALITY CONTROL IN THE A MODEL FOR SIMULATION PROCRAMME FOR MATERIAL FLOW IN BATCH SEQUENTIAL COMBINATION RANDOMIZED BLOCKS ON A TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH— EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV REGRESSION EXTRAPOLATION CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV—TYPE INEQUALITY FOR SUMS OF INDEPENDENT CHECK ON CROSS ERRORS IN CERTAIN VARIANCE CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO CHECKS ON YATES'S ALCORITHM CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION CHEMICAL DATA CHEMICAL LABORATORY CHEMICAL LABORATORY CHEMICAL MUTAGENESIS IN BACTERIOPHAGE CHEMICAL PLANTS A CENERAL CHEMOTHERAPY EXPERIMENTS CHERNOFF—SAVAGE TESTS FOR ORDERED ALTERNATIVES IN CHERNOFF—SAVAGE TESTS FOR ORDERED ALTERNATIVES IN CHERNOFF—SAVAGE TESTS FOR ORDERED ALTERNATIVES IN WEAK CONVERGENCE OF	BIOKA51 JASA 57 JASA 56 BIOKA55 AMS 69 AMS 61 AMS 63 JASA 69 AMS 66 AMS 66 JASA 59 BIOCS67 TECH 61 TECH 69 TECH 66 BIOCS65 TECH 61 BIOCS65 AMS 66 AMS 66 AMS 66 AMS 66	112 345 228 243 1477 6B7 892 647 720 NO.6 248 741 573 509 409 411 519 B75 497 730 967
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO A SIMPLE SOLUTION FOR OPTIMAL INEQUALITIES OF RANDOM VARIABLES ON A COMPUTATIONS A THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING NOTES. A PROBLEM OF OPTIMUM ALLOCATION ARISING IN EVALUATION OF METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND OPTIMIZATION OF QUALITY CONTROL IN THE A MODEL FOR SIMULATION PROCRAMME FOR MATERIAL FLOW IN BATCH SEQUENTIAL COMBINATION RANDOMIZED BLOCKS ON A TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO WEAK CONVERGENCE AND A	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH— EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV—TYPE INEQUALITY FOR SUMS OF INDEPENDENT CHECK ON CROSS ERRORS IN CERTAIN VARIANCE CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO CHECKS ON YATES'S ALGORITHM CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION CHEMICAL DATA CHEMICAL LABORATORY CHEMICAL LABORATORY CHEMICAL MUTAGENESIS IN BACTERIOPHAGE CHEMICAL PLANTS A CENERAL CHEMOTHERAPY EXPERIMENTS CHERNOFF—SAVAGE TESTS FOR ORDERED ALTERNATIVES IN CHERNOFF—SAVAGE THEOREM WEAK CONVERGENCE OF CHERNOFF—SAVAGE THEOREM WEAK CONVERGENCE OF	BIOKA51 JASA 56 BIOKA55 AMS 69 AMS 61 AMS 63 JASA 69 AMS 66 AMS 66 AMS 66 BIOCS67 BIOCS67 TECH 61 TECH 65 TECH 66 BIOCS65 TECH 66 BIOCS65 AMS 68 AMS 68 AMS 68 AMS 68	112 345 228 243 1477 6B7 892 647 720 NO.6 248 741 571 573 509 411 519 875 497 730 967 755 1675
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO A SIMPLE SOLUTION FOR OPTIMAL INEQUALITIES OF RANDOM VARIABLES ON A COMPUTATIONS A THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING NOTES. A PROBLEM OF OPTIMUM ALLOCATION ARISING IN EVALUATION OF METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND OPTIMIZATION OF QUALITY CONTROL IN THE A MODEL FOR SIMULATION PROCRAMME FOR MATERIAL FLOW IN BATCH SEQUENTIAL COMBINATION RANDOMIZED BLOCKS ON A TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO WEAK CONVERGENCE AND A A NOTE ON	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH— EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV REGRESSION EXTRAPOLATION CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV—TYPE INEQUALITY FOR SUMS OF INDEPENDENT CHECK ON CROSS ERRORS IN CERTAIN VARIANCE CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO CHECKS ON YATES'S ALGORITHM CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION CHEMICAL DATA CHEMICAL LABORATORY CHEMICAL LABORATORY CHEMICAL MUTAGENESIS IN BACTERIOPHAGE CHEMICAL PLANTS A CENERAL CHEMOTHERAPY EXPERIMENTS CHERNOFF—SAVAGE THEOREM WEAK CONVERGENCE OF CHERNOFF—SAVAGE THEOREM WEAK CONVERGENCE OF CHERNOFF—SAVAGE THEOREM CHEMICAL SIZES CHERNOFF—SAVAGE THEOREM WEAK CONVERGENCE OF	BIOKA51 JASA 56 BIOKA55 AMS 69 AMS 61 AMS 63 JASA 69 AMS 66 AMS 66 AMS 66 BIOCS67 BIOCS67 TECH 61 TECH 65 TECH 66 BIOCS65 TECH 66 BIOCS66 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68	112 345 228 243 1477 687 720 NO.6 248 741 571 573 409 409 411 519 875 1675 1675 1675 1116
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO A SIMPLE SOLUTION FOR OPTIMAL INEQUALITIES OF RANDOM VARIABLES ON A COMPUTATIONS A THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING NOTES. A PROBLEM OF OPTIMUM ALLOCATION ARISING IN EVALUATION OF METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND OPTIMIZATION OF QUALTTY CONTROL IN THE A MODEL FOR SIMULATION PROCRAMME FOR MATERIAL FLOW IN BATCH SEQUENTIAL COMBINATION RANDOMIZED BLOCKS ON A TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO WEAK CONVERGENCE AND A A NOTE ON TABLE OF PERCENTAGE POINTS OF NON-CENTRAL AND DEGREES OF FREEDOM FOR SMALL SAMPLE SIZES FOR	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH— EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV REGRESSION EXTRAPOLATION CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV—TYPE INEQUALITY FOR SUMS OF INDEPENDENT CHECK ON CROSS ERRORS IN CERTAIN VARIANCE CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO CHECKS ON YATES'S ALGORITHM CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION CHEMICAL DATA CHEMICAL LABORATORY CHEMICAL LABORATORY CHEMICAL MUTAGENESIS IN BACTERIOPHAGE CHEMICAL PLANTS CHEMOTHERAPY EXPERIMENTS CHERNOFF-SAVAGE TESTS FOR ORDERED ALTERNATIVES IN CHERNOFF-SAVAGE THEOREM WEAK CONVERGENCE OF CHERNOFF-SAVAGE THEOREM FOR RANDOM SAMPLE SIZES CHERNOFF-SAVAGE THEOREM CHI APPROXIMATION TO THE RANGE SCALE FACTORS CHI CHI APPROXIMATION TO THE RANGE CHEATING CHERNOFF-SAVAGE THEOREM CHI CHI APPROXIMATION TO THE RANGE CHERNOFF-SAVAGE TACTORY CHI CHI APPROXIMATION TO THE RANGE CHERNOFF-SAVAGE TACTORY CHERNOFF-SAVAGE TACTORY CHERNOFF-SAVAGE TACTORY CHERNOFT-SAVAGE TACTORY CHERNO	BIOKA51 JASA 56 BIOKA55 AMS 69 AMS 61 AMS 63 JASA 69 AMS 66 AMS 66 BIOCS67 BIOCS67 TECH 61 TECH 65 TECH 66 BIOCS65 TECH 66 BIOCS65 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68	112 345 228 243 1477 6B7 8892 647 720 00 6 6 248 741 571 571 571 571 571 571 571 571 675 1675 1
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO A SIMPLE SOLUTION FOR OPTIMAL INEQUALITIES OF RANDOM VARIABLES ON A COMPUTATIONS A THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING NOTES. A PROBLEM OF OPTIMUM ALLOCATION ARISING IN EVALUATION OF METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND OPTIMIZATION OF QUALTTY CONTROL IN THE A MODEL FOR SIMULATION PROCRAMME FOR MATERIAL FLOW IN BATCH SEQUENTIAL COMBINATION RANDOMIZED BLOCKS ON A TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO WEAK CONVERGENCE AND A NOTE ON TABLE OF PERCENTAGE POINTS OF NON-CENTRAL AND DEGREES OF FREEDOM FOR SMALL SAMPLE SIZES FOR ON THE USE OF PATNAIK TYPE	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH— EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV REGRESSION EXTRAPOLATION CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV—TYPE INEQUALITY FOR SUMS OF INDEPENDENT CHECK ON CROSS ERRORS IN CERTAIN VARIANCE CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO CHECKS ON YATES'S ALGORITHM CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION CHEMICAL ANALYSES ON TWO ROCKS CHEMICAL DATA CHEMICAL LABORATORY CHEMICAL LABORATORY CHEMICAL MUTAGENESIS IN BACTERIOPHAGE CHEMICAL PLANTS CHEMOFF-SAVAGE TESTS FOR ORDERED ALTERNATIVES IN CHERNOFF-SAVAGE TESTS FOR ORDERED ALTERNATIVES IN CHERNOFF-SAVAGE THEOREM WEAK CONVERGENCE OF CHERNOFF-SAVAGE THEOREM WEAK CONVERGENCE OF CHENNOFF-SAVAGE THEOREM FOR RANDOM SAMPLE SIZES CHERNOFF-SAVAGE THEOREMS CHI APPROXIMATION TO THE RANGE SCALE FACTORS CHI APPROXIMATIONS TO THE RANGE IN SIGNIFICANCE TESTS	BIOKAS1 JASA 57 JASA 56 BIOKAS5 AMS 69 AMS 61 AMS 63 JASA 69 AMS 66 AMS 66 JASA 59 BIOCS67 TECH 61 TECH 69 TECH 66 BIOCS65 TECH 66 BIOCS65 TECH 66 BIOCS66 AMS 68	112 345 228 243 1477 6B7 720 647 720 667 757 369 409 875 755 1116 255 1116 248 248 248
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO NEW A SIMPLE SOLUTION FOR OPTIMAL INEQUALITIES OF RANDOM VARIABLES ON A COMPUTATIONS A THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING NOTES. A PROBLEM OF OPTIMUM ALLOCATION ARISING IN EVALUATION OF METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND OPTIMIZATION OF QUALITY CONTROL IN THE A MODEL FOR SIMULATION PROCRAMME FOR MATERIAL FLOW IN BATCH SEQUENTIAL COMBINATION RANDOMIZED BLOCKS ON A TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO WEAK CONVERGENCE AND A NOTE ON TABLE OF PERCENTAGE POINTS OF NON-CENTRAL AND DEGREES OF FREEDOM FOR SMALL SAMPLE SIZES FOR NOTES. A DEFIGIENCY IN THE SUMMATION OF	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHAETS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH— EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV—TYPE INEQUALITY FOR SUMS OF INDEPENDENT CHECK ON CROSS ERRORS IN CERTAIN VARIANCE CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO CHECKS ON YATES'S ALGORITHM CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION CHEMICAL ANALYSES ON TWO ROCKS CHEMICAL DATA A A CHEMICAL LABORATORY CHEMICAL MUTAGENESIS IN BACTERIOPHAGE CHEMICAL PLANTS CHEMOTHERAPY EXPERIMENTS CHEMOTHERAPY EXPERIMENTS CHEMOTHERAPY EXPERIMENTS CHERNOFF—SAVAGE THEOREM WEAK CONVERGENCE OF CHERNOFF—SAVAGE THEOREM FOR RANDOM SAMPLE SIZES CHI APPROXIMATION TO THE RANGE SCALE FACTORS CHI APPROXIMATIONS TO THE RANGE IN SIGNIFICANCE TESTS CHI APPROXIMATIONS TO THE RANGE IN SIGNIFICANCE TESTS	BIOKAS1 JASA 57 JASA 56 BIOKAS5 AMS 69 AMS 61 AMS 63 JASA 69 AMS 66 JASA 59 BIOCS67 TECH 61 TECH 62 TECH 63 TECH 64 BIOCS65 TECH 61 BIOCS65 TECH 61 BIOCS66 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68 BIOKA69 BIOKA69 BIOKA63	112 345 228 243 1477 687 720 647 720 667 750 409 411 571 573 509 409 451 675 1675 447 730 967 755 1675 447 248 248 407
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO A SIMPLE SOLUTION FOR OPTIMAL INEQUALITIES OF RANDOM VARIABLES ON A COMPUTATIONS A THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING NOTES. A PROBLEM OF OPTIMUM ALLOCATION ARISING IN EVALUATION OF METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND OPTIMIZATION OF QUALTTY CONTROL IN THE A MODEL FOR SIMULATION PROCRAMME FOR MATERIAL FLOW IN BATCH SEQUENTIAL COMBINATION RANDOMIZED BLOCKS ON A TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO WEAK CONVERGENCE AND A A NOTE ON TABLE OF PERCENTAGE POINTS OF NON-CENTRAL AND DEGREES OF FREEDOM FOR SMALL SAMPLE SIZES FOR ON THE USE OF PATNAIK TYPE NOTES. A DEFIGIENCY IN THE SUMMATION OF ON CHARACTERIZING THE THE POWER OF	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH— EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV REGRESSION EXTRAPOLATION CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV—TYPE INEQUALITY FOR SUMS OF INDEPENDENT CHECK ON CROSS ERRORS IN CERTAIN VARIANCE CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO CHECKS ON YATES'S ALGORITHM CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION CHEMICAL DATA CHEMICAL DATA CHEMICAL DATA CHEMICAL LABORATORY CHEMICAL LABORATORY CHEMICAL MUTAGENESIS IN BACTERIOPHAGE CHEMICAL PLANTS CHERNOFF—SAVAGE TESTS FOR ORDERED ALTERNATIVES IN CHERNOFF—SAVAGE THEOREM WEAK CONVERGENCE OF CHENOFF—SAVAGE THEOREM CHEMICAL PLANTS CHENOFF—SAVAGE THEOREM FOR RANDOM SAMPLE SIZES CHERNOFF—SAVAGE THEOREM FOR RANDOM SAMPLE SIZES CHERNOFF—SAVAGE THEOREMS CHI CHI APPROXIMATION TO THE RANGE SCALE FACTORS CHI APPROXIMATIONS TO THE RANGE IN SIGNIFICANCE TESTS CHI PROCEDURE GHI SQUARE DISTRIBUTION BY THE STUDENT LAW CHI SQUARE DISTRIBUTION BY THE STUDENT LAW CHI SQUARE TESTS FOR CONTINCENCY TABLES	BIOKA51 JASA 57 JASA 56 BIOKA55 AMS 69 AMS 61 AMS 66 AMS 66 AMS 66 AMS 66 JASA 59 BIOCS67 TECH 61 TECH 69 TECH 66 BIOCS65 TECH 66 BIOCS66 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68 BIOKA66 BIOKA63 BIOKA66 BIOKA63 BIOKA66	112 345 228 243 1477 6B7 720 6647 721 573 509 409 875 1675 1116 255 1116 244 407 976 965
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO RANDOM VARIABLES COMPUTATIONS A PROBLEM OF OPTIMUM ALLOCATION ARISING IN EVALUATION OF METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND OPTIMIZATION OF QUALITY CONTROL IN THE A MODEL FOR SIMULATION PROCRAMME FOR MATERIAL FLOW IN BATCH SEQUENTIAL COMBINATION RANDOMIZED BLOCKS A TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO WEAK CONVERGENCE AND A A NOTE ON TABLE OF PERCENTAGE POINTS OF NON-CENTRAL AND DEGREES OF FREEDOM FOR SMALL SAMPLE SIZES FOR ON THE USE OF PATNALK TYPE NOTES. A DEFIGIENCY IN THE SUMMATION OF ON CHARACTERIZING THE THE POWER OF ASYMPTOTIC POWER OF	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH— EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV REGRESSION EXTRAPOLATION CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV—TYPE INEQUALITY FOR SUMS OF INDEPENDENT CHECK ON CROSS ERRORS IN CERTAIN VARIANCE CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO CHECKS ON YATES'S ALGORITHM CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION CHEMICAL ANALYSES ON TWO ROCKS CHEMICAL DATA A A CEMERAL CHEMICAL MUTAGENESIS IN BACTERIOPHAGE CHEMICAL LABORATORY CHEMICAL MUTAGENESIS IN BACTERIOPHAGE CHEMICAL PLANTS CHEMOFF—SAVAGE THEOREM WEAK CONVERGENCE OF CHENOFF—SAVAGE THEOREM WEAK CONVERGENCE OF CHERNOFF—SAVAGE THEOREM FOR RANDOM SAMPLE SIZES CHI APPROXIMATION TO THE RANGE SCALE FACTORS CHI APPROXIMATIONS TO THE RANGE IN SIGNIFICANCE TESTS CHI PROCEDURE GHI SQUARE DISTRIBUTION BY THE STUDENT LAW CHI SQUARE DISTRIBUTION BY THE STUDENT LAW CHI SQUARE TESTS FOR CONTINGENCY TABLES CHI SQUARE TESTS FOR CONTINGENCY TABLES CHI SQUARE TESTS FOR CONTINGENCY TABLES CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS	BIOKAS1 JASA 57 JASA 56 BIOKAS5 AMS 69 AMS 61 AMS 63 JASA 69 AMS 66 AMS 66 JASA 59 BIOCS67 TECH 61 TECH 69 TECH 66 BIOCS65 TECH 61 BIOCS65 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68 BIOKA66 BIOKA69 BIOKA69 BIOKA63 BIOKA63	112 345 228 243 1477 6B7 720 647 720 687 750 409 411 571 1116 255 449 407 976 447 976 5315
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO NEW A SIMPLE SOLUTION FOR OPTIMAL INEQUALITIES OF RANDOM VARIABLES ONA COMPUTATIONS A THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING NOTES. A PROBLEM OF OPTIMUM ALLOCATION ARISING IN EVALUATION OF METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND OPTIMIZATION OF QUALITY CONTROL IN THE A MODEL FOR SIMULATION PROCRAMME FOR MATERIAL FLOW IN BATCH SEQUENTIAL COMBINATION RANDOMIZED BLOCKS ON A TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO WEAK CONVERGENCE AND A NOTE ON TABLE OF PERCENTAGE POINTS OF NON-CENTRAL AND DEGREES OF FREEDOM FOR SMALL SAMPLE SIZES FOR ON THE USE OF PATNAK TYPE NOTES. A DEFIGIENCY IN THE SUMMATION OF ON CHARACTERIZING THE THE POWER OF ASYMPTOTIC POWER OF NOTE ON	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH— EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV REGRESSION EXTRAPOLATION CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV—TYPE INEQUALITY FOR SUMS OF INDEPENDENT CHECK ON CROSS ERRORS IN CERTAIN VARIANCE CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO CHECKS ON YATES'S ALGORITHM CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION CHEMICAL DATA CHEMICAL DATA CHEMICAL DATA CHEMICAL LABORATORY CHEMICAL LABORATORY CHEMICAL MUTAGENESIS IN BACTERIOPHAGE CHEMICAL PLANTS CHERNOFF—SAVAGE TESTS FOR ORDERED ALTERNATIVES IN CHERNOFF—SAVAGE THEOREM WEAK CONVERGENCE OF CHENOFF—SAVAGE THEOREM CHEMICAL PLANTS CHENOFF—SAVAGE THEOREM FOR RANDOM SAMPLE SIZES CHERNOFF—SAVAGE THEOREM FOR RANDOM SAMPLE SIZES CHERNOFF—SAVAGE THEOREMS CHI CHI APPROXIMATION TO THE RANGE SCALE FACTORS CHI APPROXIMATIONS TO THE RANGE IN SIGNIFICANCE TESTS CHI PROCEDURE GHI SQUARE DISTRIBUTION BY THE STUDENT LAW CHI SQUARE DISTRIBUTION BY THE STUDENT LAW CHI SQUARE TESTS FOR CONTINCENCY TABLES	BIOKA51 JASA 57 JASA 56 BIOKA55 AMS 69 AMS 61 AMS 63 JASA 69 AMS 66 JASA 59 BIOCS67 TECH 61 TECH 62 TECH 63 TECH 64 BIOCS65 TECH 61 BIOCS65 TECH 61 BIOCS66 AMS 68 JASA 66 BIOKA63 BIOKA66 JASA 66	112 345 228 243 1477 687 720 647 720 667 751 573 509 409 411 571 1519 875 4497 730 967 449 248 449 248 407 976 965 368
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO REW A SIMPLE SOLUTION FOR OPTIMAL INEQUALITIES OF RANDOM VARIABLES ON A COMPUTATIONS A THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING NOTES. A PROBLEM OF OPTIMUM ALLOCATION ARISING IN EVALUATION OF METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND OPTIMIZATION OF QUALITY CONTROL IN THE A MODEL FOR SIMULATION PROCRAMME FOR MATERIAL FLOW IN BATCH SEQUENTIAL COMBINATION RANDOMIZED BLOCKS ON A TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO WEAK CONVERDICE ON A NOTE ON TABLE OF PERCENTAGE POINTS OF NON-CENTRAL AND DEGREES OF FREEDOM FOR SMALL SAMPLES SIZES FOR ON THE USE OF PATNAIK TYPE NOTES. A DEFIGIENCY IN THE SUMMATION OF ON CHARACTERIZING THE THE POWER OF ASYMPTOTIC POWER OF NOTE ON OWER MOMENTS OF ORDER STATISTICS IN SAMPLES FROM THE QUERY, DEGREES OF FREEDOM OF	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH— EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV REGRESSION EXTRAPOLATION CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV—TYPE INEQUALITY FOR SUMS OF INDEPENDENT CHECK ON CROSS ERRORS IN CERTAIN VARIANCE CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO CHECKS ON YATES'S ALGORITHM CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION CHEMICAL ANALYSES ON TWO ROCKS CHEMICAL DATA A A CHEMICAL LABORATORY CHEMICAL MITAGENESIS IN BACTERIOPHAGE CHEMICAL LABORATORY CHEMICAL MITAGENESIS IN BACTERIOPHAGE CHEMICAL PLANTS CHERNOFF—SAVAGE TESTS FOR ORDERED ALTERNATIVES IN CHERNOFF—SAVAGE THEOREM WEAK CONVERGENCE OF CHERNOFF—SAVAGE THEOREM WEAK CONVERGENCE OF CHENOFF—SAVAGE THEOREM FOR RANDOM SAMPLE SIZES CHIAPPROXIMATION TO THE RANGE SCALE FACTORS CHI APPROXIMATIONS TO THE RANGE IN SIGNIFICANCE TESTS CHI PROCEDURE CHI SQUARE TESTS FOR CONTINCENCY TABLES CHI SQUARE TESTS FOR CONTINCENCY TABLES CHI SQUARE TESTS FOR MATCHED SAMPLES CHI—SQUARE TESTS FOR MATCHED SAMPLES CHI—SQUARE	BIOKAS1 JASA 57 JASA 56 BIOKAS5 AMS 69 AMS 61 AMS 66 AMS 66 AMS 66 JASA 59 BIOCS67 TECH 61 TECH 69 TECH 66 BIOCS65 TECH 61 BIOCS65 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68 AMS 66 AMS 68 AMS 66 AMS 68 AMS 66 AMS 66 BIOKA69 BIOKA69 BIOKA69 BIOKA69 BIOKA63 BIOKA63 BIOKA63 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA65 BIOKA66	112 345 228 243 1477 687 720 647 720 687 750 409 411 571 116 255 449 407 976 315 368 315 368 2489
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO NEW A SIMPLE SOLUTION FOR OPTIMAL INEQUALITIES OF RANDOM VARIABLES ON A COMPUTATIONS A THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING NOTES. A PROBLEM OF OPTIMUM ALLOCATION ARISING IN EVALUATION OF METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND OPTIMIZATION OF QUALITY CONTROL IN THE A MODEL FOR SIMULATION PROCRAMME FOR MATERIAL FLOW IN BATCH SEQUENTIAL COMBINATION RANDOMIZED BLOCKS ON A TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO WEAK CONVERGENCE AND A NOTE ON TABLE OF PERCENTAGE POINTS OF NON-CENTRAL AND DEGREES OF FREEDOM FOR SMALL SAMPLES IZES FOR ON THE USE OF PATNAIK TYPE NOTES. A DEFIGIENCY IN THE SUMMATION OF ON CHARACTERIZING THE THE POWER OF ASYMPTOTIC POWER OF NOTE ON OWER MOMENTS OF ORDER STATISTICS IN SAMPLES FROM THE QUERY, DEGREES OF FREEDOM OF SUBSTITUTES FOR	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH— EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV RECRESSION EXTRAPOLATION CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV—TYPE INEQUALITY FOR SUMS OF INDEPENDENT CHECK ON CROSS ERRORS IN CERTAIN VARIANCE CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO CHECKS ON YATES'S ALGORITHM CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION CHEMICAL ANALYSES ON TWO ROCKS CHEMICAL DATA A A CHEMICAL DATA A A CHEMICAL LABORATORY CHEMICAL MUTAGENESIS IN BACTERIOPHAGE CHEMICAL PLANTS CHEMOTHERAPY EXPERIMENTS CHEMOTHERAPY EXPERIMENTS CHERNOFF—SAVAGE THEOREM WEAK CONVERGENCE OF CHERNOFF—SAVAGE THEOREM WEAK CONVERGENCE OF CHERNOFF—SAVAGE THEOREM FOR RANDOM SAMPLE SIZES CHI APPROXIMATION TO THE RANGE SCALE FACTORS CHI APPROXIMATIONS TO THE RANGE IN SIGNIFICANCE TESTS CHI PROCEDURE CHI SQUARE DISTRIBUTION BY THE STUDENT LAW CHI SQUARE DISTRIBUTION BY THE STUDENT LAW CHI SQUARE TESTS FOR CONTINGENCY TABLES CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS CHI—SQUARE CHI—SQUARE CHI—SQUARE	BIOKAS1 JASA 57 JASA 56 BIOKAS5 AMS 69 AMS 61 AMS 66 AMS 66 AMS 66 JASA 59 BIOCS67 TECH 61 TECH 69 TECH 66 BIOCS65 TECH 61 BIOCS65 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68 BIOKA69 BIOKA69 BIOKA69 BIOKA63	112 345 228 228 243 1477 6877 720 6877 720 687 750 409 411 5713 509 441 6519 875 449 755 1116 255 449 265 315 368 1292 265
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO NEW A SIMPLE SOLUTION FOR OPTIMAL INEQUALITIES OF RANDOM VARIABLES ON A COMPUTATIONS A THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING NOTES. A PROBLEM OF OPTIMUM ALLOCATION ARISING IN EVALUATION OF METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND OPTIMIZATION OF QUALITY CONTROL IN THE A MODEL FOR SIMULATION PROCRAMME FOR MATERIAL FLOW IN BATCH SEQUENTIAL COMBINATION RANDOMIZED BLOCKS ON A TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO WEAK CONVERGENCE AND A NOTE ON TABLE OF PERCENTAGE POINTS OF NON-CENTRAL AND DEGREES OF FREEDOM FOR SMALL SAMPLES IZES FOR ON THE USE OF PATNAIK TYPE NOTES. A DEFIGIENCY IN THE SUMMATION OF ON CHARACTERIZING THE THE POWER OF ASYMPTOTIC POWER OF NOTE ON OWER MOMENTS OF ORDER STATISTICS IN SAMPLES FROM THE QUERY, DEGREES OF FREEDOM OF SUBSTITUTES FOR	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH— EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV RECRESSION EXTRAPOLATION CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV—TYPE INEQUALITY FOR SUMS OF INDEPENDENT CHECK ON CROSS ERRORS IN CERTAIN VARIANCE CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO CHECKS ON YATES'S ALGORITHM CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION CHEMICAL ANALYSES ON TWO ROCKS CHEMICAL DATA A A CHEMICAL DATA A A CHEMICAL LABORATORY CHEMICAL MUTAGENESIS IN BACTERIOPHAGE CHEMICAL PLANTS CHEMOTHERAPY EXPERIMENTS CHEMOTHERAPY EXPERIMENTS CHERNOFF—SAVAGE THEOREM WEAK CONVERGENCE OF CHERNOFF—SAVAGE THEOREM WEAK CONVERGENCE OF CHERNOFF—SAVAGE THEOREM FOR RANDOM SAMPLE SIZES CHI APPROXIMATION TO THE RANGE SCALE FACTORS CHI APPROXIMATIONS TO THE RANGE IN SIGNIFICANCE TESTS CHI PROCEDURE CHI SQUARE DISTRIBUTION BY THE STUDENT LAW CHI SQUARE DISTRIBUTION BY THE STUDENT LAW CHI SQUARE TESTS FOR CONTINGENCY TABLES CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS CHI—SQUARE CHI—SQUARE CHI—SQUARE	BIOKAS1 JASA 57 JASA 56 BIOKAS5 AMS 69 AMS 61 AMS 66 AMS 66 AMS 66 JASA 59 BIOCS67 TECH 61 TECH 69 TECH 66 BIOCS65 TECH 61 BIOCS65 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68 BIOKA69 BIOKA69 BIOKA69 BIOKA63	112 345 228 228 243 1477 6877 720 6877 720 687 750 409 411 5713 509 441 6519 875 449 755 1116 255 449 265 315 368 1292 265
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO RANDOM VARIABLES COMPUTATIONS A PROBLEM OF OPTIMUM ALLOCATION ARISING IN EVALUATION OF METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND OPTIMIZATION OF QUALITY CONTROL IN THE A MODEL FOR SIMULATION PROCRAMME FOR MATERIAL FLOW IN BATCH A TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO WEAK CONVERGENCE AND A A NOTE ON TABLE OF PERCENTAGE POINTS OF NON-CENTRAL AND DEGREES OF FREEDOM FOR SMALL SAMPLES SIZES FOR ON THE USE OF PATNAIK TYPE NOTES. A DEFIGIENCY IN THE SUMMATION OF ON CHARACTERIZING THE THE POWER OF ASYMPTOTIC POWER OF NOTE ON OWER MOMENTS OF ORDER STATISTICS IN SAMPLES FROM THE QUERY. DEGREES OF FREEDOM OF SUBSTITUTES FOR AN APPROXIMATION TO THE DISTRIBUTION OF NON-CENTRAL ISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF POINTS OF FISHER'S B DISTRIBUTION AND NON-CENTRAL ISTRIBUTIONS OF FISHER'S B DISTRIBUTION AND NON-CENTRAL ISTRIBUTION AND NON-CENTRAL	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH— EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV REGRESSION EXTRAPOLATION CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV—TYPE INEQUALITY FOR SUMS OF INDEPENDENT CHECK ON CROSS ERRORS IN CERTAIN VARIANCE CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO CHECKS ON YATES'S ALGORITHM CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION CHEMICAL ANALYSES ON TWO ROCKS CHEMICAL DATA A A A CHEMICAL DATA A A CHEMICAL DATA A CENERAL CHEMOTHERAPY EXPERIMENTS CHERNOFF—SAVAGE THEOREM WEAK CONVERGENCE OF CHERNOFF—SAVAGE THEOREM WEAK CONVERGENCE OF CHERNOFF—SAVAGE THEOREM WEAK CONVERGENCE OF CHERNOFF—SAVAGE THEOREM FOR RANDOM SAMPLE SIZES CHI CHI APPROXIMATION TO THE RANGE SCALE FACTORS CHI APPROXIMATIONS TO THE RANGE IN SIGNIFICANCE TESTS CHI PROCEDURE CHI SQUARE DISTRIBUTION BY THE STUDENT LAW CHI SQUARE TESTS FOR CONTINGENCY TABLES CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS CHI SQUARE CHI—SQUARE CHI—SQUARE CHI—SQUARE CHI—SQUARE CHI—SQUARE CHI—SQUARE CHI—SQUARE CHI—SQUARE CHI—SQUARE APPROXIMATIONS TO THE UPPER 5 PERCENT	BIOKAS1 JASA 57 JASA 56 BIOKAS5 AMS 69 AMS 61 AMS 63 JASA 69 AMS 66 AMS 66 JASA 59 BIOCS67 TECH 61 TECH 69 TECH 66 BIOCS65 TECH 61 BIOCS65 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68 BIOKA69 BIOKA69 BIOKA69 BIOKA69 BIOKA63 BIOKA68 BIOCS66 BIOCS66 BIOCS66 BIOCS66 BIOKA69 BIOKA63 BIOKA69 BIOKA63 BIOKA63 BIOKA63	112 345 228 243 1477 6877 720 6877 720 6876 729 409 411 571 1116 255 449 407 976 515 368 407 976 515 368 265 364 528
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO NEW A SIMPLE SOLUTION FOR OPTIMAL INEQUALITIES OF RANDOM VARIABLES ON A COMPUTATIONS A THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING NOTES. A PROBLEM OF OPTIMUM ALLOCATION ARISING IN EVALUATION OF METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND OPTIMIZATION OF QUALITY CONTROL IN THE A MODEL FOR SIMULATION PROCRAMME FOR MATERIAL FLOW IN BATCH SEQUENTIAL COMBINATION RANDOMIZED BLOCKS ON A TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO WEAK CONVERGENCE AND A NOTE ON TABLE OF PERCENTAGE POINTS OF NON-CENTRAL AND DEGREES OF FREEDOM FOR SMALL SAMPLE SIZES FOR ON THE USE OF PATNAK TYPE NOTES. A DEFIGIENCY IN THE SUMMATION OF ON CHARACTERIZING THE THE POWER OF ASYMPTOTIC POWER OF ASYMPTOTIC POWER OF ONTE ON OWER MOMENTS OF ORDER STATISTICS IN SAMPLES FROM THE QUERY. DEGREES OF FREEDOM OF SUBSTITUTES FOR AN APPROXIMATION TO THE DISTRIBUTION OF NON-CENTRAL ISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF LAGUERRE SERIES FORMS OF NON-CENTRAL	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH— EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV REGRESSION EXTRAPOLATION CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV—TYPE INEQUALITY FOR SUMS OF INDEPENDENT CHECK ON CROSS ERRORS IN CERTAIN VARIANCE CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO CHECKS ON YATES'S ALGORITHM CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION CHEMICAL ANALYSES ON TWO ROCKS CHEMICAL DATA A CHEMICAL DATA A CHEMICAL DATA A CHEMICAL PLANTS CHEMOTHERAPY EXPERIMENTS CHEMOTHERAPY EXPERIMENTS CHEMOTHERAPY EXPERIMENTS CHERNOFF—SAVAGE THEOREM CHERNOFF—SAVAGE THEOREM CHERNOFF—SAVAGE THEOREM CHERNOFF—SAVAGE THEOREMS CHI CHI APPROXIMATION TO THE RANGE CHI APPROXIMATIONS TO THE RANGE IN SIGNIFICANCE TESTS CHI APPROXIMATIONS TO THE RANGE IN SIGNIFICANCE TESTS CHI APPROXIMATIONS TO THE RANGE IN SIGNIFICANCE TESTS CHI APPROXIMATION TO THE RANGE IN SIGNIFICANCE TESTS CHI SQUARE DISTRIBUTION BY THE STUDENT LAW CHI SQUARE TESTS FOR CONTINGENCY TABLES CHI—SQUARE TESTS FOR CONTINGENCY TABLES CHI—SQUARE TESTS FOR MATCHED SAMPLES CHI—ISTRIBUTION, ONE DEGREE OF FREEDOM EXACT L CHI—SQUARE C	BIOKAS1 JASA 56 BIOKAS5 AMS 69 AMS 61 AMS 61 AMS 66 AMS 66 AMS 66 BIOCS67 BIOCS67 BIOCS67 BIOCS67 BIOCS66 AMS 68 AMS 68 AMS 68 AMS 68 BIOKA63 BIOKA66 BIOKA65 BIOKA66 BIOCS68 BIOCK655 BIOCK655	112 345 228 243 1477 687 720 687 892 647 721 573 509 409 411 519 875 1675 1116 248 407 965 315 368 1292 489 3364 3368 364 3368 415
OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECT/ THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO **A SIMPLE SOLUTION FOR OPTIMAL INEQUALITIES OF RANDOM VARIABLES ON A COMPUTATIONS A THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING NOTES. A PROBLEM OF OPTIMUM ALLOCATION ARISING IN EVALUATION OF METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND OPTIMIZATION OF QUALITY CONTROL IN THE A MODEL FOR SIMULATION PROCRAMME FOR MATERIAL FLOW IN BATCH SEQUENTIAL COMBINATION RANDOMIZED BLOCKS ON A TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO WEAK CONVERGENCE AND ON THE USE OF PATNAIK TYPE NOTES. A DEFIGIENCY IN THE SUMMATION OF ON CHARACTERIZING THE ON THE USE OF PATNAIK TYPE NOTES. A DEFIGIENCY IN THE SUMMATION OF ON CHARACTERIZING THE THE POWER OF ASYMPTOTIC POW	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH— EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV REGRESSION EXTRAPOLATION CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHEBYSHEV—TYPE INEQUALITY FOR SUMS OF INDEPENDENT CHECK ON CROSS ERRORS IN CERTAIN VARIANCE CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO CHECKS ON YATES'S ALGORITHM CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION CHEMICAL ANALYSES ON TWO ROCKS CHEMICAL DATA A A A CHEMICAL DATA A A CHEMICAL DATA A CENERAL CHEMOTHERAPY EXPERIMENTS CHERNOFF—SAVAGE THEOREM WEAK CONVERGENCE OF CHERNOFF—SAVAGE THEOREM WEAK CONVERGENCE OF CHERNOFF—SAVAGE THEOREM WEAK CONVERGENCE OF CHERNOFF—SAVAGE THEOREM FOR RANDOM SAMPLE SIZES CHI CHI APPROXIMATION TO THE RANGE SCALE FACTORS CHI APPROXIMATIONS TO THE RANGE IN SIGNIFICANCE TESTS CHI PROCEDURE CHI SQUARE DISTRIBUTION BY THE STUDENT LAW CHI SQUARE TESTS FOR CONTINGENCY TABLES CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS CHI SQUARE CHI—SQUARE CHI—SQUARE CHI—SQUARE CHI—SQUARE CHI—SQUARE CHI—SQUARE CHI—SQUARE CHI—SQUARE CHI—SQUARE APPROXIMATIONS TO THE UPPER 5 PERCENT	BIOKA51 JASA 56 JASA 56 BIOKA55 AMS 69 AMS 61 AMS 66 AMS 69 AMS 66 JASA 59 BIOCS67 TECH 61 TECH 69 TECH 66 BIOCS65 TECH 66 BIOCS65 TECH 66 BIOCS66 AMS 68 BIOKA66 BIOKA65 BIOKA65 BIOCS66 JASA 66 BIOCS66 JASA 66 BIOKA65	112 345 228 243 1477 6B7 720 667 720 667 720 720 720 720 720 720 720 720 720 72
THE ECONOMIC DESIGN OF MEAN THE ECONOMIC DESIGN OF MEAN CONTROL SMOOTHING BY PARAMETER PROCESSES SOME MULTIVARIATE MILLS' RATIO A SIMPLE SOLUTION FOR OPTIMAL INEQUALITIES OF RANDOM VARIABLES COMPUTATIONS A PROBLEM OF OPTIMUM ALLOCATION ARISING IN EVALUATION OF METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND OPTIMIZATION OF QUALITY CONTROL IN THE A MODEL FOR SIMULATION PROCRAMME FOR MATERIAL FLOW IN BATCH SEQUENTIAL COMBINATION RANDOMIZED BLOCKS ON A TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO WEAK CONVERGENCE AND A NOTE ON TABLE OF PERCENTAGE POINTS OF NON-CENTRAL AND DEGREES OF FREEDOM FOR SMALL SAMPLE SIZES FOR ON THE USE OF PATNAIK TYPE NOTES. A DEFIGIENCY IN THE SUMMATION OF ON CHARACTERIZING THE THE POWER OF NOTE ON OWER MOMENTS OF ORDER STATISTICS IN SAMPLES FROM THE QUERY, DEGREES OF FREEDOM OF SUBSTITUTES FOR AN APPROXIMATION TO THE DISTRIBUTION OF NON-CENTRAL LAGUERRE SERIES FORMS OF NON-CENTRAL LAGUERRE SERIES FORMS OF NON-CENTRAL RESPECT TO VALIDITY,/ NORMAL APPROXIMATION OF THE PEARSON ONCAMA APPROXIMATION TO THE PEARSON ONCAMA APPROXIMATION TO THE PEARSON ONCAMA APPROXIMATION TO THE PEARSON ONCAMA APPROXIMATION OF THE PEARSON ON ONCAMAL APPROXIMATION TO THE TO AN ACGEPTANCE SAMPLING PROBLEM SEQUENTIAL TO AN ACCEPTANCE SAMPLING PROBLEM SEQUENTIAL	CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS CHARTS WITH WARNING LINES CHARTS WITH WARNING LINES CHEATING CHEBYSHEV INEQUALITIES WITH— EXTENSIONS TO CONTINUOUS CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO CHEBYSHEV REGRESSION EXTRAPOLATION CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS CHECK ON CROSS ERRORS IN CERTAIN VARIANCE CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO CHECKS ON YATES'S ALGORITHM CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION CHEMICAL DATA CHEMICAL DATA CHEMICAL LABORATORY CHEMICAL MUTAGENESIS IN BACTERIOPHAGE CHEMICAL PLANTS CHEMICAL MUTAGENESIS IN BACTERIOPHAGE CHEMICAL PLANTS CHERNOFF-SAVAGE TESTS FOR ORDERED ALTERNATIVES IN CHERNOFF-SAVAGE THEOREM WEAK CONVERGENCE OF CHERNOFF-SAVAGE THEOREM WEAK CONVERGENCE OF CHENNOFF-SAVAGE THEOREM FOR RANDOM SAMPLE SIZES CHI APPROXIMATION TO THE RANGE SCALE FACTORS CHI APPROXIMATIONS TO THE RANGE IN SIGNIFICANCE TESTS CHI PROCEDURE GHI SQUARE DISTRIBUTION BY THE STUDENT LAW CHI SQUARE TESTS FOR CONTINGENCY TABLES CHI SQUARE TESTS FOR MATCHED SAMPLES CHI-DISTRIBUTION, ONE DEGREE OF FREEDOM EXACT L CHI-SQUARE CHI-SQUARE APPROXIMATIONS TO THE UPPER 5 PERCENT CHI-SQUARE APPROXIMATIONS TO THE UPPER 5 PERCENT CHI-SQUARE AND F DISTRIBUTIONS CHI SQUARE AND F DISTRIBUTIONS CHI SQUARE AND F DISTRIBUTIONS CHI-SQUARE AND F DISTRIBUTIONS	BIOKAS1 JASA 56 BIOKAS5 AMS 69 AMS 63 AMS 63 JASA 69 AMS 66 JASA 59 BIOCS67 BIOCS67 BIOCS67 BIOCS66 BIOCS65 BIOCS65 BIOCS65 BIOCS66 BIOCS67 BIOCS67 BIOCS67 BIOCS67 BIOCS67 BIOCS67	112 345 228 243 1477 687 720 687 720 9411 571 573 509 4411 519 875 1675 1116 255 449 248 407 965 315 368 1292 489 415 854 415 854 415 159

CHI - CLA TITLE WORD INDEX

```
MULTINOMIAL PROBABILITIES AND THE CHI-SQUARE AND X-SQUARE DISTRIBUTIONS
                                                                                                                                             BIOKA63 145
       CORRIGENDA, 'MULTINOMIAL PROBABILITIES AND THE CHI-SQUARE AND X-SQUARE DISTRIBUTIONS '
                                                                                                                                             BTOKA63 546
                                                                                                                                            JRSSB65
                                                        NOTE ON A CHI-SQUARE APPROXIMATION FOR THE MULTIVARIATE SIGN
         A NOTE ON THE MULTIPLYING FACTORS FOR VARIOUS CHI-SQUARE APPROXIMATIONS
                                                                                                                                             JRSSR54 296
ODNESS-OF-FIT STATISTICS, U-SQUARE-SUB-N AND W-SQ/ CHI-SQUARE APPROXIMATIONS FOR THE DISTRIBUTIONS OF GO BIOKA65
                                    THE RAPID CALCULATION OF CHI-SQUARE AS A TEST OF HOMOCENEITY FROM A 2-BY-N
TABLE
                                                                                                                                             BIOKA55
     A CONTOUR-INTEGRAL DERIVATION OF THE NON-CENTRAL CHI-SQUARE DISTRIBUTION
                                                                                                                                               AMS 62
                                                                                                                                                          796
                 ANOTHER DERIVATION OF THE NON-CENTRAL CHI-SQUARE DISTRIBUTION
                                                                                                                                              JASA 64 957
              99.9 PERCENT AND 0.1 PERCENT POINTS OF THE CHI-SQUARE DISTRIBUTION
                                                                                                                                              BIOKA53
                                                                                                                                                          421
                                            ON THE NON-CENTRAL CHI-SQUARE DISTRIBUTION
                                                                                                                                              BIOKA59
                         APPROXIMATIONS TO THE NON-CENTRAL CHI-SQUARE DISTRIBUTION
                                                                                                                                              BIOKA63
                 A NEW TABLE OF PERCENTAGE POINTS OF THE CHI-SQUARE DISTRIBUTION
INTS AND THE PROBABILITY INTEGRAL OF THE NON-CENTRAL CHI-SQUARE DISTRIBUTION
                  PROBABILITY INTEGRAL OF THE NON-CENTRAL CHI-SQUARE DISTRIBUTION /ULAE FOR THE PERCENTAGE PO BIOKA54
AN INEQUALITY FOR A CLASS OF BIVARIATE CHI-SQUARE DISTRIBUTIONS

JASA 69
                                                                                                                                                          333
ON AN EXTENSION OF THE CONNEXION BETWEEN POISSON AND CHI-SQUARE DISTRIBUTIONS
                                                                                                                                             BIOKA59
                                                                                                                                                          352
      OF THE BINOMIAL, NEGATIVE BINOMIAL, POISSON AND CHI-SQUARE DISTRIBUTIONS
                                                                                                                       TRANSFORMATIONS BIOKA54
                                                                                                                                                          302
CORRICENDA, 'A NEW TABLE OF PERCENTACE POINTS OF THE CHI-SQUARE DISTRIBUTIONS'
                                                                                                                                             BTOKA65
                                                                                                                                                          305
IONS OF THE BINOMIAL, NECATIVE BINOMIAL, POISSON AND CHI-SQUARE DISTRIBUTIONS' /RRIGENDA TO 'TRANSFORMAT BIOKASE
                                                                                                                                                          235
F TABLES. PART II COMPARISON BETWEEN MINIMUM NORMIT CHI-SQUARE ESTIMATE AND THE MAXIMUM LIKELIHOOD ESTIMA BIOKAS7
TATION ON THE PROBLE/ APPLICATION OF MINIMUM LOGIT CHI-SQUARE ESTIMATE TO A PROBLEM OF CRIZZLE WITH A NO BIOCS6B
       A SIMPLIFIED EXPRESSION FOR THE VARIANCE OF THE CHI-SQUARE FUNCTION ON A CONTINGENCY TABLE
      ACCURACY OF AN APPROXIMATION TO THE POWER OF THE CHI-SQUARE COODNESS OF FIT TEST WITH SMALL BUT EQUAL
OF DEPENDENT OBSERVATIONS
                                                                 THE CHI-SQUARE GOODNESS-OF-FIT TEST FOR A CLASS OF CASES BIOKA64
DISTRIBUTIONS
                                                                 THE CHI-SQUARE COODNESS-OF-FIT TEST FOR NORMAL
DISTRIBUTIONS (WITH DISCUSSION)
                                                                  ON CHI-SQUARE GOODNESS-OF-FIT TESTS FOR CONTINUOUS
RS OF THE LOGISTIC FUNCTION, USING THE MINIMUM LOCIT CHI-SQUARE METHOD /N THE ESTIMATION OF THE PARAMETE BIOKA62
                                                                      CHI-SQUARE PROBABILITIES FOR LARCE NUMBERS OF DECREES BIOKA56
 OF FREEDOM
            A NOTE ON THE MAXIMIZATION OF A NON-CENTRAL CHI-SQUARE PROBABILITY
                                                                                                                                               AMS 64
                                                                                                                                                          441
OF SEVERAL OBSERVATIONS
                                                                      CHI-SQUARE STATISTIC BASED ON THE POOLED FREQUENCIES BIOKA63
                                                                                                                                                          524
                  THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST
                                                                                                                                              JASA 63
                                                                                                                                                          67B
R ADJUSTMENT FOR STRATIFICATION (ADDENDUM 67/
TABLES, WITH SPECIAL REFERENCE TO ACCIDENTS/
THE CHI-SQUARE TEST FOR HETEROCENEITY OF PROPORTIONS AFTE JRSSB66
THE CHI-SQUARE TEST FOR SMALL EXPECTATIONS IN CONTINCENCY BIOKA59
365
ANCE
             THE LIMITING POWER OF CATEGORICAL DATA GHI-SQUARE TESTS ANALOCOUS TO NORMAL ANALYSIS OF VARI AMS 63 1432
NS OF THE MANTEL-HAENSZEL PROCEDURE
                                                                   CHI-SQUARE TESTS WITH ONE DECREE OF FREEDOM, EXTENSIO JASA 63
                                      A SAMPLING TEST OF THE CHI-SQUARE THEORY FOR PROBABILITY CHAINS
                                                                                                                                             BIOKA52
MATE OF THE NON-CENTRALITY PARAMETER OF A NONCENTRAL CHI-SQUARE VARIATE

THE MAXIMUM LIKELIHOOD ESTI JASA 67 125B
                        LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES
                                                                                                                                              AMS 66 4B0
LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES

ORS AS LINEAR COMBINATIONS OF INDEFENDENT NONCENTRAL CHI-SQUARE VARIATES

A MULTIVARIATE EXTENSION OF FRIEDMAN'S CHI-SQUARE-SUB-R-TEST

AND COMBINATIONS OF INDEFENDENT NONCENTRAL CHI-SQUARE VARIATES

A MULTIVARIATE EXTENSION OF FRIEDMAN'S CHI-SQUARE-SUB-R-TEST

AND COMBINATIONS OF INDEFENDENT NONCENTRAL CHI-SQUARE VARIATES

AND COMBINATIONS OF INDEFENDENT NONCENTRAL CHI-SQUARE VARIATES

OF VARIANCE-COMPONENT ESTIMAT

AND COMBINATIONS OF INDEFENDENT NONCENTRAL CHI-SQUARE VARIATES

AND COMBINATIONS OF INDEFENDENT NONCENTRAL CHI-SQUARE VARIATES

OF VARIANCE-COMPONENT ESTIMAT

AND COMBINATIONS OF INDEFENDENT NONCENTRAL CHI-SQUARE VARIATES

AND COMBINATIONS OF INDEFENDENT NONCENTRAL CHI-SQUARE VARIATES

OF VARIANCE-COMPONENT ESTIMAT

AND COMBINATIONS OF INDEFENDENT NONCENTRAL CHI-SQUARE VARIATES

AND COMBINATIONS OF INDEFENDENT NONCENTRAL CHI-SQUARE VARIATES

OF VARIANCE-COMPONENT ESTIMAT

AND COMBINATIONS OF INDEFENDENT NONCENTRAL CHI-SQUARE VARIATES

AND COMBINATIONS OF INDEFENDENT NONCENTRAL CHI-SQUARE VARIATES

AND COMBINATIONS OF INDEFENDENT NONCENTRAL CHI-SQUARE VARIATES

OF VARIANCE-COMPONENT ESTIMAT

AND COMBINATIONS OF INDEFENDENT NONCENTRAL CHI-SQUARE VARIATES

AND COMBINATIONS OF INDEFENDENT NONCENTRAL CHI-SQUARE VARIATES

AND COMBINATIONS OF INDEFENDENT NONCENTRAL CHI-SQUARE VARIATES

OF VARIANCE-COMPONENT ESTIMAT

AND COMBINATIONS OF INDEFENDENT NONCENTRAL CHI-SQUARE VARIATES

AND COMBINED OF THE COMBINATION OF INDEFENDENT NONCENTRAL CHI-SQUARE V
   A NOTE ON THE ASYMPTOTIC EFFIGIENCY OF FRIEDMAN'S GHI-SQUARE-SUB-R-TEST
                                                                                                                                             BIOKA67 677
                          THE ASYMPTOTIC EFFICIENCY OF THE CHI-SQUARE-SUB-R-TEST FOR A BALANCED INCOMPLETE BLOCK BIOKAS9
                                                                                                                                                         475
ENCIES
                          TWO ALTERNATIVES TO THE STANDARD CHI-SQUARE-TEST OF THE HYPOTHESIS OF EQUAL CELL FREQU BIOKA62
THE EFFECT OF MISCLASSIFICATION ON THE PROPERTIES OF CHI-SQUARE-TESTS IN THE ANALYSIS OF CATEGORICAL DATA. BIOKA65
                                                                                                                                                          95
                                ON THE STUDENTIZED SMALLEST CHI-SQUARE, CORR 59 812
                                                                                                                                             JASA 58
                                                                                                                                                        B68
                                                  A NOMOGRAM FOR CHI-SQUARE, CORR. 66 1246
                                                                                                                                             JASA 65
                                                                                                                                                         344
                      QUERY, COMBINING VALUES OF OBSERVED CHI-SQUARE'S
                                                                                                                                             TECH 66
                                                                                                                                                         709
                                                THE NON-CENTRAL CHI-SQUARED AND BETA DISTRIBUTIONS
                                                                                                                                             BIOKA63
                                                                                                                                                         542
                                                       SEQUENTIAL CHI-SQUARED AND T-SQUARED TESTS
                                                                                                                                              AMS 61 1063
               CONDITIONS FOR A QUADRATIC FORM TO HAVE A CHI-SQUARED DISTRIBUTION
                                                                                                                                             BIOKA69
                                         ON CORRECTIONS TO THE CHI-SQUARED DISTRIBUTION
                                                          MINIMUM CHI-SQUARED ESTIMATION USING INDEPENDENT STATISTICS
                THE MULTIVARIATE SADDLE POINT METHOD AND CHI-SQUARED FOR THE MULTINOMIAL DISTRIBUTION
                                                                                                                                                         535
                                           TESTS AUXILIARY TO CHI-SQUARED TESTS IN A MARKOV CHAIN
                                                                                                                                              AMS 63
                                                                                                                                                          56
                                                              THE CHICK ASSAY OF LYSINE
                                                                                                                                             RTOCS66
                                                                                                                                                         58
ERATORS TO MAKE ENTRIES OF ZERO, ERRORS IN RECORDING CHILDLESS CASES IN POPULATION CENSUSES /URE OF ENUM JASA 61
                                                                                                                                                         909
PLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMONG CHILDREN
                                                                                              A MATHEMATICAL MODEL WITH AP JASA 65 1046
                                      INTERSECTIONS OF RANDOM CHORDS OF A CIRCLE
                                                                                                                                             BIOKA64 373
                               AN EXTENSION OF A THEOREM OF CHOW AND ROBBINS ON SEQUENTIAL CONFIDENCE INTERVALS
FOR THE MEAN
                                                                                                                                              AMS 69
                                                                                                                                                         667
                                               MAJORANTS OF THE CHROMATIC NUMBER OF A RANDOM CRAPH
                                                                                                                                             JRSSB69 NO.2
                                                                                                                                                         23
         RANDOM POINTS IN A CIRCLE AND THE ANALYSIS OF CHROMOSOME PATTERNS
                                                                                                                                             BIOKA63
                                                                                                                                                        420
                             ESTIMATION OF SURVIVORSHIP IN CHRONIC DISEASE, THE 'ACTUARIAL' METHOD
                                                                                                                                             JASA 58
                             ON THE THEORY OF SCREENING FOR CHRONIC DISEASES
                                                                                                                                             BIOKA69 NO.3
         NOTE ON A THEOREM OF KINCMAN AND A THEOREM OF CHUNG
  EMPERICAL RELATIONSHIP OF LUNG CANCER INCIDENCE TO CIGARETTE SMOKINC AND A STOCHASTIG MODEL FOR THE MODE BIOCS65
AL INFERENCE IN HEALTH WITH SPECIAL REFERENCE TO THE CIGARETTE SMOKING AND LUNG CANCER CONTROVERSY /STIC JASA 69
                                 GOODNESS-OF-FIT TESTS ON A CIRCLE
                                                                                                                                             BIOKA61
                                                                                                                                                         109
                                              RANDOM WALK ON A CIRCLE
                                                                                                                                             BIOKA63
                                                                                                                                                         385
               A DISTRIBUTION-FREE TWO-SAMPLE TEST ON A CIRCLE
                                                                                                                                                         256
                                                                                                                                             BTOKA64
                     INTERSECTIONS OF RANDOM CHORDS OF A CIRCLE
                                                                                                                                             BIOKA64
                                                                                                                                                         373
 OF THE BIVARIATE NORMAL DISTRIBUTION OVER AN OFFSET CIRCLE
                                                                                                                                 INTEGRAL JASA 62
                                                                                                                                                         758
                                                                                                  A TABLE OF THE INTEGRAL JRSSB60
  OF THE BIVARIATE NORMAL DISTRIBUTION OVER AN OFSET CIRCLE
                                                                                                                                                         177
                                           RANDOM POINTS IN A CIRCLE AND THE ANALYSIS OF GHROMOSOME PATTERNS
                                                                                                                                             BIOKA63
                                                                                                                                                          23
     ON THE CONSTRUCTION OF SIGNIFICANCE TESTS ON THE CIRCLE AND THE SPHERE
                                                                                                                                             BIOKA56
                                                                                                                                                         344
           ANALOGUES OF THE NORMAL DISTRIBUTION ON THE CIRCLE AND THE SPHERE
                                                                                                                                             BIOKA63
                                                                                                                                                         81
                                                    THE COVERING CIRCLE OF A SAMPLE FROM A CIRCULAR NORMAL DISTRIBUTIO BIOKA52
                                                                                                                                                         137
                                 GOODNESS-OF-FIT TESTS ON A CIRGLE.II
                                                                                                                                             BIOKA62
                                                                                                                                                         57
                      A GOODNESS-OF-FIT STATISTIC FOR THE CIRCLE, WITH SOME COMPARISONS
                                                                                                                                                         161
                                                                                                                                             BIOKA69
    DISTANCES BETWEEN RANDOM POINTS IN TWO CONCENTRIC CIRCLES
                                                                                                                                        THE BIOKA64 275
                                                            RANDOM CIRCLES ON A SPHERE
                                                                                                                                             BIOKA62
                                                                                                                                                         3B9
        TESTS FOR RANDOMNESS OF DIRECTIONS AGAINST TWO CIRCULAR ALTERNATIVES
                                                                                                                                             JASA 69
            THE PROBABILITY OF COVERING A SPHERE WITH N CIRCULAR CAPS.
                                                                                                                                             BIOKA65
                                                                                                                                                         323
                                                              SOME CIRCULAR COVERACE PROBLEMS
                                                                                                                                             BIOKA61 313
                     ANOTHER TEST FOR THE UNIFORMITY OF A CIRCULAR DISTRIBUTION
A SIMPLE TEST FOR UNIFORMITY OF A CIRCULAR DISTRIBUTION
                                                                                                                                             BIOKA67
                                                                                                                                                         675
                                                                                                                                                        343
                                                                                                                                             BTOKA6B
        THEORY OF A CLASS OF TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIBUTION
                                                                                                                          ASYMPTOTIC AMS 69 1196
```

```
BIVARIATE SICN TEST AND A TEST FOR UNIFORMITY OF A CIRCULAR DISTRIBUTION
    VARIATE SICN TEST AND A TEST FOR UNIFORMITY OF A CIRCULAR DISTRIBUTION

ON A CLASS OF NONPARAMETRIC TWO-SAMPLE TESTS FOR CIRCULAR DISTRIBUTIONS

ON A CLASS OF NONPARAMETRIC TWO-SAMPLE TESTS FOR CIRCULAR DISTRIBUTIONS

ON A CLASS OF NONPARAMETRIC TWO-SAMPLE TESTS FOR CIRCULAR DISTRIBUTIONS

ON A CLASS OF NONPARAMETRIC TWO-SAMPLE TESTS FOR CIRCULAR DISTRIBUTIONS

ON A CLASS OF NONPARAMETRIC TWO-SAMPLE TESTS FOR CIRCULAR DISTRIBUTIONS
                                                                                                    ON HODGES'S BIOKA69 446
TRIC TWO-SAMPLE TESTS FROM TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIBUTION
                     NONPARAMETRIC SYMMETRY TESTS FOR CIRCULAR DISTRIBUTIONS
                                                                                                                 BIOKA69 NO.3
       PROPERTIES OF SOME ESTIMATORS OF QUANTILES OF CIRCULAR ERROR
                                                                                                     ASYMPTOTIC JASA 66 61B
                                                        CIRCULAR ERROR PROBABILITIES
                                                                                                                 JASA 60 723
                                                    ON CIRCULAR FUNCTIONAL RELATIONSHIPS
                                                                                                                 JRSSB65
                                                                                                                           45
                                        A NOTE ON THE CIRCULAR MULTIVARIATE DISTRIBUTION
                                                                                                                 BIOKA56
                                                                                                                         467
               THE COVERING CIRCLE OF A SAMPLE FROM A CIRCULAR NORMAL DISTRIBUTION
                                                                                                                 BIOKA52
                                                                                                                         137
                  EFFECTS OF BIAS ON ESTIMATES OF THE CIRCULAR PROBABLE ERROR
                                                                                                                 JASA 60
                                                                                                                          732
                               SOME MORE ESTIMATES OF CIRCULAR PROBABLE ERROR
                                                                                                                 JASA 62
                                                                                                                          191
                           COMPARISON OF ESTIMATES OF CIRCULAR PROBABLE ERROR, CORR. 60 755
                                                                                                                 JASA 59 794
                     ON THE JOINT DISTRIBUTION OF THE CIRCULAR SERIAL CORRELATION COEFFICIENTS
                                                                                                                 BTOKA56
                                                                                                                          161
                         TESTING AND ESTIMATION FOR A CIRCULAR STATIONARY MODEL
                                                                                                                 AMS 69 1358
                    THE DISTRIBUTION OF THE NUMBER OF CIRCULAR TRIADS IN PAIRED COMPARISONS
                                                                                                                BIOKA62
                                                                                                                         265
OF GAUSSIAN PROCESSES ON AN INTERVAL A CLARIFICATION CONCERNING CERTAIN EQUIVALENCE CLASSES AMS 68 1078
ABILITY THAT AN OBSERVATION WILL FALL IN A SPECIFIED CLASS
                                                                                        ESTIMATION OF THE PROB JASA 64 225
                                               LATENT CLASS ANALYSIS AND DIFFERENTIAL MORTALITY
                                                                                                                JASA 62 430
      LINEAR REGRESSION ANALYSIS WITH ADJUSTMENT FOR CLASS DIFFERENCES
                                                                                                       MULTIPLE JASA 61
                                                                                                                          729
          A SIMPLE MATHEMATICAL RELATIONSHIP AMONG K-CLASS ESTIMATORS
                                                                                                                JASA 66 36B
   SENSITIVITY TO SPECIFICATION ERROR OF DIFFERENT K-CLASS ESTIMATORS
                                                                                                   THE RELATIVE JASA 66
                                                                                                                          345
NOTE ON THE UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L
                                                                                                                 AMS 67 1296
 ESPECIAL REFERENCE/ A LINEAR APPROXIMATOR FOR THE CLASS MARKS OF A GROUPED FREQUENCY DISTRIBUTION, WITH TECH 68
 TESTABILITY OF 'EXPLICIT CAUSAL CHAINS' ACAINST THE CLASS OF 'INTERDEPENDENT' MODELS /N THE STATISTICAL JASA 65 1080
                                                  ON A CLASS OF ADMISSIBLE PARTITIONS
                                                                                                                  AMS 66
                                                                                                                          1B9
                                                  ON A CLASS OF ALIGNED RANK ORDER TESTS IN TWO-WAY LAYOUTS
                                                                                                                 AMS 68 1115
                           AN EXTENSION PROPERTY OF A CLASS OF BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                                BIOKA57
                                                                                                                          27B
                                  AN INEQUALITY FOR A CLASS OF BIVARIATE CHI-SQUARE DISTRIBUTIONS
                                                                                                                         333
                                                                                                                JASA 69
                                                     A CLASS OF BIVARIATE DISTRIBUTIONS
                                                                                                                JASA 65
                                                                                                                          516
                                             A GENERAL CLASS OF BULK QUEUES WITH POISSON INPUT
                                                                                                                 AMS 67
                                                                                                                          759
                             ASYMPTOTIC EFFICIENCY OF CLASS OF C-SAMPLE TESTS
                                                                                                                  AMS 64 102
           THE CHI-SQUARE GOODNESS-OF-FIT TEST FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS
                                                                                                                BTOKA64
                                                                                                                          250
                                           A GENERAL CLASS OF COEFFICIENTS OF DIVERGENCE OF ONE DISTRIBUTI JRSSB66
ON FROM ANOTHER
                                                                                                                         1.31
SIMILAR TO THE SAMPLE SPACE IN TESTS OF AN IMPORTANT CLASS OF COMPOSITE HYPOTHESES /ST CRITICAL REGIONS BIOKA53
                                                                                                                          231
                                                                                                                 AMS 69
INTERACTIONS IN FACTORIAL EXPERIMENTS
                                                  ON A CLASS OF CONDITIONALLY DISTRIBUTION-FREE TESTS FOR
                                                                                                                          658
               A PROPERTY OF THE MEAN DEVIATION FOR A CLASS OF CONTINUOUS DISTRIBUTIONS.
                                                                                                                BIOKA65
                                                                                                                          288
                                         ON A GENERAL CLASS OF DESIGNS FOR MULTIRESPONSE EXPERIMENTS
                                                 A NEW CLASS OF DESIGNS, CORR. 65 1250

A NEW CLASS OF DESIGNS, CORR. 65 1250

A GENERALIZATION BIOKA66
                                                                                                                 AMS 68 1B25
   OF JOHNSON'S PROPERTY OF THE MEAN DEVIATION FOR A CLASS OF DISCRETE DISTRIBUTIONS
                                                     A CLASS OF DISTRIBUTION-FREE ANALYSIS OF VARIANCE TESTS SASJ 67
                                                                                                                           75
                                                     A CLASS OF DISTRIBUTIONS APPLICABLE TO ACCIDENTS
                                                                                                                JASA 61
                                                     A CLASS OF DISTRIBUTIONS FOR WHICH THE MAXIMUM-LIKELIHO BIOKA56
OD ESTIMATOR IS UNBIASED AND OF MINIMUM VARIANC/
                                            A GENERAL CLASS OF ENUMERATIONS ARISING IN GENETICS
                                                                                                                BTOCS67
                                                                                                                         517
                    ON A MINIMAL ESSENTIALLY COMPLETE CLASS OF EXPERIMENTS
                                                                                                                 AMS 66
                                                                                                                          435
         A SUGGESTED METHOD OF ANALYSIS OF A CERTAIN CLASS OF EXPERIMENTS IN CARCINOCENESIS
                                                                                                                BIOCS66
                                                                                                                         142
                                      DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTIONS VIA BAYES'S THEOREM
                                                                                                               JRSSB65
                                                                                                                          290
                              A CHARACTERIZATION OF A CLASS OF FUNCTIONS OF FINITE MARKOV CHAINS
                                                                                                                 AMS 65
                                                                                                                          524
                                                  ON A CLASS OF GAUSSIAN PROCESSES FOR WHICH THE MEAN RATE
OF CROSSINGS IS INFINITE
                                                                                                                JRSSB67
                                                                                                                         489
                                                     A CLASS OF INFINITELY DIVISIBLE MIXTURES
                                                                                                                 AMS 6B 1153
        BOUNDS ON THE SAMPLE SIZE DISTRIBUTION FOR A CLASS OF INVARIANT SEQUENTIAL PROBABILITY RATIO TESTS
                                                                                                                AMS 68 104B
                    ON HOROVITZ AND THOMPSON'S T-ONE CLASS OF LINEAR ESTIMATION
                                                                                                                 AMS 67 18B2
PROBABILITIES WITHOUT REPLACEMENT
                                                  ON A CLASS OF LINEAR ESTIMATORS IN SAMPLING WITH VARYING
                                                                                                                JASA 65 637
FACTORIAL EXPERIMENT
                                        ON A COMPLETE CLASS OF LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED
                                                                                                                 AMS 63 769
                              ORDER STATISTICS FROM A CLASS OF NON-NORMAL DISTRIBUTIONS
                                                                                                                BIOKA69 415
       A UNIFIED APPROACH FOR CONSTRUCTING A USEFUL CLASS OF NON-ORTHOGONAL MAIN EFFECT PLANS IN K TO THE JRSSB68
                                                                                                                         371
                          ASYMPTOTIC EFFICIENCY OF A CLASS OF NON-PARAMETRIC TESTS FOR REGRESSION PARAMETE AMS 67 B84
FREE METHOD OF ESTIMATING ASYMPTOTIC EFFICIENCY OF A CLASS OF NONPARAMETRIC TESTS
                                                                                            ON A DISTRIBUTION-
                                                                                                                 AMS 66 1759
                                                     A CLASS OF NONPARAMETRIC TESTS FOR INDEPENDENCE IN
                                                                                                                 AMS 64 138
BIVARIATE POPULATIONS
DISTRIBUTIONS
                                                  ON A CLASS OF NONPARAMETRIC TWO-SAMPLE TESTS FOR CIRCULAR
                                                                                                                 AMS 69 1791
                                                  ON A CLASS OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                                 AMS 65 1B07
                                        ON INVERTING A CLASS OF PATTERNED MATRICES
                                                                                                                BIOKA56 227
ANTS, CHARACTERISTIC EQUATIONS AND THEIR ROOTS FOR A CLASS OF PATTERNED MATRICES EVALUATION OF DETERMIN JRSSB60 348
                 A LOCAL LIMIT THEOREM FOR A CERTAIN CLASS OF RANDOM WALKS
                                                                                                                 AMS 66
                                                                                                                          B55
        ON THE ADMISSIBILITY AT INFINITY, WITHIN THE CLASS OF RANDOMIZED DESIGNS, OF BALANCED DESIGNS
                                                                                                                 AMS 68 1978
HYPOTHESIS
                                                     A CLASS OF RANK ORDER TESTS FOR A CENERAL LINEAR
                                                                                                                 AMS 69 1325
SEVERAL REGRESSION LINES
                                                 ON A CLASS OF RANK ORDER TESTS FOR THE PARALLELISM OF
                                                                                                                 AMS 69 166B
         ON THE SAMPLE SIZE AND SIMPLIFICATION OF A CLASS OF SEQUENTIAL PROBABILITY RATIO TESTS
                                                                                                                 AMS 66 425
HYPOTHESES CONCERNING THE UNKNOWN DRIFT PARAMET/ A CLASS OF SEQUENTIAL PROCEDURES FOR CHOOSING ONE OF K
                                                                                                                 AMS 67 1376
                                                     A CLASS OF SEQUENTIAL TESTS FOR AN EXPONENTIAL
                                                                                                                JASA 69 NO.4
EQUATIONS OF THE SINGLE CHANNEL QUEUE WITH A GENERAL CLASS OF SERVICE-TIME DISTRIBUTIONS BY THE METHOD OF
                                                                                                                JRSSB5B 176
                                                  ON A CLASS OF SIMPLE SEQUENTIAL TESTS ON MEANS
                                                                                                                TECH 62 345
                                                     A CLASS OF SITUATIONS IN WHICH A SEQUENTIAL ESTIMATION
                                                                                                               BIOKA67 229
PROCEDURE IS NON-SEQUENTIAL.
                                                  ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS
                                                                                                                BTOKA55 425
                    ON THE EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY TIME SERIES
                                                                                                                 AMS 65 1426
                           ON THE PROPERTY, W, OF THE CLASS OF STATISTICAL DECISION FUNCTIONS
                                                                                                                 AMS 66 1631
                                                  ON A CLASS OF STOCHASTIC PROCESSES
                                                                                                                 AMS 63 206
                                                                                                                 AMS 66 260
         ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES
                               ASYMPTOTIC THEORY OF A CLASS OF TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIBUT
                                                                                                                 AMS 69 1196
PROBLEMS IN MULTIVARIATE STATISTICAL ANALYSIS A CLASS OF TESTS WITH MONOTONE POWER FUNCTIONS FOR TWO
                                                                                                                AMS 65 1794
BLO/ ON THE F-TEST IN THE INTRABLOCK ANALYSIS OF A CLASS OF TWO ASSOCIATE PARTIALLY BALANCED INCOMPLETE
                                                                                                                JASA 65
                                                                                                                        285
                                                                                                                JASA 67 1201
    ON SOME MULTISAMPLE PERMUTATION TESTS BASED ON A CLASS OF U-STATISTICS
NCTION FOR COMPUTING THE SAMPLING PROBABILITIES OF A CLASS OF WIDELY USED STATISTICS /ABLE GENERATING FU JASA 64 4B7
THE TRIANGULAR ASSOCIATION SCHEME TO THREE ASSOCIATE CLASSES
                                                                                              AN EXTENSION OF JRSSB66
                                                                                                                        361
ION OF PARTIALLY BALANCED DESIGNS WITH TWO ASSOCIATE CLASSES
                                                                        ON A CEOMETRICAL METHOD OF CONSTRUCT AMS 61 1177
UPANCY PROBLEM, UNBIASED ESTIMATION OF THE NUMBER OF CLASSES STATISTICAL INFERENCE IN THE CLASSICAL OCC JASA 6B B37
NCOMPLETE BLOCK DESIGNS WITH MORE THAN TWO ASSOCIATE CLASSES ANALYSIS OF A CLASS OF PARTIALLY BALANCED I AMS 61 800
```

CLA COE

TITLE WORD INDEX

```
OPTIMUM CHOICE OF CLASSES FOR CONTINCENCY TABLES
                                                                                                           JASA 68 29I
                                    SOME EQUIVALENCE CLASSES IN PAIRED COMPARISONS
                                                                                                            AMS 66 488
           A CHARACTERIZATION OF THE UPPER AND LOWER CLASSES IN TERMS OF CONVERCENCE RATES
                                                                                                            AMS 69 1120
                             THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST
                                                                                                           JASA 63
 67 950
                TOLERANCE AND CONFIDENCE LIMITS FOR CLASSES OF DISTRIBUTIONS BASED ON FAILURE RATE, CORR. AMS 66 1593
             ON THE DETERMINATION OF A SAFE LIFE FOR CLASSES OF DISTRIBUTIONS CLASSIFIED BY FAILURE RATE
                                                                                                           TECH 68
                                                                                                                    36T
      A CLARIFICATION CONCERNING CERTAIN EQUIVALENCE CLASSES OF CAUSSIAN PROCESSES ON AN INTERVAL
                                                                                                            AMS 68 1078
                                                 TWO CLASSES OF GROUP DIVISIBLE PARTIAL DIALLEL CROSSES
                                                                                                           BIOKA63
                                                                                                                    2BI
CALIBRATION
                                                     CLASSICAL AND INVERSE RECRESSION METHODS OF
                                                                                                           TECH 67
                                                                                                                     425
ON IN EXTRAPOLATION
                                                     CLASSICAL AND INVERSE REGRESSION METHODS OF CALIBRATI TECH 69
                                                                                                                     605
                             A BAYESIAN TEST OF SOME CLASSICAL HYPOTHESES, WITH APPLICATIONS TO SEQUENTIAL JASA 66
CLINICAL TRIALS
                                                                                                                     577
ACT FINITE SAMPLE FREQUENCY FUNCTIONS OF GENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING THREE-EQUATI JASA 63
                                                                                                                     161
     ON THE EXACT DISTRIBUTIONS OF THE CENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADINC THREE-EQUATI JASA 64
                                                                                                                     BST
 FINITE SAMPLE DISTRIBUTION FUNCTIONS OF CENERALIZED CLASSICAL LINEAR ESTIMATORS IN ECONOMETRIC STATISTICA JASA 63
                                                                                                                     943
ACT FINITE SAMPLE FREQUENCY FUNCTIONS OF GENERALIZED CLASSICAL LINEAR ESTIMATORS IN TWO LEADING OVER-IDENT JASA 61
                                                                                                                     619
A NOTE ON THE EXACT DISTRIBUTIONS OF THE GENERALIZED CLASSICAL LINEAR ESTIMATORS IN TWO LEADING OVER-IDENT JASA 63
       ON FINITE SAMPLE DISTRIBUTIONS OF GENERALIZED CLASSICAL LINEAR IDENTIFIABILITY TEST STATISTICS
                   TESTS FOR SPECIFICATION ERRORS IN CLASSICAL LINEAR LEAST-SQUARES RECRESSION ANALYSIS
                                                                                                           JRSSB69 NO.2
UARED, R-SQUARED AND OTHER FULLY INVARIANT TESTS FOR CLASSICAL MULTIVARIATE NORMAL PROBLEMS /TER OF T-SQ AMS 65
                    ESTIMATION OF A PARAMETER IN THE CLASSICAL OCCUPANCY PROBLEM
                                                                                                           BIOKA60
                                                                                                                     1 BO
HE NUMBER OF CLASSES
                      STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY PROBLEM, UNBLASED ESTIMATION OF T JASA 68
                                                                                                                     837
                                    ON THE THEORY OF CLASSICAL RECRESSION AND DOUBLE SAMPLING ESTIMATION
                                                                                                          JRSSB60
                                                                                                                     131
     RENEWAL RESULTS FOR A NATURAL CENERALIZATION OF CLASSICAL RENEWAL THEORY
                                                                                                ASYMPTOTIC JRSSB67
                                                                                                                     141
                                             ON THE CLASSICAL RUIN PROBLEMS
                                                                                                           JASA 69
                                                                                                                     889
                                                    CLASSICAL STATISTICAL ANALYSIS BASED ON A CERTAIN MUL AMS 65
TIVARIATE COMPLEX GAUSSIAN DISTRIBUTION
                                                                                                                     9B
S ON THE DISTRIBUTION OF TWO RANDOM MATRICES USED IN CLASSIFICATION PROCEDURES, CORR. 64 924 SOME RESULT AMS 63
                                                                                                                    181
VARIANCE COMPONENTS IN THE UNBALANCED TWO WAY NESTED CLASSIFICATION
                                                                                                            AMS 6I I161
                                           A NOTE ON CLASSIFICATION
                                                                                                            AMS 67 I592
                                 BIAS IN MULTINOMIAL CLASSIFICATION
                                                                                                           JASA 6B 298
                              ADAPTIVE NONPARAMETRIC CLASSIFICATION
                                                                                                           TECH 69 NO.4
                      ONE-WAY VARIANCES IN A TWO-WAY CLASSIFICATION
                                                                                                           BIOKA58 III
                           SEQUENTIAL OCCUPANCY WITH CLASSIFICATION
                                                                                                           BIOKA68
                                                                                                                    229
             POSTERIOR ODDS FOR MULTIVARIATE NORMAL CLASSIFICATION
                                                                                                           JRSSB64
                                                                                                                     69
                             A BAYESIAN APPROACH TO CLASSIFICATION
                                                                                                           JRSSB66
                                                                                                                    568
  TESTING THE HOMOGENEITY OF VARIANCES IN A TWO-WAY CLASSIFICATION
                                                                                                           BIOCSS9
                                                                                                                    T53
STRIBUTION-FREE ANALYSIS OF VARIANCE FOR THE TWO-WAY CLASSIFICATION
                                                                                                        DI SASJ 67
                                                                                                                     67
  ROBUSTNESS OF THE COVARIANCE ANALYSIS OF A ONE-WAY CLASSIFICATION
                                                                                                       THE BIOKA64
                                                                                                                     365
  OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION
                                                                                                 VARIANCES BIOCS66
                                                                                                                    553
THE DETERMINATION OF CONNECTEDNESS IN AN N-WAY CROSS CLASSIFICATION
                                                                                                 A NOTE ON TECH 64
                                                                                                                    319
MOGENEITY OF THE MARGINAL DISTRIBUTIONS IN A TWO-WAY CLASSIFICATION
                                                                                             A TEST FOR HO BIOKA55
                                                                                                                    412
    ESTIMATION OF VARIANCE COMPONENTS OF THE ONE-WAY CLASSIFICATION
                                                                                        QUADRATIC UNBIASED BIOKA69
                                                                                                                    313
ATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION
                                                                                VARIANCES OF MOMENT ESTIM BIOCS68
                                                                          ON THE ADMISSIBILITY OF A RANDOM AMS 69
IZED SYMMETRICAL DESIGN FOR THE PROBLEM OF A ONE WAY CLASSIFICATION
                                                                                                                    356
COMPONENTS OF VARIANCE FROM A NON-ORTHOGONAL TWO-WAY CLASSIFICATION
                                                                       SAMPLING VARIANCES OF ESTIMATES OF BIOKA64 49I
 IN THE SUBCLASSES FOR THE TWO-WAY COMPLETELY-RANDOM CLASSIFICATION
                                                                     /ANS AND THE NUMBERS OF OBSERVATIONS JASA 68 1484
ONS ON THE EFFECTS FOR THE UNBALANCED ONE-WAY RANDOM CLASSIFICATION
                                                                     /FFECTS AND THE NUMBERS OF OBSERVATI JASA 67 1375
RIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION
                                                                      /NC VARIANCES OF THE ESTIMATES OF VA AMS 63 521
                                           MULTIPLE CLASSIFICATION ANALYSIS FOR ARBITRARY EXPERIMENTAL
DESIGN
                                                                                                           TECH 68
                                                                                                                     T.3
 THE CONSTRUCTION OF OPTIMAL DESIGNS FOR THE ONE-WAY CLASSIFICATION ANALYSIS OF VARIANCE
                                                                                                           JRSSB6I 352
          CONTROLLING THE PROPORTION DEFECTIVE FROM CLASSIFICATION DATA
                                                                                                           TECH 64
                                                                                                                     99
           THE ANALYSIS OF VARIANCE FOR THE TWO-WAY CLASSIFICATION FIXED EFFECTS MODEL WITH OBSERVATIONS BIOKA69 NO.3
                                          ERRORS OF CLASSIFICATION IN A BINOMIAL POPULATION
                                                                                                           JASA 65
                           PROBABILITIES OF CORRECT CLASSIFICATION IN DISCRIMINANT ANALYSIS
                                                                                                           BIOCS66
                                                                                                                    908
IONS WITH DIFFERENT COVARIANCE MATRICES
                                                     CLASSIFICATION INTO TWO MULTIVARIATE NORMAL DISTRIBUT AMS 62
                                                                                                                    420
      MINIMAL SUFFICIENT STATISTICS FOR THE TWO-WAY CLASSIFICATION MIXED MODEL DESIGN
                                                                                                           JASA 65
                      VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH INTERACTION
                                                                                                           BIOKA63
                                                                                                                    327
                                                  A CLASSIFICATION OF FALLACIOUS ARGUMENTS AND
                                                                                                                    125
INTERPRETATIONS
                                                                                                           TECH 62
PONSES TO MIXTURES/ AN ALTERNATIVE SYSTEM FOR THE CLASSIFICATION OF MATHEMATICAL MODELS FOR QUANTAL RES BIOCS65
                                                                                                                    181
      BALANCED INCOMPLETE BLOCK DESIGNS WITH TWO-WAY CLASSIFICATION OF TREATMENTS
                                                                                                                    175
                                                                                                PARTIALLY AMS 69
                               NOTE ON A SEQUENTIAL CLASSIFICATION PROBLEM
                                                                                                            AMS 63 I095
ERNATIVE DISTRIBUTIONS IS BASED ON SAMPLES
                                             A CLASSIFICATION PROBLEM IN WHICH INFORMATION ABOUT ALT AMS 62 213
           A GENERAL APPROACH TO SOME SCREENING AND CLASSIFICATION PROBLEMS (WITH DISCUSSION)
                                                                                                           JRSSR68
                                                                                                                    407
                      ON THE CHOICE OF VARIABLES IN CLASSIFICATION PROBLEMS WITH DICHOTOMOUS VARIABLES
                                                                                                           BTOKA67
                                                                                                                    668
                                BOUNDS IN A MINIMAX CLASSIFICATION PROCEDURE
                                                                                                           BIOKA65
                                                                                                                    653
                                                                                                           AMS 65 II74
IVARIATE NORMAL POPULATIONS
                                            OPTIMUM CLASSIFICATION RULES FOR CLASSIFICATION INTO TWO MULT
OMPONENT ESTIMATORS FOR THE UNBALANCED TWO-WAY CROSS CLASSIFICATION WITH APPLICATION TO BALANCED INCOMPLET
                                                                                                           AMS 69 408
                                MULTIVARIATE-NORMAL CLASSIFICATION WITH COVARIANCE KNOWN
                                                                                                            AMS 65 1787
ESTIMABILITY OF VARIANCE COMPONENTS FOR THE TWO-WAY CLASSIFICATION WITH ITERATION
                                                                                                            AMS 67 150B
OR PROBABILITY SEQUENTIAL NONPARAMETRIC TWO-WAY CLASSIFICATION WITH PRESCRIBED MAXIMUM ASYMPTOTIC ERR
                                                                                                            AMS 69
                                        STATISTICAL CLASSIFICATION WITH QUADRATIC FORMS
                                                                                                           BIOKA63
                                                                                                                   439
                           STUDENT'S T IN A TWO-WAY CLASSIFICATION WITH UNEQUAL VARIANCES
                                                                                                            AMS 65 1248
THE DETERMINATION OF CONNECTEDNESS IN AN N-WAY CROSS CLASSIFICATION'
                                                                                      ERRATA. A NOTE ON TECH 65 281
                                                                                                                    487
   RANK SUM MULTIPLE COMPARISIONS IN ONE AND TWO-WAY CLASSIFICATIONS
                                                                                                           BTOKA67
                      AN ALGORITHM FOR HIERARCHICAL CLASSIFICATIONS
                                                                                                                    165
                                                                                                           BIOCS69
                    EXPECTED MEAN SQUARES FOR NESTED CLASSIFICATIONS
                                                                                                           BTOCS69
                                                                                                                    427
         TESTS BY SEQUENTIAL METHODS IN HIERARCHICAL CLASSIFICATIONS
                                                                                              SIMULTANEOUS BIOKA64
                                                                                                                    439
     OF VARIANCE OF DESIGNS WITH MANY NON-ORTHOGONAL CLASSIFICATIONS
                                                                                              THE ANALYSIS JRSSB66
                                                                                                                    110
UNCTIONS OF VARIANCE COMPONENTS FROM TWO-WAY CROSSED CLASSIFICATIONS
                                                                       /OR THE SIMUTANEOUS ESTIMATION OF F BIOKA67
                                                                                                                    T27
ED FROM ONE WAY-CLASSIFICATION TABLES WHEN THE CROSS CLASSIFICATIONS ARE UNKNOWN /N COEFFICIENTS ESTIMAT JASA 66
                                                                                                                    720
UARES IN AN ANALYSIS OF VARIANCE TABLE FOR DIFFERENT CLASSIFICATIONS WITH CORRELATED AND NON-HOMOCENEOUS E JRSSB59
                            ANALYSIS OF MULTIFACTOR CLASSIFICATIONS WITH UNEQUAL NUMBERS OF OBSERVATIONS BIOCS66
 MULTIPLE COMPARISONS FOR BALANCED SINGLE AND DOUBLE CLASSIFICATIONS. PART I. RESULTS
                                                                                                SHORT-CUT TECH 65
MULTIPLE COMPARISONS FOR BALANCED SINCLE AND DOUBLE CLASSIFICATIONS. PART 2. DERIVATIONS AND APPROXIMATIO BIOKAG5
                  MEASURES OF ASSOCIATION FOR CROSS CLASSIFICATIONS, II. FURTHER DISCUSSION AND REFERENCE JASA 59 123
MEASURES OF ASSOCIATION FOR CROSS CLASSIFICATIONS, 111. APPROXIMATE SAMPLING THEORY JASA 63 310
MINATION OF A SAFE LIFE FOR CLASSES OF DISTRIBUTIONS CLASSIFIED BY FAILURE RATE
                                                                                             ON THE DETER TECH 68 361
```

SELECTION AMONC DIALLEL		BIOCS69	49
		JRSSB66	
	CLINES IN BODY DIMENSIONS IN POPULATIONS OF 'DROSOPHI		
THE TWO-PERIOD CHANCE-OVER DESIGN AND ITS USE IN PLAY THE WINNER RULE AND THE CONTROLLED		BIOCS65 JASA 69	467
A BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM		JASA 65	81
AN ADAPTIVE PROCEDURE FOR SEQUENTIAL		JASA 69	
TWO-STACE DESIGNS FOR	OLTHIOLI MOTILIO	0700000	2.1.2
LASSICAL HYPOTHESES. WITH APPLICATIONS TO SEQUENTIAL		JASA 66	577
		BIOCS68	
ON COMPTNING THE DECLIES FROM	CITATONI EDINIC OF A VACCINE	OTOCCCE	61.6
THE COVARIANCE AND SPECTRAL DENSITY FUNCTIONS FROM A	CLIPPED STATIONARY TIME SERIES ESTIMATING CLIPPED TO CAUSSIAN TIME PROCESSES CLOSED (WEDGE) SEQUENTIAL T TEST PLANS	JRSSB67	1B0
ESTIMATION OF SPECTRA AFTER HARD	CLIPPINC OF CAUSSIAN TIME PROCESSES	TECH 67	391
BOUNDARIES FOR	CLOSED (WEDGE) SEQUENTIAL T TEST PLANS	810KA66	431
SOME NON-CENTRAL F-DISTRIBUTIONS EXPRESSED IN	CLOSED FORM	BIOKA64	107
UPPER AND LOWER PROBABILITIES GENERATED BY A RANDOM		AMS 6B	957
THE MULTIPLE-RECAPTURE CENSUS. I. ESTIMATION OF A		BIOKA58	
	CLOSED QUEUEING SYSTEMS, A GENERALIZATION OF THE		
		AMS 64	
A FAMILI OF	CLOSED SEQUENTIAL PROCEDURES (CORR. 69 457) CLOSED SEQUENTIAL T-TESTS	BIOKAGS	350
	CLOSED SEQUENTIAL TESTS FOR AN EXPONENTIAL PARAMETER		
	CLOSED SEQUENTIAL TESTS FOR BINOMIAL PROBABILITIES		73
	CLOSENESS /D SAMPLE ESTIMATOR OF THE MEAN OF A LOG-		
NORMAL DISTRIBUTION HAVING A PRESCRIBED PROPORTIONAL	CLOSENESS /UENTIAL ESTIMATION OF THE MEAN OF A LOC-	AMS 66	1688
STATISTICAL EVALUATION OF	CLOUD SEEDING OPERATIONS	JASA 60	446
A METHOD FOR	CLUSTER ANALYSIS	BIOCS65	362
A COMPARISON OF SOME METHODS OF	CLUSTER ANALYSIS	BIOCS67	623
THE DISTRIBUTION OF THE SIZE OF THE MAXIMUM	CLUSTER OF POINTS ON A LINE	JASA 65	532
A THREE-DIMENSIONAL	CLUSTER PROBLEM	BIOKA6B	258
CARLO SOLUTION OF A TWO-DIMENSIONAL UNSTRUCTURED	CLUSTER PROBLEM A MONTE	BIOKA67	625
POST	CLOSENESS /UENTIAL ESTIMATION OF THE MEAN OF A LOC- CLOUD SEEDING OPERATIONS CLUSTER ANALYSIS CLUSTER ANALYSIS CLUSTER OF POINTS ON A LINE CLUSTER PROBLEM CLUSTER PROBLEM CLUSTER SAMPLING CLUSTER SAMPLING	AMS 63	587
NOTE ON A MINIMAX DESIGN FOR ANALYTICAL SURVEYS WITH	CLOSIER SAMI LING	AMS 68 JRSSB65	210
		BIOKA62	27
A POWER COMPARISON OF TWO TESTS OF NON-RANDOM		TECH 66	
		BIOKA65	
		JASA 65	
		JASA 67	86
	CLUSTERING, A GENERALIZATION OF KNOX'S APPROACH TO TH		541
PERCENTACE POINTS OF A TEST FOR		JASA 69	
, EXPECTATIONS AND VARIANGES FOR THE SIZE OF LARGEST	CLUSTERS AND SMALLEST INTERVALS SOME PROBABILITIES	JASA 66	1191
POWER OF NORMAL TESTS FOR INDEPENDENCE		BIOKA69	
STOCHASTIC		TECH 68	
	COCHRAN'S FORMULAE FOR ADDITION OR OMISSION OF A VARI		
	· ·	BIOCS65	
THE SPECTRAL THEOREM FOR FINITE MATRICES AND THE THEORY OF FACTORIAL DESIGNS AND ERROR CORRECTING		AMS 64	
CONTROL OF OUR TWO	GODING IN MUE 1000 GENGLIGHG	JASA 64	
ON THE		AMS 61	
LOWER BOUND FORMULAS FOR THE MEAN INTERCORRELATION	COEFFICIENT	JASA 59	
AN ANGULAR TRANSFORMATION FOR THE SERIAL CORRELATION	COEFFICIENT	BIOKA54	261
A REMARK ON SPEARMAN'S RANK CORRELATION		BIOKA5B	273
A QUICK ESTIMATE OF THE REGRESSION		BIOKA5B	
ON NAIR'S TRANSFORMATION OF THE CORRELATION		BIOKA58	
NOTE ON FISHER'S TRANSFORMATION OF THE CORRELATION		JRSSB59	
MOMENTS OF A SERIAL CORRELATION		JRSSB65 BIOCS65	
A GENERALIZATION OF THE INBREEDING THE DISTRIBUTION OF THE MATCHING		BIOCS67	
NOTE ON THE PROBABILITY INTEGRAL OF THE CORRELATION		BIOKA54	
NULL DISTRIBUTION OF THE FIRST SERIAL CORRELATION		BIOKA66	
PROOF OF DR HARLEY'S THEOREM ON THE CORRELATION		BIOKA58	
FOR A VARIANGE COMPONENT WITH AN EXACT CONFIDENCE		AMS 61	
OF THE DISTRIBUTION OF THE RANKING CONCORDANCE	COEFFICIENT AN APPLICATION	BIOKA51	33
EFFIGIENCY OF DANIELS'S GENERALIZED GORRELATION			
OF AN ANGULAR TRANSFORMATION FOR THE CORRELATION			
ON THE DISTRIBUTION OF THE SAMPLE CORRELATION			
DISTRIBUTION OF THE LARCEST CANONICAL CORRELATION			
OF AN ANGULAR TRANSFORMATION OF THE CORRELATION FORM OF THE DISTRIBUTION OF THE MULTIPLE CORRELATION			
THE DISTRIBUTION OF THE MULTIPLE CORRELATION THE DISTRIBUTION OF THE SAMPLE GENETIC CORRELATION			
FOR THE MEAN AND VARIANCE OF THE SERIAL CORRELATION			
FOR THE MOMENTS OF THE DISTRIBUTION OF CORRELATION			
FOR SMALL N OF KENDALL'S PARTIAL RANK CORRELATION			
CONFIDENCE LIMITS ON THE MULTIPLE CORRELATION			
OF NON-CENTRAL T AND OF A TRANSFORMED CORRELATION			
	COEFFICIENT /DISCRIMINANT ANALYSIS, NECESSARY SAMPL		
	COEFFICIENT /E AVERAGE RANK CORRELATION METHODS AND		
	COEFFICIENT AND RATE OF GENE LOSS OF FOUR METHODS OF		
	COEFFICIENT BASED ON KENDALL'S TAU COEFFICIENT BETWEEN THEIR TEST STATISTICS /MPTOTIC	JASA 6B	
THE EXACT DISTRIBUTION OF A STRUCTURAL		JASA 68	
		JASA 67	
		JASA 64	
NT/ INFERENCES CONCERNING A POPULATION CORRELATION	COEFFICIENT FROM ONE OR POSSIBLY TWO SAMPLES SUBSEQUE	JRSSB67	282
MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INSREEDING	COEFFICIENT FROM PHENOTYPE FREQUENCIES 8Y A METHOD OF	BIOCS68	915

CLA - COE

COE - COM TITLE WORD INDEX

```
E R/ A RAPID METHOD FOR ESTIMATING THE CORRELATION COEFFICIENT FROM THE RANCE OF THE DEVIATIONS ABOUT TH BIOKAS3 21B
UENCY DISTRIBUTION OF THE PRODUCT-MOMENT CORRELATION COEFFICIENT IN RANDOM SAMPLES OF ANY SIZE DRAWN FROM BIOKAS1 219
                  THE DISTRIBUTION OF THE RECRESSION COEFFICIENT IN SAMPLES FROM A NON-NORMAL POPULATION BIOKA54
   ALTERNATIVE DEFINITIONS OF THE SERIAL CORRELATION COEFFICIENT IN SHORT AUTORECRESSIVE SEQUENCES
                                                                                                          JASA 58
                                                  A COEFFICIENT MEASURING THE COODNESS OF FIT
                                                                                                          TECH 66
                                                                                                                   327
                                         ERRATA, 'A COEFFICIENT MEASURING THE COODNESS OF FIT'
                                                                                                          TECH 67
                                                                                                                   195
                                             ON THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONARY
STOCHASTIC PROCESSES
                                                                                                           AMS 64 532
       VARIANCE FORMULAS FOR THE MEAN DIFFERENCE AND COEFFICIENT OF CONCENTRATION
                                                                                                          JASA 62
                                                                                                                   64B
 CRAPHIC COMPUTATION OF TAU AS A COEFFICIENT OF DISARRAY
ON CRIFFIN'S PAPER 'CRAPHIC COMPUTATION OF TAU AS A COEFFICIENT OF DISARRAY'
                                                                                                          JASA 5B
                                                                                                                   441
                                                                                                   A NOTE JASA 61
                                                                                                                   736
HESIS OF INDEPENDENCE
                           CRITICAL VALUES OF THE COEFFICIENT OF RANK CORRELATION FOR TESTING THE HYPOT BIOKA61
                                                                                                                    444
             ON THE PERCENTACE POINTS OF THE SAMPLE COEFFICIENT OF VARIATION
                                                                                                                    580
                                                                                                          BIOKA6B
IMATING THE MEAN OF A NORMAL DISTRIBUTION WITH KNOWN COEFFICIENT OF VARIATION
                                                                                            A NOTE ON EST JASA 68 1039
LES SAMPLINC
                        AN INEQUALITY FOR THE SAMPLE COEFFICIENT OF VARIATION AND AN APPLICATION OF VARIAB TECH 65
L DISTRIBUTIONS
                       CONFIDENCE INTERVALS FOR THE COEFFICIENT OF VARIATION FOR THE NORMAL AND LOC NORMA BIOKA64
              APPROXIMATE CONFIDENCE LIMITS FOR THE COEFFICIENT OF VARIATION IN CAMMA DISTRIBUTIONS
                                                                                                          BIOCS65
                                                                                                                   733
                         THE UTILIZATION OF A KNOWN COEFFICIENT OF VARIATION IN THE ESTIMATION PROCEDURE JASA 64 1225
FROM NON-NORMAL POPULATIONS
                                       THE MEAN AND COEFFICIENT OF VARIATION OF RANCE IN SMALL SAMPLES
                                                                                                          BIOKA54
                                                                                                                   469
NON-NORMAL POPULATIO/ CORRICENDA, 'THE MEAN AND COEFFICIENT OF VARIATION OF RANCE IN SMALL SAMPLES FR BIOKA55
                                                                                                                   277
 BY KOOPMANS, OWEN AND RO/ THE DISTRIBUTION OF THE COEFFICIENT OF VARIATION, COMMENT ON A CRITICISM MADE BIOKAG5
                                                                                                                   303
                              NOTE ON TWO BINOMIAL COEFFICIENT SUMS FOUND BY RIORDAN
                                                                                                           AMS 63
                                                                                                                   333
                    MOMENTS OF THE RANK CORRELATION COEFFICIENT TAU IN THE CENERAL CASE
                                                                                                          BIOKA53 409
     CRAPHIC COMPUTATION OF THE MULTIPLE CORRELATION COEFFICIENT, CORR. 58 1031
                                                                                                          JASA 57
                                                                                                                   479
      SOME ESTIMATORS FOR A LINEAR MODEL WITH RANDOM COEFFICIENTS
                                                                                                          JASA 68 584
           RAPID METHODS FOR ESTIMATING CORRELATION COEFFICIENTS
                                                                                                          BIOKA51
                                                                                                                   464
  THE APPROXIMATE DISTRIBUTION OF SERIAL CORRELATION COEFFICIENTS
                                                                                                          BIOKA56 169
                    LINEAR ESTIMATES WITH POLYNOMIAL COEFFICIENTS
                                                                                                          BTOKA66
                                                                                                                   129
THE JOINT DISTRIBUTION OF THE STUDENTIZED RECRESSION COEFFICIENTS
                                                                                                          BIOKA6B 424
     MULTIVARIATE STOCHASTIC PROCESSES WITH PERIODIC COEFFICIENTS
                                                                                                          JRSSB69 171
                           FISHER, WRICHT, AND PATH COEFFICIENTS
                                                                                                          BIOCS68 471
    DISTRIBUTION OF THE CIRCULAR SERIAL CORRELATION COEFFICIENTS
                                                                                             ON THE JOINT BIOKASS 161
 TRANSFORMATIONS OF VARIABLES UPON THEIR CORRELATION COEFFICIENTS
                                                                                             THE EFFECT OF BIOKA57
                                                                                                                   272
    EFFICIENCY OF DANIELS'S CENERALIZED CORRELATION COEFFICIENTS
                                                                                           THE ASYMPTOTIC JRSSB61 12B
   OF TWO METHODS OF COMPUTINC DISCRIMINANT FUNCTION COEFFICIENTS
                                                                                       NOTES. EQUIVALENCE BIOCSC7
                                                                                                                   153
    CORRELATION COEFFICIENTS AND PARTIAL CORRELATION COEFFICIENTS
                                                                             A NOTE ON THE SICNS OF CROSS BIOKA56
                                                                                                                   4B0
                                                                                                                   984
NIMUM VARIANCE AND WEICHTED LEAST SQUARES RECRESSION COEFFICIENTS
                                                                          COMPARISON OF THE VARIANCE OF MI AMS 63
NEAR STOCHASTIC PROCESSES WITH ABSOLUTELY CONVERCENT COEFFICIENTS
                                                                   /HE STRONC LAW OF LARCE NUMBERS FOR LI AMS 61
                                                                                                                   5B3
RIBUTION IV. EMPIRICAL VARIANCES OF RANK CORRELATION COEFFICIENTS
                                                                   /INCLY TRUNCATED BIVARIATE NORMAL DIST BIOKA68
                                                                                                                   437
TERIA FOR TESTING LINEAR HYPOTHESES ABOUT RECRESSION COEFFICIENTS
                                                                   /RIBUTIONS OF THE LIKELIHOOD RATIO CRI AMS 66 1319
           A NOTE ON THE SICNS OF CROSS CORRELATION COEFFICIENTS AND PARTIAL CORRELATION COEFFICIENTS
                    CALCULATION OF ZONAL POLYNOMIAL COEFFICIENTS BY THE USE OF THE LAPLACE-BELTRAMI OPERA AMS 6B 1711
BLES WHEN THE CROSS/
                       UNBIASED MULTIPLE RECRESSION COEFFICIENTS ESTIMATED FROM ONE-WAY-CLASSIFICATION TA JASA 66 720
           THE SAMPLINC VARIANCE OF THE CORRELATION COEFFICIENTS ESTIMATED IN CENETIC EXPERIMENTS
                                                                                                         BIOCS66 187
                THE PERFORMANCE OF SOME CORRELATION COEFFICIENTS FOR A CENERAL BIVARIATE DISTRIBUTION
                                                                                                          BTOKA60 307
                    ON TESTING A SET OF CORRELATION COEFFICIENTS FOR EQUALITY
                                                                                                           AMS 63 149
                    ON TESTING A SET OF CORRELATION COEFFICIENTS FOR EQUALITY. SOME ASYMPTOTIC RESULTS
                                                                                                          BTOKA68 513
                                                                                                          BIOKA6B
PERCENTAGE POINTS
                                         LACRANCIAN COEFFICIENTS FOR INTERPOLATION BETWEEN TABLED
                                                                                                                    19
                            COMPLETE SET OF LEADING COEFFICIENTS FOR ORTHOCONAL POLYNOMIALS UP TO N = 26 TECH 65
                                                                                                                  644
        MAXIMUM LIKELIHOOD ESTIMATORS OF REGRESSION COEFFICIENTS FOR THE CASE OF AUTOCORRELATED RESIDUALS TECH 65
                                                                                                                    51
IONS AND COVARIANCES OF SERIAL AND CROSS-CORRELATION COEFFICIENTS IN A COMPLEX STATIONARY TIME SERIES /T BIOKA63
                       DISTRIBUTIONS OF CORRELATION COEFFICIENTS IN ECONOMIC TIME SERIES
                                                                                                          JASA 61
                            IMPROVED ESTIMATORS FOR COEFFICIENTS IN LINEAR RECRESSION
ULATIONS. I. THEOR/ THE DISTRIBUTION OF RECRESSION COEFFICIENTS IN SAMPLES FROM BIVARIATE NON-NORMAL POP BIOKAGO
                                                                                                                    61
                                       CORRELATION COEFFICIENTS MEASURED ON THE SAME INDIVIDUALS
                                                                                                        JASA 69
                                                                                                                   366
                          THE CANONICAL CORRELATION COEFFICIENTS OF BIVARIATE GAMMA DISTRIBUTIONS
                                                                                                           AMS 69 1401
                             A GENERAL CLASS OF COEFFICIENTS OF DIVERGENCE OF ONE DISTRIBUTION FROM
ANOTHER
                                                                                                          JRSSB66 131
FINITE POPULATION
                                             MOMENT COEFFICIENTS OF THE K-STATISTICS IN SAMPLES FROM A
                                                                                                         BIOKA52
 OF TWO NORMAL POPULATION MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION
                                                                                     A TEST OF EQUALITY AMS 69 1374
OBTAINED FROM VARIANCE ANALYSES' CORRECTION TO 'COEFFICIENTS OF VARIATION OF HERITABILITY ESTIMATES BIOCS65
                                                                                                                   265
TATES
               THE SAMPLING VARIANCE OF CORRELATION COEFFICIENTS UNDER ASSUMPTIONS OF FIXED AND MIXED VAR BIOKA5B
                                                                                                                   471
                      NOTES. CORRECTED CORRELATION COEFFICIENTS WHEN OBSERVATION ON ONE VARIABLE IS REST BIOCS66 182
RICTED
                         TESTS FOR RANK CORRELATION COEFFICIENTS. I
                                                                                                                   470
                         TESTS FOR RANK CORRELATION COEFFICIENTS. III. DISTRIBUTION OF THE TRANSFORMED KE BIOKA62 185
NDALL COEFFICIENT
                         TESTS FOR RANK CORRELATION COEFFICIENTS.II
                                                                                                          BIOKA61
                                                                                                                    29
                A PROCEDURE FOR COMPUTINC REGRESSION COEFFICIENTS, CORR. 59 B11
                                                                                                          JASA 58
       A NOMOGRAPH FOR COMPUTINC PARTIAL CORRELATION COEFFICIENTS, CORR. 62 917
                                                                                                          JASA 61
                                                                                                                   995
                           PHASE FREE ESTIMATION OF COHERENCE
                                                                                                           AMS 69 540
                              ON THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONARY STOCHASTIC PROCESSES
                                                                                                           AMS 64
                                                                                                                   532
                                                    COHERENT STRUCTURES OF NON-IDENTICAL COMPONENTS
                                                                                                          TECH 63 191
                THE LAST RETURN TO EQUILIBRIUM IN A COIN TOSSING GAME
                                                                                                           AMS 64 1344
                                    A REMARK ON THE COIN TOSSING GAME
                                                                                                           AMS 64 1345
                                              ON A COINCIDENCE PROBLEM CONCERNING PARTICLE COUNTERS
                                                                                                           AMS 61
                                                                                                                   739
                        THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC
                                                                                                           AMS 61
                                                                                                                   230
 PROBABILITY AND STATISTICS. XVIII. THOMAS YOUNG ON COINCIDENCES
                                                                               STUDIES IN THE HISTORY OF BIOKAGB
                                                                                                                   249
                  A STUDY OF THE VARIABILITY DUE TO COINCIDENT PASSAGE IN AN ELECTRONIC BLOOD CELL COUNTE BIOCS67
                                                                                                                   671
IMENSIONS IN POPULATIONS OF 'DROSOPHILIA SUBOBSCURA' COLL. AND A COMPARISON WITH THOSE OF 'D. ROBUSTA' STU BIOCS66 469
EQUATION
                                                    COLLAPSED MARKOV CHAINS AND THE CHAPMAN-KOLMOGOROV
                                                                                                           AMS 63
                                                                                                                   233
       A CRITICAL COMPARISON OF THREE STRATEGIES OF COLLECTING DATA FROM HOUSEHOLDS
                                                                                                          JASA 67
                                                                                                                   976
                             ON THE RUIN PROBLEM OF COLLECTIVE RISK THEORY
                                                                                                           AMS 61 757
              ASYMPTOTIC DISTRIBUTORS FOR THE COUPON COLLECTOR'S PROBLEM
                                                                                                           AMS 65 1B35
                                                                                                          BIOKA62
                            A NOTE ON DIRECTION AND COLLINEARITY FACTORS IN CANONICAL ANALYSIS
                                                                                                                   255
              ON THE DISTRIBUTIONS OF DIRECTION AND COLLINEARITY FACTORS IN DISCRIMINANT ANALYSIS
                                                                                                          AMS 6B
ICTIONAL PRIME-POWE/ ON THE CONSTRUCTION OF CYCLIC COLLINEATIONS FOR OBTAINING A BALANCED SET OF L-RESTR AMS 67 1293
                              APPLICATION OF CYCLIC COLLINEATIONS TO THE CONSTRUCTION OF
                                                                                                           AMO 67 1127
     OF OVERLAPPING IN BACTERIAL COUNTS OF INCUBATED COLONIES
                                                                                               THE EFFECT BIOKA53 220
                     THE EXTINCTION OF A BACTERIAL COLONY BY PHACES, A BRANCHING PROCESS WITH DETERMINIS BIOKA62 272
TIC REMOVALS
```

IIIDE A	WORD INDEX	COE -	COM
SOME ROW AND COL	DLUMN DESIGNS FOR TWO SETS OF TREATMENTS	BIOCS66	1
	OMBINABILITY OF INFORMATION FROM UNCORRELATED LINEAR	AMS 66	133B
		BIOCS66	
	MBINATION OF A NORMAL AND A UNIFORM DISTRIBUTION		
		BIOKA58	
ALLOWING FOR INTER-EXPERIMENT VARIATION THE COM	MBINATION OF ESTIMATES FROM SIMILAR EXPERIMENTS, MBINATION OF INDEPENDENT EXPERIMENTS IN THE ANALYSI	JASA 67	
	MBINATION OF INDEPENDENT EXPERIMENTS IN THE ANALIST		482 659
		JRSSB68	
		BIOCS67	
TABLES A NOTE ON THE APPLICATION OF THE COM			404
		BIOGS65	86
		JRSSB55	
IONS.' CORRIGENDA, 'ON QUESTIONS RAISED BY THE COM			
	MBINATION OF TESTS BASED ON DISCRETE DISTRIBUTIONS		10
		AMS 61	
		JASA 61	
PEAKEDNESS OF DISTRIBUTIONS OF CONVEX COM	WIDINALIONS ON THE ECONOMIC CHOICE OF EA	AMS 65	503
PERIMENT SIZES FOR DECISION REGARDING CERTAIN LINEAR CON F SOME SCHEMES REQUIRING NOT MORE THAN 256 TREATMENT CON	OMBINATIONS OF FACTORIAL EXPERIMENTS A SURVEY O	RIOKA59	251
CE RATES FOR THE LAW OF LARCE NUMBERS FOR THE LINEAR COM	OMBINATIONS OF EXCHANGEABLE AND MIXING STOCHASTIC PR	AMS 65	1840
	OMBINATIONS OF FUNCTIONS OF ORDER STATISTICS		
PLICATIONS TO E/ ASYMPTOTIC DISTRIBUTION OF LINEAR COM			52
N THE COMPLETE AND ALMOST SURE CONVERGENCE OF LINEAR COM			
XPRESSION OF VARIANCE-COMPONENT ESTIMATORS AS LINEAR COM			
VERGENCE RATE OF THE LAW OF LARCE NUMBERS FOR LINEAR COM			
RCENCE RATES FOR THE LAW OF LARCE NUMBERS FOR LINEAR COM			711
ULA ESTIMATING THE DECREES OF FREEDOM FOR LINEAR COM INTERVAL ESTIMATION FOR LINEAR COM		JASA 64	
		AMS 66	
		AMS 66	
		JASA 56	132
A COMPLETE FACTORIAL EXPERIMENT AS ORTHOGONAL LINEAR COM			
A MULTIVARIATE DISTRIBUTION ESTIMATES OF LINEAR COM		AMS 65	7B
CONSIDER INEQUALITY OF UNKNOWN VARIANCES COM			
A METHOD OF ASSIGNING CONFIDENCE LIMITS TO LINEAR COMTRUNCATED POISSON SUFFICIENT STATISTIC A COM		BIOKA55 AMS 61	
	MBINATORIAL IDENTITIES	AMS 66	
A CO	MADINATION A LEMMA FOR COMPLEY MUMPERS	AMC CI	001
IZED K-STATISTICS SOME RULES FOR A COM WITH SOME GENERAL FORMULAE A COM	MBINATORIAL METHOD FOR MULTIPLE PRODUCTS OF CENERAL	AMS 68	9B3
WITH SOME GENERAL FORMULAE A COM	MBINATORIAL METHOD FOR PRODUCTS OF TWO POLYKAYS	AMS 64	1174
CON	MBINATORIAL RESULTS IN FLUCTUATION THEORY	AMS 63	1233
	MBINATORIAL RESULTS IN MULTI-DIMENSIONAL FLUCTUATIO		
	MBINATORIAL TEST FOR INDEPENDENCE OF DICHOTOMOUS		
	MBINATORIAL THEOREM FOR PARTIAL SUMS MBINED ESTIMATORS IN BALANCED INCOMPLETE BLOCKS	AMS 63 AMS 66	
		JASA 67	
	MBINING A BARTLETT WINDOW WITH AN ASSOCIATED INNER		
		BIOCS67	45
		JASA 65	
	MBINING CORRELATED ESTIMATES OF A RATIO OF MULTIVAR		
	MBINING ELEMENTS FROM DISTINCT FINITE FIELDS IN		
DIVISIBLE DESIGNS COM	MBINING ESTIMATES OF A RATIO OF MEANS MBINING INTRA AND INTER BLOGK ANALYSIS OF GROUP	JRSSB63	188
VACCINE ON COM	MBINING THE RESULTS FROM CLINICAL TRIALS OF A	BIOCS65	616
QUERY. CON		TECH 66	709
	MBINING WITHIN- AND BETWEEN-PLOT INFORMATION	BIOCS66	26
NOTES. SMALL SAMPLE CONSIDERATIONS IN COM	MBININC 2 BY 2 TABLES	BIOCS67	
PUBLICATION DECISIONS AND TESTS OF SIGNIFICANCE, A COM		JASA 59	
THE DISTRIBUTION OF THE COEFFICIENT OF VARIATION, COM	MMENT ON A CRITICISM MADE BY KOOPMANS, OWEN AND ROS	BIOKA65	303
	MMENT ON D.V. LINDLEY'S STATISTICAL PARADOX		
IGNIFICANCE IN PEARSON'S BIOMETRIKA TABLES (NO. 1/ COM THIS JOURNAL (VOL. 1B, NO. 2, 1956) COM	MMENT ON SIR RONALD FISHER'S PAPER, 'ON A TEST OF S MMENT ON THE NOTES BY NEYMAN, BARTLETT AND WELCH IN		
		TECH 6B	
AUTHOR'S REPLY TO ANSCOMBE'S COM		TECH 65	
SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. COM	MMENTS WASHINGTON STATISTICAL	JASA 69	NO.4
OSSETT, R.A. FISHER AND KARL PEARSON, WITH NOTES AND COM	MMENTS /.SOME EARLY CORRESPONDENCE BETWEEN W.S. G	BIOKA68	445
	MMENTS ON 'THE SIMPLEST SIGNED-RANK TESTS'		
CORNFIELD CON SEQUENTIAL MEDICAL TRIALS, SOME CON	MMENTS ON A POSTERIOR DISTRIBUTION OF GEISSER AND	JRSSB64 JASA 63	
	MMENTS ON F. J. ANSCOMBE'S PAPER MMENTS ON PAPER BY KURTZ, LINK, TUKEY AND WALLACE		
SOME COM	MMENTS ON SPECTRAL ANALYSIS OF TIME SERIES		
	MMENTS ON THE 'FINAL REPORT OF THE ADVISORY COMMITT		
	MMENTS ON THE ACCURACY OF BOX'S APPROXIMATIONS TO		
GOODMAN COM	MMENTS ON THE DISCUSSIONS OF MESSRS. TUKEY AND	TECH 61	229
IMMIGRATION' CORRECTIONS AND COM	MMENTS ON THE PAPER 'A BRANCHING PROCESS ALLOWING	JKSSB66	213
TREME VALUE THEORY TO ERROR FREE COMMUNICATION' COM COMMENTS ON THE 'FINAL REPORT OF THE ADVISORY COM			
RIMENTS HAVING ERROR VARIANCE AND SOME TREATMENTS IN COM	MMON ANALYSTS OF A CROUP OF BALANCED BLOCK EXPE		
NEGATIVE BINOMIAL DISTRIBUTIONS WITH A COM	MMON K	BIOKA58	37
L SAMPLES OF EQUAL SIZE UNBAISED ESTIMATION OF THE COM	MMON MEAN OF TWO NORMAL DISTRIBUTIONS BASED ON SMAL		
		BIOKA65	
VALIDATION OF CONSUMER FINANCIAL CHARACTERISTICS, CON		JASA 69	
ARTIALLY BALANCED INCOMP/ BOUNDS FOR THE NUMBER OF COMBALANC/ COMPARISON OF THE BOUNDS OF THE NUMBER OF COM			
BALANCED INCOMPLETE BLOCK DESIGNS COM	MMON TREATMENTS BETWEEN BLOCKS OF CERTAIN PARTIALLY	AMS 68	
BALANCED INCOMPLETE BLOCK DESIGNS COM	MMON TREATMENTS BETWEEN BLOCKS OF CERTAIN PARTIALLY	AMS 68	41

```
P DIVISIBLE DESIGNS ON THE BOUNDS OF THE NUMBER OF COMMON TREATMENTS BETWEEN BLOCKS OF SEMI-REGULAR CROU JASA 64 B67
EDURE FOR RANKING MEANS OF NORMAL POPULATIONS WITH A COMMON UNKNOWN VARIANCE /PLE MULTIPLE DECISION PROC BIOKA54
ORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, RELATED TAIL PROBABILITIES, I A N JASA 68 1416
ORMAL APPROXIMATION FOR BINOMIAL, F. BETA, AND OTHER COMMON, RELATED TAIL PROBABILITIES, II
                                                                                                       A N JASA 6B 1457
IAISONS ENTRE LES ESPECES ET LES VARI/ L'ETUDE DES COMMUNAUTES VECETALES PAR L'ANALYSE STATISTIQUE DES L BIOCS65
IAISONS ENTRE LES ESPECES ET LES VARI/ L'ETUDE DES COMMUNAUTES VECETALES PAR L'ANALYSE STATISTIQUE DES L BIOCS65
                                                                                                                    B90
                                                                                                                     345
  APPLICATION OF EXTREME VALUE THEORY TO ERROR-FREE COMMUNICATION
                                                                                                       THE TECH 65
                                                                                                                     517
HE APPLICATION OF EXTREME VALUE THEORY TO ERROR FREE COMMUNICATION'
                                                                         COMMENTS TO, EDWARD C. POSNER, 'T TECH 66
                                                                                                                     363
                                                  A COMMUNICATIONS SATELLITE REPLENISHMENT POLICY
                                                                                                           TECH 66
                                                                                                                     399
                                                                                         THE DETERMINISTIC BIOKA55
        MODEL OF A SIMPLE EPIDEMIC FOR MORE THAN ONE COMMUNITY
                                                                                                                     126
ISTRIBUTION AS A PROBABILITY MODEL IN POPULATION AND COMMUNITY ECOLOGY AND SOME OF ITS STATISTICAL PROPERT JASA 67
                                                                                                                     655
                            THREE SOURCES OF DATA ON COMMUTING, PROBLEMS AND POSSIBILITIES
                                                                                                           JASA 60
                                                                                                                     В
                        SOME NONPARAMETRIC TESTS FOR COMOVEMENTS BETWEEN TIME SERIES
                                                                                                            JASA 61
                   MINIMAX THEOREMS ON CONDITIONALLY COMPACT SETS
                                                                                                             AMS 63 1536
                                                   A COMPACT TABLE FOR POWER OF THE T-TEST
                                                                                                             AMS 6B 1629
A CHARACTERIZATION OF THE UNIFORM DISTRIBUTION ON A COMPACT TOPOLOGICAL CROUP
                                                                                                             AMS 63 319
                                             A QUICK COMPACT TWO SAMPLE TEST TO DUCKWORTH'S SPECIFICATIONS TECH 59
                                                                                                                     31
                                      MARKET GROWTH, COMPANY DIVERSIFICATION AND PRODUCT CONCENTRATION
1947-1954
                                                                                                           JASA 60
                                                                                                                     640
                                                     COMPARATIVE COST OF TWO LIFE TEST PROCEDURES
                                                                                                           TECH 62
                                                                                                                    140
                                                     COMPARATIVE EFFICIENCIES OF METHODS OF ESTIMATING PAR BIOKAG1
AMETERS IN LINEAR AUTORECRESSIVE SCHEMES
                                                                                                                    427
     ASYMPTOTIC EFFICIENCY OF CERTAIN RANK TESTS FOR COMPARATIVE EXPERIMENT
                                                                                                            AMS 67
                                                                                                                     90
                                                    COMPARATIVE SAMPLING ACCEPTANCE SCHEMES IN TESTINC
ANTIGENICITY OF VACCINES
                                                                                                           BIOCS66
                                                                                                                     6B4
FIT TESTS!
                                     CORRECTION. 'A COMPARATIVE STUDY OF SEVERAL ONE-SIDED GOODNESS-OF-
                                                                                                            AMS 65 1583
                                                   A COMPARATIVE STUDY OF VARIOUS TESTS FOR NORMALITY
                                                                                                            JASA 6B 1343
                            PLANNING SOME TWO-FACTOR COMPARATIVE SURVEYS
                                                                                                           JASA 69
                                                                                                                    560
                                THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SAVINC
                                                                                                            JASA 64
                                                                                                                     737
                 A COMPLETE MULTINOMIAL DISTRIBUTION COMPARED WITH THE X-SQUARE APPROXIMATION AND AN IMPRO BIOKA64
                                 A RANK SUM TEST FOR COMPARING ALL PAIRS OF TREATMENTS
                                                                                                           TECH 60
                                                                                                                    197
                     A CENERALIZED WILCOXON TEST FOR COMPARING ARBITRARILY SINGLY-CENSORED SAMPLES
                                                                                                            BIOKA65
                                                 ON COMPARING DIFFERENT TESTS OF THE SAME HYPOTHESIS
                                                                                                           BIOKA60
                                                                                                                    297
 THE PROBLEM OF MINIMUM DISTANCES
                                                    COMPARING DISTANCES BETWEEN MULTIVARIATE POPULATIONS, AMS 67
                                                                                                                     550
                                                 ON COMPARING INTENSITIES OF ASSOCIATION BETWEEN TWO BINA JASA 61
RY CHARACTERISTICS IN TWO DIFFERENT POPULATIONS
                                                                                                                    BB9
                                  AN EXACT TEST FOR COMPARING MATCHED PROPORTIONS IN CROSSOVER DESIGNS BIOKA69
                                                                                                                     75
                                 SOME PROCEDURES FOR COMPARING POISSON PROCESSES OR POPULATIONS
                                                                                                           BIOKA53 447
R/ AN ASYMPTOTICALLY OPTIMAL SEQUENTIAL DESIGN FOR COMPARING SEVERAL EXPERIMENTAL CATECORIES WITH A CONT AMS 63 14B6
YMPTOTICALLY OPTIMAL FIXED SAMPLE SIZE PROCEDURE FOR COMPARING SEVERAL EXPERIMENTAL CATEGORIES WITH A CONT
                                                                                                            AMS 64 1571
DARD OR CONTROL A SEQUENTIAL PROCEDURE FOR COMPARING SEVERAL EXPERIMENTAL CATEGORIES WITH A STAN
                                                                                                            AMS 62
                                                                                                                    43B
                                                  ON COMPARING THE CORRELATIONS WITHIN TWO PAIRS OF
                                                                                                           BIOCS68
                                                                                                                    987
VARIABLES
                  NOTE ON A THREE-DECISION TEST FOR COMPARINC TWO BINOMIAL POPULATIONS
                                                                                                            BIOKA59
                                                                                                                    106
                PROGRAMMING FISHER'S EXACT METHOD OF COMPARING TWO PERCENTAGES
                                                                                                            TECH 60
                                                  ON COMPARING TWO SIMPLE LINEAR RECRESSION LINES
                                                                                                            SASJ 68
                                                                                                                     33
             A TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING VARIANCES
                                                                                                            BIOKA58
                                                                                                                    544
                                 A MONTE CARLO STUDY COMPARINC VARIOUS TWO-SAMPLE TESTS FOR DIFFERENCES IN TECH 6B
 MEAN
                                                                                                                    509
                    QUERY, SAVINCS IN TEST TIME WHEN COMPARING WEIBULL SCALE PARAMETERS
                                                                                                           TECH 64
                                                                                                                    471
                           A NOTE ON TABLES FOR THE COMPARISION OF THE SPREAD OF TWO NORMAL DISTRIBUTIONS BIOKA67
                                                                                                                    683
                                  RANK SUM MULTIPLE COMPARISIONS IN ONE AND TWO-WAY CLASSIFICATIONS
                                                                                                           BIOKA67
                                                                                                                    4B7
MATRICES BASED ON FOUR CRITERIA
                                              POWER COMPARISIONS OF TESTS OF EQUALITY OF TWO COVARIANCE
                                                                                                           BIOKA6B
                                                                                                                    335
                                            MULTIPLE COMPARISIONS USING RANK SUMS
                                                                                                           TECH 64
                                                                                                                    241
BLOCK DESIGNS
                                            MULTIPLE COMPARISIONS WITH A CONTROL IN BALANCED INCOMPLETE
                                                                                                           TECH 61
                                                                                                                    103
                                            PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS
                                                                                                            AMS 63
                                                                                                                    501
                                                                                                                    511
 SUM PROCEDURE
                                            PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES OF THE ROW
                                                                                                            AMS 63
SIS. PART I. DESCRIPTION AND USE OF TABLES. PART II. COMPARISON BETWEEN MINIMUM NORMIT CHI-SQUARE ESTIMATE BIOKA57
                                                                                                                     411
TEST AND THE POWER OF THE BLUS TEST
                                                  A COMPARISON BETWEEN THE POWER OF THE DURBIN-WATSON
                                                                                                                    93B
                     REDUCED GROUP DIVISIBLE PAIRED COMPARISON DESIGNS
                                                                                                            AMS 67 18B7
                                                                                                           BIOKA56 113
                                             PAIRED COMPARISON DESIGNS FOR TESTING CONCORDANCE BETWEEN
                               AN ANALYSIS OF PAIRED COMPARISON DESIGNS WITH INCOMPLETE REPETITIONS
                                                                                                           BIOKA57
        SELECTION OF THE BEST TREATMENT IN A PAIRED-COMPARISON EXPERIMENT
                                                                                                                     75
                                                                                                            AMS 63
NTITLED 'SELECTION OF THE BEST TREATMENT IN A PAIRED-COMPARISON EXPERIMENT'
                                                                              /ER OF TRAWINSKI AND DAVID E AMS 63
                                                                                                                     92
                               RANK TESTS FOR PAIRED-COMPARISON EXPERIMENTS INVOLVING SEVERAL TREATMENTS
                                                                                                            AMS 64
                                                                                                                    122
                               A SIMPLE EXAMPLE OF A COMPARISON INVOLVING QUANTAL DATA
                                                                                                           BTOK A66
                                                                                                                    215
                                A REMARK ON MULTIPLE COMPARISON METHODS
                                                                                                           TECH 65
                                                                                                                    223
                                              PAIRED COMPARISON MODELS WITH TESTS FOR INTERACTION
                                                                                                           BTOCS65
                                                                                                                    651
LABOR STATISTICS
                                                   A COMPARISON OF A MODIFIED 'HANNAN' AND THE BUREAU OF
                                                                                                           JASA 65
                                                                                                                    442
THE PARAMETRIC AND RANDOM MODELS
                                                     COMPARISON OF ANALYSIS OF VARIANCE POWER FUNCTION IN BIOKA52
                                                                                                                    427
VARIANCE
                                                     COMPARISON OF ANOVA AND HARMONIC COMPONENTS OF
                                                                                                           TECH 69
                                                                                                                     75
                                                   A COMPARISON OF CERTAIN TESTS OF NORMALITY
                                                                                                           SASJ 69 NO.2
                                                     COMPARISON OF COMBINED ESTIMATORS IN BALANCED
INCOMPLETE BLOCKS
                                                                                                            AMS 66 1832
OF EXPONENTIAL DECAY CURVES
                                                   A COMPARISON OF CONTINUOUS DISTRIBUTIONS OF PARAMETERS BIOCS6B
                                                                                                                   117
                                                 THE COMPARISON OF CORRELATIONS IN TIME-SERIES
                                                                                                           JRSSB58
H UNEQUAL COVARIANCE MATRICES
                                     AN EMPIRICAL COMPARISON OF DISTANCE STATISTICS FOR POPULATIONS WIT BIOCS68
CORR 60 755
                                                     COMPARISON OF ESTIMATES OF CIRCULAR PROBABLE ERROR,
                                                                                                                    794
                                                                                                           JASA 59
                                                     COMPARISON OF FOUR RATIO-TYPE ESTIMATES UNDER A MODEL JASA 69
                                                                                                                    574
MATES OF RECRESSION PARAMETERS, (ACKNOWLEDGEMENT/
                                                     COMPARISON OF LEAST SQUARES AND MINIMUM VARIANCE ESTI AMS 62
                                                                                                                    462
                                                   A COMPARISON OF MAJOR UNITED STATES RELIGIOUS GROUPS
                                                                                                                    56B
                                                                                                           JASA 61
 TO RECRESSION ANALYSTS
                                           BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH APPLICATION BIOKAGE
                                                                                                                     11
                                                 THE COMPARISON OF MEANS OF SETS OF OBSERVATIONS FROM SECT JRSSB55
IONS OF INDEPENDENT STOCHASTIC SERIES
                                                                                                                    20B
                                                                                                           JRSSB59
                                                 THE COMPARISON OF REGRESSION VARIABLES
                                                                                                                    396
THEORY IMPLICATIONS
                                                     COMPARISON OF REPLACEMENT POLICIES, AND RENEWAL
                                                                                                            AMS 64
                                                                                                                    577
SAMPLING
                                              QUERY, COMPARISON OF SAMPLE SIZES IN INVERSE BINOMIAL
                                                                                                           TECH 67
                                                                                                                    337
SIZE OF A POPULATION
                                                     COMPARISON OF SEQUENTIAL RULES FOR ESTIMATION OF THE BIOCS69
                                                                                                                    517
 RATIOS OF THE POPULATION VARIANCES ARE UNKNO/ THE COMPARISON OF SEVERAL GROUPS OF OBSERVATIONS WHEN THE BIOKAS1
                                                                                                                    324
APPROACH
                                             ON THE COMPARISON OF SEVERAL MEAN VALUES, AN ALTERNATIVE
                                                                                                                    330
                                         NOTE ON THE COMPARISON OF SEVERAL REALIZATIONS OF A MARKOFF CHAIN BIOKA59
                                                   A COMPARISON OF SEVERAL VARIANCE COMPONENT ESTIMATORS BIOKAGZ
                                                                                                                    301
                                                   A COMPARISON OF SOME BAYESIAN AND FREQUENTIST
INFERENCES.
                                                                                                           BIOKA65
                                                                                                                     19
INFERENCES. II
                                                   A COMPARISON OF SOME BAYESIAN AND FREQUENTIST
                                                                                                           BIOKA66 262
```

TITLE WORD INDEX COM - COM

```
A COMPARISON OF SOME CONTROL CHART PROCEDURES
                                                                                                             TECH 66
                                                    A COMPARISON OF SOME METHODS OF CLUSTER ANALYSIS
                                                                                                             BIOCS67
                                                                                                                       623
                                                      COMPARISON OF SOME RATIO ESTIMATORS
                                                                                                             JASA 65
                                                    A COMPARISON OF SOME SEQUENTIAL DESIGNS
                                                                                                              BIOKA69
                                                                                                                       301
                                                    A COMPARISON OF STATISTICAL TECHNIQUES IN THE DIFFERENT BIOCS68
IAL DIACNOSIS OF NONTOXIC COITRE
                                  THE ESTIMATION AND COMPARISON OF STRENCTHS OF ASSOCIATION IN CONTINCENCY BIOKA53
                                                                                                                       105
                                                    A COMPARISON OF SUCCESSIVE SCREENING AND DISCRIMINANT BIOCS69 NO.4
FUNCTION TECHNIQUES IN MEDICAL TAXONOMY
                                                      COMPARISON OF TESTS FOR RANDOMNESS OF POINTS ON A
                                                                                                             BTOKA63
                                                                                                                      315
 MULTIVARIATE ANALYSIS.
                                                    A COMPARISON OF TESTS OF THE WILKS-LAWLEY HYPOTHESIS IN BIOKA65
                                                                                                                      149
 TWO SEQUENTIAL PROCEDURES FOR RANKING PROBLEM
                                                    A COMPARISON OF THE ASYMPTOTIC EXPECTED SAMPLE SIZES OF AMS 69 NO.6
                                                     COMPARISON OF THE BOUNDS OF THE NUMBER OF GOMMON TREA AMS 66
TMENTS BETWEEN BLOCKS OF CERTAIN PARTIALLY BALANC/
                                                                                                                      739
THE ESTIMATION OF A PARAMETER
                                                    A COMPARISON OF THE DIRECT AND FIDUCIAL ARCUMENTS IN
                                                                                                             JRSSB63
                                                                                                                       95
                                                    A COMPARISON OF THE EFFECTIVENESS OF TOURNAMENTS
                                                                                                             BTOKA60
                                                                                                                       253
NT SOMEWHERE MOST POWERFUL TEST FOR CERTAIN PRO/
                                                    A COMPARISON OF THE MOST STRINGENT AND THE MOST STRINGE AMS 68
                                                                                                                      531
OODNESS-OF-FIT TESTS WITH RESPECT TO VALIDITY,/
                                                    A COMPARISON OF THE PEARSON CHI-SQUARE AND KOLMOCOROV G JASA 65
                                                                                                                      854
INDEPENDENCE IN 2X2 CONTINCENCY TABLES
                                                                                                              AMS 64 1115
                                                      COMPARISON OF THE POWER FUNCTIONS FOR THE TEST OF
 OF VARIANCE TESTS
                                                    A COMPARISON OF THE POWERS OF TWO MULTIVARIATE ANALYSIS BIOKA62
                                      CORRICENDA, 'A COMPARISON OF THE POWERS OF TWO MULTIVARIATE ANALYSIS BIOKA63
 OF VARIANCE TESTS.
                                       ON THE COMPARISON OF THE SENSITIVITIES OF EXPERIMENTS
                                                                                                             JRSSB62
                                                                                                                       447
T AND NON-INDEPENDENT EXPERIMENTS
                                                      COMPARISON OF THE SENSITIVITIES OF SIMILAR INDEPENDEN BIOKA69
IGHTED LEAST SQUARES REGRESSION COEFFICIENTS
                                                      COMPARISON OF THE VARIANCE OF MINIMUM VARIANCE AND WE AMS 63
SOME STOCHASTIC POPULATION MODELS
                                                    A COMPARISON OF THEORETICAL AND EMPIRICAL RESULTS FOR BIOKAGO
                                                    A COMPARISON OF THREE DIFFERENT PROCEDURES FOR ESTIMATI TECH 63
NC VARIANCE COMPONENTS
                                                                                                                       421
                                          A CRITICAL COMPARISON OF THREE STRATEGIES OF COLLECTING DATA
FROM HOUSEHOLDS
                                                                                                             JASA 67
                                                                                                                       976
ODELS FOR QUANTAL RESPONSES TO MIXTURES OF DRUGS A COMPARISON OF TWO APPROACHES TO THE CONSTRUCTION OF M BIOCS67
OF THE RANGE IN SMALL SAMPLES FROM NORMAL POPULAT/ COMPARISON OF TWO APPROXIMATIONS TO THE DISTRIBUTION BIOKA52
                                                                                                                       27
                                                                                                                       130
                                                   A COMPARISON OF TWO LIFE TABLE METHODS
                                                                                                             BIOCS67
                                                                                                                       51
                                               ON THE COMPARISON OF TWO MEANS, FURTHER DISCUSSION OF ITERAT BIOKA54
IVE METHODS FOR CALCULATING TABLES
                                                                                                                       361
                                                      COMPARISON OF TWO METHODS OF OBTAINING APPROXIMATE
CONFIDENCE INTERVALS FOR SYSTEM RELIABILITY
                                                                                                             TECH 68
                                                                                                                       37
                                    A NON-PARAMETRIC COMPARISON OF TWO SAMPLES ONE OF WHICH IS CENSORED
                                                                                                             BTOK A66
                                                                                                                      599
ION APPLICABLE TO TRUNCATED DATA
                                                   A COMPARISON OF TWO SORTS OF TEST FOR A CHANGE OF LOCAT JRSSB57
                                                                                                                      119
BEHRENS-FISHER PROBLEM A CONFIDENCE INTERVAL COMPARISON OF TWO TEST PROCEDURES PROPOSED FOR THE
                                                                                                             JASA 66
                                                                                                                       454
                                             A POWER COMPARISON OF TWO TESTS OF NON-RANDOM CLUSTERING
                                                                                                             TECH 66
                                                                                                                      493
     TO THE IMPORTANCE OF ASSUMPTIONS APPLIED TO THE COMPARISON OF VARIANCES A BAYESIAN APPROACH BIOKA64
                                                                                                                      153
                                                                                                              AMS 66
        AN ASYMPTOTICALLY DISTRIBUTION-FREE MULTIPLE COMPARISON PROCEDURE, TREATMENT VERSUS CONTROL
                                                                                                                      735
                                                                                                              AMS 69 1486
                 SOME DISTRIBUTION-FREE MULTIVARIATE COMPARISON PROCEDURES
VARIANCE
                                          A MULTIPLE COMPARISON RANK PROCEDURE FOR A ONE-WAY ANALYSIS OF
                                                                                                             SASJ 69
                                                                                                                       35
                           MAXIMUM LIKELIHOOD PAIRED COMPARISON RANKING BY LINEAR PROGRAMMING
                                                                                                             BIOKA69 NO.3
                           MAXIMUM-LIKELIHOOD PAIRED COMPARISON RANKINGS
                                                                                                             BIOKA66 143
                                          A MULTIPLE COMPARISON SICN TEST, TREATMENTS VERSUS CONTROL
                                                                                                             JASA 59
                                                   A COMPARISON TEST FOR MARTINGALE INEQUALITIES
                                                                                                              AMS 69 505
                                                      COMPARISON TESTS FOR THE CONVERCENCE OF MARTINGALES
                                                                                                              AMS 68 2141
                NONPARAMETRIC RANKING PROGEDURES FOR COMPARISON WITH A CONTROL
                                                                                                              AMS 68 2075
                         EXAMPLES OF LIKELIHOODS AND COMPARISON WITH POINT ESTIMATES AND LARGE SAMPLE APPR JASA 69
OXIMATIONS
                                                                                                                      468
 POPULATIONS OF 'DROSOPHILA SUBOBSCURA' COLL. AND A COMPARISON WITH THOSE OF 'D. ROBUSTA' STURT /ONS IN BIOCS66
                                                                                                                      469
        MATHEMATICAL MODELS FOR RANKING FROM PAIRED COMPARISONS
                                                                                                             JASA 60
                                                                                                                      503
                               RANKINCS FROM PAIRED COMPARISONS
                                                                                                              AMS 64
                                                                                                                      739
                     A BAYESIAN APPROACH TO MULTIPLE COMPARISONS
                                                                                                             TECH 65
                                                                                                                      171
                  SOME EQUIVALENCE CLASSES IN PAIRED COMPARISONS
                                                                                                              AMS 66
                                                                                                                      488
                                      BEST K OF 2K-1 COMPARISONS
                                                                                                             JASA 66
                                                                                                                      329
                A TABLE FOR RANK SUM MULTIPLE PAIRED COMPARISONS
                                                                                                             TECH 67
                                                                                                                      561
                      A TREATMENT OF TIES IN PAIRED COMPARISONS
                                                                                                              AMS 68 2002
            RANK ORDER TESTS FOR MULTIVARIATE PAIRED COMPARISONS
                                                                                                              AMS 69 NO.6
        A GENERALIZATION OF THE T-METHOD OF MULTIPLE COMPARISONS
                                                                                                             JASA 69 290
        ON A CORRECTION TERM IN THE METHOD OF PAIRED COMPARISONS
                                                                                                             BIOKA52
                                                                                                                      211
                              TOURNAMENTS AND PAIRED COMPARISONS
                                                                                                             BIOKA59
                                                                                                                     1.39
             INCONSISTENCIES IN A SCHEDULE OF PAIRED COMPARISONS
                                                                                                             BIOKA61
                                                                                                                      303
 COODNESS-OF-FIT STATISTIC FOR THE CIRCLE, WITH SOME COMPARISONS
                                                                                                           A BIOKA69
                                                                                                                      161
IMULTANEOUS TEST PROCEDURES, SOME THEORY OF MULTIPLE COMPARISONS
                                                                                                             AMS 69
                                                                                                                      224
ROBABILITY DISTRIBUTION OVER SAMPLE SPACES OF PAIRED COMPARISONS
                                                                                                  AN EXACT P BIOCS65
                                                                                            THE DISTRIBUTION BIOKA62
         OF THE NUMBER OF CIRCULAR TRIADS IN PAIRED COMPARISONS
   BETWEEN TWO REPRESENTATIONS OF A MODEL FOR PAIRED COMPARISONS
                                                                                           ON A RELATIONSHIP BIOCS69
NTATION IN SCHEFFE'S ANALYSIS OF VARIANCE FOR PAIRED COMPARISONS
                                                                                          FACTORIAL EXPERIME JASA 58
                                                                                                                      529
ICNS. II. ADDITIONAL TABLES FOR THE METHOD OF PAIRED COMPARISONS
                                                                      RANK ANALYSIS OF INCOMPLETE BLOCK DES BIOKA54
                                                                                                                      502
SULTS ON ESTIMATION AND POWER FOR A METHOD OF PAIRED COMPARISONS
                                                                    /OCK DESIGNS. III. SOME LARGE-SAMPLE RE BIOKA55
                                                                                                                      450
                                            MULTIPLE COMPARISONS AMONG MEANS
                                                                                                            JASA 61
                                                                                                                       52
                                         SENSITIVITY COMPARISONS AMONG TESTS OF THE GENERAL LINEAR
                                                                                                             JASA 66
HYPOTHESIS
                                                                                                                      415
                                                  ON COMPARISONS BETWEEN CONFIDENCE POINT PROCEDURES IN
THE CASE OF A SINGLE PARAMETER
                                                                                                             JRSSB65
LECTION OF THE POPULATION WITH THE LARGEST MEAN WHEN COMPARISONS CAN BE MADE ONLY IN PAIRS
                                                                                                         SE BTOKA58
                                                                                                                      581
                       NOTE ON MULTIPLE COMPARISONS FOR ADJUSTED MEANS IN THE ANALYSIS OF
GOVARTANCE
                                                                                                           BTOKA58
                                                                                                                      256
TIONS. PART 1, RESULTS
                                  SHORT-CUT MULTIPLE GOMPARISONS FOR BALANCED SINGLE AND DOUBLE CLASSIFICA TECH 65
                                                                                                                       95
TIONS. PART 2. DERIVATIONS AND/ SHORT-GUT MULTIPLE COMPARISONS FOR BALANCED SINGLE AND DOUBLE CLASSIFICA BIOKA65
                                                                                                                      485
                                              PAIRED COMPARISONS FOR PAIRED CHARACTERISTICS
                                                                                                              AMS 68
                                                                                                                      200
                      LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ANALYSIS
                                                                                                             BTOKA61
                                                                                                                      359
         CORRIGENDA, 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ANALYSIS'
                                                                                                             BTOKA62
                                                                                                                      284
                      CRAPHICAL METHODS FOR INTERNAL COMPARISONS IN MULTIRESPONSE EXPERIMENTS
                                                                                                              AMS 64
                                                                                                                      613
ESTIMATINC PARAMETERS IN A TWO-STAGE NESTED PROCE/ COMPARISONS OF DESIGNS AND ESTIMATION PROCEDURES FOR
                                                                                                             TECH 67
                                                                                                                      499
                                                                                                              AMS 62
OF INTERMEDIATE SPECIFICITY
OF INTERMEDIATE SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES.

NTS INVOLVING LOCATION PARAMETERS NON-EQUIVALENT COMPARISONS OF EXPERIMENTS AND THEIR USE FOR EXPERIME.
                                        TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES.
                                                                                                                      432
                                                                                                              AMS 61
                                                                                                                      326
              A GRAPHICAL METHOD FOR MAKING MULTIPLE COMPARISONS OF FREQUENCIES
                                                                                                             TECH 69
                                                                                                                      321
 CURVE FOR SMALL SAMPLES
                                                SOME COMPARISONS OF METHODS OF FITTING THE DOSAGE RESPONSE JASA 64 779
                                      SOME NUMERICAL COMPARISONS OF SEVERAL APPROXIMATIONS TO THE BINOMIAL JASA 69 NO.4
 DISTRIBUTION
                                                      COMPARISONS OF SOME TWO STAGE SAMPLING METHODS
                                                                                                             AMS 66 891
                                               POWER COMPARISONS OF TESTS OF TWO MULTIVARIATE HYPOTHESES
BASED ON FOUR CRITERIA
                                                                                                             BIOKA67
                                                                                                                      195
           SIMULTANEOUS TEST PROCEDURES FOR MULTIPLE COMPARISONS ON CATECORICAL DATA
                                                                                                             JASA 66 1081
             A BAYES RULE FOR THE SYMMETRIC MULTIPLE COMPARISONS PROBLEM
                                                                                                             JASA 69 NO.4
```

COM - GOM TITLE WORD INDEX

```
BAYES RULES FOR A COMMON MULTIPLE COMPARISONS PROBLEM AND RELATED STUDENT-T PROBLEMS
                                                                                                            AMS 61 1013
     TABLES FOR A TREATMENTS VERSUS CONTROL MULTIPLE COMPARISONS SIGN TEST
                                                                                                           TECH 65 293
                                          A MULTIPLE COMPARISONS SICN TEST, ALL PAIRS OF TREATMENTS
                                                                                                           BIOCS67
                                                                                                                    539
                                  A NOTE ON MULTIPLE COMPARISONS USING RANK SUMS
                                                                                                            TECH 65
                                                                                                                    255
OMISED BLOCK EXPERIMEN/
                         NOTES. ERRORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MISSING FROM A RAND BIOCS66
                                                                                                                     632
ASSOCIATED ESTIMATION AND TES/ MULTIVARIATE PAIRED GOMPARISONS. THE EXTENSION OF A UNIVARIATE MODEL AND BIOKAG9
                                                                                                                     81
ICNS. II. ADDITIONAL TABLES FOR THE METHOD OF PAIRED COMPARISONS.
                                                                    /ANK ANALYSIS OF INCOMPLETE BLOCK DES BIOKA64
              SPEARMAN SIMULTANEOUS ESTIMATION FOR A COMPARTMENTAL MODEL
                                                                                                                     551
       SIMULTANEOUS ESTIMATION BY PARTIAL TOTALS FOR COMPARTMENTAL MODELS
          AN EXTENSION OF QUENOUILLE'S TEST FOR THE COMPATIBILITY OF CORRELATION STRUCTURES IN TIME SERIE JRSSB6B
                                                                                                                    180
E TO THE STUDY OF SMOKING AND LUNC CANCER, CORR./ COMPETING EXPONENTIAL RISKS, WITH PARTICULAR REFERENC JASA 60
NOTE ON EXTREME VALUES, COMPETING RISKS AND SEMI-MARKOV PROCESSES AMS 63
                                                                                                                    415
                                                                                                            AMS 63 1104
                        MODELS FOR THE ESTIMATION OF COMPETING RISKS FROM GROUPED DATA
                                                                                                            BIOCS69
                                                                                                                    329
        THE PROPERTIES OF A STOCHASTIC MODEL FOR TWO COMPETING SPECIES
                                                                                                            BTOKA58
                                                                                                                    316
 SOME EXPERIMENTAL DATA A STOCHASTIC MODEL FOR TWO COMPETING SPECIES OF TRIBOLIUM AND ITS APPLICATION TO BIOKA62
                                                                                                                      1
       'THE PROPERTIES OF A STOCHASTIC MODEL FOR TWO COMPETING SPECIES.'
                                                                                               CORRIGENDA, BIOKA59
                                                                                                                    279
MATHEMATIGAL MODEL FOR THE ESTIMATION OF INTER-PLANT GOMPETITION (CORRECTION TO REFERENCE 6B 1025)
                                                                                                        Α
                                                                                                           BIOCS67
                                                                                                                     1.89
                                        ANALYSIS OF COMPETITION EXPERIMENTS
                                                                                                           BIOCS65
                                                                                                                    975
SPECIES
                                   ANALYSIS OF PLANT COMPETITION EXPERIMENTS FOR DIFFERENT RATIOS OF
                                                                                                            BIOKA67
                                                                                                                     471
                                                                                                            AMS 64
                                        MULTIVARIATE COMPETITION PROCESSES
                                                                                                                    350
                                              PLANT COMPETITION, THREE SPECIES PER POT
                                                                                                            JRSSB6B
                                                                                                                     93
                           ON THEORETICAL MODELS FOR COMPETITIVE AND PREDATORY BIOLOGICAL SYSTEMS
PRIORITY DISCIPLINES
                                                     COMPETITIVE QUEUEING, IDLENESS PROBABILITIES UNDER
                                                                                                           JRSSB63
                                                                                                                     4B9
               ON SOME ASYMPTOTICALLY NONPARAMETRIC COMPETITORS OF HOTELLING'S T-SQUARE, CORR. 65 1583
                                                                                                            AMS 65
                                                                                                                     160
          ASYMPTOTIC EFFICIENCY OF TWO NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE TEST
                                                                                                            JASA 67
                                                                                                                    939
 OF A FINITE SET OF REAL NUMBERS
                                             THE COMPLETE AMALGAMATION INTO BLOCKS, BY WEICHTED MEANS, BIOKA59
                                                                                                                    317
ATIONS OF INDEPENDENT AND RAM/ SOME RESULTS ON THE COMPLETE AND ALMOST SURE CONVERGENGE OF LINEAR COMBIN AMS 68 1549
 A FOUR- PARAMETER GENERALIZED GAMMA POPULATION FROM COMPLETE AND CENSORED SAMPLES /OF THE PARAMETERS OF TECH 67
                                                                                                                    159
METERS OF THREE-PARAMETER LOGNORMAL POPULATIONS FROM COMPLETE AND CENSORED SAMPLES, (CORR. 66 1247, CORR. JASA 66
                                                                                                                    842
THE PARAMETERS OF CAMMA AND WEIBULL POPULATIONS FROM COMPLETE AND FROM CENSORED SAMPLES
                                                                                           /ESTIMATION OF
                                                                                                           TECH 65
                                                                                                                     639
THE PARAMETERS OF CAMMA AND WEIBULL POPULATIONS FROM COMPLETE AND FROM CENSORED SAMPLES'
                                                                                           /ESTIMATION OF TECH 67
                                                                                                                    195
HOOD ESTIMATION IN THE WEIBULL DISTRIBUTION BASED ON COMPLETE AND ON CENSORED SAMPLES
                                                                                            MAXIMUM LIKELI TECH 65
                                                                                                                     579
HOOD ESTIMATION IN THE WEIBULL DISTRIBUTION BASED ON COMPLETE AND ON CENSORED SAMPLES!
                                                                                          /'MAXIMUM LIKELI TECH 66
                                                                                                                     570
                           ON THE LINE, CRAPH OF THE COMPLETE BIGRAPH
                                                                                                             AMS 63
                            ON THE LINE CRAPH OF THE COMPLETE BIPARTITE GRAPH
                                                                                                             AMS 64
                                                                                                                     B83
                    CONDITIONAL PROBABILITY ON SICMA-COMPLETE BOOLEAN ALGEBRAS
                                                                                                             AMS 69
                                                                                                                    970
                           ON A MINIMAL ESSENTIALLY COMPLETE CLASS OF EXPERIMENTS
                                                                                                             AMS 66
                                                                                                                     435
                                               ON A COMPLETE CLASS OF LINEAR UNBIASED ESTIMATORS FOR
                                                                                                             AMS 63
RANDOMIZED FACTORIAL EXPERIMENT
                                                                                                                    769
SAMPLING ENTROPY FOR RANDOM HOMOGENEOUS SYSTEMS WITH COMPLETE CONNECTIONS (CORR. 69 NO.6)
                                                                                                             AMS 65 1433
ECTS IN A LATIN SQUARE DESIGN, CORR. 5B 1030
                                                   COMPLETE COUNTERBALANCING OF IMMEDIATE SEQUENTIAL EFF JASA 58
                                                                                                                    525
                                     CORRELATION AND COMPLETE DEPENDENCE OF RANDOM VARIABLES
                                                                                                            AMS 63 1315
THE EXTENSION OF YATES' 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL EXPERIMENT
                                                                                                           TECH 68 575
MBINATIONS OF THE/ ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL EXPERIMENT AS ORTHOGONAL LINEAR CO AMS 63 1068
NERALIZED POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE FINITE POPULATIONS RELATIONSHIP OF GE AMS 6B 643
        PROBLEMS IN SCIENCE. THE SYMMETRIG TEST OF A GOMPLETE HYPOTHESIS
                                                                                              STATISTICAL JASA 69 NO.4
       PROCEDURES FOR FINITE DECISION PROBLEMS UNDER COMPLETE IGNORANCE
                                                                                                  DECISION AMS 64 1644
       PROCEDURES FOR FINITE DECISION PROBLEMS UNDER COMPLETE IGNORANCE
                                                                                         NOTE ON DECISION AMS 65
                                                                                                                    691
               EXPANSIONS OF T DENSITIES AND RELATED COMPLETE INTECRALS
                                                                                                            AMS 67
    PROBABILITIES FOR A RECORD MATCHING PROCESS WITH COMPLETE INVARIANT INFORMATION
                                                                                                   OUTCOME JASA 67
                                                                                                                     454
-SQUARE APPROXIMATION AND AN IMPLEMENT TO IT A COMPLETE MULTINOMIAL DISTRIBUTION COMPARED WITH THE X BIOKAGA
                                                                                                                    277
 ORDERED OBSERVATIONS IN MEASURING THE SUPPORT FOR A COMPLETE ORDER
                                                                                  ON THE USE OF PARTIALLY JASA 61
                                                                                                                    299
                                                    COMPLETE SET OF LEADING COEFFICIENTS FOR ORTHOGONAL TECH 65
POLYNOMIALS UP TO N = 26
                                                                                                                    644
                                             QUERY, COMPLETED RUNS OF LENGTH K ASOVE AND BELOW MEDIAN
                                                                                                           TECH 67
                                                                                                                    6B2
                                            QUERY, COMPLETELY MONOTONE DENSITIES

AMD 69

NOTE ON COMPLETELY MONOTONE DENSITIES

SOME EMPIRICAL JASA 66
                                                                                                            AMS 69 1130
 RESULTS ON VARIANCE RATIOS UNDER PERMUTATION IN THE COMPLETELY RANDOMIZED DESIGN
                                                                                                                    813
                                                                                    SOME ASPECTS OF THE JASA 69
 STATISTICAL ANALYSIS OF 'SPLIT PLOT' EXPERIMENTS IN COMPLETELY RANDOMIZED LAYOUTS
                                                                                                                    485
CONVERGENCE IN THE COMPOUND DECISION PROBLEM FOR TWO COMPLETELY SPECIFIED DISTRIBUTIONS
                                                                                                RATES OF AMS 65 1743
RS OF OBSERVATIONS IN THE SUBCLASSES FOR THE TWO-WAY COMPLETELY-RANDOM CLASSIFICATION /ANS AND THE NUMBE JASA 68 1484
                                      THE ESSENTIAL COMPLETENESS OF THE CLASS OF GENERALIZED SEQUENTIAL AMS 61
PROBABILITY RATIO TESTS
                                      PROBABILISTIC COMPLETION OF A KNOCKOUT TOURNAMENT
                                                                                                            AMS 66
                                                                                                                    495
                                          MODELS FOR COMPLEX CONTINCENCY TABLES AND POLYCHOTOMOUS DOSACE BIOCS66
RESPONSE CURVES
                                                                                                                     83
TEST FOR REALITY OF A COVARIANCE MATRIX IN A CERTAIN COMPLEX GAUSSIAN DISTRIBUTION
                                                                                                            AMS 65
                                                                                                                    115
                                                                                                        Α
STATISTICAL ANALYSIS 8ASED ON A CERTAIN MULTIVARIATE COMPLEX CAUSSIAN DISTRIBUTION
                                                                                                            AMS 65
                                                                                                                     98
STATISTICAL ANALYSIS BASED ON A CERTAIN MULTIVARIATE COMPLEX GAUSSIAN DISTRIBUTION, AN INTRODUCTION
                                                                                                            AMS 63
                                                                                                                    152
                A GRAPHICAL METHOD FOR THE STUDY OF COMPLEX CENETICAL SYSTEMS WITH SPECIAL REFERENCE TO
                                                                                                           8I0CS69 NO.4
                                                                                                 ONE-SIDED TECH 63
  CONFIDENCE INTERVALS FOR THE QUALITY INDICES OF A COMPLEX ITEM
                                                                                                                    400
CHARACTERISTIC ROOT UNDER NULL HYPOTHESIS CONCERNING COMPLEX MULTIVARIATE NORMAL POPULATIONS
                                                                                                /SMALLEST AMS 64 1807
                   THE MULTIVARIATE DISTRIBUTION OF COMPLEX NORMAL VARIABLES
                                                                                                           BIOKA56
                                                                                                                    212
RACTERISTIC FUNCTION OF HERMITIAN QUADRATIC FORMS IN COMPLEX NORMAL VARIABLES
                                                                                                   THE CHA BIOKA60
                                                                                                                    199
                           A COMBINATORIAL LEMMA FOR COMPLEX NUMBERS
                                                                                                            AMS 61
                                                                                                                    901
 CENERALIZATION OF FIELLER'S THEOREM TO THE RATIO OF COMPLEX PARAMETERS
                                                                                                         A JRSSB67
                                                                                                                    126
        A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX PROBLEMS
                                                                                                                    387
                                                                                                           TECH 60
            ON THE GENERALIZED MELLIN TRANSFORM OF A COMPLEX RANDOM VARIABLE AND ITS APPLICATIONS
                                                                                                            AMS 65 1459
                    STANDARD ERRORS FOR INDEXES FROM COMPLEX SAMPLES
                                                                                                           JASA 68
ES OF SERIAL AND CROSS-CORRELATION COEFFICIENTS IN A COMPLEX STATIONARY TIME SERIES /TIONS AND COVARIANC BIOKA63
                                                                                                                    213
    ACCURACY REQUIREMENTS FOR ACCEPTANCE TESTING OF COMPLEX SYSTEMS
                                                                                                                    447
                                                                                                           JASA 59
                                                                                                            AMS 63
            THE DISTRIBUTION OF THE DETERMINANT OF A COMPLEX WISHART DISTRIBUTED MATRIX
                                                                                                                    178
                                             ON THE COMPLEX WISHART DISTRIBUTION
                                                                                                            AMS 65
                                                                                                                    313
                                           TAXPAYER COMPLIANCE IN REPORTING INTEREST INCOME UNDER THE WIS JASA 63
CONSIN STATE INDIVIDUAL INCOME TAX
                                                                                                                    487
                     FIDUCIAL LIMITS FOR A VARIANCE COMPONENT
                                                                                                           JRSSB63
                                                                                                                    128
                                                                                                                    397
 OF A SINGLE (NON-ISOTROPIC) HYPOTHETICAL PRINCIPAL COMPONENT
                                                                                      THE COODNESS-OF-FIT BIOKAGE
                    ASYMPTOTIC THEORY FOR PRINCIPAL COMPONENT ANALYSIS
                                                                                                            AMS 63 122
OOT AND THE CORRESPONDING LATENT VEGTOR FOR PRINCIPAL COMPONENT ANALYSIS /IBUTION OF THE LARCEST LATENT R AMS 66 995
  COVARIANCE ANALYSIS WITH UNEQUAL SUBGLASS NUMBERS, GOMPONENT ESTIMATION IN CORRELATION STUDIES
                                                                                                           8I0GS68
                                                                                                                    49
```

TITLE WORD INDEX COM - COM

A COMPARISON OF SEVERAL VARIANCE COMPONENT ESTIMATORS	BIOKA67	301
NDENT NONCENTRAL CHI-SQUAR/ EXPRESSION OF VARIANCE-COMPONENT ESTIMATORS AS LINEAR COMBINATIONS OF INDEPE	AMS 69	NO 6
RELATIONSHIP BETWEEN SYSTEM FAILURE RATE AND COMPONENT FAILURE RATES	TECH 63	183
OF A COMPONENT OF A CONVOLUTION, WHEN THE OTHER COMPONENT IS OF EXPONENTIAL TYPE ESTIMATION	TECH 64	222
TION OF A COMPONENT OF A CONVOLUTION, WHEN THE OTHER COMPONENT IS OF EXPONENTIAL TYPE' ERRATA, 'ESTIMA		462
METHODS FOR ESTIMATING THE COMPOSITION OF A THREE COMPONENT LIQUID MIXTURE	TECH 64	343
ENSIONAL MODELS OF EXTREME VERTICES DESIGNS FOR FOUR COMPONENT MIXTURES THREE DIM	TECH 67	472
	TECH 64	222
IS OF EXPONENTIAL TYPE' ERRATA, 'ESTIMATION OF A COMPONENT OF A CONVOLUTION, WHEN THE OTHER COMPONENT	TECH 65	462
GHANGEOVER DESIGNS BALANCED FOR THE LINEAR COMPONENT OF FIRST RESIDUAL EFFECTS	BIOKA68	297
AN OCCUPATION TIME THEOREM FOR THE ANGULAR COMPONENT OF PLANE BROWNIAN MOTION		
	AMS 67	25
LIMITS FOR A VARIANCE COMPONENT WITH AN EXACT CONFIDENCE COEFFICIENT	AMS 61	
THE PROBLEM OF NEGATIVE ESTIMATES OF VARIANCE COMPONENTS	AMS 62	273
COHERENT STRUCTURES OF NON-IDENTICAL COMPONENTS	TECH 63	191
NON-NEGATIVE ESTIMATES OF VARIANCE COMPONENTS	TECH 63	441
AN OPTIMAL PROPERTY OF PRINCIPAL COMPONENTS	AMS 65	
A CENERAL APPROACH TO THE ESTIMATION OF VARIANCE COMPONENTS	TECH 67	93
MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE COMPONENTS	JASA 69	
A CONFIDENCE INTERVAL FOR VARIANCE COMPONENTS		
	BIOKA62	278
A RENEWAL PROBLEM WITH BULK ORDERING OF COMPONENTS	JRSSB59	180
LISTINC EXPECTED MEAN SQUARE COMPONENTS	BIOCS65	459
ON UNIFORMLY BEST UNBIASED ESTIMATORS FOR VARIANCE COMPONENTS A NOTE	JASA 56	266
EVIDENCE ON THE CONSISTENCY OF ESTIMATES OF VARIANCE COMPONENTS FURTHER	BIOCS65	395
METHOD OF RESOLUTION OF A DISTRIBUTION INTO CAUSSIAN COMPONENTS A SIMPLE	BIOCS67	115
CURVE AND THE EQUIVALENT MIXED BINOMIAL WITH TWO COMPONENTS THE PROCESS	JRSSB59	63
AMONC GENERALIZED DISTRIBUTIONS AND THEIR GOMPONENTS INTERRELATIONS		44
THREE DIFFERENT PROCEDURES FOR ESTIMATING VARIANCE COMPONENTS A COMPARISON OF		421
EIGENVALUES OF A MATRIX AND OPTIMALITY OF PRINCIPAL COMPONENTS MINIMIZATION OF		859
THE DECOMPOSITION OF A DISTRIBUTION INTO GAUSSIAN COMPONENTS AN ALCORITHM FOR		79
STIMATION FROM THE ORDER STATISTICS OF UNEQUAL GAMMA COMPONENTS SCALE PARAMETER E		152
PECTRAL DENSITY FUNCTION IN THE PRESENCE OF HARMONIC COMPONENTS ESTIMATION OF THE S	JRSSB64	123
NALYSIS OF STATISTICAL DISTRIBUTIONS INTO TWO NORMAL COMPONENTS A CRAPHICAL METHOD FOR THE A	BIOKA53	460
ETS OF TESTS ON A SYSTEM SIMULATED FROM TESTS ON ITS COMPONENTS THE CONDITIONAL DISTRIBUTION OF S	AMS 63	1585
LOOK AT HENDERSON'S METHODS OF ESTIMATING VARIANCE COMPONENTS (WITH DISCUSSION) ANOTHER	BIOCS68	749
THE DISTRIBUTION OF THE LATENT VECTORS FOR PRINCIPAL COMPONENTS ANALYSIS ON	AMS 65	1875
		590
ON ABSOLUTELY CONTINUOUS COMPONENTS AND RENEWAL THEORY	AMS 66	
A STOCHASTIC CHARACTERIZATION OF WEAR-OUT FOR COMPONENTS AND SYSTEMS	AMS 66	
	BIOKA69	
	TECH 61	413
DIGENIC EPISTATIC VARIANCES OF EQUAL MAGN/ GENETIC COMPONENTS FOR NON-INBRED DIPLOID SPECIES HAVING ALL	BIOCS69	545
ITERATIVE ESTIMATION OF VARIANCE COMPONENTS FOR NON-ORTHOGONAL DATA	BIOCS69	NO.4
MUM LIKELIHOOD ESTIMATION OF MULTIVARIATE COVARIANCE COMPONENTS FOR THE BALANCED ONE-WAY LAYOUT MAXI	AMS 69	1100
ION ESTIMABILITY OF VARIANCE COMPONENTS FOR THE TWO-WAY CLASSIFICATION WITH ITERAT		
THE SIMULTANEOUS ESTIMATION OF FUNCTIONS OF VARIANCE COMPONENTS FROM TWO-WAY CROSSED CLASSIFICATIONS /OR		
DESIGN SAMPLING DISTRIBUTIONS OF VARIANCE COMPONENTS I. EMPIRICAL STUDIES OF BALANCED NESTED	TECH 66	
SAMPLING DISTRIBUTIONS OF VARIANCE COMPONENTS I. EMPIRICAL STUDIES OF BALANCED NESTED		457
DESTANCE CAMBILING DISMETERING OF MARIANCE COMPONENTS IT PROTECTAL CHURTES OF INDALANCED NECESTA		457
DESIGNS SAMPLING DISTRIBUTIONS OF VARIANCE COMPONENTS II. EMPIRICAL STUDIES OF UNBALANCED NESTED	TECH 68	719
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION	TECH 68 BIOCS66	719 553
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE	TECH 68 BIOCS66 BIOCS68	719 553 13
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN SYSTEMS	TECH 68 BIOCS66 BIOCS68 TECH 61	719 553 13 399
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN SYSTEMS ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK	TECH 68 BIOCS66 BIOCS68 TECH 61 JASA 69	719 553 13 399 1014
VARIANCES OF ESTIMATES OF VARIANCE COMPQNENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN SYSTEMS ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK	TECH 68 BIOCS66 BIOCS68 TECH 61 JASA 69	719 553 13 399
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN SYSTEMS ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE ONE-WAY MODEL	TECH 68 BIOCS66 BIOCS68 TECH 61 JASA 69	719 553 13 399 1014
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN SYSTEMS ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE ONE-WAY MODEL VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION	TECH 68 BIOCS66 BIOCS68 TECH 61 JASA 69 JASA 65	719 553 13 399 1014 806
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN SYSTEMS ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE ONE-WAY MODEL VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION	TECH 68 BIOCS68 BIOCS68 TECH 61 JASA 69 JASA 65 BIOCS68	719 553 13 399 1014 806 527 521
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE OF SAME COMPONENTS IN SYSTEMS ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE ONE-WAY MODEL VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION VARIANCES OF WOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION	TECH 68 BIOCS68 BIOCS68 TECH 61 JASA 69 JASA 65 BIOCS68 AMS 63 AMS 61	719 553 13 399 1014 806 527 521
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION AN ITERATIVE PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE COMPONENTS IN SYSTEMS FOR SAMPLING SAMPLING SAMPLING SAMPLING SAMPLES	TECH 68 BIOCS68 BIOCS68 TECH 61 JASA 69 JASA 65 BIOCS68 AMS 63 AMS 61 TECH 67	719 553 13 399 1014 806 527 521 1161 373
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE OFFINATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABULT VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK OFFINATORS OF VARIANCES OF THE ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION AND THE WAY OF THE WAY NESTED CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION MODELS WITH COMPOSITE NAMPLES ESTIMATION VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE	TECH 68 BIOCS68 BIOCS68 TECH 61 JASA 69 JASA 65 BIOCS68 AMS 63 AMS 61 TECH 67 BIOKA63	719 553 13 399 1014 806 527 521 1161 373 327
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN SYSTEMS ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE ONE-WAY MODEL VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION I/ SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIF CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED CLASSIF CLASSIFICATION VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE INTERACTION VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH	TECH 68 BIOCS68 BIOCS68 TECH 61 JASA 69 JASA 65 BIOCS68 AMS 63 AMS 61 TECH 67 BIOKA63 AMS 67	719 553 13 399 1014 806 527 521 1161 373 327 422
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION VARIANCE SITUATION VARIANCES OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION SAMPLES SITUATION VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE INTERACTION OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS	TECH 68 BIOCS68 BIOCS68 TECH 61 JASA 69 JASA 65 BIOCS68 AMS 63 AMS 61 TECH 67 BIOKA63 AMS 67 BIOKA69	719 553 13 399 1014 806 527 521 1161 373 327 422 NO.3
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION AN ITERATIVE PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED CLASSIFICATION SAMPLES SESTIMATION OF VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED SAMPLES SESTIMATION OF VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE INTERACTION OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS OF A MINTURE OF NORMAL DISTRIBUTIONS BESTIMATING THE COMPONENTS OF A SYMMETRIC MATRIX	TECH 68 BIOCS68 BIOCS68 TECH 61 JASA 69 JASA 65 BIOCS68 AMS 63 AMS 61 TECH 67 BIOKA63 AMS 67 BIOKA69 TECH 66	719 553 13 399 1014 806 527 521 1161 373 327 422 NO.3 360
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN SYSTEMS ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION I/ SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIF CLASSIFICATION SAMPLES ESTIMATION OF VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED CLASSIF COMPONENTS IN THE UNBALANCED TWO-WAY NESTED CLASSIF VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE INTERACTION OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS LEAST SQUARES ESTIMATION OF THE COMPONENTS OF A SYMMETRIC MARRIX EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF COVARIANCE OVERHORS.	TECH 68 BIOCS68 BIOCS68 TECH 61 JASA 69 JASA 65 BIOCS68 AMS 63 AMS 61 TECH 67 BIOKA63 AMS 67 BIOKA69	719 553 13 399 1014 806 527 521 1161 373 327 422 NO.3 360 NO.3
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE ONE-WAY MODEL VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION I/ SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION I/ SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION SAMPLES ESTIMATION OF VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE INTERACTION OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE ESTIMATION OF THE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH COMPOSITE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH COMPOSITE STIMATES OF COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH COMPOSITE COMPONENTS OF A SYMMETRIC MATRIX EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF COMPONENTS OF COMPONENTS IN FORMAL DIFFERENCES IN INCOME	TECH 68 BIOCS66 BIOCS66 BIOCS66 TECH 61 JASA 69 JASA 65 BIOCS66 AMS 63 AMS 61 TECH 67 BIOKA63 AMS 67 BIOKA69 TECH 66 BIOKA69 JASA 61	719 553 13 399 1014 806 527 521 1161 373 327 422 NO.3 360 NO.3 783
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION VARIANCES OF THE ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION VARIANCE OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION SAMPLES SIN SESTIMATION OF VARIANCE COMPONENTS IN THE UNBALANCED THOWAY NESTED SAMPLES SIN UNBALANCED VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE INTERACTION OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH ESTIMATING THE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS LEAST SQUARES ESTIMATION OF THE COMPONENTS OF A SYMMETRIC MATRIX EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF COVARIANCE CHANGES IN THE RATE AND COMPONENTS OF HOUSEHOLD FORMATION	TECH 68 BIOCS66 BIOCS68 TECH 61 JASA 69 JASA 65 BIOCS68 AMS 63 AMS 61 TECH 67 BIOKA63 AMS 67 BIOKA69 TECH 66 BIOKA69 JASA 61 JASA 60	719 553 13 399 1014 806 527 521 1161 373 327 422 No.3 360 No.3 783 268
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN SYSTEMS ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION I/ SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIF CLASSIFICATION SAMPLES ESTIMATION OF VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED CLASSIF COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH CLAST SQUARES ESTIMATION OF THE COMPONENTS OF A SYMMETRIC MATRIX EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF COMPONENTS OF A SYMMETRIC MATRIX EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF DEDUCATIONAL DIFFERENCES IN INCOME CHANGES IN THE RATE AND COMPONENTS OF HUSEHOLD FORMATION QUADRATIC UNBIASED ESTIMATION OF VARIANCE COMPONENTS OF HUSEHOLD FORMATION	TECH 68 BIOCS66 BIOCS68 BIOCS68 BIOCS68 BIOCS68 BIOCS68 AMS 69 AMS 63 AMS 61 TECH 67 BIOKA63 AMS 67 BIOKA66 BIOKA69 JASA 60 BIOKA69	719 553 13 399 1014 806 527 521 1161 373 327 422 NO.3 360 NO.3 783 268 313
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPREE COMPONENTS IN SYSTEMS ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION I/ SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION I/ SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION I/ SAMPLES ESTIMATION OF VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE INTERACTION OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS ESTIMATING THE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS ESTIMATING THE COMPONENTS OF COMPONENTS OF A SYMMETRIC MATRIX EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF COMPONENTS OF BUCCATIONAL DIFFERENCES IN INCOME CHANGES IN THE RATE AND COMPONENTS OF HOUSEHOLD FORMATION COMPARISON OF ANOVA AND HARMONIC COMPONENTS OF THE ONE-WAY CLASSIFICATION COMPARISON OF ANOVA AND HARMONIC COMPONENTS OF THE ONE-WAY CLASSIFICATION COMPONENTS OF HOUSEHOLD FORMATION FIND THE ONE-WAY CLASSIFICATION AN INTERCTIVE MATRIX COMPONENTS OF HOUSEHOLD FORMATION COMPONENTS OF HOUSEHOLD FORMATION FIND THE ONE-WAY CLASSIFICATION COMPONENTS OF HOUSEHOLD FORMATION COMPONENTS OF HOUSEHOLD FORMATION COMPONENTS OF HOUSEHOLD FORMATION COMPONENTS OF HOUSEHOLD FORMATION COMPONENTS OF THE ONE-WAY CLASSIFICATION COMPONENTS OF HOUSEHOLD FORMATION COMPONENTS OF HOUSEHOLD FORMATION	TECH 68 BIOCS66 BIOCS66 BIOCS68 TECH 61 JASA 69 JASA 65 BIOCS68 AMS 63 AMS 61 TECH 67 BIOKA69 BIOKA63 JASA 61 JASA 61 JASA 60 BIOKA69 TECH 69	719 553 13 399 1014 806 527 521 1161 373 327 422 NO.3 360 NO.3 783 268 313 75
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPREE COMPONENTS IN SYSTEMS ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION I/ SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION I/ SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION I/ SAMPLES ESTIMATION OF VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE INTERACTION OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS ESTIMATING THE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS ESTIMATING THE COMPONENTS OF COMPONENTS OF A SYMMETRIC MATRIX EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF COMPONENTS OF BUCCATIONAL DIFFERENCES IN INCOME CHANGES IN THE RATE AND COMPONENTS OF HOUSEHOLD FORMATION COMPARISON OF ANOVA AND HARMONIC COMPONENTS OF THE ONE-WAY CLASSIFICATION COMPARISON OF ANOVA AND HARMONIC COMPONENTS OF THE ONE-WAY CLASSIFICATION COMPONENTS OF HOUSEHOLD FORMATION FIND THE ONE-WAY CLASSIFICATION AN INTERCTIVE MATRIX COMPONENTS OF HOUSEHOLD FORMATION COMPONENTS OF HOUSEHOLD FORMATION FIND THE ONE-WAY CLASSIFICATION COMPONENTS OF HOUSEHOLD FORMATION COMPONENTS OF HOUSEHOLD FORMATION COMPONENTS OF HOUSEHOLD FORMATION COMPONENTS OF HOUSEHOLD FORMATION COMPONENTS OF THE ONE-WAY CLASSIFICATION COMPONENTS OF HOUSEHOLD FORMATION COMPONENTS OF HOUSEHOLD FORMATION	TECH 68 BIOCS66 BIOCS68 BIOCS68 BIOCS68 BIOCS68 BIOCS68 AMS 69 AMS 63 AMS 61 TECH 67 BIOKA63 AMS 67 BIOKA66 BIOKA69 JASA 60 BIOKA69	719 553 13 399 1014 806 527 521 1161 373 327 422 NO.3 360 NO.3 783 268 313 75
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE FOR ESTIMATORS OF VARIANCE COMPONENTS IN SYSTEMS ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED R-WAY CLASSIFICATION I/ SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION I/ SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED CLASSIFICATION MODELS WITH COMPOSITE INTERACTION VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE ESTIMATING THE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATION OF THE COMPONENTS OF A SYMMETRIC MATRIX COMPONENTS OF A SYMMETRIC MATRIX COMPONENTS OF A SYMMETRIC MATRIX COMPONENTS OF TO THE COMPONENTS OF TOWARD LIFERENCES IN INCOME CHANGES IN THE RATE AND COMPONENTS OF TOWARD LIFERENCES IN INCOME COMPARISON OF ANOVA AND HARMONIC COMPONENTS OF THE ONE-WAY CLASSIFICATION C	TECH 68 BIOCS66 BIOCS66 BIOCS68 TECH 61 JASA 69 JASA 65 BIOCS68 AMS 63 AMS 61 TECH 67 BIOKA69 BIOKA63 JASA 61 JASA 61 JASA 60 BIOKA69 TECH 69	719 553 13 399 1014 806 527 521 1161 373 327 422 NO.3 360 NO.3 783 268 313 75
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE FOR ESTIMATORS OF VARIANCES OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCES COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION VARIANCES OF MOMENT ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THORWAY NESTED CLASSIFICATION VARIANCE OF MOMENTS OF VARIANCE COMPONENTS IN THE UNBALANCED THORWAY NESTED CLASSIFICATION SAMPLES ESTIMATION OF VARIANCE COMPONENTS IN THE UNBALANCED THORWAY NESTED CLASSIFICATION SAMPLES ESTIMATION OF VARIANCE COMPONENTS IN THE UNBALANCED THORWAY NESTED CLASSIFICATION SAMPLES ESTIMATION OF VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE INTERACTION SAMPLES ESTIMATION OF THE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS ESTIMATING THE COMPONENTS OF A SYMMETRIC MATRIX CEXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF COVARIANCE CHANGES IN THE RATE AND COMPONENTS OF THE ONE-WAY CLASSIFICATION CHANGES IN THE RATE AND COMPONENTS OF THE ONE-WAY CLASSIFICATION CHANGES IN THE RATE AND COMPONENTS OF THE ONE-WAY CLASSIFICATION COMPANION OF ANOVA AND HARMONIC COMPONENTS OF THE ONE-WAY CLASSIFICATION COMPANION OF THE ONE-WAY CLASSIFICATION THE ONE-WAY MODEL THE INTERPRETATION OF NEGATIVE COMPONENTS OF THE ONE-WAY CLASSIFICATION COMPONENTS OF THE ONE-WAY CLASSIFICATION THE UNBALANCED THORWAY MODEL THE ONE-WAY MODEL COMPONENTS ON THE COMPONENTS OF THE ONE-WAY CLASSIFICATION THE UNBALANCED THORWAY MODEL THE ONE-WAY MODEL THE ONE-WA	TECH 68 BIOCS66 BIOCS66 BIOCS68 TECH 61 JASA 69 JASA 65 BIOCS68 AMS 61 TECH 67 BIOKA63 AMS 67 BIOKA69 JASA 61 JASA 60 BIOKA69 JASA 61 JASA 60 BIOKA69 BIOKA69 BIOKA69	719 553 13 399 1014 806 527 521 1161 373 327 422 NO.3 360 NO.3 783 268 313 75 544 159
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN SYSTEMS ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIF CLASSIFICATION SAMPLENS ESTIMATION OF VARIANCE COMPONENTS IN THE UNBALANCED THOU-WAY NESTED SAMPLES ESTIMATION OF VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE INTERACTION OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH ESTIMATING THE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS ESTIMATION OF THE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS ESTIMATION OF THE COMPONENTS OF EDUCATIONAL DIFFERENCES IN INCOME CHANGES IN THE TARE AND COMPONENTS OF HOUSEHOLD FORMATION COMPARISON OF ANOVA AND HARMONIC COMPONENTS OF THE ONE-WAY CLASSIFICATION COMPARISON OF ANOVA AND HARMONIC COMPONENTS OF VARIANCE THE INTERPRETATION OF VARIANCE COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE	TECH 68 BIOCS66 BIOCS68 BIOCS68 TECH 61 JASA 69 JASA 69 BIOCS68 AMS 63 AMS 61 TECH 67 BIOKA63 AMS 67 BIOKA69 BIOKA69 JASA 61 JASA 60 BIOKA69 TECH 69 BIOKA64 TECH 69 BIOKA54 BIOKA54 JASA 60	719 553 13 399 1014 806 527 521 1161 373 327 422 NO.3 360 NO.3 783 268 313 75 544 159 140
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE BESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION SAMPLES ESTIMATION OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE ESTIMATING THE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF A SYMMETRIC MATRIX EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF HOUSEHOLD FORMATION QUADRATIC UNBIASED ESTIMATION OF VARIANCE COMPONENTS OF HOUSEHOLD FORMATION COMPONENTS OF HOUSEHOLD FORMATION COMPONENTS OF VARIANCE THE INTERPRETATION OF NEGATIVE COMPONENTS OF VARIANCE COMPONENTS OF VARIANCE THE INTERPRETATION OF MEGATIVE COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE CLASSIFICATION SAMPLING VARIANCES OF ESTIMATES OF COMPONENTS OF VARIANCE CLASSIFICATION ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE CLASSIFICATION SAMPLING VARIANCES OF ESTIMATES OF COMPONENTS OF VARIANCE FROM A NON-ORTHOGONAL TWO-WAY	TECH 68 BIOCS66 BIOCS66 BIOCS66 BIOCS68 BIOS68 AMS 63 AMS 61 TECH 67 BIOKA69 TECH 66 BIOKA63 JASA 60 BIOKA69 JASA 60 BIOKA69 TECH 66 BIOKA69 BIOKA69 BIOKA69 BIOKA69 BIOKA69 BIOKA69 BIOKA69 BIOKA69	719 553 13 399 1014 806 527 521 1161 373 327 422 NO.3 360 NO.3 783 268 313 75 544 159 140 491
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE ESTIMATORS OF VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE LESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION SAMPLES ESTIMATION OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION SAMPLES ESTIMATION OF VARIANCE COMPONENTS IN THE UNBALANCED THOU-WAY NESTED CLASSIFICATION SAMPLES ESTIMATION OF VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED CLASSIFICATION MODELS WITH OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH ESTIMATING THE COMPONENTS OF A SYMMETRIC MATRIX EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF COVARIANCE CHANGES IN THE RATE AND COMPONENTS OF COMPONENTS OF COMPONENTS OF TOWARD CLASSIFICATION COMPARISON OF ANOVA AND HARMONIC COMPONENTS OF THE ONE-WAY CLASSIFICATION COMPARISON OF ANOVA AND HARMONIC COMPONENTS OF TARIANCE THE INTERPRETATION OF NEGATIVE COMPONENTS OF TARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATES OF COMPONENTS OF VARIANCE IN THE UNBALANCED NESTED ANALY SAMPLER OF VARIANCE OF VARIANCE OF COMPONENTS OF VARIANCE IN THE UNBALANCED NESTED ANALY SAMPLER OF VARIANCE OF VARIANCE OF COMPONENTS OF VARIANCE IN THE UNBALANCED NESTED ANALY SAMPLER OF VARIANCE OF THE COMPONENTS OF VARIANCE IN THE UN	TECH 68 BIOCS68 BIOCS68 TECH 61 JASA 69 JASA 65 BIOCS68 AMS 63 AMS 61 TECH 67 BIOKA63 AMS 67 BIOKA63 TECH 66 BIOKA69 TECH 66 BIOKA69 TECH 66 BIOKA64 JASA 61 JASA 60 BIOKA64 BIOKA657 JRSSB62 BIOKA657 JRSSB62 BIOKA64 BIOKS68	719 553 13 399 1014 806 527 521 1161 373 327 422 NO.3 360 NO.3 783 268 313 75 544 159 140 491 423
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION I/ SAMPLING VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION I/ SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIF CLASSIFICATION SAMPLES ESTIMATION OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE INTERACTION VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS LEAST SQUARES ESTIMATION OF THE COMPONENTS OF A SYMMETRIC MATRIX EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF COVARIANCE CHANGES IN THE RATE AND COMPONENTS OF FOULATIONAL DIFFERENCES IN INCOME CHANGES IN THE RATE AND COMPONENTS OF VARIANCE OF VARIANCE OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATES OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATES OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATES OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATES OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATES OF COMPONENTS OF VARIANCE IN THE UNBALANCED NESTED ANALY SEQUENTIAL RANCE TESTS FOR COMPONENTS OF VARIANCE, CORR. 65 1249	TECH 68 BIOCS66 BIOCS68 BIOCS68 BIOCS68 BIOCS68 BIOCS68 AMS 63 AMS 63 AMS 67 BIOKA63 AMS 67 BIOKA69 BIOKA69 JASA 60 BIOKA69 TECH 69 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA65 BIOKA65 BIOKA65 AMS 67 BIOKA66 BIOKA69 AMS 67 BIOKA69 BIOKA69 BIOKA66	719 553 13 399 1014 806 527 521 1161 373 327 422 NO.3 783 268 NO.3 75 544 159 140 491 423 826
PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN SYSTEMS ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION I/ SAMPLING VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION I/ SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION I/ SAMPLES ESTIMATION OF VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED CLASSIFICATION SAMPLES ESTIMATION OF VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE INTERACTION OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE ESTIMATING THE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS ESTIMATING THE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS ESTIMATING THE COMPONENTS OF VARIANCE CLASSIFICATION OF ANOVA AND HARMONIC COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE APPROXIMATE CONFIDENCE LIMITS FOR COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE FROM A NON-ORTHOGONAL TWO-WAY SIS OF VARIANCE/ NOTES ON TESTING SIGNIFICANCE OF COMPONENTS OF VARIANCE IN THE UNBALANCED NESTED ANALY SEQUENTIAL BANCE TESTS FOR COMPONENTS OF VARIANCE FROM A NON-ORTHOGONAL TWO-WAY SEQUENTIAL BANCE TESTS FOR COMPONENTS OF VARIANCE IN THE UNBALANCED NESTED ANALY SEQUENTIAL BANCE TESTS FOR COMPONENTS OF VARIANCE FROM A NON-ORTHOGONAL TWO-WAY SECRET. PRINCIPAL COMPONENTS OF VARIANCE OF VARIANCE OF VARIANCE IN THE UNBALANCE	TECH 68 BIOCS66 BIOCS66 BIOCS68 TECH 61 JASA 69 JASA 68 BIOCS68 AMS 63 AMS 61 TECH 67 BIOKA69 TECH 69 BIOKA69 TECH 69 BIOKA69 TECH 69 BIOKA54 BIOKA55 JASA 65 JASA 65	719 553 13 399 1014 806 527 521 1161 373 327 422 NO.3 368 313 75 544 159 140 491 423 826 234
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE RESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE ONE-WAY MODEL VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION I/ SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIF CLASSIFICATION SAMPLING THE UNBALANCED VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFINED VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH COMPOSITE INTERACTION VARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH CHANGES IN THE RATE AND COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS LEAST SQUARES ESTIMATION OF THE COMPONENTS OF A SYMMETRIC MATRIX EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF COVARIANCE CHANGES IN THE RATE AND COMPONENTS OF COMPONENTS OF COMPONENTS OF VARIANCE CHANGES IN THE RATE AND COMPONENTS OF COMPONENTS OF VARIANCE CHANGES IN THE RATE AND COMPONENTS OF VARIANCE CHANGES IN THE ESTIMATION OF NEGATIVE COMPONENTS OF VARIANCE THE INTERFERENCE SITUATION OF NEGATIVE COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE FROM A NON-ORTHOGONAL TWO-WAY SIS OF VARIANCE/ NOTES. ON TESTING SIGNIFICANCE OF COMPONENTS OF VARIANCE FROM A NON-ORTHOGONAL TWO-WAY SEQUENTIAL RANCE TESTS FOR COMPONENTS OF VARIANCE IN THE UNBALANCED NESTED ANALY SEQUENTIAL RANCE TESTS FOR COMPONENTS OF VARIA	TECH 68 BIOCS68 BIOCS68 TECH 61 JASA 69 JASA 65 BIOCS68 AMS 63 AMS 61 TECH 67 BIOKA63 AMS 67 BIOKA63 TECH 66 BIOKA69 TECH 66 BIOKA69 TECH 66 BIOKA69 TECH 65 BIOKA69 TECH 64 BIOKA69 TECH 65 BIOKA69 TECH 65 BIOKA69 TECH 65	719 553 399 1014 806 527 521 1161 373 327 422 NO.3 763 268 313 75 544 159 140 491 423 B26 234 9
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN MIXED MODEL STUATIONS AN ITERATIVE PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL STUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN SYSTEMS ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE ONE-WAY MODEL VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION I/ SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH COMPOSITE INTERACTION OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH COMPOSITE INTERACTION OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS WITH COMPOSITE OF A MIXTURE OF NORMAL DISTRIBUTIONS OF A SYMMETRIC MATRIX EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF EDUCATIONAL DIFFERENCES IN INCOME OCCUPATIONAL COMPONENTS OF THE ONS-WAY CLASSIFICATION OF ONS-WAY CLASSIFICATION OF THE ONS-WAY CLASSIFIC	TECH 68 BIOCS66 BIOCS68 BICCH 61 JASA 69 JASA 65 BIOCS68 AMS 63 AMS 61 TECH 67 BIOKA63 AMS 67 BIOKA69 TECH 66 BIOKA69 JASA 61 JASA 60 BIOKA69 TECH 69 BIOKA69 TECH 69 BIOKA69 TECH 69 BIOKA64 BIOKA57 JRSSB62 BIOKA64 JASA 65 JASA 65 JASA 65 JASA 66	719 553 13 399 1014 806 527 521 1161 373 327 422 NO.3 360 NO.3 783 268 313 754 140 491 423 B26 234 9 101
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN SYSTEMS ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIF INTERACTION VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS ESTIMATING THE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS ESTIMATION OF THE COMPONENTS OF A SYMMETRIC MATRIX EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF COMPONENTS OF COMPONENTS OF A SYMMETRIC MATRIX EXACT FIRST AND SECOND ORDER MOMENTS OF VARIANCE COMPONENTS OF THE ONDE-WAY CLASSIFICATION CHANGES IN THE RATE AND COMPONENTS OF VARIANCE THE INTERPRETATION OF NEGATIVE COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATES OF COMPONENTS OF VARIANCE APPROXIMATE CONFIDENCE LIMITS FOR COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATES OF COMPONENTS OF VARIANCE CLASSIFICATION SAMPLING VARIANCES OF ESTIMATES OF COMPONENTS OF VARIANCE FROM A NON-ORTHOGONAL TWO-WAY SIS OF VARIANCE/ ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE IN THE UNBALANCED NESTED ANALY SEQUENTIAL RANCE TESTS FOR COMPONENTS OF VARIANCE IN THE UNBALANCED NESTED ANALY SEQUENTIAL RANCE TESTS FOR COMPONENTS OF VARIANCE IN THE UNBAL	TECH 68 BIOCS66 BIOCS66 BIOCS68 TECH 61 JASA 69 JASA 66 BIOCS68 AMS 63 AMS 67 BIOKA63 AMS 67 BIOKA69 BIOKA69 TECH 66 BIOKA69 TECH 69 BIOKA69 TECH 69 BIOKA64 BIOKA657 JRSSB62 BIOKA64 BIOKA64 BIOKA64 BIOKA654 BIOKA656 BIOKA656 BIOKA664 BIOKA668 BIOKA68	719 553 13 399 1014 806 527 521 1161 373 360 NO.3 783 268 313 75 544 140 491 423 491 424 91 101 54
PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN SYSTEMS ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED INCOMPLETE BLOCK VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION I/ SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THOREWAY NESTED CLASSIF CLASSIFICATION VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATION OF THE CHANGES IN THE RATE AND OCCUPATIONAL CHANGES IN THE RATE AND CCUPATIONAL CHANGES IN THE RATE AND COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS EXACT FIRST AND SECOND ORDER MOMENTS OF SARINATES OF COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS EXACT FIRST AND SECOND ORDER MOMENTS OF VARIANCE CHANGES IN THE RATE AND CCUPATIONAL CHANGES IN THE RATE AND COMPONENTS OF OMPONENTS OF SUMMERICAN OF VARIANCE COMPONENTS OF OMPONENTS OF OF VARIANCE COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE FERSE OF ON TESTING SIGNIFICANCE OF COMPONENTS OF VARIANCE ON THE SEFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE IN THE UNBALANCED NESTED ANALY SEQUENTIAL RANCE TESTS FOR COMPONENTS OF VARIANCE, CORR. 65 1249 PRINCIPAL BAYFROXIMATE CONTRIBUTION OF PRINCIPAL COMPONENTS OF VARIANCE, OF VARIANCE NOT VARIANCE ON THE BALANCED IN	TECH 68 BIOCS66 BIOCS66 BIOCS68 TECH 61 JASA 69 JASA 66 BIOCS68 AMS 63 AMS 61 TECH 67 BIOKA69 TECH 66 BIOKA69 JASA 60 BIOKA69 TECH 69 BIOKA69 TECH 69 BIOKA54 BIOKA54 BIOKA54 BIOKA55 JASA 66 BIOKA64 BIOKA54 BIOKA54 BIOKA55 JASA 66 BIOKA64 BIOKA56 BIOKA64 BIOKA56 BIOKA64 BIOKA57 JASA 66 BIOKA64 BIOKA56 JASA 65 BIOKA64 BIOCS68 JASA 65 BIOKA68 BIOKA66	719 553 13 399 1014 806 527 521 1161 373 327 422 NO.3 3268 313 75 544 159 140 491 423 B26 234 9 101 54 551
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN SYSTEMS ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE DNE-WAY MODEL VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION VARIANCES OF THE ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIF CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE INTERACTION VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS LEAST SQUARES ESTIMATION OF THE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS LEAST SQUARES ESTIMATION OF THE COMPONENTS OF A SYMMETRIC MATRIX EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF EDUCATIONAL DIFFERENCES IN INCOME CHANGES IN THE RATE AND COMPONENTS OF HOUSEHOLD FORMATION QUADRATIC UNBIASED ESTIMATION OF VARIANCE COMPONENTS OF THE INTERPRETATION OF NORMAL DISTRIBUTIONS COMPARISON OF ANOVA AND HARMONIC COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE OF	TECH 68 BIOCS66 BIOCS68 BICCH 61 JASA 69 JASA 65 BIOCS68 AMS 63 AMS 61 TECH 67 BIOKA63 AMS 67 BIOKA69 BIOKA69 BIOKA69 JASA 60 BIOKA69 JASA 60 BIOKA69	719 553 13 399 1014 806 527 521 1161 373 327 422 NO.3 360 NO.3 783 268 313 75 440 491 423 B26 234 159 101 541 551 350
PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN SYSTEMS ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED INCOMPLETE BLOCK VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION I/ SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THOREWAY NESTED CLASSIF CLASSIFICATION VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATION OF THE CHANGES IN THE RATE AND OCCUPATIONAL CHANGES IN THE RATE AND CCUPATIONAL CHANGES IN THE RATE AND COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS EXACT FIRST AND SECOND ORDER MOMENTS OF SARINATES OF COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS EXACT FIRST AND SECOND ORDER MOMENTS OF VARIANCE CHANGES IN THE RATE AND CCUPATIONAL CHANGES IN THE RATE AND COMPONENTS OF OMPONENTS OF SUMMERICAN OF VARIANCE COMPONENTS OF OMPONENTS OF OF VARIANCE COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE FERSE OF ON TESTING SIGNIFICANCE OF COMPONENTS OF VARIANCE ON THE SEFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE IN THE UNBALANCED NESTED ANALY SEQUENTIAL RANCE TESTS FOR COMPONENTS OF VARIANCE, CORR. 65 1249 PRINCIPAL BAYFROXIMATE CONTRIBUTION OF PRINCIPAL COMPONENTS OF VARIANCE, OF VARIANCE NOT VARIANCE ON THE BALANCED IN	TECH 68 BIOCS66 BIOCS68 BICCH 61 JASA 69 JASA 65 BIOCS68 AMS 63 AMS 61 TECH 67 BIOKA63 AMS 67 BIOKA69 BIOKA69 BIOKA69 JASA 60 BIOKA69 JASA 60 BIOKA69	719 553 13 399 1014 806 527 521 1161 373 327 422 NO.3 360 NO.3 783 268 313 75 440 491 423 B26 234 159 101 541 551 350
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN SYSTEMS ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE DNE-WAY MODEL VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION VARIANCES OF THE ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIF CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE INTERACTION VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS LEAST SQUARES ESTIMATION OF THE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS LEAST SQUARES ESTIMATION OF THE COMPONENTS OF A SYMMETRIC MATRIX EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF EDUCATIONAL DIFFERENCES IN INCOME CHANGES IN THE RATE AND COMPONENTS OF HOUSEHOLD FORMATION QUADRATIC UNBIASED ESTIMATION OF VARIANCE COMPONENTS OF THE INTERPRETATION OF NORMAL DISTRIBUTIONS COMPARISON OF ANOVA AND HARMONIC COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE OF	TECH 68 BIOCS66 BIOCS68 BEOCS68 BTECH 61 JASA 69 JASA 69 BIOCS68 AMS 63 AMS 61 TECH 67 BIOKA63 AMS 67 BIOKA69 BIOKA69 BIOKA69 BIOKA69 JASA 61 JASA 60 BIOKA69 BIOKA69 BIOKA69 BIOKA69 BIOKA69 BIOKA64 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66	719 553 13 399 1014 806 527 521 1161 373 360 NO.3 783 268 313 75 544 159 140 491 423 492 826 234 910 54 55 55 56 56 56 57 57 57 57 57 57 57 57 57 57
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN SYSTEMS ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY CLASSIFICATION I/ SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIF CLASSIFICATION SAMPLES ESTIMATION OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE INTERACTION OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS ESTIMATING THE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS LEAST SQUARES ESTIMATION OF THE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF COVARIANCE OCCUPATIONAL COMPONENTS OF COVARIANCE CHANGES IN THE RATE AND QUADRATIC UNBIASED ESTIMATION OF VARIANCE COMPONENTS OF THE ONE-WAY CLASSIFICATION COMPARISON OF ANOVA AND HARMONIC COMPONENTS OF THE ONE-WAY CLASSIFICATION ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE CLASSIFICATION SAMPLING VARIANCES OF ESTIMATES OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE CLASSIFICATION SAMPLING VARIANCES OF ESTIMATES OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF PRINCIPAL COMPONENTS OF VARIANCE ON THE EFFECT OF THE ONE-WAY VARIANCES OF COMPONENTS OF VARIANCE OF VARIANCE ON THE EFFECT OF THE ONE-WAY VARIANCE OF COMPONENTS OF VARIANCE OF VARIANCE ON THE EFFECT OF THE ONE-WAY VARIANCE OF COMPONENTS OF VARIANCE OF VARIANCE ON THE EFFECT OF	TECH 68 BIOCS66 BIOCS68 BEOCS68 BTECH 61 JASA 69 JASA 69 BIOCS68 AMS 63 AMS 61 TECH 67 BIOKA63 AMS 67 BIOKA69 BIOKA69 BIOKA69 BIOKA69 JASA 61 JASA 60 BIOKA69 BIOKA69 BIOKA69 BIOKA69 BIOKA69 BIOKA64 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66	719 553 13 99 1014 806 527 521 1161 373 327 422 NO.3 360 NO.3 783 268 313 75 544 159 140 491 423 9 101 54 551 350 354 551
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN NIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN SYSTEMS ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE URBALANCED INCOMPLETE BLOCK VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE URBALANCED TWO-WAY CLASSIFICATION I/ SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE URBALANCED TWAY NESTED CLASSIF CALASSIFICATION VARIANCE COMPONENTS IN THE URBALANCED TWAY NESTED CLASSIFICATION SAMPLES ESTIMATION OF VARIANCE COMPONENTS IN THE URBALANCED TWAY NESTED CLASSIFICATION VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS ESTIMATING THE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS LEAST SQUARES ESTIMATION OF THE COMPONENTS OF COVARIANCE CHANCES IN THE RATE AND COMPONENTS OF COVARIANCE CHANCES IN THE RATE AND COMPONENTS OF COMPONENTS OF COMPONENTS OF COVARIANCE CHANCES IN THE RATE AND COMPONENTS OF THE UNBALANCED INCOMPONENTS OF VARIANCE CHANCES OF AND AND AND HARMONIC COMPONENTS OF VARIANCE CHANCES OF AND AND AND HARMONIC COMPONENTS OF VARIANCE APPROXIMATE CONFIDENCE LIMITS FOR COMPONENTS OF VARIANCE CLASSIFICATION OF SAMPLING VARIANCES OF ESTIMATES OF COMPONENTS OF VARIANCE CLASSIFICATION OF SAMPLING VARIANCES OF ESTIMATES OF COMPONENTS OF VARIANCE CLASSIFICATION OF SAMPLING VARIANCES OF ESTIMATES OF COMPONENTS OF VARIANCE CLASSIFICATION OF SAMPLING VARIANCES OF ESTIMATES OF COMPONENTS OF VARIANCE CLASSIFICATION OF SAMPLING VARIANCES OF ESTIMATES OF COMPONENTS OF VARIANCE IN THE UNBALANCED NESTED ANALYSIS OF LINEAR MODELS WITH TWO RANDOM COMPONENTS OF VARIANCE IN THE UNBALANCED NESTED ANALYSIS OF LINEAR MODELS WITH TWO RANDOM COMPONENTS	TECH 68 BIOCS66 BIOCS68 TECH 61 JASA 69 JASA 65 BIOCS68 AMS 63 AMS 61 TECH 67 BIOKA63 AMS 67 BIOKA69 TECH 66 BIOKA69 TECH 66 BIOKA69 JASA 61 JASA 61 JASA 66 JIOKA69 BIOKA69 BIOKA69 BIOKA69 TECH 69 BIOKA69 BIOKA69 BIOKA69 BIOKA69 TECH 69 BIOKA68 BIOKA68 BIOKA68 JASA 65 BIOCS68 BIOKA68 JASA 65 BIOCS68 BIOKA68 JASA 56 TECH 68 JASA 61 BIOKA68 JASA 61 BIOKA68 JASA 61 BIOKA68	719 553 13 399 1014 806 527 521 1161 373 327 422 NO.3 763 763 763 744 159 140 491 423 B26 234 9 101 54 551 350 343 1350
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED INCOMPLETE BLOCK SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIF CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED SAMPLES ESTIMATION OF VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED CHASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED SAMPLES ESTIMATION OF VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS LEAST SQUARES ESTIMATION OF THE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS LEAST SQUARES ESTIMATION OF THE COMPONENTS OF COMPONENTS OF COVARIANCE COMPONENTS OF COMPONENTS OF COMPONENTS OF COVARIANCE COMPONENTS OF COMPONENTS OF COMPONENTS OF COVARIANCE COMPONENTS OF HOUSEHOLD FORMATION QUADRATIC UNBIASED ESTIMATION OF VARIANCE COMPONENTS OF COMPONENTS OF COMPONENTS OF COVARIANCE OF THE INTERPRETATION OF NEGATIVE COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF PRINCIPAL COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF PRINCIPAL COMPONENTS OF VARIANCE ON THE EFFECT OF	TECH 68 BIOCS66 BIOCS66 BIOCS68 BIOCS68 BIOCS68 BIOCS68 AMS 63 AMS 63 AMS 67 BIOKA63 AMS 67 BIOKA69 BIOKA69 BIOKA69 BIOKA69 JASA 60 BIOKA69 BIOKA64 BIOKA66 BIOKA67 JRSSB62 BIOKA68 JASA 65 BIOKA64 BIOCS66 BIOKA68 JASA 65 BIOCS66 BIOKA68 BIOCS66 BIOKA68 BIOKA68 BIOCS66 BIOKA68 BIOCS66	719 553 13 399 1014 806 527 521 1161 373 360 NO.3 783 268 313 75 441 491 491 492 493 B26 234 9 101 541 350 343 551 350 343 551 351 351 351 351 351 351 35
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE UNBALANCED INCOMPLETE BLOCK VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED SAMPLES ESTIMATION OF VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE INTERACTION VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE INTERACTION VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE INTERACTION VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE INTERACTION VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE OF INTERACTION OF THE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS LEAST SQUARES ESTIMATION OF THE COMPONENTS OF A SYMMETRIC MATRIX EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF COUNTAINEND COUPARISON OF ANOVA AND HARMONIC COMPONENTS OF COUNTAINEND CHAPACY AND COUNTAINEND OF THE OWNER OF THE COMPONENTS OF VARIANCE CHAPCE OF AN OWNER OF THE COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF NEGATIVE COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE FROM A NON-ORTHOGONAL TWO-WAY SIS OF VARIANCE OF COMPONENTS OF VARIANCE	TECH 68 BIOCS66 BIOCS66 BIOCS68 BIOCS68 AMS 63 AMS 61 TECH 67 BIOKA63 AMS 67 BIOKA69 BIOKA69 JASA 60 BIOKA69 TECH 69 BIOKA64 BIOKA69 TECH 69 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA65 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA66 JASA 65 BIOCS66 JASA 58 AMS 62 BIOCS65 TECH 61	719 553 13 99 1014 806 527 521 1161 373 327 422 NO.3 783 268 8313 75 544 159 140 491 423 9 101 54 551 354 551 1356 324 423
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED THREE-WAY MODEL VARIANCES OF MOMENT ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED CLASSIFICATION SAMPLING VARIANCES OF THE ESTIMATION OF VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED CLASSIFICATION VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE INTERACTION VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS LEAST SQUARES ESTIMATION OF THE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS LEAST SQUARES ESTIMATION OF THE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS LEAST SQUARES ESTIMATION OF VARIANCE COMPONENTS OF COVARIANCE COMPARISON OF ANOVA AND HARMONIC COMPONENTS OF THE ONE-WAY CLASSIFICATION QUADRATIC UNBIASED ESTIMATION OF NEGATIVE COMPONENTS OF THE ONE-WAY CLASSIFICATION COMPARISON OF ANOVA AND HARMONIC COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE FROM A NON-ORTHOCONAL TWO-WAY SEQUENTIAL RANCE TESTS FOR COMPONENTS OF VARIANCE, CORR. 65 1249 RESEARCH PRINCIPAL COMPONENTS OF VARIANCE COMPONENTS OF VARIANCE OMPONENTS OF VARIANCE OMPONENTS OF VARIANCE OMPONENTS OF VARIANCE OMPONEN	TECH 68 BIOCS68 BIOCS68 BIOCS68 TECH 61 JASA 69 JASA 65 BIOCS68 AMS 63 AMS 67 BIOKA63 AMS 67 BIOKA69 TECH 66 BIOKA69 TECH 66 BIOKA69 TECH 69 BIOKA69 JASA 61 JASA 65 JASA 65 BIOCS68 BIOKA68 JASA 65 BIOCS68 BIOKA68	719 553 399 1014 806 527 521 1161 373 327 422 NO.3 360 NO.3 783 268 313 75 544 159 140 423 B26 234 491 423 B26 234 551 350 343 551 1356 324 1034
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE—WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OFTIMUM ALLOCATION OF SPARE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFRENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFRENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED THERE—WAY MODEL VARIANCE OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THERE—WAY NESTED CLASSIF CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED THOR—WAY NESTED SAMPLES ESTIMATION OF VARIANCE COMPONENTS IN THE UNBALANCED TWO—WAY CLASSIFICATION VARIANCE COMPONENTS IN TWO—STAGE NESTED DESIONS WITH COMPOSITE INTERACTION VARIANCE COMPONENTS IN TWO—STAGE NESTED DESIONS WITH COMPOSITE INTERACTION VARIANCE COMPONENTS IN TWO—STAGE NESTED DESIONS WITH COMPOSITE INTERACTION VARIANCE COMPONENTS OF COMPONENTS OF A SYMMETRIC MATRIX EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF COVARIANCE CHARGES IN THE RATE AND COCUPATIONAL COMPONENTS OF FORWARD DIFFERENCES IN INCOME CHARGES IN THE RATE AND COCUPATIONAL COMPONENTS OF FORWARD DIFFERENCES IN INCOME CHARGES IN THE RATE AND COMPONENTS OF FORWARD OF VARIANCE CHARGES IN THE RATE AND COMPONENTS OF FORWARD OF VARIANCE CHARGES IN THE RATE AND COMPONENTS OF VARIANCE CHARGES IN THE RATE AND COMPONENTS OF VARIANCE CHARGES IN THE RATE AND COMPONENTS OF VARIANCE THE INTERPRETATION OF NOGATIVE COMPONENTS OF VARIANCE APPROXIMATE CONFIDENCE LIMITS FOR COMPONENTS OF VARIANCE APPROXIMATE CONFIDENCE LIMITS FOR COMPONENTS OF VARIANCE APPROXIMATE ON ESTIMATION OF COMPONENTS OF VARIANCE THE INTERPRETATION OF PRINCIPAL COMPONENTS OF VARIANCE APPROXIMATE ON ESTIMATION OF COMPONENTS OF VARIANCE THE USE OF LEAST FOR MOMENTS OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON—NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE FORM A NON—ORTHOGONAL TWO—WAY SIS OF VARIANCE OF COMPONENTS OF VARIANCE	TECH 68 BIOCS66 BIOCS68 BIOCS68 BIOCS68 BIOCS68 AMS 63 AMS 63 AMS 67 BIOKA69 BIOKA69 BIOKA69 JASA 66 BIOKA69 JASA 61 JASA 66 BIOKA69 BIOKA68 JASA 61 JASA 66 BIOCS66 BIOCS66 JASA 58 BIOCS66 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOCS66	719 553 13 399 1014 806 527 521 1161 373 327 422 N0.3 360 N0.3 783 268 313 75 441 159 140 491 423 B26 234 159 101 541 551 350 343 551 356 324 423 423 423
PROCEDURE FOR ESTIMATING SIZED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE PROCEDURE FOR ESTIMATING FIXED FEBRORS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFERENCE ABOUT VARIANCE COMPONENTS IN THE GNE-WAY MODEL VARIANCE OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED TWASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED CLASSIFICATION OF VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED CLASSIFICATION OF VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE INTERACTION VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE INTERACTION OF VARIANCE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS ESTIMATION OF THE COMPONENTS OF A SYMMETRIC MARKIX COMPONENTS OF A SYMMETRIC MARKIX COMPONENTS OF A SYMMETRIC MARKIX COMPONENTS OF COMPONENTS OF A SYMMETRIC MARKIX COMPONENTS OF COMPONENTS OF COMPONENTS OF A SYMMETRIC MARKIX COMPONENTS OF COMPONENTS OF OWNER OF COMPONENTS OF COMPONENTS OF OWNER OF COMPONENTS OF A SYMMETRIC MARKIX COMPONENTS	TECH 68 BIOCS66 BIOCS668 TECH 61 JASA 69 JASA 65 BIOCS68 AMS 63 AMS 61 TECH 67 BIOKA63 AMS 67 BIOKA69 JASA 60 BIOKA69 JASA 61 JASA 60 BIOKA69 BIOKA69 BIOKA69 BIOKA69 BIOKA69 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA65 JASA 65 BIOCS66 JASA 58 AGS 65 JASA 58 TECH 68 JASA 58 AMS 65 JASA 66 BIOCS66 BIOCS66 BIOCS66	719 553 13 399 1014 806 527 521 1161 373 360 NO.3 783 268 313 75 544 491 492 493 493 494 551 54 493 551 544 551 551 551 551 551 551
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE—WAY CLASSIFICATION PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE THE OFTIMUM ALLOCATION OF SPARE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFRENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK INFRENCE ABOUT VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED THERE—WAY MODEL VARIANCE OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THERE—WAY NESTED CLASSIF CLASSIFICATION VARIANCE COMPONENTS IN THE UNBALANCED THOR—WAY NESTED SAMPLES ESTIMATION OF VARIANCE COMPONENTS IN THE UNBALANCED TWO—WAY CLASSIFICATION VARIANCE COMPONENTS IN TWO—STAGE NESTED DESIONS WITH COMPOSITE INTERACTION VARIANCE COMPONENTS IN TWO—STAGE NESTED DESIONS WITH COMPOSITE INTERACTION VARIANCE COMPONENTS IN TWO—STAGE NESTED DESIONS WITH COMPOSITE INTERACTION VARIANCE COMPONENTS OF COMPONENTS OF A SYMMETRIC MATRIX EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF COVARIANCE CHARGES IN THE RATE AND COCUPATIONAL COMPONENTS OF FORWARD DIFFERENCES IN INCOME CHARGES IN THE RATE AND COCUPATIONAL COMPONENTS OF FORWARD DIFFERENCES IN INCOME CHARGES IN THE RATE AND COMPONENTS OF FORWARD OF VARIANCE CHARGES IN THE RATE AND COMPONENTS OF FORWARD OF VARIANCE CHARGES IN THE RATE AND COMPONENTS OF VARIANCE CHARGES IN THE RATE AND COMPONENTS OF VARIANCE CHARGES IN THE RATE AND COMPONENTS OF VARIANCE THE INTERPRETATION OF NOGATIVE COMPONENTS OF VARIANCE APPROXIMATE CONFIDENCE LIMITS FOR COMPONENTS OF VARIANCE APPROXIMATE CONFIDENCE LIMITS FOR COMPONENTS OF VARIANCE APPROXIMATE ON ESTIMATION OF COMPONENTS OF VARIANCE THE INTERPRETATION OF PRINCIPAL COMPONENTS OF VARIANCE APPROXIMATE ON ESTIMATION OF COMPONENTS OF VARIANCE THE USE OF LEAST FOR MOMENTS OF COMPONENTS OF VARIANCE ON THE EFFECT OF NON—NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE FORM A NON—ORTHOGONAL TWO—WAY SIS OF VARIANCE OF COMPONENTS OF VARIANCE	TECH 68 BIOCS66 BIOCS668 TECH 61 JASA 69 JASA 65 BIOCS68 AMS 63 AMS 61 TECH 67 BIOKA63 AMS 67 BIOKA69 JASA 60 BIOKA69 JASA 61 JASA 60 BIOKA69 BIOKA69 BIOKA69 BIOKA69 BIOKA69 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA65 JASA 65 BIOCS66 JASA 58 AGS 65 JASA 58 TECH 68 JASA 58 AMS 65 JASA 66 BIOCS66 BIOCS66 BIOCS66	719 553 13 399 1014 806 527 521 1161 373 360 NO.3 783 268 313 75 544 491 492 493 493 494 551 54 493 551 544 551 551 551 551 551 551

COM - CON TITLE WORD INDEX

```
DISCRIMINANT FUNCTION BETWEEN COMPOSITE HYPOTHESES AND RELATED PROBLEMS
                                                                                                                 BIOKA66 339
NONCONTROLLED PRE/ ASYMPTOTICALLY OPTIMAL TESTS OF COMPOSITE HYPOTHESES FOR RANDOMIZED EXPERIMENTS WITH JASA 65 699
                                              TESTS OF COMPOSITE HYPOTHESES FOR THE MULTIVARIATE EXPONENTIAL AMS 67
 FAMILY CORR 67 192B
                                                                                                                          6B1
VARIANCE COMPONENTS IN TWO-STACE NESTED DESIGNS WITH COMPOSITE SAMPLES
                                                                                              ESTIMATION OF TECH 67 373
                       ON OPTIMAL ASYMPTOTIC TESTS OF COMPOSITE STATISTICAL HYPOTHESES
                                                                                                                  AMS 67 1845
            POPULATION ESTIMATION BASED ON CHANGE OF COMPOSITION CAUSED BY A SELECTIVE REMOVAL
                                                                                                                 BIOKA55 279
                           METHODS FOR ESTIMATING THE COMPOSITION OF A THREE COMPONENT LIQUID MIXTURE
                                                                                                                 TECH 64
                                                                                                                          343
                    AN ESTIMATION PROCEDURE FOR RANCE COMPOSITION PROBLEMS
                                                                                                                 JASA 65
                                                                                                                          308
                            SOME INTERRELATIONS AMONG COMPOUND AND CENERALIZED DISTRIBUTIONS
                                                                                                                 BIOKA57
                                                                                                                          265
               ASYMPTOTIC SOLUTIONS OF THE SEQUENTIAL COMPOUND DECISION PROBLEM
                                                                                                                 AMS 63 1079
                                       ON AN EXTENDED COMPOUND DECISION PROBLEM
                                                                                                                  AMS 69 1536
                              ON SIMPLE RULES FOR THE COMPOUND DECISION PROBLEM
                                                                                                                 JRSSB65 238
LOSSES OF CERTAIN DECISION RULES FOR THE SEQUENTIAL COMPOUND DECISION PROBLEM
                                                                                            CONVERCENCE OF THE AMS 64 1606
ICAL BAYES APPROACH TO TESTING OF HYPOTHESES AND THE COMPOUND DECISION PROBLEM
                                                                                           ON THE SMOOTH EMPTR BIOKA68
                                                                                                                         83
D DISTRIBUTIONS
                        RATES OF CONVERCENCE IN THE COMPOUND DECISION PROBLEM FOR TWO COMPLETELY SPECIFIE
                                                                                                                 AMS 65 1743
                                                   THE COMPOUND DECISION PROBLEM WITH M-BY-N FINITE LOSS
MATRIX
                                                                                                                  AMS 66 412
                                        THE SEQUENTIAL COMPOUND DECISION PROBLEMS WITH M-BY-N FINITE LOSS
MATRIX
                                                                                                                  AMS 66
                                                                                                                          954
                                            SEQUENTIAL COMPOUND ESTIMATION
                                                                                                                  AMS 68 1890
                                            SEQUENTIAL COMPOUND ESTIMATORS
                                                                                                                  AMS 65
                                                                                                                          879
SINCLE SAMPLING INSPECTION PLANS BASED ON PRI/ THE COMPOUND HYPERCEOMETRIC DISTRIBUTION AND A SYSTEM OF TECH 60 IS OF CATERCORICAL DATA FROM FINITE POPULATIO/ THE COMPOUND MULTINOMIAL DISTRIBUTION AND BAYESIAN ANALYS JASA 69
                                                                                                                          275
ETA-DISTRIBUTION, AND CORRELATIONS AMONC P/ON THE COMPOUND MULTINOMIAL DISTRIBUTION, THE MULTIVARIATE B BIOKA62
ATIONS AMONC INVERSELY SAMPLED POLLEN COUN/ON THE COMPOUND NECATIVE MULTINOMIAL DISTRIBUTION AND CORREL BIOKA63
                                                                                                                            47
     FROM BIVARIATE NON-NORMAL UNIVERSES BY MEANS OF COMPOUND NORMAL DISTRIBUTIONS
                                                                                                       SAMPLINC BIOKA52
                                                                                                                          23B
                                                                                                                          637
                                            A MODIFIED COMPOUND POISSON PROCESS WITH NORMAL COMPOUNDING
                                                                                                                JASA 68
                                            SEQUENTIAL COMPOUND RULES FOR THE FINITE DECISION PROBLEM
                                                                                                                JRSSB66
                                                                                                                           63
                                                                                                                          B36
 EXACT DISTRIBUTIONS OF VOTAW'S CRITERIA FOR TESTING COMPOUND SYMMETRY OF A COVARIANCE MATRIX ON THE AMS 69
                                                     A COMPOUNDED MULTIPLE RUNS DISTRIBUTION
                                                                                                                JASA 69 NO 4
     A MODIFIED COMPOUND POISSON PROCESS WITH NORMAL COMPOUNDING
                                                                                                                 JASA 68
                                                                                                                          637
                          THE SEPARATION OF MOLECULAR COMPOUNDS BY COUNTERCURRENT DIALYSIS, A STOCHASTIC
                                                                                                                 BIOKA60
                                                                                                                           69
                                     A BLACK BOX OR A COMPREHENSIVE MODEL
                                                                                                                 TECH 68
                                                                                                                          219
                 SYSTEMATIC STATISTICS USED FOR DATA COMPRESSION IN SPACE TELEMETRY
                                                                                                                 JASA 65
                                                                                                                           97
                                         CONSTANTS AND COMPROMISE IN THE CONSUMER PRICE INDEX
                                                                                                                 JASA 62
                                                                                                                          813
  THE HANKEL TRANSFORM IN STATISTICS. II METHODS OF COMPUTATION
                                                                                                    THE USE OF BIOKA54
                                                       COMPUTATION AND STRUCTURE OF OPTIMAL RESET POLICIES
                                                                                                                 JASA 67 1462
                                                ON THE COMPUTATION AND USE OF A TABLE OF PERCENTACE POINTS
                                                                                                                         273
OF BARTLETT'S M
                                                                                                                 810KA69
                                               MACHINE COMPUTATION OF HICHER MOMENTS
                                                                                                                 JASA 56
                                                                                                                          489
PRESENCE OF CONFOUNDING
                                                       COMPUTATION OF INDIRECT-ADJUSTED RATES IN THE
                                                                                                                          997
                                                                                                                 BIOCS68
T-DISTRIBUTION
                             TABLES TO FACILITATE THE COMPUTATION OF PERCENTACE POINTS OF THE NON-CENTRAL
                                                                                                                          580
                                                                                                                  AMS 62
                                               CRAPHIC COMPUTATION OF TAU AS A COEFFICIENT OF DISARRAY
                                                                                                                 JASA 58
                                                                                                                          441
                 A NOTE ON CRIFFIN'S PAPER 'CRAPHIC COMPUTATION OF TAU AS A COEFFICIENT OF DISARRAY'
                                                                                                                 JASA 61
                                                                                                                          736
                                               CRAPHIC COMPUTATION OF THE MULTIPLE CORRELATION COEFFICIENT,
CORR. 58 1031
                                                                                                                 JASA 57
                                                                                                                          479
MATERIAL IS REMOVED BUT NOT REPLACED
                                                   THE COMPUTATION OF THE UNRESTRICTED AOQL WHEN DEFECTIVE
                                                                                                                JASA 69
                                                                                                                          665
                                                       COMPUTATION WITH MULTIPLE K-STATISTICS
                                                                                                                          120
                                                                                                                 JASA 63
         A CHECK ON CROSS ERRORS IN CERTAIN VARIANCE COMPUTATIONS
                                                                                                                 JASA 59 741
                  PARTIAL CORRELATIONS IN RECRESSION COMPUTATIONS
                                                                                                                 JASA 61
                                                                                                                          363
                                     LIKELIHOOD RATIO COMPUTATIONS OF OPERATING COMPUTATIONS
                                                                                                                 AMS 66 1704
                          THE WILCOXON, TIES, AND THE COMPUTER
                                                                                                                 JASA 66
                                                                                                                          772
  SETS OF MUTUALLY ORTHOCONAL LATIN SQUARES USING A COMPUTER
                                                                                    ON METHODS OF CONSTRUCTING TECH 60
                                                                                                                          507
ULTIVARIATE DATA SUITABLE FOR USE WITH AN ELECTRONIC COMPUTER
ANALYSIS OF NON-ORTHOCONAL EXPERIMENTS BY ELECTRONIC COMPUTER
/THOO OF ESTIMATION OF MISSINC VALUES IN M JRSSB60
ANALYSIS OF NON-ORTHOCONAL EXPERIMENTS BY ELECTRONIC COMPUTER
/TION OF MEANS AND STANDARD ERRORS IN THE JRSSB62
                                                                                                                          302
                                                                                                                          435
 ANALYSIS OF REPLICATED EXPERIMENTS ON AN ELECTRONIC COMPUTER (WITH DISCUSSION)
                                                                                                      ROUTINE JRSSB57
                                                                                                                          234
                                                       COMPUTER AIDED DESIGN OF EXPERIMENTS
                                                                                                                TECH 69
                                                                                                                          137
ORY OF DISTRIBUTION SAMPLING PRIOR TO THE ERA OF THE COMPUTER AND ITS RELEVANCE TO SIMULATION, CORR. 65 12 JASA 65
                                                                                                                           27
ENCE IN BLS MANPOWER SURVEYS
                                                       COMPUTER EDITING OF SURVEY DATA, FIVE YEARS OF EXPERI JASA 66 375
DISTRIBUTION FUNCTIONS
                                                       COMPUTER EVALUATION OF THE NORMAL AND INVERSE NORMAL TECH 69 NO.4
 BRANCHINC POISSON PROCESS MODEL FOR THE ANALYSIS OF COMPUTER FAILURE PATTERNS (WITH DISCUSSION)
                                                                                                              A JRSSB64 398
PRAISAL OF LEAST SQUARES PROCRAMS FOR THE ELECTRONIC COMPUTER FROM THE POINT OF VIEW OF THE USER
                                                                                                          AN AP JASA 67
                                                                                                                          B19
                                        THE AUTOMATIC COMPUTER IN INDUSTRY
                                                                                                                JASA 56
                                                     A COMPUTER METHOD FOR CALCULATING KENDALL'S TAU WITH
                                                                                                                JASA 66 436
                  SEASONAL ADJUSTMENTS BY ELECTRONIC COMPUTER METHODS
                                                                                                                 JASA 57
                                                                                                                          415
                                                     A COMPUTER PROCRAM FOR FITTING THE RICHARDS FUNCTION
                                                                                                                 BIOCS69
                                                                                                                          401
                                            A CENERAL COMPUTER PROCRAMME FOR THE ANALYSIS OF FACTORIAL
                                                                                                                BTOCS66
                                                                                                                          503
 THE PROBLEM OF EXPERIMENTAL DESIGN
                                                       COMPUTER SIMULATION EXPERIMENTS WITH ECONOMIC SYSTEMS JASA 67 1315
                                                     A COMPUTER SIMULATION MODEL OF THE TEXTILE INDUSTRY
                                                                                                                JASA 67 1338
   SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES USING A COMPUTER. II
                                                                                ON METHODS OF CONSTRUCTING TECH 61 111
                                    RELATIVE COSTS OF COMPUTERIZED ERROR INSPECTION PLANS
                                                                                                                JASA 69 NO.4
                 AUTOMATIC PROGRAMMING FOR AUTOMATIC COMPUTERS
                                                                                                                JASA 59 744
TIAL, ITEM BY ITEM. SELECTION TECHNIQUES AND DIGITAL COMPUTERS
                                                                   /OPMENT OF SAMPLING PLANS BY USING SEQUEN JASA 62
                                                                                                                          387
                         APPLICATIONS OF TIME-SHARED COMPUTERS IN A STATISTICS CURRICULUM
                                                                                                                          192
                                                                                                                JASA 68
THE APPLICATION OF AUTOMATIC COMPUTERS TO SAMPLING EXPERIMENTS (WITH DISCUSSION) ATED RANDOM NORMAL DEVIATES' PUBLISHED IN TRACTS FOR COMPUTERS, NO. 26. CORRICENDA TO 'CORR
                                                                                                                          39
                                                                                                                 JRSSB54
                                                                                         CORRICENDA TO 'CORREL BIOKA56
                                                                                                                          496
FIRST FISHER MEMORIAL LECTURE)
                                                       COMPUTERS, THE SECOND REVOLUTION IN STATISTICS (THE BIOCS66
                NOTES. EQUIVALENCE OF TWO METHODS OF COMPUTING DISCRIMINANT FUNCTION COEFFICIENTS
                                                                                                                BIOGS67
                                                                                                                          153
                                 A NOMOGRAPH FOR COMPUTINC PARTIAL CORRELATION COEFFICIENTS, CORR. 62
                                                                                                               JASA 61
                                      A PROCEDURE FOR COMPUTING REGRESSION COEFFICIENTS, CORR. 59 811
                                                                                                                JASA 58
                                                                                                                          144
MENSIONALITY OF NORMAL MU/ ALCEBRAIC THEORY OF THE COMPUTINC ROUTINE FOR TESTS OF SIGNIFICANCE ON THE DI JRSSB56
                                                                                                                           70
                                                       COMPUTING THE DISTRIBUTION OF QUADRATIC FORMS IN
NORMAL VARIABLES
                                                                                                                BIOKA61
                                                                                                                          419
NORMAL VARIABLES!
                                          CORRICENDA, 'COMPUTING THE DISTRIBUTION OF QUADRATIG FORMS IN
                                                                                                                BTOKA62
                                                                                                                          284
            A TWO-VARIABLE GENERATING FUNCTION FOR COMPUTING THE SAMPLING PROBABILITIES OF A CLASS OF WI JASA 64
                                                                                                                          487
                                           A TABLE FOR COMPUTING WORKING ANGLES
                                                                                                                RTOCS68
                                                                                                                          413
                    REGIONAL DISPARITIES IN HOUSEHOLD COMSUMPTION IN INDIA
                                                                                                                 JASA 67 143
                                           MEASURES OF CONCENTRATION
                                                                                                                 JASA 67
                                                                                                                          162
                           MARKET CROWTH AND INDUSTRY CONCENTRATION
                                                                                                                JASA 68 228
FORMULAS FOR THE MEAN DIFFERENCE AND COEFFICIENT OF CONCENTRATION
                                                                                                      VARIANCE JASA 62
                                                                                                                          648
     BIOASSAY DESIGN WITH RANDOM DOSES AND UNCERTAIN CONCENTRATION
                                                                                                A LARGE-SAMPLE BIOKA55 307
```

TITLE WORD INDEX COM - CON

OUTPUT 1939-1958 CHANGES IN	CONCENTRATION OF DOMESTIC MANUFACTURING ESTABLISHMENT	JASA 62	797
COUNTS THE ESTIMATION OF	CONCENTRATION OF RANDOM QUOTIENTS CONCENTRATION OF VIRUSES AND BACTERIA FROM DILUTION	AMS 68 BIOCS65	
MARKET CROWTH, COMPANY DIVERSIFICATION AND PRODUCT		JASA 60	
THE DISTANCES BETWEEN RANDOM POINTS IN TWO PROBLEMS THE USE OF THE		BIOKA64 JRSSB67	275 83
	CONCEPT OF A FUTURE OBSERVATION IN COODNESS-OF-FIT CONCEPT OF CAPACITY	JASA 62	
BINOMIAL SAMPLING SCHEMES AND THE		BIOKA57	
	CONCEPT OF RANDOMNESS IN THE PATTERNS OF MOSAICS CONCEPT OF THE SPECTRUM FOR NON-STATIONARY PROCESSES	JRSSB68	
TAN AREAS THE METROPOLITAN AREA	CONCEPT, AN EVALUATION OF THE 1950 STANDARD METROPOLI	JASA 65	617
	CONCEPTS IN THEIR RELATION TO REALITY CONCEPTS OF DEPENDENCE	JRSSB55 AMS 66	
ERALIZATION OF THE DIRICHLET DISTRIBUTION	CONCEPTS OF INDEPENDENCE FOR PROPORTIONS WITH A A CEN		
	CONCEPTS OF INFORMATION	JASA 67	
UTION OF PRINCIPAL COMPONENTS TO INDIVIDUAL VARIATES	CONCERNED ESTIMATION OF CENETIC CONTRIB CONCISE DERIVATION OF GENERAL ORTHOCONAL POLYNOMIALS		9 406
CONTINUE OF THE PROPERTY OF TH	CONCLUSIONS VS DECISIONS	TECH 60	
STIMATION OF EXPONENTIAL SURVIVAL PROBABILITIES WITH O COMPOSITE/ A LARCE SAMPLE SEQUENTIAL TEST, USINC	CONCOMITANT INFORMATION E CONCOMITANT INFORMATION FOR DISCRIMINATION BETWEEN TW	BIOCS65 JASA 66	
THE USE OF RESIDUALS AS A	CONCOMITANT VARIABLE	BIOKA69	33
	CONCOMITANT VARIABLE IN SELECTING AN EXPERIMENTAL CONCOMITANT VARIABLE IN SELECTING AN EXPERIMENTAL	BIOKA57 BIOKA57	
TION IN THE ESTIMATION OF AN EXPONENTIAL S/ USE OF	CONCOMITANT VARIABLES AND INCOMPLETE SURVIVAL INFORMA	BIOCS66	665
A NOTE ON AVERACE TAU AS A MEASURE OF PAIRED COMPARISON DESIGNS FOR TESTING		JASA 60 BIOKA56	
AN APPLICATION OF THE DISTRIBUTION OF THE RANKING		BIOKA51	33
	CONCURRENCE OF A SET OF RECRESSION LINES. CONCURRENCE OF SEVERAL REGRESSION LINES AND RELATED	BIOKA52 BIOKA66	
	CONCURRENT REGRESSION LINES AND RELATED	BIOKA53	
PROCRAMS	CONDENSED CALCULATIONS FOR EVOLUTIONARY OPERATION	TECH 59	
A CENERAL VERSION OF DOEBLIN'S LY CONVEX LOSS IS U/ ON A NECESSARY AND SUFFICIENT	CONDITION CONDITION FOR ADMISSIBILITY OF ESTIMATORS WHEN STRICT	AMS 63 AMS 68	
	CONDITION FOR DISCRETE DYNAMIC PROCRAMMING WITH NO	AMS 6B	
	CONDITION FOR LOT SIZE PRODUCTION CONDITION FOR THE MIXTURE OF EXPONENTIALS TO BE A	JASA 56 AMS 69	
		BIOKA66	
ACE-DEPENDENT BRANCHINC PROCESSES UNDER A ON THE NUMERICAL REPRESENTATION OF QUALITATIVE		BIOKA6B AMS 68	
BEST LINEAR UNBIASED A NECESSARY AND SUFFICIENT	CONDITION THAT ORDINARY LEAST-SQUARES ESTIMATORS BE CONDITIONAL DISTRIBUTION OF ORDER STATISTICS AND DIST	JASA 67	
	CONDITIONAL DISTRIBUTION OF SETS OF TESTS ON A SYSTEM		
NON-EXISTENCE OF EVERYWHERE PROPER	CONDITIONAL DISTRIBUTIONS CONDITIONAL DISTRIBUTIONS	AMS 63 AMS 65	
	CONDITIONAL EXPECTATION	AMS 6B	
AN EXTREMAL PROPERTY OF THE APPLICATIONS	CONDITIONAL EXPECTATION CONDITIONAL EXPECTATION CIVEN A SICMA-LATTICE AND	BIOKA66 AMS 65	
	CONDITIONAL EXPECTATION OF A POSITIVE RANDOM VARIABLE		
CHARACTERIZATIONS OF INEQUALITIES OF CHEBYSHEV TYPE INVOLVINC	CONDITIONAL EXPECTATIONS	AMS 67	
	CONDITIONAL EXPECTATIONS GIVEN SIGMA-LATTICES	AMS 66	
	CONDITIONAL EXPECTATIONS OF AN INTECRABLE FUNCTION CONDITIONAL EXPECTATIONS OF LOCATION STATISTICS	AMS 62 JASA 60	BB7
EXPECTATIONS	CONDITIONAL EXPECTATIONS OF RANDOM VARIABLES WITHOUT	AMS 65	
	CONDITIONAL LEVEL OF STUDENT'S T TEST CONDITIONAL MAXIMUM-LIKELIHOOD ESTIMATION, FROM SINCL	AMS 67	1068 349
WITH SINCULAR COVARIANCE MATRIX	CONDITIONAL MEANS AND COVARIANCES OF NORMAL VARIABLES		
CHARACTERIZATIONS OF SOME DISTRIBUTIONS BY TO THE DISTRIBUTION OF TWO INDEPENDENT BINOMIALS,		AMS 65	
PERFECT PROBABILITY MEASURES AND REGULAR	CONDITIONAL PROBABILITIES	AMS 66	1273
ROACHES IN THE SPE/ ON THE DISTINCTION BETWEEN THE ALGEBRAS	CONDITIONAL PROBABILITY AND THE JOINT PROBABILITY APP CONDITIONAL PROBABILITY ON SICMA-COMPLETE BOOLEAN	BIOKA64 AMS 69	481 970
	CONDITIONAL PROBABILITY OPERATORS	AMS 62	634
NOTE ON A	CONDITIONAL PROPERTY OF STUDENT'S T CONDITIONAL SUFFICIENCY	AMS 63 JRSSB64	109B 52
	CONDITIONAL WISHART, NORMAL AND NONNORMAL	AMS 68	593
MINIMAX THEOREMS ON		JASA 66 AMS 63	
S IN FACTORIAL EXPERIMENTS ON A CLASS OF	CONDITIONALLY DISTRIBUTION-FREE TESTS FOR INTERACTION	AMS 69	65B
CORRICENDA.	CONDITIONED LIMIT THEOREMS CONDITIONED MARKOFF PROCESSES.	AMS 63 BIOKA59	
	CONDITIONED MARKOV PROCESSES	BIOKA58 JASA 69	
STUDENT'S T-TEST UNDER SYMMETRY TINUOUS SAMPLING PLANS UNDER THE ASSUMPTION OF WORST			
ENT ROOTS OF A SYMMETRIC RANDOM MATRIX UNDER CENERAL	CONDITIONS /ERISTICS OF THE DISTRIBUTION OF THE LAT		
DISTRIBUTION OF A FINITE MARKOV CHAIN SUFFICIENT	CONDITIONS FOR A STATIONARY PROCESS TO BE A FUNCTION	AMS 63	1033
UNDER A LIE CROUP NECESSARY AND SUFFICIENT	CONDITIONS FOR A STATISTICAL PROBLEM TO BE INVARIANT	AMS 63	492
NEW	CONDITIONS FOR ALMOST SURE EXTINCTION OF BRANCHINC CONDITIONS FOR CENTRAL LIMIT THEOREMS (CORR. 69 1855)	AMS 69	319
ONDITIONS FOR THE BROWNIAN MOTION TO THE EQUIVALENCE LEAST SQUARES THEORY	CONDITIONS FOR CERTAIN STATIONARY PROCESSES /ENCE C CONDITIONS FOR OPTIMALITY AND VALIDITY AND SIMPLE	AMS 69	NO.6
SIVE AND MOVINC-AVERACE TYPE STATIONARITY	CONDITIONS FOR STOCHASTIC PROCESSES OF THE AUTORECRES	BIOKA56	215
CONDITIONS FOR C/ THE RELATION OF THE EQUIVALENCE PROBABILITY MEASURE SUBSTITUTENT	CONDITIONS FOR THE BROWNIAN MOTION TO THE EQUIVALENCE CONDITIONS FOR THE EXISTENCE OF A FINITELY ADDITIVE	AMS 69 AMS 67	NO.6 780
UNSYMMETRICAL TRIANGULAR PARTIALLY B/ ON NECESSARY	CONDITIONS FOR THE EXISTENCE OF SOME SYMMETRICAL AND	AMS 63	348
			47

- CON TITLE WORD INDEX

```
UNKNOWN PARAMETER/ SOME THEOREMS AND SUFFICIENCY CONDITIONS FOR THE MAXIMUM-LIKELIHOOD ESTIMATOR OF AN BIOKAS5 342
 UNK/ CORRICENDA TO 'SOME THEOREMS AND SUFFICIENCY CONDITIONS FOR THE MAXIMUM-LIKELIHOOD ESTIMATOR OF AN BIOKA56 497
 DECREE POLYNOMIALS IN NORMAL VECTOR
                                                    CONDITIONS FOR WISHARTNESS AND INDEPENDENCE OF SECOND AMS 62 1002
                                        SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS AND CERTAIN
RANDOM WALKS
                                                                                                           BIOK 456 276
UN/ QUANTAL RESPONSES TO MIXTURES OF POISONS UNDER CONDITIONS OF SIMPLE SIMILAR ACTION, THE ANALYSIS OF BIOKA5B
                                                                                                                    74
RVES ARE POSITIVE DEFINITE AND UNIMODAL
                                              THE CONDITIONS UNDER WHICH GRAM-CHARLIER AND EDGEWORTH CU BIOKA52
                                                                                                                    425
    PROBABILITY BOUNDS FOR A UNION OF HYPERSPHERICAL CONES
                                                                                                           JRSSB65
                                                                                                                    57
                                                     CONFESSION OF FAITH, 1955
                                                                                                           JASA 56
                                        SAMPLING FOR CONFIDENCE
                                                                                                           JASA 67 540
                                           A NOTE ON CONFIDENCE BANDS FOR A REGRESSION LINE OVER A FINITE JASA 6B 1028
RANGE
                                                                                                           JASA 67 403
                                      LINEAR SEGMENT CONFIDENCE BANDS FOR SIMPLE LINEAR MODELS
                                             SHORTER CONFIDENCE BANDS IN LINEAR REGRESSION
                                                                                                           JASA 67 1050
                                                     CONFIDENCE BANDS IN LINEAR RECRESSION WITH CONSTRAINT JASA 6B 1020
S ON THE INDEPENDENT VARIABLES
                                                     CONFIDENCE BANDS IN STRAIGHT LINE REGRESSION
                                                                                                           JASA 64 1B2
                                                     CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH
FOR LINEAR MODELS
                                                                                                           JASA 66
                                                                                                                   182
EIBULL DISTRIBU/ AN EXACT ASYMPTOTICALLY EFFICIENT CONFIDENCE BOUND FOR RELIABILITY IN THE CASE OF THE W TECH 66 135
                                                                                                           BIOKA57
               FURTHER CONTRIBUTIONS TO MULTIVARIATE CONFIDENCE BOUNDS
                                                                                                                   399
DISTRIBUTIONS AND THEIR APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS
                                                                        /CERTAIN INEQUALITIES FOR NORMAL
                                                                                                           AMS 67 1853
IS OF VARIANCE AND NONINDEPENDENCE BETWEEN TWO/ ON CONFIDENCE BOUNDS ASSOCIATED WITH MULTIVARIATE ANALYS
                                                                                                            AMS 66 1736
   ON THE ASYMPTOTIC THEORY OF FIXED-SIZE SEQUENTIAL CONFIDENCE BOUNDS FOR LINEAR REGRESSION PARAMETERS
                                     ON FIXED-WIDTH CONFIDENCE BOUNDS FOR REGRESSION PARAMETERS AND MEAN
VECTOR
                                                                                                          JRSSB67
                                                                                                                    132
                                       SOME OPTIMUM CONFIDENCE BOUNDS FOR ROOTS OF DETERMINANTAL
                                                                                                            AMS 65
EQUATIONS
                                                                                                                    468
          THE USE OF SAMPLE RANGES IN SETTING EXACT CONFIDENCE BOUNDS FOR THE STANDARD DEVIATION OF A REC JASA 61
                                                                                                                    601
TANGULA/
L WITH PROGRESSIVE C/ EXACT THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON RELIABLE LIFE FOR A WEIBULL MODE JASA 69
                                                                                                                    306
BABILITY THAT Y IS LESS THAN/ NONPARAMETRIC UPPER CONFIDENCE BOUNDS, AND CONFIDENCE LIMITS, FOR THE PRO JASA 64
                                                                                                                    906
HE PARAMETER OF AN EXPONENTIAL POPULATION EXACT CONFIDENCE BOUNDS, BASED ON ONE ORDER STATISTIC FOR T TECH 64 301
HE PARAMETER OF A ONE-PARAMETER NE/ ERRATA, 'EXACT CONFIDENCE BOUNDS, BASED ON ONE ORDER STATISTIC FOR T TECH 64 483
    A NOTE ON 'FURTHER CONTRIBUTIONS TO MULTIVARIATE CONFIDENCE BOUNDS'
                                                                                                           BIOKA58
                                                                                                                   581
  CORRICENDA, 'FURTHER CONTRIBUTIONS TO MULTIVARIATE CONFIDENCE BOUNDS'
                                                                                                           BIOKA61
                                                                                                                    474
       LIMITS FOR A VARIANCE COMPONENT WITH AN EXACT CONFIDENCE COEFFICIENT
                                                                                                            AMS 61
                                                                                                                    466
N AND TESTING STATISTICAL HYPOTHESES
                                                    CONFIDENCE CURVES, AN OMNIBUS TECHNIQUE FOR ESTIMATIO JASA 61
                                                                                                                  246
                                         FIXED SIZE CONFIDENCE ELLIPSOIDS FOR LINEAR RECRESSION
                                                                                                            AMS 66 1602
 PROPOSED FOR THE BEHRENS-FISHER PROBLEM
                                                  A CONFIDENCE INTERVAL COMPARISON OF TWO TEST PROCEDURES JASA 66 454
                                                    CONFIDENCE INTERVAL ESTIMATION IN NON-LINEAR
                                                                                                           JRSSB63
                                                                                                                   330
RECRESSION
                      A CRAPHICAL VERSION OF TUKEY'S CONFIDENCE INTERVAL FOR SLIPPAGE
                                                                                                           TECH 69
                                                                                                                   193
                                             QUERY, CONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A
SINCLE OBSERVATION
                                                                                                           TECH 66 367
                                                  A CONFIDENCE INTERVAL FOR THE AVAILABILITY RATIO
                                                                                                           TECH 67
                                                                                                                    465
                                                                                       ON THE COST OF
  NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENCE INTERVAL FOR THE MEAN
                                                                                                            AMS 68 1946
                                                   A CONFIDENCE INTERVAL FOR VARIANCE COMPONENTS
                                                                                                           BIOKA62
                                                                                                                  27B
BEHRENS-FISHER PROBLEM
                                                    CONFIDENCE INTERVAL OF PREASSIGNED LENGTH FOR THE
                                                                                                            AMS 67 1175
                                           LENCTH OF CONFIDENCE INTERVALS
                                                                                                           JASA 61
                                                                                                                   549
                                   MORE ON LENGTH OF CONFIDENCE INTERVALS
                                                                                                           JASA 62
                                                                                                                   5B6
                         EXISTENCE OF BOUNDED LENGTH CONFIDENCE INTERVALS
                                                                                                            AMS 63 1474
                                    ADMISSIBILITY OF CONFIDENCE INTERVALS
                                                                                                            AMS 66 629
         A CENERAL METHOD OF DETERMINING FIXED-WIDTH CONFIDENCE INTERVALS
                                                                                                            AMS 69
                                                                                                                    704
                                        APPROXIMATE CONFIDENCE INTERVALS
                                                                                                           BIOKA53
                                                                                                                    12
                            SEQUENTIALLY DETERMINED CONFIDENCE INTERVALS
                                                                                                           BIOKA57
                                                                                                                   279
NORMAL CORRELATION
                                NOTES. SIMULTANEOUS CONFIDENCE INTERVALS AND EXPERIMENTAL DESIGN WITH
                                                                                                           BIOCS68
                                                                                                                    434
DEVIATION OF A NORMAL SAMPLE
                                                     CONFIDENCE INTERVALS BASED ON THE MEAN ABSOLUTE
                                                                                                           JASA 65
                                                                                                                   257
                                          TESTS AND CONFIDENCE INTERVALS BASED ON THE METRIC D2
                                                                                                            AMS 63
                                                                                                                    618
           STRATIFIED SAMPLING AND DISTRIBUTION-FREE CONFIDENCE INTERVALS FOR A MEDIAN
                                                                                                           JASA 65
                                                                                                                   772
CORRECT USE OF THE SAMPLE MEAN ABSOLUTE DEVIATION IN CONFIDENCE INTERVALS FOR A NORMAL VARIATE
                                                                                                           TECH 66
                                                                                                                   663
                                                     CONFIDENCE INTERVALS FOR A PROPORTION
                                                                                                           BIOKA56
                                                                                                                   423
                                      CORRIGENDA TO 'CONFIDENCE INTERVALS FOR A PROPORTION'
                                                                                                                   291
                                                                                                           BIOKA58
                                       NONPARAMETRIC CONFIDENCE INTERVALS FOR A SHIFT PARAMETER
                                        SIMULTANEOUS CONFIDENCE INTERVALS FOR CONTRASTS AMONG MULTINOMIAL
POPULATIONS
                                                                                                                    716
VARIANCE
                                                    CONFIDENCE INTERVALS FOR DISTANCE IN THE ANALYSIS OF
                                                                                                           BIOKA5B
                                                                                                                   360
DISCRETE CASE
                                           WILCOXON CONFIDENCE INTERVALS FOR LOCATION PARAMETERS IN THE
                                                                                                           JASA 67
                                                                                                                   184
                                                    CONFIDENCE INTERVALS FOR MEASURES OF HERITABILITY
                                                                                                           BIOCS69
                                                                                                                   424
                          LARGE SAMPLE SIMULTANEOUS CONFIDENCE INTERVALS FOR MULTINOMIAL PROPORTIONS
                                                                                                           TECH 64
                                                                                                                   191
                                    ON SIMULTANEOUS CONFIDENCE INTERVALS FOR MULTINOMIAL PROPORTIONS
                                                                                                          TECH 65
                                                                                                                   247
RESSIVE SCHEMES (WITH DISCUSSION)
                                                     CONFIDENCE INTERVALS FOR PARAMETERS IN MARKOV AUTOREG JRSSB54
                                                                                                                   195
  COMPARISON OF TWO METHODS OF OBTAINING APPROXIMATE CONFIDENCE INTERVALS FOR SYSTEM RELIABILITY
                                                                                                           TECH 6B
                                                                                                                    37
                                                                                                          BIOKA60
                  TABLE OF NEYMAN-SHORTEST UNBIASED CONFIDENCE INTERVALS FOR THE BINOMIAL PARAMETER
                                                                                                                   381
 FOR THE NORMAL AND LOC NORMAL DISTRIBUTIONS
                                                    CONFIDENCE INTERVALS FOR THE COEFFICIENT OF VARIATION BIOKA64
                                                                                                                    25
                                                     CONFIDENCE INTERVALS FOR THE EXPECTATION OF A POISSON BIOKA59
                                                                                                                   441
           THE RELATIONSHIP BETWEEN NEYMAN AND BAYES CONFIDENCE INTERVALS FOR THE HYPERCEOMETRIC PARAMETER TECH 68
                                                                                                                   199
  ON THE ASYMPTOTIC THEORY OF FIXED-WIDTH SEQUENTIAL CONFIDENCE INTERVALS FOR THE MEAN
NSION OF A THEOREM OF CHOW AND ROBBINS ON SEQUENTIAL CONFIDENCE INTERVALS FOR THE MEAN
                                                                                                  AN EXTE AMS 69
                                                                                                                   667
                                                    CONFIDENCE INTERVALS FOR THE MEAN OF A FINITE
                                                                                                            AMS 67 1180
                                         SHORTER CONFIDENCE INTERVALS FOR THE MEAN OF A NORMAL DISTRIB
UTION WITH KNOWN VARIANCE
                                                                                                            AMS 63
                                                                                                                   574
                                         SEQUENTIAL CONFIDENCE INTERVALS FOR THE MEAN OF A NORMAL POPULAT JRSSB57
ION WITH UNKNOWN VARIANCE
                                                                                                                   133
NORMALLY DISTRIBUTED VARIABLES
                                                    CONFIDENCE INTERVALS FOR THE MEANS OF DEPENDENT
                                                                                                         JASA 59
                                                                                                                   613
N FUNCTION, II
                                     BOUNDED LENCTH CONFIDENCE INTERVALS FOR THE P-POINT OF A DISTRIBUTIO AMS 66
                                                                                                                   581
                                     BOUNDED LENGTH CONFIDENCE INTERVALS FOR THE P-POINT OF A DISTRIBUTIO AMS 66
N FUNCTION. III
                                                                                                                   586
ION ADMITTING A SUFFICIENT STATISTIC WHEN THE RAN/ CONFIDENCE INTERVALS FOR THE PARAMETER OF A DISTRIBUT JRSSB55
                                                                                                                    86
                 TABLES OF NEYMAN-SHORTEST UNBIASED CONFIDENCE INTERVALS FOR THE POISSON PARAMETER
                                                                                                          BIOKA61
                                                                                                                   191
           THE USE OF SAMPLE QUASI-RANGES IN SETTING CONFIDENCE INTERVALS FOR THE POPULATION STANDARD DEVI JASA 61
                                                                                                                   260
FICATION I/ AN ALMOST UNBIASED METHOD OF OBTAINING CONFIDENCE INTERVALS FOR THE PROBABILITY OF MISCLASSI BIOCS67
                                                                                                                   639
PARAMETERS
                                                     CONFIDENCE INTERVALS FOR THE PRODUCT OF TWO BINOMIAL JASA 57
                                                                                                                   482
                                          ONE-SIDED CONFIDENCE INTERVALS FOR THE QUALITY INDICES OF A
COMPLEX ITEM
                                                                                                          TECH 63
                                                                                                                   400
ES AND SOME MEASURES OF EFFECTIVENESS
                                               TWO CONFIDENCE INTERVALS FOR THE RATIO OF TWO PROBABILITI JASA 57
                                                                                                                    36
DISTRIBUTION
                                            674
                                      BOUNDED LENGTH CONFIDENCE INTERVALS FOR THE ZERO OF A REGRESSION
FUNCTION
                                                                                                           AMS 62
                                                                                                                   237
                                       SIMULTANEOUS CONFIDENCE INTERVALS FOR VARIANCES
                                                                                                          JASA 69
                                                                                                                   324
                                                    CONFIDENCE INTERVALS FROM CENSORED SAMPLES
                                                                                                            AMS 61
```

TITLE WORD INDEX CON -- CON

	CONFIDENCE INTERVALS FROM CENSORED SAMPLES, II	TECH 66	291
APPROXIMATE	CONFIDENCE INTERVALS III. A BIAS CORRECTION	BIOKA55	
	CONFIDENCE INTERVALS OF THE MEDIAN FOR SAMPLE SIZES		
	CONFIDENCE INTERVALS USINC PRIOR OBSERVATIONS		
PARAMETER APPROXIMATE APPROXIMATING THE LOWER BINOMIAL	CONFIDENCE INTERVALS. II. MORE THAN ONE UNKNOWN	BIOKA53	306
INADMISSIBLE SAMPLES AND		JASA 68 JASA 58	
	CONFIDENCE LIMITS FOR CLASSES OF DISTRIBUTIONS BASED		
	CONFIDENCE LIMITS FOR COMPONENTS OF VARIANCE		
ENCY TABLES SIMULTANEOUS	CONFIDENCE LIMITS FOR CROSS-PRODUCT RATIOS IN CONTIN	JRSSB64	86
	CONFIDENCE LIMITS FOR MULTIVARIATE RATIOS	JRSSB61	
	CONFIDENCE LIMITS FOR PREDICTIONS (WITH DISCUSSION)		
DISTRIBUTIONS	CONFIDENCE LIMITS FOR QUANTILES OF MORTALITY CONFIDENCE LIMITS FOR RANKED OBSERVATIONS	BIOCS69 TECH 66	
S WHEN TESTS ARE TERMINATED AT FIRST FAI/ BAYESIAN			29
	CONFIDENCE LIMITS FOR THE BINOMIAL AND AND POISSON	BIOKA69	
mint no 00	CONFIDENCE LIMITS FOR THE BINOMIAL DISTRIBUTION	JASA 60	521
GAMMA DISTRIBUTIONS APPROXIMATE	CONFIDENCE LIMITS FOR THE COEFFICIENT OF VARIATION I		
FUNCTIONAL RELATIONSHIP	CONFIDENCE LIMITS FOR THE GRADIENT IN THE LINEAR	JRSSB56	
	CONFIDENCE LIMITS FOR THE PRODUCT OF N BINOMIAL CONFIDENCE LIMITS FOR THE RELATIVE RISK (CORR. 63	BIOKA66 JRSSB62	
SYSTEMS	CONFIDENCE LIMITS FOR THE RELIABILITY OF SERIES	JASA 67	
PARALLEL SYSTEMS APPROXIMATE	CONFIDENCE LIMITS FOR THE RELIABILITY OF SERIES AND		
ON	CONFIDENCE LIMITS FOR THE RELIABILITY OF SYSTEMS	AMS 68	
	CONFIDENCE LIMITS FROM RANK TESTS	TECH 65	
DISTRIBUTION	CONFIDENCE LIMITS IN THE CASE OF THE GEOMETRIC	BIOKA59	
	CONFIDENCE LIMITS OF AN INDEX CONFIDENCE LIMITS ON THE MULTIPLE CORRELATION COEFFI	BIOCS66	
	CONFIDENCE LIMITS TO LINEAR COMBINATIONS OF VARIANCE		
	CONFIDENCE OF FIDUCIAL LIMITS	BIOKA54	
	CONFIDENCE POINT PROCEDURES IN THE CASE OF A SINGLE	JRSSB65	
	CONFIDENCE POINTS AND BAYESIAN PROBABILITY POINTS IN		
	CONFIDENCE POINTS BASED ON INTEGRALS OF WEIGHTED CONFIDENCE PROPERTIES OF BAYESIAN INTERVAL ESTIMATES	JRSSB63	
	CONFIDENCE RECION FOR A LINEAR RELATION	AMS 64	
	CONFIDENCE REGION FOR THE LOG-NORMAL HAZARD FUNCTION		
ANEOUS EQUATIONS WITH AN APPLICATION TO EXPERIM/ A	CONFIDENCE REGION FOR THE SOLUTION OF A SET OF SIMUL'	BIOKA54	190
	CONFIDENCE REGIONS FOR SOME MULTIVARIATE LOCATION	JASA 68	
	CONFIDENCE REGIONS FOR THE MEAN OF A MULTIVARIATE	AMS 67	
	CONFIDENCE REGIONS FOR THE MEANS OF MULTIVARIATE CONFIDENCE REGIONS FOR THE PARAMETERS IN NON-LINEAR	JASA 67	
MODELS	CONFIDENCE REGIONS FOR VARIANCE RATIOS OF RANDOM		
	CONFIDENCE REGIONS IN MULTIPLE LINEAR REGRESSION	AMS 69	NO.6
DISCUSSION)	CONFIDENCE REGIONS IN NON-LINEAR ESTIMATION (WITH	JRSSB60	41
	CONFIDENCE REGIONS OF LINEAR MODELS	JASA 67	1365
	CONFIDENCE SETS FOR MULTIVARIATE MEDIANS	AMS 61	477
POPULATION INADMISSIBILITY OF THE USUAL DISTRIBUTION (WITH DISCUSSION)	CONFIDENCE SETS FOR THE MEAN OF A MULTIVARIATE NORMAL CONFIDENCE SETS FOR THE MEAN OF A MULTIVARIATE NORMAL		265
IATE NORMAL POPULATION ADMISSIBILITY OF THE USUAL			
NOTE ON THE	CONFIDENCE-PRIOR OF WELCH AND PEERS	JRSSB66	55
	CONFIDENCE-REGION TESTS	JRSSB64	
	CONFIDENCE-REGION TESTS CONFIDENCE, PREDICTION, AND TOLERANCE RECIONS FOR TH	JRSSB65	
	CONFIGURATIONS AND THE RECIPROCAL NORMAL DISTRIBUTION		
		JRSSB57	
ON THE CONSTRUCTION AND ANALYSIS OF SOME	CONFOUNDED ASYMMETRICAL FACTORIAL DESIGNS	BIOCS65	94B
CONSTRUCTION AND ANALYSIS OF SOME NEW SERIES OF		BIOCS67	
ALIASINC IN PARTIALLY OF INDIRECT-ADJUSTED RATES IN THE PRESENCE OF	CONFOUNDED FACTORIAL EXPERIMENTS CONFOUNDING COMPUTATION	BIOKA61	21B 997
COMBINED ESTIMATORS IN FACTORIAL ARRANCEMENTS WITH			638
	CONFOUNDING IN FRACTIONAL REPLICATION	TECH 61	353
BALANCED	CONFOUNDING OF FACTORIAL EXPERIMENTS	BIOKA66	507
	CONFOUNDING PLANS FOR MIXED FACTORIAL DESIGNS	AMS 65	
THE ANALYSIS OF A FACTORIAL EXPERIMENT (WITH		JRSSB54	
ON THE DISTRIBUTION OF TRIBOLIUM A SIMPLE	CONFUSUM IN A CONTAINER CONGESTION SYSTEM WITH INCOMPLETE SERVICE	BIOKA57 JRSSB61	
	CONCESTION SYSTEMS WITH INCOMPLETE SERVICE (CORR. 64		
ENTROPY AND	CONJUGACY	AMS 63	226
	CONNECTED WITH CRYSTAL LATTICES (WITH DISCUSSION)	JRSSB64	
	CONNECTED WITH GOODNESS-OF-FIT TESTS FOR EQUIPROBABLE	BIOKA68	
	CONNECTED WITH QUADRATIC REGRESSION CONNECTED WITH SERIES OF EVENTS (WITH DISCUSSION)	JRSSB55	
	CONNECTEDNESS IN AN N-WAY CROSS CLASSIFICATION	TECH 64	
	CONNECTEDNESS IN AN N-WAY CROSS CLASSIFICATION	TECH 65	
	CONNECTION BETWEEN ANALYSIS OF VARIANCE AND SPECTRUM		
L P/ INDEX NUMBERS FOR FACTORIAL EFFECTS AND THEIR			
THE SAMPLING DISTRIBUTION OF AN ESTIMATOR ARISINC IN ENTROPY FOR RANDOM HOMOCENEOUS SYSTEMS WITH COMPLETE		AMS 69	
	CONNEXION BETWEEN POISSON AND CHI-SQUARE DISTRIBUTION		
		AMS 66	287
ON 'A K-SAMPLE MODEL IN ORDER STATISTICS' BY W. J.			
RRANGED IN ORDER OF SIZE THE DIFFERENCE BETWEEN	CONSECUTIVE MEMBERS OF A SERIES OF RANDOM VARIABLES A		
RRANGED IN ORDER OF SIZE THE DIFFERENCE BETWEEN FOR THE LIMITING GENERALIZED VARIANCE OF A SAMPLE OF	CONSECUTIVE MEMBERS OF A SERIES OF RANDOM VARIABLES A CONSECUTIVE OBSERVATIONS FROM A MOVING-AVERAGE PROCES	BIOKA61	197
RRANGED IN ORDER OF SIZE THE DIFFERENCE BETWEEN	CONSECUTIVE MEMBERS OF A SERIES OF RANDOM VARIABLES A CONSECUTIVE OBSERVATIONS FROM A MOVING-AVERAGE PROCES	BIOKA61	197

CON - CON TITLE WORD INDEX

```
LONGEST RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED ATTRIBUTE BIOKA61 461
                                                    CONSENSUS OF SUBJECTIVE PROBABILITIES, A CONVERGENCE AMS 67 221
THEOREM
THE BALANCED INCOMPLETE BLOCK DESIGN
                                               SOME CONSEQUENCES OF RANDOMIZATION IN A GENERALIZATION OF
                                                                                                          AMS 63 1569
                                               SOME CONSEQUENCES OF SUPERIMPOSED ERROR IN TIME SERIES
                                                                                                          BTOKA60
                                                                                                                 33
ANALYSTS
                                          A NOTE ON CONSERVATIVE CONFIDENCE REGIONS FOR THE MEAN OF A
MULTIVARIATE NORMAL
                                                                                                          AMS 67 278
                                   CORRECTION TO 'A CONSERVATIVE PROPERTY OF BINOMIAL TESTS' 60 1205
                                                                                                          AMS 61 1343
                                                 A CONSERVATIVE TEST FOR THE GONCURRENCE OF SEVERAL REGR BIOKA66 272
ESSION LINES AND RELATED PROBLEMS
OMBINATIONS OF UNBIASED ESTIMATORS OF THE MEAN WHICH CONSIDER INEQUALITY OF UNKNOWN VARIANCES
                                                                                                      C JASA 69 1042
IMATION OF A LINEAR FUNCTION FOR A CALIBRATION LINE, CONSIDERATION OF A RECENT PROPOSAL
                                                                                                      EST TECH 69 NO.4
        MEASURING SPATIAL ASSOCIATION WITH SPECIAL CONSIDERATION OF THE CASE OF MARKET ORIENTATION OF PR JASA 56
                                                                                                                  597
                                NOTES. SMALL SAMPLE CONSIDERATIONS IN COMBINING 2 BY 2 TABLES
                                                                                                          BIOCS67
                                               SOME CONSIDERATIONS IN MULTIVARIATE ALLOMETRY
                                                                                                          BIOCS66
                                            GENERAL CONSIDERATIONS IN THE ANALYSIS OF SPECTRA
                                                                                                          TECH 61 133
                                       MATHEMATICAL CONSIDERATIONS IN THE ESTIMATION OF SPECTRA
                                                                                                          TECH 61
                                                                                                                  167
                                              BASIC CONSIDERATIONS IN THE ESTIMATION OF SPECTRA
                                                                                                         TECH 62
                                                                                                                   551
                                        THEORETICAL CONSIDERATIONS REGARDING H. R. B. HACK'S SYSTEM OF RA BIOKA58
NDOMIZATION FOR CROSS-CLASSIFICATIONS
                                                                                                                   265
SOME PROPERTIES OF THE BIVARIATE NORMAL DISTRIBUTION CONSIDERED IN THE FORM OF A CONTINGENCY TABLE
                                                                                                       BIOKA57
                                                                                                                   289
MATION OF PARAMETERS FROM THE SPREAD OF A DISEASE BY CONSIDERING HOUSEHOLDS OF TWO. THE ESTI BIOKA65
FOR DENSITY FLUCTUATIONS THE CONSISTENCY AND ADEQUACY OF THE POISSON-MARKOFF MODEL BIOKA57
                                                                                                THE ESTI BIOKA65
                                                                                                                   271
                                                                                                                   4.3
                                          FIDUCIAL CONSISTENCY AND GROUP STRUCTURE
                                                                                                          BIOKA65
                                                                                                                   55
PARAMETERS IN EXPLOSIVE STOCHASTIC DIFFERENCE EQU/ CONSISTENCY AND LIMIT DISTRIBUTIONS OF ESTIMATORS OF
                                                                                                          AMS 61
                                                                                                                   195
                                    A NOTE ON THE CONSISTENCY AND MAXIMA OF THE ROOTS OF LIKELIHOOD
                                                                                                          BIOKA54
(WITH DISCUSSION) (CORR. 66 252)
                                                    CONSISTENCY IN STATISTICAL INFERENCE AND DECISION
                                                                                                          JRSSB61
                                             STRONG CONSISTENCY OF CERTAIN SEQUENTIAL ESTIMATORS
                                                                                                          AMS 69 1492
                                                THE CONSISTENCY OF CERTAIN SEQUENTIAL ESTIMATORS
                                                                                                          AMS 69
                                                                                                                  568
                                          ON STRONG CONSISTENCY OF DENSITY ESTIMATES
                                                                                                          AMS 69 1765
                            FURTHER EVIDENCE ON THE CONSISTENCY OF ESTIMATES OF VARIANCE COMPONENTS
                                                                                                         BIOCS65 395
                                     AN ANALYSIS OF CONSISTENCY OF RESPONSE IN HOUSEHOLD SURVEYS
                                                                                                          JASA 61 320
                                        NOTE ON THE CONSISTENCY OF SOME DISTRIBUTION-FREE TESTS FOR
                                                                                                         JASA 64 105
DISPERSION
                                            UNIFORM CONSISTENCY OF SOME ESTIMATES OF A DENSITY FUNCTION
                                                                                                          AMS 69 1499
                                             ON THE CONSISTENCY OF THE FIDUCIAL METHOD
                                                                                                          JRSSB62 425
IES OF LINEAR REGRESSIONS ASYMPTOTIC NORMALITY AND CONSISTENCY OF THE LEAST SQUARES ESTIMATORS FOR FAMIL AMS 63 447
                                                    CONSISTENT ESTIMATES AND ZERO-ONE SETS
                                                                                                          AMS 64 157
                                                    CONSISTENT ESTIMATES OF THE PARAMETERS OF A LINEAR
                                                                                                           AMS 69 NO.6
 OF A STATIONARY TIME/ ON ASYMPTOTICALLY EFFICIENT CONSISTENT ESTIMATES OF THE SPECTRAL DENSITY FUNCTION JRSSB58 303
PRESENCE OF AN INCIDENTAL SCALE PARAMETER
                                                    CONSISTENT ESTIMATION OF A LOCATION PARAMETER IN THE
                                                                                                          AMS 69 1353
                                                  A CONSISTENT ESTIMATOR FOR THE IDENTIFICATION OF FINITE
 MIXTURES
                                                                                                          AMS 69 1728
                        ON THE LACK OF A UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENSITY FUNCTI AMS 67 471
ON IN CERTAIN CASES
HYPOTHESES FROM GROUPED SAMPLES
                                                    CONSISTENT STATISTICS FOR ESTIMATING AND TESTING
                                                                                                         BTOKA66 545
NALLY PATROLLED BY ONE OPERATOR WHEN WALKING TIME IS CONSTANT AND REPAIR TIMES ARE VARIABLE /NI-DIRECTIO JRSSB57 173
ION OF THE QUEUEING PROBLEM WITH A SINGLE SERVER AND CONSTANT PARAMETERS AN ELEMENTARY METHOD OF SOLUT JRSSB56 125
  THE EFFICIENCY OF AUTOMATIC WINDING MACHINES WITH CONSTANT PATROLLING TIME
                                                                                                         JRSSB59 381
                CHARAGTERIZATIONS OF NORMALITY BY CONSTANT RECRESSION OF LINEAR STATISTICS ON ANOTHER L AMS 67 1894
                      SYSTEMATIC ERRORS IN PHYSICAL CONSTANTS
                                                                                                          TECH 62 111
  A CHARACTERIZATION OF CERTAIN SEQUENCES OF NORMING GONSTANTS
                                                                                                           AMS 68
                                                                                                                  391
    OF VARIANCE COMPONENTS BY THE METHOD OF FITTING CONSTANTS
                                                                                A NOTE ON THE ESTIMATION BIOKA69 NO.3
 ONE OPERATOR WHEN WALKING TIME AND REPAIR TIMES ARE CONSTANTS /MACHINES UNI-DIRECTIONALLY PARROLLED BY JRSSB57 166
                                                   GONSTANTS AND COMPROMISE IN THE CONSUMER PRICE INDEX JASA 62 813
                                             MOMENT CONSTANTS FOR THE DISTRIBUTION OF RANGE IN NORMAL
SAMPLES
                                                                                                          BTOKA51 463
ODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED ESTIMATION AND INFERENCE FOR LINEAR M JASA 68 1201
                      ON THE CALCULATION OF CERTAIN CONSTRAINED MAXIMA
                                                                                                          TECH 62 135
                                                   CONSTRAINED MAXIMISATION AND THE DESIGN OF
EXPERIMENTS
                                                                                                          TECH 69 616
                    A NUMERICAL ANALYSIS PROBLEM IN CONSTRAINED QUADRATIC RECRESSION ANALYSIS
                                                                                                          TECH 62 426
                                   AN INEQUALITY IN CONSTRAINED RANDOM VARIABLES
                                                                                                          AMS 68 1080
              LEAST-SQUARES FITTING OF A POLYNOMIAL CONSTRAINED TO BE EITHER NON-NEGATIVE, NON-DECREASING JRSSB69 113
 OR CONVEX
                                            CHANCE CONSTRAINTS AND NORMAL DEVIATES
                                                                                                          JASA 62 134
          CONFIDENCE BANDS IN LINEAR REGRESSION WITH CONSTRAINTS ON THE INDEPENDENT VARIABLES
                                                                                                          JASA 68 1020
          DISCRIMINATION BETWEEN K POPULATIONS WITH CONSTRAINTS ON THE PROBABILITIES OF MISCLASSIFICATION JRSSB69
                                                                                                                 123
FOR THE PROBABILITY OF OBTAINING A TREE FROM A CRAPH CONSTRUCTED RANDOMLY EXCEPT FOR 'EXOGAMOUS BIAS'
                                                                                                          AMS 67
                                                                                                                  226
FECT PLANS IN K TO THE N F/ A UNIFIED APPROACH FOR CONSTRUCTING A USEFUL CLASS OF NON-ORTHOGONAL MAIN EF JRSSB68 371
                                                   CONSTRUCTING AN UNBIASED RANDOM SEQUENCE
                                                                                                          JASA 68 1526
                                        A METHOD OF CONSTRUCTING BALANCED INCOMPLETE DESIGNS.
                                                                                                          BIOKA65 285
ATION COEFFICIENT
                                         TABLES FOR CONSTRUCTING CONFIDENCE LIMITS ON THE MULTIPLE CORREL JASA 63 1082
                                    SOME METHODS OF CONSTRUCTING EXACT TESTS
                                                                                                          BTOKA61
                                                                                                                   41
                       CORRECTION, 'SOME METHODS OF CONSTRUCTING EXACT TESTS.'
                                                                                                          BIOKA66
                                                                                                                  629
                                     TECHNIQUES FOR CONSTRUCTING FRACTIONAL REPLICATE PLANS
                                                                                                          JASA 63
                                                                                                                   45
                                    A PROCEDURE FOR CONSTRUCTING INCOMPLETE BLOCK DESIGNS
                                                                                                          TECH 64
                                                                                                                  389
S USINC A COMPUTER
                                      ON METHODS OF CONSTRUCTING SETS OF MUTUALLY ORTHOGONAL LATIN SQUARE TECH 60
                                                                                                                  507
S USINC A COMPUTER. II
                                      ON METHODS OF CONSTRUCTING SETS OF MUTUALLY ORTHOGONAL LATIN SQUARE TECH 61
                                                                                                                  111
   ON THE TWO SAMPLE PROBLEM, A HEURISTIC METHOD FOR CONSTRUCTING TESTS
                                                                                                          AMS 61 1091
THE POWER OF M DESIGNS WITH BLOCKS
                                                ON CONSTRUCTING THE FACTORIAL REPLICATES OF THE TWO TO
                                                                                                          AMS 62 1440
                                                    CONSTRUCTING UNIFORMLY BETTER ESTIMATORS
                                                                                                         JASA 63 172
      USE OF VARYING SEASONAL WEICHTS IN PRICE INDEX CONSTRUCTION
                                                                                                                   66
                                                                                                         JASA 58
      SOME METHODOLOGICAL NOTES ON THE DEFLATION OF CONSTRUCTION
                                                                                                         JASA 59 535
     A REGRESSION METHOD FOR REAL ESTATE PRICE INDEX CONSTRUCTION
                                                                                                         JASA 63 933
                THE MEASUREMENT OF PRICE CHANGES IN CONSTRUCTION
                                                                                                         JASA 69 771
                           A SIMPLE METHOD OF TREND CONSTRUCTION
                                                                                                         JRSSR61
                                                                                                                   91
SEQUENCES
                                        METHODS OF CONSTRUCTION AND ANALYSIS OF SERIALLY BALANCED
                                                                                                         JRSSB57
                                                                                                                  286
                                          ON THE CONSTRUCTION AND ANALYSIS OF SOME CONFOUNDED ASYMMETR BIOCS65 948
ICAL FACTORIAL DESIGNS
UNDED ASYMMETRICAL FACTORIAL DESIGNS
                                                    CONSTRUCTION AND ANALYSIS OF SOME NEW SERIES OF CONFO BIOCS67
                                                                                                                  813
                                                                                                          AMS 66 1033
                                 ON ESTIMATION AND CONSTRUCTION IN FRACTIONAL REPLICATION
          APPLICATION OF CYCLIC COLLINEATIONS TO THE CONSTRUCTION OF
                                                                                                          AMS 67 1127
SIGNIFICANCE IN MULTIVARIATE ANALYSIS THE CONSTRUCTION OF A MATRIX USED IN DERIVING TESTS OF
                                                                                                         BIOKA64 503
IN EIGHT BLOCKS OF 32
                                                    CONSTRUCTION OF A 2-TO-THE-(17-9) RESOLUTION V PLAN
                                                                                                         TECH 65 439
                                           ON THE CONSTRUCTION OF AN INDEX FOR INDIRECT SELECTION
                                                                                                         BIOCS65 291
POPULATION BASED ON TWO SUCCESSIVE CENS/ METHOD OF GONSTRUCTION OF ATTRITION LIFE TABLES FOR THE SINGLE JASA 67 1433
```

TITLE WORD INDEX CON - CON

		BIOKA52 32
		AMS 61 361
DESIGNS BALANCED SET OF L-RESTRICTIONAL PRIME-POWE/ ON T	CONSTRUCTION OF CONFOUNDING PLANS FOR MIXED FACTORIAL IE CONSTRUCTION OF CYCLIC COLLINEATIONS FOR OBTAINING A	
	OF CONSTRUCTION OF DESIGNS FOR TWO-WAY ELIMINATION OF	JASA 66 1153
	E CONSTRUCTION OF COOD LINEAR UNBIASED ESTIMATES FROM T	
	CONSTRUCTION OF JOINT PROBABILITY DISTRIBUTIONS	AMS 68 1354
	E CONSTRUCTION OF MODELS FOR QUANTAL RESPONSES TO MIXTU	
	E CONSTRUCTION OF OPTIMAL DESIGNS FOR THE ONE-WAY CLASS	
	L CONSTRUCTION OF ORTHOGONAL POLYNOMIALS FROM A GENERAL OF GONSTRUCTION OF PARTIALLY BALANCED ARRAYS	AMS 61 1181
	F CONSTRUCTION OF PARTIALLY BALANCED DESIGNS WITH TWO	AMS 61 1177
	N CONSTRUCTION OF PARTIALLY BALANCED INCOMPLETE BLOCK D	
	CONSTRUCTION OF ROOM SQUARES	AMS 6B 1540
INCOMPLETE BLOCK DESIGNS	CONSTRUCTION OF ROTATABLE DESIGNS THROUGH BALANCED	AMS 62 1421
	NE CONSTRUCTION OF SATURATED TWO TO THE POWER OF K-P NE CONSTRUCTION OF SECOND ORDER ROTATABLE DESIGNS IN K	AMS 67 1110 AMS 67 177
DISTRIBUTION	CONSTRUCTION OF SEQUENCES ESTIMATING THE MIXING	AMS 68 286
THE SPHERE ON T	E CONSTRUCTION OF SIGNIFICANCE TESTS ON THE CIRGLE AND	BIOKA56 344
ION GREATER THEN OR EQUAL TO 5 AND THE SET OF EVE/		
THE STATISTIC ERRORS OF THE THIRD KIND IN STATISTIC	L CONSULTANT IN A SCIENTIFIC LABORATORY	TECH 69 247
SOME OBSERVATIONS ON THE TEACHING OF STATISTIC		JASA 57 133 BIOCS68 789
	N CONSULTING IN STATISTICS	TECH 69 241
THE FORECASTING ACCURACY	F GONSUMER ATTITUDE DATA	JASA 69 NO.4
	F CONSUMER ATTITUDE SURVEYS, THEIR FORECASTING RECORD	JASA 63 899
VARIABLES THE PREDICTIVE ABILITY AN EXPERIMENT IN SURVEY DESIGN	F CONSUMER ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL CONSUMER BUYINC INTENTIONS AND PURCHASE PROBABILITY.	
SIS ON THE ROLE OF ASSETS, CREDIT AND INTENTIONS	CONSUMER DURABLE GOODS EXPENDITURES, WITH MAJOR EMPHA	
VALIDATION	F CONSUMER FINANCIAL CHARACTERISTICS, COMMON STOCK	JASA 69 415
	D CONSUMER INVESTMENT IN AUTOMOBILES	JASA 63 789
SOME ASPECTS OF SEASONALITY IN T CONSTANTS AND COMPROMISE IN T		JASA 61 27 JASA 62 B13
POTENTIALS IN APPLYING LINEAR PROGRAMMING TO T		JASA 66 982
	E CONSUMER PRICE INDEX	JASA 67 B99
	D CONSUMER RISKS FOR ASYMMETRICAL TESTS AND SPECIFICATI	
	D GONSUMER RISKS IN NON-NORMAL POPULATION	TECH 66 335
	F CONSUMER SURVEYS OF FINANCIAL HOLDINGS, DEMAND F CONSUMER SURVEYS OF FINANCIAL HOLDINGS, TIME-DEPOSITS	JASA 66 91 JASA 65 14B
SAMPLING ATTRIBUTE PLANS WITH CIVEN PRODUCER'S A		
ENTIAL SAMPLING BY VARIABLES WHEN THE PRODUCER'S A	D CONSUMER'S RISKS ARE EQUAL /TERISTIC CURVE FOR SEQU	
	CONSUMERS' PROPENSITIES TO HOLD LIQUID ASSETS	JASA 60 469
TESTING FOR LINE	CONTAGION IN STOCHASTIC MODELS FOR EPIDEMICS R CONTAGION, INVERSE SAMPLINC	AMS 68 1863 JRSSB69 NO.2
	A CONTAGIOUS DISTRIBUTION SUGGESTED FOR ACCIDENT DATA	
A NOTE	N CONTAGIOUS DISTRIBUTIONS	8I0KA54 268
RANSFORMED DATA FROM THE NECATIVE BINOMIAL AND OTH		
	G CONTAGIOUS DISTRIBUTIONS IN ECOLOCY E CONTAGIOUS DISTRIBUTIONS TO SOME AVAILABLE DATA BY TH	BIOKA53 186 BIOCS65 34
	CONTACIOUS OCCUPANCY	JRSSB59 120
ON THE DISTRIBUTION OF TRIBOLIUM GONFUSUM IN		BIOKA57 32B
	T CONTAINING A GRAPH T CONTAINING THE POPULATION WITH THE SMALLEST VARIANCE	AMS 68 1345 BIOKA62 495
SOME NONRESPONSE SAMPLING THEORY WHEN THE FRA		JASA 68 87
ON EQUATIONS WHEN DISTURBANCES ARE BOTH SERIALLY A		
S, IV, THE DISTRIBUTION OF HOMOGENEOU/ PROBABILI	Y CONTENT OF REGIONS UNDER SPERICAL NORMAL DISTRIBUTION	AMS 62 542
	Y CONTENT OF RECIONS UNDER SPHERICAL NORMAL DISTRIBUTIO Y CONTENT OF REGIONS UNDER SPHERICAL NORMAL DISTRIBUTIO	
NS/ CORRECTION. THE TITLE SHOULD READ 'PROBABILI' BAULE'S EQUATION +(LEAST SQUARES ESTIMATE OF SO		BIOCS69 159
THE MULTI-TYPE CALTON-WATSON PROCESS IN A GENETIC		BIOCS6B 147
RTIES OF SEVERAL TWO-STACE REGRESSION METHODS IN T	E CONTEXT OF AUTOCORRELATED ERRORS SMALL-SAMPLE PROPE	
TABLES FOR TESTING SIGNIFICANCE IN A 2-BY		TECH 63 501 TECH 64 439
THE POWER FUNCTION OF THE EXACT TEST FOR THE 2-BY- A QUASI-MULTINOMIAL TYPE		SASJ 67 59
THE GEOMETRY OF A R-BY-		AMS 6B 1186
SYMMETRY AND MARGINAL HOMOGENEITY OF AN R-BY	R CONTINGENCY TABLE	JASA 69 NO.4
MEAN AND VARIANCE OF AN ENTRY IN THE POWER FUNCTION OF THE EXACT TEST FOR THE 2-BY		BIOKA51 46B
FOR THE VARIANCE OF THE CHI-SQUARE FUNCTION ON		BIOKA60 393 BIOKA54 280
IATE NORMAL DISTRIBUTION CONSIDERED IN THE FORM OF	A CONTINGENCY TABLE SOME PROPERTIES OF THE BIVAR	
	R CONTINGENCY TABLE INTERACTIONS	JRSSB63 179
	O CONTINGENCY TABLE, AND FISHER'S 'EXACT' SIGNIFICANCE	JRSSB69 NO.2 BIOKA53 74
TESTS OF SIGNIFICANCE IN A 2-BY- THE POWER FUNCTION OF THE EXACT TEST FOR THE 2-BY-		
A NOTE ON THE GRAPHICAL ANALYSIS OF MULTIDIMENSION		TECH 67 481
ASSOCIATION AND ESTIMATION	N CONTINCENCY TABLES	JASA 68 1
OPTIMUM CHOICE OF CLASSES F	R CONTINGENCY TABLES	JASA 68 291
		TECH CO 107
HYPOTHESES OF 'NO INTERACTION' IN MULTI-DIMENSION	L CONTINGENCY TABLES	TECH 68 107
HYPOTHESES OF 'NO INTERACTION' IN MULTI-DIMENSION EXACT TESTS OF SIGNIFICANCE	L CONTINGENCY TABLES N CONTINGENCY TABLES	TECH 68 107 TECH 69 393 8IOKA52 274
HYPOTHESES OF 'NO INTERACTION' IN MULTI-DIMENSION	L CONTINGENCY TABLES N CONTINGENCY TABLES N CONTINCENCY TABLES	TECH 69 393 8IOKA52 274 8IOKA55 494
HYPOTHESES OF 'NO INTERACTION' IN MULTI-DIMENSION EXACT TESTS OF SIGNIFICANCE USE OF SCORES FOR THE ANALYSIS OF ASSOCIATION	L CONTINGENCY TABLES N CONTINGENCY TABLES ON CONTINGENCY TABLES CONTINGENCY TABLES N CONTINCENCY TABLES	TECH 69 393 8IOKA52 274

CON - CON TITLE WORD INDEX

```
A NOTE ON INTERACTIONS IN CONTINCENCY TABLES
                                                                                                            JRSSB62 162
                     MAXIMUM LIKELIHOOD IN THREE-WAY CONTINCENCY TABLES
                                                                                                            JRSSB63 220
                             ALTERNATIVE ANALYSIS OF CONTINGENCY TABLES
                                                                                                            JRSSB66 164
          COMBINATION OF RESULTS FROM SEVERAL 2 BY 2 CONTINGENCY TABLES
                                                                                                            BIOCS65
                                                                                                                      86
            ON THE HYPOTHESES OF 'NO INTERACTION' IN CONTINGENCY TABLES
                                                                                                            BIOCS68
                                                                                                                     567
                          INCOMPLETE TWO-DIMENSIONAL GONTINGENCY TABLES
                                                                                                            BIOCS69
                                                                                                                     119
          FULL CONTINCENCY TABLES, LOGITS, AND SPLIT CONTINGENCY TABLES
                                                                                                            BIOCS69
                                                                                                                     383
AND THE HYPOTHESES OF NO THREE FAGTOR INTERACTION IN CONTINGENCY TABLES
                                                                                                     LAMST JASA 69
                                                                                                                     207
 RAPID CALCULATION OF EXACT PROBABILITIES FOR 2-BY-3 CONTINGENCY TABLES
                                                                                                     NOTES, BIOCS68
                                                                                                                     714
   METHODS FOR ANALYZING THREE-FACTOR INTERACTION IN CONTINGENCY TABLES
                                                                                                     SIMPLE JASA 64
                                                                                                                     319
                                                                                              SIMULTANEOUS JRSSB64
       CONFIDENCE LIMITS FOR CROSS-PRODUCT RATIOS IN CONTINGENCY TABLES
                                                                                                                      86
       AND COMPARISON OF STRENCTHS OF ASSOCIATION IN CONTINGENCY TABLES
                                                                                            THE ESTIMATION BIOKA53
                                                                                                                     105
 POWER FUNCTIONS FOR THE TEST OF INDEPENDENCE IN 2X2 CONTINGENCY TABLES
                                                                                         COMPARISON OF THE AMS 64 1115
SAMPLING ERRORS ON MEASURES OF ASSOCIATION IN 2-BY-2 CONTINGENCY TABLES
                                                                                        THE EFFECT OF NON- JASA 69
                                                                                                                     852
OTHESIS FORMULATION, ESPECIALLY FOR MULTIDIMENSIONAL CONTINGENCY TABLES
                                                                                   MAXIMUM ENTROPY FOR HYP AMS 63
                                                                                                                     911
ND REGRESSION, WITH APPLICATION TO MANIFOLD, ORDERED CONTINCENCY TABLES
                                                                           /CT-MOMENT PARTIAL CORRELATION A BIOKA59
                                           TESTS FOR CONTINGENCY TABLES AND MARKOV CHAINS
                                                                                                           TECH 62
                                                                                                                     573
CURVES
                                  MODELS FOR COMPLEX CONTINGENCY TABLES AND POLYCHOTOMOUS DOSAGE RESPONSE BIOCS66
                                                                                                                      83
                                          A NOTE ON CONTINGENCY TABLES INVOLVING ZERO FREQUENCIES AND THE TECH 63
                                                                                                                     398
 2T TEST
                                  ON THE ANALYSIS OF CONTINCENCY TABLES WITH A QUANTITATIVE RESPONSE
                                                                                                                     329
                                                                                                           BIOCS68
                                                     CONTINCENCY TABLES WITH GIVEN MARGINALS
                                                                                                                     179
                                                                                                            BIOK 468
NDEPENDENCE, QUASI-INDEPENDENCE, AND INTERACTIONS IN CONTINCENCY TABLES WITH OR WITHOUT MISSINC ENTRIES
                                                                                                            JASA 68 1091
ETHOD OF CALCULATING THE EXACT PROBABILITY IN 2-BY-2 CONTINGENCY TABLES WITH SMALL MARGINAL TOTALS /LE M BIOKA55
                                                                                                                     522
TABLES
                                               FULL CONTINGENCY TABLES, LOGITS, AND SPLIT CONTINGENCY BIOCS69
                                                                                                                     383
       THE CHI-SQUARE TEST FOR SMALL EXPECTATIONS IN CONTINCENCY TABLES, WITH SPECIAL REFERENCE TO ACCIDEN BIOKA59
                                                                                                                     365
                                           A NOTE ON CONTINGENCY-TYPE BIVARIATE DISTRIBUTIONS
                                                                                                            BTOKA68
                                                                                                                     262
   THE PERFORMANCE OF SOME TESTS OF INDEPENDENCE FOR CONTINCENCY-TYPE BIVARIATE DISTRIBUTIONS
                                                                                                            BIOKA69
                              SOME GONTRIBUTIONS TO CONTINGENCY-TYPE BIVARIATE DISTRIBUTIONS (CORR 68
                                                                                                            BIOKA67
                                                                                                                     235
   PROBABILISTIC INTERPRETATIONS FOR THE MEAN SQUARE CONTINCENCY, CORR. 58 1030
                                                                                                            JASA 58
                                                                                                                     102
                 NOTE ON AN EXACT TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND OTHER PROBLEMS OF
SIGNIFICANCE
                                                                                                            BIOKA51 141
                                    PRICING POLICIES CONTINGENT ON OBSERVED PRODUCT QUALITY
                                                                                                            TECH 66 123
           THE OUTER NEEDLE OF SOME BAYES SEQUENTIAL CONTINUATION REGIONS
                                                                                                            BIOKA66
                                                                                                                     455
INEQUALITIES FOR THE NORMAL INTEGRAL INCLUDING A NEW CONTINUED FRACTION
                                                                                                            BIOKA54 177
              VARIATION QUADRATIQUE DES MARTINGALES CONTINUES A DROITE
                                                                                                             AMS 69
                                                                                                                     284
            ON THE USE AND MISUSE OF CORRECTIONS FOR CONTINUITY
                                                                                                            SASJ 68
                                                                                                                      85
IONS INTRODUCED BY L. TACAKS ON THE INTEGRABILITY, CONTINUITY AND DIFFERENTIABILITY OF A FAMILY ON FUNCT AMS 63 1045
                                                THE CONTINUITY CORRECTION IN 2-BY-2 TABLES
                                                                                                            BIOK A64 327
PROBABILITY AND STATISTICS. XVII. SOME REFLEXIONS ON CONTINUITY IN THE DEVELOPMENT OF MATHEMATICAL STATIST BIOKAG7
R THE SOBOLEV IMBEDDING THEOREMS TO CRITERIA FOR THE CONTINUITY OF PROCESSES WITH A VECTOR PARAMETER /FO AMS 69
                                                                                                                     517
DISTRIBUTION FUNCTIONS
                                                  ON CONTINUITY PROPERTIES OF INFINITELY DIVISIBLE
                                                                                                             AMS 68 936
MINATION OF REQUIREMENT THAT CUMULATIVE FUNCTIONS BE CONTINUOUS DISTRIBUTION FREE TOLERANCE LIMITS. ELI TEGH 63 518
                                    SOME REMARKS ON CONTINUOUS ADDITIVE FUNCTIONALS
                                                                                                             AMS 67 1655
                          THE COVARIANCE MATRIX OF A CONTINUOUS AUTORECRESSIVE VECTOR TIME-SERIES
                                                                                                             AMS 63 1259
ESTIMATORS OF A LOCATION PARAMETER IN THE ABSOLUTELY CONTINUOUS CASE
                                                                                                             AMS 64 949
                                       ON ABSOLUTELY CONTINUOUS COMPONENTS AND RENEWAL THEORY
                                                                                                             AMS 66
                                                                                                                     271
         ESTIMATION OF THE LOCATION OF THE CUSP OF A CONTINUOUS DENSITY
                                                                                                             AMS 68
                                                                                                                      76
              SMOOTH EMPIRICAL BAYES ESTIMATION FOR CONTINUOUS DISTRIBUTIONS (CORR. 68 597)
                                                                                                            BIOKA67
                                                                                                                     435
             ON CHI-SQUARE GOODNESS-OF-FIT TESTS FOR CONTINUOUS DISTRIBUTIONS (WITH DISCUSSION)
                                                                                                                     44
 DECAY CURVES
                                     A GOMPARISON OF CONTINUOUS DISTRIBUTIONS OF PARAMETERS OF EXPONENTIAL BIOCS68
     A PROPERTY OF THE MEAN DEVIATION FOR A CLASS OF CONTINUOUS DISTRIBUTIONS.
                                                                                                            BIOKA65
 WHEN THE JOINT DISTRIBUTION OF THE ERRORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A SCALE PARAMETE BIOKAG1
                                                                                                                     125
                                                     CONTINUOUS INSPECTION SCHEMES
                                                                                                           BIOKA54 100
                                                   A CONTINUOUS KIEFER-WOLFOWITZ PROCEDURE FOR RANDOM
PROCESSES, CORR. 66 745
                                                                                                                     590
                                                                                                             AMS 64
                              INTER-PLANT STORAGE IN CONTINUOUS MANUFACTURING
                                                                                                            TECH 60
                                                                                                                     393
    OF GAUSSIAN RANDOM HOMOGENEOUS FIELDS ARE EITHER CONTINUOUS OR VERY IRREGULAR
                                                                                        SAMPLE FUNCTIONS AMS 67 1579
                          RECTIFYING INSPECTION OF A CONTINUOUS OUTPUT, CORR. 59 810
                                                                                                            JASA 58 702
                              A NOTE ON SEQUENCES OF CONTINUOUS PARAMETER MARKOV CHAINS
                                                                                                             AMS 69 1078
TIVARIATE CHEBYSHEV INEQUALITIES WITH- EXTENSIONS TO CONTINUOUS PARAMETER PROCESSES
                                                                                                   SOME MUL. AMS 61
                                                                                                                     687
AIN LINEAR SYSTEMATIC STATISTICS OF SAMPLES FROM ANY CONTINUOUS POPULATION INTERRELATIONS BETWEEN CERT BIOKA51
                                                                                                                     377
STRIBUTION AND THE POSTERIOR DISTRIBUTION OF P FOR A CONTINUOUS PRIOR DISTRIBUTION THE MIXED BINOMIAL DI JRSSB68
                                                                                                                     359
        BAYESIAN SINGLE SAMPLING ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS
                                                                                                            TECH 68 667
                                   THE SPECTRUM OF A CONTINUOUS PROCESS DERIVED FROM A DISCRETE PROCESS
                                                                                                            BIOKA63
                              SAMPLING INSPECTION OF CONTINUOUS PROCESSES WITH NO AUTOCORRELATION BETWEEN BIOKAGO
                                                                                                                     363
CISION MODELS FOR THE EVALUATION OF A LARGE CLASS OF CONTINUOUS SAMPLING INSPECTION PLANS MARKOVIAN DE AMS 65 1408
                             A PRODUCTION MODEL AND CONTINUOUS SAMPLING PLAN
                                                                                                            JASA 59 231
                          NEW CRITERIA FOR SELECTING CONTINUOUS SAMPLING PLANS
                                                                                                            TECH 64
                                                                                                                     161
                                                     CONTINUOUS SAMPLING PLANS UNDER DESTRUCTIVE TESTING
                                                                                                            JASA 64
                                                                                                                     376
                             THE EVALUATION OF H 106 CONTINUOUS SAMPLINC PLANS UNDER THE ASSUMPTION OF
WORST CONDITIONS
                                                                                                            JASA 66
                                                                                                                    833
                                                 ON CONTINUOUS SINCULAR INFINITELY DIVISIBLE DISTRIBUTION AMS 64
 FUNCTIONS
                                                                                                                    330
RES FOR SMOOTHING PERIODOCRAMS FROM TIME SERIES WITH CONTINUOUS SPECTRA ON THE EFFICIENCY OF PROCEDU BIOKA55
E SUPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CONTINUOUS STATE SPACES ON THE DISTRIBUTION OF TH AMS 69
                                                                                                                    143
                                                                                                                     844
                                                  ON CONTINUOUS SUFFICIENT STATISTICS
                                                                                                             AMS 64 1229
          DISTRIBUTION-FREE TOLERANCE INTERVALS FOR CONTINUOUS SYMMETRICAL POPULATIONS
                                                                                                             AMS 62 1167
       COUNT OF A MARKOV CHAIN AND THE TRANSITION TO CONTINUOUS TIME
                                                                                             THE FREQUENCY
                                                                                                             AMS 61
                                                                                                                    41
                           SOME RESULTS ON MULTITYPE CONTINUOUS TIME MARKOV BRANCHING PROCESSES
                                                                                                             AMS 68
                                                                                                                     347
                      EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND RELATE
                                                                                                             AMS 68 1801
LE CHANNEL QUEUE WITH A GENERAL CLASS OF SERV/ THE CONTINUOUS TIME SOLUTION OF THE EQUATIONS OF THE SING JRSSB58
                                                                                                                    176
GENERATING FUNCTIONS
                                                  A CONTINUOUS TIME TREATMENT OF A SIMPLE QUEUE USING
                                                                                                           JRSSB54
                                                                                                                     288
                                 THE RANDOM WALK (IN CONTINUOUS TIME) AND ITS APPLICATION TO THE THEORY OF BIOKA59
                                                                                                                    400
         ESTIMATING THE INFINITESIMAL CENERATOR OF A CONTINUOUS TIME, FINITE STATE MARKOV PROCESS
                                                                                                                     727
                                                                                                            AMS 62
 UNDER MIXING WHICH CENERALIZE DE FINETTI'S THEOREM. CONTINUOUS TIMES PARAMETER
                                                                                               INVARIANTS AMS 63 1194
PROXIMANTS TO THE INVERSE DISTRIBUTION FUNCTION OF A GONTINUOUS UNIVARIATE POPULATION FROM THE ORDER STATI BIOKAGS NO.3
  MULTIVARIATE TWO SAMPLE TESTS WITH DIGHOTOMOUS AND GONTINUOUS VARIABLES I THE LOGATION MODEL
                                                                                                            AMS 69 290
               THE THEORY OF CORRELATION BETWEEN TWO GONTINUOUS VARIABLES WHEN ONE IS DICHOTOMIZED
THE THEORY OF CORRELATION BETWEEN INC CONTINUOUS VARIABLES, GORR. 65 343 MUL AMS 61 448
TIVARIATE GORRELATION MODELS WITH MIXED DISGRETE AND GONTINUOUS VARIABLES, GORR. 65 343 MUL AMS 61 1003
                                                                                                       MUL AMS 61 448
```

TITLE WORD INDEX CON - CON

ONL THE STIMATION OF CONTRASTS IN LINEAR MODELS MAGE OF 120					
VARIATES CONCERNED	SQUARE DISTRIBUTION	A A	CONTOUR-INTECRAL DERIVATION OF THE NON-CENTRAL CHI-	AMS 62	796
VARIATES CONCERNED	(CORR 69 229)	A METHOD FOR HIDCING ALL	CONTRACTS IN THE ANALYSIS OF VARIANCE (CORR 60 220)	AMS 65	198
VARIES CONCERNED ESTRATION OF PERSON OF PREMIETAL COMPONENTS TO INDIVIDUAL 100000000000000000000000000000000000	(00KK: 03 223)	ESTIMATION OF MULTIPLE	CONTRASTS USING T-DISTRIBUTIONS		
SETTIN DISCUSSION	VARIATES CONCERNED				
A COUTTELUTION TO THE TREATE OF BLUE QUEUES		A	CONTRIBUTION TO COUNTER THEORY		
THE CONTRIBUTIONS OF RARE, PEARSON JASA 58 15 IONG (CORR. GO S7) SOUR CORR. GO S7) SOUR COURT THE STANDARD CONTRIBUTION TO CONTRIBUTION-THE STANDARD DISTRIBUTION TO CONTRIBUTION-THE STANDARD DISTRIBUTION TO CONTRIBUTION-THE STANDARD DISTRIBUTION TO CONTRIBUTION TO THE MACHINARIA CONTRIBUTIO	(WITH DISCUSSION)				
VARIABLES OCHTERIOTIONS TO CENTRAL LIGHT THROW FOR DEPENDENT MAY 60 PT 10 NOT CONTROL					
SOME COMPRESSION OF CONTINEERCY—THE STRAILED STREETS UNK STREET STREETS OF COMPANIES AND CONTINEERCY—THE STREETS OF COMPANIES AND COMPANIES AND COMPANIES AND COMPANIES AND COMPANIES AND COMPANIES OF FRATOS OF SPACINS. THE PARAMETRIC COCONESS OF FIT AND TWO—SAMPLE FPA CONTRIBUTIONS OF SURES OF FRATOS OF SPACINS. AND TO THE DISTRIBUTION OF THE AVERAGE RANK / SOME CONTRIBUTIONS TO SAMPLE STRAILED STREETS. IT LITTLE TO THE AVERAGE RANK / SOME CONTRIBUTIONS TO SAMPLE STRAILED STREETS. IT LITTLE STREETS OF COMPANIES AND COMPANIES AND CONTRIBUTIONS TO THE A-SAMPLE PROCESS. OF SAME CONTRIBUTIONS TO THE A-SAMPLE STRAILED STREETS. IT LITTLE STREETS OF CONTRIBUTIONS TO THE A-SAMPLE PROCESS. OF SAME CONTRIBUTION TO THE A-SAMPLE PROCESS. OF SAME CONTRIBUTIONS TO THE A-SAMPLE	VARTABLEC	THE			
FURTHER CONTRIBUTIONS TO MULTIVARIATE CONFERCE BOUNDS A NOTE OF PURCHER CONTRIBUTIONS TO MULTIVARIATE CONFERCE BOUNDS THE UNITIONS OF SUNS OF RATIOS OF SERICIDADA. "FURTHER CONTRIBUTIONS TO MULTIVARIATE CONFERCE BOUNDS" THE PARAMETRIC CORONESS OF IT AND THO-SAMPLE FAY AND TO THE DISTRIBUTION OF THE AVERAGE RAIRY." SUME CONTRIBUTIONS TO THE AVERAGE RAIRY SUME CONTRIBUTIONS TO THE AVERAGE RAIRY SUME CONTRIBUTION TO THE AVERAGE RAIRY SUME CONTRIBUTION TO THE AVERAGE RAIRY CORRELATION METHODS A MILITURE COMPARISON SIGN TEST, TREATMENTS SUBSECTION TO THE AVERAGE RAIRY CORRELATION METHODS A MILITURE COMPARISON SIGN TEST, TREATMENTS PROCESS CONTROL A MILITURE COMPARISON FOR PAPER PAPER INVENTORY CONTROL A MILITURE COMPARISON FOR PAPER PAPER INVENTORY CONTROL A MILITURE COMPARISON FOR STORAGETIC PROPROSISES CONTROL A PRELICATION OF STORAGETIC APPROXIMATION FORCESS CONTROL APPROXIMATION FORCESS START—USE AND INVENTORY CONTROL APPROXIMATION FORCESS START—USE AND INVENTORY CONTROL A STATISTICAL APPROXIMATION AND CONTROL A SUBJECT THEORY OF A MAINTAIN THE STATISTICAL APPROXIMATION AND CONTROL A COMPARISON SEVERAL EXPERIMENTAL CATEGORIES SITH A CONTROL A COMPARISON SITH AND CONTROL A COMPARISON SITH AND CONTROL A COMPARISON SITH AND CONTROL		SOME			
A NOTE ON FURTHER CONTENSIONS TO MULTIVARIATE CONTINUES BOUNDS: REPARAMETRIC COGRESCOP FIRSTANDS REPARAMETRIC COCCESS OF FIRSTANDS REPARAMETRIC COCCESS OF FIRSTANDS REPARAMETRIC COCCESS OF FIRSTANDS REPARAMETRIC COCCESS OF FIRSTANDS STATISTIC CONTRIBUTIONS TO THE X-STANDS CONTRIBUTION TO SAMPLE STATISTICS CONTRIBUTIONS TO THE X-STANDS CONTRIBUTION TO THE RANGE CONTRIBUTION TO THE X-STANDS REAR CONTRIBUTIONS TO THE X-STANDS REAR CONTRIBUTION TO THE X-STANDS OF ANIMAL TRANSPORT OF ANY X-STANDS REAR CONTRIBUTION TO THE X-STANDS OF ANIMAL TRANSPORT OF ANY X-STANDS REAR CONTRIBUTION TO THE X-STANDS OF ANIMAL TRANSPORT OF ANY X-STANDS REAR CONTRIBUTION TO THE X-STANDS OF ANIMAL TRANSPORT OF ANY X-STANDS REAR CONTRIBUTION TO THE X-STANDS OF ANIMAL TRANSPORT OF ANY X-STANDS REAR CONTRIBUTION TO THE X-STANDS OF ANIMAL TRANSPORT OF ANY X-STANDS REAR CONTRIBUTION TO THE X-STANDS OF ANIMAL TRANSPORT OF ANY X-STANDS REAR CONTRIBUTION TO THE X-STANDS OF ANIMAL TRANSPORT OF ANY X-STANDS REAR CONTRIBUTION TO THE X-STANDS OF ANIMAL TRANSPORT OF ANY X-STANDS REAR CONTRIBUTION TO THE X-STANDS OF ANY X-STANDS REAR CONTRIBUTION TO THE X-STANDS OF ANY X-STANDS REAR CONTRIBUTION TO THE X-STAN	TOTAL (GOLDE, GO GOT)				
THE PERMENTIC COORDESS OF PIT AND TWO SAMPLE PAPELINES THEORY, I. LIKIT DIS AME 66 SAMPLE PAPELINES THEORY, II. LIKIT DIS AME 66 SAMPLE PAPELINES THEORY, III. LIKIT DIS AME 66 SAMPLE PAPELINES THE PAPELINES THEORY, III. LIKIT DIS AME 66 SAMPLE PAPELINES THE P					
THE PRAMETRIC COODNESS OF FIT AND TWO-SAMPLE PRAY AND TO THE DISTRIBUTION OF THE AVERAGE RANK. SOME CONTRIBUTIONS TO THE AVERAGE RANK CORRELATION ENTROS. JASA 63 57 57 ATTSTIC ONTRIBUTIONS TO THE AVERAGE OF ANTWERTER ASSESSMENT OF THE THEORY OF MACHINE INTERFERENCE JASA 63 70 6 10 10 10 10 10 10 10 10 10 10 10 10 10					
AM MULTIPLE COMPARISON SIGN TEST, TREATMENTS VERSUS A MULTIPLE COMPARISON SIGN TEST, TREATMENTS VERSUS ONTRIBUTIONS TO THE K-SAMICE PEDGELMA, A YAMED AND COMPARISON SIGN TEST, TREATMENTS VERSUS A MULTIPLE COMPARISON SIGN TEST, TREATMENTS VERSUS ONTRIBUTIONS TO THE K-SAMICE PEDGELMA, A YAMED AND COMPARISON SIGN TEST, TREATMENTS VERSUS ONTRIBUTIONS TO THE MATCH OF AUTOMATIC PROCESS CONTROL A MINICAN COST MODEL OF STABLES FOR COMPARISON WITH A CONTROL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL ARKING PROCESSES FOR COMPARISON ROSE WITH A CONTROL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL A SEQUENTIAL PROCESS CONTROL SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL SERIAL DESIGNS FOR ROUTHER QUALITY CONTROL (WITH DISCUSSION) STATISTICAL PROCESS CONTROL STATISTICAL PROCESS CONTROL STATISTICAL PROCESS CONTROL A COMPARISON OF SOME CONTROL (WITH DISCUSSION) STATISTICAL PROCESS CONTROL THE EUGEN THE THEORETICAL APPROACH TO COMPARISON OF AUTOMATIC PROCESS CONTROL THE PROCESS CONTROL THE PROCESS CONTROL THE PROCESS CONTROL STATISTICAL PROCESS CONTROL THE PROCESS CONTROL STATISTICAL PROCESS CONTROL THE PROCESS CONTROL THE PROCESS CONTROL STATISTICAL PROCESS CONTROL THE PROCESS CONTROL THE PROCESS CONTROL STATISTICAL PROCESS CONTROL THE PROCESS CONTROL THE PROCESS CONTROL THE PROCESS CONTROL THE PROCES					
STATISTIC OONTRIBUTIONS TO THE K-SAMPLE FROBLEM, A SYMBETRIC AMULTIPLE COMPARISON STORT THAT THE STATEMENTS VIREGIS AMULTIPLE COMPARISON STORT TEST. TREATMENTS VIREGIS SOUTH CANADISM OF STORT AND THE STATEMENTS VIREGIS AMULTIPLE COMPARISON STORT THE THEORY OF MACHINE INTERFERENCE AND ASSESSED AND ASSESSED					
A MULTIPLE COMPARISON SIGN TEST, TREATMENTS VERSUS CONTROLLORS TO THE MARTHEMATICS OF AMACHINE INTERFERENCE A MULTIPLE COMPARISON SIGN TEST, TREATMENTS VERSUS CONTROLLORS TO THE THEORY OF MACHINE INTERFERENCE A MULTIPLE COMPARISON SIGN TEST, TREATMENTS VERSUS CONTROLLORS TO THE THEORY OF MACHINE INTERFERENCE A MULTIPLE COMPARISON FROM THE INTERFERENCE STATE OF AUTOMATIC PROCESS APPROXIMATION PROCEDURES FOR COMPARISON WITH A CONTROL APPROXIMATION PROCEDURES FOR USE IN PROCESS CONTROL ON THE MACET OF AUTOMATIC PROCESS CONTROL ON THE MACHINE PROCESS CONTROL APPRICATIONS OF PROCESS START-UPS AND INVENTORY CONTROL APPROXIMATION PROCEDURES FOR USE IN PROCESS CONTROL APPROXIMATION PROCEDURES FOR USE IN PROCESS CONTROL APPROXIMATION PROCEDURES FOR USE IN PROCESS CONTROL APPROXIMATION PROCEDURES THE ALL PROCESS CONTROL APPROXIMATION PROCEDURES THE ALL PROCESS CONTROL APPROXIMATION BY THEIR LOCATIONS WITH REPORT TO A CONTROL APPROXIMATION BY THEIR LOCATIONS WITH REPORT TO A CONTROL A SENTIAL DESCRIPTION OF CONTROL A SUMPLE THEORETICAL APPROACH TO CUMULATIVE SIME CONTROL CHART WITH WARRING LINES THE ECONOMIC DESCRIPTION OF CONTROL CHART WITH WARRING LINES DISCUSSION) CUMULATIVE SIME CONTROL CHARTS AND STORM OF CONTROL CHARTS AND THE MININIZATION OF COSTS (WITH JURGA SENTIAL PROCESSES (WITH JURGA SENTIAL		THE AVERAGE RANK/ SOME			
A MULTIPLE COMPARISON SIGN TEST, TREATMENTS VERSUS CONTROL A PALICATION OF STOCHASTIC APPROXIMATION TO PROCESS CONTROL PROCESS CONTROL RANKING PROCEDURES FOR COMPARISON WITH A CONTROL REMAINING PROCEDURES FOR COMPARISON WITH A CONTROL REMAINING PROCEDURES FOR COMPARISON WITH A CONTROL REMAINING PROCEDURES FOR COMPARISON WITH A CONTROL POPULATIONS IN PROCEDURE, TREATMENT VERSUS CONTROL SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL FOR COMPARIS SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL FOR COMPARISON SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL FOR COMPARISON SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL FOR COMPARISON SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL FOR COMPARISON SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL FOR COMPARISON SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL FOR COMPARISON SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL FOR COMPARISON OF SAME CONTROL CHART SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL FOR COMPARISON OF SAME COMPARISON OF SAME CONTROL CHART SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL FOR COMPARISON OF SAME CONTROL CHART SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL FOR COMPARISON OF SAME CONTROL CHART SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL FOR COMPARISON OF SAME CONTROL CHART SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL FOR CONTROL CHART SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL CHART SEVERAL EXPERIMENTAL TO THE CONTROL					
A MINIMUM COST MODEL OF SPREAP PARES INVENTORY CONTROL APPLICATION OF STOCHASTIC APPROUNDATION OF PROCESS CONTROL REARRING PROCESSING OF AUTOMATIC PROCESS CONTROL REARRING PROCESSING STRAT-HES ADD INVENTORY CONTROL FOR MINITER COMPARISON PROCESSING THE AUTOMATIC PROCESS CONTROL STRATISTICAL CONTROL AND PROCESS STRAT-HES ADD INVENTORY CONTROL FOR COMPARISON STRATE LYBROCORES WITH A STANDARD OR OF CONTROL SEVERAL EXPERIMENTAL CATEGORIES WITH A STANDARD OR OF CONTROL SEVERAL EXPERIMENTAL CATEGORIES WITH A STANDARD OR OF CONTROL AS SEQUENTIAL PROCESSING PROCESS STRAT-HES ADD INVENTORY CONTROL SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL FOR COMPARINO SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL AS SEQUENTIAL PROCESSING PROCESS CONTROL AS SEQUENTIAL PROCESSING PROCESS CONTROL AS SEQUENTIAL PROCESSING PROCESS CONTROL AS SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL CHART WITH SANDLY OF AUTOMATIC PROCESS CONTROL THE ECONOMIC DESIGN OF COUNTROL CHART STREAMS ON THE CONTROL CHART STRAIN CONTROL CHART STRAIN CAN BE ADDITIONAL OF THE				BIOKA63	135
APPLICATION OF STOCHASTIC APPROXIMATION TO PROCESS CONTROL PROCESS CONTROL AD THE INTERACT OF AUTOMATIC PROCESS CONTROL RANKING PROCEDURES FOR COMPARISON WITH A CONTROL DISTRIBUTIONS IN PROCESS START-UPS AND INVESTMENT CONTROL SEVERAL EXPERIMENTAL CATEGORIES WITH A STANDARD OR CONTROL STATISTICAL ASPECTS OF ADAPTIVE OPTIMIZATION AND CONTROL ASSEMBLY ASPECTS OF ADAPTIVE OPTIMIZATION AND CONTROL ASSEMBLY ASPECTS OF ADAPTIVE OPTIMIZATION AND CONTROL ASSEMBLY ASPECTS OF ADAPTIVE OPTIMIZATION AND CONTROL CHART PROCEDURES A COMPARISON OF SOME CONTROL CHART PROCEDURES A COMPARISON OF SOME CONTROL CHART PROCEDURES A SUMPLE THEORETICAL APPROACH TO COMULATIVE SIM CONTROL CHART PROCEDURES A COMPANION OF SOME CONTROL CHARTS COMPACTOR OF ADAPTIVE OPTIMIZATION OF COSTS (WITH A SCHOOL CHART) THE ECONOMIC DESIGN OF CUMULATIVE SIM CONTROL CHARTS AND THE WEIGHTLD DISTRIBUTION CONTROL CHARTS AND THE WEIGHTLD DISTRIBUTION THE FRESENT STATUS OF AUTOMATIC PROCULTION AND CONTROL CHARTS AND THE WEIGHTLD DISTRIBUTION MULTIFLE COMPARISIONS WITH A CONTROL CHARTS AND THE WEIGHTLD DISTRIBUTION THE FIRST-MEDIAN TEST. A TRO-SIDED VERSION OF THE CONTROL CHARTS AND THE WEIGHTLD DISTRIBUTION THE FIRST-MEDIAN TEST. A TRO-SIDED VERSION OF THE CONTROL CHARTS AND THE WEIGHTLD DISTRIBUTIONS THE FIRST-MEDIAN TEST. A TRO-SIDED VERSION OF THE CONTROL CHARTS OF THE MEDIAN OF A MOMBAL CHARTS USED TO MAINTAIN CURRENT OPTIMIZATION OF QUALITY CONTROL CHARTS OF THE MEDIAN CONTROL CHARTS AND THE WEIGHTLD DISTRIBUTIONS THE FIRST-MEDIAN					
RADIATION PROCEDURES FOR CURRENTS NUT HA CONTROL APPROXIMATION PROCEDURES FOR USE IN PROCESS CONTROL ASSENTATION PROCEDURE TREATMENT AND CONTROL ASSENTATION PROCEDURE TREATMENT AND CONTROL ASSENTATION PROCESS CONTROL AND THE INTERO SAMPLE SIZE PROCEDURE A COMPARINO SEVERAL EXPERIMENTAL CATEORIES WITH A CONTROL ASSENTATION PROCESS CONTROL AND THE INTERO SAMPLE SIZE PROCEDURE A COMPARINO SEVERAL EXPERIMENTAL CATEORIES WITH A CONTROL ASSENTATION PROCESS CONTROL AND THE INTERO SAMPLE SIZE PROCEDURE A COMPARINO SEVERAL EXPERIMENTAL CATEORIES WITH A CONTROL ASSENTATION PROCESS CONTROL AND THE INTERO TO AUTOMATIC PROCESS CONTROL ASSENTATION PROCESS CONTROL AND THE INTERO TO AUTOMATIC PROCESS CONTROL ASSENTATION PROCESS CONTROL AND THE INTERO TO AUTOMATIC PROCESS CONTROL ASSENTATION PROCESS CONTROL AND THE INTERO TO AUTOMATIC PROCESS CONTROL ASSENTATION PROCESS CONTROL AND THE INTERO TO AUTOMATIC PROCESS CONTROL ASSENTATION PROCESS CONTROL AND THE INTERO TO AUTOMATIC PROCESS CONTROL ASSENTATION PROCESS CONTROL AND THE INTERO TO AUTOMATIC PROCESS CONTROL ASSENTATION PROCESS CONTROL AND THE INTERO TO AUTOMATIC PROCESS CONTROL ASSENTATION PROCESS CONTROL AND THE INTERO TO AUTOMATIC PROCESS CONTROL ASSENTATION PROCESS CONTROL AND THE INTERO TO AUTOMATIC PROCESS CONTROL ASSENTATION PROCESS CONTROL AND THE INTERO TO AUTOMATIC PROCESS CONTROL ASSENTATION PROCESS CONTROL AND THE INTERO TO AUTOMATIC PROCESS CONTROL AUTOMATIC PROCESS CONTROL AUTOMATIC PROCESS CONTROL AUTOMATIC PROCESS CON		ADDROVENA DECLE DO DECORDO	COLUMN		
FOR COMPARING SEVERAL EAPERIMENTAL CATEGORIES WITH A CONTROL STATISTICAL SPECTS OF ADAPTIVE OPTIMIZATION AND CONTROL SERIAL DESIGNS STATISTICAL PROCESS CONTROL SERIAL DESIGNS STATISTICAL PROCESS CONTROL A COMPARISON OF SOME CONTROL CHART FROEDURES A COMPARISON OF SOME CONTROL CHART FROEDURES A SIMPLE THEORETICAL APPROACH TO CUMULATIVE SUM CONTROL CHART STATES BASED ON GEOMETRIC MOVING THE ECONOMIC DESIGN OF CUMULATIVE SUM CONTROL CHART SAND STOCHASTIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE MEDITALITY ON THE WITH WARNING LINES THE PRESENT STATUS OF AUTOMATIC PRODUCTION AND CONTROL CHARTS AND THE MINITALITY ON THE MEDITALITY CONTROL CHARTS TO THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT ON THE MINITALITY ON THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL OF AUTOMATIC PROCESSES (WITH CONTROL OF A	PROCESS CONTROL AND THE IM	PACT OF AUTOMATIC PROCESS	CONTROL	JRSSB65	283
FOR COMPARING SEVERAL EAPERIMENTAL CATEGORIES WITH A CONTROL STATISTICAL SPECTS OF ADAPTIVE OPTIMIZATION AND CONTROL SERIAL DESIGNS STATISTICAL PROCESS CONTROL SERIAL DESIGNS STATISTICAL PROCESS CONTROL A COMPARISON OF SOME CONTROL CHART FROEDURES A COMPARISON OF SOME CONTROL CHART FROEDURES A SIMPLE THEORETICAL APPROACH TO CUMULATIVE SUM CONTROL CHART STATES BASED ON GEOMETRIC MOVING THE ECONOMIC DESIGN OF CUMULATIVE SUM CONTROL CHART SAND STOCHASTIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE MEDITALITY ON THE WITH WARNING LINES THE PRESENT STATUS OF AUTOMATIC PRODUCTION AND CONTROL CHARTS AND THE MINITALITY ON THE MEDITALITY CONTROL CHARTS TO THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT ON THE MINITALITY ON THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL OF AUTOMATIC PROCESSES (WITH CONTROL OF A	RANKING PROCEDU	RES FOR COMPARISON WITH A	CONTROL NONPARAMETRIC	AMS 6B	2075
FOR COMPARING SEVERAL EAPERIMENTAL CATEGORIES WITH A CONTROL STATISTICAL SPECTS OF ADAPTIVE OPTIMIZATION AND CONTROL SERIAL DESIGNS STATISTICAL PROCESS CONTROL SERIAL DESIGNS STATISTICAL PROCESS CONTROL A COMPARISON OF SOME CONTROL CHART FROEDURES A COMPARISON OF SOME CONTROL CHART FROEDURES A SIMPLE THEORETICAL APPROACH TO CUMULATIVE SUM CONTROL CHART STATES BASED ON GEOMETRIC MOVING THE ECONOMIC DESIGN OF CUMULATIVE SUM CONTROL CHART SAND STOCHASTIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE MEDITALITY ON THE WITH WARNING LINES THE PRESENT STATUS OF AUTOMATIC PRODUCTION AND CONTROL CHARTS AND THE MINITALITY ON THE MEDITALITY CONTROL CHARTS TO THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT ON THE MINITALITY ON THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL OF AUTOMATIC PROCESSES (WITH CONTROL OF A	APPROXIMATION PROC	EDURES FOR USE IN PROCESS	CONTROL SOME STOCHASTIC	AMS 64	1136
FOR COMPARING SEVERAL EAPERIMENTAL CATEGORIES WITH A CONTROL STATISTICAL SPECTS OF ADAPTIVE OPTIMIZATION AND CONTROL SERIAL DESIGNS STATISTICAL PROCESS CONTROL SERIAL DESIGNS STATISTICAL PROCESS CONTROL A COMPARISON OF SOME CONTROL CHART FROEDURES A COMPARISON OF SOME CONTROL CHART FROEDURES A SIMPLE THEORETICAL APPROACH TO CUMULATIVE SUM CONTROL CHART STATES BASED ON GEOMETRIC MOVING THE ECONOMIC DESIGN OF CUMULATIVE SUM CONTROL CHART SAND STOCHASTIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE MEDITALITY ON THE WITH WARNING LINES THE PRESENT STATUS OF AUTOMATIC PRODUCTION AND CONTROL CHARTS AND THE MINITALITY ON THE MEDITALITY CONTROL CHARTS TO THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT ON THE MINITALITY ON THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL OF AUTOMATIC PROCESSES (WITH CONTROL OF A	DISTRIBUTIONS IN PROCESS	S START-UPS AND INVENTORY	CONTROL APPLICATIONS OF TRUNCATED	TECH 61	429
FOR COMPARING SEVERAL EAPERIMENTAL CATEGORIES WITH A CONTROL STATISTICAL SPECTS OF ADAPTIVE OPTIMIZATION AND CONTROL SERIAL DESIGNS STATISTICAL PROCESS CONTROL SERIAL DESIGNS STATISTICAL PROCESS CONTROL A COMPARISON OF SOME CONTROL CHART FROEDURES A COMPARISON OF SOME CONTROL CHART FROEDURES A SIMPLE THEORETICAL APPROACH TO CUMULATIVE SUM CONTROL CHART STATES BASED ON GEOMETRIC MOVING THE ECONOMIC DESIGN OF CUMULATIVE SUM CONTROL CHART SAND STOCHASTIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE MEDITALITY ON THE WITH WARNING LINES THE PRESENT STATUS OF AUTOMATIC PRODUCTION AND CONTROL CHARTS AND THE MINITALITY ON THE MEDITALITY CONTROL CHARTS TO THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT ON THE MINITALITY ON THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL OF AUTOMATIC PROCESSES (WITH CONTROL OF A	FREE MULTIPLE COMPARISON PRO	OCEDURE, TREATMENT VERSUS	CONTROL AN ASYMPTOTICALLY DISTRIBUTION—	AMS 66	735
FOR COMPARING SEVERAL EAPERIMENTAL CATEGORIES WITH A CONTROL STATISTICAL SPECTS OF ADAPTIVE OPTIMIZATION AND CONTROL SERIAL DESIGNS STATISTICAL PROCESS CONTROL SERIAL DESIGNS STATISTICAL PROCESS CONTROL A COMPARISON OF SOME CONTROL CHART FROEDURES A COMPARISON OF SOME CONTROL CHART FROEDURES A SIMPLE THEORETICAL APPROACH TO CUMULATIVE SUM CONTROL CHART STATES BASED ON GEOMETRIC MOVING THE ECONOMIC DESIGN OF CUMULATIVE SUM CONTROL CHART SAND STOCHASTIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE MEDITALITY ON THE WITH WARNING LINES THE PRESENT STATUS OF AUTOMATIC PRODUCTION AND CONTROL CHARTS AND THE MINITALITY ON THE MEDITALITY CONTROL CHARTS TO THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL CHARTS AND THE MINITALITY ON THE WEIGHT ON THE MINITALITY ON THE MINITALITY ON THE WEIGHT OF AUTOMATIC PROCESSES (WITH CONTROL OF AUTOMATIC PROCESSES (WITH CONTROL OF A	SEVERAL EXPEDIMENTAL CARRA	CORTES WITH RESPECT TO A	CONTROL ON PARTITIONING A SET OF NORMAL	AMS 69	1300
SERIAL DESIGNATION SEVERAL EXPERIMENTAL CATEGORIES WITH A CONTROL	FOR COMPARING SEVERAL EXPER	IMENTAL CATECORIES WITH A	CONTROL /ASYMPTOTICALLY OPTIMAL SEQUENTIAL DESIGN	AMS 63	1486
SERIAL DESIGN FOR ROUTINE QUALITY CONTROL AND EXPERIMENTATION TROCESS CONTROL AND TEMPORATOR OF JOINT AND EXPERIMENTATION TROCESS CONTROL CHART TEATS BASED ON GEOMETRIC MOVING TECH 59 123 ACRES CONTROL CHART TEATS BASED ON GEOMETRIC MOVING TECH 59 123 ACRES CONTROL CHART TEATS BASED ON GEOMETRIC MOVING TECH 59 123 ACRES CONTROL CHART TEATS BASED ON GEOMETRIC MOVING TECH 59 123 ACRES CONTROL CHART TEATS BASED ON GEOMETRIC MOVING TECH 59 123 ACRES CONTROL CHART TEATS BASED ON GEOMETRIC MOVING TECH 59 123 ACRES CONTROL CHARTS AND STOCHASTIC PROCESSES (WITH JESS) ACRES CONTROL CHARTS AND STOCHASTIC PROCESSES (WITH JESS) ACRES CONTROL CHARTS AND STOCHASTIC PROCESSES (WITH JESS) ACRES CONTROL CHARTS AND THE WITHOUT AND CONTROL CHARTS TORT HE MEAN OF A NORMAL POPULATION THE CONTROL CHARTS AND THE WITHOUT AND CONTROL CHARTS WITH A CONTROL					
AVERAGES					
A COMPARISON OF SOME CONTROL CHART PROCEDURES TECH 66 8. A MADERICE CONTROL CHART TESTS BASED ON GEOMETRIC MOVING 50 82 83 81 81 81 81 81 81 81 81 81 81 81 81 81	SERIAL DES				77
CONTROL CHART TESTS BASED ON CEOMETRIC MOVING					
A MODIFIED CONTROL CHART WITH WARNING LINES 150LOSS 174 ECONOMIC DESIGN OF CUMULATIVE SUM CONTROL CHARTS AND STOCHASTIC PROCESSES (WITH 1528 1528 1528 1528 1528 1528 1528 1528	AVERAGES	A COMPANISON OF SOME			
THE ECONOMIC DESIGN OF CUMULATIVE SUM CONTROL CHARTS AND STOCHASTIC PROCESSES WITH JRSSB69 24		A MODIFIED			
DISCUSSION) CUMULATIVE SUM CONTROL CHARTS AND THE MINIMIZATION OF COSTS (WITH A JRSSBS) 2.4 CONTROL CHARTS AND THE MINIMIZATION OF COSTS (WITH A JRSSBS) 2.4 CONTROL CHARTS AND THE METBULL DISTRIBUTION TO COSTS (WITH A JRSSBS) 2.4 CONTROL CHARTS FOR THE MEBBULL DISTRIBUTION TO A JRSSBS 1.4 THE PRESENT STATUS OF AUTOMATIC PRODUCTION AND CONTROL CHARTS WITH WARNING LINES MULTIPLE COMPARISIONS WITH A CONTROL DEVICES AND EXPECTED FUTURE DEVELOPMENTS TECH 6.6 OPTIMIZATION OF QUALITY CONTROL TO RELATED VARIANCES OF NORMAL PROPULATION OF THE CONTROL TO RELATED VARIANCES OF NORMAL TECH 6.5 THE FIRST-MEDIAN TEST. A TWO-SIDED VERSION OF THE CONTROL MEDIAN TEST. TABLES FOR A TREATMENTS VERSUS CONTROL MULTIPLE COMPARISONS SION TEST BLOCK DESIGNS THE USE OF ATTESTICAL CONTROL DEVICES AND EXPECTED FUTURE DEVELOPMENTS THE USE OF RANDOM ALLOCATION FOR THE CONTROL OF A CAUSSIAN PROCESS THE USE OF CANDOM ALLOCATION FOR THE CONTROL OF A CAUSSIAN PROCESS THE USE OF RANDOM ALLOCATION FOR THE CONTROL OF A CAUSSIAN PROCESS THE USE OF RANDOM ALLOCATION FOR THE CONTROL OF A CAUSSIAN PROCESS THE USE OF RANDOM ALLOCATION FOR THE CONTROL OF A CAUSSIAN PROCESS THE USE OF RANDOM ALLOCATION FOR THE CONTROL OF A CAUSSIAN PROCESS THE USE OF RANDOM ALLOCATION FOR THE CONTROL OF A CAUSSIAN PROCESS THE USE OF RANDOM ALLOCATION FOR THE CONTROL OF A CAUSSIAN PROCESS THE USE OF RANDOM ALLOCATION FOR THE CONTROL OF A CAUSSIAN PROCESS THE USE OF RANDOM ALLOCATION FOR THE CONTROL OF PRECENTAGES IN BOTH TAILS OF THE NORMAL TECH 6.6 THE USE OF RANDOM ALLOCATION FOR THE CONTROL OF COUNTROL OF COUNTR					
CONTROL CHARTS AND THE MINIMIZATION OF COSTS (WITH MSSB65 ALL ALL MAN ALL MA		DESIGN OF CUMULATIVE SUM			
CUMULATIVE SUM CONTROL CHARTS AND THE WEIDBULD INSTRIBUTION JRSSB\$4 13. THE PRESENT STATUS OF AUTOMATIC PRODUCTION AND CONTROL CHARTS FOR THE MEAN OF A NORMAL POPULATION JRSSB\$5 24. THE PRESENT STATUS OF AUTOMATIC PRODUCTION AND CONTROL DEVICED PUTUME DEVELOPMENTS TECH 66 27. POPULATIONS MULTIPLE COMPARISONS WITH A CONTROL DIVERGES AND EXPECTED PUTUME DEVELOPMENTS TECH 66 7. THE FIRST-MEDIAN TEST. A TWO-SIDED VERSION OF THE CONTROL IN THE CHEMICAL LABORATORY TECH 66 5.1 THE FIRST-MEDIAN TEST. A TWO-SIDED VERSION OF THE CONTROL MEDIAN TEST TECH 67 9.5 BLOCK DESIGNS THE USE OF CONTROL MEDIAN TEST TECH 68 7.1 BLOCK DESIGNS THE USE OF CONTROL MULTIPLE COMPARISONS SION TEST TECH 69 7.5 BLOCK DESIGNS THE USE OF CONTROL DESIGNS OF THE MEDIAN TEST TECH 69 7.5 BLOCK DESIGNS THE USE OF CONTROL DESIGNS OF THE MEDIAN TEST TECH 69 7.5 BLOCK DESIGNS THE USE OF CONTROL DESIGNS TO THE MEDIAN TEST TECH 69 7.5 BLOCK DESIGNS THE USE OF CONTROL DESIGNS OF THE MEDIAN TEST TECH 69 7.5 BLOCK DESIGNS THE USE OF CONTROL OF A CAUSSIAN PROCESS THE ECONOMIC JASA 68 62.2 BLOCK DESIGNS THE USE OF CONTROL OF A CAUSSIAN PROCESS THE ECONOMIC JASA 68 62.2 BLOCK DESIGNS THE USE OF CONTROL OF A CAUSSIAN PROCESS THE ECONOMIC JASA 68 62.2 BLOCK DESIGNS THE USE OF CONTROL OF A CAUSSIAN PROCESS THE ECONOMIC JASA 68 62.2 BLOCK DESIGNS THE USE OF CONTROL OF A CAUSSIAN PROCESS THE ECONOMIC JASA 56 62.2 BLOCK DESIGNS THE USE OF CONTROL OF A CAUSSIAN PROCESS THE ECONOMIC JASA 56 62.2 BLOCK DESIGNS THE USE OF CONTROL OF THE CONTROL OF A PROCESS THE ECONOMIC JASA 56 62.2 BLOCK DESIGNS THE USE OF CONTROL OF THE CONTROL OF A PROCESS THE ECONOMIC THE PROPERTIES OF THE MEDIAN TOWN TOWN THE CONTROL OF COUNTROL PROCESSES THE ECONOMIC THE PROPERTIES OF THE MEDIAN THE PROPERTIES OF THE MEDI					
CONTROL CHARTS FOR THE MEAN OF A NORMAL POPULATION JRSSB5 13. THE PRESENT STATUS OF AUTOMATIC PRODUCTION AND CONTROL DEVICES AND EXPECTED FUTURE DEVELOPMENTS TECH 66 7. POPULATIONS MULTIPLE COMPARISIONS WITH A CONTROL IN BALANCED INCOMPLETE BLOCK DESIGNS TECH 61 7. MULTIPLE COMPARISIONS WITH A CONTROL IN BALANCED INCOMPLETE BLOCK DESIGNS TECH 61 7. THE FIRST-MEDIAN TEST. A TWO-SIDED VERSION OF THE CONTROL IN THE CHEMICAL LABORATORY TECH 66 7. THE FIRST-MEDIAN TEST. A TWO-SIDED VERSION OF THE CONTROL MINITIPLY CLASSIFIED VARIANCES OF NORMAL TECH 68 7. TABLES FOR A TREATMENTS VERSUS CONTROL MULTIPLY COMPARISONS SIGN TEST TECH 65 79. BLOCK DESIGNS THE USE OF CONTROL OF CONTROL METHODS FOR SEVERAL RELATED VARIABLES TECH 59 75. BLOCK DESIGNS THE USE OF CONTROL OF A CAUSSIAN PROCESS TECH 65 79. STATISTICAL CONTROL OF A CAUSSIAN PROCESS THE CONTROL OF A CAUSSIAN PROCESS THE CONTROL OF A PROCESS THE CONTROL OF CONTROL OF COUNTING EXPERIMENTS OF THE NORMAL TECH 64 72. DISTRIBUTIONS STATISTICAL CONTROL OF COUNTING EXPERIMENTS THE NORMAL TECH 64 72. DISTRIBUTIONS SAMPLING FOR A PROCESS THE CONTROL OF COUNTROL OF COUNTING EXPERIMENTS THE NORMAL TECH 64 72. CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL TECH 64 72. THE USE OF RANDOM ALLOCATION FOR THE CONTROL OF COUNTROL FOR COUNTROL OF COUNT	D13C03S10N)	CHMILLATIVE SUM			
THE PRESENT STATUS OF AUTOMATIC PRODUCTION AND CONTROL DEVICES AND EXPECTED FUTURE DEVELOPMENTS TECH 66 7.19 POPULATIONS MULTIPLE COMPARISIONS WITH A CONTROL FOR MULTIPLY-CLASSIFIED VARIANCES OF NORMAL TECH 67 7.19 MULTIPLE COMPARISIONS WITH A CONTROL IN BALANCED INCOMPLETE BLOCK DESIGNS TECH 66 7.19 THE FIRST-MEDIAN TEST. A TWO-SIDED VERSION OF THE CONTROL METHODS FOR SEVERAL RELATED VARIABLES TECH 65 7.19 TABLES FOR A TREATMENTS VERSUS CONTROL MULTIPLE COMPARISONS SIGN TEST TECH 66 7.19 BLOCK DESIGNS THE USE OF CONTROL METHODS FOR SEVERAL RELATED VARIABLES TECH 65 7.19 BLOCK DESIGNS THE USE OF CONTROL OF A GAUSSIAN PROCESS THE ECONOMIC JASS 56 86 80.20 STOCHASTIC INPUT ON THE LINEAR CONTROL OF A LINEAR SYSTEM HAVING A NORMAL STATIONARY JASS 56 2.21 DESIGN OF MEAN CHARTS USED TO MAINTAIN CURRENT CONTROL OF A LINEAR SYSTEM HAVING A NORMAL STATIONARY JASS 56 2.21 DISTRIBUTION STATISTICAL CONTROL OF CAPSULES, TABLETS, AND STERILE SOLIDS THE ECONOMIC JASA 56 8.21 DISTRIBUTIONS ERRATA, CONTROL OF CAPSULES, TABLETS, AND STERILE SOLIDS THE BOOKAL TECH 69 1.61 CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL SIGKAS 90.21 DISTRIBUTIONS ERRATA, CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL TECH 69 1.22 CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL SIGKAS 90.22 THE USE OF RANDOM ALLOCATION FOR THE CONTROL OF SELECTION BIAS BOTH TAILS OF THE NORMAL SIGKAS 90.22 CORRIGENDA, SOME PROPERTIES OF RUNS IN QUALITY CONTROL PROCESSES WE SHOULD BE SOLD TO MEMORYLESS RULES FOR CONTROLLING SEQUENTIAL CONTROL PROCESSES BOTH TAILS OF THE NORMAL SIGKAS 90.22 NOTE ON MEMORYLESS RULES FOR CONTROLLING SEQUENTIAL CONTROL PROCESSES BOTH TAILS OF THE NORMAL SIGKAS 90.22 AN APPLICATION OF MULTIVARIATE QUALITY CONTROL PROCESSES BOTH TAILS OF THE NORMAL SIGKAS 90.22 AN APPLICATION OF MULTIVARIATE QUALITY CONTROL PROCESSES BOTH TAILS OF THE NORMAL SIGKAS 90.22 AND APPLICATION OF MULTIVARIATE QUALITY CONTROL PROCESSES BOTH TAILS OF THE NORMAL SIGKAS 90.22 AND APPLICATION OF MULTIVARIATE QUALITY CONTROL PROCESSES BOTH TAILS OF THE		COMODNITY BOM			
POPULATIONS					
MULTIPLE COMPARISIONS WITH A CONTROL IN BALANCED INCOMPLETE BLOCK DESICNS TECH 61 10.0 POPTIMIZATION OF QUALITY CONTROL IN THE CHEMICAL LABORATORY TECH 66 57. THE FIRST-MEDIAN TEST. A TWO-SIDED VERSION OF THE CONTROL METHODS FOR SEVERAL RELATED VARIABLES. TECH 65 9. SET 10.0 POPTIMIZATION OF QUALITY CONTROL METHODS FOR SEVERAL RELATED VARIABLES. TECH 65 9. SET 10.0 POPTIMIZATION OF THE USE OF CONTROL METHODS FOR SEVERAL RELATED VARIABLES. TECH 65 9. SET 10.0 POPTIMIZATION OF A CONTROL MULTIPLE COMPARISONS SIGN TEST TECH 65 9. SET 10.0 POPTIMIZATION OF A GAUSSIAN PROCESS. THE ECONOMIC JASS 66 9. SET 10.0 POPTIMIZATION OF A GAUSSIAN PROCESS. THE ECONOMIC JASS 66 9. SET 10.0 POPTIMIZATION OF A GAUSSIAN PROCESS. THE ECONOMIC JASS 66 9. SET 10.0 POPTIMIZATION OF A GAUSSIAN PROCESS. THE ECONOMIC JASS 66 9. SET 10.0 POPTIMIZATION OF A GAUSSIAN PROCESS. THE ECONOMIC JASS 66 9. SET 10.0 POPTIMIZATION OF A GAUSSIAN PROCESS. THE ECONOMIC JASS 66 9. SET 10.0 POPTIMIZATION OF CONTROL OF CAPSULES, TABLETS, AND STERILE SOLIDS. TECH 69 12. SET 10.0 POPTIMIZATION OF CONTROL OF CAPSULES, TABLETS, AND STERILE SOLIDS. TECH 69 12. SET 10.0 POPTIMIZATION OF CONTROL OF PROCEDURES. TABLETS, AND STERILE SOLIDS. THE NORMAL JECH 66 57. SET 10.0 POPTIMIZATION OF CONTROL OF PROCEDURES. TABLETS, AND STERILE SOLIDS. TECH 69 12. SET 10.0 POPTIMIZATION OF CONTROL OF PROCEDURES. SET 10.0 POPTIMIZATION OF MULTIPLE CONTROL OF SELECTION BIAS. SET 10.0 POPTIMIZATION OF MULTIPLE CONTROL OF SELECTION BIAS. SET 10.0 POPTIMIZATION OF MULTIPLE CONTROL OF SELECTION BIAS. SET 10.0 POPTIMIZATION OF MULTIPLE CHART QUALITY CONTROL PROCESSES. SET 10.0 POPTIMIZATION OF MULTIPLE CHART QUALITY CONTROL PROCESSES. SET 10.0 POPTIMIZATION OF MULTIPLE CONTROL PROCESSES. SET 10.0 POPTIMIZATION OF MULTIPLE CHART QUALITY CONTROL PROCESSES. SET 10.0 POPTIMIZATION OF MULTIPLE CONTROL PROCESSES. SET 10.0 POPTIMIZA					73
OPTIMIZATION OF QUALITY CONTROL MEDIAN TEST THE FIRST-MEDIAN TEST. A TWO-SIDED VERSION OF THE CONTROL MEDIAN TEST QUALITY CONTROL MEDIAN TEST TABLES FOR A TREATMENTS VERSUS CONTROL MULTIPLE COMPARISONS SION TEST TECH 59 35 BLOCK DESIGNS TABLES FOR A TREATMENTS VERSUS CONTROL MULTIPLE COMPARISONS SION TEST TECH 65 29 BLOCK DESIGNS STATISTICAL CONTROL OF A GAUSSIAN PROCESS STATISTICAL CONTROL OF A GAUSSIAN PROCESS THE USE OF CONTROL OF A LINEAR SYSTEM HAVING A NORMAL STATIONARY INSEGE 8 FILL WEIGHT VARIATION RELEASE AND CONTROL OF A PROCESS THE COONTROL OF A PROCESS THE CONTROL OF CONTROL OF A CAPSULES, AND STRILE SOLIDS TECH 69 29 THE USE OF RANDOM ALLOCATION FOR THE CONTROL OF FROENTAGES IN BOTH TAILS OF THE NORMAL THE CONTROL OF GUALITY OF CODING IN THE 1960 CENSUSES CORRIGENDA, SOME PROPERTIES OF RUNS IN QUALITY CONTROL OF FROENTAGES IN BOTH TAILS OF THE NORMAL THE CONTROL OF GUALITY OF CODING IN THE 1960 CENSUSES CORRIGENDA, SOME PROPERTIES OF RUNS IN QUALITY CONTROL PROCEDURES CONTROL OF PROCEDURES CONTROL OF COUNTROL OF CONTROL OF CONTR					
THE FIRST-MEDIAN TEST. A TWO-SIDED VERSION OF THE CONTROL MEDIAN TEST QUALITY CONTROL MEDIAN TEST SEVERAL RELATED VARIABLES TABLES FOR A TREATMENTS VERSUS CONTROL MULTIPLE COMPARISONS SIGN TEST THE USE OF CONTROL MULTIPLE COMPARISONS SIGN TEST TECH 59 35 BLOCK DESIGNS THE USE OF CONTROL MULTIPLE COMPARISONS SIGN TEST TECH 69 29 STOCHASTIC INPUT ON THE LINEAR CONTROL OF A GAUSSIAN PROCESS TECH 67 22 STOCHASTIC INPUT ON THE LINEAR CONTROL OF A CAUSSIAN PROCESS TELL WEIGHT VARIATION RELEASE AND CONTROL OF A CAUSSIAN PROCESS TELL WEIGHT VARIATION RELEASE AND CONTROL OF A CHEENER STATEM HAVING A NORMAL STATIONARY JRSSEGS 48 DESIGN OF MEAN CHARTS USED TO MAINTAIN CURRENT CONTROL OF A CONTROL OF COUNTING EXPERIMENTS DISTRIBUTION STATISTICAL CONTROL OF COUNTING EXPERIMENTS DISTRIBUTIONS CONTROL OF PROCEDURES AND STERILE SOLIDS THE COONTROL OF PROCEDURES IN BOTH TAILS OF THE NORMAL TECH 64 37 CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL TECH 64 37 CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL TECH 64 37 CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL TECH 64 37 CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL TECH 64 37 CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL TECH 64 37 CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL TECH 64 37 CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL TECH 64 37 CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL TECH 64 37 CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL TECH 64 37 CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL TECH 64 37 CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL TECH 64 37 CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL TECH 64 37 AND APPLICATION OF MULTIVARIATE QUALITY CONTROL PROCESSES ON SEQUENTIAL CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL TECH 64 37 AND APPLICATION OF MULTIVARIATE QUALITY CONTROL PROCESSES ON SEQUENTIAL CONTROL PROCESSES ON SEQUENTIAL CONTROL PROCESSES ON SEQUENTIAL CONTROL PROCESSES A AMS 66 27 AVERAGE RUN LENGTHS IN CUMULATIVE CHART QUALITY CONTROL PROCESSES	MOD.				519
BLOCK DESIGNS THE USE OF CONTROL OBSERVATIONS SIGN TEST BLOCK DESIGNS THE USE OF CONTROL OBSERVATIONS AS AN ALTERNATIVE TO INCOMPLETE JRSS65 25. STOCHASTIC INPUT ON THE LINEAR CONTROL OF A GAUSSIAN PROCESS THE ECONOMIC JRSS66 25. DESIGN OF MEAN CHARTS USED TO MAINTAIN CURRENT CONTROL OF A LINEAR SYSTEM HAVING A NORMAL STATIONARY JRSS66 35. DESIGN OF MEAN CHARTS USED TO MAINTAIN CURRENT CONTROL OF A LINEAR SYSTEM HAVING A NORMAL STATIONARY JRSS66 35. FILL WEIGHT VARIATION RELEASE AND CONTROL OF CAPSULES, TABLETS, AND STERILE SOLIDS TECH 69 12. DISTRIBUTION CONTROL OF COUNTING EXPERIMENTS 15. DISTRIBUTIONS CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 64 57. CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 64 57. CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 64 57. CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 64 57. CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 64 57. CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 64 57. CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 64 57. CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 64 57. CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 64 57. CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 64 57. CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 64 57. CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 64 57. CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 64 57. CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 64 57. CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 64 57. CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 64 57. CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 64 57. CONTROL TO MEMORYLES AND THE 1960 CENSUS SERVED TECH 64 57. CONTROL TO MEMORYLES AND THE 1960 CENSUS SERVED TECH 64 57. CONTROL TO MEMORYLES AND THE 1960 CENSUS SERVED TECH 64 57. CONTROL TO MEMORYLES AND THE 1960 CENSUS SERVED TECH 64 57. CONTROL TO MEMORY SAMPLING TO CONTROL TECH 75. CONTROL TO MEMORY SAMPLING TO THE NORMAL TECH 64	THE FIRST-MEDIAN TEST. A		CONTROL MEDIAN TEST		692
STOCHASTIC INPUT ON THE USE OF CONTROL OBSERVATIONS AS AN ALTERNATIVE TO INCOMPLETE STATISTICAL CONTROL OF A GAUSSIAN PROCESS TECH 67 25 25 25 25 25 25 25 25 25 25 25 25 25					
STATISTICAL CONTROL OF A GAUSSIAN PROCESS STOCKASTIC INPUT ON THE LINEAR CONTROL OF A LINEAR SYSTEM HAVING A NORMAL STATIONARY JRSS 86 220 22 22 22 22 22 22 22 22 22 22 22 22					
STOCHASTIC INPUT ON THE LINEAR CONTROL OF A LINEAR SYSTEM HAVING A NORMAL STATIONARY JRSSB68 DESIGN OF MEAN CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS THE ECONOMIC JASA 56 20 16 16 16 16 16 16 16 16 16 16 16 16 16	BLOCK DESIGNS				29
DESIGN OF MEAN CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS THE ECONOMIC JASA 56 226 FILL WEIGHT VARIATION RELEASE AND CONTROL OF CAPSULES, TABLETS, AND STERILE SOLIDS TECH 69 16. STATISTICAL CONTROL OF COUNTING EXPERIMENTS BIOKASE 418 DISTRIBUTIONS' ERRATA, 'CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 64 377 CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 66 577 CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 66 577 CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 66 577 CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 66 577 CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 66 577 CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 66 577 CONTROL OF SELECTION BIAS BIOKASE 418 BIOKASE 434 CONTROL PROCESSES BIOKASE 88 NOTE ON MEMORYLESS RULES FOR CONTROLLING SEQUENTIAL CONTROL PROCESSES AND APPLICATION OF MULTIVARIATE QUALITY CONTROL SYSTEMS BASED ON INACCURATELY MEASURED BIOKASE 479 VARIABLES QUALITY CONTROL SYSTEMS BASED ON INACCURATELY MEASURED BIOKASE 479 LARGE-SAMPLE COVARIANCE ANALYSIS WHEN THE CONTROL VARIABLE IS FALLIBLE AND SAMPLING WITH CONTROL VARIABLE IS FALLIBLE BASED ON SAMPLING FROM A RANDOMIS BIOKASE 439 USE OF RANDOM WORK SAMPLING FOR COST ANALYSIS WHEN THE CONTROL VARIABLE IS FALLIBLE BASED ON SAMPLING FROM A RANDOMIS BIOKASE 439 USE OF RANDOM WORK SAMPLING FOR COST ANALYSIS WHEN THE CONTROL VARIABLE IS FALLIBLE BASED ON SAMPLING FROM A RANDOMIS BIOKASE 439 USE OF RANDOM WORK SAMPLING FOR COST ANALYSIS WHEN THE CONTROL VARIABLE IS FALLIBLE BASED ON SAMPLING FROM A RANDOMIS BIOKASE 439 USE OF RANDOM WORK SAMPLING FOR COST ANALYSIS WHEN THE CONTROL VARIABLE IS FALLIBLE BASED ON SAMPLING FROM A RANDOMIS BIOKASE 439 USE OF RANDOM WORK SAMPLING FOR COST ANALYSIS WHEN THE CONTROL VARIABLE IS FALLIBLE BASED ON SAMPLING FROM A RANDOMIS BIOKASE 439 USE OF RANDOM WORK SAMPLING FOR COST ANALYSIS	STOCHASTIC INPUT				3B1
DISTRIBUTION ERRATA, 'CONTROL OF COUNTING EXPERIMENTS BIOKAS 412 CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 64 377 CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 64 377 CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 64 377 CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 64 377 CONTROL OF QUALITY OF CODING IN THE 1960 CENSUSES JASA 64 120 CONTROL OF QUALITY OF CODING IN THE 1960 CENSUSES JASA 64 120 CONTROL OF QUALITY OF CODING IN THE 1960 CENSUSES JASA 64 120 CONTROL OF QUALITY OF CODING IN THE 1960 CENSUSES JASA 64 120 CONTROL OF QUALITY OF CODING IN THE 1960 CENSUSES JASA 64 120 CONTROL PROCEDURES BIOKAS9 120 CORRIGENDA, SOME PROPERTIES OF RUNS IN QUALITY CONTROL PROCEDURES BIOKAS9 120 CONTROL PROCEDURES BIOKAS9 120 CONTROL PROCESSES A AMS 64 34 CONTROL PROCESSES	DESIGN OF MEAN CHARTS	USED TO MAINTAIN CURRENT	CONTROL OF A PROCESS THE ECONOMIC	JASA 56	228
DISTRIBUTION CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL TECH 64 377 DISTRIBUTIONS' ERRATA, 'CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL TECH 66 577 CONTROL OF QUALITY OF CODING IN THE 1960 CENSUSES JASA 64 120 THE USE OF RANDOM ALLOCATION FOR THE CONTROL OF QUALITY OF CODING IN THE 1960 CENSUSES JASA 64 120 SOME PROPERTIES OF RUNS IN QUALITY CONTROL PROCEDURES BIOKAS9 NO. SEQUENTIAL CONTROL OF SELECTION BIAS BIOKAS9 NO. SEQUENTIAL CONTROL PROCEDURES BIOKAS9 NO. SEQUENTIAL CONTROL PROCESSES AVERAGE RUN LENGTHS IN CUMULATIVE CHART QUALITY CONTROL PROCESSES TECH A PARK 64 34 AMS 66 276 AVERAGE RUN LENGTHS IN CUMULATIVE CHART QUALITY CONTROL SCHEMES TECH 61 11 AMS 66 276 AN APPLICATION OF MULTIVARIATE QUALITY CONTROL SYSTEMS BASED ON INACCURATELY MEASURED BIOKAS1 470 ED BLOCK EXPERIMENT WITH ADDITIONAL REPLICATION OF A CONTROL TREATMENT /IONS ARE MISSING FROM A RANDOMIS BIOCS66 630 LARGE-SAMPLE COVARIANCE ANALYSIS WHEN THE CONTROL VARIABLE IS FALLIBLE JASA 60 300 SAMPLING WITH CONTROL VARIABLE IS FALLIBLE JASA 60 300 SAMPLING WITH CONTROL VARIABLE IS FALLIBLE JASA 60 300 SAMPLING WITH CONTROL VARIABLE IS FURTHER COMMENTS ON THE JASA 58 360 'FINAL REPORT OF THE ADVISORY COMMITTEE ON WEATHER CONTROL VARIABLE IS FURTHER COMMENTS ON THE JASA 58 360 'FINAL REPORT OF THE ADVISORY COMMITTEE ON WEATHER CONTROLL ORR. 58 1031 THE JASA 59 136 EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED CLINICAL TRIAL JASA 60 300 AL PROJECTING PROPERTIES OF MULTI-TERM PREDICTORS OR CONTROLLED. CONTROLLED. CONTROLLED. JASA 60 300 ALTOMATIC RESET DEVICE CONTROLLED CONTROLLED CLINICAL TRIAL CONTROLLED SIN NON-STATIONARY TIME SERIES POLYNOMI JRSS 65 144 AUTOMATIC RESET DEVICE CONTROLLING THE PROPORTION DEFECTIVE FROM CLASSIFICAT TECH 64 99 WARNING LINES CONTROLLING THE PROPORTION DEFECTIVE FROM CLASSIFICAT TECH 64 99 WARNING LINES CONTROLLING THE PROPORTION DEFECTIVE FROM CLASSIFICAT TECH 64 99 WARNING LINES CONTROLLING THE PROPORTION DEFECTIVE FROM CLASSIFICAT TECH 64 99 WARNING LINES CONTROLLING THE PROPORTION D	FILL WEI				161
DISTRIBUTIONS' ERRATA, 'CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL CONTROL OF CONTROL OF QUALITY OF CODING IN THE 1960 CENSUSES JASA 64 122 CONTROL OF QUALITY OF CODING IN THE 1960 CENSUSES JASA 64 122 CONTROL OF SELECTION BIAS SOME PROPERTIES OF RUNS IN QUALITY CONTROL PROCEDURES SOME PROPERTIES OF RUNS IN QUALITY CONTROL PROCEDURES ON SEQUENTIAL CONTROL PROCEDURES NOTE ON MEMORYLESS RULES FOR CONTROLLING SEQUENTIAL CONTROL PROCESSES AVERAGE RUN LENGTHS IN CUMULATIVE CHART QUALITY CONTROL SCHEMES AVERAGE RUN LENGTHS IN CUMULATIVE CHART QUALITY CONTROL SCHEMES AN APPLICATION OF MULTIVARIATE QUALITY CONTROL SYSTEMS BASED ON INACCURATELY MEASURED ED BLOCK EXPERIMENT WITH ADDITIONAL REPLICATION OF A CONTROL TREATMENT /IONS ARE MISSING FROM A RANDOMIS BIOCS66 633 LARGE-SAMPLE COVARIANCE ANALYSIS WHEN THE CONTROL TREATMENT /IONS ARE MISSING FROM A RANDOMIS BIOCS66 633 'FINAL REPORT OF THE ADVISORY COMMITTEE ON WEATHER CONTROL VARIABLES IS FALLIBLE USE OF RANDOM WORK SAMPLING FOR COST ANALYSIS AND CONTROL CORR. 58 1031 THE JASA 58 362 'FINAL REPORT OF THE ADVISORY COMMITTEE ON WEATHER CONTROLL OF CORR. 58 1031 THE JASA 58 362 'FINAL REPORT OF THE ADVISORY COMMITTEE ON WEATHER CONTROLLED CONTROL TREATMENT /IONS ARE MISSING FROM A RANDOMIS JASA 69 133 EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED CLINICAL TRIAL EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED CLINICAL TRIAL EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED CLINICAL TRIAL EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED CLINICAL TRIAL EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED CLINICAL TRIAL CONTROLLING THE PROPORTION DEFECTIVE FROM CLASSIFICAT TECH 69 130 AUTOMATIC RESET DEVICE CONTROLLING THE PROPORTION DEFECTIVE FROM CLASSIFICAT TECH 69 130 AUTOMATIC RESET DEVICE CONTROLLING THE PROPORTION DEFECTIVE FROM CLASSIFICAT TECH 69 130 CONTROLLING THE STANDARD DEVIATION BY CUSUMS AND TECH 69 130 TECH 61 121 TECH 61 121 TECH 61 121 TECH 62 121 TECH 61 121	DISTRIBUTION	STATISTICAL			
THE USE OF RANDOM ALLOCATION FOR THE CONTROL OF QUALITY OF CODING IN THE 1960 CENSUSES SOME PROPERTIES OF RUNS IN QUALITY CONTROL PROCEDURES CORRIGENDA, SOME PROPERTIES OF RUNS IN QUALITY CONTROL PROCEDURES ON SEQUENTIAL CONTROL PROCEDURES NOTE ON MEMORYLESS RULES FOR CONTROLLING SEQUENTIAL AVERAGE RUN LENGTHS IN CUMULATIVE CHART QUALITY VARIABLES AN APPLICATION OF MULTIVARIATE QUALITY CONTROL SYSTEMS BASED ON INACCURATELY MEASURED AN APPLICATION OF MULTIVARIATE QUALITY CONTROL SYSTEMS BASED ON INACCURATELY MEASURED BIOKASS TECH 61 11 12 13 14 15 15 16 16 17 17 18 16 17 18 18 18 10 18 10 18 16 18 10 18 18 18 18 18 18 18 18 18 18 18 18 18		ERRATA.			570
THE USE OF RANDOM ALLOCATION FOR THE CONTROL OF SELECTION BIAS SOME PROPERTIES OF RUNS IN QUALITY CONTROL PROCEDURES ON SEQUENTIAL CONTROL PROCESSES NOTE ON MEMORYLESS RULES FOR CONTROLLING SEQUENTIAL CONTROL PROCESSES A APPLICATION OF MULTIVARIATE QUALITY CONTROL SYSTEMS BASED ON INACCURATELY MEASURED AN APPLICATION OF MULTIVARIATE QUALITY CONTROL SYSTEMS BASED ON INACCURATELY MEASURED AN APPLICATION OF MULTIVARIATE QUALITY CONTROL SYSTEMS BASED ON INACCURATELY MEASURED BIOKA59 273 CONTROL SYSTEMS BASED ON INACCURATELY MEASURED AN APPLICATION OF MULTIVARIATE QUALITY CONTROL SYSTEMS BASED ON INACCURATELY MEASURED BIOKA50 472 CONTROL SYSTEMS BASED ON INACCURATELY MEASURED BIOKA51 472 CONTROL TREATMENT /IONS ARE MISSING FROM A RANDOMS BIOCS 663 LARGE-SAMPLE COVARIANCE ANALYSIS WHEN THE CONTROL VARIABLES USE OF RANDOM WORK SAMPLING FOR COST ANALYSIS AND CONTROL VARIABLES USE OF RANDOM WORK SAMPLING FOR COST ANALYSIS AND CONTROL VARIABLES SAMPLING WITH CONTROL VARIABLES CONTROLL ONTROL FROM STAIL THE COMMENTS ON THE JASA 58 382 'FINAL REPORT OF THE ADVISORY COMMITTEE ON WEATHER CONTROL' FUTTING STRAIGHT LINES WHEN ONE VARIABLE IS CONTROLLED CLINICAL TRIAL PLAY THE WINNER RULE AND THE CONTROLLED CLINICAL TRIAL EXPERIMENTS WHEN THE LEVELS OF SIMMLUS CANNOT BE CONTROLLED, CORR. 56 650 ANALYSIS OF SENSITIVITY JASA 56 257 AL PROJECTING PROPERTIES OF MULTI-TERM PREDICTORS OR CONTROLLED, CORR. 56 650 ANALYSIS OF SENSITIVITY JASA 56 257 AL PROJECTING PROPERTIES OF MULTI-TERM PREDICTORS OR CONTROLLED, CORR. 56 650 ANALYSIS OF SENSITIVITY JASA 56 257 AL PROJECTING PROPERTIES OF MULTI-TERM PREDICTORS OR CONTROLLED, CORR. 56 650 ANALYSIS OF SENSITIVITY JASA 56 257 AL PROJECTING PROPERTIES OF MULTI-TERM PREDICTORS OR CONTROLLED, CORR. 56 650 ANALYSIS OF SENSITIVITY JASA 56 257 AL PROJECTING PROPERTIES OF MULTI-TERM PREDICTORS OR CONTROLLED, CORR. 56 650 ANALYSIS OF SENSITIVITY JASA 56 257 AL PROJECTING PROPERTIES OF MULTI-TERM PREDICTORS OR CONTROLLED, CORR. 56 650 ANALYSIS OF SENSITIVITY JASA 56 257			CONTROL OF QUALITY OF CODING IN THE 1960 CENSUSES	JASA 64	
CORRIGENDA, SOME PROPERTIES OF RUNS IN QUALITY CONTROL PROCEDURES BIOKASS 275 ON SEQUENTIAL CONTROL PROCESSES AMAS 64 34 NOTE ON MEMORYLES RULES FOR CONTROLLING SEQUENTIAL CONTROL PROCESSES AMAS 66 275 AVERAGE RUN LENGTHS IN CUMULATIVE CHART QUALITY CONTROL SCHEMES VARIABLES QUALITY CONTROL SCHEMES AN APPLICATION OF MULTIVARIATE QUALITY CONTROL SYSTEMS BASED ON INACCURATELY MEASURED BIOKASI 475 ED BLOCK EXPERIMENT WITH ADDITIONAL REPLICATION OF A CONTROL TO PHOTOGRAPHIC PROCESSING LARGE-SAMPLE COVARIANCE ANALYSIS WHEN THE CONTROL TREATMENT /IONS ARE MISSING FROM A RANDOMIS BIOCASE AMAPLING WITH CONTROL VARIABLES BASED ON INACCURATELY MEASURED BIOKASI 475 CONTROL TREATMENT /IONS ARE MISSING FROM A RANDOMIS BIOCASE 66 630 AMANUAL TREATMENT /IONS ARE MISSING FROM A RANDOMIS BIOCASE 66 630 SAMPLING WITH CONTROL VARIABLES IS FALLIBLE BIOKASI 475 CONTROL VARIABLES IS FALLIBLE BIOKASI 475 CONTROL VARIABLES IN STALLBLE IS FALLIBLE BIOKASI 475 CONTROL VARIABLES IN STALLBLE IN THE LASA 575 CONTROLLED CONTROLLED JASA 58 105 AL PROJECTING PROPERTIES OF MULTI-TERM PREDICTORS OR CONTROLLED CLINICAL TRIAL EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED CLINICAL TRIAL EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED CLINICAL TRIAL EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED CLINICAL TRIAL EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED CLINICAL TRIAL EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED CLINICAL TRIAL EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED CLINICAL TRIAL EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED CLINICAL TRIAL EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED CLINICAL TRIAL EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED CLINICAL TRIAL EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED CLINICAL TRIAL EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED CLINICAL TRIAL EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED CLINICAL TRIAL					
NOTE ON MEMORYLESS RULES FOR CONTROLLING SEQUENTIAL CONTROL PROCESSES A AMS 64 24 AMS 66 27 AVERAGE RUN LENGTHS IN CUMULATIVE CHART QUALITY CONTROL SYSTEMS BASED ON INACCURATELY MEASURED BIOKASI 47 AMS 67 27 AMS 68 27 AMS 68 27 AMS 68 27 AMS 68 27 AMS 69 2					
NOTE ON MEMORYLESS RULES FOR CONTROLLING SEQUENTIAL CONTROL PROCESSES A VERAGE RUN LENGTHS IN CUMULATIVE CHART QUALITY CONTROL SCHEMES TECH 61 12 12 12 12 12 12 12 12 12 12 12 12 12	CORKIGENDA, SOME PROPI				
AVERAGE RUN LENGTHS IN CUMULATIVE CHART QUALITY CONTROL SCHEMES VARIABLES QUALITY CONTROL SCHEMES AN APPLICATION OF MULTIVARIATE QUALITY CONTROL TO PHOTOGRAPHIC PROCESSING AN APPLICATION OF MULTIVARIATE QUALITY CONTROL TO PHOTOGRAPHIC PROCESSING LARGE—SAMPLE COVARIANCE ANALYSIS WHEN THE CONTROL TREATMENT /IONS ARE MISSING FROM A RANDOMIS BIOCS66 632 LARGE—SAMPLE COVARIANCE ANALYSIS WHEN THE CONTROL VARIABLE IS FALLIBLE USE OF RANDOM WORK SAMPLING FOR COST ANALYSIS AND CONTROL VARIABLES 'FINAL REPORT OF THE ADVISORY COMMITTEE ON WEATHER CONTROL, CORR. 58 1031 THE JASA 58 382 'FINAL REPORT OF THE ADVISORY COMMITTEE ON WEATHER CONTROLL ORR. 58 1031 THE JASA 58 382 'FINAL REPORT OF THE ADVISORY COMMITTEE ON WEATHER CONTROLL ORR. 58 1031 THE JASA 58 382 'EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED CLINICAL TRIAL EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED, CORR. 56 650 ANALYSIS OF SENSITIVITY JASA 56 257 AL PROJECTING PROPERTIES OF MULTI—TERM PREDICTORS OR CONTROLLERS IN NON-STATIONARY TIME SERIES POLYNOMI JRSSB65 144 AUTOMATIC RESET DEVICE CONTROLLING THE PROPORTION DEFECTIVE FROM CLASSIFICAT TECH 69 390 WARNING LINES **CONTROLLING THE PROPORTION DEFECTIVE FROM CLASSIFICAT TECH 64 390 WARNING LINES **CONTROLLING THE STANDARD DEVIATION BY CUSUMS AND TECH 64 390 **TECH 61 13 *	NOTE ON MEMORYLESS RULES FO				
AN APPLICATION OF MULTIVARIATE QUALITY CONTROL TO PHOTOGRAPHIC PROCESSING D BLOCK EXPERIMENT WITH ADDITIONAL REPLICATION OF A CONTROL TREATMENT / IONS ARE MISSING FROM A RANDOMIS BIOCS66 633	AVERAGE RUN LENGTHS IN	CUMULATIVE CHART QUALITY	CONTROL SCHEMES		
ED BLOCK EXPERIMENT WITH ADDITIONAL REPLICATION OF A CONTROL TREATMENT /IONS ARE MISSING FROM A RANDOMIS BIOCS66 632 LARGE-SAMPLE COVARIANCE ANALYSIS WHEN THE CONTROL VARIABLE IS FALLIBLE JASA 60 307 SAMPLING WITH CONTROL VARIABLES FALLIBLE BIOKA54 49 USE OF RANDOM WORK SAMPLING FOR COST ANALYSIS AND CONTROL, CORR. 58 1031 THE JASA 5B 362 'FINAL REPORT OF THE ADVISORY COMMITTEE ON WEATHER CONTROL, CORR. 58 1031 FURTHER COMMENTS ON THE JASA 61 586 FITTING STRAIGHT LINES WHEN ONDE VARIABLE IS CONTROLLED . JASA 69 133 EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED CLINICAL TRIAL JASA 69 133 EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED, CORR. 56 650 ANALYSIS OF SENSITIVITY JASA 56 257 AL PROJECTING PROPERTIES OF MULTI-TERM PREDICTORS OR CONTROLLERS IN NON-STATIONARY TIME SERIES POLYNOMI JRSSB65 144 AUTOMATIC RESET DEVICE CONTROLLING THE STANDARD DEVIATION BY CUSUMS AND TECH 64 99 WARNING LINES CONTROLLING THE STANDARD DEVIATION BY CUSUMS AND TECH 64 99					
LARGE-SAMPLE COVARIANCE ANALYSIS WHEN THE CONTROL VARIABLE IS FALLIBLE JASA 60 SAMPLING WITH CONTROL VARIABLES BIOKA54 SAMPLING FOR COST ANALYSIS AND CONTROL, CORR. 58 1031 THE JASA 58 SECONTROL. CORR. 58 1031 THE JASA 58 SECONTROL. CORR. 58 1031 THE JASA 58 SECONTROL. CORR. 58 SECONTR					
SAMPLING WITH CONTROL VARIABLES BIOKA54 494 USE OF RANDOM WORK SAMPLING FOR COST ANALYSIS AND CONTROL, CORR. 58 1031 THE JASA 58 384 'FINAL REPORT OF THE ADVISORY COMMITTEE ON WEATHER CONTROLED CONTROLED. PLAY THE WINNER RULE AND THE CONTROLLED CLINICAL TRIAL PROJECTING PROPERTIES OF MULTI-TERM PREDICTORS OR CONTROLLED, CORR. 56 650 ANALYSIS OF SENSITIVITY JASA 69 133 AL PROJECTING PROPERTIES OF MULTI-TERM PREDICTORS OR CONTROLLED, CORR. 56 650 ANALYSIS OF SENSITIVITY JASA 56 250 AL PROJECTING PROPERTIES OF MULTI-TERM PREDICTORS OR CONTROLLED, CORR. 56 650 ANALYSIS OF SENSITIVITY JASA 56 250 AL PROJECTING PROPERTIES OF MULTI-TERM PREDICTORS OR CONTROLLERS IN NON-STATIONARY TIME SERIES POLYNOM. JRSSB65 144 AUTOMATIC RESET DEVICE CONTROLLING DIMENSION IN CENTERLESS—GRINDING WITH TECH 69 144 TON DATA CONTROLLING THE PROPORTION DEFECTIVE FROM CLASSIFICAT TECH 64 99 WARNING LINES CONTROLLING THE STANDARD DEVIATION BY CUSUMS AND TECH 63 30000000000000000000000000000000000					
FINAL REPORT OF THE ADVISORY COMMITTEE ON WEATHER CONTROL. FITTING STRAIGHT LINES WHEN ONE VARIABLE IS CONTROLLED . JASA 58 100 100 100 100 100 100 100 100 100 10					
FITTING STRAIGHT LINES WHEN ONE VARIABLE IS CONTROLLED . JASA 58 106 PLAY THE WINNER RULE AND THE CONTROLLED CLINICAL TRIAL JASA 69 133 EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED, CORR. 56 650 ANALYSIS OF SENSITIVITY JASA 56 25 AL PROJECTING PROPERTIES OF MULTI-TERM PREDICTORS OR CONTROLLERS IN NON-STATIONARY TIME SERIES POLYNOM JRSSB65 144 AUTOMATIC RESET DEVICE CONTROLLING DIMENSION IN CENTERLESS—CRINDING WITH TECH 69 115 ION DATA CONTROLLING THE PROPORTION DEFECTIVE FROM CLASSIFICAT TECH 64 98 WARNING LINES CONTROLLING THE STANDARD DEVIATION BY CUSUMS AND TECH 63 300					
PLAY THE WINNER RULE AND THE CONTROLLED CLINICAL TRIAL PLAY THE WINNER RULE AND THE CONTROLLED CLINICAL TRIAL EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED, CORR. 56 650 ANALYSIS OF SENSITIVITY JASA 56 257 AL PROJECTING PROPERTIES OF MULTI-TERM PREDICTORS OR CONTROLLERS IN NON-STATIONARY TIME SERIES POLYNOM TECH 69 115 TON DATA WARNING LINES CONTROLLING THE PROPORTION DEFECTIVE FROM CLASSIFICAT TECH 64 30 CONTROLLING THE STANDARD DEVIATION BY CUSUMS AND TECH 63 30					
EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED, CORR. 56 650 ANALYSIS OF SENSITIVITY JASA 56 257 AL PROJECTING PROPERTIES OF MULTI-TERM PREDICTORS OR CONTROLLERS IN NON-STATIONARY TIME SERIES POLYNOMI JESSE 5 144 AUTOMATIC RESET DEVICE CONTROLLING THE PROPORTION DEFECTIVE FROM CLASSIFICAT TECH 69 99 WARNING LINES CONTROLLING THE STANDARD DEVIATION BY CUSUMS AND TECH 63 307	7A 1G	V THE MINNED DITE AND THE	CONTROLLED CLINICAL TRIAL	1454 69	1.31
AL PROJECTING PROPERTIES OF MULTI-TERM PREDICTORS OR CONTROLLERS IN NON-STATIONARY TIME SERIES POLYNOMI JESSB 5 144 AUTOMATIC RESET DEVICE CONTROLLING THE PROPORTION DEFECTIVE FROM CLASSIFICAT TECH 69 190 WARNING LINES CONTROLLING THE STANDARD DEVIATION BY CUSUMS AND TECH 63 300	EXPERIMENTS WHEN THE 1 DV	I INE WINNER RULE AND THE	CONTROLLED. CORR. 56 650 ANALYSIS OF SENSITIVITY	JASA 56	257
AUTOMATIC RESET DEVICE CONTROLLING DIMENSION IN CENTERLESS-GRINDING WITH TECH 69 115 10N DATA CONTROLLING THE PROPORTION DEFECTIVE FROM CLASSIFICAT TECH 64 99 100 100 100 100 100 100 100 100 100	AL PROJECTING PROPERTIES OF	MULTI-TERM PREDICTORS OR	CONTROLLERS IN NON-STATIONARY TIME SERIES POLYNOMI	JRSSB65	144
WARNING LINES CONTROLLING THE STANDARD DEVIATION BY CUSUMS AND TECH 63 300	AUTOMATIC RESET DEVICE		CONTROLLING DIMENSION IN CENTERLESS-GRINDING WITH	TECH 69	115
	ION DATA			mpour ca	99
FRUDIS ALLOWING FUR A NUM-ZERO RESPONSE IN THE CONTROLS METOHIED BIOLAGO 20.			CONTROLLING THE PROPORTION DEFECTIVE FROM CLASSIFICAT	TECH 04	700
		NON 7EDO DECRONCE IN THE	CONTROLLING THE STANDARD DEVIATION BY CUSUMS AND	TECH 63	307

CON - COR TITLE WORD INDEX

CON - CON	DE WORD INDEX		
THE EFFECTIVE USE OF BOTH POSITIVE AND NECATIVE	CONTROLS IN SCREENING EXPERIMENTS	BIOCS67	285
	CONTROLS IN THE CASE OF ALL-OR-NONE RESPONSES	BIOCS69	
A STATISTICAL INVESTICATION OF THE INDUSTRIALIZATION		JASA 60	
	CONTROVERSY /STICAL INFERENCE IN HEALTH WITH SPECIA		739
		BIOCS68	
AN INEQUALITY AND ALMOST SURE		AMS 69	
THE SPEED OF CLIVENKO-CANTELLI		AMS 69	40
	CONVERCENCE AND A CHERNOFF-SAVACE THEOREM FOR RANDOM		
	CONVERCENCE FOR THE LAW OF LARCE NUMBERS	AMS 69	
01. 11.2 10112 01	CONVERCENCE IN NON-LINEAR RECRESSION	TECH 63	
UTIONS RIGHT HAAR MEASURE FOR	CONVERGENCE IN PROBABILITY TO QUASI POSTERIOR DISTRIB		440
	CONVERGENCE IN R-MEAN OF NORMALIZED PARTIAL SUMS	AMS 68	
	CONVERCENCE IN SOME ORDERED FAMILIES OF DISTRIBUTION		51
	CONVERGENCE IN THE COMPOUND DECISION PROBLEM FOR TWO		
COM BEIEB! OF BOIL IED DISTRIBUTIONS	CONVERCENCE OF A HUMAN POPULATION TO A STABLE FORM	JASA 68	
A NOTE ON THE RATE OF	CONVERGENCE OF A MEAN	BIOKA62	
	CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION	AMS 68	
	CONVERGENCE OF A TWO-SAMPLE EMPIRICAL PROCESS AND A	AMS 68	
	CONVERGENCE OF BINOMIAL PROBABILITIES AND A GENERALIZ		
	CONVERGENCE OF BINOMIAL PROBABILITIES WITH AN APPLICA		
	CONVERCENCE OF ESTIMATES AND TEST STATISTICS	AMS 67	
	CONVERGENCE OF FAMILIES OF MARTINGALES	AMS 69	
	CONVERGENCE OF GIL-PELAEZ' INVERSION INTECRAL	AMS 61	
	CONVERCENCE OF LINEAR COMBINATIONS OF INDEPENDENT AND		
	CONVERCENCE OF LINEAR COMBINATIONS OF INDEPENDENT AND	AMS 68	
	CONVERGENCE OF MARTINGALES AND THE LAW OF LARGE	AMS 65	
A CHARACTERIZATION OF THE WEAK		AMS 61	
	CONVERGENCE OF MEASURES WITH APPLICATIONS	AMS 62	
	CONVERGENCE OF MOMENTS IN AGE DEPENDENT BRANCHING	AMS 66	
	GONVERGENCE OF MOMENTS IN THE CENTRAL LIMIT THEOREM	AMS 65	
	CONVERGENCE OF ORDINARY INTECRALS TO STOCHASTIC	AMS 65	
VARIABLES	CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT RANDOM		
	CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT RANDOM	AMS 6B	
	CONVERCENCE OF RANDOM PROCESSES WITH MULTI-DIMENSIONA		
	CONVERCENCE OF SAMPLE EXTREMES	AMS 63	
	CONVERGENCE OF SUB-MARTINGALES	AMS 64	
DIFFERENCES	CONVERGENCE OF SUMS OF SQUARES OF MARTINGALE	AMS 68	123
	CONVERGENCE OF THE KIEFER-WOLFOWITZ APPROXIMATION	AMS 67	1031
FOR THE SEQUENTIAL COMPOUND DECISION PROBLEM	CONVERCENCE OF THE LOSSES OF CERTAIN DECISION RULES	AMS 64	1606
	CONVERCENCE PROPERTIES OF A LEARNING ALGORITHM	AMS 64	1B19
PROBABILITY ONE	CONVERGENCE PROPERTIES OF CONVERCENCE WITH	AMS 66	1800
AR COMBINATIONS OF INDEPENDENT RANDOM VARI/ ON THE	CONVERGENCE RATE OF THE LAW OF LARCE NUMBERS FOR LINE	AMS 65	559
ERIZATION OF THE UPPER AND LOWER CLASSES IN TERMS OF	CONVERGENCE RATES A CHARACT	AMS 69	1120
DEVIATIONS	CONVERGENCE RATES FOR PROBABILITIES OF MODERATE	AMS 68	2016
LINEAR COMBINATIONS OF MARKOV PROCESSES	CONVERCENCE RATES FOR THE LAW OF LARGE NUMBERS FOR	AMS 66	711
E LINEAR COMBINATIONS OF EXCHANGEABLE AND MIXING/	CONVERGENCE RATES FOR THE LAW OF LARGE NUMBERS FOR TH	AMS 65	1840
LOGARITHM	CONVERCENCE RATES FOR THE LAW OF THE ITERATED	AMS 68	1479
ON	CONVERCENCE RATES IN THE CENTRAL LIMIT THEOREM	AMS 69	475
OME RESULTS RELATING MOMENT GENERATING FUNCTIONS AND	CONVERGENCE RATES IN THE LAW OF LARGE NUMBERS S	AMS 67	742
ON EXTENDED RATE OF	CONVERCENCE RESULTS FOR THE INVARIANCE PRINCIPLE	AMS 69	NO.6
ON THE SEMIMARTINGALE		AMS 66	
GONSENSUS OF SUBJECTIVE PROBABILITIES, A	GONVERGENCE THEOREM	AMS 67	221
	CONVERGENCE THEOREM	AMS 69	
	CONVERGENCE THEOREMS FOR INDEPENDENT RANDOM VARIABLES	AMS 66	1482
PROBABILITIES	GONVERGENCE THEOREMS FOR MULTIPLE CHANNEL LOSS	AMS 63	
	CONVERGENCE TO INFINITY IN THE LAW OF LARGE NUMBERS,	AMS 63	
	CONVERGENCE UNDER MAPPINGS	AMS 67	
	CONVERGENT COEFFICIENTS /HE STRONC LAW OF LARCE NUM		
	CONVERCENT EXPANSION FOR CUMULATIVE HYPERGEOMETRIC	BIOKA54	
UBABILITIES, DIRECT AND IN/ CORRIGENDA, 'A QUICKLY	CONVERGENT EXPANSION FOR CUMULATIVE HYPERCEOMETRIC PR		
TRAINED TO BE EITHER NON-NEGATIVE, NON-DECREASING OR	CONVEX LEAST-SQUARES FITTING OF A POLYNOMIAL CONS		
PEAKEDNESS OF DISTRIBUTIONS OF		AMS 65	
UNBIASED ESTIMATION IN		AMS 69	
	CONVEX FUNCTION SUBJECT TO LINEAR INEQUALITIES (WITH		
	CONVEX HULL OF A RANDOM SET OF POINTS CONVEX HULL OF PLANE BROWNIAN MOTION	BIOKA65 AMS 63	
	CONVEX HULLS OF SAMPLES FROM PRODUCT MEASURES	AMS 69	
BAYES ESTIMATION WITH		AMS 63	
DESIGNS IN REGRESSION PROBLEMS WITH A GENERAL		BIOKA6B	
	CONVEX LOSS FUNCTION OFFIMAL CONVEX LOSS IS USED /A NECESSARY AND SUFFICIENT CON		23
	CONVEX POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DIST		
RESTRICTED LEAST SQUARES REGRESSION AND		TECH 69	
MAXIMIZING A FUNCTION IN A		JRSSB59	
	CONVEXITY OF A MEDIAN REGRESSION CURVE	AMS 62	
		AMS 61	
ESTIMATING THE PARAMETERS OF A		JRSSB69	
	CONVOLUTION, WHEN THE OTHER COMPONENT IS OF EXPONENTI		
	CONVOLUTION, WHEN THE OTHER COMPONENT IS OF EXPONENTI		
THE LIMIT OF A RATIO OF		AMS 63	
LAWS	CONVOLUTIONS OF DISTRIBUTIONS ATTRACTED TO STABLE	AMS 68	
		JASA 61	
MARKOV AND LEAST SQUARES ESTIMATORS IDENTICAL. A		AMS 68	70
VARIATE RANDOM VARIABLES WHERE THE QUOTIENT OF THEIR		AMS 64	1673
COMMENTS ON A POSTERIOR DISTRIBUTION OF GEISSER AND		JRSSB64	274
	CODUTOR DECLED DIVER	AMS 68	1264
GENERALIZED ASYMPTOTIC EXPANSIONS OF		OO CMIA	1201
GENERALIZED ASYMPTOTIC EXPANSIONS OF FISCAL-YEAR REPORTING FOR		JASA 56	

TITLE WORD INDEX CON - COR

PROBABILITIES OF			
	CORRECT CLASSIFICATION IN DISCRIMINANT ANALYSIS		908
	CORRECT USE OF THE SAMPLE MEAN ABSOLUTE DEVIATION IN CORRECTED CORRELATION COEFFICIENTS WHEN OBSERVATION		663 182
	CORRECTED SUMS OF SQUARES AND PRODUCTS		419
	CORRECTED TABLES OF THE UPPER PERCENTAGE POINTS OF		192
USEFUL IN THE THEORY OF FACTORIAL DESIGNS AND ERROR			408
FOR TIES IN RANKINCS	CORRECTING THE AVERAGE RANK CORRELATION COEFFICIENT	JASA 64	872
SOURCES OF STATISTICS ON CRIME AND			582
APPROXIMATE CONFIDENCE INTERVALS III. A BIAS			201
PREDICTION BY PROCRESSIVE		JRSSB64	
CUSTOMER IMPATIENCE IN THE QUEUEINC SYSTEM GI-M-1, A	CORRECTION DETERMINISTIC CORRECTION ERROR IN DATA PROCESSING	JASA 69 N	
	CORRECTION ERROR, AN EXAMPLE IN STATISTICS	TECH 62	
	CORRECTION IN 2-BY-2 TABLES		
ON A	CORRECTION TERM IN THE METHOD OF PAIRED COMPARISONS	BIOKA52	211
TESTS' 60 1205	CORRECTION TO 'A CONSERVATIVE PROPERTY OF BINOMIAL	AMS 61 1	
E SUMS' 59 1245	CORRECTION TO 'A PROOF OF WALD'S THEOREM ON CUMULATIV		
NITE QUADRATIC FORMS' 55 122 RANDOM DIVISION OF AN INTERVAL' 53 239	CORRECTION TO 'DISTRIBUTION OF DEFINITE AND OF INDEFI CORRECTION TO 'ON A CLASS OF PROBLEMS RELATED TO THE	AMS 62 AMS 62	
STATISTICS' 59 125B	CORRECTION TO 'ON THE MUTUAL INDEPENDENCE OF CERTAIN	AMS 61 1	
TISTICS AND PRODUCTS OF ORDER STATISTICS FOR SAMP/	CORRECTION TO 'TABLES OF EXPECTED VALUES OF ORDER STA		
RGE SAMPLE TABLES OF PERCENTAGE POINTS FOR HARTLEY'S	CORRECTION TO BARTLETT'S CRITERION FOR TESTING THE HO	BIOKA62	487
GOODNESS-OF-FIT TESTS'	CORRECTION. 'A COMPARATIVE STUDY OF SEVERAL ONE-SIDED		
DISTRIBUTION', 44 345	CORRECTION. 'SOME EXTENSIONS OF THE WISHART		923
CERTAIN PROBLEMS OF MULTIVARIATE STATISTICS' 46/	CORRECTION. 'THE NON-CENTRAL WISHART DISTRIBUTION AND CORRECTION. 'THE STRUCTURE OF BIVARIATE DISTRIBUTIONS		
T OF REGIONS UNDER SPHERICAL NORMAL DISTRIBUTIONS/	CORRECTION. THE SINCETORE OF BIVARIATE DISTRIBUTIONS		
ON OF RANGES FROM A DISCRETE POPULATION'	CORRECTION, 'CALCULATION OF EXACT SAMPLING DISTRIBUTI		
SAMPLE DISTRIBUTION FUNCTION'	CORRECTION, 'DISTRIBUTION FREE TESTS BASED ON THE	BIOKA67	333
TESTS.'	CORRECTION, 'SOME METHODS OF CONSTRUCTING EXACT		629
	CORRECTIONS AND ADJUSTMENTS FOR CALENDAR SHIFTS		615
	CORRECTIONS FOR CONTINUITY CORRECTIONS TO 'A RELATIONSHIP BETWEEN HODGES' BIVARI		85 619
ITS APPLICATIONS' 50 206	CORRECTIONS TO 'A THEOREM ON FACTORIAL MOMENTS AND		
IAL DISTRIBUTIONS' 57 861	CORRECTIONS TO 'SADDLE POINT METHODS FOR THE MULTINOM		
NS OF POINTS ON A LATTICE' 58 256	CORRECTIONS TO 'THE THEORY OF PROBABILITY DISTRIBUTIO		
	CORRECTIONS TO MOMENTS AND CUMULANTS		
	CORRECTIONS TO THE CHI-SQUARED DISTRIBUTION CORRELATED NOTE ON INTERVAL ES		387 267
TIMATION IN. NON-LINEAR REGRESSION WHEN RESPONSES ARE DISTURBANCES ARE BOTH SERIALLY AND CONTEMPORANEOUSLY			500
	CORRELATED /FOR THE TWO-WAY CLASSIFICATION FIXED E		
	CORRELATED AND NON-HOMOGENEOUS ERRORS /AN ANALYSIS		114
	CORRELATED EQUALLY SPACED OBSERVATIONS.		275
BAYESIAN ANALYSIS OF THE REGRESSION MODEL WITH AUTO-			763
DESIGNS FOR REGRESSION PROBLEMS WITH	CORRELATED ERRORS IN THE RANDOM MODEL	AMS 66	66
			1727
DESIGNS FOR REGRESSION PROBLEMS WITH	CORRELATED ERRORS MANY PARAMETERS	JASA 67 1 AMS 68	
DESIGNS FOR REGRESSION PROBLEMS WITH A BAYES APPROACH FOR COMBINING	CORRELATED ERRORS MANY PARAMETERS CORRELATED ESTIMATES	AMS 68	49 602
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS	AMS 68 JASA 65 TECH 64	49 602 463
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS	AMS 68 JASA 65 TECH 64 BIOKA62	49 602 463 509
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS CORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64	49 602 463 509 277
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS CORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED INPUTS	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63	49 602 463 509 277 85
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS CORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63	49 602 463 509 277 85 367
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS GORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED INPUTS CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES WITH EMPHASIS ON R	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA69 N	49 602 463 509 277 85 367 NO.3
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS CORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED INPUTS CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL SAMPLES	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA65 BIOKA664 BIOKA64	49 602 463 509 277 85 367 NO.3 143 595
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS CORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED INPUTS CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL SAMPLES CORRELATED NORMAL VARIABLES CORRELATED NORMAL VARIABLES MOMENT	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA65 BIOKA64 BIOKA68 BIOKA68	49 602 463 509 277 85 367 W0.3 143 595 19B
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY EXPERIMENTAL DESIGNS FOR SERIALLY	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS CORRELATED GAMMA-VARTABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED INPUTS CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL SAMPLES CORRELATED NORMAL SAMPLES CORRELATED NORMAL VARIABLES MOMENT CORRELATED NORMAL VARIABLES CORRELATED NORMAL VARIABLES MOMENT	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA69 BIOKA64 BIOKA68 BIOKA68 BIOKA58 BIOKA58	49 602 463 509 277 85 367 NO.3 143 595 198 151
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY EXPERIMENTAL DESIGNS FOR SERIALLY FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH EXPONENTIAL REGRESSION WITH	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS CORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED INPUTS CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL SAMPLES CORRELATED NORMAL VARIABLES CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA69 BIOKA69 BIOKA68 BIOKA68 BIOKA58 BIOKA58 BIOKA58 BIOKA58 BIOKA6B	49 602 463 509 277 85 367 NO.3 143 595 19B 151 575 149
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY EXPERIMENTAL DESIGNS FOR SERIALLY FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS CORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED INPUTS CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL SAMPLES CORRELATED NORMAL VARIABLES MOMENT CORRELATED OBSERVATIONS TREATMENT	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA65 BIOKA64 BIOKA64 BIOKA68 BIOKA68 BIOKA52 BIOKA68 BIOKA52 BIOKA68 BIOKA68 BIOKA68	49 602 463 509 277 85 367 NO.3 143 595 19B 151 575 149 208
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY EXPERIMENTAL DESIGNS FOR SERIALLY FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY S FOR COMPUTERS, NO. 26. CORRIGENDA TO	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS CORRELATED INPUTS CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL SAMPLES CORRELATED NORMAL VARIABLES MOMENT CORRELATED OBSERVATIONS	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA66 BIOKA64 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA66 BIOKA66 BIOKA56	49 602 463 509 277 85 367 NO.3 143 595 19B 151 575 149 208 496
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY EXPERIMENTAL DESIGNS FOR SERIALLY FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH EXPONENTIAL REGRESSION WITH VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY S FOR COMPUTERS, NO. 26. CORRIGENDA TO TESTS OF HOMOCENEITY FOR	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS GORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL SAMPLES CORRELATED NORMAL VARIABLES MITH EMPHASIS ON R CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED ANDOM NORMAL DEVIATES' PUBLISHED IN TREATMENT CORRELATED SAMPLES	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA65 BIOKA66 BIOKA68 BIOKA68 BIOKA68 BIOKA58 BIOKA68 BIOKA68 BIOKA56 BIOKA66 BIOKA66 BIOKA56 JASA 63	49 602 463 509 277 85 367 NO.3 143 595 19B 151 575 149 208 496 97
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY EXPERIMENTAL DESIGNS FOR SERIALLY FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY S FOR COMPUTERS, NO. 26. TESTS OF HOMOGENETY FOR CORRELATION OF THE RANGES OF	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS CORRELATED INPUTS CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL SAMPLES CORRELATED NORMAL VARIABLES MOMENT CORRELATED OBSERVATIONS CORRELATED SAMPLES CORRELATED SAMPLES	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA65 BIOKA68 BIOKA68 BIOKA68 BIOKA52 BIOKA68 BIOKA68 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66	49 602 463 509 277 85 367 NO.3 143 595 19B 151 575 149 208 496 97 529
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY EXPERIMENTAL DESIGNS FOR SERIALLY FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH EXPONENTIAL REGRESSION WITH VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY S FOR COMPUTERS, NO. 26. CORRIGENDA TO TESTS OF HOMOCENEITY FOR CORRELATION OF THE RANGES OF THE THE THE THE USE OF	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS GORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL SAMPLES CORRELATED NORMAL VARIABLES MOMENT CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED CAMPLES CORRELATED CAMPLES CORRELATED CAMPLES CORRELATED VARIABLES FOR PRELIMINARY CULLING	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA65 BIOKA65 BIOKA68 BIOKA68 BIOKA68 BIOKA58 BIOKA58 BIOKA68 BIOKA56 BIOKA66 JASA 63 BIOKA67 JRSSB63 BIOCS67	49 602 463 509 277 85 367 NO.3 143 595 19B 151 575 149 208 496 97 529 394 551
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY EXPERIMENTAL DESIGNS FOR SERIALLY FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH EXPONENTIAL REGRESSION WITH VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY S FOR COMPUTERS, NO. 26. CORRIGENDA TO TESTS OF HOMOCENEITY FOR CORRELATION OF THE RANGES OF THE THE USE OF N LIMIT A SINGLE SAMPLING PLAN FOR	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS GORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL SAMPLES CORRELATED NORMAL VARIABLES WITH EMPHASIS ON R CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED CORRELATED CORRELATED SAMPLES CORRELATED COR	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA65 BIOKA68 BIOKA68 BIOKA58 BIOKA58 BIOKA58 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 JASA 63 BIOKA57 JASA 59	49 602 463 509 277 85 367 NO.3 143 595 191 575 149 208 496 97 529 451 248
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY EXPERIMENTAL DESIGNS FOR SERIALLY FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY S FOR COMPUTERS, NO. 26. CORRIGENDA TO TESTS OF HOMOCENEITY FOR CORRELATION OF THE RANGES OF THE THE USE OF N LIMIT A SINGLE SAMPLING PLAN FOR QUERY, TESTING TWO	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS CORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED INPUTS CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL SAMPLES CORRELATED NORMAL VARIABLES WITH EMPHASIS ON R CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED CORRELATED SAMPLES CORRELATED VARIABLES FOR PRELIMINARY CULLING CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIABLES WITH A SINGLE-SIDED	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA65 BIOKA68 BIOKA68 BIOKA68 BIOKA52 BIOKA68 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 JASA 63 BIOKA57 JRSSB63 BIOCS67 JASA 59 TECH 65	49 602 463 509 277 85 367 NO.3 143 595 151 575 149 208 496 97 529 394 548 447
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY EXPERIMENTAL DESIGNS FOR SERIALLY FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH EXPONENTIAL REGRESSION WITH VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY S FOR COMPUTERS, NO. 26. CORRIGENDA TO TESTS OF HOMOGENEITY FOR CORRELATION OF THE RANGES OF THE THE USE OF N LIMIT A SINGLE SAMPLING PLAN FOR QUERY, TESTING TWO TESTING THE HOMOGENEITY OF A SET OF	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS GORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED INPUTS CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES WITH EMPHASIS ON R CORRELATED NORMAL VARIABLES WITH EMPHASIS ON R CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED GOSERVATIONS CORRELATED GOSERVATIONS CORRELATED CORRELATED CORPELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIANCES	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA66 BIOKA68 BIOKA68 BIOKA68 BIOKA52 BIOKA68 BIOKA68 BIOKA66 BIOKA66 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 JASA 63 BIOKA67 JASSB63 BIOCS67 JASA 59 TECH 65 BIOKA68	49 602 463 509 85 367 80.3 143 575 198 151 575 149 208 496 97 529 394 551 247 317
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY EXPERIMENTAL DESIGNS FOR SERIALLY FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH EXPONENTIAL REGRESSION WITH VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY S FOR COMPUTERS, NO. 26. CORRIGENDA TO TESTS OF HOMOCENEITY FOR CORRELATION OF THE RANGES OF THE THE THE THE USE OF N LIMIT A SINGLE SAMPLING PLAN FOR QUERY, TESTING TWO TESTING THE HOMOGENEITY OF A SET OF EQUALLY	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS GORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL SAMPLES CORRELATED NORMAL VARIABLES MOMENT CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED CORRELATED CAMPLES CORRELATED VARIABLES FOR PRELIMINARY CULLING CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIABLES WITH MEMULTINORMAL INTEGRAL CORRELATED VARIABLES AND THE MULTINORMAL INTEGRAL	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA65 BIOKA68 BIOKA68 BIOKA68 BIOKA52 BIOKA68 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 JASA 63 BIOKA57 JRSSB63 BIOCS67 JASA 59 TECH 65	49 602 463 509 85 367 80.3 143 595 149 208 496 97 529 394 4551 24B 447 317 373
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY EXPERIMENTAL DESIGNS FOR SERIALLY FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH EXPONENTIAL REGRESSION WITH VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY S FOR COMPUTERS, NO. 26. CORRIGENDA TO TESTS OF HOMOCENEITY FOR CORRELATION OF THE RANGES OF THE THE THE THE USE OF N LIMIT A SINGLE SAMPLING PLAN FOR QUERY, TESTING TWO TESTING THE HOMOGENEITY OF A SET OF EQUALLY	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS CORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED INPUTS CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES WITH EMPHASIS ON R CORRELATED NORMAL VARIABLES WITH EMPHASIS ON R CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED VARIABLES FOR PRELIMINARY CULLING CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIABLES WITH MULTINORMAL INTEGRAL CORRELATED VARIANCES	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA66 BIOKA68 BIOKA68 BIOKA52 BIOKA68 BIOKA52 BIOKA68 BIOKA56 BIOKA56 BIOKA56 JASA 63 BIOKA57 JRSSB63 BIOCS67 JASA 59 TECH 65 BIOKA6B JRSSB58 AMS 69 BIOKA51	49 602 463 509 277 85 367 800 367 143 595 19B 496 97 529 394 5529 394 47 317 373 188 26
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY EXPERIMENTAL DESIGNS FOR SERIALLY FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH EXPONENTIAL REGRESSION WITH VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY S FOR COMPUTERS. NO. 26. CORRIGENDA TO TESTS OF HOMOGENEITY FOR CORRELATION OF THE RANGES OF THE THE USE OF N LIMIT A SINGLE SAMPLING PLAN FOR QUERY, TESTING TWO TESTING THE HOMOGENEITY OF A SET OF EQUALLY ON SERIAL PARTIAL AND MULTIPLE RANK SOME QUESTIONS OF DISTRIBUTION IN THE THEORY OF RANK	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS CORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED NORMAL RANDOM VARIABLES WITH EMPHASIS ON R CORRELATED NORMAL VARIABLES WITH EMPHASIS ON R CORRELATED NORMAL VARIABLES CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED RANDOM NORMAL DEVIATES' PUBLISHED IN TRACT CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIANCES CORRELATION CORRELATION CORRELATION	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA65 BIOKA68 BIOKA68 BIOKA68 BIOKA58 BIOKA58 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 JASA 63 BIOKA57 JASA 59 TECH 65 BIOKA6B JRSSB58 AMS 69 BIOKA51 BIOKA51	49 602 463 509 277 85 367 80.3 367 143 595 198 151 575 149 208 496 97 529 394 4551 248 373 188 26 131
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY EXPERIMENTAL DESIGNS FOR SERIALLY FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH EXPONENTIAL REGRESSION WITH VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY S FOR COMPUTERS, NO. 26. CORRIGENDA TO THE CORRELATION OF THE RANGES OF THE CORRELATION OF THE RANGES OF N LIMIT A SINGLE SAMPLING PLAN FOR QUERY, TESTING TWO TESTING THE HOMOGENEITY OF A SET OF EQUALLY ON SERIAL PARTIAL AND MULTIPLE RANK SOME QUESTIONS OF DISTRIBUTION IN THE THEORY OF RANK EXACT TESTS FOR SERIAL	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS CORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL SAMPLES CORRELATED NORMAL VARIABLES MOMENT CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIABLES AND THE MULTINORMAL INTEGRAL CORRELATION CORRELATION CORRELATION CORRELATION CORRELATION CORRELATION CORRELATION CORRELATION CORRELATION	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA65 BIOKA68 BIOKA68 BIOKA58 BIOKA58 BIOKA56 BIOKA51 BIOKA55	49 602 463 509 277 85 367 700.3 143 595 151 575 149 208 496 97 529 24B 447 373 188 26 131 133
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY EXPERIMENTAL DESIGNS FOR SERIALLY FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY S FOR COMPUTERS, NO. 26. CORRIGEDDA TO CORRELATION OF THE RANGES OF THE THE USE OF N LIMIT A SINGLE SAMPLING PLAN FOR QUERY, TESTING TWO TESTING THE HOMOGENEITY OF A SET OF EQUALLY ON SERIAL PARTIAL AND MULTIPLE RANK SOME QUESTIONS OF DISTRIBUTION IN THE THEORY OF RANK EXACT TESTS FOR SERIAL THE GAMBLER'S RUIN PROBLEM WITH	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS CORRELATED GAMMA-VARTABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED INPUTS CORRELATED NORMAL RANDOM VARIABLES WITH EMPHASIS ON R CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED VARIABLES FOR PRELIMINARY CULLING CORRELATED VARIABLES FOR PRELIMINARY CULLING CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATION	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA66 BIOKA68 BIOKA68 BIOKA68 BIOKA58 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 JASA 63 BIOKA57 JRSSB63 BIOCS67 JRSSB63 BIOCS67 JRSSB58 AMS 69 BIOKA65 BIOKA65 BIOKA65	49 602 463 463 509 277 85 367 700.3 143 595 1191 575 149 208 97 529 394 447 317 328 486 131 133 486
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY EXPERIMENTAL DESIGNS FOR SERIALLY FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY S FOR COMPUTERS, NO. 26. CORRIGENDA TO TESTS OF HOMOCENEITY FOR CORRELATION OF THE RANGES OF N LIMIT A SINGLE SAMPLING PLAN FOR QUERY, TESTING TWO TESTING THE HOMOGENEITY OF A SET OF EQUALLY ON SERIAL PARTIAL AND MULTIPLE RANK SOME QUESTIONS OF DISTRIBUTION IN THE THEORY OF RANK EXACT TESTS FOR SERIAL THE GAMBLER'S RUIN PROBLEM WITH TESTING EQUALITY OF MEANS IN THE PRESENCE OF SELECTION BASIS IN ESTIMATION OF THE GENETIC	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS CORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED INPUTS CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES WITH EMPHASIS ON R CORRELATED NORMAL VARIABLES WITH EMPHASIS ON R CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED VARIABLES FOR PRELIMINARY CULLING CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATION	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA66 BIOKA68 BIOKA68 BIOKA58 BIOKA58 BIOKA56 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA69 BIOKA69	49 602 277 85 85 80.3 367 80.3 143 151 5595 149 208 496 97 529 394 529 394 529 3188 447 317 3188 26 131 133 486 1195
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY EXPERIMENTAL DESIGNS FOR SERIALLY FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY S FOR COMPUTERS, NO. 26. CORRIGENDA TO TESTS OF HOMOCENEITY FOR CORRELATION OF THE RANGES OF N LIMIT A SINGLE SAMPLING PLAN FOR QUERY, TESTING TWO TESTING THE HOMOGENEITY OF A SET OF EQUALLY ON SERIAL PARTIAL AND MULTIPLE RANK SOME QUESTIONS OF DISTRIBUTION IN THE THEORY OF RANK EXACT TESTS FOR SERIAL THE GAMBLER'S RUIN PROBLEM WITH TESTING EQUALITY OF MEANS IN THE PRESENCE OF SELECTION BASIS IN ESTIMATION OF THE GENETIC	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS CORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED INPUTS CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES WITH EMPHASIS ON R CORRELATED NORMAL VARIABLES WITH EMPHASIS ON R CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED VARIABLES FOR PRELIMINARY CULLING CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATION	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA66 BIOKA68 BIOKA68 BIOKA58 BIOKA58 BIOKA56 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA69 BIOKA69	49 602 277 85 85 80.3 367 80.3 143 151 5595 149 208 496 97 529 394 529 394 529 3188 447 317 3188 26 131 133 486 1195
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY EXPERIMENTAL DESIGNS FOR SERIALLY FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH EXPONENTIAL REGRESSION WITH SEXIALLY S FOR COMPUTERS, NO. 26. CORRIGENDA TO TESTS OF HOMOCENEITY FOR CORRELATION OF THE RANGES OF THE THE USE OF N LIMIT A SINGLE SAMPLING PLAN FOW TESTING THE HOMOGENEITY OF A SET OF EQUALLY ON SERIAL PARTIAL AND MULTIPLE RANK SOME QUESTIONS OF DISTRIBUTION IN THE THEORY OF RANK EXACT TESTS FOR SERIAL THE GAMBLER'S RUIN PROBLEM WITH TESTING EQUALITY OF MEANS IN THE PRESENCE OF SELECTION BASIS IN ESTIMATION OF THE GENETIC AND AN APPLICATION OF A STATISTIC ARISING IN TESTING IDENCE INTERVALS AND EXPERIMENTAL DESIGN WITH NORMAL	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS GORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED INPUTS CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL SAMPLES CORRELATED NORMAL VARIABLES WITH EMPHASIS ON R CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED GAMPLES CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATION CO	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA65 BIOKA65 BIOKA68 BIOKA68 BIOKA58 BIOKA58 BIOKA56 BIOKA56 BIOKA56 BIOKA56 JASA 63 BIOKA56 JASA 63 BIOKA67 JRSSB63 BIOKS67 JASA 59 TECH 65 BIOKA68 JRSSB58 AMS 69 BIOKA51 BIOKA51 BIOKA51 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA56	49 602 277 85 367 80.3 143 208 151 149 208 97 529 354 149 248 447 373 188 26 131 133 486 119 951 149 434
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY EXPERIMENTAL DESIGNS FOR SERIALLY FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH EXPONENTIAL REGRESSION WITH VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY S FOR COMPUTERS, NO. 26. CORRIGENDA TO THE CORRELATION OF THE RANGES OF THE CORRELATION OF THE RANGES OF N LIMIT A SINGLE SAMPLING PLAN FOR QUERY, TESTING TWO TESTING THE HOMOGENEITY OF A SET OF EQUALLY ON SERIAL PARTIAL AND MULTIPLE RANK SOME QUESTIONS OF DISTRIBUTION IN THE THEORY OF RANK EXACT TESTS FOR SERIAL THE GAMBLER'S RUIN PROBLEM WITH TESTING EQUALITY OF MEANS IN THE PRESENCE OF SELECTION BASIS IN ESTIMATION OF THE RENETIC AND AN APPLICATION OF A STATISTIC ARISING IN TESTING IDENCE INTERVALS AND EXPERIMENTAL DESIGN WITH NORMAL TS OF NORMAL VARIATES IN THE PRESENCE OF INTRA-CLASS	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS CORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED INPUTS CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES WITH EMPHASIS ON R CORRELATED NORMAL VARIABLES MOMENT CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATION CORRELATI	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA66 BIOKA68 BIOKA68 BIOKA58 BIOKA58 BIOKA56 BIOKA67 JRSSB63 BIOCS67 JASA 59 TECH 65 BIOKA68 BIOKA51 BIOKA51 BIOKA51 BIOKA55 BIOKA51 BIOKA55 BIOKA56	49 602 277 367 80.3 143 595 19B 151 208 496 97 529 394 447 373 188 26 21 24B 447 373 188 26 27 27 28 29 29 29 20 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY EXPERIMENTAL DESIGNS FOR SERIALLY FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY S FOR COMPUTERS, NO. 26. CORRIGEDDA TO TESTS OF HOMOCENEITY FOR CORRELATION OF THE RANGES OF N LIMIT A SINGLE SAMPLING PLAN FOR QUERY, TESTING TWO TESTING THE HOMOGENEITY OF A SET OF EQUALLY ON SERIAL PARTIAL AND MULTIPLE RANK SOME QUESTIONS OF DISTRIBUTION IN THE THEORY OF RANK EXACT TESTS FOR SERIAL THE GAMBLER'S RUIN PROBLEM WITH TESTING EQUALITY OF MEANS IN THE PRESENCE OF SELECTION BASIS IN ESTIMATION OF THE GENETIC AND AN APPLICATION OF A STATISTIC ARISING IN TESTING IDENCE INTERVALS AND EXPERIMENTAL DESIGN WITH NORMAL TS OF NORMAL VARIATES IN THE PRESENCE OF INTRA—CLASS VARIABLES	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS CORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED INPUTS CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES WITH EMPHASIS ON R CORRELATED NORMAL VARIABLES MOMENT CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED VARIABLES FOR PRELIMINARY CULLING CORRELATED VARIABLES FOR PRELIMINARY CULLING CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATION CORR	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA66 BIOKA68 BIOKA68 BIOKA58 BIOKA58 BIOKA56 BIOKA66 BIOKA56 BIOKA66 BIOKA56 BIOKA67 JASA 63 BIOKA67 JRSSB63 BIOKA67 JRSSB63 BIOKA65 BIOKA68 BIOKA68 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA68 BIOKA56 BIOKA68 BIOKA56 BIOKA68 BIOKA68 BIOKA66 AMS 69 IBIOCS68 AMS 69 IBIOCS68 AMS 69 IBIOCS68 AMS 63 IAMS 63 IAMS 63	49 602 277 85 800 277 85 800 367 800 367 800 367 800 367 800 367 800 367 800 367 800 800 800 800 800 800 800 800 800 80
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY EXPERIMENTAL DESIGNS FOR SERIALLY FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH EXPONENTIAL REGRESSION WITH VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY S FOR COMPUTERS, NO. 26. CORRELATION OF THE RANGES OF THE THE USE OF ON LIMIT A SINGLE SAMPLING PLAN FOR QUERY, TESTING TWO TESTING THE HOMOGENEITY OF A SET OF EQUALLY ON SERIAL PARTIAL AND MULTIPLE RANK SOME QUESTIONS OF DISTRIBUTION IN THE THEORY OF RANK EXACT TESTS FOR SERIAL THE GAMBLER'S RUIN PROBLEM WITH TESTING EQUALITY OF MEANS IN THE PRESENCE OF SELECTION BASIS IN ESTIMATION OF THE GENETIC AND AN APPLICATION OF A STATISTIC ARISING IN TESTING IDENCE INTERVALS AND EXPERIMENTAL DESIGN WITH NORMAL TS OF NORMAL VARIATES IN THE PRESENCE OF INTRA-CLASS VARIABLES MODIFIED DOOLITTLE APPROACH FOR MULTIPLE AND PARTIAL	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS CORRELATED INPUTS CORRELATED INPUTS CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL VARIABLES WITH EMPHASIS ON R CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED VARIABLES FOR PRELIMINARY CULLING CORRELATED VARIABLES WITH A SINGLE—SIDED SPECIFICATIO CORRELATED VARIABLES WITH A SINGLE—SIDED SPECIFICATIO CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATION AND COMPLETE DEPENDENCE OF RANDOM GORRELATION AND COMPLETE DEPENDENCE OF RANDOM	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA66 BIOKA68 BIOKA68 BIOKA58 BIOKA58 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 JASA 63 BIOKA57 JRSSB63 BIOCS67 JASA 59 TECH 65 BIOKA6B JRSSB58 AMS 69 BIOKA51 BIOKA55 B	49 602 277 85 85 80.3 367 80.3 143 595 151 575 92 208 496 97 529 394 4551 847 317 373 486 131 148 26 131 486 486 486 486 486 486 486 486 486 486
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY EXPERIMENTAL DESIGNS FOR SERIALLY FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY S FOR COMPUTERS, NO. 26. CORRIGEDAD TO TESTS OF HOMOCENEITY FOR CORRELATION OF THE RANGES OF N LIMIT A SINGLE SAMPLING PLAN FOR QUERY, TESTING TWO TESTING THE HOMOGENEITY OF A SET OF N LIMIT A SINGLE SAMPLING PLAN FOR QUERY, TESTING TWO TESTING THE HOMOGENEITY OF A SET OF EQUALLY ON SERIAL PARTIAL AND MULTIPLE RANK EXACT TESTS FOR SERIAL THE GAMBLER'S RUIN PROBLEM WITH TESTING EQUALITY OF MEANS IN THE PRESENCE OF SELECTION BASIS IN ESTIMATION OF THE GENETIC AND AN APPLICATION OF A STATISTIC ARISING IN TESTING IDENCE INTERVALS AND EXPERIMENTAL DESIGN WITH NORMAL TS OF NORMAL VARIATES IN THE PRESENCE OF INTRA-CLASS VARIABLES MODIFIED DOOLITTLE APPROACH FOR MULTIPLE AND PARTIAL MUTUAL INFORMATION AND MAXIMAL	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS CORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED INPUTS CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES WITH EMPHASIS ON R CORRELATED NORMAL VARIABLES MOMENT CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED VARIABLES FOR PRELIMINARY CULLING CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATION AND REGRESSION, WITH APPLICATION TO MANIF CORRELATION AND REGRESSION, WITH APPLICATION TO MANIF CORRELATION AND REGRESSION, WITH APPLICATION TO MANIF	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA66 BIOKA68 BIOKA68 BIOKA58 BIOKA58 BIOKA56 BIOKA56 BIOKA66 BIOKA56 BIOKA68 BIOKA56 BIOKA56 BIOKA56 BIOKA51 BIOKA55 BIOKA56 BIOCS68 AMS 69 1 AMS 63 1 JASA 5B BIOKA55 BIOKA56	49 602 277 85 509 277 85 80.3 367 80.3 143 208 496 97 529 394 529 394 529 3188 26 131 133 486 119 133 486 119 133 4461 133 4461 133 434 436 133 133 133 133 133 133 133 133 133 1
A BAYES APPROACH FOR COMBINING A NOTE ON COMBINING ON THE SMALLEST OF SEVERAL TION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY RESERVOIRS WITH SERIALLY ON LINEAR FUNCTIONS OF ORDERED ON THE RATIO OF TWO FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED A NOTE ON THE CORRELATION OF RANGES IN GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY EXPERIMENTAL DESIGNS FOR SERIALLY FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY S FOR COMPUTERS, NO. 26. CORRELATION OF THE RANGES OF THE THE USE OF ON LIMIT A SINGLE SAMPLING PLAN FOR QUERY, TESTING TWO TESTING THE HOMOGENEITY OF A SET OF EQUALLY ON SERIAL PARTIAL AND MULTIPLE RANK SOME QUESTIONS OF DISTRIBUTION IN THE THEORY OF RANK THE GAMBLER'S RUIN PROBLEM WITH TESTING EQUALITY OF MEANS IN THE PRESENCE OF SELECTION BASIS IN ESTIMATION OF THE GENETIC AND AN APPLICATION OF A STATISTIC ARISING IN TESTING IDENCE INTERVALS AND EXPERIMENTAL DESIGN WITH NORMAL TS OF NORMAL VARIATES IN THE PRESENCE OF INTRA-CLASS VARIABLES MODIFIED DOOLITTLE APPROACH FOR MULTIPLE AND PARTIAL OLD./ THE RANK ANALOGUE OF PRODUCT-MOMENT PARTIAL OLD./ THE RANK ANALOGUE OF PRODUCT-MOMENT PARTIAL OLD./ THE RANK ANALOGUE OF PRODUCT-MOMENT PARTIAL A RATIO AND ITS DENOMINATOR THE	CORRELATED ESTIMATES CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS CORRELATED F STATISTICS CORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIOR CORRELATED INPUTS CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES CORRELATED NORMAL RANDOM VARIABLES WITH EMPHASIS ON R CORRELATED NORMAL VARIABLES MOMENT CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED OBSERVATIONS CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED SAMPLES CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATIO CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATED VARIANCES CORRELATION AND COMPLETE DEPENDENCE OF RANDOM GORRELATION AND RECRESSION, WITH APPLICATION TO MANIF	AMS 68 JASA 65 TECH 64 BIOKA62 AMS 64 TECH 63 BIOKA65 BIOKA66 BIOKA68 BIOKA68 BIOKA68 BIOKA58 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 JASA 63 BIOCS67 JRSSB63 BIOCS67 JRSSB58 BIOKA66 JASA 63 BIOKA67 JASA 59 TECH 65 BIOKA68 BIOKA66 BIOKA51 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA51 BIOKA55 BIOKA51 BIOKA56 BIOKA56 BIOKA51 BIOKA56 BIOKA56 BIOKA56 BIOKA55 BIOKA56 BIOCS68 AMS 69 I BIOCS68 AMS 62 BIOCS65	49 602 509 277 85 80.3 143 559 81 151 575 208 496 529 394 4551 847 317 318 826 131 149 261 131 133 486 496 131 133 486 131 133 486 486 486 486 486 486 486 486 486 486

COR -- COR TITLE WORD INDEX

```
CORRELATION BETWEEN SAMPLE MEANS AND SAMPLE RANGES
                                                                                                                JASA 59
                                                                                                                          465
A, BASED ON FIRST AND SECOND DIFFERENCES, FOR SERIAL CORRELATION BETWEEN SUCCESSIVE OBSERVATIONS /RITERI AMS 62
                                                                                                                          186
STNESS OF THE F-TEST TO ERRORS OF BOTH KINDS AND THE CORRELATION BETWEEN THE NUMERATOR AND DENOMINATOR OF JASA 68
                                                                                                                          660
TRUNCATED BIVARIATE NORMAL DISTRIBUTION
                                                      CORRELATION BETWEEN THE SAMPLE VARIANCES IN A SINGLY
                                                                                                                BIOKA6B
                                                                                                                          433
                                   THE DETECTION OF A CORRELATION BETWEEN THE SEXES OF ADJACENT SIBS IN
HUMAN FAMILIES
                                                                                                                JASA 65 1035
                                    AN EXACT TEST FOR CORRELATION BETWEEN TIME SERIES
                                                                                                                BIOKA55
                                                                                                                          316
 IS DICHOTOMIZED
                                        THE THEORY OF CORRELATION BETWEEN TWO CONTINUOUS VARIABLES WHEN ONE BIOKA55
         THE APPROXIMATE DISTRIBUTION OF THE CORRELATION BETWEEN TWO STATIONARY LINEAR MARKOV SERI BIOKA62
ES
                THE APPROXIMATE DISTRIBUTION OF THE CORRELATION BETWEEN TWO STATIONARY LINEAR MARKOV SERI BIOKA65
DOUBLY TRUNCATED NORMAL DISTRIBUTION
                                                   THE CORRELATION BETWEEN VARIATE-VALUES AND RANKS IN A
                                                                                                                BIOKA66
                                                                                                                          281
           AN ANCULAR TRANSFORMATION FOR THE SERIAL CORRELATION COEFFICIENT
                                                                                                                BIOKA54
                                                                                                                          261
           A NOTE ON THE PROBABILITY INTEGRAL OF THE CORRELATION COEFFICIENT
                                                                                                                BIOKA54
                                                                                                                          278
SOME PROPERTIES OF AN ANGULAR TRANSFORMATION FOR THE CORRELATION COEFFICIENT
                                                                                                                BIOKA56
                                                                                                                          219
                          A REMARK ON SPEARMAN'S RANK CORRELATION COEFFICIENT
                                                                                                                BTOKA58
                                                                                                                          273
                      ON NAIR'S TRANSFORMATION OF THE CORRELATION COEFFICIENT
                                                                                                                BIOKA5B
                                                                                                                          567
           SHORT PROOF OF DR HARLEY'S THEOREM ON THE CORRELATION COEFFICIENT
                                                                                                                BIOKA5B
                                                                                                                          571
  THE ASYMPTOTIC EFFICIENCY OF DANIELS'S GENERALIZED CORRELATION COEFFICIENT
                                                                                                                BIOKA63
                                                                                                                          499
          THE NULL DISTRIBUTION OF THE FIRST SERIAL CORRELATION COEFFICIENT
                                                                                                                BIOKA66
                                                                                                                          623
              NOTE ON FISHER'S TRANSFORMATION OF THE CORRELATION COEFFICIENT
                                                                                                                          409
                                                                                                                JRSSB59
                                  MOMENTS OF A SERIAL CORRELATION COEFFICIENT
                                                                                                                JRSSB65
  SOME NEW RESULTS ON THE DISTRIBUTION OF THE SAMPLE CORRELATION COEFFICIENT
                                                                                                                JRSSB66
                                                                                                                          513
THE NONCENTRAL DISTRIBUTION OF THE LARGEST CANONICAL CORRELATION COEFFICIENT
                                                                                                            ON SASJ 69 NO.2
  FOR CONSTRUCTING CONFIDENCE LIMITS ON THE MULTIPLE CORRELATION COEFFICIENT
                                                                                                        TABLES JASA 63 10B2
      PROPERTIES OF AN ANGULAR TRANSFORMATION OF THE CORRELATION COEFFICIENT
                                                                                                        FURTHER BIOKA57
                                                                                                                          273
 DISTRIBUTIONS FOR SMALL N OF KENDALL'S PARTIAL RANK CORRELATION COEFFICIENT
                                                                                                     SIMULATED BIOKA63
                                                                                                                          520
  EXPANSIONS FOR THE MEAN AND VARIANCE OF THE SERIAL CORRELATION COEFFICIENT
                                                                                                     ASYMPTOTIC BIOKA61
                                                                                                                          85
   EXPANSIONS FOR THE MOMENTS OF THE DISTRIBUTION OF CORRELATION COEFFIGIENT
                                                                                                    ASYMPTOTIC BIOKA66
                                                                                                                          258
     SIMPLE FORM OF THE DISTRIBUTION OF THE MULTIPLE CORRELATION COEFFICIENT
                                                                                                  A RELATIVELY JRSSB6B
                                                                                                                          276
     STUDY OF THE DISTRIBUTION OF THE SAMPLE GENETIC CORRELATION COEFFICIENT
                                                                                                  AN EMPIRICAL BIOCS69
                                                                                                                          63
 DISTRIBUTIONS OF NON-CENTRAL T AND OF A TRANSFORMED CORRELATION COEFFICIENT
                                                                                         RELATION BETWEEN THE BIOKA57
                                                                                                                          219
ESSARY SAMPLE SIZE, AND A RELATION WITH THE MULTIPLE CORRELATION COEFFICIENT
                                                                                /DISCRIMINANT ANALYSIS, NEC BIOCS68
 ASYMPTOTIC RELATIVE EFFICIENCY OF TWO TESTS AND THE CORRELATION COEFFICIENT BETWEEN THEIR TEST STATISTICS AMS 63 1442
                          CORRECTING THE AVERAGE RANK CORRELATION COEFFICIENT FOR TIES IN RANKINGS
                                                                                                               JASA 64
                                                                                                                          872
LES SUBSEQUENT/ INFERENCES CONCERNING A POPULATION GORRELATION COEFFICIENT FROM ONE OR POSSIBLY TWO SAMP JRSSB67
ONS ABOUT THE R/ A RAPID METHOD FOR ESTIMATING THE CORRELATION COEFFICIENT FROM THE RANCE OF THE DEVIATI BIOKA53
                                                                                                                          282
                                                                                                                          218
    THE FREQUENCY DISTRIBUTION OF THE PRODUCT-MOMENT GORRELATION COEFFICIENT IN RANDOM SAMPLES OF ANY SIZE BIOKAS1
                                                                                                                          219
               ALTERNATIVE DEFINITIONS OF THE SERIAL GORRELATION COEFFICIENT IN SHORT AUTOREGRESSIVE SEQUE JASA 58
                                                                                                                          BB1
                                  MOMENTS OF THE RANK GORRELATION COEFFICIENT TAU IN THE GENERAL CASE
                                                                                                                BIOKA53
                                                                                                                          409
                 GRAPHIC COMPUTATION OF THE MULTIPLE CORRELATION COEFFICIENT, CORR 58 1031
                                                                                                                JASA 57
                                                                                                                          479
                         RAPID METHODS FOR ESTIMATING CORRELATION COEFFICIENTS
                                                                                                                BIOKA51
                                                                                                                          464
    ON THE JOINT DISTRIBUTION OF THE CIRCULAR SERIAL CORRELATION COEFFICIENTS
                                                                                                                BIOKA56
                                                                                                                          161
              THE APPROXIMATE DISTRIBUTION OF SERIAL CORRELATION COEFFICIENTS
                                                                                                                BIOKA56
  THE ASYMPTOTIC EFFICIENCY OF DANIELS'S GENERALIZED CORRELATION COEFFICIENTS
                                                                                                                JRSSB61
                                                                                                                          12B
   EFFECT OF TRANSFORMATIONS OF VARIABLES UPON THEIR CORRELATION COEFFICIENTS
                                                                                                            THE BIOKA57
 SIGNS OF CROSS CORRELATION COEFFICIENTS AND PARTIAL CORRELATION COEFFICIENTS
                                                                                                 A NOTE ON THE BIOKA56
                                                                                                                          480
 NORMAL DISTRIBUTION IV EMPIRICAL VARIANCES OF RANK CORRELATION COEFFICIENTS /INGLY TRUNCATED BIVARIATE BIOKA68
                                                                                                                          437
FICIENTS
                         A NOTE ON THE SIGNS OF GROSS CORRELATION COEFFICIENTS AND PARTIAL CORRELATION COEF BIOKAS6
                                                                                                                          480
                         THE SAMPLING VARIANCE OF THE CORRELATION COEFFICIENTS ESTIMATED IN GENETIC EXPERIM BIOCS66
ENTS
                                                                                                                         1B7
DISTRIBUTION
                              THE PERFORMANCE OF SOME CORRELATION COEFFICIENTS FOR A GENERAL BIVARIATE
                                                                                                                BIOKA60
                                                                                                                         307
                                  ON TESTING A SET OF CORRELATION COEFFICIENTS FOR EQUALITY
                                                                                                                 AMS 63
                                                                                                                          149
C RESULTS
                                  ON TESTING A SET OF CORRELATION GOEFFICIENTS FOR EQUALITY. SOME ASYMPTOTI BIOKA68
                                                                                                                          513
                                     DISTRIBUTIONS OF CORRELATION COEFFICIENTS IN ECONOMIC TIME SERIES
                                                                                                                JASA 61
                                                                                                                          637
INDIVIDUALS
                                                       CORRELATION COEFFICIENTS MEASURED ON THE SAME
                                                                                                                JASA 69
                                                                                                                         366
                                        THE CANONICAL CORRELATION COEFFICIENTS OF BIVARIATE GAMMA DISTRIBUT AMS 69 1401
IONS
AND MIXED VARIATES
                             THE SAMPLING VARIANCE OF CORRELATION COEFFICIENTS UNDER ASSUMPTIONS OF FIXED
                                                                                                               BIOKA58
ABLE IS RESTRICTED
                                    NOTES. CORRECTED CORRELATION COEFFICIENTS WHEN OBSERVATION ON ONE VARI BIOCS66
                                                                                                                         182
                                       TESTS FOR RANK CORRELATION COEFFICIENTS. I

BIOKA57
TESTS FOR RANK CORRELATION COEFFICIENTS. III. DISTRIBUTION OF THE TR BIOKA62
                                                                                                                         470
ANSFORMED KENDALL COEFFICIENT
                                                                                                                         185
                                       TESTS FOR RANK CORRELATION COEFFICIENTS.II
                                                                                                                          29
                                                                                                                BTOKA61
                   A NOMOCRAPH FOR COMPUTING PARTIAL CORRELATION COEFFICIENTS, CORR. 62 917
                                                                                                                         995
                                                                                                                JASA 61
          CRITICAL VALUES OF THE COEFFICIENT OF RANK CORRELATION FOR TESTING THE HYPOTHESIS OF INDEPENDENC BIOKA61
                                                                                                                          444
DISTRIBUTION. II. RANK CORRELATION CORRELATION IN A SINGLY TRUNCATED BIVARIATE NORMAL BIOKA65
STRIBUTION. III CORRELATION BETWEEN RANKS AND VA/
STRIBUTION IV. EMPIRICAL VARIANCES OF RANK CORREL/
CORRELATION IN A SINGLY TRUNCATED BIVARIATE NORMAL DI BIOKA68
CORRELATION IN A SINGLY TRUNCATED BIVARIATE NORMAL DI BIOKA68
                                                                                                                         639
                                                                                                                         278
                                                                                                                          437
                       FURTHER MODELS FOR ESTIMATING CORRELATION IN DISCRETE DATA
                                                                                                                JRSSB64
                                                                                                                          82
ALIZED MULTINOMIAL DISTRIBUTION IN THE ESTIMATION OF CORRELATION IN DISCRETE DATA
                                                                                            THE USE OF A GENER JRSSB62
                                                                                                                         530
                   EFFICIENT GROUPING, RECRESSION AND CORRELATION IN ENGEL CURVE ANALYSIS
                                                                                                                JASA 64
                                                                                                                         233
                                   TESTING FOR SERIAL CORRELATION IN LEAST SQUARES REGRESSION
                                                                                                                BIOKA57
                                                                                                                          57
                                   TESTING FOR SERIAL CORRELATION IN LEAST SQUARES RECRESSION. II.
                                                                                                                BIOKA51
                                                                                                                         159
                A THEOREM ON LEAST SQUARES AND VECTOR CORRELATION IN MULTIVARIATE LINEAR REGRESSION
                                                                                                                JASA 66
                                                                                                                         413
                      AN APPROXIMATE TEST FOR SERIAL CORRELATION IN POLYNOMIAL REGRESSION
                                                                                                                BIOKA60
                                                                                                                         111
DOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL CORRELATION IN RECRESSION ANALYSIS BASED ON THE PERIO BIOKA69
                                                                                                                           1
                                                SERIAL CORRELATION IN REGRESSION ANALYSIS. I.
                                                                                                                BIOKA55
                                                                                                                         327
                                               SERIAL CORRELATION IN REGRESSION ANALYSIS. IT
                                                                                                                BTOKA56
                                                                                                                         436
EQUATIONS
                                   TESTING FOR SERIAL CORRELATION IN SYSTEMS OF SIMULTANEOUS REGRESSION
                                                                                                                BIOKA57
                                                                                                                         370
                                       ON MEASURES OF CORRELATION IN TIME SERIES OF EVENTS
                                                                                                                BIOCS69
                                                                                                                          73
                                            TESTS FOR CORRELATION MATRICES
                                                                                                                BIOKA68 327
                                  ON LOOKING AT LARGE CORRELATION MATRICES
                                                                                                                BIOKA69
                                                                                                                         249
                                       SOME TESTS FOR CORRELATION MATRICES
                                                                                                                BIOKA69
                                                                                                                         443
 SIGNIFIGANGE FOR THE LATENT ROOTS OF GOVARIANGE AND GORRELATION MATRIGES
                                                                                                      TESTS OF BIOKA56 128
                            THE GENERALIZED MULTIPLE GORRELATION MATRIX
                                                                                                                SASJ 69 NO. 2
          DISTRIBUTION OF THE 'GENERALIZED' MULTIPLE CORRELATION MATRIX IN THE DUAL GASE
                                                                                                                 AMS 64 1801
TRIBUTIONS
                ON THE DISTRIBUTION OF A MULTIPLE CORRELATION MATRIX, NON-GENTRAL MULTIVARIATE BETA DIS
                                                                                                                AMS 68 227
ERAGE RANK/
            SOME GONTRIBUTIONS TO THE AVERAGE RANK CORRELATION METHODS AND TO THE DISTRIBUTION OF THE AV JASA 63 756
                        SOME TESTS FOR THE INTRAGLASS CORRELATION MODEL
                                                                                                                AMS 65 1802
    QUERY, MAXIMUM LIKELIHOOD ESTIMATE IN INTRAGLASS GORRELATION MODEL
                                                                                                                TEGH 69 NO.4
```

TITLE WORD INDEX COR - COR

EQUALITY OF COVARIANCE MATRICES UNDER THE INTRACLASS		AMS 67	
	CORRELATION MODEL USEFUL IN THE STUDY OF TWINS	JASA 66	
	CORRELATION MODELS WITH MIXED DISCRETE AND CONTINUOUS		
ON HOTELLINC'S WEICHING DESIGNS UNDER AUTO-		AMS 65	
A NOTE ON THE	CORRELATION OF RANCES IN CORRELATED NORMAL SAMPLES	BIOKA68	
	CORRELATION OF RANCES OF CORRELATED DEVIATES	BIOKA66 BIOKA67	529
PLES OF FOUR FROM A NORMAL BIVARIATE POPULATION WITH	CORRELATION OF THE RANCES OF CORRELATED SAMPLES CORRELATION RHO /TRIBUTION OF KENDALL'S TAU FOR SAM		
BOUNDS FOR THE VARIANCE OF KENDALL'S RANK		BIOKA56	
	CORRELATION STRUCTURE OF THE DEPARTURE PROCESS OF THE		
	CORRELATION STRUCTURE OF THE OUTPUT PROCESS OF SOME	AMS 6B	
	CORRELATION STRUCTURES IN TIME SERIES AN EXT		
UNEQUAL SUBCLASS NUMBERS, COMPONENT ESTIMATION IN	CORRELATION STUDIES COVARIANCE ANALYSIS WITH	BIOCS68	49
SERIES A QUICK TEST FOR SERIAL	CORRELATION SUITABLE FOR USE WITH NONSTATIONARY TIME	JASA 63	72B
	CORRELATION TO AUCMENT DATA	JASA 62	20
	CORRELATION WITH EXPONENTIALLY DISTRIBUTED VARIATES	BIOKA67	395
	CORRELATION, POWER-LAW COVARIANCE FUNCTIONS, AND	BIOKA62	
	CORRELATION' IN THE THEORY OF ACCIDENT PRONENESS (ACK		180
ON BOUNDS OF SERIAL		AMS 62	
KOLMOGOROV'S REMARK ON THE HOTELLING CANONICAL ASYMPTOTIC POWERS OF CERTAIN TESTS BASED ON MULTIPLE		BIOKA66 JRSSB56	
N THE GOMPOUND NEGATIVE MULTINOMIAL DISTRIBUTION AND		BIOKA63	47
	CORRELATIONS AMONG PROPORTIONS /POUND MULTINOMIAL D		65
DISTRIBUTIONS	GORRELATIONS AND CANONICAL FORMS OF BIVARIATE	AMS 63	
	CORRELATIONS BETWEEN SIMILAR SETS OF MEASUREMENTS	BIOCS66	
PARTIAL	CORRELATIONS IN REGRESSION COMPUTATIONS	JASA 61	
	CORRELATIONS IN TIME-SERIES	JRSSB5B	
	CORRELATIONS WITHIN TWO PAIRS OF VARIABLES	BIOCS68	
	CORRESPONDENCE BETWEEN W.S. COSSETT, R.A. FISHER AND		
BINOMIAL DISTRIBUTION'	CORRICENDA TO 'A NOTE ON THE MEAN DEVIATION OF THE	BIOKA58	
	CORRIGENDA TO 'CONFIDENCE INTERVALS FOR A PROPORTION'		
LISHED IN TRACTS FOR COMPUTERS, NO. 26.	CORRIGENDA TO 'CORRELATED RANDOM NORMAL DEVIATES' PUB		
SAMPLES FROM A NORMAL POPULATION'	CORRICENDA TO 'MOMENTS OF SAMPLE MOMENTS OF CENSORED CORRICENDA TO 'MULTIPLE RUNS'		587 534
ITS RATIO TO THE ROOT MEAN SQUARE'	GORRIGENDA TO 'ON THE MEAN SUCCESSIVE DIFFERENCE AND	BIOKA57	
PEDESTRIANS AND ROAD TRAFFIC'	CORRIGENDA TO 'SOME FURTHER RESULTS IN THE THEORY OF		291
NS FOR THE MAXIMUM-LIKELIHOOD ESTIMATOR OF AN UNK/	CORRIGENDA TO 'SOME THEOREMS AND SUFFICIENCY CONDITIO		497
CHAINS'	CORRIGENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOFF		
SELECTING AN EXPERIMENTAL DESIGN'	CORRIGENDA TO 'THE USE OF A CONCOMITANT VARIABLE IN	BIOKA57	534
IVE BINOMIAL, POISSON AND CHI-SQUARE DISTRIBUTION/	GORRIGENDA TO 'TRANSFORMATIONS OF THE BINOMIAL, NECAT	BIOKA56	235
ARIATE ANALYSIS OF VARIANGE TESTS.	CORRIGENDA, 'A COMPARISON OF THE POWERS OF TWO MULTIV		546
THEOREM.	CORRIGENDA, 'A FURTHER LOOK AT ROBUSTNESS VIA BAYES'S		546
CHI-SQUARE DISTRIBUTIONS'	CORRIGENDA, 'A NEW TABLE OF PERCENTAGE POINTS OF THE		305
ATIVE HYPERGEOMETRIC PROBABILITIES, DIRECT AND IN/	CORRIGENDA, 'A QUICKLY CONVERCENT EXPANSION FOR CUMUL		277
FORMS IN NORMAL VARIABLES'	CORRIGENDA, 'COMPUTING THE DISTRIBUTION OF QUADRATIC		284
DISTRIBUTION USING ORDER STATISTICS.	CORRIGENDA, 'CONDITIONED MARKOFF PROCESSES. CORRIGENDA, 'ESTIMATION OF PARAMETERS OF THE CAMMA	BIOKA59 BIOKA63	
STATISTICS'	CORRIGENDA, 'EXPECTED VALUES OF NORMAL ORDER	BIOKA61	476
WILCOXON'S TEST STATISTIG.	CORRIGENDA, 'EXTENDED TABLES OF CRITICAL VALUES FOR	BIOKA64	527
IONS TO STATISTICS'	CORRIGENDA, 'EXTREMA OF QUADRATIC FORMS WITH APPLICAT		474
	CORRIGENDA, 'FURTHER CONTRIBUTIONS TO MULTIVARIATE	BIOKA61	474
NS IN LOGIT ANALYSIS'	CORRIGENDA, 'LINEAR AND NON-LINEAR MULTIPLE COMPARISO	BIOKA62	284
LIKELIHOOD.	CORRIGENDA, 'MOMENT ESTIMATORS AND MAXIMUM	BIOKA59	
LIKETIHOOD,		BIOKA61	
SQUARE AND X-SQUARE DISTRIBUTIONS.		BIOKA63	
EDAL TOES WARTINGS OF A CAMPLE OF CONCECUETUS OFCE	CORRIGENDA, 'ON A TWO-SIDED SEQUENTIAL T-TEST'	BIOKA54	
ERALIZED VARIANCE OF A SAMPLE OF CONSECUTIVE OBSE/	CORRIGENDA, 'ON DURBIN'S FORMULA FOR THE LIMITING CEN		
OF TESTS BASED ON DISCONTINUOUS DISTRIBUTIONS.'	CORRIGENDA, 'ON QUESTIONS RAISED BY THE COMBINATION GORRICENDA, 'ON STATIONARY PROCESSES IN THE PLANE'	BIOKA51	
		BIOKA59	
SAMPLES FROM NORMAL POPULATIONS'		BIOKA54	
	CORRIGENDA, 'ON THE POWER FUNCTION OF THE EXACT TEST		
EQUATION BY ITERATION PROCESSES'	CORRIGENDA, 'ON THE SOLUTION OF THE LIKELIHOOD	BIOKA62	284
	CORRIGENDA, 'ON THE STATISTICAL INDEPENDENCE OF QUADR		
	CORRICENDA, 'ON THE SUM OF SQUARES OF NORMAL SCORES'		
	CORRIGENDA, 'PROPERTIES OF DISTRIBUTIONS RESULTING FR		
REGRESSION TESTS' EXPERIMENTS'	CORRICENDA, 'ROBUSTNESS TO NON-NORMALITY OF CORRIGENDA, 'SIGNIFICANT TESTS FOR PAIRED-COMPARISON	BIOKA65	
OF THE HYPOTHESIS OF EQUAL MEANS UNDER VARIANCE H/	CORRIGENDA, 'SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS		
OF GENERALIZED MEAN DIFFERENCES'	CORRIGENDA, 'SOME DISTRIBUTIONS ARISING IN THE STUDY		
		BIOKA65	
	CORRIGENDA, 'SOME NUMERICAL RESULTS FOR WAITING TIMES	BIOKA60	4B4
CONTROL PROCEDURES'		BIOKA59	
	CONTRACTOR OF THE CONTRACTOR O	BIOKA61	
RVES, FOR GIVEN ROOT(BETA-1) AND BETA-2, EXPRESSE/	CORRIGENDA, 'TABLE OF PERCENTAGE POINTS OF PEARSON CU		
VARIANCE OF A NORMAL DISTRIBUTION.	CORRIGENDA, 'TABLES FOR MAKING INFERENCES ABOUT THE CORRIGENDA, 'TABLES OF PERCENTAGE POINTS OF THE	BIOKA61	
'STUDENTIZED' RANGE' 2 TABLES'	CORRIGENDA, 'TABLES OF PERCENTAGE POINTS OF THE CORRIGENDA, 'TEST OF INDEPENDENCE IN INTRACLASS 2-BY-		
	CORRIGENDA, 'THE CHOICE OF A SECOND ORDER ROTATABLE		
NON-NORMAL POPULATIONS'		BIOKA55	
RANGE IN SMALL SAMPLES FROM NON-NORMAL POPULATIO/	CORRIGENDA, 'THE MEAN AND COEFFICIENT OF VARIATION OF		
	CORRIGENDA, 'THE POWER FUNCTION OF THE TEST FOR THE D	BIOKA59	502
TWO COMPETING SPECIES.	CORRIGENDA, 'THE PROPERTIES OF A STOCHASTIC MODEL FOR	BIOKA59	279
ZED RANDOMIZED BLOCK DESICN'	CORRIGENDA, 'THE RANDOMIZATION ANALYSIS OF A GENERALI		
SIGNS. II. ADDITIONAL TABLES FOR THE METHOD OF PA/	CORRIGENDA, 'THE RANK ANALYSIS OF INCOMPLETE BLOCK DE		
POINT PROCESSES'	CORRIGENDA, 'THE SPECTRAL ANALYSIS OF TWO-DIMENSIONAL	RIOK V 62	305
			F 77

COR - CRI TITLE WORD INDEX

```
CORRIGENDA, 'THE USE OF ORTHOGONAL POLYNOMIALS OF POS BIOKA61 476
CORRIGENDA, 'THE USE OF RANGE IN PLACE OF STANDARD BIOKA52 442
ITIVE AND NEGATIVE BINOMIAL FREQUENCY FUNCTIONS I/
DEVIATION IN THE T-TEST.'
 UTILITY OF EXPERIMENTS (CORR/ WEIGHT OF EVIDENCE, CORROBORATION, EXPLANATORY POWER, INFORMATION AND THE JRSSB60
                                                                                                                    319
      FROM A RANDOM POINT TO THE NEAREST POINT OF A COSELY PACKED LATTICE.
                                                                                            THE DISTANCE BIOKA65
                 STATISTICAL APPROACH TO PROBLEMS OF COSMOLOGY (WITH DISCUSSION)
                                                                                                          JRSSB58
                 THE USE OF RANDOM WORK SAMPLINC FOR COST ANALYSIS AND CONTROL, CORR. 58 1031
                                                                                                           JASA 58
                                                                                                                    382
         STATE MARKOVIAN DECISION PROCESSES, AVERAGE COST CRITERION
                                                                                              DENUMERABLE AMS 66 1545
                                          A MINIMUM COST MODEL OF SPARE PARTS INVENTORY CONTROL
                                                                                                           TECH 67
                                                                                                                    661
                    PRODUCT DIVERSIFICATION AND THE COST OF LIVING, CORR. 64 1296
                                                                                                           JASA 63
                                                                                                                    807
                                             ON THE COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED
WIDTH CONFIDENCE INTERVAL FOR THE MEAN
                                                                                                            AMS 68 1946
                                         COMPARATIVE COST OF TWO LIFE TEST PROCEDURES
                                                                                                           TECH 62 140
                        A NOTE ON THE MEASUREMENT OF COST-QUANTITY RELATIONSHIPS IN THE AIRCRAFT INDUSTRY JASA 68 1247
SAMPLINC PROCEDURES BASED ON PRIOR DISTRIBUTIONS AND COSTS
                                                                                                           TECH 63
                                                                                                                     47
SAMPLINC PROCEDURES BASED ON PRIOR DISTRIBUTIONS AND COSTS
                                                                                               MULTISTAGE
                                                                                                            AMS 67
                                                                                                                   464
NG INSPECTION PLANS BASED ON PRIOR DISTRIBUTIONS AND COSTS
                                                             /C DISTRIBUTION AND A SYSTEM OF SINGLE SAMPLI TECH 60
                                                                                                                    275
             CONTROL CHARTS AND THE MINIMIZATION OF COSTS (WITH DISCUSSION)
                                                                                                           JRSSB63
                                           RELATIVE COSTS OF COMPUTERIZED ERROR INSPECTION PLANS
                                                                                                           JASA 69 NO.4
                 PRODUCT DIVERSIFICATION AND LIVING COSTS, A FURTHER COMMENT
                                                                                                           JASA 66 788
                                      THE FREQUENCY COUNT OF A MARKOV CHAIN AND THE TRANSITION TO
CONTINUOUS TIME
                                                                                                            AMS 61
                                                                                                                     41
                                    A SOLUTION TO A COUNTABLE SYSTEM OF EQUALITIES ARISING IN MARKOVIAN
DECISION PROCESSES
                                                                                                            AMS 67
                                                                                                                    582
TYPE BRANCHING PROCESSES TO A BRANCHING PROCESS WITH COUNTABLY MANY TYPES /ETT, ULAM AND HARRIS ON MULTI AMS 67
                                                                                                                    992
  TO COINCIDENT PASSAGE IN AN ELECTRONIC BLOOD CELL COUNTER
                                                                            A STUDY OF THE VARIABILITY DUE BIOCS67
                                                                                                                    671
                                 A CONTRIBUTION TO COUNTER THEORY
                                                                                                           JRSSR63 169
                                                                                                            AMS 67
GENERALIZATIONS OF T AND F
                                                  A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE
                                                                                                                    613
                                         SEQUENTIAL COUNTERBALANCING IN LATIN SQUARES
                                                                                                            AMS 66
                                                                                                                    741
LATIN SQUARE DESIGN, CORR. 58 1030
                                           COMPLETE COUNTERBALANCING OF IMMEDIATE SEQUENTIAL EFFECTS IN A JASA 5B
                                                                                                                    525
           THE SEPARATION OF MOLECULAR COMPOUNDS BY COUNTERCURRENT DIALYSIS, A STOCHASTIC PROCESS
                                                                                                           BIOKA60
        ON A COINCIDENCE PROBLEM CONCERNINC PARTICLE COUNTERS
                                                                                                            AMS 61
                                                                                                                    739
                LIMIT DISTRIBUTION IN THE THEORY OF COUNTERS, CORR. 62 1466
                                                                                                            AMS 61 1271
A METHOD OF ESTIMATING THE INTERCENSAL POPULATION OF COUNTIES
                                                                                                           JASA 56 587
                                                    COUNTING DISTRIBUTIONS FOR RENEWAL PROCESSES.
                                                                                                           BIOKA65 395
                             STATISTICAL CONTROL OF COUNTING EXPERIMENTS
                                                                                                           BIOKA52 419
                            A REPRODUCIBLE METHOD OF COUNTING PERSONS OF SPANISH SURNAME
                                                                                                           JASA 61
                                                                                                                     8B
                                             A TREE COUNTING PROBLEM
                                                                                                            AMS 68
                                                                                                                   242
       NATIONAL INCOME STATISTICS OF UNDERDEVELOPED COUNTRIES
                                                                                                           JASA 57
                                                                                                                    162
NTERNATIONAL TRADE DATA, THE CASE OF SOUTHEAST ASIAN COUNTRIES
                                                                                        THE ACCURACY OF I JASA 69
                                                                                                                    452
          HICHER FEMALE THAN MALE MORTALITY IN SOME COUNTRIES OF SOUTH ASIA. A DIGEST
                                                                                                           JASA 69 NO.4
             INVESTMENT ESTIMATES OF UNDERDEVELOPED COUNTRIES, AN APPRAISAL
                                                                                                           JASA 58
                                                                                                                    669
 CONCENTRATION OF VIRUSES AND BACTERIA FROM DILUTION COUNTS
                                                                                        THE ESTIMATION OF BIOCS65
                                                                                                                    600
TION AND CORRELATIONS AMONG INVERSELY SAMPLED POLLEN COUNTS'
                                                              /THE COMPOUND NEGATIVE MULTINOMIAL DISTRIBU BIOKA63
                                                                                                            AMS 63 1217
                                             POISSON COUNTS FOR RANDOM SEQUENCES OF EVENTS
                                  SOME PROPERTIES OF COUNTS OF EVENTS FOR CERTAIN TYPES OF POINT PROCESS
                                                                                                           JRSSB64 325
             THE EFFECT OF OVERLAPPING IN BACTERIAL COUNTS OF INCUBATED COLONIES
                                                                                                           BTOKA53
                                                                                                                    220
MODELS FOR THE VARIATION IN THE NUMBER OF BIRTHS PER COUPLE
                                                                                              PROBABILITY JASA 63
                                                                                                                    721
       OF THE VARIATION IN THE NUMBER OF BIRTHS PER GOUPLE
                                                                                       A CHANCE MECHANISM JASA 68 209
                    ASYMPTOTIC DISTRIBUTORS FOR THE COUPON COLLECTOR'S PROBLEM
                                                                                                            AMS 65 1835
ATION PAR LA METHODE DU MAXIMUM DE VRAISEMBLANCE DES COURBES DE SURVIE DE MICROORGANISMES IRRADIES ESTIM BIOCS66
                                                                                                                    673
                                           TAKING A COVARIABLE INTO ACCOUNT
                                                                                                           JASA 64 725
                                 A NOTE ON TAKING A COVARIABLE INTO ACCOUNT
                                                                                                           JASA 66 490
REGRESSION APPROACH TO COVARIANCE ANALYSIS WHEN THE COVARIABLE IS UNCONTROLLED
                                                                                              A STRUCTURAL JASA 67 1037
     THE DISTRIBUTION OF NONCENTRAL MEANS WITH KNOWN COVARIANCE
                                                                                                            AMS 61 874
                                   RANK ANALYSIS OF COVARIANCE
                                                                                                           JASA 67 11B7
                           EXPONENTIAL SURVIVAL WITH COVARIANCE
                                                                                                           JASA 67 561
 SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF COVARIANCE
                                                                                           EXACT FIRST AND BIOKA69 NO.3
   COMPARISONS FOR ADJUSTED MEANS IN THE ANALYSIS OF COVARIANCE
                                                                                          NOTE ON MULTIPLE BIOKA58 256
                              THE POWER OF A TEST IN COVARIANCE ANALYSIS
                                                                                                           BIOCS69 NO.4
                               THE ROBUSTNESS OF THE GOVARIANCE ANALYSIS OF A ONE-WAY CLASSIFIGATION
                                                                                                           BTOKA64 365
                                        LARGE-SAMPLE COVARIANCE ANALYSIS WHEN THE CONTROL VARIABLE IS
FALLIBLE
                                                                                                           JASA 60 307
                A STRUCTURAL REGRESSION APPROACH TO GOVARIANCE ANALYSIS WHEN THE COVARIABLE IS UNCONTROLL JASA 67 1037
ED
                                        GENERALISED COVARIANCE ANALYSIS WITH UNEQUAL ERROR
                                                                                                           BT0GS69 NO. 4
COMPONENT ESTIMATION IN CORRELATION STUDIES
                                                  COVARIANCE ANALYSIS WITH UNEQUAL SUBCLASS NUMBERS,
                                                                                                           BTOCS68
                                                                                                                    49
      TESTS OF SIGNIFICANCE FOR THE LATENT ROOTS OF GOVARIANCE AND CORRELATION MATRICES
                                                                                                                   128
                                                                                                           BTOKA56
PED STATIONARY TIME SERIES
                                     ESTIMATING THE COVARIANCE AND SPECTRAL DENSITY FUNCTIONS FROM A CLIP JRSSB67
                                                                                                                    180
                                        ANALYSIS OF COVARIANCE BASED ON GENERAL RANK SCORES
                                                                                                            AMS 69 610
ULTIVARIATE PREDICTION INTERVALS FOR SAMPLE MEAN AND COVARIANCE BASED ON PARTIAL OBSERVATIONS
                                                                                                      ON M JASA 67
                                                                                                                    634
                          ESTIMATION IN THE UNIFORM COVARIANCE CASE
                                                                                                           JRSSB64 477
     MULTIVARIATE ANALYSIS OF VARIANCE FOR A SPECIAL COVARIANCE CASE, CORR. 64 1296
                                                                                                           JASA 63
                                                                                                                    660
      MAXIMUM LIKELIHOOD ESTIMATION OF MULTIVARIATE COVARIANCE COMPONENTS FOR THE BALANCED ONE-WAY LAYOUT AMS 69 1100
AUTOREGRESSIVE MODELS
                                             ON THE COVARIANCE DETERMINANTS OF MOVINC-AVERACE AND
                                                                                                           BIOKA60 194
                 TOPOGRAPHIC CORRELATION, POWER-LAW COVARIANCE FUNCTIONS, AND DIFFUSION
                                                                                                           BIOKA62
                                                                                                                    305
             MULTIVARIATE-NORMAL CLASSIFICATION WITH COVARIANCE KNOWN
                                                                                                            AMS 65 1787
                    ON TESTS OF THE EQUALITY OF TWO COVARIANCE MATRICES
                                                                                                            AMS 68 275
     A NOTE ON DISCRIMINATION IN THE CASE OF UNEQUAL COVARIANCE MATRICES
                                                                                                           BIOKA68 586
                       ON TESTING THE EQUALITY OF K COVARIANCE MATRICES
                                                                                                           BIOKA69 216
OF SOME TEXT CRITERIA FOR THE EQUALITY OF ONE OR TWO COVARIANCE MATRICES
                                                                                            UNBTASEDNESS
                                                                                                            AMS 68 1686
OF DISTANCE STATISTICS FOR POPULATIONS WITH UNEQUAL COVARIANCE MATRICES
SIMULTANEOUS TESTS FOR THE POULATION OF COMMENCE MATRICES
TWO MULTIVARIATE NORMAL DISTRIBUTIONS WITH DIFFERENT COVARIANCE MATRICES
                                                                                     CLASSIFICATION INTO
                                                                                                            AMS 62
                                                                                                                   420
                                                                                  AN EMPIRICAL COMPARISON BIOCS68
                                                                                                                   683
             SIMULTANEOUS TESTS FOR THE EQUALITY OF COVARIANCE MATRICES AGAINST CERTAIN ALTERNATIVES
                                                                                                            AMS 68 1303
LINEAR ESTIMATO/ ON CANONICAL FORMS, NON-NEGATIVE COVARIANCE MATRICES AND BEST AND SIMPLE LEAST SQUARES
                                                                                                           AMS 67 1092
         DISTRIBUTION OF DISCRIMINANT FUNCTION WHEN COVARIANCE MATRICES ARE PROPORTIONAL
                                                                                                            AMS 69
                  A TEST FOR EQUALITY OF MEANS WHEN COVARIANCE MATRICES ARE UNEQUAL
                                                                                                            AMS 63
     POWER COMPARISIONS OF TESTS OF EQUALITY OF TWO COVARIANCE MATRICES BASED ON FOUR CRITERIA
                                                                                                          BIOKA68
                                                                                                                    335
RIMINATOR ANALYSIS TESTS FOR THE EQUALITY OF TWO COVARIANCE MATRICES IN RELATION TO A BEST LINEAR DISC AMS 64
                                                                                                                    191
                            LOWER BOUNDS FOR MINIMUM COVARIANCE MATRICES IN TIME SERIES REGRESSION PROBLEM AMS 64
                                                                                                                    362
                    THE EFFECT OF UNEQUAL VARIANCE-COVARIANCE MATRICES ON FISHER'S LINEAR DISCRIMINANT BIOCS69
FUNCTION
                                                                                                                    505
MODEL
                          TESTS FOR THE EQUALITY OF COVARIANCE MATRICES UNDER THE INTRACLASS CORRELATION
                                                                                                           AMS 67 1286
```

TITLE WORD INDEX COR - CRI

```
POWER FUNCTIONS OF SOME TESTS OF THE EQUALITY OF TWO COVARIANCE MATRICES, CORR. 65 1318 /ROPERTY OF THE
                                                                                                               AMS 64 1059
           ON A PARADOX CONCERNING INFERENCE ABOUT A COVARIANCE MATRIX
                                                                                                               AMS 63 1414
                  ON THE A PRIORI DISTRIBUTION OF THE COVARIANCE MATRIX
                                                                                                                AMS 69 109B
  THE DISTRIBUTION OF THE LARCEST LATENT ROOT OF THE COVARIANCE MATRIX
                                                                                                           ON AMS 67 1148
  THE DISTRIBUTION OF A STATISTIC USED FOR TESTING A COVARIANCE MATRIX
                                                                                                           ON BIOKA68 171
  DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR COVARIANCE MATRIX
                                                                              ASYMPTOTIC EXPANSIONS OF THE AMS 69 NO.6
                                                                            ON THE EXACT DISTRIBUTIONS OF
 VOTAW'S CRITERIA FOR TESTING COMPOUND SYMMETRY OF A COVARIANCE MATRIX DISTRIBUTION OF THE LATENT ROOTS OF THE ESTIMATED COVARIANCE MATRIX
                                                                          ON THE EXACT DISTRIBUTIONS OF AMERICAN ASYMPTOTIC EXPANSION FOR THE AMS 65 1153
 MATRIX A EXPRESSING THE NORMAL DISTRIBUTION WITH COVARIANCE MATRIX A+B IN TERMS OF ONE WITH COVARIANCE BIOKAGS 535
ON THE DISTRIBUTIONS OF THE RATIOS OF THE ROOTS OF A COVARIANCE MATRIX AND WILKS' CRITERION FOR TESTS OF T AMS 69 NO.6
TRUTTON
                             A TEST FOR REALITY OF A COVARIANCE MATRIX IN A CERTAIN COMPLEX CAUSSIAN DISTR AMS 65 115
VECTOR TIME-SERIES
                                                  THE COVARIANCE MATRIX OF A GONTINUOUS AUTOREGRESSIVE
                                                                                                               AMS 63 1259
                                ON THE INVERSE OF THE COVARIANCE MATRIX OF A FIRST ORDER MOVINC AVERAGE
                                                                                                              BIOKA69 NO.3
                                      THE EQUILIBRIUM COVARIANCE MATRIX OF DYNAMIC ECONOMETRIC MODELS
                                                                                                              JASA 69
          A NUMERICAL PROCEDURE TO GENERATE A SAMPLE COVARIANCE MATRIX, CORR. 66 1248
                                                                                                              JASA 66
                                         ON THE EXACT COVARIANCE OF PRODUCTS OF RANDOM VARIABLES
                                                                                                              JASA 69 NO.4
A MOVING AVERAGE REPRESENTATION FOR RANDOM VARIABLES COVARIANCE STATIONARY ON A FINITE TIME INTERVAL
                                                                                                              BIOKA65 295
                     ON ESTIMATORS FOR VARIANCES AND COVARIANCES
                                                                                                              BTOKA62
                                                                                                                        259
                         EXPECTATIONS, VARIANCES AND COVARIANCES OF 'ANOVA' MEAN SQUARES BY 'SYNTHESIS'
                                                                                                              BTOCS67
                                                                                                                        1.05
NSORED SAMPLES, OF THE P/ ASYMPTOTIC VARIANCES AND COVARIANCES OF MAXIMUM-LIKELIHOOD ESTIMATORS, FROM CE AMS 67 557
NCE MATRIX

CONDITIONAL MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINCULAR COVARIA JASA 64 1203
NTS IN A COMPLEX STATIONARY TIME/ EXPECTATIONS AND COVARIANCES OF SERIAL AND CROSS-CORRELATION COEFFICIE BIOKA63
                                                                                                                        213
                                            MULTIPLE COVARIATE ANALYSIS (CORR. 66 962)
                                                                                                              BTOCS65
                                                                                                                        957
                               ON THE SAMPLE SIZE AND COVERAGE FOR THE JIRINA SEQUENTIAL PROCEDURE
                                                                                                               AMS 63 847
                    THE ASYMPTOTIC VALUES OF CERTAIN GOVERAGE PROBABILITIES
                                                                                                              BIOKA69 NO.3
            A REVIEW OF THE LITERATURE ON A CLASS OF COVERACE PROBLEMS
                                                                                                               AMS 64 232
                                       SOME CIRCULAR COVERACE PROBLEMS
                                                                                                              BIOKA61
                                                                                                                        313
TARCETS
                                         A SURVEY OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA
                                                                                                              TECH 69
                                                                                                                        561
ARBITRARY DISTRIBUTIONS
                                         THE EXPEGTED COVERAGE TO THE LEFT OF THE I'TH ORDER STATISTIC FOR
                                                                                                               AMS 69
UMBER OF NEW SPECIES, AND THE INCREASE IN POPULATION COVERACE, WHEN A SAMPLE IS INCREASED THE N BIOKA56
                       THE PROBABILITY OF COVERING A SPHERE WITH N CIRCULAR CAPS.
                                                                                                              BIOKA65
                                                  THE COVERING CIRCLE OF A SAMPLE FROM A CIRCULAR NORMAL
                                                                                                              BIOKA52
                                                                                                                        137
    IN THE ANALYSIS OF CHANGE-OVER TRIALS WITH DAIRY COWS
                                                                         THE VALUE OF ORTHOGONAL POLYNOMIALS BIOCS67
                                                                                                                        297
        OF THE PAPERS OF MESSRS. HALD, WETHERILL AND GOX
                                                                                                   DISCUSSION TECH 60
                                                                                                                       361
                                                   ON COX AND SNELL'S DEFINITION OF RESIDUALS
                                                                                                              JRSSB69
                                                                                                                        103
   A NOTE ON THE ASYMPTOTIC RELATIVE EFFICIENCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSIO BIOKA68
                                                                                                                       381
                                  POWER FUNCTIONS FOR COX'S TEST OF RANDOMNESS AGAINST TREND
                                                                                                              TECH 62
                                                                                                                        430
                                            A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMIAL VARIATES
                                                                                                              BIOKA66
                                                                                                                       614
                                      ON A THEOREM OF CRAMER AND LEADBETTER
                                                                                                               AMS 66
                                                                                                                       682
               ON THE DISTRIBUTION OF THE TWO SAMPLE CRAMER-VON MISES CRITERION
                                                                                                               AMS 62 1148
                      DISTRIBUTION OF THE TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL SAMPLES
                                                                                                               AMS 63
                                                                                                                       95
      FURTHER PERCENTACE POINTS FOR W-SQUARE-SUB-N +(CRAMER-VON MISES GOODNESS-OF-FIT STATISTIC)
                                                                                                              BIOKA68
                                                                                                                       428
                                                                                                              JASA 66 246
                              BIAS OF THE ONE-SAMPLE CRAMER-VON MISES TEST
        SMALL-SAMPLE DISTRIBUTIONS OF THE TWO-SAMPLE CRAMER-VON MISES' W-SQUARED AND WATSON'S U-SQUARED
                                                                                                               AMS 64 1091
MULTIPLE DEATH PROCESS AND APPLICATIONS TO LUNAR CRATERS

A MULTIVARIATE IMMIGRATION WITH BIOKA67 251
NDITURES, WITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND INTENTIONS

CONSUMER DURABLE GOODS EXPE JASA 63 648
                        THE DEVELOPMENT OF NUMERICAL CREDIT EVALUATION SYSTEMS
                                                                                                              JASA 63
                                                                                                                       799
                               A STOCHASTIC MODEL OF CREDIT SALES DEBT
                                                                                                              JASA 66 1010
                             SOURCES OF STATISTICS ON CRIME AND CORRECTION
                                                                                                              JASA 59 582
                                      PROBABILITY AND CRIMINALISTICS
                                                                                                              JASA 63
                                                                                                                       62B
               APPLICATIONS OF PROBABILITY THEORY IN GRIMINALISTIGS
                                                                                                              JASA 65
                                                                                                                        70
               APPLICATIONS OF PROBABILITY THEORY IN CRIMINALISTICS, II
                                                                                                              JASA 65 1028
           THE EFFECT OF TIES ON THE MOMENTS OF RANK CRITERIA
                                                                                                              BIOKA57 526
                                                                                            ON THE AMS 62 1197
DISCRETE DYNAMIC AMS 69 1635
  EXACT DISTRIBUTION OF A CLASS OF MULTIVARIATE TEST CRITERIA
      PROGRAMMING WITH SENSITIVE DISCOUNT OPTIMALITY CRITERIA
  TESTS OF TWO MULTIVARIATE HYPOTHESES BASED ON FOUR CRITERIA
                                                                                        POWER COMPARTSONS OF BIOKA67
                                                                                                                       195
PPROXIMATING TO THE DISTRIBUTION OF LIKELIHOOD RATIO CRITERIA
                                                                                      A GENERAL METHOD FOR A BIOKA56
                                                                               POWER COMPARISIONS OF TESTS BIOKA68 335
OF EQUALITY OF TWO COVARIANCE MATRICES BASED ON FOUR CRITERIA
     PERMUTATION THEORY IN THE DERIVATION OF ROBUST CRITERIA AND THE STUDY OF DEPARTURES FROM ASSUMPTION JRSSB55
                                                                                                                         1
                                                                                                               AMS 62 792
                                            TWO MORE CRITERIA EQUIVALENT TO D-OPTIMALITY OF DESIGNS
                                                 SOME CRITERIA FOR AGING
                                                                                                              JASA 69 NO.4
H AN APPLICATION TO THE NORMAL DISTRIBUTION
                                                    CRITERIA FOR BEST SUBSTITUTE INTERVAL ESTIMATORS, WIT JASA 64 1133
ANSIONS OF THE DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR COVARIANCE MATRIX ASYMPTOTIC EXP AMS 69 NO.6
                                   ON SOME INVARIANT CRITERIA FOR GROUPING DATA
                                                                                                             JASA 67 1159
               A NOTE ON THE EQUIVALENCE OF TWO TEST CRITERIA FOR HYPOTHESES IN CATEGORICAL DATA
                                                                                                              JASA 66 228
IC DISTRIBUTION OF THE 'PSI-SQUARED' GOODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND MARKOV SEQUENCES /OT AMS 61 49
F THE NON-NULL DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR HYPOTHESIS AND INDEP
                                                                                                               AMS 69
                                                                                                                       942
                                                  NEW CRITERIA FOR SELECTING CONTINUOUS SAMPLING PLANS
                                                                                                             TECH 64 161
               ON THE EXACT DISTRIBUTIONS OF VOTAW'S CRITERIA FOR TESTING COMPOUND SYMMETRY OF A COVARIANC
                                                                                                              AMS 69
 U/ ON THE EXACT DISTRIBUTIONS OF LIKELIHOOD RATIO GRITERIA FOR TESTING INDEPENDENCE OF SETS OF VARIATES
                                                                                                              AMS 67 1160
  ON THE EXACT DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR TESTING LINEAR HYPOTHESES ABOUT REGRESSI
                                                                                                               AMS 66 1319
                                            RESPONSE CRITERIA FOR THE BIOASSAY OF VITAMIN K
                                                                                                              BIOCS69 NO.4
AN APPLICATION FOR THE SOBOLEV IMBEDDING THEOREMS TO CRITERIA FOR THE CONTINUITY OF PROCESSES WITH A VECTO
                                                                                                              AMS 69
                                                                                                                       517
                           UNBIASEDNESS OF SOME TEXT CRITERIA FOR THE EQUALITY OF ONE OR TWO COVARIANCE
                                                                                                              AMS 68 1686
                                             GOODNESS CRITERIA FOR TWO-SAMPLE DISTRIBUTION-FREE TESTS
                                                                                                               AMS 66 133
           STATISTICAL EVALUATION OF SPLITTING LIMIT CRITERIA IN MEASUREMENT DISPUTES
                                                                                                              TECH 63
                                                                                                                       263
        ON THE NON-CENTRAL DISTRIBUTIONS OF TWO TEST CRITERIA IN MULTIVARIATE ANALYSIS OF VARIANCE
                                                                                                               AMS 68
                                                                                                                       215
SERIAL CORRELATI/ ASYMPTOTIC POWER OF CERTAIN TEST CRITERIA, BASED ON FIRST AND SECOND DIFFERENCES, FOR
                                                                                                              AMS 62 186
              A REMARK ON THE KOLMOGOROFF-PETROVSKII CRITERION
                                                                                                               AMS 69 10B6
     EXACT DISTRIBUTIONS OF WILKS'S LIKELIHOOD RATIO CRITERION
                                                                                                              BTOKA66 347
                ON THE EXACT DISTRIBUTION OF WILKS'S CRITERION
                                                                                                              BTOKA69 109
 THE DISTRIBUTION OF THE TWO SAMPLE CRAMER-VON MISES CRITERION
                                                                                                           ON AMS 62 1148
                                                                                                               AMS 68 B77
THE MOMENT GENERATING FUNCTION OF PILLAI'S V-SUPER-S CRITERION
                                                                                                          ΩN
    STATE MARKOVIAN DECISION PROCESSES, AVERAGE COST CRITERION
                                                                                                 DENUMERABLE
                                                                                                              AMS 66 1545
                                       NOTE ON WEYL'S CRITERION AND THE UNIFORM DISTRIBUTION OF INDEPENDENT AMS 69 1124
 RANDOM VARIABLES
                                          A REJECTION CRITERION BASED UPON THE RANCE
                                                                                                              BIOKA56 418
```

CRI - CHR TITLE WORD INDEX

```
NG DISTRIBUTION OF THE TWO SAMPLE KOLMOCOROV-SMIRNOV CRITERION D-SUB-MN, M LESS THAN OR EQUAL TO N /MPLI JASA 69 NO.4
                                            A FINITE CRITERION FOR INDECOMPOSABLE CHANNELS
                                                                                                              AMS 63 337
                     A TEST OF THE MEAN SQUARE ERROR CRITERION FOR RESTRICTIONS IN LINEAR RECRESSION
                                                                                                              JASA 6B 55B
     DISTRIBUTION OF THE TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL SAMPLES
                                                                                                              AMS 63
                                                                                                                       95
ENTACE POINTS FOR HARTLEY'S CORRECTION TO BARTLETT'S CRITERION FOR TESTING THE HOMOCENEITY OF A SET OF VAR BIOKA62 487
ATIOS OF THE ROOTS OF A COVARIANCE MATRIX AND WILKS' CRITERION FOR TESTS OF THREE HYPOTHESES /S OF THE R AMS 69 NO.6
N AND PARAMETER ESTIMATION
                                    A JOINT DESIGN CRITERION FOR THE DUAL PROBLEM OF MODEL DISCRIMINATIO TECH 6B 145
          DOUBLE SAMPLING PLANS WHERE THE ACCEPTANCE CRITERION IS THE VARIANCE
                                                                                                              TECH 6B
                                                                                                                       99
RIBUTIONS OF BIVARIATE T-SQUARE AND HOMOSCEDASTICITY CRITERION M UNDER UNEQUAL VARIANCE AND LEPTOKURTOSIS JASA 63 1048
STRAICHT LINE TO A SERIES OF POINTS ACCORDING TO THE CRITERION OF LEAST SQUARES /D FOR FITTING THE BEST JASA 57
67 587) LINEAR APPROXIMATION USING THE CRITERION OF LEAST TOTAL DEVIATIONS (ACKNOWLEDGEMENT JRSSB67
                                                                                                                       1.3
                                                                                                                       101
D ON THE SAMPLING DISTRIBUTION OF AVERAGE TAU WITH A CRITERION RANKING /LCULATING TAU AND AVERAGE TAU AN JASA 62
                                                                                                                       567
                                           A NOTE ON CRITERION ROBUSTNESS AND INFERENCE ROBUSTNESS
                                                                                                             BIOKA64
                                                                                                                       169
MAL DISTRIBUTION ON THE EXACT DISTRIBUTIONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NOR AMS 67 1170
               A SIMPLE APPROACH TO THE BAYES CHOICE CRITERION. THE METHOD OF EXTREME PROBABILITIES
                                                                                                             JASA 64
NCHINC PROCESS ALLOWING IMMICRATION, A REMARK ON THE CRITICAL CASE THE STATIONARY DISTRIBUTION OF A BRA JRSSB6B
         PROPERTIES OF THE STATIONARY MEASURE OF THE CRITICAL CASE SIMPLE BRANCHINC PROCESS
DATA FROM HOUSEHOLDS
                                                   A CRITICAL COMPARISON OF THREE STRATEGIES OF COLLECTING JASA 67
                 OCCUPANCY PROBABILITY DISTRIBUTION CRITICAL POINTS
                                                                                                              BIOKA61
                                                                                                                      175
M PERCOLATION PROCESS A LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE-QUADRANT ORIENTED-ATO JRSSB63
                                                                                                                       401
ABOUT THE VARIANCE
                                                      CRITICAL RECIONS FOR TESTS OF INTERVAL HYPOTHESES
                                                                                                             JASA 66
                                                                                                                       204
OF AN IMPORTANT/ A SIMPLE METHOD OF DERIVING BEST CRITICAL RECIONS SIMILAR TO THE SAMPLE SPACE IN TESTS BIOKA53
                                                                                                                       231
RAL INFECTION OF BACT/ ESTIMATION OF THE NUMBER OF CRITICAL SITES IN LIMITED CENOME EXPRESSION DURING VI BIOCS69
                                                                                                                       537
EFFICIENCY OF TESTS

THE AVERACE CRITICAL VALUE METHOD AND THE ASYMPTOTIC RELATIVE

BIOKA67

CY OF STATISTICAL TESTS IN TIME SERIE/

THE AVERACE CRITICAL VALUE METHOD FOR ADJUDCING RELATIVE EFFICIEN BIOKA66
                                                                                                                       30B
                                                                                                                       1.09
APPROXIMATIONS FOR MEAN SQUARE SUCCESSIVE DIFFERENCE CRITICAL VALUES
                                                                                                              TECH 68
                                                                                                                       397
                                                     CRITICAL VALUES FOR BIVARIATE STUDENT T-TESTS
                        NOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR DUNCAN'S MULTIPLE RANCE TEST
TISTIC FOR DISPERSION AND ITS NORMAL APPROX/ EXACT CRITICAL VALUES FOR MOOD'S DISTRIBUTION-FREE TEST STA TECH 6B
SAMPLE STATISTIC
                                AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-
                                                                                                             JASA 64
                                                                                                                       925
                                             FURTHER CRITICAL VALUES FOR THE SUM OF TWO VARIANCES
                                                                                                              BTOKA58
                                                                                                                       279
                                             FURTHER CRITICAL VALUES FOR THE TWO-MEANS PROBLEM
                                                                                                             BIOKA56
                                                                                                                       203
                                   EXTENDED TABLE OF CRITICAL VALUES FOR WILCOXON'S TEST STATISTIC
                                                                                                             BIOKA63
                                                                                                                      177
                    CORRICENDA, 'EXTENDED TABLES OF CRITICAL VALUES FOR WILCOXON'S TEST STATISTIC.
                                                                                                             RIOKA64
                                                                                                                       527
FINITE SAMPLE SIZES
                                           TABLES OF CRITICAL VALUES OF SOME RENYI TYPE STATISTICS FOR
                                                                                                             JASA 69
                                                                                                                       B70
N FOR TESTING THE HYPOTHESIS OF INDEPENDENCE CRITICAL VALUES OF THE COEFFICIENT OF RANK CORRELATIO BIOKAG1
BUTION OF THE COEFFICIENT OF VARIATION, COMMENT ON A CRITICISM MADE BY KOOPMANS, OWEN AND ROSENBLATT. // BIOKAG5
                                                                                                                       303
  ESTIMATION OF INCIDENCE OF RED SPIDER MITE ON TEA CROP IN NORTH-EAST INDIA SAMPLING TECHNIQUES FOR BIOCS66
                           THE FACTORIAL ANALYSIS OF CROP PRODUCTIVITY
                                                                                                             JRSSB54
                                       ESTIMATION OF CROP YIELDS FOR SMALL AREAS
                                                                                                             BIOCS66
                                                                            A MATHEMATICAL MODEL RELATINC BIOCS67
  PLANT YIELD WITH ARRANCEMENT FOR RECULARLY SPACED CROPS
                                                                                                                       505
   ON THE DETERMINATION OF CONNECTEDNESS IN AN N-WAY CROSS CLASSIFICATION
                                                                                                     A NOTE TECH 64
                                                                                                                      319
ANCE-COMPONENT ESTIMATORS FOR THE UNBALANCED TWO-WAY CROSS CLASSIFICATION WITH APPLICATION TO BALANCED INC AMS 69
                                                                                                                      408
UN THE DETERMINATION OF CONNECTEDNESS IN AN N-WAY CROSS CLASSIFICATION' ERRATA, 'A NOTE TECH 65
STIMATED FROM ONE-WAY-CLASSIFICATION TABLES WHEN THE CROSS CLASSIFICATIONS ARE UNKNOWN /N COEFFICIENTS E JASA 66
                                                                                                                       2B1
                                                                                                                       720
                        MEASURES OF ASSOCIATION FOR CROSS CLASSIFICATIONS, II. FURTHER DISCUSSION AND
REFERENCES
                                                                                                             JASA 59
                                                                                                                      123
                         MEASURES OF ASSOCIATION FOR CROSS CLASSIFICATIONS, 111. APPROXIMATE SAMPLING
THEORY
                                                                                                             JASA 63 310
          ANALYSIS AND INTERPRETATION OF THE VARIETY CROSS DIALLEL AND RELATED POPULATIONS
                                                                                                             BIOCS66
                                                                                                                       439
                   MISSING VALUES IN PARTIAL DIALLEL CROSS EXPERIMENTS
                                                                                                             BIOCS6B
                                                                                                                      903
                                             ON THE CROSS PERIODOCRAM OF A STATIONARY CAUSSIAN VECTOR
                                                                                                              AMS 67
                                                                                                                       593
         ON THE DISTRIBUTION OF SUMS OF SQUARES AND CROSS PRODUCTS OF NORMAL VARIATES IN THE PRESENCE OF
 THE PRESENCE OF VARIANCE FLUCTUATIONS
                                                      CROSS SPECTRAL ANALYSIS OF CAUSSIAN VECTOR PROCESS IN AMS 6B 1507
EGARDING H. R. B. HACK'S SYSTEM OF RANDOMIZATION FOR CROSS-CLASSIFICATIONS THEORETICAL CONSIDERATIONS R BIOKA5B 265
CE, AND INTERACTIONS IN CONTINCEN/ THE ANALYSIS OF CROSS-CLASSIFIED DATA, INDEPENDENCE, QUASI-INDEPENDEN JASA 68 1091
        EXPECTATIONS AND COVARIANCES OF SERIAL AND CROSS-CORRELATION COEFFICIENTS IN A COMPLEX STATIONAR BIOKAG3 213
Y TIME/
                                     MIXED SELF- AND CROSS-FERTILIZATION IN A TETRASOMIC SPECIES
                                                                                                             BIOCS6B 4B5
                                          STOCHASTIC CROSS-INFECTION BETWEEN TWO OTHERWISE ISOLATED CROUPS BIOKA57
                                                                                                                     193
                  SIMULTANEOUS CONFIDENCE LIMITS FOR CROSS-PRODUCT RATIOS IN CONTINGENCY TABLES
                                                                                                             JRSSB64
                                                                                                                       B6
                                                   A CROSS-SECTION ANALYSIS OF NON-BUSINESS AIR TRAVEL
                                                                                                             JASA 58
                                                                                                                      92B
                                                                                                   INCOME, JASA 64 746
WEALTH, AND THE DEMAND FOR MONEY, SOME EVIDENCE FROM CROSS-SECTION DATA
                                   ESTIMATION OF THE CROSS-SPECTRUM
                                                                                                              AMS 63 1012
PROCESS FROM ITS ZEROS
                                   ESTIMATION OF THE CROSS-SPECTRUM OF A STATIONARY BIVARIATE GAUSSIAN
                                                                                                             JRSSB6B
ION OF FUNCTIONS OF VARIANCE COMPONENTS FROM TWO-WAY CROSSED CLASSIFICATIONS /OR THE SIMULTANEOUS ESTIMAT BIOKA67
      TWO CLASSES OF CROUP DIVISIBLE PARTIAL DIALLEL CROSSES
                                                                                                             BIOKA63 281
                            THE DELAY TO PEDESTRIANS CROSSING A ROAD
                                                                                                                      3B3
                                                                                                             BIOKA51
                    NOTES. THE ANALYSIS OF A DIALLEL CROSSINC EXPERIMENT WITH CERTAIN CROSSES MISSINC
                                                                                                                      216
                                                                                                             BIOCS65
PROCESSES
                                                 ZERO CROSSINC PROBABILITIES FOR CAUSSIAN STATIONARY
                                                                                                              AMS 62 1306
N O/ SIMULTANEOUS SELFINC AND PARTIAL DIALLEL TEST CROSSING 2. AN EVALUATION OF TWO METHODS OF ESTIMATIO BIOCS67
                                                                                                                      325
                                              MOMENT CROSSINGS AS RELATED TO DENSITY CROSSINGS
                                                                                                             JRSSR65
                                                                                                                       91
                         ON THE MEAN NUMBER OF CURVE CROSSINCS BY NON-STATIONARY NORMAL PROCESSES
                                                                                                              AMS 65
                                                                                                                      509
   OF CAUSSIAN PROCESSES FOR WHICH THE MEAN RATE OF CROSSINGS IS INFINITE
                                                                                                 ON A CLASS JRSSB67
                                                                                                                     489
                       THE MOMENTS OF THE NUMBER OF CROSSINCS OF A LEVEL BY A STATIONARY NORMAL PROCESS
                                                                                                              AMS 65 1656
               ON A LIMIT DISTRIBUTION OF HICH LEVEL CROSSINCS OF A STATIONARY CAUSSIAN PROCESS
                                                                                                              AMS 68 2108
STOCHASTIC PROCESSES
                                                  ON CROSSINCS OF LEVELS AND CURVES BY A WIDE CLASS OF
                                                                                                              AMS 66
                                                                                                                     260
  AN EXACT TEST FOR COMPARINC MATCHED PROPORTIONS IN CROSSOVER DESIGNS
                                                                                                             BIOKA69
                                                                                                                       75
                                                      CROSSROAD CHOICES FOR THE FUTURE DEVELOPMENT OF THE
FEDERAL STATISTICAL SYSTEM
                                                                                                             JASA 6B
                                                                                                                      B01
                                        NOTE ON SOME CRTICISMS MADE BY SIR RONALD FISHER
                                                                                                             JRSSB56 297
            SOME STATISTICAL PROBLEMS CONNECTED WITH CRYSTAL LATTICES (WITH DISCUSSION)
                                                                                                             JRSSB64
                                                                                                                      367
                   RANDOM SUBDIVISIONS OF SPACE INTO CRYSTALS
                                                                                                              AMS 62
                                                                                                                      95B
                                 WHEN AND HOW TO USE CU-SUM CHARTS
                                                                                                             TECH 63
        ASSOCIATED WITH THE RANDOM DISORIENTATION OF CUBES
                                                                                            SOME STATISTICS BIOKA57
                                                                                                                      2.05
        ASSOCIATED WITH THE RANDOM DISOREINTATION OF CUBES
                                                                                 SECOND PAPER ON STATISTICS BIOKA58 229
                                                      CUBIC DESIGNS
                                                                                                              AMS 64 3B9
PROBABILITY DENSITY
                                                      CUBICAL AND SPHERICAL ESTIMATION OF MULTIVARIATE
                                                                                                             JASA 68 1495
          DESIGNS WHICH MINIMIZE MODEL INADEQUACIES. CUBOIDAL RECIONS OF INTEREST
                                                                                                             BIOKA65 111
            THE USE OF SECOND-ORDER 'SPHERICAL' AND 'CUBOIDAL' DESIGNS IN THE WRONG RECIONS
                                                                                                             BIOKA66 596
```

THE USE OF CORRELATED VARIABLES FOR PRELIMINARY		BIOCS67	551
INDICES OF SYNCHRONY IN CELLULAR		BIOCS67	
	CUMULANT OPERATORS FOR POWER-SERIES DISTRIBUTIONS, AN		
THE PERCENTILE POINTS OF DISTRIBUTIONS HAVING KNOWN SOME PROPERTIES OF A DISTRIBUTION SPECIFIED BY ITS		TECH 60 TECH 63	209 63
ON EXACT CROUPING CORRECTIONS TO MOMENTS AND		BIOKA52	
A PARAMETER BY RECURRENCE RELATIONS FOR FUNCTIONS OF		AMS 69	
The state of the s	CUMULANTS OF A TRANSFORMED VARIATE	BIOKA55	
TENSOR NOTATION AND THE SAMPLING		BIOKA52	
TRACES AND	CUMULANTS OF QUADRATIC FORMS IN NORMAL VARIABLES	JRSSB54	247
ON THE	CUMULANTS OF RENEWAL PROCESSES	BIOKA59	1
		BIOKA59	
		BIOKA51	
		JRSSB62	
'SOME PROPERTIES OF A DISTRIBUTION SPECIFIED BY ITS 'THE PERCENTILE POINTS OF DISTRIBUTIONS HAVING KNOWN			
		BIOKA68	
A CHART FOR THE INCOMPLETE BETA-FUNCTION AND THE	CUMULATIVE BINOMIAL DISTRIBUTION	BIOKA51	
A CHART FOR THE INCOMPLETE BETA-FUNCTION AND THE AVERACE RUN LENGTHS IN THE RELIABILITY OF COMPONENTS SYNTHETING	CUMULATIVE CHART QUALITY CONTROL SCHEMES	TECH 61	
THE RELIABILITY OF COMPONENTS EXHIBITING	CUMULATIVE DAMACE EFFECTS	TECH 61	413
FITTING A STRAIGHT LINE TO CERTAIN TYPES OF		JASA 57	
QUERY, RECRESSION ANALYSIS OF	CUMULATIVE DATA	TECH 64	225
OF TWO METHODS OF FITTING A STRAIGHT LINE THROUGH		JASA 64	B63
	CUMULATIVE DISTRIBUTION FOR SAMPLE SIZES TO 1,000; CO CUMULATIVE DISTRIBUTION FUNCTIONS /HE PROBABILITY O		164 360
		JRSSB54	
THE NEGATIVE EXPONENTIAL WITH		BIOCS6B	
	CUMULATIVE FUNCTIONS BE CONTINUOUS DISTRIBUTION FR		
	CUMULATIVE HYPERGEOMETRIC PROBABILITIES, DIRECT AND		
	CUMULATIVE HYPERGEOMETRIC PROBABILITIES, DIRECT AND I		
	CUMULATIVE NORMAL QUANTAL RESPONSE CURVE SOME OPT		
	CUMULATIVE POPULATION IN A SIMPLE BIRTH-AND-DEATH PRO CUMULATIVE PROBABILITIES TREATMENT OF THE		
		JRSSB61	
	CHMHI ATIVE CHM CHARTS	TECH 61	1
DISTRIBUTION	CUMULATIVE SUM CHARTS FOR THE FOLDED NORMAL	TECH 63	
A SIMPLE THEORETICAL APPROACH TO	CUMULATIVE SUM CHARTS FOR THE FOLDED NORMAL CUMULATIVE SUM CONTROL CHARTS CUMULATIVE SUM CONTROL CHARTS	JASA 61	835
		TECH 68	
	CUMULATIVE SUM CONTROL CHARTS AND THE WEIBULL		
	CUMULATIVE SUM SCHEME /RE FOR DETERMINING UPPER AND CUMULATIVE SUM SCHEMES USING GAUGING	TECH 62	263 97
	CUMULATIVE SUMS	AMS 66	
CORRECTION TO 'A PROOF OF WALD'S THEOREM ON		AMS 61	1344
		TECH 66	
THE ESTIMATION OF PROBABILITY DENSITIES AND		JASA 68	
THE ECONOMIC DESIGN OF MEAN CHARTS USED TO MAINTAIN	CURRENT CONTROL OF A PROCESS CURRENT MEAN OF A NORMAL DISTRIBUTION WHICH IS SUBJEC	JASA 56	
	CURRENT WEICHT-HEIGHT RELATIONSHIPS OF YOUTHS OF		
PPLICATIONS OF TIME-SHARED COMPUTERS IN A STATISTICS		JASA 68	
	CURTAILED SAMPLING FOR VARIABLES		
MISCLASSIFIED DATA FROM	CURTAILED SAMPLING PLANS	TECH 6B	489
ESTIMATION OF FRACTION DEFECTIVE IN	CURTAILED SAMPLINC FOR VARIABLES CURTAILED SAMPLING PLANS CURTAILED SAMPLINC PLANS BY ATTRIBUTES CURTAILED SAMPLINC PLANS BY ATTRIBUTES	TECH 67	219
CENSORED SAMPLING IN	CURTAILED SAMPLING PLANS BY ATTRIBUTES	TECH 68	854
THE ANALYSIS OF LATIN SQUARE DESIGNS WITH INDIVIDUAL	CURVATURE OF THE LIKELIHOOD SURFACE OF A SAMPLE DRAWN	JRSSB58	
ESTIMATING THE LOGISTIC		JASA 57	
ANALYSIS OF DATA WHEN THE RESPONSE IS A		TECH 66	
THE USE OF AUTOREGRESSION IN FITTING AN EXPONENTIAL		BIOKA58	
MEASURING THE LENCTH OF A		BIOKA66	
SELECTION FOR AN OPTIMUM CROWTH	001112	BIOCS6B	
OF LINEARITY VERSUS CONVEXITY OF A MEDIAN REGRESSION NOTE ON A SIMPLE METHOD FOR FITTING AN EXPONENTIAL			
OF HARTLEY'S METHOD FOR FITTING AN EXPONENTIAL	CURVE AN INVESTIGATION	BIOKA59	281
ING THE MEAN OF A CUMULATIVE NORMAL QUANTAL RESPONSE	CURVE SOME OPTIMAL SEQUENTIAL SCHEMES FOR ESTIMAT	JRSSB62	393
GROUPING, REGRESSION AND CORRELATION IN ENGEL	CURVE ANALYSIS EFFICIENT	JASA 64	233
LOGISTIC PROCESS, TABLES OF THE STOCHASTIC EPIDEMIC		JRSSB60	
	CURVE AND PERIODOGRAM SMOOTHING (WITH DISCUSSION) CURVE FITTING A METHOD OF OBTAINING		
	CURVE FITTING BY AITKEN'S METHOD /YNOMIALS OF THE P		
	CURVE FITTING BY AITKEN'S METHOD' / POLYNOMIALS OF P		
	CURVE FITTING BY SEGMENTED STRAIGHT LINES	JASA 69	1079
TARAR	CURVE EXPOSIO LICTNO LEACH DEVIATIONS	TACA 58	118
PROGRAMMING, CORR. 62 917 A NOTE ON	CURVE FITTING USING LEAST DEPTRITORS CURVE FITTING WITH MINIMUM DEVIATIONS BY LINEAR CURVE FOR LARGE POPULATIONS OF SUSCEPTIBLES	JASA 61	359
THE S STOCHASTIC EPIDEMIC	CURVE FOR LARGE POPULATIONS OF SUSCEPTIBLES CURVE FOR SEQUENTIAL SAMPLING BY VARIABLES WHEN THE P	BIOKA65	108
OMPARISONS OF METHODS OF FITTING THE DOSAGE PESDONSE	CURVE FOR SEQUENTIAL SAMPLING BY VARIABLES WHEN THE P CURVE FOR SMALL SAMPLES SOME C	JASA 64	779
OPTIMALITY AND THE OPERATING CHARACTERISTIC	CURVE FOR SMALL SAMPLES CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST	JASA 64	464
A TWO-PARAMETER MODEL FOR THE SURVIVAL	CURVE OF TREATED CANCER PATIENTS	JASA 65	16
MAXIMUM LIKELIHOOD ESTIMATION OF SURVIVAL	CURVE PARAMETERS	BIOCS68	
YSIS OF VARIANCE MODEL USEFULL ESPECIALLY FOR CROWTH	CURVE PROBLEMS A GENERALIZED MULTIVARIATE ANAL	BIOKA64	313
AND DUE OF A COLUMN OF COL			
AND THE SUM OF SQUARES OF NORMAL SCORES THE	CURVE THROUGH THE EXPECTED VALUES OF ORDERED VARIATES	BIOK 900	232

```
ON A CENERAL SYSTEM OF DISTRIBUTIONS, I. ITS CURVE-SHAPE CHARACTERISTICS II. THE SAMPLE MEDIAN
                                                                                                           JASA 68 627
             THE FITTING OF MARKOFF SERIAL VARIATION CURVES
                                                                                                           JRSSB58 120
                 A PROBABILITY STRUCTURE FOR CROWTH CURVES
                                                                                                           RIOCS67 217
             NOTES. A NOTE ON THE ANALYSIS OF CROWTH CURVES
                                                                                                           BTOCS68
                                                                                                                   192
                ANALYSIS OF CROWTH AND DOSE RESPONSE CURVES
                                                                                                           BIOCS69
                                                                                                                    357
       OF METHODS FOR FITTINC EXPONENTIAL RECRESSION CURVES
                                                                                            THE DERIVATION BIOKA64
                                                                                                                    504
         MODELS RELATING TIME AND DOSAGE IN RESPONSE CURVES
                                                                                           SOME STOCHASTIC BIOCS65
                                                                                                                    583
CONTINCENCY TABLES AND POLYCHOTOMOUS DOSACE RESPONSE CURVES
                                                                                       MODELS FOR COMPLEX BIOCS66
NCOMPLETE BETA-FUNCTION FOR FITTING TO DOSE-RESPONSE CURVES
                                                                                      ON NORMALIZING THE I BIOKAGO
                                                                                                                    173
   DISTRIBUTIONS OF PARAMETERS OF EXPONENTIAL DECAY CURVES
                                                                               A COMPARISON OF CONTINUOUS BIOCS68
                                                                                                                    117
S OF THE 5 PERCENT AND 0.5 PERCENT POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EXPRESSED IN BIOKAS1
                                                                                                                      4
           SEQUENTIAL ESTIMATION OF QUANTAL RESPONSE CURVES (WITH DISCUSSION)
                                                                                                           JRSSB63
                                                                                                                      1
  CONDITIONS UNDER WHICH GRAM-CHARLIER AND EDGEWORTH CURVES ARE POSITIVE DEFINITE AND UNIMODAL
                                                                                                       THE BIOKA52
                                                                                                                    425
                         ON CROSSINCS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES
                                                                                                            AMS 66
                                                                                                                    260
ND 50 PERCENT POINTS OF THE OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECTS ANALYSIS OF VARIANCE F TESTS JASA 57
                                                                                                                    345
                                  SMALL SAMPLE POWER CURVES FOR THE TWO SAMPLE LOCATION PROBLEM
                                                                                                                    299
                                                                                                           TECH 69
                                            FITTING CURVES TO LONGITUDINAL DATA
                                                                                                           BIOCS66 276
                                   FITTING SEGMENTED CURVES WHOSE JOIN POINTS HAVE TO BE ESTIMATED
                                                                                                           JASA 66 1097
                           THE FITTING OF RECRESSION CURVES WITH AUTOCORRELATED DATA
                                                                                                           BIOKA56
      TABLES TO FACILITATE FITTING S-SUB-U FREQUENCY CURVES.
                                                                                                           BTOKA65
                                                                                                                    547
                                                              /LEAST SQUARES WHEN THE PARAMETERS ARE STOC BIOKA65
HASTIC AND ITS APPLICATION TO THE ANALYSIS OF CROWTH CURVES.
                                                                                                                    447
                                                              /XIMATE MEANS AND STANDARD DEVIATIONS BASED BIOKAG5
 ON DISTANCES BETWEEN PERCENTAGE POINTS OF FREQUENCY CURVES.
                                                                                                                    533
           SEQUENTIAL ESTIMATION OF QUANTAL RESPONSE CURVES, A NEW METHOD OF ESTIMATION
                                                                                                                    439
                                                                                                           BTOKA66
                                         CONFIDENCE CURVES, AN OMNIBUS TECHNIQUE FOR ESTIMATION AND TESTI JASA 61
NG STATISTICAL HYPOTHESES
                                                                                                                    246
N STANDARD/ TABLE OF PERCENTAGE POINTS OF PEARSON CURVES, FOR GIVEN ROOT(BETA-1) AND BETA-2 EXPRESSED I BIOKA63
                                                                                                                    459
 CORRIGENDA, 'TABLE OF PERCENTAGE POINTS OF PEARSON CURVES, FOR GIVEN ROOT(BETA-1) AND BETA-2, EXPRESSED BIOKA65

A NOTE ON 'LEARNING CURVES'

BIOKA65

JASA 69
                                                                                                                    669
                                                                                                           JASA 69 NO.4
                                                                                                            AMS 68
                                                                                                                    76
                   ESTIMATION OF THE LOCATION OF THE CUSP OF A CONTINUOUS DENSITY
                                       DETERMINISTIC CUSTOMER 'IMPATIENCE IN THE QUEUEING SYSTEM GI-M-1
                                                                                                           BIOKA60
                                                                                                                    45
                                       DETERMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM CI-M-1, A
                                                                                                                   472
                                                                                                          BIOKA61
A QUEUEINC PROBLEM IN WHICH THE ARRIVAL TIMES OF THE CUSTOMERS ARE SCHEDULED
                                                                                                           JRSSB60
                                                                                                                    108
  ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE QUEUE
                                                                                                    A NOTE JRSSB55
                                                                                                                    262
       ON THE BUSY PERIOD OF A FACILITY WHICH SERVES CUSTOMERS OF SEVERAL TYPES
                                                                                                           JRSSB65
                                                                                                                    361
      INCURRED BY ERRONEOUSLY ASSUMING NORMALITY FOR CUSUM SCHEMES
                                                                                     AN EXAMPLE OF ERRORS TECH 67
                                                                                                                    457
               CONTROLLING THE STANDARD DEVIATION BY CUSUMS AND WARNING LINES
                                                                                                           TECH 63
                                                                                                                   307
                         DISTRIBUTIONS DETERMINED BY CUTTING SIMPLEX WITH HYPERPLANES
                                                                                                            AMS 68 1473
                     A SYSTEM OF MODELS FOR THE LIFE CYCLE OF A BIOLOGICAL ORGANISM
                                                                                                           BTOKA68
                                                                                                                   211
                           MANUFACTURERS' INVENTORY CYCLES AND MONETARY POLICY
                                                                                                           JASA 58
                                                                                                                    680
                                           REGIONAL CYCLES OF MANUFACTURING EMPLOYMENT IN THE UNITED STAT JASA 60
ES, 1914-1953, CORR. 60 755
                                                                                                                    151
NAL SEED ORCHARDS
                                         THE USE OF CYCLIC BALANCED INCOMPLETE BLOCK DESIGNS FOR DIRECTIO BIOCS67
                                                                                                                    761
DIRECTIONAL SEED ORCHARDS
                                         THE USE OF CYCLIC BALANCED INCOMPLETE BLOCK DESIGNS FOR NON-
                                                                                                           BTOCS69
                                                                                                                   561
                                                     CYCLIC CHANGE-OVER DESIGNS
                                                                                                                    283
                                                                                                           BIOKA69
L-RESTRICTIONAL PRIME-POWE/
                             ON THE CONSTRUCTION OF CYCLIC COLLINEATIONS FOR OBTAINING A BALANCED SET OF
                                                                                                           AMS 67 1293
                                      APPLICATION OF CYCLIC COLLINEATIONS TO THE CONSTRUCTION OF
                                                                                                            AMS 67 1127
                                                     CYCLIC DESIGNS
                                                                                                            AMS 65 1526
BLOCK DESIGNS
                                              NOTES. CYCLIC GENERATION OF ROBINSON'S BALANCED INCOMPLETE
                                                                                                           BIOCS67
                                                                                                                    574
                                                     CYCLIC INCOMPLETE BLOCK DESIGNS
                                                                                                           JRSSB66 345
                                           ON JOHN'S CYCLIC INCOMPLETE BLOCK DESIGNS
                                                                                                           JRSSB67
                                                                                                                    243
                                                     CYCLIC QUEUES WITH FEEDBACK
                                                                                                           JRSSB59
                                                                                                                   153
                          A FLUCTUATION THEOREM FOR CYCLIC RANDOM VARIABLES
                                                                                                            AMS 62 1450
                                               NEAR-CYCLIC REPRESENTATIONS FOR SOME RESOLUTION VI FRACTIO
NAL FACTORIAL PLANS
                                                                                                            AMS 69 1840
                                           THEORY OF CYCLIC ROTATION EXPERIMENTS (WITH DISCUSSION)
                                                                                                           JRSSB64
                                                                                                                     1
              AN EXPERIMENT WITH WEIGHTED INDEXES OF CYCLICAL DIFFUSION
                                                                                                           JASA 5B
                                                                                                                     39
                                                     CYLINDRICALLY ROTATABLE DESIGNS
                                                                                                            AMS 66 242
                                                     CYLINDRICALLY ROTATABLE DESIGNS OF TYPES 1, 2, AND 3
                                                                                                            AMS 67
                                                                                                                    167
        TABLE OF 0.1 PERCENTACE POINTS OF BEHRENS'S D
                                                                                                           BIOKA66
     SIZE REQUIRED FOR ESTIMATING THE VARIANCE WITIN D UNITS OF THE TRUE VALUE
                                                                                                    SAMPLE AMS 64
IA SUBOBSCURA' COLL. AND A COMPARISON WITH THOSE OF 'D. ROBUSTA' STURT /ONS IN POPULATIONS OF 'DROSOPHIL BIOCS66
                                                                                                                    469
  MARTINGALES IN A FINITELY ADDITIVE SETTING WILLIAM D. SUDDERTH
                                                                          A NOTE ON THRIFTY STRATECIES AND
                                                                                                           AMS 69 NO.6
                    TWO MORE CRITERIA EQUIVALENT TO D-OPTIMALITY OF DESIGNS
                                                                                                            AMS 62 792
UTION OF THE TWO SAMPLE KOLMOCOROV-SMIRNOV CRITERION D-SUB-MN, M LESS THAN OR EQUAL TO N /MPLINC DISTRIB JASA 69 NO.4
LYNOMIALS IN THE ANALYSIS OF CHANCE-OVER TRIALS WITH DAIRY COWS
                                                                                THE VALUE OF ORTHOGONAL PO BIOCS67
                                                                                                                   297
                        FIRST EMPTINESS IN A FINITE DAM
                                                                                                           JRSSB61
                                                                                                                    343
  OF THE NEGATIVE EXPERIMENTAL TYPE FOR THE INFINITE DAM
                                                                                  STATIONARY DISTRIBUTIONS JRSSB57
                                                                                                                    342
                          A NOTE ON THE SOLUTION OF DAM EQUATIONS
                                                                                                           JRSSB64 338
  THE ESTIMATION OF GENETIC PARAMETERS FROM DAUGHTER-DAM REGRESSION
                                                                        SOME TRANSFORMATIONS OF SCALE AND BIOCS67
                                                                                                                    823
    APPLICATION OF METHODS IN SEQUENTIAL ANALYSIS TO DAM THEORY
                                                                                                            AMS 63 1588
 DISTRIBUTION OF THE TIME-TO-EMPTINESS OF A DISCRETE DAM UNDER STEADY DEMAND
                                                                                                       THE JRSSB63
                                                                                                                    137
         THE TIME-DEPENDENT SOLUTION FOR AN INFINITE DAM WITH DISCRETE ADDITIVE INPUTS
                                                                                                           JRSSB61
                                                                                                                    173
 INEQUALITIES FOR FIRST EMPTINESS PROBABILITIES OF A DAM WITH ORDERED INPUTS
                                                                                                           JRSSB62
                                                                                                                    102
                                     THE ALMOST FULL DAM WITH POISSON INPUT
                                                                                                           JRSSB66
                                                                                                                    329
                                     THE ALMOST FULL DAM WITH POISSON INPUT, FURTHER RESULTS
                                                                                                           JRSSB66
                                                                                                                    448
 THE RELIABILITY OF COMPONENTS EXHIBITING CUMULATIVE DAMACE EFFECTS
                                                                                                           TECH 61
                                                                                                                    413
  SOME PROBLEMS IN THE THEORY OF PROVISIONING AND OF DAMS
                                                                                                           BIOKA55
                                                                                                                    179
       OF HERITABILITY FROM EXPERIMENTS WITH RELATED DAMS
                                                                                                ESTIMATION BIOCS69 NO.4
    OF THE RANDOM WALKS DESCRIBING SIMPLE QUEUES AND DAMS
                                                                                             ON A PROPERTY JRSSB65
                                                                                                                    125
                     SOME PROBLEMS IN THE THEORY OF DAMS (WITH DISCUSSION)
                                                                                                           JRSSB57
                                                                                                                    207
                             FIRST EMPTINESS OF TWO DAMS IN PARALLEL
                                                                                                            AMS 61 219
    DISCUSSION OF THE PAPERS OF MESSRS. ANSCOMBE AND DANIEL
                                                                                                           TECH 60
                                                                                                                    157
ES' BIVARIATE SICN TEST AND A NON-PARAMETRIC TEST OF DANIELS' 60 1190 /S TO 'A RELATIONSHIP BETWEEN HODC AMS 61
                                                                                                                    619
                        THE ASYMPTOTIC EFFICIENCY OF DANIELS'S GENERALIZED CORRELATION COEFFICIENT
                                                                                                          BIOKA63
                                                                                                                    499
                        THE ASYMPTOTIC EFFICIENCY OF DANIELS'S GENERALIZED CORRELATION COEFFICIENTS
                                                                                                           JRSSB61 128
    OF REPEATED MIGRATION, AND ANALYSIS BASED ON THE DANISH POPULATION REGISTER
                                                                                               THE EXTENT JASA 64 1121
                                      LES MANQUANTS DANS L'ESSAI THERAPEUTIQUE
                                                                                                           BIOCS67 145
                PONDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX SUR PLUSIEURS CARACTERES BIOCS69
                                                                                                                   295
                        DISTRIBUTION OF THE ANDERSON-DARLING STATISTIC
                                                                                                            AMS 61 1118
```

TITLE WORD INDEX CUR - DAT

CEORCES	DARM	DIS, 1888-1960	AMS 61	357
RESEARCH ON METROPOLITAN POPULATION, EVALUATION OF		313, 1000-1900	JASA 56	
A METHOD OF ADJUSTMENT FOR DEFECTIVE			JASA 5B	736
THE ANALYSIS OF LIFE TEST			TECH 59	9
ESTIMATION FROM LIFE TEST			TECH 60	447
SOME TESTS FOR CATEGORICAL	DATA		AMS 61	72
ON THE USE OF CORRELATION TO AUCMENT	DATA		JASA 62	20
RECRESSION ANALYSIS OF SEASONAL	DATA		JASA 64	402
QUERY, RECRESSION ANALYSIS OF CUMULATIVE			TECH 64	225
A LIFE TABLE THAT ACREES WITH THE			JASA 66	
SELECTION OF VARIABLES FOR FITTING EQUATIONS TO			TECH 66	27
RECONSTRUCTING PATTERNS FROM SAMPLE			AMS 67	
ON TWO K-SAMPLE RANK TESTS FOR CENSORED			AMS 67	
ON SOME INVARIANT CRITERIA FOR GROUPING			JASA 67	
ESTIMATING FROM MISCLASSIFIED MULTINOMIAL SAMPLINC WITH PARTIALLY CATEGORIZED			JASA 68	
THE EXCEEDANCE TEST FOR TRUNCATION OF A SUPPLIER'S			JASA 68 JASA 69	
THE FORECASTING ACCURACY OF CONSUMER ATTITUDE			JASA 69	
FURTHER NOTES ON THE ANALYSIS OF ACCIDENT			BIOKA53	
NEW TECHNIQUES FOR THE ANALYSIS OF ABSENTEEISM			BIOKA54	77
THE FITTING OF REGRESSION CURVES WITH AUTOCORRELATED			BIOKA56	
ON ESTIMATING EPIDEMIC PARAMETERS FROM HOUSEHOLD	DATA		BIOKA64	
A SIMPLE EXAMPLE OF A COMPARISON INVOLVINC QUANTAL	DATA		BIOKA66	215
A NOTE ON ESTIMATION FOR QUANTAL RESPONSE			BIOKA6B	57B
PROBABILITY PLOTTING METHODS FOR THE ANALYSIS OF			BIOKA6B	1
QUICK POWERFUL TESTS WITH GROUPED			BIOKA6B	
FITTING CURVES TO LONGITUDINAL			BIOCS66	
STEREOSCOPIC MODELS OF MULTIVARIATE STATISTICAL			BIOCS66	
ON A CONTAGIOUS DISTRIBUTION SUGGESTED FOR ACCIDENT		m in	BIOCS67	
ASYMPTOTIC POWERS OF MULTIVARIATE TESTS WITH GROUPED FOR THE ESTIMATION OF COMPETING RISKS FROM GROUPED			JRSSB68 BIOCS69	
A STRAIGHT LINE TO CERTAIN TYPES OF CUMULATIVE			JASA 57	
MODELS FOR ESTIMATING CORRELATION IN DISCRETE		FURTHER		82
LIKELIHOOD ESTIMATION WITH INCOMPLETE MULTIVARIATE			AMS 64	
GOMBINING ABILITIES FITTED TO PLANT BREEDING		ADDITIVE		45
BETWEEN POPULATIONS ON THE BASIS OF ATTRIBUTE	DATA	DISTANCE		859
TESTS FOR MONOTONE FAILURE RATE BASED ON INCOMPLETE	DATA	A NOTE ON	AMS 69	595
ESTIMATION OF A SHIFT PARAMETER FROM GROUPED		EFFICIENT	AMS 67	1770
METHOD FOR CALCULATING KENDALL'S TAU WITH UNGROUPED		A COMPUTER		436
ESTIMATION OF VARIANCE COMPONENTS FOR NON-ORTHOGONAL		ITERATIVE		
FITTING EMPIRICAL SURFACES TO PHYSICAL AND CHEMICAL		A METHOD OF		
MAXIMUM LIKELIHOOD ESTIMATES FROM CROUPED		APPROXIMATE		
THE PROPORTION DEFECTIVE FROM CLASSIFICATION		CONTROLLING		99
OF A QUANTUM HYPOTHESIS BASED ON A SINGLE SET OF THE SIZE OF MOBILE POPULATIONS FROM RECAPTURE		EXAMINATION ON ESTIMATING		32
METHOD AND THE FITTING OF POLYNOMIALS TO WEIGHTED		THE DOOLITTLE		229
TO THE MAXIMUM-LIKELIHOOD ESTIMATOR USING GROUPED		APPROXIMATIONS		282
MOST POWERFUL RANK ORDER TESTS FOR GROUPED		ASYMPTOTICALLY		
OF LOCATION AND SGALE PARAMETERS FROM GROUPED		THE ESTIMATION		
FOR A ONE-SIDED TEST OF HYPOTHESIS FOR QUALITATIVE		A SHORT-CUT RULE		197
IN THE NUMERICAL ANALYSIS OF ARCHAEOLOGICAL	DATA	SOME EXPERIMENTS	BIOKA66	311
ITS INTEREST AND APPLICATION IN ANALYSIS OF		MATRIX INVERSION,		755
PROCEDURES FOR MULTIPLE COMPARISONS ON CATEGORICAL		SIMULTANEOUS TEST		
DEMAND FOR MONEY, SOME EVIDENCE FROM CROSS-SECTION		INCOME, WEALTH, AND THE		746
OF TWO TEST CRITERIA FOR HYPOTHESES IN CATEGORICAL		A NOTE ON THE EQUIVALENCE		228
TOWARDS POSTERIOR DISTRIBUTIONS BASED ON SAMPLE IMENTS BY ESTIMATING MONOTONE TRANSFORMATIONS OF THE		NEW METHODS FOR REASONING ANALYSIS OF FACTORIAL EXPER		251
RANK TESTS FOR THE TWO-SAMPLE PROBLEM WITH CENSORED		ASYMPTOTICALLY MOST POWERFUL		
FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED		A COMPARISON OF TWO SORTS OF TEST		119
MATION OF A POPULATION MEAN USING TRANSFORMED SAMPLE		DIFFICULTIES INVOLVED IN THE ESTI		535
ETHODS OF FITTING A STRAIGHT LINE THROUGH CUMULATIVE		A NOTE ON THE EQUIVALENCE OF TWO M		
THODS FOR ANALYSINC SENSITIVITY AND QUANTAL RESPONSE		THE USE OF NON-LINEAR RECRESSION ME	BIOCS67	563
MODELS INVOLVING NORMAL APPROXIMATIONS TO DISCRETE	DATA	INFERENCE FOR SOME INCOMPLETELY SPECIFIED	BIOCS67	335
IBUTION IN THE ESTIMATION OF CORRELATION IN DISCRETE		THE USE OF A GENERALIZED MULTINOMIAL DISTR		530
D FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE TEST		/PARAMETERS OF MIXED EXPONENTIALLY DISTRIBUTE		504
L EVENTS, WITH APPLICATION TO BACTERIAL ENDOCARDITIS		/USE OF THE POISSON APPROXIMATION FOR BINOMIA		74
RTITIONED MATRICES IN THE ANALYSIS OF NON-ORTHOGONAL		/ENBERG AND SARHAN'S METHOD OF INVERSION OF PA		1200
NT WITH SPECIAL REFERENCE TO TYPE II CENSORED NORMAL SIMPLE SIMILAR ACTION, THE ANALYSIS OF UNCONTROLLED		/ENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDE /ES TO MIXTURES OF POISONS UNDER CONDITIONS OF		74
ILITIES OF A FINITE-STATE MARKOV CHAIN FROM THE SAME		/ES TO MIXTURES OF POISONS UNDER CONDITIONS OF		185
NOTE ON THE HISTORY OF THE GRAPHICAL PRESENTATION OF		/ISTORY OF PROBABILITY AND STATISTICS. III. A		241
F TRIBOLIUM AND ITS APPLICATION TO SOME EXPERIMENTAL		A STOCHASTIC MODEL FOR TWO COMPETING SPECIES O		1
STATISTICAL TREATMENT OF CENSORED		PART I. FUNDAMENTAL FORMULAE	BIOKA54	228
GROUPING ESTIMATORS IN HETEROSCEDASTIC	DATA	(CORR. 68 1550)	JASA 68	
PROBLEMS IN THE STATISTICAL ANALYSIS OF EPIDEMIC			JRSSB55	35
		ANALYSIS, CORR. 62 812	AMS 62	1
		AND THE INVESTMENT DECISION	JASA 65	503 125
OF REVERSAL ASSOCIATED WITH A TEST PROCEDURE, WHEN OF RECREATION STATISTICAL		ARE INCOMPLETE THE PROBABILITY AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES		
OF RECREATION STATISTICAL ANALYSIS OF CATEGORICAL			BIOCS69	
			TECH 63	
			JASA 68	
G OF SOME CONTAGIOUS DISTRIBUTIONS TO SOME AVAILABLE	DATA	BY THE MAXIMUM LIKELIHOOD METHOD (CORR. 65 514)	BIOCS65	34
VARIANCE THE LIMITING POWER OF CATEGORICAL	DATA	CHI-SQUARE TESTS ANALOGOUS TO NORMAL ANALYSIS OF	AMS 63	
SYSTEMATIC STATISTICS USED FOR			JASA 65	97
A PROCEDURE FOR AUTOMATIC	DATA	EDITINC	JASA 67	541
				(0

```
MAMMALIAN REPRODUCTIVE DATA FITTED TO A MATHEMATICAL MODEL
                                                                                                                BIOCS69 529
                               SEASONAL ADJUSTMENT OF DATA FOR ECONOMETRIC ANALYSIS
                                                                                                                JASA 67 137
OPULATIONS OF THE PROTOZOA PAR/ AN ANALYSIS OF THE DATA FOR SOME EXPERIMENTS CARRIED OUT BY GAUSE WITH P BIOKAST
                                                                                                                          314
                               ERRATA, 'MISCLASSIFIED DATA FROM A BINOMIAL POPULATION'
                                                                                                                TECH 66 215
                                        MISCLASSIFIED DATA FROM A BINOMINAL POPULATION
                                                                                                                TECH 60
                                                                                                                          109
                    AN ANALYSIS OF SOME RELAY FAILURE DATA FROM A COMPOSITE EXPONENTIAL POPULATION
                                                                                                                TECH 61
                                                                                                                          423
                           FITTING A STRAIGHT LINE TO DATA FROM A TRUNCATED POPULATION
                                                                                                                BIOCS65
                            PROCESSING UNDERDEVELOPED DATA FROM AN UNDERDEVELOPED AREA
               A BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM CLINICAL TRIALS
                                                                                                                JASA 65
                                                                                                                           81
                                        MISCLASSIFIED DATA FROM CURTAILED SAMPLING PLANS
                                                                                                                TECH 68
                                                                                                                          489
L DISTRIBUTION AND BAYESIAN ANALYSIS OF CATERGORICAL DATA FROM FINITE POPULATIONS /E COMPOUND MULTINOMIA JASA 69
A STUDY OF RESPONSE ERRORS IN EXPENDITURES DATA FROM HOUSEHOLD INTERVIEWS JASA 64
                                                                                                                          216
                                                                                                                           18
        COMPARISON OF THREE STRATECIES OF COLLECTING DATA FROM HOUSEHOLDS
                                                                                                  A CRITICAL JASA 67
                                                                                                                          976
                         THE ANALYSIS OF VARIANCE OF DATA FROM STRATIFIED SUBSAMPLES
                                                                                                                JASA 68
                                                                                                                          64
                 A METHOD OF ANALYSINC UNTRANSFORMED DATA FROM THE NECATIVE BINOMIAL AND OTHER CONTAGIOUS BIOKA68
                                                                                                                         163
                                  EX ANTE AND EX POST DATA IN INVENTORY INVESTMENT
                                                                                                                 JASA 61
                                                                                                                          518
                                  AUCMENTING EXISTING DATA IN MULTIPLE REGRESSION
                                                                                                                TECH 68
                                                                                                                          73
                                               MISSING DATA IN REGRESSION ANALYSIS
                                                                                                                 JRSSB68
                                                                                                                           67
                      AN ANALYSIS OF QUANTAL RESPONSE DATA IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT BIOCS65
       THE ESTIMATION OF POPULATION PARAMETERS FROM DATA OBTAINED BY MEANS OF THE CAPTURE-RECAPTURE METHO BIOKA51
D. T/
        THE ESTIMATION OF POPULATION PARAMETERS FROM DATA OBTAINED BY MEANS OF THE CAPTURE-RECAPTURE METHO BIOKA52
        THE ESTIMATION OF POPULATION PARAMETERS FROM DATA OBTAINED BY MEANS OF THE CAPTURE-RECAPTURE METHO BIOKA53
                                                                                                                          137
                                     THREE SOURCES OF DATA ON COMMUTINC, PROBLEMS AND POSSIBILITIES
                                                                                                               JASA 60
                                                                                                                           8
                   INSPECTION AND CORRECTION ERROR IN DATA PROCESSING
                                                                                                                JASA 69 NO 4
                                                       DATA REVISIONS AND ECONOMIC FORECASTING
                                                                                                                JASA 67 470
THOO OF ESTIMATION OF MISSING VALUES IN MULTIVARIATE DATA SUITABLE FOR USE WITH AN ELECTRONIC COMPUTER
                                                                                                                JRSSB60 302
                                                       DATA TRANSFORMATIONS AND THE LINEAR MODEL
                                                                                                                 AMS 67 1456
                                                                                                                BIOCS65 115
            ANALYSIS OF VARIANCE OF DISPROPORTIONATE DATA WHEN INTERACTION IS PRESENT
                                           ANALYSIS OF DATA WHEN THE RESPONSE IS A CURVE
                                                                                                                TECH 66
                                                                                                                          229
              THE ROLE OF SIGNIFICANCE TESTING, SOME DATA WITH A MESSACE
TES OF POPULATION PARAMETERS FROM MULTIPLE RECAPTURE DATA WITH BOTH DEATH AND DILUTION-DETERMINISTIC MODEL BIOKA63
                                                                                                                         113
          EXPLICIT ESTIMATES FROM CAPTURE-RECAPTURE DATA WITH BOTH DEATH AND IMMIGRATION-STOCHASTIC MODEL BIOKA65
      OF ANALYZING LOG-NORMALLY DISTRIBUTED SURVIVAL DATA WITH INCOMPLETE FOLLOW-UP A METHOD JASA 60
                                                                                                                         534
           THE FITTING OF POLYNOMIALS TO EQUIDISTANT DATA WITH MISSING VALUES
                                                                                                                BTOKA51
                                                                                                                          410
ATES OF HERITABILITY FROM TRANSFORMED PERCENTAGE SIB DATA WITH UNEQUAL SUBCLASS NUMBERS
                                                                                                          ESTIM BIOCS65 1001
                              ANALYSIS OF CATEGORICAL DATA
                                                                                                                BIOKA65
                                                                                                                         654
        TWO-SAMPLE WILCOXON TEST FOR DOUBLY-CENSORED DATA
                                                                                                 A GENERALIZED BIOKA65
                                                                                                                          650
S OF CHI-SQUARE-TESTS IN THE ANALYSIS OF CATEGORICAL DATA.
                                                                /EFFECT OF MISCLASSIFICATION ON THE PROPERTIE BIOKA65
                                                                                                                          95
                  A LIFE TABLE THAT AGREES WITH THE DATA II
             MINIMIZING RESPONSE ERRORS IN FINANCIAL DATA. THE POSSIBILITIES
                                                                                                                JASA 68
                                                                                                                         217
                                    SELECTED ECONOMIC DATA, ACCURACY VS. REPORTING SPEED
                                                                                                                JASA 68
                   PROBLEMS IN THE ANALYSIS OF SURVEY DATA, AND A PROPOSAL
                                                                                                                JASA 63
                                                                                                                         415
               WEICHTED REGRESSION, QUANTAL RESPONSE DATA, AND INVERSE POLYNOMIALS
                                                                                                                BTOCS68
OR ESTIMATING THE EXPONENTIAL PARAMETER FROM QUANTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND BRANC BIOCS67
                                                                                                                          739
                         COMPUTER EDITING OF SURVEY DATA, FIVE YEARS OF EXPERIENCE IN BLS MANPOWER SURVEY JASA 66
                                                                                                                          375
ONS IN CONTINCEN/ THE ANALYSIS OF CROSS-CLASSIFIED DATA, INDEPENDENCE, QUASI-INDEPENDENCE, AND INTERACTI JASA 68 1091
                 THE ACCURACY OF INTERNATIONAL TRADE DATA, THE CASE OF SOUTHEAST ASIAN COUNTRIES
                                                                                                                         452
ECRESSION ANALYSIS APPLIED TO GAMMA RAY SPECTROMETER DATA, 1

SOME EXPERIMENTAL SAMPLING RESULTS FOR R BIOCS67

RECRESSION ANALYSIS APPLIED TO CAMA RAY SPECTROMETER DATA, 2

SOME EXPERIMENTAL SAMPLING RESULTS FOR BIOCS68
                                                                                                                          II
                                                                                                                          353
 SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM DAUGHTER-DAM REGRESSION SOME TRANSFORMATIONS OF BIOCS67
                                                                                                                          823
ESPONSE TO SELECTION IN BREEDING PROGRAMMES WHEN ALL DAUCHTERS OF SELECTED PARENTS ARE RETAINED /ON OF R BIOCS69
                                                                                                                          553
PAIRED-COMPA/ A REMARK ON A PAPER OF TRAWINSKI AND DAVID ENTITLED SELECTION OF THE BEST TREATMENT IN A MAS 63
 A NOTE ON THE ERROR AFTER A NUMBER OF TERMS OF THE DAVID-JOHNSON SERIES FOR THE EXPECTED VALUES OF NORMA BIOKAGO
                    APPLICATION OF A MODIFIGATION OF DAVIDON'S METHOD TO NONLINEAR REGRESSION PROBLEMS TECH 68
                                                                                                                          916
            INVARIANTS UNDER MIXING WHICH CENERALIZE DE FINETTI'S THEOREM
                                                                                                                 AMS 62
            INVARIANTS UNDER MIXING WHICH GENERALIZE DE FINETTI'S THEOREM CONTINUOUS TIMES PARAMETER
                                                                                                                         T194
                                                                                                                 AMS 63
 IN THE HISTORY OF PROBABILITY AND STATISTICS. VIII. DE MORGAN AND THE STATISTICAL STUDY OF LITERARY STYLE BIOKASS
                                                                                                                          282
L DISTRIBUTION, 2. EST/ INVESTIGATION OF RULES FOR DEALING WITH OUTLIERS IN SMALL SAMPLES FROM THE NORMA TECH 69
                                                                                                                          527
 CENSUS II ESTIMATION WHEN THERE IS IMMIGRATION OR DEATH
                                                                                       THE MULTIPLE-RECAPTURE BIOKA59
                                                                                                                          336
ON PARAMETERS FROM MULTIPLE RECAPTURE DATA WITH BOTH DEATH AND DILUTION-DETERMINISTIC MODEL /OF POPULATI BIOKAG3
ICIT ESTIMATES FROM CAPTURE-RECAPTURE DATA WITH BOTH DEATH AND IMMIGRATION-STOCHASTIC MODEL. EXPL BIOKAG5
                                                                                                                          113
                                                                                                                          225
                                    STOCHASTIC BIRTH, DEATH AND MICRATION PROCESSES FOR SPATIALLY DISTRIBUT BIOKA68
ED POPULATIONS
                                                                                                                          189
         A MULTI-DIMENSIONAL LINEAR CROWTH BIRTH AND DEATH PROCESS
                                                                                                                 AMS 68
                                                                                                                          727
                           AN ACE-DEPENDENT BIRTH AND DEATH PROCESS
                                                                                                                BTOKA55
THE BEHAVIOUR OF AN ESTIMATOR FOR A SIMPLE BIRTH AND DEATH PROCESS
                                                                                                                BIOKA56
                                                                                                                          23
            A MULTIVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND APPLICATIONS TO LUNAR CRATERS
                                                                                                                BIOKA67
                                                                                                                          251
ETWEEN SPECIES CROWINC ACCORDING TO SIMPLE BIRTH AND DEATH PROCESSES POPULATION DIFFERENCES B BIOKA53
HIERARCHICAL BIRTH AND DEATH PROCESSES. I. THEORY BIOKA60
                                                                                                                          370
                                                                                                                          235
                               HIERARCHICAL BIRTH AND DEATH PROCESSES. II. APPLICATIONS
                                                                                                                BIOKA60
                                                                                                                          245
STATES NONWHITE POPULATION AS INDICATED BY TRENDS IN DEATH RATES
                                                                             BIAS IN ESTIMATES OF THE UNITED JASA 61
                                                                                                                          44
THE ANALYSIS OF POPULATION CROWTH WHEN THE BIRTH AND DEATH RATES DEPEND UPON SEVERAL FACTORS
                                                                                                                BINCS69 NO 4
THE MAXIMUM LIKELIHOOD EQUATIONS FOR ESTIMATING THE DEATH-RATE /ANS OF THE CAPTURE-RECAPTURE METHOD.

THE ESTIMATION OF DEATH-RATES FROM CAPTURE-MARK-RECAPTURE SAMPLING
                                                                                                                BIOKA51
                                                                                                                         269
                                                                                                                BIOKA52
                                                                                                                          181
ER FROM QUANTAL DATA, AND ITS RELATIONSHIP TO BIRTH, DEATH, AND BRANCHING PROCESSES /EXPONENTIAL PARAMET BIOCS67
                                                                                                                          739
                                SEASONAL VARIATION OF DEATHS IN THE UNITED STATES, 1951-1960
                                                                                                                          706
                                                                                                                JASA 66
                  A STOCHASTIC MODEL OF CREDIT SALES DEBT
                                                                                                                JASA 66 10I0
RD DEVIATIONS OF THE RECIPROCAL OF A VARIABLE FROM A DECAPITATED NECATIVE BINOMIAL DISTRIBUTION
                                                                                                       /STANDA JASA 62
                                THE RECIPROCAL OF THE DECAPITATED NEGATIVE BINOMIAL VARIABLE, CORR. 63 1162 JASA 62
ONTINUOUS DISTRIBUTIONS OF PARAMETERS OF EXPONENTIAL DECAY OF CHAMBER AEROSOLS

ATICAL REPRESENTATION OF THE BIOLOGICAL AND PHYSICAL DECAY OF CHAMBER AEROSOLS

MATHEM BIOCS65

EXPECTED UTILITY AMS 61
                                                                                                                          117
                                                                                                                          551
                                                                                                                          587
                                                       DECIMAL CORRECTION ERROR, AN EXAMPLE IN STATISTICS
                                                                                                                TECH 62
                                                                                                                          421
               APPROXIMATIONS DATA AND THE INVESTMENT DECISION
                                                                                                                JASA 65
                                                                                                                          503
              ON AN EXTREME RANK SUM TEST WITH EARLY DECISION
                                                                                                                JASA 65
                                                                                                                          859
                                     ON SOME MULTIPLE DECISION (SELECTION AND RANKING) RULES
                                                                                                               TECH 65
                                                                                                                          225
            GONSISTENCY IN STATISTIGAL INFERENCE AND DEGISION (WITH DISGUSSION) (GORR. 66 252)
                                                                                                               JRSSB61
                                                                                                                           1
```

TITLE WORD INDEX DAT - DEC

ON THE PROPERTY, W, OF THE CLASS OF STATISTICAL			AMS 66	
SIMPLIFIED			BIOKA54	
		FUNCTIONS, ADMISSIBILITY AND THE EXPONENTIAL IN THE WILCOXON TWO-SAMPLE TEST	JASA 63	
			AMS 62	
NON-DISCOUNTED DENUMERABLE MARKOVIAN			AMS 6B	
F CONTINUOUS SAMPLINC INSPECTION PLANS MARKOVIAN	DECISION	MODELS FOR THE EVALUATION OF A LARGE CLASS O	AMS 65	140B
ASYMPTOTIC SOLUTIONS OF THE SEQUENTIAL COMPOUND			AMS 63	
ON AN EXTENDED COMPOUND			AMS 69	
ON SIMPLE RULES FOR THE COMPOUND			JRSSB65	23B
SEQUENTIAL COMPOUND RULES FOR THE FINITE THE DEGREE OF A POLYNOMIAL REGRESSION AS A MULTIPLE			JRSSB66	63 255
APPROACH TO TESTING OF HYPOTHESES AND THE COMPOUND	DECISION	PROBLEM ON THE SMOOTH EMPIRICAL RAYES	RIOKA68	83
		PROBLEM FOR MARKOV DEPENDENT OBSERVATIONS	AMS 64	
		PROBLEM FOR TWO COMPLETELY SPECIFIED DISTRIB	AMS 65	1743
		PROBLEM WITH M-BY-N FINITE LOSS MATRIX	AMS 66	412
= **	DECISION		AMS 62	B57
THE EMPIRICAL BAYES APPROACH TO STATISTICAL			AMS 64	1
STRINGENT SOLUTIONS TO STATISTICAL AMETRIC EMPIRICAL BAYES APPROACH TO SOME STATISTICAL			AMS 67	447 451
MINIMAX SOLUTION OF STATISTICAL			AMS 66	
		PROBLEMS IN REGRESSION MODELS FROM THE BAYES		608
MINIMAX RISK AND UNBIASEDNESS FOR MULTIPLE			AMS 69	1684
NORMAL RANDOM VARIABLES. SEQUENTIAL SAMPLING, TWO				507
		PROBLEMS WITH M-BY-N FINITE LOSS MATRIX	AMS 66	954
ONCERNING THE UNKNOWN MEAN OF A NORM/ A SEQUENTIAL				549
TIONS WITH A COMMON UNKNOWN/ A TWO-SAMPLE MULTIPLE ROBUSTNESS OF NON-IDEAL			JASA 63	
SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL			AMS 64	
A NOTE ON SEQUENTIAL MULTIPLE			AMS 69	653
MS IN ANALYSIS OF VARIANCES MULTIPLE	DECISION	PROCEDURES BASED ON RANKS FOR CERTAIN PROBLE	AMS 69	619
		PROCEDURES FOR A POISSON PROCESS PARAMETER		
		PROCEDURES FOR FINITE DECISION PROBLEMS	AMS 64	
UNDER COMPLETE IGNORANGE NOTE ON ARBITRARY STATE MARKOVIAN		PROCESURES FOR FINITE DECISION PROBLEMS	AMS 65 AMS 68	
ON RECURRENT DENUMBEABLE			AMS 68	424
AN EXAMPLE IN DUNUMERABLE			AMS 6B	674
COUNTABLE SYSTEM OF EQUALITIES ARISING IN MARKOVIAN				5B2
		PROCESSES, AVERAGE COST CRITERION	AMS 66	
		RULES FOR THE SEQUENTIAL COMPOUND DECISION	AMS 64	
NOTE ON A THREE- INSENSITIVITY TO NON-OPTIMAL DESIGN IN BAYESIAN		TEST FOR COMPARING TWO BINOMIAL POPULATIONS		106 584
		THEORY APPROACH TO SAMPLING INSPECTION (WITH	JASA 65	381
		UNDER UNCERTAINTY, AN ELEMENTARY EXPOSITION		
		MAKING AS A RESULT OF LEARNING FROM EXPERIEN		
CONCLUSIONS VS	DECISIONS			
SAMPLING INSPECTION AND STATISTICAL			JRSSB54	
		AND TESTS OF SIGNIFICANCE, A COMMENT	JASA 59	593 30
AWN FROM TESTS OF SIGNIFICANCE, OR VI/ PUBLICATION ON CASH EQUIVALENTS AND INFORMATION EVALUATION IN			JASA 59 JASA 68	
		TION OF A DISTRIBUTION INTO GAUSSIAN COMPONE		79
SOME APPLICATIONS OF THE SINGULAR			TECH 69	NO.4
			JRSSB64	270
		TION OF L1-BOUNDED MARTINGALES	AMS 6B	134
		TION OF SYMMETRIC MATRICES AND DISTRIBUTIONS	BIOKA64	683
		TION OF WISHART DISTRIBUTION TION THEOREM FOR VECTOR VARIABLES WITH A	AMS 69	267 1845
THEORETICAL EXPLANATION OF OBSERVED			TECH 63	375
MATRIX AND MULTIPLE	DECREMENT	IN POPULATION ANALYSIS	BIOCS67	485
A METHOD OF ADJUSTMENT FOR	DEFECTIVE	DATA	JASA 5B	
ESTIMATION OF THE PROBABILITY OF			TECH 63	
CONTROLLING THE PROPORTION			TECH 64 TECH 67	99 219
THE COMPUTATION OF THE UNRESTRICTED AOQL WHEN			JASA 69	
BINOMIAL GROUP-TESTING WITH AN UNKNOWN PROPORTION OF			TECH 66	
TIVE DISCUSSION OF THE EFFECTIVENESS OF VOIDING AS A	DEFENCE A	GAINST BLADDER INFECTION A QUANTITA	BIOCS66	53
			BIOCS66	
A SYSTEMATIC METHOD OF FINDING			JASA 57	
-CENTRAL NORMAL DISTRIBUTION DISTRIBUTION OF		AND OF INDEFINITE QUADRATIC FORMS FROM A NON AND OF INDEFINITE QUADRATIC FORMS' 55 122	AMS 63 AMS 62	
HICH GRAM-CHARLIER AND EDGEWORTH CURVES ARE POSITIVE				
INFINITELY DIFFERENTIABLE POSITIVE			AMS 66	504
ES, CORR. 63 673 DISTRIBUTION OF A	DEFINITE	QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIAT		
ON CERTAIN DISTRIBUTION PROBLEMS BASED ON POSITIVE	DEFINITE	QUADRATIC FUNCTIONS IN NORMAL VECTORS	AMS 66	
Y EXAMPLES BEARING ON THE		N OF FIDUCIAL PROBABILITY WITH A BIBLIOGRAPH	JRSSB69	
			JRSSB68	
ON COX AND SNELL'S			AMS 63	
ON COX AND SNELL'S A GENERAL	DEFINITIO		AMS 67	401
ON COX AND SNELL'S A GENERAL		N OF THE PROBABILITY SPACE		
ON COX AND SNELL'S A GENERAL THE THEORY OF EXPERIMENT, OPERATIONAL MARKOV RENEWAL PROCESSES,	DEFINITIO DEFINITIO	NS AND PRELIMINARY PROPERTIES	AMS 61	
ON COX AND SNELL'S A GENERAL A THE THEORY OF EXPERIMENT, OPERATIONAL MARKOV RENEWAL PROCESSES, PREFERENCE-BASED	DEFINITIO DEFINITIO DEFINITIO	NS AND PRELIMINARY PROPERTIES NS OF SUBJECTIVE PROBABILITY	AMS 61 AMS 67	1605
ON COX AND SNELL'S A GENERAL A THE THEORY OF EXPERIMENT, OPERATIONAL MARKOV RENEWAL PROCESSES, PREFERENCE-BASED SHORT AUTOREGRESSIVE SEQUENCES ALTERNATIVE	DEFINITIO DEFINITIO DEFINITIO DEFINITIO	INS AND PRELIMINARY PROPERTIES INS OF SUBJECTIVE PROBABILITY INS OF THE SERIAL CORRELATION COEFFICIENT IN	AMS 61 AMS 67 JASA 5B	1605 B81
ON COX AND SNELL'S A GENERAL THE THEORY OF EXPERIMENT, OPERATIONAL MARKOV RENEWAL PROCESSES, PREFERENCE-BASED SHORT AUTOREGRESSIVE SEQUENCES ALTERNATIVE SOME METHODOLOGICAL NOTES ON THE	DEFINITIO DEFINITIO DEFINITIO DEFINITIO DEFLATION DEFORMATI	INS AND PRELIMINARY PROPERTIES INS OF SUBJECTIVE PROBABILITY INS OF THE SERIAL CORRELATION COEFFICIENT IN I OF CONSTRUCTION ON METHOD FOR OUADRATIC PROCRAMMING	AMS 61 AMS 67 JASA 5B JASA 59	1605 B81 535
ON COX AND SNELL'S A GENERAL A THE THEORY OF EXPERIMENT, OPERATIONAL MARKOV RENEWAL PROCESSES, PREFERENCE-BASED SHORT AUTOREGRESSIVE SEQUENCES ALTERNATIVE SOME METHODOLOGICAL NOTES ON THE A SUPPLEMENT TO'A	DEFINITIO DEFINITIO DEFINITIO DEFINITIO DEFLATION DEFORMATI DEFORMATI	INS AND PRELIMINARY PROPERTIES INS OF SUBJECTIVE PROBABILITY INS OF THE SERIAL CORRELATION COEFFICIENT IN I OF CONSTRUCTION ON METHOD FOR QUADRATIC PROCRAMMING ON METHOD FOR QUADRATIC PROCRAMMING	AMS 61 AMS 67 JASA 5B JASA 59 JRSSB64 JRSSB65	1605 B81 535 141 166
ON COX AND SNELL'S A GENERAL A THE THEORY OF EXPERIMENT, OPERATIONAL MARKOV RENEWAL PROCESSES, PREFERENCE-BASED SHORT AUTOREGRESSIVE SEQUENCES ALTERNATIVE SOME METHODOLOGICAL NOTES ON THE A SUPPLEMENT TO'A	DEFINITIO DEFINITIO DEFINITIO DEFINITIO DEFLATION DEFORMATI DEFORMATI	INS AND PRELIMINARY PROPERTIES INS OF SUBJECTIVE PROBABILITY INS OF THE SERIAL CORRELATION COEFFICIENT IN	AMS 61 AMS 67 JASA 5B JASA 59 JRSSB64 JRSSB65	1605 B81 535 141 166

```
ON THE EQUIVALENCE OF POLYKAYS OF THE SECOND DECREE AND SICMA'S, CORR. 65 1069
                                                                                                             AMS 64 1663
              PROTECTION ACAINST ASSUMING THE WRONG DEGREE IN POLYNOMIAL RECRESSION
                                                                                                            TECH 69 NO.4
                                  ON TESTING FOR THE DECREE OF A POLYNOMIAL
                                                                                                            TECH 68 757
                                   THE CHOICE OF THE DECREE OF A POLYNOMIAL MODEL
                                                                                                            JRSSB68 469
                                   THE CHOICE OF THE DECREE OF A POLYNOMIAL REGRESSION AS A MULTIPLE
DECISION PROBLEM
                                                                                                             AMS 62 255
OTES. STATISTICAL TESTS OF HYPOTHESES CONCERNING THE DECREE OF DOMINANCE IN MONOFACTORIAL INHERITANCE
                                                                                                          N BIOCS68 429
STATISTICS IN SAMPLES FROM THE CHI-DISTRIBUTION, ONE DECREE OF FREEDOM
                                                                           EXACT LOWER MOMENTS OF ORDER AMS 62 1292
                          CHI-SQUARE TESTS WITH ONE DECREE OF FREEDOM, EXTENSIONS OF THE MANTEL-HAENSZEL JASA 63 690
                                                 THE DECREE OF RANDOMNESS IN A STATIONARY TIME SERIES
                                                                                                             AMS 63 1253
                                                                                                          C AMS 62 1002
ONDITIONS FOR WISHARTNESS AND INDEPENDENCE OF SECOND DECREE POLYNOMIALS IN NORMAL VECTOR
       CHI-SQUARE PROBABILITIES FOR LARCE NUMBERS OF DECREES OF FREEDOM
                                                                                                            BIOKA56
                                                                                                                     92
UARES BY SATTERTHWAITHE'S FORMULA
                                     ESTIMATING THE DECREES OF FREEDOM FOR LINEAR COMBINATIONS OF MEAN SQ TECH 69 NO.4
ROXIMATION TO THE RANCE
                                   SCALE FACTORS AND DECREES OF FREEDOM FOR SMALL SAMPLE SIZES FOR CHI APP BIOKA53
                                                                                                                     449
                                             QUERY, DEGREES OF FREEDOM OF CHI-SQUARE
                                                                                                            TECH 67
                                                                                                                     4B9
                                      AN APPROXIMATE DECREES OF FREEDOM SOLUTION TO THE MULTIVARIATE BEHRE BIOKA65
                                                                                                                     139
NS-FISHER PROBLEM
                                   EFFECT OF VARYING DECREES OF TRANSITORY INCOME ON INCOME ELASTICITY OF JASA 58
                                                                                                                     348
EXPENDITURES
                                                     DELAY AT TRAFFIC INTERSECTIONS
                                                                                                            JRSSB66
                                                                                                                     2.02
                                                 THE DELAY TO PEDESTRIANS CROSSING A ROAD
                                                                                                            8IOKA51
                                                                                                                     383
                            SEQUENTIAL ANALYSIS WITH DELAYED OBSERVATIONS
                                                                                                            JASA 64 1006
                                        A PROBLEM OF DELAYED SERVICE, 1
                                                                                                            JRSSB60
                                                                                                                     245
                                        A PROBLEM OF DELAYED SERVICE, 2
                                                                                                            JRSSB60
                                                                                                                     270
                           A THEORETICAL ANALYSIS OF DELAYS AT AN UNCONTROLLED INTERSECTION
                                                                                                            BIOKA62
                              A SIMPLIFIED MODEL FOR DELAYS IN OVERTAKING ON A TWO-LANE ROAD
                                                                                                            JRSSB58
                                   THE DEPENDENCE OF DELAYS IN TANDEM QUEUES
                                                                                                             AMS 64
                                             TRAFFIC DELAYS ON A TWO-LANE ROAD
                                                                                                            BIOKA64
                                                                                                                     11
                                                     DELAYS ON A TWO-LANE ROAD (WITH DISCUSSION)
                                                                                                            JRSSB61
                                                                                                                      38
SING STABLE PROCESSES (ADDENDUM, 69 1855)
                                                   A DELICATE LAW OF THE ITERATED LOGARITHM FOR NON-DECREA AMS 68 1B18
            INCOME, INCOME CHANGE, AND DURABLE GOODS DEMAND
                                                                                                            JASA 64 1194
THE TIME-TO-EMPTINESS OF A DISCRETE DAM UNDER STEADY DEMAND
                                                                                       THE DISTRIBUTION OF JRSSB63 137
LIABILITY OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS, DEMAND DEPOSITS
                                                                                                    THE RE JASA 66
                                                                                                                      91
 SOME EMPIRICAL MEASUREMENTS AND RELATED PROBLEMS DEMAND FOR FARM PRODUCTS AT RETAIL AND THE FARM LEVEL JASA 58
                                                                                                                      656
                                                THE DEMAND FOR FERTILIZER IN 1954, AN INTER-STATE STUDY JASA 59
                                                                                                                     377
S AND FRUITS AND VEGETABLES
                                                     DEMAND FOR MANUFACTURERS' SERVICES FOR BAKERY PRODUCT JASA 65
                                                                                                                     740
                              FUNCTIONAL FORM IN THE DEMAND FOR MONEY
                                                                                                            JASA 68
                             INCOME, WEALTH, AND THE DEMAND FOR MONEY, SOME EVIDENCE FROM CROSS-SECTION
                                                                                                            JASA 64
                    INDETERMINISM IN SCIENCE AND NEW DEMANDS ON STATISTICIANS
                                                                                                            JASA 60
FERTILITY RATES
                                                   A DEMOGRAPHIC MODEL FOR ESTIMATING AGE-ORDER SPECIFIC
                                                                                                            JASA 63
  FEED EFFICIENCY AND RATE OF GAIN, A RATIO AND ITS DENOMINATOR
                                                                                  THE CORRELATION BETWEEN BIOCS65
                                                                                                                      739
 KINDS AND THE CORRELATION BETWEEN THE NUMERATOR AND DENOMINATOR OF THE F-RATIO
                                                                                  /-TEST TO ERRORS OF BOTH JASA 68
                                                                                                                     660
            THE MAXIMUM DEVIATION OF SAMPLE SPECTRAL DENSITIES
                                                                                                             AMS 67 1558
               A BOUND FOR THE VARIATION OF GAUSSIAN DENSITIES
                                                                                                             AMS 69 NO.6
                         NOTE ON COMPLETELY MONOTONE DENSITIES
                                                                                                             AMS 69 1130
UNBIASED ESTIMATION OF SOME MULTIVARIATE PROBABILITY DENSITIES
                                                                                                             AMS 69 1261
                     ZEROES OF INFINITELY DIVISIBLE DENSITIES
                                                                                                             AMS 69 1503
                                                                                                            JRSSB62 185
                          THE ESTIMATION OF SPECTRAL DENSITIES
LINE TRANSECT METHOD OF ESTIMATING GROUSE POPULATION DENSITIES
                                                                                                            BIOCS68
            OF A PRODUCT AND THE STRUCTURAL SETUP OF DENSITIES
                                                                                              DISTRIBUTION AMS 69 1439
                      THE ESTIMATION OF PROBABILITY DENSITIES AND CUMULATIVES BY FOURIER SERIES METHODS
                                                                                                            JASA 68
                                                                                                                     925
                                    EXPANSIONS OF T DENSITIES AND RELATED COMPLETE INTEGRALS
                                                                                                             AMS 67
                                                                                                                     503
EXPANSIONS OF T DENSITIES AND RELATED COMPLETE INTEGRALS

AMS 67

TERMINAL AND FIRST THREE MOME/ USE OF THE PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT BIOKA68

ON THE ASYMPTOTIC BEHAVIOR OF DENSITIES WITH APPLICATIONS TO SEQUENTIAL ANALYSIS

AMS 65
                                                                                                                     559
                                                                                                                     615
                                         PROBABILITY DENSITIES WITH CIVEN MARGINALS
                                                                                                             AMS 6B 1236
                     THE LIMIT OF THE NTH POWER OF A DENSITY
                                                                                                             AMS 65 1878
                           ESTIMATION OF PROBABILITY DENSITY
                                                                                                             AMS 65 1027
              ON THE MAXIMUM DEVIATION OF THE SAMPLE DENSITY
                                                                                                             AMS 67 475
                     A NOTE ON ESTIMATING A UNIMODAL DENSITY
                                                                                                             AMS 69 1661
                 NOTE ON A DISCONTINUOUS PROBABILITY DENSITY
                                                                                                            BIOKA58 270
AND SPHERICAL ESTIMATION OF MULTIVARIATE PROBABILITY DENSITY
                                                                                                   CUBICAL JASA 68 1495
      EXPANSIONS ASSOCIATED WITH THE N'TH POWER OF A DENSITY
                                                                                                 ASYMPTOTIC
                                                                                                            AMS 67 1266
         OF THE LOCATION OF THE CUSP OF A CONTINUOUS DENSITY
                                                                                                 ESTIMATION AMS 68
                      THE ESTIMATION OF THE SPECTRAL DENSITY AFTER TREND REMOVAL
                                                                                                            JRSSB5B 323
                 AN INEQUALITY RELATING THE SPECTRAL DENSITY AND AUTOCORRELATION FUNCTION
                                                                                                            BIOKA62 262
                           ESTIMATION OF PROBABILITY DENSITY BY AN ORTHOGONAL SERIES
                                                                                                             AMS 67 1261
                      MOMENT CROSSINGS AS RELATED TO DENSITY CROSSINGS
                                                                                                            JRSSB65
                                                                                                                     91
                            ON STRONG CONSISTENCY OF DENSITY ESTIMATES
                                                                                                             AMS 69 1765
                                                     DENSITY ESTIMATION IN A TOPOLOGICAL GROUP
                                                                                                             AMS 65 1047
                                                     DENSITY ESTIMATION OF ORTHOGONAL SERIES
                                                                                                             AMS 69 1496
       AND ADEQUACY OF THE POISSON-MARKOFF MODEL FOR DENSITY FLUCTUATIONS
                                                                                           THE CONSISTENCY BIOKA57 43
                            THE FIRST PASSACE TIME DENSITY FOR HOMOGENEOUS SKIP-FREE WALKS ON THE
CONTINUUM
                                                                                                             AMS 63 1003
         A NONPARAMETRIC ESTIMATE OF A MULTIVARIATE DENSITY FUNCTION
                                                                                                             AMS 65 1049
       ON A SIMPLE ESTIMATE OF THE RECIPROCAL OF THE DENSITY FUNCTION
                                                                                                             AMS 6B 1083
               EFFICIENT ESTIMATION OF A PROBABILITY DENSITY FUNCTION
                                                                                                             AMS 69
                                                                                                                    B54
         UNIFORM CONSISTENCY OF SOME ESTIMATES OF A DENSITY FUNCTION
                                                                                                             AMS 69 1499
       THE AUTOCORRELATION FUNCTION AND THE SPECTRAL DENSITY FUNCTION
                                                                                                            BIOKA55 151
 FOR THE MIXTURE OF EXPONENTIALS TO BE A PROBABILITY DENSITY FUNCTION
                                                                                       SUFFICIENT CONDITION AMS 69 NO.6
                         ESTIMATION OF A PROBABILITY DENSITY FUNCTION AND ITS DERIVATIVES
                                                                                                             AMS 69 1187
                     ON ESTIMATION OF A PROBABILITY DENSITY FUNCTION AND MODE
                                                                                                             AMS 62 1065
 A UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENSITY FUNCTION IN CERTAIN CASES
                                                                                            ON THE LACK OF AMS 67
                                                                                                                     471
                         ESTIMATION OF THE SPECTRAL DENSITY FUNCTION IN THE PRESENCE OF HARMONIC COMPONEN JRSSB64
                                                                                                                     123
CALLY EFFICIENT CONSISTENT ESTIMATES OF THE SPECTRAL DENSITY FUNCTION OF A STATIONARY TIME SERIES /PTOTI JRSSB5B 303
                         ON ESTIMATING THE SPECTRAL DENSITY FUNCTION OF A STOCHASTIC PROCESS (WITH DISCUS JRSSB57
SION)
                                                                                                                     13
                    ON THE SMOOTHING OF PROBABILITY DENSITY FUNCTIONS
                                                                                                            JRSS858 334
              ESTIMATING THE COVARIANCE AND SPECTRAL DENSITY FUNCTIONS FROM A CLIPPED STATIONARY TIME SERI JRSSB67
                                                                                                                     180
CATI/ RECURRENCE RELATIONS SETWEEN THE PROSABILITY DENSITY FUNCTIONS OF ORDER STATISTICS, AND SOME APPLI AMS 62
                                                                                                                     169
                                   SOME MULTIVARIATE DENSITY FUNCTIONS OF PRODUCTS OF GAUSSIAN VARIATES.
                                                                                                            BIOKA65
                                                                                                                     645
         A METHOD FOR DISCRIMINATING SETWEEN FAILURE DENSITY FUNCTIONS USED IN RELIABILITY PREDICTIONS
```

TITLE WORD INDEX DEG - DER

HE APPROXIMATE CANONICAL FACTORIZATION OF A SPECTRAL DENSITY MATRIX /MULTIVARIATE AUTORECRESSIONS, AND T	BIOKA63	129
INFERENCES FOR FAMILIES OF HYPOTHESES WITH MONOTONE DENSITY RATIOS UPPER AND LOWER PROBABILITY	AMS 69	953
LATTICE ON ESTIMATING A DENSITY WHICH IS MEASURABLE WITH RESPECT TO A SIGMA-	AMS 67	482
SE OF THE PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS A	BIOKA68	559
ZE REQUIRED TO ESTIMATE THE PARAMETER IN THE UNIFORM DENSITY WITHIN D UNITS OF THE TRUE VALUE SAMPLE SI		550
ON THE ESTIMATION OF THE PROBABILITY DENSITY, I	AMS 63	480
LE MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL CARIES PROCESS /ILITY APPROACH TO IRREVERSIB	BIOCS66	791
ON RECURRENT DENUMBEABLE DECISION PROCESSES	AMS 68	424
NON-DISCOUNTED DENUMERABLE MARKOVIAN DECISION MODELS MPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES SOME ASY	PTOVAS6	205
AVERACE COST CRITERION DENGLISHED DENGLISHED NORTH OF STATE MARKOV IN DECISION PROCESSES,		
		406
A SYSTEM OF DENUMERABLY MANY TRANSIENT MARKOV CHAINS TESTING FOR DEPARTURE FROM THE EXPONENTIAL DISTRIBUTION		
THE INTERARR ON THE CORRELATION STRUCTURE OF THE DEPARTURE PROCESS OF THE QUEUE WITH ONE SERVER, WHILE		
	JRSSB68	
N THE DERIVATION OF ROBUST CRITERIA AND THE STUDY OF DEPARTURES FROM ASSUMPTION (WITH DISCUSSION) /ORY I		1
DEPARTURES FROM ASSUMPTION IN SEQUENTIAL ANALYSIS		
	JRSSB67	
QUEUES WITH BATCH DEPARTURES I	AMS 61	
QUEUES WITH BATCH DEPARTURES II OF POPULATION GROWTH WHEN THE BIRTH AND DEATH RATES DEPEND UPON SEVERAL FACTORS SOME CONCEPTS OF DEPENDENCE THEODRATION AND MAYIMAL CORPELATION AS MEASURES OF DEPENDENCE	AMS 64	1147
OF POPULATION GROWTH WHEN THE BIRTH AND DEATH RATES DEPEND UPON SEVERAL FACTORS THE ANALYSIS	BIOCS69	NO.4
SOME CONCEPTS OF DEPENDENCE	AMS 66	1137
INFORMATION AND MAXIMAL CORRELATION AS MEASURES OF DEPENDENCE MUTUAL	AMS 62	587
IN A CHAIN OF MULTIPLE EVENTS WHEN THERE IS SIMPLE DEPENDENCE PERSISTENCE	BIOKA62	351
SOME CONCEPTS OF DEPENDENCE INFORMATION AND MAXIMAL CORRELATION AS MEASURES OF DEPENDENCE IN A CHAIN OF MULTIPLE EVENTS WHEN THERE IS SIMPLE DEPENDENCE THE WILGOXON ESTIMATE OF LOCATION AGAINST A CERTAIN DEPENDENCE ROBUSTNESS OF ANALYSIS DEPENDENCE ROBUSTNESS OF ANALYSIS OF AN ORDERDED SOME OF MANALYSIS OF AN ORDERDED SOME OF MANALYSIS OF	AMS 68	1196
ANTE-DEPENDENCE ANALYSIS OF AN ORDERED SET OF VARIABLES	AMS 62	
OBSERVATIONS ON THE EFFECTS FOR THE U/ STATISTICAL DEPENDENCE BETWEEN RANDOM EFFECTS AND THE NUMBERS OF		
OBSERVATIONS IN THE SUBCLASSES FOR TH/ STATISTICAL DEPENDENCE BETWEEN SUBCLASS MEANS AND THE NUMBERS OF		
	JASA 68	
T AND GENERAL SERVICE TIMES THE TIME DEPENDENCE OF A SINCLE-SERVER QUEUE WITH POISSON INPU		
THE DEPENDENCE OF DELAYS IN TANDEM QUEUES	AMS 64	
CORRELATION AND COMPLETE DEPENDENCE OF RANDOM VARIABLES	AMS 63	
ASYMPTOTIC PROPERTIES OF AN ACT DEPENDENCE OF THE FIDUCIAL ACCORDED ON THE SAMPLING	AMC CE	1565
AN INTEGRAL POLITATION IN ACC DEPARTMENT DANIGHTM DEPARTMENT	AMC CE	1560
MONOTONE CONVERGENCE OF MOMENTS IN AGE DEPENDENT BRANCHING PROCESSES	AMC CC	1000
MONOTONE CONVERGENCE OF MOMENTS IN AGE DEFENDENT BRANCHING PROCESSES ON THE SUPERCRITICAL ONE DIMENSIONAL AGE DEFENDENT BRANCHING PROCESSES	AMS 60	747
ON THE SUPERCRITICAL ONE DIMENSIONAL AGE DEPENDENT BRANCHING PROCESSES	AMS 69	743
ON DOMINATING AN AVERAGE ASSOCIATED WITH DEPENDENT GAUSSIAN VECTORS	AMS 68	1844
SEQUENTIAL HYPOTHESIS TESTS FOR THE R-DEPENDENT MARGINALLY STATIONARY PROCESSES	AMS 66	90
PROCEDURES AND TABLES FOR EVALUATING DEPENDENT MIXED ACCEPTANCE SAMPLING PLANS	TECH 69	341
LINEAR TRANSFORMATION TO A SET OF STOCHASTICALLY DEPENDENT NORMAL VARIABLES	JASA 57	247
CONFIDENCE INTERVALS FOR THE MEANS OF DEPENDENT NORMALLY DISTRIBUTED VARIABLES	JASA 59	613
SOLUTION OF SEQUENTIAL DECISION PROBLEM FOR MARKOV DEPENDENT OBSERVATIONS BAYES	AMS 64	1656
SQUARE GOODNESS-OF-FIT TEST FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS THE CHI-	BIOKA64	250
SQUARE GOODNESS-OF-FIT TEST FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS THE CHI- SEQUENTIAL ANALYSIS OF DEPENDENT OBSERVATIONS. I	BIOKA64 BIOKA65	250 157
	BIOKA64 BIOKA65 AMS 63	250 157 390
ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER	AMS 62	767
ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMIM—LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES	AMS 62	767 444
ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM-LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES LIMITING	AMS 62	767 444
ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM-LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES LIMITING	AMS 62	767 444
ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM-LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES LIMITING ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT TIME SERIES	AMS 62 JRSSB61 AMS 62 JASA 66 JASA 65	767 444 894 803 134
ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM-LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES LIMITING ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT TIME SERIES	AMS 62 JRSSB61 AMS 62 JASA 66 JASA 65	767 444 894 803 134
ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM-LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS THE DIST INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED	AMS 62 JRSSB61 AMS 62 JASA 66 JASA 65	767 444 894 803 134
ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM-LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS THE DIST INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED	AMS 62 JRSSB61 AMS 62 JASA 66 JASA 65	767 444 894 803 134 454 1201
ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM-LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS THE DIST INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED	AMS 62 JRSSB61 AMS 62 JASA 66 JASA 65 BIOKA59 JASA 68	767 444 894 803 134 454 1201
ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM-LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS THE DIST INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED	AMS 62 JRSSB61 AMS 62 JASA 66 JASA 65 BIOKA59 JASA 68 BIOCS65	767 444 894 803 134 454 1201 300 677
ON THE GENERAL TIME DEFENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM-LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED REGRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES	AMS 62 JRSSB61 AMS 62 JASA 66 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61	767 444 894 803 134 454 1201 300 677 290
ON THE GENERAL TIME DEFENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM-LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS THE DIST INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED RECRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES	AMS 62 JRSSB61 AMS 62 JASA 66 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 62 AMS 68	767 444 894 803 134 454 1201 300 677 290 115B
ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED REGRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES	AMS 62 JRSSB61 AMS 62 JASA 66 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 62 AMS 68 BIOKA67	767 444 894 803 134 454 1201 300 677 290 115B 283
ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM-LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS THE DIST INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED ESTIMATION AND REGRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE R	AMS 62 JRSSB61 AMS 62 JASA 66 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 62 AMS 68 BIOKA67 BIOKA62	767 444 894 803 134 454 1201 300 677 290 115B 283
ON THE GENERAL TIME DEFENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM-LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS THE DIST INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED REGRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE R EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED	AMS 62 JRSSB61 AMS 62 JASA 66 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 62 AMS 62 AMS 68 BIOKA67 BIOKA67 BIOKA62 JRSSB55	767 444 894 803 134 454 1201 300 677 290 115B 283 155 86
ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS THE DIST INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED ESTIMATION AND REGRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED A GENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE R EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED OF CONSUMER SUFFICIENT STATISTIC WHEN THE RANGE DEPENDS ON THE PARAMETER /E PARAMETER OF A DISTRIBU OF CONSUMER SUFFVEYS OF FINANCIAL HOLDINGS, TIME-DEPOSITS THE RELIABILITY	AMS 62 JRSSB61 AMS 62 JASA 66 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 62 AMS 62 AMS 68 BIOKA67 BIOKA67 BIOKA62 JRSSB55	767 444 894 803 134 454 1201 300 677 290 115B 283 155 86 148
ON THE GENERAL TIME DEFENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM-LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS THE DIST INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED REGRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE R EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED TION ADMITTING A SUFFICIENT STATISTIC WHEN THE RANGE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS, TIME-DEPOSITS THE RELIABILITY ESTIMATION OF AN ACCELERATED DEPRECIATION LEARNING FUNCTION	AMS 62 JRSSB61 AMS 62 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 62 AMS 68 BIOKA67 BIOKA67 BIOKA62 JRSSB55 JASA 65	767 7444 894 803 134 454 1201 300 677 290 115B 283 155 86 148 995
ON THE GENERAL TIME DEFENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM-LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS THE DIST INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED REGRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE R EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED TION ADMITTING A SUFFICIENT STATISTIC WHEN THE RANGE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS, TIME-DEPOSITS THE RELIABILITY ESTIMATION OF AN ACCELERATED DEPRECIATION LEARNING FUNCTION	AMS 62 JRSSB61 AMS 62 JASA 66 JASA 65 BIOKA59 JASA 68 BIOKS65 AMS 61 AMS 62 AMS 67 BIOKA62 JRSSB55 JASA 66 BIOKA62	767 444 894 803 134 454 1201 300 677 290 115B 283 155 86 148 995 32
ON THE GENERAL TIME DEFENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M—DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT VARIABLE ARE CONSTRAINED RECRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE R EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED TION ADMITTING A SUFFICIENT STATISTIC WHEN THE RANGE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS, TIME—DEPOSITS ESTIMATION OF AN ACCELERATED DEPRECIATION LEARNING FUNCTION ON THE DERIVATION AND APPLICABILITY OF NEYMAN'S TYPE A	AMS 62 JRSSB61 AMS 62 JASA 65 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 62 AMS 62 BIOKA67 BIOKA62 JASA 66 BIOKA63 JASA 66 BIOKA58 JASA 66	767 444 894 803 134 454 1201 300 677 290 115B 283 155 86 148 995 32 290
ON THE GENERAL TIME DEFENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M—DEPENDENT TRIALS RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED ESTIMATION AND RECRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE R EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED TION ADMITTING A SUFFICIENT STATISTIC WHEN THE RANGE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS, TIME—DEPOSITS THE RELIABILITY ESTIMATION OF AN ACCELERATED DEPRECIATION LEARNING FUNCTION DISTRIBUTION ON THE DERIVATION AND APPLICABILITY OF NEYMAN'S TYPE A BAYES'S THEOREM DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTIONS VIA N FUNCTION OF A CONTINUOUS UNIVARIATE POPULATION/ DERIVATION OF A PPROXIMANTS TO THE INVERSE DISTRIBUTIO	AMS 62 JRSSB61 AMS 62 JASA 65 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 62 AMS 62 BIOKA67 BIOKA62 JASA 66 BIOKA63 JASA 66 BIOKA58 JASA 66	767 444 894 803 134 454 1201 300 677 290 115B 283 155 86 148 995 32 290 NO.3
ON THE GENERAL TIME DEFENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M—DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS THE DIST INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED REGRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE R EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE R EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED TION ADMITTING A SUFFICIENT STATISTIC WHEN THE RANGE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED TO ADMITTING A SUFFICIENT STATISTIC WHEN THE RANGE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED TO CONSUMER SURVEYS OF FINANCIAL HOLDINGS, TIME—DEPOSITS ESTIMATION OF AN ACCELERATED DEPRECIATION LEARNING FUNCTION DISTRIBUTION ON THE DERIVATION AND APPLICABILITY OF NEYMAN'S TYPE A DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTIONS VIA N FUNCTION OF A CONTINUOUS UNIVARIATE POPULATION/ DERIVATION OF A PRPROXIMANYS TO THE INVERSE DISTRIBUTION A CONCISE DERIVATION OF GENERAL ORTHOGONAL POLYNOMIALS	AMS 62 JRSSB61 AMS 62 JASA 65 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 62 AMS 62 BIOKA67 BIOKA62 JASA 68 BIOKA67 BIOKA62 JASA 66 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68	767 444 894 803 134 454 1201 300 677 290 115B 283 155 86 148 995 32 290 NO.3
ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS THE DIST INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED REGRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE R EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED TION ADMITTING A SUFFICIENT STATISTIC WHEN THE RANGE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED TOST THE DISTRIBUTION DISTRIBUTION ON THE DERIVATION LEARNING FUNCTION DISTRIBUTION ON THE DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTIONS VIA BAYES'S THEOREM N FUNCTION OF A CONTINUOUS UNIVARIATE POPULATION/ DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTIONS VIA DERIVATION OF A PEPROXIMANTS TO THE INVERSE DISTRIBUTIO REGRESSION CURVES ON THE DERIVATION OF METHODS FOR FITTING EXPONENTIAL	AMS 62 JRSSB61 AMS 62 JASA 65 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 62 AMS 68 BIOKA67 BIOKA62 JASA 65 JASA 65 JASA 65 JASA 65 JASA 65 JASA 65 JASS 65 JASS 65 JASS 65 JASS 65 JASS 65 JASA 65 JASS 65 JAS	767 444 894 803 134 454 1201 300 677 290 115B 283 155 86 148 995 32 290 NO.3 406 504
ON THE GENERAL TIME DEFENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT TRIALS RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED ESTIMATION AND RECRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED A GENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE R EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS, TIME—DEPOSITS THE RELIABILITY ESTIMATION OF AN ACCELERATED DEPRECIATION LEARNING FUNCTION DISTRIBUTION ON THE DERIVATION OF ACAILSS OF FREQUENCY DISTRIBUTIONS VIA N FUNCTION OF A CONTINUOUS UNIVARIATE POPULATION/ BAYES'S THEOREM OF CONSUMES REGRESSION CURVES THE DERIVATION OF METHODS FOR FITTING EXPONENTIAL TS FOR UNIFORMITY OF A CIRCULAR DISTRIBUTION THE DERIVATION OF METHODS FOR FITTING EXPONENTIAL THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM TES	AMS 62 JRSSB61 AMS 62 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 68 BIOKA67 BIOKA62 JASS 65 JASA 66 BIOKA65 JASA 66 BIOKA65 JASS 65 BIOKA66 BIOKA64 JRSSB55 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64	767 444 894 803 134 454 1201 300 677 290 115B 283 155 86 148 995 32 290 NO.3 406 504
ON THE GENERAL TIME DEFENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM-LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS THE DIST INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED REGRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE R EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE R EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS, TIME-DEPOSITS THE RELIABILITY ESTIMATION OF AN ACCELERATED DEPRECIATION LEARNING FUNCTION DISTRIBUTION ON THE DERIVATION AND APPLICABILITY OF NEYMAN'S TYPE A DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTIONS VIA DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTIONS VIA DERIVATION OF A PROXIMANTS TO THE INVERSE DISTRIBUTION OF A CONCISE DERIVATION OF APPROXIMANTS TO THE INVERSE DISTRIBUTION OF A CONCISE DERIVATION OF METHODS FOR FITTING EXPONENTIAL THE DERIVATION OF MOPARAMETRIC TWO-SAMPLE TESTS FROM TES URES FROM ASSUMPTION (W/ PERMUTATION THEORY IN THE DERIVATION OF ROBUST CRITERIA AND THE STUDY OF DEPART	AMS 62 JRSSB61 AMS 62 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 68 BIOKA67 BIOKA62 JASS 65 JASA 66 BIOKA65 JASA 66 BIOKA65 JASS 65 BIOKA66 BIOKA64 JRSSB55 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64	767 444 894 803 134 454 1201 300 677 290 115B 283 155 86 148 995 32 290 No.3 406 504 No.3
ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED REGRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE R EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED TION ADMITTING A SUFFICIENT STATISTIC WHEN THE RANGE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED TOST THE PARAMETER /E PARAMETER OF A DISTRIBUTION OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS, TIME—DEPOSITS THE RELIABILITY ESTIMATION OF AN ACCELERATED DEPRECIATION LEARNING FUNCTION DISTRIBUTION OF A CONTINUOUS UNIVARIATE POPULATION/ BAYES'S THEOREM N FUNCTION OF A CONTINUOUS UNIVARIATE POPULATION/ A CONCISC DERIVATION OF A CRENERAL ORPHOGONAL POLYNOMIALS REGRESSION CURVES THE DERIVATION OF METHODS FOR FITTING EXPONENTIAL THE DERIVATION OF ROBUST CRITERIA AND THE STORY TESTS THE DERIVATION OF ROBUST CRITERIA AND THE STORY DEPART A NOTE ON THE DERIVATION OF ROBUST CRITERIA AND THE STURY OF DEPART	AMS 62 JRSSB61 AMS 62 JASA 65 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 62 AMS 68 BIOKA67 BIOKA62 JRSSB55 JASA 66 BIOKA58 BIOKA58 BIOKA68 BIOKA68 BIOKA68 BIOKA69 JRSSB58 BIOKA69 JRSSB58 BIOKA64 JRSSB58 BIOKA64 JRSSB58	767 444 894 803 134 454 1201 300 677 290 1158 86 148 995 32 290 No.3 406 504 No.3 1480
ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRALS RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRALS THE DIST INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED ESTIMATION AND REGRESSION ANALYSIS WITH DEPENDENT VARIABLE ARE CONSTRAINED ESTIMATION AND REGRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F. OF ORDER STATISTIC WHEN THE RANGE DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F. OF ORDER STATISTIC WHEN THE RANGE DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F. OF ORDER STATISTIC WHEN THE RANGE DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F. OF ORDER STATISTIC WHEN THE RANGE DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F. OF ORDER STATISTIC WHEN THE RANGE DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F. OF ORDER STATISTIC WHEN THE RANGE DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F. OR ORDER STATISTIC WHEN THE PARAMETER OF A DISTRIBUTION OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS, TIME—DEPONDENT ON THE PARAMETER OF A PARAMETER OF A DISTRIBUTION OF A PROXIMANTS TO THE INVERSE DISTRIBUTION OF A PROXIMANTS TO THE INVERSE DISTRIBUTION OF A POPOXIMANTS TO THE INVERSE DISTRIBUTION OF A POPOXIMANTS TO THE INVERSE DISTRIBUTION OF NONPARAMETRIC TWO	AMS 62 JRSSB61 AMS 62 JASA 65 JASA 65 BIOKA59 JASA 66 BIOKA56 AMS 61 AMS 62 AMS 68 BIOKA67 BIOKA62 JRSSB55 JASA 66 BIOKA58 BIOKA58 BIOKA67 BIOKA62 JRSSB55 BIOKA64 BIOKA65 BIOKA65 BIOKA65 BIOKA665 BIOKA665 BIOKA666	767 4444 893 134 454 1201 300 677 290 115B 283 155 86 148 995 32 290 NO.3 406 504 NO.3 1 480 1042
A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M—DEPENDENT THE SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT VARIABLE ARE CONSTRAINED ESTIMATION AND REGRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES ELATIONS BETWEEN THE P. D. F. 'S OF ORDER STATISTICS OF DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE R EFFICIENT MOMBAT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED TION ADMITTING A SUFFICIENT STATISTIC WHEN THE RANGE DEPENDS ON THE PARAMETER /E PARAMETER OF A DISTRIBUTOR OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS, TIME—DEPOSITS THE RELIABILITY ESTIMATION OF AN ACCELERATED DEPRECIATION LEARNING FUNCTION DISTRIBUTION ON THE DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTIONS VIA N FUNCTION OF A CONTINUOUS UNIVARIATE POPULATION/ A CONCISE DERIVATION OF METHODS FOR FITTING EXPONENTIAL THE DERIVATION OF MORPARAMETRIC TOW-SAMPLE TESTS FROM TES URBS FROM ASSUMPTION (W/ PERMUTATION THEORY IN THE DERIVATION OF FORBUST CRITERIA AND THE STUDY OF DEPART A NOTE ON THE DERIVATION OF SOME EXACT MULTIVARIATE TESTS A UNIFIED DERIVATION OF SOME NONPARAMETRIC DISTRIBUTIONS A DERIVATION OF THE BOREL DISTRIBUTION A DERIVATION OF SOME NONPARAMETRIC TISTRIBUTIONS A DERIVATION OF THE BOREL DISTRIBUTIONS A DERIVATION OF THE BOREL DISTRIBUTIONS A DERIVATION OF SOME NONPARAMETRIC DISTRIBUTIONS	AMS 62 JRSSB61 AMS 62 JRSSB61 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 62 AMS 65 BIOKA67 BIOKA62 JASA 66 BIOKA62 JASA 66 BIOKA62 JASA 66 BIOKA65 JASA 66 BIOKA69 JRSSB65 BIOKA69 JRSSB58 BIOKA64 BIOKA64 BIOKA66	767 4444 894 454 1201 300 677 290 283 155 86 8148 995 32 290 NO.3 406 504 400 480 1042 222
A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M—DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS THE DIST INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED ESTIMATION AND REGRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE R EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED TION ADMITTING A SUFFICIENT STATISTIC WHEN THE RANGE DEPENDS ON THE PARAMETER /E PARAMETER OF A DISTRIBUT OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS, TIME—DEPOSITS DISTRIBUTION ON THE DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTIONS VIA DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTIONS VIA DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTIONS VIA DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTION VIA DERIVATION OF METHODS FOR FITTING EXPONENTIAL TS FOR UNIFORMITY OF A CIRCULAR DISTRIBUTION THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM TES UNIFIED DEPRIVATION OF SOME EXACT MULTIVARIATE TESTS A UNIFIED DERIVATION OF THE DISTRIBUTION OF THE STUDY OF DEPART A NOTE ON THE DERIVATION OF THE DISTRIBUTION OF THE TRUNCATED POISS	AMS 62 JRSSB61 AMS 62 JASA 65 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 62 AMS 62 JRSSB55 JASA 66 BIOKA62 JRSSB55 JASA 66 BIOKA64 BIOKA69 JRSSB65 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA64 AMS 61 AMS 61	767 4444 894 454 1201 300 677 290 1115B 283 155 86 995 32 290 100 34 406 504 No.3 1480 1042 292 904
A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M—DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT VARIABLE ARE CONSTRAINED ESTIMATION AND RECRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS OF ORDER STATISTICS OF DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE R EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED TION ADMITTING A SUFFICIENT STATISTIC WHEN THE RANCE DEPENDS ON THE PARAMETER /E PARAMETER OF A DISTRIBUTION OF AN ACCELERATED DEPRECIATION LEARNING FUNCTION DISTRIBUTION OF AN ACCELERATED DEPRECIATION LEARNING FUNCTION DISTRIBUTION OF A CONTINUOUS UNIVARIATE POPULATION/ A CONCISE DEPRECIATION OF A CLASS OF FREQUENCY DISTRIBUTIONS VIA DERIVATION OF A CONSUMER SUMPTION (W/ PERMUTATION THEORY IN THE DERIVATION OF METHODS FOR FITTING EXPONENTIAL THE DERIVATION OF A POPULATION OF REPREVANTES TO THE INVERSE DISTRIBUTION OF A CONTINUOUS UNIVARIATE POPULATION OF METHODS FOR FITTING EXPONENTIAL THE DERIVATION OF REPREVALENCE TWO SAMPLE TESTS FROM TES A UNIFIED DERIVATION OF SOME EXACT MULTIVARIATE TESTS A UNIFIED DERIVATION OF THE BOREL DISTRIBUTION OF DEPART A NOTE ON THE DERIVATION OF THE BOREL DISTRIBUTION OF THE TRUNCATED POISS AN ALTERNATIVE DEPENDENT OF THE PERMUTE DISTRIBUTION OF THE TRUNCATED POISS AN ALTERNATIVE DEPENDENT OF THE PERMUTE DISTRIBUTION OF THE TRUNCATED POISS	AMS 62 JRSSB61 AMS 62 JASS 66 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 62 AMS 68 BIOKA67 BIOKA62 JRSSB55 JASA 66 BIOKA65 JASA 66 BIOKA69 JJSSB65 BIOKA69 JJSSB65 BIOKA69 JJSSB65 BIOKA69 JJSSB65 BIOKA69 JRSSB65	767 4444 894 893 134 454 1201 300 677 290 1158 283 155 86 148 995 32 290 NO.3 406 NO.3 104 104 104 104 104 104 104 104 104 104
A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M—DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TIALS THE DIST INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED ESTIMATION AND RECRESSION AMALYSIS WITH DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES ELATIONS SETWENT THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES ELATIONS DETWEEN THE P.D.F. OR ORDER STATISTICS OF DEPENDENT VARIABLES TION ADMITTING A SUFFICIENT STATISTIC WHEN THE RANGE DEPENDS ON THE PARAMETER /E PARAMETER OF A DISTRIBU OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS, TIME—DEPOSITS THE RELIABILITY ESTIMATION OF AN ACCELERATED DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED A CONCISE DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTIONS VIA N FUNCTION OF A CONTINUOUS UNIVARIATE POPULATION / BAYES'S THEOREM N FUNCTION OF A CONTINUOUS UNIVARIATE POPULATION / N FUNCTION OF A CONTINUOUS UNIVARIATE POPULATION OF METHODS FOR FITTING EXPONENTIAL THE DERIVATION OF METHODS FOR FITTING EXPONENTIAL THE DERIVATION OF ROBUST CRITERIA AND THE STUDY OF DEPART A NOTE ON THE DERIVATION OF ONDER AMAMETRIC TWO-SAMPLE TESTS FROM TES URBS FROM ASSUMPTION (W/ PERMUTATION THEORY IN THE DERIVATION OF THE DISTRIBUTION OF THE TRUNCATED POISS A UNIFIED DERIVATION OF THE DISTRIBUTION OF THE TRUNCATED POISS A UNIFIED DERIVATION OF THE DISTRIBUTION OF THE TRUNCATED POISS AN ALTERNATIVE DERIVATION OF THE DISTRIBUTION OF THE TRUN	AMS 62 JRSSB61 AMS 62 JRSSB61 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 62 AMS 68 BIOKA67 BIOKA62 JJSSB55 JASA 66 BIOKA58 JJSSB55 BIOKA69 JRSSB55 BIOKA69 JRSSB58 BIOKA64 BIOKA64 BIOKA66 JRSSB58 BIOKA66 AMS 61 AMS 61 AMS 61	767 4444 894 1201 300 677 290 115B 283 155 32 86 148 995 32 100 1042 222 904 627 796
ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM—LIKELHOOD IN THE CASE OF DEPENDENT RANDOW VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES SOME NON—PARAMETRIC TESTS FOR M—DEPENDENT TESTS FOR M—NON—ORTHOGONAL DESIGN SOME NON—PARAMETRIC TESTS FOR M—DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TIME SERIES INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT TRIALS A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS OF THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES. ELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES. CONTRIBUTIONS OF THANACIAL HOLDINGS, TIME—DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE REFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WAITABLES. TION ADMITTING A SUFFICIENT STATISTIC WHEN THE RANGE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS, TIME—DEPOSITS ESTIMATION OF AN ACCELERATED DEPENDENT DEPOSITS THE DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTIONS VIA DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTIONS VIA A CONCISE DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTION OF A CONCISE DERIVATION OF METHODS FOR FITTING EXPONENTIAL SEPENDANT OF THE DERIVATION OF METHODS FOR FITTING EXPONENTIAL SEPENDANT OF THE DERIVATION OF SOME EXACT MULTIVARIATE TESTS A UNIFIED DERIVATION OF THE DISTRIBUTION OF THE TRUNCATED POISS AN ALTERNATIVE DERIVATION OF THE BORRL DISTRIBUTION OF THE TRUNCATED POISS AN ALTERNATIVE DERIVATION OF THE BORRL DISTRIBUTION OF THE TRUNCATED POISS AN ALTERNATIVE DERIVATION OF THE BORRL DISTRIBUTION OF THE TRUNCATED POISS AN ALTERNATIVE DERIVATION OF THE BORN—CENTRAL CHI—SQUARE DISTRIBUTION ANOTHER DERIVATION OF	AMS 62 JRSSB61 AMS 62 JASA 65 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 62 AMS 63 BIOKA67 BIOKA62 JRSSB55 JASA 66 BIOKA58 JRSSB55 BIOKA64 JRSSB58 BIOKA64 BIOKA64 BIOKA64 BIOKA64 AMS 61 BIOKA66 AMS 61 BIOKA66 BIOKA66 AMS 62 JASA 64	767 4444 894 454 1201 300 677 290 1115B 283 155 86 995 32 290 NO.3 406 504 NO.3 1 480 1042 222 904 627 796 957
A NOTE ON MAXIMUM—LIKELHOOD IN THE CASE OF DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM—LIKELHOOD IN THE CASE OF DEPENDENT RANDOW VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES SOME NON—PARAMETRIC TESTS FOR M—DEPENDENT TEATS FROM A NON—ORTHOGONAL DESIGN SOME NON—PARAMETRIC TESTS FOR M—DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS THE DIST INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED ESTIMATION AND REGRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE REFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED TION ADMITTING A SUFFICIENT STATISTIC WHEN THE RANGE DEPENDS ON THE PARAMETER OF A DISTRIBUTION OF A CONSUMER SURVEYS OF FINANCIAL HOLDINGS, TIME—DEPOSITS DISTRIBUTION OF A CERCULAR DISTRIBUTION OF THE DEPENDS ON THE PARAMETER OF A DISTRIBUTION STATE OF A CONCISE DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTIONS VIA DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTION STATE OF A CONCISE DERIVATION OF METHODS FOR FITTING EXPONENTIAL REGRESSION CURVES THE DERIVATION OF METHODS FOR FITTING EXPONENTIAL A CONCISE DERIVATION OF METHODS FOR FITTING EXPONENTIAL BAYES'S THEOREM A ROTE ON THE DERIVATION OF THE BORGE DISTRIBUTION OF THE TRUNCATED POISS A CONCISE DERIVATION OF THE BORGE DISTRIBUTION OF THE BORGE DISTRIBUTION OF THE FROMERADETRIC DISTRIBUTION OF THE FROME D	AMS 62 JRSSB61 AMS 62 JRSSB61 AMS 66 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 62 AMS 68 BIOKA67 BIOKA62 JRSSB55 JASA 65 JASA 66 BIOKA69 JASA 66 BIOKA61 BIOKA62 AMS 61 BIOKA64 BIOKA64 JRSSB65	767 4444 894 893 134 454 1201 3300 677 290 115B 283 155 86 148 995 32 290 NO.3 406 NO.3 1042 222 290 1042 27796 627 7796 627 7796 627 7796 627 7796 627 7796
ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M—DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT VARIABLE ARE CONSTRAINED ESTIMATION AND RECRESSION ANALYSIS WITH DEPENDENT VARIABLE ARE CONSTRAINED ESTIMATION AND RECRESSION ANALYSIS WITH DEPENDENT VARIABLE ARE CONSTRAINED ESTIMATION AND RECRESSION ANALYSIS WITH DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE REFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED TION ADMITTING A SUFFICIENT STATISTIC WHEN THE RANGE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED DISTRIBUTION DISTRIBUTION OF AN ACCELERATED DEPRECIATION LEARNING FUNCTION DISTRIBUTION DISTRIBUTION OF A CONCINENT STATISTIC WHEN THE RANGE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED THE RELIABILITY ESTIMATION OF AN ACCELERATED DEPRECIATION LEARNING FUNCTION DISTRIBUTION OF A CONCINENT STATISTIC WHEN THE RANGE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED THE RELIABILITY OF NEWMAN'S TYPE A DERIVATION OF GENERAL ORTHOGONAL POLYNOMIALS REGRESSION CURVES THE RELIABILITY OF THE PROPERTY OF SEMENAL PROPERTY OF THE DEPENDENT OF THE PROPERTY OF THE PROPAGALISTIC OF THE PROPAGALISTIC OF THE PROPAGALISTIC OF THE	AMS 62 JRSSB61 AMS 62 JASS 66 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 62 AMS 68 BIOKA67 BIOKA67 JASA 65 JASA 65 JASA 66 BIOKA68 JRSSB55 JASA 66 BIOKA69 JASA 66 BIOKA69 JASA 66 BIOKA69 JASA 66 BIOKA69 JASS 66 BIOKA69 JASS 66 BIOKA64 BIOKA64 BIOKA66 AMS 61 JASS 64 JRSSB55 BIOKA66 AMS 62 JASS 64 JRSSB56	767 444 894 894 893 134 454 1201 3000 677 290 115B 283 155 86 148 995 32 290 NO.3 148 406 504 NO.3 148 406 1042 222 409 1046 1046 1046 1046 1047 1047 1048 1048 1048 1048 1048 1048 1048 1048
ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M—DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT VARIABLE ARE CONSTRAINED ESTIMATION AND RECRESSION ANALYSIS WITH DEPENDENT VARIABLE ARE CONSTRAINED ESTIMATION AND RECRESSION ANALYSIS WITH DEPENDENT VARIABLE ARE CONSTRAINED ESTIMATION AND RECRESSION ANALYSIS WITH DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE REFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED TION ADMITTING A SUFFICIENT STATISTIC WHEN THE RANGE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED DISTRIBUTION DISTRIBUTION OF AN ACCELERATED DEPRECIATION LEARNING FUNCTION DISTRIBUTION DISTRIBUTION OF A CONCINENT STATISTIC WHEN THE RANGE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED THE RELIABILITY ESTIMATION OF AN ACCELERATED DEPRECIATION LEARNING FUNCTION DISTRIBUTION OF A CONCINENT STATISTIC WHEN THE RANGE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED THE RELIABILITY OF NEWMAN'S TYPE A DERIVATION OF GENERAL ORTHOGONAL POLYNOMIALS REGRESSION CURVES THE RELIABILITY OF THE PROPERTY OF SEMENAL PROPERTY OF THE DEPENDENT OF THE PROPERTY OF THE PROPAGALISTIC OF THE PROPAGALISTIC OF THE PROPAGALISTIC OF THE	AMS 62 JRSSB61 AMS 62 JASS 66 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 62 AMS 68 BIOKA67 BIOKA67 JASA 65 JASA 65 JASA 66 BIOKA68 JRSSB55 JASA 66 BIOKA69 JASA 66 BIOKA69 JASA 66 BIOKA69 JASA 66 BIOKA69 JASS 66 BIOKA69 JASS 66 BIOKA64 BIOKA64 BIOKA66 AMS 61 JASS 64 JRSSB55 BIOKA66 AMS 62 JASS 64 JRSSB56	767 444 894 894 893 134 454 1201 3000 677 290 115B 283 155 86 148 995 32 290 NO.3 148 406 504 NO.3 148 406 1042 222 409 1046 1046 1046 1046 1047 1047 1048 1048 1048 1048 1048 1048 1048 1048
ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M—DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M—DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M—DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR M—DEPENDENT TRIALS RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS REGRESSION ANALYSIS WITH DEPENDENT VARIABLE ARE CONSTRAINED ESTIMATION AND RECORD A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES, AND SOME APPLICATIONS / RENCE REFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WARRIABLES, AND SOME APPLICATIONS / RENCE REFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WARRIABLES, AND SOME APPLICATIONS / RENCE REFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WARRIABLES, AND SOME APPLICATIONS / RENCE REFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WITH SECONDARY OF PARAMETER OF A DISTRIBUTION OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS, TIME—DEPOSITS THE PERIVATION OF A CONTINUOUS UNIVARIATE POPULATION/ DISTRIBUTION ON THE DERIVATION OF GENERAL ORTHOGONAL POLYNOMIALS REGRESSION CURVES THE DERIVATION OF ORDINEARMETRIC TWO-SAMPLE TESTS FROM TES A UNIFIED DERIVATION OF NON-PARAMETRIC TWO-SAMPLE TESTS FROM TES A UNIFIED DERIVATION OF THE BORDLE DISTRIBUTIONS A DERIVATION OF THE BORDLE DISTRIBUTIONS A CONCISE DERIVATION OF THE BORDLE DISTRIBUTION OF THE TRUNCATED POISS A UNIFIED DERIVATION OF THE BORDLE DISTRIBUTION OF THE DERIVATION OF THE BORDLE DISTRIBUTIONS AND APPROXIMATION OF THE MON-CENTRAL CHI-SQUARE DISTRIBUTION AND THE DERIVATI	AMS 62 JRSSB61 AMS 62 JRSSB61 JASA 65 BIOKA59 JASA 65 BIOCS65 AMS 61 AMS 62 AMS 68 BIOCS65 JASA 65 BIOKA67 BIOKA62 JRSSB55 JASA 65 JASA 65 JASA 65 JASA 66 BIOKA69 JASA 64 BIOKA69 JASSB65 BIOKA64 BIOKA64 BIOKA64 BIOKA64 JRSSB65 BIOKA64 BIOKA64 JASSB65 BIOKA66 AMS 62 JASA 64 JRSSB65 BIOKA66 AMS 62 JASA 64 JRSSB66	767 444 894 894 895 1201 3000 677 290 115B 283 155 86 148 995 32 290 NO.3 1 480 1042 222 480 1042 485 1027 1007
ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM-LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT RANDOM VARIABLES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS REGRESSION ANALYSIS WITH DEPENDENT VARIABLE CONSTRAINED ESTIMATION AND RECRESSION ANALYSIS WITH DEPENDENT VARIABLE CONSTRAINED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE R EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE R EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED TION ADMITTING A SUFFICIENT STATISTIC WHEN THE RANCE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED TON ADMITTING A SUFFICIENT STATISTIC WHEN THE RANCE DEPENDENT WITH SPECIAL REPERENCE TO TYPE II CENSORED TO AND ADMITTING A SUFFICIENT STATISTIC WHEN THE RANCE DEPENDENT WITH SPECIAL REPERENCE TO TYPE II CENSORED THE RELIBELITY ESTIMATION OF AN ACCELERATED DEPENDENT WITH SPECIAL REPERENCE TO TYPE II CENSORED THE RELIBELITY BAYES'S THEOREM N FUNCTION OF A CONTINUOUS UNIVARIATE POPULATION / A CLASS OF FREQUENCY DISTRIBUTION VIA DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTION VIA DERIVATION OF A CLASS OF PREQUENCY DISTRIBUTION OF THE DERIVATION OF A CLASS OF PREQUENCY DISTRIBUTION ON THE DERIVATION OF A CLASS OF PREQUENCY DISTRIBUTION ON THE DERIVATION OF THE DEPENDENT OF THE TRUNCATED POISS AN ALTERNATIVE DERIVATION OF THE DEPENDENT OF THE TRUNCATED POI	AMS 62 JRSSB61 AMS 62 JASS 65 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 62 BIOKA67 BIOKA62 JASA 65 BIOKA67 BIOKA69 JASA 66 BIOKA69 JASS 68 BIOKA69 JASS 68 BIOKA69 JASS 66 BIOKA66 BIOKA66 AMS 62 JRSSB55 BIOKA66 BIOKA66 AMS 62 JRSSB55 BIOKA66 BIOKA66 AMS 62 JRSSB65 JRSSB65 JRSSB65	767 4444 894 4894 1300 677 290 1115B 283 155 86 148 995 32 290 NO.3 1 406 NO.3 1 1042 222 290 1042 283 1044 1046 1046 1046 1046 1046 1046 1046
A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES SOME NON-PARAMETRIC TESTS FOR M DEPENDENT TRIALS SOME NON-PARAMETRIC TESTS FOR M—DEPENDENT TRIALS RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS RECRESSION NAMALYSIS WITH DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES THE DISTRIBUTION OF THE PRAMETER /E PARAMETER OF A PA	AMS 62 JRSSB61 AMS 62 JRSSB61 JASA 65 BIOKA59 JASA 66 BIOCS65 AMS 61 AMS 62 AMS 68 BIOKA67 BIOKA62 JJASA 66 BIOKA65 JJASA 66 BIOKA65 BIOKA66 JJASA 66 BIOKA66 BIOKA69 JRSSB55 BIOKA69 JRSSB58 BIOKA60 JRSSB58 BIOKA60 JRSSB58	767 4444 894 1201 3000 677 290 115B 283 155 32 86 148 995 32 900 400 1042 222 904 480 1042 222 904 485 105 796
A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES SOME NON-PARAMETRIC TESTS FOR DEPENDENT RANDOM VARIABLES SOME NON-PARAMETRIC TESTS FOR DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN SOME NON-PARAMETRIC TESTS FOR DEPENDENT VARIABLES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE R EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE R EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE R EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE R EFFICIENT MOMENT ESTIMATION OF AN ACCELERATED DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS, TIME-DEPOSITS THE RELIBILITY ESTIMATION OF AN ACCELERATED DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED ON THE PARAMETER /P ARAMETER /P	AMS 62 JRSSB61 AMS 62 JASA 65 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 62 AMS 65 JASA 66 BIOKA67 BIOKA62 JASA 66 BIOKA66 JRSSB55 BIOKA69 JRSSB58 BIOKA64 BIOKA64 BIOKA64 JRSSB55 BIOKA64 BIOKA66 JASA 66 BIOKA66 JASA 66 BIOKA66 JASSB55 BIOKA66 JASSB55 BIOKA66 JASSB55 BIOKA66 JASSB56 BIOKA66 JASSB56 BIOKA66 JASSB56 AMS 61 JRSSB66 AMS 67 JRSSB65	767 4444 894 454 1201 300 677 290 677 290 115B 283 155 86 32 290 NO.3 406 504 NO.3 1 480 1042 222 904 627 796 957 578 485 1027 100 108 108 108 108 108 108 108 108 108
ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM—LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES SOME NON-PARAMETRIC TESTS FOR DEPENDENT TRANDOM VARIABLES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRANDOM VARIABLES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TIME SERIES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT VARIABLE ARE CONSTRAINED RECRESSION ANALYSIS WITH DEPENDENT VARIABLE ARE CONSTRAINED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES ELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE REFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE REFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT VARIABLES, AND SOME APPLICATIONS /RENCE REFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT VARIABLES. THE PARAMETER OF A DISTRIBUTION OF A CONSUMER SURVEYS OF FINANCIAL HOLDINGS, TIME-DEPOSITS BY OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS, TIME-DEPOSITS THE RELIABILITY DISTRIBUTION OF A CONTINUOUS UNIVARIATE POPULATION/ A CONCISE DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTION SUAD DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTION OF A CLASS OF TREQUENCY DISTRIBUTION OF A CLASS OF TREQUENCY DISTRIBUTION OF A CLASS OF TREQUENCY DISTRIBUTION OF THE DERIVATION OF FORETON OF A CLASS OF TREQUENCY DISTRIBUTION OF THE DERIVATION OF FORETON OF THE TOWNS AND THE STUDY OF DEPART A NOTION OF A CLASS OF TREQUENCY DISTRIBUTION OF THE DERIVATION OF THE DERIVATION OF THE DEPRIVATION OF THE DEPART AND THE STUDY OF DEPART A NOTION OF A CLASS OF TREQUENCY DISTRIBUTION OF THE DEPRIVATIO	AMS 62 JRSSB61 AMS 62 JRSSB61 AMS 62 JASA 65 EIOKA59 JASA 68 EIOCS65 AMS 61 AMS 62 AMS 68 EIOKA67 EIOKA62 JRSSB65 JASA 66 EIOKA67 EIOKA69 JASA 66 EIOKA69 JASA 66 EIOKA69 JASA 64 EIOKA61 EIOKA61 EIOKA62 JRSSB65 BIOKA63 JRSSB65 BIOKA64 EIOKA61 JRSSB65 BIOKA65 JRSSB65 BIOKA65 JRSSB65 BIOKA66 JRSSB65 BIOKA66 JRSSB65 BIOKA66 JRSSB65	767 4444 894 893 134 454 1201 300 677 290 1158 283 155 86 148 995 32 290 NO.3 406 1042 222 290 406 627 796 485 1027 100 100 100 100 100 100 100 100 100 10
A NOTE ON MAXIMUM—LIKELIHOD IN THE CASE OF DEPENDENT QUEUE WITH A SINCLE SERVER A NOTE ON MAXIMUM—LIKELIHOD IN THE CASE OF DEPENDENT RANDOM VARIABLES DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES SOME NON-PARAMETRIC TESTS FOR DEPENDENT TRANDOM VARIABLES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRANDOM VARIABLES RIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TIME SERVER RECRESSION ANALYSIS WITH DEPENDENT VARIABLE ARE CONSTRAINED ESTIMATION AND RECRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLE CENSORED A CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES CONTRIBUTIONS OF ORDER STATISTICS WHEN THE VARIABLES ARE DEPENDENT VARIABLES CONTRIBUTIONS OF ORDER STATISTICS WIND THE VARIABLES AND SOME APPLICATIONS /RENCE REFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT VARIABLES. ELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES. CONTRIBUTION STATISTIC WHEN THE VARIABLES ARE DEPENDENT VARIABLES. THE DETUNATION OF A CHARMATORY WHEN THE VARIABLES ARE DEPENDENT VARIABLES. THE PROPERTY OF THE STATISTIC WARREST OF THE VARIABLES. THE PROPERTY OF THE STATISTIC WARREST OF THE VARIABLES. THE PROPERTY OF THE VARIABLES ARE DEPENDENT VARIABLES. THE DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTION OF THE DERIVATION OF THE DERIVATION OF THE DEPENDENT OF THE VARIABLES. THE DERIVATION OF THE DEPENDENT OF THE TRUNCATED POISS AND A CONCESSED OF THE DEPENDENT OF THE	AMS 62 JRSSB61 AMS 62 JASA 65 JASA 65 BIOKA59 JASA 68 BIOCS65 AMS 61 AMS 62 AMS 65 JASA 66 BIOKA67 BIOKA62 JASA 66 BIOKA66 JRSSB55 BIOKA69 JRSSB58 BIOKA64 BIOKA64 BIOKA64 JRSSB55 BIOKA64 BIOKA66 JASA 66 BIOKA66 JASA 66 BIOKA66 JASSB55 BIOKA66 JASSB55 BIOKA66 JASSB55 BIOKA66 JASSB56 BIOKA66 JASSB56 BIOKA66 JASSB56 AMS 61 JRSSB66 AMS 67 JRSSB65	767 444 894 1201 300 677 290 115B 283 155 86 148 995 32 290 NO.3 406 504 NO.3 1 480 1042 222 904 627 796 957 5485 1027 108 1187 1610 108 1187 1610 108 108 108 108 108 108 108 108 108 1

```
RADON-NIKODYM DERIVATIVES OF STATIONARY CAUSSIAN MEASURES
                           THE WISHART DISTRIBUTION DERIVED BY SOLVING SIMULTANEOUS LINEAR DIFFERENTIAL
EQUATIONS
               THE SPECTRUM OF A CONTINUOUS PROCESS DERIVED FROM A DISCRETE PROCESS
                                                                                                           BICKA63
                 SERIAL SAMPLING ACCEPTANCE SCHEMES DERIVED FROM BAYES'S THEOREM
                                                                                                           TECH 60
                                                                                                                    353
           THE ROBUSTNESS OF LIFE TESTING PROCEDURES DERIVED FROM THE EXPONENTIAL DISTRIBUTION
                                                                                                           TECH 61
                                                                                                                     29
F THE POWER FUNCTION FOR ANALYSIS OF VARIANCE TESTS, DERIVED FROM THE NON-CENTRAL F-DISTRIBUTION
                                                                                                 /ARTS O BIOKA51
                                                                                                                     112
 MATCHINC DISTRIBUTIONS, POISSON LIMITING FORMS AND DERIVED METHODS OF APPROXIMATION
                                                                                                       THE JRSSB5B
                                                                                                                     73
SPACE IN TESTS OF AN IMPORTANT/ A SIMPLE METHOD OF DERIVING BEST CRITICAL RECIONS SIMILAR TO THE SAMPLE BIOKA53
                                                                                                                     231
               THE CONSTRUCTION OF A MATRIX USED IN DERIVING TESTS OF SIGNIFICANCE IN MULTIVARIATE ANALYS BIOKA64
                                                                                                                     503
         A POTENTIAL THEORETIC PROOF OF A THEOREM OF DERMAN AND VEINOTT
                                                                                                            AMS 67
                                                                                                                     5B5
                              VARIATION QUADRATIQUE DES MARTINGALES CONTINUES A DROITE
                                                                                                                    284
                                                                                                            AMS 69
                                         PONDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX
                                                                                                          BIOCS69
                                                                                                                     295
SUR PLUSIEURS CARACTERES
E LOGNORMAL DISTRIBUTION AND THE TRANSLATION METHOD, DESCRIPTION AND ESTIMATION PROBLEMS, CORR. 63 1163
                                                                                                           JASA 63
                                                                                                                     231
                  NON-ADDITIVITIES IN A LATIN SQUARE DESIGN
                                                                                                           JASA 57
     A BASIS FOR THE SELECTION OF A RESPONSE SURFACE DESIGN
                                                                                                           JASA 59
                                                                                                                     622
      AN APPLICATION OF A BALANCED INCOMPLETE BLOCK DESIGN
                                                                                                           TEGH 61
                                                                                                                     51
                                                                                                                    705
     ASYMPTOTICALLY OPTIMUM SEQUENTIAL INFERENCE AND DESIGN
                                                                                                            AMS 63
                         A BLANCED INCOMPLETE BLOCK DESIGN
                                                                                                            AMS 65
                                                                                                                    711
                   OPTIMAL STOPPING AND EXPERIMENTAL DESIGN
                                                                                                            AMS 66
                                                                                                                      7
            ON DEPENDENT TESTS FROM A NON-ORTHOCONAL DESIGN
                                                                                                           JASA 66
                                                                                                                    803
                         GENERALIZED LATTICE SQUARE DESIGN
                                                                                                           JASA 66
                                                                                                                    821
ESTIMATES IN SUCCESSIVE SAMPLING USING A MULTI-STAGE DESIGN
                                                                                                           JASA 68
                                                                                                                     99
              THE CHOICE OF A SECOND ORDER ROTATABLE DESIGN
                                                                                                           BIOKA63
                                                                                                                     335
                                    SERIAL FACTORIAL DESIGN
                                                                                                           BIOKA68
                                                                                                                     67
 ON THE MISSING PLOT PROCEDURE IN A RANDOMIZED BLOCK DESIGN
                                                                                                      NOTE JASA 61
                                                                                                                     933
ON A NON-PARAMETRIC APPROACH TO THE 2-CUBE FACTORIAL DESIGN
                                                                                                    A NOTE TECH 69
 CLASSIFICATION ANALYSIS FOR ARBITRARY EXPERIMENTAL DESIGN
                                                                                                  MULTIPLE TECH 68
                                                                                                                     1.3
                                                                                                THE USE OF BIOKA57
 A CONCOMITANT VARIABLE IN SELECTING AN EXPERIMENTAL DESIGN
                                                                                                                    150
     OF ERRORS IN THE FACTOR LEVELS AND EXPERIMENTAL DESIGN
                                                                                               THE EFFECTS TECH 63
                                                                                                                    247
           OF ERROR VARIANCES IN A RANDOMIZED BLOCK DESIGN
                                                                                             HETEROGENEITY BIOKA57
                                                                                                                    275
                                                                                          EXPERIMENTS WITH JRSSB68
  MIXTURES, A CENERALIZATION OF THE SIMPLEX-LATTICE DESIGN
          ANALYSIS OF A CENERALIZED RANDOMIZED BLOCK DESIGN
                                                                                         THE RANDOMIZATION BIOKASS
                                                                                                                     70
TATISTIGS FOR THE TWO-WAY CLASSIFICATION MIXED MODEL DESIGN
                                                                                      MINIMAL SUFFICIENT S JASA 65
                                                                                                                    182
   AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN
                                                                                CONSUMER BUYING INTENTIONS JASA 66
                                                                                                                    65B
 FACTORIAL ARRANGEMENTS. I. BLOCK AND DIRECT PRODUGT DESIGN
                                                                           APPLICATIONS OF THE CALGULUS OF BIOKA63
                                                                                                                     63
                                                                           COMPUTER SIMULATION EXPERIMENTS JASA 67 1315
  WITH ECONOMIC SYSTEMS. THE PROBLEM OF EXPERIMENTAL DESIGN
  COMPONENTS I EMPIRICAL STUDIES OF BALANCED NESTED DESIGN
                                                                        SAMPLING DISTRIBUTIONS OF VARIANCE TECH 66
IN A GENERALIZATION OF THE BALANCED INCOMPLETE BLOCK DESIGN
                                                                       SOME CONSEQUENCES OF RANDOMIZATION AMS 63 1569
ATIOS UNDER PERMUTATION IN THE COMPLETELY RANDOMIZED DESIGN
                                                                      SOME EMPIRICAL RESULTS ON VARIANCE R JASA 66 813
   SQUARE-SUB-R-TEST FOR A BALANCED INCOMPLETE BLOCK DESIGN
                                                                     THE ASYMPTOTIC EFFICIENCY OF THE CHI- BIOKA59
                                                                                                                    475
                                                                ESTIMATED REGRESSION FUNCTION OF THE Q-SUB JRSSB69 NO.2
-1 TO Q-SUB-N BY M-SUB-1 TO M-SUB-N MULTIPLE-LATTICE DESIGN
                                                                THE RELATIONSHIP ALCEBRA AND THE ANALYSIS
OF VARIANCE OF A PARTIALLY BALANCED INCOMPLETE BLOCK DESIGN
                                                                                                           AMS 65 1B15
ANEOUS EQUATIONS WITH AN APPLICATION TO EXPERIMENTAL DESIGN
                                                               /RECION FOR THE SOLUTION OF A SET OF SIMULT BIOKA54
                                                                                                                   190
HE F-TEST UNDER PERMUTATION FOR THE RANDOMIZED BLOCK DESIGN
                                                               AN EMPIRICAL STUDY INTO FACTORS AFFECTING T JASA 68
                                                                                                                    902
 MAYS L. UTILIZING INFORMATION FROM A DIALLEL MATING DESIGN
                                                              /AL RELATIONSHIP AMONG EICHT POPULATIONS ZEA BIOCS68
                                                                                                                    867
H SPECIAL REFERENCE TO THE BALANCED INCOMPLETE BLOCK DESIGN
                                                              /INEAR MODELS WITH TWO RANDOM COMPONENTS WIT BIOKA68
                                                                                                                    101
EST UNDER PERMUTATION IN THE SIMPLE RANDOMIZED BLOCK DESIGN
                                                              /MONTE CARLO RESULTS ON THE POWER OF THE F-T BIOKA66
                 SOME CENERAL RESULTS IN SEQUENTIAL DESIGN (WITH DISCUSSION)
                                                                                                           JRSSB65
                         USE OF PRIOR INFORMATION TO DESIGN A ROUTINE PARALLEL LINE ASSAY
                                                                                                           BIOCS67
                                                                                                                    257
                                                     DESIGN AND ANALYSIS OF EXPERIMENTS WITH MIXTURES
                                                                                                           AMS 68 1517
                                                     DESIGN AND ESTIMATION IN TWO-WAY STRATIFICATION
                                                                                                           JASA 60 105
PI.AN
                                                     DESIGN AND EVALUATION OF A REPETITIVE GROUP SAMPLING
                                                                                                           TECH 65
                                                                                                                     11
SAMPLINC PLAN
                                                     DESIGN AND OPERATION OF A DOUBLE-LIMIT VARIABLES
                                                                                                           JASA 5B
                                                                                                                    543
                                                   A DESIGN BALANCED FOR TREND
                                                                                                           BIOKA6B
                                                                                                                    535
MINATION AND PARAMETER ESTIMATION
                                             A JOINT DESIGN CRITERION FOR THE DUAL PROBLEM OF MODEL DISCRI TECH 68 145
                                  NOTE ON A MINIMAX DESIGN FOR CLUSTER SAMPLING
                                                                                                            AMS 68
                                                                                                                    278
WITH A CONTR/
               AN ASYMPTOTICALLY OPTIMAL SEQUENTIAL DESIGN FOR COMPARING SEVERAL EXPERIMENTAL CATEGORIES
                                                                                                            AMS 63 1486
                      EXAMINATION OF A REPEAT MATING DESIGN FOR ESTIMATING ENVIRONMENTAL AND GENETIC TREND BIOCS65
                                                                                                                     63
               AN ALTERNATIVE TO THE SIMPLEX-LATTICE DESIGN FOR EXPERIMENTS WITH MIXTURES
                                                                                                           JRSSB69 NO.2
                                THE SIMPLEX-CENTROID DESIGN FOR EXPERIMENTS WITH MIXTURES (WITH DISCUSSION JRSSB63
                                                     DESIGN FOR INTERACTIONS
                                                                                                           TECH 68
RECRESSION
                                                     DESIGN FOR OPTIMAL PREDICTION IN SIMPLE LINEAR
                                                                                                           JASA 65
                                                                                                                    205
           MINIMUM BIAS ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE SURFACES
                                                                                                           TECH 69
                                                                                                                    461
 SPACED LEVELS (CORR. 67 586) A CHANGE-OVER DESIGN FOR TESTING A TREATMENT FAGTOR AT FOUR EQUALLY JRSSB67
                                                                                                                    370
           SOME PROBLEMS OF THE HOUSEHOLD INTERVIEW DESIGN FOR THE NATIONAL HEALTH SURVEY
                                                                                                           JASA 59
                                                                                                                     69
    ON THE ADMISSIBILITY OF A RANDOMIZED SYMMETRICAL DESIGN FOR THE PROBLEM OF A ONE WAY CLASSIFICATION
                                                                                                            AMS 69
                                                                                                                    356
                        INSENSITIVITY TO NON-OPTIMAL DESIGN IN BAYESIAN DEGISION THEORY
                                                                                                           JASA 65
                                                                                                                    584
                                                                                                           JASA 67
                                         RANDOM WALK DESIGN IN BIO-ASSAY
                                                                                                                    B42
                                    ON THE CHOICE OF DESIGN IN STOCHASTIC APPROXIMATION METHODS
                                                                                                            AMS 68
                                                                                                                    457
                                  THE MATCHED PAIRS DESIGN IN THE CASE OF ALL-OR-NONE RESPONSES
                                                                                                           BIOCS68
                                                                                                                    339
 BAYESIAN ANALYSIS OF A THREE-COMPONENT HIERARCHICAL DESIGN MODEL
                                                                                                           BIOKA67
                                                                                                                    109
ARRANGEMENTS ARE INADMISSIBLE
                                                 THE DESIGN OF AN EXPERIMENT IN WHICH CERTAIN TREATMENT
                                                                                                           BIOKA54
                                                                                                                    287
SAMPLINC PLANS
                                                     DESIGN OF AN OPTIMAL SEQUENCE OF INTERRELATED
                                                                                                                     96
                                                                                                           JASA 64
                                       THE ECONOMIC DESIGN OF CUMULATIVE SUM CONTROL CHARTS
                                                                                                                    479
                                                                                                           TECH 68
                                         APPROXIMATE DESIGN OF DIGITAL FILTERS
                                                                                                           TECH 65
                                                                                                                    387
                                      COMPUTER AIDED DESIGN OF EXPERIMENTS
                                                                                                                    137
                                                                                                           TECH 69
                   CONSTRAINED MAXIMISATION AND THE DESIGN OF EXPERIMENTS
                                                                                                           TECH 69
                                                                                                                    616
SOLUTION OF SOME NON-LINEAR EQUATIONS, USEFUL IN THE DESIGN OF EXPERIMENTS
                                                                                            THE NUMERICAL
                                                                                                           JRSSB65
                                                                                                                    466
                                      THE SEQUENTIAL DESIGN OF EXPERIMENTS FOR INFINITELY MANY STATES OF
                                                                                                            AMS 61
                                                                                                                    771
                      THE CHOICE OF VARIABLES IN THE DESIGN OF EXPERIMENTS FOR LINEAR REGRESSION
                                                                                                           BIOKA69
                                                                                                                     55
                                                 THE DESIGN OF EXPERIMENTS FOR PARAMETER ESTIMATION
                                                                                                           TECH 68 271
MULTIRESPONSE SITUATIONS
                                                     DESIGN OF EXPERIMENTS FOR PARAMETER ESTIMATION IN
                                                                                                           BIOKA66
                                                                                                                    525
-LINEAR SIT/
              THE USE OF PRIOR DISTRIBUTIONS IN THE DESIGN OF EXPERIMENTS FOR PARAMETER ESTIMATION IN NON BIOKA67
                                                                                                                    147
               THE USE OF PRIOR DISTRIBUTIONS IN THE DESIGN OF EXPERIMENTS FOR PARAMETER ESTIMATION IN NON BIOKA67
-LINEAR SIT/
                                                                                                                    662
                                                     DESIGN OF EXPERIMENTS IN NON-LINEAR SITUATIONS
                                                                                                           BIOKA59
```

TITLE WORD INDEX DER - DES

```
ASYMPTOTIC SEQUENTIAL DESIGN OF EXPERIMENTS WITH TWO RANDOM VARIABLES
EMES REQUIRING NOT MORE THAN 256 TREATMENT CO/ THE DESIGN OF FACTORIAL EXPERIMENTS, A SURVEY OF SOME SCH BIOKA59
TIMATION OF A SUBCROUP OF PRE-AS/ BAYES SEQUENTIAL DESIGN OF FRACTIONAL FACTORIAL EXPERIMENTS FOR THE ES AMS 68
                                         THE ECONOMIC DESIGN OF MEAN CHARTS USED TO MAINTAIN CURRENT CONTRO JASA 56
L OF A PROCESS
                                     EXTREME VERTICES DESIGN OF MIXTURE EXPERIMENTS
                                                                                                               TECH 66
                     DISCUSSION OF 'EXTREME VERTICES DESIGN OF MIXTURE EXPERIMENTS' BY R.A. MCLEAN AND V.L TECH 66
  ANDERSON
                                                                                                                       455
                                                  THE DESIGN OF SCREENING TESTS
                                                                                                               TECH 63
 THE NEW DESIGN OF THE CANADIAN LABOUR FORCE SURVEY
AN ALCORITHM FOR THE DETERMINATION OF THE ECONOMIC DESIGN OF X-CHARTS BASED ON DUNCAN'S MODEL
                                                                                                              JASA 67
                                                                                                                        421
                                                                                                              JASA 68
                                                                                                                       304
                                        A NOTE ON THE DESIGN PROBLEM
                                                                                                              BIOKA52
                                                                                                                       189
                                    SOME EXPERIMENTAL DESIGN PROBLEMS IN ATTRIBUTE LIFE TESTING, CORR. 63
                                                                                                              JASA 62
                                                                                                                        668
                                                                                                              JRSSB66
                                                      DESIGN RELATIONS FOR NON-STATIONARY PROCESSES
                                                                                                                       228
        OPERATING CHARACTERISTICS OF SOME SEQUENTIAL DESIGN RULES
                                                                                                               AMS 68 1176
ND WITHOUT STACES ON SIMPLIFICATIONS OF SAMPLING DESIGN THROUGH REPLICATION WITH EQUAL PROBABILITIES A JASA 56
                                                                                                                       24
-STATISTIC IN A RANDOMIZED BALANCED INCOMPLETE BLOCK DESIGN UNDER THE NEYMAN MODEL /ISTRIBUTION OF THE F AMS 63 1558
AN UNNESTED FIXED FACTOR IN AN UNBALANCED HIERARCHAL DESIGN WITH A MIXED MODEL /E THE QUASI-F TEST FOR BIOCS66 937
                                                                                                              AMS 63 1558
                                       OPTIMAL SAMPLE DESIGN WITH NONRESPONSE
                                                                                                               JASA 67
 SIMULTANEOUS CONFIDENCE INTERVALS AND EXPERIMENTAL DESIGN WITH NORMAL CORRELATION
                                                                                                       NOTES. BIOCS68
                              A LARCE-SAMPLE BIOASSAY DESIGN WITH RANDOM DOSES AND UNCERTAIN CONCENTRATION BIOKAS5
                                                                                                                       307
                                        A TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS
                                                                                                              BIOCS68
                                                                                                                        61
                                  ON BAYES SEQUENTIAL DESIGN WITH TWO RANDOM VARIABLES
                                                                                                              BIOKA66
                                                                                                                        469
MIZATION DISTRIBUTION OF F-RATIOS FOR THE SPLIT-PLOT DESIGN, AN EMPIRICAL INVESTIGATION
                                                                                                   THE RANDO STOKA63
                                                                                                                       431
   OF IMMEDIATE SEQUENTIAL EFFECTS IN A LATIN SQUARE DESIGN, CORR. 58 1030 COMPLETE COUNTERSALANCING JASA 58
                                                                                                                       525
 CORRIGENDA, 'THE CHOICE OF A SECOND ORDER ROTATABLE DESIGN'
                                                                                                              8T0K 465
                                                                                                                       305
OMIZATION ANALYSIS OF A GENERALIZED RANDOMIZED 8LOCK DESIGN'
                                                                                   CORRIGENDA, 'THE RAND BIOKA56
CORRIGENDA TO 'THE USE OF 810KA57
                                                                                                                       235
 A CONCOMITANT VARIABLE IN SELECTING AN EXPERIMENTAL DESIGN'
                                                                                                                       534
TIONAL TO SIZE WHEN THE SIZ/ SEVERAL METHODS OF RE-DESIGNING AREA SAMPLES UTILIZING PROBABILITIES PROPOR JASA 68 1280
                                                      DESIGNING SOME MULTI-FACTOR ANALYTICAL STUDIES
                                                                                                              JASA 67 1121
                    THE ANALYSIS OF INCOMPLETE BLOCK DESIGNS
                                                                                                              JASA 57 204
                   THE APPLICATION OF RANDOM SALANCE DESIGNS
                                                                                                              TECH 59
                                                                                                                       139
             PARTIAL DUPLICATION OF RESPONSE SURFACE DESIGNS
                                                                                                              TECH 60 185
         AN INEQUALITY FOR SALANCED INCOMPLETE SLOCK DESIGNS
                                                                                                               AMS 61
                                                                                                                        908
              VARIANCE ESTIMATES IN 'OPTIMUM' SAMPLE DESIGNS
                                                                                                              JASA 61
                                                                                                                       135
         FACTORIAL TREATMENTS IN RECTANGULAR LATTICE DESIGNS
                                                                                                              JASA 61
                                                                                                                       368
             THE 2-TO-THE-(K-P) FRACTIONAL FACTORIAL DESIGNS
                                                                                                              TECH 61 311
     FINDING NEW FRACTIONS OF FACTORIAL EXPERIMENTAL DESIGNS
                                                                                                              TECH 61
                                                                                                                       359
                  MISSING VALUES IN RESPONSE SURFACE DESIGNS
                                                                                                              TECH 61
                                                                                                                       389
     TWO MORE CRITERIA EQUIVALENT TO D-OPTIMALITY OF DESIGNS
                                                                                                                       792
                                                                                                               AMS 62
                      SOME SYSTEMATIC SUPERSATURATED DESIGNS
                                                                                                              TECH 62
                                                                                                                       489
                                        RIGHT ANGULAR DESIGNS
                                                                                                               AMS 63 1057
           PARTIALLY DUPLICATED FRACTIONAL FACTORIAL DESIGNS
                                                                                                              TECH 63
                                                                                                                        71
                                                CUSIC DESIGNS
                                                                                                               AMS 64 389
                                    SINGULAR WEIGHING DESIGNS
                                                                                                               AMS 64 673
                  ON THE ANALYSIS OF GROUP DIVISIBLE DESIGNS
                                                                                                              JASA 64 1217
       A PROCEDURE FOR CONSTRUCTING INCOMPLETE SLOCK DESIGNS
                                                                                                              TECH 64 389
                                               CYCLIC DESIGNS
                                                                                                               AMS 65 1526
                            GENERALIZED RIGHT ANGULAR DESIGNS
                                                                                                               AMS 65 1535
   ON A CLASS OF PARTIALLY SALANCED INCOMPLETE SLOCK DESIGNS
                                                                                                               AMS 65 1807
               GENERAL THEORY OF PRIME-POWER LATTICE DESIGNS
                                                                                                              JASA 65 891
              A NOTE ON FRACTIONS OF 3-TO-THE-(4N+1) DESIGNS
                                                                                                              TECH 65
               ON NON-RANDOMIZED FRACTIONAL WEIGHING DESIGNS
                                                                                                               AMS 66 1836
                             CYLINDRICALLY ROTATABLE DESIGNS
                                                                                                               AMS 66 242
                                OPTIMAL EXPERIMENTAL DESIGNS
                                                                                                               AMS 66
                                                                                                                       783
               ROBUST ESTIMATION IN INCOMPLETE SLOCK DESIGNS
                                                                                                               AMS 66 1331
     INDUCTIVE METHODS FOR BALANCED INCOMPLETE 8LOCK DESIGNS
                                                                                                               AMS 66 1348
                     RANDOMIZED FRACTIONAL WEIGHING DESIGNS
                                                                                                               AMS 66 1382
  ON THE 8LOCK STRUCTURE OF SINGULAR GROUP DIVISIBLE DESIGNS
                                                                                                               AMS 66 1398
                           ON PARTIALLY LINKED BLOCK DESIGNS
                                                                                                               AMS 66 1401
                                 A NOTE ON AUGMENTED DESIGNS
                                                                                                              TECH 66 184
                           AUGMENTING 2-TO-THE-(N-1) DESIGNS
                                                                                                              TECH 66 469
      BALANCED L-RESTRICTIONAL PRIME POWERED LATTICE DESIGNS
                                                                                                               AMS 67 1127
            ON ROBUST ESTIMATION IN INCOMPLETE 8LOCK DESIGNS
                                                                                                               AMS 67 1587
           REDUCED GROUP DIVISIBLE PAIRED COMPARISON DESIGNS
                                                                                                               AMS 67 1887
   ASSOCIATION MATRICES AND THE KRONECKER PRODUCT OF DESIGNS
                                                                                                               AMS 68 676
               A SERIES OF BALANCED INCOMPLETE SLOCK DESIGNS
                                                                                                               AMS 68 681
 SOME EXAMPLES OF MULTI-DIMENSIONAL INCOMPLETE BLOCK DESIGNS
                                                                                                               AMS 68 1577
                      FURTHER SECOND ORDER ROTATABLE DESIGNS
                                                                                                               AMS 68 1995
                      SATURATED SEQUENTIAL FACTORIAL DESIGNS
                                                                                                              TECH 68 535
                 A NOTE ON BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                               AMS 69
                                                                                                                       679
                        SOME SYSTEMATIC EXPERIMENTAL DESIGNS
                                                                                                              BTOKA51 312
      THE EFFICIENCY OF BLOCKING IN INCOMPLETE SLOCK DESIGNS
                                                                                                              RIOKA60
                                                                                                                       273
                            ON A PROPERTY OF BALANCED DESIGNS
                                                                                                              8I0KA61 215
                           ON BALANCED UNEQUAL BLOCK DESIGNS
                                                                                                              BTOKA62
                                                                                                                       561
                                                                                                              BIOKA67 479
                    NESTED SALANCED INCOMPLETE BLOCK DESIGNS
               THE MEAN EFFICIENCY OF EQUI-REPLICATE DESIGNS
                                                                                                              BIOKA68 251
                                  CYCLIC CHANCE-OVER DESIGNS
                                                                                                              BIOKA69 283
                     A COMPARISON OF SOME SEQUENTIAL DESIGNS
                                                                                                              BIOKA69
                                                                                                                       301
                             CYCLIC INCOMPLETE SLOCK DESIGNS
                                                                                                              JRSSB66 345
                                   SALANCED FACTORIAL DESIGNS
                                                                                                              JRSSB66
                                                                                                                       559
                  ON JOHN'S CYCLIC INCOMPLETE BLOCK DESIGNS
                                                                                                              JRSS867 243
THE COMBINATION OF INFORMATION IN GENERALLY SALANCED DESIGNS
                                                                                                              JRSSB68
          SOME NONORTHOGONAL FRACTIONS OF 2-TO-THE-N DESIGNS
                                                                                                              JRSSB69 NO.2
                                INCOMPLETE SPLIT PLOT DESIGNS
                                                                                                              8T0CS67
                                                                                                                       793
  CONSTRUCTION OF SATURATED TWO TO THE POWER OF K-P DESIGNS
                                                                                                          THE AMS 67 1110
  OBSERVATIONS ON THE PRACTICAL ASPECTS OF WEIGHTING DESIGNS
                                                                                                         SOME BIOKA51 248
                                                                                                                        75
 TEST FOR COMPARING MATCHED PROPORTIONS IN CROSSOVER DESIGNS
                                                                                                    AN EXACT 810KA69
```

DES - DET TITLE WORD INDEX

```
CROUP DIVISIBLE PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                 EXTENDED AMS 64 681
COMBINING TECH 66 18B
   INTRA AND INTER BLOCK ANALYSIS OF CROUP DIVISIBLE DESIGNS
    FRACTIONS OF 2-TO-THE-N AND 3-TO-THE-N FACTORIAL DESIGNS
                                                                                                 SATURATED TECH 67
                                                                                                                    569
    PROPERTY OF A CLASS OF BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                               AN EXTENSION BIOKA57
                                                                                                                     278
           OF CONFOUNDING PLANS FOR MIXED FACTORIAL DESIGNS
                                                                                               CONSTRUCTION AMS 65 1256
 ESTIMATES OF THE INTERCLASS VARIANCE FOR UNBALANCED DESIGNS
                                                                                               ON QUADRATIC JRSSB61
                                                                                                                    493
    OF SYMMETRIC PARTIALLY-BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                              ON THE DUALS AMS 63
  GENERATION OF ROBINSON'S BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                             NOTES. CYCLIC BIOCS67
                                                                                                                     574
      AND CONSTRUCTION OF BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                             THE EXISTENCE AMS 61
                                                                                                                     361
  AND LINEAR TRENDS IN EIGHT-RUN TWO LEVEL FACTORIAL DESIGNS
                                                                                            FACTOR GHANGES TECH 68
                                                                                                                     301
     OF SECOND-ORDER TENSORS. WITH RELATED TESTS AND DESIGNS
                                                                                            THE ESTIMATION BIOKA63
                                                                                                                     353
      FREE ANALYSIS OF VARIANCE TECHNIQUE FOR BLOCK DESIGNS
                                                                                           A DISTRIBUTION- SASJ 6B
                                                                                                                      9
 ROTATABLE DESIGNS THROUGH BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                           CONSTRUCTION OF AMS 62 1421
  OBSERVATIONS AS AN ALTERNATIVE TO INCOMPLETE BLOCK DESIGNS
                                                                                        THE USE OF CONTROL JRSSB62
                                                                                                                     464
         WITH A CONTROL IN BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                     MULTIPLE COMPARISIONS TECH 61
                                                                                                                     1.03
 INTERSECTION OF BLOCKS OF BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                     ON THE PARAMETERS AND AMS 62 1200
  ANALYSIS OF SOME CONFOUNDED ASYMMETRICAL FACTORIAL DESIGNS
                                                                                   ON THE CONSTRUCTION AND BIOGS65
                                                                                                                    948
     OF THE RANDOMIZATION TEST IN TWO ASSOCIATE PBIB DESIGNS
                                                                                  FIRST AND SECOND MOMENTS JASA 69 NO.4
    ESTIMATORS FOR RANDOMIZED FRACTIONAL REPLICATION DESIGNS
                                                                                 GENERALIZED LEAST SQUARES AMS 64
    BALANCED AND PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                 GROUP SCREENING UTILIZING BIOCS65
   AND MIXED-UP OBSERVATIONS IN SEVERAL EXPERIMENTAL DESIGNS
                                                                                 THE ESTIMATION OF MISSING BIOKA59
                                                                                                                     91
                                                                             CONSTRUCTION AND ANALYSIS OF BIOCS67
SOME NEW SERIES OF CONFOUNDED ASYMMETRICAL FACTORIAL DESIGNS
                                                                                                                     B13
                                                                          COMMON TREATMENTS BETWEEN BLOCKS AMS 6B
SOME GENERALIZATIONS OF DISTINCT AMS 66
      OF CERTAIN PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                                     999
    REPRESENTATIVES WITH APPLICATIONS TO STATISTICAL DESIGNS
                                                                                                                     525
ALANCED DESIGNS OF THE LATIN SQUARE TYPE AND RELATED DESIGNS
                                                                          SOME NEW FAMILIES OF PARTIALLY B TECH 67
                                                                                                                    229
 WITHIN THE CLASS OF RANDOMIZED DESIGNS, OF BALANCED DESIGNS
                                                                         ON THE ADMISSIBILITY AT INFINITY, AMS 68 1978
OMPONENTS II. EMPIRICAL STUDIES OF UNBALANCED NESTED DESIGNS
                                                                      SAMPLING DISTRIBUTIONS OF VARIANCE C TECH 68 719
FOR CONSTRUCTING PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                  APPLICATION OF THE GEOMETRY OF QUADRICS
                                                                                                            AMS 62
CATION WITH APPLICATION TO BALANCED INCOMPLETE BLOCK DESIGNS
                                                                /FOR THE UNBALANCED TWO-WAY CROSS CLASSIFI AMS 69
ALANCED SET OF L-RESTRICTIONAL PRIME-POWERED LATTICE DESIGNS
                                                                /OF CYCLIG COLLINEATIONS FOR OBTAINING A B AMS 67 1293
LOCKS OF CERTAIN PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                /THE NUMBER OF COMMON TREATMENTS BETWEEN B AMS 66
SUB-B-OVER-SICMA-SQUARE IN BALANCED INCOMPLETE BLOCK DESIGNS
                                                                /USING AN INCORRECT VALUE OF SIGMA-SQUARE- BIOKA68
                                                                                                                     254
                                                               /BER OF COMMON TREATMENTS BETWEEN ANY TWO B AMS 65
LOCKS OF CERTAIN PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                                    337
                                                               /ESICNS OF RESOLUTION CREATER THEN OR EQUAL AMS 6B
 TO 6 WITH SPECIAL REFERENCE TO THE UNIQUE SATURATED DESIGNS
                                                                                                                    246
OF TWO ASSOCIATE PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                               /EST IN THE INTRABLOCK ANALYSIS OF A CLASS JASA 65
                                                                                                                    285
                                                               /IMATION OF ALL TWO-FACTOR INTERACTIONS FOR TECH 69 NO.4
 THE 2-TO-THE-N TIMES 3-TO-THE-N FACTORIAL SERIES OF DESIGNS
T OF TREATMENTS TO ANOTHER, PART 2, EXISTENCE OF THE DESIGNS
                                                               /TAL DESIGNS OF USE IN CHANGING FROM ONE SE JRSSB57
LOCKS IN CERTAIN PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                               AN UPPER BOUND FOR THE NUMBER OF DISJOINT B AMS 64
                                                                                                                    398
MENTS BETWEEN BLOCKS OF SEMI-REGULAR GROUP DIVISIBLE DESIGNS
                                                               ON THE BOUNDS OF THE NUMBER OF GOMMON TREAT JASA 64
                                                                                                                     B67
                               OPTIMUM EXPERIMENTAL DESIGNS (WITH DISCUSSION)
                                                                                                          JRSSB59
                 SINGULARITY IN HOTELLING'S WEIGHING DESIGNS AND A GENERALIZED INVERSE (CORR. 69 719)
                                                                                                            AMS 66 1021
RICAL TRIANGULAR PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS AND BALANCED INCOMPLETE BLOCK DESIGNS /MMET AMS 63 34B
       ON A BOUND USEFUL IN THE THEORY OF FACTORIAL DESIGNS AND ERROR CORRECTING CODES
                                                                                                            AMS 64
                                                                                                                    408
METERS IN A TWO-STAGE NESTED PROCE/ COMPARISONS OF DESIGNS AND ESTIMATION PROCEDURES FOR ESTIMATING PARA TECH 67
                                                                                                                    499
                              ASYMMETRICAL ROTATABLE DESIGNS AND ORTHOGONAL TRANSFORMATIONS
                                                                                                           TECH 68 313
       DUALS OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS AND SOME NONEXISTENCE THEOREMS
                                                                                                            AMS 66 1048
 ORTHOGONAL MAIN-EFFECT 2-TO-THE-N-TIMES-3-TO-THE-M DESICNS AND TWO-FACTOR INTERACTION ALIASING
                                                                                                           TECH 6B
                                                                                                                    559
RESIDUAL EFFECTS
                                          CHANGEOVER DESIGNS BALANCED FOR THE LINEAR COMPONENT OF FIRST
                                                                                                           BIOKA68
                                                                                                                    297
(GORR 65 1036)
                                           COMPOSITE DESIGNS BASED ON IRREGULAR FRACTIONS OF FACTORIALS
                                                                                                           BIOCS65
                                                                                                                    324
TREATMENTS
                                   FOUR-WAY BALANCED DESIGNS BASED ON YOUDEN SQUARES WITH 5, 6, OR 7
                                                                                                           BIOCS67
                                                                                                                    803
                                    INCOMPLETE BLOCK DESIGNS FOR BIO-ASSAYS
                                                                                                           BIOCS66
                                                                                                                    706
THE EFFICIENCY OF MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO-ASSAYS
                                                                                                           BIOCS69
                                          TWO-STAGE DESIGNS FOR CLINICAL TRIALS
                                                                                                           BIOCS69
                                                                                                                    111
                                TRUNCATED SEQUENTIAL DESIGNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS
                                                                                                           BIOCS68
                                                                                                                    159
         THE USE OF CYCLIC BALANCED INCOMPLETE BLOCK DESIGNS FOR DIRECTIONAL SEED ORCHARDS
                                                                                                           BIOCS67
                                                                                                                     761
                                                    DESIGNS FOR DISGRIMINATING BETWEEN TWO RIVAL MODELS
                                                                                                           TECH 65
                                                                                                                    307
RECRESSION
                               OPTIMAL EXPERIMENTAL DESIGNS FOR ESTIMATING THE INDEPENDENT VARIABLE IN
                                                                                                           TECH 68
                                                                                                                    811
                            OPTIMAL ACCELERATED LIFE DESIGNS FOR ESTIMATION
                                                                                                           TECH 62
                                                                                                                    381
                       THE CONSTRUCTION OF BALANCED DESIGNS FOR EXPERIMENTS INVOLVING SEQUENCES OF TREATM BIOKA52
ENTS
                                                                                                                     32
                                   RESPONSE SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS
                                                                                                           TECH 68
                                                                                                                    177
       THREE DIMENSIONAL MODELS OF EXTREME VERTICES DESIGNS FOR FOUR COMPONENT MIXTURES
                                                                                                           TECH 67
                                                                                                                    472
                                            MIXTURE DESIGNS FOR FOUR FACTORS
                                                                                                           JRSSB65
                                                                                                                    473
                                    RESPONSE SURFACE DESIGNS FOR MIXTURE PROBLEMS
                                                                                                           TECH 68
                                                                                                                    739
                                          A NOTE ON DESIGNS FOR MODEL DISCRIMINATION, VARIANCE UNKNOWN
CASE
                                                                                                           TECH 69
                               ON A GENERAL CLASS OF DESIGNS FOR MULTIRESPONSE EXPERIMENTS
                                                                                                            AMS 68 1825
                                    SIMPLEX LATTICE DESIGNS FOR MUTICOMPONENT SYSTEMS
                                                                                                           TECH 62 463
        THE USE OF CYCLIC BALANCED INCOMPLETE BLOCK DESIGNS FOR NON-DIRECTIONAL SEED ORCHARDS
                                                                                                           BIOCS69
                                                                                                                    561
                                            OPTIMUM DESIGNS FOR POLYNOMIAL EXTRAPOLATION
                                                                                                           AMS 65 1483
                                          ADMISSIBLE DESIGNS FOR POLYNOMIAL SPLINE RECRESSION
                                                                                                            AMS 69 1557
                        NOTES. OPTIMUM EXPERIMENTAL DESIGNS FOR REALIZED HERITABILITY ESTIMATES
                                                                                                           BIOCS67 361
ERRORS
                                                     DESIGNS FOR REGRESSION PROBLEMS WITH CORRELATED
                                                                                                            AMS 66
                                                                                                                     66
ERRORS MANY PARAMETERS
                                                     DESIGNS FOR REGRESSION PROBLEMS WITH CORRELATED
                                                                                                            AMS 68
                                                                                                                     49
                                             SERIAL DESIGNS FOR ROUTINE QUALITY CONTROL AND EXPERIMENTATI TECH 64
                                                                                                                     77
                                            ROTATION DESIGNS FOR SAMPLING ON REPEATED OCCASIONS
                                                                                                           JASA 64
                                                                                                                    492
EFFECTS
                                                     DESIGNS FOR SEQUENCES OF TREATMENTS WITH CARRY-OVER
                                                                                                           BIOCS66 292
                                        EXPERIMENTAL DESIGNS FOR SERIALLY CORRELATED OBSERVATIONS
                                                                                                           BIOKA52
                                                                                                                    151
                                          SEQUENTIAL DESIGNS FOR SPHERICAL WEIGHT FUNCTIONS
                                                                                                           TECH 67
                                                                                                                    517
                                   PAIRED COMPARISON DESIGNS FOR TESTING CONCORDANCE BETWEEN JUDGES
                                                                                                           BIOKA56
                        THE CONSTRUCTION OF OPTIMAL DESIGNS FOR THE ONE-WAY GLASSIFICATION ANALYSIS OF
                                                                                                           JRSSB61 352
                                                     DESIGNS FOR THE SEQUENTIAL APPLICATION OF FACTORS
                                                                                                           TECH 64
                                                                                                                    365
F VARIANCE COMPONENTS FROM TWO-WAY CROSSED CLASSI/ DESIGNS FOR THE SIMULTANEOUS ESTIMATION OF FUNCTIONS 0 BIOKA67
                                                                                                                    127
                                SOME NEW THREE LEVEL DESIGNS FOR THE STUDY OF QUANTITATIVE VARIABLES
                                                                                                           TECH 60
                                                                                                                    455
                       ERRATA, 'SOME NEW THREE LEVEL DESIGNS FOR THE STUDY OF QUANTITATIVE VARIABLES'
                                                                                                           TECH 61
                                                                                                                    576
                                             MIXTURE DESIGNS FOR THREE FACTORS
                                                                                                           JRSSB65
                                                                                                                    450
                                   RESPONSE SURFACE DESIGNS FOR THREE FAGTORS AT THREE LEVELS
                                                                                                           TECH 59
                      SOME BALANCED INCOMPLETE BLOCK DESIGNS FOR TWO SETS OF TREATMENTS
                                                                                                           BIOKA66 497
```

TITLE WORD INDEX DES - DET

```
SOME ROW AND COLUMN DESIGNS FOR TWO SETS OF TREATMENTS
                                                                                                            BTOCS66
                     SOME METHODS OF CONSTRUCTION OF DESIGNS FOR TWO-WAY ELIMINATION OF HETEROCENEITY, I
                                                                                                            JASA 66 1153
              ON OBTAINING BALANCED INCOMPLETE BLOCK DESIGNS FROM PARTIALLY BALANCED ASSOCIATION SCHEMES
                                                                                                             AMS 67 618
  IDENTITY RELATIONSHIPS FOR TWO TO THE POWER OF N-R DESIGNS HAVING WORDS OF EQUAL LENGTHS
                                                                                                             AMS 66 1842
                                   RANDOM ALLOCATION DESIGNS II, APPROXIMATE THEORY FOR SIMPLE RANDOM
                                                                                                             AMS 61 387
ALLOCATION
                          TWO THIRD ORDER ROTATABLE DESIGNS IN FOUR DIMENSIONS
                                                                                                             AMS 64 445
      FOR THE CONSTRUCTION OF SECOND ORDER ROTATABLE DESIGNS IN K DIMENSIONS
                                                                                                   A METHOD AMS 67
                  SEQUENTIAL APPLICATION OF SIMPLEX DESIGNS IN OPTIMISATION AND EVOLUTIONARY OPERATION
                                                                                                           TECH 62
LOSS FUNCTION
                                             OPTIMAL DESIGNS IN RECRESSION PROBLEMS WITH A GENERAL CONVEX
                                                                                                            BIOKA68
                                                                                                                      53
                                             OPTIMUM DESIGNS IN REGRESSION PROBLEMS, II
                                                                                                             AMS 61
 SEQUENTIAL ANALYSIS APPLIED TO CERTAIN EXPERIMENTAL DESIGNS IN THE ANALYSIS OF VARIANCE
                                                                                                            BTOKA56
                                                                                                                     388
  THE USE OF SEGOND-ORDER 'SPHERICAL' AND 'CUBOIDAL' DESIGNS IN THE WRONG REGIONS
                                                                                                            BTOKA66
                                                                                                                     596
                               THIRD ORDER ROTATABLE DESIGNS IN THREE DIMENSIONS, SOME SPECIFIC DESIGNS
                                                                                                             AMS 61
                                                                                                                     910
                                                                                                            TECH 62
                               THIRD ORDER ROTATABLE DESIGNS IN THREE FACTORS. ANALYSIS
                                                                                                                    219
                                             MINIMAX DESIGNS IN TWO DIMENSIONAL REGRESSION
                                                                                                             AMS 65 1097
                                FOUR FACTOR ADDITIVE DESIGNS MORE GENERAL THAN THE GRECO-LATIN SQUARE
                                                                                                            TECH 62
                                                                                                                    361
                               THREE FACTOR ADDITIVE DESIGNS MORE GENERAL THAN THE LATIN SQUARE
                                                                                                            TECH 62 187
          BALANCED SETS OF BALANCED INGOMPLETE BLOCK DESIGNS OF BLOCK SIZE THREE
                                                                                                            TECH 65
                                                                                                                     561
                                      NON-ORTHOGONAL DESIGNS OF EVEN RESOLUTION
                                                                                                            TECH 68 291
                               OPTIMAL AND EFFICIENT DESIGNS OF EXPERIMENTS
                                                                                                             AMS 69 1570
          THE OCCURRENCE OF REPLICATIONS IN OPTIMAL DESIGNS OF EXPERIMENTS TO ESTIMATE PARAMETERS IN NON- JRSSB68
                                        MULTI-FACTOR DESIGNS OF FIRST ORDER
                                                                                                            BTOKA52
                                    BAYES SEQUENTIAL DESIGNS OF FIXED SIZE SAMPLES FROM FINITE POPULATIONS JASA 69 NO.4
                                             REDUCED DESIGNS OF RESOLUTION FIVE
                                                                                                            TECH 61
                                                                                                                    459
THE SET OF EVE/ CONSTRUCTION OF THE SET OF 256-RUN DESIGNS OF RESOLUTION CREATER THEN OR EQUAL TO 5 AND
                                                                                                            AMS 68
                                                                                                                     246
EATER THEN OR EQUAL TO 5 AND THE SET OF EVEN 512-RUN DESIGNS OF RESOLUTION CREATER THEN OR EQUAL TO 6 WITH
                                                                                                             AMS 68
                                                                                                                     246
THE-N TIMES 3-TO-THE-M SERIES RESULTS ON FACTORIAL DESIGNS OF RESOLUTION IV FOR THE 2-TO-THE-N AND 2-TO-TECH 69
                                                                                                                     431
             SOME NEW FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND RELATED DESIGNS
SOME FURTHER DESIGNS OF TYPE 0-PP
                                                                                                           TECH 67
                                                                                                                    229
                                                                                                             AMS 61 1186
                             CYLINDRICALLY ROTATABLE DESIGNS OF TYPES 1, 2, AND 3
                                                                                                             AMS 67 167
 TO ANOTHER, PART 1
                                   SOME EXPERIMENTAL DESIGNS OF USE IN CHANGING FROM ONE SET OF TREATMENTS JRSSB57
                                                                                                                     154
 TO ANOTHER, PART 2, EXISTENCE/
                                   SOME EXPERIMENTAL DESIGNS OF USE IN CHANCING FROM ONE SET OF TREATMENTS JRSSB57
                                                                                                                     163
                                                SOME DESIGNS OF USE IN SEROLOGY
                                                                                                            BIOCS67
                                                                                                                     779
                                             OPTIMAL DESIGNS ON TCHEBYSCHEFF POINTS
                                                                                                            AMS 68 1435
                           CONSTRUCTION OF ROTATABLE DESIGNS THROUGH BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                             AMS 62 1421
                                        EXPERIMENTAL DESIGNS TO ADJUST FOR TIME TRENDS
                                                                                                            TECH 60
OF UNEQUAL S/ NOTES. APPLICATIONS OF NONORTHOGONAL DESIGNS TO SITUATIONS WHERE TREATMENTS OR BLOCKS ARE
                                                                                                           BIOCS66
                                                                                                                     629
                                                                                                             AMS 65 1829
                             ON HOTELLING'S WEIGHING DESIGNS UNDER AUTO-CORRELATION OF ERRORS
                                            WEIGHING DESIGNS WHEN N IS ODD
                                                                                                             AMS 66 1371
REGIONS OF INTEREST
                                                     DESIGNS WHICH MINIMIZE MODEL INADEQUACIES. CUBOIDAL
                                                                                                            BIOKA65 111
  FACTORIAL REPLICATES OF THE TWO TO THE POWER OF M DESIGNS WITH BLOCKS
                                                                                       ON CONSTRUCTING THE AMS 62 1440
                          THE ANALYSIS OF CHANCEOVER DESIGNS WITH COMPLETE BALANCE FOR FIRST RESIDUAL
                                                                                                            BTOCS67
                                                                                                                    578
STIMATION OF VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE SAMPLES
                                                                                                          E TECH 67
                                                                                                                     373
                                                                                                                     368
                           BALANCED INCOMPLETE BLOCK DESIGNS WITH DOUBLE GROUPING OF BLOCKS INTO REPLICATI BIOCS66
                    AN ANALYSIS OF PAIRED COMPARISON DESIGNS WITH INCOMPLETE REPETITIONS
                                                                                                            BTOKA57
                                                                                                                      97
                                                                                                            JRSSB58
                        THE ANALYSIS OF LATIN SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE DIRECTION
                                                                                                                     193
                         THE ANALYSIS OF VARIANCE OF DESIGNS WITH MANY NON-ORTHOGONAL CLASSIFICATIONS
                                                                                                            JRSSB66
                                                                                                                    110
IS OF A CLASS OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH MORE THAN TWO ASSOCIATE CLASSES ANALYS
                                                                                                            AMS 61
 CONSTRUCTION OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH PARAMETERS V=28, N1=12, N2=15 AND P2 (1, AMS 66 1783
                TREATMENT VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY CORRELATED OBSERVATIONS
                                                                                                            BIOKA56
                                                                                                                     208
                           BALANCED INCOMPLETE BLOCK DESIGNS WITH SETS OF IDENTICAL BLOCKS
                                                                                                            TECH 69
                                                                                                                     613
 A NEW FAMILY OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH SOME LATIN SQUARE DESIGN PROPERTIES
                                                                                                             AMS 67
                                                                                                                     571
    THE ANALYSIS OF VARIANCE OF SOME NON-ORTHOGONAL DESIGNS WITH SPLIT PLOTS
                                                                                                            BIOKA69
                                                                                                                     43
                         A NOTE ON INCOMPLETE BLOCK DESIGNS WITH THE NUMBER OF BLOCKS EQUAL TO THE NUMBER AMS 65 1877
 OF TREATMENTS
ETRICAL METHOD OF CONSTRUCTION OF PARTIALLY BALANCED DESIGNS WITH TWO ASSOCIATE CLASSES
                                                                                                 ON A CEOM AMS 61 1177
                PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH TWO-WAY CLASSIFICATION OF TREATMENTS
                                                                                                             AMS 69
                                            BALANCED DESIGNS WITH UNEQUAL NUMBERS OF REPLICATES
                                                                                                             AMS 64
                                                                                                                     897
        A METHOD OF CONSTRUCTING BALANCED INCOMPLETE DESIGNS.
                                                                                                            BTOKA65
                                                                                                                     285
                  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. I. THE METHOD OF PAIRED COMPARISONS.
                                                                                                            BIOKA52
                                                                                                                     324
                   RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. II. ADDITIONAL TABLES FOR THE METHOD OF PAIR BIOKA54
                                                                                                                     502
  CORRIGENDA, 'THE RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. II. ADDITIONAL TABLES FOR THE METHOD OF PAIR BIOKA64
                RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. III. SOME LARGE-SAMPLE RESULTS ON ESTIMATION BIOKA55
                                      A NEW CLASS OF DESIGNS, CORR. 65 1250
                                                                                                            JASA 64
TURES OF CERTAIN PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS, CORR. 67 624
                                                                                        ON THE BLOCK STRUC AMS 66 1016
             THE 2-TO-THE-(K-P) FRACTIONAL FACTORIAL DESIGNS, II
                                                                                                           TECH 61
SIBILITY AT INFINITY, WITHIN THE CLASS OF RANDOMIZED DESIGNS, OF BALANCED DESIGNS
                                                                                              ON THE ADMIS AMS 68 1978
          ERRATA. 'THE APPLICATION OF RANDOM BALANCE DESIGNS'
                                                                                                            TECH 59 419
    ERRATA, 'THE 2-TO-THE-(K-P) FRACTIONAL FACTORIAL DESIGNS'
                                                                                                            TECH 63 417
    'FINDING NEW FRACTIONS OF FACTORIAL EXPERIMENTAL DESIGNS'
                                                                                                    ERRATA, TECH 63 134
                     CONTINUOUS SAMPLING PLANS UNDER DESTRUCTIVE TESTING
                                                                                                            JASA 64
                                                                                                                     376
                        ESTIMATION FROM QUANTILES IN DESTRUCTIVE TESTING
                                                                                                            JRSSB61 434
        OF THE PROBABILITY OF DEFECTIVE FAILURE FROM DESTRUCTIVE TESTS
                                                                                                ESTIMATION TECH 63
                                                                                                                     459
                                                  ON DETECTING CHANGES IN THE MEAN OF NORMAL VARIATES
                                                                                                            AMS 69 116
                                      PROCEDURES FOR DETECTING OUTLYING OBSERVATIONS IN SAMPLES
                                                                                                            TECH 69
                                                                                                                      1
                    A NOTE ON MEASUREMENT ERRORS AND DETECTING REAL DIFFERENCES
                                                                                                            JASA 61 314
ADJACENT SIBS IN HUMAN FAMILIES
                                                 THE DETECTION OF A CORRELATION BETWEEN THE SEXES OF
                                                                                                            JASA 65 1035
WITH KNOWN VARIANCES
                                                     DETECTION OF BEST AND OUTLYING NORMAL POPULATIONS
                                                                                                            BIOKA61 457
                                                 THE DETECTION OF PARTIAL ASSOCIATION, 1, THE 2 BY 2 CASE JRSSB64
THE DETECTION OF PARTIAL ASSOCIATION, 2. THE GENERAL CASE JRSSB65
USTERING, A GENERALIZATION OF KNOX'S APPROACH TO THE DETECTION OF SPACE-TIME INTERACTIONS
                                                                                                DISEASE CL BIOCS68
                                      ON A QUICKEST DETECTION PROBLEM
                                                                                                             AMS 67 711
          WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION PROBLEMS
                                                                                                             AMS 68 2149
                             THE DISTRIBUTION OF THE DETERMINANT OF A COMPLEX WISHART DISTRIBUTED MATRIX
                                                                                                             AMS 63 178
                  AN ASYMPTOTIC DISTRIBUTION FOR THE DETERMINANT OF A NON-CENTRAL B STATISTIC IN MULTIVARI SASJ 68
ATE ANALYSIS
                                                                                                             AMS 65
         SOME OPTIMUM CONFIDENCE BOUNDS FOR ROOTS OF DETERMINANTAL EQUATIONS
                                                                                                                    468
MODELS
                                   ON THE COVARIANCE DETERMINANTS OF MOVING-AVERAGE AND AUTOREGRESSIVE
                                                                                                            BTOKA60
                                                                                                                    194
```

DET - DIF TITLE WORD INDEX

```
S FOR A CLASS OF PATTERNED MATRICES
                                      EVALUATION OF DETERMINANTS, CHARACTERISTIC EQUATIONS AND THEIR ROOT JRSSB60
                                        SAMPLE SIZE DETERMINATION FOR TOLERANCE LIMITS
                                                                                                           TECH 68
                                                                                                                    343
                                             ON THE DETERMINATION OF A SAFE LIFE FOR CLASSES OF DISTRIBUT TECH 68
IONS CLASSIFIED BY FAILURE RATE
                                                                                                                    361
 A PROPERTY OF THE MULTINOMIAL DISTRIBUTION AND THE DETERMINATION OF APPROPRIATE SGORES
                                                                                                           BTOKA64
                                                                                                                    265
                                             ON THE DETERMINATION OF CONFIDENCE LIMITS OF AN INDEX
                                                                                                           BIOCS66
                                                                                                                    603
                                       A NOTE ON THE DETERMINATION OF CONNECTEDNESS IN AN N-WAY CROSS
CLASSIFICATION
                                                                                                           TECH 64
                                                                                                                    319
SIFICATION'
                            ERRATA, ' A NOTE ON THE DETERMINATION OF CONNECTEDNESS IN AN N-WAY CROSS CLAS TECH 65
                                                                                                                    281
PROBABILITY DISTRIBUTIONS
                                                     DETERMINATION OF PARAMETERS IN THE JOHNSON SYSTEM OF BIOKA59
                                                                                                                    229
 SOME EXAMPLES OF BAYES' METHOD OF THE EXPERIMENTAL DETERMINATION OF PROBABILITIES A PRIORI
NERATING FUNCTIONS BY SOLVING DIFFERENTIAL EQ/ THE DETERMINATION OF SAMPLING DISTRIBUTIONS AND MOMENT GE JRSSB65
GIVEN PRODUCER'S AND CONSUMER'S RISK
                                                THE DETERMINATION OF SINGLE SAMPLING ATTRIBUTE PLANS WITH TECH 67
                                                                                                                    401
D ON DUNCAN'S MODEL
                               AN ALGORITHM FOR THE DETERMINATION OF THE ECONOMIC DESIGN OF X-CHARTS BASE JASA 68
                                                                                                                    304
OR ESTIMATING THE PARAMETERS OF EXPONENTIAL DISTR/ DETERMINATION OF THE EXACT OPTIMUM ORDER STATISTICS F 7ECH 67
                                                                                                                    279
      FORMAL EXPRESSIONS WHICH CAN BE USED FOR THE DETERMINATION OF THE OPERATING CHARACTERISTIC AND AVE JRSSB67
                                                                                                                    24B
                  THE USE OF INTEGRAL TRANSFORMS TO DETERMINE EXPANSIONS OF DISTRIBUTION FUNCTIONS
                                                                                                           BTOKA60
                                                                                                                    460
ICAL ANALYSIS OF A RADIO-ACTIVE TRACER EXPERIMENT TO DETERMINE ROOT ACTIVITY IN POTATO PLANTS /E STATIST BIOCS68
                                                                                                                    717
                                                                                                          JASA 62
REPORTS
                                         A METHOD TO DETERMINE THE RELIABILITY OF TELEMETRY SYSTEMS
                                                                                                                    686
                                       DISTRIBUTIONS DETERMINED BY CUTTING SIMPLEX WITH HYPERPLANES
                                                                                                            AMS 68 1473
                                        SEQUENTIALLY DETERMINED CONFIDENCE INTERVALS
                                                                                                                    279
                                                                                                           BIOKA57
                                    AN INTRINSICALLY DETERMINED MARKOV CHAIN
                                                                                                           AMS 67 934
FUNCTIONS
                                                     DETERMINING BOUNDS ON EXPECTED VALUES OF CERTAIN
                                                                                                            AMS 62 1454
                                 A CENERAL METHOD OF DETERMINING FIXED-WIDTH CONFIDENCE INTERVALS
                                                                                                            AMS 69
                                                                                                                   704
                              QUERY + (ON FORMULA FOR DETERMINING THE INCIDENCE OF MUTANT GENES)
                                                                                                           BIOCS65
                                                                                                                    750
N VARIANCE A SEQUENTIAL THREE HYPOTHESIS TEST FOR DETERMINING THE MEAN OF A NORMAL POPULATION WITH KNOW AMS 67 1365
MPLE RUN LENGTH OF A CUMUL/ A SIMPLE PROCEDURE FOR DETERMINING UPPER AND LOWER LIMITS FOR THE AVERACE SA JRSSB67
                                                                                                                    263
R/ DISTRIBUTIONS DE FREQUENCES, INTERPRETATION DU DETERMINISME CENETIQUE DES CARACTERES QUANTITATIFS ET BIOCS68
                                                                                                                    277
WHILE THE INTERARRIVAL AND SERVING DISTRIBUTIONS ARE DETERMINISTIC AND CAMMA OF ORDER K RESPECTIVELY /, JRSSB63
                                                                                                                    477
SYSTEM GI-M-1
                                                    DETERMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEING
                                                                                                           BIOKA60
                                                                                                                     45
SYSTEM GI-M-1, A CORRECTION
                                                    DETERMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEING
                                                                                                                    472
                                                                                                           BIOKA61
THAN ONE COMMUNITY
                                                 THE DETERMINISTIC MODEL OF A SIMPLE EPIDEMIC FOR MORE
                                                                                                           BIOKA55
                                                                                                                    126
BACTERIAL COLONY BY PHACES, A BRANCHING PROCESS WITH DETERMINISTIC REMOVALS
                                                                                THE EXTINCTION OF A BIOKA62
                                                                                                                    272
                                                SOME DEVELOPEMENTS IN 'DISTANCE SAMPLINC'
                                                                                                           BIOCS67
                                                                                                                    207
                     MULTIPLE REGRESSION IN PROCESS DEVELOPMENT
                                                                                                                   257
                                                                                                           TECH 68
                     PHILIPPINE STATISTICAL PROCRAM DEVELOPMENT AND THE SURVEY OF HOUSEHOLDS
                                                                                                           JASA 58
                                                                                                                     7B
SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ, THE DEVELOPMENT OF HOUSEHOLD SAMPLE SURVEYS
                                                                                               /ATISTICAL JASA 69 NO.4
ATISTICS. XVII. SOME REFLEXIONS ON CONTINUITY IN THE DEVELOPMENT OF MATHEMATICAL STATISTICS, 18B5-1920
                                                                                                         / BIOKA67
                                                                                                                    341
                                                THE DEVELOPMENT OF NUMERICAL CREDIT EVALUATION SYSTEMS
                                                                                                           JASA 63
                                                                                                                    799
                                       EXPERIMENTAL DEVELOPMENT OF NUTRITIVE MEDIA FOR MICRO-ORGANISMS
                                                                                                           BIOKA68
                                                                                                                     43
ION PROBABILITIES BASED ON A MARKOV PROCESS
                                                    DEVELOPMENT OF RANDOMIZED LOAD SEQUENCES WITH TRANSIT TECH 66
                                                                                                                    107
EM BY ITEM, SELECTION TECHNIQUES AND DIGITAL COMP/ DEVELOPMENT OF SAMPLING PLANS BY USING SEQUENTIAL, IT JASA 62
                                                                                                                    387
                   CROSSROAD CHOICES FOR THE FUTURE DEVELOPMENT OF THE FEDERAL STATISTICAL SYSTEM
                                                                                                           JASA 68
                                                                                                                    801
RY OF PROBABILITY AND STATISTICS. XV THE HISTORICAL DEVELOPMENT OF THE CAUSS LINEAR MODEL /IN THE HISTO BIOKA67
                        RELIABILITY GROWTH DURING A DEVELOPMENT TESTING PROGRAM
                                                                                                           TEGH 66
                                                                                                                     53
 PRODUCTION AND CONTROL DEVICES AND EXPECTED FUTURE DEVELOPMENTS
                                                                          THE PRESENT STATUS OF AUTOMATIC TECH 66
                                                                                                                     73
                                                HOW DEVIANT CAN YOU BE.
                                                                                                           JASA 68 1522
     ON THE DISTRIBUTION OF THE EXTREME STUDENTIZED DEVIATE FROM THE SAMPLE MEAN
                                                                                                           BIOKA59 467
 UPPER PERCENTAGE POINTS OF THE EXTREME STUDENTIZED DEVIATE FROM THE SAMPLE MEAN
                                                                                                                    473
                                                                                                           BIOKA59
  OF PERCENTACE POINTS OF THE 'STUDENTIZED' EXTREME DEVIATE FROM THE SAMPLE MEAN
                                                                                                    TABLES BIOKA52
                                                                                                                    189
 UPPER PERCENTAGE POINTS OF THE EXTREME STUDENTIZED DEVIATE FROM THE SAMPLE MEAN
                                                                                                   REVISED BIOKA56
                                                                                                                    449
                      CHANCE CONSTRAINTS AND NORMAL DEVIATES
                                                                                                           JASA 62
                                                                                                                   1.34
                                                                                                            AMS 64 1167
                           PROPERTIES OF POLYKAYS OF DEVIATES
                CORRELATION OF RANGES OF CORRELATED DEVIATES
                                                                                                           BIOKA66
                                                                                                                   191
             CORRIGENDA TO 'CORRELATED RANDOM NORMAL DEVIATES' PUBLISHED IN TRACTS FOR COMPUTERS, NO. 26.
             AN UPPER BOUND FOR THE SAMPLE STANDARD DEVIATION
                                                                                                           TECH 62
                                                                                                                    134
ING CONFIDENCE INTERVALS FOR THE POPULATION STANDARD DEVIATION
                                                                   THE USE OF SAMPLE QUASI-RANGES IN SETT JASA 61
                                                                                                                   260
   ERRATA, AN UPPER BOUND FOR THE SAMPLE STANDARD DEVIATION '
                                                                                                           TECH 62
                                                                                                                    440
                           CONTROLLING THE STANDARD DEVIATION BY CUSUMS AND WARNING LINES
                                                                                                           TECH 63
                                                                                                                    307
CKNOWLEDGEMENT OF PRIORITY). 'A PROPERTY OF THE MEAN DEVIATION FOR THE PEARSON TYPE DISTRIBUTIONS'
                                                                                                        (A BIOKA67
                   ESTIMATING THE MEAN AND STANDARD DEVIATION FROM A CENSORED NORMAL SAMPLE
                                                                                                           BTOKA67
                                                                                                                    155
            QUERY, CONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A SINGLE OBSERVATION
                                                                                                           TECH 66
                                                                                                                   367
        THE CORRECT USE OF THE SAMPLE MEAN ABSOLUTE DEVIATION IN CONFIDENCE INTERVALS FOR A NORMAL VARIAT TECH 66
                                                                                                                    663
      THE USE OF THE RANCE IN PLACE OF THE STANDARD DEVIATION IN STEIN'S TEST
                                                                                                            AMS 63
                                                                                                                    346
                                        USE OF MEAN DEVIATION IN THE ANALYSIS OF INTERLABORATORY TESTS
                                                                                                           TECH 67
                                                                                                                    149
ORMAL POPULATION WHEN AN UPPER BOUND TO THE STANDARD DEVIATION IS KNOWN /ROCEDURE WITH A SAMPLE FROM A N JASA 60
                                                                                                                    94
                                        THE TRENTILE DEVIATION METHOD OF WEATHER FORECAST EVALUATION
                                                                                                           JASA 58
                                                                                                                   39B
                      TESTING THE MEAN AND STANDARD DEVIATION OF A NORMAL DISTRIBUTION USING QUANTILES
                                                                                                           TECH 6B
                                                                                                                   781
    CONFIDENCE INTERVALS BASED ON THE MEAN ABSOLUTE DEVIATION OF A NORMAL SAMPLE
                                                                                                           JASA 65
                                                                                                                   257
IN SETTING EXACT CONFIDENCE BOUNDS FOR THE STANDARD DEVIATION OF A RECTANGULAR POPULATION /AMPLE RANGES JASA 61
                                                                                                                    601
            APPROXIMATIONS TO THE MEAN AND STANDARD DEVIATION OF RECIPROCALS OF OBSERVATIONS
                                                                                                          TECH 63 522
                                        THE MAXIMUM DEVIATION OF SAMPLE SPECTRAL DENSITIES
                                                                                                            AMS 67 155B
                                     ON THE MAXIMUM DEVIATION OF THE SAMPLE DENSITY
                                                                                                            AMS 67 475
        A NOTE ON THE FIRST TWO MOMENTS OF THE MEAN DEVIATION OF THE SYMMETRICAL MULTINOMIAL DISTRIBUTION BIOKA67
                                                                                                                   312
ARE NOT ATTRACTED TO THE NORMAL LAW
                                          ON LARGE DEVIATION PROBLEMS FOR SUMS OF RANDOM VARIABLES WHICH AMS 67 1575
    ERRATA, 'AN UPPER BOUND FOR THE SAMPLE STANDARD DEVIATION'
                                                                                                           TECH 63 417
                   LINEAR CURVE FITTING USING LEAST DEVIATIONS
                                                                                                           JASA 5B 11B
     CONVERGENCE RATES FOR PROBABILITIES OF MODERATE DEVIATIONS
                                                                                                            AMS 68 2016
                 ON THE CUMULATIVE EFFECT OF CHANCE DEVIATIONS
                                                                                                           JRSSB54 269
    APPROXIMATION USING THE CRITERION OF LEAST TOTAL DEVIATIONS (ACKNOWLEDGEMENT 67 587)
                                                                                                    LINEAR JRSSB67
                                                                                                                   101
NC THE CORRELATION COEFFICIENT FROM THE RANGE OF THE DEVIATIONS ABOUT THE REDUCED MAJOR AXIS /R ESTIMATI BIOKA53
                                                                                                                   21B
                        ON THE PROBABILITY OF LARCE DEVIATIONS AND EXACT SLOPES
                                                                                                           AMS 69 NO.6
               A NOTE ON CURVE FITTING WITH MINIMUM DEVIATIONS BY LINEAR PROGRAMMING, CORR 62 917
                                                                                                           JASA 61 359
                       ON THE PROBABILITY OF LARGE DEVIATIONS FROM THE EXPECTATION FOR SUMS OF BOUNDED, BIOKAG3 528
ON THE PROBABILITY OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS AMS 64 1304
INDEPENDENT RANDOM VA/
                        ON THE PROBABILITY OF LARGE DEVIATIONS OF FUNCTIONS OF SEVERAL EMPIRICAL CUMULATI AMS 67 360
VE DISTRIBUTION FUNCT/
GULAR EVENTS DISPLACED IN TIME BY INDEPENDENT RANDOM DEVIATIONS OF LARCE DISPERSION /NTERVALS BETWEEN RE JRSSB61 476
ERVAL OF LENCTH ONE
                       ON THE PROBABILITY OF LARGE DEVIATIONS OF THE MEAN FOR RANDOM VARIABLES IN AN INT AMS 65 2BO
```

TITLE WORD INDEX DET - DIF

1.1000	DENTANTANA MINANY TA DVDAVENTAL BANTI TRO		1 400
IN CENTERLESS-CRINDINC WITH AUTOMATIC RESET	DEVIATIONS THEORY IN EXPONENTIAL FAMILIES DEVICE CONTROLLING DIMENSION	AMS 68	1402
	DEVICES AND EXPECTED FUTURE DEVELOPMENTS THE	TECH 66	73
ARISON OF STATISTICAL TECHNIQUES IN THE DIFFERENTIAL	DIACNOSIS OF NONTOXIC COUTRE A COMP	BIOCS68	103
	DIACRAMS IN MULTIVARIATE ANALYSIS	BTOKA6B	5B2
ANALYSIS AND INTERPRETATION OF THE VARIETY CROSS	DIALLEL AND RELATED POPULATIONS	BIOCS66	439
	DIACNOSIS OF NONTOXIC COITRE A COMP DIACRAMS IN MULTIVARIATE ANALYSIS DIALLEL AND RELATED POPULATIONS DIALLEL CLASSIFIED VARIABLES	BIOCS69	49
MISSINC VALUES IN PARTIAL	DIALLEL CROSS EXPERIMENTS	BIOCS68	903
TWO CLASSES OF GROUP DIVISIBLE PARTIAL	DIALLEL CROSSES	BIOKA63	281
	DIALLEL CROSSINC EXPERIMENT WITH CERTAIN CROSSES	BIOCS65	216
REFERENCE POPULATIONS FOR		BIOCS68	881
	DIALLEL MATING DESIGN /AL RELATIONSHIP AMONG EIGHT		867
SEPARATION OF MOLECULAR COMPOUNDS BY COUNTERCURRENT	DIALLEL TEST CROSSINC 2. AN EVALUATION OF TWO METHODS	BIOGS67	325 69
SEPARATION OF MODECOLAR COMPOUNDS BY COUNTERCORRENT	DIAMOND-PIN LOCATION	TECH 67	131
ERRATA.	'DIAMOND-PIN LOCATION'	TECH 67	498
	DICHOTOMISED. ESTIMATION OF THE PARAMETERS FOR A M		664
ELATION BETWEEN TWO CONTINUOUS VARIABLES WHEN ONE IS			205
MODEL MULTIVARIATE TWO SAMPLE TESTS WITH	DICHOTOMOUS AND CONTINUOUS VARIABLES I. THE LOCATION	AMS 69	290
A COMBINATORIAL TEST FOR INDEPENDENCE OF		JASA 65	437
CHOICE OF VARIABLES IN CLASSIFICATION PROBLEMS WITH		BIOKA67	66B
	DICING AND GAMING (A NOTE ON THE HISTORY OF PROBABILI		1
	DICTIONARY DISTRIBUTION AND THE OCCURRENCE DISTRIBUTI		222
THE THIRD MOMENT OF GINI'S MEAN THE DISTRIBUTION OF THE MEAN HALF-SQUARE SUCCESSIVE		BIOKA53 BIOKA67	451 419
	DIFFERENCE AND COEFFICIENT OF CONCENTRATION		64B
		BIOKA53	
	DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARE'	BIOKA58	587
	DIFFERENCE AND THE MEAN DEVIATION OF SOME DISCONTINUO		549
	DIFFERENCE BETWEEN CONSECUTIVE MEMBERS OF A SERIES OF		211
	DIFFERENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION		525
TWO-STACE PROCEDURES FOR ESTIMATING THE		BIOKA54	146
	DIFFERENCE BETWEEN MEANS IN TWO NORMAL POPULATIONS HAD DIFFERENCE BETWEEN THE LEVY AND LEVY-PROKHOROV	BIOKA51 AMS 69	252 322
	DIFFERENCE BETWEEN THE MEANS OF TWO NORMAL POPULATION		377
THE BEHAVIOUR OF THE VARIANCE FUNCTION OF THE		JRSSB67	174
CORRIGENDA, 'THE POWER FUNCTION OF THE TEST FOR THE	DIFFERENCE BETWEEN TWO PROPORTIONS IN A 2-BY-2 TABLE.	BIOKA59	502
APPROXIMATIONS FOR MEAN SQUARE SUCCESSIVE		TECH 68	397
	DIFFERENCE EQUATION ESTIMATORS IN EXPONENTIAL	AMS 68	
	DIFFERENCE EQUATION TECHNIQUE APPLIED TO THE SIMPLE DIFFERENCE EQUATION TECHNIQUE APPLIED TO THE SIMPLE Q		165 168
	DIFFERENCE EQUATIONS	AMS 6B	270
OF NON-STATIONARY SYSTEMS OF LINEAR STOCHASTIC			581
	DIFFERENCE EQUATIONS /TENCY AND LIMIT DISTRIBUTIONS		195
	DIFFERENCE EQUATIONS OF POPULATION GENETICS		27
		JRSSB55 JRSSB60	266 188
	DIFFERENCE REDISCOVERED	BIOKA68	
A NOTE ON MEAN SQUARE SUCCESSIVE		JASA 59	
A NOTE ON MEASUREMENT ERRORS AND DETEGTING REAL		JASA 61	314
CONVERGENCE OF SUMS OF SQUARES OF MARTINGALE		AMS 68	
DISCRIMINATION IN THE CASE OF ZERO MEAN		BIOKA63	17 469
STRIBUTIONS ARISING IN THE STUDY OF GENERALIZED MEAN LINEAR REGRESSION ANALYSIS WITH ADJUSTMENT FOR CLASS			729
MATES FOR STANDARD DEVIATION BASED ON SECOND VARIATE	DIFFERENCES DISTRIBUTION THEORY OF TWO ESTI		1
OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE		BIOKA57	349
S OF INDEPENDENT AND RANDOM VARIABLES AND MARTINGALE	DIFFERENCES /SURE CONVERGENCE OF LINEAR COMBINATION	AMS 68	
TO THE SICNED-RANK SAMPLING DISTRIBUTION WHEN ZERO			
	DIFFERENCES BETWEEN SPECIES GROWING ACCORDING TO SIMP		
Y INDISTINGUISHABLE OBJECTS STATISTICAL TESTING OF OCCUPATIONAL COMPONENTS OF EDUCATIONAL	DIFFERENCES IN CASUAL BEHAVIOUR OF TWO MORPHOLOGICALL		
CARLO STUDY COMPARING VARIOUS TWO-SAMPLE TESTS FOR		TECH 68	509
ON VARIANCES OF RATIOS AND THEIR	DIFFERENCES IN MULTI-STACE SAMPLES, CORR. 63 1162		
OBABILITY TABLE FOR NUMBER OF RUNS OF SIGNS OF FIRST	DIFFERENCES IN ORDERED SERIES PR	JASA 61	
NOTE ON THE VARIATE	DIFFERENCES OF AUTOREGRESSIVE SERIES	BIOKA51	
	DIFFERENCES OF THE BINOMIAL AND POISSON DISTRIBUTIONS DIFFERENCES OF THE POWERS AT ZERO	BIOKA59 AMS 61	
	DIFFERENCES OF THE POWERS AT ZERO DIFFERENCES, FOR SERIAL CORRELATION BETWEEN SUCCESSIV		
STRIBUTIONS ARISING IN THE STUDY OF GENERALIZED MEAN		BIOKA61	230
VAN WAARSKYNLIKHEIDSVERDELINGS DEUR DIE GEBRUIK VAN	DIFFERENSIAALVERCELYKINCE EIENSKAPPE	SASJ 68	1
TESTINC OF MEANS WITH	DIFFERENT ALTERNATIVES	TECH 68	
TION INTO TWO MULTIVARIATE NORMAL DISTRIBUTIONS WITH	DIFFERENT COVARIANCE MATRICES CLASSIFICA	AMS 62 BIOKA66	
RELATIONSHIPS AMONG THE VON MISES DISTRIBUTIONS OF ECTS OF PARTIAL ISOLATION (DISTANCE) MICRATION AND	DIFFERENT DIMENSIONS SUME DIFFERENT FITNESS REQUIREMENTS AMONG ENVIRONMENTAL PO		
THE RELATIVE SENSITIVITY TO SPECIFICATION ERROR OF		JASA 66	
POPULATIONS	DIFFERENT LOSS FUNCTION FOR THE CHOICE BETWEEN TWO	JRSSB59	203
PARTITIONING OF A PATIENT POPULATION WITH RESPECT TO		JASA 63	
	DIFFERENT POPULATIONS ON COMPARING INTENSITIES OF A		
TS A COMPARISON OF THREE ANALYSIS OF PLANT COMPETITION EXPERIMENTS FOR	DIRECTION DESCRIPTION OF THE PROPERTY OF THE P	TECH 09	
PROPERTY OF LEWIS COMPETITION EVERYINGHIS LOW	DIFFERENT PROCEDURES FOR ESTIMATING VARIANCE COMPONEN		
EXPECTATIONS OF ORDER STATISTICS IN SAMPLES OF	DIFFERENT RATIOS OF SPECIES	BIOKA67	
	DIFFERENT RATIOS OF SPECIES DIFFERENT SIZES SOME RELATIONS BETWEEN DIFFERENT TESTS OF THE SAME HYPOTHESIS	BIOKA67 BIOKA64 BIOKA60	259 297
ON COMPARING ON THE PROBABILITY OF WINNING WITH	DIFFERENT RATIOS OF SPECIES DIFFERENT SIZES SOME RELATIONS BETWEEN DIFFERENT TESTS OF THE SAME HYPOTHESIS DIFFERENT TOURNAMENT PROCEDURES	BIOKA67 BIOKA64 BIOKA60 JASA 63	259 297 1064
ON COMPARING ON THE PROBABILITY OF WINNING WITH BY L. TACAKS ON THE INTEGRABILITY, CONTINUITY AND	DIFFERENT RATIOS OF SPECIES DIFFERENT SIZES SOME RELATIONS BETWEEN DIFFERENT TESTS OF THE SAME HYPOTHESIS DIFFERENT TOURNAMENT PROCEDURES DIFFERENTIABLLITY OF A FAMILY ON FUNCTIONS INTRODUCED	BIOKA67 BIOKA64 BIOKA60 JASA 63 AMS 63	259 297 1064 1045
ON COMPARING ON THE PROBABILITY OF WINNING WITH BY L. TACAKS ON THE INTEGRABILITY, CONTINUITY AND INFINITELY	DIFFERENT RATIOS OF SPECIES DIFFERENT SIZES SOME RELATIONS BETWEEN DIFFERENT TESTS OF THE SAME HYPOTHESIS DIFFERENT TOURNAMENT PROCEDURES DIFFERENTIABLLITY OF A FAMILY ON FUNCTIONS INTRODUCED DIFFERENTIABLE POSITIVE DEFINITE FUNCTIONS	BIOKA67 BIOKA64 BIOKA60 JASA 63 AMS 63	259 297 1064 1045 504

DIF - DIS TITLE WORD INDEX

```
A COMPARISON OF STATISTICAL TECHNIQUES IN THE DIFFERENTIAL DIAGNOSIS OF NONTOXIC GOITRE
                                                                                                                                           BTOCS68
                                                                                                                                                       103
                                                    ON A PARTIAL DIFFERENTIAL EQUATION OF EPIDEMIC THEORY I
                                                                                                                                            BTOKA65
                                                                                                                                                        617
    ESTIMATION OF PARAMETERS IN SYSTEMS OF STOCHASTIC DIFFERENTIAL EQUATIONS
                                                                                                                                      THE BIOKA59
                                                                                                                                                        67
 DISTRIBUTION DERIVED BY SOLVING SIMULTANEOUS LINEAR DIFFERENTIAL EQUATIONS
                                                                                                                            THE WISHART BIOKA51
RIBUTIONS AND MOMENT GENERATING FUNCTIONS BY SOLVING DIFFERENTIAL EQUATIONS / FRMINATION OF SAMPLING DIST JRSSB65
                                                                                                                                                        86
                                          A SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS FOR THE DISTRIBUTION OF HOTELL AMS 68
INC'S GENERALIZED T-SQUARE-SUB/
RMAL VARIABLES WITHIN S/ NOTES. EXPECTED SELECTION DIFFERENTIAL FOR POSITIVE DIRECTIONAL SELECTION ON NO BIOCS67
                                   LATENT CLASS ANALYSIS AND DIFFERENTIAL MORTALITY
                                  THE LOOSE SUBORDINATION OF DIFFERENTIAL PROCESSES TO BROWNIAN MOTION
                                                                                                                                             AMS 69 1603
                                      SOME THEOREMS ON MATRIX DIFFERENTIATION WITH SPECIAL REFERENCE TO KRONECKER
                                                                                                                                           JASA 69
                                                                                                                                                       953
MATRIX PRODUCTS
                                                     ON THE DIFFICULTIES INHERENT IN FISHER'S FIDUCIAL ARGUMENT
                                                                                                                                           JASA 64
                                                                     DIFFICULTIES INVOLVED IN THE ESTIMATION OF A POPULATI TECH 66
ON MEAN USING TRANSFORMED SAMPLE DATA
                                                                                                                                                       535
      AN EXPERIMENT WITH WEIGHTED INDEXES OF CYCLICAL DIFFUSION
                                                                                                                                            JASA 58
                                                                                                                                                        39
     CORRELATION, POWER-LAW COVARIANCE FUNCTIONS, AND DIFFUSION
                                                                                                                            TOPOGRAPHIC BIOKA62
                                                                                                                                                       305
                                          THE ADEQUACY OF THE DIFFUSION APPROXIMATION TO CERTAIN DISTRIBUTIONS IN
                                                                                                                                           BIOCS65
                                                                                                                                                        386
                                         NUMERICAL RESULTS AND DIFFUSION APPROXIMATIONS IN A CENETIC PROCESS
                                                                                                                                            BIOKA63
GENETICS
                                                                THE DIFFUSION EQUATION AND A PSEUDO-DISTRIBUTION IN
                                                                                                                                            JRSSB63
              LIMITING DISTRIBUTION OF THE MAXIMUM OF A DIFFUSION PROCESS
                                SOME THEORETICAL ASPECTS OF DIFFUSION THEORY IN POPULATION CENETICS, CORR. 63 352
                                                                                                                                             AMS 62
COMPONENTS FOR NON-INBRED DIPLOID SPECIES HAVINC ALL DIGENIC EPISTATIC VARIANCES OF EQUAL MAGNITUDE /IC BIOCS69
                                                                                                                                                       545
    MALE MORTALITY IN SOME COUNTRIES OF SOUTH ASIA, A DIGEST
                                                                                                                   HIGHER FEMALE THAN JASA 69 NO.4
G SEQUENTIAL, ITEM BY ITEM, SELECTION TECHNIQUES AND DIGITAL COMPUTERS /OPMENT OF SAMPLING PLANS BY USIN JASA 62
                                        APPROXIMATE DESIGN OF DIGITAL FILTERS
                                                                                                                                            TECH 65
                                                                                                                                                       387
               ON THE DISTRIBUTION OF FIRST SIGNIFICANT DIGITS
                                                                                                                                             AMS 61 1223
     ARISING IN CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION
                                                                                                 A PROBLEM OF OPTIMUM ALLOCATION TECH 61
                                                                                                                                                       509
FURTHER APPLICATIONS OF NON-PARAMETRIC METHODS IN DILUTION (-DIRECT) ASSAYS
REE METHODS IN THE ESTIMATION OF RELATIVE POTENCY IN DILUTION (-DIRECT) ASSAYS /FOR USING DISTRIBUTION-F BIOCS66
         OF CONCENTRATION OF VIRUSES AND BACTERIA FROM DILUTION COUNTS
                                                                                                                        THE ESTIMATION BIOCS65
                                                NOTES. ON THE DILUTION ERRORS INVOLVED IN ESTIMATING BACTERIAL NUMB BIOCS67
ERS BY THE PLATING METHOD
  GRAPHICALLY ORIENTED TESTS FOR HOST VARIABILITY IN DILUTION EXPERIMENTS
                                                                                                                                            BIOCS67
                                                                                                                                                        269
                                                                     DILUTION SERIES, A STATISTICAL TEST OF TECHNIQUE
(CORR. 59 23B)
                                                                                                                                            JRSSB58
ERS FROM MULTIPLE RECAPTURE DATA WITH BOTH DEATH AND DILUTION-DETERMINISTIC MODEL /OF POPULATION PARAMET BIOKAG3
                                                                                                                                                       113
                                PARTITIONS IN MORE THAN ONE DIMENSION
                                                                                                                                            JRSSB56
                                                                                                                                                       104
                                                     CONTROLLING DIMENSION IN CENTERLESS-GRINDING WITH AUTOMATIC RESET TECH 69
                                                                                                                                                      115
                       NOTE ON A THEOREM OF DYNKIN ON THE DIMENSION OF SUFFICIENT STATISTICS
                                                                                                                                             AMS 69 1474
                                    ON THE SUPERCRITICAL ONE DIMENSIONAL AGE DEPENDENT BRANCHING PROCESSES
                                                                                                                                             AMS 69
                                                                                                                                                      743
                                                                     DIMENSIONAL CHAINS INVOLVING RECTANGULAR AND NORMAL
ERROR-DISTRIBUTIONS
                                                                                                                                            TECH 63
                                                             THREE DIMENSIONAL MODELS OF EXTREME VERTICES DESIGNS FOR
FOUR COMPONENT MIXTURES
FUNCTION ON THE SQUARE
                                                                     DIMENSIONAL PROPERTIES OF A RANDOM DISTRIBUTION
                                                                                                                                             AMS 66
                                                                ONE DIMENSIONAL RANDOM WALK WITH A PARTIALLY REFLECTING
                                                                                                                                             AMS 63 405
BARRIER
                                      MINIMAX DESIGNS IN TWO DIMENSIONAL RECRESSION
                                                                                                                                             AMS 65 1097
E COMPUTING ROUTINE FOR TESTS OF SIGNIFICANCE ON THE DIMENSIONALITY OF NORMAL MULTIVARIATE SYSTEMS
                                                                                                                                    /F TH JRSSB56
                                                                                                                                                      70
              TWO THIRD ORDER ROTATABLE DESIGNS IN FOUR DIMENSIONS
                                                                                                                                             AMS 64 445
 CONSTRUCTION OF SECOND ORDER ROTATABLE DESIGNS IN K DIMENSIONS
                                                                                                                     A METHOD FOR THE AMS 67
                                                                                                                                                       177
 PROBLEM RELATED TO STATISTICAL DISTRIBUTIONS IN TWO DIMENSIONS
                                                                                                                    A MAXIMUM-MINIMUM BIOKA57
                                                                                                                                                       384
       AMONG THE VON MISES DISTRIBUTIONS OF DIFFERENT DIMENSIONS
                                                                                                                   SOME RELATIONSHIPS BIOKAG6
                                                                                                                                                       269
        VECTORIAL ANALYSIS FOR CENETIC CLINES IN BODY DIMENSIONS IN POPULATIONS OF 'DROSOPHILIA SUBOBSCURA' BIOCS66 .469
                        CLUSTERING OF RANDOM POINTS IN TWO DIMENSIONS.
                  THIRD ORDER ROTATABLE DESIGNS IN THREE DIMENSIONS, SOME SPECIFIC DESIGNS
E OF GENE LOSS OF FOUR METHODS OF REPRODUCING FINITE DIPLOID POPULATIONS /INBREEDING COEFFICIENT AND RAT BIOCS65
                                                                                                                                                        447
S OF EQUAL MAGN/ GENETIC COMPONENTS FOR NON-INBRED DIPLOID SPECIES HAVING ALL DIGENIC EPISTATIC VARIANCE BIOCS69
                                                                                                                                                       545
PARAMETER A COMPARISON OF THE DIRECT AND FIDUCIAL ARGUMENTS IN THE ESTIMATION OF A JRSSB63
PANSION FOR CUMULATIVE HYPERCEOMETRIC PROBABILITIES, DIRECT AND INVERSE A QUICKLY CONVERGENT EX BIOKA54
                                                                                                                                                        95
                                                       A NOTE ON DIRECT AND INVERSE BINOMIAL SAMPLING
                                                                                                                                            BIOKA63
                                                                                                                                                       544
PANSION FOR CUMULATIVE HYPERCEOMETRIC PROBABILITIES, DIRECT AND INVERSE' /ENDA, 'A QUICKLY CONVERCENT EX BIOKAS5
                                                                                                                                                       277
                                                              SOME DIRECT ESTIMATES OF THE MODE
                                                                                                                                             AMS 65
                                                                                                                                                       131
 POPULATION MODELS
                                             ON THE USE OF THE DIRECT MATRIX PRODUCT IN ANALYSING CERTAIN STOCHASTIC BIOKAG6
                                         SEQUENTIAL ANALYSIS, DIRECT METHOD
OF THE MEAN OF A NORMAL DISTRIBUTION
                                                                     DIRECT METHODS FOR EXACT TRUNCATED SEQUENTIAL TESTS
                                                                                                                                           TECH 69 NO.4
                                                                 ON DIRECT PROBABILITIES
                                                                                                                                            JRSSB63
                                                                                                                                                      100
THE CALCULUS OF FACTORIAL ARRANGEMENTS. I. BLOCK AND DIRECT PRODUCT DESIGN
                                                                                                                     APPLICATIONS OF
                                                                                                                                           BIOKA63
                                                                                                                                                        63
THE CALCULUS OF FACTORIAL ARRANGEMENTS. I. BLOCK AND FACTORIAL ARRANGEMENTS. I. BLOCK
                                                                                                                                                       610
     SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE DIRECTION
                                                                                                             THE ANALYSIS OF LATIN JRSSB5B
                                                                                                                                                       1 93
                                                        A NOTE ON DIRECTION AND COLLINEARITY FACTORS IN CANONICAL
ANALYSIS
                                                                                                                                            BIOKA62
                                                                                                                                                       255
ANALYSTS
                                     ON THE DISTRIBUTIONS OF DIRECTION AND COLLINEARITY FACTORS IN DISCRIMINANT
                                                                                                                                            AMS 68
                                                                                                                                                       855
 USE OF CYCLIC BALANCED INCOMPLETE BLOCK DESIGNS FOR DIRECTIONAL SEED ORCHARDS
                                                                                                                                      THE BIOCS67
                                                                                                                                                       761
 NOTES. EXPECTED SELECTION DIFFERENTIAL FOR POSITIVE DIRECTIONAL SELECTION ON NORMAL VARIABLES WITHIN SETS BIOCS67
                                                                                                                                                        842
  MULTI-SAMPLE TESTS FOR THE FISHER DISTRIBUTION FOR DIRECTIONS
                                                                                                                                                       169
                                                       ASSOCIATED DIRECTIONS
 POINTS AND APPLICATION TO TESTING FOR RANDOMNESS OF DIRECTIONS
                                                                                    /TH THE UNIFORM DISTRIBUTION, PERCENTAGE BIOKA66
                                     TESTS FOR RANDOMNESS OF DIRECTIONS ACAINST TWO CIRCULAR ALTERNATIVES
                                                                                                                                                       280
                                                                                                                                           JASA 69
                           EXACT AND APPROXIMATE TESTS FOR DIRECTIONS. I
                                                                                                                                                       463
                                                                                                                                            BIOKA62
                           EXACT AND APPROXIMATE TESTS FOR DIRECTIONS. II
                                                                                                                                           BTOKA62
                                                                                                                                                       547
DENCE FOR PROPORTIONS WITH A A GENERALIZATION OF THE DIRICHLET DISTRIBUTION
                                                                                                                 CONCEPTS OF INDEPEN JASA 69
                                                                                                                                                       194
1251
                                                    THE INVERTED DIRICHLET DISTRIBUTION WITH APPLICATIONS, CORR. 65
                                                                                                                                           JASA 65
                                                                                                                                                       793
                                     NONCENTRAL MULTIVARIATE DIRICHLET DISTRIBUTIONS
                                                                                                                                           SASJ 67
                                                                                                                                                        21
        CRAPHIC COMPUTATION OF TAU AS A COEFFICIENT OF DISARRAY
                                                                                                                                           JASA 58
                                                                                                                                                       441
       'CRAPHIC COMPUTATION OF TAU AS A COEFFICIENT OF DISARRAY'
                                                                                                        A NOTE ON GRIFFIN'S PAPER JASA 61
                                                                                                                                                       736
                                                               THE DISCARDING OF VARIABLES IN MULTIVARIATE ANALYSIS
                                                                                                                                           BIOKA67
                                                                                                                                                       357
      QUEUEING, IDLENESS PROBABILITIES UNDER PRIORITY DISCIPLINES
                                                                                                                           COMPETITIVE JRSSB63
                                                                                                                                                       489
                                                                  A DISCONTINUITY IN MIXED MODEL ANALYSIS
                                                                                                                                           BTOCS69
                                                                                                                                                       573
THE MEAN DIFFERENCE AND THE MEAN DEVIATION OF SOME DISCONTINUOUS DISTRIBUTIONS
UESTIONS RAISED BY THE COMBINATION OF TESTS BASED ON DISCONTINUOUS DISTRIBUTIONS.
                                                                                                                                           BIOKA5B
                                                                                                                   CORRIGENDA, 'ON Q BIOKA51
                                                                                                                                                       265
                                                       NOTE ON A DISCONTINUOUS PROBABILITY DENSITY
                                                                                                                                           BIOKA5B
                                                                                                                                                       270
          OF TWO-DIMENSIONAL STATIONARY PROCESSES WITH DISCONTINUOUS SPECTRA
                                                                                                                          THE ANALYSIS BIOKA64
                                                                                                                                                      195
```

TITLE WORD INDEX DIF - DIS

NOTE O	DISCORDANT OBSERVATIONS	JRSSB68	545
DISCRETE DYNAMIC PROGRAMMING WITH SENSITIVE		AMS 69 1	
OPTIMAL STOPPING WHEN THE FUTURE IS			601
	DISCOUNTED DYNAMIC PROCRAMMING		226
METHODS OF ESTIMATION INVOLVING			355
CONDITION FOR DISCRETE DYNAMIC PROCRAMMING WITH NO			
POLICIES IN DISCRETE DYNAMIC PROCRAMMING WITH NO STOPPING RULES AN EXAMPLE OF	DISCOUNTINC ON FINDING OPTIMAL ON STANDING OPTIMAL OF THE ORDER OF THE OPTIMAL OF		329
	DISCREPANCY BETWEEN MEASURES OF ASYMPTOTIC EFFICIENCY		179
	DISCREPANCY IN THE REVISED UNITED STATES NATIONAL	JASA 66 1	
THE TIME-DEPENDENT SOLUTION FOR AN INFINITE DAM WITH			173
	DISCRETE AND CONTINUOUS VARIABLES, CORR. 65 343		448
THE ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES IN THI		AMS 63 1	
CONFIDENCE INTERVALS FOR LOCATION PARAMETERS IN THI TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION IV			184 55
ON THE ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE			454
FURTHER MODELS FOR ESTIMATING CORRELATION IN		JRSSB64	82
SPECIFIED MODELS INVOLVING NORMAL APPROXIMATIONS TO	DISCRETE DATA INFERENCE FOR SOME INCOMPLETELY	BIOCS67	335
IAL DISTRIBUTION IN THE ESTIMATION OF CORRELATION IN			530
EQUATION FOR PROBABILITIES	DISCRETE DISTRIBUTION ESTIMATORS FROM THE RECURRENCE		602
THEORY OF AGCIDENT PRONENESS ON A THE COMBINATION OF TESTS BASED OF	DISCRETE DISTRIBUTION WITH SPECIAL REFERENCE TO THE	JASA 65 1 JASA 62	1060
REMARKS ON LARGE SAMPLE ESTIMATORS FOR SOME			5B7
NOTE ON A CERTAIN FAMILY OF			196
ON GERTAIN CHARACTERISTICS OF SOME	DISCRETE DISTRIBUTIONS	BIOKA60	473
SMOOTH EMPIRICAL BAYES ESTIMATION FOR ONE-PARAMETER			417
	DISCRETE DISTRIBUTIONS		649
NSON'S PROPERTY OF THE MEAN DEVIATION FOR A CLASS OF			285
SIGNIFICANCE TESTS II	DISCRETE DISTRIBUTIONS, CORR. 62 919 DISCRETE DYNAMIC PROGRAMMING		223 719
RATE	DISCRETE DYNAMIC PROGRAMMING WITH A SMALL INTEREST		366
	DISCRETE DYNAMIC PROGRAMMING WITH NO DISCOUNTING	AMS 66 1	
	DISCRETE DYNAMIC PROCRAMMING WITH NO DISCOUNTING	AMS 68 1	
OPTIMALITY GRITERIA	DISCRETE DYNAMIC PROGRAMMING WITH SENSITIVE DISCOUNT	AMS 69 1	
AND DISTRIBUTION OF SOME PROBABILISTIC FUNCTIONS OF	DISCRETE FINITE STATE MARKOV CHAINS ADMISSIBILITY DISCRETE FREQUENCY FUNCTIONS ANALOCOUS TO THE TYPE A		1646 55
	DISCRETE GENERALIZED RENEWAL THEOREM	AMS 65 1	
INTERPOLATION OF HOMOGENEOUS RANDOM FIELDS ON			251
SOME METHODS OF ESTIMATING THE PARAMETERS OF		JRSSB56	222
A BOUND FOR THE LAW OF LARCE NUMBERS FOR			336
EXPONENTIAL BOUNDS ON THE PROBABILITY OF ERROR FOR A			577
TION OF EXAGT SAMPLING DISTRIBUTION OF RANGES FROM A	DISCRETE MIXED DISTRIBUTIONS DISCRETE POPULATION' CORRECTION, 'CALCULA		566 280
THE EFFICIENCY OF TWO-SAMPLE MANN-WHITNEY TEST FOR			612
	DISCRETE POPULATIONS AND FOR GROUPED SAMPLES	JASA 68 1	
THE SPECTRUM OF A CONTINUOUS PROCESS DERIVED FROM A	DISCRETE PROCESS	BIOKA63	517
	DISCRETE RANDOM VARIABLES, CORR. 66 1246 /ISTRIBUTI		837
STOGHASTIC PROCESSES	DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY		484
(WITH DISCUSSION)	DISCRETE STABLE POPULATION THEORY DISCRETE STOCHASTIC PROCESSES IN POPULATION GENETICS		285 218
	DISCRETE STUDENT'S DISTRIBUTION	AMS 6B 1	
TIVE METHOD OF DYNAMIG PROGRAMMING ON A FINITE SPACE			
	DISCRETE TIME QUEUE WITH FINITE STORACE		130
ON CERTAIN REDUNDANT SYSTEMS WHICH OPERATE AT		TECH 62	69
	DISCRETE UNIFORM FINITE POPULATIONS AND A RANGE TEST		4B9
	DISCRETE WAVEFORM WHICH IS RANDOMLY REPEATING IN GAUS DISCRETE-TIME STOCHASTIC MODELS FOR BIOLOGICAL SYSTEM		196
A GENERAL MAXIMUM LIKELIHOOD			313
ESTIMATION OF ERROR RATES IN		TECH 6B	1
A NOTE ON AN APPROXIMATE FACTORIZATION IN			665
PROBABILITIES OF CORRECT CLASSIFICATION IN			908
MISSING VALUES IN LINEAR MULTIPLE STRIBUTIONS OF DIRECTION AND COLLINEARITY FACTORS IN		BIOCS68	
	DISCRIMINANT ANALYSIS /OD OF OBTAINING CONFIDENCE I		
MISGLASSIFIED	DISCRIMINANT ANALYSIS WHEN THE INITIAL SAMPLES ARE	TECH 66	657
	DISCRIMINANT ANALYSIS, NECESSARY SAMPLE SIZE, AND A R		
COMMENTARY ON 'ESTIMATION OF ERROR RATES IN		TECH 68	
ON THE PERFORMANCE OF THE LINEAR MPTOTIC EXPANSION FOR THE DISTRIBUTION OF THE LINEAR		TECH 64 AMS 63 1	
VARIANCE-COVARIANCE MATRICES ON FISHER'S LINEAR	DISCRIMINANT FUNCTION THE EFFECT OF UNEQUAL	BIOCS69	505
AND RELATED PROBLEMS		BIOKA66	
NOTES. EQUIVALENCE OF TWO METHODS OF COMPUTING	DISCRIMINANT FUNCTION COEFFICIENTS	BIOCS67	
	DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSIONS		
	DISCRIMINANT FUNCTION TECHNIQUES IN MEDICAL TAXONOMY DISCRIMINANT FUNCTION WHEN COVARIANCE MATRICES ARE	BIOCS69 N AMS 69	
	DISCRIMINANT FUNCTION WHEN COVARIANCE MAIRICES ARE DISCRIMINANT FUNCTIONS AND GENERALIZED DISTANCES	BIOCS66	
	DISCRIMINANT FUNCTIONS AND LINEAR FUNCTIONAL RELATION	BIOKA55	360
ESTIMATION ASSOCIATED WITH LINEAR	DISCRIMINANTS	AMS 67	807
	DISCRIMINATING BETWEEN FAILURE DENSITY FUNCTIONS USED		
	DISCRIMINATING BETWEEN MODELS DISCRIMINATING BETWEEN TWO RIVAL MODELS	TECH 65	
	DISCRIMINATING BETWEEN TWO RIVAL MODELS DISCRIMINATING BETWEEN TWO WEIBULL PROCESSES	TECH 65	
	DISCRIMINATION	AMS 61 1	125
A REMARK ON SEQUENTIAL		AMS 67 1	
GEOMETRY AND LINEAR PREDICTIVE ZERO-MEAN UNIFORM		BIOKA60 BIOKA68	
I VEDICITAE VEVO-MENU ONILOKU	DIOOMINITARITON		
			75

DIS - DIS TITLE WORD INDEX

```
DISCRIMINATION AMONG MECHANISTIC MODELS
JOINT DESIGN CRITERION FOR THE DUAL PROBLEM OF MODEL DISCRIMINATION AND PARAMETER ESTIMATION
                                                                                                         A TECH 68
                                                                                                                     145
                                                     DISCRIMINATION BETWEEN ALTERNATIVE BINARY RESPONSE
                                                                                                            BIOKA67
                                                                                                                     573
 ON THE PROBABILITIES OF MISCLASSIFICATION
                                                     DISCRIMINATION BETWEEN K POPULATIONS WITH CONSTRAINTS JRSSB69
                                                                                                                     123
E SEQUENTIAL TEST. USING CONCOMITANT INFORMATION FOR DISCRIMINATION BETWEEN TWO COMPOSITE HYPOTHESES /PL JASA 66
                                                                                                                     357
                                                 THE DISCRIMINATION BETWEEN TWO WEIBULL PROCESSES
                                                                                                            TECH 64
                                                                                                                      57
                                        ERRATA, 'THE DISCRIMINATION BETWEEN TWO WEIBULL PROCESSES
                                                                                                            TECH 64
                                                                                                                     240
MATRICES
                                           A NOTE ON DISCRIMINATION IN THE CASE OF UNEQUAL COVARIANCE
                                                                                                            BIOKA68
                                                                                                                     586
                                                     DISCRIMINATION IN THE CASE OF ZERO MEAN DIFFERENCES
                                                                                                            BIOKA63
                                                                                                                      17
                                                     DISCRIMINATION IN TIME-SERIES ANALYSIS
                                                                                                            BIOKA52
                                   A NOTE ON MINIMUM DISCRIMINATION INFORMATION
                                                                                                                     279
                                      NOTES. MINIMUM DISCRIMINATION INFORMATION ESTIMATION
                                                                                                            BIOCS68
                                                                                                                    707
                                                     DISCRIMINATION INTERVALS FOR PERCENTILES IN
REGRESSION
                                                                                                            JASA 69 1031
                               UNLIMITED SIMUTANEOUS DISCRIMINATION INTERVALS IN REGRESSION
                                                                                                            BIOKA67
                                                                                                                     133
                   ELIMINATION OF VARIATES IN LINEAR DISCRIMINATION PROBLEMS
                                                                                                            BIOCS66
                                                                                                                     268
                                 SINGLE AND MULTIPLE DISCRIMINATION REGIONS IN MULTIPLE LINEAR REGRESSION
                                                                                                           SASJ 68
                                                                                                                      67
                                                  ON DISCRIMINATION USING QUALITATIVE VARIABLES
                                                                                                            JASA 68 1399
                                       NONPARAMETRIC DISCRIMINATION USING TOLERANCE REGIONS
                                                                                                             AMS 6B
                                                                                                                     664
                         A NOTE ON DESIGNS FOR MODEL DISCRIMINATION, VARIANCE UNKNOWN CASE
                                                                                                            TECH 69
                                                                                                                     396
LISATION EN GENETIQUE ET SES RAPPORTS AVEC L'ANALYSE DISCRIMINATOIRE //N COMPOSANTES PRINCIPALES, SON UTI BIOCS66
                                                                                                                     343
TWO COVARIANCE MATRICES IN RELATION TO A BEST LINEAR DISCRIMINATOR ANALYSIS
                                                                              TESTS FOR THE EQUALITY OF AMS 64
                                                                                                                     191
 ANALYSIS, A METHOD FOR SELECTING THE MOST EFFECTIVE DISCRIMINATORS IN A MULTIVARIATE SITUATION /NONICAL BIOCS68
                                                ON A DISCRIMINATORY PROBLEM CONNECTED WITH THE WORKS OF
                                                                                                           JRSSB59
  ASSOCIATION FOR CROSS CLASSIFICATIONS, II. FURTHER DISCUSSION AND REFERENCES
                                                                                               MEASURES OF JASA 59
                                                                                                                     123
AND AN 'OBJECTIVE' TEST FOR APPROXIMATE NUMERICAL/ DISCUSSION OF 'A SUBJECTIVE EVALUATION OF BODE'S LAW JASA 69
                                                                                                                      50
 OF NORMAL DISTRIBUTIONS' BY VICTOR HASSELBLAD
                                                     DISCUSSION OF 'ESTIMATION OF PARAMETERS FOR A MIXTURE TECH 66
                                                                                                                     445
                                                     DISCUSSION OF 'EXTREME VERTICES DESIGN OF MIXTURE EXP TECH 66
ERIMENTS' BY R.A. MCLEAN AND V.L. ANDERSON
                                                                                                                     455
                                                     DISCUSSION OF 'ON THE FOUNDATIONS OF STATISTICAL
INFERENCE'
                                                                                                            JASA 62
                                                                                                                     307
                                                     DISCUSSION OF HOEFFDINGS PAPER
                                                                                                             AMS 65
                                                                                                                     401
            ON THE COMPARISON OF TWO MEANS, FURTHER DISCUSSION OF ITERATIVE METHODS FOR CALCULATING TABLE BIOKA54
                                                                                                                     361
CE AGAINST BLADDER INFECTION
                                     A QUANTITATIVE DISCUSSION OF THE EFFECTIVENESS OF VOIDING AS A DEFEN BIOCS66
                                                                                                                      53
                                                     DISCUSSION OF THE PAPERS OF MESSRS. ANSCOMBE AND
DANIEL
                                                     DISCUSSION OF THE PAPERS OF MESSRS. HALD, WETHERILL
AND COX
                                                                                                            TECH 60
                                                                                                                     361
                                                     DISCUSSION OF THE PAPERS OF MESSRS. SATTERTHWAITE AND TECH 59
                                                                                                                     157
                      A POOR MAN'S MONTE CARLO (WITH DISCUSSION)
                                                                                                            JRSSB54
                                                                                                                      23
 SAMPLING INSPECTION AND STATISTICAL DECISIONS (WITH DISCUSSION)
                                                                                                            JRSSB54
                                                                                                                     151
         SOME PROBLEMS IN INTERVAL ESTIMATION (WITH DISCUSSION)
                                                                                                            JRSSB54
                                                                                                                     175
                LIMITS FOR THE RATIO OF MEANS (WITH DISCUSSION)
                                                                                                            JRSSR54
                                                                                                                     186
 GENERALIZATIONS OF TCHEBYCHEFF'S INEQUALITIES (WITH DISCUSSION)
                                                                                                            JRSSR56
                                                                                                                     139
          THE SPECTRAL ANALYSIS OF TIME SERIES (WITH DISCUSSION)
                                                                                                            JRSSB57
                                                                                                                       1
               CURVE AND PERIODOGRAM SMOOTHING (WITH DISCUSSION)
                                                                                                            JRSSB57
                                                                                                                      38
           SOME PROBLEMS IN THE THEORY OF DAMS
                                               (WITH DISCUSSION)
                                                                                                            JRSSB57
                                                                                                                     207
 STATISTICAL APPROACH TO PROBLEMS OF COSMOLOGY (WITH DISCUSSION)
                                                                                                            JRSSB58
          RENEWAL THEORY AND ITS RAMIFICATIONS
                                               (WITH DISCUSSION)
                                                                                                            JRSSB5B
    BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS (WITH DISCUSSION)
                                                                                                            JRSSB59
                                                                                                                      36
       CONTROL CHARTS AND STOCHASTIC PROCESSES (WITH DISCUSSION)
                                                                                                            JRSSB59
                                                                                                                     239
                 OPTIMUM EXPERIMENTAL DESIGNS (WITH DISCUSSION)
                                                                                                            JRSSB59
                                                                                                                     272
  CONFIDENCE REGIONS IN NON-LINEAR ESTIMATION (WITH DISCUSSION)
                                                                                                                      41
                                                                                                            JRSSB60
            MODELS IN THE ANALYSIS OF VARIANCE (WITH DISGUSSION)
                                                                                                            JRSSB60
                                                                                                                     195
                    DELAYS ON A TWO-LANE ROAD (WITH DISCUSSION)
                                                                                                            JRSSB61
                                                                                                                      3B
        A QUEUEING MODEL FOR ROAD TRAFFIC FLOW (WITH DISCUSSION)
                                                                                                            JRSSB61
                                                                                                                      64
   OPTIMAL PROGRAMMERS FOR VARIETAL SELECTION (WITH DISCUSSION)
                                                                                                            JRSSB61
                                                                                                                     2B2
            SOME RESULTS ON INVENTORY PROBLEMS (WITH DISCUSSION)
                                                                                                            JRSSB62
                                                                                                                       1
 CONTROL CHARTS AND THE MINIMIZATION OF GOSTS (WITH DISCUSSION)
                                                                                                            JRSSB63
                                                                                                                      49
     THE SPECTRAL ANALYSIS OF POINT PROCESSES
                                               (WITH DISCUSSION)
                                                                                                            JRSSB63
                                                                                                                     264
        THEORY OF CYCLIC ROTATION EXPERIMENTS (WITH DISCUSSION)
                                                                                                            JRSSB64
                    BAYESIAN TOLERANCE REGIONS (WITH DISCUSSION)
                                                                                                            JRSSB64
                                                                                                                     161
                AN ANALYSIS OF TRANSFORMATIONS (WITH DISCUSSION)
                                                                                                                     211
                                                                                                            JRSSB64
     SOME GENERAL RESULTS IN SEQUENTIAL DESIGN (WITH DISCUSSION)
                                                                                                            JRSSB65
                                                                                                                     371
                                     SPACINGS (WITH DISCUSSION)
                                                                                                            JRSSB65
                                                                                                                     395
        ALLOCATION RULES AND THEIR ERROR RATES (WITH DISCUSSION)
                                                                                                            JRSSB66
                                                                                                                     417
 AN APPROACH TO THE STUDY OF MARKOV PROCESSES
                                               (WITH DISGUSSION)
                                                                                                            JRSSR66
                           THE THEORY OF RISK (WITH DISCUSSION)
                                                                                                            JRSSB67
                                                                                                                     432
THE CHOICE OF VARIABLES IN MULTIPLE REGRESSION (WITH DISCUSSION)
                                                                                                            JRSSB6B
                                                                                                                      31
       A GENERALIZATION OF BAYESIAN INFERENCE (WITH DISCUSSION)
                                                                                                            JRSSB68
                                                                                                                     205
             A GENERAL DEFINITION OF RESIDUALS (WITH DISCUSSION)
                                                                                                            JRSSB68
                                                                                                                     24B
       STOGHASTIC MODELS OF CAPITAL INVESTMENT (WITH DISCUSSION)
                                                                                                            JRSSB69
     THE BAYESIAN OUTLOOK AND ITS APPLICATIONS
                                               (WITH DISCUSSION
                                                                                                            BIOCS69 NO.4
ULTIPARAMETER BAYESIAN INDIFFERENCE PROCEDURES (WITH DISCUSSION)
                                                                                                          M JRSSB69
                                                                                                                     29
  ANALYSIS OF ASSOCIATION AMONG MANY VARIABLES (WITH DISCUSSION)
                                                                                                        THE JRSSB67
TATISTICAL PROBLEMS IN EXPERIMENTAL PSYCHOLOGY (WITH DISCUSSION)
                                                                                                    SOME S JRSSB56
                                                                                                                    177
  STOCHASTIC PROCESSES IN POPULATION GENETICS (WITH DISCUSSION)
                                                                                                   DISCRETE JRSSB60
                                                                                                                     218
                                                                                                  PROBLEMS JRSSB57
  IN THE PROBABILITY THEORY OF STORAGE SYSTEMS (WITH DISCUSSION)
                                                                                                                     1B1
        DISTRIBUTIONS IN THE THEORY OF QUEUES (WITH DISCUSSION)
                                                                                                  GEOMETRIC JRSSB59
                                                                                                                       1
NTERPRETATION OF STANDARD INFERENCE STATEMENTS
                                               (WITH DISCUSSION)
                                                                                                 BAYESIAN I JRSSB65
                                                                                                                     169
         ESTIMATION OF QUANTAL RESPONSE CURVES (WITH DISCUSSION)
                                                                                                SEQUENTIAL JRSSB63
                                                                                                                      1
BAYESIAN MODELS IN SAMPLING FINITE POPULATIONS
                                               (WITH DISCUSSION)
                                                                                                SUBJECTIVE JRSSB69 NO.2
IGNIFICANCE TEST FOR MULTINOMIAL DISTRIBUTIONS (WITH DISCUSSION)
                                                                                               A BAYESIAN S JRSSB67
                                                                                                                     399
         SPECTRAL AND NON-STATIONARY PROCESSES
                                                                                               EVOLUTIONARY JRSSB65
                                                                                                                     204
                                               (WITH DISCUSSION)
     THE LARGEST OF K NORMAL POPULATION MEANS (WITH DISCUSSION)
                                                                                               ON SELECTING JRSSB60
                                                                                                                      1
       THEORY APPROACH TO SAMPLING INSPECTION
                                               (WITH DISCUSSION)
                                                                                                E DECISION JRSSB66
                                                                                                                     3B1
 CENTROID DESIGN FOR EXPERIMENTS WITH MIXTURES (WITH DISCUSSION)
                                                                                               THE SIMPLEX- JRSSB63
                                                                                                                     235
 IN THE STATISTICAL ANALYSIS OF EPIDEMIC DATA (WITH DISCUSSION)
                                                                                             SOME PROBLEMS JRSSB55
                                                                                                                     35
         TO THE 'TRAVELLING-SALESMAN' PROBLEM (WITH DISCUSSION)
                                                                                             A CONTRIBUTION JRSSB55
                                                                                                                     185
 OF THE SPECTRUM FOR NON-STATIONARY PROCESSES (WITH DISCUSSION)
                                                                                            ON THE CONCEPT JRSSB68
SOCIATED WITH RANDOM WALK AND RECURRENT EVENTS (WITH DISCUSSION)
                                                                                          DISTRIBUTIONS AS JRSSB57
                                                                                                                      64
```

TITLE WORD INDEX DIS - DIS

TITEL NOTE TREES.		
CONVEX FUNCTION SUBJECT TO LINEAR INEQUALITIES (WITH DISCUSSION) DISTRIBUTIONS AND TIME-REVERSION IN GENETICS (WITH DISCUSSION) METHODS CONNECTED WITH SERIES OF EVENTS (WITH DISCUSSION) ASPECTS OF ADAPTIVE OPTIMIZATION AND CONTROL (WITH DISCUSSION) PROBLEMS CONNECTED WITH CRYSTAL LATTICES (WITH DISCUSSION) FOR AUTOMATIC COMPUTERS TO SAMPLING EXPERIMENTS (WITH DISCUSSION) TO SOME SCREENINC AND CLASSIFICATION PROBLEMS (WITH DISCUSSION) TO SOME SCREENINC AND CLASSIFICATION PROBLEMS (WITH DISCUSSION) THE APPLICATION PROGRAMMING AN OUTLINE OF LINEAR PROCRAMMINC (WITH DISCUSSION) OF MEANS UNDER RESTRICTED ALTERNATIVES (WITH DISCUSSION) A TEST OF HOMOCENEITY BAYESIAN AND CONFIDENCE LIMITS FOR PREDICTIONS (WITH DISCUSSION) OF MEANS UNDER RESTRICTED ALTERNATIVES (WITH DISCUSSION) BAYESIAN AND CONFIDENCE LIMITS FOR PREDICTIONS (WITH DISCUSSION) PLICATED EXPERIMENTS ON AN ELECTRONIC COMPUTER (WITH DISCUSSION) OF-FIT TESTS FOR CONTINUOUS DISTRIBUTIONS (WITH DISCUSSION) OF-FIT TESTS FOR CONTINUOUS DISTRIBUTIONS (WITH DISCUSSION) PARAMETERS IN MARKOV AUTOREGRESSIVE SCHEMES (WITH DISCUSSION) DENSITY FUNCTION OF A STOCHASTIC PROCESS (WITH DISCUSSION) DENSITY FUNCTION OF A STOCHASTIC PROCESS (WITH DISCUSSION) A CONFIDENCE INTERVALS FOR DISTRIBUTION FREE TESTS IN DENSITY FUNCTION OF A STOCHASTIC PROCESS (WITH DISCUSSION) A GENERALIZED LEAST-SQUARES AMPLES SIZE IS TREATED AS A RANDOM VARIABLE (WITH DISCUSSION) ANOTHER LOOK AT HENDERSON'S AMPLES SIZE IS TREATED AS A RANDOM VARIABLE (WITH DISCUSSION) FOR THE ANALYSIS OF COMPUTER FAILURE PATTERNS (WITH DISCUSSION) A BRANCHING POISSON PROCESS MODEL IA AND THE STUDY OF DEPARTURES FROM ASSUMPTION (WITH DISCUSSION) A BRANCHING POISSON PROCESS MODEL IA AND THE STUDY OF DEPARTURES FROM ASSUMPTION (WITH DISCUSSION) A BRANCHING POISSON PROCESS MODEL IA AND THE STUDY OF DEPARTURES FROM ASSUMPTION (WITH DISCUSSION) A BRANCHING POISSON PROCESS MODEL IA AND THE STUDY OF DEPARTURES FROM ASSUMPTION (WITH DISCUSSION) A BRANCHING POISSON PROCESS MODEL IA AND THE SETURY	JRSSB55	173
DISTRIBUTIONS AND TIME-REVERSION IN GENETICS (WITH DISCUSSION) QUASI-STATIONARY	JRSSB66	253
METHODS CONNECTED WITH SERIES OF EVENTS (WITH DISCUSSION) SOME STATISTICAL	JRSSB55	129
ASPECTS OF ADAPTIVE OPTIMIZATION AND CONTROL (WITH DISCUSSION) SOME STATISTICAL	JRSSB62	297
PROBLEMS CONNECTED WITH CRYSTAL LATTICES (WITH DISCUSSION) SOME STATISTICAL	JRSSB64	367
OF AUTOMATIC COMPUTERS TO SAMPLINC EXPERIMENTS (WITH DISCUSSION) THE APPLICATION	JRSSB54	39
TO SOME SCREENING AND CLASSIFICATION PROBLEMS (WITH DISCUSSION) A CENERAL APPROACH	JRSSB68	407
PROGRAMMING AN OUTLINE OF LINEAR PROCRAMMINC (WITH DISCUSSION) AN OUTLINE OF LINEAR	JRSSB55	165
THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION (WITH DISCUSSION) CONFIDENCE SETS FOR	JRSSB62	265
OF MEANS UNDER RESTRICTED ALTERNATIVES (WITH DISCUSSION) A TEST OF HOMOCENEITY	JRSSB61	239
BAYESIAN AND CONFIDENCE LIMITS FOR PREDICTIONS (WITH DISCUSSION) RELATIONSHIPS BETWEEN	JRSSB64	176
PLICATED EXPERIMENTS ON AN ELECTRONIC COMPUTER (WITH DISCUSSION) ROUTINE ANALYSIS OF RE	JRSSB57	234
OPTIMUM INFERENCE PROCEDURES IN LARCE SAMPLES (WITH DISCUSSION) EFFICIENT ESTIMATES AND	JRSSB62	46
OF-FIT TESTS FOR CONTINUOUS DISTRIBUTIONS (WITH DISCUSSION) PARAMETERS IN MARKOV AUTOREGRESSIVE SCHEMES (WITH DISCUSSION) CONFIDENCE INTERVALS FOR	1BCCDE 4	44 195
TIME-SERIES BASED ON THE BREAKING OF RECORDS (WITH DISCUSSION) TIME-SERIES BASED ON THE BREAKING OF RECORDS (WITH DISCUSSION) DISTRIBUTION-TREE TESTS IN	JRSSB54	195
DENSITY FUNCTION OF A STOCHASTIC PROCESS (WITH DISCUSSION) ON ESTIMATING THE SPECTRAL	1888857	13
APPROACH TO LINEAR FUNCTIONAL RELATIONSHIPS (WITH DISCUSSION) A GENERALIZED LEAST-SQUARES	JRSSB66	27B
METHODS OF ESTIMATING VARIANCE COMPONENTS (WITH DISCUSSION) ANOTHER LOOK AT HENDERSON'S	BIOCS68	749
SAMPLE SIZE IS TREATED AS A RANDOM VARIABLE (WITH DISCUSSION) HYPOTHESIS TESTING WHEN THE	JRSSB67	53
FOR THE ANALYSIS OF COMPUTER FAILURE PATTERNS (WITH DISCUSSION) A BRANCHING POISSON PROCESS MODEL	JRSSB64	398
IA AND THE STUDY OF DEPARTURES FROM ASSUMPTION (WITH DISCUSSION) /ORY IN THE DERIVATION OF ROBUST CRITER	JRSSB55	1
ELATIONS FITTED BY THE METHOD OF LEAST SQUARES (WITH DISCUSSION) TOPICS IN THE INVESTIGATION OF LINEAR R	JRSSB67	1
THE REGRESSION ANALYSIS OF BINARY SEQUENCES (WITH DISCUSSION) (CORR. 59 238)	JRSSB58	
	JRSSB61	1
IS OF VARIANCE AND SPECTRUM ANALYSIS DISCUSSION, EMPHASIZING THE CONNECTION BETWEEN ANALYS		191
COMMENTS ON THE DISCUSSIONS OF MESSRS. TUKEY AND GOODMAN		229
THE IDENTIFICATION OF ANNUAL PEAK PERIODS FOR A DISEASE THE ESTIMATION OF PARAMETERS FROM THE SPREAD OF A DISEASE BY CONSIDERING HOUSEHOLDS OF TWO		645
CH TO THE DETECTION OF PARAMETERS FROM THE SPREAD OF A DISEASE BY CONSIDERING HOUSEHOLDS OF TWO CH TO THE DETECTION OF SPACE—TIME INTERACTIONS DISEASE CLUSTERING, A GENERALIZATION OF KNOX'S APPROA	BIOKA65	271 541
	JASA 67	
ESTIMATION OF SURVIVORSHIP IN CHRONIC DISEASE, THE 'ACTUARIAL' METHOD		420
	BIOKA54	
ON THE THEORY OF SCREENING FOR CHRONIC DISEASES	BIOKA69	NO.3
SPREAD OF DISEASES IN A RECTANGULAR PLANTATION WITH VACANCIES	BIOKA53	287
ETE BLOCK DESIGNS AN UPPER BOUND FOR THE NUMBER OF DISJOINT BLOCKS IN CERTAIN PARTIALLY BALANCED INCOMPL	AMS 64	39B
		229
SOME STATISTICS ASSOCIATED WITH THE RANDOM DISORIENTATION OF CUBES	BIOKA57	
REGIONAL DISPARITIES IN HOUSEHOLD COMSUMPTION IN INDIA	JASA 67	
RANDOM DISPERSAL IN THEORETICAL POPULATIONS RANK TESTS OF DISPERSION	BIOKA51 AMS 63	
NOTE ON THE POISSON INDEX OF DISPERSION	BIOKA53	
SOME QUICK SIGN TESTS FOR TREND IN LOCATION AND DISPERSION	BIOKA55	B0
	BIOKA57	
THE POWER OF THE POISSON INDEX OF DISPERSION LARGE-SAMPLE SIGN TESTS FOR TREND IN DISPERSION THE CONSISTENCY OF SOME DISTRIBUTION-FREE TESTS FOR DISPERSION OF HOTELLING'S CENERALIZED MEASURE OF MULTIVARIATE DISPERSION THE DISTRIBUTION	BIOKA66	
THE CONSISTENCY OF SOME DISTRIBUTION-FREE TESTS FOR DISPERSION NOTE ON	JASA 64	
OF HOTELLING'S GENERALIZED MEASURE OF MULTIVARIATE DISPERSION THE DISTRIBUTION	AMS 66	215
ED IN TIME BY INDEPENDENT RANDOM DEVIATIONS OF LARGE DISPERSION /NTERVALS BETWEEN REGULAR EVENTS DISPLACE		476
ON A SPHERE TESTS FOR THE DISPERSION AND FOR THE MODAL VECTOR OF A DISTRIBUTION		
LUES FOR MOOD'S DISTRIBUTION-FREE TEST STATISTIC FOR DISPERSION AND ITS NORMAL APPROXIMATION /RITICAL VA		
THE INDEX OF DISPERSION AS A TEST STATISTIC.	BIOKA65	627
THE INDEX OF DISPERSION AS A TEST STATISTIC. ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES APPROPRIATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI SOLARD.	BIOKA65	627
THE INDEX OF DISPERSION AS A TEST STATISTIC. ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES APP APPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-PREE TWO SAMPLE THEY FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS	BIOKA65	627
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES APPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS	BIOKA65 BIOKA57 BIOKA53 SASJ 69	627 349 336 NO.2
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES APP APPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62	627 349 336 NO.2
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES APP APPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 62	627 349 336 NO.2 1463
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES APPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE OPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE ANALYSIS AN A	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 62 AMS 69 JASA 67	627 349 336 NO.2 1463 432 697 114
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES APP APPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE OPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE ANALYSIS AN A THE DISPERSION OF A NUMBER OF SPECIES	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 62 AMS 69 JASA 67 JRSSB59	627 349 336 NO.2 1463 432 697 114
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES APPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES ACAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE OPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE ANALYSIS AN A THE DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A P-DEPENDENT TIME SERIES (CORR. 69 457	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 69 JASA 67 JRSSB59 BIOKA68	627 349 336 NO.2 1463 432 697 114 190 3B1
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES APPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE OPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE ANALYSIS AN A THE DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A P-DEPENDENT TIME SERIES (CORR. 69 457 3) ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 62 AMS 69 JASA 67 JRSSB59 BIOKA68 JRSSB65	627 349 336 NO.2 1463 432 697 114 190 3B1 100
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES APP APPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE OPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE ANALYSIS AN A THE DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A P-DEFENDENT TIME SERIES (CORR. 69 457 3) ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 EM OF ME/ A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION OF A RADON-NIKODYM DERIVATIVE TO THE PROBL	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 69 JASA 67 JRSSB59 BIOKA68 JRSSB65 JRSSB65	627 349 336 NO.2 1463 432 697 114 190 381 100 108
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES APP APPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE OPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE ANALYSIS AN A THE DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A P-DEPENDENT TIME SERIES (CORR. 69 457 3) ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 CHM OF ME/ A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION OF A RADON-NIKODYM DERIVATIVE TO THE PROBL CHARACTERS ANALYSIS OF DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 69 JASA 67 JRSSB59 BIOKA68 JRSSB65 JRSSB65 JRSSB65	627 349 336 NO.2 1463 432 697 114 190 381 100 108 259
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES APPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES ACAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE OPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A P-DEPENDENT TIME SERIES (CORR. 69 457 3) ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 EM OF ME/ A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSIONS NOTES. COMPUTING	BIOKA65 BIOKA57 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 62 AMS 67 JRSSB59 BIOKA68 JRSSB65 JRSSB65 JRSSB66 BIOCS65	627 349 336 NO.2 1463 432 697 114 190 3B1 100 108 259
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES A PPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-PREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE OPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LOGRITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE ANALYSIS AN A THE DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A PLOEPENDENT TIME SERIES (CORR. 69 457 3) ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 EM OF ME/ A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION OF A RADON-NIKODYM DERIVATIVE TO THE PROBL CHARACTERS ANALYSIS OF DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSIONS NOTES. COMPUTING LARGE DISPE/ THE INTERVALS BETWEEN REGULAR EVENTS DISPLACED IN TIME BY INDEPENDENT RANDOM DEVIATIONS OF	BIOKA65 BIOKA57 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 62 AMS 67 JRSSB59 BIOKA68 JRSSB65 JRSSB65 JRSSB66 BIOCS65	627 349 336 NO.2 1463 432 697 114 190 3B1 100 108 259 1011 476
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES APPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES ACAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE OPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A P-DEPENDENT TIME SERIES (CORR. 69 457 3) ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 EM OF ME/ A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSIONS NOTES. COMPUTING	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 69 JASA 67 JRSSB59 BIOKA68 JRSSB65 JRSSB65 JRSSB65 BIOCS65 JRSSB61	627 349 336 NO.2 1463 432 697 114 190 3B1 100 108 259 1011 476 643
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES A PPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE OPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LOGRITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE ANALYSIS AN A THE DISPERSION OF A NUMBER OF SPECIES NGIES OF COX AND STUART'S TESTS FOR TESTING TREND IN ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A P-DEPENDENT TIME SERIES (CORR. 69 457 3) ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 EM OF ME/ A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION OF A RADON-NIKODYM DERIVATIVE TO THE PROBL CHARACTERS ANALYSIS OF DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSIONS NOTES. COMPUTING LARGE DISPE/ THE INTERVALS BETWEEN REGULAR EVENTS DISPLACED IN TIME BY INDEPENDENT RANDOM DEVIATIONS OF THE DISPLACED POISSON DISTRIBUTION-REGION B ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE DATA WHEN INTERACTION IS PRESENT WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE DATA WHEN INTERACTION IS PRESENT WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE SUBCLASS FREQUENCIES TWO-	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 69 JASA 67 JRSSB59 JRSSB65 JRSSB65 JRSSB65 JRSSB65 JRSSB61 JASA 67 BIOCS65 BIOCS65 BIOCS65	627 349 336 NO.2 1463 432 697 114 190 3B1 100 108 259 1011 476 643 115 308
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES APP APPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE OPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LCORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE ANALYSIS AN A THE DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A P-DEFENDENT TIME SERIES (CORR. 69 457 3) ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 EM OF ME/ A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION OF A RADON-NIKODYM DERIVATIVE TO THE PROBL CHARACTERS ANALYSIS OF DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSIONS NOTES. COMPUTING LARGE DISPE/ THE INTERVALS BETWEEN REGULAR EVENTS DISPLACED IN TIME BY INDEPENDENT RANDOM DEVIATIONS OF THE DISPLACED POISSON DISTRIBUTION-REGION B ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE DATA WHEN INTERACTION IS PRESENT WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE SUBCLASS FREQUENCIES TWO-VALUATION OF SPLITTING LIMIT CRITERIA IN MEASUREMENT DISPUTES, STATISTICAL E	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 69 JASA 67 JRSSB59 BIOKA68 JRSSB65 JRSSB65 JRSSB65 JRSSB65 JRSSB61 JRSSB61 JRSSB61 JRSSB61 JRSSB61 JRSSB61 JRSSB61	627 349 336 NO.2 1463 432 697 114 190 3B1 100 108 259 1011 476 643 308 263
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES APPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE OPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRICES OF MULTIVARIATE ANALYSIS AN A THE DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A P-DEPENDENT TIME SERIES (CORR. 69 457 3) ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 EM OF ME/ A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION OF A RADON-NIKODYM DERIVATIVE TO THE PROBL CHARACTERS A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSIONS LARGE DISPE/ THE INTERVALS BETWEEN REGULAR EVENTS DISPLACED IN TIME BY INDEPENDENT RANDOM DEVIATIONS OF THE DISPLACED IN TIME BY INDEPENDENT RANDOM DEVIATIONS OF WAY ANALYSIS OF VARIANCE OF DISPROPORTIONATE DATA WHEN INTERACTION IS PRESENT WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE SUBCLASS FREQUENCIES TWO-VALUATION OF SPLITTING LIMIT CRITERIA IN MEASUREMENT DISPUTES, STATISTICAL E IX INVERSION IN MULTIPLE REGRESSION AND MULTIVARIATE DISTANCE ANALYSIS /S OF JORDAN'S PROCEDURE FOR MATR	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 62 AMS 69 JASA 67 JRSSB59 BIOKA68 JJRSSB65 JRSSB65 JRSSB66 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOCS65	627 349 336 NO.2 1463 432 697 114 190 381 100 108 259 1011 476 643 115 308 263 352
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES A PPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE OPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A P-DEPENDENT TIME SERIES (CORR. 69 457 3) ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 EM OF ME/ A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION OF A RADON-NIKODYM DERIVATIVE TO THE PROBL CHARACTERS ANALYSIS OF DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSION OF A RADON-NIKODYM DERIVATIVE TO THE PROBL LARGE DISPE/ THE INTERVALS BETWEEN REGULAR EVENTS DISPLACED IN TIME BY INDEPENDENT RANDOM DEVIATIONS OF WAY ANALYSIS OF VARIANCE OF DISPROPORTIONATE DATA WHEN INTERACTION IS PRESENT WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE SUBCLASS FREQUENCIES TWO- VALUATION OF SPLITTING LIMIT CRITERIA IN MEASUREMENT DISPLACED POISSON DISTRIBUTION-REGION B ANALYSIS OF VARIANCE OF DISPROPORTIONATE SUBCLASS FREQUENCIES TWO- VALUATION OF SPLITTING LIMIT CRITERIA IN MEASUREMENT DISPLACED POISSON DISTRIBUTION-RECTOR STATISTICAL E IX INVERSION IN MULTIPLE REGRESSION AND MULTIVARIATE OF DISPRANCE SAMALYSIS /S OF JORDAN'S PROCEDURE FOR MATRIX DISTANCE BETWEEN POPULATIONS ON	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 62 AMS 69 JASSB59 BIOKA68 JRSSB55 JRSSB65 JRSSB65 JRSSB61 JASA 67 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOCS65	627 349 336 NO.2 1463 432 697 114 190 108 259 1011 476 643 115 308 263 352 859
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES A PPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-PREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE OPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LCORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE ANALYSIS AN A THE DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A PADDENDENT TIME SERIES (CORR. 69 457 3) ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 EM OF ME/ A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION OF A RADON-NIKODYM DERIVATIVE TO THE PROBL CHARACTERS ANALYSIS OF DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSIONS LARGE DISPE/ THE INTERVALS BETWEEN REGULAR EVENTS DISPLACED IN TIME BY INDEPENDENT RANDOM DEVIATIONS OF THE DISPLACED POISSON DISTRIBUTION-REGION B ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE DATA WHEN INTERACTION IS PRESENT WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE DATA WHEN INTERACTION IS PRESENT WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE SUBCLASS FREQUENCIES TWO-VALUATION OF SPLITTING LIMIT CRITERIA IN MEASUREMENT IX INVERSION IN MULTIPLE REGRESSION AND MULTIVARIATE DISTANCE BANDOM POINT TO THE BASIS OF ATTRIBUTE DATA A COSELY PACKED LATTICE. THE DISTANCE FROM A RANDOM POINT TO THE NEAREST POINT OF	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 69 JASA 67 JRSSB59 BIOKA68 JRSSB65 JRSSB65 JRSSB65 JRSSB61 JASA 67 BIOCS65 JRSSB61 JASA 67 BIOCS65 TECH 63 JRSSB63 BIOCS68 BIOCS68 BIOCS68	627 349 336 NO.2 1463 432 697 114 190 3B1 100 108 259 1011 476 643 315 308 263 352 261
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES A PPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES OF ALTERNATIVES OF INTERMEDIATE OPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LCORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE ANALYSIS AN A THE DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A P-DEPENDENT TIME SERIES (CORR. 69 457 3) ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 EM OF ME/ A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION OF A RADON-NIKODYM DERIVATIVE TO THE PROBL CHARACTERS ANALYSIS OF DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE LARGE DISPE/ THE INTERVALS BETWEEN REGULAR EVENTS DISPLACED IN TIME BY INDEPENDENT RANDOM DEVIATIONS OF THE DISPLACED POISSON DISTRIBUTION-REGION B ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE DATA WHEN INTERACTION IS PRESENT WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE DATA WHEN INTERACTION IS PRESENT WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE SUBCLASS FREQUENCIES STATISTICAL E IX INVERSION IN MULTIPLE REGRESSION AND MULTIVARIATE DISTANCE BETWEEN POPULATIONS ON THE BASIS OF A COSELY PACKED LATTICE. THE DISTANCE BETWEEN POPULATIONS ON THE BASIS OF CONFIDENCE INTERVALS FOR DISTANCE IN THE ANALYSIS OF VARIANCE	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 62 AMS 69 JASA 67 JRSSB59 BIOKA68 JRSSB65 JRSSB65 JRSSB65 JRSSB61 JRSSB61 JRSSB61 JRSSB61 JRSSB61 JRSSB63 BIOCS65 TECH 63 JRSSB63 BIOCS65 BIOCS65 BIOCS65	627 349 336 NO.2 1463 432 697 114 190 3B1 100 108 259 1011 476 643 315 308 263 352 859 261 360
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES A PPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE OPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRICES OF MULTIVARIATE ANALYSIS AN A THE DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A PADEPENDENT TIME SERIES (CORR. 69 457 3) ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 EM OF ME/ A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION OF A RADON-NIKODYM DERIVATIVE TO THE PROBL CHARACTERS A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSIONS NOTES. COMPUTING LARGE DISPE/ THE INTERVALS BETWEEN REGULAR EVENTS DISPLACED IN TIME BY INDEPENDENT RANDOM DEVIATIONS OF WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE DATA WHEN INTERACTION IS PRESENT WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE SUBCLASS FREQUENCIES TWO-VALUATION OF SPLITTING LIMIT CRITERIA IN MEASUREMENT DISPLACED IN TIME BY INDEPENDENT SPROCEDURE FOR MATR ATTRIBUTE DATA A COSELY PACKED LATTICE. THE DISTANCE BETWEEN POPULATIONS ON THE BASIS OF CONFIDENCE INTERVALS FOR DISTANCE FROM A RANDOM POINT TO THE NEAREST POINT OF TESTS OF RANDOMNESS BASED ON DISTANCE METHODS.	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 62 AMS 69 JASSB59 BIOKA68 JRSSB65 JRSSB65 JRSSB65 JRSSB61 JRSSB61 JRSSB61 JRSSB61 JRSSB61 JRSSB61 JRSSB61 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOCS68 BIOKA65 BIOKA65	627 349 336 NO.2 1463 432 697 114 190 381 100 108 259 1011 476 643 115 308 263 352 859 261 360 345
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES A PPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-PREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE OPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LCORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE ANALYSIS AN A THE DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A P-DEPENDENT TIME SERIES (CORR. 69 457 3) ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 EM OF ME/ A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION OF A RADON-NIKODYM DERIVATIVE TO THE PROBL CHARACTERS ANALYSIS OF DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE DISPLACED FOISSON DISTRIBUTION-REGION B ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE DATA WHEN INTERACTION IS PRESENT WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE SUBCLASS FREQUENCIES TWO- VALUATION OF SPLITTING LIMIT CRITERIA IN MEASUREMENT DISPROPORTIONATE SUBCLASS FREQUENCIES TWO- VALUATION OF SPLITTING LIMIT CRITERIA IN MEASUREMENT DISPROPORTIONATE SUBCLASS FREQUENCIES TWO- VALUATION OF SPLITTING LIMIT CRITERIA IN MEASUREMENT DISPROPORTIONATE SUBCLASS FREQUENCIES TWO- VALUATION OF SPLITTING LIMIT CRITERIA IN MEASUREMENT DISPROPORTIONATE SUBCLASS FREQUENCIES TWO- VALUATION OF SPLITTING LIMIT CRITERIA IN MEASUREMENT DISPROPORTIONATE SUBCLASS FREQUENCIES TWO- VALUATION OF SPLITTING LIMIT CRITERIA IN MEASUREMENT DISTANCE BRIVES POPULATIONS ON THE BASIS OF CONFIDENCE INTERVALS FOR DISTANCE IN THE ANALYSIS OF VARIANCE THE DISTANCE PROPERTIES OF LATENT ROOT AND VECTOR METHODS. USED IN MULTIVARIATE A	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 62 AMS 69 JASSB59 BIOKA68 JRSSB65 JRSSB65 JRSSB65 JRSSB61 JRSSB61 JRSSB61 JRSSB61 JRSSB61 JRSSB61 JRSSB61 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOCS68 BIOKA65 BIOKA65	627 349 336 NO.2 1463 432 697 114 190 381 100 108 259 1011 476 643 315 308 263 352 261 369 345 325
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES A PPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE OPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRICES OF MULTIVARIATE ANALYSIS AN A THE DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A PADEPENDENT TIME SERIES (CORR. 69 457 3) ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 EM OF ME/ A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION OF A RADON-NIKODYM DERIVATIVE TO THE PROBL CHARACTERS A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSIONS NOTES. COMPUTING LARGE DISPE/ THE INTERVALS BETWEEN REGULAR EVENTS DISPLACED IN TIME BY INDEPENDENT RANDOM DEVIATIONS OF WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE DATA WHEN INTERACTION IS PRESENT WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE SUBCLASS FREQUENCIES TWO-VALUATION OF SPLITTING LIMIT CRITERIA IN MEASUREMENT DISPLACED IN TIME BY INDEPENDENT SPROCEDURE FOR MATR ATTRIBUTE DATA A COSELY PACKED LATTICE. THE DISTANCE BETWEEN POPULATIONS ON THE BASIS OF CONFIDENCE INTERVALS FOR DISTANCE FROM A RANDOM POINT TO THE NEAREST POINT OF TESTS OF RANDOMNESS BASED ON DISTANCE METHODS.	BIOKA65 BIOKA57 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 69 JASA 67 JRSSB59 BIOKA68 JRSSB65 JRSSB65 JRSSB65 JRSSB65 JRSSB61 JASA 67 BIOCS65 TECH 63 JRSSB63 BIOCS65 BIOKA65 BIOKA65 BIOKA65 BIOKA66 BIOKA66 BIOKA66	627 349 336 NO. 2 1463 432 114 190 108 259 1011 476 643 115 859 261 360 345 261 360 345 207
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES A PPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES OF ALTERNATIVES OF INTERMEDIATE OPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LCORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE ANALYSIS AN A THE DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A P-DEPENDENT TIME SERIES (CORR. 69 457 3) ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 EM OF ME/ A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION OF A RADON-NIKODYM DERIVATIVE TO THE PROBL CHARACTERS ANALYSIS OF DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSION LARGE DISPE/ THE INTERVALS BETWEEN REGULAR EVENTS DISPLACED IN TIME BY INDEPENDENT RANDOM DEVIATIONS OF THE DISPLACED FOISSON DISTRIBUTION-REGION B ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE DATA WHEN INTERACTION IS PRESENT WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE DATA WHEN INTERACTION IS PRESENT WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE DATA WHEN INTERACTION OF THE BASIS OF VALUATION OF SPLITTING LIMIT CRITERIA IN MEASUREMENT DISPUTES, STATISTICAL E IX INVERSION IN MULTIPLE REGRESSION AND MULTIVARIATE DISTANCE BETWEEN POPULATIONS ON THE BASIS OF CONFIDENCE INTERVALS FOR DISTANCE METHODS. STATISTICAL E THE DISTANCE PROPERTIES OF LATENT ROOT AND VECTOR METHODS SOME DEVELOPMENTS IN 'DISTANCE PROPERTIES OF LATENT ROOT AND VECTOR METHODS SOME DEVELOPMENTS IN 'DISTANCE PROPERTIES OF LATENT ROOT AND	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 62 AMS 69 JASA 67 JRSSB59 BIOKA68 JRSSB65 JRSSB65 JRSSB65 JRSSB65 BIOCS65 JRSSB61 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65	627 349 NO.2 1463 432 697 1114 190 108 1259 1011 476 643 115 308 263 352 859 261 345 325 603 345 325 603
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES A PPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE OPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A NUMBER OF SPECIES MOSCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 EM OF ME/ A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION OF A RADON-NIKODYM DERIVATIVE TO THE PROBLE CHARACTERS ANALYSIS OF DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSIONS LARGE DISPE/ THE INTERVALS BETWEEN REGULAR EVENTS DISPLACED IN TIME BY INDEPENDENT RANDOM DEVIATIONS OF THE DISPLACED POISSON DISTRIBUTION-REGION B ANALYSIS OF VARIANCE OF THE MIXED MODEL WITH DISPROPORTIONATE BUBCLASS FREQUENCIES TWO-VALUATION OF SPLITTING LIMIT CRITERIA IN MEASUREMENT DISPLACED IN TIME BY INDEPENDENT RANDOM DEVIATIONS OF THE DISPLACED POISSON DISTRIBUTION-REGION B ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE SUBCLASS FREQUENCIES TWO-VALUATION OF SPLITTING LIMIT CRITERIA IN MEASUREMENT DISPLACE IN THE ANALYSIS OF VARIANCE CONFIDENCE INTERVALS FOR DISTANCE ANALYSIS /S OF JORDAN'S PROCEDURE FOR MATR ATTRIBUTE DATA A COSELY PACKED LATTICE THE DISTANCE MATRICES OF LATENT ROOT AND VECTOR METHODS SOME DEVELOPEMENTS IN 'DISTANCE SAMPLING' RIANCE MATRICES AN EMPIRICAL COMPARISON OF DISTANCE STATISTICS FOR	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 62 AMS 69 JASA 67 JRSSB55 JRSSB65 JRSSB65 JRSSB65 JRSSB65 JRSSB61 JASA 67 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOKA58 BIOKA65 BIOKA66 BIOCS67 BIOCS66 BIOCS66 BIOCS66 BIOCS66	627 349 336 NO. 2 1463 432 432 100 108 259 101 115 308 263 352 261 365 365 267 633 453 96
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES A PPROPRIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES ACAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE OPERTIES OP POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE ANALYSIS AN A THE DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A PODEPHONENT TIME SERIES (CORR. 69 457 3) ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 EM OF ME/ A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPOPORTIONATE DATA WHEN INTERACTION IS PRESENT WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPOPORTIONATE DATA WHEN INTERACTION IS PRESENT WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPOPORTIONATE DATA WHEN INTERACTION IS PRESENT A COSELY PACKED LATTICE. TESTS OF RANDOMNESS BASED ON DISTANCE FROM A RANDOM POINT TO THE NEAREST POINT OF LISTANCE METHODS. USED IN MULTIVARIATE ANALYSIS SOME DEVELOPEMENTS IN 'DISTANCE SAMPLING' RIANCE MATRICES AN EMPIRICAL COMPARISON OF DISTANCE SAMPLING' RIANCE MATRICES AN EMPIRICAL COMPARISON OF DISTANCE SAMPLING' RIANCE MATRICES AN EMPIRICAL COMPARISON OF DISTANCES STATISTICS FOR POPULATIONS, THE PROBLE	BIOKA65 BIOKA57 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 62 AMS 69 JASSB59 BIOKA68 JRSSB65 JRSSB65 JRSSB65 JRSSB65 JRSSB65 JRSSB61 JASSB61 JASSB63 BIOCS65 TECH 63 JRSSB63 BIOKA65 BIOKA65 BIOKA66 BIOKA66 BIOCS67 BIOCS68 BIOCS66 BIOCS66 BIOCS66 BIOCS66 BIOCS66 BIOCS66 BIOCS66 BIOCS66 BIOCS66 BIOCS66 AMS 67	627 349 336 NO. 2 1463 432 114 190 108 259 1011 476 643 115 859 261 360 345 360 345 360 345 360 345 360 352 560 360 360 360 360 360 360 360 360 360 3
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES A PPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE DPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRICES OF MULTIVARIATE ANALYSIS AN A THE DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 EM OF ME/ A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION OF A RADON-NIKODYM DERIVATIVE TO THE PROBLE CHARACTERS ANALYSIS OF DISPERSION WITH INCOMPLETE DESERVATIONS ON ONE OF THE A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSIONS ANALYSIS OF VARIANCE OF DISPERSIONS ANALYSIS OF VARIANCE OF DISPERSIONS NOTES. COMPUTING LARGE DISPE/ THE INTERVALS BETWEEN REGULAR EVENTS DISPERSIONS ANALYSIS OF VARIANCE OF DISPERSIONS ANALYSIS OF VARIANCE OF DISPERSION SETRIBUTION-REGION B ANALYSIS OF VARIANCE OF DISPERSION SETRIBUTION-REGION B ANALYSIS OF VARIANCE OF DISPERSION SETRIBUTION OF SPECIES THE DISPLACED POISSON DISTRIBUTION OF SPECIES TWO-VALUATION OF SPLITTING LIMIT CRITERIA IN MEASUREMENT DISPUTES, STATISTICAL E IX INVERSION IN MULTIPLE REGRESSION AND MULTIVARIATE DISTANCE FROM A RANDOM POINT TO THE NEAREST POINT OF CONFIDENCE INTERVALS FOR DISTANCE FROM A RANDOM POINT TO THE NEAREST POINT OF CONFIDENCE INTERVALS FOR DISTANCE FROM A RANDOM POINT TO THE NEAREST POINT OF TESTS OF RANDOMNESS BASED ON DISTANCE SAMPLING' USED IN MULTIVARIATE ANALYSIS SOME DEVELOPEMENTS IN 'DISTANCE SAMPLING'	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 62 AMS 67 JRSSB59 BIOKA68 JRSSB65 JRSSB65 JRSSB61 JASA 67 BIOCS65 BIOCS65 TECH 63 JRSSB63 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA65 BIOKA65 BIOKA66 BIOCS67 BIOCS68 BIOKA66 BIOCS68	627 349 NO.2 1463 432 697 114 190 108 259 1001 476 643 115 308 263 352 261 360 345 325 207 633 453 96 74B
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES ACAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTIONS A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTIONS OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRIX IN MULTIVARIATE NORMAL DISTRIBUTION THE DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A P-DEPENDENT TIME SERIES (CORR. 69 457 3) ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 MASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 MOFFMEY A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 MALYSIS OF DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 A NALYSIS OF VARIANCE OF DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE DISPLACED IN TIME BY INDEPENDENT RANDOM DEVIATIONS OF THE DISPLACED IN TIME BY INDEPENDENT RANDOM DEVIATIONS OF THE DISPLACED IN TIME BY INDEPENDENT RANDOM DEVIATIONS OF THE DISPLACED IN TIME BY INDEPENDENT RANDOM DEVIATIONS OF THE DISPLACED IN THE BY INDEPENDENT RANDOM DEVIATIONS OF THE DISPLACED IN THE BY INDEPENDENT RANDOM DEVIATIONS OF THE DISPLACED IN THE BY INDEPENDENT RANDOM DEVIATIONS OF THE DISPLACED IN THE BY INDEPENDENT RANDOM DEVIATIONS OF THE DISPLACED OF DISPLACED IN THE BY INDEPENDENT OF THE PROBLEMAL PROPORTIONS OF THE PROBLEMAL	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 62 AMS 67 JRSSB59 BIOKA68 JRSSB65 JRSSB65 JRSSB65 JRSSB65 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOKA58 BIOKA68 BIOKA66 BIOKA66 BIOCS66 BIOKA66 BIOCS66 BIOKA66 BIOCS66 AMS 67 AMS 64 BIOKA65	627 349 336 NO. 2 1463 432 432 432 432 432 100 108 259 1001 476 643 352 261 360 363 352 261 363 363 363 363 363 364 363 365 365 365 365 365 365 365 365 365
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION BY A POWER OF CHI-SQUARE A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE OPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A P-DEPENDENT TIME SERIES (CORR. 69 457 3) ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 53 EM OF ME/ A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION OF A RADON-NIKODYM DERIVATIVE TO THE PROBL CHARACTERS A DISCRIMINANT FUNCTION FORM WITHIN-SAMPLE DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE A DISCRIMINANT FUNCTION FORM WITHIN-SAMPLE DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE DATA WHEN INTERACTION IS PRESENT WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE DATA WHEN INTERACTION IS PRESENT WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE SUBCLASS FREQUENCIES TWO- VALUATION OF SPLITTING LIMIT CRITERIA IN MEASUREMENT DISTANCE BETWEEN POPULATIONS ON THE BASIS OF CONFIDENCE INTERVALS FOR DISTANCE NETWEEN PROPULATIONS ON THE BASIS OF CONFIDENCE INTERVALS FOR DISTANCE METHERS OF LATENT ROOT AND VECTOR METHODS SOME DEVELOPMENTS IN 'DISTANCE SAMPLING' LISTANCE BETWEEN PO	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 62 AMS 69 JASA 67 JRSSB59 BIOKA65 JRSSB65 JRSSB65 JRSSB65 JRSSB61 JASA 67 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOKA58 BIOKA65 BIOKA66 BIOKA66 BIOCS67 BIOCS68 BIOCS68 BIOKA66 BIOCS67 BIOCS68 BIOCS68 BIOCS66 BIOCS66 BIOCS68 BIOKA65 BIOKA65 BIOCS68 BIOCS68 BIOCS66 BIOCS66 BIOCS66 BIOCS68 BIOCS68 BIOCS66 BIOCS68 BIOCS66 BIOCS68 BIOCS66 B	627 349 336 NO. 2 1463 432 432 100 108 259 101 115 1308 263 352 261 360 345 261 365 365 374 865 96 550 74B 533 275
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES A PAPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION BY A POWER OF CHI-SQUARE A POPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE OPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE ANALYSIS AN A THE DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A P-DEPENDENT TIME SERIES (CORR. 69 457 3) ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-HIKODYM DERIVATIVE (CORR. 65 35) BASEOVATION OF THE DISPERSION OF A RADON-HIKODYM DERIVATIVE TO THE PROBLE CHARACTERS ANALYSIS OF DISPERSION OF A RADON-HIKODYM DERIVATIVE TO THE PROBLE CHARACTERS ANALYSIS OF DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE DISPLACED POISSON DISTRIBUTION-REGION B ANALYSIS OF VARIANCE OF DISPERSION WITH INCOMPLETE OBSERVATIONS OF THE DISPLACED POISSON DISTRIBUTION-REGION B ANALYSIS OF VARIANCE OF DISPERSION WITH INCOMPLETE OBSERVATION IS PRESENT WAY ANALYSIS OF VARIANCE OF DISPERSION OF A RADON-HIKODYM DERIVATIVE TO THE PROBLEMANCE OF DISPERSION WITH INCOMPLETE OBSERVATIONS OF THE DISPLACED POISSON DISTRIBUTION-REGION B ANALYSIS OF VARIANCE OF DISPERSION WITH INCOMPLETE OBSERVATIONS OF THE DISPLACED POISSON DISTRIBUTION-REGION B ANALYSIS OF VARIANCE OF DISPLACED POISSON DISTRIBUTION FROCEDURE FOR MATR ATTRIBUTE DATA A COSSELY PACKED LATTICE. THE DISPLACED POISSON DISTRIBUTION OF THE MEASUREMENT DISTANCE METHODS. CONFIDENCE INTERVALS FOR DISTANCE POPERTIES OF LATENT ROOT AND VECTOR METHODS SOME DEVELOPMENTS IN 'DISTANCE SHAPE METHODS. USED IN MULTIVARIATE ANALYSIS OF DISTANCE STATISTICS FOR POPULAT	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 62 AMS 67 JRSSB59 BIOKA68 JRSSB65 JRSSB65 JRSSB65 JRSSB65 JRSSB65 BIOCS65 BIOCS65 BIOCS65 BIOCS65 BIOKA68 BIOKA68 BIOKA66 BIOKA66 BIOCS66	627 349 NO.2 1463 432 697 1114 190 108 259 1011 476 643 115 308 263 345 325 859 261 325 643 345 325 643 453 96 74B 855 97 74B 853 853 853 853 853 853 853 853 853 853
ROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES A PAPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION BY A POWER OF CHI-SQUARE A POPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES SPECIFICITY TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE OPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTI LGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE ANALYSIS AN A THE DISPERSION OF A NUMBER OF SPECIES NCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A P-DEPENDENT TIME SERIES (CORR. 69 457 3) ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-HIKODYM DERIVATIVE (CORR. 65 35) BASEOVATION OF THE DISPERSION OF A RADON-HIKODYM DERIVATIVE TO THE PROBLE CHARACTERS ANALYSIS OF DISPERSION OF A RADON-HIKODYM DERIVATIVE TO THE PROBLE CHARACTERS ANALYSIS OF DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE DISPLACED POISSON DISTRIBUTION-REGION B ANALYSIS OF VARIANCE OF DISPERSION WITH INCOMPLETE OBSERVATIONS OF THE DISPLACED POISSON DISTRIBUTION-REGION B ANALYSIS OF VARIANCE OF DISPERSION WITH INCOMPLETE OBSERVATION IS PRESENT WAY ANALYSIS OF VARIANCE OF DISPERSION OF A RADON-HIKODYM DERIVATIVE TO THE PROBLEMANCE OF DISPERSION WITH INCOMPLETE OBSERVATIONS OF THE DISPLACED POISSON DISTRIBUTION-REGION B ANALYSIS OF VARIANCE OF DISPERSION WITH INCOMPLETE OBSERVATIONS OF THE DISPLACED POISSON DISTRIBUTION-REGION B ANALYSIS OF VARIANCE OF DISPLACED POISSON DISTRIBUTION FROCEDURE FOR MATR ATTRIBUTE DATA A COSSELY PACKED LATTICE. THE DISPLACED POISSON DISTRIBUTION OF THE MEASUREMENT DISTANCE METHODS. CONFIDENCE INTERVALS FOR DISTANCE POPERTIES OF LATENT ROOT AND VECTOR METHODS SOME DEVELOPMENTS IN 'DISTANCE SHAPE METHODS. USED IN MULTIVARIATE ANALYSIS OF DISTANCE STATISTICS FOR POPULAT	BIOKA65 BIOKA57 BIOKA53 SASJ 69 AMS 62 AMS 62 AMS 67 JRSSB59 BIOKA68 JRSSB65 JRSSB65 JRSSB61 JASA 67 BIOCS65 BIOCS65 TECH 63 BIOKA68 BIOKA68 BIOKA66 BIOCS67 BIOCS67 BIOCS67 BIOCS68 BIOKA66 BIOCS66 BIOKA66 BIOCS66 BIOKA66 BIOCS67 BIOCS68 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA66 BIOCS68 BIOKA66 BIOCS68 BIOKA65 BIOKA66 BIOCS68	627 349 NO.2 1463 432 697 1114 190 108 259 1011 476 643 308 263 308 261 335 285 96 633 453 96 633 453 97 74B 550 74B 550 74B 550 74B 550 74B 550 74B 550 74B 550 74B 750 750 750 750 750 750 750 750 750 750

DIS - DIS TITLE WORD INDEX

```
SURVEY INVOLVING UNEQUAL NUMBERS OF ORCHARDS OF DISTINCT TYPE
                                                                             SAMPLING ERRORS IN AN ORCHARD BLOCS65
HE JOINT PROBABILITY APPROACHES IN THE SPE/ ON THE DISTINCTION BETWEEN THE CONDITIONAL PROBABILITY AND T BIOKA64 481
                                                      DISTINGUISHABILITY OF PROBABILITY MEASURES
                                                                                                             AMS 69 381
TRANSLATE ITSELF
                                                      DISTINGUISHING A SEQUENCE OF RANDOM VARIABLES FROM A
                                                                                                             AMS 65 1107
                                                  ON DISTINGUISHING TRANSLATES OF MEASURES
                                                                                                             AMS 69 1773
    VARIABLES WHICH ARE DEPENDENT OR NON-IDENTICALLY DISTRIBUTED
                                                                               A RENEWAL THEOREM FOR RANDOM
                                                                                                             AMS 63
 IN WHICH THE ABUNDANCES OF SPECIES ARE LOG-NORMALLY DISTRIBUTED
                                                                   /ES IN A SAMPLE OF AN ANIMAL POPULATION BIOKA51
 (ACKNOWLEDGEM/
                 DISTRIBUTION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY CORRELATED GAMMA-VARIABLES.
                                                                                                             AMS 64
L/ ESTIMATION OF PARAMETERS OF MIXED EXPONENTIALLY DISTRIBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED BIOKA58
                                                                                                                    504
                  AN APPLICATION OF VARIABLE WEIGHT DISTRIBUTED LAGS
                                                                                                            JASA 67 1277
                       THE ANALYSIS OF EXPONENTIALLY DISTRIBUTED LIFE-TIMES WITH TWO TYPES OF FAILURE
                                                                                                            JRSSB59 411
THE AUTOCORRELATION FUNCTION OF A SEQUENCE UNIFORMLY DISTRIBUTED MODULO 1
                                                                                                             AMS 63 1243
  BIRTH, DEATH AND MIGRATION PROCESSES FOR SPATIALLY DISTRIBUTED POPULATIONS
                                                                                                 STOCHASTIC BIOKA68 189
  AN EXTENSION OF ROSEN'S THEOREM TO NON-IDENTICALLY DISTRIBUTED RANDOM VARIABLES
                                                                                                             AMS 68
                                                                                                                    897
                        THE Z-TEST AND SYMMETRICALLY DISTRIBUTED RANDOM VARIABLES
                                                                                                            BIOKA59
                  A METHOD OF ANALYZING LOG-NORMALLY DISTRIBUTED SURVIVAL DATA WITH INCOMPLETE FOLLOW-UP
                                                                                                            JASA 60
       INTERVALS FOR THE MEANS OF DEPENDENT NORMALLY DISTRIBUTED VARIABLES
                                                                                                 CONFIDENCE JASA 59
                                                                                                                     613
   TESTING FOR SERIAL CORRELATION WITH EXPONENTIALLY DISTRIBUTED VARIATES
                                                                                                            BIOKA67
     ESTIMATING THE PARAMETERS OF A MODIFIED POISSON DISTRIBUTION
                                                                                                            JASA 60
                                                                                                                     139
     VARIANCE OF THE MEDIAN OF SAMPLES FROM A CAUCHY DISTRIBUTION
                                                                                                            JASA 60
                                                                                                                    322
        TABLES OF CONFIDENCE LIMITS FOR THE BINOMIAL DISTRIBUTION
                                                                                                            JASA 60 521
                     ORDER STATISTICS FROM THE GAMMA DISTRIBUTION
                                                                                                            TECH 60 243
                   THE NON-CENTRAL MULTIVARIATE BETA DISTRIBUTION
                                                                                                             AMS 61 104
            A BIVARIATE EXTENSION OF THE EXPONENTIAL DISTRIBUTION
                                                                                                             JASA 61
                                                                                                                     971
                                   THE FOLDED NORMAL DISTRIBUTION
                                                                                                            TECH 61
                                                                                                                     543
       A CHARACTERIZATION OF THE MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                             AMS 62
                                                                                                                     533
            CHARACTERIZATION OF THE INVERSE GAUSSIAN DISTRIBUTION
                                                                                                             AMS 62
                                                                                                                     800
                       A GENERALIZATION OF THE GAMMA DISTRIBUTION
                                                                                                             AMS 62 11B7
  A REPRESENTATION OF THE SYMMETRIC BIVARIATE CAUCHY DISTRIBUTION
                                                                                                             AMS 62 1256
                                                                                                             AMS 62 1267
                    A CHARACTERIZATION OF THE CAUCHY DISTRIBUTION
                   A CHARACTERIZATION OF THE WISHART DISTRIBUTION
                                                                                                             AMS 62 1272
                     PROBABILITY PLOTS FOR THE GAMMA DISTRIBUTION
                                                                                                            TECH 62
                                                                                                                       1
                     A NOTE ON THE NEGATIVE BINOMIAL DISTRIBUTION
                                                                                                            TECH 62
                                                                                                                     609
            SIMPLIFIED ESTIMATES FOR THE EXPONENTIAL DISTRIBUTION
                                                                                                             AMS 63
                                                                                                                    102
                     THE POISSON TENDENCY IN TRAFFIC DISTRIBUTION
                                                                                                             AMS 63
                    THE PROBABILITY IN THE TAIL OF A DISTRIBUTION
                                                                                                             AMS 63
                                     THE POSTERIOR T DISTRIBUTION
                                                                                                             AMS 63
                                                                                                                     568
             ON THE RENEWAL FUNCTION FOR THE WEIBULL DISTRIBUTION
                                                                                                            TECH 63 393
         CUMULATIVE SUM CHARTS FOR THE FOLDED NORMAL DISTRIBUTION
                                                                                                            TECH 63
                                                                                                                     451
                    TABLES OF THE LOGARITHMIC SERIES DISTRIBUTION
                                                                                                             AMS 64
                                                                                                                     284
       ON TWO-SIDED TOLERANCE INTERVALS FOR A NORMAL DISTRIBUTION
                                                                                                             AMS 64
                                                                                                                     762
               A CHARACTERIZATION OF THE EXPONENTIAL DISTRIBUTION
                                                                                                             AMS 64 1199
                 A NOTE ON THE TRUNCATED EXPONENTIAL DISTRIBUTION
                                                                                                             AMS 64 1366
               AN APPLICATION OF A GENERALIZED GAMMA DISTRIBUTION
                                                                                                             AMS 64 1368
  ORTHANT PROBABILITIES FOR THE QUADRIVARIATE NORMAL DISTRIBUTION
                                                                                                             AMS 64 1685
           A NOTE ON THE POISSON TENDENCY IN TRAFFIC DISTRIBUTION
                                                                                                             AMS 64 1823
    ANOTHER DERIVATION OF THE NON-CENTRAL CHI-SQUARE DISTRIBUTION
                                                                                                            JASA 64 957
   GENERATING A VARIABLE FROM THE TAIL OF THE NORMAL DISTRIBUTION
                                                                                                            TECH 64
                                                                                                                     101
                    QUERY, THE MEAN OF THE TAIL OF A DISTRIBUTION
                                                                                                            TECH 64
                                                                                                                     331
  CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL DISTRIBUTION
                                                                                                            TECH 64 377
                   THE ASYMPTOTICALLY UNBIASED PRIOR DISTRIBUTION
                                                                                                             AMS 65 1137
                              ON THE COMPLEX WISHART DISTRIBUTION
                                                                                                             AMS 65 313
                    A PROPERTY OF THE MULTIVARIATE T DISTRIBUTION
                                                                                                             AMS 65
                                                                                                                    712
           PROPERTIES OF THE EXTENDED HYPERGEOMETRIC DISTRIBUTION
                                                                                                             AMS 65 93B
          TOLERANCE LIMITS FOR THE GENERALIZED GAMMA DISTRIBUTION
                                                                                                            JASA 65 1142
        PARAMETER ESTIMATION FOR A GENERALIZED GAMMA DISTRIBUTION
                                                                                                            TECH 65 349
        QUERY, COMBINATION OF A NORMAL AND A UNIFORM DISTRIBUTION
                                                                                                            TECH 65
                                                                                                                     449
       ANOTHER CHARACTERISTIC PROPERTY OF THE CAUCHY DISTRIBUTION
                                                                                                             AMS 66 289
A CHARACTERISTIC PROPERTY OF THE MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                             AMS 66 1829
 LINEAR ESTIMATES OF PARAMETERS IN THE EXTREME VALUE DISTRIBUTION
                                                                                                            TECH 66
       CUMULATIVE SUM CONTROL CHARTS AND THE WEIBULL DISTRIBUTION A BAYESIAN STUDY OF THE MULTINOMIAL DISTRIBUTION
                                                                                                                    481
                                                                                                            TECH 66
                                                                                                             AMS 67 1423
                          A MULTIVARIATE EXPONENTIAL DISTRIBUTION
                                                                                                            JASA 67
                                                                                                                      30
    A NOTE ON REGRESSION IN THE MULTIVARIATE POISSON DISTRIBUTION
                                                                                                            JASA 67
                                                                                                                    251
              A BIVARIATE WARNING-TIME, FAILURE-TIME DISTRIBUTION
                                                                                                            JASA 67
                                                                                                                    589
          AN INEQUALITY ON A BIVARIATE STUDENT'S 'T' DISTRIBUTION
                                                                                                            JASA 67
                                                                                                                     603
    A NOTE ON ESTIMATION FROM A TYPE I EXTREME-VALUE DISTRIBUTION
                                                                                                            TECH 67
                                                                                                                     325
        VARIABLES SAMPLING PLANS BASED ON THE NORMAL DISTRIBUTION
                                                                                                            TECH 67
                                                                                                                     417
             ESTIMATION OF PARAMETERS IN THE WEIBULL DISTRIBUTION
                                                                                                            TECH 67
                                                                                                                     621
     CONSTRUCTION OF SEQUENCES ESTIMATING THE MIXING DISTRIBUTION
                                                                                                             AMS 68
                                                                                                                     286
                              THE DISCRETE STUDENT'S DISTRIBUTION
                                                                                                             AMS 6B 1513
       ESTIMATION OF THE PARAMETER N IN THE BINOMIAL DISTRIBUTION
                                                                                                            JAŠA 68
                                                                                                                    150
 PARAMETER ESTIMATION FOR A MULTIVARIATE EXPONENTIAL DISTRIBUTION
                                                                                                            JASA 68
                                                                                                                     84B
                                                                                                            JASA 69
                                                                                                                     242
                                         THE T-RATIO DISTRIBUTION
      AN APPROXIMATION TO THE WILCOXON-MANN-WHITNEY DISTRIBUTION
                                                                                                            JASA 69
                                                                                                                     591
                                                                                                                     632
      A TABLE FOR ESTIMATING THE MEAN OF A LOGNORMAL DISTRIBUTION
                                                                                                            JASA 69
                          A COMPOUNDED MULTIPLE RUNS DISTRIBUTION
                                                                                                            JASA 69 NO.4
                           A STEPWISE MULTIVARIATE T-DISTRIBUTION
                                                                                                            SASJ 69
                                                                                                                     17
           THE NONCENTRAL MULTIVARIATE BETA TYPE TWO DISTRIBUTION
                                                                                                            SASJ 69 NO.2
       INFORMATION AND SAMPLING FROM THE EXPONENTIAL DISTRIBUTION
                                                                                                            TECH 69
                                                                                                                     41
              QUERY, TOLERANCE LIMITS FOR A BINOMIAL DISTRIBUTION
                                                                                                            TECH 69
                                                                                                                    201
         INFERENCES ON THE PARAMETERS OF THE WEIBULL DISTRIBUTION
                                                                                                            TECH 69 445
                     TWO SAMPLE TESTS IN THE WEIBULL DISTRIBUTION
                                                                                                            TECH 69 NO.4
                     THE TRUNCATED NEGATIVE BINOMIAL DISTRIBUTION
                                                                                                            BIOKA55
                                                                                                                    58
                 A NOTE ON THE CIRCULAR MULTIVARIATE DISTRIBUTION
                                                                                                            BIOKA56
                                                                                                                     467
          TESTING FOR DEPARTURE FROM THE EXPONENTIAL DISTRIBUTION
                                                                                                            BIOKA57
                                                                                                                    253
```

```
THE MOMENTS OF THE LEIPNIK DISTRIBUTION
        A NOTE ON THE MEAN DEVIATION OF THE BINOMIAL DISTRIBUTION
 INTERVAL ESTIMATION FOR THE PARAMETER OF A BINOMIAL DISTRIBUTION
                   THE MEAN DEVIATION OF THE POISSON DISTRIBUTION
     TABLES FOR WALD TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION
                      ON THE NON-CENTRAL CHI-SQUARE DISTRIBUTION
     CONFIDENCE LIMITS IN THE CASE OF THE CEOMETRIC DISTRIBUTION
                                   THE BOREL-TANNER DISTRIBUTION
                           A DERIVATION OF THE BOREL DISTRIBUTION
                   THE MOMENTS OF THE NON-CENTRAL T-DISTRIBUTION
    A NOTE ON THE EQUICORRELATED MULTIVARIATE NORMAL DISTRIBUTION
        APPROXIMATIONS TO THE NON-CENTRAL CHI-SQUARE DISTRIBUTION
         A CHARACTERIZATION OF THE EXPONENTIAL-TYPE DISTRIBUTION
ADDITIONAL PERCENTAGE POINTS FOR THE INCOMPLETE BETA DISTRIBUTION
 A NEW TABLE OF PERCENTACE POINTS OF THE CHI-SQUARE DISTRIBUTION
                ESTIMATION FOR THE BIVARIATE POISSON DISTRIBUTION
                     A NOTE ON THE NECATIVE BINOMIAL DISTRIBUTION
                           DECOMPOSITION OF WISHART DISTRIBUTION
ON CUPTA'S ESTIMATES OF THE PARAMETERS OF THE NORMAL DISTRIBUTION
                           THE MODE OF A MULTINOMIAL DISTRIBUTION
                    SOME PROPERTIES OF THE 'HERMITE' DISTRIBUTION
         A SPECIAL CASE OF A BIVARIATE NON-CENTRAL T-DISTRIBUTION
           TESTING FOR HOMOGENEITY, II. THE POISSON DISTRIBUTION
        BIVARIATE GENERALIZATIONS OF NEYMAN'S TYPE A DISTRIBUTION
       ESTIMATION OF THE PARAMETERS OF THE LOCISTIC DISTRIBUTION
        A NOTE ON APPROXIMATING TO THE NON-CENTRAL F DISTRIBUTION
            AN ALTERNATIVE DERIVATION OF THE HERMITE DISTRIBUTION
 THE EMPIRICAL BAYES APPROACH, ESTIMATING THE PRIOR DISTRIBUTION
       ANOTHER TEST FOR THE UNIFORMITY OF A CIRCULAR DISTRIBUTION
         A SIMPLE TEST FOR UNIFORMITY OF A CIRCULAR DISTRIBUTION
                            TESTS FOR THE VON MISES DISTRIBUTION
          EMPIRICAL BAYES ESTIMATION FOR THE POISSON DISTRIBUTION
                  ON CORRECTIONS TO THE CHI-SQUARED DISTRIBUTION
             MOMENTS OF A TRUNCATED BIVARIATE NORMAL DISTRIBUTION
                     ON A PROPERTY OF THE LOCNORMAL DISTRIBUTION
    BAYESIAN ESTIMATION OF THE VARIANCE OF A NORMAL DISTRIBUTION
       USING THE OBSERVATIONS TO ESTIMATE THE PRIOR DISTRIBUTION
      ESTIMATION OF THE PARAMETER OF AN EXPONENTIAL DISTRIBUTION
     AN ANALYSIS OF DEPARTURES FROM THE EXPONENTIAL DISTRIBUTION
                         A CENERALISED LOCIT-NORMAL DISTRIBUTION
                                 A NEW RESPONSE TIME DISTRIBUTION
              NOTES. CHARACTERIZING THE EXPONENTIAL DISTRIBUTION
                      THE ESTIMATION OF THE 'SHORT' DISTRIBUTION
 NOTE ON REPRESENTATIONS OF THE DOUBLY NON-CENTRAL T DISTRIBUTION
CENTRAL TOLERANCE RECION FOR THE MULTIVARIATE NORMAL DISTRIBUTION
 THE DERIVATION AND APPLICABILITY OF NEYMAN'S TYPE A DISTRIBUTION
 COVERING CIRCLE OF A SAMPLE FROM A CIRCULAR NORMAL DISTRIBUTION
ESTIMATION OF THE POISSON PARAMETER FROM A TRUNCATED DISTRIBUTION
   PERCENT AND 0.1 PERCENT POINTS OF THE CHI-SQUARE DISTRIBUTION
  TABLE OF PERCENTACE POINTS OF THE PEARSON TYPE III DISTRIBUTION
   LINEAR SEQUENTIAL TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION
STATISTICS ESTIMATORS OF THE LOCATION OF THE CAUCHY DISTRIBUTION
  FORMS IN THE ORDER STATISTICS FROM AN EXPONENTIAL DISTRIBUTION
  ROBUSTNESS OF SOME CHARACTERIZATIONS OF THE NORMAL DISTRIBUTION
   PROBLEM OF ESTIMATION FOR THE BIVARIATE LOCNORMAL DISTRIBUTION
PPLICATIONS OF TWO APPROXIMATIONS TO THE MULTINOMIAL DISTRIBUTION
 THE CHARACTERISTIC FUNCTION OF A SERIAL-CORRELATION DISTRIBUTION
  CONFIDENCE INTERVALS FOR THE VARIANCE OF A NORMAL DISTRIBUTION
FOR MAKING INFERENCES ABOUT THE VARIANCE OF A NORMAL DISTRIBUTION
  AND INCOMPLETE MOMENTS OF THE MULTIVARIATE NORMAL DISTRIBUTION
  ESTIMATION OF PARAMETERS OF A MULTIVARIATE NORMAL DISTRIBUTION
     TABLES OF THE PERCENTAGE POINTS OF STUDENT'S T-DISTRIBUTION
  K-STATISTICS AND CUMULANTS OF THEIR JOINT SAMPLING DISTRIBUTION
  INTECRAL DERIVATION OF THE NON-CENTRAL CHI-SQUARE DISTRIBUTION
SOME ASYMPTOTIC PROPERTIES OF THE LOCARITHMIC SERIES DISTRIBUTION
         FOR A QUADRATIC FORM TO HAVE A CHI-SQUARED DISTRIBUTION
       OF PARAMETERS OF A TRUNCATED BIVARIATE NORMAL DISTRIBUTION
   OF THE SHAPE AND SCALE PARAMETERS OF THE WEIBULL DISTRIBUTION
   POINTS OF THE RANCE FROM A SYMMETRIC MULTINOMIAL DISTRIBUTION
  SUM OF VALUES FROM A NORMAL AND A TRUNCATED NORMAL DISTRIBUTION
  METHODS OF FITTING THE TRUNCATED NECATIVE BINOMIAL DISTRIBUTION
   GENERATING FUNCTION OF THE TRUNCATED MULTI-NORMAL DISTRIBUTION
POINTS AND MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTION
OF HYPOTHESES CONCERNING THE THREE-PARAMETER WEIBULL DISTRIBUTION
  AND DUAL CONFIGURATIONS AND THE RECIPROCAL NORMAL DISTRIBUTION
 OF RADICAL ERROR IN THE BIVARIATE ELLIPTICAL NORMAL DISTRIBUTION
ABILITIES FOR THE EQUICORRELATED MULTIVARIATE NORMAL DISTRIBUTION
  ESTIMATION OF THE LOCATION PARAMETER OF THE CAUCHY DISTRIBUTION
  TEST FOR THE LOCATION PARAMETER OF AN EXPONENTIAL DISTRIBUTION
  THE METHOD OF MOMENTS AND THE CRAM-CHARLIER TYPE A DISTRIBUTION
        THE PARAMETER OF A DOUBLY TRUNCATED BINOMIAL DISTRIBUTION
       OF WARRANTY ASSURANCE WHEN LIFE HAS A WEIBULL DISTRIBUTION
INCOMPLETE BETA-FUNCTION AND THE CUMULATIVE BINOMIAL DISTRIBUTION
         MOMENTS OF ORDER STATISTICS FROM A LOCISTIC DISTRIBUTION
OMPARISONS OF SEVERAL APPROXIMATIONS TO THE BINOMIAL DISTRIBUTION
   OF THE EQUALITY OF PROBABILITIES IN A MULTINOMIAL DISTRIBUTION
```

BIOKA57 270 BIOKA57 532 BIOKA5B 275 BIOKA5B 556 BIOKA59 169 BIOKA59 235 BIOKA59 260 RIOKA60 143 BIOKA61 222 BIOKA61 465 BIOKA62 269 BIOKA63 199 BIOKA63 205 BIOKA63 449 BIOKA64 231 BIOKA64 241 BIOKA64 264 267 BIOKA64 BIOKA64 498 BTOKA64 513 BTOKA65 3B1 BIOKA65 437 BIOKA66 1.83 BIOKA66 241 BIOKA66 565 BIOKA66 606 BIOKA66 627 BIOKA67 326 BIOKA67 675 BIOKA6B BIOKA69 149 BIOKA69 349 JRSSB5B 387 JRSSB61 405 JRSSB63 392 JRSSR64 63 JRSSB65 17 JRSSR67 525 JRSSB67 540 BIOCS65 721 BIOCS67 227 BIOCS68 437 BIOCS69 417 A JASA 68 1013 A JRSSB68 599 ON BIOKA5B 32 THE BIOKA52 137 THE BIOKA52 247 99.9 BTOKA53 421 A NEW TECH 69 177 EXACT BIOKA56 452 ORDER JASA 66 1205 LINEAR AMS 64 270 ON THE AMS 68 1747 ON THE BIOKA64 522 SOME A BIOKAGO 463 NOTE ON BIOKA58 559 OPTIMAL JASA 59 TABLES BIOKA60 433 ABSOLUTE BIOKA61 77 BAYESIAN JRSSB65 EXTENDED JASA 59 6B3 BIVARIATE BIOKA51 179 A CONTOUR- AMS 62 796 A NOTE ON BIOKA61 212 CONDITIONS BIOKA69 215 ESTIMATION JASA 63 519 ESTIMATION TECH 63 175 PERCENTACE BIOKA68 377 QUERY, THE TECH 64 104 SIMPLIFIED BIOKA58 59 THE MOMENT JRSSB61 223 PERCENTACE AMS 61 BBB SOME TESTS JASA 6B 853 BIORTHOGONAL AMS 69 393 DISTRIBUTION TECH 62 13B ORTHANT PROB BIOKA62 433 A NOTE ON THE JASA 66 B52 A NOTE ON THE AMS 69 1838 EFFICIENCY OF BIOKA51 58 ON ESTIMATING JASA 66 259 ON EVALUATION BIOKA69 NO.3 A CHART FOR THE BIOKA51 423 ON THE BIVARIATE AMS 66 1002 SOME NUMERICAL C JASA 69 NO.4 A SEQUENTIAL TEST JASA 62 769 79

DIS - DIS TITLE WORD INDEX

```
OF A CLASS OF TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIBUTION
                                                                                          ASYMPTOTIC THEORY AMS 69 1196
   OF THE PROBABILITY INTECRAL OF THE MULTIVARIATE T DISTRIBUTION
                                                                                          ON THE EVALUATION BIOKAG1
      FUNCTIONS AND A CHARACTERIZATION OF THE CAUCHY DISTRIBUTION
                                                                                         CAUCHY-DISTRIBUTED AMS 69 1083
                                                                                                            TECH 61
LIFE TESTING PROCEDURES DERIVED FROM THE EXPONENTIAL DISTRIBUTION
                                                                                         THE ROBUSTNESS OF
                                                                                                                      29
OF A COVARIANCE MATRIX IN A CERTAIN COMPLEX GAUSSIAN DISTRIBUTION
                                                                                        A TEST FOR REALITY
                                                                                                             AMS 65
                                                                                                                      115
TOPOLOCY AND CONVERCENCE IN SOME ORDERED FAMILIES OF DISTRIBUTION
                                                                                        FURTHER REMARKS ON
                                                                                                              AMS 69
                                                                                                                       51
ATISTICS FROM THE EQUICORRELATED MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                            AMS 62 12B6
                                                                                        MOMENTS OF ORDER ST
  RELATIVE ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTION
                                                                                       ESTIMATES OF BOUNDED TECH 61
                                                                                                                      107
ON A TEST FOR THE SCALE PARAMETER OF THE EXPONENTIAL DISTRIBUTION
                                                                                      EFFECT OF TRUNCATION
                                                                                                             AMS 64
                                                                                                                      209
ABILITY ESTIMATION FOR THE TWO PARAMETER EXPONENTIAL DISTRIBUTION
                                                                                      LIFE TESTING AND RELI JASA 69
                                                                                                                      621
   SICN TEST AND A TEST FOR UNIFORMITY OF A CIRCULAR DISTRIBUTION
                                                                                      ON HODCES'S BIVARIATE BIOKA69
                                                                                                                      446
BSERVATIONS ABOVE SAMPLE MEANS IN A BIVARIATE NORMAL DISTRIBUTION
                                                                                     ON THE PROPORTION OF O AMS 6B 1350
IMATORS WITH AN APPLICATION TO THE NECATIVE BINOMIAL DISTRIBUTION
                                                                                     THE BIAS OF MOMENT EST BIOKA62
   AND TOLERANCE RECIONS FOR THE MULTIVARIATE NORMAL DISTRIBUTION
                                                                                    CONFIDENCE, PREDICTION, JASA 66
  THE RANCE AND MEAN RANGE FOR SAMPLES FROM A NORMAL DISTRIBUTION
                                                                                    ON THE DISTRIBUTIONS OF BIOKA66
                                                                                                                      245
    POINT METHOD AND CHI-SQUARED FOR THE MULTINOMIAL DISTRIBUTION
                                                                                    THE MULTIVARIATE SADDLE AMS 61
                                                                                                                      535
    CORRELATION COEFFICIENTS FOR A CENERAL BIVARIATE DISTRIBUTION
                                                                                    THE PERFORMANCE OF SOME BIOKAGO
                                                                                                                     307
  TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A NORMAL DISTRIBUTION
                                                                                   DIRECT METHODS FOR EXACT TECH 69 NO 4
ARIATE-VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL DISTRIBUTION
                                                                                  THE CORRELATION BETWEEN V BIOKA66 2B1
 SCALE PARAMETERS IN A TRUNCATED GROUPED SECH SQUARE DISTRIBUTION
                                                                                 ESTIMATION OF LOCATION AND JASA 61
                                                                                                                      692
   OF A MATRIX AND APPROXIMATIONS TO ITS NON-CENTRAL DISTRIBUTION
                                                                                ON THE MOMENTS OF THE TRACE AMS 66 1312
SIDED PREDICTION INTERVALS FOR SAMPLES FROM A NORMAL DISTRIBUTION
                                                                               FACTORS FOR CALCULATING TWO- JASA 69
PROPORTIONS WITH A A CENERALIZATION OF THE DIRICHLET DISTRIBUTION
                                                                              CONCEPTS OF INDEPENDENCE FOR JASA 69
IMATION OF RELIABILITY FOR THE TRUNCATED EXPONENTIAL DISTRIBUTION
                                                                              MINIMUM VARIANCE UNBIASED EST TECH 69
    BASED ON A CERTAIN MULTIVARIATE COMPLEX GAUSSIAN DISTRIBUTION
                                                                             CLASSICAL STATISTICAL ANALYSIS AMS 65
    VARIANCES IN A SINGLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION
                                                                             CORRELATION BETWEEN THE SAMPLE BIOKAGB
FOR ESTIMATING THE PARAMETERS OF A MIXED EXPONENTIAL DISTRIBUTION
                                                                             THE USE OF FRACTIONAL MOMENTS TECH 68
                                                                                                                     161
TERVAL ESTIMATORS, WITH AN APPLICATION TO THE NORMAL DISTRIBUTION
                                                                            CRITERIA FOR BEST SUBSTITUTE IN JASA 64 1133
OF THE MEAN DEVIATION OF THE SYMMETRICAL MULTINOMIAL DISTRIBUTION
                                                                           A NOTE ON THE FIRST TWO MOMENTS BIOKA67
                                                                                                                      312
 OF THE ORDER STATISTICS FROM THE TRUNCATED LOCISTIC DISTRIBUTION
                                                                          EXACT MOMENTS AND PRODUCT MOMENTS JASA 66
                                                                                                                      514
EAR INVARIANT ESTIMATES OF PARAMETERS OF THE WEIBULL DISTRIBUTION
                                                                          TABLES FOR OBTAINING THE BEST LIN TECH 67
                                                                                                                      629
                                                                        ASYMPTOTIC EFFICIENCIES OF A NONPAR JASA 56
AMETRIC LIFE TEST FOR SMALLER PERCENTILES OF A CAMMA DISTRIBUTION
                                                                                                                      467
 THE PARAMETERS IN THE MEAN VECTOR OF A MULTIVARIATE DISTRIBUTION
                                                                        ESTIMATES OF LINEAR COMBINATIONS OF AMS 65
                                                                                                                      78
                                                                                                                     675
   CENSORED SAMPLES, OF THE PARAMETERS OF A LOCISTIC DISTRIBUTION
                                                                        MAXIMUM-LIKELIHOOD ESTIMATION, FROM JASA 67
THE QUOTIENT OF THEIR COORDINATES FOLLOWS SOME KNOWN DISTRIBUTION
                                                                       ON BIVARIATE RANDOM VARIABLES WHERE
                                                                                                             AMS 64 1673
SAMPLE TESTS FROM TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIBUTION
                                                                       THE DERIVATION OF NONPARAMETRIC TWO- BIOKA69 NO.3
L OF A VARIABLE FROM A DECAPITATED NEGATIVE BINOMIAL DISTRIBUTION
                                                                      /STANDARD DEVIATIONS OF THE RECIPROCA JASA 62
                                                                                                                      439
                                                                     /AMPLINC DISTRIBUTION OF AN ESTIMATOR
ARISING IN CONNECTION WITH THE TRUNCATED EXPONENTIAL DISTRIBUTION
                                                                                                             AMS 69
IS OF VARIANCE TESTS, DERIVED FROM THE NON-CENTRAL F-DISTRIBUTION
                                                                     /ARTS OF THE POWER FUNCTION FOR ANALYS BIOKA51
                                                                                                                      112
AGE POINTS OF A MULTIVARIATE ANALOGUE OF STUDENT'S T-DISTRIBUTION
                                                                     /BABILITY INTECRAL AND CERTAIN PERCENT BIOKA55
K HYPOTHESES CONCERNING THE UNKNOWN MEAN OF A NORMAL DISTRIBUTION
                                                                     /CISION PROCEDURE FOR CHOOSING ONE OF
                                                                                                             AMS 63
                                                                                                                      549
 TO THE SIMPLE QUEUE WITH ARBITRARY ARRIVAL INTERVAL DISTRIBUTION
                                                                     /DIFFERENCE EQUATION TECHNIQUE APPLIED JRSSB58
                                                                                                                      168
S OF ITEMS WHERE THE MEAN QUALITY HAS A NORMAL PRIOR DISTRIBUTION
                                                                     /G ACCEPTANCE SCHEMES FOR LARGE BATCHE BIOKA68
                                                                                                                      393
CTORS WITH SPECIAL REFERENCE TO THE BIVARIATE NORMAL DISTRIBUTION
                                                                     /IAN ESTIMATION OF LATENT ROOTS AND VE BIOKA69
                                                                                                                      97
MATION OF THE PARAMETERS OF THE NEGATIVE EXPONENTIAL DISTRIBUTION
                                                                     /PTOTIC OPTIMUM QUANTILES FOR THE ESTI AMS 66
EM COMPRISED OF K ELEMENTS FROM THE SAME EXPONENTIAL DISTRIBUTION
                                                                     /T ESTIMATION OF RELIABILITY OF A SYST JASA 66 1029
OF THE ROOTS OF TWO MATRICES AND APPROXIMATIONS TO A DISTRIBUTION
                                                                     /TS OF ELEMENTARY SYMMETRIC FUNCTIONS
                                                                                                             AMS 68 1274
E PROBABILITY INTEGRAL OF THE NON-CENTRAL CHI-SQUARE DISTRIBUTION
                                                                     /ULAE FOR THE PERCENTAGE POINTS AND TH BIOKA54
NCE BOUND FOR RELIABILITY IN THE CASE OF THE WEIBULL DISTRIBUTION
                                                                     /XACT ASYMPTOTICALLY EFFICIENT GONFIDE TECH 66
ERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION
                                                                     ON THE EXAGT DISTRIBUTIONS OF THE CRIT AMS 67 1170
 SUM OF VALUES FROM A NORMAL AND A TRUNCATED NORMAL DISTRIBUTION
                                                                   (CONTD)
                                                                                                 QUERY, THE TECH 64
                                                                                                                      469
ONFIDENCE SETS FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION (WITH DISCUSSION)
                                                                                                          C JRSSB62
                                                                                                                      265
E RAN/ CONFIDENCE INTERVALS FOR THE PARAMETER OF A DISTRIBUTION ADMITTING A SUFFICIENT STATISTIC WHEN TH JRSSB55
                                                                                                                      B6
E OF THE LIKELIHOOD SURFACE OF A SAMPLE DRAWN FROM A DISTRIBUTION ADMITTING SUFFICIENT STATISTICS /VATUR BIOKAGO
                                                                                                                      203
                                              NOTES. DISTRIBUTION AMONG RELATIVES OF GENOTYPES FOR
                                                                                                            BIOCS68
                                                                                                                      179
                                                   A DISTRIBUTION ANALOGOUS TO THE BOREL-TANNER
ON PLANS BASED ON PRI/ THE COMPOUND HYPERGEOMETRIC DISTRIBUTION AND A SYSTEM OF SINGLE SAMPLING INSPECTI TECH 60
                                  MULTIVARIATE BETA DISTRIBUTION AND A TEST FOR MULTIVARIATE NORMALITY
                                                                                                            JRSSB6B
                                                NULL DISTRIBUTION AND BAHADUR EFFICIENCY OF THE HODGES
BIVARIATE SIGN TEST
                                                                                                              AMS 62
                                                                                                                      803
                       THE THREE-PARAMETER LOGNORMAL DISTRIBUTION AND BAYESIAN ANALYSIS OF A POINT-SOURCE JASA 63
                                                                                                                      72
EPIDEMIC
TA FROM FINITE POPULATIO/ THE COMPOUND MULTINOMIAL DISTRIBUTION AND BAYESIAN ANALYSIS OF CATEGORICAL DA JASA 69
TISTICS', 46/ CORRECTION. 'THE NON-CENTRAL WISHART DISTRIBUTION AND CERTAIN PROBLEMS OF MULTIVARIATE STA AMS 64
                                                                                                                      216
                                                                                                                      923
POLLEN COUN/
               ON THE GOMPOUND NEGATIVE MULTINOMIAL DISTRIBUTION AND CORRELATIONS AMONG INVERSELY SAMPLED BIOKAG3
                                                                                                                      47
                                                SOME DISTRIBUTION AND MOMENT FORMULAE FOR THE MARKOV CHAIN JRSSB55
                                                                                                                     235
   SOME RESULTS ON THE NON-CENTRAL MULTIVARIATE BETA DISTRIBUTION AND MOMENTS OF TRACES OF TWO MATRIGES
                                                                                                              AMS 65 1511
IMATIONS TO THE UPPER 5 PERCENT POINTS OF FISHER'S B DISTRIBUTION AND NON-CENTRAL CHI-SQUARE
                                                                                                     APPROX BIOKA57
                                                                                                                     528
                                              ON THE DISTRIBUTION AND POWER OF A TEST FOR A SINGLE OUTLIER SASJ 69
                                                     DISTRIBUTION AND POWER OF THE ABSOLUTE NORMAL SGORES JASA 67
TEST
                                ON THE RANDOMIZATION DISTRIBUTION AND POWER OF THE VARIANCE RATIO TEST
                                                                                                            JRSSB63
                                           STUDENT'S DISTRIBUTION AND RIEMANN'S ELLIPTIC GEOMETRY
                                                                                                            BTOKA57
              THE GOODNESS OF FIT STATISTIC V-SUB-N, DISTRIBUTION AND SIGNIFICANCE POINTS
                                                                                                                      309
                                                                                                            BIOKA65
                       A PROPERTY OF THE MULTINOMIAL DISTRIBUTION AND THE DETERMINATION OF APPROPRIATE
                                                                                                                      265
SCORES
                                                                                                            BIOKA64
MATRICVARIATE GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AND THE INVERTED MULTIVARIATE T DISTRIBU AMS 67
                                                                                                                      511
                THE RELATION BETWEEN THE DICTIONARY DISTRIBUTION AND THE OCCURRENCE DISTRIBUTION OF WORD BIOKA58
LENGTH AND IT/
A CONTINUOUS PRIOR DISTRIBUTION THE MIXED BINOMIAL DISTRIBUTION AND THE POSTERIOR DISTRIBUTION OF P FOR
                                                                                                            JRSSB68
                                                                                                                      359
AND ESTIMATION PROBLEMS, CORR. 63 1/
                                      THE LOGNORMAL DISTRIBUTION AND THE TRANSLATION METHOD, DESCRIPTION
                                                                                                            JASA 63
                                                                                                                     231
LIKELIHOOD ESTIMATION OF THE PARAMETERS OF THE GAMMA DISTRIBUTION AND THEIR BIAS
                                                                                                   MAXIMUM TEGH 69 NO.4
ACT MOMENTS OF THE ORDER STATISTICS OF THE GEOMETRIC DISTRIBUTION AND THEIR RELATION TO INVERSE SAMPLING A JASA 67
                                                                                                                     915
                                  THE BEHRENS-FISHER DISTRIBUTION AND WEIGHTED MEANS
                                                                                                            JRSSB59
                                                                                                                      73
                                                                                                                     266
                                                   A DISTRIBUTION ARISING IN THE STUDY OF INFECTIOUS
                                                                                                            BIOKA54
 COMMUNITY ECOLOC/ MULTIVARIATE LOGARITHMIC SERIES DISTRIBUTION AS A PROBABILITY MODEL IN POPULATION AND JASA 67
                                                                                                                      655
                                                ON A DISTRIBUTION ASSOCIATED WITH CERTAIN STOCHASTIC
PROCESSES
        MAXIMUM LIKELIHOOD ESTIMATION IN THE WEIBULL DISTRIBUTION BASED ON COMPLETE AND ON CENSORED SAMPLE TECH 65
      'MAXIMUM LIKELIHOOD ESTIMATION IN THE WEIBULL DISTRIBUTION BASED ON GOMPLETE AND ON CENSORED SAMPLE TECH 66
PARTIGLES
                         ESTIMATION OF PARTICLE SIZE DISTRIBUTION BASED ON OBSERVED WEIGHTS OF GROUPS OF
                                                                                                            TECH 65
    ESTIMATION OF THE PARAMETERS OF THE EXPONENTIAL DISTRIBUTION BASED ON OPTIMUM ORDER STATISTICS IN CEN AMS 66 1717
```

TITLE WORD INDEX DIS - DIS

AIDS FOR FITTING THE CAMMA THE ESTIMATION OF THE MEAN OF A CENSORED NORMAL			TECH 60 BIOKA56	55 482
ESTIMATION OF THE MEAN OF A CENSORED NORMAL ESTIMATION OF THE PARAMETERS OF THE GAMMA			TECH 64	
ESTIMATION OF THE PARAMETERS OF THE LOCISTIC			BIOKA69	
ON CHARACTERIZING THE NORMAL			BIOKA66	603
ON CHARACTERIZING THE CHI SQUARE			JASA 66	
ESTIMATION OF THE PARAMETERS OF THE EXTREME VALUE				
		COMPARED WITH THE X-SQUARE APPROXIMATION CONSIDERED IN THE FORM OF A CONTINGENCY	BIOKA64 BIOKA57	277 289
OCGUPANCY PROBABILITY			BIOKAS7	175
		DERIVED BY SOLVING SIMULTANEOUS LINEAR	BIOKA51	470
		ESTIMATORS FROM THE REGURRENCE EQUATION	JASA 69	602
		FOR A CLASS OF INVARIANT SEQUENTIAL PROB	AMS 68	1048
		FOR A GENERALIZED BANACH MATCH BOX	JASA 67	
		FOR AN OCCUPANCY PROBLEM WITH STATISTICA		79
MULTI-SAMPLE TESTS FOR THE FISHER		FOR FINITE POPULATION, CORR. 62 919	BIOKA69 JASA 62	169 172
		FOR LARGEST AND FOR SMALLEST OF A SET OF		
Y THE ERGODIC QUEUE LENCTH	DISTRIBUTION	FOR QUEUEING SYSTEMS WITH FINITE CAPACIT	JRSSB66	190
		FOR QUEUES IN SERIES	JRSSB65	491
BABILITY LEVELS OF THE SYMMETRIC BINOMIAL CUMULATIVE			JASA 59	164
PROXIMATION TO THE PROBABILITY INTEGRAL OF THE GAMMA A TECHNIQUE FOR DISCUSSING THE PASSAGE TIME			JRSSB66	276 477
		FOR THE DETERMINANT OF A NON-CENTRAL B S		77
		FOR USE IN BAYESIAN ANALYSIS OF BERNOULL		6B7
		FREE TEST FOR COMPARING VARIANCES	BIOKA58	544
DISTRIBUTION FUNCTION		FREE TESTS BASED ON THE SAMPLE	BIOKA66	99
ION FUNCTION' CORRECTION. DISTRIBUTIONS		FREE TESTS BASED ON THE SAMPLE DISTRIBUT FREE TESTS FOR MIXED PROBABILITY	BIOKA67 BIOKA69	333 NO 3
SAMPLE DISTRIBUTION FUNCTION		FREE TESTS OF INDEPENDENCE BASED ON THE	AMS 61	NU.3
QUIREMENT THAT CUMULATIVE FUNCTIONS BE CONTINUOUS		FREE TOLERANCE LIMITS. ELIMINATION OF RE		51B
TEST IN THE P-VARIATE CASE	DISTRIBUTION	FREE VERSION OF THE SMIRNOV TWO SAMPLE	AMS 69	1
		FROM A MILLS' RATIO-LIKE EXPANSION	AMS 63	335
A GENERAL CLASS OF COEFFICIENTS OF DIVERGENCE OF ONE ESTIMATING THE PARAMETERS OF LOG-NORMAL			JRSSB66 JASA 6B	131 134
LIKELIHOOD ESTIMATION OF THE PARAMETERS OF THE BETA				607
ON THE INVERSE GAUSSIAN			JASA 6B	1514
A TEST FOR SYMMETRY USING THE SAMPLE			AMS 69	
ON THE RANGE OF THE DIFFERENCE BETWEEN HYPOTHETICAL		FUNCTION AND PYKE'S MODIFIED EMPIRICAL D FUNCTION BY NORMIT ANALYSIS. PART I. DES	AMS 62	525 411
		FUNCTION LIES BETWEEN TWO PARALLEL STRAI	AMS 68	
LATION/ DERIVATION OF APPROXIMANTS TO THE INVERSE				
NONPARAMETRIC ESTIMATION OF THE TRANSITION			AMS 69	
DIMENSIONAL PROPERTIES OF A RANDOM			AMS 66	
LENGTH CONFIDENCE INTERVALS FOR THE P-POINT OF A LENGTH CONFIDENCE INTERVALS FOR THE P-POINT OF A			AMS 66	5B1 586
		FUNCTION, WITH APPLICATION TO SIMULATION		647
'DISTRIBUTION FREE TESTS BASED ON THE SAMPLE				333
ASYMPTOTIC EXPANSIONS FOR A CLASS OF			AMS 63	
ON CONTINUOUS SINGULAR INFINITELY DIVISIBLE ON GONTINUITY PROPERTIES OF INFINITELY DIVISIBLE			AMS 64 AMS 68	330 936
ON GONTINGITY PROPERTIES OF INFINITELY DIVISIBLE			JASA 68	
GOMPUTER EVALUATION OF THE NORMAL AND INVERSE NORMAL			TECH 69	
ON A CLASS OF SKEW			BIOKA55	425
LOCAL LIMIT THEOREM FOR NONLATTICE MULTI-DIMENSIONAL			AMS 65	546
OF INTEGRAL TRANSFORMS TO DETERMINE EXPANSIONS OF OF TWO-SAMPLE RANK TESTS ON THE EQUALITY OF TWO			BIOKA60	460 293
IATIONS OF FUNCTIONS OF SEVERAL EMPIRICAL CUMULATIVE				360
A NOTE ON THE UNIMODALITY OF			AMS 67	
KS CONCERNING THE APPLICATION OF EXACT FINITE SAMPLE				943
IATE DISTRIBUTIONS A RECURRENCE RELATION FOR				
NORMAL RESID/ A GOODNESS OF FIT TEST FOR SPEGTRAL STATISTIC BOUNDS ON THE				
STATISTICS BOOKES ON THE	DISTRIBUTION	FUNCTIONS OF THE BEHRENS-FISHER FUNCTIONS OF TSAO'S TRUNCATED SMIRNOV	AMS 67	120B
SERIES APPROXIMATIONS TO	DISTRIBUTION	FUNCTIONS WHICH ARE HYPERGEOMETRIC	BIOKA68	243
SOME RENYI TYPE LIMIT THEOREMS FOR EMPIRICAL			AMS 65	
EXPONENTIAL LIFE TEST PROCEDURES WHEN THE SEQUENTIAL ESTIMATION OF THE MEAN OF A LOG-NORMAL			JASA 67	
A FIXED SAMPLE ESTIMATION OF THE MEAN OF A LOG-NORMAL				
SEQUENTIAL TESTS FOR THE MEAN OF A NORMAL	DISTRIBUTION	II, LARCE T	AMS 64	162
SEQUENTIAL TEST FOR THE MEAN OF A NORMAL			AMS 65	
TESTS GAMMA TISTICS FOR ESTIMATING THE PARAMETERS OF EXPONENTIAL			JASA 61	
ON THE USE OF THE GENERALIZED EXTREME-VALUE			BIOCS67	
OF THE SLOPE OF THE MAJOR AXIS OF A BIVARIATE NORMAL	DISTRIBUTION	IN THE CASE OF A SMALL SAMPLE /MATION	BIOCS6B	679
		IN THE ESTIMATION OF CORRELATION IN DISC		
		IN THE THEORY OF COUNTERS, CORR. 62 1466 IN THE THEORY OF RANK CORRELATION	AMS 61 BIOKA51	
A SIMPLE METHOD OF RESOLUTION OF A			BIOCS67	
AN ALCORITHM FOR THE DECOMPOSITION OF A	DISTRIBUTION	THTO CAUSSIAN COMPONENTS	BIOCS69	
APPROXIMATION TO THE GENERALIZED BEHRENS-FISHER	DISTRIBUTION	INVOLVING THREE VARIATES	BIOKA69	
CORRELATION-IN A SINCLY TRUNCATED BIVARIATE NORMAL SEQUENTIAL TESTS FOR THE MEAN OF A NORMAL	DISTRIBUTION	IV. EMPIRICAL VARIANCES OF RANK CORRELAT	BIOKA68 AMS 65	
DEVUENTAL LEDID FUR THE MEAN UP A NURMAL				
	DISTRIBUTION	OF 'STUDENTIZED' RANGE	BIOKA52	
ON THE ION, A REMARK ON THE CRITICAL CASE THE STATIONARY	DISTRIBUTION		JRSSB68	176

DIS - DIS TITLE WORD INDEX

```
ON THE EXACT DISTRIBUTION OF A CLASS OF MULTIVARIATE TEST CRITERIA AMS 62 1197

CENTRAL NORMAL VARIATES, CORR. 63 673

ON THE EXACT DISTRIBUTION OF A CLASS OF MULTIVARIATE TEST CRITERIA AMS 62 1197
                                                       DISTRIBUTION OF A DEFINITE QUADRATIC FORM FOR NON- AMS 61 8B3 / DISTRIBUTION OF A FILTERED RANDOM TELEGRAPH SIGNAL AMS 68 B90
                                   ON THE PROBABILITY DISTRIBUTION OF A FILTERED RANDOM TELEGRAPH SIGNAL
                                                                                                                          96
                                          THE SAMPLINC DISTRIBUTION OF A MAXIMUM-LIKELIHOOD ESTIMATE
                                                                                                                BIOKA56
NTRAL MULTIVARIATE BETA DISTRIBUTIONS
                                               ON THE DISTRIBUTION OF A MULTIPLE CORRELATION MATRIX, NON-CE AMS 68 227
TE TWO-SAMPLE PROBLEM
                                           ON THE NULL DISTRIBUTION OF A NON-PARAMETRIC TEST FOR THE BIVARIA JRSSB69
                                                                                                                          9B
 DENSITIES
                                                        DISTRIBUTION OF A PRODUCT AND THE STRUCTURAL SETUP OF AMS 69 1439
                                            DISTRIBUTION OF A PRODUCT AND THE DISTRIBUTION OF A QUADRATIC FORM OF NORMAL RANDOM
VARIABLES
                                                                                                                  AMS 67 1700
                                               QUERY, DISTRIBUTION OF A RANKED OBSERVATION
                                                                                                                TECH 64 329
       USE OF WILCOXON TEST THEORY IN ESTIMATING THE DISTRIBUTION OF A RATIO BY MONTE CARLO METHODS
                                                                                                                 AMS 62 1194
                                          THE NON-NULL DISTRIBUTION OF A STATISTIC IN PRINCIPAL COMPONENTS BIOKAGG 590
                                                ON THE DISTRIBUTION OF A STATISTIC USED FOR TESTING A
COVARIANCE MATRIX
                                                                                                                BIOKA68 171
                                             THE EXACT DISTRIBUTION OF A STRUCTURAL COEFFICIENT ESTIMATOR
                                                                                                                JASA 68 1214
                                          ON THE EXACT DISTRIBUTION OF A TEST IN MULTIVARIATE ANALYSIS
                                                                                                                JRSSB5B 10B
                                          THE SAMPLING DISTRIBUTION OF AN ESTIMATE ARISING IN LIFE TESTING
                                                                                                                TECH 63
                                                                                                                          361
TH THE TRUNCATED EXPONENTIAL DISTRIB/
                                          THE SAMPLING DISTRIBUTION OF AN ESTIMATOR ARISING IN CONNECTION WI AMS 69
                                                                                                                          702
 A RANDOM SEQUENCE
                                            THE JOINT DISTRIBUTION OF ASCENDING PAIRS AND ASCENDING RUNS IN BIOKA67
 CALCULATING TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION OF AVERAGE TAU WITH A CRITERION RANKING JASA 62
                                                ON THE DISTRIBUTION OF CERTAIN QUADRATIC FORMS IN NORMAL
                           ON THE DISTRIBUTION OF COMPLEX NORMAL VARIABLES
THE MULTIVARIATE DISTRIBUTION OF COMPLEX NORMAL VARIABLES
                                                                                                                JRSSB62
                                                                                                                          14B
                                                                                                                BIOKA56
                                                                                                                          212
        ASYMPTOTIC EXPANSIONS FOR THE MOMENTS OF THE DISTRIBUTION OF CORRELATION COEFFICIENT
                                                                                                                BIOKA66
                                                                                                                          258
FORMS' 55 122
                                     CORRECTION TO 'DISTRIBUTION OF DEFINITE AND OF INDEFINITE QUADRATIC
                                                                                                                          B13
                                                                                                                AMS 62
FORMS FROM A NON-CENTRAL NORMAL DISTRIBUTION DISTRIBUTION OF DEFINITE AND OF INDEFINITE QUADRATIC AMS 63
MATRICES ARE PROPORTIONAL DISTRIBUTION OF DISCRIMINANT FUNCTION WHEN COVARIANCE AMS 69
                                                                                                                          186
                                                                                                                          979
                                            ASYMPTOTIC DISTRIBUTION OF DISTANCES BETWEEN ORDER STATISTICS
FROM BIVARIATE POPULATIONS
                                                                                                                  AMS 64 74B
                                 CHANGES IN THE SIZE DISTRIBUTION OF DIVIDEND INCOME
                                                                                                                JASA 61
                                                                                                                          250
IN SAMPLES FROM A NORMAL DISTRIBUTION
                                                THE DISTRIBUTION OF EXTREMAL AND NEARLY EXTREMAL VALUES BIOKA63
                                                                                                                          В9
D SAMPLES. OF THE PARAMETERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FROM DOUBLY CENSORE JASA 68
                                         APPROXIMATE DISTRIBUTION OF EXTREMES FOR NONSAMPLE CASES JASA 64 429
APPROXIMATE DISTRIBUTION OF EXTREMES FOR NONSAMPLE CASES
AN EMPIRICAL INVESTIGATION THE RANDOMIZATION DISTRIBUTION OF F-RATIOS FOR THE SPLIT-PLOT DESIGN,
                                                                                                                BIOKA63
                                                                                                                          431
                   A STOCHASTIC ANALYSIS OF THE SIZE DISTRIBUTION OF FIRMS, CORR. 59 810
                                                                                                                JASA 58 893
                                                ON THE DISTRIBUTION OF FIRST SIGNIFICANT DIGITS
                                                                                                                 AMS 61 1223
                                                   THE DISTRIBUTION OF GALTON'S STATISTICS
                                                                                                                 AMS 68 2114
                              COMMENTS ON A POSTERIOR DISTRIBUTION OF GEISSER AND CORNFIELD
                                                                                                                JRSSB64 274
                                                   THE DISTRIBUTION OF HETEROGENEITY UPON INBREEDING
                                                                                                                JRSSB54
                                                                                                                          22
GAUSSIAN PROCESS
                                            ON A LIMIT DISTRIBUTION OF HIGH LEVEL CROSSINGS OF A STATIONARY AMS 6B 210B
MULTIVARIATE DISPERSION
                                                   THE DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF
                                                                                                                  AMS 66
                                                                                                                         215
  A SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS FOR THE DISTRIBUTION OF HOTELLINC'S GENERALIZED T-SQUARE-SUB- AMS 68
                                                                                                                          815
                                                   THE DISTRIBUTION OF INANIMATE MARKS OVER A NON-HOMOGENEOU BIOKA69
S BIRTH-DEATH PROCESS
            NOTE ON WEYL'S CRITERION AND THE UNIFORM DISTRIBUTION OF INDEPENDENT RANDOM VARIABLES AMS 69 1124
                                                   THE DISTRIBUTION OF INTERVALS BETWEEN SUCCESSIVE MAXIMA
IN A SERIES OF RANDOM NUMBERS
                                                                                                                BIOKA57
                         THE FACTORIAL MOMENTS OF THE DISTRIBUTION OF JOINS BETWEEN LINE SEGMENTS
                                                                                                                          555
                                                                                                                BIOKA54
                               ADDENDUM, THE LIMITING DISTRIBUTION OF KAMAT'S TEST STATISTIC
                                                                                                                BIOKA56
                                                                                                                          3B6
RANKINGS

M A NORMAL BIVARIATE POPULATION WITH CORRELAT/

THE DISTRIBUTION OF KENDALL'S SCORE S FOR A PAIR OF TIED BIOKAGO

BIOKAGO

H CORRELATION OF KENDALL'S TAU FOR SAMPLES OF FOUR FRO BIOKAGO
                                                                                                                         151
R THE VALIDITY OF THE ASSUMPTION THAT THE UNDERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART I /STS FO TECH 60
THE VALIDITY OF THE ASSUMPTIONS THAT THE UNDERLYINC DISTRIBUTION OF LIFE IS EXPONENTIAL, PART II /S FOR TECH 60
                                                                                                                          83
                                                                                                                         167
                                                                                                              BIOKA56
                                                                                                                          295
           A GENERAL METHOD FOR APPROXIMATING TO THE DISTRIBUTION OF LIKELIHOOD RATIO CRITERIA
                                                      DISTRIBUTION OF LIKELIHOOD RATIO IN TESTING AGAINST
                                                                                                                          371
TREND DISTRIBUTION OF LIKELIHOOD RATIO IN TESTING AGAINST AMS 69

RDER STATISTICS WITH APPLICATIONS TO E/ ASYMPTOTIC DISTRIBUTION OF LINEAR COMBINATIONS OF FUNCTIONS OF 0 AMS 67
                                                                                                                          52
 FUNCTIONS OF ORDERED CORRELATED NORMAL RA/ ON THE DISTRIBUTION OF LINEAR FUNCTIONS AND RATIOS OF LINEAR BIOKA64
TIVARIATE DISTRIBUTIONS ASYMPTOTIC JOINT DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM MUL JASA 69
                                                                                                                          300
     ON THE ACCURACY OF BOX'S APPROXIMATIONS TO THE DISTRIBUTION OF M
                                                                                                SOME COMMENTS BIOKA69
                                                                                                                          219
NEAR MODEL WITH AUTORECRESSIVE DISTURB/ ASYMPTOTIC DISTRIBUTION OF MAXIMUM LIKELIHOOD ESTIMATORS IN A LI AMS 69
                                                                                                                          583
                                                  THE DISTRIBUTION OF MOMENT ESTIMATORS
                                                                                                                BIOKA59
                                                                                                                          296
                      NOTE ON AN APPROXIMATION TO THE DISTRIBUTION OF NON-CENTRAL CHI-SQUARE
                                                                                                                BIOKA59
                                                                                                                         364
                        AN APPROXIMATION TO THE DISTRIBUTION OF NON-CENTRAL T
                                                                                                                BTOKA58
                                                                                                                          484
                                                                                                                 AMS 61
                                                   THE DISTRIBUTION OF NONCENTRAL MEANS WITH KNOWN
                                                                                                                          B74
THE REDUCED ITH ORDER STATISTIC OF TH/ CONDITIONAL DISTRIBUTION OF ORDER STATISTICS AND DISTRIBUTION OF
                                                                                                                  AMS 63
                                                                                                                          652
LEAST SQUARES ESTIMATORS THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST SQUARES AND TWO-STAGE JASA 69
                                                                                                                          923
                                                   THE DISTRIBUTION OF ORGANISMS
                                                                                                                BIOCS65
                                                                                                                          543
                          PERCENTAGE POINTS FOR THE DISTRIBUTION OF OUTGOING QUALITY
                                                                                                                JASA 59
                       FOUR-LETTER WORDS. THE DISTRIBUTION OF PATTERN FREQUENCIES IN RINC PERMUTATI JRSSB67
                                            POSTERIOR DISTRIBUTION OF PERCENTILES. BAYES' THEOREM FOR SAMPL JASA 68
ING FROM A POPULATION
                                                                                                                          677
LUES IN SAMPLES FROM A POWER-FUNCTION POPULATION DISTRIBUTION OF PRODUCT AND OF QUOTIENT OF MAXIMUM VA JASA 64
                                               ON THE DISTRIBUTION OF PRODUCTS OF RANDOM VARIABLES
                                                                                                               JRSSB67
                                                                                                                         513
                              AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-
CENTRAL T
                                                                                                                 AMS 64 315
                                  A NEW RESULT ON THE DISTRIBUTION OF QUADRATIC FORMS
                                                                                                                 AMS 63 1582
                                 APPROXIMATIONS TO THE DISTRIBUTION OF QUADRATIC FORMS
                                                                                                                 AMS 65
                                                                                                                         677
                                        COMPUTING THE DISTRIBUTION OF QUADRATIC FORMS IN NORMAL VARIABLES
                                                                                                                BIOKA61
                                                                                                                         419
                           CORRIGENDA, 'COMPUTING THE DISTRIBUTION OF QUADRATIC FORMS IN NORMAL VARIABLES'
                                                                                                                BIOKA62
                                                                                                                         284
ELLIPTICAL NORMAL DISTRIBUTION
                                                   THE DISTRIBUTION OF QUANTILES OF SMALL SAMPLES
                                                                                                                         207
                                                                                                                BIOKA52
                                                      DISTRIBUTION OF RADICAL ERROR IN THE BIVARIATE
  APPROXIMATIONS TO THE PROBABILITY INTEGRAL OF THE DISTRIBUTION OF RANCE
                                                                                                                BIOKA52
                                                                                                                         417
                            THE DISTRIBUTION OF RANGE IN CERTAIN NON-NORMAL BIOKA54
CORRICENDA. 'THE DISTRIBUTION OF RANGE IN CERTAIN NON-NORMAL POPULATIO BIOKA55
POPULATIONS
                                                                                                                         463
                                                                                                                         277
                            MOMENT CONSTANTS FOR THE DISTRIBUTION OF RANGE IN NORMAL SAMPLES
                                                                                                               BIOKA51
                                                                                                                         463
                                                  THE DISTRIBUTION OF RANGE IN NORMAL SAMPLES WITH N=200
                                                                                                                         257
                                                                                                                BIOKA57
          CORRECTION, 'CALCULATION OF EXACT SAMPLING DISTRIBUTION OF RANCES FROM A DISCRETE POPULATION'
                                                                                                                AMS 67
                                                                                                                         280
OM BIVARIATE NON-NORMAL POPULATIONS. I. THEOR/ THE DISTRIBUTION OF REGRESSION COEFFICIENTS IN SAMPLES FR BIOKAGO
                                                                                                                         61
                                                   THE DISTRIBUTION OF RESPONSE TIMES IN A BIRTH-DEATH
PROCESS
                                                                                                              BIOKA65
                                                                                                                         581
                        A NOTE ON THE VARIANCE OF THE DISTRIBUTION OF SAMPLE NUMBER IN SEQUENTIAL PROBABILI TEGH 66
                                                                                                                         700
                            A NOTE ON THE ASYMPTOTIC DISTRIBUTION OF SAMPLE QUANTILES
                                                                                                                JRSSB6B
                                                                                                                         570
TESTS FOR SIMPLE HYPOTHESES APPROXIMATION TO THE DISTRIBUTION OF SAMPLE SIZE FOR SEQUENTIAL TESTS. I.
                                                                                                               BIOKA59 130
                                       MOMENTS OF THE DISTRIBUTION OF SAMPLE SIZE IN A SPRT
                                                                                                               JASA 69 NO.4
                                      THE APPROXIMATE DISTRIBUTION OF SERIAL GORRELATION GOEFFIGIENTS
```

```
FROM TESTS ON ITS COMPONENTS THE CONDITIONAL DISTRIBUTION OF SETS OF TESTS ON A SYSTEM SIMULATED
                                                                                                                     AMS 63 1585
S UNDER CENSORING RECURSIVE GENERATION OF THE DISTRIBUTION OF SEVERAL NON-PARAMETRIC TEST STATISTIC JASA 68 353
PROBLEMS ON THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROGRAMMING JASA 58 161
SAMPLE RANK VECTOR THE ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS OF THE TWO- AMS 69 1011
                                   ADMISSIBILITY AND DISTRIBUTION OF SOME PROBABILISTIC FUNCTIONS OF DISCR AMS 68 1646
ETE FINITE STATE MARKOV CHAINS
ENTIAL AND POWER-FUNCTION POPULATIONS
                                                        DISTRIBUTION OF SOME STATISTICS IN SAMPLES FROM EXPON JASA 67 259
S OF JOINTLY STATIONARY TIME SERIES ON THE DISTRIBUTION OF SOME STATISTICS USEFUL IN THE ANALYSI AMS 68
RAINFALL STIMULATION EXPERIMENTS ON THE DISTRIBUTION OF STATISTICS SUITABLE FOR EVALUATING TECH 69
NTIALLY CORRELATED GAMMA-VARIABLES, (ACKNOWLEDGEM/ DISTRIBUTION OF SUM OF IDENTICALLY DISTRIBUTED EXPONE AMS 64
                                                 ON THE DISTRIBUTION OF SOME STATISTICS USEFUL IN THE ANALYSI AMS 68 1849
                                                                                                                   TECH 69 149
B-O, Y-SUB-1....) IS A REALIZATION OF A NON-/ THE DISTRIBUTION OF SUM-O-TO-M OF F(Y-SUB-T), WHERE (Y-SU BIOKAG5 277
       ON THE INFLUENCE OF MOMENTS ON THE ASYMPTOTIC DISTRIBUTION OF SUMS OF RANDOM VARIABLES
                                                                                                                      AMS 63 1042
 NORMAL VARIATES IN THE PRESENCE OF INTRA-/ ON THE DISTRIBUTION OF SUMS OF SQUARES AND CROSS PRODUCTS OF AMS 62 1461
                                                          DISTRIBUTION OF THE 'GENERALIZED' MULTIPLE CORRELATIO AMS 64 1801
N MATRIX IN THE DUAL CASE
TERIA FOR MARKOV CHAINS AND MAR/ ON THE ASYMPTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' GOODNESS OF FIT CRI AMS 61
                                                                                                                              49
                                                          DISTRIBUTION OF THE ABSOLUTE MAXIMUM FOR CERTAIN
BROWNIAN MOTIONS
                                                                                                                      AMS 65
                                                                                                                              311
                                                          DISTRIBUTION OF THE ANDERSON-DARLING STATISTIC
                                                                                                                      AMS 61 1118
A LINEAR STOCHASTIC PROCESS ON THE ASYMPTOTIC DISTRIBUTION OF THE AUTOCORRELATIONS OF A SAMPLE FROM AMS 64 1296
S TO THE AVERAGE RANK CORRELATION METHODS AND TO THE DISTRIBUTION OF THE AVERAGE RANK CORRELATION COEFFICI JASA 63 756
R TESTING THE DIFFERENCE BETWEEN THE MEA/ AN EXACT DISTRIBUTION OF THE BEHRENS-FISHER-WELCH STATISTIC FO JRSSB61 377
                                                 ON THE DISTRIBUTION OF THE BIVARIATE RANGE
                                                                                                                     TECH 67
                                                                                                                               476
COEFFICIENTS
                                           ON THE JOINT DISTRIBUTION OF THE CIRCULAR SERIAL CORRELATION
                                                                                                                     BIOKA56 161
 ON A CRITICISM MADE BY KOOPMANS, OWEN AND RO/ THE DISTRIBUTION OF THE COEFFICIENT OF VARIATION, COMMENT BIOKAGS
                                                                                                                               303
                                        THE APPROXIMATE DISTRIBUTION OF THE CORRELATION BETWEEN TWO STATIONAR BIOKA62
Y LINEAR MARKOV SERIES
                                                                                                                               379
Y LINEAR MARKOV SERIES. II.
                                        THE APPROXIMATE DISTRIBUTION OF THE CORRELATION BETWEEN TWO STATIONAR BIOKAGS
                                        ON THE A PRIORI DISTRIBUTION OF THE COVARIANCE MATRIX
                                                                                                                     AMS 69 1098
DISTRIBUTED MATRIX
                                                     THE DISTRIBUTION OF THE DETERMINANT OF A COMPLEX WISHART
                                                                                                                      AMS 63
EGRESSION AND ERROR-SCALE PARAMETERS, WHEN THE JOINT DISTRIBUTION OF THE ERRORS IS OF ANY CONTINUOUS FORM BIOKA61
                                                                                                                               125
THE SAMPLE MEAN
                                                  ON THE DISTRIBUTION OF THE EXTREME STUDENTIZED DEVIATE FROM
                                                                                                                     BIOKA59
                                                                                                                               467
ORMAL POPULAT/ AN EMPIRICAL INVESTIGATION INTO THE DISTRIBUTION OF THE F-RATIO IN SAMPLES FROM TWO NON-N BIOKASS
                                                                                                                               260
 OF A GROUP OF EXPERIMENTS
                                                  ON THE DISTRIBUTION OF THE F-TYPE STATISTICS IN THE ANALYSIS JRSSB66
                                                                                                                               526
                                                  ON THE DISTRIBUTION OF THE FIRST SAMPLE MOMENTS OF SHOT
NOISE
                                                                                                                     TECH 64
                                                                                                                               287
                                                THE NULL DISTRIBUTION OF THE FIRST SERIAL CORRELATION
                                                                                                                     BIOKA66
COEFFICIENT
                                                                                                                               623
                                                     THE DISTRIBUTION OF THE GENERALIZED VARIANCE
                                                                                                                      AMS 65
                                                      THE DISTRIBUTION OF THE GOODNESS-OF-FIT STATISTIC U-
                                                                                                                     BTOKA64
SQUARE-SUB-N.II
                                                                                                                               393
SQUARE-SUB-N. I.
                                                     THE DISTRIBUTION OF THE GOODNESS-OF-FIT STATISTIC, U-
                                                                                                                     BIOKA63
                                                                                                                               303
COEFFICIENT
                                     ON THE NONCENTRAL DISTRIBUTION OF THE LARCEST CANONICAL CORRELATION
                                                                                                                     SASJ 69 NO.2
MATRIX IN MULTIVARIATE ANALYSIS.
                                                 ON THE DISTRIBUTION OF THE LARGEST CHARACTERISTIC ROOT OF A
                                                                                                                     BIOKA65
                                                                                                                              405
MAIRIA IN MOLIVARIALE ANALISIS.

ON THE DISTRIBUTION OF THE LARGEST LATENT ROOT AND THE CORRE AMS 6 995
EST LATENT ROOT OF THE GENERALIZED B STATISTIC AN/ DISTRIBUTION OF THE LARCEST LATENT ROOT AND THE SMALL
                                                                                                                      AMS 67 1152
COVARIANCE MATRIX
                                                  ON THE DISTRIBUTION OF THE LARGEST LATENT ROOT OF THE
X IN MULTIVARIATE ANALYSIS
                                                  ON THE DISTRIBUTION OF THE LARGEST OF SEVEN ROOTS OF A MATRI BIOKA64
IN MULTIVARIATE ANALYSIS
                                                  ON THE DISTRIBUTION OF THE LARCEST OF SIX ROOTS OF A MATRIX BIOKA59
ISTIC ROOT UNDER NULL HYPOTHESIS CONCERNINC COMPL/ DISTRIBUTION OF THE LARGEST OR THE SMALLEST CHARACTER AMS 64 1807
MATRIX IN MULTIVARIATE ANALYSIS
                                                  ON THE DISTRIBUTION OF THE LARGEST OR THE SMALLEST ROOT OF A BIOKA56 122
                                                  ON THE DISTRIBUTION OF THE LARGEST ROOT OF A MATRIX IN
MULTIVARIATE ANALYSIS
                                                                                                                      AMS 67
                                                                                                                               616
M MATRIX UNDER/ ON CERTAIN CHARACTERISTICS OF THE DISTRIBUTION OF THE LATENT ROOTS OF A SYMMETRIG RANDO AMS 61
                                                                                                                              B64
ARIANCE MATRIX AN ASYMPTOTIC EXPANSION FOR THE DISTRIBUTION OF THE LATENT ROOTS OF THE ESTIMATED COV AMS 65 1153 COMPONENTS ANALYSIS ON THE DISTRIBUTION OF THE LATENT VECTORS FOR PRINCIPAL AMS 65 1875
MULTIVARIATE LINEAR HYPOTHESES
                                                        DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTING
                                                                                                                      AMS 61 333
                     AN ASYMPTOTIC EXPANSION FOR THE DISTRIBUTION OF THE LINEAR DISCRIMINANT FUNCTION
                                                                                                                      AMS 63 1286
IC WHEN THE TRUE PARAMETER IS 'NEAR' THE B/ ON THE DISTRIBUTION OF THE LOC LIKELIHOOD RATIO TEST STATIST AMS 68 2044
                                SOME PROPERTIES OF THE DISTRIBUTION OF THE LOGARITHM OF NON-CENTRAL F
                                                                                                                    BIOKA60
                                                                                                                               417
                                                    THE DISTRIBUTION OF THE LOGARITHM OF THE SUM OF TWO LOG- JASA 69
NORMAL VARIATES
                                                                                                                               655
EHMANN ALTERNATIVES
                          RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER L AMS 66
                                                                                                                               2B4
 UNDER LEHMANN ALTERNATIVES TABLES OF THE DISTRIBUTION OF THE MANN-WHITNEY-WILCOXON U-STATISTIC TECH 67
                                                                                                                               666
                                                     THE DISTRIBUTION OF THE MATCHING COEFFICIENT
                                                                                                                     BIOCS67
                                                                                                                               647
                                                  ON THE DISTRIBUTION OF THE MAXIMUM AND MINIMUM OF RATIOS OF
                                                                                                                     AMS 69
ORDER STATISTICS
                                                LIMITING DISTRIBUTION OF THE MAXIMUM OF A DIFFUSION PROCESS
                                                                                                                      AMS 64
                                                                                                                               319
                                                     THE DISTRIBUTION OF THE MAXIMUM OF A SEMI-MARKOV PROCESS
                                                                                                                               947
                                                     THE DISTRIBUTION OF THE MAXIMUM SUM OF RANKS
                                                                                                                     TECH 67
                                                                                                                               271
                                                LIMITING DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF
DEPENDENT RANDOM VARIABLES
                                                                                                                      AMS 62
DIFFERENCE
                                                     THE DISTRIBUTION OF THE MEAN HALF-SQUARE SUCCESSIVE
                                                                                                                     BIOKA67
                                                                                                                               419
                                      JOINT ASYMPTOTIC DISTRIBUTION OF THE MEDIAN AND A U-STATISTIC
A RELATIVELY SIMPLE FORM OF THE DISTRIBUTION OF THE MULTIPLE CORRELATION COEFFICIENT

PAIRED COMPARISONS

THE DISTRIBUTION OF THE MULTIPLE CORRELATION COEFFICIENT
                                                                                                                     JRSSB57
                                                                                                                               144
                                                                                                                     JRSSB68 276
                                                                                                                     BTOKA62
                                                                                                                               265
                                                     THE DISTRIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE BIOKA59 454
 OF DEPENDENT TRIALS
T TRIALS
                                                 ON THE DISTRIBUTION OF THE NUMBER OF SUCCESSES IN INDEPENDEN AMS 64 1317
D GAMMA VARIABLES WITH THE SAME SHAPE PARAM/
CENTRAL CHI-SQUARE VARIATES

EXACT DISTRIBUTION OF THE PRODUCT OF INDEPENDENT GENERALIZE AMS 68 1751
THE DISTRIBUTION OF THE PRODUCT OF TWO CENTRAL OR NON-

AMS 62 1016
                                                                                                                      AMS 62 1016
CENTRAL CHI-SQUARE VARIATES
THE DISTRIBUTION OF THE PRODUCT OF TWO CENTRAL OR NON- AMS 62 1016
CIENT IN RANDOM SAMPLES OF ANY SIZE/ THE FREQUENCY DISTRIBUTION OF THE PRODUCT-MOMENT CORRELATION COEFFI BIOKA51 219
                  QUERY, CALCULATION OF THE SAMPLING DISTRIBUTION OF THE RANGE
                                                                                                                     TECH 65
E POPULATIONS AND A RANGE TEST FOR H/ THE SAMPLING DISTRIBUTION OF THE RANGE FROM DISCRETE UNIFORM FINIT JASA 69 NO.4
ND PERCENTAGE POINTS OF THE ORDER STATISTICS AND THE DISTRIBUTION OF THE RANCE FROM THE LOGISTIC DISTRIBUT AMS 65
ECIONS UNDER SPHERICAL NORMAL DISTRIBUTIONS, II. THE DISTRIBUTION OF THE RANCE IN NORMAL SAMPLES' 60 1113
L POPULAT/ COMPARISON OF TWO APPROXIMATIONS TO THE DISTRIBUTION OF THE RANGE IN SMALL SAMPLES FROM NORMA BIOKA52
                                                                                                                               130
                                AN APPLICATION OF THE DISTRIBUTION OF THE RANKING CONCORDANCE COEFFICIENT BIOKAS1
 OF RANGE TO STANDARD DEVIATION
                                                                                                                                33
                                                     THE DISTRIBUTION OF THE RATIO, IN A SINGLE NORMAL SAMPLE, BIOKA54
                                                                                                                               482
 FROM A NON-NORMAL POPULATION
                                                     THE DISTRIBUTION OF THE REGRESSION COEFFICIENT IN SAMPLES BIOKA54
                                                                                                                              548
FITTING INEQUALITIES
                                                         DISTRIBUTION OF THE RESIDUAL SUM OF SQUARES IN
                                                                                                                     BIOKA67
                                                                                                                                69
                               SOME NEW RESULTS ON THE DISTRIBUTION OF THE SAMPLE CORRELATION COEFFICIENT
                                                                                                                              513
                            AN EMPIRICAL STUDY OF THE DISTRIBUTION OF THE SAMPLE GENETIC CORRELATION COEFFI BIOCS69
                                                                                                                                63
CIENT
THE SAMPLE IS DRAWN FROM A DIFFEREN/ THE FREQUENCY DISTRIBUTION OF THE SAMPLE MEAN WHERE EACH MEMBER OF BIOKAG3 II. TESTS OF COMPOSITE HYPOT/ APPROXIMATION TO THE DISTRIBUTION OF THE SAMPLE SIZE FOR SEQUENTIAL TEST. BIOKAGO
                                                                                                                               508
                                                                                                                               190
                                                         DISTRIBUTION OF THE SAMPLE VERSION OF THE MEASURE OF JASA 66
ASSOCIATION, GAMMA
                                                                                                                               440
ION OF THE ROOTS OF A MATRIX ON THE NON-CENTRAL DISTRIBUTION OF THE SECOND ELEMENTARY SYMMETRIC FUNCT AMS 68
                                                                                                                              833
POINTS ON A LINE
                                                     THE DISTRIBUTION OF THE SIZE OF THE MAXIMUM CLUSTER OF JASA 65
                                                                                                                              532
```

```
THE JOINT DISTRIBUTION OF THE STUDENTIZED REGRESSION COEFFICIEN BIOKA68
STRIBUTED DISCRETE RANDOM VARIABLES, CORR./
                                               EXACT DISTRIBUTION OF THE SUM OF INDEPENDENT IDENTICALLY DI JASA 65
                                                                                                                       837
OV PROCESSES WITH CONTINUOUS STATE SPACES
                                              ON THE DISTRIBUTION OF THE SUPREMUM FUNCTIONAL FOR SEMI-MARK AMS 69
DAM UNDER STEADY DEMAND
                                                  THE DISTRIBUTION OF THE TIME-TO-EMPTINESS OF A DISCRETE JRSSB63 III. DISTRIBUTION OF THE TRANSFORMED KENDALL COEFFICIENT BIOKA62
                                                                                                                       137
      TESTS FOR RANK CORRELATION COEFFICIENTS. III. DISTRIBUTION OF THE TRANSFORMED KENDALL COEFFICIENT
                                                                                                                       185
                   A COMBINATORIAL DERIVATION OF THE DISTRIBUTION OF THE TRUNCATED POISSON SUFFICIENT STAT AMS 61
                                                                                                                       904
                                               ON THE DISTRIBUTION OF THE TWO SAMPLE CRAMER-VON MISES
CRITERION
                                                                                                               AMS 62 114B
TERION D-SU/ ON THE EXACT AND APPROXIMATE SAMPLINC DISTRIBUTION OF THE TWO SAMPLE KOLMOCOROV-SMIRNOV CRI JASA 69 NO.4
                                                     DISTRIBUTION OF THE TWO-SAMPLE CRAMER-VON MISES
CRITERION FOR SMALL EQUAL SAMPLES
                                                                                                              AMS 63
                                                                                                                       95
             EXTREME TAIL PROBABILITIES FOR THE NULL DISTRIBUTION OF THE TWO-SAMPLE WILCOXON STATISTIC
                                                                                                              BIOKA67
                                                                                                                       629
                         APPROXIMATIONS FOR THE NULL DISTRIBUTION OF THE W-STATISTIC +(TEST FOR NORMALITY) TECH 68
                                                                                                                       861
                                               ON THE DISTRIBUTION OF THE WEICHTED DIFFERENCE OF TWO INDEPE JRSSB60
NDENT STUDENT VARIABLES
                     AN APPROXIMATION FOR THE EXACT DISTRIBUTION OF THE WILCOXON TEST FOR SYMMETRY
                                                                                                             JASA 64
OBSERVATION INTERVAL
                                                      DISTRIBUTION OF TOTAL SERVICE TIME FOR A FIXED
                                                                                                              JASA 62
                                                                                                                       376
                                               ON THE DISTRIBUTION OF TRIBOLIUM CONFUSUM IN A CONTAINER
                                                                                                             BIOKA57
                                                                                                                       328
                    NORMAL APPROXIMATION TO THE DISTRIBUTION OF TWO INDEPENDENT BINOMIALS, CONDITIONA AMS 63 1593
L ON FIXED SUM
ATION PROCEDURES, CORR. 64 924 SOME RESULTS ON THE DISTRIBUTION OF TWO RANDOM MATRICES USED IN CLASSIFIC AMS 63
                                                                                                                      1B1
                                                  THE DISTRIBUTION OF VACANCIES ON A LINE
                                                                                                              JRSSB59
                                                                                                                       364
ECT MODELS IN THE ANALYSIS OF VARIANCE. I. POSTERIOR DISTRIBUTION OF VARIANCE-COMPONENTS
                                                                                              /OF RANDOM-EFF BIOKAGS
                                                                                                                       37
S OF VARIANCE TABLE FOR DIFFERENT CLASSIFI/ ON THE DISTRIBUTION OF VARIOUS SUMS OF SQUARES IN AN ANALYSI JRSSB59
                                                                                                                       114
                      A FURTHER APPROXIMATION TO THE DISTRIBUTION OF WILCOXON'S STATISTIC IN THE CENERAL
                                                                                                             JRSSB54
                                                                                                                       255
                                        ON THE EXACT DISTRIBUTION OF WILKS'S CRITERION
                                                                                                                       109
                         APPROXIMATE BEHAVIOR OF THE DISTRIBUTION OF WINSORIZED T (TRIMMING-WINSORIZATION TECH 6B
                                                                                                                       83
TWEEN THE DICTIONARY DISTRIBUTION AND THE OCCURRENCE DISTRIBUTION OF WORD LENCTH AND ITS IMPORTANCE FOR TH BIOKA5B
                                                                                                                       222
                   A CHARACTERIZATION OF THE UNIFORM DISTRIBUTION ON A COMPACT TOPOLOGICAL CROUP
                                                                                                              AMS 63
                                                                                                                       319
    FOR THE DISPERSION AND FOR THE MODAL VECTOR OF A DISTRIBUTION ON A SPHERE
                                                                                                       TESTS BIOKA67
                                                                                                                       211
TIMATION OF ONE OF TWO PARAMETERS OF THE EXPONENTIAL DISTRIBUTION ON THE BASIS OF SUITABLY CHOSEN ORDER ST AMS 63 1419
                             ANALOCUES OF THE NORMAL DISTRIBUTION ON THE CIRCLE AND THE SPHERE
                                                                                                             RIOKA63
                                                                                                                       81
                    INTECRAL OF THE BIVARIATE NORMAL DISTRIBUTION OVER AN OFFSET CIRCLE
                                                                                                              JASA 62
                                                                                                                       758
     A TABLE OF THE INTECRAL OF THE BIVARIATE NORMAL DISTRIBUTION OVER AN OFSET CIRCLE
                                                                                                              JRSSB60
                                                                                                                       177
                                AN EXACT PROBABILITY DISTRIBUTION OVER SAMPLE SPACES OF PAIRED COMPARISONS BIOCS65
                                                                                                                       986
RATIC FUNCTIONS IN NORMAL VECTORS
                                          ON CERTAIN DISTRIBUTION PROBLEMS BASED ON POSITIVE DEFINITE QUAD AMS 66
                                                                                                                       46B
IC ROOTS OF THE PRODUCT OF A WISHART VARIATE/ SOME DISTRIBUTION PROBLEMS CONNECTED WITH THE CHARACTERIST
                                                                                                               AMS 67
                                                                                                                       944
                                    SOME NON-CENTRAL DISTRIBUTION PROBLEMS IN MULTIVARIATE ANALYSIS
                                                                                                                      57B
          SOME APPLICATIONS OF MEIJER-G FUNCTIONS TO DISTRIBUTION PROBLEMS IN STATISTICS
                                                                                                             BIOKA58
R AND ITS RELEVANCE TO SIMULATION, C/ A HISTORY OF DISTRIBUTION SAMPLING PRIOR TO THE ERA OF THE COMPUTE JASA 65
                                                                                                                       27
FAILURES OCCUR PER LOT
                               ESTIMATION OF WEIBULL DISTRIBUTION SHAPE PARAMETER WHEN NO MORE THAN TWO
                                                                                                             TECH 64
                                                                                                                       415
                                SOME PROPERTIES OF A DISTRIBUTION SPECIFIED BY ITS CUMULANTS
                                                                                                             TECH 63
                                                                                                                       63
                       ERRATA, 'SOME PROPERTIES OF A DISTRIBUTION SPECIFIED BY ITS CUMULANTS'
                                                                                                             TECH 63
                                                                                                                       417
                                                                                                             BIOCS67
                                     ON A CONTAGIOUS DISTRIBUTION SUCCESTED FOR ACCIDENT DATA
                                                                                                                       241
                    SOME EXACT RESULTS FOR ONE-SIDED DISTRIBUTION TESTS OF THE KOLMOCOROV-SMIRNOV TYPE
                                                                                                              AMS 61
                                                                                                                       499
VERDRUP'S LEMMA AND ITS APPLICATIONS TO MULTIVARIATE DISTRIBUTION THEORY
                                                                                         GENERALIZATION OF S
                                                                                                              AMS 65
                                                                                                                       671
BLE NUMBER OF STATES
                                     SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DENUMERA BIOKA56
                                                     DISTRIBUTION THEORY OF TWO ESTIMATES FOR STANDARD DEV BIOKA54
IATION BASED ON SECOND VARIATE DIFFERENCES
ABILITY ANAL/ APPLICATIONS OF THE BIVARIATE NORMAL DISTRIBUTION TO A STRESS VS. STRENCTH PROBLEM IN RELI TECH 64
VARIATE ESTIMATOR OF EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQUARED ERROR LOSS NCLY AND DOUBLY CENSORED SAMPLES, PART I. THE NORMAL DISTRIBUTION UP TO SAMPLES OF SIZE 10'
                                                                                               /THE BEST IN AMS 69 1801
                                                                                               /ICS FROM SI AMS 39
                                                                                                                      325
               ESTIMATION OF PARAMETERS OF THE GAMMA DISTRIBUTION USING ORDER STATISTICS
                                                                                                             BIOKA62
                                                                                                                       525
NBIASED ESTIMATORS OF THE PARAMETERS OF THE LOCISTIC DISTRIBUTION USING ORDER STATISTICS
                                                                                               BEST LINEAR U TECH 67
                                                                                                                       43
ESTIMATION OF SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION USING ORDER STATISTICS /UM-LIKELIHOOD BIOKAG3 CORRIGENDA, 'ESTIMATION OF PARAMETERS OF THE GAMMA DISTRIBUTION USING ORDER STATISTICS.' BIOKAG3
                                                                                                                       217
                                                                                                                       546
 TESTING THE MEAN AND STANDARD DEVIATION OF A NORMAL DISTRIBUTION USING QUANTILES
                                                                                                             TECH 68
                                                                                                                       781
                        A RAPID TEST FOR THE POISSON DISTRIBUTION USING THE RANGE
                                                                                                             BIOCS67
                                                                                                                       685
TIMATION OF THE PARAMETERS FOR A MULTIVARIATE NORMAL DISTRIBUTION WHEN ONE VARIABLE IS DICHOTOMISED.
                                                                                                          ES BIOKA65
                                                                                                                       664
                SIMPLIFIED ESTIMATORS FOR THE NORMAL DISTRIBUTION WHEN SAMPLES ARE SINCLY CENSORED OR TRUN TECH 59
                                                                                                                       217
XIMUM LIKELIHOOD ESTIMATES FOR A MULTIVARIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MA JASA 57
SOME TESTS OF HYPOTHESES RELATING TO THE EXPONENTIAL DISTRIBUTION WHEN SOME OUTLIERS ARE PRESENT, CORR. 65 JASA 65
                                                                                                                       548
THE NORMAL APPROXIMATION TO THE SIGNED-RANK SAMPLING DISTRIBUTION WHEN ZERO DIFFERENCES ARE PRESENT
                                                                                                             JASA 67 1068
                 ESTIMATION IN THE TRUNCATED POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING
                                                                                                             JASA 60
                                                                                                                      342
             ESTIMATING THE CURRENT MEAN OF A NORMAL DISTRIBUTION WHICH IS SUBJECTED TO CHANCES IN TIME
                                                                                                              AMS 64
                                                                                                                       999
        TWO THEOREMS FOR INFERENCES ABOUT THE NORMAL DISTRIBUTION WITH APPLICATIONS IN ACCEPTANCE SAMPLING JASA 64
                                                                                                                       89
                              THE INVERTED DIRICHLET DISTRIBUTION WITH APPLICATIONS, CORR. 65 1251
                                                                                                             JASA 65
                                                                                                                       793
                 SEQUENTIAL LIFE FOR THE EXPONENTIAL DISTRIBUTION WITH CHANGING PARAMETER
                                                                                                             TECH 66
                                                                                                                      217
NE WITH COVARIANCE MATRIX A EXPRESSING THE NORMAL DISTRIBUTION WITH COVARIANCE MATRIX A+B IN TERMS OF O BIOKA63
                                                                                                                       535
          ON THE EVALUATION OF THE NEGATIVE BINOMIAL DISTRIBUTION WITH EXAMPLES
                                                                                                             TECH 60
                                                                                                                      501
           A NOTE ON ESTIMATING THE MEAN OF A NORMAL DISTRIBUTION WITH KNOWN COEFFICIENT OF VARIATION
                                                                                                             JASA 68 1039
HORTER CONFIDENCE INTERVALS FOR THE MEAN OF A NORMAL DISTRIBUTION WITH KNOWN VARIANCE
                                                                                                           S AMS 63
                                                                                                                      574
 ON THE KOLMOGOROV-SMIRNOV TEST FOR THE EXPONENTIAL DISTRIBUTION WITH MEAN UNKNOWN
                                                                                                             JASA 69
                                                                                                                       387
 ESTIMATION OF PARAMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS
                                                                                                             JASA 68
                                                                                                                      159
LETE AND ABSOLUTE MOMENTS OF THE MULTIVARIATE NORMAL DISTRIBUTION WITH SOME APPLICATIONS
                                                                                                     INCOMP BIOKA53
                                                                                                                       20
                                       ON A DISCRETE DISTRIBUTION WITH SPECIAL REFERENCE TO THE THEORY OF JASA 65 1060
ACCIDENT PRONENESS
  AND THE PROBABILITY INTEGRAL FOR A PEARSON TYPE IV DISTRIBUTION.
                                                                                            THE MILLS RATIO BIOKA65
                                                                                                                      119
                                                                                     ON PAIRS OF INDEPENDENT BIOKAG5
   RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION
                                                                                                                       289
                                                                       /VARIATION OF THE LONG-TAILED FIELD BIOKA52
MOUSE, APODEMUS SYLVATICUS. III WANDERING POWER AND DISTRIBUTION.
                                                                                                                      389
     UPPER PERCENTAGE POINTS OF THE CENERALIZED BETA DISTRIBUTION. I
                                                                                                             BIOKA57
                                                                                                                      237
     UPPER PERCENTAGE POINTS OF THE GENERALIZED BETA DISTRIBUTION II
                                                                                                             BIOKA57
                                                                                                                      441
  CORRELATION IN A SINCLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION II. RANK CORRELATION
                                                                                                                       639
                                                                                                             BIOKA65
     UPPER PERCENTAGE POINTS OF THE CENERALIZED BETA DISTRIBUTION. III
                                                                                                             BIOKA58
                                                                                                                       492
  CORRELATION IN A SINGLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION III. CORRELATION BETWEEN RANKS AND VARI BIOKA66
                                                                                                                       278
                                   THE FOLDED NORMAL DISTRIBUTION. TWO METHODS OF ESTIMATING PARAMETERS
                                                                                                             TECH 61
                                                                                                                      551
FROM MOMENTS
FOR MAKING INFERENCES ABOUT THE VARIANCE OF A NORMAL DISTRIBUTION.
                                                                                        CORRIGENDA, 'TABLES
                                                                                                             BIOKA61
                                                                                                                      230
WAY CLASSIFICATION
                                                      DISTRIBUTION-FREE ANALYSIS OF VARIANCE FOR THE TWO-
                                                                                                             SASJ 67
                                                                                                                       67
                                                    A DISTRIBUTION-FREE ANALYSIS OF VARIANCE TECHNIQUE FOR
                                                                                                             SASJ 68
                                                                                                                        9
BLOCK DESIGNS
                                          A CLASS OF DISTRIBUTION-FREE ANALYSIS OF VARIANCE TESTS
                                                                                                                       75
                                                                                                             SASJ 67
                             STRATIFIED SAMPLING AND DISTRIBUTION-FREE CONFIDENCE INTERVALS FOR A MEDIAN
                                                                                                             JASA 65
                                                                                                                      772
FOR SAMPLE SIZES/ TABLE FOR BOTH THE SIGN TEST AND DISTRIBUTION-FREE CONFIDENCE INTERVALS OF THE MEDIAN JASA 64
                                                                                                                      935
```

TITLE WORD INDEX DIS - DIS

ALTERNATIVES	DISTRIBUTION-FREE K-SAMPLE TEST ACAINST ORDERED	BIOKA54 133
		TECH 66 591
	DISTRIBUTION-FREE METHOD OF ANALIZINC A 2-TO-THE-M	SASJ 68 101
	DISTRIBUTION-FREE METHOD OF ESTIMATING ASYMPTOTIC EFF	
VE POTENCY IN DILU/ GRAPHICAL PROCEDURES FOR USING	DISTRIBUTION-FREE METHODS IN THE ESTIMATION OF RELATI	BIOCS66 610
TMENT VERSUS CONTROL AN ASYMPTOTICALLY	DISTRIBUTION-FREE MULTIPLE COMPARISON PROCEDURE, TREA	AMS 66 735
SOME	DISTRIBUTION-FREE MULTIVARIATE COMPARISON PROCEDURES	AMS 69 1486
ASYMPTOTICALLY MINIMAX	DISTRIBUTION-FREE PROCEDURES	AMS 66 619
SOME BASIC THEOREMS OF	DISTRIBUTION-FREE STATISTICS	AMS 64 150
CHARACTERIZATION OF MULTISAMPLE	DISTRIBUTION-FREE STATISTICS	AMS 64 735
	DISTRIBUTION-FREE STATISTICS, (ACKNOWLEDCEMENT OF	AMS 65 203
POPULATIONS	DISTRIBUTION-FREE SUFFICIENCY IN SAMPLING FINITE	JRSSB68 551
FLUCTUATION THEOREM AND A		AMS 64 1359
	DISTRIBUTION-FREE TEST	BIOKA56 377
	DISTRIBUTION-FREE TEST OF INDEPENDENCE WITH A SAMPLE	
	DISTRIBUTION-FREE TEST STATISTIC FOR DISPERSION AND I	
GOODNESS CRITERIA FOR TWO-SAMPLE		AMS 66 133
EFFICIENCY LOSS DUE TO CROUPING IN		JASA 67 954
SUFFICIENT STATISTICS, SIMILAR REGIONS AND		JRSSB57 262
	DISTRIBUTION-FREE TESTS AND THEIR TWO-SAMPLE EXTENSIO	
	DISTRIBUTION-FREE TESTS FOR DISPERSION	JASA 64 105
	DISTRIBUTION-FREE TESTS FOR INTERACTIONS IN FACTORIAL	
BREAKING OF RECORDS (WITH DISCUSSION)		JRSSB54 1
BREAKING OF REGOLDS (WITH DISCOSSION)	DISTRIBUTION-FREE TESTS OF INDEPENDENCE	AMS 67 429
SYMMETRICAL POPULATIONS		AMS 62 1167
		JASA 62 775
	DISTRIBUTION-FREE TOLERANCE LIMITS	AMS 64 1361
	DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR	
		BIOKA64 256
		JASA 67 643
	DISTRIBUTION, (CORR. 64 182)	AMS 64 809
SIS BASED ON A CEBANTH WILL ALL DE COMPLEA CYLICGETYN	DISTRIBUTION, (CORR. 64 182) DISTRIBUTION, AN INTRODUCTION STATISTICAL ANALY	AMS 63 152
SOME PERCENTAGE POINTS OF THE NON-CENTRAL T		JASA 63 176
	DISTRIBUTION, CORR. 63 1163	AMS 67 162
	DISTRIBUTION, CORR. 67 1394 DISTRIBUTION, III. ACCURACY OF ESTIMATION BY MAXIMUM	
	DISTRIBUTION, ONE SERVER ON THE QUEUEING PR	
	DISTRIBUTION, PERCENTAGE POINTS AND APPLICATION TO TE	
		BIOKAGO 93
	DISTRIBUTION, THE MULTIVARIATE BETA-DISTRIBUTION, AND	
	DISTRIBUTION, WITH ESPECIAL REFERENCE TO THE UNEQUAL	
	-DISTRIBUTION, WITH TABLES FOR CERTAIN SPECIAL CASES	BIOKA54 153
	DISTRIBUTION, 2. ESTIMATION OF THE MEAN /LES FOR DE	
ERRATA, 'ORDER STATISTICS FROM THE GAMMA		TECH 60 523
TO 'A NOTE ON THE MEAN DEVIATION OF THE BINOMIAL		
	DISTRIBUTION' /'PROPERTIES OF DISTRIBUTIONS RESULTI	
FOR SAMPLES OF SIZE TWENTY AND LESS FROM THE NORMAL		
CORRECTION. 'SOME EXTENSIONS OF THE WISHART		AMS 64 923
BIVARIATE EXPONENTIAL		JASA 60 698
TABLES OF TOLERANCE-LIMIT FACTORS FOR NORMAL		TECH 60 4B3
MAXIMUM LIKELIHOOD CHARACTERIZATION OF		AMS 61 1214
A PROBLEM CONCERNED WITH WEIGHTING OF		JASA 61 281
BIVARIATE LOCISTIC		JASA 61 335
THE COMBINATION OF TESTS BASED ON DISCRETE		JASA 62 10 JASA 62 579
ITERATED TESTS OF THE EQUALITY OF SEVERAL		TECH 62 151
LIFE TEST SAMPLING PLANS FOR NORMAL AND LOGNORMAL		
NON-EXISTENCE OF EVERYWHERE PROPER CONDITIONAL CORRELATIONS AND CANONICAL FORMS OF BIVARIATE		AMS 63 223 AMS 63 532
PROPERTIES OF GENERALIZED RAYLEIGH		AMS 63 903
GENERATION OF RANDOM SAMPLES FROM THE BETA AND F		TECH 63 269
GENERATION OF RANDOM SAMPLES FROM THE BETA AND F INVARIANT PRIOR		AMS 64 836
POLYNOMIAL EXPANSIONS OF BIVARIATE		AMS 64 1208
VARIATIONS OF THE NON-CENTRAL T AND BETA		AMS 64 1208
A TWO-PARAMETER FAMILY OF HYPER-POISSON		JASA 64 133
ESTIMATING THE PARAMETERS OF MIXTURES OF BINOMIAL		JASA 64 510
ANALYSIS OF EMPIRICAL BIVARIATE EXTREMAL		JASA 64 794
A UNIFIED DERIVATION OF SOME NONPARAMETRIC		JASA 64 1042
GENESIS OF BIMODAL		TECH 64 357
POISSON LIMITS OF MULTIVARIATE RUN		AMS 65 215
ASYMPTOTICALLY OPTIMUM TESTS FOR MULTINOMIAL		AMS 65 369
INVARIANT CONDITIONAL		AMS 65 B29
	DISTRIBUTIONS	AMS 65 1066
SOME INEQUALITIES FOR CENTRAL AND NON-CENTRAL		AMS 65 1521
A CLASS OF BIVARIATE		JASA 65 516
ESTIMATION OF MULTIPLE CONTRASTS USING T-		JASA 65 573
A UNIQUENESS THEOREM CONCERNING MOMENT	22011120120110	JASA 65 1203
CHARACTERIZATION OF GEOMETRIC AND EXPONENTIAL		AMS 66 1790
ON THE ESTIMATION OF MIXING		AMS 66 177
ON MIXTURES OF		AMS 66 281
ON TESTING THE EQUALITY OF UNIFORM AND RELATED		JASA 66 B56
ESTIMATION OF PARAMETERS FOR A MIXTURE OR NORMAL		TECH 66 431
ASYMPTOTICALLY OPTIMAL TESTS FOR MULTIVARIATE NORMAL		AMS 67 1829
- AN ASYMPTOTIC EXPANSION FOR POSTERIOR		AMS 67 1B99
SOME ANALYTICAL PROPERTIES OF BIVARIATE EXTREMAL		JASA 67 569
ON THE INTERPRETATION OF AGE	DISTRIBUTIONS	JASA 67 B62
NONCENTRAL MULTIVARIATE DIRICHLET	DISTRIBUTIONS	SASJ 67 21
ESTIMATION IN MIXTURES OF TWO NORMAL	DISTRIBUTIONS	TECH 67 15
ESTIMATION IN MIXIONES OF TWO NORMAL		

DIS - DIS TITLE WORD INDEX

```
REMARKS ON LARCE SAMPLE ESTIMATORS FOR SOME DISCRETE DISTRIBUTIONS
                                                                                                           TECH 67 587
                       SOME RESULTS ON POLYA TYPE 2 DISTRIBUTIONS
                                                                                                            AMS 68 1759
                       BAYESIAN ESTIMATION OF MIXINC DISTRIBUTIONS
                                                                                                            AMS 6B 12B9
                       MULTIVARIATE EXPONENTIAL-TYPE DISTRIBUTIONS
                                                                                                            AMS 68 1316
                   CONSTRUCTION OF JOINT PROBABILITY DISTRIBUTIONS
                                                                                                            AMS 68 1354
                       CENERALIZED HYPERBOLIC SECANT DISTRIBUTIONS
                                                                                                           JASA 6B
                                                                                                                    329
                 SOME PROPERTIES OF SYMMETRIC STABLE DISTRIBUTIONS
                                                                                                           JASA 68
           A NOTE ON LINEAR RECRESSION IN TRIVARIATE DISTRIBUTIONS
                                                                                                           JASA 68 1042
       GENERALIZED MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS
                                                                                                            AMS 69 339
                         PRODUCT ENTROPY TO CAUSSIAN DISTRIBUTIONS
                                                                                                            AMS 69
                                                                                                                    870
                        INFINITELY DIVISIBLE RENEWAL DISTRIBUTIONS
                                                                                                            AMS 69 1109
         THE MAXIMUM VARIANCE OF RESTRICTED UNIMODAL DISTRIBUTIONS
                                                                                                            AMS 69 1746
   AN INEQUALITY FOR A CLASS OF BIVARIATE CHI-SQUARE DISTRIBUTIONS
                                                                                                           JASA 69 333
                             UNFOLDING PARTICLE SIZE DISTRIBUTIONS
                                                                                                           TECH 69 NO.4
               NOTE ON A CERTAIN FAMILY OF DISCRETE DISTRIBUTIONS
                                                                                                           BIOKA52 196
                                A NOTE ON CONTACIOUS DISTRIBUTIONS
                                                                                                           BIOKA54
              CENSORED SAMPLES FROM TRUNCATED NORMAL DISTRIBUTIONS
                                                                                                           BIOKA55
  SOME INTERRELATIONS AMONG COMPOUND AND GENERALIZED DISTRIBUTIONS
                                                                                                           BTOKA57
                                                                                                                    265
      THE CHI-SQUARE GOODNESS-OF-FIT TEST FOR NORMAL DISTRIBUTIONS
                                                                                                           BIOKA57
                                                                                                                    336
         TABLES OF RANDOM OBSERVATIONS FROM STANDARD DISTRIBUTIONS
                                                                                                           BIOKA59
                                                                                                                    178
               ON CERTAIN PROPERTIES OF POWER-SERIES DISTRIBUTIONS
                                                                                                           BIOKA59
                                                                                                                    4B6
         ON CERTAIN CHARACTERISTICS OF SOME DISCRETE DISTRIBUTIONS
                                                                                                                    473
                                                                                                           BTOKA60
                THE NON-CENTRAL CHI-SQUARED AND BETA DISTRIBUTIONS
                                                                                                           BIOKA63 542
    REPRESENTATIONS OF THE CENTRAL AND NON-CENTRAL T DISTRIBUTIONS
                                                                                                           BIOKA64
                                                                                                                    451
                    A PARADOX INVOLVING QUASI PRIOR DISTRIBUTIONS
                                                                                                           BIOKA65
                                                                                                                    623
                            ON A SYSTEM OF DISCRETE DISTRIBUTIONS
                                                                                                           BIOKA67
                                                                                                                    649
 SOME RELATIONSHIPS BETWEEN THE NORMAL AND VON MISES DISTRIBUTIONS
                                                                                                           BIOKA67
                A NOTE ON CONTINGENCY-TYPE BIVARIATE DISTRIBUTIONS
                                                                                                           BIOKA68
                                                                                                                   262
         STATISTICAL INFERENCE WITH BIVARIATE GAMMA DISTRIBUTIONS
                                                                                                           BIOKA69 NO.3
          NONPARAMETRIC SYMMETRY TESTS FOR CIRCULAR DISTRIBUTIONS
                                                                                                           BIOKA69 NO.3
       DISTRIBUTION FREE TESTS FOR MIXED PROBABILITY DISTRIBUTIONS
                                                                                                           BIOKA69 NO.3
                                                                                                           BIOKA69 415
         ORDER STATISTICS FROM A CLASS OF NON-NORMAL DISTRIBUTIONS
   ESTIMATING THE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS
                                                                                                           BIOKA69 NO 3
                                   SPECIES FREQUENCY DISTRIBUTIONS
                                                                                                           BIOKA69 NO.3
                          CENERALIZED HYPERGEOMETRIC DISTRIBUTIONS
                                                                                                           JRSSB56 202
                              MIXTURES OF GEOMETRIC DISTRIBUTIONS
                                                                                                           JRSSB61
                  CUMULANTS OF TRUNCATED MULTINORMAL DISTRIBUTIONS
                                                                                                           JRSSB62
                                                                                                                    535
            AN ESTIMATION PROCEDURE FOR MIXTURES OF DISTRIBUTIONS
                                                                                                           JRSSB68
                                                                                                                    444
                                                                                                                    472
     ESTIMATION OF PARAMETERS OF A FINITE MIXTURE OF DISTRIBUTIONS
                                                                                                           JRSSB68
           ON THE ASYMPTOTIC BEHAVIOUR OF POSTERIOR DISTRIBUTIONS
                                                                                                           JRSSB69
                                                                                                                    80
                                   UNUSUAL FREQUENCY DISTRIBUTIONS
                                                                                                           BIOCS65
                                                                                                                    159
                    A NOTE ON CERTAIN DISCRETE MIXED DISTRIBUTIONS
                                                                                                           BTOCS66
                                                                                                                    566
       CONFIDENCE LIMITS FOR QUANTILES OF MORTALITY DISTRIBUTIONS
                                                                                                           BIOCS69
                                                                                                                    176
MEAN-SQUARE-ERROR CHARACTERIZATION OF BINOMIAL-TYPE DISTRIBUTIONS
                                                                                                         A AMS 67
                                                                                                                    620
PROPERTY OF THE MEAN DEVIATION FOR THE PEARSON TYPE DISTRIBUTIONS
                                                                                                         A BIOKA66 287
NOTE ON QUEUEING SYSTEMS WITH ERLANGIAN SERVICE TIME DISTRIBUTIONS
                                                                                                           AMS 65 1574
METHODS OF ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE DISTRIBUTIONS
                                                                                                       ON BIOKA67 367
CTERIZATION THEOREMS FOR SOME UNIVARIATE PROBABILITY DISTRIBUTIONS
                                                                                                     CHARA JRSSB64
                                                                                                                    2B6
CTERIZATION THEOREMS FOR SOME UNIVARIATE PROBABILITY DISTRIBUTIONS
                                                                                                     CHARA JRSSB66
                                                                                                                    143
CLASS OF NONPARAMETRIC TWO-SAMPLE TESTS FOR CIRCULAR DISTRIBUTIONS
                                                                                                           AMS 69 1791
                                                                                                     ON A
                                                                                                    ON THE AMS 64 1216
   TOPOLOGICAL STRUCTURE OF SOME ORDERED FAMILIES OF DISTRIBUTIONS
    FOR HOMOGENEITY. I THE BINOMIAL AND MULTINOMIAL DISTRIBUTIONS
                                                                                                   TESTING BIOKAGG
                                                                                                                    167
       SERIES FORMS OF NON-CENTRAL CHI-SQUARE AND F DISTRIBUTIONS
                                                                                                  LAGUERRE BIOKA65
                                                                                                                    415
SINGLE SAMPLING ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS
                                                                                                 BAYESIAN TECH 6B
                                                                                                                    667
  PROCEDURES FOR RESTRICTED FAMILIES OF PROBABILITY DISTRIBUTIONS
                                                                                                 SELECTION AMS 69
                                                                                                                    905
RATIO TESTS FOR RESTRICTED FAMILITES OF PROBABILITY DISTRIBUTIONS
                                                                                                LIKELIHOOD AMS 6B
                                                                                                                    547
       PLAY IN FINITE STATISTICAL GAMES WITH UNKNOWN DISTRIBUTIONS
                                                                                                REPETITIVE
                                                                                                           AMS 66
                                                                                                                    976
 OF MOMENTS APPLIED TO A MIXTURE OF TWO EXPONENTIAL DISTRIBUTIONS
                                                                                                THE METHOD AMS 61
       PROBABILITIES AND THE CHI-SQUARE AND X-SQUARE DISTRIBUTIONS
                                                                                               MULTINOMIAL BIOKA63
 MULTIVARIATE AND THE GENERALIZED MULTIVARIATE BETA DISTRIBUTIONS
                                                                                               NOTE ON THE JASA 69
   OF GROUPED TRUNCATED AND GROUPED CENSORED NORMAL DISTRIBUTIONS
                                                                                               THE FITTING BIOKA52
                                                                                                                    252
      THE GENERAL NON-NORMAL VARIANCE-RATIO SAMPLING DISTRIBUTIONS
                                                                                             APPROXIMATING BIOKA64
                                                                                                                     B3
                                                                                             DETERMINATION BIOKASS 229
 OF PARAMETERS IN THE JOHNSON SYSTEM OF PROBABILITY DISTRIBUTIONS
       CENSORED SAMPLES FROM LOG-NORMAL AND LOGISTIC DISTRIBUTIONS
                                                                                             PROGRESSIVELY TECH 69 NO.4
         CORRELATION COEFFICIENTS OF BIVARIATE GAMMA DISTRIBUTIONS
                                                                                             THE CANONICAL AMS 69 1401
FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS
                                                                                           A DISTRIBUTION- SASJ 69 NO.2
     OF THE CONNEXION BETWEEN POISSON AND CHI-SQUARE DISTRIBUTIONS
                                                                                           ON AN EXTENSION BIOKA59 352
FIDENCE REGIONS FOR THE MEANS OF MULTIVARIATE NORMAL DISTRIBUTIONS
                                                                                           RECTANGULAR CON JASA 67
                                                                                                                    626
       MEAN DIFFERENCES OF THE BINOMIAL AND POISSON DISTRIBUTIONS
                                                                                           THE GENERALIZED BIOKA59
     FOR THE COMPARISION OF THE SPREAD OF TWO NORMAL DISTRIBUTIONS
                                                                                          A NOTE ON TABLES BIOKA67
         BAYES ESTIMATION FOR ONE-PARAMETER DISCRETE DISTRIBUTIONS
                                                                                          SMOOTH EMPIRICAL BIOKA66
                                                                                                                    417
OLYNOMIALS OF THE FACTORIAL POWER SERIES PROBABILITY DISTRIBUTIONS
                                                                                          THE ORTHOGONAL P SASJ 67
                                                                                                                     49
    FOR THE PARAMETERS OF A MIXTURE OF TWO BINOMIAL DISTRIBUTIONS
                                                                                         MOMENT ESTIMATORS AMS 62
                                                                                                                    444
      FOR THE PARAMETER OF THE BINOMIAL AND POISSON DISTRIBUTIONS
                                                                                         SHORTER INTERVALS BIOKA57
                                                                                                                    436
  FOR CONVERGENCE IN PROBABILITY TO QUASI POSTERIOR DISTRIBUTIONS
                                                                                        RIGHT HAAR MEASURE AMS 65
                                                                                                                    440
                                                                                        THE 'INEFFICIENCY' BIOKA55
   OF THE SAMPLE MEDIAN FOR MANY FAMILIAR SYMMETRIC DISTRIBUTIONS
                                                                                                                    520
       AND THE MEAN DEVIATION OF SOME DISCONTINUOUS DISTRIBUTIONS
                                                                                       THE MEAN DIFFERENCE BIOKA58
                                                                                                                    549
RELATIVE ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTIONS
                                                                                      ESTIMATES OF BOUNDED JASA 56
                                                                                                                    481
     FOR TESTING THE EQUALITY OF SEVERAL EXPONENTIAL DISTRIBUTIONS
                                                                                     AN ITERATED PROCEDURE JASA 63
                                                                                                                    435
    FUNCTIONS IN THE CHARACTERIZATION OF PROBABILITY DISTRIBUTIONS
                                                                                    APPLICATION OF SPECIAL SASJ 69
                                                                                                                    27
   LIMITS FOR THE COEFFICIENT OF VARIATION IN GAMMA DISTRIBUTIONS
                                                                                    APPROXIMATE CONFIDENCE BIOCS65
                                                                                                                   733
     OF RANK ORDERS FOR TWO WIDELY SEPARATED NORMAL DISTRIBUTIONS
                                                                                    ON EXACT PROBABILITIES AMS 67 1491
  CONFIDENCE LIMITS FOR THE BINOMIAL AND AND POISSON DISTRIBUTIONS
                                                                                    TABLES OF SIMULTANEOUS BIOKA69
                                                                                    TABLES OF THE FREEMAN- BIOKA61
                                                                                                                   433
  TUKEY TRANSFORMATIONS FOR THE BINOMIAL AND POISSON DISTRIBUTIONS
BINOMIAL, NEGATIVE BINOMIAL, POISSON AND CHI-SQUARE DISTRIBUTIONS
                                                                                    TRANSFORMATIONS OF THE BIOKA54 302
    FUNCTIONS OF THE ROOTS OF A MULTIVARIATE MATRIX. DISTRIBUTIONS
                                                                                   ON ELEMENTARY SYMMETRIC AMS 64 11B6
```

```
NON-NORMAL UNIVERSES BY MEANS OF COMPOUND NORMAL DISTRIBUTIONS
                                                                                   SAMPLING FROM BIVARIATE BIOKA52
                                                                                                                     238
    LEE-FISHER FUNCTIONS OF SINGLY TRUNCATED NORMAL DISTRIBUTIONS
                                                                                  NOTES. TABLES OF PEARSON- BIOCS65
  THE LEFT OF THE I'TH ORDER STATISTIC FOR ARBITRARY DISTRIBUTIONS
                                                                                   THE EXPECTED COVERAGE TO AMS 69
TESTS OF INDEPENDENCE FOR CONTINGENCY-TYPE BIVARIATE DISTRIBUTIONS
                                                                                  THE PERFORMANCE OF SOME BIOKA69
   ESTIMATING PARAMETERS OF SOME GENERALIZED POISSON DISTRIBUTIONS
                                                                                 SIMPLIFIED TECHNIQUES FOR BIOKA67
                                                                              ON ESTIMATING THE PARAMETERS BIOKA69
     OF THE LOGARITHMIC SERIES AND NEGATIVE BINOMIAL DISTRIBUTIONS
                                                                                                                     411
   OF LINEAR SYSTEMATIC STATISTICS FROM MULTIVARIATE DISTRIBUTIONS
                                                                             ASYMPTOTIC JOINT DISTRIBUTION JASA 69
                                                                                                                     300
   PROPORTIONS IN MIXTURES OF EXPONENTIAL AND NORMAL DISTRIBUTIONS
                                                                            INFORMATION FOR ESTIMATING THE JASA 63
                                                                                                                     918
MPOUND DECISION PROBLEM FOR TWO COMPLETELY SPECIFIED DISTRIBUTIONS
                                                                            RATES OF CONVERGENCE IN THE CO AMS 65 1743
TBUTTON FUNCTIONS OF ORDER STATISTICS FROM BIVARIATE DISTRIBUTIONS
                                                                           A RECURRENCE RELATION FOR DISTR JASA 69
                                                                                                                     600
EFFICIENT OF VARIATION FOR THE NORMAL AND LOG NORMAL DISTRIBUTIONS
                                                                           CONFIDENCE INTERVALS FOR THE CO BIOKA64
                                                                                                                     25
  OF HOMOGENEITY FOR POPULATIONS COMPOSED OF NORMAL DISTRIBUTIONS
                                                                           EMPIRIC INVESTIGATION OF A TEST JASA 58
                                                                                                                     551
                                                                                                                     2B5
OPERTY OF THE MEAN DEVIATION FOR A CLASS OF DISCRETE DISTRIBUTIONS
                                                                          A GENERALIZATION OF JOHNSON'S PR BIOKA66
   IN CERTAIN FAMILIES OF BIVARIATE AND MULTIVARIATE DISTRIBUTIONS
                                                                          CHARACTERIZATIONS OF INDEPENDENCE AMS 68
                                                                                                                     433
   CORRELATION MATRIX, NON-CENTRAL MULTIVARIATE BETA DISTRIBUTIONS
                                                                          ON THE DISTRIBUTION OF A MULTIPLE AMS 6B
                                                                        EFFICIENCY OF CERTAIN METHODS OF ES BIOKA62
TIMATION FOR THE NEGATIVE BINOMIAL AND NEYMAN TYPE A DISTRIBUTIONS
ULL DISTRIBUTIONS FOR HIGHER ORDER SCHEMES, NON-NULL DISTRIBUTIONS
                                                                      /LINEAR AUTO-REGRESSIVE MODEL. II. N BIOKA56
                                                                                                                     186
DATA FROM THE NEGATIVE BINOMIAL AND OTHER CONTAGIOUS DISTRIBUTIONS
                                                                      A METHOD OF ANALYSING UNTRANSFORMED BIOKA68
                                                                                                                     163
URES FOR THE TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS
                                                                      POINT AND INTERVAL ESTIMATION PROCED TECH 68
                                                                                                                     231
TERS OF THE TRUNCATED BINOMIAL AND NEGATIVE BINOMIAL DISTRIBUTIONS
                                                                     /D OF MOMENTS ESTIMATES OF THE PARAME JASA 61
                                                                                                                     990
E HYPERGEOMETRIC, BINOMIAL, POISSON, AND EXPONENTIAL DISTRIBUTIONS
                                                                     /QUENTIAL ESTIMATION APPLICABLE TO TH AMS 65 1494
ES, OF THE SCALE PARAMETERS OF TYPE II EXTREME-VALUE DISTRIBUTIONS
                                                                      /TIMATION, FROM SINGLY CENSORED SAMPL TECH 6B
                                                                                                                     349
 LOCATION PARAMETER OF THE WEIBULL AND CERTAIN OTHER DISTRIBUTIONS
                                                                     ON SOME PERMISSIBLE ESTIMATORS OF THE TECH 67
                                                                                                                     293
    SOME CONTRIBUTIONS TO CONTINGENCY-TYPE BIVARIATE DISTRIBUTIONS (CORR. 6B 597)
                                                                                                            RIOKA67
                                                                                                                     235
    SMOOTH EMPIRICAL BAYES ESTIMATION FOR CONTINUOUS DISTRIBUTIONS
                                                                    (CORR 6B 597)
                                                                                                            BIOKA67
                                                                                                                     435
  ON CHI-SQUARE GOODNESS-OF-FIT TESTS FOR CONTINUOUS DISTRIBUTIONS
                                                                    (WITH DISCUSSION)
                                                                                                            JRSSB58
                                                                                                                     44
        A BAYESIAN SIGNIFICANCE TEST FOR MULTINOMIAL DISTRIBUTIONS (WITH DISCUSSION)
                                                                                                            JRSSB67
                                                                                                                     399
                          NECESSARY RESTRICTIONS FOR DISTRIBUTIONS A POSTERIORI
                                                                                                            JRSSB60
                                                                                                                     312
    SIMILARITIES BETWEEN LIKELIHOODS AND ASSOCIATED DISTRIBUTIONS A POSTERIORI
                                                                                                            JRSSB61
                                                                                                                     460
                  EXACT FORMS OF SOME INVARIANTS FOR DISTRIBUTIONS ADMITTING SUFFICIENT STATISTICS
                                                                                                            BIOKA55
                                                                                                                     533
                                            FIDUCIAL DISTRIBUTIONS AND BAYES' THEOREM
                                                                                                            JRSSB58
                                                                                                                     102
                  SAMPLING PROCEDURES BASED ON PRIOR DISTRIBUTIONS AND COSTS
                                                                                                            TECH 63
                                                                                                                      47
       MULTISTAGE SAMPLING PROCEDURES BASED ON PRIOR DISTRIBUTIONS AND COSTS
M OF SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTRIBUTIONS AND COSTS
                                                                               /C DISTRIBUTION AND A SYSTE TECH 60
                                                                                                                     275
ART DISTRIBUTIONS, CORR. 66 297 MULTIVARIATE BETA DISTRIBUTIONS AND INDEPENDENCE PROPERTIES OF THE WISH AMS 64
                                                                                                                     261
                                            INVERSE DISTRIBUTIONS AND INDEPENDENT CAMMA-DISTRIBUTED PRODU BIOKA63
                                                                                                                     505
CTS OF RANDOM VARIABLES
M LIKELIHOOD ESTIMATION FOR GENERALIZED POWER SERIES DISTRIBUTIONS AND ITS APPLICATION TO A TRUNCATED BINO BIOKA62
                                                                                                                     227
ING DIFFERENTIAL EQ/ THE DETERMINATION OF SAMPLING DISTRIBUTIONS AND MOMENT GENERATING FUNCTIONS BY SOLV JRSSB65
                                                                                                                     86
WHICH THE FORMER CANNOT BE ASSOCIATED WI/ FUDUCIAL DISTRIBUTIONS AND PRIOR DISTRIBUTIONS, AN EXAMPLE IN JRSSB56 CONFIDENCE BOU/ ON CERTAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR APPLICATIONS TO SIMULTANEOUS AMS 67
                                                                                                                     217
                                                                                                            AMS 67 1B53
                    INTERRELATIONS AMONG GENERALIZED DISTRIBUTIONS AND THEIR COMPONENTS
                                                                                                           BIOCS66
                                                                                                                     44
  ORTHOGONAL POLYNOMIALS OF POWER SERIES PROBABILITY DISTRIBUTIONS AND THEIR USES
                                                                                                       THE BIOKA66
                                                                                                                     121
DISCUSSION)
                                   QUASI-STATIONARY DISTRIBUTIONS AND TIME-REVERSION IN GENETICS (WITH JRSSB66
                                                                                                                     253
                                                                                                                     503
                                          A CLASS OF DISTRIBUTIONS APPLICABLE TO ACCIDENTS
                                                                                                            JASA 61
 WITH ONE SERVER, WHILE THE INTERARRIVAL AND SERVING DISTRIBUTIONS ARE DETERMINISTIC AND GAMMA OF ORDER K JRSSB63
                                                                                                                     477
 WITH ONE SERVER, WHILE THE INTERARRIVAL AND SERVING DISTRIBUTIONS ARE EXPONENTIAL AND GAMMA OF ORDER LAMB JRSSB66
M WITH ONE SERVER AND WHICH INTERARRIVAL AND SERVING DISTRIBUTIONS ARE EXPONENTIAL AND GENERAL INDEPENDENT JRSSB59
                                         PROBABILITY DISTRIBUTIONS ARISING FROM POINTS ON A LINE
                                         ON LIMITING DISTRIBUTIONS ARISING IN BULK SERVICE QUEUES
                                                                                                            JRSSB56
MEAN DIFFERENCES
                                                SOME DISTRIBUTIONS ARISING IN THE STUDY OF GENERALIZED
                                                                                                            BIOKA60
                                                                                                                     469
                                 CORRIGENDA, 'SOME DISTRIBUTIONS ARISING IN THE STUDY OF GENERALIZED
MEAN DIFFERENCES'
                                                                                                            BIOKA61
                                                                                                                     230
                                                     DISTRIBUTIONS ASSOCIATED WITH CELL POPULATIONS
                                                                                                            BIOKA69
                                                                                                                     391
                                            LIMITING DISTRIBUTIONS ASSOCIATED WITH CERTAIN STOCHASTIC
LEARNING MODELS
                                                                                                            AMS 62 1281
                                                     DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RECURRE JRSSB57
NT EVENTS (WITH DISCUSSION)
                                                                                                                     64
                                    CONVOLUTIONS OF DISTRIBUTIONS ATTRACTED TO STABLE LAWS
                                                                                                            AMS 68 13B1
      TOLERANCE AND CONFIDENCE LIMITS FOR CLASSES OF DISTRIBUTIONS BASED ON FAILURE RATE, CORR. 67 950
                                                                                                             AMS 66 1593
        NEW METHODS FOR REASONING TOWARDS POSTERIOR DISTRIBUTIONS BASED ON SAMPLE DATA
                                                                                                            AMS 66 355
UNBAISED ESTIMATION OF THE COMMON MEAN OF TWO NORMAL DISTRIBUTIONS BASED ON SMALL SAMPLES OF EQUAL SIZE
                                                                                                           JASA 66
                                                                                                                     467
IANCE FOR THE PARAMETERS IN THE BINOMIAL AND POISSON DISTRIBUTIONS BASED ON TWO-STAGE SAMPLING /THE VAR JASA 66
                                                                                                                     220
                           CHARACTERIZATIONS OF SOME DISTRIBUTIONS BY CONDITIONAL MOMENTS
                                                                                                            AMS 65
                                                                                                                     703
E CHANNEL QUEUE WITH A GENERAL CLASS OF SERVICE-TIME DISTRIBUTIONS BY THE METHOD OF GENERATING FUNCTIONS
                                                                                                            JRSSB5B
                                                                                                                     176
                                                                                                            TECH 68
  ON THE DETERMINATION OF A SAFE LIFE FOR CLASSES OF DISTRIBUTIONS CLASSIFIED BY FAILURE RATE
                                                                                                                     361
INISME GENETIQUE DES CARACTERES QUANTITATIFS ET R/ DISTRIBUTIONS DE FREQUENCES, INTERPRETATION DU DETERM BIOCS6B
                                                                                                                     277
                                                     DISTRIBUTIONS DETERMINED BY CUTTING SIMPLEX WITH
                                                                                                            AMS 68 1473
                                 SOME NON-CENTRAL F-DISTRIBUTIONS EXPRESSED IN CLOSED FORM
ABLES ARE SUBJECT TO ERROR
                                         LIKELIHOOD DISTRIBUTIONS FOR ESTIMATING FUNCTIONS WHEN BOTH VARI TECH 67
THESES IN THE LINEAR AUTO-REGRESSIVE MODEL. II. NULL DISTRIBUTIONS FOR HICHER ORDER SCHEMES, NON-NULL DIST BIOKA56
                                                                                                                     1B6
                                           POSTERIOR DISTRIBUTIONS FOR MULTIVARIATE NORMAL PARAMETERS
                                                                                                         JRSSB63
                                                                                                                     368
                                   SOME WAITING TIME DISTRIBUTIONS FOR REDUNDANT SYSTEMS WITH REPAIR
                                                                                                            TECH 64
                                                                                                                     27
                                           COUNTING DISTRIBUTIONS FOR RENEWAL PROCESSES.
                                                                                                           BIOKA65
                                                                                                                     395
                             STATIONARY WAITING-TIME DISTRIBUTIONS FOR SINGLE-SERVER QUEUES
                                                                                                            AMS 62 1323
                                           SIMULATED DISTRIBUTIONS FOR SMALL N OF KENDALL'S PARTIAL RANK
CORRELATION COEFFICIENT
                                                                                                            BIOKA63
                                                                                                                     520
LEARNING MODELS
                                            LIMITING DISTRIBUTIONS FOR SOME RANDOM WALKS ARISING IN
                                                                                                            AMS 66
                                         ON LIMITING DISTRIBUTIONS FOR SUMS OF A RANDOM NUMBER OF INDEPEND AMS 69
ENT RANDOM VECTORS
                                                                                                                     935
                                                                                                           JASA 61
                              EXACT AND APPROXIMATE DISTRIBUTIONS FOR THE WILCOXON STATISTIC WITH TIES
   ON SOME RESULTS OF N. V. SMIRNOV CONCERNING LIMIT DISTRIBUTIONS FOR VARIATIONAL SERIES
                                                                                                            AMS 69
                                                                                                                     480
                                                 ON DISTRIBUTIONS FOR WHICH THE HARTLEY-KHAMIS SOLUTION BIOKA51
OF THE MOMENT-PROBLEM IS EXACT
                                                                                                                     74
TOR IS UNBIASED AND OF MINIMUM VARIANC/ A CLASS OF DISTRIBUTIONS FOR WHICH THE MAXIMUM-LIKELIHOOD ESTIMA BIOKA56
TERS OF MIXED EXPONENTIALLY DISTRIBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE TEST DATA /PARAME BIOKASB
                                                                                                                     504
                                                                                                    ESTIM TECH 60
ATION OF THE PARAMETERS OF TWO PARAMETER EXPONENTIAL DISTRIBUTIONS FROM CENSORED SAMPLES
                                                                                                                     403
                                                                                                                    117
ESTIMATORS OF THE PARAMETERS OF NEGATIVE EXPONENTIAL DISTRIBUTIONS FROM ONE OR TWO ORDER STATISTICS /UM AMS 63
R STATISTICS OF THE PARAMETERS OF SINGLE EXPONENTIAL DISTRIBUTIONS FROM SINGLY AND DOUBLY CENSORED SAMPLES JASA 57
                                                                                                                     5B
                    ESTIMATION OF FINITE MIXTURES OF DISTRIBUTIONS FROM THE EXPONENTIAL FAMILY
                                                                                                           JASA 69 NO.4
                            THE PERCENTILE POINTS OF DISTRIBUTIONS HAVING KNOWN CUMULANTS
                                                                                                           TECH 60
                                                                                                                    209
                   ERRATA, 'THE PERCENTILE POINTS OF DISTRIBUTIONS HAVING KNOWN CUMULANTS'
                                                                                                           TECH 60 523
                                          GAME VALUE DISTRIBUTIONS I
                                                                                                            AMS 67
```

DIS - DOS TITLE WORD INDEX

```
GAME VALUE DISTRIBUTIONS II
                                                                                                                                              AMS 67 251
                  A TEST FOR HOMOGENEITY OF THE MARCINAL DISTRIBUTIONS IN A TWO-WAY CLASSIFICATION
                                                                                                                                             BIOKA55
                                                                                                                                                         412
                                     THE ASSESSMENT OF PRIOR DISTRIBUTIONS IN BAYESIAN ANALYSIS
                                                                                                                                            JASA 67
                                                                                                                                                         776
        THE USE OF INCOMPLETE BETA FUNCTIONS FOR PRIOR DISTRIBUTIONS IN BINOMIAL SAMPLING
                                                                                                                                             TECH 65
                                                                                                                                                         335
           EXPERIMENTAL EVIDENCE CONCERNING CONTAGIOUS DISTRIBUTIONS IN ECOLOGY
                                                                                                                                             BIOKA53
                                                                                                                                                         186
  ADEQUACY OF THE DIFFUSION APPROXIMATION TO CERTAIN DISTRIBUTIONS IN CENETICS
                                                                                                                                        THE BIOCS65
                                                                                                                                                         3B6
                                  APPLICATIONS OF TRUNCATED DISTRIBUTIONS IN PROCESS START-UPS AND INVENTORY
                                                                                                                                            TECH 61
                                                                                                                                                         429
                                  THE USE OF LEAST FAVORABLE DISTRIBUTIONS IN TESTING COMPOSITE HYPOTHESES
                                                                                                                                              AMS 61 1034
TER ESTIMATION IN NON-LINEAR SIT/
THE USE OF PRIOR DISTRIBUTIONS IN THE DESIGN OF EXPERIMENTS FOR PARAME BIOKA67
TER ESTIMATION IN NON-LINEAR SIT/
THE USE OF PRIOR DISTRIBUTIONS IN THE DESIGN OF EXPERIMENTS FOR PARAME BIOKA67
                                                                                                                                                       147
                                                        GEOMETRIC DISTRIBUTIONS IN THE THEORY OF QUEUES (WITH
DISCUSSION)
                                                                                                                                             JRSSB59
                                                                                                                                                          1
    A MAXIMUM-MINIMUM PROBLEM RELATED TO STATISTICAL DISTRIBUTIONS IN TWO DIMENSIONS
                                                                                                                                             BIOKA57
                                                                                                                                                         3R4
   A GRAPHICAL METHOD FOR THE ANALYSIS OF STATISTICAL DISTRIBUTIONS INTO TWO NORMAL COMPONENTS
                                                                                                                                             BTOKA53
                                                                                                                                                         460
ATION PROBLEM IN WHICH INFORMATION ABOUT ALTERNATIVE DISTRIBUTIONS IS BASED ON SAMPLES
                                                                                                                            A CLASSIFIC AMS 62
                                                                                                                                                        213
                          THE GOODNESS OF FIT OF FREQUENCY DISTRIBUTIONS OBTAINED FROM STOCHASTIC PROCESSES
                                                                                                                                             BIOKA54
                                                                                                                                                         450
ES FOR POSSIBLE CHANCES IN PARAMETERS OF STATISTICAL DISTRIBUTIONS OCCURING AT UNKNOWN TIME POINTS /EDUR AMS 66 1196
                                                             LIMIT DISTRIBUTIONS OF A BRANCHING STOCHASTIC PROCESS
                                                                                                                                              AMS 64
                                                                                                                                                       557
                                                                     DISTRIBUTIONS OF A M. KAC STATISTIC
                                                                                                                                              AMS 67 1919
                                        A STOCHASTIC MODEL FOR DISTRIBUTIONS OF BIOLOGICAL RESPONCE TIMES
                                                                                                                                             BIOCS65
ITY CRITERION M UNDER UNEQUAL VARI/ SOME EMPIRICAL DISTRIBUTIONS OF BIVARIATE T-SQUARE AND HOMOSCEDASTIC JASA 63 104B
                                                   PEAKEDNESS OF DISTRIBUTIONS OF CONVEX COMBINATIONS
                                                                                                                                              AMS 65 1703
                                                                     DISTRIBUTIONS OF CORRELATION COEFFICIENTS IN ECONOMIC JASA 61
                  SOME RELATIONSHIPS AMONG THE VON MISES DISTRIBUTIONS OF DIFFERENT DIMENSIONS
                                                                                                                                             BIOKA66
IN DISCRIMINANT ANALYSIS
                                                           ON THE DISTRIBUTIONS OF DIRECTION AND COLLINEARITY FACTORS
                                                                                                                                             AMS 6B
IN DISCRIMINANT ANALYSIS

ON THE DISTRIBUTIONS OF DIRECTION AND COLLINEARITY FACTORS
E STOCHASTIC DIFFERENCE EQU/ CONSISTENCY AND LIMIT DISTRIBUTIONS OF ESTIMATORS OF PARAMETERS IN EXPLOSIV
                                                                                                                                              AMS 61
                                                                                                                                                         195
               APPROXIMATE FORMULAE FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES
                                                                                                                                             BTOKA58
                                                                                                                                                         447
                                             ON FINITE SAMPLE DISTRIBUTIONS OF GENERALIZED CLASSICAL LINEAR IDENTIF
IABILITY TEST STATISTICS
                                                                                                                                             JASA 60
                                                                                                                                                         650
-SUB-N AND W-SQ/ CHI-SQUARE APPROXIMATIONS FOR THE DISTRIBUTIONS OF GOODNESS-OF-FIT STATISTICS, U-SQUARE BIOKA65
                                                                                                                                                         630
ORDERED SYSTEMS
                                                                     DISTRIBUTIONS OF KENDALL'S TAU BASED ON PARTIALLY
                                                                                                                                             BTOKA55
                                                                                                                                                         417
NCLUDING A TABLE OF SIGNIFICAN/ THE CALCULATION OF DISTRIBUTIONS OF KOLMOGOROV-SMIRNOV TYPE STATISTICS
                                                                                                                                             AMS 6B
                                                                                                                                                         233
G INDEPENDENCE OF SETS OF VARIATES U/ ON THE EXACT DISTRIBUTIONS OF LIKELIHOOD RATIO CRITERIA FOR TESTIN
                                                                                                                                              AMS 67 1160
                                                                     DISTRIBUTIONS OF MATRIX VARIATES AND LATENT ROOTS
DERIVED FROM NORMAL SAMPLES
                                                                                                                                              AMS 64
                                                                                                                                                         475
                                         APPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF BIOKA53 RELATION BETWEEN THE DISTRIBUTIONS OF NON-CENTRAL T AND OF A TRANSFORMED BIOKA57
 CHT-SQUARE
                                                                                                                                                         336
CORRELATION COEFFICIENT
                                                                                                                                                         219
                                 A COMPARISON OF CONTINUOUS DISTRIBUTIONS OF PARAMETERS OF EXPONENTIAL DECAY
CURVES
                                                                                                                                             BIOCS6B
                                                                                                                                                         117
              CORRECTIONS TO 'THE THEORY OF PROBABILITY DISTRIBUTIONS OF POINTS ON A LATTICE' 58 256
                                                                                                                                              AMS 61
                                                                                                                                                         619
ANCULAR POPULATIONS
                                SOME GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATISTICS ARISING FROM RECT JASA 64
                                                                                                                                                         557
                                                                     DISTRIBUTIONS OF PRODUCTS OF INDEPENDENT VARIABLES
                                                                                                                                             TECH 62
                                                                                                                                                         277
                 DECOMPOSITION OF SYMMETRIC MATRICES AND DISTRIBUTIONS OF QUADRATIC FORMS
                                                                                                                                              AMS 65
                                                                                                                                                         6B3
                             SERIES REPRESENTATIONS OF DISTRIBUTIONS OF QUADRATIC FORMS IN NORMAL VARIABLES,
  I. CENTRAL CASE
                                                                                                                                              AMS 67
                                                                                                                                                         823
                                                                                                                                              AMS 67
 II. NON-CENTRAL CASE
                                 SERIES REPRESENTATIONS OF DISTRIBUTIONS OF QUADRATIC FORMS IN NORMAL VARIABLES.
                                                                                                                                                         B38
                                                                     DISTRIBUTIONS OF RANDOM VARIABLES WITH RANDOM
PARAMETERS
                                                                                                                                             SASJ 69
                                                                                                                                                        706
                                                         LIMITING DISTRIBUTIONS OF RESPONSE PROBABILITIES
                                                                                                                                              AMS 65
 SUCCESSIVE DIFFERENCES APPROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON BIOKAST
                                                                                                                                                         349
    CONTRIBUTIONS TO SAMPLE SPACINCS THEORY, I. LIMIT DISTRIBUTIONS OF SUMS OF RATIOS OF SPACINCS
                                                                                                                                              AMS 66
                                                                                                                                                         904
TY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTIONS OF THE CRITERION W FOR TESTING SPHERICI
                                                                                                                                              AMS 67 1170
IMATORS IN TWO LEADING OVER-I/ A NOTE ON THE EXACT DISTRIBUTIONS OF THE GENERALIZED CLASSICAL LINEAR EST JASA 63 535
IMATORS IN A LEADING THREE-EQUATION/ ON THE EXACT DISTRIBUTIONS OF THE GENERALIZED CLASSICAL LINEAR EST JASA 64
                                                                                                                                                         BB1
VARIANCE MATRIX ASYMPTOTIC EXPANSIONS OF THE DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR CO AMS 69 NO.6
LTIVARIATE/
                  ASYMPTOTIC EXPANSIONS OF THE NON-NULL DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR MU
                                                                                                                                              AMS 69
STING LINEAR HYPOTHESES ABOUT RECRES/ ON THE EXACT DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR TE AMS 66 1319
                             ON APPROXIMATIONS TO SAMPLING DISTRIBUTIONS OF THE MEAN FOR SAMPLES FROM NON-NORMAL AMS 63 130B
 FROM A NORMAL DISTRIBUTION
                                                      STATIONARY DISTRIBUTIONS OF THE NEGATIVE EXPERIMENTAL TYPE FOR JRSSB57
                                                            ON THE DISTRIBUTIONS OF THE RANCE AND MEAN RANGE FOR SAMPLES BIOKA66
NCE MATRIX AND WILKS' CRITERION FOR TESTS/
                                                            ON THE DISTRIBUTIONS OF THE RATIOS OF THE ROOTS OF A COVARIA AMS 69 NO.6
                                                           ON THE DISTRIBUTIONS OF THE TIMES BETWEEN EVENTS IN A STATIO JRSSB69 NO.2
NARY STREAM OF EVENTS
NARY STREAM OF EVENTS ON THE DISTRIBUTIONS OF THE TIMES BETWEEN EVENTS IN A STATIO JRSSB69 NO.2 SQUARED AND WATSON'S U-SQUARED SMALL-SAMPLE DISTRIBUTIONS OF THE TWO-SAMPLE CRAMER-VON MISES' W- AMS 64 1091
                    MAXIMUM LIKELIHOOD ESTIMATION OF THE DISTRIBUTIONS OF TWO STOCHASTICALLY ORDERED RANDOM VA JASA 66 1067
RIABLES
                                        ON THE NON-CENTRAL DISTRIBUTIONS OF TWO TEST CRITERIA IN MULTIVARIATE
ANALYSIS OF VARIANCE
                                                                                                                                             AMS 6B 215
DIES OF BALANCED NESTED DESICN SAMPLING DISTRIBUTIONS OF VARIANCE COMPONENTS I. EMPIRICAL STU TECH 66
UDIES OF UNBALANCED NESTED DESIGNS SAMPLING DISTRIBUTIONS OF VARIANCE GOMPONENTS II. EMPIRICAL ST TECH 68
D SYMMETRY OF A COVARIANCE MATRIX ON THE EXACT DISTRIBUTIONS OF VOTAW'S CRITERIA FOR TESTING COMPOUN AMS 69
                                                                                                                                                         836
                                                            EXACT DISTRIBUTIONS OF WILKS'S LIKELIHOOD RATIO CRITERION BIOKA66
                                                                                                                                                         347
                                                            GIRDLE DISTRIBUTIONS ON A SPHERE
                                                                                                                                             BTOKA64
                                                                                                                                                         3B1
                                                      EQUATORIAL DISTRIBUTIONS ON A SPHERE
                                                                                                                                             BIOKA65
                                                                                                                                                         193
                                      APPENDIX TO 'EQUATORIAL DISTRIBUTIONS ON A SPHERE'
                                                                                                                                             BTOKA65
                                                                                                                                                         200
                   SOME EFFECTS OF FLUCTUATING OFFSPRING DISTRIBUTIONS ON THE SURVIVAL OF A GENE
                                                                                                                                             BIOKA66
                                                                                                                                                         391
                                                                     DISTRIBUTIONS POSSESSING A MONOTONE LIKELIHOOD RATIO JASA 56
                                                                                                                                                         637
ATIONS OF THE NORMAL DISTRIBUTION
                                                 PROPERTIES OF DISTRIBUTIONS RESULTING FROM CERTAIN SIMPLE TRANSFORM BIOKA52
                                                                                                                                                         290
ATIONS OF THE NORMAL D/ CORRIGENDA, 'PROPERTIES OF DISTRIBUTIONS RESULTING FROM CERTAIN SIMPLE TRANSFORM BIOKA52

IKELIHOOD METHOD (CORR) FIRSTLING OF SOME CONTRACTOR STRUCTURE OF SOME CONTR
                                                                                                                                                         236
IKELIHOOD METHOD (CORR/
                                  FITTING OF SOME CONTAGIOUS DISTRIBUTIONS TO SOME AVAILABLE DATA BY THE MAXIMUM L BIOCS65
                                                                                                                                                         34
                         ESTIMATES OF RELIABILITY FOR SOME DISTRIBUTIONS USEFUL IN LIFE TESTING
                                                                                                                                             TECH 64
                                                                                                                                                         215
     PROBLEMS ARISING IN APPROXIMATING TO PROBABILITY DISTRIBUTIONS USING MOMENTS
                                                                                                                                      SOME BIOKA63
                                                                                                                                                         95
ERIZATION OF NORMAL AND GENERALIZED TRUNCATED NORMAL DISTRIBUTIONS USING ORDER STATISTICS
                                                                                                                                  CHARACT AMS 66 1011
                       DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTIONS VIA BAYES'S THEOREM
                                                                                                                                             JRSSB65
                                                                                                                                                        290
                 NOTE ON THE MOMENT-PROBLEM FOR UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE KNOWN
                                                                                                                                             BIOKA56
                                                                                                                                                         224
                             LIMITING BEHAVIOR OF POSTERIOR DISTRIBUTIONS WHEN THE MODEL IS INCORRECT, CORR. 66
745
                                                                                                                                             AMS 66
                                                                                                                                                          51
                                              NEGATIVE BINOMIAL DISTRIBUTIONS WITH A COMMON K
                                                                                                                                            BTOKA5B
                                                                                                                                                         37
            CLASSIFICATION INTO TWO MULTIVARIATE NORMAL DISTRIBUTIONS WITH DIFFERENT COVARIANCE MATRICES
                                                                                                                                              AMS 62
                                                                                                                                                         420
                         TOLERANCE LIMITS FOR THE CLASS OF DISTRIBUTIONS WITH INCREASING HAZARD RATE
                                                                                                                                              AMS 64 1561
                         MAXIMUM LIKELIHOOD ESTIMATION FOR DISTRIBUTIONS WITH MONOTONE FAILURE RATE
                                                                                                                                              AMS 65
                                                                                                                                                       69
                                   PROPERTIES OF PROBABILITY DISTRIBUTIONS WITH MONOTONE HAZARD RATE
                                                                                                                                             AMS 63 375
                                          TABLES OF BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE
                                                                                                                                            JASA 65
                                                                                                                                                        872
                                                       BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE, I
                                                                                                                                             AMS 64 1234
                                                       BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE, II
                                                                                                                                             AMS 64 125B
                                                              JOINT DISTRIBUTIONS WITH PRESCRIBED MOMENTS
                                                                                                                                              AMS 65 286
```

TITLE WORD INDEX DIS - DOS

```
A NOTE ON MULTIVARIATE DISTRIBUTIONS WITH SPECIFIED MARCINALS
                                                                                                             JASA 67 1460
ESTIMATING PARAMETERS IN TRUNCATED PEARSON FREQUENCY DISTRIBUTIONS WITHOUT RESORT TO HICHER MOMENTS
                                                                                                            BIOKA53 50
                APPROXIMATION TO THE BEHRENS-FISHER DISTRIBUTIONS.
                                                                                                             BIOKA65
                                                                                                                      267
     OF THE MEAN DEVIATION FOR A CLASS OF CONTINUOUS DISTRIBUTIONS
                                                                                                 A PROPERTY BIOKA65
                                                                                                                      288
ONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTIONS
                                                                        /OF POWER FUNCTIONS OF SOME TESTS C AMS 69
                                                                                                                      697
BILITIES OF THE MULTINOMIAL AND NECATIVE MULTINOMIAL DISTRIBUTIONS.
                                                                        INTECRAL EXPRESSIONS FOR TAIL PROBA BIOKA65
                                 TRUNCATED LOCNORMAL DISTRIBUTIONS. I. SOLUTION BY MOMENTS
                                                                                                             BIOKA51
NOMIAL PROBABILITIES AND THE CHI-SQUARE AND X-SQUARE DISTRIBUTIONS.'
                                                                                         CORRICENDA, 'MULTI BIOKA63
 BY THE COMBINATION OF TESTS BASED ON DISCONTINUOUS DISTRIBUTIONS.
                                                                           CORRIGENDA, 'ON QUESTIONS RAISED BIOKA51
                                                                                                                      265
BE ASSOCIATED WI/ FUDUCIAL DISTRIBUTIONS AND PRIOR DISTRIBUTIONS, AN EXAMPLE IN WHICH THE FORMER CANNOT JRSSB56
                                                                                                                      217
        PIVOTAL QUANTITIES FOR WISHART'S AND RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEORY
                                                                                                             JRSSB55
THE INVERSION OF CUMULANT OPERATORS FOR POWER-SERIES DISTRIBUTIONS, AND THE APPROXIMATE STABILIZATION OF V JASA 6B
                                                                                                                      321
                      SICNIFICANCE TESTS IN DISCRETE DISTRIBUTIONS, CORR. 62 919
                                                                                                             JASA 61
                                                                                                                      223
                                 MULTIVARIATE PARETO DISTRIBUTIONS, CORR. 63 1603
                                                                                                              AMS 62 1008
     AND SCALE PARAMETERS IN EXPONENTIAL FAMILIES OF DISTRIBUTIONS, CORR. 63 1603
                                                                                                   LOCATION AMS 62
                                                                                                                      986
                          A RELATION BETWEEN T AND F-DISTRIBUTIONS, CORR. 65 1249
                                                                                                            JASA 65
                                                                                                                      528
                              ON A CENERAL SYSTEM OF DISTRIBUTIONS, I. ITS CURVE-SHAPE CHARACTERISTICS II. JASA 68
 THE SAMPLE MEDIAN
                                                                                                                      627
ROBABILITY CONTENT OF REGIONS UNDER SPHERICAL NORMAL DISTRIBUTIONS, III. THE BIVARIATE NORMAL INTEGRAL P AMS 61
                                                                                                                      171
                              ON A GENERAL SYSTEM OF DISTRIBUTIONS, III. THE SAMPLE RANGE
                                                                                                            JASA 68
                                                                                                                      636
PROBABILITY CONTENT OF REGIONS UNDER SPERICAL NORMAL DISTRIBUTIONS, IV, THE DISTRIBUTION OF HOMOGENEOUS AN AMS 62
                                                                                                                      542
METHODS OF APPROXIMATION
                                        THE MATCHING DISTRIBUTIONS, POISSON LIMITING FORMS AND DERIVED
                                                                                                            JRSSB58
                                                                                                                       73
                                INFINITELY DIVISIBLE DISTRIBUTIONS, RECENT RESULTS AND APPLICATIONS
                                                                                                              AMS 62
                                                                                                                       68
                            HALF-RECTIFIED TRUNCATED DISTRIBUTIONS, SAMPLING THEORY AND HYPOTHESIS TESTING TECH 69
                                                                                                                       47
   ON 'THE ESTIMATION OF THE PARAMETERS OF TOLERANCE DISTRIBUTIONS'
                                                                                                      A NOTE BIOKA52
       'TABLES OF TOLERANCE-LIMIT FACTORS FOR NORMAL DISTRIBUTIONS'
                                                                                                     ERRATA, TECH 61
 'CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL DISTRIBUTIONS'
                                                                                                    ERRATA, TECH 66
                                                                                                                      570
  'A NEW TABLE OF PERGENTAGE POINTS OF THE CHI-SQUARE DISTRIBUTIONS'
                                                                                                 CORRIGENDA. BIOKA65
                                                                                                                      305
                                                                       (ACKNOWLEDGEMENT OF PRIORITY), 'A BIOKAGO
/RRIGENDA TO 'TRANSFORMATIONS OF THE BIOKAS6
 PROPERTY OF THE MEAN DEVIATION FOR THE PEARSON TYPE DISTRIBUTIONS'
                                                                                                                      333
 BINOMIAL, NEGATIVE BINOMIAL, POISSON AND CHI-SQUARE DISTRIBUTIONS'
                                                                                                                      235
OF 'ESTIMATION OF PARAMETERS FOR A MIXTURE OF NORMAL DISTRIBUTIONS' BY VICTOR HASSELBLAD
                                                                                                DISCUSSION TECH 66
                                                                                                                      445
        TO 'SADDLE POINT METHODS FOR THE MULTINOMIAL DISTRIBUTIONS' 57 861
                                                                                                 CORRECTIONS AMS 61
                                                                                                                      619
             CORRECTION. 'THE STRUCTURE OF BIVARIATE DISTRIBUTIONS', 5B 719
                                                                                                              AMS 64 1388
    WAGE, PRICE, AND TAX ELASTIGITIES OF OUTPUT AND DISTRIBUTIVE SHARES
                                                                                                             JASA 62
                                                                                                                     607
                                          ASYMPTOTIC DISTRIBUTORS FOR THE COUPON COLLECTOR'S PROBLEM
                                                                                                             AMS 65 1B35
                               SOME FURTHER NOTES ON DISTURBANCE ESTIMATES IN RECRESSION ANALYSIS
                                                                                                             JASA 67
                                                                                                                     169
                                                                                                             JASA 61
              TESTING THE INDEPENDENCE OF REGRESSION DISTURBANCES
                                                                                                                      793
      OF THE BLUS PROCEDURE FOR ANALYZING REGRESSION DISTURBANCES
                                                                                           A SIMPLIFICATION JASA 68
                                                                                                                      242
OOD ESTIMATORS IN A LINEAR MODEL WITH AUTOREGRESSIVE DISTURBANCES
                                                                     /TOTIC DISTRIBUTION OF MAXIMUM LIKELIH AMS 69
ICTION OF AN AUTOREGRESSIVE VARIABLE SUBJECT BOTH TO DISTURBANCES AND TO ERRORS OF OBSERVATION
                                                                                                       PRED JASA 65
 ESTIMATION OF A SYSTEM OF REGRESSION EQUATIONS WHEN DISTURBANCES ARE BOTH SERIALLY AND CONTEMPORANEOUSLY JASA 67
                                     THE ANALYSIS OF DISTURBANCES IN REGRESSION ANALYSIS
                                                                                                             JASA 65 1067
                  A GENERAL CLASS OF COEFFIGIENTS OF DIVERGENCE OF ONE DISTRIBUTION FROM ANOTHER
                                                                                                             JRSSB66 131
                                                     DIVERGENCE PROPERTIES OF SOME MARTINGALE TRANSFORMS
                                                                                                             AMS 69 1B52
                                             PRODUCT DIVERSIFICATION AND LIVING COSTS, A FURTHER COMMENT
                                                                                                             JASA 66 7BB
                              MARKET GROWTH, COMPANY DIVERSIFICATION AND PRODUCT CONCENTRATION 1947-1954
                                                                                                            JASA 60
                                                                                                                      640
                                             PRODUCT DIVERSIFICATION AND THE COST OF LIVING, CORR. 64 1296 JASA 63
                                                                                                                      B07
CAL RELATION BETWEEN GREENBERG'S INDEX OF LINGUISTIC DIVERSITY AND YULE'S CHARACTERISTIC
                                                                                              THE MATHEMATI BIOKA58
                                                                                                                      26B
                 CHANGES IN THE SIZE DISTRIBUTION OF DIVIDEND INCOME
                                                                                                             JASA 61
                                                                                                                      250
                                                      DIVIDEND POLICY, AN EMPIRICAL ANALYSIS
                                                                                                             JASA 68 1132
                                ZEROES OF INFINITELY DIVISIBLE DENSITIES
                                                                                                              AMS 69 1503
                            ON THE ANALYSIS OF GROUP DIVISIBLE DESIGNS
                                                                                                             JASA 64 1217
            ON THE BLOCK STRUCTURE OF SINGULAR GROUP DIVISIBLE DESIGNS
                                                                                                              AMS 66 139B
   COMBINING INTRA AND INTER BLOCK ANALYSIS OF GROUP DIVISIBLE DESIGNS
                                                                                                             TECH 66 188
MMON TREATMENTS BETWEEN BLOCKS OF SEMI-REGULAR GROUP DIVISIBLE DESIGNS
                                                                         ON THE BOUNDS OF THE NUMBER OF CO JASA 64
                  ON CONTINUOUS SINGULAR INFINITELY DIVISIBLE DISTRIBUTION FUNCTIONS
                                                                                                              AMS 64
                                                                                                                      330
              ON CONTINUITY PROPERTIES OF INFINITELY DIVISIBLE DISTRIBUTION FUNCTIONS
                                                                                                              AMS 6B
                                                                                                                      936
APPLICATIONS
                                          INFINITELY DIVISIBLE DISTRIBUTIONS. RECENT RESULTS AND
                                                                                                              AMS 62
                                                                                                                      6B
 RANDOM VARIABLES
                                       ON INFINITELY DIVISIBLE LAWS AND A RENEWAL THEOREM FOR NON-NEGATIVE AMS 68 139
                               A CLASS OF INFINITELY DIVISIBLE MIXTURES
                                                                                                              AMS 6B 1153
                                       REDUCED GROUP DIVISIBLE PAIRED COMPARISON DESIGNS
                                                                                                              AMS 67 1B87
                                TWO CLASSES OF CROUP DIVISIBLE PARTIAL DIALLEL CROSSES
                                                                                                            BTOKA63 281
                                      EXTENDED GROUP DIVISIBLE PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS AMS 64
                                                                                                                      681
                                          INFINITELY DIVISIBLE RENEWAL DISTRIBUTIONS
                                                                                                              AMS 69 1109
         AN EVALUATION OF A FUNCTIONAL ON INFINITELY DIVISIBLE STOCHASTIC PROCESSES
                                                                                                              AMS 64 336
    TO 'ON A CLASS OF PROBLEMS RELATED TO THE RANDOM DIVISION OF AN INTERVAL' 53 239
                                                                                                 CORRECTION AMS 62
                                                                                                                      812
                                NOTE ON THE INFINITE DIVISIVILITY OF EXPONENTIAL MIXTURES
                                                                                                              AMS 67 1303
                                             INFINITE DIVISIVILITY OF INTEGER-VALUED RANDOM VARIABLES
                                                                                                              AMS 67
                                                                                                                     1306
                                     ON A THEOREM OF DOBRUSHIN
FOR T. BAYES' ESSAY TOWARDS SOLVING A PROBLEM IN THE DOCTRINE OF CHANCES. /STICS. IX. BIOGRAPHIGAL NOTE BIOKA58
Y. SOC. 17/ ESSAY TOWARDS SOLVING A PROBLEM IN THE DOCTRINE OF CHANCES. (REPRODUCED FROM PHIL. TRANS. RO BIOKA58
   A SOLUTION TO THE PROBLEM OF LINKING MULTIVARIATE DOCUMENTS
                                                                                                             JASA 69
                                                                                                                      163
                         SOME LIMIT THEOREMS FOR THE DODCE-ROMIG LTPD SINGLE SAMPLING INSPECTION PLANS
                                                                                                             TECH 62
                                                                                                                      497
                                A CENERAL VERSION OF DOEBLIN'S CONDITION
                                                                                                              AMS 63
                                                                                                                      668
                                                                                                              AMS 66 1697
      ON RANDOMIZED RANK SCORE PROCEDURE OF BELL AND DOKSUM
SURVEYS
                                              USE OF DOMAIN ESTIMATORS WITH UNEQUAL PROBABILITY IN SAMPLE JASA 68
                                                                                                                      9B4
SAMPLING
                                                     DOMAINS OF OPTIMALITY OF TESTS IN SIMPLE RANDOM
                                                                                                             AMS 69
                                                                                                                      308
                         CHANCES IN CONCENTRATION OF DOMESTIC MANUFACTURING ESTABLISHMENT OUTPUT 1939-195B JASA 62
                                                                                                                      797
ISTICAL TESTS OF HYPOTHESES CONCERNING THE DEGREE OF DOMINANCE IN MONOFACTORIAL INHERITANCE NOTES. STAT BIOCS6B
                                                                                                                      429
                                                  ON DOMINATING AN AVERAGE ASSOCIATED WITH DEPENDENT
GAUSSIAN VECTORS
                                                                                                             AMS 68 1B44
ON AND REGRESSION
                                          A MODIFIED DOOLITTLE APPROACH FOR MULTIPLE AND PARTIAL CORRELATI JASA 58
                                                                                                                      133
WEIGHTED DATA
                                                 THE DOOLITTLE METHOD AND THE FITTING OF POLYNOMIALS TO
                                                                                                            BIOKA53
                                                                                                                      229
            ANALYSIS OF QUANTAL RESPONSE ASSAYS WITH DOSAGE ERRORS
                                                                                                             BTOCS67
                                                                                                                      747
            SOME STOCHASTIC MODELS RELATING TIME AND DOSAGE IN RESPONSE CURVES
                                                                                                             BIOCS65
                                                                                                                      583
          SOME COMPARISONS OF METHODS OF FITTING THE DOSAGE RESPONSE CURVE FOR SMALL SAMPLES
                                                                                                                      779
                                                                                                             JASA 64
    FOR COMPLEX CONTINGENCY TABLES AND POLYCHOTOMOUS DOSAGE RESPONSE CURVES
                                                                                                     MODELS BIOCS66
                                                                                                                       83
       MONRO METHOD FOR ESTIMATING THE MEDIAN LETHAL DOSE
                                                                                               THE ROBBINS- JRSSB65
                                                                                                                       28
```

ANALYSIS OF GROWTH AND		BIOCS69	357
METHOD OF TESTING THE LINEAR TRENDS OF RESPONSES IN	DOSE TRIALS A SEQUENTIAL	BIOCS68	663
MALIZING THE INCOMPLETE BETA-FUNCTION FOR FITTING TO	DOSE-RESPONSE CURVES ON NOR	BIOKA60	173
A LARCE-SAMPLE BIOASSAY DESIGN WITH RANDON	1 DOSES AND UNCERTAIN CONCENTRATION	BIOKA55	307
THE AVERAGE SAMPLE NUMBER FOR TRUNCATED SINCLE AND	DOSE-RESPONSE CURVES ON NOR DOSES AND UNCERTAIN CONCENTRATION DOUBLE ATTRIBUTES ACCEPTANCE SAMPLINC PLANS DOUBLE CLASSIFICATIONS. PART 1, RESULTS SHORT-	TECH 6B	685
CUT MULTIPLE COMPARISONS FOR RALANCED SINGLE AND	DOUBLE CLASSIFICATIONS PART 1 RESULTS SHORT-	TECH 65	95
	DOUBLE CLASSIFICATIONS. PART 2. DERIVATIONS AND APPRO		485
	DOUBLE EXPONENTIAL POPULATION BEST LINEAR ESTIMA		248
			368
	DOUBLE SAMPLE TEST	JASA 69	
		BIOKA52	217
ON THE THEORY OF CLASSICAL RECRESSION AND	DOUBLE SAMPLINC ESTIMATION	JRSSB60	131
MEASURE OF SIZE ESTIMATION 01	DOUBLE SAMPLING FOR PROBABILITY PROPORTIONATE TO SOME	AMS 64	900
USE 01	DOUBLE SAMPLING FOR SELECTING BEST POPULATION	BIOKA64	49
OCCASIONS	DOUBLE SAMPLING FOR STRATIFICATION ON SUCCESSIVE	JASA 65	7B4
SOME REMARKS OF		BIOKA65	587
IS THE VARIANCE	DOUBLE SAMPLING PLANS WHERE THE ACCEPTANCE CRITERION		99
	DOUBLE SAMPLING SCHEME FOR ANALYTICAL SURVEYS		985
		JASA 58	
			543
	DOUBLY CENSORED SAMPLES /ATISTICS OF THE PARAMETERS		5B
	DOUBLY CENSORED SAMPLES, OF THE PARAMETERS OF THE FIR		889
	DOUBLY CENSORED SAMPLES, PART I. THE NORMAL DISTRIBUT		325
A NOTE ON REPRESENTATIONS OF THE	DOUBLY NON-CENTRAL T DISTRIBUTION	JASA 6B	1013
THE MOMENTS OF A	DOUBLY NONCENTRAL T-DISTRIBUTION	JASA 67	278
SERIES REPRESENTATIONS OF THE	DOUBLY NONCENTRAL T-DISTRIBUTION	JASA 6B	1004
RELATIONSHIP BETWEEN ARBITRARY POSITIVE MATRICES AND	DOUBLY STOCHASTIC MATRICES A	AMS 64	
ON ESTIMATING THE PARAMETER OF	DOUBLY TRUNCATED BINOMIAL DISTRIBUTION	JASA 66	
PARAMETERS OF NORMAL POPULATIONS RASED ON STMCLV AND	DOUBLY TRUNCATED SAMPLES /OF THE ESTIMATES OF THE		46
A GENERALIZED TWO-SAMPLE WILCOXON TEST FOR		BIOKA65	
ON THE MEAN AND VARIANCE OF THE SMALLER OF TWO			
		BIOKA62	
	DRAWN FROM A DIFFERENT RECTANGULAR DISTRIBUTION /0		508
	DRAWN FROM A DISTRIBUTION ADMITTING SUFFICIENT STATIS		203
ORRELATION COEFFICIENT IN RANDOM SAMPLES OF ANY SIZE	DRAWN FROM NON-NORMAL UNIVERSES /E PRODUCT-MOMENT C	BIOKA51	219
TWO SPECIFIED SAMPLING UNITS WILL OCCUR IN A SAMPLE	DRAWN WITH UNEQUAL PROBABILITIES AND WITHOUT REPLACEM	JASA 66	384
CHOOSING ONE OF K HYPOTHESES CONCERNING THE UNKNOWN	DRIFT PARAMETER OF THE WIENER PROCESS /OCEDURES FOR	AMS 67	1376
VARIATION QUADRATIQUE DES MARTINCALES CONTINUES A			284
	'DROSOPHILA SUBOBSCURA' COLL. AND A COMPARISON WITH T		469
MEASUREMENT OF THE POTENCIES OF		BIOCS69	477
OPTIMAL REPLICATION IN SEQUENTIAL		BIOKA64	1
		BIOKAGS	43.7
QUANTAL RESPONSE TO THE JOINT ACTION OF A MIXTURE OF	DRUGS GENERAL MUDELS FUR	BIUKA64	413
CTION OF MODELS FOR QUANTAL RESPONSES TO MIXTURES OF	DRUGS , A COMPARISON OF TWO APPROACHES TO THE CONSTRU	BIOCS67	27
	DRUGS IN BIOLOGICAL ASSAY /E CLASSIFICATION OF MATH		
THE 'GENERALIZED' MULTIPLE CORRELATION MATRIX IN THE	DUAL CASE DISTRIBUTION OF	AMS 64	1801
DISTRIBUTION BIORTHOGONAL AND	DUAL CONFIGURATIONS AND THE RECIPROCAL NORMAL	AMS 69	393
		JASA 60	1
ESTIMATION A JOINT DESIGN CRITERION FOR THE	DUAL PROBLEM OF MODEL DISCRIMINATION AND PARAMETER	TECH 68	145
AND SOME NONEXISTENCE THEOREMS	DUALS OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS		104B
	DUALS OF SYMMETRIC PARTIALLY-BALANCED INCOMPLETE	AMS 63	52B
A QUICK COMPACT TWO SAMPLE TEST TO		TECH 59	31
		JASA 67	954
A NOTE ON THE LOSS OF INFORMATION		BIOKA64	495
	DUMMY VARIATE REGRESSION UNDER NORMALITY ASSUMPTIONS		
		JASA 63	
	DUNCAN'S MODEL AN ALGORITHM FOR THE DETER		304
NOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR		BIOCS66	179
AN EXAMPLE IN	DUNUMERABLE DECISION PROCESSES	AMS 6B	674
PARTIALLY	DUPLICATED FRACTIONAL FACTORIAL DESIGNS	TECH 63	71
THEORY WHEN THE FRAME CONTAINS AND UNKNOWN AMOUNT OF	DUPLICATION SOME NONRESPONSE SAMPLING		87
PARTIAI	DUPLICATION OF FACTORIAL EXPERIMENTS	TECH 59	63
		TECH 60	185
INCOME, INCOME CHANGE, AND		JASA 64	
	DURABLE GOODS EXPENDITURES, WITH MAJOR EMPHASIS ON TH		
	DURATION OF A BALL AND CELL GAME. A FIRST PASSAGE		
	DURATION OF PLAY /F PROBABILITY AND STATISTICS. VI.		
		JRSSB59	
	DURBIN-WATSON TEST AND THE POWER OF THE BLUS TEST		
	DURBIN'S FORMULA FOR THE LIMITING GENERALIZED VARIANC		
	DURBIN'S FORMULA FOR THE LIMITING GENERALIZED VARIANC		
		TECH 66	
	DURING VIRAL INFECTION OF BACTERIA /MATION OF THE N		
	DVORETZKY STOCHASTIC APPROXIMATION THEOREMS	AMS 66	
		JASA 59	
ON NONCOVERAGE OF SAMPLE		JASA 58	
RZEUGUNG VON SYMBOLFOLGEN MIT VORGEGEBENER RELATIVEF	DYADENKONTEXTREDUNDANZ /N EINFACHES VERFAHREN ZUR E	BIOCS68	703
THE EQUILIBRIUM COVARIANCE MATRIX OF	DYNAMIC ECONOMETRIC MODELS	JASA 69	277
	DYNAMIC PROGRAMMING	AMS 62	719
MEMORYLESS STRATEGIES IN FINITE-STACE		AMS 64	
	DYNAMIC PROGRAMMING	AMS 65	
	DYNAMIC PROGRAMMING	AMS 66	
		AMS 66	
A NOTE ON POSTITUE	DYNAMIC PROGRAMMING	AMS 66	
	DYNAMIC PROGRAMMING DYNAMIC PROGRAMMING	AMS 69	316
INSPECTION	DYNAMIC PROGRAMMING DYNAMIC PROGRAMMING DYNAMIC PROGRAMMING APPLICATION IN PRODUCTION LINE	AMS 69 TECH 67	316 73
INSPECTION A MARKOV PROCESS ON THE ITERATIVE METHOD OF	DYNAMIC PROGRAMMING DYNAMIC PROGRAMMING DYNAMIC PROGRAMMING APPLICATION IN PRODUCTION LINE DYNAMIC PROGRAMMING ON A FINITE SPACE DISCRETE TIME	AMS 69 TECH 67	316 73 1279

TITLE WORD INDEX DOS - EFF

ON FINDINC OPTIMAL POLICIES IN DISCRETE	DYNAMIC PROCRAMMINC WITH NO DISCOUNTINC DYNAMIC PROCRAMMINC WITH NO DISCOUNTINC	AMS 66	1284
	DYNAMIC PROCRAMMING WITH SENSITIVE DISCOUNT OPTIMALIT	AMS 65	
A	DYNAMIC STOCHASTIC APPROXIMATION METHOD DYNAMIC STOCHASTIC PROCESSES	AMS 63	
ON A FACTOR AUTOMORPHISM OF A NORMAL	DYNAMICAL SYSTEM		
VERSIONS OF THE MATRIX MODEL FOR POPULATION		JASA 69	111
	DYNKIN ON THE DIMENSION OF SUFFICIENT STATISTICS	AMS 69	1474
		AMS 67	
TESTS AND CONFIDENCE INTERVALS BASED ON THE METRIC	D2	AMS 63	618
SOME EQUILIBRIUM RESULTS FOR THE QUEUEINC PROCESS	E-SUB-K-M-1	JK22B26	275
NUMERICAL RESULTS FOR WAITING TIMES IN THE QUEUE	E-SUB-K-M-1.' CORRICENDA. 'SOME	BIOKAGO	484
ON THE MONOTONICITY OF	DZ E-SUB-K-M-1 E-SUB-K-M-1 SOME E-SUB-F(S-SUB-T-OVER-T) E(Y)=A+DX+BC-TO-X	AMS 68	1755
A METHOD OF FITTING THE REGRESSION CURVE	E(Y) = A + DX + BC - TO - X	TECH 65	59
ALLINC IN THE SHORTEST SAMPLE SPACINGS DETERMINED BY	EARLIER OBSERVATIONS /THE NUMBER OF OBSERVATIONS F	AMS 61	83B
N THE HISTORY OF PROBABILITY AND STATISTICS, XX.SOME ON AN EXTREME RANK SUM TEST WITH	EARLY CORRESPONDENCE BETWEEN W.S. GOSSETT, R.A. FISHE	JASA 65	
ON AN EXTREME NAME SOM TEST WITH			713
QUERY, LIFE TESTING AND		TECH 66	
		JASA 60	
	EARLY HISTORY OF THE LAW OF LARGE NUMBERS /IES IN T		
ON CROWTH PARAMETER ESTIMATION FOR AND TENSILE STRENGTH TWO	EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES		162 559
	EARLY SOLUTIONS OF THE PROBLEM OF THE DURATION OF PLA		
	EARNING EXPECTATIONS AND NEW CAR PURCHASES		575
RESPONSE ERROR IN SURVEY REPORTS OF			729
	ECOLOGIQUES, PRINCIPES FONDAMENTAUX /NALYSE STATIST		345
IQUE DES LIAISONS ENTRE LES ESPECES ET LES VARIABLES SPATIAL POINT PROCESSES. WITH APPLICATIONS TO	ECOLOGIQUES, UN EXEMPLE /ALES PAR L'ANALYSE STATIST	BIOCS65 BIOKA55	890 102
EVIDENCE CONCERNING CONTAGIOUS DISTRIBUTIONS IN			1B6
	ECOLOCY AND SOME OF ITS STATISTICAL PROPERTIES /TIO		
		BIOKA52	346
SEASONAL ADJUSTMENT OF DATA FOR			
AN	ECONOMETRIC EXPLORATION OF INDIAN SAVING BEHAVIOR ECONOMETRIC MODEL FOR UNITED STATES ACRICULTURE	JASA 69	90 556
CROSS STATE PRODUCT AND AN	ECONOMETRIC MODEL OF A STATE		7B7
A QUARTERLY		JASA 61	379
THE EQUILIBRIUM COVARIANCE MAIRIX OF DINAMIC	ECONOMETRIC MODELS	JASA 69	
	ECONOMETRIC STATISTICAL INFERENCE, CORR. 64 1296 /N		943
FORECASTING SHORT-TERM	ECONOMIC APPLICATION /ONSHIP BETWEEN THE MEAN AND V	JASA 69	253
	ECONOMIC CHOICE OF EXPERIMENT SIZES FOR DECISION RECA		
		JRSSB56	32
		JASA 68	
		TECH 68 JASA 56	
	ECONOMIC DESIGN OF MEAN CHARTS USED TO MAINTAIN ECONOMIC DESIGN OF X-GHARTS BASED ON DUNCAN'S MODEL		304
		JASA 67	470
		JASA 58	В9
		JASA 57 JASA 59	257
	ECONOMIC RESEARCH ON CERTAIN TIPES OF RECREATION ECONOMIC SYSTEMS. THE PROBLEM OF EXPERIMENTAL DESIGN		
DISTRIBUTIONS OF CORRELATION COEFFICIENTS IN		JASA 61	
	ECONOMIC TIME SERIES AND MULTIPLE REGRESSION ANALYSIS		993
		JASA 63	31
VARIANCE, LINEAR, UNBIASED SEASONAL ADJUSTMENT OF	ECONOMIG TIME SERIES, CORR. 65 1250 MINIMUM ECONOMICAL BINOMIAL SEQUENTIAL PROBABILITY RATIO TEST		
	ECONOMICAL SEQUENTIAL SAMPLING SCHEME FOR INSPECTION		
	ECONOMICALLY OPTIMUM ACCEPTANCE TESTS	JASA 56	243
NORMAL SAMPLING IN TWO-ACTION PROBLEMS WITH LINEAR			
		TECH 59 JASA 56	
SIMULATION OF AN AQUATIC		BIOCS68	
69 151/ A CENTRAL LIMIT THEOREM FOR THE NUMBER OF	EDGES IN THE RANDOM INTERSECTION OF TWO GRAPHS (CORR.		
	EDGEWORTH (1845-1926) STUDIES IN THE HISTORY		
	EDGEWORTH AND GRAM-CHARLIER SERIES THE REGIONS EDGEWORTH CURVES ARE POSITIVE DEFINITE AND UNIMODAL		
		BIOKA52	
A PROCEDURE FOR AUTOMATIC DATA		JASA 67	
BLS MANPOWER SURVEYS COMPUTER	EDITING OF SURVEY DATA, FIVE YEARS OF EXPERIENCE IN		
		TECH 66 BIOKA65	
	EDITORIAL ARRANCEMENTS EDITORIAL, JOHN WISHART, 1898-1956	BIOKA57	
QUALITY AND QUANTITY IN HICHER		JASA 65	
OGCUPATIONAL COMPONENTS OF	EDUCATIONAL DIFFERENCES IN INCOME	JASA 61	
PRACTICAL VALUE OF INTERNATIONAL		JASA 56	
	EFFECTIVE DISCRIMINATORS IN A MULTIVARIATE SITUATION EFFECTIVE INTERVIEWERS	JASA 64	
	EFFECTIVE USE OF BOTH POSITIVE AND NECATIVE CONTROLS		
THE RATIO OF TWO PROBABILITIES AND SOME MEASURES OF	EFFECTIVENESS TWO CONFIDENCE INTERVALS FOR	JASA 57	36
	EFFECTIVENESS OF ADJUSTMENT BY SUBCLASSIFICATION IN		
	EFFECTIVENESS OF TOURNAMENTS EFFECTIVENESS OF VOIDING AS A DEFENCE AGAINST BLADDER	BIOKA60 BIOCS66	
SEQUENCES BALANCED FOR PAIRS OF RESIDUAL		JASA 67	
A CENERAL MODEL FOR CENETIC		BIOCS66	

```
OF COMPONENTS EXHIBITING CUMULATIVE DAMAGE EFFECTS
                                                                                          THE RELIABILITY TECH 61 413
 BALANCED FOR THE LINEAR COMPONENT OF FIRST RESIDUAL EFFECTS
                                                                                       CHANGEOVER DESIGNS BIOKA68 297
    DESIGNS WITH COMPLETE BALANCE FOR FIRST RESIDUAL EFFECTS
                                                                               THE ANALYSIS OF CHANGEOVER BIOCS67
NTS OF THE OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECTS ANALYSIS OF VARIANCE F TESTS, ALPHA EQUALS O. JASA 57
                                                                                                                   345
IAL E/ NOTES. THE SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO THE POWER N FACTOR BIOCS67 571
              STATISTICAL DEPENDENCE BETWEEN RANDOM EFFECTS AND THE NUMBERS OF OBSERVATIONS ON THE EFFECT JASA 67 1375
RREGULAR FRACTIONAL P/ INDEX NUMBERS FOR FACTORIAL EFFECTS AND THEIR CONNECTION WITH A SPECIAL KIND OF I JASA 63
        AN ITERATIVE PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUAT BIOCS68
                                                                                                                    13
                                       ESTIMATES OF EFFECTS FOR FRACTIONAL REPLICATES
                                                                                                                  711
                                                                                                           AMS 64
ANDOM EFFECTS AND THE NUMBERS OF OBSERVATIONS ON THE EFFECTS FOR THE UNBALANCED ONE-WAY RANDOM CLASSIFICAT JASA 67 1375
  COMPLETE COUNTERBALANCING OF IMMEDIATE SEQUENTIAL EFFECTS IN A LATIN SQUARE DESIGN, GORR. 5B 1030
                                                                                                          JASA 58 525
            TESTING THE HYPOTHESIS OF NO FIXED MAIN-EFFECTS IN SCHEFFE'S MIXED MODEL
                                                                                                           AMS 62 10B5
  NOTE ON TESTING HYPOTHESES IN AN UNBALANCED RANDOM EFFEGTS MODEL
                                                                                                          BIOKA67 659
SIS OF VARIANCE FOR THE TWO-WAY CLASSIFICATION FIXED EFFEGTS MODEL WITH OBSERVATIONS WITHIN A ROW SERIALLY BIOKAGO NO.3
 PROCEDURE TO ESTIMATE THE POPULATION MEAN IN RANDOM EFFECTS MODELS
                                                                                                        A TECH 67
STOCHASTIC MODELS
                                        ANALYSIS OF EFFECTS OF ANTIBIOTICS ON BACTERIA BY MEANS OF
                                                                                                                   761
 ERROR
                                                    EFFECTS OF BIAS ON ESTIMATES OF THE CIRCULAR PROBABLE JASA 60
AL DESIGN
                                                THE EFFECTS OF ERRORS IN THE FACTOR LEVELS AND EXPERIMENT TECH 63
 SURVIVAL OF A GENE
                                               SOME EFFECTS OF FLUCTUATING OFFSPRING DISTRIBUTIONS ON THE BIOKAG6
         A MARKOVIAN MODEL FOR THE ANALYSIS OF THE EFFECTS OF MARGINAL TESTING ON SYSTEM RELIABILITY
                                                                                                           AMS 62
                                                                                                                   754
                          THE INTERPRETATION OF THE EFFECTS OF NON-ADDITIVITY IN THE LATIN SQUARE
                                                                                                          BIOKA58
                                                                                                                    69
                                      A NOTE ON THE EFFECTS OF NONRESPONSE ON SURVEYS
                                                                                                                    29
                                                                                                          JASA 57
                                                   EFFECTS OF PARTIAL ISOLATION (DISTANCE), MIGRATION, A BIOCS66
ND DIFFERENT FITNESS REQUIREMENTS AMONG ENVIRONME/
                                                                                                                   453
                                                    EFFECTS OF SLOW-DOWNS AND FAILURE ON STOCHASTIC
SERVICE SYSTEMS
                                                                                                          TECH 63
                                                                                                                   385
E. OR VI/
           PUBLICATION DECISIONS AND THEIR POSSIBLE EFFECTS ON INFERENCES DRAWN FROM TESTS OF SIGNIFICANC JASA 59
                                                                                                                    30
E LOSS OF FOUR METHODS OF REPRODUCING FI/ EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT AND RATE OF GEN BIOCS65
                                                                                                                   447
                                       THE RELATIVE EFFICACY OF INVESTMENT ANTICIPATIONS
                                                                                                          JASA 66 104
                                        ALTERNATIVE EFFICIENCIES FOR SIGNED RANK TESTS
                                                                                                           AMS 65 1759
                                                    EFFICIENCIES FOR STEPWISE REGRESSIONS
                                     EXACT BAHADUR EFFICIENCIES FOR THE KOLMOGOROV-SMIRNOV AND KUIPER ON AMS 67 1475
E-SAMPLE AND TWO-SAMPLE STATISTICS
OD AND BEST UNBIASED ESTIMATORS OF RELIABILIT/ THE EFFICIENCIES IN SMALL SAMPLES OF THE MAXIMUM LIKELIHO JASA 66 1033
 PERGENTILES OF A GAMMA DISTRIBUTION ASYMPTOTIC EFFICIENCIES OF A NONPARAMETRIC LIFE TEST FOR SMALLER JASA 56
                                                                                                                   467
TIC REGRESSION EQUATION
                                               THE EFFICIENCIES OF ALTERNATIVE ESTIMATORS FOR AN ASYMPTO BIOKA58
                                                                                                                   370
END IN DISPERSI/ A NOTE ON THE ASYMPTOTIC RELATIVE EFFICIENCIES OF COX AND STUART'S TESTS FOR TESTING TR BIOKA68
                                                                                                                   381
                                       COMPARATIVE EFFICIENCIES OF METHODS OF ESTIMATING PARAMETERS IN BIOKA61
LINEAR AUTOREGRESSIVE SCHEMES
                                                                                                                   427
REGRESSION
                                                THE EFFICIENCIES OF TESTS OF RANDOMNESS AGAINST NORMAL
                                                                                                                   285
      LEVEL AND OTHER SMALL SAMPLE MEASURES OF TEST EFFICIENCY
                                                                                  THE MEDIAN SIGNIFICANCE JASA 69
                                                                                                                   971
                       THE CORRELATION BETWEEN FEED EFFICIENCY AND RATE OF GAIN, A RATIO AND ITS DENOMINA BIOCS65
                                                                                                                   739
                                             SYSTEM EFFICIENCY AND RELIABILITY
                                                                                                                    43
                 ON THE RELATION BETWEEN ESTIMATING EFFICIENCY AND THE POWER OF TESTS
                                                                                                          BIOKA54 542
          A SIGNIFICANGE TEST FOR THE DIFFERENCE IN EFFICIENCY BETWEEN TWO PREDICTORS
                                                                                                          JRSSB55
                                                                                                                   266
                             SMALL SAMPLE POWER AND EFFICIENCY FOR THE ONE SAMPLE WILCOXON AND NORMAL
SCORES TESTS
                                                                                                           AMS 63
                                                                                                                   624
                                      LEAST-SQUARES EFFICIENCY FOR VECTOR TIME SERIES
                                                                                                          JRSSB68 490
                APPLIGATION OF AN ESTIMATOR OF HIGH EFFICIENCY IN BIVARIATE EXTREME VALUE THEORY
                                                                                                          JASA 69 NO.4
                                         ASYMPTOTIC EFFICIENCY IN POLYNOMIAL ESTIMATION
                                                                                                           AMS 61 1042
TESTS
                                                    EFFICIENCY LOSS DUE TO GROUPING IN DISTRIBUTION-FREE
                                                                                                          JASA 67
                                                                                                                  954
                                                                                                           AMS 67 884
REGRESSION PARAMETERS
                                         ASYMPTOTIC EFFICIENCY OF A CLASS OF NON-PARAMETRIC TESTS FOR
 A DISTRIBUTION-FREE METHOD OF ESTIMATING ASYMPTOTIC EFFICIENCY OF A CLASS OF NONPARAMETRIC TESTS
                                                                                                           AMS 66 1759
   MISSING OBSERVATIONS IN MULTIVARIATE REGRESSION, EFFICIENCY OF A FIRST ORDER METHOD
THE MEAN
                                  ON THE ASYMPTOTIC EFFICIENCY OF A SEQUENTIAL PROCEDURE FOR ESTIMATING
                                                                                                           AMS 66 1173
ENCE (CORR. 67 196)
                           A NOTE ON THE ASYMPTOTIC EFFICIENCY OF AN ASYMPTOTICALLY NORMAL ESTIMATOR SEQU JRSSB63 195
                                                THE EFFIGIENCY OF AUTOMATIC WINDING MACHINES WITH
CONSTANT PATROLLING TIME
                                                                                                          JRSSB59
                                                                                                                   381
AL POPULATIONS BASED ON SINGLY CENSORED SA/ ON THE EFFICIENCY OF BAN ESTIMATES OF THE PARAMETERS OF NORM BIOKA62
                                                                                                                   570
                           A NOTE ON THE ASYMPTOTIC EFFICIENCY OF BENNETT'S BIVARIATE SIGN TEST
                                                                                                          JRSSB66
                                                                                                                   146
                                               THE EFFICIENCY OF BLOCKING IN INCOMPLETE BLOCK DESIGNS
                                                                                                          BIOKA60
                                                                                                                   273
TESTS
                                         ASYMPTOTIC EFFICIENCY OF CERTAIN LOCALLY MOST POWERFUL RANK
                                                                                                           AMS 61
                                                                                                                    88
EGATIVE BINOMIAL AND NEYMAN TYPE A DISTRIBUTIONS
                                                    EFFICIENCY OF CERTAIN METHODS OF ESTIMATION FOR THE N BIOKA62
                                                                                                                   215
                                         ASYMPTOTIC EFFIGIENCY OF CERTAIN RANK TESTS FOR COMPARATIVE
                                                                                                          AMS 67
                                                                                                                    90
                                         ASYMPTOTIC EFFICIENCY OF CLASS OF C-SAMPLE TESTS
                                                                                                           AMS 64
                                                                                                                   102
COEFFICIENT
                                     THE ASYMPTOTIC EFFICIENCY OF DANIELS'S GENERALIZED CORRELATION
                                                                                                          BIOKA63
                                                                                                                   499
COEFFICIENTS
                                     THE ASYMPTOTIC EFFICIENCY OF DANIELS'S GENERALIZED CORRELATION
                                                                                                          JRSSB61
                                                                                                                   128
                                           THE MEAN EFFICIENCY OF EQUI-REPLICATE DESIGNS
                                                                                                          BIOKA68
                                                                                                                  251
                                        MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE COMPONENTS
                                                                                                          JASA 69 NO.4
                           A NOTE ON THE ASYMPTOTIC EFFICIENCY OF FRIEDMAN'S CHI-SQUARE-SUB-R-TEST
                                                                                                          BIOKA67 677
                             THE ASYMPTOTIC RELATIVE EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST SCALAR
ALTERNATIVES
                                                                                                          JASA 65
                                                                                                                   410
THE EXPONENTIAL REGRESSION
                                                THE EFFICIENCY OF INTERNAL REGRESSION FOR THE FITTING OF BIOKA59
                                                                                                                   293
                                  ON THE ASYMPTOTIC EFFICIENCY OF LEAST SQUARES ESTIMATORS
                                                                                                           AMS 66 1676
                                      A NOTE ON THE EFFICIENCY OF LEAST-SQUARES ESTIMATES
                                                                                                          JRSSB68
                                                                                                                  284
                                             ON THE EFFICIENCY OF MATCHED PAIRS IN BERNOULLI TRIALS
                                                                                                          BIOKA68
                                                                                                                   365
                                                THE EFFICIENCY OF MATCHED SAMPLES
                                                                                                          BIOCS65
                                                                                                                   623
                                             ON THE EFFICIENCY OF MODIFIED BALANCED INCOMPLETE BLOCK
DESIGNS FOR BIO-ASSAYS
                                                                                                          BIOCS69
                                                                                                                   591
AINST SOME PARAMETRIC ALTERNA/ ASYMPTOTIC RELATIVE EFFICIENCY OF MOOD'S AND MASSEY'S TWO SAMPLE TESTS AG
                                                                                                          AMS 62 1375
                                         ASYMPTOTIC EFFICIENCY OF MULTIVARIATE NORMAL SCORE TEST
BY ONE OPERATOR WHEN WALKING TIME AND REPAIR/
                                                THE EFFICIENCY OF N MACHINES UNI-DIRECTIONALLY PATROLLED
                                                                                                          JRSSR57
BY ONE OPERATOR WHEN WALKING TIME IS CONSTANT/ THE EFFICIENCY OF N MACHINES UNI-DIRECTIONALLY PATROLLED JRSSB57
                                                                                                                   173
FOR NORMAL ALTERNATIONS
                                      ON THE PITMAN EFFICIENCY OF ONE-SIDED KOLMOGOROV AND SMIRNOV TESTS
                                                                                                           AMS 66
                                                                                                                   940
                                            ON THE EFFICIENCY OF OPTIMAL NONPARAMETRIC PROCEDURES IN THE
                                                                                                          AMS 63
 TWO
                                                                                                                   22
FROM TIME SERIES WITH CONTINUOUS SPECTRA
                                             ON THE EFFICIENCY OF PROCEDURES FOR SMOOTHING PERIODOGRAMS
                                                                                                         BTOKA55
                                                                                                                  143
                     APPROACH TO DEGENERACY AND THE EFFICIENCY OF SOME MULTIVARIATE TESTS
                                                                                                           AMS 68 1654
                                       THE RELATIVE EFFICIENCY OF SOME TWO-PHASE SAMPLING SCHEMES
                                                                                                           AMS 67
                                                                                                                   937
                                                THE EFFICIENCY OF STATISTICAL SIMULATION PROCEDURES
                                                                                                          TECH 62
                                                                                                                  257
AVERAGE CRITICAL VALUE METHOD FOR ADJUDGING RELATIVE EFFICIENCY OF STATISTICAL TESTS IN TIME SERIES REGRES BIOKA66 109
 OF LARGE DISCREPANCY BETWEEN MEASURES OF ASYMPTOTIC EFFICIENCY OF TESTS
                                                                                               AN EXAMPLE AMS 68
                                                                                                                   179
   CRITICAL VALUE METHOD AND THE ASYMPTOTIC RELATIVE EFFICIENCY OF TESTS
                                                                                              THE AVERAGE BIOKA67 308
                         LOCAL ASYMPTOTIC POWER AND EFFICIENCY OF TESTS OF KOLMOGOROV-SMIRNOV TYPE
                                                                                                           AMS 67 1705
                                    THE ASYMPTOTIC EFFICIENCY OF THE CHI-SQUARE-SUB-R-TEST FOR A BALANCE BIOKA59 475
D INCOMPLETE BLOCK DESIGN
```

TITLE WORD INDEX EFF - EMI

***		2	
NULL DISTRIBUTION AND BAHADUR	EFFICIENCY OF THE ESTIMATES OF THE PARAMETERS OF NORM EFFICIENCY OF THE HODCES BIVARIATE SIGN TEST	AMS 62	
		JASA 65	
CHARLIER TYPE A DISTRIBUTION F-TEST ON THE	EFFICIENCY OF THE METHOD OF MOMENTS AND THE GRAM- EFFICIENCY OF THE NORMAL SCORES TEST RELATIVE TO THE		1306
	EFFICIENCY OF THE RECORDS TEST FOR TREND IN NORMAL	JRSSB57	149
FIRST-ORDER STATIONARY MARKOFF PROCESS	EFFICIENCY OF THE SAMPLE MEAN WHEN RESIDUALS FOLLOW A		1237
	EFFICIENCY OF THE TWO SAMPLE KOLMOGOROV-SMIRNOV TEST		932
	EFFICIENCY OF THE TWO-SAMPLE NORMAL SCORES TEST /IE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO	JASA 60	371 660
RANDOMIZED BLOCKS	EFFICIENCY OF THE WILCOXON TWO-SAMPLE STATISTIC FOR	JASA 63	894
ON'S TWO SAMPLE TEST ASYMPTOTIC	EFFICIENCY OF TWO NONPARAMETRIC COMPETITORS OF WILCOX	JASA 67	939
	EFFICIENCY OF TWO TESTS AND THE CORRELATION COEFFICIE		
	EFFICIENCY OF TWO-SAMPLE MANN-WHITNEY TEST FOR EFFICIENCY PROPOSED BY R. R. BAHADUR	AMS 63 AMS 64	
ON A MERSONE OF TEST		JASA 67	
		TECH 68	769
	EFFICIENT CONFIDENCE BOUND FOR RELIABILITY IN THE CAS EFFICIENT CONSISTENT ESTIMATES OF THE SPECTRAL DENSIT		135
ODDINAT AND	EFFICIENT DESIGNS OF EXPERIMENTS	AMS 69	
EVPONENTIAL RECRESSION	EFFICIENT DIFFERENCE EQUATION ESTIMATORS IN	AMS 68	
IN LARGE SAMPLES (WITH DISCUSSION)	EFFICIENT ESTIMATES AND OPTIMUM INFERENCE PROCEDURES		46
IN LARGE SAMPLES (WITH DISCUSSION) FUNCTION CERTAIN SECOND ORDER PROCESSES	EFFICIENT ESTIMATION OF A PROBABILITY DENSITY EFFICIENT ESTIMATION OF A RECRESSION PARAMETER FOR	AMS 69 AMS 61	854
GROUPED DATA	EFFICIENT ESTIMATION OF A RECRESSION FARAMETER FOR	AMS 67	
ONS WHEN DISTURBANCES ARE BOTH SERIALLY AND CONTE/	EFFICIENT ESTIMATION OF A SYSTEM OF RECRESSION EQUATI	JASA 67	500
MODELS	EFFICIENT ESTIMATION OF PARAMETERS IN MOVING-AVERAGE		306
ERS ASYMPTOTICALLY NEARLY ENGEL CURVE ANALYSIS	EFFIGIENT ESTIMATORS OF MULTIVARIATE LOGATION PARAMET EFFICIENT GROUPING, RECRESSION AND CORRELATION IN		
	EFFICIENT METHOD OF ESTIMATING SEEMINGLY UNRELATED RE		348
PENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORE/	EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DE		155
		JRSSB66 JRSSB68	45 312
	EFFICIENT UTILIZATION OF NON-NUMERICAL INFORMATION IN		
LIMIT THEOREMS FOR THE MULTI-URN		AMS 6B	864
GEBRUIK VAN DIFFERENSIAALVERGELYKINGE COMPONENTS MINIMIZATION OF	EIENSKAPPE VAN WAARSKYNLIKHEIDSVERDELINGS DEUR DIE		1
COMPONENTS MINIMIZATION OF	EIGENVALUES OF A MATRIX AND OPTIMALITY OF PRINCIPAL EIGENVALUES OF NON-NEGATIVE MATRICES	AMS 68 AMS 64	B59
NSTRUCTION OF A 2-TO-THE-(17-9) RESOLUTION V PLAN IN		TECH 65	439
	EIGHT POPULATIONS ZEA MAYS L. UTILIZING INFORMATION F		B67
	EIGHT STRAINS OF FLOUR BEETLE EIGHT-RUN TWO LEVEL FACTORIAL DESIGNS	BIOCS65 TECH 68	99 301
	EINFACHES VERFAHREN ZUR ERZEUGUNG VON SYMBOLFOLCEN MI		703
	EISENHART'S MODEL II	AMS 61	261
ST-SQUARES FITTING OF A POLYNOMIAL CONSTRAINED TO BE WAGE. PRICE. AND TAX		JRSSB69 JASA 62	113 607
OF VARYING DEGREES OF TRANSITORY INCOME ON INGOME	ELASTICITY OF EXPENDITURES EFFECT	JASA 58	34B
	ELDERTON, 1877-1962 ELECTION RETURNS BY NUMBER OF LEAD POSITIONS	BIOKA62 AMS 64	297 369
TIMATION OF MIXED WEIBULL PARAMETERS IN LIFE TESTING	ELECTRON TUBES A GRAPHICAL ES	TECH 59	
OF THE VARIABILITY DUE TO COINCIDENT PASSACE IN AN	ELECTRON TUBES A GRAPHICAL ES ELECTRONIC BLOOD CELL COUNTER A STUDY ELECTRONIG CALGULATOR THE ANALYSIS	BIOCS67	671
OF A FACTORIAL EXPERIMENT (WITH CONFOUNDING) ON AN VALUES IN MULTIVARIATE DATA SUITABLE FOR USE WITH AN	ELECTRONIC COMPUTER /THOD OF ESTIMATION OF MISSING	JRSSB54 JRSSB60	242 302
	ELECTRONIC COMPUTER /TION OF MEANS AND STANDARD ERR		435
ROUTINE ANALYSIS OF REPLICATED EXPERIMENTS ON AN		JRSSB57	234
	ELECTRONIC COMPUTER FROM THE POINT OF VIEW OF THE USE ELECTRONIC COMPUTER METHODS	JASA 57	819 415
	ELEMENT QUALITY A PROGRAM TO ESTIMATE MEASUREMEN		293
ASYMPTOTIC POWER OF RANK TESTS AN	ELEMENTARY METHOD OF OBTAINING LOWER BOUNDS ON THE	AMS 68	
	ELEMENTARY METHOD OF SOLUTION OF THE QUEUEING PROBLEM ELEMENTARY PROOF OF ASYMPTOTIC NORMALITY OF LINEAR	JRSSB56 AMS 68	125
	ELEMENTARY SYMMETRIC FUNCTION OF THE ROOTS OF A MATRI		
MULTIVARIATE MATRIX. DISTRIBUTIONS ON	ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF A	AMS 64	1186
	ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF A MATR ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF TWO	AMS 61 AMS 64	
MATRIGES IN MULTIVARIATE ANALYSIS. ON	ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF TWO	BIOKA65	499
	ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF TWO MA		
ON THE APPLICATION TO STATISTICS OF AN QUADRATIC FORMS AND IDEMPOTENT MATRICES WITH RANDOM		8IOKA56 AMS 69	B5 1430
FACTORIALS COMBINING	ELEMENTS FROM DISTINCT FINITE FIELDS IN MIXED	AMS 69	498
ESTIMATION OF RELIABILITY OF A SYSTEM COMPRISED OF K	ELEMENTS FROM THE SAME EXPONENTIAL DISTRIBUTION /T ELEMENTS OF THE THEORY OF EXTREME VALUES	JASA 66 TECH 60	1029 27
RANDOMIZED RESPONSE, A SURVEY TECHNIQUE FOR		JASA 65	63
SILITY OF IMPROVING THE MEAN USEFUL LIFE OF ITEMS BY	ELIMINATING THOSE WITH SHORT LIVES ON THE POSSI		
THE CALCULUS FOR FACTORIAL ARRANGEMENTS II. TWO WAY SOME METHODS OF CONSTRUCTION OF DESIGNS FOR TWO-WAY	ELIMINATION OF HETEROGENEITY APPLICATIONS OF	AMS 64 JASA 66	
	ELIMINATION OF REQUIREMENT THAT CUMULATIVE FUNCTIONS	TECH 63	518
PROBLEMS	ELIMINATION OF VARIATES IN LINEAR DISCRIMINATION	BIOCS66	268
SAMPLING PROCEDURES FOR GENERAL SPECIFICATION FIXED SIZE CONFIDENCE	ELLIPSOIDS MULTIVARIATE ACCEPTANCE ELLIPSOIDS FOR LINEAR RECRESSION PARAMETERS	JASA 65 AMS 66	
STUDENT'S DISTRIBUTION AND RIEMANN'S		8I0KA57	264
POPULATIONS	ELLIPTICAL AND RADIAL TRUNCATION IN NORMAL	AMS 63 TECH 62	
DISTRIBUTION OF RADICAL ERROR IN THE BIVARIATE BRANCHING PROCESSES AND RELATED LIMIT THEOREMS			
	EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV	AMS 68	
	EMIGRATION-IMMIGRATION PROCESS	AMS 62	119
SOME ASPECTS OF THE IMATION OF A FUNDAMENTAL INTERACTION PARAMETER IN AN	EMIGRATION-IMMIGRATION PROCESS	AMS 62	119

EMP - EQU TITLE WORD INDEX

```
GARETTE SMOKING AND A STOCHASTIC MODEL FOR THE MO/ EMPERICAL RELATIONSHIP OF LUNC CANCER INCIDENCE TO CI BIOCS65 839
OF RECENT WORK ON VARIABLES ACCEPTANCE SAMPLING WITH EMPHASIS ON NON-NORMALITY
                                                                                                   SUMMARY TECH 69 NO.4
S OF ORDERED CORRELATED NORMAL RANDOM VARIABLES WITH EMPHASIS ON RANCE /NS AND RATIOS OF LINEAR FUNCTION BIOKA64 143
     CONSUMER DURABLE COODS EXPENDITURES, WITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND INTENTIONS JASA 63
CE AND SPECTRUM ANALYSIS
                                         DISCUSSION, EMPHASIZING THE CONNECTION BETWEEN ANALYSIS OF VARIAN TECH 61
                                                                                                                     191
                                                     EMPIRIC INVESTIGATION OF A TEST OF HOMOCENEITY FOR
POPULATIONS COMPOSED OF NORMAL DISTRIBUTIONS
                                                                                                            JASA 58
                                                                                                                     551
                                DIVIDEND POLICY, AN EMPIRICAL ANALYSIS
                                                                                                            JASA 6B 1132
QUANTILES
                                                 THE EMPIRICAL BAYES APPROACH ESTIMATING POSTERIOR
                                                                                                            BIOKA67
                                                                                                                     672
              A SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES APPROACH TO SOME STATISTICAL DECISION BIOKA67
 PROBLEMS
                                                                                                                     451
                                                 THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION
PROBLEMS
                                                                                                             AMS 64
 THE COMPOUND DECISION PROBLEM
                                       ON THE SMOOTH EMPIRICAL BAYES APPROACH TO TESTING OF HYPOTHESES AND BIOKA68
                                                                                                                      B3
PARAMETRIC HYPOTHESES
                                                  AN EMPIRICAL BAYES APPROACH TO THE TESTING OF CERTAIN
                                                                                                             AMS 63 1370
DISTRIBUTION
                                                 THE EMPIRICAL BAYES APPROACH, ESTIMATING THE PRIOR
                                                                                                            BIOKA67
                                                                                                                     326
NS (CORR. 6B 597)
                                              SMOOTH EMPIRICAL BAYES ESTIMATION FOR CONTINUOUS DISTRIBUTIO BIOKA67
                                                                                                                     435
DISTRIBUTIONS
                                              SMOOTH EMPIRICAL BAYES ESTIMATION FOR ONE-PARAMETER DISCRETE BIOKA66
                                                                                                                     417
DISTRIBUTION
                                                     EMPIRICAL BAYES ESTIMATION FOR THE POISSON
                    EPSILON ASYMPTOTIC OPTIMALITY OF EMPIRICAL BAYES ESTIMATORS
                                                                                                            BIOKA69
                                          THE USE OF EMPIRICAL BAYES ESTIMATORS IN A LINEAR REGRESSION
                                                                                                                     525
                                                                                                            BTOKA68
                                                                                                            BIOKA69
RECRESSION MODEL
                                                     EMPIRICAL BAYES ESTIMATORS IN A MULTIPLE LINEAR
                                                                                                                     367
                                                  AN EMPIRICAL BAYES SMOOTHING TECHNIQUE
                                                                                                            8IOKA69
                                                                                                                     361
                                                SOME EMPIRICAL BAYES TECHNIQUES IN POINT ESTIMATION
                                                                                                            BIOKA69
                                                                                                                     133
                                         ANALYSIS OF EMPIRICAL BIVARIATE EXTREMAL DISTRIBUTIONS
                                                                                                            JASA 64
                                                                                                                     794
ATIONS WITH UNEQUAL GOVARIANCE MATRIGES
                                                  AN EMPIRICAL COMPARISON OF DISTANCE STATISTICS FOR POPUL BLOCS68
                                                                                                                     683
BABILITY OF LARGE DEVIATIONS OF FUNCTIONS OF SEVERAL EMPIRICAL CUMULATIVE DISTRIBUTION FUNCTIONS /HE PRO AMS 67
                                                                                                                     360
POTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FERENCE BETWEEN HY
                                                                                                             AMS 62
                                                                                                                     525
                 SOME RENYI TYPE LIMIT THEOREMS FOR EMPIRICAL DISTRIBUTION FUNCTIONS, CORR. 65 1069
                                                                                                             AMS 65
                                                                                                                     322
OSCEDASTICITY CRITERION M UNDER UNEQUAL VARI/ SOME EMPIRICAL DISTRIBUTIONS OF BIVARIATE T-SQUARE AND HOM JASA 63 104B
PROCEDURE FOR TESTING MEANS
                                                  AN EMPIRICAL EVALUATION OF MULTIVARIATE SEQUENTIAL
                                                                                                             AMS 62 1413
A SIMPLE SYSTEM OF EVOLUTIONARY OPERATION SUBJECT TO EMPIRICAL FEEDBACK
                                                                                                            TECH 66
                                                                                                                     19
STRIBUTION OF F-RATIOS FOR THE SPLIT-PLOT DESIGN, AN EMPIRICAL INVESTIGATION
                                                                                       THE RANDOMIZATION DI BIOKA63
                                                                                                                     431
F-RATIO IN SAMPLES FROM TWO NON-NORMAL POPULAT/ AN EMPIRICAL INVESTIGATION INTO THE DISTRIBUTION OF THE BIOKA58
FOR FARM PRODUCTS AT RETAIL AND THE FARM LEVEL. SOME EMPIRICAL MEASUREMENTS AND RELATED PROBLEMS DEMAND JASA 58
                                                                                                                     260
                                                                                                                     656
                    WEAK CONVERGENCE OF A TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO CHERNOFF-SAVA AMS 68
GE THEOREM
                                                                                                                     755
MODELS
                     A COMPARISON OF THEORETICAL AND EMPIRICAL RESULTS FOR SOME STOCHASTIC POPULATION
                                                                                                            BIOKA60
N IN THE COMPLETELY RANDOMIZED DESIGN
                                              SOME EMPIRICAL RESULTS ON VARIANCE RATIOS UNDER PERMUTATIO JASA 66
    SAMPLING DISTRIBUTIONS OF VARIANCE COMPONENTS I. EMPIRICAL STUDIES OF BALANCED NESTED DESIGN
                                                                                                            TECH 66
                                                                                                                     457
   SAMPLING DISTRIBUTIONS OF VARIANCE GOMPONENTS II. EMPIRIGAL STUDIES OF UNBALANCED NESTED DESIGNS
                                                                                                            TECH 68
                                                                                                                     719
ER PERMUTATION FOR THE RANDOMIZED BLOCK DESIGN AN EMPIRICAL STUDY INTO FACTORS AFFECTING THE F-TEST UND JASA 6B
GENETIC CORRELATION COEFFICIENT
                                                  AN EMPIRICAL STUDY OF THE DISTRIBUTION OF THE SAMPLE
                                                                                                            BIOGS69
                                                                                                                      63
VARIANCE ESTIMATORS IN UNEQUAL PROBABILITY SAM/ AN EMPIRICAL STUDY OF THE STABILITIES OF ESTIMATORS AND
                                                                                                            JASA 69
                                                                                                                     540
                                 A METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND CHEMICAL DATA
                                                                                                            TECH 69
                                                                                                                    411
A SINGLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION IV EMPIRICAL VARIANCES OF RANK CORRELATION COEFFICIENTS
                                                                                                            BIOKA6B
                                                                                                                    437
THE UNITED STATES
                                    THE MIGRATION OF EMPLOYED PERSONS TO AND FROM METROPOLITAN AREAS OF
                                                                                                            JASA 67 1418
   INVESTIGATING THE PROPERTIES OF A SAMPLE MEAN BY EMPLOYING RANDOM SUBSAMPLE MEANS
                                                                                                            JASA 56
                                                                                                                    54
E CARLO INVESTIGATION OF THE SIZE AND POWER OF TESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN SQUARES
                                                                                                         /T BIOKA68
                                                                                                                    431
                    REGIONAL CYCLES OF MANUFACTURING EMPLOYMENT IN THE UNITED STATES, 1914-1953, CORR. 60 JASA 60
                                                                                                                     151
                                               FIRST EMPTINESS IN A FINITE DAM
                                                                                                            JRSSB61
                                                                                                                     343
                                       THE EPOCHS OF EMPTINESS OF A SEMI-INFINITE DISCRETE RESERVOIR
                                                                                                                     131
                                                                                                            JRSSB63
                                               FIRST EMPTINESS OF TWO DAMS IN PARALLEL
                                                                                                                    219
                                                                                                             AMS 61
                              INEQUALITIES FOR FIRST EMPTINESS PROBABILITIES OF A DAM WITH ORDERED INPUTS
                                                                                                            JRSSB62
                                              ON PRE-EMPTIVE RESUME PRIORITY QUEUES
                                                                                                             AMS 64
                                              ON THE EMPTY CELL TEST
                                                                                                            TECH 62
                                                                                                                     235
A NOTE ON A METHOD FOR THE ANALYSIS OF SIGNIFICANCE EN MASSE
                                                                                                            TECH 68
                                                                                                                     586
                      ROBUSTNESS OF UNIFORM BAYESIAN ENCODING
                                                                                                                     121
                                                                                                            TECH 63
N FOR BINOMIAL EVENTS, WITH APPLICATION TO BACTERIAL ENDOCARDITIS DATA /USE OF THE POISSON APPROXIMATIO BIOCS66
                                                                                                                      74
   EFFICIENT CROUPING, REGRESSION AND CORRELATION IN ENCEL CURVE ANALYSIS
                                                                                                            JASA 64
                                                                                                                     233
         AN INDEX OF MANUFACTURING PRODUCTION IN NEW ENGLAND
                                                                                                            JASA 58
                                                                                                                     336
                     NEAREST NEICHBOURS IN A POISSON ENSEMBLE
                                                                                                            BIOKA69
                                                                                                                     401
TES VECETALES PAR L'ANALYSE STATISTIQUE DES LIAISONS ENTRE LES ESPECES ET LES VARIABLES ECOLOGIQUES, PRINC BIOCS65
                                                                                                                     345
TES VEGETALES PAR L'ANALYSE STATISTIQUE DES LIAISONS ENTRE LES ESPECES ET LES VARIABLES ECOLOGIQUES, UN EX BIOCS65
                                                                                                                     890
CTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING ENTRIES /DEPENDENCE, QUASI-INDEPENDENCE, AND INTERA JASA 68 1091
IN POPULATION CENS/ FAILURE OF ENUMERATORS TO MAKE ENTRIES OF ZERO, ERRORS IN RECORDING CHILDLESS CASES JASA 61
                                                                                                                     909
                                                     ENTROPY AND CONJUGACY
                                                                                                             AMS 63
                                                                                                                     226
                              APPROXIMATIONS FOR THE ENTROPY FOR FUNCTIONS OF MARKOV CHAINS
                                                                                                             AMS 62
                                                                                                                     930
MULTIDIMENSIONAL CONTINGENCY TABLES
                                             MAXIMUM ENTROPY FOR HYPOTHESIS FORMULATION, ESPECIALLY FOR
                                                                                                                     911
                                                                                                             AMS 63
CONNECTIONS (CORR. 69 NO.6)
                                            SAMPLING ENTROPY FOR RANDOM HOMOGENEOUS SYSTEMS WITH COMPLETE
                                                                                                             AMS 65 1433
                                             EPSILON ENTROPY OF GAUSSIAN PROCESSES
                                                                                                             AMS 69 1272
                    A NOTE ON LIMIT THEOREMS FOR THE ENTROPY OF MARKOV CHAINS
                                                                                                             AMS 66 522
                                             EPSILON ENTROPY OF STOCHASTIC PROCESSES
                                                                                                             AMS 67 1000
                                         THE EPSILON ENTROPY ON CERTAIN MEASURES ON (0,1)
                                                                                                             AMS 68 1310
                                             PRODUCT ENTROPY TO GAUSSIAN DISTRIBUTIONS
                                                                                                             AMS 69 870
                             MEAN AND VARIANCE OF AN ENTRY IN A CONTINCENCY TABLE
                                                                                                            8I0KA51
                                                                                                                     468
POSITIONS
                                                 THE ENUMERATION OF ELECTION RETURNS BY NUMBER OF LEAD
                                                                                                             AMS 64
                                                                                                                     369
SETS
                                                     ENUMERATION OF LINEAR GRAPHS FOR MAPPINGS OF FINITE
                                                                                                             AMS 62
                                                                                                                     178
                           ERRORS IN THE 1960 CENSUS ENUMERATION OF NATIVE WHITES
                                                                                                            JASA 64
                                                                                                                     437
                                                  AN ENUMERATION PROBLEM IN SELF-STERILITY
                                                                                                            8I0CS69
                                                                                                                      39
                                  A GENERAL CLASS OF ENUMERATIONS ARISING IN GENETICS
                                                                                                            8I0CS67
                                                                                                                     517
           NOTES. FURTHER ANALYSIS OF R. A. FISHER'S ENUMERATIONS IN GENETICS
                                                                                                            8I0CS65 1012
ING CHILDLESS CASES IN POPULATION CENS/ FAILURE OF ENUMERATORS TO MAKE ENTRIES OF ZERO, ERRORS IN RECORD JASA 61
                                                                                                                     909
    SURE EXTINCTION OF 8RANCHING PROCESS WITH RANDOM ENVIRONMENT
                                                                           NECESSARY CONDITIONS FOR ALMOST AMS 68 2136
EXAMINATION OF A REPEAT MATING DESIGN FOR ESTIMATING ENVIRONMENTAL AND GENETIC TRENDS
                                                                                                            8T00S65
                                                                                                                      6.3
 MIGRATION, AND DIFFERENT FITNESS REQUIREMENTS AMONG ENVIRONMENTAL POCKETS UPON STEADY STATE GENE FREQUENC 810CS66
                                                                                                                     453
ALUATION OF TWO METHODS OF ESTIMATION OF GENETIC AND ENVIRONMENTAL VARIANCE /LLEL TEST CROSSING 2. AN EV BIOCS67
                                                                                                                     325
                                                                                                             AMS 69
                    ON BRANCHING PROCESSES IN RANDOM ENVIRONMENTS
                                                                                                                     814
              THE TOTAL SIZE OF A GENERAL STOCHASTIC EPIDEMIC
                                                                                                            8I0KA53
                                                                                                                     177
 A NOTE ON THE ULTIMATE SIZE OF A GENERAL STOCHASTIC EPIDEMIC
                                                                                                            8I0KA67 314
```

```
EXPRESSION FOR THE MEAN IN A SIMPLE STOCHASTIC EPIDEMIC
                                                                                                       A CENERAL BIOKA54
     AND WHITTLE'S TREATMENT OF A CENERAL STOCHASTIC EPIDEMIC
                                                                                             A NOTE ON BAILEY'S BIOKA55
                                                                        THE THREE-PARAMETER LOGNORMAL JASA 63
DISTRIBUTION AND BAYESIAN ANALYSIS OF A POINT-SOURCE EPIDEMIC
                                     ON THE SIZE OF AN EPIDEMIC AND THE NUMBER OF PEOPLE HEARING A RUMOUR
                                                                                                                 JRSSB66
      THE LOGISTIC PROCESS, TABLES OF THE STOCHASTIC EPIDEMIC CURVE AND APPLICATIONS
                                                                                                                  JRSSB60
                                                                                                                           332
                                THE SIMPLE STOCHASTIC EPIDEMIC CURVE FOR LARCE POPULATIONS OF SUSCEPTIBLES BIOKAG5
                                                                                                                           571
        SOME PROBLEMS IN THE STATISTICAL ANALYSIS OF EPIDEMIC DATA (WITH DISCUSSION)
                                                                                                                  JRSSB55
                                                                                                                            35
                  THE DETERMINISTIC MODEL OF A SIMPLE EPIDEMIC FOR MORE THAN ONE COMMUNITY
                                                                                                                 BIOKA55
                                                                                                                           126
                                THE SIMPLE STOCHASTIC EPIDEMIC FOR SMALL POPULATIONS WITH ONE OR MORE INITI BIOKA69
                                                                                                                           183
 PERTURBATION APPROXIMATION OF THE SIMPLE STOCHASTIC EPIDEMIC IN A LARGE POPULATION
                                                                                                               A RIOKAGS
                                                                                                                           199
                            THE PROBABILITIES OF SOME EPIDEMIC MODELS
                                                                                                                 BTOKA69
                                                                                                                           197
                                         ON ESTIMATING EPIDEMIC PARAMETERS FROM HOUSEHOLD DATA
                                                                                                                  BTOKA64
                                                                                                                           511
                ON A PARTIAL DIFFERENTIAL EQUATION OF EPIDEMIC THEORY. I.
                                                                                                                 BIOKA65
                                                                                                                           617
                                      THE SPREAD OF AN EPIDEMIC TO FIXED CROUPS WITHIN THE POPULATION
                                                                                                                 BIOCS6B 1007
        SUSCEPTIBLES THE MATHEMATICAL ANALYSIS OF AN EPIDEMIC WITH TWO KINDS OF
                                                                                                                  BIOCS68
                                                                                                                           557
                A SOLUTION OF THE GENERAL STOCHASTIG EPIDEMIC.
                                                                                                                 BIOKA65
FUNCTIONS
                                THE SIMPLE STOCHASTIC EPIDEMIC, A COMPLETE SOLUTION IN TERMS OF KNOWM
                                                                                                                  BIOKA63
                          THE OUTCOME OF A STOCHASTIC EPIDEMIC, A NOTE ON BAILEY'S PAPER
                                                                                                                 BIOKA55
                                                                                                                           116
                   CONTAGION IN STOCHASTIC MODELS FOR EPIDEMICS
                   THE ULTIMATE SIZE OF CARRIER-BORNE EPIDEMICS
                                                                                                                  BIOKA68
NCE OF INFEGTION FOR THE ANALYSIS OF INTRA-HOUSEHOLD EPIDEMICS
                                                                     /E OF CHAIN-BINOMIALS WITH A VARIABLE CHA BIOKA53
                            A MODEL FOR THE SPREAD OF EPIDEMICS BY CARRIERS
                                                                                                                 BT0GS65
                                                                                                                           4B1
TS FOR NON-INBRED DIPLOID SPECIES HAVING ALL DICENIC EPISTATIC VARIANCES OF EQUAL MAGNITUDE /IC COMPONEN BIOCS69
                                                                                                                           545
RESERVOIR
                                                    THE EPOCHS OF EMPTINESS OF A SEMI-INFINITE DISCRETE
                                                                                                                 JRSSR63
                                                                                                                           131
ESTIMATORS
                                                        EPSILON ASYMPTOTIC OPTIMALITY OF EMPIRICAL BAYES
                                                                                                                 BTOKA69
                                                                                                                          220
                                                        EPSILON ENTROPY OF GAUSSIAN PROCESSES
                                                                                                                  AMS 69 1272
                                                        EPSILON ENTROPY OF STOCHASTIC PROCESSES
                                                                                                                   AMS 67 1000
                                                   THE EPSILON ENTROPY ON CERTAIN MEASURES ON (0.1)
                                                                                                                   AMS 68 1310
F VARIANCE WHEN VARIANCE-COVARIANCE MATRICES ARE NOT EQUAL /SQUARE-SUB-O TEST IN MULTIVARIATE ANALYSIS O BIOKA64
RIABLES WHEN THE PRODUCER'S AND CONSUMER'S RISKS ARE EQUAL /TERISTIC CURVE FOR SEQUENTIAL SAMPLING BY VA JASA 56
                                                                /TERISTIC CURVE FOR SEQUENTIAL SAMPLING BY VA JASA 56
                                                                                                                           108
                                 ON FORMING STRATA OF EQUAL AGGREGATE SIZE
                                                                                                                 JASA 64
                                                                                                                           481
                                                        EQUAL AND PROPORTIONAL FREQUENCY SQUARES
                                                                                                                 JASA 67
                                                                                                                           226
                                                                                                                 BIOCSEE
                                            A TEST FOR EQUAL CATCHABILITY
                                                                                                                           330
TO THE STANDARD CHI-SQUARE-TEST OF THE HYPOTHESIS-OF EQUAL CELL FREQUENCIES
                                                                                              TWO ALTERNATIVES BIOKA62
                                                                                                                           107
IFIED CHI-SQUARE GOODNESS-OF-FIT TESTS FOR SMALL BUT EQUAL EXPEGTED FREQUENCIES F THE CHI-SQUARE GOODNESS OF FIT TEST WITH SMALL BUT EQUAL EXPECTED FREQUENCIES
                                                                                        /CHI-SQUARE AND TWO MOD BIOKA66
                                                                                                                           619
                                                                                       /XIMATION TO THE POWER O JASA 68
                                                                                                                           912
FOR TWO TO THE POWER OF N-R DESIGNS HAVING WORDS OF EQUAL LENGTHS

ON IDENTITY RELATIONSHIPS AMS 66

ID SPECIES HAVING ALL DIGENIC EPISTATIC VARIANCES OF EQUAL MAGNITUDE //C COMPONENTS FOR NON-INBRED DIPLO BIOCS69
                                                                                     ON IDENTITY RELATIONSHIPS AMS 66 1842
MPLE BEHAVIOUR OF CERTAIN TESTS OF THE HYPOTHESIS OF EQUAL MEANS UNDER VARIANCE HETEROGENEITY SMALL SA BIOKAGO
                                                                                                                           345
MPLE BEHAVIOUR OF CERTAIN TESTS OF THE HYPOTHESIS OF EQUAL MEANS UNDER VARIANCE HETEROGENEITY
                                                                                                       /SMALL SA BIOKA61
                                                                                                                           230
ICATIONS OF SAMPLING DESIGN THROUGH REPLICATION WITH EQUAL PROBABILITIES AND WITHOUT STAGES
                                                                                                     ON SIMPLIF JASA 56
                                                                                                                            24
SIMULTANEOUS INFERENCE PROBLEMS
                                                   THE EQUAL PROBABILITY TEST AND ITS APPLICATIONS TO SOME JASA 69
                                                                                                                           986
 THE TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL SAMPLES
                                                                                             DISTRIBUTION OF AMS 63
                                                                                                                           95
TWO NORMAL DISTRIBUTIONS BASED ON SMALL SAMPLES OF EQUAL SIZE UNBAISED ESTIMATION OF THE COMMON MEAN O JASA 66 467

OLMOGOROV-SMIRNOV CRITERION D-SUB-MN, M LESS THAN OR EQUAL TO N /MPLING DISTRIBUTION OF THE TWO SAMPLE K JASA 69 NO.4
  INCOMPLETE BLOCK DESIGNS WITH THE NUMBER OF BLOCKS EQUAL TO THE NUMBER OF TREATMENTS
                                                                                                      A NOTE ON AMS 65 1877
                                                                                                                   AMS 68
SET OF 256-RUN DESIGNS OF RESOLUTION GREATER THEN OR EQUAL TO 5 AND THE SET OF EVEN 512-RUN DESIGNS OF RES
                                                                                                                          246
F EVEN 512-RUN DESIGNS OF RESOLUTION GREATER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE UNIQUE SATUR AMS 68
                                                                                                                           246
MERS IN A FINITE QUEUE
                                             A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTO JRSSB55
                                                                                                                           262
                A SOLUTION TO A COUNTABLE SYSTEM OF EQUALITIES ARISING IN MARKOVIAN DECISION PROCESSES
                                                                                                                  AMS 67
    ON TESTING A SET OF CORRELATION GOEFFICIENTS FOR EQUALITY
                                                                                                                   AMS 63
                                                                                                                           149
NATIVES
                          SIMULTANEOUS TESTS FOR THE EQUALITY OF COVARIANCE MATRICES AGAINST CERTAIN ALTER
                                                                                                                  AMS 68 1303
                                         TESTS FOR THE EQUALITY OF COVARIANCE MATRICES UNDER THE INTRACLASS
CORRELATION MODEL
                                                                                                                   AMS 67 1286
                                        ON TESTING THE EQUALITY OF K COVARIANCE MATRICES
                                                                                                                  BIOKA69
EQUALITY OF VARIANCES
                                               TESTING EQUALITY OF MEANS AFTER A PRELIMINARY TEST OF
                                                                                                                 BIOKA62
                                                                                                                           403
                                               TESTING EQUALITY OF MEANS IN THE PRESENCE OF CORRELATION
                                                                                                                 BIOKA69
                                                                                                                          119
                                            A TEST FOR EQUALITY OF MEANS WHEN COVARIANCE MATRICES ARE
                                                                                                                  AMS 63
                                                                                                                           671
UNEQUAL
          UNBIASEDNESS OF SOME TEXT CRITERIA FOR THE EQUALITY OF ONE OR TWO COVARIANCE MATRICES
                                                                                                                   AMS 68 1686
                                        ON TESTING THE EQUALITY OF PARAMETERS IN K RECTANGULAR POPULATIONS
                                                                                                                 JASA 60
                                                                                                                           144
                              A SEQUENTIAL TEST OF THE EQUALITY OF PROBABILITIES IN A MULTINOMIAL DISTRIBUTI JASA 62
                                                                                                                           769
S OCCURRING RA/ ON THE EQUIVALENCE OF TWO TESTS OF EQUALITY OF RATE OF OCCURRENCE IN TWO SERIES OF EVENT BIOKAS8
                                                                                                                           267
                                ITERATED TESTS OF THE EQUALITY OF SEVERAL DISTRIBUTIONS
                                                                                                                 JASA 62
                                                                                                                           579
                AN ITERATED PROCEDURE FOR TESTING THE EQUALITY OF SEVERAL EXPONENTIAL DISTRIBUTIONS
                                                                                                                 JASA 63
                                                                                                                           435
                               A STATISTICAL TEST FOR EQUALITY OF TWO AVAILABILITIES
                                                                                                                 TECH 68
                                                                                                                           594
                                                                                                                  AMS 68
                                       ON TESTS OF THE EQUALITY OF TWO COVARIANCE MATRICES
                                                                                                                           275
                       POWER COMPARISIONS OF TESTS OF EQUALITY OF TWO COVARIANCE MATRICES BASED ON FOUR
                                                                                                                 BIOKA6B
                                                                                                                           335
BEST LINEAR DISCRIMINATOR ANALYSIS TESTS FOR THE EQUALITY OF TWO COVARIANCE MATRICES IN RELATION TO A
                                                                                                                  AMS 64
                                                                                                                           191
PROPERTY OF THE POWER FUNCTIONS OF SOME TESTS OF THE EQUALITY OF TWO GOVARIANCE MATRICES, CORR. 65 1318
                                                                                                                   AMS 64 1059
        ON THE POWER OF TWO-SAMPLE RANK TESTS ON THE EQUALITY OF TWO DISTRIBUTION FUNCTIONS
                                                                                                                  JRSSB64 293
QUARES TYPE QUADRA/ A USEFUL LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH APPLICATIONS TO LEAST S JASA 69 969
E-SIDED ALTERNATI/ ON A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES ACAINST ON AMS 62 1463
                                            A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS ASSUMING HOMO AMS 69 1374
GENEOUS COEFFICIENTS OF VARIATION
                                        ON TESTING THE EQUALITY OF UNIFORM AND RELATED DISTRIBUTIONS
                                                                                                                 JASA 66 856
    ON TESTING A SET OF CORRELATION COEFFICIENTS FOR EQUALITY. SOME ASYMPTOTIC RESULTS
                                                                                                                 BIOKA68
                                                                                                                           513
INTEGRAL.
                                                        EQUALLY CORRELATED VARIATES AND THE MULTINORMAL
                                                                                                                 JRSSR58
                                                                                                                           373
  OVER DESIGN FOR TESTING A TREATMENT FACTOR AT FOUR EQUALLY SPACED LEVELS (CORR. 67 586)
                                                                                                      A CHANGE- JRSSB67
                                                                                                                           370
   GROUPING METHODS IN THE FITTING OF POLYNOMIALS TO EQUALLY SPACED OBSERVATIONS
                                                                                                                 BIOKA54
                                                                                                                            62
                                                                                                                 BTOKA65 275
                FITTING A POLYNOMIAL TO CORRELATED EQUALLY SPACED OBSERVATIONS.
                            ON THE CHAPMAN-KOLMOGOROV EQUATION
                                                                                                                  AMS 61 1333
 COLLAPSED MARKOV CHAINS AND THE CHAPMAN-KOLMOCOROV EQUATION
                                                                                                                   AMS 63
                                                                                                                          233
 ALTERNATIVE ESTIMATORS FOR AN ASYMPTOTIC REGRESSION EQUATION
                                                                                            THE EFFICIENCIES OF BIOKA58
                                                                                                                           370
   PROBABILITIES AND A GENERALIZATION OF RAMANUJAN'S EQUATION
                                                                              MONOTONE CONVERCENCE OF BINOMIAL AMS 68 1191
                                        QUERY, BAULE'S EQUATION +(LEAST SQUARES ESTIMATE OF SOIL CONTENT)
                                                                                                                 BIOCS69
                                                                                                                          159
                                         THE DIFFUSION EQUATION AND A PSEUDO-DISTRIBUTION IN GENETICS
                                                                                                                 JRSSB63 405
                    ON THE SOLUTION OF THE LIKELIHOOD EQUATION BY ITERATION PROCESSES
                                                                                                                 BIOKA61
                                                                                                                           452
      CORRIGENDA, 'ON THE SOLUTION OF THE LIKELIHOOD EQUATION BY ITERATION PROCESSES'
                                                                                                                 BIOKA62 284
```

EQU - ERR TITLE WORD INDEX

```
LIZED CLASSICAL LINEAR ESTIMATORS IN A LEADINC THREE-EQUATION CASE /HE EXACT DISTRIBUTIONS OF THE GENERA JASA 64 BB1
LIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING THREE-EQUATION CASE /SAMPLE FREQUENCY FUNCTIONS OF GENERA JASA 63 161
                                EFFICIENT DIFFERENCE EQUATION ESTIMATORS IN EXPONENTIAL REGRESSION
                                                                                                             AMS 68 1638
           TABLE FOR THE SOLUTION OF THE EXPONENTIAL EQUATION EXP(B)-B/(1-P)=1
                                                                                                            BIOKA63 177
DISCRETE DISTRIBUTION ESTIMATORS FROM THE RECURRENCE EQUATION FOR PROBABILITIES
                                                                                                            JASA 69
                                                                                                                     602
   MAXIMUM-LIKELIHOOD ESTIMATOR WHERE THE LIKELIHOOD EQUATION HAS MULTIPLE ROOTS
                                                                                          EVALUATION OF THE BIOKA66
                                                                                                                     151
                                         AN INTEGRAL EQUATION IN ACE DEPENDENT BRANCHING PROCESSES
                                                                                                             AMS 65 1569
                           ON A PARTIAL DIFFERENTIAL EQUATION OF EPIDEMIC THEORY. I.
                                                                                                            BTOKA65
                                                                                                                    617
             AN APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION OF RENEWAL THEORY
                                                                                                            JRSSB63
                                                                                                                     432
                                        A DIFFERENCE EQUATION TECHNIQUE APPLIED TO THE SIMPLE QUEUE
                                                                                                            JRSSR58
                                                                                                                     165
RRITRARY ARRIVAL INTERVAL DISTRIBUTI/
                                       A DIFFERENCE EQUATION TECHNIQUE APPLIED TO THE SIMPLE QUEUE WITH A JRSSB58
                                                                                                                     168
          TABLES FOR THE SOLUTION OF THE EXPONENTIAL EQUATION, EXP(-A)+KA=1
                                                                                                                     439
                                                                                                            BIOKA60
                USE OF DUMMY VARIABLES IN REGRESSION EQUATIONS
                                                                                                            JASA 57
                                                                                                                     54B
  ITERATIVE ESTIMATION OF A SET OF LINEAR REGRESSION EQUATIONS
                                                                                                            JASA 64
                                                                                                                     845
                     A NOTE ON STOCHASTIC DIFFERENCE EQUATIONS
                                                                                                                     270
                                                                                                             AMS 6B
                       A NOTE ON THE SOLUTION OF DAM EQUATIONS
                                                                                                            JRSSB64
                                                                                                                     338
OPTIMUM CONFIDENCE BOUNDS FOR ROOTS OF DETERMINANTAL EQUATIONS
                                                                                                      SOME
                                                                                                            AMS 65
                                                                                                                     46B
   CONSISTENCY AND MAXIMA OF THE ROOTS OF LIKELIHOOD EQUATIONS
                                                                                              A NOTE ON THE BIOKA54
                                                                                                                      56
 OF PARAMETERS IN SYSTEMS OF STOCHASTIC DIFFERENTIAL EQUATIONS
                                                                                             THE ESTIMATION BIOKA59
                                                                                                                      67
   CORRELATION IN SYSTEMS OF SIMULTANEOUS REGRESSION EQUATIONS
                                                                                         TESTING FOR SERIAL BIOKAST
                                                                                                                     370
        FOR SOLVING LESER'S LEAST-SQUARES CRADUATION EQUATIONS
                                                                                       SUBSTITUTARY SEQUENCES JRSSB62
                                                                                                                     112
 DERIVED BY SOLVING SIMULTANEOUS LINEAR DIFFERENTIAL EQUATIONS
                                                                                  THE WISHART DISTRIBUTION BIOKA51
                                                                                                                     470
      METHOD FOR SOLVING AN OVERDETERMINED SYSTEM OF EQUATIONS
                                                                                AN A POSTERIORI PROBABILITY TECH 66
                                                                                                                     675
  STATIONARY SYSTEMS OF LINEAR STOCHASTIC DIFFERENCE EQUATIONS
                                                                               SPECTRAL PROPERTIES OF NON- JASA 69
                                                                                                                     581
 MOMENT CENERATINC FUNCTIONS BY SOLVINC DIFFERENTIAL EQUATIONS
                                                                 /ERMINATION OF SAMPLING DISTRIBUTIONS AND JRSSB65
                                                                                                                      86
ORS OF PARAMETERS IN EXPLOSIVE STOCHASTIC DIFFERENCE EQUATIONS
                                                                  /TENCY AND LIMIT DISTRIBUTIONS OF ESTIMAT AMS 61
          EVALUATION OF DETERMINANTS, CHARACTERISTIC EQUATIONS
                                                               AND THEIR ROOTS FOR A CLASS OF PATTERNED MA JRSSB60
                                                                                                                     348
                      ON THE SOLUTION OF LIKELIHOOD EQUATIONS BY ITERATION PROCESSES MULTIPARAMETRIC CASE BIOKA62
                                                                                                                     479
ASEDNESS OF ZELLNER'S SEEMINGLY UNRELATED RECRESSION EQUATIONS ESTIMATORS
                                                                                                   THÉ UNBI JASA 67
                                                                                                                     141
                 ON THE SENSITIVITY OF SIMULTANEOUS-EQUATIONS ESTIMATORS TO THE STOCHASTIC ASSUMPTIONS OF JASA 66
                                                                                                                     136
 CAPTURE-RECAPTURE METHOD. I THE MAXIMUM LIKELIHOOD EQUATIONS FOR ESTIMATING THE DEATH-RATE /ANS OF THE BIOKA51
                                                                                                                     269
                    A SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS FOR THE DISTRIBUTION OF HOTELLING'S GENERAL AMS 68
IZED T-SQUARE-SUB/
                                                                                                                     B15
MAL POPULATIONS
                       ON THE SOLUTION OF ESTIMATING EQUATIONS FOR TRUNCATED AND CENSORED SAMPLES FROM NOR BIOKAS7
                                                                                                                     225
                             SIMULTANEOUS RECRESSION EQUATIONS IN EXPERIMENTATION
                                                                                                            BIOKA58
                                                                                                                      96
                                       SOME INTEGRAL EQUATIONS IN GEOMETRICAL PROBABILITY
                                                                                                            BIOKA66
                                 A REMARK ON SOLVINC EQUATIONS IN SUMS OF POWERS
                                                                                                            JRSSB6B
                                                                                                                     567
ABILITY OF SOLUTIONS TO CERTAIN NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS
                                                                                                         ST BIOCS69
                                                                                                                      27
CLASS OF SERV/
                THE CONTINUOUS TIME SOLUTION OF THE EQUATIONS OF THE SINGLE CHANNEL QUEUE WITH A GENERAL
                                                                                                            JRSSR5B
                                                                                                                     176
                  SELECTION OF VARIABLES FOR FITTING EQUATIONS TO DATA
                                                                                                            TECH 66
                                                                                                                      27
      EFFICIENT ESTIMATION OF A SYSTEM OF REGRESSION EQUATIONS WHEN DISTURBANCES ARE BOTH SERIALLY AND CON JASA 67
                                                                                                                     500
NCE RECION FOR THE SOLUTION OF A SET OF SIMULTANEOUS EQUATIONS WITH AN APPLICATION TO EXPERIMENTAL DESIGN BIOKA54
                                                                                                                     190
       ESTIMATORS FOR SEEMINGLY UNRELATED REGRESSION EQUATIONS, SOME EXACT FINITE SAMPLE RESULTS
                                                                                                            JASA 63
                                                                                                                     977
           THE NUMERICAL SOLUTION OF SOME NON-LINEAR EQUATIONS, USEFUL IN THE DESIGN OF EXPERIMENTS
                                                                                                            JRSSB65
                                                                                                                     466
                                                     EQUATORIAL DISTRIBUTIONS ON A SPHERE.
                                                                                                            BIOKA65
                                                                                                                    193
                                        APPENDIX TO 'EQUATORIAL DISTRIBUTIONS ON A SPHERE'
                                                                                                            BIOKA65
                                                                                                                     200
                                                                                                                    251
                              THE MEAN EFFICIENCY OF EQUI-REPLICATE DESIGNS
                                                                                                            BIOKA6B
                MOMENTS OF ORDER STATISTICS FROM THE EQUICORRELATED MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                             AMS 62 12B6
                                       A NOTE ON THE EQUICORRELATED MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                            BTOKA62
                                                                                                                    269
                       ORTHANT PROBABILITIES FOR THE EQUICORRELATED MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                            BIOKA62
                                                                                                                     433
                       THE FITTING OF POLYNOMIALS TO EQUIDISTANT DATA WITH MISSING VALUES
                                                                                                            BTOKA51
                                                                                                                     410
 COMPLEX GENETICAL SYSTEMS WITH SPECIAL REFERENCE TO EQUILIBRIA
                                                                       A GRAPHICAL METHOD FOR THE STUDY OF BIOCS69 NO.4
                                                     EQUILIBRIA UNDER SELECTION FOR K ALLELES
                                                                                                            BTOCS66
                                                                                                                    121
                           NOTES. ON ESTIMATING THE EQUILIBRIUM AND TRANSITION PROBABILITIES OF A FINITE- BIOCS6B
STATE MARKOV CHAIN FROM/
                                                                                                                     1B5
MODELS
                                                 THE EQUILIBRIUM COVARIANCE MATRIX OF DYNAMIC ECONOMETRIC
                                                                                                           JASA 69
                                                                                                                    277
                                  THE LAST RETURN TO EQUILIBRIUM IN A COIN TOSSING CAME
                                                                                                             AMS 64 1344
M - 1
                                                SOME EQUILIBRIUM RESULTS FOR THE QUEUEINC PROCESS E-SUB-K-
                                                                                                           JRSSB56
                                                                                                                     275
                                             GENETIC EQUILIBRIUM UNDER SELECTION (INVITED PAPER)
                                                                                                                     397
LINKED LOCUS (ACKNOWLEDCEMENT 68 1025)
                                                     EQUILIBRIUM UNDER SELECTION AT A MULTI-ALLELIC SEX-
                                                                                                           BTOCS68
                                                                                                                     187
 TWO TABLES CONNECTED WITH COODNESS-OF-FIT TESTS FOR EQUIPROBABLE ALTERNATIVES
                                                                                                                     441
                                                                                                           BIOKA68
                               A NOTE ON STATISTICAL EQUIVALENCE
                                                                                                             AMS 67
                                                                                                                     7B7
                                                     EQUIVALENCE AND SINGULARITY FOR FRIEDMAN URNS
                                                                                                             AMS 66
                                                                                                                     268
                                                SOME EQUIVALENCE CLASSES IN PAIRED COMPARISONS
                                                                                                                     4BB
                                                                                                             AMS 66
                  A CLARIFICATION CONCERNINC CERTAIN EQUIVALENCE CLASSES OF GAUSSIAN PROCESSES ON AN INTER
                                                                                                             AMS 6B 107B
                                                                                                             AMS 69 NO.6
QUIVALENCE CONDITIONS FOR THE BROWNIAN MOTION TO THE EQUIVALENCE CONDITIONS FOR CERTAIN STATIONARY PROCESS
 EQUIVALENCE CONDITIONS FOR C/ THE RELATION OF THE EQUIVALENCE CONDITIONS FOR THE BROWNIAN MOTION TO THE
                                                                                                             AMS 69 NO.6
CE SAMPLING PLANS AND AN ACKNOWLEDGEMENT
                                              ON THE EQUIVALENCE OF BINOMIAL AND INVERSE BINOMIAL ACCEPTAN TECH 63 119
                                                     EQUIVALENCE OF GAUSSIAN STATIONARY PROCESSES
                                                                                                             AMS 69
                                                                                                                     197
                                                     EQUIVALENCE OF MAXIMUM LIKELIHOOD AND THE METHOD OF
MOMENTS IN PROBIT ANALYSIS
                                                                                                            BIOCS67 154
SIGMA'S, CORR. 65 1069
                                              ON THE EQUIVALENCE OF POLYKAYS OF THE SECOND DEGREE AND
                                                                                                             AMS 64 1663
                                                     EQUIVALENCE OF TWO ESTIMATES OF PRODUCT VARIANCE
                                                                                                            JASA 56
                                                                                                                    451
FUNCTION COEFFICIENTS
                                              NOTES. EQUIVALENCE OF TWO METHODS OF COMPUTING DISCRIMINANT
                                                                                                           BIOCS67
                                                                                                                     153
                                       A NOTE ON THE EQUIVALENCE OF TWO METHODS OF FITTING A STRAIGHT LINE JASA 64
 THROUGH CUMULATIVE DATA
                                                                                                                     863
                                       A NOTE ON THE EQUIVALENCE OF TWO TEST CRITERIA FOR HYPOTHESES IN
                                                                                                           JASA 66
                                                                                                                     228
CATEGORICAL DATA
                                              ON THE EQUIVALENCE OF TWO TESTS OF EQUALITY OF RATE OF OCCUR BIOKA5B
RENCE IN TWO SERIES OF EVENTS OCCURRING RA/
                                                                                                                    267
                                              ON TWO EQUIVALENCE RELATIONS BETWEEN MEASURES
                                                                                                             AMS 66
                                                                                                                     686
OR EXPERIMENTS INVOLVING LOCATION PARAMETERS
                                                 NON-EQUIVALENT COMPARISONS OF EXPERIMENTS AND THEIR USE F
                                                                                                             AMS 61
                                                                                                                    326
SIMPLE RADON-NIKODYM DERIVATIVE
                                                     EQUIVALENT GAUSSIAN MEASURES WITH A PARTICULARLY
                                                                                                             AMS 67 1027
                           THE PROCESS CURVE AND THE EQUIVALENT MIXED BINOMIAL WITH TWO COMPONENTS
                                                                                                            JRSSB59
                                                                                                                     63
                                   TWO MORE CRITERIA EQUIVALENT TO D-OPTIMALITY OF DESIGNS
                                                                                                                    792
                                                                                                             AMS 62
                                         ON MEASURES EQUIVALENT TO WIENER MEASURE
                                                                                                             AMS 67
                                                                                                                    261
                                             ON CASH EQUIVALENTS AND INFORMATION EVALUATION IN DECISIONS
UNDER UNCERTAINTY, PARTS I, II, AND III
                                                                                                           JASA 6B 252
                             A SPECIAL STRUCTURE AND EQUIVARIANT ESTIMATION
                                                                                                             AMS 67 1436
    A HISTORY OF DISTRIBUTION SAMPLING PRIOR TO THE ERA OF THE COMPUTER AND ITS RELEVANCE TO SIMULATION,
                                                                                                           JASA 65
                                                                                                                     27
                                                 THE ERGODIC BEHAVIOUR OF RANDOM WALKS
                                                                                                           BIOKA61
                                                                                                                    391
     A UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERGODIC MARKOV PROCESSES
                                                                                                            AMS 64 1781
                                                     ERGODIC PROPERTIES OF SOME PERMUTATION PROCESSES
                                                                                                           BIOKA62 151
```

SYSTEMS WITH FINITE CAPACITY THE	ERCODIC QUEUE LENCTH DISTRIBUTION FOR QUEUEINC	JRSSB66 190	J
A LIMIT THEOREM FOR PASSACE TIMES IN	ERCODIC RECENERATIVE PROCESSES	AMS 66 866	,
CENERALIZATIONS OF THE MAXIMAL	ERCODIC THEOREM	AMS 65 1292	
	ERCODIC THEOREM	AMS 65 1853	
A NOTE ON THE BIRKHOFF		AMS 67 922	
EXISTENCE OF AN INVARIANT MEASURE AND AN ORNSTEIN'S		AMS 69 79	
A UNIFORM OPERATOR		AMS 69 1126	
RALIZATION OF ITO'S THEOREM CONCERNING THE POINTWISE		AMS 68 2145	
	ERCODIC THEOREM OF INFORMATION THEORY	AMS 61 612	
THE	ERCODIC THEORY OF SUBADDITIVE STOCHASTIC PROCESSES	JRSSB6B 499	
ON THE FIXED POINT PROBABILITY VECTOR OF RECULAR OR	ERCODIC THEORY WITH RECURRENT WEICHTS	AMS 68 1107 JASA 67 600	
		AMS 68 1448	
	ERGODICITY OF SERIES OF QUEUES WITH CENERAL	AMS 65 1664	
A GENERALIZED SINCLE-SERVER QUEUE WITH		BIOKA62 242	
	ERLANC'S FORMULA	AMS 69 71	
	ERLANCIAN SERVICE TIME DISTRIBUTIONS	AMS 65 1574	
	ERLANCIAN SERVICE-TIME /TION TO THE SINCLE-SERVER Q	JRSSB60 B9	,
	ERRATA 'SIMULTANEOUS NONLINEAR ESTIMATION'	TECH 67 353	,
	ERRATA IN 'TABLES OF SYMMETRIC FUNCTIONS'	BIOKA58 292	
	ERRATA TO INDEX TO TECHNOMETRICS, VOLUMES 1-7	TECH 66 387	
S IN AN N-WAY CROSS CLASSIFICATION'	ERRATA, ' A NOTE ON THE DETERMINATION OF CONNECTEDNES		
DEVIATION '		TECH 62 440	
DEVIATION'	ERRATA, 'AN UPPER BOUND FOR THE SAMPLE STANDARD	TECH 63 417	
ADDI TOLETONO I	ERRATA, 'APPROXIMATING THE NECATIVE BINOMIAL'	TECH 67 498	
APPLICATIONS'	ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T, WITH	TECH 64 482	
NORMAL DISTRIBUTIONS'	ERRATA, 'CONTROL OF PERCENTACES IN BOTH TAILS OF THE ERRATA, 'DIAMOND-PIN LOCATION'	TECH 66 570 TECH 67 498	
WHEN THE OTHER COMPONENT IS OF EXPONENTIAL TYPE	ERRATA, 'ESTIMATION OF A COMPONENT OF A CONVOLUTION.		
STATISTIC FOR THE PARAMETER OF A ONE-PARAMETER NE/	ERRATA, 'EXACT CONFIDENCE BOUNDS, BASED ON ONE ORDER		
THE TAXABLE THE	ERRATA, 'FACTORIAL EXPERIMENTS IN LIFE TESTINC'	TECH 60 121	
EXPERIMENTAL DESIGNS'	ERRATA, 'FINDING NEW FRACTIONS OF FACTORIAL	TECH 63 134	
DISTRIBUTION BASED ON COMPLETE AND ON CENSORED S/	ERRATA, 'MAXIMUM LIKELIHOOD ESTIMATION IN THE WEIBULL		
ERS OF CAMMA AND WEIBULL POPULATIONS FROM COMPLET/	ERRATA, 'MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMET	TECH 67 195	
POPULATION'	ERRATA, 'MISCLASSIFIED DATA FROM A BINOMIAL	TECH 66 215	
INVERSION '		TECH 62 622	
DISTRIBUTION'	ERRATA, 'ORDER STATISTICS FROM THE CAMMA	TECH 60 523	
L FACTORIAL EXPERIMENTS'	ERRATA, 'ORTHOGONAL MAIN-EFFECT PLANS FOR ASYMMETRICA		
	ERRATA, 'SEQUENTIAL FACTORIAL ESTIMATION'	TECH 65 93	
OF QUANTITATIVE VARIABLES'	ERRATA, 'SOME NEW THREE LEVEL DESIGNS FOR THE STUDY		
	ERRATA, 'SOME PROPERTIES OF A DISTRIBUTION SPECIFIED ERRATA, 'TABLES OF TOLERANCE-LIMIT FACTORS FOR NORMAL		
	ERRATA, 'THE APPLICATION OF RANDOM BALANCE DESICNS'	TECH 59 419	
PROCESSES'	ERRATA, 'THE DISCRIMINATION BETWEEN TWO WEIBULL	TECH 64 240	
	ERRATA, 'THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPT		
EXPERIMENTS'	ERRATA, 'THE ORTHOCONALIZATION OF UNDESIGNED	TECH 66 731	
		TECH 60 523	
	ERRATA, 'THE 2-TO-THE-'K-P' FRACTIONAL FACTORIAL	TECH 63 417	
	ERRONEOUSLY ASSUMING NORMALITY FOR CUSUM SCHEMES	TECH 67 457	
SOME MORE ESTIMATES OF CIRCULAR PROBABLE		JASA 62 191	
THE NECATIVE EXPONENTIAL WITH CUMULATIVE		BIOCS68 363	
CENERALISED COVARIANCE ANALYSIS WITH UNEQUAL		BIOCS69 NO.4	
ON RECRESSION TRANSFORMATION FOR SMALLER ROUNDOFF OF BIAS ON ESTIMATES OF THE CIRCULAR PROBABLE		TECH 6B 393 JASA 60 732	
LEAST SQUARES, RESIDUAL ANALYSIS AND SPECIFICATION			
OF SAMPLING WHEN THE STRATIFICATION IS SUBJECT TO			
OF SOME ESTIMATORS OF QUANTILES OF CIRCULAR			
LINEAR RECRESSION WHEN BOTH VARIABLES ARE SUBJECT TO			
AND PREDICTION WHEN BOTH VARIABLES ARE SUBJECT TO	ERROR FITTING OF STRAIGHT LINES	JASA 61 657	
STIMATE THE RATIO OF VARIANCES WITH BOUNDED RELATIVE	ERROR SAMPLE SIZE REQUIRED TO E	TACA C7 1044	
IMATINC FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO	ERROR LIKELIHOOD DISTRIBUTIONS FOR EST ERROR AN ANALYSIS OF QUANTAL RESPONSE DATA	TECH 67 261 BIOCS65 Bll	
IMATINC FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO HT-LINE RELATIONS WHEN BOTH VARIABLES ARE SUBJECT TO	ERROR LIKELIHOOD DISTRIBUTIONS FOR EST ERROR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR /F INSTRUMENTAL VARIABLE ESTIMATION OF STRAIC	TECH 67 261 BIOCS65 B11 TECH 69 255	
IMATINC FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO HT-LINE RELATIONS WHEN BOTH VARIABLES ARE SUBJECT TO YSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS	ERROR LIKELIHOOD DISTRIBUTIONS FOR EST ERROR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR /F INSTRUMENTAL VARIABLE ESTIMATION OF STRAIL ERROR ESTIMATION OF STOCHASTIC SYSTEMS, ARBITRARY S	TECH 67 261 BIOCS65 B11 TECH 69 255 AMS 6B 785	
IMATINC FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO HT-LINE RELATIONS WHEN BOTH VARIABLES ARE SUBJECT TO YSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS RIES FOR THE EXPECTED VALUES OF NOR/ A NOTE ON THE	ERROR LIKELIHOOD DISTRIBUTIONS FOR EST ERROR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR /F INSTRUMENTAL VARIABLE ESTIMATION OF STRAIC ERROR ESTIMATION OF STOCHASTIC SYSTEMS, ARBITRARY S ERROR AFTER A NUMBER OF TERMS OF THE DAVID—JOHNSON SE	TECH 67 261 BIOCS65 B11 TECH 69 255 AMS 6B 785 BIOKA60 79	
IMATINC FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO HT-LINE RELATIONS WHEN BOTH VARIABLES ARE SUBJECT TO YSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS RIES FOR THE EXPECTED VALUES OF NOR/ A NOTE ON THE A MEAN-SQUARE-	ERROR LIKELIHOOD DISTRIBUTIONS FOR EST ERROR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR /F INSTRUMENTAL VARIABLE ESTIMATION OF STRAIC ERROR ESTIMATION OF STOCHASTIC SYSTEMS, ARBITRARY S ERROR AFTER A NUMBER OF TERMS OF THE DAVID—JOHNSON SE ERROR CHARACTERIZATION OF BINOMIAL—TYPE DISTRIBUTIONS	TECH 67 261 BIOCS65 B11 TECH 69 255 AMS 6B 785 BIOKA60 79	
IMATINC FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO HT-LINE RELATIONS WHEN BOTH VARIABLES ARE SUBJECT TO YSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS RIES FOR THE EXPECTED VALUES OF NOR/ A NOTE ON THE A MEAN-SQUARE- BOUND USEFUL IN THE THEORY OF FACTORIAL DESIGNS AND	ERROR LIKELIHOOD DISTRIBUTIONS FOR EST ERROR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR /F INSTRUMENTAL VARIABLE ESTIMATION OF STRAIC ERROR ESTIMATION OF STOCHASTIC SYSTEMS, ARBITRARY S ERROR AFTER A NUMBER OF TERMS OF THE DAVID—JOHNSON SE ERROR CHARACTERIZATION OF BINOMIAL—TYPE DISTRIBUTIONS	TECH 67 261 BIOCS65 B11 TECH 69 255 AMS 6B 785 BIOKA60 79 AMS 67 620 AMS 64 408	
IMATINC FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO HT-LINE RELATIONS WHEN BOTH VARIABLES ARE SUBJECT TO YSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS RIES FOR THE EXPECTED VALUES OF NOR/ A NOTE ON THE A MEAN-SQUARE-BOUND USEFUL IN THE THEORY OF FACTORIAL DESIGNS AND A TEST OF THE MEAN SQUARE	ERROR LIKELIHOOD DISTRIBUTIONS FOR EST ERROR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR (F INSTRUMENTAL VARIABLE ESTIMATION OF STRAIC STSTEMS, ARBITRARY S ERROR AFTER A NUMBER OF TERMS OF THE DAVID—JOHNSON SE ERROR CHARACTERIZATION OF BINOMIAL—TYPE DISTRIBUTIONS ERROR CORRECTINC CODES ON A ERROR CRITERION FOR RESTRICTIONS IN LINEAR REGRESSION	TECH 67 261 BIOCS65 B11 TECH 69 255 AMS 6B 785 BIOKA60 79 AMS 67 620 AMS 64 408	
IMATINC FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO HT-LINE RELATIONS WHEN BOTH VARIABLES ARE SUBJECT TO YSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS RIES FOR THE EXPECTED VALUES OF NOR/ A NOTE ON THE A MEAN-SQUARE- BOUND USEFUL IN THE THEORY OF FACTORIAL DESIONS AND A TEST OF THE MEAN SQUARE- EXPONENTIAL BOUNDS ON THE PROBABILITY OF N ESTIMATES OF BOUNDED RELATIVE	ERROR LIKELIHOOD DISTRIBUTIONS FOR EST ERROR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR /F INSTRUMENTAL VARIABLE ESTIMATION OF STRAIC ERROR ASTER A NUMBER OF TERMS OF THE DAVID—JOHNSON SE ERROR CHARACTERIZATION OF BINOMIAL—TYPE DISTRIBUTIONS ERROR CRITERION FOR RESTRICTIONS IN LINEAR REGRESSION ERROR FOR A DISCRETE MEMORYLESS CHANNEL ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTIO	TECH 67 261 BIOCS65 B11 TECH 69 255 AMS 6B 785 BIOKA60 79 AMS 67 620 AMS 64 408 JASA 68 558 AMS 61 577 TECH 61 107	
IMATINC FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO HT-LINE RELATIONS WHEN BOTH VARIABLES ARE SUBJECT TO YSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS RIES FOR THE EXPECTED VALUES OF NOR/ A NOTE ON THE A MEAN-SQUARE- BOUND USEFUL IN THE THEORY OF FACTORIAL DESIGNS AND A TEST OF THE MEAN SQUARE EXPONENTIAL BOUNDS ON THE PROBABLLITY OF N ESTIMATES OF BOUNDED RELATIVE ONS	ERROR ERROR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR FOR INSTRUMENTAL VARIABLE ESTIMATION OF STRAIL ERROR AFTER A NUMBER OF TERMS OF THE DAVID—JOHNSON SE ERROR CHARACTERIZATION OF BINOMIAL—TYPE DISTRIBUTIONS ERROR CORRECTINC CODES ON A ERROR CRITERION FOR RESTRICTIONS IN LINEAR REGRESSION ERROR FOR A DISCRETE MEMORYLESS CHANNEL ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTIO ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTI	TECH 67 261 BIOCS65 B11 TECH 69 255 AMS 6B 785 BIOKA60 79 AMS 67 620 AMS 64 408 JASA 68 558 AMS 61 577 TECH 61 107 JASA 56 481	
IMATINC FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO HT-LINE RELATIONS WHEN BOTH VARIABLES ARE SUBJECT TO YSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS RIES FOR THE EXPECTED VALUES OF NOR/ A NOTE ON THE A MEAN-SQUARE-BOUND USEFUL IN THE THEORY OF FACTORIAL DESIGNS AND A TEST OF THE MEAN SQUARE EXPONENTIAL BOUNDS ON THE PROBABILITY OF N ESTIMATES OF BOUNDED RELATIVE ONS ESTIMATES OF BOUNDED RELATIVE POSNER. 'THE APPLICATION OF EXTREME VALUE THEORY TO	ERROR ERROR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR FOR TINSTRUMENTAL VARIABLE ESTIMATION OF STRAIC ERROR ERROR AFTER A NUMBER OF TERMS OF THE DAVID—JOHNSON SE ERROR CORRECTINC CODES ON A ERROR CRITERION FOR RESTRICTIONS IN LINEAR REGRESSION ERROR FOR A DISCRETE MEMORYLESS CHANNEL ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTIO ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTI ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTI ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTI ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTI ERROR FOR THE COMMUNICATION' COMMENTS TO, EDWARD C.	TECH 67 261 BIOCS65 B11 TECH 69 255 AMS 68 785 BIOKA60 79 AMS 67 620 AMS 64 408 JASA 68 558 AMS 61 577 TECH 61 107 JASA 56 481 TECH 66 363	
IMATINC FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO HT-LINE RELATIONS WHEN BOTH VARIABLES ARE SUBJECT TO YSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS RIES FOR THE EXPECTED VALUES OF NOR/ A NOTE ON THE A MEAN-SQUARE- BOUND USEFUL IN THE THEORY OF FACTORIAL DESICNS AND A TEST OF THE MEAN SQUARE EXPONENTIAL BOUNDS ON THE PROBABILITY OF N ESTIMATES OF BOUNDED RELATIVE ONS ESTIMATES OF BOUNDED RELATIVE POSNER, 'THE APPLICATION OF EXTREME VALUE THEORY TO INSPECTION AND CORRECTION	ERROR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR /F INSTRUMENTAL VARIABLE ESTIMATION OF STRAIC ERROR SETIMATION OF STOCHASTIC SYSTEMS, ARBITRARY S ERROR AFTER A NUMBER OF TERMS OF THE DAVID—JOHNSON SE ERROR CHARACTERIZATION OF BINOMIAL—TYPE DISTRIBUTIONS ERROR CRITERION FOR RESTRICTIONS IN LINEAR REGRESSION ERROR FOR A DISCRETE MEMORYLESS CHANNEL ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTIO ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTI ERROR FREE COMMUNICATION' COMMENTS TO, EDWARD C. ERROR IN DATA PROCESSINC	TECH 67 261 BIOCS65 B11 TECH 69 255 AMS 68 785 BIOKAGO 79 AMS 67 620 AMS 64 409 JASA 68 558 AMS 61 577 TECH 61 107 JASA 56 481 TECH 66 363 JASA 69 NO.4	
IMATINC FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO HTTLINE RELATIONS WHEN BOTH VARIABLES ARE SUBJECT TO YSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS RIES FOR THE EXPECTED VALUES OF NOR/ A NOTE ON THE BOUND USEFUL IN THE THEORY OF FACTORIAL DESIGNS AND A TEST OF THE MEAN SQUARE EXPONENTIAL BOUNDS ON THE PROBABILITY OF N ESTIMATES OF BOUNDED RELATIVE ONS ESTIMATES OF BOUNDED RELATIVE POSNER, 'THE APPLICATION OF EXTREME VALUE THEORY TO INSPECTION AND CORRECTION EMENT QUALITY A PROCRAM TO ESTIMATE MEASUREMENT	ERROR ERROR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR FOR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR ERROR FOR ASSIGNMENTAL VARIABLE ESTIMATION OF STRAIN ERROR AFTER A NUMBER OF TERMS OF THE DAVID—JOHNSON SE ERROR CHARACTERIZATION OF BINOMIAL—TYPE DISTRIBUTIONS ERROR CORRECTINC CODES ON A ERROR CRITERION FOR RESTRICTIONS IN LINEAR REGRESSION ERROR FOR A DISCRETE MEMORYLESS CHANNEL ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTIO ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTI ERROR FREE COMMUNICATION' COMMENTS TO, EDWARD C. ERROR IN DATA PROCESSINC ERROR IN NONDESTRUCTIVE EVALUATION OF REACTOR FUEL EL	TECH 67 261 BIOCS65 B11 TECH 69 255 AMS 6B 785 BIOKA60 79 AMS 67 620 AMS 64 408 JASA 68 558 AMS 61 577 TECH 61 107 JASA 56 481 TECH 66 363 JASA 69 NO.4 TECH 64 293	
IMATINC FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO HT—LINE RELATIONS WHEN BOTH VARIABLES ARE SUBJECT TO YSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS RIES FOR THE EXPECTED VALUES OF NOR/ A NOTE ON THE A MEAN—SQUARE—BOUND USEFUL IN THE THEORY OF FACTORIAL DESIONS AND A TEST OF THE MEAN SQUARE EXPONENTIAL BOUNDS ON THE PROBABILITY OF N ESTIMATES OF BOUNDED RELATIVE ONS ESTIMATES OF BOUNDED RELATIVE POSNER. 'THE APPLICATION OF EXTREME VALUE THEORY TO INSPECTION AND CORRECTION EMENT QUALITY A PROCRAM TO ESTIMATE MEASUREMENT RESPONSE	ERROR ERROR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR FOR TINSTRUMENTAL VARIABLE ESTIMATION OF STRAIC ERROR ERROR AFTER A NUMBER OF TERMS OF THE DAVID—JOHNSON SE ERROR CHARACTERIZATION OF BINOMIAL—TYPE DISTRIBUTIONS ERROR CORRECTINC CODES ON A ERROR CRITERION FOR RESTRICTIONS IN LINEAR REGRESSION ERROR FOR A DISCRETE MEMORYLESS CHANNEL ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTIO ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTIO ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTI ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTI ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTI ERROR FOR THE PATIO OF VARIANCES OF NORMAL DISTRIBUTI ERROR FOR THE PATIO OF VARIANCES OF NORMAL DISTRIBUTI ERROR IN DATA PROCESSINC ERROR IN NONDESTRUCTIVE EVALUATION OF REACTOR FUEL EL ERROR IN SURVEY REPORTS OF EARNINCS INFORMATION	TECH 67 261 BIOCS65 B11 TECH 69 255 AMS 6B 785 BIOKA60 79 AMS 67 620 AMS 64 408 JASA 68 558 AMS 61 577 TECH 61 107 JASA 56 481 TECH 66 363 JASA 69 NO.4 TECH 64 293 JASA 66 729	
IMATINC FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO HT-LINE RELATIONS WHEN BOTH VARIABLES ARE SUBJECT TO YSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS RIES FOR THE EXPECTED VALUES OF NOR/ A NOTE ON THE A MEAN-SQUARE- BOUND USEFUL IN THE THEORY OF FACTORIAL DESIGNS AND A TEST OF THE MEAN SQUARE EXPONENTIAL BOUNDS ON THE PROBABILITY OF N ESTIMATES OF BOUNDED RELATIVE ONS ESTIMATES OF BOUNDED RELATIVE POSNER, 'THE APPLICATION OF EXTREME VALUE THEORY TO INSPECTION AND CORRECTION EMENT QUALITY A PROCRAM TO ESTIMATE MEASUREMENT RESPONSE DISTRIBUTION OF RADICAL	ERROR ERROR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR FOR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR ERROR FOR AFTER A NUMBER OF TERMS OF THE DAVID—JOHNSON SE ERROR CORRECTINC CODES ERROR CORRECTINC CODES ERROR FOR A DISCRETE MEMORYLESS CHANNEL ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTIO ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTIO ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTI ERROR FREE COMMUNICATION' COMMENTS TO, EDWARD C. ERROR IN DATA PROCESSINC ERROR IN SURVEY REPORTS OF EARNINCS INFORMATION ERROR IN SURVEY REPORTS OF EARNINCS INFORMATION ERROR IN THE BIVARIATE ELLIPTICAL NORMAL DISTRIBUTIO	TECH 67 261 BIOCS65 B11 TECH 69 255 AMS 6B 785 BIOKA60 79 AMS 67 620 AMS 64 408 JASA 68 558 AMS 61 577 TECH 61 107 JASA 56 481 TECH 66 363 JASA 69 NO.4 TECH 64 293 JASA 66 729	
IMATINC FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO HT—LINE RELATIONS WHEN BOTH VARIABLES ARE SUBJECT TO YSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS RIES FOR THE EXPECTED VALUES OF NOR/ A NOTE ON THE BOUND USEFUL IN THE THEORY OF FACTORIAL DESIGNS AND A TEST OF THE MEAN SQUARE EXPONENTIAL BOUNDS ON THE PROBABILITY OF STIMATES OF BOUNDED RELATIVE ONS ESTIMATES OF BOUNDED RELATIVE POSNER, 'THE APPLICATION OF EXTREME VALUE THEORY TO INSPECTION AND CORRECTION EMENT QUALITY A PROCRAM TO ESTIMATE MEASUREMENT RESPONSE DISTRIBUTION OF RADICAL SAMPLINC	ERROR ERROR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR FOR AN ANALYSIS OF QUANTAL RESPONSE DATA ESTIMATION OF STOCHASTIC SYSTEMS, ARBITRARY S ERROR AFTER A NUMBER OF TERMS OF THE DAVID—JOHNSON SE ERROR CHARACTERIZATION OF BINOMIAL—TYPE DISTRIBUTIONS ERROR CORRECTINC CODES ON A ERROR CRITERION FOR RESTRICTIONS IN LINEAR REGRESSION ERROR FOR A DISCRETE MEMORYLESS CHANNEL ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTIO ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTIO ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTIO ERROR FOR THE COMMUNICATION' COMMENTS TO, EDWARD C. ERROR IN DATA PROCESSINC ERROR IN NONDESTRUCTIVE EVALUATION OF REACTOR FUEL EL ERROR IN SURVEY REPORTS OF EARNINCS INFORMATION ERROR IN THE BIVARIATE ELLIPTICAL NORMAL DISTRIBUTION ERROR IN THE BOVANIATE ELLIPTICAL NORMAL DISTRIBUTION ERROR IN THE CONSUMER PRICE INDEX	TECH 67 261 BIOCS65 811 TECH 69 255 AMS 68 785 BIOKA60 79 AMS 67 620 AMS 64 408 JASA 68 558 AMS 61 107 TECH 61 107 JASA 56 481 TECH 66 363 JASA 69 NO.4 TECH 64 293 TECH 64 729 TECH 62 138	
IMATINC FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO HT—LINE RELATIONS WHEN BOTH VARIABLES ARE SUBJECT TO YSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS RIES FOR THE EXPECTED VALUES OF NOR/ A NOTE ON THE BOUND USEFUL IN THE THEORY OF FACTORIAL DESIGNS AND A TEST OF THE MEAN SQUARE EXPONENTIAL BOUNDS ON THE PROBABILITY OF STIMATES OF BOUNDED RELATIVE ONS ESTIMATES OF BOUNDED RELATIVE POSNER, 'THE APPLICATION OF EXTREME VALUE THEORY TO INSPECTION AND CORRECTION EMENT QUALITY A PROCRAM TO ESTIMATE MEASUREMENT RESPONSE DISTRIBUTION OF RADICAL SAMPLINC	ERROR ERROR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR FOR AN ANALYSIS OF QUANTAL RESPONSE DATA ESTIMATION OF STOCHASTIC SYSTEMS, ARBITRARY S ERROR AFTER A NUMBER OF TERMS OF THE DAVID—JOHNSON SE ERROR CHARACTERIZATION OF BINOMIAL—TYPE DISTRIBUTIONS ERROR CORRECTINC CODES ON A ERROR CRITERION FOR RESTRICTIONS IN LINEAR REGRESSION ERROR FOR A DISCRETE MEMORYLESS CHANNEL ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTIO ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTIO ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTIO ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTIO ERROR IN DATA PROCESSINC ERROR IN NONDESTRUCTIVE EVALUATION OF REACTOR FUEL EL ERROR IN SURVEY REPORTS OF EARNINCS INFORMATION ERROR IN THE BIVARIATE ELLIPTICAL NORMAL DISTRIBUTION ERROR IN THE EVALUARIE ELLIPTICAL NORMAL DISTRIBUTION ERROR IN THE CONSUMER PRICE INDEX ERROR IN THE CONSUMER PRICE INDEX ERROR IN THE LINEAR APPROXIMATION TO THE RENEWAL	TECH 67 261 BIOCS65 B11 TECH 69 255 AMS 6B 785 BIOKA60 79 AMS 67 620 AMS 64 408 JASA 68 558 AMS 61 577 TECH 61 107 JASA 56 481 TECH 66 360 JASA 69 NO.4 TECH 64 293 JASA 66 729 TECH 62 138 JASA 67 899	
IMATINC FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO HT-LINE RELATIONS WHEN BOTH VARIABLES ARE SUBJECT TO YSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS RIES FOR THE EXPECTED VALUES OF NOR/ A NOTE ON THE A MEAN-SQUARE- BOUND USEFUL IN THE THEORY OF FACTORIAL DESIGNS AND A TEST OF THE MEAN SQUARE EXPONENTIAL BOUNDS ON THE PROBABILITY OF N ESTIMATES OF BOUNDED RELATIVE POSNER, 'THE APPLICATION OF EXTREME VALUE THEORY TO INSPECTION AND CORRECTION EMENT QUALITY A PROCRAM TO ESTIMATE MEASUREMENT RESPONSE DISTRIBUTION OF RADICAL SAMPLINC FUNCTION SOME CONSEQUENCES OF SUPERIMPOSED RELATIVE COSTS OF COMPUTERIZED	ERROR ERROR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR FOR INSTRUMENTAL VARIABLE ESTIMATION OF STRAIC ERROR ESTIMATION OF STOCHASTIC SYSTEMS, ARBITRARY S ERROR AFTER A NUMBER OF TERMS OF THE DAVID—JOHNSON SE ERROR CORRECTINC CODES ERROR CORRECTINC CODES ERROR FOR A DISCRETE MEMORYLESS CHANNEL ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTIO ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTIO ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTI ERROR FREE COMMUNICATION' COMMENTS TO, EDWARD C. ERROR IN DATA PROCESSINC ERROR IN DATA PROCESSINC ERROR IN SURVEY REPORTS OF EARNINCS INFORMATION ERROR IN THE BIVARIATE ELLIPTICAL NORMAL DISTRIBUTION ERROR IN THE BIVARIATE ELLIPTICAL NORMAL DISTRIBUTION ERROR IN THE CONSUMER PRICE INDEX ERROR IN THE LINEAR APPROXIMATION TO THE RENEWAL ERROR IN TIME SERIES ANALYSIS ERROR INSPECTION PLANS	TECH 67 261 BIOCS65 811 TECH 69 255 AMS 68 785 BIOKA60 79 AMS 67 620 AMS 64 408 JASA 68 558 AMS 61 577 TECH 61 107 JASA 56 481 TECH 66 363 JASA 69 NO.4 TECH 64 293 JASA 66 729 TECH 62 138 JASA 67 899 BIOKA64 353 JASA 67 899 BIOKA60 333 JASA 69 NO.4	
IMATINC FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO HT—LINE RELATIONS WHEN BOTH VARIABLES ARE SUBJECT TO YSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS RIES FOR THE EXPECTED VALUES OF NOR/ A NOTE ON THE BOUND USEFUL IN THE THEORY OF FACTORIAL DESIGNS AND A TEST OF THE MEAN SQUARE EXPONENTIAL BOUNDS ON THE PROBABILITY OF N ESTIMATES OF BOUNDED RELATIVE POSNER, 'THE APPLICATION OF EXTREME VALUE THEORY TO INSPECTION AND CORRECTION EMENT QUALITY A PROCRAM TO ESTIMATE MEASUREMENT RESPONSE DISTRIBUTION OF RADICAL FUNCTION SOME CONSEQUENCES OF SUPERIMPOSED RELATIVE COSTS OF COMPUTERIZED A NOTE ON THE RISKS OF	ERROR ERROR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR FOR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR FOR AN ANALYSIS OF QUANTAL RESPONSE DATA ESTIMATION OF STOCHASTIC SYSTEMS, ARBITRARY S ERROR AFTER A NUMBER OF TERMS OF THE DAVID—JOHNSON SE ERROR CHARACTERIZATION OF BINOMIAL—TYPE DISTRIBUTIONS ERROR CORRECTINC CODES ON A ERROR CRITERION FOR RESTRICTIONS IN LINEAR REGRESSION ERROR FOR A DISCRETE MEMORYLESS CHANNEL ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTIO ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTIO ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTIO ERROR IN DATA PROCESSINC ERROR IN NONDESTRUCTIVE EVALUATION OF REACTOR FUEL EL ERROR IN THE BIVARIATE ELLIPTICAL NORMAL DISTRIBUTION ERROR IN THE SEQUENTIAL NORMAL DISTRIBUTION ERROR IN THE CONSUMER PRICE INDEX ERROR IN THE LINEAR APPROXIMATION TO THE RENEWAL ERROR IN TIME SERIES ANALYSIS ERROR INSPECTION PLANS ERROR INVOLVED IN THE SEQUENTIAL RATIO TEST	TECH 67 261 BIOCS65 B11 TECH 69 255 AMS 6B 785 BIOKA60 79 AMS 67 620 AMS 64 408 JASA 68 558 AMS 61 577 TECH 61 107 JASA 56 481 TECH 66 363 JASA 69 NO.4 TECH 62 138 JASA 66 729 TECH 62 138 JASA 67 899 BIOKA60 33 JASA 69 NO.4 BIOKA65 231	
IMATINC FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO HT-LINE RELATIONS WHEN BOTH VARIABLES ARE SUBJECT TO YSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS RIES FOR THE EXPECTED VALUES OF NOR/ A NOTE ON THE BOUND USEFUL IN THE THEORY OF FACTORIAL DESIGNS AND A TEST OF THE MEAN SQUARE EXPONENTIAL BOUNDS ON THE PROBABILITY OF N ESTIMATES OF BOUNDED RELATIVE ONS ESTIMATES OF BOUNDED RELATIVE POSNER, 'THE APPLICATION OF EXTREME VALUE THEORY TO INSPECTION AND CORRECTION EMENT QUALITY A PROCRAM TO ESTIMATE MEASUREMENT RESPONSE DISTRIBUTION OF RADICAL SAMPLINC FUNCTION BOUNDS ON THE SOME CONSEQUENCES OF SUPERIMPOSED RELATIVE COSTS OF COMPUTERIZED A NOTE ON THE RISKS OF E QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQUARED	ERROR ERROR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR FROR FROR FROR FROR FROR FROR FRO	TECH 67 261 BIOCS65 B11 TECH 69 255 AMS 68 785 BIOKA60 79 AMS 67 620 AMS 64 408 JASA 68 558 AMS 61 577 TECH 61 107 JASA 56 481 TECH 66 363 JASA 69 NO.4 TECH 62 138 JASA 67 899 BIOKA60 33 JASA 69 NO.4 BIOKA60 231 AMS 69 1801	
IMATINC FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO HT-LINE RELATIONS WHEN BOTH VARIABLES ARE SUBJECT TO YSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS RIES FOR THE EXPECTED VALUES OF NOR/ A NOTE ON THE A MEAN-SQUARE BOUND USEFUL IN THE THEORY OF FACTORIAL DESIONS AND A TEST OF THE MEAN SQUARE EXPONENTIAL BOUNDS ON THE PROBABILITY OF N ESTIMATES OF BOUNDED RELATIVE ONS ESTIMATES OF BOUNDED RELATIVE POSNER. 'THE APPLICATION OF EXTREME VALUE THEORY TO INSPECTION AND CORRECTION EMENT QUALITY A PROCRAM TO ESTIMATE MEASUREMENT RESPONSE DISTRIBUTION OF RADICAL SAMPLINC FUNCTION BOUNDS ON THE SOME CONSEQUENCES OF SUPERIMOSED RELATIVE COSTS OF COMPUTERIZED A NOTE ON THE RISKS OF E QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQUARED THE RELATIVE SENSITIVITY TO SPECIFICATION	ERROR ERROR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR FOR AN ANALYSIS OF QUANTAL RESPONSE DATA ESTIMATION OF STOCHASTIC SYSTEMS, ARBITRARY S ERROR AFTER A NUMBER OF TERMS OF THE DAVID—JOHNSON SE ERROR CORRECTINC CODES ON A ERROR CORRECTINC CODES ON A ERROR FOR A DISCRETE MEMORYLESS CHANNEL ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTIO ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTIO ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTI ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTI ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTI ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTI ERROR FOR THE PATIO OF VARIANCES OF NORMAL DISTRIBUTI ERROR IN DATA PROCESSINC ERROR IN NONDESTRUCTIVE EVALUATION OF REACTOR FUEL EL ERROR IN SURVEY REPORTS OF EARNINCS INFORMATION ERROR IN THE CONSUMER PRICE INDEX ERROR IN THE CONSUMER PRICE INDEX ERROR IN THE LINEAR APPROXIMATION TO THE RENEWAL ERROR IN TIME SERIES ANALYSIS ERROR INSPECTION PLANS ERROR INVOLVED IN THE SEQUENTIAL RATIO TEST ERROR LOSS /THE BEST INVARIATE ESTIMATOR OF EXTREM ERROR COS DIFFERENT K—CLASS ESTIMATORS	TECH 67 261 BIOCS65 B11 TECH 69 255 AMS 68 785 BIOKA60 79 AMS 67 620 AMS 64 408 JASA 68 558 AMS 61 577 TECH 61 107 JASA 56 481 TECH 66 363 JASA 69 NO.4 TECH 62 138 JASA 67 29 TECH 62 138 JASA 67 899 BIOKA64 355 BIOKA64 355 BIOKA66 33 JASA 69 NO.4 BIOKA56 231 JASA 69 NO.4	
IMATINC FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO HTG-LINE RELATIONS WHEN BOTH VARIABLES ARE SUBJECT TO YSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS RIES FOR THE EXPECTED VALUES OF NOR/ A NOTE ON THE BOUND USEFUL IN THE THEORY OF FACTORIAL DESIGNS AND A TEST OF THE MEAN SQUARE EXPONENTIAL BOUNDS ON THE PROBABILITY OF STIMATES OF BOUNDED RELATIVE POSNER. 'THE APPLICATION OF EXTREME VALUE THEORY TO INSPECTION AND CORRECTION EMENT QUALITY A PROCRAM TO ESTIMATE MEASUREMENT RESPONSE DISTRIBUTION OF RADICAL SAMPLINC FUNCTION BOUNDS ON THE SOME CONSEQUENCES OF SUPERIMPOSED RELATIVE COSTS OF COMPUTERIZED A NOTE ON THE RISKS OF E QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQUARED THE RELATIVE SENSITIVITY TO SPECIFICATION THE ASYMPTOTIC	ERROR ERROR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR FOR AN ANALYSIS OF QUANTAL RESPONSE DATA ESTIMATION OF STOCHASTIC SYSTEMS, ARBITRARY S ERROR AFTER A NUMBER OF TERMS OF THE DAVID—JOHNSON SE ERROR CHARACTERIZATION OF BINOMIAL—TYPE DISTRIBUTIONS ERROR CORRECTINC CODES ON A ERROR CRITERION FOR RESTRICTIONS IN LINEAR REGRESSION ERROR FOR A DISCRETE MEMORYLESS CHANNEL ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTIO ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTIO ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTIO ERROR IN DATA PROCESSINC ERROR IN NONDESTRUCTIVE EVALUATION OF REACTOR FUEL EL ERROR IN SURVEY REPORTS OF EARNINCS INFORMATION ERROR IN THE BIVARIATE ELLIPTICAL NORMAL DISTRIBUTION ERROR IN THE LINEAR APPROXIMATION TO THE RENEWAL ERROR IN THE LINEAR APPROXIMATION TO THE RENEWAL ERROR IN TIME SERIES ANALYSIS ERROR INSPECTION PLANS ERROR INVOLVED IN THE SEQUENTIAL RATIO TEST ERROR LOSS /THE BEST INVARIATE ESTIMATOR OF EXTREM ERROR OF DIFFERENT K—CLASS ESTIMATORS ERROR OF DIFFERENT K—CLASS ESTIMATORS	TECH 67 261 BIOCS65 B11 TECH 69 255 AMS 6B 785 BIOKA60 79 AMS 67 620 AMS 64 408 JASA 68 558 AMS 61 577 TECH 61 107 JASA 56 481 TECH 66 363 JASA 69 NO.4 TECH 62 138 JASA 66 729 TECH 62 138 JASA 67 899 BIOKA64 355 BIOKA64 355 BIOKA64 355 BIOKA66 231 AMS 69 NO.4 BIOKA56 345 AMS 68 266	
IMATINC FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO HT-LINE RELATIONS WHEN BOTH VARIABLES ARE SUBJECT TO YSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS RIES FOR THE EXPECTED VALUES OF NOR/ A NOTE ON THE BOUND USEFUL IN THE THEORY OF FACTORIAL DESIGNS AND A TEST OF THE MEAN SQUARE EXPONENTIAL BOUNDS ON THE PROBABILITY OF N ESTIMATES OF BOUNDED RELATIVE ONS ESTIMATES OF BOUNDED RELATIVE POSNER, 'THE APPLICATION OF EXTREME VALUE THEORY TO INSPECTION AND CORRECTION EMENT QUALITY A PROCRAM TO ESTIMATE MEASUREMENT RESPONSE DISTRIBUTION OF RADICAL SAMPLINC FUNCTION BOUNDS ON THE SOME CONSEQUENCES OF SUPERIMPOSED RELATIVE COSTS OF COMPUTERIZED A NOTE ON THE RISKS OF E QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQUARED THE RELATIVE SENSITIVITY TO SPECIFICATION THE ASYMPTOTIC A PARAMETRIC ESTIMATE OF THE STANDARD	ERROR ERROR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR FOR FINSTRUMENTAL VARIABLE ESTIMATION OF STRAIL ERROR AFTER A NUMBER OF TERMS OF THE DAVID—JOHNSON SE ERROR CHARACTERIZATION OF BINOMIAL—TYPE DISTRIBUTIONS ERROR CORRECTINC CODES ON A ERROR CRITERION FOR RESTRICTIONS IN LINEAR REGRESSION ERROR FOR A DISCRETE MEMORYLESS CHANNEL ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTIO ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTI ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTI ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTI ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTI ERROR IN DATA PROCESSINC ERROR IN NONDESTRUCTIVE EVALUATION OF REACTOR FUEL EL ERROR IN SURVEY REPORTS OF EARNINCS INFORMATION ERROR IN THE EIVARIATE ELLIPTICAL NORMAL DISTRIBUTION ERROR IN THE CONSUMER PRICE INDEX ERROR IN THE LINEAR APPROXIMATION TO THE RENEWAL ERROR IN THE LINEAR APPROXIMATION TO THE RENEWAL ERROR INSPECTION PLANS ERROR INVOLVED IN THE SEQUENTIAL RATIO TEST ERROR COSS /THE BEST INVARIATE ESTIMATOR OF EXTREM ERROR OF DIFFERENT K-CLASS ESTIMATORS ERROR OF TIFERATIONS ERROR OF TIFERATIONS ERROR OF TIFERATIONS ERROR OF TIFERATIONS	TECH 67 261 BIOCS65 B11 TECH 69 255 AMS 68 785 BIOKA60 79 AMS 67 620 AMS 64 408 JASA 68 558 AMS 61 577 TECH 61 107 JASA 56 481 TECH 66 363 JASA 69 NO.4 TECH 62 138 JASA 66 729 TECH 62 138 JASA 67 899 BIOKA60 333 JASA 69 NO.4 TECH 64 253 AMS 69 NO.4 TECH 62 138 JASA 67 899 BIOKA60 333 JASA 69 NO.4 TECH 62 138 BIOKA60 333 JASA 69 NO.4 TECH 62 138 AMS 69 1801 JASA 66 345 AMS 69 1801 JASA 66 345 AMS 66 345 AMS 66 JASA 61 111	
IMATINC FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO HT—LINE RELATIONS WHEN BOTH VARIABLES ARE SUBJECT TO YSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS RIES FOR THE EXPECTED VALUES OF NOR/ A NOTE ON THE BOUND USEFUL IN THE THEORY OF FACTORIAL DESIGNS AND A TEST OF THE MEAN SQUARE EXPONENTIAL BOUNDS ON THE PROBABILITY OF N ESTIMATES OF BOUNDED RELATIVE ONS ESTIMATES OF BOUNDED RELATIVE POSNER, 'THE APPLICATION OF EXTREME VALUE THEORY TO INSPECTION AND CORRECTION EMENT QUALITY A PROCRAM TO ESTIMATE MEASUREMENT RESPONSE DISTRIBUTION OF RADICAL SAMPLINC FUNCTION BOUNDS ON THE SOME CONSEQUENCES OF SUPERIMPOSED RELATIVE COSTS OF COMPUTERIZED A NOTE ON THE RISKS OF E QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQUARED THE RELATIVE SENSITIVITY TO SPECIFICATION THE ASYMPTOTIC A PARAMETRIC ESTIMATE OF THE STANDARD	ERROR ERROR AN ANALYSIS OF QUANTAL RESPONSE DATA ERROR FOR FINSTRUMENTAL VARIABLE ESTIMATION OF STRAIL ERROR AFTER A NUMBER OF TERMS OF THE DAVID—JOHNSON SE ERROR CHARACTERIZATION OF BINOMIAL—TYPE DISTRIBUTIONS ERROR CORRECTINC CODES ON A ERROR CRITERION FOR RESTRICTIONS IN LINEAR REGRESSION ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTIO ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTI ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTI ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTI ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTI ERROR FOR THE PATIO OF VARIANCES OF NORMAL DISTRIBUTI ERROR IN DATA PROCESSINC ERROR IN NONDESTRUCTIVE EVALUATION OF REACTOR FUEL EL ERROR IN SURVEY REPORTS OF EARNINCS INFORMATION ERROR IN THE EIVARIATE ELLIPTICAL NORMAL DISTRIBUTION ERROR IN THE CONSUMER PRICE INDEX ERROR IN THE LINEAR APPROXIMATION TO THE RENEWAL ERROR IN THE LINEAR APPROXIMATION TO THE RENEWAL ERROR INVOLVED IN THE SEQUENTIAL RATIO TEST ERROR LOSS /THE BEST INVARIATE ESTIMATOR OF EXTREM ERROR OF DIFFERENT K—CLASS ESTIMATORS ERROR OF THES UNVIVAL RATE, CORR. 63 1161	TECH 67 261 BIOCS65 B11 TECH 69 255 AMS 6B 785 BIOKA60 79 AMS 67 620 AMS 64 408 JASA 68 558 AMS 61 577 TECH 61 107 JASA 56 481 TECH 66 363 JASA 69 NO.4 TECH 62 138 JASA 66 729 TECH 62 138 JASA 67 899 BIOKA64 355 BIOKA64 355 BIOKA64 355 BIOKA66 231 AMS 69 NO.4 BIOKA56 345 AMS 68 266	

ERR - EST TITLE WORD INDEX

```
AY CLASSIFICATION WITH PRESCRIBED MAXIMUM ASYMPTOTIC ERROR PROBABILITY
                                                                            SEQUENTIAL NONPARAMETRIC TWO-W AMS 69
                                               QUERY, ERROR RATE BASES
                                                                                                              TECH 65
                                                                                                                       260
                          ALLOCATION RULES AND THEIR ERROR RATES (WITH DISCUSSION)
                                                                                                              JRSSB66
                                                                                                                        1
                                        ESTIMATION OF ERROR RATES IN DISCRIMINANT ANALYSIS
                                                                                                              TECH 6B
                        COMMENTARY ON 'ESTIMATION OF ERROR RATES IN DISCRIMINANT ANALYSIS'
                                                                                                              TECH 6B
                                                                                                                       204
ALITY AND VARIANCES OF RESID/ ORTHONORMAL BASES OF ERROR SPACES AND THEIR USE FOR INVESTIGATING THE NORM JASA 67 1022
                       PARAMETRIC AUGMENTATIONS AND ERROR STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST SQU JASA 69 NO.4
ARES AND ANALYSIS OF/
                          TABLES FOR THE MEAN SQUARE ERROR TEST FOR EXACT LINEAR RESTRICTIONS IN REGRESSIO JASA 69 NO.4
YSIS OF A GROUP OF BALANCED BLOCK EXPERIMENTS HAVING ERROR VARIANCE AND SOME TREATMENTS IN COMMON
                                                                                                        ANAL BIOCSEB
                                       ESTIMATION OF ERROR VARIANCE FROM SMALLEST ORDERED CONTRASTS
                                                                                                              JASA 63
                                                                                                                       152
                                    HETEROGENEITY OF ERROR VARIANCES IN A RANDOMIZED BLOCK DESIGN
                                                                                                              BTOKA57
                                                                                                                       275
                                                                                                             BIOKA57
                                       HETEROGENEOUS ERROR VARIANCES IN SPLIT-PLOT EXPERIMENTS
                                                                                                                       37B
       LINEAR REGRESSION WITH NON-CONSTANT, UNKNOWN ERROR VARIANCES, SAMPLING EXPERIMENTS WITH LEAST SQUA BIOCS68
                                                                                                                       607
DIMENSIONAL CHAINS INVOLVING RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS
                                                                                                              TECH 63
                                                                                                                       404
         THE APPLICATION OF EXTREME VALUE THEORY TO ERROR-FREE COMMUNICATION
                                                                                                              TECH 65
                                                                                                                       517
F THE ERRORS IS/ THE ESTIMATION OF REGRESSION AND ERROR-SCALE PARAMETERS, WHEN THE JOINT DISTRIBUTION O BIOKA61
NG PROBABILITIES FROM A FINITE POP/ BOUNDS FOR THE ERROR-VARIANCE OF AN ESTIMATOR IN SAMPLING WITH VARYI JASA 6B
                                                                                                                        91
                                  DECIMAL CORRECTION ERROR, AN EXAMPLE IN STATISTICS
                                                                                                              TECH 62
                                                                                                                      421
OF STRAIGHT LINES WHEN BOTH VARIABLES ARE SUBJECT TO ERROR, CORR. 59 812
                                                                                                THE FITTING
                                                                                                              JASA 59
                                                                                                                       173
        COMPARISON OF ESTIMATES OF CIRCULAR PROBABLE ERROR, CORR. 60 755
                                                                                                              JASA 59
                                                                                                                       794
                               MOMENTS OF THE RADIAL ERROR, CORR. 65 1251
                                                                                                              JASA 62
                                                                                                                       187
     DESIGNS FOR REGRESSION PROBLEMS WITH CORRELATED ERRORS
                                                                                                               AMS 66
                                                                                                                        66
                 MULTIPLE REGRESSION WITH STATIONARY ERRORS
                                                                                                              JASA 66
                                                                                                                       917
 LINEAR RELATIONSHIPS BETWEEN VARIABLES AFFECTED BY ERRORS
                                                                                                              BIOCS66
                                                                                                                       252
     ANALYSIS OF QUANTAL RESPONSE ASSAYS WITH DOSAGE ERRORS
                                                                                                              BIOCS67
      OF MIS-MATCHING ON THE MEASUREMENT OF RESPONSE ERRORS
                                                                                                   THE EFFECT JASA 65 1005
          WEIGHING DESIGNS UNDER AUTO-CORRELATION OF ERRORS
                                                                                               ON HOTELLING'S
                                                                                                              AMS 65 1B29
        OF THE REGRESSION MODEL WITH AUTO-CORRELATED ERRORS
                                                                                           BAYESIAN ANALYSIS JASA 64
 CLASSIFICATIONS WITH CORRELATED AND NON-HOMOGENEOUS ERRORS
                                                               /AN ANALYSIS OF VARIANCE TABLE FOR DIFFERENT JRSSB59
                                                                                                                       114
E ANALYSIS OF VARIANCE. II. EFFECT OF AUTOCORRELATED ERRORS
                                                               /SIAN ANALYSIS OF RANDOM-EFFECT MODELS IN TH BIOKA66
 REGRESSION METHODS IN THE CONTEXT OF AUTOCORRELATED ERRORS
                                                               SMALL-SAMPLE PROPERTIES OF SEVERAL TWO-STAGE JASA 69
                                                                                                                       253
                               A NOTE ON MEASUREMENT ERRORS AND DETECTING REAL DIFFERENCES
                                                                                                                       314
                                                                                                              JASA 61
                    THE ESTIMATION OF SLOPE WHEN THE ERRORS ARE AUTOCORRELATED
                                                                                                              JRSSB62
                                                                                                                       199
ANCE OF WEIGHTED REGRESSION ESTIMATORS WHEN SAMPLING ERRORS ARE INDEPENDENT AND HETEROSCEDASTIC
                                                                                                        VARI JASA 69 NO.4
                                             STANDARD ERRORS FOR INDEXES FROM COMPLEX SAMPLES
                                                                                                              JASA 68
                                                                                                                      512
                                             SAMPLING ERRORS IN AN ORCHARD SURVEY INVOLVING UNEQUAL NUMBERS BIOCS65
OF ORCHARDS OF DISTINCT TYPE
                                                                                                                        55
                                     A CHECK ON GROSS ERRORS IN CERTAIN VARIANCE COMPUTATIONS
                                                                                                              JASA 59
                                                                                                                       741
ANALYSIS
                              TESTS FOR SPECIFICATION ERRORS IN CLASSICAL LINEAR LEAST-SQUARES REGRESSION
                                                                                                              JRSSB69 NO.2
                                                      ERRORS IN DISCRIMINATION
                                                                                                               AMS 61 1125
                                  A STUDY OF RESPONSE ERRORS IN EXPENDITURES DATA FROM HOUSEHOLD INTERVIEWS JASA 64
                                                                                                                        18
                                  MINIMIZING RESPONSE ERRORS IN FINANCIAL DATA. THE POSSIBILITIES
                                                                                                              JASA 6B
                                                                                                                      217
                                          SYSTEMATIC ERRORS IN PHYSICAL CONSTANTS
                                                                                                              TECH 62
                                                                                                                       111
    FAILURE OF ENUMERATORS TO MAKE ENTRIES OF ZERO, ERRORS IN RECORDING CHILDLESS CASES IN POPULATION CEN JASA 61 909
                                ESTIMATING MACHINING ERRORS IN SET-UPS WITH AUTOMATIC RESETTING
                                                                                                              TECH 64
                                                                                                                       423
BY ELECTRONIC CO/ ESTIMATION OF MEANS AND STANDARD ERRORS IN THE ANALYSIS OF NON-ORTHOGONAL EXPERIMENTS
                                                                                                             JRSSB62
                                                                                                                      435
STUDIES OF INTERNAL MIGRATION
                                                      ERRORS IN THE ESTIMATION OF NET MIGRATION IN THE
                                                                                                              JASA 69 NO.4
                                       THE EFFECTS OF ERRORS IN THE FACTOR LEVELS AND EXPERIMENTAL DESIGN
                                                                                                              TECH 63 247
                                           CORRELATED ERRORS IN THE RANDOM MODEL
                                                                                                              JASA 67 1387
WHITES
                                                      ERRORS IN THE 1960 CENSUS ENUMERATION OF NATIVE
                                                                                                              JASA 64 437
                                        A NOTE ON AN 'ERRORS IN VARIABLES' MODEL
                                                                                                              JASA 66
                                                                                                                       12B
CUSUM SCHEMES
                                        AN EXAMPLE OF ERRORS INCURRED BY ERRONEOUSLY ASSUMING NORMALITY FOR TECH 67
                                                                                                                       457
THE PLATING METHOD
                              NOTES. ON THE DILUTION ERRORS INVOLVED IN ESTIMATING BACTERIAL NUMBERS BY
                                                                                                              BIOCS67
                                                                                                                       15B
SCALE PARAMETERS, WHEN THE JOINT DISTRIBUTION OF THE ERRORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM BIOKA61
    DESIGNS FOR REGRESSION PROBLEMS WITH CORRELATED ERRORS MANY PARAMETERS
                                                                                                               AMS 6B
                                                                                                                        49
NUMERATOR AND DENOMIN/ ROBUSTNESS OF THE F-TEST TO ERRORS OF BOTH KINDS AND THE CORRELATION BETWEEN THE
                                                                                                              JASA 6B
                                                                                                                       660
                                                      ERRORS OF CLASSIFICATION IN A BINOMIAL POPULATION
                                                                                                              JASA 65
                                                                                                                       217
                                                 THE ERRORS OF LATTICE SAMPLING
                                                                                                              JRSSB54
         PROBLEMS IN MENTAL TEST THEORY ARISING FROM ERRORS OF MEASUREMENT
                                                                                                              JASA 59
                     REGRESSION FOR TIME SERIES WITH ERRORS OF MEASUREMENT
                                                      ERRORS OF MEASUREMENT IN STATISTICS
                                                                                                              TECH 68
RESSIVE VARIABLE SUBJECT BOTH TO DISTURBANCES AND TO ERRORS OF OBSERVATION
                                                                                  PREDICTION OF AN AUTOREG JASA 65
                                                      ERRORS OF PREDICTION IN MULTIPLE REGRESSION
                                                                                                             TECH 67
                                                      ERRORS OF THE THIRD KIND IN STATISTICAL CONSULTING
                                                                                                              JASA 57
                                                                                                                       133
 MISSING FROM A RANDOMISED BLOCK EXPERIMEN/ NOTES.
                                                      ERRORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE BIOCS66
                          THE EFFECT OF NON-SAMPLING ERRORS ON MEASURES OF ASSOCIATION IN 2-BY-2 CONTINGEN JASA 69
CY TABLES
                                                                                                                       852
 DYADENKONTEXT/
                 NOTES. EIN EINFACHES VERFAHREN ZUR ERZEUGUNG VON SYMBOLFOLGEN MIT VORGEGEBENER RELATIVER BIOCS68
                                                                                                                       703
                                                      ESCAPE PROBABILITY FOR A HALF LINE
                                                                                                              AMS 64
                                                                                                                      1351
LES PAR L'ANALYSE STATISTIQUE DES LIAISONS ENTRE LES ESPECES ET LES VARIABLES ECOLOGIQUES, PRINCIPES FONDA BIOCS65
                                                                                                                       345
LES PAR L'ANALYSE STATISTIQUE DES LIAISONS ENTRE LES ESPECES ET LES VARIABLES ECOLOGIQUES, UN EXEMPLE /A BIOCS65
LASS MARKS OF A GROUPED FREQUENCY DISTRIBUTION, WITH ESPECIAL REFERENCE TO THE UNEQUAL INTERVAL CASE
                                                                                                           /C TECH 68
                                                                                                                       793
IZED MULTIVARIATE ANALYSIS OF VARIANCE MODEL USEFULL ESPECIALLY FOR GROWTH CURVE PROBLEMS
                                                                                                   A GENERAL BIOKA64
                                                                                                                       313
AND STATISTICS, IX. BIOGRAPHICAL NOTE FOR T. BAYES' ESSAY TOWARDS SOLVING A PROBLEM IN THE DOCTRINE OF CH BIOKA58
ANCES. (REPRODUCED FROM PHIL. TRANS. ROY. SOC. 17/ ESSAY TOWARDS SOLVING A PROBLEM IN THE DOCTRINE OF CH BIOKA58
                                                                                                                       293
                                                                                                                       296
                                   NOTE ON THE BERRY-ESSEN THEOREM
                                                                                                               AMS 63 1107
                                                 THE ESSENTIAL COMPLETENESS OF THE CLASS OF GENERALIZED
SEQUENTIAL PROBABILITY RATIO TESTS
                                                                                                               AMS 61
                                                                                                                      602
                                         ON A MINIMAL ESSENTIALLY COMPLETE CLASS OF EXPERIMENTS
                                                                                                               AMS 66
                                                                                                                       435
                 FACTOR ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS BIOCS65 FACTOR ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE OF FACTOR ANALYSIS IN RESEARC BIOCS65
                                                                                                                      190
                                                                                                                       405
  CHANGES IN CONCENTRATION OF DOMESTIC MANUFACTURING ESTABLISHMENT OUTPUT 1939-1958
                                                                                                                       797
                                                                                                             JASA 62
        ANALYSIS OF THE SPATIAL CLUSTERING OF RETAIL ESTABLISHMENTS
                                                                                                A STOCHASTIC JASA 65 1094
                        A REGRESSION METHOD FOR REAL ESTATE PRICE INDEX CONSTRUCTION
                                                                                                                      933
                                                                                                              JASA 63
                                                      ESTIMABILITY OF VARIANCE COMPONENTS FOR THE TWO-WAY
CLASSIFICATION WITH ITERATION
                                                                                                               AMS 67 1508
                       ADDITIONAL RESULTS CONCERNING ESTIMABLE FUNCTIONS AND GENERALIZED INVERSE MATRICES
                                                                                                             JRSSB65 486
                 A NOTE ON THE VARIANCE OF THE RATIO ESTIMATE
                                                                                                             JASA 64 895
                                                                                                              AMS 67 1876
         REMARK ON THE LINEARIZED MAXIMUM LIKELIHOOD ESTIMATE
          AN OPTIMUM PROPERTY OF THE HORVITZ-THOMSON ESTIMATE
                                                                                                             JASA 67 1013
```

TITLE WORD INDEX ERR - EST

THE SAMPLINC DISTRIBUTION OF A MAXIMUM-LIKELIHOOD ESTIMATE		BIOKA56	96
HIGHER MOMENTS OF A MAXIMUM-LIKELIHOOD ESTIMATE		JRSSB63	305
ART II. COMPARISON BETWEEN MINIMUM NORMIT CHI-SQUARE ESTIMATE	AND THE MAXIMUM LIKELIHOOD ESTIMATE /ES. P	BIOKA57	411
THE SAMPLING DISTRIBUTION OF AN ESTIMATE	ARISING IN LIFE TESTING	TECH 63	361
OF EXPOSURE CHARACTERISTICS OF A RATIO USED TO ESTIMATE	FAILURE RATES, OCCURRENCES PER PERSON YEAR	BIOCS66	310
QUERY, MAXIMUM LIKELIHOOD ESTIMATE	IN INTRACLASS CORRELATION MODEL	TECH 69	NO.4
ON OF REACTOR FUEL ELEMENT QUALITY A PROGRAM TO ESTIMATE	MEASUREMENT ERROR IN NONDESTRUCTIVE EVALUATI	TECH 64	293
A NONPARAMETRIC ESTIMATE	OF A MULTIVARIATE DENSITY FUNCTION	AMS 65	1049
MPTOTIC THEORY OF CALTON'S TEST AND A RELATED SIMPLE ESTIMATE	OF LOCATION THE ASY	AMS 67	73
ROBUSTNESS OF THE WILCOXON ESTIMATE	OF LOCATION AGAINST A CERTAIN DEPENDENCE	AMS 68	1196
QUERY, BAULE'S EQUATION +(LEAST SQUARES ESTIMATE	OF SOIL CONTENT)	BIOCS69	159
A MODIFIED TECHNIQUE FOR IMPROVING AN ESTIMATE	OF THE MEAN	BIOCS69	5BB
ADMISSIBILITY OF THE SAMPLE MEAN AS ESTIMATE	OF THE MEAN OF A FINITE POPULATION	AMS 6B	606
RAL CHI-SQUARE VARIATE THE MAXIMUM LIKELIHOOD ESTIMATE	OF THE NON-CENTRALITY PARAMETER OF A NONCENT	JASA 67	1258
ON A SIMPLE ESTIMATE	OF THE RECIPROCAL OF THE DENSITY FUNCTION	AMS 68	1083
A QUICK ESTIMATE	OF THE REGRESSION COEFFICIENT	BIOKA58	431
CORR. 63 1161 A PARAMETRIC ESTIMATE	OF THE STANDARD ERROR OF THE SURVIVAL RATE,	JASA 61	111
USING FACTOR ANALYSIS TO ESTIMATE	PARAMETERS	JASA 69	808
OF REPLICATIONS IN OPTIMAL DESIGNS OF EXPERIMENTS TO ESTIMATE	PARAMETERS IN NON-LINEAR MODELS /CURRENCE	JRSSB68	290
D UNITS OF THE TRUE VALUE SAMPLE SIZE REQUIRED TO ESTIMATE	THE PARAMETER IN THE UNIFORM DENSITY WITHIN	JASA 64	550
A PROCEDURE TO ESTIMATE	THE POPULATION MEAN IN RANDOM EFFECTS MODELS	TECH 67	577
USING THE OBSERVATIONS TO ESTIMATE		JRSSB65	17
	THE RATIO OF VARIANCES WITH BOUNDED RELATIVE		
HE PROBLE/ APPLICATION OF MINIMUM LOGIT CHI-SQUARE ESTIMATE			
SECMENTED CURVES WHOSE JOIN POINTS HAVE TO BE ESTIMATE		JASA 66	
SION FOR THE DISTRIBUTION OF THE LATENT ROOTS OF THE ESTIMATE			
CROSS/ UNBIASED MULTIPLE REGRESSION COEFFICIENTS ESTIMATE			
-N BY M-SUB-1 TO M-SUB-N MULTIPLE-LATTICE DESIGN ESTIMATE	D RECRESSION FUNCTION OF THE Q-SUB-1 TO Q-SUB		
THE VARIANCE FUNCTION OF THE DIFFERENCE BETWEEN TWO ESTIMATE			
THE REGRESSION OF TRUE VALUE ON ESTIMATE	VALUE	BIOKA60	
ALMOST LINEARLY-OPTIMUM COMBINATION OF UNBIASED ESTIMATE		JASA 61	36
LEAST SQUARES AND BEST UNBIASED ESTIMATE		AMS 62	
UNIFORM APPROXIMATION OF MINIMAX POINT ESTIMATE		AMS 64	
ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATE	-	AMS 64	
A BAYES APPROACH FOR COMBINING CORRELATED ESTIMATE		JASA 65	
QUERY, NECATIVE VARIANCE ESTIMATE		TECH 65	75
ASYMPTOTIC NORMALITY OF BISPECTRAL ESTIMATE A NOTE ON BAYES ESTIMATE		AMS 66 AMS 67	
ON STRONG CONSISTENCY OF DENSITY ESTIMATE		AMS 69	
A NOTE ON THE EFFICIENCY OF LEAST-SQUARES ESTIMATE		JRSSB68	
CONFIDENCE PROPERTIES OF BAYESIAN INTERVAL ESTIMATE		JRSSB6B	
EXPERIMENTAL DESIGNS FOR REALIZED HERITABILITY ESTIMATE			
PARAMETER ESTIMATE	S AND AUTONOMOUS GROWTH, CORR. 59 812	JASA 59	389
EXAMPLES OF LIKELIHOODS AND COMPARISON WITH POINT ESTIMATE	S AND LARGE SAMPLE APPROXIMATIONS	JASA 69	46B
SAMPLES (WITH DISCUSSION) EFFICIENT ESTIMATE	S AND OPTIMUM INFERENCE PROCEDURES IN LARGE	JRSSB62	46
CATION FOR THE STATIONARY POINT LEAST SQUARES ESTIMATE	S AND PARABOLIC REGRESSION WITH RESTRICTED LO	JASA 64	564
	S AND STATISTICAL DEPENDENCE IN NESTED		
RATES OF CONVERGENCE OF ESTIMATE		AMS 67	
CONSISTENT ESTIMATE		AMS 64	
NGLE EXPONENTIAL DISTRIBUT/ TABLES FOR BEST LINEAR ESTIMATE			58
SOME OBSERVATIONS ARE MISSING MAXIMUM LIKELIHOOD ESTIMATE			200
GOOD LINEAR UNBIASED ESTIMATES FROM THE BEST LINEAR ESTIMATE		AMS 69	543 216
ON A THEOREM OF KARLIN RECARDING ADMISSIBLE ESTIMATE IMENT AS ORTHOGONAL LINEAR COMBINATIONS OF THE/ ON ESTIMATE			
		AMS 6B	561
ROBUSTNESS OF THE HODGES-LEHMANN ESTIMATE		AMS 65	174
	S FOR SHIFT IN THE BEHRENS-FISHER SITUATION	AMS 66	593
	S FOR SHIFT IN THE P-VARIATE ONE SAMPLE		
	S FOR STANDARD DEVIATION BASED ON SECOND VARI		1
	S FOR THE EXPONENTIAL DISTRIBUTION	AMS 63	
POLYNOMIAL REGRESSIONS ESTIMATE AND IMMICRATION-STOCHASTIC MODEL. EXPLICIT ESTIMATE	S FROM CAPTURE-RECAPTURE DATA WITH BOTH DEATH	BIOKA65	225
APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATE	S FROM CROUPED DATA	TECH 67	
R-EXPERIMENT VARIATION THE COMBINATION OF ESTIMATE			
R SAMPLE/ THE CONSTRUCTION OF GOOD LINEAR UNBIASED ESTIMATE	S FROM THE BEST LINEAR ESTIMATES FOR A SMALLE	TECH 65	543
VARIANCE ESTIMATE	S IN 'OPTIMUM' SAMPLE DESIGNS	JASA 61	135
THEOREM OF KARLIN REGARDING ADMISSIBILITY OF LINEAR ESTIMATE SOME FURTHER NOTES ON DISTURBANCE ESTIMATE	S IN EXPONENTIAL POPULATIONS ON A	AMS 66	1809
SOME FURTHER NOTES ON DISTURBANCE ESTIMATE	S IN RECRESSION ANALYSIS	JASA 67	169
	S IN SUCCESSIVE SAMPLING USING A MULTI-STAGE		
ON THE ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATE ON THE ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATE	S IN THE DISCRETE CASE	AMS 63	
ON THE INADMISSIBLE TO COMP. COAD AND ADDRESS ESTIMATE	O IN THE DISCRETE CASE II	AMS 65	404
ON THE INADMISSIBILITY OF SOME STANDARD ESTIMATE ECTION TO 'COEFFICIENTS OF VARIATION OF HERITABILITY ESTIMATE	2 UBLYINED EBUW ANDIANCE VMVIACES CUDD	RINCSEE	265
UNIFORM CONSISTENCY OF SOME ESTIMATE	S OF A DENSITY FUNCTION	AMS 69	1499
LINEAR ESTIMATE	S OF A POPULATION SCALE PARAMETER	BIOKA67	551
ON COMBINING ESTIMATE	S OF A RATIO OF MEANS	JRSSB63	201
A NOTE ON COMBINING CORRELATED ESTIMATE	S OFF A POPULATION SCALE PARAMETER OF A RATIO OF MEANS OF A RATIO OF MULTIVARIATE MEANS OF A RATIO OF MULTIVARIATE MEANS OF A STRUCK LOCATION PARAMETER	TECH 64	463
ADMISSIBILITY OF QUANTILE ESTIMATE	S OF A SINGLE LOCATION PARAMETER S OF BINOMIAL PARAMETERS	AMS 64	1019
TABLES FOR THE SIGN TEST WHEN OBSERVATIONS ARE ESTIMATE	S OF BINOMIAL PARAMETERS	JASA 59	784
OF AN EXPONENTIAL DISTRIBUTION ESTIMATE VARIANCES OF NORMAL DISTRIBUTIONS SOME MORE ESTIMATE COMPARISON OF ESTIMATE	S OF BOUNDED RELATIVE ERROR FOR THE MEAN LIFE	TECH 61	107
VARIANCES OF NORMAL DISTRIBUTIONS ESTIMATE	S OF BOUNDED RELATIVE ERROR FOR THE RATIO OF	JASA 56	481
SOME MORE ESTIMATE	S OF CIRCULAR PROBABLE ERROR	JASA 62	191
COMPARISON OF ESTIMATE EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATE	S OF CIRCULAR PROBABLE ERROR, CORR. 60 755	JASA 59	794
CNAL TWO WAY CLASSIFICATION	S OF COMPONENTS OF WARTANCE	BIOK A69	NO.3
ONAL TWO-WAY CLASSIFICATION SAMPLING VARIANCES OF ESTIMATE	S OF COMPONENTS OF VARIANCE FROM A NON-ORTHOG S OF EFFECTS FOR FRACTIONAL REPLICATES	AMS 64	711
ESTIMATE	OF BEEBOID FOR PRACTICAME REPLICATED	VIND 04	
			00

EST - EST TITLE WORD INDEX

```
S. OF SELEC/
              A STATISTICAL ANALYSIS OF PROVISIONAL ESTIMATES OF GROSS NATIONAL PRODUCT AND ITS COMPONENT JASA 58
                                                                                                                     54
                   PROBABILITY OF OBTAINING NEGATIVE ESTIMATES OF HERITABILITY
                                                                                                            BIOCS68
 SIB DATA WITH UNEQUAL SUBCLASS NUMBERS
                                                    ESTIMATES OF HERITABILITY FROM TRANSFORMED PERCENTAGE BIOCS65 1001
 THE MEAN VECTOR OF A MULTIVARIATE DISTRIBUTION
                                                     ESTIMATES OF LINEAR COMBINATIONS OF THE PARAMETERS IN AMS 65
                                      ON SOME ROBUST ESTIMATES OF LOCATION
                                                                                                             AMS 65
                                                                                                                    847
                                                     ESTIMATES OF LOCATION BASED ON RANK TESTS
                                                                                                            AMS 63
                                                                                                                    598
REMOVAL RECORDS
                                                     ESTIMATES OF MORALITY AND POPULATION FROM SURVEY-
                                                                                                           BIOCS65
                                                                                                                    921
DISTRIBUTION
                                              LINEAR ESTIMATES OF PARAMETERS IN THE EXTREME VALUE
                                                                                                           TECH 66
                                                                                                                      .3
                              ADMISSIBLE AND MINIMAX ESTIMATES OF PARAMETERS IN TRUNCATED SPACES
                                                                                                            AMS 61
                                                                                                                    136
      TABLES FOR OBTAINING THE BEST LINEAR INVARIANT ESTIMATES OF PARAMETERS OF THE WEIBULL DISTRIBUTION
                                                                                                           TECH 67
                                                                                                                    629
PTURE DATA WITH BOTH DEATH AND DILUTION-DETERMINI/
                                                     ESTIMATES OF POPULATION PARAMETERS FROM MULTIPLE RECA BIOKA63
                                                                                                                    113
                                  EQUIVALENCE OF TWO ESTIMATES OF PRODUCT VARIANCE
                                                                                                           JASA 56
                                                                                                                    451
                                                                                                            AMS 67
TESTS
                                                     ESTIMATES OF REGRESSION PARAMETERS BASED ON RANK
                                                                                                                    894
   COMPARISON OF LEAST SQUARES AND MINIMUM VARIANCE ESTIMATES OF REGRESSION PARAMETERS, (ACKNOWLEDGEMENT
                                                                                                            AMS 62
                                                                                                                    462
USEFUL IN LIFE TESTING
                                                     ESTIMATES OF RELIABILITY FOR SOME DISTRIBUTIONS
                                                                                                            TECH 64
                                                                                                                     215
E TO PRODUCE AREA BREAKDOWNS OF THE MONTHLY NATIONAL ESTIMATES OF RETAIL TRADE /OF A RECRESSION TECHNIQU JASA 66
SELECTED FROM EACH STRATUM
                                                     ESTIMATES OF SAMPLING VARIANCE WHERE TWO UNITS ARE
                                                                                                           JASA 57
                   ASYMPTOTIC PROPERTIES OF SPECTRAL ESTIMATES OF SECOND ORDER
                                                                                                           BIOKA69
                                                                                                                    375
ANIMALS
                                                     ESTIMATES OF SURVIVAL FROM THE SICHTING OF MARKED
                                                                                                                    429
                                                                                                           BIOKA64
                                                 TWO ESTIMATES OF THE BINOMIAL DISTRIBUTION, (CORR. 64
182)
                                                                                                            AMS 64
                                                                                                                    809
                                  EFFECTS OF BIAS ON ESTIMATES OF THE CIRCULAR PROBABLE ERROR
                                                                                                                    732
                                                                                                           JASA 60
                                        ON QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR UNBALANCED
DESIGNS
                                                                                                           JRSSR61
                                                                                                                    493
                 THE BIAS OF THE MAXIMUM LIKELIHOOD ESTIMATES OF THE LOCATION AND SCALE PARAMETERS GIVEN BIOKA61
A TYPE II CENS/
                                                                                                                    448
                                                                                                            AMS 66
                               ALL ADMISSIBLE LINEAR ESTIMATES OF THE MEAN VECTOR
                                                                                                                     458
                                         SOME DIRECT ESTIMATES OF THE MODE
                                                                                                            AMS 65
                                                                                                                    131
FITTING
                       A METHOD OF OBTAINING INITIAL ESTIMATES OF THE PARAMETERS IN EXPONENTIAL CURVE
                                                                                                           BIOCS69
                                                                                                                     580
                                          CONSISTENT ESTIMATES OF THE PARAMETERS OF A LINEAR SYSTEM
                                                                                                            AMS 69 NO.6
ED ON SINGLY AND D/ ON THE JOINT EFFICIENCY OF THE ESTIMATES OF THE PARAMETERS OF NORMAL POPULATIONS BAS JASA 62
                                                                                                                     46
ED ON SINGLY CENSORED SA/ ON THE EFFICIENCY OF BAN ESTIMATES OF THE PARAMETERS OF NORMAL POPULATIONS BAS BIOKA62
                                          ON CUPTA'S ESTIMATES OF THE PARAMETERS OF THE NORMAL DISTRIBUTIO BIOKA64
                                                                                                                    498
       THE ASYMPTOTIC VARIANCES OF METHOD OF MOMENTS ESTIMATES OF THE PARAMETERS OF THE TRUNCATED BINOMIAL JASA 61
AN/
                                                                                                                    990
                                                     ESTIMATES OF THE REGRESSION COEFFICIENT BASED ON
KENDALL'S TAU
                                                                                                           JASA 68 1379
ONARY TIME/ ON ASYMPTOTICALLY EFFICIENT CONSISTENT ESTIMATES OF THE SPECTRAL DENSITY FUNCTION OF A STATI JRSSB58
                                                                                                                    303
 INDICATED BY TRENDS IN DEATH RATES
                                            BIAS IN ESTIMATES OF THE UNITED STATES NONWHITE POPULATION AS JASA 61
                                                                                                                     44
                                          INVESTMENT ESTIMATES OF UNDERDEVELOPED COUNTRIES, AN APPRAISAL
                                                                                                           JASA 58
                                                                                                                    669
                                                                                                                    273
                             THE PROBLEM OF NEGATIVE ESTIMATES OF VARIANCE COMPONENTS
                                                                                                            AMS 62
                                                                                                           TECH 63
                                        NON-NEGATIVE ESTIMATES OF VARIANCE COMPONENTS
                                                                                                                     441
              FURTHER EVIDENCE ON THE CONSISTENCY OF ESTIMATES OF VARIANCE COMPONENTS
                                                                                                           BIOGS65
                                                                                                                    395
CLASSIFICATION
                                        VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A THREE-WAY
                                                                                                           BIOCS66
                                                                                                                    553
REE-WAY NESTED CLASSIFI/ SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED TH AMS 63
                                                                                                                    521
                       COMPARISON OF FOUR RATIO-TYPE ESTIMATES UNDER A MODEL
                                                                                                           JASA 69
                                                                                                                    574
                                         BEST LINEAR ESTIMATES UNDER SYMMETRIC CENSORING OF THE PARAMETERS JASA 66
 OF A DOUBLE EXPONENTIAL POPULATION
                                                                                                                    248
                                            SPECTRAL ESTIMATES LISTING NONLINEAR FUNCTIONS
                                                                                                            AMS 66 1237
                                              LINEAR ESTIMATES WITH POLYNOMIAL COEFFICIENTS
                                                                                                           BTOK A66 129
                       TABLES FOR MAXIMUM LIKELIHOOD ESTIMATES. SINGLY TRUNCATED AND SINGLY CENSORED SAMPL TECH 61
                                                                                                                    535
 TO A SIGMA-LATTICE
                                                  ON ESTIMATING A DENSITY WHICH IS MEASURABLE WITH RESPECT AMS 67
                                                                                                                    482
   THE MAXIMUM LIKELIHOOD SOLUTION TO THE PROBLEM OF ESTIMATING A LINEAR FUNCTIONAL RELATIONSHIP
                                                                                                           JRSSB69 NO.2
                                                     ESTIMATING A MIXED-EXPONENTIAL RESPONSE LAW
                                                                                                           JASA 61
                                                                                                                   493
                                           A NOTE ON ESTIMATING A UNIMODAL DENSITY
                                                                                                            AMS 69 1661
                             A DEMOCRAPHIC MODEL FOR ESTIMATING AGE-ORDER SPECIFIC FERTILITY RATES
                                                                                                            JASA 63
                                                                                                                    774
                           CONSISTENT STATISTICS FOR ESTIMATING AND TESTING HYPOTHESES FROM GROUPED SAMPLE BIOKAG6
OF POISSON TYPE
                                                     ESTIMATING AND TESTING TREND IN A STOCHASTIC PROCESS
                                                                                                            AMS 66 1564
AMETRIC TESTS
                    ON A DISTRIBUTION-FREE METHOD OF ESTIMATING ASYMPTOTIC EFFICIENCY OF A CLASS OF NONPAR
                                                                                                            AMS 66 1759
           NOTES. ON THE DILUTION ERRORS INVOLVED IN ESTIMATING BACTERIAL NUMBERS BY THE PLATING METHOD
                                                                                                           BIOCS67
                                                                                                                    158
                                                 ON ESTIMATING BINOMIAL RESPONSE RELATIONS
                                                                                                           BIOK 456
                                                                                                                    461
                                      ON A METHOD OF ESTIMATING BIOLOGICAL POPULATIONS IN THE FIELD
                                                                                                           BIOKA53
                                                                                                                    216
                                   RAPID METHODS FOR ESTIMATING CORRELATION COEFFICIENTS
                                                                                                           BIOKA51
                                                                                                                    464
                                                                                                           JRSSB64
                                  FURTHER MODELS FOR ESTIMATING CORRELATION IN DISCRETE DATA
                                                                                                                     82
                             ON THE RELATION BETWEEN ESTIMATING EFFICIENCY AND THE POWER OF TESTS
                                                                                                           BIOKA54
                                                                                                                    542
           EXAMINATION OF A REPEAT MATING DESIGN FOR ESTIMATING ENVIRONMENTAL AND GENETIC TRENDS
                                                                                                           BIOCS65
                                                                                                                     63
                                                  ON ESTIMATING EPIDEMIC PARAMETERS FROM HOUSEHOLD DATA
                                                                                                                    511
                                  ON THE SOLUTION OF ESTIMATING EQUATIONS FOR TRUNCATED AND CENSORED SAMPL BIOKAS7
ES FROM NORMAL POPULATIONS
USE OF THE GENERALIZED EXTREME-VALUE DISTRIBUTION IN ESTIMATING EXTREME PERCENTILES
                                                                                                   ON THE BIOCS67
                                         PROBLEMS IN ESTIMATING FEDERAL COVERNMENT EXPENDITURES
                                                                                                           JASA 59
ARY CAUSSIAN ORNSTEIN-UHLENBECK PROCESS BY MONTE/
                                                    ESTIMATING FINITE-TIME MAXIMA AND MINIMA OF A STATION JASA 68 1517
                         AN ITERATIVE PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN M BIOCS68
IXED MODEL SITUATIONS
                                                                                                                     13
                                                     ESTIMATING FROM MISCLASSIFIED DATA
                                                                                                           JASA 68
                        LIKELIHOOD DISTRIBUTIONS FOR ESTIMATING FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT
TO ERROR
                                                                                                           TECH 67
                                                                                                                    261
                             LINE TRANSECT METHOD OF ESTIMATING CROUSE POPULATION DENSITIES
                                                                                                           BIOCS68
                                                                                                                    135
              EVALUATION OF CENSUS SURVIVAL RATES IN ESTIMATING INTERCENSAL STATE NET MICRATION
                                                                                                                    841
                                                                                                           JASA 62
                                                     ESTIMATING MACHINING ERRORS IN SET-UPS WITH AUTOMATIC TECH 64 423
 RESETTING
                                                  ON ESTIMATING MONOTONE PARAMETERS
                                                                                                            AMS 68 1030
                ANALYSIS OF FACTORIAL EXPERIMENTS BY ESTIMATING MONOTONE TRANSFORMATIONS OF THE DATA
                                                                                                           JRSSB65 251
       A NOTE ON THE CENSUS SURVIVAL RATIO METHOD OF ESTIMATING NET MICRATION
                                                                                                           JASA 62
                                                                                                                    175
                                         TESTING AND ESTIMATING OF SCALE PAREMENTERS
                                                                                                           JASA 69
                                                                                                                    999
                                             NOTE ON ESTIMATING ORDERED PARAMETERS
                                                                                                            AMS 65
                                                                                                                    698
                                                     ESTIMATING ORDERED PROBABILITIES
                                                                                                                    967
                                                                                                            AMS 63
     THE FOLDED NORMAL DISTRIBUTION. TWO METHODS OF ESTIMATING PARAMETERS FROM MOMENTS
                                                                                                           TECH 61
                                                                                                                    551
COMPARISONS OF DESIGNS AND ESTIMATION PROCEDURES FOR ESTIMATING PARAMETERS IN A TWO-STAGE NESTED PROCESS
                                                                                                           TECH 67
                                                                                                                    499
 ONSET IS RANDOM
                              TESTING HYPOTHESES AND ESTIMATING PARAMETERS IN HUMAN GENETICS IF THE AGE OF BIOKA63
                                                                                                                    265
             COMPARATIVE EFFICIENCIES OF METHODS OF ESTIMATING PARAMETERS IN LINEAR AUTORECRESSIVE SCHEME BIOKA61
                                                                                                                    427
DISTRIBUTIONS WITHOUT RESORT TO HIGHER MOMENTS
                                                    ESTIMATING PARAMETERS IN TRUNCATED PEARSON FREQUENCY BIOKA53
                                                                                                                     50
DISTRIBUTIONS
                          SIMPLIFIED TECHNIQUES FOR ESTIMATING PARAMETERS OF SOME GENERALIZED POISSON
                                                                                                           BIOKA67
                                                                                                                    555
           ON THE UTILIZATION OF MARKED SPECIMENS IN ESTIMATING POPULATIONS OF FLYINC INSECTS
                                                                                                           BIOKA53 170
                        THE EMPIRICAL BAYES APPROACH ESTIMATING POSTERIOR QUANTILES
                                                                                                           BIOKA67
                                                                                                                    672
SAMPLES
                                           NOTES. ON ESTIMATING RECESSIVE FREQUENCIES FROM TRUNCATED
                                                                                                           BIOCS67 356
```

A SIMPLE METHOD OF	FSTIMATING	BEI /	ATIVE POTENCY FROM TWO PARABOLAS	BIOCS65	140
				JASA 63	
FOR ACGRECATION BIAS AN EFFICIENT METHOD OF				JASA 62	348
WO-STACE SAMPLINC BAYES AND MINIMAX PROCEDURES FOR					
			ARITHMETIC MEANS OF LOCNORMALLY-		
DISTRIBUTIONS NETWORK FOR	ESTIMATING	THE		BIOKA69	
LIQUID MIXTURE METHODS FOR OF THE DEVIATIONS ABOUT THE R/ A RAPID METHOD FOR	ESTIMATING	THE	CORRELATION CORRELCTENT FROM THE RANCE	TECH 64	
ONS FROM A CLIPPED STATIONARY TIME SERIES WHICH IS SUBJECTED TO CHANGES IN TIME	ESTIMATING	THE	CURRENT MEAN OF A NORMAL DISTRIBUTION	AMS 64	999
TURE METHOD. I. THE MAXIMUM LIKELIHOOD EQUATIONS FOR	ESTIMATING	THE	DEATH-RATE /ANS OF THE CAPTURE-RECAP	BIOKA51	269
IONS OF MEAN SQUARES BY SATTERTHWAITHE'S FORMULA					
			DIFFERENCE BETWEEN MEANS	BIOKA54	
METHODS USE OF WILCOXON TEST THEORY IN ES OF A FINITE-STATE MARKOV CHAIN FROM/ NOTES. ON			DISTRIBUTION OF A RATIO BY MONTE CARLO		
A, AND ITS RELA/ ADAPTATION OF KARBER'S METHOD FOR					
, , , , , , , , , , , , , , , , , , ,				TECH 65	43
OPTIMAL EXPERIMENTAL DESIGNS FOR	ESTIMATING	THE	INDEPENDENT VARIABLE IN REGRESSION	TECH 6B	811
S TIME, FINITE STATE MARKOV PROCESS			INFINITESIMAL GENERATOR OF A CONTINUOU		727
A METHOD OF ES, I. FAMILIES WITH TWO SUSCEPTIBLES ONLY. ON			INTERCENSAL POPULATION OF COUNTIES		
ES, II. FAMILIES WITH TWO SUSCEPTIBLES UNLI.					15 322
BB, II. IAMIBIBS WITH THEB OF MORE SOCIETIES,			LOGISTIC CURVE	JASA 57	
SOME SHRINKAGE TECHNIQUES FOR				JASA 6B	
ASYMPTOTIC EFFICIENCY OF A SEQUENTIAL PROCEDURE FOR				AMS 66	
CENSORED NORMAL SAMPLE			MEAN AND STANDARD DEVIATION FROM A	BIOKA67	
			MEAN OF A CUMULATIVE NORMAL QUANTAL RE MEAN OF A LOGNORMAL DISTRIBUTION	JRSSB62 JASA 69	393 632
ON WITH GENERAL QUADRATIC LOSS FUNCTION			MEAN OF A MULTIVARIATE NORMAL POPULATI		
KNOWN COEFFICIENT OF VARIATION A NOTE ON					
THE ROBBINS-MONRO METHOD FOR	ESTIMATING	THE	MEDIAN LETHAL DOSE	JRSSB65	28
CONSTRUCTION OF SEQUENCES				AMS 68	
ANALYSIS. PART I. DESCRIPTION/ TABLES FOR USE IN					
BINOMIAL DISTRIBUTION ON			PARAMETER OF A DOUBLY TRUNCATED PARAMETERS OF A CONVOLUTION	JRSSB69	
RIBUTION THE USE OF FRACTIONAL MOMENTS FOR			PARAMETERS OF A MIXED EXPONENTIAL DIST		161
DISTRIBUTION	ESTIMATING	THE	PARAMETERS OF A MODIFIED POISSON	JASA 60	139
				JRSSB56	
ERMINATION OF THE EXACT OPTIMUM ORDER STATISTICS FOR					279 134
FROM CENSORED SAMPLES DISTRIBUTIONS			PARAMETERS OF LOG-NORMAL DISTRIBUTION PARAMETERS OF MIXTURES OF BINOMIAL	JASA 64	
ULATIONS FROM ONE OR TWO ORDER STATISTICS, CORR./					
AND NEGATIVE BINOMIAL DISTRIBUTIONS ON	ESTIMATING	THE	PARAMETERS OF THE LOGARITHMIC SERIES	BIOKA69	
ARE TRUNCATED ON THE RIGHT	ESTIMATING	THE	POISSON PARAMETER FROM SAMPLES THAT	TECH 61	
THE EMPIRICAL BAYES APPROACH,				BIOKA67	
			PROPORTIONS IN MIXTURES OF EXPONENTIAL RELIABILITY OF A SIMPLE SYSTEM		91B 197
ACTUARIAL METHODS, CORR. 57 578				JASA 57	
				BIOKA69	
RECAPTURE DATA ON	ESTIMATING	THE	SIZE OF MOBILE POPULATIONS FROM	BIOKA51	
TIC PROCESS (WITH DISCUSSION) A QUICK METHOD OF	ESTIMATING	THE	SPECTRAL DENSITY FUNCTION OF A STOCHAS	JRSSB57 BIOKA66	13
OUTCOMES OF AN EXPERIMENT	ESTIMATING	THE	TOTAL PROBABILITY OF THE UNOBSERVED	AMS 68	
			VARIANCE WITIN D UNITS OF THE TRUE	AMS 64	438
ON UTILIZING INFORMATION FROM A SECOND SAMPLE IN	ESTIMATING	VAR		BIOKA69	
A COMPARISON OF THREE DIFFERENT PROCEDURES FOR				TECH 63	
ANOTHER LOOK AT HENDERSON'S METHODS OF			IANCE COMPONENTS (WITH DISCUSSION)	BIOCS68 AMS 61	
ASYMPTOTIC EFFICIENCY IN POLYNOMIAL OPTIMAL ACCELERATED LIFE DESIGNS FOR				TECH 62	
ON MULTISTACE				AMS 63	
ON TWO-STACE NON-PARAMETRIC				AMS 64	
ON A NEW METHOD OF CAPACITY				JASA 64	
RESPONSE VARIANCE AND ITS SEQUENTIAL FACTORIAL				JASA 64 TECH 64	
NONLINEAR LEAST SQUARES				AMS 65	
FIDUCIAL THEORY AND INVARIANT				AMS 66	
SIMULTANEOUS NONLINEAR	ESTIMATION			TECH 66	319
A SPECIAL STRUCTURE AND EQUIVARIANT				AMS 67	
ON HOROVITZ AND THOMPSON'S T-ONE CLASS OF LINEAR SOME OBSERVATIONS ON ROBUST				AMS 67 JASA 67	
BAYESIAN APPROACH TO LIFE TESTING AND RELIABILITY				JASA 67	
SEQUENTIAL COMPOUND	ESTIMATION			AMS 68	1890
AN APPLICATION OF STEPWISE REGRESSION TO NON-LINEAR	ESTIMATION			TECH 68	
THE DESIGN OF EXPERIMENTS FOR PARAMETER				TECH 68 JASA 69	
A NOTE ON BLUS THE CEOMETRY OF				BIOKA51	
A NOTE ON ORDERED LEAST-SQUARES				BIOKA53	
A PARADOX IN STATISTICAL				BIOKA55	527
NOTES ON BIAS IN				BIOKA56	
A NOTE ON A SERIES SOLUTION OF A PROBLEM IN		,		BIOKA58	
NOTE ON A PROBLEM OF A NOTE ON A PROBLEM IN				BIOKA59 BIOKA62	
A NOTE ON THE GEOMETRY OF LINEAR				BIOKA62	
A FURTHER NOTE ON THE GEOMETRY OF LINEAR	ESTIMATION			BIOKA63	
SOME EMPIRICAL BAYES TECHNIQUES IN POINT				BIOKA69	
A METHOD OF MAXIMUM-LIKELIHOOD	ESTIMATION			JRSSB61	٠.
	OM LOT CONT OLD		UDMALC		101

EXACT FIDUCIAL LIMITS IN NON-LINEAR			JRSSB62 125
ON LOCAL UNBIASED ON EFFICIENT MULTINOMIAL			JRSSB64 46
ON THE CHOICE OF A STRATECY FOR A RATIO METHOD OF			JRSSB66 45 JRSSB67 392
NOTES. MINIMUM DISCRIMINATION INFORMATION			BIOCS68 707
THEORY OF CLASSICAL RECRESSION AND DOUBLE SAMPLING	ESTIMATION	ON THE	JRSSB60 131
OPTIMAL BAYES AND MINIMAX PROCEDURES IN SEQUENTIAL		ASYMPTOTICALLY	AMS 68 422
ARIATE POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE		APPLICATIONS OF MULTIV	
PROBABILITY PROPORTIONATE TO SOME MEASURE OF SIZE			AMS 64 900
DUAL PROBLEM OF MODEL DISCRIMINATION AND PARAMETER BABILITIES WITH AN APPLICATION TO MAXIMUM LIKELIHOOD		A JOINT DESIGN CRITERION FOR THE	
F FUNCTIONS OF ORDER STATISTICS WITH APPLICATIONS TO		MONOTONE CONVERGENCE OF BINOMIAL PRO /C DISTRIBUTION OF LINEAR COMBINATIONS O	AMS 67 15B3 AMS 67 52
SOME PROBLEMS IN INTERVAL			JRSSB54 175
CONFIDENCE REGIONS IN NON-LINEAR		, , , , , , , , , , , , , , , , , , , ,	JRSSB60 41
NOTES.	ESTIMATION	AFTER PRELIMINARY TESTING IN ANOVA MODEL I	BI0CS65 752
		AND CERTAIN PROBLEMS OF ADDITIVE NUMBER	AMS 63 1050
		AND CLOSED SEQUENTIAL DECISION PROCEDURES	AMS 64 1048
		AND COMPARISON OF STRENGTHS OF ASSOCIATION AND CONSTRUCTION IN FRAGTIONAL REPLICATION	
		AND EXPERIMENTAL DESIGN FOR RESPONSE	TECH 69 461
UBSETS OF THE DEPENDENT VARIABLE ARE GONSTRAINED		AND INFERENCE FOR LINEAR MODELS IN WHICH S	
ETE BLOCK DESIGNS, III. SOME LARGE-SAMPLE RESULTS ON	ESTIMATION	AND POWER FOR A METHOD OF PAIRED COMPARISO	BIOKA55 450
. THE EXTENSION OF A UNIVARIATE MODEL AND ASSOCIATED			
CONFIDENCE CURVES, AN OMNIBUS TECHNIQUE FOR			JASA 61 246
SPECTRA LINEAR , POISSON, AND EXPONENTIAL/ A METHOD OF SEQUENTIAL		AND THE ANALYSIS OF CAMMA RAY PULSE-HEIGHT	
, 101000M, AND EALONEMITAL) A METHOD OF SEQUENITAL		ASSOCIATED WITH LINEAR DISGRIMINANTS	AMS 67 807
SELECTIVE REMOVAL POPULATION		BASED ON CHANGE OF COMPOSITION CAUSED BY A	
	ESTIMATION	BY DOUBLE SAMPLING	BIOKA52 217
THE FOLDED NORMAL DISTRIBUTION, III. ACCURACY OF			TECH 62 249
		BY PARTIAL TOTALS FOR COMPARTMENTAL MODELS	
THE USE OF A STRATIFICATION VARIABLE IN		BY PROPORTIONAL STRATIFIED SAMPLING BY RANKING PARAMETERS	JASA 6B 1310 JRSSB66 32
ON			BIOKA6B 305
5		EMPLOYING POST STRATA	JASA 66 1172
TESTING AND	ESTIMATION	FOR A CIRCULAR STATIONARY MODEL	AMS 69 1358
			TECH 69 551
			TEGH 65 349
N PARAMETER		FOR A MULTIVARIATE EXPONENTIAL DISTRIBUTIO FOR A ONE-PARAMETER EXPONENTIAL MODEL	JASA 68 848 JASA 65 560
SPEARMAN			BIOCS65 858
			BIOCS67 717
		FOR CONTINUOUS DISTRIBUTIONS (CORR. 6B	BIOKA67 435
		FOR DISTRIBUTIONS WITH MONOTONE FAILURE	AMS 65 69
		FOR EARLY LIFE STAGES FOR FINITE POPULATIONS	BIOCS66 162 BIOKA58 154
AND ITS APPLICATION TO A TRUN/ MAXIMUM LIKELIHOOD			
		FOR LINEAR COMBINATIONS OF MEANS	JASA 64 1141
BEST LINEAR UNBIASED	ESTIMATION	FOR MULTIVARIATE STATIONARY PROCESSES	TECH 68 523
			BIOKA66 417
		FOR QUANTAL RESPONSE DATA	BIOKA68 578
		FOR REGRESSION PROBLEMS ON TIME SERIES FOR THE BIVARIATE LOGNORMAL DISTRIBUTION	AMS 62 1077 BIOKA64 522
ON THE TROPEEM OF			BIOKA64 241
SEQUENTIAL INTERVAL		FOR THE MEANS OF NORMAL POPULATIONS	AMS 69 509
		FOR THE MIXED ANALYSIS OF VARIANCE MODEL	BIOKA67 93
			BIOKA62 215
		FOR THE PARAMETER OF A BINOMIAL DISTRIBUTI	
		FOR THE POISSON DISTRIBUTION FOR THE TRUNCATED POISSON	BIOKA69 349 BIOCS66 620
		FOR THE TWO PARAMETER EXPONENTIAL DISTRIBU	
	ESTIMATION	FROM A CAUCHY SAMPLE	JASA 64 460
			BIOKA60 482
			BIOKA63 195
		FROM A TYPE I EXTREME-VALUE DISTRIBUTION FROM INCOMPLETE OBSERVATIONS	JASA 58 457
NOW ANAMETICE			TECH 60 447
	ESTIMATION	FROM QUANTILES IN DESTRUCTIVE TESTING	JRSSB61 434
COMPONENTS SGALE PARAMETER		FROM THE ORDER STATISTICS OF UNEQUAL GAMMA	
p miles miles		IN A HETEROSCEDASTIC REGRESSION MODEL	
DENSITY PROBLEMS OF SAMPLE ALLOCATION AND			AMS 65 1047 JRSSB54 223
			AMS 63 957
A NOTE ON ROBUST	ESTIMATION	IN ANALYSIS OF VARIANCE	AMS 68 1486
			JASA 68 1
UNBIASED ANALYSIS WITH UNEQUAL SUBCLASS NUMBERS, COMPONENT	ESTIMATION	IN CONVEX FAMILIES	AMS 69 1523
			AMS 66 1331
			AMS 67 1587
	ESTIMATION	IN LINEAR REGRESSION WHEN BOTH VARIABLES	JASA 64 1112
		IN MIXTURES OF TWO NORMAL DISTRIBUTIONS	
DECTON OF EVERDANCE FOR STRUCKER			JASA 69 830
DESIGN OF EXPERIMENTS FOR PARAMETER RAYESTAN			BIOKA66 525 AMS 65 150
			JRSSB63 330
			JRSSB64 267

TITLE WORD INDEX EST - EST

RIBUTIONS IN THE DESIGN OF EXPERIMENTS FOR PARAMETER					
RIBUTIONS IN THE DESIGN OF EXPERIMENTS FOR PARAMETER	ESTIMATION	IN	NON-LINEAR SITUATIONS MULTIRESPONSE CAS	BIOKA67	662
BABILITY PROPORTIONATE TO SIZE VARIANCE	ESTIMATION	IN	RANDOMIZED SYSTEMATIC SAMPLING WITH PRO	JASA 65	278
ADMISSIBILITY AND BAYES	ESTIMATION	ΤN	SAMPLINC FINITE POPULATIONS, I SAMPLINC FINITE POPULATIONS, II SAMPLINC FINITE POPULATIONS, III	AMS 65	1707
ADMISSIBILITY AND BAYES	ESTIMATION	TN	SAMPLING FINITE POPULATIONS II	AMS 65	1723
ADMISSIBILITY AND DAVES	ESTIMATION	TN	CAMPITMO PINTER DODINATIONS III	AMS 65	1770
ADMICCIDILITY AND DAVEC	ESTIMATION	TM	CAMBITMO PINITE DODINATIONS, III	AMS 66	1650
ADMISSIBILITY AND DATES	ESTIMATION	TIN	SAMPLINC FINITE POPULATIONS, III SAMPLINC FINITE POPULATIONS, IV SAMPLINC FINITE POPULATIONS, V	OO CMA	1000
ADMISSIBILITY AND BAYES	ESTIMATION	TN	SAMPLING FINITE POPULATIONS, V	AMS 69	
OBSERVATIONS IN MULTIVARIATE STATISTICS II. POINT	ESTIMATION	IN	SIMPLE LINEAR REGRESSION MISSING	JASA 67	10
			THE TRUNCATED POISSON		
ZEROS AND SOME ONES ARE MISSING	ESTIMATION	ΙN	THE TRUNCATED POISSON DISTRIBUTION WHEN	JASA 60	342
	ESTIMATION	IN	THE UNIFORM GOVARIANCE CASE	JRSSB64	477
ETE AND ON CENSORED SAMPLES MAXIMUM LIKELIHOOD	ESTIMATION	IN	THE WEIBULL DISTRIBUTION BASED ON COMPL	TECH 65	579
ETE AND ON CENSORED S/ ERRATA, 'MAXIMUM LIKELIHOOD	ESTIMATION	IN	THE WEIBULL DISTRIBUTION BASED ON COMPL	TECH 66	570
THE ROLE OF SUFFICIENCY AND OF	ESTIMATION	ΙN	THERMODYNAMICS	AMS 62	1021
ON FIXED PRECISION	ESTIMATION	TM	TIME SERIES	AMS 69	
DESIGN AND	ESTIMATION	TN	TWO_WAY STRATTETCATION	JASA 60	
METHODS OF	ESTIMATION	TNI		JRSSB67	
SYSTEMS	ESTIMATION	OE	'TRANSFER FUNCTIONS' OF QUADRATIC	TECH 61	563
SEQUENTIAL OPTIMUM PROCEDURES FOR UNBIASED			A DINOMIAL DARANGED OF GOADRAILS	TECH 64	
NUMERICAL STUDIES IN THE SEQUENTIAL				BIOKA5B	1
			A CHANGING SEASONAL PATTERN, CORR. 66		
THE MULTIPLE-RECAPTURE CENSUS. I.				BIOKA58	
OTHER COMPONENT IS OF EXPONENTIAL TYPE	ESTIMATION	OF	A COMPONENT OF A CONVOLUTION, WHEN THE	TECH 64	222
OTHER COMPONENT IS OF EXPONENTIAL TYPE' ERRATA,	'ESTIMATION	OF	A COMPONENT OF A CONVOLUTION, WHEN THE	TECH 65	462
				DIGITIOO	
AN EMIGRATION-IMMIGRATION PROGESS THE	ESTIMATION	OF	A FUNDAMENTAL INTERACTION PARAMETER IN	AMS 63	
THE	ESTIMATION	OF	A LAGGED REGRESSION RELATION	BIOKA67	409
LINE, CONSIDERATION OF A RECENT PROPOSAL	ESTIMATION	OF	A LINEAR FUNCTION FOR A CALIBRATION	TECH 69	NO.4
MAXIMUM LIKELIHOOD	ESTIMATION	OF	A LINEAR FUNCTIONAL RELATIONSHIP	AMS 61	1048
THE BAYESTAN	ESTIMATION	OF	A LINEAR FUNCTIONAL RELATIONSHIP A LINEAR FUNCTIONAL RELATIONSHIP A LINEAR STRUCTURAL RELATIONSHIP	JRSSB68	190
A NOTE ON THE MAXIMIM LIKELIHOOD	ESTIMATION	OF	A LINEAR STRUCTURAL RELATIONSHIP	JASA 64	1175
DODIES	ESTIMATION	OF	A LOCATION PARAMETER	AMS 64	73
			A LOCATION PARAMETER A LOCATION PARAMETER	AMS 68	
AN INCIDENTAL SCALE PARAMETER CONSISTENT					
SPURIOUS			A MEAN WHEN ONE OBSERVATION MAY BE		
MPARISON OF THE DIRECT AND FIDUCIAL ARGUMENTS IN THE				JRSSB63	95
PROBLEM	ESTIMATION	OF	A PARAMETER IN THE CLASSICAL OCCUPANCY	BIOKAGO	180
SAMPLE DATA DIFFICULTIES INVOLVED IN THE	ESTIMATION	OF	A POPULATION MEAN USING TRANSFORMED	TECH 66	535
				AMS 69	
DERIVATIVES ON MOMENTS ARE KNOWN SECOND ORDER PROCESSES EFFICIENT LIEBLATIVE			A PROBABILITY DENSITY FUNCTION AND ITS		
ON CONTRACTOR OF THE CONTRACTO	ESTIMATION	OF.	A PROBABILITY DENSITY FUNCTION AND MODE	AMS 62	1065
MOMENTS ARE KNOWN MINIMAX	ESTIMATION	OF	A RANDOM PROBABILITY WHOSE FIRST N	AMS 68	492
SECOND ORDER PROCESSES EFFICIENT	ESTIMATION	OF	A RANDOM PROBABILITY WHOSE FIRST N A REGRESSION PARAMETER FOR CERTAIN A SET OF LINEAR REGRESSION EQUATIONS	AMS 61	1299
	ESTIMATION	OF	A SET OF LINEAR REGRESSION EQUATIONS	JASA 64	845
UNBIASED	ESTIMATION	OF	A SET OF PROBABILITIES A SHIFT PARAMETER FROM GROUPED DATA	BIOKA61	227
EFFICIENT	ESTIMATION	OF	A SHIFT PARAMETER FROM GROUPED DATA	AMS 67	1770
L DESIGN OF FRACTIONAL FACTORIAL EXPERIMENTS FOR THE	ESTIMATION	OF.	A SUBGROUP OF PRE-ASSIGNED PARAMETERS	AMS 68	9.73
FRACTIONAL FACTORIAL E/ GENERALIZED LEAST-SQUARES					
ISTURBANCES ARE BOTH SERIALLY AND GONTE/ EFFICIENT					
				BIOKA64	33
			ALL TWO-FACTOR INTERACTIONS FOR THE 2-T		
SES WITH QUASI-LINEAR RESIDUALS A NOTE ON THE	ESTIMATION	0F	AMPLITUDE SPECTRA FOR STOCHASTIC PROCES	JASA 66	397
FUNCTION			AN ACCELERATED DEPRECIATION LEARNING	JASA 66	
VARIABLES AND INCOMPLETE SURVIVAL INFORMATION IN THE	ESTIMATION	OF	AN EXPONENTIAL SURVIVAL PARAMETER /T	BIOCS66	665
ANDOMLY REPEATING IN CAUSSIAN NOISE LARGE SAMPLE	ESTIMATION	OF	AN UNKNOWN DISCRETE WAVEFORM WHICH IS R		
NOTE ON BIAS IN THE	ESTIMATION	OF	AUTOCORRELATION AUTOCORRELATIONS BINOMIAL VARIANCE COHERENCE	BIOKA54	
BTAS IN THE	ESTIMATION	OF	AUTOCORRELATIONS	BIOKA54	
A SINGULARITY IN THE	ESTIMATION	OF	BINOMIAL VARIANCE	BIOKA57	
PHASE FREE	ESTIMATION	OF	COHERENCE	AMS 69	540
			COMMON PARAMETERS FROM SEVERAL	BIOKA65	355
THE DATESTAL	PSTIMATION	OF.	COMPETING RISKS FROM GROUPED DATA	BIOCS69	329
MODELS FOR THE					
ON THE EFFECT OF NON-NORMALITY ON THE	ESTIMATION	OF	COMPONENTS OF VARIANCE	JRSSB62	140
MODELS FOR THE ON THE EFFECT OF NON-NORMALITY ON THE	ESTIMATION ESTIMATION	OF OF	COMPONENTS OF VARIANCE CONCENTRATION OF VIRUSES AND BACTERIA	JRSSB62 BIOCS65	140 600
FROM DILUTION COUNTS THE	ESTIMATION	OF	CONCENTRATION OF VIRUSES AND BACTERIA	BIOCS65	600
FROM DILUTION COUNTS THE ON THE	ESTIMATION ESTIMATION	OF OF	CONCENTRATION OF VIRUSES AND BACTERIA CONTRASTS IN LINEAR MODELS	BIOCS65 AMS 65	600 198
FROM DILUTION COUNTS THE	ESTIMATION ESTIMATION ESTIMATION	OF OF	CONCENTRATION OF VIRUSES AND BACTERIA CONTRASTS IN LINEAR MODELS CORRELATION IN DISGRETE DATA THE	BIOCS65 AMS 65 JRSSB62	600 198 530
FROM DILUTION COUNTS THE ON THE USE OF A GENERALIZED MULTINOMIAL DISTRIBUTION IN THE	ESTIMATION ESTIMATION ESTIMATION ESTIMATION	OF OF OF	CONCENTRATION OF VIRUSES AND BACTERIA CONTRASTS IN LINEAR MODELS CORRELATION IN DISGRETE DATA CROP YIELDS FOR SMALL AREAS	BIOCS65 AMS 65 JRSSB62 BIOCS66	600 198 530 374
FROM DILUTION COUNTS THE ON THE USE OF A GENERALIZED MULTINOMIAL DISTRIBUTION IN THE	ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION	OF OF OF OF	CONCENTRATION OF VIRUSES AND BACTERIA CONTRASTS IN LINEAR MODELS CORRELATION IN DISGRETE DATA THE CROP YIELDS FOR SMALL AREAS DEATH-RATES FROM CAPTURE-MARK-RECAPTURE	BIOCS65 AMS 65 JRSSB62 BIOCS66 BIOKA52	600 198 530 374 181
FROM DILUTION COUNTS ON THE USE OF A GENERALIZED MULTINOMIAL DISTRIBUTION IN THE SAMPLING THE	ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION	OF OF OF OF	CONCENTRATION OF VIRUSES AND BACTERIA CONTRASTS IN LINEAR MODELS CORRELATION IN DISGRETE DATA CROP YIELDS FOR SMALL AREAS DEATH-RATES FROM CAPTURE-MARK-RECAPTURE ERROR RATES IN DISCRIMINANT ANALYSIS	BIOCS65 AMS 65 JRSSB62 BIOCS66 BIOKA52 TECH 68	600 198 530 374 181
FROM DILUTION COUNTS ON THE USE OF A GENERALIZED MULTINOMIAL DISTRIBUTION IN THE SAMPLING THE	ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION	OF OF OF OF	CONCENTRATION OF VIRUSES AND BACTERIA CONTRASTS IN LINEAR MODELS CORRELATION IN DISGRETE DATA CROP YIELDS FOR SMALL AREAS DEATH-RATES FROM CAPTURE-MARK-RECAPTURE ERROR RATES IN DISCRIMINANT ANALYSIS	BIOCS65 AMS 65 JRSSB62 BIOCS66 BIOKA52 TECH 68	600 198 530 374 181
FROM DILUTION COUNTS ON THE USE OF A GENERALIZED MULTINOMIAL DISTRIBUTION IN THE SAMPLING THE COMMENTARY ON	ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION 'ESTIMATION ESTIMATION ESTIMATION ESTIMATION	OF OF OF OF OF OF	CONCENTRATION OF VIRUSES AND BACTERIA CONTRASTS IN LINEAR MODELS CORRELATION IN DISGRETE DATA THE CROP YIELDS FOR SMALL AREAS DEATH-RATES FROM CAPTURE-MARK-RECAPTURE ERROR RATES IN DISCRIMINANT ANALYSIS ERROR RATES IN DISCRIMINANT ANALYSIS ERROR VARIANCE FROM SMALLEST ORDERED	BIOCS65 AMS 65 JRSSB62 BIOCS66 BIOKA52 TECH 68 TECH 68 JASA 63	600 198 530 374 181 1 204 152
FROM DILUTION COUNTS ON THE USE OF A GENERALIZED MULTINOMIAL DISTRIBUTION IN THE SAMPLING THE COMMENTARY ON CONTRASTS CONCOMITANT INFORMATION	ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION 'ESTIMATION 'ESTIMATION ESTIMATION ESTIMATION	OF OF OF OF OF OF OF	CONCENTRATION OF VIRUSES AND BACTERIA CONTRASTS IN LINEAR MODELS CORRELATION IN DISGRETE DATA THE CROP YIELDS FOR SMALL AREAS DEATH-RATES FROM CAPTURE-MARK-RECAPTURE ERROR RATES IN DISCRIMINANT ANALYSIS ERROR RATES IN DISCRIMINANT ANALYSIS ERROR VARIANCE FROM SMALLEST ORDERED EXPONENTIAL SURVIVAL PROBABILITIES WITH	BIOCS65 AMS 65 JRSSB62 BIOCS66 BIOKA52 TECH 68 TECH 68 JASA 63 BIOCS65	600 198 530 374 181 1 204 152 826
FROM DILUTION COUNTS ON THE USE OF A GENERALIZED MULTINOMIAL DISTRIBUTION IN THE SAMPLING THE COMMENTARY ON CONTRASTS CONCOMITANT INFORMATION	ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION 'ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION	OF OF OF OF OF OF OF	CONCENTRATION OF VIRUSES AND BACTERIA CONTRASTS IN LINEAR MODELS CORRELATION IN DISCRETE DATA THE CROP YIELDS FOR SMALL AREAS DEATH-RATES FROM CAPTURE-MARK-RECAPTURE ERROR RATES IN DISCRIMINANT ANALYSIS ERROR RATES IN DISCRIMINANT ANALYSIS' ERROR VARIANCE FROM SMALLEST ORDERED EXPONENTIAL SURVIVAL PROBABILITIES WITH FINITE MIXTURES OF DISTRIBUTIONS FROM	BIOCS65 AMS 65 JRSSB62 BIOCS66 BIOKA52 TECH 68 TECH 68 JASA 63 BIOCS65 JASA 69	600 198 530 374 181 1 204 152 826 NO.4
FROM DILUTION COUNTS ON THE USE OF A GENERALIZED MULTINOMIAL DISTRIBUTION IN THE SAMPLING COMMENTARY ON CONTRASTS CONCOMITANT INFORMATION THE EXPONENTIAL FAMILY SAMPLING PLANS BY ATTRIBUTES	ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION 'ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION	OF OF OF OF OF OF OF OF	CONCENTRATION OF VIRUSES AND BACTERIA CONTRASTS IN LINEAR MODELS CORRELATION IN DISCRETE DATA THE CROP YIELDS FOR SMALL AREAS DEATH-RATES FROM CAPTURE—MARK-RECAPTURE ERROR RATES IN DISCRIMINANT ANALYSIS ERROR RATES IN DISCRIMINANT ANALYSIS' ERROR VARIANCE FROM SMALLEST ORDERED EXPONENTIAL SURVIVAL PROBABILITIES WITH FINITE MIXTURES OF DISTRIBUTIONS FROM FRACTION DEFECTIVE IN CURTAILED	BIOCS65 AMS 65 JRSSB62 BIOCS66 BIOKA52 TECH 68 JASA 63 BIOCS65 JASA 69 TECH 67	600 198 530 374 181 1 204 152 826 NO.4 219
FROM DILUTION COUNTS ON THE USE OF A GENERALIZED MULTINOMIAL DISTRIBUTION IN THE SAMPLING COMMENTARY ON CONTRASTS CONCOMITANT INFORMATION THE EXPONENTIAL FAMILY SAMPLING PLANS BY ATTRIBUTES WO-WAY CROSSED CLASSI/ DESIGNS FOR THE SIMULTANEOUS	ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION 'ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION	OF OF OF OF OF OF OF OF OF	CONCENTRATION OF VIRUSES AND BACTERIA CONTRASTS IN LINEAR MODELS CORRELATION IN DISGRETE DATA THE CROP YIELDS FOR SMALL AREAS DEATH-RATES FROM CAPTURE-MARK-RECAPTURE ERROR RATES IN DISCRIMINANT ANALYSIS ERROR VARIANCE FROM SMALLEST ORDERED EXPONENTIAL SURVIVAL PROBABILITIES WITH FINITE MIXTURES OF DISTRIBUTIONS FROM FRACTION DEFECTIVE IN CURTAILED FUNCTIONS OF VARIANCE COMPONENTS FROM T	BIOCS65 AMS 65 JRSSB62 BIOCS66 BIOKA52 TECH 68 JASA 63 BIOCS65 JASA 69 TECH 67 BIOKA67	600 198 530 374 181 1 204 152 826 NO.4 219 127
FROM DILUTION COUNTS ON THE USE OF A GENERALIZED MULTINOMIAL DISTRIBUTION IN THE SAMPLING COMMENTARY ON CONTRASTS CONCOMITANT INFORMATION THE EXPONENTIAL FAMILY SAMPLING PLANS BY ATTRIBUTES WO-WAY CROSSED CLASSI/ DESIGNS FOR THE SIMULTANEOUS LEL TEST CROSSING 2. AN EVALUATION OF TWO METHODS OF	ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION 'ESTIMATION 'ESTIMATION ESTIMATION	OF OF OF OF OF OF OF	CONCENTRATION OF VIRUSES AND BACTERIA CONTRASTS IN LINEAR MODELS CORRELATION IN DISCRETE DATA THE CROP YIELDS FOR SMALL AREAS DEATH-RATES FROM CAPTURE-MARK-RECAPTURE ERROR RATES IN DISCRIMINANT ANALYSIS ERROR RATES IN DISCRIMINANT ANALYSIS' ERROR VARIANCE FROM SMALLEST ORDERED EXPONENTIAL SURVIVAL PROBABILITIES WITH FINITE MIXTURES OF DISTRIBUTIONS FROM FRACTION DEFECTIVE IN CURTALLED FUNCTIONS OF VARIANCE COMPONENTS FROM T GENETIC AND ENVIRONMENTAL VARIANCE / L	BIOCS65 AMS 65 JRSSB62 BIOCS66 BIOKA52 TECH 68 TECH 68 JASA 63 BIOCS65 JASA 69 TECH 67 BIOKA67 BIOKS67	600 198 530 374 181 1 204 152 826 NO.4 219 127 325
FROM DILUTION COUNTS ON THE USE OF A GENERALIZED MULTINOMIAL DISTRIBUTION IN THE SAMPLING COMMENTARY ON CONTRASTS CONCOMITANT INFORMATION THE EXPONENTIAL FAMILY SAMPLING PLANS BY ATTRIBUTES WO-WAY CROSSED CLASSI/ DESIGNS FOR THE SIMULTANEOUS LEL TEST CROSSING 2. AN EVALUATION OF TWO METHODS OF NENTS TO INDIVIDUAL VARIATES CONCERNED	ESTIMATION	OF OF OF OF OF OF OF	CONCENTRATION OF VIRUSES AND BACTERIA CONTRASTS IN LINEAR MODELS CORRELATION IN DISCRETE DATA THE CROP YIELDS FOR SMALL AREAS DEATH-RATES FROM CAPTURE-MARK-RECAPTURE ERROR RATES IN DISCRIMINANT ANALYSIS ERROR RATES IN DISCRIMINANT ANALYSIS' ERROR VARIANCE FROM SMALLEST ORDERED EXPONENTIAL SURVIVAL PROBABILITIES WITH FINITE MIXTURES OF DISTRIBUTIONS FROM FRACTION DEFECTIVE IN CURTAILED FUNCTIONS OF VARIANCE COMPONENTS FROM T GENETIC AND ENVIRONMENTAL VARIANCE / L GENETIC CONTRIBUTION OF PRINCIPAL COMPO	BIOCS65 AMS 65 JRSSB62 BIOCS66 BIOKA52 TECH 68 JASA 63 BIOCS65 JASA 69 TECH 67 BIOKA67 BIOCS67 BIOCS69	600 198 530 374 181 1 204 152 826 NO.4 219 127 325 9
FROM DILUTION COUNTS ON THE USE OF A GENERALIZED MULTINOMIAL DISTRIBUTION IN THE SAMPLING COMMENTARY ON CONTRASTS CONCOMITANT INFORMATION THE EXPONENTIAL FAMILY SAMPLING PLANS BY ATTRIBUTES WO-WAY CROSSED CLASSI/ DESIGNS FOR THE SIMULTANEOUS LEL TEST CROSSING 2. AN EVALUATION OF TWO METHODS OF NENTS TO INDIVIDUAL VARIATES CONCERNED CRESSION SOME TRANSFORMATIONS OF SCALE AND THE	ESTIMATION	OF OF OF OF OF OF OF	CONCENTRATION OF VIRUSES AND BACTERIA CONTRASTS IN LINEAR MODELS CORRELATION IN DISGRETE DATA THE CROP YIELDS FOR SMALL AREAS DEATH-RATES FROM CAPTURE-MARK-RECAPTURE ERROR RATES IN DISCRIMINANT ANALYSIS ERROR RATES IN DISCRIMINANT ANALYSIS' ERROR VARIANCE FROM SMALLEST ORDERED EXPONENTIAL SURVIVAL PROBABILITIES WITH FINITE MIXTURES OF DISTRIBUTIONS FROM FRACTION DEFECTIVE IN CURTAILED FUNCTIONS OF VARIANCE COMPONENTS FROM T GENETIC AND ENVIRONMENTAL VARIANCE /L GENETIC CONTRIBUTION OF PRINCIPAL COMPO GENETIC PARAMETERS FROM DAUGHTER-DAM RE	BIOCS65 AMS 65 JRSSB62 BIOCS66 BIOKA52 TECH 68 TECH 68 JASA 63 BIOCS65 JASA 69 TECH 67 BIOCS67 BIOCS67 BIOCS67	600 198 530 374 181 1 204 152 826 NO.4 219 127 325 9 823
FROM DILUTION COUNTS ON THE USE OF A GENERALIZED MULTINOMIAL DISTRIBUTION IN THE SAMPLING COMMENTARY ON CONTRASTS CONCOMITANT INFORMATION THE EXPONENTIAL FAMILY SAMPLING PLANS BY ATTRIBUTES WO-WAY CROSSED CLASSI/ DESIGNS FOR THE SIMULTANEOUS LEL TEST CROSSING 2. AN EVALUATION OF TWO METHODS OF NENTS TO INDIVIDUAL VARIATES CONCERNED CRESSION SOME TRANSFORMATIONS OF SCALE AND THE RELATED DAMS	ESTIMATION	OF OF OF OF OF OF OF OF	CONCENTRATION OF VIRUSES AND BACTERIA CONTRASTS IN LINEAR MODELS CORRELATION IN DISGRETE DATA THE CROP YIELDS FOR SMALL AREAS DEATH-RATES FROM CAPTURE-MARK-RECAPTURE ERROR RATES IN DISCRIMINANT ANALYSIS ERROR VARIANCE FROM SMALLEST ORDERED EXPONENTIAL SURVIVAL PROBABILITIES WITH FINITE MIXTURES OF DISTRIBUTIONS FROM FRACTION DEFECTIVE IN CURTAILED FUNCTIONS OF VARIANCE COMPONENTS FROM T GENETIC AND ENVIRONMENTAL VARIANCE /L GENETIC CONTRIBUTION OF PRINCIPAL COMPO GENETIC PARAMETERS FROM DAUGHTER-DAM RE HERITABILITY FROM EXPERIMENTS WITH	BIOCS65 AMS 65 JRSSB62 BIOCS66 BIOKA52 TECH 68 JASA 63 BIOCS65 JASA 69 TECH 67 BIOKA67 BIOCS67 BIOCS67 BIOCS67 BIOCS69	600 198 530 374 181 1 204 152 826 NO.4 219 127 325 9 823 NO.4
FROM DILUTION COUNTS ON THE USE OF A GENERALIZED MULTINOMIAL DISTRIBUTION IN THE SAMPLING THE COMMENTARY ON CONTRASTS CONCOMITANT INFORMATION THE EXPONENTIAL FAMILY SAMPLING PLANS BY ATTRIBUTES WO-WAY CROSSED CLASSI/ DESIGNS FOR THE SIMULTANEOUS LEL TEST CROSSING 2. AN EVALUATION OF TWO METHODS OF NENTS TO INDIVIDUAL VARIATES CONCERNED CRESSION SOME TRANSFORMATIONS OF SCALE AND THE RELATED DAMS P IN NORTH-EAST INDIA SAMPLING TECHNIQUES FOR	ESTIMATION	OF OF OF OF OF OF OF OF	CONCENTRATION OF VIRUSES AND BACTERIA CONTRASTS IN LINEAR MODELS CORRELATION IN DISCRETE DATA THE CROP YIELDS FOR SMALL AREAS DEATH-RATES FROM CAPTURE-MARK-RECAPTURE ERROR RATES IN DISCRIMINANT ANALYSIS ERROR RATES IN DISCRIMINANT ANALYSIS' ERROR VARIANCE FROM SMALLEST ORDERED EXPONENTIAL SURVIVAL PROBABILITIES WITH FINITE MIXTURES OF DISTRIBUTIONS FROM FRACTION DEFECTIVE IN CURTAILED FUNCTIONS OF VARIANCE COMPONENTS FROM T GENETIC AND ENVIRONMENTAL VARIANCE /L GENETIC CONTRIBUTION OF PRINCIPAL COMPO GENETIC PARAMETERS FROM DAUCHTER-DAM RE HERITABILITY FROM EXPERIMENTS WITH INCIDENCE OF RED SPIDER MITE ON TEA CRO	BIOCS65 AMS 65 JRSSB62 BIOCS66 BIOKA52 TECH 68 TECH 68 TECH 68 BIOCS65 JASA 63 BIOCS65 JASA 69 TECH 67 BIOCS67 BIOCS69 BIOCS69 BIOCS669 BIOCS66	600 198 530 374 181 1 204 152 826 NO.4 219 127 325 9 823 NO.4 385
FROM DILUTION COUNTS ON THE USE OF A GENERALIZED MULTINOMIAL DISTRIBUTION IN THE SAMPLING COMMENTARY ON CONTRASTS CONCOMITANT INFORMATION THE EXPONENTIAL FAMILY SAMPLING PLANS BY ATTRIBUTES WO-WAY CROSSED CLASSI/ DESIGNS FOR THE SIMULTANEOUS LEL TEST CROSSING 2. AN EVALUATION OF TWO METHODS OF NENTS TO INDIVIDUAL VARIATES CONCERNED CRESSION SOME TRANSFORMATIONS OF SCALE AND THE RELATED DAMS	ESTIMATION	OF OF OF OF OF OF OF OF OF	CONCENTRATION OF VIRUSES AND BACTERIA CONTRASTS IN LINEAR MODELS CORRELATION IN DISCRETE DATA THE CROP YIELDS FOR SMALL AREAS DEATH-RATES FROM CAPTURE—MARK-RECAPTURE ERROR RATES IN DISCRIMINANT ANALYSIS ERROR RATES IN DISCRIMINANT ANALYSIS ERROR VARIANCE FROM SMALLEST ORDERED EXPONENTIAL SURVIVAL PROBABILITIES WITH FINITE MIXTURES OF DISTRIBUTIONS FROM FRACTION DEFECTIVE IN CURTAILED FUNCTIONS OF VARIANCE COMPONENTS FROM T GENETIC AND ENVIRONMENTAL VARIANCE /L GENETIC CONTRIBUTION OF PRINCIPAL COMPO GENETIC PARAMETERS FROM DAUGHTER-DAM RE HERITABILITY FROM EXPERIMENTS WITH INCIDENCE OF RED SPIDER MITE ON TEA CRO INTER-PLANT COMPETITION (CORRECTION TO	BIOCS65 AMS 65 JRSSB62 BIOCS66 BIOKA52 TECH 68 JASA 63 BIOCS65 TECH 67 BIOKA67 BIOKA67 BIOCS66 BIOCS66 BIOCS66 BIOCS66 BIOCS66 BIOCS66	600 198 530 374 181 1 204 152 826 N0.4 219 127 325 9 823 N0.4 385 189
FROM DILUTION COUNTS ON THE USE OF A GENERALIZED MULTINOMIAL DISTRIBUTION IN THE SAMPLING COMMENTARY ON CONTRASTS CONCOMITANT INFORMATION THE EXPONENTIAL FAMILY SAMPLING PLANS BY ATTRIBUTES WO-WAY CROSSED CLASSI/ DESIGNS FOR THE SIMULTANEOUS LEL TEST CROSSING 2. AN EVALUATION OF TWO METHODS OF NENTS TO INDIVIDUAL VARIATES CONCERNED CRESSION SOME TRANSFORMATIONS OF SCALE AND THE RELATED DAMS P IN NORTH-EAST INDIA SAMPLING TECHNIQUES FOR REFERENCE 68 1025) A MATHEMATICAL MODEL FOR THE	ESTIMATION	OF	CONCENTRATION OF VIRUSES AND BACTERIA CONTRASTS IN LINEAR MODELS CORRELATION IN DISGRETE DATA THE CROP YIELDS FOR SMALL AREAS DEATH-RATES FROM CAPTURE-MARK-RECAPTURE ERROR RATES IN DISCRIMINANT ANALYSIS ERROR RATES IN DISCRIMINANT ANALYSIS' ERROR VARIANCE FROM SMALLEST ORDERED EXPONENTIAL SURVIVAL PROBABILITIES WITH FINITE MIXTURES OF DISTRIBUTIONS FROM FRACTION DEFECTIVE IN CURTAILED FUNCTIONS OF VARIANCE COMPONENTS FROM T GENETIC AND ENVIRONMENTAL VARIANCE /L GENETIC AND ENVIRONMENTAL VARIANCE /L GENETIC PARAMETERS FROM DAUGHTER-DAM RE HERITABILITY FROM EXPERIMENTS WITH INCIDENCE OF RED SPIDER MITE ON TEA CRO JUMPS, RELIABILITY AND HAZARD RATE	BIOCS65 AMS 65 JRSSB62 BIOCS66 BIOKA52 TECH 68 JASA 63 BIOCS65 JASA 69 TECH 68 JASA 69 TECH 68 TECH 68 JOS66 BIOCS67 BIOCS67 BIOCS69 BIOCS66 BIOCS66 BIOCS66 AMS 65	600 198 530 374 181 1 204 152 826 NO.4 219 127 325 9 823 NO.4 385 189
FROM DILUTION COUNTS ON THE USE OF A GENERALIZED MULTINOMIAL DISTRIBUTION IN THE SAMPLING COMMENTARY ON CONTRASTS CONCOMITANT INFORMATION THE EXPONENTIAL FAMILY SAMPLING PLANS BY ATTRIBUTES WO-WAY CROSSED CLASSI/ DESIGNS FOR THE SIMULTANEOUS LEL TEST CROSSING 2. AN EVALUATION OF TWO METHODS OF NENTS TO INDIVIDUAL VARIATES CONCERNED CRESSION SOME TRANSFORMATIONS OF SCALE AND THE RELATED DAMS P IN NORTH-EAST INDIA SAMPLING TECHNIQUES FOR REFERENCE 68 1025) A MATHEMATICAL MODEL FOR THE EFERENCE TO THE BIVARIATE NORMAL DISTRIB/ BAYESIAN	ESTIMATION	OF	CONCENTRATION OF VIRUSES AND BACTERIA CONTRASTS IN LINEAR MODELS CORRELATION IN DISCRETE DATA THE CROP YIELDS FOR SMALL AREAS DEATH-RATES FROM CAPTURE-MARK-RECAPTURE ERROR RATES IN DISCRIMINANT ANALYSIS ERROR RATES IN DISCRIMINANT ANALYSIS' ERROR VARIANCE FROM SMALLEST ORDERED EXPONENTIAL SURVIVAL PROBABILITIES WITH FINITE MIXTURES OF DISTRIBUTIONS FROM FRACTION DEFECTIVE IN CURTAILED FUNCTIONS OF VARIANCE COMPONENTS FROM T GENETIC AND ENVIRONMENTAL VARIANCE /L GENETIC CONTRIBUTION OF PRINCIPAL COMPO GENETIC PARAMETERS FROM DAUGHTER-DAM RE HERITABILITY FROM EXPERIMENTS WITH INCIDENCE OF RED SPIDER MITE ON TEA CRO INTER-PLANT COMPETITION (CORRECTION TO JUMPS, RELIABILITY AND HAZARD RATE LATENT ROOTS AND VECTORS WITH SPECIAL R	BIOCS65 AMS 65 JRSSB62 BIOCS66 BIOKA52 TECH 68 TECH 68 JASA 63 BIOCS66 TECH 67 BIOCS67 BIOCS67 BIOCS69 BIOCS69 BIOCS66 BIOCS66 BIOCS67 AMS 65	600 198 530 374 181 1 204 152 826 NO.4 219 127 325 93 NO.4 385 189 1032 97
FROM DILUTION COUNTS ON THE USE OF A GENERALIZED MULTINOMIAL DISTRIBUTION IN THE SAMPLING COMMENTARY ON CONTRASTS CONCOMITANT INFORMATION THE EXPONENTIAL FAMILY SAMPLING PLANS BY ATTRIBUTES WO-WAY CROSSED CLASSI/ DESIGNS FOR THE SIMULTANEOUS LEL TEST CROSSING 2. AN EVALUATION OF TWO METHODS OF NENTS TO INDIVIDUAL VARIATES CONCERNED CRESSION SOME TRANSFORMATIONS OF SCALE AND THE RELATED DAMS P IN NORTH-EAST INDIA SAMPLING TECHNIQUES FOR REFERENCE 68 1025) A MATHEMATICAL MODEL FOR THE EFERENCE TO THE BIVARIATE NORMAL DISTRIB/ BAYESIAN AN EXAMPLE OF THE	ESTIMATION	OF	CONCENTRATION OF VIRUSES AND BACTERIA CONTRASTS IN LINEAR MODELS CORRELATION IN DISCRETE DATA THE CROP YIELDS FOR SMALL AREAS DEATH-RATES FROM CAPTURE-MARK-RECAPTURE ERROR RATES IN DISCRIMINANT ANALYSIS ERROR RATES IN DISCRIMINANT ANALYSIS' ERROR VARIANCE FROM SMALLEST ORDERED EXPONENTIAL SURVIVAL PROBABILITIES WITH FINITE MIXTURES OF DISTRIBUTIONS FROM FRACTION DEFECTIVE IN CURTAILED FUNCTIONS OF VARIANCE COMPONENTS FROM T GENETIC AND ENVIRONMENTAL VARIANCE /L GENETIC CONTRIBUTION OF PRINCIPAL COMPO GENETIC PARAMETERS FROM DAUGHTER-DAM RE HERITABILITY FROM EXPERIMENTS WITH INCIDENCE OF RED SPIDER MITE ON TEA CRO INTER-PLANT COMPETITION (CORRECTION TO JUMPS, RELIABILITY AND HAZARD RATE LATENT ROOTS AND VECTORS WITH SPECIAL R LINEAR OPEN LOOP TRANSFER FUNCTION	BIOCS65 AMS 65 JRSSB62 BIOKS66 BIOKA52 TECH 68 TECH 68 TECH 67 JASA 63 BIOCS65 BIOKA67 BIOKA67 BIOKA67 BIOCS69 BIOCS66 BIOCS66 BIOCS67 AMS 65 BIOCS67 AMS 65 BIOKA69 TECH 63	600 198 530 374 181 1 204 152 826 NO.4 219 27 325 9 823 NO.4 385 189 1032 97 227
FROM DILUTION COUNTS ON THE USE OF A GENERALIZED MULTINOMIAL DISTRIBUTION IN THE SAMPLING COMMENTARY ON CONTRASTS CONCOMITANT INFORMATION THE EXPONENTIAL FAMILY SAMPLING PLANS BY ATTRIBUTES WO-WAY CROSSED CLASSI/ DESIGNS FOR THE SIMULTANEOUS LEL TEST CROSSING 2. AN EVALUATION OF TWO METHODS OF NENTS TO INDIVIDUAL VARIATES CONCERNED CRESSION SOME TRANSFORMATIONS OF SCALE AND THE RELATED DAMS P IN NORTH-EAST INDIA SAMPLING TECHNIQUES FOR REFERENCE 68 1025) A MATHEMATICAL MODEL FOR THE EFERENCE TO THE BIVARIATE NORMAL DISTRIB/ BAYESIAN AN EXAMPLE OF THE ROBUST	ESTIMATION	OF	CONCENTRATION OF VIRUSES AND BACTERIA CONTRASTS IN LINEAR MODELS CORRELATION IN DISCRETE DATA THE CROP YIELDS FOR SMALL AREAS DEATH-RATES FROM CAPTURE—MARK-RECAPTURE ERROR RATES IN DISCRIMINANT ANALYSIS ERROR RATES IN DISCRIMINANT ANALYSIS ERROR VARIANCE FROM SMALLEST ORDERED EXPONENTIAL SURVIVAL PROBABILITIES WITH FINITE MIXTURES OF DISTRIBUTIONS FROM FRACTION DEFECTIVE IN CURTAILED FUNCTIONS OF VARIANCE COMPONENTS FROM T GENETIC AND ENVIRONMENTAL VARIANCE /L GENETIC CONTRIBUTION OF PRINCIPAL COMPO GENETIC PARAMETERS FROM DAUGHTER-DAM RE HERITABILITY FROM EXPERIMENTS WITH INCIDENCE OF RED SPIDER MITE ON TEA CRO INTER-PLANT COMPETITION (CORRECTION TO JUMPS, RELIABILITY AND HAZARD RATE LATENT ROOTS AND VECTORS WITH SPECIAL R LINEAR OPEN LOOP TRANSFER FUNCTION	BIOCS65 AMS 65 JRSSB62 BIOCS66 BIOKA52 TECH 68 TECH 68 JASA 63 BIOCS65 JECH 67 BIOKA67 BIOCS66 BIOCS66 BIOCS66 BIOCS66 BIOCS67 BIOCS67 BIOCS67 BIOCS66 BIOCS67 AMS 65 BIOKA63 JASA 63	600 198 530 374 181 204 152 826 NO.4 219 127 325 9 823 NO.4 385 189 1032 97 227 353
FROM DILUTION COUNTS ON THE USE OF A GENERALIZED MULTINOMIAL DISTRIBUTION IN THE SAMPLING COMMENTARY ON CONTRASTS CONCOMITANT INFORMATION THE EXPONENTIAL FAMILY SAMPLING PLANS BY ATTRIBUTES WO-WAY CROSSED CLASSI/ DESIGNS FOR THE SIMULTANEOUS LEL TEST CROSSING 2. AN EVALUATION OF TWO METHODS OF NENTS TO INDIVIDUAL VARIATES CONCERNED CRESSION SOME TRANSFORMATIONS OF SCALE AND THE RELATED DAMS P IN NORTH-EAST INDIA SAMPLING TECHNIQUES FOR REFERENCE 68 1025) A MATHEMATICAL MODEL FOR THE EFERENCE TO THE BIVARIATE NORMAL DISTRIB/ BAYESIAN AN EXAMPLE OF THE ROBUST	ESTIMATION	OF	CONCENTRATION OF VIRUSES AND BACTERIA CONTRASTS IN LINEAR MODELS CORRELATION IN DISCRETE DATA THE CROP YIELDS FOR SMALL AREAS DEATH-RATES FROM CAPTURE-MARK-RECAPTURE ERROR RATES IN DISCRIMINANT ANALYSIS ERROR RATES IN DISCRIMINANT ANALYSIS' ERROR VARIANCE FROM SMALLEST ORDERED EXPONENTIAL SURVIVAL PROBABILITIES WITH FINITE MIXTURES OF DISTRIBUTIONS FROM FRACTION DEFECTIVE IN CURTAILED FUNCTIONS OF VARIANCE COMPONENTS FROM T GENETIC AND ENVIRONMENTAL VARIANCE /L GENETIC CONTRIBUTION OF PRINCIPAL COMPO GENETIC PARAMETERS FROM DAUGHTER-DAM RE HERITABILITY FROM EXPERIMENTS WITH INCIDENCE OF RED SPIDER MITE ON TEA CRO INTER-PLANT COMPETITION (CORRECTION TO JUMPS, RELIABILITY AND HAZARD RATE LATENT ROOTS AND VECTORS WITH SPECIAL R LINEAR OPEN LOOP TRANSFER FUNCTION	BIOCS65 AMS 65 JRSSB62 BIOCS66 BIOKA52 TECH 68 TECH 68 JASA 63 BIOCS65 JECH 67 BIOKA67 BIOCS66 BIOCS66 BIOCS66 BIOCS66 BIOCS67 BIOCS67 BIOCS67 BIOCS66 BIOCS67 AMS 65 BIOKA63 JASA 63	600 198 530 374 181 204 152 826 NO.4 219 127 325 9 823 NO.4 385 189 1032 97 227 353

```
LINEAR-LOSS INTERVAL ESTIMATION OF LOCATION AND SCALE PARAMETERS
                                                                                                             BTOKA68 141
STATISTICS FROM SINGLY/ CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND SCALE PARAMETERS BY ORDER
                                                                                                              AMS 39
                                                                                                                      325
                                                      ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE
RECTANGULAR POPULATION FROM CENSORED SAMPLES
                                                                                                             JRSSB59
                                                                                                                      356
GROUPED DATA
                                                  THE ESTIMATION OF LOCATION AND SCALE PARAMETERS FROM
                                                                                                             BIOKA54
                                                                                                                      296
CATED GROUPED SECH SQUARE DISTRIBUTION
                                                      ESTIMATION OF LOCATION AND SCALE PARAMETERS IN A TRUN JASA 61
                                                                                                                      692
                                       LEAST SQUARES ESTIMATION OF LOCATION AND SCALE PARAMETERS USING
ORDER STATISTICS
                                                                                                                       88
                                                                                                             BIOKA52
IS OF NON-ORTHOGONAL EXPERIMENTS BY ELECTRONIC CO/
                                                      ESTIMATION OF MEANS AND STANDARD ERRORS IN THE ANALYS JRSSB62
                                                                                                                      435
S OF UNKNOWN SIZE, CORR. 64 1297
                                                      ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULATION JASA 62
                                                                                                                       61
                                             BAYESIAN ESTIMATION OF MEANS FOR THE RANDOM EFFECT MODEL
                                                                                                                       174
                                                                                                             JASA 68
                          NOTES. SAMPLE SIZE FOR THE ESTIMATION OF MEANS OF NORMAL POPULATIONS
                                                                                                             BIOCS67
                                                                                                                      846
                                                      ESTIMATION OF MEANS OF NORMAL POPULATIONS FROM
OBSERVED MINIMA
                                                                                                             BIOKA57
                                                                                                                      2B2
SEVERAL EXPERIMENTAL DESIGNS
                                                  THE ESTIMATION OF MISSING AND MIXED-UP OBSERVATIONS IN
                                                                                                             BTOKA59
                                                                                                                       91
                                                     ESTIMATION OF MISSING OBSERVATIONS IN SPLIT-PLOT EXPE BIOKAGL
RIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP
                                                                                                                      468
TABLE FOR USE WITH AN ELECTRONIC COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN MULTIVARIATE DATA SUI JRSSB60
                                                                                                                      302
                                                  THE ESTIMATION OF MIXED MOVING-AVERAGE AUTOREGRESSIVE
SYSTEMS
                                                                                                             BIOKA69 NO.3
G ELECTRON TUBES
                                          A GRAPHICAL ESTIMATION OF MIXED WEIBULL PARAMETERS IN LIFE TESTIN TECH 59
                                                                                                                      389
                                               ON THE ESTIMATION OF MIXING DISTRIBUTIONS
                                                                                                                      177
                                                                                                              AMS 66
                                             BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS
                                                                                                              AMS 68 1289
 TAGGING EXPERIMENT
                                                  THE ESTIMATION OF MORTALITY AND RECRUITMENT FROM A SINGLE BIOCS65
                                                                                                                      529
DISTRIBUTIONS
                                                      ESTIMATION OF MULTIPLE CONTRASTS USING T-
                                                                                                             JASA 65
                                                                                                                      573
                                  MAXIMUM LIKELIHOOD ESTIMATION OF MULTIVARIATE COVARIANCE COMPONENTS FOR
THE BALANCED ONE-WAY LAYOUT
                                                                                                              AMS 69 1100
                               CUBICAL AND SPHERICAL ESTIMATION OF MULTIVARIATE PROBABILITY DENSITY
                                                                                                             JASA 6B 1495
                                      ON THE BAYESIAN ESTIMATION OF MULTIVARIATE REGRESSION
                                                                                                             JRSSR64 277
                                        ERRORS IN THE ESTIMATION OF NET MIGRATION IN THE STUDIES OF INTERNA JASA 69 NO.4
I. MIGRATION
ASYMPTOTIC FUNCTION
                                               NOTES. ESTIMATION OF NON-LINEAR PARAMETERS FOR A NON-
                                                                                                             BT0CS68 439
                                             INTERVAL ESTIMATION OF NON-LINEAR PARAMETRIC FUNCTIONS
                                                                                                             JASA 63
                                                                                                                       611
                                             INTERVAL ESTIMATION OF NON-LINEAR PARAMETRIC FUNCTIONS, II
                                                                                                             JASA 64 168
                                             INTERVAL ESTIMATION OF NON-LINEAR PARAMETRIC FUNCTIONS, 111
                                                                                                             JASA 65 1191
                                ON THE LEAST SQUARES ESTIMATION OF NON-LINEAR RELATIONS
                                                                                                              AMS 69
                                                                                                                     462
                                                      ESTIMATION OF NON-UNIQUE QUANTILES
                                                                                                              AMS 66
                                                                                                                      451
                                                     ESTIMATION OF ONE OF TWO PARAMETERS OF THE EXPONENTIA
L DISTRIBUTION ON THE BASIS OF SUITABLY CHOSEN OR/
                                                                                                              AMS 63 1419
                                             DENSITY ESTIMATION OF ORTHOGONAL SERIES
                                                                                                              AMS 69 1496
                                      DISCUSSION OF 'ESTIMATION OF PARAMETERS FOR A MIXTURE OF NORMAL DIST
RIBUTIONS! BY VICTOR HASSELBLAD
                                                                                                             TECH 66
                                                                                                                     445
DISTRIBUTIONS
                                                      ESTIMATION OF PARAMETERS FOR A MIXTURE OR NORMAL
                                                                                                             TECH 66
                                                                                                                       431
                                         LARGE-SAMPLE ESTIMATION OF PARAMETERS FOR AUTOREGRESSIVE PROCESSES BIOKA62
 WITH MOVING-AVERAGE RESIDUALS
                                                                                                                       117
                                         LARGE-SAMPLE ESTIMATION OF PARAMETERS FOR MOVING-AVERAGE MODELS
                                                                                                             BTOKA61
                                                                                                                       343
                                                      ESTIMATION OF PARAMETERS FROM INCOMPLETE MULTIVARIATE JASA 57
 SAMPLES
 BY CONSIDERING HOUSEHOLDS OF TWO.
                                                  THE ESTIMATION OF PARAMETERS FROM THE SPREAD OF A DISEASE BIOKA65
                                                                                                                      271
                                                      ESTIMATION OF PARAMETERS IN A TRANSIENT MARKOV CHAIN
ARISING IN A RELIABILITY GROWTH MODEL
                                                                                                              AMS 69 1542
                                            EFFICIENT ESTIMATION OF PARAMETERS IN MOVING-AVERAGE MODELS
                                                                                                             BIOKA59
                                                                                                                      306
                                                  THE ESTIMATION OF PARAMETERS IN SYSTEMS OF STOCHASTIC
DIFFERENTIAL EQUATIONS
                                                                                                             BTOKA59
                                                                                                                       67
DISTRIBUTION WITH MISSING OBSERVATIONS
                                                      ESTIMATION OF PARAMETERS IN THE MULTIVARIATE NORMAL
                                                                                                             JASA 68
                                                                                                                      159
                                                      ESTIMATION OF PARAMETERS IN THE WEIBULL DISTRIBUTION
                                                                                                             TECH 67
                                                                                                                       621
                                                      ESTIMATION OF PARAMETERS IN TIME-SERIES REGRESSION
                                                                                                             JRSSB60
MODELS
                                                                                                                       1.39
                                                      ESTIMATION OF PARAMETERS OF A FINITE MIXTURE OF
DISTRIBUTIONS
                                                                                                             JRSSB6B
                                                                                                                       472
                                             BAYESTAN ESTIMATION OF PARAMETERS OF A MULTIVARIATE NORMAL.
DISTRIBUTION
                                                                                                             JRSSR65
                                                                                                                       279
ULATION FROM TRUNCATED AND CENSORED SAMPLES
                                                      ESTIMATION OF PARAMETERS OF A MULTIVARIATE NORMAL POP JRSSB60
                                                                                                                       307
                                                      ESTIMATION OF PARAMETERS OF A TRUNCATED BIVARIATE
NORMAL DISTRIBUTION
                                                                                                             JASA 63
                                                                                                                       519
                                                      ESTIMATION OF PARAMETERS OF A TRUNCATED POISSONIAN
BINOMIAL.
                                                                                                             BTOCS6B
                                                                                                                       377
IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED L/
                                                     ESTIMATION OF PARAMETERS OF MIXED EXPONENTIALLY DISTR BIOKA58
                                                                                                                       504
                                                      ESTIMATION OF PARAMETERS OF THE GAMMA DISTRIBUTION
USING ORDER STATISTICS
                                                                                                             BTOKA62
                                                                                                                       525
USING ORDER STATISTICS.
                                         CORRIGENDA, 'ESTIMATION OF PARAMETERS OF THE GAMMA DISTRIBUTION
                                                                                                             BTOKA63
                                                                                                                       546
OBSERVED WEIGHTS OF GROUPS OF PARTICLES
                                                      ESTIMATION OF PARTICLE SIZE DISTRIBUTION BASED ON
                                                                                                             TECH 65
                                                                                                                       505
       THE POPULATION FREQUENCIES OF SPECIES AND THE ESTIMATION OF POPULATION PARAMETERS
                                                                                                             BTOKA53
                                                                                                                       237
D BY MEANS OF THE CAPTURE-RECAPTURE METHOD. I/ THE ESTIMATION OF POPULATION PARAMETERS FROM DATA OBTAINE BIOKA51
D BY MEANS OF THE CAPTURE-RECAPTURE METHOD. I/ THE ESTIMATION OF POPULATION PARAMETERS FROM DATA OBTAINE BIOKA53
                                                                                                                       269
                                                                                                                       137
                                               ON THE ESTIMATION OF POPULATION PARAMETERS FROM MARKED
                                                                                                             BIOKA55
                                                                                                                       269
MEMBERS
                                                      ESTIMATION OF POWER SPECTRA BY A WAVE ANALYZER
                                                                                                             TECH 65
                                                                                                                       553
BY FOURIER SERIES METHODS
                                                  THE ESTIMATION OF PROBABILITY DENSITIES AND CUMULATIVES
                                                                                                             JASA 6B
                                                                                                                      925
                                                      ESTIMATION OF PROBABILITY DENSITY
                                                                                                              AMS 65 1027
SERIES
                                                      ESTIMATION OF PROBABILITY DENSITY BY AN ORTHOGONAL
                                                                                                              AMS 67 1261
DISCUSSION)
                                           SEQUENTIAL ESTIMATION OF QUANTAL RESPONSE CURVES (WITH
                                                                                                             JRSSR63
                                           SEQUENTIAL ESTIMATION OF QUANTAL RESPONSE CURVES, A NEW METHOD
OF ESTIMATION
                                                                                                             BTOKA66
                                                                                                                       439
                                 SOME ASPECTS OF THE ESTIMATION OF QUANTILES
                                                                                                             JRSSB66
                                                                                                                       497
VARTATION
                                                     ESTIMATION OF QUASI-LINEAR TREND AND SEASONAL
                                                                                                             JASA 63 1033
             ON TWO METHODS OF BIAS REDUCTION IN THE ESTIMATION OF RATIOS
                                                                                                             BTOKA66
                                                                                                                      571
TION OF QUENOUILLE'S METHOD OF BIAS REDUCTION TO THE ESTIMATION OF RATIOS
                                                                                       A NOTE ON THE APPLICA BIOKA59
                                                                                                                       477
                                            A NOTE ON ESTIMATION OF RATIOS BY QUENOUILLE'S METHOD.
                                                                                                             BIOKA65
                                                                                                                       647
WHEN THE JOINT DISTRIBUTION OF THE ERRORS IS/
                                                 THE ESTIMATION OF REGRESSION AND ERROR-SCALE PARAMETERS,
                                                                                                             BTOKA61
                                                                                                                      125
UALS BY THE USE OF INSTRUMENTAL VARIABLES
                                                  THE ESTIMATION OF RELATIONSHIPS WITH AUTOCORRELATED RESID JRSSB59
                                                                                                                       91
ROCEDURES FOR USING DISTRIBUTION-FREE METHODS IN THE ESTIMATION OF RELATIVE POTENCY IN DILUTION (-DIRECT) BIOCS66
                                                                                                                       610
                        ON MINIMUM VARIANCE UNBIASED ESTIMATION OF RELIABILITY
                                                                                                              AMS 69
                                                                                                                      710
                          MINIMUM VARIANCE UNBIASED ESTIMATION OF RELIABILITY FOR THE TRUNCATED EXPONENTI TECH 69
AL DISTRIBUTION
                                                                                                                       609
ELEMENTS FROM THE SAME EXPONENTIAL DISTRIBU/ POINT ESTIMATION OF RELIABILITY OF A SYSTEM COMPRISED OF K JASA 66 1029
NCED LEAST-SQUARES PROBLEMS AND THE ROBUSTNES/
                                                  THE ESTIMATION OF RESIDUAL VARIANCE IN QUADRATICALLY BALA BIOKA62
                                                                                                                       23
                                                      ESTIMATION OF SAMPLE SIZE
                                                                                                             TECH 62
                                                                                                                       59
DISTRIBUTION USING OR/
                         SEPARATE MAXIMUM-LIKELIHOOD ESTIMATION OF SCALE OR SHAPE PARAMETERS OF THE GAMMA
                                                                                                             BIOKA63
                                                                                                                      217
SERIES, CORR 63 1162
                                                  THE ESTIMATION OF SEASONAL VARIATION IN ECONOMIC TIME
                                                                                                             JASA 63
                                                                                                                       31
TESTS AND DESIGNS
                                                  THE ESTIMATION OF SECOND-ORDER TENSORS, WITH RELATED
                                                                                                             BIOKA63
                                                                                                                      353
                                                  THE ESTIMATION OF SLOPE WHEN THE ERRORS ARE AUTOCORRELATE JRSSB62
                                                                                                                      199
                                               ON THE ESTIMATION OF SMALL FREQUENCIES IN CONTINGENCY TABLES JRSSB56
                                                                                                                      113
                                             UNBIASED ESTIMATION OF SOME MULTIVARIATE PROBABILITY DENSITIES AMS 69 1261
```

TITLE WORD INDEX EST - EST

D BY CENSORED SAMPLES OF GROUPED OBSERVATIONS IN THE	ESTIMATION	OF	STATISTICAL PARAMETERS /ATION SUPPLIE	BIOKA62	245
OCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS ERROR					7B5
A GENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE					255
			SURVIVAL CURVE PARAMETERS		595
'ACTUARIAL' METHOD			SURVIVORSHIP IN CHRONIC DISEASE, THE		420
THE	: ESTIMATION	OF	THE 'SHORT' DISTRIBUTION	BIOCS69	417
	ESTIMATION	OF	THE BISPECTRUM	AMS 65 1	1120
IONS BASED ON SMALL SAMPLES OF EQUAL SIZE UNBAISED	ESTIMATION	OF	THE COMMON MEAN OF TWO NORMAL DISTRIBUT	JASA 66	467
			THE COMPONENTS OF A SYMMETRIC MATRIX	TECH 66	360
DD. D. D. O.			THE CROSS-SPECTRUM	AMS 63 1	
DIAME CAUCCIAN DECORDE DECM INC CERCO					
RIATE GAUSSIAN PROCESS FROM ITS ZEROS			THE CROSS-SPECTRUM OF A STATIONARY BIVA		145
			THE DISTRIBUTIONS OF TWO STOCHASTICALLY		
OF NEW MODEL AUTOMOBILES STATISTICAL	ESTIMATION	0F	THE GASOLINE OCTANE NUMBER REQUIREMENT	TECH 60	5
SELECTION BASIS IN	ESTIMATION	0F	THE GENETIC CORRELATION	BIOCS6B	951
PE FREQUENCIES BY A METHOD OF MAXIMUM LIKELIHOOD/	ESTIMATION	OF	THE INBREEDING COEFFICIENT FROM PHENOTY	BIOCS68	915
TIME SERIES		OF	THE INNOVATION VARIANCE OF A STATIONARY	JASA 68	141
			THE INTENSITY FUNCTION OF A STATIONARY		332
			THE LARGER TRANSLATION PARAMETER		502
S WITH KNOWN VARIANCES INTERVAL			THE LARGEST MEAN OF K NORMAL POPULATION		296
2 MILL VIONI ANTHUCE2					
			THE LARGEST OF TWO NORMAL MEANS		861
CONTINUOUS DENSITY				AMS 68	76
DISTRIBUTION A NOTE ON THE	ESTIMATION	OF	THE LOCATION PARAMETER OF THE CAUCHY	JASA 66	852
ASPECTS OF MAXIMUM LIKELIHOOD	ESTIMATION	OF	THE LOGISTIC GROWTH FUNCTION	JASA 66	697
A SEQUENTIAL PROCEDURE FOR THE FIXED-WIDTH INTERVAL	ESTIMATION	OF	THE MEAN THE PERFORMANCE OF	AMS 66	36
RS IN SMALL SAMPLES FROM THE NORMAL DISTRIBUTION, 2.					527
NORMAL POPULATION FROM A CENSORED SAMPLE			THE MEAN AND STANDARD DEVIATION OF A		260
			THE MEAN BY SHRINKAGE TO AN INTERVAL		953
			THE MEAN OF A CENSORED NORMAL DISTRIBUT		482
			THE MEAN OF A LOG-NORMAL DISTRIBUTION H		
	ESTIMATION			AMS 67 1	
A SINGLY CENSORED SAMPLE			THE NORMAL POPULATION PARAMETERS GIVEN		150
A TYPE I CENSORED SAMPLE	ESTIMATION	OF	THE NORMAL POPULATION PARAMETERS GIVEN	BIOKA61	367
FERENCE IN THE CLASSICAL OCCUPANCY PROBLEM. UNBIASED	ESTIMATION	OF	THE NUMBER OF CLASSES STATISTICAL IN	JASA 6B	837
GENOME EXPRESSION DURING VIRAL INFECTION OF BACT/					537
FOR PHAGE ATTACHMENT TO BACTERIA					183
DISTRIBUTION					150
DISTRIBUTION THE SERVE PROTEINS					
					873
DISTRIBUTION			THE PARAMETER OF AN EXPONENTIAL		525
L DISTRIBUTION WHEN ONE VARIABLE IS DICHOTOMISED.	ESTIMATION	OF	THE PARAMETERS FOR A MULTIVARIATE NORMA	BIOKA65	664
SEQUENCES	ESTIMATION	OF	THE PARAMETERS IN SHORT MARKOV	JRSSB63	206
ERALIZED GAMMA POPULATION FROM/ MAXIMUM-LIKELIHOOD	ESTIMATION	OF	THE PARAMETERS OF A FOUR- PARAMETER GEN	TECH 67	159
RELATION			THE PARAMETERS OF A LINEAR FUNCTIONAL		160
ULATIONS FROM COMPLETE AND FRO/ MAXIMUM LIKELIHOOD					639
ULATIONS FROM COMPLET/ ERRATA, 'MAXIMUM-LIKELIHOOD					195
BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS IN THE					207
OM SINGLY AND DOUBLY/ ITERATIVE MAXIMUM-LIKELIHOOD					205
			THE PARAMETERS OF THE BETA DISTRIBUTION		607
IBUTION BASED ON OPTIMUM ORDER STATISTICS IN CENS/	ESTIMATION	OF	THE PARAMETERS OF THE EXPONENTIAL DISTR	AMS 66 1	1717
TRIBUTION BY USE OF TWO OR THREE ORDER STATISTICS	ESTIMATION	OF	THE PARAMETERS OF THE EXTREME VALUE DIS	BIOKA69	429
N BY SAMPLE QUANTILES	ESTIMATION	0F	THE PARAMETERS OF THE GAMMA DISTRIBUTIO	TECH 64	405
N AND THEIR BIAS MAXIMUM LIKELIHOOD	ESTIMATION	OF	THE PARAMETERS OF THE GAMMA DISTRIBUTIO	TECH 69 N	10.4
DISTRIBUTION	ESTIMATION	OF	THE PARAMETERS OF THE LOGISTIC	BIOKA66	565
TION BY SAMPLE QUANTILES			THE PARAMETERS OF THE LOGISTIC DISTRIBU		
, USING THE MINIMUM LOGIT CHI-SQUAR/ A NOTE ON THE					250
IAL DISTRIBU/ ASYMPTOTIC OPTIMUM QUANTILES FOR THE					143
RMAL POPULATIONS FROM CO/ LOCAL-MAXIMUM-LIKELIHOOD					842
			THE PARAMETERS OF TOLERANCE DISTRIBUTIO		439
POPULATIONS JOINT			THE PARAMETERS OF TWO NORMAL		446
TIAL DISTRIBUTIONS FROM CENSORED SAMPLES			THE PARAMETERS OF TWO PARAMETER EXPONEN		403
DISTRIBUTION THE	ESTIMATION	OF	THE POISSON PARAMETER FROM A TRUNCATED	BIOKA52	247
	ESTIMATION	OF	THE PROBABILITY DENSITY, I	AMS 63	480
FUNCTION OF SEVERAL VARIABLES	ESTIMATION	OF	THE PROBABILITY OF AN EVENT AS A	BIOKA67	167
FROM DESTRUCTIVE TESTS	ESTIMATION	OF	THE PROBABILITY OF DEFECTIVE FAILURE	TECH 63	
BINOMIAL TRIALS			THE PROBABILITY OF ZERO FAILURES IN M		
WILL FALL IN A SPECIFIED CLASS				JASA 64	
WEIBULL DISTRIBUTION				TECH 63	
SEQUENTIAL MAXIMUM LIKELIHOOD				AMS 6B 1	
COMPARISON OF SEQUENTIAL RULES FOR				BIOCS69	
ATE NORMAL DISTRIBUTION IN THE CASE OF A/ INTERVAL	ESTIMATION	OF	THE SLOPE OF THE MAJOR AXIS OF A BIVARI	BIOCS6B	679
			THE SPECTRAL DENSITY AFTER TREND		
PRESENCE OF HARMONIC COMPONENTS			THE SPECTRAL DENSITY FUNCTION IN THE	JRSSB64	
The state of the s			THE SPECTRUM	AMS 61	
BANDWIDTH AND VARIANCE IN				JRSSB5B	
			THE TRANSITION DISTRIBUTION FUNCTION OF		
				TECH 67	
BAYESIAN			THE VARIANCE OF A NORMAL DISTRIBUTION		
ED BY MEANS OF THE CAPTURE-RECAPTURE METHOD. II. THE	ESTIMATION		TRANSTITON PRODUCTIONE	JASA 6B 1	162
ED BY MEANS OF THE CAPTURE-RECAPTURE METHOD. II. THE MAXIMUM LIKELIHOOD AND BAYESIAN		0F	IRANSIIIUN PRUDADILIIIES.	DASA OD I	
	ESTIMATION			AMS 6B	517
MAXIMUM LIKELIHOOD AND BAYESIAN	ESTIMATION ESTIMATION	OF	TWO ORDERED TRANSLATION PARAMETERS		
MAXIMUM LIKELIHOOD AND BAYESIAN A GENERAL APPROACH TO THE	ESTIMATION ESTIMATION ESTIMATION	OF OF	TWO ORDERED TRANSLATION PARAMETERS VARIANCE COMPONENTS	AMS 6B TECH 67	93
MAXIMUM LIKELIHOOD AND BAYESIAN A GENERAL APPROACH TO THE FITTING CONSTANTS A NOTE ON THE	ESTIMATION ESTIMATION ESTIMATION ESTIMATION	OF OF	TWO ORDERED TRANSLATION PARAMETERS VARIANCE COMPONENTS VARIANCE COMPONENTS BY THE METHOD OF	AMS 6B TECH 67 BIOKA69 N	93 10.3
MAXIMUM LIKELIHOOD AND BAYESIAN A GENERAL APPROACH TO THE FITTING CONSTANTS DATA A NOTE ON THE ITERATIVE	ESTIMATION ESTIMATION ESTIMATION ESTIMATION	OF OF OF	TWO ORDERED TRANSLATION PARAMETERS VARIANCE COMPONENTS VARIANCE COMPONENTS BY THE METHOD OF VARIANCE COMPONENTS FOR NON-ORTHOGONAL	AMS 6B TECH 67 BIOKA69 N BIOCS69 N	93 10.3 10.4
MAXIMUM LIKELIHOOD AND BAYESIAN A GENERAL APPROACH TO THE FITTING CONSTANTS A NOTE ON THE DATA DESIGNS WITH COMPOSITE SAMPLES	ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION	OF OF OF OF	TWO ORDERED TRANSLATION PARAMETERS VARIANCE COMPONENTS VARIANCE COMPONENTS BY THE METHOD OF VARIANCE COMPONENTS FOR NON-ORTHOGONAL VARIANCE COMPONENTS IN TWO-STAGE NESTED	AMS 6B TECH 67 BIOKA69 N BIOCS69 N TECH 67	93 10.3 10.4 373
MAXIMUM LIKELIHOOD AND BAYESIAN A GENERAL APPROACH TO THE FITTING CONSTANTS A NOTE ON THE DATA DESIGNS WITH COMPOSITE SAMPLES CLASSIFICATION QUADRATIC UNBIASED	ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION	OF OF OF OF OF	TWO ORDERED TRANSLATION PARAMETERS VARIANCE COMPONENTS BY THE METHOD OF VARIANCE COMPONENTS FOR NON-ORTHOGONAL VARIANCE COMPONENTS IN TWO-STAGE NESTED VARIANCE COMPONENTS OF THE ONE-WAY	AMS 6B TECH 67 BIOKA69 N BIOCS69 N TECH 67 BIOKA69	93 10.3 10.4 373 313
MAXIMUM LIKELIHOOD AND BAYESIAN A GENERAL APPROACH TO THE FITTING CONSTANTS A NOTE ON THE DATA ITERATIVE DESIGNS WITH COMPOSITE SAMPLES CLASSIFICATION QUADRATIC UNBIASED URTHER REMARKS CONCERNING 'A GENERAL APPROACH TO THE	ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION	OF OF OF OF OF	TWO ORDERED TRANSLATION PARAMETERS VARIANCE COMPONENTS VARIANCE COMPONENTS BY THE METHOD OF VARIANCE COMPONENTS FOR NON-ORTHOGONAL VARIANCE COMPONENTS IN TWO-STAGE NESTED VARIANCE COMPONENTS OF THE ONE-WAY VARIANCE COMPONENTS' SOME F	AMS 6B TECH 67 BIOKA69 N BIOCS69 N TECH 67 BIOKA69 TECH 68	93 10.3 10.4 373 313 551
MAXIMUM LIKELIHOOD AND BAYESIAN A GENERAL APPROACH TO THE FITTING CONSTANTS A NOTE ON THE DATA DESIGNS WITH COMPOSITE SAMPLES CLASSIFICATION URTHER REMARKS CONCERNING 'A GENERAL APPROACH TO THE	ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION ESTIMATION	OF OF OF OF OF	TWO ORDERED TRANSLATION PARAMETERS VARIANCE COMPONENTS BY THE METHOD OF VARIANCE COMPONENTS FOR NON-ORTHOGONAL VARIANCE COMPONENTS IN TWO-STAGE NESTED VARIANCE COMPONENTS OF THE ONE-WAY	AMS 6B TECH 67 BIOKA69 N BIOCS69 N TECH 67 BIOKA69 TECH 68	93 10.3 10.4 373 313 551

EST - EST TITLE WORD INDEX

```
ESTIMATION OF WEIBULL DISTRIBUTION SHAPE PARAMETER
WHEN NO MORE THAN TWO FAILURES OCCUR PER LOT
                                                                                                                TECH 64 415
                                                       ESTIMATION OF WEICHTING FACTORS IN LINEAR RECRESSION TECH 64
AND ANALYSIS OF VARIANCE
DES COURBES DE SURVIE DE MICROORCANISMES IRRADIES
                                                      ESTIMATION PAR LA METHODE DU MAXIMUM DE VRAISEMBLANCE BIOCS66
                                                                                                                          673
PRELIMINARY RECIONAL FORECASTS FOR THE OUTCOME OF AN ESTIMATION PROBLEM
                                                                                                                JASA 63 1104
                                                    AN ESTIMATION PROBLEM IN QUANTITATIVE ASSAY
                                                                                                                         338
                                                                                                                BTOKA54
                       CENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS
                                                                                                                  AMS 63
                                                                                                                          751
  ANCILLARY STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION PROBLEMS
                                                                                                                  AMS 68 1756
TY IS PRESENT IN THE SAMPLE
                                                       ESTIMATION PROBLEMS WHEN A SIMPLE TYPE OF HETEROGENEI BIOKA51
                                                                                                                           90
RIBUTION AND THE TRANSLATION METHOD, DESCRIPTION AND ESTIMATION PROBLEMS, CORR. 63 1163 /LOGNORMAL DIST JASA 63
                                                                                                                          231
ILIZATION OF A KNOWN COEFFICIENT OF VARIATION IN THE ESTIMATION PROCEDURE
                                                                                                         THE UT JASA 64 1225
                                                    AN ESTIMATION PROCEDURE FOR MIXTURES OF DISTRIBUTIONS
                                                                                                                JRSSB68
                                                                                                                          444
                                                    AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION PROBLEMS
                                                                                                                 JASA 65
                                                                                                                          308
         A CLASS OF SITUATIONS IN WHICH A SEQUENTIAL ESTIMATION PROCEDURE IS NON-SEQUENTIAL
                                                                                                                 BIOKA67
                                                                                                                          229
CANCE
                                   MAXIMUM-LIKELIHOOD ESTIMATION PROCEDURES AND ASSOCIATED TESTS OF SIGNIFI JRSSB60
                                                                                                                          154
TWO-STAGE NESTED PROCE/ COMPARISONS OF DESIGNS AND ESTIMATION PROCEDURES FOR ESTIMATING PARAMETERS IN A TECH 67
                                                                                                                          499
                                          STATISTICAL ESTIMATION PROCEDURES FOR THE 'BURN-IN' PROCESS
                                                                                                                 TECH 6B
                                                                                                                           51
ND EXTREME-VALUE DISTRIBUTIONS
                                 POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TWO-PARAMETER WEIBULL A TECH 68
    SOME REMARKS ON A METHOD OF A MAXIMUM-LIKELIHOOD ESTIMATION PROPOSED BY RICHARDS
                                                                                                                 JRSSB63
                                                                                                                          209
                                                 A NEW ESTIMATION THEORY FOR SAMPLE SURVEYS
                                                                                                                BIOKA6B
                                  MINIMUM CHI-SQUARED ESTIMATION USING INDEPENDENT STATISTICS
                                                                                                                  AMS 67
                    THE MULTIPLE-RECAPTURE CENSUS II. ESTIMATION WHEN THERE IS IMMIGRATION OR DEATH
                                                                                                                BIOKA59
                                                                                                                          336
                           ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES
                                                                                                                JASA 62
                                                                                                                          184
                                                 BAYES ESTIMATION WITH CONVEX LOSS
                                                                                                                  AMS 63
                                                                                                                          B39
                                    MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE MULTIVARIATE DATA
                                                                                                                  AMS 64
                                                                                                                          647
                                              VARIANCE ESTIMATION WITH ONE UNIT PER STRATUM
                                                                                                                 JASA 69
                      ON AN A.P.O. RULE IN SEQUENTIAL ESTIMATION WITH QUADRATIC LOSS
                                                                                                                  AMS 69
                                                                                                                          417
                         UNBIASED COMPONENTWISE RATIO ESTIMATION, CORR. 63 1163
                                                                                                                 JASA 61
OF A LOGISTIC DISTRIBUTION MAXIMUM-LIKELIHOOD ESTIMATION, FROM CENSORED SAMPLES, OF THE PARAMETERS JASA 67
METERS OF THE FIRST ASYMPTOTIC/ MAXIMUM-LIKELIHOOD ESTIMATION, FROM DOUBLY CENSORED SAMPLES, OF THE PARA JASA 68
                                                                                                                          889
                      CONDITIONAL MAXIMUM-LIKELIHOOD ESTIMATION. FROM SINGLY CENSORED SAMPLES, OF THE SCAL TECH 68
E PARAMETERS OF TY/
                                                                                                                          349
                                 A UNIFIED THEORY OF ESTIMATION, I
                                                                                                                  AMS 61
                                                                                                                          112
                                       ON NON-REGULAR ESTIMATION,
                                                                    I. VARIANCE BOUNDS FOR ESTIMATORS OF
                                                                                                                 JASA 69 1056
LOCATION PARAMETERS
                        ERRATA, 'SEQUENTIAL FACTORIAL ESTIMATION'
                                                                                                                 TECH 65
                                                                                                                          93
                       ERRATA 'SIMULTANEOUS NONLINEAR ESTIMATION'
                                                                                                                 TECH 67
                                                                                                                          353
ORITY FOR 'AN OPTIMUM PROPERTY OF MAXIMUM LIKELIHOOD ESTIMATION' 60 120B
                                                                                       ACKNOWLEDGEMENT OF PRI
                                                                                                                AMS 61 1343
                     INVARIANCE OF MAXIMUM LIKELIHOOD ESTIMATIONS
                                                                                                                  AMS 66
                                                                                                                          744
  THE EXACT DISTRIBUTION OF A STRUCTURAL COEFFICIENT ESTIMATOR
                                                                                                                 JASA 68 1214
                          ON THEIL'S MIXED REGRESSION ESTIMATOR
                                                                                                                 JASA 69
                                                                                                                          273
                        ON A RESTRICTED LEAST SQUARES ESTIMATOR
                                                                                                                 JASA 69
                                                                                                                          964
            THE PRECISION OF MICHEY'S UNBIASED RATIO ESTIMATOR
                                                                                                                 BIOKA67
                                                                                                                          321
           SPECIFICATION AND THE CHOICE OF A K-CLASS ESTIMATOR
                                                                                                    APPROXIMATE JASA 67 1265
PONENTIAL DISTRIB/ THE SAMPLING DISTRIBUTION OF AN ESTIMATOR ARISING IN CONNECTION WITH THE TRUNCATED EX
                                                                                                                  AMS 69
                                                                                                                          702
    ON A FURTHER ROBUSTNESS PROPERTY OF THE TEST AND ESTIMATOR BASED ON WILCOXON'S SIGNED RANK STATISTIC
                                                                                                                  AMS 6B
                                                                                                                          2B2
EFFECT OF LARCE TRUE OBSERVATIONS
                                                    AN ESTIMATOR FOR A POPULATION MEAN WHICH REDUCES THE
                                                                                                                 JASA 66 1200
                                  THE BEHAVIOUR OF AN ESTIMATOR FOR A SIMPLE BIRTH AND DEATH PROCESS
                                                                                                                 BIOKA56
                                                                                                                         23
                                 THE HALF-TABLE RATIO ESTIMATOR FOR A SIMPLE EXPONENTIAL MODEL
                                                                                                                 BTOCS69
                                                                                                                         420
                                           AN UNBIASED ESTIMATOR FOR POWERS OF THE ARITHMETIC MEAN
                                                                                                                JRSSB61
                                                                                                                          154
                                          A CONSISTENT ESTIMATOR FOR THE IDENTIFICATION OF FINITE MIXTURES
                                                                                                                  AMS 69 1728
                             CENERALIZED MULTIVARIATE ESTIMATOR FOR THE MEAN OF FINITE POPULATIONS
                                                                                                                 JASA 67 1009
                                        A ROBUST POINT ESTIMATOR IN A GENERALIZED REGRESSION MODEL
                                                                                                                  AMS 69 1784
                      SOME PROPERTIES OF THE SPEARMAN ESTIMATOR IN BIOASSAY
                                                                                                                 BIOKA61 293
                SOME PROPERTIES OF THE LEAST SQUARES ESTIMATOR IN RECRESSION ANALYSIS WHEN THE 'PREDICTOR'
                                                                                                                  AMS 62 1365
TO SIZE WITH REPLACEMENT
                                 A NOTE ON A BIASED ESTIMATOR IN SAMPLING WITH PROBABILITY PROPORTIONAL
                                                                                                                  AMS 66 1045
 A FINITE POP/ BOUNDS FOR THE ERROR-VARIANCE OF AN ESTIMATOR IN SAMPLING WITH VARYING PROBABILITIES FROM JASA 68
ON THE HODGES AND LEHMANN SHIFT ESTIMATOR IN THE TWO SAMPLE PROBLEM

AMS 66
                                                                                                                          91
                                                                                                                  AMS 66 1B14
                   SAMPLE SELECTION AND THE CHOICE OF ESTIMATOR IN TWO-WAY STRATIFIED POPULATIONS
                                                                                                                 JASA 64 1054
SS OF DISTRIBUTIONS FOR WHICH THE MAXIMUM-LIKELIHOOD ESTIMATOR IS UNBIASED AND OF MINIMUM VARIANCE FOR ALL BIOKA56
                                                                                                                          200
ND SUFFICIENCY CONDITIONS FOR THE MAXIMUM-LIKELIHOOD ESTIMATOR OF AN UNKNOWN PARAMETER IN A SIMPLE MARKOV
ND SUFFICIENCY CONDITIONS FOR THE MAXIMUM-LIKELIHOOD ESTIMATOR OF AN UNKNOWN PARAMETER IN A SIMPLE MARKOV
                                                                                                                BIOKA55
                                                                                                                          342
                                                                                                                BIOKA56
                                                                                                                          497
               INADMISSIBILITY OF THE BEST INVARIATE ESTIMATOR OF EXTREME QUANTILES OF THE NORMAL DISTRIBU AMS 69 1B01
TION UNDER/
                                    APPLICATION OF AN ESTIMATOR OF HIGH EFFICIENCY IN BIVARIATE EXTREME
VALUE THEORY
                                                                                                                JASA 69 NO.4
VING A PRE/ ON THE NON-EXISTENCE OF A FIXED SAMPLE ESTIMATOR OF THE MEAN OF A LOG-NORMAL DISTRIBUTION HA AMS 67
THE MIDRANGE OF A SAMPLE AS AN ESTIMATOR OF THE POPULATION MIDRANGE JASA 57
                                                                                                                          949
                                                                                                                          537
   ASYMPTOTIC EFFICIENCY OF AN ASYMPTOTICALLY NORMAL ESTIMATOR SEQUENCE (CORR. 67 196)
                                                                                                  A NOTE ON THE JRSSB63
                                                                                                                          195
            APPROXIMATIONS TO THE MAXIMUM-LIKELIHOOD ESTIMATOR USING CROUPED DATA
                                                                                                                 BIOKA66
                                                                                                                          2B2
                EVALUATION OF THE MAXIMUM-LIKELIHOOD ESTIMATOR WHERE THE LIKELIHOOD EQUATION HAS MULTIPLE BIOKA66
ROOTS
                                                                                                                          151
                                    THE VARIANCE OF AN ESTIMATOR WITH POST-STRATIFIED WEIGHTING
                                                                                                                 JASA 62
                                                                                                                          622
                        A NOTE ON THE 'NECESSARY BEST ESTIMATOR'
                                                                                                                 JASA 69 NO.4
                        CONSTRUCTING UNIFORMLY BETTER ESTIMATORS
                                                                                                                 JASA 63
                                                                                                                         172
         ON SAMPLING SCHEMES PROVIDING UNBIASED RATIO ESTIMATORS
                                                                                                                  AMS 64
                                                                                                                          222
                                   SEQUENTIAL COMPOUND ESTIMATORS
                                                                                                                  AMS 65
                                                                                                                          879
                             COMPARISON OF SOME RATIO ESTIMATORS
                                                                                                                 JASA 65
                                                                                                                          294
       ON THE ASYMPTOTIC EFFICIENCY OF LEAST SQUARES ESTIMATORS
                                                                                                                  AMS 66 1676
    A SIMPLE MATHEMATICAL RELATIONSHIP AMONG K-CLASS ESTIMATORS
                                                                                                                 JASA 66
                                                                                                                         368
                  THE VARIANCE OF WEICHTED REGRESSION ESTIMATORS
                                                                                                                 JASA 67 1290
                                     A STUDY OF ROBUST ESTIMATORS
                                                                                                                 TECH 67
                                                                                                                          652
                THE CONSISTENCY OF CERTAIN SEQUENTIAL ESTIMATORS
                                                                                                                  AMS 69
                                                                                                                          56B
   ASYMPTOTIC PROPERTIES OF NON-LINEAR LEAST SQUARES ESTIMATORS
                                                                                                                  AMS 69
                                                                                                                          633
                                      ON ROBUST LINEAR ESTIMATORS
                                                                                                                  AMS 69
                                                                                                                           24
             STRONG CONSISTENCY OF CERTAIN SEQUENTIAL ESTIMATORS
                                                                                                                  AMS 69 1492
                           THE DISTRIBUTION OF MOMENT ESTIMATORS
                                                                                                                 BIOKA59
                                                                                                                         296
          A COMPARISON OF SEVERAL VARIANCE COMPONENT ESTIMATORS
                                                                                                                 BIOKA67
                                                                                                                          301
    EPSILON ASYMPTOTIC OPTIMALITY OF EMPIRICAL BAYES ESTIMATORS
                                                                                                                 BIOKA69
                                                                                                                         220
                    ON MULTIVARIATE RATIO AND PRODUCT ESTIMATORS
                                                                                                                 BIOKA69 NO.3
                                                                                                         USE OF AMS 64 1064
  INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER ESTIMATORS
SITIVITY TO SPECIFICATION ERROR OF DIFFERENT K-CLASS ESTIMATORS
                                                                                              THE RELATIVE SEN JASA 66 345
```

```
ZELLNER'S SEEMINGLY UNRELATED REGRESSION EQUATIONS ESTIMATORS
                                                                                         THE UNBIASEDNESS OF JASA 67 141
  ORDINARY LEAST SQUARES AND TWO-STAGE LEAST SQUARES ESTIMATORS
                                                                        THE EXACT SAMPLING DISTRIBUTION OF JASA 69 923
UARES, WEIGHTED LEAST SQUARES AND MAXIMUM LIKELIHOOD ESTIMATORS
                                                                   /CES, SAMPLING EXPERIMENTS WITH LEAST SQ BIOCS68 607
                                              MOMENT ESTIMATORS AND MAXIMUM LIKELIHOOD
                                                                                                             BIOKA58 411
                                 CORRIGENDA, 'MOMENT ESTIMATORS AND MAXIMUM LIKELTHOOD.' CORRIGENDA, 'MOMENT ESTIMATORS AND MAXIMUM LIKELTHOOD'
                                                                                                             BIOKA59 502
                                                                                                             BIOKA61 474
            AN EMPIRICAL STUDY OF THE STABILITIES OF ESTIMATORS AND VARIANCE ESTIMATORS IN UNEQUAL PROBABI JASA 69
LITY SAM/
                                                                                                                      540
AGGREGATES
                                              AITKEN ESTIMATORS AS A TOOL IN ALLOCATING PREDETERMINED
                                                                                                             JASA 69
                                                                                                                      913
ENTRAL CHI-SQUAR/ EXPRESSION OF VARIANCE-COMPONENT ESTIMATORS AS LINEAR COMBINATIONS OF INDEPENDENT NONC AMS 69 NO.6
                                                                                             A NECESSARY JASA 67 1302
AND SUFFICIENT CONDITION THAT ORDINARY LEAST-SQUARES ESTIMATORS BE BEST LINEAR UNBIASED
                                                SOME ESTIMATORS FOR A LINEAR MODEL WITH RANDOM
                                                                                                             JASA 68 584
                     THE EFFICIENCIES OF ALTERNATIVE ESTIMATORS FOR AN ASYMPTOTIC REGRESSION EQUATION
                                                                                                             BIOKA5B
                                                                                                                      370
                                             IMPROVED ESTIMATORS FOR COEFFICIENTS IN LINEAR REGRESSION
                                                                                                             JASA 68
                                                                                                                      596
TOTIC NORMALITY AND CONSISTENCY OF THE LEAST SQUARES ESTIMATORS FOR FAMILIES OF LINEAR REGRESSIONS ASYMP AMS 63
                                                                                                                      447
                                              OPTIMUM ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND SCALE AMS 69 NO.6
                           MINIMUM VARIANCE UNBIASED ESTIMATORS FOR POISSON PROBABILITIES
                                                                                                             TECH 62
              ON A COMPLETE CLASS OF LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL EXPERIMENT
                                                                                                             AMS 63
                                                                                                                      769
                           GENERALIZED LEAST SQUARES ESTIMATORS FOR RANDOMIZED FRACTIONAL REPLICATION
                                                                                                              AMS 64
                                                                                                                      696
                     HYPER-ADMISSIBILITY AND OPTIMUM ESTIMATORS FOR SAMPLING FINITE POPULATIONS
                                                                                                              AMS 68
                                                                                                                      621
NS, SOME EXACT FINITE SAMPLE RESULTS
                                                      ESTIMATORS FOR SEEMINGLY UNRELATED REGRESSION EQUATIO JASA 63
                           REMARKS ON LARGE SAMPLE ESTIMATORS FOR SOME DISCRETE DISTRIBUTIONS
                                                                                                             TECH 67
                                 SIMULATION STUDY OF ESTIMATORS FOR THE LINE TRANSECT SAMPLING METHOD
                                                                                                             BTOCS69
                                                                                                                      317
ARE SINGLY CENSORED OR TRUNCATED
                                          SIMPLIFIED ESTIMATORS FOR THE NORMAL DISTRIBUTION WHEN SAMPLES
                                                                                                             TECH 59
                                                                                                                      217
BINOMIAL DISTRIBUTIONS
                                              MOMENT ESTIMATORS FOR THE PARAMETERS OF A MIXTURE OF TWO
                                                                                                              AMS 62
                                                                                                                      444
                                                      ESTIMATORS FOR THE PRODUCT OF ARITHMETIC MEANS
                                                                                                             JRSSB62
                                                                                                                      180
ATION WITH APPLIC/ VARIANCES OF VARIANCE-GOMPONENT ESTIMATORS FOR THE UNBALANCED TWO-WAY CROSS CLASSIFIC AMS 69
                                                                                                                      40B
                   A NOTE ON UNIFORMLY BEST UNBIASED ESTIMATORS FOR VARIANCE COMPONENTS
                                                                                                             JASA 56
                                                                                                                      266
                                                  ON ESTIMATORS FOR VARIANCES AND COVARIANCES
                                                                                                             BTOKA62
                                                                                                                      259
                                     SOME PERCENTILE ESTIMATORS FOR WEIBULL PARAMETERS
                                                                                                             TECH 67
                                                                                                                      119
                               DISCRETE DISTRIBUTION ESTIMATORS FROM THE RECURRENCE EQUATION FOR PROBABILI JASA 69
TIES
                                                                                                                      602
             WHEN ARE GAUSS-MARKOV AND LEAST SQUARES ESTIMATORS IDENTICAL. A COORDINATE-FREE APPROACH
                                                                                                              AMS 68
                                                                                                                       70
CT DISTRIBUTIONS OF THE GENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING THREE-EQUATION CASE /HE EXA JASA 64
                                                                                                                      BB1
 FREQUENCY FUNCTIONS OF GENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING THREE-EQUATION CASE
                                                                                                     /SAMPLE JASA 63
                                                                                                                      161
URB/ ASYMPTOTIC DISTRIBUTION OF MAXIMUM LIKELIHOOD ESTIMATORS IN A LINEAR MODEL WITH AUTOREGRESSIVE DIST AMS 69
                                                                                                                      5B3
                          THE USE OF EMPIRICAL BAYES ESTIMATORS IN A LINEAR REGRESSION MODEL
                                                                                                             BTOKA68
                                                                                                                      525
                                     EMPIRICAL BAYES ESTIMATORS IN A MULTIPLE LINEAR REGRESSION MODEL
                                                                                                             BIOKA69 367
                              COMPARISON OF COMBINED ESTIMATORS IN BALANCED INCOMPLETE BLOCKS
                                                                                                              AMS 66 1832
STRIBUTION FUNCTIONS OF GENERALIZED CLASSICAL LINEAR ESTIMATORS IN ECONOMETRIC STATISTICAL INFERENCE, CORR JASA 63 943
                       EFFICIENT DIFFERENCE EQUATION ESTIMATORS IN EXPONENTIAL REGRESSION
                                                                                                              AMS 68
                                                                                                                     163B
                           UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS WITH CONFOUNDING JASA 67
                                            GROUPING ESTIMATORS IN HETEROSCEDASTIC DATA (CORR. 68 1550)
                                                                                                             JASA 6B
CE MATRICES AND BEST AND SIMPLE LEAST SQUARES LINEAR ESTIMATORS IN LINEAR MODELS /NON-NEGATIVE COVARIAN
WITHOUT REPLACEMENT SOME ESTIMATORS IN SAMPLING WITH VARYING PROBABILITIES WITHOUT REPLACEMENT ON A CLASS OF LINEAR ESTIMATORS IN SAMPLING WITH VARYING PROBABILITIES
                                                 SOME ESTIMATORS IN SAMPLING WITH VARYING PROBABILITIES
                                                                                                             JASA 56
                                                                                                                     269
                                                                                                             JASA 65
                                                                                                                     637
ON THE EFFECT OF STRAGGLERS ON THE RISK OF SOME MEAN ESTIMATORS IN SMALL SAMPLES
                                                                                                              AMS 66
                                                                                                                     441
                                     UNBIASED RATIO ESTIMATORS IN STATIFIED SAMPLING, CORR. 64 129B
                                                                                                                       70
                                                                                                             JASA 61
FREQUENCY FUNCTIONS OF GENERALIZED CLASSICAL LINEAR ESTIMATORS IN TWO LEADING OVER-IDENTIFIED CASES
                                                                                                        /LE JASA 61
                                                                                                                      619
CT DISTRIBUTIONS OF THE GENERALIZED CLASSICAL LINEAR ESTIMATORS IN TWO LEADING OVER-IDENTIFIED CASES
                                                                                                         /XA JASA 63
                                                                                                                     535
                                     SOME RATIO-TYPE ESTIMATORS IN TWO-PHASE SAMPLING
                                                                                                             JASA 62
                                                                                                                      62B
STUDY OF THE STABILITIES OF ESTIMATORS AND VARIANCE ESTIMATORS IN UNEQUAL PROBABILITY SAMPLING OF TWO UNI JASA 69
                                                                                                                     540
  ON THE LACK OF A UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENSITY FUNCTION IN CERTAIN CASES
                                                                                                              AMS 67
                                                                                                                      471
                                                      ESTIMATORS OF A LOCATION PARAMETER IN THE ABSOLUTELY
CONTINUOUS CASE
                                                                                                              AMS 64
                                                                                                                      949
                               ASYMPTOTICALLY ROBUST ESTIMATORS OF LOCATION
                                                                                                             JASA 67
                                                                                                                      950
TNESS. A GENERAL METHOD, WITH APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION
                                                                                              OPTIMAL ROBUS JASA 67 1230
  ON NON-REGULAR ESTIMATION, I. VARIANCE BOUNDS FOR ESTIMATORS OF LOCATION PARAMETERS
                                                                                                             JASA 69 1056
                     ASYMPTOTICALLY NEARLY EFFICIENT ESTIMATORS OF MULTIVARIATE LOCATION PARAMETERS
                                                                                                             AMS 69 1809
                   ON THE ADMISSIBILITY OF INVARIANT ESTIMATORS OF ONE OR MORE LOCATION PARAMETERS
                                                                                                              AMS 66 10B7
              CONSISTENCY AND LIMIT DISTRIBUTIONS OF ESTIMATORS OF PARAMETERS IN EXPLOSIVE STOCHASTIC DIFF
ERENCE EQU/
                                                                                                             AMS 61 195
                       ASYMPTOTIC PROPERTIES OF SOME ESTIMATORS OF QUANTILES OF CIRCULAR ERROR
                                                                                                            JASA 66 61B
                            MAXIMUM LIKELIHOOD ESTIMATORS OF REGRESSION COEFFICIENTS FOR THE CASE OF TECH 65
 AUTOCORRELATED RESIDUALS
                                                                                                                      51
SAMPLES OF THE MAXIMUM LIKELIHOOD AND BEST UNBIASED ESTIMATORS OF RELIABILITY FUNCTIONS /NCIES IN SMALL JASA 66 1033
 MINIMUM VARIANCE UNBIASED AND MAXIMUM LIKELIHOOD ESTIMATORS OF RELIABILITY FUNCTIONS FOR SYSTEMS IN SE JASA 66 1052
WN LOCATION AND SCAL/ INADMISSIBILITY OF THE USUAL ESTIMATORS OF SCALE PARAMETERS IN PROBLEMS WITH UNKNO AMS 68 29
             SMALL SAMPLE PROPERTIES OF ALTERNATIVE ESTIMATORS OF SEEMINGLY UNRELATED REGRESSIONS
                                                                                                             JASA 68 1180
                                   ORDER STATISTICS ESTIMATORS OF THE LOCATION OF THE CAUCHY DISTRIBUTION JASA 66 1205
                                ON SOME PERMISSIBLE ESTIMATORS OF THE LOCATION PARAMETER OF THE WEIBULL A TECH 67
ND CERTAIN OTHER DISTRIBUTIONS
                             ON THE BIAS OF VARIOUS ESTIMATORS OF THE LOGIT AND ITS VARIANCE WITH APPLICA BIOKAG7 181
TION TO QUANTAL BIOASSAY
                            COMBINATIONS OF UNBIASED ESTIMATORS OF THE MEAN WHICH CONSIDER INEQUALITY OF
UNKNOWN VARIANCES
                                                                                                            JASA 69 1042
DISTRIBUTIONS FROM ONE OR TWO ORDER STATI/ OPTIMUM ESTIMATORS OF THE PARAMETERS OF NEGATIVE EXPONENTIAL
                                                                                                             AMS 63
TION USING ORDER STATISTICS
                               BEST LINEAR UNBIASED ESTIMATORS OF THE PARAMETERS OF THE LOGISTIC DISTRIBU TECH 67
                                                                                                                       43
                         MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE COMPONENTS
                                                                                                            JASA 69 NO.4
INCOMPLETE BLOCK
                                                      ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED
                                                                                                             JASA 69 1014
                                 VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED
R-WAY CLASSIFICATION
                                                                                                            BIOCS68 527
                  ON THE BIAS OF SOME LEAST-SQUARES ESTIMATORS OF VARIANCE IN A GENERAL LINEAR MODEL
                                                                                                             BIOKA6B
                                                                                                                      313
                   ASYMPTOTIC PROPERTIES OF SEVERAL ESTIMATORS OF WEIBULL PARAMETERS
                                                                                                             TECH 65
                                                                                                                      423
       ON THE SENSITIVITY OF SIMULTANEOUS-EQUATIONS ESTIMATORS TO THE STOCHASTIC ASSUMPTIONS OF THE MODEL JASA 66
                                                                                                                      136
THE JACKKNIFE METHOD.
                             NOTES. ASSUMPTION-FREE ESTIMATORS USING U STATISTICS AND A RELATIONSHIP TO BIOCS67
                                                                                                                      567
                    VARIANCE OF WEIGHTED REGRESSION ESTIMATORS WHEN SAMPLING ERRORS ARE INDEPENDENT AND
HETEROSCEDASTIC
                                                                                                             JASA 69 NO.4
     THE ASYMPTOTIC PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATORS WHEN SAMPLING FROM ASSOCIATED POPULATIONS
                                                                                                            BIOKA62
                                                                                                                      205
ESSARY AND SUFFICIENT CONDITION FOR ADMISSIBILITY OF ESTIMATORS WHEN STRICTLY CONVEX LOSS IS USED
                                                                                                     /A NEC
                                                                                                                       23
                                                                                                             AMS 6B
IAL REFERENCE TO TYPE II CENSORS/ EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WITH SPEC BIOKA62
AL DISTRIBUTION TO THE NEGATIVE BINOMI BIOKA62
THE PARAMETERS IN THE BINOMIAL AND POISSON DISTRI/ ESTIMATORS WITH PRESCRIBED BOUND ON THE VARIANCE FOR JASA 66

USE OF DOMAIN ESTIMATORS WITH UNEQUAL PROBABILITY IN SAMPLE SURVEYS JASA 68
                                                                                                                      220
                                                                                                                     984
E PARAMETER OF A WEIBULL POPUL/ POINT AND INTERVAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE SGAL TEGH 65
                                                                                                                      405
SOME FINITE POPULATION UNBAISED RATIO AND REGRESSION ESTIMATORS, GORR. 60 755
                                                                                                             JASA 59
                                                                                                                      594
```

EST - EXA TITLE WORD INDEX

```
THE PRECISION OF UNBIASED RATIO-TYPE ESTIMATORS, CORR. 63 1162
                                                                                                           JASA 58
                                                                                                                    491
OTIC VARIANCES AND COVARIANCES OF MAXIMUM-LIKELIHOOD ESTIMATORS, FROM CENSORED SAMPLES, OF THE PARAMETERS
                                                                                                           AMS 67
                                                                                                                    557
              CRITERIA FOR BEST SUBSTITUTE INTERVAL ESTIMATORS, WITH AN APPLICATION TO THE NORMAL DISTRIB JASA 64 1133
                          PROCEDURES AND TABLES FOR EVALUATING DEPENDENT MIXED ACCEPTANCE SAMPLING PLANS
                                                                                                           TECH 69
                                                                                                                    341
      ON THE DISTRIBUTION OF STATISTICS SUITABLE FOR EVALUATING RAINFALL STIMULATION EXPERIMENTS
                                                                                                           TECH 69
                                                                                                                    149
TS MANUFACTURING HAZARDOUS/ A STATISTICAL MODEL OF EVALUATING THE RELIABILITY OF SAFETY SYSTEMS FOR PLAN TECH 59
                                                                                                                    293
   THE TRENTILE DEVIATION METHOD OF WEATHER FORECAST EVALUATION
                                                                                                           JASA 58
                                                                                                                    39B
TT. AND TTT
             ON CASH EQUIVALENTS AND INFORMATION EVALUATION IN DECISIONS UNDER UNCERTAINTY, PARTS I.
                                                                                                           JASA 68
                                                                                                                    252
STOCHASTIC PROCESSES
                                                                                                            AMS 64
                                                  AN EVALUATION OF A FUNCTIONAL ON INFINITELY DIVISIBLE
                                                                                                                    336
SPECTION PLANS
                  MARKOVIAN DECISION MODELS FOR THE EVALUATION OF A LARGE CLASS OF CONTINUOUS SAMPLINC IN
                                                                                                            AMS 65
                                                                                                                   140B
                                         DESIGN AND EVALUATION OF A REPETITIVE CROUP SAMPLING PLAN
                                                                                                           TECH 65
                                                                                                                    11
                                            SPECTRAL EVALUATION OF BLS AND CENSUS REVISED SEASONAL ADJUSTM JASA 68
APPROXIMATE NUMERICAL RATIONALITY
                                       A SUBJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' TEST FOR JASA 69
                                                                                                                     23
APPROXIMATE NUMERICAL/ DISCUSSION OF 'A SUBJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' TEST FOR
                                                                                                           JASA 69
                                                                                                                     50
INTERCENSAL STATE NET MIGRATION
                                                     EVALUATION OF CENSUS SURVIVAL RATES IN ESTIMATING
                                                                                                           JASA 62
                                                                                                                    841
                                       THE NUMERICAL EVALUATION OF CERTAIN MULTIVARIATE NORMAL INTECRALS
                                                                                                            AMS 62
                                                                                                                    571
                                                     EVALUATION OF CHEMICAL ANALYSES ON TWO ROCKS
                                                                                                           TECH 59
                                                                                                                    409
                                         STATISTICAL EVALUATION OF CLOUD SEEDING OPERATIONS
                                                                                                           JASA 60
                                                                                                                    446
                RESEARCH ON METROPOLITAN POPULATION, EVALUATION OF DATA
                                                                                                           JASA 56
                                                                                                                    591
AND THEIR ROOTS FOR A CLASS OF PATTERNED MATRICES
                                                    EVALUATION OF DETERMINANTS, CHARACTERISTIC EQUATIONS
                                                                                                           JRSSB60
                                                                                                                    34B
                                             ON THE EVALUATION OF DISTRIBUTION FUNCTIONS
                                                                                                           JASA 6B
                                                                                                                    715
                                                THE EVALUATION OF H 106 CONTINUOUS SAMPLING PLANS UNDER
THE ASSUMPTION OF WORST CONDITIONS
                                                                                                           JASA 66
                                                                                                                    833
                                        AN EMPIRICAL EVALUATION OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR
TESTINC MEANS
                                                                                                            AMS 62 1413
 MULTIVARIATE NORMAL AND T-DISTRIBUTIONS
                                            ON THE EVALUATION OF PROBABILITIES OF CONVEX POLYHEDRA UNDER JRSSB66
                                                                                                                    366
                              SCORING RULES AND THE EVALUATION OF PROBABILITY ASSESSORS
                                                                                                           JASA 69 1073
GRAM TO ESTIMATE MEASUREMENT ERROR IN NONDESTRUCTIVE EVALUATION OF REACTOR FUEL ELEMENT QUALITY
                                                                                                     A PRO TECH 64 293
        THE USE OF STATISTICS IN THE FORMULATION AND EVALUATION OF SOCIAL PROGRAMMES
                                                                                                           JASA 60
                                                                                                                    454
                                        STATISTICAL EVALUATION OF SPLITTING LIMIT CRITERIA IN MEASUREMENT TECH 63
 DISPUTES
                                                                                                                    263
THE LIKELIHOOD EQUATION HAS MULTIPLE ROOTS
                                                   EVALUATION OF THE MAXIMUM-LIKELIHOOD ESTIMATOR WHERE BIOKA66
                                                                                                                    151
                                       A NOTE ON THE EVALUATION OF THE MULTIVARIATE NORMAL INTEGRAL
                                                                                                           BIOKA53
                                                                                                                    458
 EXAMPLES
                                             ON THE EVALUATION OF THE NEGATIVE BINOMIAL DISTRIBUTION WITH TECH 60
                                                                                                                    501
ION FUNCTIONS
                                            COMPUTER EVALUATION OF THE NORMAL AND INVERSE NORMAL DISTRIBUT TECH 69
                                                                                                                   NO.4
                                              ON THE EVALUATION OF THE PROBABILITY INTEGRAL OF THE MULTIVA BIOKA61
RIATE T DISTRIBUTION
                   THE METROPOLITAN AREA CONCEPT, AN EVALUATION OF THE 1950 STANDARD METROPOLITAN AREAS
                                                                                                                    617
                                                                                                           JASA 65
EOUS SELFING AND PARTIAL DIALLEL TEST CROSSING 2. AN EVALUATION OF TWO METHODS OF ESTIMATION OF GENETIC AN BIOCS67
                                                                                                                    325
                                      NOTES. ON THE EVALUATION OF VARIABILITY IN ISOGENIC HYBRIDS
                                                                                                                    623
                                                                                                           BIOCS66
                                                  ON EVALUATION OF WARRANTY ASSURANCE WHEN LIFE HAS A
WEIBULL DISTRIBUTION
                                                                                                           BIOKA69 NO 3
                THE DEVELOPMENT OF NUMERICAL CREDIT EVALUATION SYSTEMS
                                                                                                           JASA 63
                                                                                                                    799
        RESPONSE, A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS
                                                                                                RANDOMIZED JASA 65
                                                                                                                     63
                                                                                                           TECH 68
                          NON-ORTHOGONAL DESIGNS OF EVEN RESOLUTION
                                                                                                                    291
RESOLUTION CREATER THEN OR EQUAL TO 5 AND THE SET OF EVEN 512-RUN DESIGNS OF RESOLUTION CREATER THEN OR EQ
                                                                                                                    246
                                                                                                            AMS 68
                ESTIMATION OF THE PROBABILITY OF AN EVENT AS A FUNCTION OF SEVERAL VARIABLES
                                                                                                           BIOKA67
                                                                                                                    167
                     ON A SPECIAL CLASS OF RECURRENT EVENTS
                                                                                                            AMS 61 1201
              POISSON COUNTS FOR RANDOM SEQUENCES OF EVENTS
                                                                                                            AMS 63 1217
  THE ANALYSIS OF PERSISTENCE IN A CHAIN OF MULTIPLE EVENTS
                                                                                                           BIOKA64
                                                                                                                    405
            THE SUPERPOSITION OF RANDOM SEQUENCES OF EVENTS
                                                                                                                    3B3
                                                                                                           BIOKA66
            ON EXTREMAL FACTORIZATION AND RECURRENT EVENTS
                                                                                                                     72
                                                                                                           JRSSB69
        ON MEASURES OF CORRELATION IN TIME SERIES OF EVENTS
                                                                                                           BIOCS69
                                                                                                                     73
           OF SEVERAL STRICTLY PERIODIC SEQUENCES OF EVENTS
                                                                                         THE SUPERPOSITION BIOKA53
 THE TIMES BETWEEN EVENTS IN A STATIONARY STREAM OF EVENTS
                                                                                   ON THE DISTRIBUTIONS OF JRSSB69 NO.2
   SOME STATISTICAL METHODS CONNECTED WITH SERIES OF EVENTS (WITH DISCUSSION)
                                                                                                           JRSSB55 129
TRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RECURRENT EVENTS (WITH DISCUSSION)
                                                                                                       DIS JRSSB57
                                                                                                                     64
IONS OF LARCE DISPE/
                      THE INTERVALS BETWEEN RECULAR EVENTS DISPLACED IN TIME BY INDEPENDENT RANDOM DEVIAT JRSSB61
                                                                                                                    476
                        SOME PROPERTIES OF COUNTS OF EVENTS FOR CERTAIN TYPES OF POINT PROCESS
                                                                                                           JRSSB64
                                                                                                                    325
           ON THE DISTRIBUTIONS OF THE TIMES BETWEEN EVENTS IN A STATIONARY STREAM OF EVENTS
                                                                                                           JRSSB69 NO.2
                A SEQUENTIAL TEST OF RANDOMNESS FOR EVENTS OCCURRING IN TIME OR SPACE
                                                                                                                     64
                                                                                                           BIOKA56
S OF EQUALITY OF RATE OF OCCURRENCE IN TWO SERIES OF EVENTS OCCURRING RANDOMLY IN TIME
                                                                                         /ENCE OF TWO TEST BIOKA58
                                                                                                                    267
                 TESTS FOR RANDOMNESS IN A SERIES OF EVENTS WHEN THE ALTERNATIVE IS A TREND
                                                                                                           JRSSB56
                                                                                                                    234
                 PERSISTENCE IN A CHAIN OF MULTIPLE EVENTS WHEN THERE IS SIMPLE DEPENDENCE
                                                                                                           RIOKA62
                                                                                                                    351
             BOUNDS OF THE PROBABILITY OF A UNION OF EVENTS, WITH APPLICATIONS
                                                                                                            AMS 68 2154
                                                                                                            AMS 67
SSES TO A BRANCH/ EXTENSIONS OF A LIMIT THEOREM OF EVERETT, ULAM AND HARRIS ON MULTITYPE BRANCHING PROCE
                                                                                                                    992
                                                                                                            AMS 63
                                   NON-EXISTENCE OF EVERYWHERE PROPER CONDITIONAL DISTRIBUTIONS
                                                                                                                    223
                                        EXPERIMENTAL EVIDENCE CONCERNING CONTAGIOUS DISTRIBUTIONS IN
                                                                                                                    186
                                                                                                           BIOKA53
     INCOME, WEALTH, AND THE DEMAND FOR MONEY, SOME EVIDENCE FROM CROSS-SECTION DATA
                                                                                                           JASA 64
                                                                                                                    746
COMPONENTS
                                            FURTHER EVIDENCE ON THE CONSISTENCY OF ESTIMATES OF VARIANCE
                                                                                                           BIOCS65
                                                                                                                    395
                                           WEIGHT OF EVIDENCE, CORROBORATION, EXPLANATORY POWER, INFORMATI JRSSB60
ON AND THE UTILITY OF EXPERIMENTS (CORR/
                                                                                                                    319
 APPLICATION OF SIMPLEX DESIGNS IN OPTIMISATION AND EVOLUTIONARY OPERATION
                                                                                                SEQUENTIAL TECH 62
                                                                                                                    441
                          CONDENSED CALCULATIONS FOR EVOLUTIONARY OPERATION PROCRAMS
                                                                                                           TECH 59
                                                                                                                     77
                                 A SIMPLE SYSTEM OF EVOLUTIONARY OPERATION SUBJECT TO EMPIRICAL FEEDBACK
                                                                                                           TECH 66
                                                                                                                     19
                                                     EVOLUTIONARY OPERATION. A REVIEW
                                                                                                           TECH 66
                                                                                                                    389
(WITH DISCUSSION)
                                                     EVOLUTIONARY SPECTRAL AND NON-STATIONARY PROCESSES
                                                                                                           JRSSB65
                                                                                                                    204
                                FOURIER METHODS FOR EVOLVING SEASONAL PATTERNS
                                                                                                           JASA 65
                                                                                                                    492
                   ISN'T MY PROCESS TOO VARIABLE FOR EVOP
                                                                                                           TECH 68
                                                                                                                    439
                                                     EX ANTE AND EX POST DATA IN INVENTORY INVESTMENT
                                                                                                           JASA 61
                                                                                                                    518
REGRESSION WHEN THE INDEPENDENT VARIABLES ARE OR/
                                                     EX POST DETERMINATION OF SIGNIFICANCE IN MULTIVARIATE JRSSB67
                                                                                                                    154
THE HARTLEY-KHAMIS SOLUTION OF THE MOMENT-PROBLEM IS EXACT
                                                                               ON DISTRIBUTIONS FOR WHICH BIOKA51
                                                                                                                     74
METHOD OF HANURAV
                                                  AN EXACT (PI)PS SAMPLING SCHEME, A GENERALIZATION OF A
                                                                                                          JRSSB68
                                                                                                                    556
                                                     EXACT AND APPROXIMATE DISTRIBUTIONS FOR THE WILCOXON
                                                                                                                    293
STATISTIC WITH TIES
                                                                                                          JASA 61
PARAMETRIC TEST OF TENDENCY
                                                     EXACT AND APPROXIMATE POWER FUNCTION OF THE NON-
                                                                                                           AMS 62 471
O SAMPLE KOLMOGOROV-SMIRNOV CRITERION D-SU/ ON THE EXACT AND APPROXIMATE SAMPLING DISTRIBUTION OF THE TW JASA 69 NO.4
                                                     EXACT AND APPROXIMATE TESTS FOR DIRECTIONS. I
                                                                                                           BIOKA62 463
                                                     EXACT AND APPROXIMATE TESTS FOR DIRECTIONS. II
                                                                                                                   547
                                                                                                           BIOKA62
                                                 AN EXACT ASYMPTOTICALLY EFFICIENT CONFIDENCE BOUND FOR R TECH 66 135
ELIABILITY IN THE CASE OF THE WEIBULL DISTRIBU/
                                                    EXACT BAHADUR EFFICIENCIES FOR THE KOLMOGOROV-SMIRNOV AMS 67 1475
 AND KUIPER ONE-SAMPLE AND TWO-SAMPLE STATISTICS
L PROBABILITIES FOR SAMPLING WITHOUT REPLACEMENT AND EXACT BAHADUR EFFICIENCY OF THE TWO-SAMPLE NORMAL SCO BIOKA68 371
TABLE, AND FISHER'S 'EXACT' SIGNIFICANCE TEST
                                                     EXACT BAYESIAN ANALYSIS OF A TWO-BY-TWO CONTINGENCY JRSSB69 NO.2
```

TITLE WORD INDEX EST - EXA

A RECTANGULA/ THE USE OF SAMPLE RANCES IN SETTING				
FOR THE PARAMETER OF AN EXPONENTIAL POPULATION				301
FOR THE PARAMETER OF A ONE-PARAMETER NE/ ERRATA,			AMS 61	483
LIMITS FOR A VARIANCE COMPONENT WITH AN		CONFIDENCE REGIONS FOR THE PARAMETERS IN NON-		466 347
LINEAR RECRESSION LAWS			JASA 69	
ST STATISTIC FOR DISPERSION AND ITS NORMAL APPROX/				497
		DISTRIBUTION OF A CLASS OF MULTIVARIATE TEST	AMS 62	
			JASA 68	1214
		DISTRIBUTION OF A TEST IN MULTIVARIATE ANALYSIS		108
TIC FOR TESTING THE DIFFERENCE BETWEEN THE MEA/ AN				377
RALIZED GAMMA VARIABLES WITH THE SAME SHAPE PARAM/				
LLY DISTRIBUTED DISCRETE RANDOM VARIABLES, CORR./		DISTRIBUTION OF THE SUM OF INDEPENDENT IDENTICA DISTRIBUTION OF THE WILCOXON TEST FOR SYMMETRY		837 899
			BIOKA69	109
TESTING INDEPENDENCE OF SETS OF VARIATES U/ ON THE				
HERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE				
AR ESTIMATORS IN TWO LEADING OVER-I/ A NOTE ON THE				535
AR ESTIMATORS IN A LEADING THREE-EQUATION/ ON THE				881
FOR TESTING LINEAR HYPOTHESES ABOUT REGRES/ ON THE				836
COMPOUND SYMMETRY OF A COVARIANCE MATRIX ON THE CRITERION			BIOKA66	347
ONLIERTON			JRSSB62	125
IZED CLASSI/ REMARKS CONCERNING THE APPLICATION OF				943
D CLASSICAL LINEAR ESTIMATORS IN TW/ A NOTE ON THE				619
D CLASSICAL LINEAR ESTIMATORS IN A/ A NOTE ON THE				161
FOR SEEMINGLY UNRELATED REGRESSION EQUATIONS, SOME				977
		FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF FORMS OF SOME INVARIANTS FOR DISTRIBUTIONS	BIOKA55	533
		FORMULA FOR THE PROBABILITY THAT TWO SPECIFIED		384
		CROUPING CORRECTIONS TO MOMENTS AND CUMULANTS		429
TABLES FOR THE MEAN SQUARE ERROR TEST FOR			JASA 69	NO.4
NORMAL DISTRIBUTION		LINEAR SEQUENTIAL TESTS FOR THE MEAN OF A		452
OM THE CHI-DISTRIBUTION, ONE DEGREE OF FREEDOM			AMS 62 TECH 60	1292
ISTICS AND THE DISTRIBUTION OF THE RANGE FROM THE/				907
TICS FROM THE TRUNCATED LOGISTIC DISTRIBUTION		MOMENTS AND PRODUCT MOMENTS OF THE ORDER STATIS		514
C DISTRIBUTION AND THEIR RELATION TO INVERSE SAMP/				915
A NOTE ON THE DERIVATION OF SOME			BIOKA60	480
		OPERATING CHARACTERISTIC FOR TRUNCATED SEQUENTI		
AMETERS OF EXPONENTIAL DISTR/ DETERMINATION OF THE RECTANGULAR ALTERNATIVES		POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND		279 945
			BIOCS68	714
		PROBABILITIES OF RANK ORDERS FOR TWO WIDELY	AMS 67	
		PROBABILITY DISTRIBUTION OVER SAMPLE SPACES OF		986
		PROBABILITY IN 2-BY-2 CONTINGENCY TABLES WITH S		522
KOLMOGOROV-SMIRNOV TYPE SOME AND TWO-STAGE LEAST SQUARES ESTIMATORS THE		RESULTS FOR ONE-SIDED DISTRIBUTION TESTS OF THE		499 923
		SAMPLING DISTRIBUTION OF RANCES FROM A DISCRETE		280
ON THE PROBABILITY OF LARGE DEVIATIONS AND			AMS 69	
CROSSOVER DESIGNS AN	EXACT	TEST FOR COMPARING MATCHED PROPORTIONS IN	BIOKA69	75
			BIOKA55	316
			BIOKA60 BIOKA61	393 475
CORRIGENDA, 'ON THE POWER FUNCTION OF THE	EXACT		TECH 64	439
SOME METHODS OF CONSTRUCTING	EXACT	The state of the s		
		TESTS	BIOKA61	41
	EXACT	TESTS	BIOKA55	41 133
SOME	EXACT	TESTS	BIOKA55 BIOKA52	41 133 17
		TESTS FOR SERIAL CORRELATION TESTS IN MULTIVARIATE ANALYSIS TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES	BIOKA55 BIOKA52 TECH 69	41 133 17 393
CORRECTION, 'SOME METHODS OF CONSTRUCTING	EXACT	TESTS FOR SERIAL CORRELATION TESTS IN MULTIVARIATE ANALYSIS TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES TESTS.'	BIOKA55 BIOKA52 TECH 69 BIOKA66	41 133 17 393 629
CORRECTION, 'SOME METHODS OF CONSTRUCTING IABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE C/ OTHER PROBLEMS OF SIGNIFICANCE NOTE ON AN	EXACT EXACT EXACT	TESTS TESTS FOR SERIAL CORRELATION TESTS IN MULTIVARIATE ANALYSIS TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES TESTS.' THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON REL TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND	BIOKA55 BIOKA52 TECH 69 BIOKA66 JASA 69 BIOKA51	41 133 17 393 629 306 141
CORRECTION, 'SOME METHODS OF CONSTRUCTING IABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE C/ OTHER PROBLEMS OF SIGNIFICANCE NOTE ON AN NORMAL DISTRIBUTION DIRECT METHODS FOR	EXACT EXACT EXACT	TESTS TESTS FOR SERIAL CORRELATION TESTS IN MULTIVARTATE ANALYSIS TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES TESTS.' THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON REL TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A	BIOKA55 BIOKA52 TECH 69 BIOKA66 JASA 69 BIOKA51 TECH 69	41 133 17 393 629 306 141 NO.4
CORRECTION, 'SOME METHODS OF CONSTRUCTING IABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE C/ OTHER PROBLEMS OF SIGNIFICANCE NOTE ON AN NORMAL DISTRIBUTION DIRECT METHODS FOR ON THE	EXACT EXACT EXACT EXACT	TESTS TESTS FOR SERIAL CORRELATION TESTS IN MULTIVARIATE ANALYSIS TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES TESTS.' THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON REL TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A VARIANCE OF PRODUCTS, CORR. 61 917	BIOKA55 BIOKA52 TECH 69 BIOKA66 JASA 69 BIOKA51 TECH 69 JASA 60	41 133 17 393 629 306 141 No.4 708
CORRECTION, 'SOME METHODS OF CONSTRUCTING IABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE C/ OTHER PROBLEMS OF SIGNIFICANCE NOTE ON AN NORMAL DISTRIBUTION DIRECT METHODS FOR ON THE SIS OF A TWO-BY-TWO CONTINGENCY TABLE, AND FISHER'S	EXACT EXACT EXACT EXACT EXACT	TESTS TESTS FOR SERIAL CORRELATION TESTS IN MULTIVARIATE ANALYSIS TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES TESTS.' THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON REL TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A VARIANCE OF PRODUCTS, CORR. 61 917 'SIGNIFICANCE TEST EXACT BAYESIAN ANALY	BIOKA55 BIOKA52 TECH 69 BIOKA66 JASA 69 BIOKA51 TECH 69 JASA 60 JRSSB69	41 133 17 393 629 306 141 NO.4 708 NO.2
CORRECTION, 'SOME METHODS OF CONSTRUCTING IABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE C/ OTHER PROBLEMS OF SIGNIFICANCE NOTE ON AN NORMAL DISTRIBUTION DIRECT METHODS FOR ON THE SIS OF A TWO-BY-TWO CONTINGENCY TABLE, AND FISHER'S A METHOD OF SAMPLING WITH PROBABILITY	EXACT EXACT EXACT EXACT EXACT 'EXACT	TESTS TESTS FOR SERIAL CORRELATION TESTS IN MULTIVARIATE ANALYSIS TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES TESTS.' THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON REL TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A VARIANCE OF PRODUCTS, CORR. 61 917 'SIGNIFICANCE TEST EXACT BAYESIAN ANALY LY PROPORTIONAL TO SIZE	BIOKA55 BIOKA52 TECH 69 BIOKA66 JASA 69 BIOKA51 TECH 69 JASA 60	41 133 17 393 629 306 141 NO.4 708 NO.2 236
CORRECTION, 'SOME METHODS OF CONSTRUCTING IABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE C/ OTHER PROBLEMS OF SIGNIFICANCE NOTE ON AN NORMAL DISTRIBUTION DIRECT METHODS FOR ON THE SIS OF A TWO-BY-TWO CONTINGENCY TABLE, AND FISHER'S A METHOD OF SAMPLING WITH PROBABILITY	EXACT EXACT EXACT EXACT EXACT EXACT EXAMI EXAMI	TESTS TESTS FOR SERIAL CORRELATION TESTS IN MULTIVARIATE ANALYSIS TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES TESTS.' THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON REL TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A VARIANCE OF PRODUCTS, CORR. 61 917 'SIGNIFICANCE TEST EXACT BAYESIAN ANALY LY PROPORTIONAL TO SIZE NATION AND ANALYSIS OF RESIDUALS NATION OF A QUANTUM HYPOTHESIS BASED ON A SINGLE	BIOKA55 BIOKA52 TECH 69 BIOKA66 JASA 69 BIOKA51 TECH 69 JASSB69 JRSSB69 JRSSB54 TECH 63 BIOKA56	41 133 17 393 629 306 141 NO.4 708 NO.2 236 141 32
CORRECTION, 'SOME METHODS OF CONSTRUCTING IABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE C/ OTHER PROBLEMS OF SIGNIFICANCE NOTE ON AN NORMAL DISTRIBUTION DIRECT METHODS FOR ON THE SIS OF A TWO-BY-TWO CONTINGENCY TABLE, AND FISHER'S A METHOD OF SAMPLING WITH PROBABILITY THE SET OF DATA ENVIRONMENTAL AND GENETIC TRENDS	EXACT EXACT EXACT EXACT EXACT EXACT EXAMI EXAMI EXAMI	TESTS TESTS FOR SERIAL CORRELATION TESTS IN MULTIVARIATE ANALYSIS TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES TESTS.' THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON REL TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A VARIANCE OF PRODUCTS, CORR. 61 917 'SIGNIFICANCE TEST EXACT BAYESIAN ANALY LY PROPORTIONAL TO SIZE NATION AND ANALYSIS OF RESIDUALS NATION OF A QUANTUM HYPOTHESIS BASED ON A SINGLE NATION OF A REPEAT MATING DESIGN FOR ESTIMATING	BIOKA55 BIOKA52 TECH 69 BIOKA66 JASA 69 BIOKA51 TECH 69 JASA 60 JRSSB69 JRSSB54 TECH 63 BIOKA56 BIOKS65	41 133 17 393 629 306 141 NO.4 708 NO.2 236 141 32 63
CORRECTION, 'SOME METHODS OF CONSTRUCTING IABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE C/ OTHER PROBLEMS OF SIGNIFICANCE NOTE ON AN NORMAL DISTRIBUTION DIRECT METHODS FOR ON THE SIS OF A TWO-BY-TWO CONTINGENCY TABLE, AND FISHER'S A METHOD OF SAMPLING WITH PROBABILITY THE SET OF DATA ENVIRONMENTAL AND GENETIC TRENDS MARKOV CHAINS WITH ABSORBING STATES, A GENETIC	EXACT EXACT EXACT EXACT EXACT EXACT EXAMI EXAMI EXAMI EXAMI	TESTS FOR SERIAL CORRELATION TESTS IN MULTIVARIATE ANALYSIS TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES TESTS.' THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON REL TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A VARIANCE OF PRODUCTS, CORR. 61 917 'SIGNIFICANCE TEST EXACT BAYESIAN ANALY LY PROPORTIONAL TO SIZE NATION AND ANALYSIS OF RESIDUALS NATION OF A QUANTUM HYPOTHESIS BASED ON A SINGLE NATION OF A REPEAT MATING DESIGN FOR ESTIMATING LE	BIOKA55 BIOKA52 TECH 69 BIOKA66 JASA 69 BIOKA51 TECH 69 JASSB69 JRSSB54 TECH 63 BIOKA56 BIOKS65 AMS 61	41 133 17 393 629 306 141 NO.4 708 NO.2 236 141 32 63 716
CORRECTION, 'SOME METHODS OF CONSTRUCTING IABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE C/ OTHER PROBLEMS OF SIGNIFICANCE NOTE ON AN NORMAL DISTRIBUTION DIRECT METHODS FOR ON THE SIS OF A TWO-BY-TWO CONTINGENCY TABLE, AND FISHER'S A METHOD OF SAMPLING WITH PROBABILITY SET OF DATA ENVIRONMENTAL AND GENETIC TRENDS MARKOV CHAINS WITH ABSORBING STATES, A GENETIC AN	EXACT EXACT EXACT EXACT EXACT EXACT EXACT EXAMI EXAMI EXAMI EXAMP EXAMP	TESTS TESTS FOR SERIAL CORRELATION TESTS IN MULTIVARIATE ANALYSIS TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES TESTS.' THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON REL TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A VARIANCE OF PRODUCTS, CORR. 61 917 'SIGNIFICANCE TEST EXACT BAYESIAN ANALY LY PROPORTIONAL TO SIZE NATION AND ANALYSIS OF RESIDUALS NATION OF A QUANTUM HYPOTHESIS BASED ON A SINGLE NATION OF A REPEAT MATING DESIGN FOR ESTIMATING LE LE IN DUNUMERABLE DECISION PROCESSES	BIOKA55 BIOKA52 TECH 69 BIOKA51 TECH 69 JASA 60 JRSSB69 JRSSB54 TECH 63 BIOKA56 BIOKA56 BIOKA56 AMS 61 AMS 68	41 133 17 393 629 306 141 NO.4 708 NO.2 236 141 32 63 716 674
CORRECTION, 'SOME METHODS OF CONSTRUCTING IABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE C/ OTHER PROBLEMS OF SIGNIFICANCE NOTE ON AN NORMAL DISTRIBUTION DIRECT METHODS FOR ON THE SIS OF A TWO-BY-TWO CONTINGENCY TABLE, AND FISHER'S A METHOD OF SAMPLING WITH PROBABILITY THE SET OF DATA ENVIRONMENTAL AND GENETIC TRENDS MARKOV CHAINS WITH ABSORBING STATES, A GENETIC AN DECIMAL CORRECTION ERROR, AN	EXACT EXACT EXACT EXACT EXACT EXACT EXAMI EXAMI EXAMI EXAMP EXAMP EXAMP	TESTS TESTS FOR SERIAL CORRELATION TESTS IN MULTIVARIATE ANALYSIS TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES TESTS.' THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON REL TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A VARIANCE OF PRODUCTS, CORR. 61 917 'SIGNIFICANCE TEST EXACT BAYESIAN ANALY LY PROPORTIONAL TO SIZE NATION AND ANALYSIS OF RESIDUALS NATION OF A QUANTUM HYPOTHESIS BASED ON A SINGLE NATION OF A REPEAT MATING DESIGN FOR ESTIMATING LE LE IN DUNUMERABLE DECISION PROCESSES LE IN STATISTICS	BIOKA55 BIOKA52 TECH 69 BIOKA66 JASA 69 BIOKA51 TECH 69 JRSSB54 TECH 63 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56	41 133 17 393 629 306 141 NO.4 708 NO.2 236 141 32 63 716 674 421
CORRECTION, 'SOME METHODS OF CONSTRUCTING IABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE C/ OTHER PROBLEMS OF SIGNIFICANCE NOTE ON AN NORMAL DISTRIBUTION DIRECT METHODS FOR ON THE SIS OF A TWO-BY-TWO CONTINGENCY TABLE, AND FISHER'S A METHOD OF SAMPLING WITH PROBABILITY THE SET OF DATA ENVIRONMENTAL AND GENETIC TRENDS MARKOV CHAINS WITH ABSORBING STATES, A GENETIC AN DECIMAL CORRECTION ERROR, AN FUDUCIAL DISTRIBUTIONS AND PRIOR DISTRIBUTIONS, AN A SIMPLE	EXACT EXACT EXACT EXACT EXACT EXACT EXAMI EXAMI EXAMI EXAMP EXAMP EXAMP EXAMP EXAMP	TESTS TESTS FOR SERIAL CORRELATION TESTS IN MULTIVARIATE ANALYSIS TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES TESTS.' THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON REL TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A VARIANCE OF PRODUCTS, CORR. 61 917 'SIGNIFICANCE TEST EXACT BAYESIAN ANALY LY PROPORTIONAL TO SIZE NATION AND ANALYSIS OF RESIDUALS NATION OF A QUANTUM HYPOTHESIS BASED ON A SINGLE NATION OF A REPEAT MATING DESIGN FOR ESTIMATING LE LE IN DUNUMERABLE DECISION PROCESSES LE IN STATISTICS LE IN STATISTICS LE IN WHICH THE FORMER CANNOT BE ASSOCIATED WITH LE OF A COMPARISON INVOLVING QUANTAL DATA	BIOKA55 BIOKA52 TECH 69 BIOKA66 JASA 69 BIOKA51 TECH 69 JASS 60 JASSB69 JASSB64 TECH 63 BIOKA56 BIOKS65 AMS 61 AMS 68 TECH 62 JASSB66 JASSB66 BIOKS66 BIOKA66 BIOKA66	41 133 17 393 629 306 141 NO.4 708 NO.2 236 141 32 63 716 674 421 217 215
CORRECTION, 'SOME METHODS OF CONSTRUCTING IABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE C/ OTHER PROBLEMS OF SIGNIFICANCE NOTE ON AN NORMAL DISTRIBUTION DIRECT METHODS FOR ON THE SIS OF A TWO-BY-TWO CONTINGENCY TABLE, AND FISHER'S A METHOD OF SAMPLING WITH PROBABILITY SET OF DATA ENVIRONMENTAL AND GENETIC TRENDS MARKOV CHAINS WITH ABSORBING STATES, A GENETIC AN DECIMAL CORRECTION ERROR, AN FUDUCIAL DISTRIBUTIONS AND PRIOR DISTRIBUTIONS, AN A SIMPLE ON A FIDUCIAL	EXACT EXACT EXACT EXACT EXACT EXACT EXAMI EXAMI EXAMI EXAMP EXAMP EXAMP EXAMP EXAMP	TESTS TESTS FOR SERIAL CORRELATION TESTS IN MULTIVARIATE ANALYSIS TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES TESTS.' THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON REL TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A VARIANCE OF PRODUCTS, CORR. 61 917 'SIGNIFICANCE TEST EXACT BAYESIAN ANALY LY PROPORTIONAL TO SIZE NATION AND ANALYSIS OF RESIDUALS NATION OF A QUANTUM HYPOTHESIS BASED ON A SINCLE NATION OF A REPEAT MATING DESIGN FOR ESTIMATING LE LE IN DUNUMERABLE DECISION PROCESSES LE IN STATISTICS LE IN WHICH THE FORMER CANNOT BE ASSOCIATED WITH LE OF A COMPARISON INVOLVING QUANTAL DATA LE OF C. STEIN	BIOKA55 BIOKA52 TECH 69 BIOKA66 JASA 69 BIOKA51 TECH 69 JASS 60 JRSSB69 JRSSB54 TECH 63 BIOKA56 BIOCS65 AMS 61 AMS 68 TECH 62 JRSSB56 BIOKA66 JRSSB566 JRSSB566	41 133 17 393 629 306 141 NO.4 708 NO.2 236 141 32 63 716 674 421 217 215 53
CORRECTION, 'SOME METHODS OF CONSTRUCTING IABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE C/ OTHER PROBLEMS OF SIGNIFICANCE NOTE ON AN NORMAL DISTRIBUTION DIRECT METHODS FOR ON THE SIS OF A TWO-BY-TWO CONTINGENCY TABLE, AND FISHER'S A METHOD OF SAMPLING WITH PROBABILITY SET OF DATA ENVIRONMENTAL AND GENETIC TRENDS MARKOV CHAINS WITH ABSORBING STATES, A GENETIC AN DECIMAL CORRECTION ERROR, AN FUDUCIAL DISTRIBUTIONS AND PRIOR DISTRIBUTIONS, AN A SIMPLE ON A FIDUCIAL INFORMATIVE STOPPING RULES AN	EXACT EXACT EXACT EXACT EXACT EXACT EXACT EXACT EXAMI EXAMI EXAMI EXAMP EXAMP EXAMP EXAMP EXAMP	TESTS TESTS FOR SERIAL CORRELATION TESTS IN MULTIVARIATE ANALYSIS TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES TESTS.' THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON REL TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A VARIANCE OF PRODUCTS, CORR. 61 917 'SIGNIFICANCE TEST EXACT BAYESIAN ANALY LY PROPORTIONAL TO SIZE NATION AND ANALYSIS OF RESIDUALS NATION OF A QUANTUM HYPOTHESIS BASED ON A SINGLE NATION OF A REPEAT MATING DESIGN FOR ESTIMATING LE LE IN DUNUMERABLE DECISION PROCESSES LE IN STATISTICS LE IN WHICH THE FORMER CANNOT BE ASSOCIATED WITH LE OF A COMPARISON INVOLVING QUANTAL DATA LE OF C. STEIN LE OF DISCREPANCIES IN INFERENCES UNDER NON-	BIOKA55 BIOKA52 TECH 69 BIOKA66 JASA 69 BIOKA51 TECH 69 JASS 60 JASSB55 TECH 63 BIOKA56 BIOKA56 AMS 61 AMS 68 TECH 62 JRSSB56 AMS 68 TECH 62 JRSSB56 BIOKA66 JRSSB56 BIOKA66 JRSSB56	41 133 17 393 629 306 141 NO.4 708 NO.2 236 141 32 63 716 674 421 217 215 53 329
CORRECTION, 'SOME METHODS OF CONSTRUCTING IABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE C/ OTHER PROBLEMS OF SIGNIFICANCE NOTE ON AN NORMAL DISTRIBUTION DIRECT METHODS FOR ON THE SIS OF A TWO-BY-TWO CONTINGENCY TABLE, AND FISHER'S A METHOD OF SAMPLING WITH PROBABILITY SET OF DATA ENVIRONMENTAL AND GENETIC TRENDS MARKOV CHAINS WITH ABSORBING STATES, A GENETIC AN DECIMAL CORRECTION ERROR, AN FUDUCIAL DISTRIBUTIONS AND PRIOR DISTRIBUTIONS, AN A SIMPLE ON A FIDUCIAL INFORMATIVE STOPPING RULES AN	EXACT EXACT EXACT EXACT EXACT EXACT EXACT EXACT EXACT EXAMI EXAMI EXAMI EXAMP EXAMP EXAMP EXAMP EXAMP EXAMP EXAMP	TESTS TESTS FOR SERIAL CORRELATION TESTS IN MULTIVARIATE ANALYSIS TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES TESTS.' THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON REL TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A VARIANCE OF PRODUCTS, CORR. 61 917 'SIGNIFICANCE TEST EXACT BAYESIAN ANALY LY PROPORTIONAL TO SIZE NATION AND ANALYSIS OF RESIDUALS NATION OF A QUANTUM HYPOTHESIS BASED ON A SINGLE NATION OF A REPEAT MATING DESIGN FOR ESTIMATING LE LE IN DUNUMERABLE DECISION PROCESSES LE IN STATISTICS LE IN STATISTICS LE IN WHICH THE FORMER CANNOT BE ASSOCIATED WITH LE OF A COMPARISON INVOLVING QUANTAL DATA LE OF C. STEIN LE OF C. STEIN LE OF DISCREPANCIES IN INFERENCES UNDER NON— LE OF DISCREPANCIES IN INFERENCES UNDER NON— LE OF DISCREPANCIES IN INFERENCES UNDER NON— LE OF ERRORS INCURRED BY ERRONEOUSLY ASSUMINC	BIOKA55 BIOKA52 TECH 69 BIOKA66 JASA 69 BIOKA51 TECH 69 JASS 60 JASSB69 JRSSB69 TECH 63 BIOKA56 BIOCS65 AMS 61 AMS 68 TECH 62 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66	41 1333 17 393 629 306 141 NO.4 708 NO.2 236 141 32 63 716 674 421 217 215 53 329 457
CORRECTION, 'SOME METHODS OF CONSTRUCTING IABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE C/ OTHER PROBLEMS OF SIGNIFICANCE NOTE ON AN NORMAL DISTRIBUTION DIRECT METHODS FOR ON THE SIS OF A TWO-BY-TWO CONTINGENCY TABLE, AND FISHER'S A METHOD OF SAMPLING WITH PROBABILITY SET OF DATA ENVIRONMENTAL AND GENETIC TRENDS MARKOV CHAINS WITH ABSORBING STATES, A GENETIC AN DECIMAL CORRECTION ERROR, AN FUDUCIAL DISTRIBUTIONS AND PRIOR DISTRIBUTIONS, AN A SIMPLE ON A FIDUCIAL INFORMATIVE STOPPING RULES AN NORMALITY FOR CUSUM SCHEMES AN ASYMPTOTIC EFFICIENCY OF TESTS	EXACT EXACT EXACT EXACT EXACT EXACT EXACT EXACT EXACT EXAMI EXAMI EXAMI EXAMP	TESTS TESTS FOR SERIAL CORRELATION TESTS IN MULTIVARIATE ANALYSIS TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES TESTS.' THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON REL TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A VARIANCE OF PRODUCTS, CORR. 61 917 'SIGNIFICANCE TEST EXACT BAYESIAN ANALY LY PROPORTIONAL TO SIZE NATION AND ANALYSIS OF RESIDUALS NATION OF A QUANTUM HYPOTHESIS BASED ON A SINGLE NATION OF A REPEAT MATING DESIGN FOR ESTIMATING LE IN DUNUMERABLE DECISION PROCESSES LE IN STATISTICS LE IN WHICH THE FORMER CANNOT BE ASSOCIATED WITH LE OF A COMPARISON INVOLVING QUANTAL DATA LE OF C. STEIN LE OF DISCREPANCIES IN INFERENCES UNDER NON— LE OF DISCREPANCIES IN INFERENCES UNDER NON— LE OF ERRORS INCURRED BY ERRONEOUSLY ASSUMINC LE OF LARGE DISCREPANCY BETWEEN MEASURES OF	BIOKA55 BIOKA52 TECH 69 BIOKA66 JASA 69 BIOKA51 TECH 69 JASS 60 JRSSB69 JRSSB54 TECH 63 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 TECH 62 JRSSB56 BIOKA66 JRSSB66 JRSSB66 JRSSB66 JRSSB66	41 1333 17 393 629 306 141 NO.2 236 141 32 63 716 674 421 217 215 53 329 457 179
CORRECTION, 'SOME METHODS OF CONSTRUCTING IABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE C/ OTHER PROBLEMS OF SIGNIFICANCE NOTE ON AN NORMAL DISTRIBUTION DIRECT METHODS FOR ON THE SIS OF A TWO-BY-TWO CONTINGENCY TABLE, AND FISHER'S A METHOD OF SAMPLING WITH PROBABILITY THE SET OF DATA ENVIRONMENTAL AND GENETIC TRENDS MARKOV CHAINS WITH ABSORBING STATES, A GENETIC AN FUDUCIAL DISTRIBUTIONS AND PRIOR DISTRIBUTIONS, AN A SIMPLE ON A FIDUCIAL INFORMATIVE STOPPING RULES NORMALITY FOR CUSUM SCHEMES AN ASYMPTOTIC EFFICIENCY OF TESTS AN PROKHOROV METRICS AN TRANSFER FUNCTION AN	EXACT EXACT EXACT EXACT EXACT EXACT EXAMI EXAMI EXAMP EXAMP EXAMP EXAMP EXAMP EXAMP EXAMP EXAMP EXAMP EXAMP EXAMP EXAMP	TESTS TESTS FOR SERIAL CORRELATION TESTS IN MULTIVARIATE ANALYSIS TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES TESTS.' THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON REL TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A VARIANCE OF PRODUCTS, CORR. 61 917 'SIGNIFICANCE TEST EXACT BAYESIAN ANALY LY PROPORTIONAL TO SIZE NATION AND ANALYSIS OF RESIDUALS NATION OF A QUANTUM HYPOTHESIS BASED ON A SINCLE NATION OF A REPEAT MATING DESIGN FOR ESTIMATING LE LE IN DUNUMERABLE DECISION PROCESSES LE IN STATISTICS LE IN WHICH THE FORMER CANNOT BE ASSOCIATED WITH LE OF A COMPARISON INVOLVING QUANTAL DATA LE OF C. STEIN LE OF CSTEIN LE OF DISCREPANCIES IN INFERENCES UNDER NON— LE OF LARGE DISCREPANCY BETWEEN MEASURES OF LE OF THE DIFFERENCE BETWEEN THE LEVY AND LEVY— LE OF THE ESTIMATION OF LINEAR OPEN LOOP	BIOKA55 BIOKA52 TECH 69 BIOKA66 JASA 69 BIOKA51 TECH 69 JASA 60 JASSB69 JASSB54 TECH 63 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA66 JRSSB66 JRSSB6	41 133 17 393 629 306 141 NO.4 708 NO.2 236 141 32 63 716 674 421 217 215 53 329 457 179 322 227
CORRECTION, 'SOME METHODS OF CONSTRUCTING IABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE C/ OTHER PROBLEMS OF SIGNIFICANCE NOTE ON AN NORMAL DISTRIBUTION DIRECT METHODS FOR ON THE SIS OF A TWO-BY-TWO CONTINGENCY TABLE, AND FISHER'S A METHOD OF SAMPLING WITH PROBABILITY THE SET OF DATA ENVIRONMENTAL AND GENETIC TRENDS MARKOV CHAINS WITH ABSORBING STATES, A GENETIC AN DECIMAL CORRECTION ERROR, AN A SIMPLE ON A FIDUCIAL INFORMATIVE STOPPING RULES AN NORMALITY FOR CUSUM SCHEMES ASYMPTOTIC EFFICIENCY OF TESTS AN ASYMPTOTIC EFFICIENCY OF TESTS AN PROKHOROV METRICS AN NED BY MEANS OF THE CAPTURE—RECAPTURE METHOD. III. AN	EXACT EXACT EXACT EXACT EXACT EXACT EXAMI EXAMI EXAMP	TESTS TESTS FOR SERIAL CORRELATION TESTS IN MULTIVARIATE ANALYSIS TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES TESTS.' THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON REL TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A VARIANCE OF PRODUCTS, CORR. 61 917 'SIGNIFICANCE TEST EXACT BAYESIAN ANALY LY PROPORTIONAL TO SIZE NATION AND ANALYSIS OF RESIDUALS NATION OF A QUANTUM HYPOTHESIS BASED ON A SINGLE NATION OF A REPEAT MATING DESIGN FOR ESTIMATING LE LE IN DUNUMERABLE DECISION PROCESSES LE IN STATISTICS LE IN STATISTICS LE IN WHICH THE FORMER CANNOT BE ASSOCIATED WITH LE OF C. STEIN LE OF C. STEIN LE OF DISCREPANCIES IN INFERENCES UNDER NON— LE OF ERRORS INCURRED BY ERRONEOUSLY ASSUMINC LE OF LARGE DISCREPANCY BETWEEN MEASURES OF LE OF THE DIFFERENCE BETWEEN THE LEVY— LE OF THE STIMATION OF LINEAR OPEN LOOP LE OF THE PRACTICAL APPLICATIONS OF THE METHOD	BIOKA55 BIOKA52 TECH 69 BIOKA66 JASA 69 BIOKA51 TECH 69 JASS 69 JASSB69 JRSSB64 TECH 63 BIOKA56 BIOKA56 BIOKA56 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA67 TECH 62 JRSSB66 BIOKA67 TECH 63 AMS 68 BIOKA67 TECH 63 AMS 68 BIOKA67	41 133 393 629 306 141 NO.4 708 141 32 236 61 674 421 217 215 53 329 457 179 322 227 137
CORRECTION, 'SOME METHODS OF CONSTRUCTING IABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE C/ OTHER PROBLEMS OF SIGNIFICANCE NOTE ON AN NORMAL DISTRIBUTION DIRECT METHODS FOR ON THE SIS OF A TWO-BY-TWO CONTINGENCY TABLE, AND FISHER'S A METHOD OF SAMPLING WITH PROBABILITY SET OF DATA ENVIRONMENTAL AND GENETIC TRENDS MARKOV CHAINS WITH ABSORBING STATES, A GENETIC AN DECIMAL CORRECTION ERROR, AN FUDUCIAL DISTRIBUTIONS AND PRIOR DISTRIBUTIONS, AN A SIMPLE ON A FIDUCIAL INFORMATIVE STOPPING RULES AN ASYMPTOTIC EFFICIENCY OF TESTS AN PROKHOROV METRICS AN PROKHOROV METRICS AN OF THE NEGATIVE BINOMIAL DISTRIBUTION WITH	EXACT EXACT EXACT EXACT EXACT EXACT EXAMI EXAMI EXAMP	TESTS TESTS FOR SERIAL CORRELATION TESTS IN MULTIVARIATE ANALYSIS TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES TESTS.' THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON REL TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A VARIANCE OF PRODUCTS, CORR. 61 917 'SIGNIFICANCE TEST EXACT BAYESIAN ANALY LY PROPORTIONAL TO SIZE NATION AND ANALYSIS OF RESIDUALS NATION OF A QUANTUM HYPOTHESIS BASED ON A SINGLE NATION OF A REPEAT MATING DESIGN FOR ESTIMATING LE IN DUNUMERABLE DECISION PROCESSES LE IN STATISTICS LE IN WHICH THE FORMER CANNOT BE ASSOCIATED WITH LE OF A COMPARISON INVOLVING QUANTAL DATA LE OF C. STEIN LE OF DISCREPANCIES IN INFERENCES UNDER NON— LE OF ERRORS INCURRED BY ERRONEOUSLY ASSUMINC LE OF THE DIFFERENCE BETWEEN MEASURES OF LE OF THE DIFFERENCE BETWEEN THE LEVY AND LEVY— LE OF THE DIFFERENCE BETWEEN THE LEVY AND LEVY— LE OF THE PRACTICAL APPLICATIONS OF THE METHOD LES ON THE EVALUATION	BIOKA55 BIOKA52 TECH 69 BIOKA66 JASA 69 BIOKA51 TECH 69 JASSB69 JRSSB69 JRSSB54 TECH 63 BIOKA56 BIOKA56 BIOKA56 BIOKA56 JRSSB66 JRSSB66 JRSSB66 JRSSB66 JRSSB66 BIOKA67 TECH 67 AMS 61 JRSSB66 BIOKA67 TECH 67 AMS 68 AMS 69	41 133 393 629 306 141 NO.4 708 32 63 716 63 716 63 716 53 329 457 717 322 227 137
CORRECTION, 'SOME METHODS OF CONSTRUCTING IABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE C/ OTHER PROBLEMS OF SIGNIFICANCE NOTE ON AN NORMAL DISTRIBUTION DIRECT METHODS FOR ON THE SIS OF A TWO-BY-TWO CONTINGENCY TABLE, AND FISHER'S A METHOD OF SAMPLING WITH PROBABILITY THE SET OF DATA ENVIRONMENTAL AND GENETIC TRENDS MARKOV CHAINS WITH ABSORBING STATES, A GENETIC AN DECIMAL CORRECTION ERROR, AN A SIMPLE ON A FIDUCIAL INFORMATIVE STOPPING RULES NORMALITY FOR CUSUM SCHEMES AN ASYMPTOTIC EFFICIENCY OF TESTS AN PROKHOROV METRICS AN TRANSFER FUNCTION NED BY MEANS OF THE CAPTURE—RECAPTURE METHOD. III. AN OF THE NEGATIVE BINOMIAL DISTRIBUTION WITH TRANSFORM IN STATISTICS I CENTERLY AND	EXACT EXACT EXACT EXACT EXACT EXACT EXAMI EXAMI EXAMI EXAMP	TESTS TESTS FOR SERIAL CORRELATION TESTS IN MULTIVARIATE ANALYSIS TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES TESTS.' THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON REL TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A VARIANCE OF PRODUCTS, CORR. 61 917 'SIGNIFICANCE TEST EXACT BAYESIAN ANALY LY PROPORTIONAL TO SIZE NATION AND ANALYSIS OF RESIDUALS NATION OF A QUANTUM HYPOTHESIS BASED ON A SINCLE NATION OF A REPEAT MATING DESIGN FOR ESTIMATING LE LE IN DUNUMERABLE DECISION PROCESSES LE IN STATISTICS LE IN WHICH THE FORMER CANNOT BE ASSOCIATED WITH LE OF A COMPARISON INVOLVING QUANTAL DATA LE OF C. STEIN LE OF C. STEIN LE OF DISCREPANCIES IN INFERENCES UNDER NON— LE OF LARGE DISCREPANCY BETWEEN MEASURES OF LE OF THE DIFFERENCE BETWEEN THE LEVY AND LEVY— LE OF THE STIMATION OF LINEAR OPEN LOOP LE OF THE ESTIMATION OF LINEAR OPEN LOOP LE OF THE ESTIMATION OF LINEAR OPEN LOOP LE OF THE PRACTICAL APPLICATIONS OF THE METHOD LES THE USE OF THE HANKEL	BIOKA55 BIOKA52 TECH 69 BIOKA66 JASA 69 BIOKA51 TECH 69 JASS 69 JASS 60 JASS 65 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 BIOKA66 JRSSB66 BIOKA66 BIOKA66 JRSSB66 BIOKA66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66	41 133 393 629 306 141 N0.4 708 N0.2 236 141 32 63 716 674 421 217 215 53 329 457 179 227 137 501
CORRECTION, 'SOME METHODS OF CONSTRUCTING IABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE C/ OTHER PROBLEMS OF SIGNIFICANCE NOTE ON AN NORMAL DISTRIBUTION DIRECT METHODS FOR ON THE SIS OF A TWO-BY-TWO CONTINGENCY TABLE, AND FISHER'S A METHOD OF SAMPLING WITH PROBABILITY THE SET OF DATA ENVIRONMENTAL AND GENETIC TRENDS MARKOV CHAINS WITH ABSORBING STATES, A GENETIC AN DECIMAL CORRECTION ERROR, AN A SIMPLE ON A FIDUCIAL INFORMATIVE STOPPING RULES NORMALITY FOR CUSUM SCHEMES AN ASYMPTOTIC EFFICIENCY OF TESTS AN PROKHOROV METRICS AN TRANSFER FUNCTION NED BY MEANS OF THE CAPTURE—RECAPTURE METHOD. III. AN OF THE NEGATIVE BINOMIAL DISTRIBUTION WITH TRANSFORM IN STATISTICS I CENTERLY AND	EXACT EXACT EXACT EXACT EXACT EXACT EXAMI EXAMI EXAMI EXAMP	TESTS TESTS FOR SERIAL CORRELATION TESTS IN MULTIVARIATE ANALYSIS TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES TESTS.' THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON REL TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A VARIANCE OF PRODUCTS, CORR. 61 917 'SIGNIFICANCE TEST EXACT BAYESIAN ANALY LY PROPORTIONAL TO SIZE NATION AND ANALYSIS OF RESIDUALS NATION OF A QUANTUM HYPOTHESIS BASED ON A SINCLE NATION OF A REPEAT MATING DESIGN FOR ESTIMATING LE LE IN DUNUMERABLE DECISION PROCESSES LE IN STATISTICS LE IN WHICH THE FORMER CANNOT BE ASSOCIATED WITH LE OF A COMPARISON INVOLVING QUANTAL DATA LE OF C. STEIN LE OF C. STEIN LE OF DISCREPANCIES IN INFERENCES UNDER NON— LE OF LARGE DISCREPANCY BETWEEN MEASURES OF LE OF THE DIFFERENCE BETWEEN THE LEVY AND LEVY— LE OF THE STIMATION OF LINEAR OPEN LOOP LE OF THE ESTIMATION OF LINEAR OPEN LOOP LE OF THE ESTIMATION OF LINEAR OPEN LOOP LE OF THE PRACTICAL APPLICATIONS OF THE METHOD LES THE USE OF THE HANKEL	BIOKA55 BIOKA52 TECH 69 BIOKA66 JASA 69 BIOKA51 TECH 69 JASS 69 JASS 60 JASS 65 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 BIOKA66 JRSSB66 BIOKA66 BIOKA66 JRSSB66 BIOKA66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66	41 133 393 629 306 141 N0.4 708 N0.2 236 141 32 63 716 674 421 217 215 53 329 457 179 227 137 501
CORRECTION, 'SOME METHODS OF CONSTRUCTING IABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE C/ OTHER PROBLEMS OF SIGNIFICANCE NOTE ON AN NORMAL DISTRIBUTION DIRECT METHODS FOR ON THE SIS OF A TWO-BY-TWO CONTINGENCY TABLE, AND FISHER'S A METHOD OF SAMPLING WITH PROBABILITY SET OF DATA ENVIRONMENTAL AND GENETIC TRENDS MARKOV CHAINS WITH ABSORBING STATES, A GENETIC AN DECIMAL CORRECTION ERROR, AN FUDUCIAL DISTRIBUTIONS AND PRIOR DISTRIBUTIONS, AN A SIMPLE ON A FIDUCIAL INFORMATIVE STOPPING RULES AN ASYMPTOTIC EFFICIENCY OF TESTS AN PROKHOROV METRICS AN PROKHOROV METRICS AN OF THE NEGATIVE BINOMIAL DISTRIBUTION WITH	EXACT EXACT EXACT EXACT EXACT EXACT EXAMI EXAMI EXAMI EXAMP	TESTS TESTS FOR SERIAL CORRELATION TESTS IN MULTIVARIATE ANALYSIS TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES TESTS.' THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON REL TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A VARIANCE OF PRODUCTS, CORR. 61 917 'SIGNIFICANCE TEST EXACT BAYESIAN ANALY LY PROPORTIONAL TO SIZE NATION AND ANALYSIS OF RESIDUALS NATION OF A QUANTUM HYPOTHESIS BASED ON A SINCLE NATION OF A REPEAT MATING DESIGN FOR ESTIMATING LE LE IN DUNUMERABLE DECISION PROCESSES LE IN STATISTICS LE IN WHICH THE FORMER CANNOT BE ASSOCIATED WITH LE OF A COMPARISON INVOLVING QUANTAL DATA LE OF C. STEIN LE OF C. STEIN LE OF DISCREPANCIES IN INFERENCES UNDER NON— LE OF LARGE DISCREPANCY BETWEEN MEASURES OF LE OF THE DIFFERENCE BETWEEN THE LEVY AND LEVY— LE OF THE STIMATION OF LINEAR OPEN LOOP LE OF THE ESTIMATION OF LINEAR OPEN LOOP LE OF THE ESTIMATION OF LINEAR OPEN LOOP LE OF THE PRACTICAL APPLICATIONS OF THE METHOD LES THE USE OF THE HANKEL	BIOKA55 BIOKA52 TECH 69 BIOKA66 JASA 69 BIOKA51 TECH 69 JASS 69 JASS 60 JASS 65 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 BIOKA66 JRSSB66 BIOKA66 BIOKA66 JRSSB66 BIOKA66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66 JRSSB66 BIOKA66	41 133 393 629 306 141 N0.4 708 N0.2 236 141 32 63 716 674 421 217 215 53 329 457 179 227 137 501

BIOLOGICAL EXA		BIOCS65	49
	AMPLES REVISITED CEEDANCE TEST FOR TRUNCATION OF A SUPPLIER'S DATA	TECH 69	
ADDITIVE FUNCTIONALS AND EXC			
LAW OF LARGE NUMBERS FOR THE LINEAR COMBINATIONS OF EXC			
	CHANGEABLE PROCESSES WHICH ARE FUNCTIONS OF		
A NOTE ON EXC	CHANGEABLE PROCESSES WITH STATES OF FINITE RANK		
RELATIONS BETWEEN MOMENTS OF ORDER STATISTICS FOR EXC ON THE METHOD OF INCLUSION AND EXC		JASA 67	
		AMS 66	
S ENTRE LES ESPECES ET LES VARIABLES ECOLOGIQUES, UN EXE	EMPLE /ALES PAR L'ANALYSE STATISTIQUE DES LIAISON	BIOCS65	890
		TECH 61	
	ISTENCE AND CONSTRUCTION OF BALANCED INCOMPLETE ISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN SQUAR		
RANDOMIZED UNBIASED TEST FOR THE BINOMIAL EXI			
	ISTENCE AND UNIQUENESS OF STATIONARY MEASURES FOR		
	ISTENCE OF A FINITELY ADDITIVE PROBABILITY MEASURE		
A LOG-NORMAL DISTRIBUTION HAVING A PRE/ ON THE NON-EXI			
SYSTEMS STRUCTURE AND THE EXI ERGODIC THEOREM EXI	ISTENCE OF A SYSTEM LIFE ISTENCE OF AN INVARIANT MEASURE AND AN ORNSTEIN'S	TECH 64	45 9 79
EVI	ISTENCE OF BOUNDED LENGTH CONFIDENCE INTERVALS	AMS 63	
MOTION THE EXI	ISTENCE OF CERTAIN STOPPING TIMES ON BROWNIAN	AMS 69	715
DISTRIBUTIONS NON-EXI	ISTENCE OF EVERYWHERE PROPER GONDITIONAL	AMS 63	223
RELATED TO S-SUB-N-OVER-N EXI	ISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS		
APPLICATION OF GROUP THEORY TO THE EXISTENCE AND NON-EXI MARGINALS THE EXI	ISTENCE OF ORTHOGONAL LATIN SQUARES ON THE ISTENCE OF PROBABILITY MEASURES WITH GIVEN		NU.3 423
GULAR PARTIALLY B/ ON NECESSARY CONDITIONS FOR THE EXI			34B
NGING FROM ONE SET OF TREATMENTS TO ANOTHER, PART 2, EXI			
	ISTENCE. UNIQUENESS AND MONOTONICITY OF SEQUENTIAL		
AUGMENTING EXI NOTE ON SOME SQUARED RANK TESTS WITH EXI		TECH 68 TECH 67	73
A TREE FROM A GRAPH CONSTRUCTED RANDOMLY EXCEPT FOR 'EXO	OGAMOUS BIAS' /FOR THE PROBABILITY OF ORTAINING	AMS 67	312 226
TABLES FOR THE SOLUTION OF THE EXPONENTIAL EQUATION. EXP	P(-A)+KA=1	BIOKA60	439
TABLES FOR THE SOLUTION OF THE EXPONENTIAL EQUATION. EXP TABLE FOR THE SOLUTION OF THE EXPONENTIAL EQUATION EXP AREAS OF THE T_DISTRIBUTION FROM A MILLS' RATIO_LIKE EXP	P(B)-B/(1-P)=1	BIOKA63	
ANDRO OF THE PERMITSORY FROM A MILES BIRD BAT	TAID		
, DIRECT AND INVERSE A QUICKLY CONVERCENT EXP , DIRECT AND IN/ CORRIGENDA, 'A QUICKLY CONVERGENT EXP			
	PANSION FOR POSTERIOR DISTRIBUTIONS	AMS 67	
THE ESTIMATED COVARIANCE MATRIX AN ASYMPTOTIC EXP	PANSION FOR THE DISTRIBUTION OF THE LATENT ROOTS OF		
NANT FUNCTION AN ASYMPTOTIC EXP	PANSION FOR THE DISTRIBUTION OF THE LINEAR DISCRIMI		
MILL'S RATIO A NEW ASYMPTOTIC EXP. PROCESSES GENERATING PERMUTATION EXP	PANSION FOR THE NORMAL PROBABILITY INTEGRAL AND	JRSSB62	
DENCTTV ACVMPTOTIC EYP	PANSTONS ASSOCIATED WITH THE NITH POWER OF A	BIOKA62	1266
AUTORECRESSIVE SCHEMES ASYMPTOTIC EXP CORRELATION COEFFICIENT ASYMPTOTIC EXP CORRELATION COEFFICIENT ASYMPTOTIC EXP TWO EXP ON SERIES EXP AN APPLICATION OF BIORTHONORMAL EXP POLYNOMIAL EXP CENERALIZED ASYMPTOTIC EXP THE USE OF INTEGRAL TRANSFORMS TO DETERMINE EXP	PANSIONS ASSOCIATED WITH THE N'TH POWER OF A PANSIONS FOR A CLASS OF DISTRIBUTION FUNCTIONS PANSIONS FOR TESTS OF GOODNESS OF FIT FOR LINEAR	AMS 63	1302
AUTORECRESSIVE SCHEMES ASYMPTOTIC EXP	PANSIONS FOR TESTS OF GOODNESS OF FIT FOR LINEAR	BIOKA64	459
CORRELATION COEFFICIENT ASYMPTOTIC EXP	PANSIONS FOR THE MEAN AND VARIANCE OF THE SERIAL	BIOKA61	B5
CORRELATION COEFFICIENT ASYMPTOTIC EXP.	PANSIONS FOR THE NUMENTS OF THE DISTRIBUTION OF	BIOKVEO	25B
ON SERIES EXP	PANSIONS FOR THE RENEWAL MOMENTS	BIOKA63	75
AN APPLICATION OF BIORTHONORMAL EXP.	PANSIONS IN THEORY OF STOCHASTIC PROCESSES	JRSSB68	334
POLYNOMIAL EXP	PANSIONS OF BIVARIATE DISTRIBUTIONS	AMS 64	120B
GENERALIZED ASYMPTOTIC EXP.	PANSIONS OF CORNISH-FISHER TYPE	AMS 68	1264
IO CRITERIA FOR COVARIANCE MATRIX ASYMPTOTIC EXP.	PANSIONS OF THE DISTRIBUTIONS OF THE LIKELIHOOD RAT	AMS 69	NO.6
IHOOD RATIO CRITERIA FOR MULTIVARIATE/ ASYMPTOTIC EXP.	PANSIONS OF THE NON-NULL DISTRIBUTIONS OF THE LIKEL		
MIGRATION EXP SUBSTITUTION IN CONDITIONAL EXP		JASA 63 AMS 6B	444 377
AN EXTREMAL PROPERTY OF THE CONDITIONAL EXP	PECTATION	BIOKA66	594
	PECTATION FOR SUMS OF BOUNDED, INDEPENDENT RANDOM V		
	PECTATION GIVEN A SIGMA-LATTICE AND APPLICATIONS		
		BIOKA59	
A NOTE ON THE RECIPROCAL OF THE CONDITIONAL EXPI CHARACTERIZATIONS OF CONDITIONAL EXPI		AMS 65 AMS 67	
INEQUALITIES OF CHEBYSHEV TYPE INVOLVING CONDITIONAL EXP		AMS 69	
OR SUM OF INDEPENDENT RANDOM VARIABLES WITH INFINITE EXPE			
ELATION COEFFICIENTS IN A COMPLEX STATIONARY TIME/ EXPI			
A NOTE ON THE RELATIONSHIP BETWEEN EARNING EXPLUSTERS AND SMALLEST INTERVALS SOME PROBABILITIES. EXPL		JASA 59 JASA 66	
FOR GOODNESS-OF-FIT OF THE NEGATIVE BINOMIAL WHEN EXP			
A REPRESENTATION FOR CONDITIONAL EXPE	PECTATIONS GIVEN SIGMA-LATTICES	AMS 66	1279
RENCE TO ACCIDENTS/ THE CHI-SQUARE TEST FOR SMALL EXP			
	PECTATIONS IN RELATION TO THOSE OF INDIVIDUAL FIRMS	JASA 5B AMS 62	
ON CONDITIONAL EXP		JASA 60	
ENT SIZES SOME RELATIONS BETWEEN EXPE	PECTATIONS OF ORDER STATISTICS IN SAMPLES OF DIFFER		
	PECTATIONS OF RANDOM VARIABLES WITHOUT EXPECTATIONS		
NEAN COLLEGE DV 10VNEUROIGI	PECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES PECTATIONS, VARIANCES AND COVARIANCES OF 'ANOVA'		
	PECTATIONS, VARIANCES AND COVARIANCES OF ANOVA PEGTATIONS, VARIANCES, AND GONVARIANCES OF ANOVA		
CIFICATION IN THE 'PARTIAL ADJUSTMENT' AND 'ADAPTIVE EXPE			
INTERVAL EXPE	PECTED ARC LENGTH OF A GAUSSIAN PROCESS ON A FINITE .	JRSSB56	257
	PECTED COVERAGE TO THE LEFT OF THE I'TH ORDER STATI		
TE OF GENE LOSS OF FOUR METHODS OF REPRODUCING FI/ EXPR BIOLOGICAL EXAMPLES OF SMALL EXPR		BIOGS65	
CHI-SQUARE GOODNESS-OF-FIT TESTS FOR SMALL BUT EQUAL EXPE			

TITLE WORD INDEX EXA - EXP

CHI-SQUARE GOODNESS OF FIT TEST WITH SMALL BUT EQUAL	EXPECTED	FREQUENCIES /XIMATION TO THE POWER OF THE	JASA 68	912
ION IN WHICH THE ABUNDANCES OF SPECIES ARE LO/ THE				
				73
ATUS OF AUTOMATIC PRODUCTION AND CONTROL DEVICES AND				
LISTING		MEAN SQUARE COMPONENTS	BIOCS65	
	EXPECTED	MEAN SQUARES FOR NESTED CLASSIFICATIONS	BIOCS69	427
ONLY ONE PARENT IS IDENTIFIED THE	EXPECTED	MEAN SQUARES IN GENETIC EXPERIMENTS WHEN	BIOCS65	436
		NUMBER OF ZEROS OF A STATIONARY GAUSSIAN	AMS 65	1043
MINANT ANALYSIS. NECESSARY SAMPLE SIZE, AND A/ ON				
, , , ,				
ON SEQUENTIAL TESTS WHICH MINIMIZE THE MAXIMUM			JASA 62	
PLANS WHICH APPROXIMATELY MINIMIZE THE MAXIMUM				67
RATIO TEST BOUNDS FOR THE	EXPECTED	SAMPLE SIZE IN A SEQUENTIAL PROBABILITY	JRSSB60	360
ASYMPTOTIC BEHAVIOR OF	EXPECTED	SAMPLE SIZE IN CERTAIN ONE-SIDED TESTS	AMS 64	36
		SAMPLE SIZES OF TWO SEQUENTIAL PROCEDURES FO	AMS 69	NO 6
NAL SELECTION ON NORMAL VARIABLES WITHIN S/ NOTES.				
		SIGNIFICANCE LEVEL AS A SENSITIVITY INDEX	JASA 65	420
ASYMPTOTIC APPROXIMATION TO THE			BIOKA69	
FINITE STOPPING TIME AND FINITE	EXPECTED	STOPPING TIME	JRSSB65	284
A GENERAL THEORY OF SUBJECTIVE PROBABILITIES AND	EXPECTED	UTILITIES	AMS 69	1419
BOUNDED	EXPECTED	UTILITY	AMS 67	1054
EXPONENTIALLY DECAYING UTILITY		UTILITY FOR QUEUES SERVICING MESSAGES WITH	AMS 61	587
ON THE	EXPECTED	VALUE OF A STOPPED MARTINGALE	AMS 66	
ON THE	EXPECTED	VALUE OF A STOPPED STOCHASTIC SEQUENCE	AMS 69	456
ON THE	EXPECTED		AMS 67	
A NOTE ON THE	EXPECTED	VALUE OF AN INVERSE MATRIX	BIOKA69	NO.3
		VALUES AND STANDARD DEVIATIONS OF THE RECIPR		
			AMS 62	
			AMS 66	
			BIOKA61	
NUMBER OF TERMS OF THE DAVID-JOHNSON SERIES FOR THE				79
CORRIGENDA, '	EXPECTED	VALUES OF NORMAL ORDER STATISTICS'	BIOKA61	476
		VALUES OF ORDER STATISTICS	AMS 65	1055
		VALUES OF ORDER STATISTICS AND PRODUCTS OF O		
·		VALUES OF ORDERED VARIATES AND THE SUM OF SQ		
			AMS 67	
		VALUES OF SAMPLE QUANTILES		
		-COVER AND LINEAR-UTILITY TOLERANCE INTERVALS		57
PROBLEMS IN ESTIMATING FEDERAL GOVERNMENT	EXPENDIT	JRES	JASA 59	717
DEGREES OF TRANSITORY INCOME ON INCOME ELASTICITY OF	EXPENDIT	JRES EFFECT OF VARYING	JASA 58	348
A STUDY OF RESPONSE ERRORS IN	EXPENDITU	JRES DATA FROM HOUSEHOLD INTERVIEWS	JASA 64	18
		JRES, WITH MAJOR EMPHASIS ON THE ROLE OF ASSE	JASA 63	648
OF DECISION-MAKING AS A RESULT OF LEARNING FROM				
COMPUTER EDITING OF SURVEY DATA, FIVE YEARS OF		JE IN BLS MANPOWER SURVEYS	JASA 66	375
		CE, AND GAINS AND LOSSES IN HUMAN CAPITAL	JASA 67	875
THE INFORMATION IN AN	EXPERIMEN	VT	JRSSB59	67
OF THE BEST TREATMENT IN A PAIRED-COMPARISON	EXPERIMEN	NT SELECTION	AMS 63	75
EFFICIENCY OF CERTAIN RANK TESTS FOR COMPARATIVE	EXPERIMEN	NT ASYMPTOTIC	AMS 67	90
TOTAL PROBABILITY OF THE UNOBSERVED OUTCOMES OF AN		TO DOMESTIC DIE		
			AMS 68	256
		VT THE ESTIMATION	AMS 68	256 529
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING	EXPERIMEN	VT ESTIMATION THE ESTIMATION	BIOCS65	256 529
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL	EXPERIMENT EXPERIMENT	VT	AMS 68 BIOCS65 SASJ 68	256 529 101
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL	EXPERIMENT EXPERIMENT EXPERIMENT	NT ESTIMATION THE NT THE ESTIMATION TO A DISTRIBUTION— NT ON A COMPLETE CLASS OF	AMS 68 BIOCS65 SASJ 68 AMS 63	256 529 101 769
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL	EXPERIMENT	THE ESTIMATION OF YATES' THE ESTIMATION ON A COMPLETE CLASS OF THE EXTENSION OF YATES'	AMS 68 BIOCS65 SASJ 68 AMS 63 TECH 68	256 529 101 769 575
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE	EXPERIMENT	THE ESTIMATION THE THE ESTIMATION THE COMPLETE CLASS OF THE EXTENSION OF YATES THE EXTENSION OF YATES THE ANONPARAMETRIC STATISTICAL	AMS 68 BIOCS65 SASJ 68 AMS 63 TECH 68 BIOCS65	256 529 101 769 575 936
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL	EXPERIMENT	THE ESTIMATION THE THE ESTIMATION T A DISTRIBUTION T ON A COMPLETE CLASS OF THE EXTENSION OF YATES' THE EXTENSION OF YATES' TO A NONPARAMETRIC STATISTICAL TO ON A SPECIAL SUBSET GIVING AN IRREGULAR	AMS 68 BIOCS65 SASJ 68 AMS 63 TECH 68 BIOCS65 JRSSB67	256 529 101 769 575 936 292
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL	EXPERIMENT	VT THE ESTIMATION AT A DISTRIBUTION— VT ON A COMPLETE CLASS OF VT THE EXTENSION OF YATES' VT A NONPARAMETRIC STATISTICAL VT ON A SPECIAL SUBSET GIVING AN IRREGULAR	AMS 68 BIOCS65 SASJ 68 AMS 63 TECH 68 BIOCS65 JRSSB67 TECH 67	
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL	EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN	NT (PARTIALLY CONFOUNDED 2-CUBE)		
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL	EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN	NT (PARTIALLY CONFOUNDED 2-CUBE) NT (PARTIALLY CONFOUNDED 2-CUBE)	TECH 67 TECH 67	170 490
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL	EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN	NT (PARTIALLY CONFOUNDED 2-CUBE) NT (PARTIALLY CONFOUNDED 2-CUBE) NT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL	TECH 67 TECH 67 JRSSB54	170 490 242
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL BALISM OF THE PUPAL STAGE BY ADULT FLOUR BESTLES, AN	EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN	NT (PARTIALLY CONFOUNDED 2-CUBE) NT (PARTIALLY CONFOUNDED 2-CUBE) NT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL NT AND A STOCHASTIC MODEL CANNI	TECH 67 TECH 67 JRSSB54 BIOCS68	170 490 242 247
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL BALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN CTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL	EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN	VT (PARTIALLY CONFOUNDED 2-CUBE) VT (PARTIALLY CONFOUNDED 2-CUBE) VT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL VT AND A STOCHASTIC MODEL CANNI VT AS CALCULATED BY YATES'S ALGORITHM /EFFE	TECH 67 TECH 67 JRSSB54 BIOCS68 BIOCS67	170 490 242 247 571
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL BALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN CTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL	EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN	VT (PARTIALLY CONFOUNDED 2-CUBE) VT (PARTIALLY CONFOUNDED 2-CUBE) VT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL VT AND A STOCHASTIC MODEL CANNI VT AS CALCULATED BY YATES'S ALGORITHM /EFFE VT AS ORTHOGONAL LINEAR COMBINATIONS OF THE O	TECH 67 TECH 67 JRSSB54 BIOCS68 BIOCS67 AMS 63	170 490 242 247 571 1068
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL BALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN CTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY, AN	EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN EXPERIMEN	VT (PARTIALLY CONFOUNDED 2-CUBE) VT (PARTIALLY CONFOUNDED 2-CUBE) VT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL VT AND A STOCHASTIC MODEL CANNI VT AS CALCULATED BY YATES'S ALGORITHM /EFFE VT AS ORTHOGONAL LINEAR COMBINATIONS OF THE O VT IN SURVEY DESIGN CONSUMER	TECH 67 TECH 67 JRSSB54 BIOCS68 BIOCS67 AMS 63 JASA 66	170 490 242 247 571 1068 658
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL ATOR THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN CTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY. AN ARE INADMISSIBLE	EXPERIMEN EXPERIMEN	NT (PARTIALLY CONFOUNDED 2-CUBE) TO (PARTIALLY CONFOUNDED 2-CUBE) TO (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL TO AND A STOCHASTIC MODEL CANNI TO AS CALCULATED BY YATES'S ALGORITHM /EFFE TO AS ORTHOGONAL LINEAR COMBINATIONS OF THE O TO TIN SURVEY DESIGN TO IN WHICH CERTAIN TREATMENT ARRANGEMENTS	TECH 67 TECH 67 JRSSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIOKA54	170 490 242 247 571 1068 658 287
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL ATOR THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN CTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY. AN ARE INADMISSIBLE	EXPERIMEN EXPERIMEN	NT (PARTIALLY CONFOUNDED 2-CUBE) TO (PARTIALLY CONFOUNDED 2-CUBE) TO (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL TO AND A STOCHASTIC MODEL CANNI TO AS CALCULATED BY YATES'S ALGORITHM /EFFE TO AS ORTHOGONAL LINEAR COMBINATIONS OF THE O TO TIN SURVEY DESIGN TO IN WHICH CERTAIN TREATMENT ARRANGEMENTS	TECH 67 TECH 67 JRSSB54 BIOCS68 BIOCS67 AMS 63 JASA 66	170 490 242 247 571 1068 658 287
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL BALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN CTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY, AN TREND IN A TIME SERIES A SAMPLING	EXPERIMEN EXPERIMEN	VT (PARTIALLY CONFOUNDED 2-CUBE) VT (PARTIALLY CONFOUNDED 2-CUBE) VT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL VT AND A STOCHASTIC MODEL CANNI VT AS CALCULATED BY YATES'S ALGORITHM /EFFE VT AS ORTHOGONAL LINEAR COMBINATIONS OF THE O VT IN SURVEY DESIGN CONSUMER	TECH 67 TECH 67 JRSSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIOKA54 JRSSB55	170 490 242 247 571 1068 658 287 115
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL BALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN CTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY. AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF	EXPERIMEN EXPERIMEN	VT (PARTIALLY CONFOUNDED 2-CUBE) VT (PARTIALLY CONFOUNDED 2-CUBE) VT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL VT AND A STOCHASTIC MODEL VT AS CALCULATED BY YATES'S ALGORITHM /EFFE VT AS ORFHOGONAL LINEAR COMBINATIONS OF THE O VT IN SURVEY DESIGN CONSUMER VT IN WHICH CERTAIN TREATMENT ARRANGEMENTS VT ON THE POWERS OF THE RECORDS TESTS FOR VT SIZES FOR DECISION REGARDING CERTAIN LINEA	TECH 67 TECH 67 JRSSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIOKA54 JRSSB55 JRSSB67	170 490 242 247 571 1068 658 287 115 503
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL BALISM OF THE PUPAL STAGE BY ADULT FLOUR BESTLES, AN CTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY, AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO-ACTIVE TRACER	EXPERIMEN EXPERIMEN	VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL VIT AND A STOCHASTIC MODEL CANNI VIT AS CALCULATED BY YATES'S ALGORITHM /EFFE VIT AS ORTHOGONAL LINEAR COMBINATIONS OF THE O VIT IN SURVEY DESIGN CONSUMER VIT IN WHICH CERTAIN TREATMENT ARRANGEMENTS VIT ON THE POWERS OF THE RECORDS TESTS FOR VIT SIZES FOR DECISION REGARDING CERTAIN LINEA VIT TO DETERMINE ROOT ACTIVITY IN POTATO PLANT	TECH 67 TECH 67 JRSSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIOKA54 JRSSB55 JRSSB67 BIOCS68	170 490 242 247 571 1068 658 287 115 503 717
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL BULL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY. AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO-ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK	EXPERIMEN EXPERIMEN	NT (PARTIALLY CONFOUNDED 2-CUBE) TT (PARTIALLY CONFOUNDED 2-CUBE) TT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL TANDA STOCHASTIC MODEL CANNI TAS CALCULATED BY YATES'S ALGORITHM /EFFE TAS ORTHOGONAL LINEAR COMBINATIONS OF THE O TI IN SURVEY DESIGN CONSUMER TI N WHICH CERTAIN TREATMENT ARRANGEMENTS TO NO THE POWERS OF THE RECORDS TESTS FOR TT SIZES FOR DECISION REGARDING CERTAIN LINEA TO DETERMINE ROOT ACTIVITY IN POTATO PLANT TWITH ADDITIONAL REPLICATION OF A CONTROL T	TECH 67 TECH 67 JRSSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIOKA54 JRSSB55 JRSSB67 BIOCS68 BIOCS66	170 490 242 247 571 1068 658 287 115 503 717 632
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL BALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN CTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY, AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO-ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING	EXPERIMEN EXPERIMEN	VT (PARTIALLY CONFOUNDED 2-CUBE) VT (PARTIALLY CONFOUNDED 2-CUBE) VT (WITH CONFOUNDED 2-CUBE) VT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL VT AND A STOCHASTIC MODEL CANNI VT AS CALCULATED BY YATES'S ALGORITHM /EFFE VT AS ORTHOGONAL LINEAR COMBINATIONS OF THE O VT IN SURVEY DESIGN CONSUMER VT IN WHICH CERTAIN TREATMENT ARRANGEMENTS VT ON THE POWERS OF THE RECORDS TESTS FOR VT SIZES FOR DECISION REGARDING CERTAIN LINEA VT TO DETERMINE ROOT ACTIVITY IN POTATO PLANT VT WITH ADDITIONAL REPLICATION OF A CONTROL T VT WITH CERTAIN CROSSES MISSING	TECH 67 TECH 67 JRSSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIOKA54 JRSSB55 JRSSB67 BIOCS68 BIOCS66 BIOCS65	170 490 242 247 571 1068 658 287 115 503 717 632 216
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL BALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN CTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY, AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO-ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION	EXPERIMEN EXPERIMEN	VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL VIT AND A STOCHASTIC MODEL CANNI VIT AS CALCULATED BY YATES'S ALGORITHM /EFFE VIT AS ORTHOGONAL LINEAR COMBINATIONS OF THE O VIT IN SURVEY DESIGN CONSUMER VIT IN WHICH CERTAIN TREATMENT ARRANGEMENTS VIT ON THE POWERS OF THE RECORDS TESTS FOR VIT SIZES FOR DECISION REGARDING CERTAIN LINEA VIT TO DETERMINE ROOT ACTIVITY IN POTATO PLANT VIT WITH ADDITIONAL REPLICATION OF A CONTROL T VIT WITH CERTAIN CROSSES MISSING VIT WITH WEIGHTED INDEXES OF CYCLICAL	TECH 67 TECH 67 JRSSB54 BIOCS67 AMS 63 JASA 66 BIOKA54 JRSSB55 JRSSB67 BIOCS68 BIOCS66 BIOCS65 JASA 58	170 490 242 247 571 1068 658 287 115 503 717 632 216 39
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL BULIN FOR THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN CTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY. AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO-ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION AN SPACE	EXPERIMEN EXPERIMEN	TY (PARTIALLY CONFOUNDED 2-CUBE) TY (PARTIALLY CONFOUNDED 2-CUBE) TY (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL TY AND A STOCHASTIC MODEL CANNI TY AS CALCULATED BY YATES'S ALGORITHM /EFFE TY AS ORTHOGONAL LINEAR COMBINATIONS OF THE O TY IN SURVEY DESIGN CONSUMER TY IN WHICH CERTAIN TREATMENT ARRANGEMENTS TY ON THE POWERS OF THE RECORDS TESTS FOR TY SIZES FOR DECISION REGARDING CERTAIN LINEA TY TO DETERMINE ROOT ACTIVITY IN POTATO PLANT TY WITH ADDITIONAL REPLICATION OF A CONTROL T TY WITH CERTAIN CROSSES MISSING TY WITH WEIGHTED INDEXES OF CYCLICAL TY. OPERATIONAL DEFINITION OF THE PROBABILITY	TECH 67 TECH 67 TECH 67 JRSSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIOKA54 JRSSB55 JRSSB67 BIOCS68 BIOCS66 BIOCS66 JASA 58 AMS 67	170 490 242 247 571 1068 658 287 115 503 717 632 216 39 401
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL ON ESTIMATES FOR FRACTIONS IN A 2 TO THE POWER N FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY, AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO-ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION AN SPACE THE THEORY OF THE GROUP SCREENING	EXPERIMEN EXPERIMEN	NT (PARTIALLY CONFOUNDED 2-CUBE) YT (PARTIALLY CONFOUNDED 2-CUBE) YT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL YT AND A STOCHASTIC MODEL CANNI YT AS CALCULATED BY YATES'S ALGORITHM /EFFE YT AS ORTHOGONAL LINEAR COMBINATIONS OF THE O YT IN SURVEY DESIGN CONSUMER YT IN WHICH CERTAIN TREATMENT ARRANGEMENTS YT ON THE POWERS OF THE RECORDS TESTS FOR YT SIZES FOR DECISION REGARDING CERTAIN LINEA YT TO DETERMINE ROOT ACTIVITY IN POTATO PLANT YT WITH ADDITIONAL REPLICATION OF A CONTROL T WITH CERTAIN CROSSES MISSING YT WITH WEIGHTED INDEXES OF CYCLICAL YT. OPERATIONAL DEFINITION OF THE PROBABILITY YT'	TECH 67	170 490 242 247 571 1068 658 287 115 503 717 632 216 39 401 397
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF FACTORIAL BALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN CTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY, AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO-ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION AN SPACE THE THEORY OF THE GROUP SCREENING LECTION OF THE BEST TREATMENT IN A PAIRED-COMPARISON	EXPERIMEN EXPERIMEN	VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL VIT AND A STOCHASTIC MODEL VIT AS CALCULATED BY YATES'S ALGORITHM /EFFE VIT AS ORTHOGONAL LINEAR COMBINATIONS OF THE O VIT IN SURVEY DESIGN CONSUMER VIT IN WHICH CERTAIN TREATMENT ARRANGEMENTS VIT ON THE POWERS OF THE RECORDS TESTS FOR VIT SIZES FOR DECISION REGARDING CERTAIN LINEA VIT OD DETERMINE ROOT ACTIVITY IN POTATO PLANT VIT WITH ADDITIONAL REPLICATION OF A CONTROL T VIT WITH CERTAIN CROSSES MISSING VIT WITH WEIGHTED INDEXES OF CYCLICAL VIT, OPERATIONAL DEFINITION OF THE PROBABILITY VIT' /ER OF TRAWINSKI AND DAVID ENTITLED 'SE	TECH 67 TECH 67 TECH 67 JASS544 BIOCS68 BIOCS67 AMS 63 JASA 66 BIOKA54 JRSSB55 JRSSB67 BIOCS68 BIOCS66 BIOCS66 BIOCS65 JASA 58 AMS 67 TECH 63 AMS 63	170 490 242 247 571 1068 658 287 115 503 717 632 216 39 401 397 92
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL ON ESTIMATES FOR FRACTIONS IN A 2 TO THE POWER N FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY, AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO-ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION AN SPACE THE THEORY OF THE GROUP SCREENING	EXPERIMEN EXPERIMEN	VT (PARTIALLY CONFOUNDED 2-CUBE) VT (PARTIALLY CONFOUNDED 2-CUBE) VT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL VT AND A STOCHASTIC MODEL CANNI VT AS CALCULATED BY YATES'S ALGORITHM /EFFE VT AS ORTHOGONAL LINEAR COMBINATIONS OF THE O VT IN SURVEY DESIGN CONSUMER VT IN WHICH CERTAIN TREATMENT ARRANGEMENTS VT ON THE POWERS OF THE RECORDS TESTS FOR VT SIZES FOR DECISION REGARDING CERTAIN LINEA VT TO DETERMINE ROOT ACTIVITY IN POTATO PLANT VT WITH ADDITIONAL REPLICATION OF A CONTROL T VT WITH WEIGHTED INDEXES OF CYCLICAL VT. OPERATIONAL DEFINITION OF THE PROBABILITY VT' VT' /ER OF TRAWINSKI AND DAVID ENTITLED 'SE VTAL CATEGORIES WITH A CONTROL /ASYMPTOTIC	TECH 67 TECH 67 TECH 67 JRSSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIOKA54 JRSSB57 BIOCS68 BIOCS66 BIOCS66 BIOCS66 BIOCS66 BIOCS66 AMS 67 TECH 63 AMS 63 AMS 63	170 490 242 247 571 1068 658 287 115 503 717 632 216 39 401 397 92 1486
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF FACTORIAL BALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN CTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY, AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO-ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION AN SPACE THE THEORY OF THE GROUP SCREENING LECTION OF THE BEST TREATMENT IN A PAIRED-COMPARISON	EXPERIMEN EXPERIMEN	VT (PARTIALLY CONFOUNDED 2-CUBE) VT (PARTIALLY CONFOUNDED 2-CUBE) VT (PARTIALLY CONFOUNDED 2-CUBE) VT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL VT AND A STOCHASTIC MODEL CANNI VT AS CALCULATED BY YATES'S ALGORITHM /EFFE VT AS ORTHOGONAL LINEAR COMBINATIONS OF THE O VT IN SURVEY DESIGN CONSUMER VT IN WHICH CERTAIN TREATMENT ARRANGEMENTS VT ON THE POWERS OF THE RECORDS TESTS FOR VT SIZES FOR DECISION REGARDING CERTAIN LINEA VT TO DETERMINE ROOT ACTIVITY IN POTATO PLANT VT WITH ADDITIONAL REPLICATION OF A CONTROL T VT WITH CERTAIN CROSSES MISSING VT WITH WEIGHTED INDEXES OF CYCLICAL VT. OPERATIONAL DEFINITION OF THE PROBABILITY VT' /ER OF TRAWINSKI AND DAVID ENTITLED 'SE VTAL CATEGORIES WITH A CONTROL /ASYMPTOTIC	TECH 67 TECH 67 TECH 67 JRSSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIOKA54 JRSSB57 BIOCS68 BIOCS66 BIOCS66 BIOCS66 BIOCS66 BIOCS66 AMS 67 TECH 63 AMS 63 AMS 63	170 490 242 247 571 1068 658 287 115 503 717 632 216 39 401 397 92 1486
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL BALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN CTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY, AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO-ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING IFFUSION AN SPACE A NOTE ON 'A STUDY OF THE GROUP SCREENING A NOTE ON 'A STUDY OF THE GROUP SCREENING ALLY OPTIMAL SEQUENTIAL DESIGN FOR COMPARING SEVERAL	EXPERIMENEXP	TY (PARTIALLY CONFOUNDED 2-CUBE) TY (PARTIALLY CONFOUNDED 2-CUBE) TY (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL TY AND A STOCHASTIC MODEL CANNI TY AS CALCULATED BY YATES'S ALGORITHM /EFFE TY AS ORTHOGONAL LINEAR COMBINATIONS OF THE O TY IN SURVEY DESIGN CONSUMER TY IN WHICH CERTAIN TREATMENT ARRANGEMENTS TY ON THE POWERS OF THE RECORDS TESTS FOR TY SIZES FOR DECISION REGARDING CERTAIN LINEA TY TO DETERMINE ROOT ACTIVITY IN POTATO PLANT TY WITH ADDITIONAL REPLICATION OF A CONTROL T TY WITH WEIGHTED INDEXES OF CYCLICAL TY. OPERATIONAL DEFINITION OF THE PROBABILITY TY! TY /ER OF TRAWINSKI AND DAVID ENTITLED 'SE TYAL CATEGORIES WITH A CONTROL /ASYMPTOTIC TYAL CATEGORIES WITH A CONTROL /CALLY OPTIM	TECH 67 TECH 67 TECH 67 JRSSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIOKA54 JRSSB57 BIOCS68 BIOCS66 BIOCS66 BIOCS66 BIOCS66 BIOCS66 AMS 67 TECH 63 AMS 63 AMS 63	170 490 242 247 571 1068 658 287 115 503 717 632 216 39 401 397 92 1486 1571
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL BALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN CTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY, AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO-ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION AN SPACE A NOTE ON 'A STUDY OF THE GROUP SCREENING LECTION OF THE BEST TREATMENT IN A PAIRED-COMPARISON ALLY OPPIMAL SEQUENTIAL DESIGN FOR COMPARING SEVERAL AL FIXED SAMPLE SIZE PROCEDURE FOR COMPARING SEVERAL ASEQUENTIAL PROCEDURE FOR COMPARING SEVERAL	EXPERIMEN EXPERIMEN	VT (PARTIALLY CONFOUNDED 2-CUBE) VT (PARTIALLY CONFOUNDED 2-CUBE) VT (PARTIALLY CONFOUNDED 2-CUBE) VT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL VT AND A STOCHASTIC MODEL VT AS CALCULATED BY YATES'S ALGORITHM /EFFE VT AS ORTHOGONAL LINEAR COMBINATIONS OF THE O VT IN SURVEY DESIGN VT IN WHICH CERTAIN TREATMENT ARRANGEMENTS VT ON THE POWERS OF THE RECORDS TESTS FOR VT SIZES FOR DECISION REGARDING CERTAIN LINEA VT TO DETERMINE ROOT ACTIVITY IN POTATO PLANT VT WITH ADDITIONAL REPLICATION OF A CONTROL VT WITH WEIGHTED INDEXES OF CYCLICAL VT. OPERATIONAL DEFINITION OF THE PROBABILITY VT' VT' /ER OF TRAWINSKI AND DAVID ENTITLED 'SE VTAL CATEGORIES WITH A CONTROL /CALLY OPTIM VTAL CATEGORIES WITH A STANDARD OR CONTROL	TECH 67 TECH 67 TECH 67 JRSSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIORA54 JRSSB55 JRSSB67 BIOCS66 BIOCS66 BIOCS65 JASA 58 AMS 67 TECH 63 AMS 63 AMS 64 AMS 64 AMS 64 AMS 64	170 490 242 247 571 1068 658 287 115 503 717 632 216 39 401 397 92 1486 1571
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2—TO—THE—N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK—RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY, AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO—ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION AN SPACE THE ANALYSIS OF THE THEORY OF A NOTE ON 'A STUDY OF THE GROUP SCREENING LECTION OF THE BEST TREATMENT IN A PAIRED—COMPARISON ALLY OPTIMAL SEQUENTIAL DESIGN FOR COMPARING SEVERAL AL FIXED SAMPLE SIZE PROCEDURE FOR COMPARING SEVERAL AS SEQUENTIAL PROCEDURE FOR COMPARING SEVERAL ING SPECIES OF TRIBOLIUM AND ITS APPLICATION TO SOME	EXPERIMENE EXPERIMENTE EXPERIME	VT (PARTIALLY CONFOUNDED 2-CUBE) VT (PARTIALLY CONFOUNDED 2-CUBE) VT (PARTIALLY CONFOUNDED 2-CUBE) VT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL VT AND A STOCHASTIC MODEL CANNI VT AS CALCULATED BY YATES'S ALGORITHM /EFFE VT AS ORTHOGONAL LINEAR COMBINATIONS OF THE O VT IN SURVEY DESIGN CONSUMER VT IN WHICH CERTAIN TREATMENT ARRANGEMENTS VT ON THE POWERS OF THE RECORDS TESTS FOR VT SIZES FOR DECISION REGARDING CERTAIN LINEA VT TO DETERMINE ROOT ACTIVITY IN POTATO PLANT VT WITH ADDITIONAL REPLICATION OF A CONTROL T VT WITH CERTAIN CROSSES MISSING VT WITH WEIGHTED INDEXES OF CYCLICAL VT. OPERATIONAL DEFINITION OF THE PROBABILITY VT' /ER OF TRAWINSKI AND DAVID ENTITLED 'SE VTAL CATEGORIES WITH A CONTROL /ASYMPTOTIC VTAL CATEGORIES WITH A CONTROL /CALLY OFTIM VTAL CATEGORIES WITH A STANDARD OR CONTROL VTAL CATEGORIES WITH A STANDARD OR CONTROL VTAL DATA A STOCHASTIC MODEL FOR TWO COMPET	TECH 67 TECH 67 TECH 67 JRSSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIORA54 JRSSB55 JRSSB67 BIOCS66 BIOCS66 BIOCS65 JASA 58 AMS 67 TECH 63 AMS 63 AMS 64 AMS 64 AMS 64 AMS 64	170 490 242 247 571 1068 658 287 115 503 717 632 216 39 401 397 92 1486 1571 438
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF FACTORIAL DATE OF THE POWER N FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY. AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO-ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION AND PROBABILITY. AN ARE INSTALL ANALYSIS OF A DIALLEL CROSSING NOTES. THE ANALYSIS OF A PARTIC PROPERTY OF A NOTES. THE ANALYSIS OF A PARTIC PROPERTY OF A NOTES. THE ANALYSIS OF A PARTIC PROPERTY OF A NOTES. THE ANALYSIS OF A PARTIC PROPERTY OF A NOTES. THE ANALYSIS OF A PARTIC PROPERTY OF A STUDY OF THE GROUP SCREENING LECTION OF THE BEST TREATMENT IN A PAIRED—COMPARISON ALLY OPTIMAL SEQUENTIAL DESIGN FOR COMPARING SEVERAL A SEQUENTIAL DESIGN FOR COMPARING SEVERAL A SEQUENTIAL PROCEDURE FOR COMPARING SEVERAL AS SEQUENTIAL PROCEDURE FOR COMPARING SEVERAL A SEQUENTIAL PROCEDURE FOR COMPARING SEVERAL AND THE FACTOR LEVELS AND THE EFFECTS OF ERRORS IN THE FACTOR LEVELS AND	EXPERIMENE EXPERIMENTE EXPE	VT (PARTIALLY CONFOUNDED 2-CUBE) VT (PARTIALLY CONFOUNDED 2-CUBE) VT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL VT AND A STOCHASTIC MODEL CANNI VT AS CALCULATED BY YATES'S ALGORITHM /EFFE VT AS ORTHOGONAL LINEAR COMBINATIONS OF THE O VT IN SURVEY DESIGN CONSUMER VT IN WHICH CERTAIN TREATMENT ARRANGEMENTS VT ON THE POWERS OF THE RECORDS TESTS FOR VT SIZES FOR DECISION REGARDING CERTAIN LINEA VT TO DETERMINE ROOT ACTIVITY IN POTATO PLANT VT WITH ADDITIONAL REPLICATION OF A CONTROL T VT WITH WEIGHTED INDEXES OF CYCLICAL VT. OPERATIONAL DEFINITION OF THE PROBABILITY VT' VT' VT' /ER OF TRAWINSKI AND DAVID ENTITLED 'SE VTAL CATEGORIES WITH A CONTROL /ASYMPTOTIC VTAL CATEGORIES WITH A CONTROL /CALLY OPTIM VTAL CATEGORIES WITH A STANDARD OR CONTROL VTAL DESIGN	TECH 67 TECH 67 TECH 67 JRSSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIOKA54 JRSSB55 BIOCS66 BIOCS66 BIOCS66 BIOCS66 BIOCS66 AMS 67 TECH 63 AMS 63 AMS 64 AMS 62 BIOCS66 AMS 64 AMS 62 TECH 63	170 490 242 247 571 1068 658 287 115 503 717 632 216 39 401 397 92 1486 1571 438
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL ON ESTIMATES FOR FRACTIONS IN A 2 TO THE POWER N FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY. AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO-ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION SPACE THE THEORY OF A NOTE ON 'A STUDY OF THE GROUP SCREENING LECTION OF THE BEST TREATMENT IN A PAIRED-COMPARISON ALLY OPTIMAL SEQUENTIAL DESIGN FOR COMPARING SEVERAL A SEQUENTIAL PROCEDURE FOR COMPARING SEVERAL ING SPECIES OF TRIBOLIUM AND ITS APPLICATION TO SOME THE EFFECTS OF ERRORS IN THE FACTOR LEVELS AND OPTIMAL STOPPING AND	EXPERIMENE EXPERIMENTE EXPE	NT (PARTIALLY CONFOUNDED 2-CUBE) TT (PARTIALLY CONFOUNDED 2-CUBE) TT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL NT AND A STOCHASTIC MODEL CANNI NT AS CALCULATED BY YATES'S ALGORITHM /EFFE NT AS ORTHOGONAL LINEAR COMBINATIONS OF THE O NT IN SURVEY DESIGN CONSUMER NT IN WHICH CERTAIN TREATMENT ARRANGEMENTS NT ON THE POWERS OF THE RECORDS TESTS FOR NT SIZES FOR DECISION REGARDING CERTAIN LINEA NT TO DETERMINE ROOT ACTIVITY IN POTATO PLANT NT WITH ADDITIONAL REPLICATION OF A CONTROL T TH WITH CERTAIN CROSSES MISSING NT WITH WEIGHTED INDEXES OF CYCLICAL NT. OPERATIONAL DEFINITION OF THE PROBABILITY NT' NT' /ER OF TRAWINSKI AND DAVID ENTITLED 'SE NTAL CATEGORIES WITH A CONTROL /ASYMPTOTIC NTAL CATEGORIES WITH A CONTROL /CALLY OPTIM NTAL CATEGORIES WITH A STANDARD OR CONTROL NTAL CATEGORIES WITH A STANDARD OR COMPET NTAL DESIGN NTAL DESIGN	TECH 67 TECH 67 TECH 67 JASSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIOKA55 JRSSB55 JRSSB67 BIOCS66 BIOCS66 BIOCS65 JASA 58 AMS 63 AMS 63 AMS 64 AMS 63 AMS 64 AMS 62 BIOKA62 TECH 63 AMS 64 AMS 64 AMS 66	170 490 242 247 571 1068 287 115 503 717 632 216 39 401 397 92 401 397 1486 1571 438 1 247 7
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2—TO—THE—N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK—RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF FACTORIAL DATA ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY, AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO—ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION AN SPACE THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION AN SPACE THE ANALYSIS OF COMPARING SEVERAL AL FIXED SAMPLE SIZE PROCEDURE FOR COMPARING SEVERAL AL FIXED SAMPLE SIZE PROCEDURE FOR COMPARING SEVERAL AL FIXED SAMPLE SIZE PROCEDURE FOR COMPARING SEVERAL ING SPECIES OF TRIBOLIUM AND ITS APPLICATION TO SOME THE EFFECTS OF ERRORS IN THE FACTOR LEVELS AND MULTIPLE CLASSIFICATION ANALYSIS FOR ARBITRARY	EXPERIMENE EXPERIMENT	VT (PARTIALLY CONFOUNDED 2-CUBE) VT (PARTIALLY CONFOUNDED 2-CUBE) VT (PARTIALLY CONFOUNDED 2-CUBE) VT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL VT AND A STOCHASTIC MODEL CANNI VT AS CALCULATED BY YATES'S ALGORITHM /EFFE VT AS ORTHOGONAL LINEAR COMBINATIONS OF THE O VT IN SURVEY DESIGN CONSUMER VT IN WHICH CERTAIN TREATMENT ARRANGEMENTS VT ON THE POWERS OF THE RECORDS TESTS FOR VT SIZES FOR DECISION REGARDING CERTAIN LINEA VT TO DETERMINE ROOT ACTIVITY IN POTATO PLANT VT WITH ADDITIONAL REPLICATION OF A CONTROL T VT WITH WEIGHTED INDEXES OF CYCLICAL VT. OPERATIONAL DEFINITION OF THE PROBABILITY VT' /ER OF TRAWINSKI AND DAVID ENTITLED 'SE VTAL CATEGORIES WITH A CONTROL /ASYMPTOTIC VTAL CATEGORIES WITH A STANDARD OR CONTROL VTAL DATA A STOCHASTIC MODEL FOR TWO COMPET VTAL DESIGN VTAL DESIGN VTAL DESIGN	TECH 67 TECH 67 TECH 67 JASSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIOKA54 JRSSB55 JRSSB57 BIOCS68 BIOCS66 BIOCS65 JASA 58 AMS 67 TECH 63 AMS 64 AMS 64 BIOKA62 BIOKA62 TECH 63 AMS 64 TECH 63	170 490 242 247 571 1068 658 287 115 503 717 632 216 39 401 397 92 1486 1571 438 1 247 7 13
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2—TO—THE—N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK—RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF FACTORIAL ATOR THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN CTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY, AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO—ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING SPACE A NOTE ON 'A STUDY OF THE GROUP SCREENING LECTION OF THE BEST TREATMENT IN A PAIRED—COMPARISON ALLY OPTIMAL SEQUENTIAL DESIGN FOR COMPARING SEVERAL A SEQUENTIAL PROCEDURE FOR COMPARING SEVERAL AND OPTIMAL STOPPING A	EXPERIMENE EXPERIMENT	VT (PARTIALLY CONFOUNDED 2-CUBE) VT (PARTIALLY CONFOUNDED 2-CUBE) VT (PARTIALLY CONFOUNDED 2-CUBE) VT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL VT AND A STOCHASTIC MODEL CANNI VT AS CALCULATED BY YATES'S ALGORITHM /EFFE VT AS ORTHOGONAL LINEAR COMBINATIONS OF THE O VT IN SURVEY DESIGN CONSUMER VT IN WHICH CERTAIN TREATMENT ARRANGEMENTS VT ON THE POWERS OF THE RECORDS TESTS FOR VT SIZES FOR DECISION REGARDING CERTAIN LINEA VT TO DETERMINE ROOT ACTIVITY IN POTATO PLANT VT WITH ADDITIONAL REPLICATION OF A CONTROL T VT WITH WEIGHTED INDEXES OF CYCLICAL VT. OPERATIONAL DEFINITION OF THE PROBABILITY VT' VT' VT' /ER OF TRAWINSKI AND DAVID ENTITLED 'SE VTAL CATEGORIES WITH A CONTROL /ASYMPTOTIC VTAL CATEGORIES WITH A CONTROL /CALLY OPTIM VTAL CATEGORIES WITH A STANDARD OR CONTROL VTAL CATEGORIES WITH A STANDARD OR CONTROL VTAL DESIGN	TECH 67 TECH 67 TECH 67 JASSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIOKA54 JRSSB57 BIOCS68 BIOCS66 BIOCS66 BIOCS66 BIOCS66 AMS 67 TECH 63 AMS 63 AMS 64 AMS 64 AMS 62 BIOKA62 TECH 63 AMS 66 BIOKA657	170 490 242 247 571 1068 287 115 503 717 632 216 39 401 397 92 1486 1571 438 1 247 7 13 150
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2—TO-THE—N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL ATOR THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN CTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY. AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO—ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION SPACE A NOTE ON 'A STUDY OF THE GROUP SCREENING LECTION OF THE BEST TREATMENT IN A PAIRED—COMPARISON ALLY OPTIMAL SEQUENTIAL DESIGN FOR COMPARING SEVERAL A SEQUENTIAL PROCEDURE FOR COMPARING SEVERAL ASEQUENT AND OPTIMAL STOPPING AND OPTIMAL STOPPING AND OPTIMAL STOPPING AN	EXPERIMENE EXPERIMENTE E	TY (PARTIALLY CONFOUNDED 2-CUBE) TY (PARTIALLY CONFOUNDED 2-CUBE) TY (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL TY AND A STOCHASTIC MODEL CANNI TY AS CALCULATED BY YATES'S ALGORITHM /EFFE TY AS ORTHOGONAL LINEAR COMBINATIONS OF THE O TY IN SURVEY DESIGN CONSUMER TY IN WHICH CERTAIN TREATMENT ARRANGEMENTS TY ON THE POWERS OF THE RECORDS TESTS FOR TY SIZES FOR DECISION REGARDING CERTAIN LINEA TY TO DETERMINE ROOT ACTIVITY IN POTATO PLANT TY WITH ADDITIONAL REPLICATION OF A CONTROL T TY WITH CERTAIN CROSSES MISSING TY WITH WEIGHTED INDEXES OF CYCLICAL TY. OPERATIONAL DEFINITION OF THE PROBABILITY TY' YI' /ER OF TRAWINSKI AND DAVID ENTITLED 'SE TYAL CATEGORIES WITH A CONTROL /ASYMPTOTIC TYAL CATEGORIES WITH A CONTROL /CALLY OPTIM TYAL CATEGORIES WITH A STANDARD OR CONTROL TYAL DATA A STOCHASTIC MODEL FOR TWO COMPET TYAL DESIGN	TECH 67 TECH 67 TECH 67 JASSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIOKA55 JRSSB55 JRSSB67 BIOCS66 BIOCS66 BIOCS65 JASA 58 AMS 63 AMS 64 AMS 63 AMS 64 AMS 63 AMS 64 AMS 62 BIOKA62 TECH 63 AMS 66 TECH 68 BIOKA657	170 490 242 247 571 1068 658 287 115 503 717 632 216 39 401 397 92 1486 1571 438 1 247 7 13 150 1315
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2—TO—THE—N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK—RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF FACTORIAL DATA ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN CTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL DATA ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY, AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO—ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION AN SPACE THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION AN SPACE THE TREATMENT IN A PAIRED—COMPARISON ALLY OPTIMAL SEQUENTIAL DESIGN FOR COMPARING SEVERAL AL FIXED SAMPLE SIZE PROCEDURE FOR COMPARING SEVERAL AL FIXED SOFT TRIBOLIUM AND ITS APPLICATION TO SOME THE EFFECTS OF ERRORS IN THE FACTOR LEVELS AND OPTIMAL STOPPING AND MULTIPLE CLASSIFICATION ANALYSIS FOR ARBITRARY THE USE OF A CONCOMITANT VARIABLE IN SELECTING AN EXPERIMENTS WITH ECONOMIC SYSTEMS. THE PROBLEM OF SET OF SIMULTANEOUS EQUATIONS WITH AN APPLICATION TO	EXPERIMENE EXPERIMENT	VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL VIT AND A STOCHASTIC MODEL VIT AS CALCULATED BY YATES'S ALGORITHM / FFFE VIT AS ORTHOGONAL LINEAR COMBINATIONS OF THE O VIT IN SURVEY DESIGN VIT IN WHICH CERTAIN TREATMENT ARRANGEMENTS VIT ON THE POWERS OF THE RECORDS TESTS FOR VIT SIZES FOR DECISION REGARDING CERTAIN LINEAR VIT OD DETERMINE ROOT ACTIVITY IN POTATO PLANT VIT WITH ADDITIONAL REPLICATION OF A CONTROL TO WITH WEIGHTED INDEXES OF CYCLICAL VIT. OPERATIONAL DEFINITION OF THE PROBABILITY VIT' / ER OF TRAWINSKI AND DAVID ENTITLED 'SE VITAL CATEGORIES WITH A CONTROL / ASYMPTOTIC VITAL CATEGORIES WITH A CONTROL / CALLY OPTIM VITAL CATEGORIES WITH A STANDARD OR CONTROL VITAL DESIGN / REGION FOR THE SOLUTION OF A	TECH 67 TECH 67 TECH 67 JASSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIOKA54 JASSB55 JRSSB57 BIOCS68 BIOCS65 JASA 58 BIOCS65 JASA 58 AMS 67 TECH 63 AMS 64 AMS 64 AMS 64 ECH 68 BIOKA62 TECH 63 AMS 64 TECH 63 AMS 64 TECH 63 AMS 65 TECH 63 AMS 65 TECH 63 AMS 65 TECH 63 AMS 65 TECH 68	170 490 242 247 571 1068 658 287 115 632 216 39 401 397 92 1486 1571 438 1 247 7 13 150 1519
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2—TO—THE—N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK—RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF FACTORIAL DATA ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN CTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL DATA ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY, AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO—ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION AN SPACE THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION AN SPACE THE TREATMENT IN A PAIRED—COMPARISON ALLY OPTIMAL SEQUENTIAL DESIGN FOR COMPARING SEVERAL AL FIXED SAMPLE SIZE PROCEDURE FOR COMPARING SEVERAL AL FIXED SOFT TRIBOLIUM AND ITS APPLICATION TO SOME THE EFFECTS OF ERRORS IN THE FACTOR LEVELS AND OPTIMAL STOPPING AND MULTIPLE CLASSIFICATION ANALYSIS FOR ARBITRARY THE USE OF A CONCOMITANT VARIABLE IN SELECTING AN EXPERIMENTS WITH ECONOMIC SYSTEMS. THE PROBLEM OF SET OF SIMULTANEOUS EQUATIONS WITH AN APPLICATION TO	EXPERIMENE EXPERIMENT	TY (PARTIALLY CONFOUNDED 2-CUBE) TY (PARTIALLY CONFOUNDED 2-CUBE) TY (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL TY AND A STOCHASTIC MODEL CANNI TY AS CALCULATED BY YATES'S ALGORITHM /EFFE TY AS ORTHOGONAL LINEAR COMBINATIONS OF THE O TY IN SURVEY DESIGN CONSUMER TY IN WHICH CERTAIN TREATMENT ARRANGEMENTS TY ON THE POWERS OF THE RECORDS TESTS FOR TY SIZES FOR DECISION REGARDING CERTAIN LINEA TY TO DETERMINE ROOT ACTIVITY IN POTATO PLANT TY WITH ADDITIONAL REPLICATION OF A CONTROL T TY WITH CERTAIN CROSSES MISSING TY WITH WEIGHTED INDEXES OF CYCLICAL TY. OPERATIONAL DEFINITION OF THE PROBABILITY TY' YI' /ER OF TRAWINSKI AND DAVID ENTITLED 'SE TYAL CATEGORIES WITH A CONTROL /ASYMPTOTIC TYAL CATEGORIES WITH A CONTROL /CALLY OPTIM TYAL CATEGORIES WITH A STANDARD OR CONTROL TYAL DATA A STOCHASTIC MODEL FOR TWO COMPET TYAL DESIGN	TECH 67 TECH 67 TECH 67 JRSSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIOKA54 JRSSB55 BIOCS68 BIOCS66 BIOCS66 BIOCS66 BIOCS66 AMS 67 TECH 63 AMS 63 AMS 64 AMS 64 AMS 64 AMS 64 BIOKA62 TECH 63 AMS 64 BIOKA62 TECH 63 AMS 64 BIOKA62 TECH 63 AMS 64 AMS 64 BIOKA62 TECH 63 AMS 64 AMS 64 AMS 64 BIOKA62 TECH 63 AMS 66 TECH 63 AMS 66 BIOKA62 TECH 63 BIOKA64 TECH 69	170 490 242 247 571 1068 658 287 115 503 717 632 216 39 401 397 92 1486 1571 438 1 247 7 13 150 1315 190 461
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2—TO-THE—N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL ON ESTIMATES FOR FRACTIONS IN A 2 TO THE POWER N FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY. AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO—ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION AN OFF THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION AND PROBABILITY. AN ARE INADMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION AND PROBABILITY OF THE BEST TREATMENT IN A PAIRED—COMPARISON AND SPACE THE THEORY OF A STUDY OF THE GROUP SCREENING LECTION OF THE BEST TREATMENT IN A PAIRED—COMPARISON ALLY OPTIMAL SEQUENTIAL DESIGN FOR COMPARING SEVERAL A SEQUENTIAL DESIGN FOR COMPARING SEVERAL A SEQUENTIAL PROCEDURE FOR COMPARING SEVERAL A SEQUENTIAL DESIGN FOR COMPARING SEVERAL A SEQUENTIAL PROCEDURE FOR COMPARING SEVERAL ASSOCIATION AND SEXPERMENTS WITH ECONOMIC SYSTEMS. THE PROBLEM OF SET OF SIMUL	EXPERIMENE EXPERIMENTE EXPE	NT (PARTIALLY CONFOUNDED 2-CUBE) NT (PARTIALLY CONFOUNDED 2-CUBE) NT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL NT AND A STOCHASTIC MODEL CANNI NT AS CALCULATED BY YATES'S ALGORITHM /EFFE NT AS CALCULATED BY YATES'S ALGORITHM /EFFE NT AS ORTHOGONAL LINEAR COMBINATIONS OF THE O NT IN SURVEY DESIGN CONSUMER NT IN WHICH CERTAIN TREATMENT ARRANGEMENTS NT ON THE POWERS OF THE RECORDS TESTS FOR NT SIZES FOR DECISION REGARDING CERTAIN LINEA NT TO DETERMINE ROOT ACTIVITY IN POTATO PLANT NT WITH ADDITIONAL REPLICATION OF A CONTROL T NT WITH WEIGHTED INDEXES OF CYCLICAL NT. OPERATIONAL DEFINITION OF THE PROBABILITY NT' /ER OF TRAWINSKI AND DAVID ENTITLED 'SE NTAL CATEGORIES WITH A CONTROL /ASYMPTOTIC NTAL CATEGORIES WITH A CONTROL /CALLY OPTIM NTAL CATEGORIES WITH A STANDARD OR CONTROL NTAL DESIGN NTAL DESIGN NTAL DESIGN NTAL DESIGN NTAL DESIGN /REGION FOR THE SOLUTION OF A NTAL DESIGN PROBLEMS IN ATTRIBUTE LIFE	TECH 67 TECH 67 TECH 67 JASSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIOKA54 JRSSB55 BIOCS66 BIOCS66 BIOCS66 BIOCS66 BIOCS66 AMS 67 TECH 63 AMS 64 AMS 62 TECH 63 AMS 64 AMS 66 TECH 63	170 490 242 247 571 1068 658 287 115 503 717 632 216 39 401 397 92 1486 1571 438 1 247 7 150 1315 190 461 668
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2—TO-THE—N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL ON ESTIMATES FOR FRACTIONS IN A 2 TO THE POWER N FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY. AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO—ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION AN OFF THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION AND PROBABILITY. AN ARE INADMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION AND PROBABILITY OF THE BEST TREATMENT IN A PAIRED—COMPARISON AND SPACE THE THEORY OF A STUDY OF THE GROUP SCREENING LECTION OF THE BEST TREATMENT IN A PAIRED—COMPARISON ALLY OPTIMAL SEQUENTIAL DESIGN FOR COMPARING SEVERAL A SEQUENTIAL DESIGN FOR COMPARING SEVERAL A SEQUENTIAL PROCEDURE FOR COMPARING SEVERAL A SEQUENTIAL DESIGN FOR COMPARING SEVERAL A SEQUENTIAL PROCEDURE FOR COMPARING SEVERAL ASSOCIATION AND SEXPERMENTS WITH ECONOMIC SYSTEMS. THE PROBLEM OF SET OF SIMUL	EXPERIMENE EXPERIMENTE EXPE	NT (PARTIALLY CONFOUNDED 2-CUBE) NT (PARTIALLY CONFOUNDED 2-CUBE) NT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL NT AND A STOCHASTIC MODEL CANNI NT AS CALCULATED BY YATES'S ALGORITHM /EFFE NT AS CALCULATED BY YATES'S ALGORITHM /EFFE NT AS ORTHOGONAL LINEAR COMBINATIONS OF THE O NT IN SURVEY DESIGN CONSUMER NT IN WHICH CERTAIN TREATMENT ARRANGEMENTS NT ON THE POWERS OF THE RECORDS TESTS FOR NT SIZES FOR DECISION REGARDING CERTAIN LINEA NT TO DETERMINE ROOT ACTIVITY IN POTATO PLANT NT WITH ADDITIONAL REPLICATION OF A CONTROL T NT WITH WEIGHTED INDEXES OF CYCLICAL NT. OPERATIONAL DEFINITION OF THE PROBABILITY NT' /ER OF TRAWINSKI AND DAVID ENTITLED 'SE NTAL CATEGORIES WITH A CONTROL /ASYMPTOTIC NTAL CATEGORIES WITH A CONTROL /CALLY OPTIM NTAL CATEGORIES WITH A STANDARD OR CONTROL NTAL DESIGN NTAL DESIGN NTAL DESIGN NTAL DESIGN NTAL DESIGN /REGION FOR THE SOLUTION OF A NTAL DESIGN PROBLEMS IN ATTRIBUTE LIFE	TECH 67 TECH 67 TECH 67 JRSSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIOKA54 JRSSB55 BIOCS68 BIOCS66 BIOCS66 BIOCS66 BIOCS66 AMS 67 TECH 63 AMS 63 AMS 64 AMS 64 AMS 64 AMS 64 BIOKA62 TECH 63 AMS 64 BIOKA62 TECH 63 AMS 64 BIOKA62 TECH 63 AMS 64 AMS 64 BIOKA62 TECH 63 AMS 64 AMS 64 AMS 64 BIOKA62 TECH 63 AMS 66 TECH 63 AMS 66 BIOKA62 TECH 63 BIOKA64 TECH 69	170 490 242 247 571 1068 658 287 115 503 717 632 216 39 401 397 92 1486 1571 438 1 247 7 150 1315 190 461 668
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2—TO—THE—N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK—RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL ON ESTIMATES FOR FRACTIONS IN A 2 TO THE POWER N FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY. AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO—ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION SPACE THE THEORY OF A NOTE ON 'A STUDY OF THE GROUP SCREENING LECTION OF THE BEST TREATMENT IN A PAIRED—COMPARISON ALLY OPTIMAL SEQUENTIAL DESIGN FOR COMPARING SEVERAL A SEQUENTIAL PROCEDURE FOR COMPARING SEVERAL A SEQUENTIAL DESIGN FOR COMPARING SEVERAL A SEQUENTIAL PROCEDURE FOR COMPARING SEVERAL ING SPECIES OF TRIBOLIUM AND ITS APPLICATION TO SOME THE EFFECTS OF ERRORS IN THE FACTOR LEVELS AND OPTIMAL STOPPING AND MULTIPLE CLASSIFICATION ANALYSIS FOR ABBITRARY THE USE OF A CONCOMITANT VARIABLE IN SELECTING AN EXPERIMENTS WITH ECONOMIC SYSTEMS. THE PROBLEM OF SET OF SIMULTANEOUS EQUATIONS WITH AN APPLICATION TO MINIMUM BIAS ESTIMATION AND MINIMUM BIAS ESTIMAT	EXPERIMENE EXPERIMENTE EXPE	VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL VIT AND A STOCHASTIC MODEL VIT AND A STOCHASTIC MODEL VIT AS CALCULATED BY YATES'S ALGORITHM VET AS ORTHOGONAL LINEAR COMBINATIONS OF THE O VIT IN SURVEY DESIGN VIT IN WHICH CERTAIN TREATMENT ARRANGEMENTS VIT ON THE POWERS OF THE RECORDS TESTS FOR VIT SIZES FOR DECISION REGARDING CERTAIN LINEA VIT OD DETERMINE ROOT ACTIVITY IN POTATO PLANT VIT WITH ADDITIONAL REPLICATION OF A CONTROL VIT WITH WEIGHTED INDEXES OF CYCLICAL VIT. OPERATIONAL DEFINITION OF THE PROBABILITY VIT' VIT' VET OF TRAWINSKI AND DAVID ENTITLED 'SE VITAL CATEGORIES WITH A CONTROL VITAL CATEGORIES WITH A CONTROL VITAL CATEGORIES WITH A STANDARD OR CONTROL VITAL DATA VITAL CESIGN VITAL DESIGN FOR RESPONSE SURFACES VITAL CESIGN FOR RESPONSE SURFACES VITAL DESIGN FOR RESPONSE SURFACES VITAL DESIGN FOR RESPONSE SURFACES VITAL DESIGN PROBLEMS IN ATTRIBUTE LIFE VITAL DESIGN WITH NORMAL CORRELATION	TECH 67 TECH 67 TECH 67 JRSSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIORA55 JRSSB67 BIOCS66 BIOCS66 BIOCS65 JASA 58 BIOCS65 JASA 58 AMS 63 AMS 63 AMS 63 AMS 64 AMS 66 TECH 63 AMS 66 TECH 63 TECH 63 TECH 63 TECH 63 TECH 63 TECH 63 TECH 64 TECH 64 TECH 68 BIOKA57 JASA 67 BIOKA54 TECH 69 JASA 62 BIOKA56 BIOKA56	170 490 242 247 571 1068 658 287 117 632 216 39 401 397 92 1486 1571 438 1 247 7 13 150 461 668 434
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2—TO—THE—N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK—RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN CTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY, AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO—ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION AN SPACE THE ANALYSIS OF A DIALLEL CROSSING LECTION OF THE BEST TREATMENT IN A PAIRED—COMPARISON ALLY OPTIMAL SEQUENTIAL DESIGN FOR COMPARING SEVERAL AL FIXED SAMPLE SIZE PROCEDURE FOR COMPARING SEVERAL AL FIXED SAMPLE SIZE PROCEDURE FOR COMPARING SEVERAL AL FIXED SAMPLE SIZE PROCEDURE FOR COMPARING SEVERAL ING SPECIES OF TRIBOLIUM AND ITS APPLICATION TO SOME THE EFFECTS OF ERRORS IN THE FACTOR LEVELS AND OPTIMAL STOPPING AND MULTIPLE CLASSIFICATION ANALYSIS FOR ARBITRARY THE USE OF A CONCOMITANT VARIABLE IN SELECTING AN EXPERIMENTS WITH ECONOMIC SYSTEMS. THE PROBLEM OF SET OF SIMULTANEOUS EQUATIONS WITH AN APPLICATION TO MINIMUM BIAS ESTIMATION AND TESTING, CORR. 63 1161 SOME NOTES. SIMULTANEOUS CONFIDENCE INTERVALS AND 'THE USE OF A CONCOMITANT VARIABLE IN SELECTING AN INDIBACTORY OF A CONCOMITANT VARIABLE IN SELECTING AND THE FOR COMPACTION TO SOME THE PROBLEM OF A CONCOMITANT VARIABLE IN S	EXPERIMENE EXPERIMENTE EXPE	VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL VIT AND A STOCHASTIC MODEL CANNI VIT AS CALCULATED BY YATES'S ALGORITHM /EFFE VIT AS ORTHOGONAL LINEAR COMBINATIONS OF THE OUT IN SURVEY DESIGN CONSUMER VIT IN WHICH CERTAIN TREATMENT ARRANGEMENTS VIT ON THE POWERS OF THE RECORDS TESTS FOR VIT SIZES FOR DECISION REGARDING CERTAIN LINEA VIT TO DETERMINE ROOT ACTIVITY IN POTATO PLANT VIT WITH ADDITIONAL REPLICATION OF A CONTROL T VIT WITH WEIGHTED INDEXES OF CYCLICAL VIT. OPERATIONAL DEFINITION OF THE PROBABILITY VIT' /ER OF TRAWINSKI AND DAVID ENTITLED 'SE VITAL CATEGORIES WITH A CONTROL /ASYMPTOTIC VITAL CATEGORIES WITH A CONTROL /ASYMPTOTIC VITAL CATEGORIES WITH A STANDARD OR CONTROL VITAL DESIGN VITAL DESIGN VITAL DESIGN VITAL DESIGN VITAL DESIGN /REGION FOR THE SOLUTION OF A VITAL DESIGN /REGION FOR THE SOLUTION OF A VITAL DESIGN PROBLEMS IN ATTRIBUTE LIFE VITAL DESIGN FOR RESPONSE SURFACES VITAL DESIGN FOR RESPONSE SURFACES VITAL DESIGN WITH NORMAL CORRELATION VITAL DESIGN WITH NORMAL CORRELATION VITAL DESIGN WITH NORMAL CORRELATION VITAL DESIGN TO RESPONSE SURFACES VITAL DESIGN WITH NORMAL CORRELATION VITAL DESIGN VITAL DESIGN CORRIGENDA TO	TECH 67 TECH 67 TECH 67 JRSSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIORA55 JRSSB67 BIOCS66 BIOCS66 BIOCS65 JASA 58 BIOCS65 JASA 58 AMS 63 AMS 63 AMS 63 AMS 64 AMS 66 TECH 63 AMS 66 TECH 63 TECH 63 TECH 63 TECH 63 TECH 63 TECH 63 TECH 64 TECH 64 TECH 68 BIOKA57 JASA 67 BIOKA54 TECH 69 JASA 62 BIOKA56 BIOKA56	170 490 242 247 571 1068 658 287 115 632 216 39 401 397 92 1486 1571 438 1 247 7 13 150 1315 190 461 668 434 534
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2—TO—THE—N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK—RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A CATORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY. AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO—ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING PIFFUSION AN SPACE A NOTE ON 'A STUDY OF THE GROUP SCREENING LECTION OF THE BEST TREATMENT IN A PAIRED—COMPARISON ALLY OPTIMAL SEQUENTIAL DESIGN FOR COMPARING SEVERAL A SEQUENTIAL PROCEDURE FOR COMPARING SEVERAL AS SEQUENTIAL PROCEDURE FOR COMPARING SEVERAL A	EXPERIMENE EXPERIMENTE EXPE	VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL VIT AND A STOCHASTIC MODEL CANNI VIT AS CALCULATED BY YATES'S ALGORITHM /EFFE VIT AS ORTHOGONAL LINEAR COMBINATIONS OF THE O VIT IN SURVEY DESIGN CONSUMER VIT IN WHICH CERTAIN TREATMENT ARRANGEMENTS VIT ON THE POWERS OF THE RECORDS TESTS FOR VIT SIZES FOR DECISION REGARDING CERTAIN LINEA VIT TO DETERMINE ROOT ACTIVITY IN POTATO PLANT VIT WITH ADDITIONAL REPLICATION OF A CONTROL T VIT WITH WEIGHTED INDEXES OF CYCLICAL VIT. OPERATIONAL DEFINITION OF THE PROBABILITY VIT' VIT' VIT' /ER OF TRAWINSKI AND DAVID ENTITLED 'SE VITAL CATEGORIES WITH A CONTROL /ASYMPTOTIC VITAL CATEGORIES WITH A CONTROL /ASYMPTOTIC VITAL CATEGORIES WITH A STANDARD OR CONTROL VITAL DESIGN /REGION FOR THE SOLUTION OF A VITAL DESIGN PROBLEMS IN ATTRIBUTE LIFE VITAL DESIGN FOR RESPONSE SURFACES VITAL DESIGN WITH NORMAL CORRELATION VITAL DESIGN' VITAL DESIGNS	TECH 67 TECH 67 TECH 67 JASSB54 BIOCS68 BIOCS67 AMS 63 BIOCS68 BIOCS66 AMS 67 TECH 63 AMS 64 AMS 64 AMS 66 BIOCA62 TECH 63 BIOCA62 TECH 63 BIOCA64 BIOCA65 BIOCA65 TECH 61	170 490 242 247 571 1068 287 115 503 717 632 216 39 401 397 92 1486 1571 438 1 247 7 13 150 1315 190 461 668 434 534 359
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN CTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY. AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO-ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION SPACE THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION ANOTES. THE ANALYSIS OF A DIALLEL CROSSING DIFFUSION OF THE GROUP SCREENING LECTION OF THE BEST TREATMENT IN A PAIRED-COMPARISON ALLY OPTIMAL SEQUENTIAL DESIGN FOR COMPARING SEVERAL A SEQUENTIAL DESIGN FOR COMPARING SEVERAL A SEQUENTIAL DESIGN FOR COMPARING SEVERAL A SEQUENTIAL PROCEDURE FOR COMPARING SEVERAL A SEQUENTIAL DESIGN FOR COMPARING SEVERAL A SEQUENTIAL PROCEDURE FOR COMPARING SEVERAL AS EXCHANT OF THE VESTOR OF THE PROBLEM OF THE VESTOR OF THE VESTOR OF THE VEST	EXPERIMENE EXPERIMENTE EXPE	VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL VIT AND A STOCHASTIC MODEL CANNI VIT AS CALCULATED BY YATES'S ALGORITHM /EFFE VIT AS ORTHOGONAL LINEAR COMBINATIONS OF THE O VIT IN SURVEY DESIGN CONSUMER VIT IN WHICH CERTAIN TREATMENT ARRANGEMENTS VIT ON THE POWERS OF THE RECORDS TESTS FOR VIT SIZES FOR DECISION REGARDING CERTAIN LINEA VIT TO DETERMINE ROOT ACTIVITY IN POTATO PLANT VIT WITH ADDITIONAL REPLICATION OF A CONTROL T VIT WITH WEIGHTED INDEXES OF CYCLICAL VIT. OPERATIONAL DEFINITION OF THE PROBABILITY VIT' VIT' /ER OF TRAWINSKI AND DAVID ENTITLED 'SE VITAL CATEGORIES WITH A CONTROL /ASYMPTOTIC VITAL CATEGORIES WITH A CONTROL /ASYMPTOTIC VITAL CATEGORIES WITH A STANDARD OR CONTROL VITAL DATA A STOCHASTIC MODEL FOR TWO COMPET VITAL DESIGN VITAL DESIGN VITAL DESIGN /REGION FOR THE SOLUTION OF A VITAL DESIGN /REGION FOR THE SOLUTION OF A VITAL DESIGN /REGION FOR THE SOLUTION OF A VITAL DESIGN PROBLEMS IN ATTRIBUTE LIFE VITAL DESIGN WITH NORMAL CORRELATION VITAL DESIGNS VITAL DESIGNS	TECH 67 TECH 67 TECH 67 JASSB54 BIOCS68 BIOCS67 AMS 63 JASA 66 BIOKA55 JRSSB55 JRSSB67 BIOCS66 BIOCS66 BIOCS66 AMS 63 AMS 63 AMS 63 AMS 64 AMS 62 BIOKA62 TECH 63 BIOKA62 TECH 68 BIOKA57 TECH 69 JASA 68 BIOKA54 TECH 69 JASA 69 BIOKA54 TECH 69 JASA 62 BIOKA54 TECH 61 AMS 66	170 490 242 247 571 1068 658 287 115 632 216 39 401 397 92 1486 1571 438 1 247 7 13 150 461 668 434 534 359 783
OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGING FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL 2—TO—THE—N ALGORITHM TO ANY COMPLETE FACTORIAL METHOD FOR CULLING RECRUITS FROM A MARK—RECAPTURE FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL QUERY, ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF FACTORIAL QUERY, ANALYSIS OF FACTORIAL ATOR THE ANALYSIS OF A CATORIAL ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL BUYING INTENTIONS AND PURCHASE PROBABILITY. AN ARE INADMISSIBLE THE DESIGN OF AN TREND IN A TIME SERIES A SAMPLING R COMBINATIONS ON THE ECONOMIC CHOICE OF S. THE STATISTICAL ANALYSIS OF A RADIO—ACTIVE TRACER HEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK NOTES. THE ANALYSIS OF A DIALLEL CROSSING PIFFUSION AN SPACE A NOTE ON 'A STUDY OF THE GROUP SCREENING LECTION OF THE BEST TREATMENT IN A PAIRED—COMPARISON ALLY OPTIMAL SEQUENTIAL DESIGN FOR COMPARING SEVERAL A SEQUENTIAL PROCEDURE FOR COMPARING SEVERAL AS SEQUENTIAL PROCEDURE FOR COMPARING SEVERAL A	EXPERIMENE EXPERIMENTE EXPE	VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (PARTIALLY CONFOUNDED 2-CUBE) VIT (WITH CONFOUNDING) ON AN ELECTRONIC CALCUL VIT AND A STOCHASTIC MODEL CANNI VIT AS CALCULATED BY YATES'S ALGORITHM /EFFE VIT AS ORTHOGONAL LINEAR COMBINATIONS OF THE O VIT IN SURVEY DESIGN CONSUMER VIT IN WHICH CERTAIN TREATMENT ARRANGEMENTS VIT ON THE POWERS OF THE RECORDS TESTS FOR VIT SIZES FOR DECISION REGARDING CERTAIN LINEA VIT TO DETERMINE ROOT ACTIVITY IN POTATO PLANT VIT WITH ADDITIONAL REPLICATION OF A CONTROL T VIT WITH WEIGHTED INDEXES OF CYCLICAL VIT. OPERATIONAL DEFINITION OF THE PROBABILITY VIT' VIT' /ER OF TRAWINSKI AND DAVID ENTITLED 'SE VITAL CATEGORIES WITH A CONTROL /ASYMPTOTIC VITAL CATEGORIES WITH A CONTROL /ASYMPTOTIC VITAL CATEGORIES WITH A STANDARD OR CONTROL VITAL DATA A STOCHASTIC MODEL FOR TWO COMPET VITAL DESIGN VITAL DESIGN VITAL DESIGN /REGION FOR THE SOLUTION OF A VITAL DESIGN /REGION FOR THE SOLUTION OF A VITAL DESIGN /REGION FOR THE SOLUTION OF A VITAL DESIGN PROBLEMS IN ATTRIBUTE LIFE VITAL DESIGN WITH NORMAL CORRELATION VITAL DESIGNS VITAL DESIGNS	TECH 67 TECH 67 TECH 67 JASSB54 BIOCS68 BIOCS67 AMS 63 BIOCS68 BIOCS66 AMS 67 TECH 63 AMS 64 AMS 64 AMS 66 BIOCA62 TECH 63 BIOCA62 TECH 63 BIOCA62 BIOCA66 BIOCA65 BIOCA65 TECH 61	170 490 242 247 571 1068 658 287 115 632 216 39 401 397 92 1486 1571 438 1 247 7 13 150 461 668 434 534 359 783

EXP - · EXP TITLE WORD INDEX

```
OF MISSING AND MIXED-UP OBSERVATIONS IN SEVERAL EXPERIMENTAL DESIGNS
                                                                                            THE ESTIMATION BIOKA59
                                                                                                                     91
                                             OPTIMUM EXPERIMENTAL DESIGNS (WITH DISCUSSION)
                                                                                                            JRSSB59
                                                                                                                     272
VARIABLE IN RECRESSION
                                             OPTIMAL EXPERIMENTAL DESIGNS FOR ESTIMATING THE INDEPENDENT
ESTIMATES
                                     NOTES. OPTIMUM EXPERIMENTAL DESIGNS FOR REALIZED HERITABILITY
                                                                                                            BIOCS67
                                                                                                                     361
                                                     EXPERIMENTAL DESIGNS FOR SERIALLY CORRELATED
OBSERVATIONS
                                                                                                           BIOKA52
                                                                                                                     151
             SEQUENTIAL ANALYSIS APPLIED TO CERTAIN EXPERIMENTAL DESIGNS IN THE ANALYSIS OF VARIANCE
                                                                                                           BIOKA56
                                                                                                                     3BB
                                               SOME EXPERIMENTAL DESIGNS OF USE IN CHANGING FROM ONE SET JRSSB57
OF TREATMENTS TO ANOTHER, PART 1
                                                                                                                     154
OF TREATMENTS TO ANOTHER, PART 2, EXISTENCE/
                                                SOME EXPERIMENTAL DESIGNS OF USE IN CHANGING FROM ONE SET JRSSB57
                                                                                                                     163
                                                    EXPERIMENTAL DESIGNS TO ADJUST FOR TIME TRENDS
                                                                                                            TECH 60
                                                                                                                      67
                            TREATMENT VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY CORRELATED OBSERVA BIOKA56
TIONS
                                                                                                                     20B
         ERRATA, 'FINDING NEW FRACTIONS OF FACTORIAL EXPERIMENTAL DESIGNS'
                                                                                                            TECH 63
                                                                                                                     134
              SOME EXAMPLES OF BAYES' METHOD OF THE EXPERIMENTAL DETERMINATION OF PROBABILITIES A PRIORI JRSSB62
MTCRO-ORGANISMS
                                                    EXPERIMENTAL DEVELOPMENT OF NUTRITIVE MEDIA FOR
                                                                                                            BIOKA68
IONS IN ECOLOGY
                                                     EXPERIMENTAL EVIDENCE CONCERNING CONTAGIOUS DISTRIBUT BIOKA53
                                     SOME ASPECTS OF EXPERIMENTAL INFERENCE
                                                                                                            JASA 66
                                                                                                                      11
                       SOME STATISTICAL PROBLEMS IN EXPERIMENTAL PSYCHOLOGY (WITH DISCUSSION)
                                                                                                            JRSSB56
     THE BEHAVIOUR OF SOME SIGNIFICANCE TESTS UNDER EXPERIMENTAL RANDOMIZATION
                                                                                                            BIOKA69
                                                                                                                     231
NITE SAMPLING AND TWO BAYESIANS THE ROLE OF EXPERIMENTAL RANDOMIZATION IN BAYESIAN STATISTICS, FI BIOKAGO NO.3
APPLIED TO GAMMA RAY SPECTROMETER DATA. 1 SOME EXPERIMENTAL SAMPLING RESULTS FOR REGRESSION ANALYSIS BIOCS67
APPLIED TO GAMMA RAY SPECTROMETER DATA. 2 SOME EXPERIMENTAL SAMPLING RESULTS FOR REGRESSION ANALYSIS BIOCS68
                                                                                                                     11
                                                                                                                     353
                                                                                                                      BR
                                                 AN EXPERIMENTAL STUDY OF CERTAIN SCREENING PROCESSES
                                                                                                           JRSSB66
                                                THE EXPERIMENTAL STUDY OF PHYSICAL MECHANISMS
                                                                                                            TECH 65
                                                                                                                      2.3
           STATIONARY DISTRIBUTIONS OF THE NEGATIVE EXPERIMENTAL TYPE FOR THE INFINITE DAM
                                                                                                            JRSSB57
                                                                                                                     342
                   A TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS
                                                                                                            BIOCS68
                                                                                                                      61
                   A SEQUENTIAL METHOD FOR SCREENING EXPERIMENTAL VARIABLES
                                     RANDOM BALANCE EXPERIMENTATION
                                                                                                            TECH 59
                                                                                                                     111
     SERIAL DESIGNS FOR ROUTINE QUALITY CONTROL AND EXPERIMENTATION
                                                                                                            TECH 64
               SIMULTANEOUS REGRESSION EQUATIONS IN EXPERIMENTATION
                                                                                                            BIOKA58
                                                                                                                      96
                   ECONOMIC CHOICE OF THE AMOUNT OF EXPERIMENTATION
                                                                                                            JRSSB56
                                                                                                                      32
                                          FACTORIAL EXPERIMENTATION IN SCHEFFE'S ANALYSIS OF VARIANCE FOR JASA 58
 PAIRED COMPARTSONS
                                                                                                                     529
                                                    EXPERIMENTING WITH ORGANISMS AS BLOCKS
                                                                                                                     141
                                                                                                            BIOKA57
                    PARTIAL DUPLICATION OF FACTORIAL EXPERIMENTS
                                                                                                            TECH 59
                                                                                                                      6.3
 QUICK ANALYSIS METHODS FOR RANDOM BALANCE SCREENING EXPERIMENTS
                                                                                                            TECH 59
                                                                                                                     1.95
                     LOCATING OUTLIERS IN FACTORIAL EXPERIMENTS
                                                                                                            TECH 60
                                                                                                                     149
                        RANDOMIZATION AND FACTORIAL EXPERIMENTS
                                                                                                             AMS 61
                                                                                                                     270
 ON THE FOUNDATIONS OF STATISTICAL INFERENCE, BINARY EXPERIMENTS
                                                                                                             AMS 61
                                                                                                                     414
     IRREGULAR FRACTIONS OF THE 2-TO-THE-N FACTORIAL EXPERIMENTS
                                                                                                            TECH 61
                                                                                                                     479
           UNCERTAINTY, INFORMATION, AND SEQUENTIAL EXPERIMENTS
                                                                                                            AMS 62
                                                                                                                     404
                    OPTIMAL STRATECIES IN FACTORIAL EXPERIMENTS
                                                                                                             AMS 63
                                                                                                                     780
                  QUERY, MISSING VALUES IN FACTORIAL EXPERIMENTS
                                                                                                            TECH 65
                                                                                                                     649
         ON A MINIMAL ESSENTIALLY COMPLETE CLASS OF EXPERIMENTS
                                                                                                             AMS 66
                                                                                                                     435
                 THE ORTHOCONALIZATION OF UNDESIGNED EXPERIMENTS
                                                                                                            TECH 66
                                                                                                                     279
                  EXTREME VERTICES DESIGN OF MIXTURE EXPERIMENTS
                                                                                                            TECH 66 447
          TESTING HYPOTHESES IN RANDOMIZED FACTORIAL EXPERIMENTS
                                                                                                             AMS 67 1494
    ON A GENERAL CLASS OF DESIGNS FOR MULTIRESPONSE EXPERIMENTS
                                                                                                            AMS 68 1825
                             SEQUENTIAL SELECTION OF EXPERIMENTS
                                                                                                            AMS 6B 1953
                    OPTIMAL AND EFFICIENT DESIGNS OF EXPERIMENTS
                                                                                                             AMS 69 1570
                            COMPUTER AIDED DESIGN OF EXPERIMENTS
                                                                                                            TECH 69
                                                                                                                     137
          CONSTRAINED MAXIMISATION AND THE DESIGN OF EXPERIMENTS
                                                                                                            TECH 69
                                                                                                                     616
    THE INTERPRETATION OF INTERACTIONS IN FACTORIAL EXPERIMENTS
                                                                                                            BIOKA52
                                                                                                                     65
                    STATISTICAL CONTROL OF COUNTING EXPERIMENTS
                                                                                                                     419
                                                                                                            BIOKA52
        HETEROGENEOUS ERROR VARIANCES IN SPLIT-PLOT EXPERIMENTS
                                                                                                            BIOKA57
                                                                                                                    37B
           SIGNIFICANCE TESTS FOR PAIRED-COMPARISON EXPERIMENTS
                                                                                                            BIOKA61
                                                                                                                     95
          ALIASINC IN PARTIALLY CONFOUNDED FACTORIAL EXPERIMENTS
                                                                                                            BIOKA61
                                                                                                                    21B
                   BALANCED CONFOUNDING OF FACTORIAL EXPERIMENTS
                                                                                                            BIOKA66
                                                                                                                     507
          CENSORED OBSERVATIONS IN RANDOMIZED BLOCK EXPERIMENTS
                                                                                                            JRSSB59 214
           ON THE COMPARISON OF THE SENSITIVITIES OF EXPERIMENTS
                                                                                                            JRSSB62
                                                                                                                     447
                            ANALYSIS OF COMPETITION EXPERIMENTS
                                                                                                            BIOCS65
                                                                                                                     975
                 SEQUENTIAL COMBINATION CHEMOTHERAPY EXPERIMENTS
                                                                                                            BIOCS66
          ANALYTICAL TECHNIQUE FOR INCOMPLETE BLOCK EXPERIMENTS
                                                                                                            BIOCS66
                                                                                                                     B29
                  REFERENCE POPULATIONS FOR DIALLEL EXPERIMENTS
                                                                                                            BIOCS68
                                                                                                                     B81
            MISSING VALUES IN PARTIAL DIALLEL CROSS EXPERIMENTS
                                                                                                            BTOCS68
                                                                                                                     903
 ON SMALL ORTHOGONAL MAIN EFFECT PLANS FOR FACTORIAL EXPERIMENTS
                                                                                                     A NOTE TECH 64
                                                                                                                    220
   COMPUTER PROGRAMME FOR THE ANALYSIS OF FACTORIAL EXPERIMENTS
                                                                                                 A CENERAL BIOCS66
                                                                                                                     503
   METHODS FOR INTERNAL COMPARISONS IN MULTIRESPONSE EXPERIMENTS
                                                                                                 CRAPHICAL AMS 64
                                                                                                                     613
        MAIN-EFFECT PLANS FOR ASYMMETRICAL FACTORIAL EXPERIMENTS
                                                                                                ORTHOGONAL TECH 62
                                                                                                                     21
     ORIENTED TESTS FOR HOST VARIABILITY IN DILUTION EXPERIMENTS
                                                                                               GRAPHICALLY BIOCS67
                                                                                                                    269
    NORMAL PLOTS IN INTERPRETING FACTORIAL TWO LEVEL EXPERIMENTS
                                                                                              USE OF HALF- TECH 59
                                                                                                                    311
 OF BOTH POSITIVE AND NEGATIVE CONTROLS IN SCREENING EXPERIMENTS
                                                                                         THE EFFECTIVE USE BIOCS67
                                                                                                                    285
ARIATE ANALYSIS OF VARIANCE TO REPEATED MEASUREMENTS EXPERIMENTS
                                                                                      APPLICATION OF MULTIV BIOCS66
ITIVITIES OF SIMILAR INDEPENDENT AND NON-INDEPENDENT EXPERIMENTS
                                                                                    COMPARISON OF THE SENS BIOKA69
                                                                                                                     17
 THE F-TYPE STATISTICS IN THE ANALYSIS OF A CROUP OF EXPERIMENTS
                                                                                    ON THE DISTRIBUTION OF JRSSB66
                                                                                                                     526
                                                                                    THE SAMPLING VARIANCE BIOCS66
OF THE CORRELATION COEFFICIENTS ESTIMATED IN GENETIC EXPERIMENTS
                                                                                                                    187
                                                                                   CHAIN-POOLING ANALYSIS TECH 69 NO.4
OF VARIANCE FOR TWO-LEVEL FACTORIAL REPLICATION-FREE EXPERIMENTS
                                                                                 THE NUMERICAL SOLUTION OF JRSSB65 466
 SOME NON-LINEAR EQUATIONS, USEFUL IN THE DESIGN OF EXPERIMENTS
                                                                                ON THE DISTRIBUTION OF STA TECH 69
TISTICS SUITABLE FOR EVALUATING RAINFALL STIMULATION EXPERIMENTS
                                                                                                                    149
ISTRIBUTION-FREE TESTS FOR INTERACTIONS IN FACTORIAL EXPERIMENTS
                                                                             ON A CLASS OF CONDITIONALLY D AMS 69
                                                                                                                    658
 BASED ON PARTIAL OBSERVATIONS IN CERTAIN LIFE TEST EXPERIMENTS
                                                                            A NOTE ON PREDICTION INTERVALS TECH 68 850
 OR OF PARAMETERS IN RANDOMIZED FRACTIONAL FACTORIAL EXPERIMENTS
                                                                   /D LEAST-SQUARES ESTIMATION OF A SUBVEC AMS 69 1344
CIAL KIND OF IRREGULAR FRACTIONAL PLANS OF FACTORIAL EXPERIMENTS
                                                                   /FFECTS AND THEIR CONNECTION WITH A SPE JASA 63 497
                                                                                                                    319
N. EXPLANATORY POWER, INFORMATION AND THE UTILITY OF EXPERIMENTS (CORR. 68 203)
                                                                                  /EVIDENCE, CORROBORATIO JRSSB60
 THE APPLICATION OF AUTOMATIC COMPUTERS TO SAMPLING EXPERIMENTS (WITH DISCUSSION)
                                                                                                           JRSSB54
                          THEORY OF CYCLIC ROTATION EXPERIMENTS (WITH DISCUSSION)
                                                                                                           JRSSB64
                       TABULAR ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 JASA 56 149
                      NON-EQUIVALENT COMPARISONS OF EXPERIMENTS AND THEIR USE FOR EXPERIMENTS INVOLVING L AMS 61 326
OCATION PARAMETERS
ND STANDARD ERRORS IN THE ANALYSIS OF NON-ORTHOGONAL EXPERIMENTS BY ELECTRONIC COMPUTER /TION OF MEANS A JRSSB62 435
```

TITLE WORD INDEX EXP - EXP

```
ANALYSIS OF FACTORIAL EXPERIMENTS BY ESTIMATINC MONOTONE TRANSFORMATIONS OF JRSSB65 251
 THE DATA
THE PROTOZOA PAR/
                   AN ANALYSIS OF THE DATA FOR SOME EXPERIMENTS CARRIED OUT BY CAUSE WITH POPULATIONS OF BIOKAS7 314
                      ANALYSIS OF PLANT COMPETITION EXPERIMENTS FOR DIFFERENT RATIOS OF SPECIES
                            THE SEQUENTIAL DESIGN OF EXPERIMENTS FOR INFINITELY MANY STATES OF NATURE
            THE CHOICE OF VARIABLES IN THE DESIGN OF EXPERIMENTS FOR LINEAR REGRESSION
                                                                                                            BIOKA69
                                                                                                                      55
                                       THE DESIGN OF EXPERIMENTS FOR PARAMETER ESTIMATION
 SITUATIONS
                                           DESIGN OF EXPERIMENTS FOR PARAMETER ESTIMATION IN MULTIRESPONSE BIOKA66
T/ THE USE OF PRIOR DISTRIBUTIONS IN THE DESIGN OF EXPERIMENTS FOR PARAMETER ESTIMATION IN NON-LINEAR SI BIOKA67
     THE USE OF PRIOR DISTRIBUTIONS IN THE DESIGN OF EXPERIMENTS FOR PARAMETER ESTIMATION IN NON-LINEAR SI BIOKAG7
                                                                                                                     662
    BAYES SEQUENTIAL DESIGN OF FRACTIONAL FACTORIAL EXPERIMENTS FOR THE ESTIMATION OF A SUBGROUP OF PRE-A AMS 68
                                                                                                                     973
               ANALYSIS OF A GROUP OF BALANCED BLOCK EXPERIMENTS HAVING ERROR VARIANCE AND SOME TREATMENTS BIOCS68
                                                                                                                     389
A SUGGESTED METHOD OF ANALYSIS OF A CERTAIN CLASS OF EXPERIMENTS IN CARCINOGENESIS
                                                                                                            BIOCS66
                                                                                                                     142
 ASPECTS OF THE STATISTICAL ANALYSIS OF 'SPLIT PLOT' EXPERIMENTS IN COMPLETELY RANDOMIZED LAYOUTS
                                                                                                       SOME JASA 69
                                                                                                                     485
                                           FACTORIAL EXPERIMENTS IN LIFE TESTING
                                                                                                            TECH 59
                                                                                                                     269
                                  ERRATA, 'FACTORIAL EXPERIMENTS IN LIFE TESTING'
DESIGN OF EXPERIMENTS IN NON-LINEAR SITUATIONS
                                                                                                            TECH 60
                                                                                                                     121
                                                                                                            BTOKA59
                                                                                                                      77
        RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMENTS IN THE ANALYSIS OF VARIANCE
                                                                                                             AMS 62
                                                                                                                     482
AL DATA
                                               SOME EXPERIMENTS IN THE NUMERICAL ANALYSIS OF ARCHAEOLOGIC BIOKA66
                                                                                                                     311
            THE CONSTRUCTION OF BALANCED DESIGNS FOR EXPERIMENTS INVOLVING SEQUENCES OF TREATMENTS BIOKAS2
                                                                                                                      32
                    RANK TESTS FOR PAIRED-COMPARISON EXPERIMENTS INVOLVING SEVERAL TREATMENTS
NS AND MAXIMUM LIKELIHOOD IN THE ANALYSIS OF QUANTAL EXPERIMENTS INVOLVING TWO TREATMENTS /TRANSFORMATIO BIOKAS5
                     ROUTINE ANALYSIS OF REPLICATED EXPERIMENTS ON AN ELECTRONIC COMPUTER (WITH DISCUSSIO JRSSB57
                                                SOME EXPERIMENTS ON THE PREDICTION OF SUNSPOT NUMBERS
                                                                                                                     112
THE OCCURRENCE OF REPLICATIONS IN OPTIMAL DESIGNS OF EXPERIMENTS TO ESTIMATE PARAMETERS IN NON-LINEAR MODE JRSSB68
              THE EXPECTED MEAN SQUARES IN GENETIC EXPERIMENTS WHEN ONLY ONE PARENT IS IDENTIFIED
                                                                                                                     436
TROLLED, CORR. 56 650
                            ANALYSIS OF SENSITIVITY EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CON JASA 56
                                                                                                                     257
   ESTIMATION OF MISSINC OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP BIOKAG1
                                                                                                                     468
 FOR ANALYZINC 2-TO-THE-N-TIMES-3-TO-THE-M FACTORIAL EXPERIMENTS WITH APPLICATIONS SYSTEMATIC METHODS TECH 67 245

XPERIMENTAL DESIGN COMPUTER SIMULATION EXPERIMENTS WITH ECONOMIC SYSTEMS. THE PROBLEM OF JASA 67 1315
EXPERIMENTAL DESIGN
WITH NON-CONSTANT, UNKNOWN ERROR VARIANCES, SAMPLING EXPERIMENTS WITH LEAST SQUARES, WEICHTED LEAST SQUARE BIOCS68 607
                             DESIGN AND ANALYSIS OF EXPERIMENTS WITH MIXTURES
                                                                                                             AMS 6B 1517
                                                     EXPERIMENTS WITH MIXTURES
                                                                                                            JRSSR59 201
   AN ALTERNATIVE TO THE SIMPLEX-LATTICE DESIGN FOR EXPERIMENTS WITH MIXTURES
                                                                                                            JRSSB69 NO. 2
                                                     EXPERIMENTS WITH MIXTURES (CORR. 59 238)
                                                                                                            JRSSB5B 344
                     THE SIMPLEX-CENTROID DESIGN FOR EXPERIMENTS WITH MIXTURES (WITH DISCUSSION)
                                                                                                            JRSSB63 235
SIMPLEX-LATTICE DESIGN
                                                     EXPERIMENTS WITH MIXTURES, A GENERALIZATION OF THE
                                                                                                            JRSSB68 123
OPTIMAL TESTS OF COMPOSITE HYPOTHESES FOR RANDOMIZED EXPERIMENTS WITH NONCONTROLLED PREDICTOR VARIABLES
                                                                                                            JASA 65
                                                                                                                     699
                                                     EXPERIMENTS WITH P-COMPONENT MIXTURES
                                                                                                            JRSSB6B 137
                     ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH RELATED DAMS
                                                                                                            BIOCS69
                       2 TO THE POWER OF P FACTORIAL EXPERIMENTS WITH THE FACTORS APPLIED SEQUENTIALLY
                                                                                                            JASA 64 1205
      FRACTIONAL REPLICATION OF 2-TO-THE-P FACTORIAL EXPERIMENTS WITH THE FACTORS APPLIED SEQUENTIALLY
                                                                                                            JASA 68
                     ASYMPTOTIC SEQUENTIAL DESIGN OF EXPERIMENTS WITH TWO RANDOM VARIABLES
                                                                                                            JRSSB66
                                                                                                                      73
                       ON THE ANALYSIS OF FACTORIAL EXPERIMENTS WITHOUT REPLICATION
                                                                                                            TECH 59
                                                                                                                    343
         A NOTE ON THE ANALYSIS OF INCOMPLETE BLOCK EXPERIMENTS.
                                                                                                            BIOKA65
                                                                                                                     633
DEL (CORR 68 1550)
                          TIES IN PAIRED-COMPARISON EXPERIMENTS. A GENERALIZATION OF THE BRADLEY-TERRY MO JASA 67
                                                                                                                     194
                               OUTLIERS IN PATTERNED EXPERIMENTS. A STRATEGIC APPRAISAL
                                                                                                            TECH 61
                                                                                                                      91
ORE THAN 256 TREATMENT CO/ THE DESIGN OF FACTORIAL EXPERIMENTS, A SURVEY OF SOME SCHEMES REQUIRING NOT M BIOKA59
                                                                                                                     251
          THE COMBINATION OF ESTIMATES FROM SIMILAR EXPERIMENTS, ALLOWING FOR INTER-EXPERIMENT VARIATION JASA 67
                                                                                                                     241
   OF LINEAR AND LOGLINEAR HYPOTHESES IN MULTINOMIAL EXPERIMENTS, CORR. 66 1246
                                                                                                LAMP TESTS JASA 66
                                                                                                                     236
        ERRATA, 'THE ORTHOGONALIZATION OF UNDESIGNED EXPERIMENTS'
                                                                                                            TECH 66
                                                                                                                     731
CORRIGENDA, 'SIGNIFICANT TESTS FOR PAIRED-COMPARISON EXPERIMENTS'
                                                                                                            BIOKA61
                                                                                                                     475
                                                                                                                     440
       MAIN-EFFECT PLANS FOR ASYMMETRICAL FACTORIAL EXPERIMENTS'
                                                                                       ERRATA, 'ORTHOGONAL TECH 62
   DISCUSSION OF 'EXTREME VERTICES DESIGN OF MIXTURE EXPERIMENTS' BY R.A. MCLEAN AND V.L. ANDERSON TECH 66
                                                                                                                     455
                                         THEORETICAL EXPLANATION OF OBSERVED DECREASE FAILURE RATE
                                                                                                            TECH 63
                                                                                                                     375
ERIMENTS (CORR/ WEIGHT OF EVIDENCE, CORROBORATION, EXPLANATORY POWER, INFORMATION AND THE UTILITY OF EXP JRSSB60
                   A DERIVATION OF THE PROBABILISTIC EXPLICATION OF INFORMATION
                                                                                                            JRSSB66
PENDENT/ A NOTE ON THE STATISTICAL TESTABILITY OF 'EXPLICIT CAUSAL CHAINS' ACAINST THE CLASS OF 'INTERDE JASA 65
BOTH DEATH AND IMMIGRATION-STOCHASTIC MODEL.
                                                     EXPLICIT ESTIMATES FROM CAPTURE-RECAPTURE DATA WITH BIOKA65
                                                                                                                     225
                                                     EXPLICIT SOLUTIONS TO SOME PROBLEMS OF OPTIMAL
                                                                                                            AMS 69
                                         ECONOMETRIC EXPLORATION OF INDIAN SAVING BEHAVIOR
                                                                                                            JASA 69
                                                                                                                      90
                 PRINCIPAL COMPONENTS REGRESSION IN EXPLORATORY STATISTICAL RESEARCH
                                                                                                            JASA 65
                                                                                                                     234
D LIMIT DISTRIBUTIONS OF ESTIMATORS OF PARAMETERS IN EXPLOSIVE STOCHASTIC DIFFERENCE EQUATIONS /TENCY AN AMS 61
                                                                                                                     195
WHILE THE INTERARRIVAL AND SERVING DISTRIBUTIONS ARE EXPONENTIAL AND GAMMA OF ORDER LAMBDA RESPECTIVELY JRSSB66
                                                                                                                     336
                                                                                                          / JRSSB59
AND WHICH INTERARRIVAL AND SERVING DISTRIBUTIONS ARE EXPONENTIAL AND CENERAL INDEPENDENT RESPECTIVELY
                                                                                                                     375
                                                                                                   INFOR JASA 63
MATION FOR ESTIMATING THE PROPORTIONS IN MIXTURES OF EXPONENTIAL AND NORMAL DISTRIBUTIONS
                                                                                                                     918
    DISTRIBUTION OF SOME STATISTICS IN SAMPLES FROM EXPONENTIAL AND POWER-FUNCTION POPULATIONS
                                                                                                         JASA 67
                                                                                                                     259
                EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND RECTANGULAR ALTERNATIVES
                                                                                                             AMS 66
                                                                                                                     945
FOR LINEAR STOCHASTIC PROCESSES WITH ABSOLUTEL/ AN EXPONENTIAL BOUND ON THE STRONG LAW OF LARGE NUMBERS
                                                                                                             AMS 61
                                                                                                                     583
DISCRETE MEMORYLESS CHANNEL
                                                     EXPONENTIAL BOUNDS ON THE PROBABILITY OF ERROR FOR A
                                                                                                             AMS 61
                                                                                                                     577
      FREE AND NON-PARAMETRIC TOLERANCE LIMITS, THE EXPONENTIAL CASE
                                                                                                PARAMETER- TECH 62
                                                                                                                     75
CTERISTIC FOR TRUNCATED SEQUENTIAL LIFE TESTS IN THE EXPONENTIAL CASE
                                                                                    EXACT OPERATING CHARA AMS 62 1403
             THE USE OF AUTOREGRESSION IN FITTING AN EXPONENTIAL CURVE
                                                                                                            BIOKA58 389
 AN INVESTIGATION OF HARTLEY'S METHOD FOR FITTING AN EXPONENTIAL CURVE
                                                                                                            BIOKA59
                                                                                                                     281
   A FURTHER NOTE ON A SIMPLE METHOD FOR FITTING AN EXPONENTIAL CURVE
                                                                                                            BIOKA60
                                                                                                                    177
                                                                                                  A METHOD BIOCS69
 OF OBTAINING INITIAL ESTIMATES OF THE PARAMETERS IN EXPONENTIAL CURVE FITTING
PARISON OF CONTINUOUS DISTRIBUTIONS OF PARAMETERS OF EXPONENTIAL DECAY CURVES
                                                                                                     A COM BIOCS68
                                                                                                                    117
                        A BIVARIATE EXTENSION OF THE EXPONENTIAL DISTRIBUTION SIMPLIFIED ESTIMATES FOR THE EXPONENTIAL DISTRIBUTION
                                                                                                            JASA 61
                                                                                                             AMS 63
                                                                                                                    102
                                                                                                             AMS 64 270
        LINEAR FORMS IN THE ORDER STATISTICS FROM AN EXPONENTIAL DISTRIBUTION
                           A CHARACTERIZATION OF THE EXPONENTIAL DISTRIBUTION
                                                                                                             AMS 64 1199
                             A NOTE ON THE TRUNCATED EXPONENTIAL DISTRIBUTION
                                                                                                             AMS 64 1366
                                                                                                            JASA 67
                                                                                                                    30
                                     A MULTIVARIATE EXPONENTIAL DISTRIBUTION
             PARAMETER ESTIMATION FOR A MULTIVARIATE EXPONENTIAL DISTRIBUTION
                                                                                                            JASA 68
                                                                                                                    848
                                                                                                             AMS 69 1838
 A NOTE ON THE TEST FOR THE LOCATION PARAMETER OF AN EXPONENTIAL DISTRIBUTION
                                                                                                            TECH 69
                   INFORMATION AND SAMPLING FROM THE EXPONENTIAL DISTRIBUTION
                                                                                                                     41
                      TESTING FOR DEPARTURE FROM THE EXPONENTIAL DISTRIBUTION
                                                                                                            BIOKA57 253
```

```
ESTIMATION OF THE PARAMETER OF AN EXPONENTIAL DISTRIBUTION
                                                                                                                 JRSSB67
                                                                                                                           525
                   AN ANALYSIS OF DEPARTURES FROM THE EXPONENTIAL DISTRIBUTION
                                                                                                                 JRSSR67
                                                                                                                           540
                            NOTES. CHARACTERIZING THE EXPONENTIAL DISTRIBUTION
                                                                                                                 BTOCS6B
                                                                                                                           437
BUSTNESS OF LIFE TESTING PROCEDURES DERIVED FROM THE EXPONENTIAL DISTRIBUTION
                                                                                                         THE RO TECH 61
                                                                                                                            29
 TRUNCATION ON A TEST FOR THE SCALE PARAMETER OF THE EXPONENTIAL DISTRIBUTION
                                                                                                       EFFECT OF AMS 64
                                                                                                                           209
   OF BOUNDED RELATIVE ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTION
                                                                                                      ESTIMATES TECH 61
                                                                                                                           107
    AND RELIABILITY ESTIMATION FOR THE TWO PARAMETER EXPONENTIAL DISTRIBUTION
                                                                                                   LIFE TESTING JASA 69
                                                                                                                           621
UNBIASED ESTIMATION OF RELIABILITY FOR THE TRUNCATED EXPONENTIAL DISTRIBUTION
                                                                                              MINIMUM VARIANCE TECH 69
                                                                                                                           609
    MOMENTS FOR ESTIMATING THE PARAMETERS OF A MIXED EXPONENTIAL DISTRIBUTION
                                                                                         THE USE OF FRACTIONAL TECH 68
                                                                                                                           161
N ESTIMATOR ARISING IN CONNECTION WITH THE TRUNCATED EXPONENTIAL DISTRIBUTION
                                                                                    /AMPLING DISTRIBUTION OF A AMS 69
                                                                                                                           702
FOR THE ESTIMATION OF THE PARAMETERS OF THE NEGATIVE EXPONENTIAL DISTRIBUTION
                                                                                    /PTOTIC OPTIMUM QUANTILES
                                                                                                                  AMS 66
                                                                                                                           143
TY OF A SYSTEM COMPRISED OF K ELEMENTS FROM THE SAME EXPONENTIAL DISTRIBUTION
                                                                                     /T ESTIMATION OF RELIABILI JASA 66
                 ESTIMATION OF THE PARAMETERS OF THE EXPONENTIAL DISTRIBUTION BASED ON OPTIMUM ORDER STATI
STICS IN CENS/
                                                                                                                  AMS 66
UM ORDER STATISTICS FOR ESTIMATING THE PARAMETERS OF EXPONENTIAL DISTRIBUTION IN CENSORED SAMPLES /OPTIM TECH 67
                                                                                                                           279
SEN OR/
         ESTIMATION OF ONE OF TWO PARAMETERS OF THE EXPONENTIAL DISTRIBUTION ON THE BASIS OF SUITABLY CHO AMS 63 1419
NT. C/
        ON SOME TESTS OF HYPOTHESES RELATING TO THE EXPONENTIAL DISTRIBUTION WHEN SOME OUTLIERS ARE PRESE JASA 65
                                                                                                                          54B
                              SEQUENTIAL LIFE FOR THE EXPONENTIAL DISTRIBUTION WITH CHANGING PARAMETER
                                                                                                                 TECH 66
                                                                                                                           217
               ON THE KOLMOGOROV-SMIRNOV TEST FOR THE EXPONENTIAL DISTRIBUTION WITH MEAN UNKNOWN
                                                                                                                 JASA 69
                                                                                                                           3B7
                                             BIVARIATE EXPONENTIAL DISTRIBUTIONS
                                                                                                                 JASA 60
                                                                                                                           69B
   THE METHOD OF MOMENTS APPLIED TO A MIXTURE OF TWO EXPONENTIAL DISTRIBUTIONS
                                                                                                                  AMS 61
                                                                                                                           143
                    CHARACTERIZATION OF GEOMETRIC AND EXPONENTIAL DISTRIBUTIONS
                                                                                                                  AMS 66 1790
       PROCEDURE FOR TESTING THE EQUALITY OF SEVERAL EXPONENTIAL DISTRIBUTIONS
                                                                                                    AN ITERATED JASA 63
                                                                                                                           435
ICABLE TO THE HYPERGEOMETRIC, BINOMIAL, POISSON, AND EXPONENTIAL DISTRIBUTIONS /QUENTIAL ESTIMATION ESTIMATION OF THE PARAMETERS OF TWO PARAMETER EXPONENTIAL DISTRIBUTIONS FROM CENSORED SAMPLES
                                                                                     /QUENTIAL ESTIMATION APPL
                                                                                                                  AMS 65 1494
                                                                                                                 TECH 60
                                                                                                                           403
    OPTIMUM ESTIMATORS OF THE PARAMETERS OF NEGATIVE EXPONENTIAL DISTRIBUTIONS FROM ONE OR TWO ORDER STATI
                                                                                                                  AMS 63
                                                                                                                           117
ATES BY ORDER STATISTICS OF THE PARAMETERS OF SINGLE EXPONENTIAL DISTRIBUTIONS FROM SINGLY AND DOUBLY CENS JASA 57
                                                                                                                            5B
                       TABLE FOR THE SOLUTION OF THE EXPONENTIAL EQUATION EXP(B)-B/(1-P)=1 TABLES FOR THE SOLUTION OF THE EXPONENTIAL EQUATION, EXP(-A)+KA=1
                                                                                                                 BIOKA63
                                                                                                                           177
                                                                                                                 BIOKA60
                                                                                                                           439
                           LARGE DEVIATIONS THEORY IN EXPONENTIAL FAMILIES
                                                                                                                  AMS 68 1402
                     INVARIANT PROPER BAYES TESTS FOR EXPONENTIAL FAMILIES
                                                                                                                   AMS 69
                                                                                                                          270
CROTTES
                                         ONE-PARAMETER EXPONENTIAL FAMILIES GENERATED BY TRANSFORMATION
                                                                                                                   AMS 65
                                                                                                                           261
                     LOCATION AND SCALE PARAMETERS IN EXPONENTIAL FAMILIES OF DISTRIBUTIONS, CORR. 63 1603
                                                                                                                   AMS 62
                                                                                                                           986
TIONS FOR FUNCTIO/
                      CHARACTERIZATIONS OF THE LINEAR EXPONENTIAL FAMILTY IN A PARAMETER BY RECURRENCE RELA
                                                                                                                  AMS 69 1721
                              A HYBRID PROBLEM ON THE EXPONENTIAL FAMILY
                                                                                                                   AMS 65 11B5
                                                                                                                 JRSSB63
                                ON SUFFICIENCY AND THE EXPONENTIAL FAMILY
                                                                                                                          115
        OF FINITE MIXTURES OF DISTRIBUTIONS FROM THE EXPONENTIAL FAMILY
                                                                                                     ESTIMATION JASA 69 NO.4
     BAYES DECISION FUNCTIONS, ADMISSIBILITY AND THE EXPONENTIAL FAMILY
                                                                                                    GENERALIZED AMS 67
                                                                                                                           818
  TESTS OF COMPOSITE HYPOTHESES FOR THE MULTIVARIATE EXPONENTIAL FAMILY, CORR. 67 1928
                                                                                                                   AMS 67
                                                                                                                           681
N HAS MONOTONE FAILURE RATE
                                                       EXPONENTIAL LIFE TEST PROCEDURES WHEN THE DISTRIBUTIO JASA 67
                NOTE ON THE INFINITE DIVISIVILITY OF EXPONENTIAL MIXTURES
                                                                                                                  AMS 67
                                                                                                                          1303
                       ESTIMATION FOR A ONE-PARAMETER EXPONENTIAL MODEL
                                                                                                                 JASA 65
                                                                                                                          560
             RELIABILITY ESTIMATION OF THE TRUNCATED EXPONENTIAL MODEL
                                                                                                                 TECH 67
                                                                                                                           332
                    SPEARMAN ESTIMATION FOR A SIMPLE EXPONENTIAL MODEL
                                                                                                                 BIOCS65
                                                                                                                           85B
                              ESTIMATION FOR A SIMPLE EXPONENTIAL MODEL
                                                                                                                 BIOCS67
                                                                                                                           717
         THE HALF-TABLE RATIO ESTIMATOR FOR A SIMPLE EXPONENTIAL MODEL
                                                                                                                 BTOCS69
                                                                                                                           420
STRIBUTION OF THE REDUCED ITH ORDER STATISTIC OF THE EXPONENTIAL MODEL
                                                                             /UTION OF ORDER STATISTICS AND DI
                                                                                                                  AMS 63
                                                                                                                           652
                                 SOME APPLICATIONS OF EXPONENTIAL ORDERED SCORES
                                                                                                                 JRSSB64
                                                                                                                           103
                   A CLASS OF SEQUENTIAL TESTS FOR AN EXPONENTIAL PARAMETER CLOSED SEQUENTIAL TESTS FOR AN EXPONENTIAL PARAMETER
                                                                                                                 JASA 69 NO.4
                                                                                                                 BTOKA6B
                                                                                                                          3B7
   ADAPTATION OF KARBER'S METHOD FOR ESTIMATING THE EXPONENTIAL PARAMETER FROM QUANTAL DATA, AND ITS RELA BIOCS67
                                                                                                                           739
ANALYSIS OF SOME RELAY FAILURE DATA FROM A COMPOSITE EXPONENTIAL POPULATION
                                                                                                             AN TECH 61
                                                                                                                           423
                                                                                     BEST LINEAR ESTIMATES UND JASA 66
ER SYMMETRIC CENSORING OF THE PARAMETERS OF A DOUBLE EXPONENTIAL POPULATION
                                                                                                                           24B
BASED ON ONE ORDER STATISTIC FOR THE PARAMETER OF AN EXPONENTIAL POPULATION
                                                                                     EXACT CONFIDENCE BOUNDS, TECH 64
                                                                                                                           301
                                                                                   /DS, BASED ON ONE ORDER STA TECH 64
TISTIC FOR THE PARAMETER OF A ONE-PARAMETER NEGATIVE EXPONENTIAL POPULATION'
                                                                                                                           4B3
                   SEQUENTIAL TESTS FOR BINOMIAL AND EXPONENTIAL POPULATIONS
                                                                                                                 BIOKA54
                                                                                                                           252
THEOREM OF KARLIN REGARDING ADMISSIBLE ESTIMATES FOR EXPONENTIAL POPULATIONS
                                                                                                           ON A
                                                                                                                  AMS 69
                                                                                                                          216
ARLIN REGARDING ADMISSIBILITY OF LINEAR ESTIMATES IN EXPONENTIAL POPULATIONS
                                                                                             ON A THEOREM OF K
                                                                                                                  AMS 66 1809
               ESTIMATING THE PARAMETERS OF NEGATIVE EXPONENTIAL POPULATIONS FROM ONE OR TWO ORDER STATIST
                                                                                                                  AMS 61 1078
ICS, CORR./
                                           GENERATING EXPONENTIAL RANDOM VARIABLES
                                                                                                                   AMS 61
                                                                                                                          899
         EFFICIENT DIFFERENCE EQUATION ESTIMATORS IN EXPONENTIAL REGRESSION
                                                                                                                  AMS 6B 1638
       OF INTERNAL REGRESSION FOR THE FITTING OF THE EXPONENTIAL REGRESSION
                                                                                                 THE EFFICIENCY BIOKA59
                                                                                                                          293
                THE DERIVATION OF METHODS FOR FITTING EXPONENTIAL REGRESSION CURVES
                                                                                                                 BIOKA64
                                                                                                                           504
                                                        EXPONENTIAL REGRESSION WITH CORRELATED OBSERVATIONS
                                                                                                                 BIOKA6B
                                                                                                                           149
                                    FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH CORRELATED OBSERVATIONS
                                                                                                                 BIOKA6B
                                                                                                                           575
                                    ESTIMATING A MIXED-EXPONENTIAL RESPONSE LAW
                                                                                                                 JASA 61
                                                                                                                           493
TUDY OF SMOKING AND LUNG CANCER, CORR./ COMPETING EXPONENTIAL RISKS, WITH PARTICULAR REFERENCE TO THE S JASA 60
                                                                                                                           415
                                                        EXPONENTIAL SMOOTHING FOR MULTIVARIATE TIME SERIES
                                                                                                                 JRSSB66
OMPLETE SURVIVAL INFORMATION IN THE ESTIMATION OF AN EXPONENTIAL SURVIVAL PARAMETER /T VARIABLES AND INC
                                         ESTIMATION OF EXPONENTIAL SURVIVAL PROBABILITIES WITH CONCOMITANT
INFORMATION
                                                                                                                 BIOCS65
                                                                                                                           826
                                                        EXPONENTIAL SURVIVAL WITH COVARIANCE
                                                                                                                 JASA 67
                                                                                                                           561
    OF A CONVOLUTION, WHEN THE OTHER COMPONENT IS OF EXPONENTIAL TYPE
                                                                                     ESTIMATION OF A COMPONENT TECH 64
                                                                                                                           222
                                                                                                                  AMS 68 1020
               FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES
                                                                               ERRATA, 'ESTIMATION OF A COMPON TECH 65
ENT OF A CONVOLUTION, WHEN THE OTHER COMPONENT IS OF EXPONENTIAL TYPE'
                                                                                                                           462
                                          THE NEGATIVE EXPONENTIAL WITH CUMULATIVE ERROR
                                                                                                                 BIOCS68
                                                                                                                           363
                            A CHARACTERIZATION OF THE EXPONENTIAL-TYPE DISTRIBUTION
                                                                                                                 BIOKA63
                                                                                                                           205
                                          MULTIVARIATE EXPONENTIAL-TYPE DISTRIBUTIONS
                                                                                                                  AMS 6B 1316
                         ON CERTAIN PROPERTIES OF THE EXPONENTIAL-TYPE FAMILIES
                                                                                                                 JRSSB65
                                                                                                                           94
SUMPTION THAT THE UNDERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART I /STS FOR THE VALIDITY OF THE AS TECH 60 UMPTIONS THAT THE UNDERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART II /S FOR THE VALIDITY OF THE ASS TECH 60
                                                                                                                           83
                                                                                                                           167
 ASYMPTOTIC NORMALITY OF CERTAIN TEST STATISTICS OF EXPONENTIALITY
                                                                                                                 BTOKA64
                                                                                                                           253
EM/ DISTRIBUTION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY CORRELATED GAMMA-VARIABLES, (ACKNOWLEDG EXPECTED UTILITY FOR QUEUES SERVICING MESSAGES WITH EXPONENTIALLY DECAYING UTILITY
                                                                                                                  AMS 64
                                                                                                                           277
                                                                                                                  AMS 61
                                                                                                                           5B7
FROM CENSORED L/ ESTIMATION OF PARAMETERS OF MIXED EXPONENTIALLY DISTRIBUTED FAILURE TIME DISTRIBUTIONS
                                                                                                                BIOKA5B
                                                                                                                           504
                                      THE ANALYSIS OF EXPONENTIALLY DISTRIBUTED LIFE-TIMES WITH TWO TYPES
OF FAILURE
                                                                                                                 JRSSB59
                                                                                                                           411
                 TESTING FOR SERIAL CORRELATION WITH EXPONENTIALLY DISTRIBUTED VARIATES
                                                                                                                 BIOKA67
                                                                                                                           395
                                 OPTIMAL PROPERTIES OF EXPONENTIALLY WEIGHTED FORECASTS, CORR. 62 919
                                                                                                                 JASA 60
                                                                                                                          299
```

TITLE WORO INOEX EXP - EXT

METHOOS PREDICTION BY		JRSSB61	414
A NOTE ON A MOOIFIED		JRSSB68	318
SUFFICIENT CONDITION FOR THE MIXTURE OF	EXPONENTIALS TO BE A PROBABILITY DENSITY FUNCTION	AMS 69	NO.6
OF DECISION UNOER UNCERTAINTY, AN ELEMENTARY	EXPOSITION THE FOUNDATIONS	JASA 64	353
TIMATE FAILURE RATES, OCCURRENCES PER PERSON YEAR OF	EXPOSURE CHARACTERISTICS OF A RATIO USED TO ES	BIOCS66	310
	EXPOSURE RESIDENCES FOR THE UNITED STATES POPULATION		824
RANDOM VARIABLES	EXPRESSING A RANDOM VARIABLE IN TERMS OF UNIFORM	AMS 61	894
TRIX A+B IN TERMS OF ONE WITH COVARIANCE MATRIX A	EXPRESSING THE NORMAL OISTRIBUTION WITH COVARIANCE MA	BIOKA63	535
ON OF THE NUMBER OF CRITICAL SITES IN LIMITED GENOME	EXPRESSION OURING VIRAL INFECTION OF BACTERIA /MATI	BIOCS69	537
EPIDEMIC A GENERAL	EXPRESSION FOR THE MEAN IN A SIMPLE STOCHASTIC	BIOKA54	272
N ON A CONTINGENCY TABLE A SIMPLIFIED	EXPRESSION FOR THE VARIANCE OF THE CHI-SQUARE FUNCTIO	BIOKA54	2B0
COMBINATIONS OF INDEPENDENT NONCENTRAL CHI-SQUAR/	EXPRESSION OF VARIANCE-COMPONENT ESTIMATORS AS LINEAR	AMS 69	NO.6
ON THE INDEPENDENCE OF QUADRATIC	EXPRESSIONS (CORR. 66 584)	JRSSB63	377
AND NEGATIVE MULTINOMIAL DISTRIBUTIONS. INTEGRAL	EXPRESSIONS FOR TAIL PROBABILITIES OF THE MULTINOMIAL	BIOKA65	167
	EXPRESSIONS WHICH CAN BE USED FOR THE DETERMINATION O		248
POINTS OF THE 'STUDENTIZED' RANGE	EXTENDED AND CORRECTED TABLES OF THE UPPER PERCENTAGE		192
ON AN	EXTENDED COMPOUND DECISION PROBLEM	AMS 69	
POINTS OF THE 'STUDENTIZED' RANGE ON AN E BLOCK DESIGNS PROPERTIES OF THE INVARIANCE PRINCIPLE ON TEST STATISTIC.' T-DISTRIBUTION RANK STATISTIC	EXTENDED GROUP DIVISIBLE PARTIALLY BALANCED INCOMPLET		681
PROPERTIES OF THE	EXTENDED HYPERGEOMETRIC DISTRIBUTION	AMS 65	938
INVARIANCE PRINCIPLE ON		AMS 69	
TEST STATISTIC.' CORRIGENDA,	'EXTENDED TABLES OF CRITICAL VALUES FOR WILCOXON'S		527
T-DISTRIBUTION	EXTENDED TABLES OF THE PERCENTAGE POINTS OF STUDENT'S		683
RANK STATISTIC	EXTENDED TABLES OF THE WILCOXON MATCHED PAIR SIGNED EXTENSION OF A THEOREM OF CHOW AND ROBBINS ON SEQUENT	JASA 65	864
	EXTENSION OF A THEOREM OF CHOW AND ROBBINS ON SEQUENT EXTENSION OF A UNIVARIATE MODEL AND ASSOCIATED ESTIMA		667 B1
	EXTENSION OF COCHRAN'S FORMULAE FOR ADDITION OR OMISS		B1 527
TESTS OF SIGNIFICANCE IN A 2-BY-2 CONTINGENCY TABLE,		BIOKA53	74
		JASA 69	
ON AN	DYMENGTON OF GRADING MUROPEN	BIOKA53	228
ON AN		AMS 68	
OF CORRELATION STRUCTURES IN TIME SERIES AM	EXTENSION OF QUENOUILLE'S TEST FOR THE COMPATIBILITY		180
	EXTENSION OF ROSEN'S THEOREM TO NON-IDENTICALLY		897
	EXTENSION OF TABLES OF PERCENTAGE POINTS OF THE LARGE		225
	EXTENSION OF THE ARC SINE LAW	AMS 62	681
SQUARE DISTRIBUTIONS ON AN	EXTENSION OF THE CONNEXION BETWEEN POISSON AND CHI-	BIOKA59	352
		JASA 61	971
		AMS 67	
	EXTENSION OF THE ROBBINS-MONRO PROCEDURE	AMS 67	181
	EXTENSION OF THE TRIANGULAR ASSOCIATION SCHEME TO	JRSSB66	361
	EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLE EXTENSION OF YATES' 2-TO-THE-N ALGORITHM TO ANY	TECH 6B	125 575
	EXTENSION PROPERTY OF A CLASS OF BALANCED INCOMPLETE		278
SAMPLE DISTRIBUTION-FREE TESTS AND THEIR TWO-SAMPLE			120
	EXTENSIONS OF A THEOREM OF MARCINKIEWICZ AND ZYGMUND	AMS 69	427
I INDIEV ON SOME		JRSSB60	299
		BIOKA68	411
SOME		AMS 61	436
CHI-SQUARE TESTS WITH ONE DEGREE OF FREEDOM,	EXTENSIONS OF THE MANTEL-HAENSZEL PROCEDURE	JASA 63	690
CORRECTION. 'SOME		AMS 64	923
	EXTINCT SEQUENTIAL PROCEDURES FOR RANKING AND SLIPPAG		370
BRANCHING PROCESSES UNDER A CONDITION OF ULTIMATE			291
	EXTINCTION FOR BIRTH-AND-DEATH PROCESSES THAT ARE AGE		579
	EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME REL		
	EXTINCTION OF A BACTERIAL COLONY BY PHAGES, A BRANCHI		272
	EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVIRONME EXTINCTION TIME AS AN EXTREME VALUE PHENOMENON	BIOCS67	
OPTIMUM DESIGNS FOR POLYNOMIAL		AMS 65	
ON A THEOREM OF HOEL AND LEVINE ON		AMS 65	
A SIMPLE SOLUTION FOR OPTIMAL CHEBYSHEV REGRESSION		AMS 66	720
A PROBLEM IN MINIMAX VARIANCE POLYNOMIAL		AMS 66	898
AND INVERSE REGRESSION METHODS OF CALIBRATION IN	EXTRAPOLATION CLASSICAL		
QUADRATIC	EXTRAPOLATION AND A RELATED TEST OF HYPOTHESES		
N FOR OPTIMAL ALLOCATION IN REGRESSION AS APPLIED TO	EVERADOLATION IN C. N. EATICHE TECTING /N. IN DECICIO		
GEDTES ON MUD			
	EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY TIME		
STATISTICS	EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY TIME EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO	BIOKA59	
STATISTICS CORRIGENDA	EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY TIME EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO	BIOKA59	171
STATISTICS STATISTICS' CORRIGENDA. ' NORMAL DISTRIBUTION THE OISTRIBUTION OF	EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY TIME EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMAL AND NEARLY EXTREMAL VALUES IN SAMPLES FROM A	BIOKA59 BIOKA61 BIOKA63	474 B9
STATISTICS STATISTICS' CORRIGENDA. NORMAL DISTRIBUTION THE OISTRIBUTION OF ANALYSIS OF EMPIRICAL BIVARIATE	EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY TIME EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMAL AND NEARLY EXTREMAL VALUES IN SAMPLES FROM A EXTREMAL DISTRIBUTIONS	BIOKA59 BIOKA61 BIOKA63 JASA 64	474 B9 794
STATISTICS STATISTICS' CORRIGENDA. NORMAL DISTRIBUTION THE OISTRIBUTION OF ANALYSIS OF EMPIRICAL BIVARIATE SOME ANALYTICAL PROPERTIES OF BIVARIATE	EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY TIME EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMAL AND NEARLY EXTREMAL VALUES IN SAMPLES FROM A EXTREMAL DISTRIBUTIONS EXTREMAL DISTRIBUTIONS	BIOKA59 BIOKA61 BIOKA63 JASA 64 JASA 67	474 B9 794 569
STATISTICS STATISTICS' CORRIGENDA. OF STATISTICS' CORRIGENDA. OF STATISTICS' THE DISTRIBUTION OF ANALYSIS OF EMPIRICAL BIVARIATE SOME ANALYTICAL PROPERTIES OF BIVARIATE ON	EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY TIME EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMAL AND NEARLY EXTREMAL VALUES IN SAMPLES FROM A EXTREMAL DISTRIBUTIONS EXTREMAL DISTRIBUTIONS EXTREMAL FACTORIZATION AND RECURRENT EVENTS	BIOKA59 BIOKA61 BIOKA63 JASA 64 JASA 67 JRSSB69	474 B9 794 569 72
STATISTICS STATISTICS NORMAL DISTRIBUTION ANALYSIS OF EMPIRICAL BIVARIATE SOME ANALYTICAL PROPERTIES OF BIVARIATE ON	EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY TIME EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMAL AND NEARLY EXTREMAL VALUES IN SAMPLES FROM A EXTREMAL DISTRIBUTIONS EXTREMAL DISTRIBUTIONS EXTREMAL FACTORIZATION AND RECURRENT EVENTS EXTREMAL PROCESSES	BIOKA59 BIOKA61 BIOKA63 JASA 64 JASA 67 JRSSB69 AMS 64	474 B9 794 569 72 1718
STATISTICS STATISTICS' NORMAL DISTRIBUTION ANALYSIS OF EMPIRICAL BIVARIATE SOME ANALYTICAL PROPERTIES OF BIVARIATE ON AN PROBABILITY TABLES FOR THE	EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY TIME EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMAL AND NEARLY EXTREMAL VALUES IN SAMPLES FROM A EXTREMAL DISTRIBUTIONS EXTREMAL DISTRIBUTIONS EXTREMAL FACTORIZATION AND RECURRENT EVENTS EXTREMAL PROCESSES EXTREMAL PROPERTY OF THE CONDITIONAL EXPECTATION EXTREMAL QUOTIENT	BIOKA59 BIOKA61 BIOKA63 JASA 64 JASA 67 JRSSB69 AMS 64 BIOKA66 AMS 67	474 B9 794 569 72 1718 594 1541
STATISTICS STATISTICS STATISTICS' NORMAL DISTRIBUTION ANALYSIS OF EMPIRICAL BIVARIATE SOME ANALYTICAL PROPERTIES OF BIVARIATE ON AN PROBABILITY TABLES FOR THE	EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY TIME EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMAL AND NEARLY EXTREMAL VALUES IN SAMPLES FROM A EXTREMAL DISTRIBUTIONS EXTREMAL DISTRIBUTIONS EXTREMAL FACTORIZATION AND RECURRENT EVENTS EXTREMAL PROCESSES EXTREMAL PROPERTY OF THE CONDITIONAL EXPECTATION EXTREMAL QUOTIENT	BIOKA59 BIOKA61 BIOKA63 JASA 64 JASA 67 JRSSB69 AMS 64 BIOKA66 AMS 67	474 B9 794 569 72 1718 594 1541
STATISTICS STATISTICS STATISTICS' NORMAL DISTRIBUTION ANALYSIS OF EMPIRICAL BIVARIATE SOME ANALYTICAL PROPERTIES OF BIVARIATE ON AN PROBABILITY TABLES FOR THE ON MEASURING THE TABLES OF PERCENTAGE POINTS OF THE 'STUDENTIZED'	EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY TIME EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMAL AND NEARLY EXTREMAL VALUES IN SAMPLES FROM A EXTREMAL DISTRIBUTIONS EXTREMAL DISTRIBUTIONS EXTREMAL FACTORIZATION AND RECURRENT EVENTS EXTREMAL PROCESSES EXTREMAL PROPERTY OF THE CONDITIONAL EXPECTATION EXTREMAL QUOTIENT EXTREMAL QUOTIENT EXTREMAL QUOTIENT EXTREMAL GROUND IN THE POPULATION EXTREME AGED IN THE POPULATION EXTREME DEVIATE FROM THE SAMPLE MEAN	BIOKA59 BIOKA61 BIOKA63 JASA 64 JASA 67 JRSSB69 AMS 64 BIOKA66 AMS 67 JASA 68 BIOKA52	474 89 794 569 72 1718 594 1541 29 189
STATISTICS STATISTICS' NORMAL DISTRIBUTION ANALYSIS OF EMPIRICAL BIVARIATE SOME ANALYTICAL PROPERTIES OF BIVARIATE ON AN PROBABILITY TABLES FOR THE ON MEASURING THE TABLES OF PERCENTAGE POINTS OF THE 'STUDENTIZED' THE SAMPLE MEAN AMONG THE	EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY TIME EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMAL AND NEARLY EXTREMAL VALUES IN SAMPLES FROM A EXTREMAL DISTRIBUTIONS EXTREMAL DISTRIBUTIONS EXTREMAL DISTRIBUTIONS EXTREMAL PROCESSES EXTREMAL PROCESSES EXTREMAL PROPERTY OF THE CONDITIONAL EXPECTATION EXTREMAL QUOTIENT EXTREMAL QUOTIENT EXTREMAL QUOTIENT EXTREME AGED IN THE POPULATION EXTREME AGED IN THE SAMPLE MEAN EXTREME DEVIATE FROM THE SAMPLE MEAN EXTREME NORMAL ORDER STATISTICS	BIOKA59 BIOKA61 BIOKA63 JASA 64 JASA 67 JRSSB69 AMS 64 BIOKA66 AMS 67 JASA 68 BIOKA52 AMS 63	474 89 794 569 72 1718 594 1541 29 189 33
STATISTICS STATISTICS' NORMAL DISTRIBUTION ANALYSIS OF EMPIRICAL BIVARIATE SOME ANALYTICAL PROPERTIES OF BIVARIATE ON AN PROBABILITY TABLES FOR THE ON MEASURING THE TABLES OF PERCENTAGE POINTS OF THE 'STUDENTIZED' THE SAMPLE MEAN AMONG THE ON THE LIMIT BEHAVIOUR OF	EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY TIME EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMAL AND NEARLY EXTREMAL VALUES IN SAMPLES FROM A EXTREMAL DISTRIBUTIONS EXTREMAL DISTRIBUTIONS EXTREMAL FACTORIZATION AND RECURRENT EVENTS EXTREMAL PROPERTY OF THE CONDITIONAL EXPECTATION EXTREMAL QUOTIENT EXTREMA QUOTIENT EXTREME AGED IN THE POPULATION EXTREME DEVIATE FROM THE SAMPLE MEAN EXTREME NORMAL ORDER STATISTICS EXTREME ORDER STATISTICS	BIOKA59 BIOKA61 BIOKA63 JASA 67 JASA 67 JRSSB69 AMS 64 BIOKA66 AMS 67 JASA 68 BIOKA52 AMS 63 AMS 63	474 B9 794 569 72 1718 594 1541 29 189 33 992
STATISTICS STATISTICS' NORMAL DISTRIBUTION THE OISTRIBUTION OF ANALYSIS OF EMPIRICAL BIVARIATE SOME ANALYTICAL PROPERTIES OF BIVARIATE ON AN PROBABILITY TABLES FOR THE ON MEASURING THE TABLES OF PERCENTAGE POINTS OF THE 'STUDENTIZED' THE SAMPLE MEAN AMONG THE ON THE LIMIT BEHAVIOUR OF	EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY TIME EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMAL AND NEARLY EXTREMAL VALUES IN SAMPLES FROM A EXTREMAL DISTRIBUTIONS EXTREMAL DISTRIBUTIONS EXTREMAL DISTRIBUTIONS EXTREMAL PROCESSES EXTREMAL PROCESSES EXTREMAL PROPERTY OF THE CONDITIONAL EXPECTATION EXTREMAL QUOTIENT EXTREMAL QUOTIENT EXTREMAL QUOTIENT EXTREME AGED IN THE POPULATION EXTREME AGED IN THE SAMPLE MEAN EXTREME NORMAL ORDER STATISTICS EXTREME ORDER STATISTICS	BIOKA59 BIOKA61 BIOKA63 JASA 64 JASA 67 JRSSB69 AMS 64 BIOKA66 AMS 67 JASA 68 BIOKA52 AMS 63 AMS 63	474 B9 794 569 72 1718 594 1541 29 189 33 992
STATISTICS STATISTICS' NORMAL DISTRIBUTION ANALYSIS OF EMPIRICAL BIVARIATE SOME ANALYTICAL PROPERTIES OF BIVARIATE ON AN PROBABILITY TABLES FOR THE ON MEASURING THE TABLES OF PERCENTAGE POINTS OF THE 'STUDENTIZED' THE SAMPLE MEAN AMONG THE ON THE LIMIT BEHAVIOUR OF ON ON THE MOMENTS OF THE RANGE AND PRODUCT MOMENTS OF	EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY TIME EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMAL AND NEARLY EXTREMAL VALUES IN SAMPLES FROM A EXTREMAL DISTRIBUTIONS EXTREMAL DISTRIBUTIONS EXTREMAL DISTRIBUTIONS EXTREMAL PROCESSES EXTREMAL PROCESSES EXTREMAL PROPERTY OF THE CONDITIONAL EXPECTATION EXTREMAL QUOTIENT EXTREMAL QUOTIENT EXTREMAL QUOTIENT EXTREME AGED IN THE POPULATION EXTREME AGED IN THE SAMPLE MEAN EXTREME ORDER STATISTICS IN NORMAL SAMPLES	BIOKA59 BIOKA61 BIOKA63 JASA 64 JASA 67 JRSSB69 AMS 64 BIOKA66 AMS 67 JASA 68 BIOKA52 AMS 63 AMS 63 AMS 64 BIOKA56	474 B9 794 569 72 1718 594 1541 29 189 33 992 1726 458
STATISTICS STATISTICS' NORMAL DISTRIBUTION ANALYSIS OF EMPIRICAL BIVARIATE SOME ANALYTICAL PROPERTIES OF BIVARIATE ON PROBABILITY TABLES FOR THE ON MEASURING THE TABLES OF PERCENTAGE POINTS OF THE 'STUDENTIZED' THE SAMPLE MEAN AMONG THE ON THE LIMIT BEHAVIOUR OF ON ON THE MOMENTS OF THE RANGE AND PRODUCT MOMENTS OF PPROACH TO THE BAYES CHOICE CRITERION, THE METHOD OF	EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY TIME EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMAL AND NEARLY EXTREMAL VALUES IN SAMPLES FROM A EXTREMAL DISTRIBUTIONS EXTREMAL DISTRIBUTIONS EXTREMAL PROFESSES EXTREMAL PROFESSES EXTREMAL PROPERTY OF THE CONDITIONAL EXPECTATION EXTREMAL QUOTIENT EXTREME AGED IN THE POPULATION EXTREME ORDER STATISTICS EXTREME ORDER STATISTICS EXTREME ORDER STATISTICS EXTREME ORDER STATISTICS IN NORMAL SAMPLES EXTREME PROBABILITIES A SIMPLE A	BIOKA59 BIOKA61 BIOKA63 JASA 64 JASA 67 JRSSB69 AMS 64 BIOKA66 AMS 67 JASA 68 BIOKA52 AMS 63 AMS 63 AMS 64 BIOKA56 JASA 64	474 B9 794 569 72 1718 594 1541 29 189 33 992 1726 458 1227
STATISTICS STATISTICS' NORMAL DISTRIBUTION ANALYSIS OF EMPIRICAL BIVARIATE SOME ANALYTICAL PROPERTIES OF BIVARIATE ON AN PROBABILITY TABLES FOR THE ON MEASURING THE TABLES OF PERCENTAGE POINTS OF THE 'STUDENTIZED' THE SAMPLE MEAN AMONG THE ON THE LIMIT BEHAVIOUR OF ON ON THE MOMENTS OF THE RANGE AND PRODUCT MOMENTS OF PPROACH TO THE BAYES CHOICE CRITERION, THE METHOD OF INADMISSIBILITY OF THE BEST INVARIATE ESTIMATOR OF	EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY TIME EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMAL AND NEARLY EXTREMAL VALUES IN SAMPLES FROM A EXTREMAL DISTRIBUTIONS EXTREMAL FACTORIZATION AND RECURRENT EVENTS EXTREMAL PROCESSES EXTREMAL PROFERTY OF THE CONDITIONAL EXPECTATION EXTREMAL QUOTIENT EXTREMAL QUOTIENT EXTREMAL QUOTIENT EXTREME AGED IN THE POPULATION EXTREME DEVIATE FROM THE SAMPLE MEAN EXTREME ORDER STATISTICS IN NORMAL SAMPLES EXTREME ORDER STATISTICS IN NORMAL SAMPLES EXTREME ORDER STATISTICS IN NORMAL DISTRIBUTION UNDER SQ	BIOKA59 BIOKA61 BIOKA63 JASA 64 JASA 67 JRSSB69 AMS 64 BIOKA66 AMS 67 AMS 63 AMS 63 AMS 64 BIOKA56 JASA 64 BIOKA56 JASA 64	474 B9 794 569 72 1718 594 1541 29 189 33 992 1726 458 1227 1801
STATISTICS STATISTICS STATISTICS' NORMAL DISTRIBUTION ANALYSIS OF EMPIRICAL BIVARIATE SOME ANALYTICAL PROPERTIES OF BIVARIATE SOME ANALYTICAL PROPERTIES OF BIVARIATE ON AN PROBABILITY TABLES FOR THE ON MEASURING THE TABLES OF PERCENTAGE POINTS OF THE 'STUDENTIZED' THE SAMPLE MEAN AMONG THE ON THE LIMIT BEHAVIOUR OF ON ON THE MOMENTS OF THE RANGE AND PRODUCT MOMENTS OF PPROACH TO THE BAYES CHOICE CRITERION, THE METHOD OF INADMISSIBILITY OF THE BEST INVARIATE ESTIMATOR OF ON AN	EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY TIME EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMAL OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMAL AND NEARLY EXTREMAL VALUES IN SAMPLES FROM A EXTREMAL DISTRIBUTIONS EXTREMAL DISTRIBUTIONS EXTREMAL FACTORIZATION AND RECURRENT EVENTS EXTREMAL PROCESSES EXTREMAL PROPERTY OF THE CONDITIONAL EXPECTATION EXTREMAL QUOTIENT EXTREME AGED IN THE POPULATION EXTREME AGED IN THE POPULATION EXTREME DEVIATE FROM THE SAMPLE MEAN EXTREME ORDER STATISTICS EXTREME ORDER STATISTICS EXTREME ORDER STATISTICS EXTREME ORDER STATISTICS IN NORMAL SAMPLES EXTREME PROBABILITIES EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQ EXTREME RANK SUM TEST WITH EARLY DECISION	BIOKA59 BIOKA63 JASA 64 JASA 67 JRSSB69 AMS 67 JASA 68 BIOKA66 AMS 67 JASA 68 BIOKA52 AMS 63 AMS 64 BIOKA56 AMS 63 AMS 64 BIOKA56	474 B9 794 569 72 1718 594 1541 29 189 33 992 1726 458 1227 1801 375
STATISTICS STATISTICS STATISTICS' NORMAL DISTRIBUTION ANALYSIS OF EMPIRICAL BIVARIATE SOME ANALYTICAL PROPERTIES OF BIVARIATE SOME ANALYTICAL PROPERTIES OF BIVARIATE ON AN PROBABILITY TABLES FOR THE ON MEASURING THE TABLES OF PERCENTAGE POINTS OF THE 'STUDENTIZED' THE SAMPLE MEAN AMONG THE ON THE LIMIT BEHAVIOUR OF ON ON THE MOMENTS OF THE RANGE AND PRODUCT MOMENTS OF PPROACH TO THE BAYES CHOICE CRITERION, THE METHOD OF INADMISSIBILITY OF THE BEST INVARIATE ESTIMATOR OF ON AN	EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY TIME EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMAL OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMAL AND NEARLY EXTREMAL VALUES IN SAMPLES FROM A EXTREMAL DISTRIBUTIONS EXTREMAL DISTRIBUTIONS EXTREMAL FACTORIZATION AND RECURRENT EVENTS EXTREMAL PROCESSES EXTREMAL PROPERTY OF THE CONDITIONAL EXPECTATION EXTREMAL QUOTIENT EXTREME AGED IN THE POPULATION EXTREME AGED IN THE POPULATION EXTREME DEVIATE FROM THE SAMPLE MEAN EXTREME ORDER STATISTICS EXTREME ORDER STATISTICS EXTREME ORDER STATISTICS EXTREME ORDER STATISTICS IN NORMAL SAMPLES EXTREME PROBABILITIES A SIMPLE AEXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQ EXTREME RANK SUM TEST WITH EARLY DECISION	BIOKA59 BIOKA61 BIOKA63 JASA 64 JASA 67 JRSSB69 AMS 64 BIOKA66 AMS 67 AMS 63 AMS 63 AMS 64 BIOKA56 JASA 64 BIOKA56 JASA 64	474 B9 794 569 72 1718 594 1541 29 189 33 992 1726 458 1227 1801 375 859
STATISTICS STATISTICS' NORMAL DISTRIBUTION THE OISTRIBUTION OF ANALYSIS OF EMPIRICAL BIVARIATE SOME ANALYTICAL PROPERTIES OF BIVARIATE ON AN PROBABILITY TABLES FOR THE ON MEASURING THE TABLES OF PERCENTAGE POINTS OF THE 'STUDENTIZED' THE SAMPLE MEAN AMONG THE ON THE LIMIT BEHAVIOUR OF ON ON THE MOMENTS OF THE RANGE AND PRODUCT MOMENTS OF PPROACH TO THE BAYES CHOICE CRITERION, THE METHOD OF INADMISSIBILITY OF THE BEST INVARIATE ESTIMATOR OF ON AN	EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY TIME EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMAL OF QUADRATIC FORMS WITH APPLICATIONS TO EXTREMAL AND NEARLY EXTREMAL VALUES IN SAMPLES FROM A EXTREMAL DISTRIBUTIONS EXTREMAL DISTRIBUTIONS EXTREMAL FACTORIZATION AND RECURRENT EVENTS EXTREMAL PROCESSES EXTREMAL PROPERTY OF THE CONDITIONAL EXPECTATION EXTREMAL QUOTIENT EXTREME AGED IN THE POPULATION EXTREME AGED IN THE POPULATION EXTREME DEVIATE FROM THE SAMPLE MEAN EXTREME ORDER STATISTICS EXTREME ORDER STATISTICS EXTREME ORDER STATISTICS EXTREME ORDER STATISTICS EXTREME ORDER STATISTICS IN NORMAL SAMPLES EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQ EXTREME RANK SUM TEST WITH EARLY DECISION EXTREME RANK SUM TEST FOR OUTLIERS	BIOKA59 BIOKA63 JASA 64 JASA 67 JASSA 69 AMS 64 BIOKA66 AMS 67 JASA 68 BIOKA52 AMS 63 AMS 63 AMS 64 BIOKA66 JASA 64 BIOKA66 JASA 64 BIOKA66 JASA 64	474 B9 794 569 72 1718 594 1541 29 189 33 992 1726 458 1227 1801 375 859 505

EXT - FAC TITLE WORD INDEX

```
REVISED UPPER PERCENTAGE POINTS OF THE EXTREME STUDENTIZED DEVIATE FROM THE SAMPLE MEAN
                                                                                                            BIOKA56
                          ON THE DISTRIBUTION OF THE EXTREME STUDENTIZED DEVIATE FROM THE SAMPLE MEAN
                                                                                                            BIOKA59
                                                                                                                     467
                      UPPER PERCENTAGE POINTS OF THE EXTREME STUDENTIZED DEVIATE FROM THE SAMPLE MEAN
                                                                                                            BIOKA59
CEMENT AND EXACT BAHADUR EFFICIENCY OF THE TWO-SA/ EXTREME TAIL PROBABILITIES FOR SAMPLING WITHOUT REPLA BIOKA68
                                                                                                                     371
OF THE TWO-SAMPLE WILCOXON STATISTIC
                                                     EXTREME TAIL PROBABILITIES FOR THE NULL DISTRIBUTION BIOKA67
                                                                                                                     629
              LINEAR ESTIMATES OF PARAMETERS IN THE EXTREME VALUE DISTRIBUTION
                                                                                                            TECH 66
                                                                                                                       - 3
ER STATISTICS
                ESTIMATION OF THE PARAMETERS OF THE EXTREME VALUE DISTRIBUTION BY USE OF TWO OR THREE ORD BIOKAGO
                                                                                                                     429
                     BACTERIAL EXTINCTION TIME AS AN EXTREME VALUE PHENOMENON
                                                                                                            BIOCS67
                                                                                                                     835
     OF AN ESTIMATOR OF HIGH EFFICIENCY IN BIVARIATE EXTREME VALUE THEORY
                                                                                                APPLICATION JASA 69 NO.4
 COMMENTS TO, EDWARD C. POSNER, 'THE APPLICATION OF EXTREME VALUE THEORY TO ERROR FREE COMMUNICATION'
                                                                                                            TECH 66
                                                                                                                     363
                                  THE APPLICATION OF EXTREME VALUE THEORY TO ERROR-FREE COMMUNICATION
                                                                                                            TECH 65
                                                                                                                     517
                           ELEMENTS OF THE THEORY OF EXTREME VALUES
                                                                                                            TECH 60
                                                                                                                      27
      FORMULAE FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES
                                                                                                APPROXIMATE BIOKA58
                                                                                                                     447
E PARAMETERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES
                                                                       /FROM DOUBLY CENSORED SAMPLES, OF TH JASA 6B
                                                                                                                     B89
                                              ON THE EXTREME VALUES AND RANGE OF SAMPLES FROM NON-NORMAL
                                                                                                            BIOKA67
                                                                                                                     541
           TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND TENSILE STRENGTH
                                                                                                            BIOKA54
                                                                                                                     559
                                                                                                             AMS 65
STOCHASTIC PROCESSES
                                                     EXTREME VALUES IN UNIFORMLY MIXING STATIONARY
                                                                                                                     993
PROCESSES
                                             NOTE ON EXTREME VALUES, COMPETING RISKS AND SEMI-MARKOV
                                                                                                             AMS 63 1104
                                                     EXTREME VERTICES DESIGN OF MIXTURE EXPERIMENTS
                                                                                                            TECH 66 447
R.A MCLEAN AND V L. ANDERSON DISCUSSION OF 'EXTREME VERTICES DESIGN OF MIXTURE EXPERIMENTS' BY
                                                                                                            TECH 66
                                                                                                                     455
                         THREE DIMENSIONAL MODELS OF EXTREME VERTICES DESIGNS FOR FOUR COMPONENT MIXTURES TECH 67
                                                                                                                     472
SAMPLES
                                         ANALYSIS OF EXTREME-VALUE DATA BY SAMPLE QUANTILES FOR VERY LARGE
                                                                                                            JASA 68
                  A NOTE ON ESTIMATION FROM A TYPE I EXTREME-VALUE DISTRIBUTION
                                                                                                            TECH 67
                       ON THE USE OF THE GENERALIZED EXTREME-VALUE DISTRIBUTION IN ESTIMATING EXTREME PERC BIOCS67
                                                                                                                      79
IMATION PROCEDURES FOR THE TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS POINT AND INTERVAL EST TECH 68
CENSORED SAMPLES, OF THE SCALE PARAMETERS OF TYPE II EXTREME-VALUE DISTRIBUTIONS
                                                                                   /TIMATION, FROM SINGLY TECH 68
                                                                                                                     349
                        MOMENT CONVERGENCE OF SAMPLE EXTREMES
                                                                                                             AMS 68
                                                                                                                     B81
                                          ASYMPTOTIG EXTREMES FOR M-DEPENDENT RANDOM VARIABLES
                                                                                                             AMS 64 1322
                         APPROXIMATE DISTRIBUTION OF EXTREMES FOR NONSAMPLE CASES
                                                                                                            JASA 64
                                                                                                                     429
                                                     EXTREMES IN A RANDOM ASSEMBLY
                                                                                                            BIOKA67
                                                                                                                     273
OF THE DISTRIBUTION OF THE LOGARITHM OF NON-CENTRAL F
                                                                                            SOME PROPERTIES BIOKAGO
                                                                                                                     417
   TO CERTAIN MULTIVARIATE GENERALIZATIONS OF T AND F
                                                                                A COUNTER-EXAMPLE RELATING AMS 67
                                                                                                                     613
          A NOTE ON APPROXIMATING TO THE NON-CENTRAL F DISTRIBUTION
                                                                                                            BIOKA66
                                                                                                                     606
     GENERATION OF RANDOM SAMPLES FROM THE BETA AND F DISTRIBUTIONS
                                                                                                            TECH 63
                                                                                                                     269
 LAGUERRE SERIES FORMS OF NON-CENTRAL CHI-SQUARE AND F DISTRIBUTIONS
                                                                                                            BTOKA65
                                                                                                                     415
    APPROXIMATION TO THE CHI-SQUARE AND NON-CENTRAL F PROBABILITY FUNCTIONS
                                                                                                     NORMAL BIOKAGO
                                                                                                                     411
               ON THE SMALLEST OF SEVERAL CORRELATED F STATISTICS
                                                                                                            BIOKA62
                                                                                                                     509
LLEST LATENT ROOT OF THE GENERALIZED B STATISTIC AND F STATISTICS AND IN MULTIVARIATE ANALYSIS
                                                                                                   /THE SMA AMS 67 1152
HIERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F TEST FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED BIOCS66
                                                                                                                     937
RISTIC CURVES FOR FIXED EFFECTS ANALYSIS OF VARIANCE F TESTS, ALPHA EQUALS 0.01 AND 0.05 /ATING CHARACTE JASA 57
                                                                                                                     345
YSIS OF VARIANCE TESTS, DERIVED FROM THE NON-CENTRAL F-DISTRIBUTION /ARTS OF THE POWER FUNCTION FOR ANAL BIOKAS1
                                                                                                                     112
                                    SOME NON-CENTRAL F-DISTRIBUTIONS EXPRESSED IN CLOSED FORM
                                                                                                            BIOKA64
                                                                                                                     107
                            A RELATION BETWEEN T AND F-DISTRIBUTIONS, CORR. 65 1249
                                                                                                            JASA 65
                                                                                                                     52B
         UPPER 5 AND 1 PERCENT POINTS OF THE MAXIMUM F-RATIO
                                                                                                            BIOKA52
                                                                                                                     422
ELATION BETWEEN THE NUMERATOR AND DENOMINATOR OF THE F-RATIO
                                                                /-TEST TO ERRORS OF BOTH KINDS AND THE CORR JASA 68
                                                                                                                     660
EMPIRICAL INVESTIGATION INTO THE DISTRIBUTION OF THE F-RATIO IN SAMPLES FROM TWO NON-NORMAL POPULATIONS
                                              NOTES. F-RATIO PROBABILITIES FROM BINOMIAL TABLES
                                                                                                            BIOGS66
                                                                                                                      404
             UPPER PERCENTAGE POINTS OF A SUBSTITUTE F-RATIO USING RANGES
                   THE RANDOMIZATION DISTRIBUTION OF F-RATIOS FOR THE SPLIT-PLOT DESIGN, AN EMPIRICAL INVE BIOKAG3
                    ON THE NULL-DISTRIBUTION OF THE F-STATISTIC IN A RANDOMIZED BALANCED INCOMPLETE BLOCK AMS 63 155B
DESIGN UNDER THE/
EFFICIENCY OF THE NORMAL SCORES TEST RELATIVE TO THE F-TEST
                                                                                                             AMS 65 1306
CED LEAST-SQUARES PROBLEMS AND THE ROBUSTNESS OF THE F-TEST
                                                              /OF RESIDUAL VARIANCE IN QUADRATICALLY BALAN BIOKA62
                                                                                                                     В3
                          TABLES OF THE POWER OF THE F-TEST (GORR. 68 1551)
                                                                                                                     525
                                                                                                            JASA 67
        THE EFFECT OF UNEQUAL GROUP VARIANCES ON THE F-TEST FOR THE HOMOGENEITY OF GROUP MEANS
                                                                                                                     12B
                                                                                                            BIOKA53
EFFECT OF NON-NORMALITY ON THE POWER FUNCTION OF THE F-TEST IN THE ANALYSIS OF VARIANCE
                                                                                                       THE BIOKA51
                                                                                                                      43
SSOCIATE PARTIALLY BALANCED INCOMPLETE BLO/ ON THE F-TEST IN THE INTRABLOCK ANALYSIS OF A CLASS OF TWO A JASA 65
                                                                                                                     285
TWEEN THE NUMERATOR AND DENOMIN/ ROBUSTNESS OF THE F-TEST TO ERRORS OF BOTH KINDS AND THE CORRELATION BE JASA 68
                                                                                                                     660
     AN EMPIRICAL STUDY INTO FACTORS AFFECTING THE F-TEST UNDER PERMUTATION FOR THE RANDOMIZED BLOCK DES JASA 68
                                                                                                                     902
CK D/
       SOME MONTE CARLO RESULTS ON THE POWER OF THE F-TEST UNDER PERMUTATION IN THE SIMPLE RANDOMIZED BLO BIOKAGE
ON THE DISTRIBUTION OF THE F-TYPE STATISTICS IN THE ANALYSIS OF A GROUP OF EXPER JRSSB66
                                                                                                                     199
IMENTS
                                                                                                                     526
                A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, RELATED TAIL PROBABILITIES JASA 68 1416
, IT
                A NORMAL APPROXIMATION FOR BINOMIAL, F. BETA, AND OTHER GOMMON, RELATED TAIL PROBABILITIES JASA 68 1457
                     HARMONIC ANALYSIS OF THE HUMAN FACE
                                                                                                            BIOCS65
                                                                                                                     491
                                           TABLES TO FACILITATE FITTING S-SUB-U FREQUENCY CURVES
                                                                                                            BIOKA65
                                                                                                                     547
THE NON-CENTRAL T-DISTRIBUTION
                                           TABLES TO FACILITATE THE COMPUTATION OF PERCENTAGE POINTS OF
                                                                                                             AMS 62
                                                                                                                     580
                            ON THE BUSY PERIOD OF A FACILITY WHICH SERVES CUSTOMERS OF SEVERAL TYPES
                                                                                                            JRSSB65
                                                                                                                     361
LATIN SQUARE
                                                FOUR FACTOR ADDITIVE DESIGNS MORE GENERAL THAN THE GRECO-
                                                                                                           TECH 62
                                                                                                                     361
                                               THREE FACTOR ADDITIVE DESIGNS MORE GENERAL THAN THE LATIN
                                                                                                            TECH 62
SQUARE
                                                                                                                     187
THE EFFECT OF STANDARDIZATION ON AN APPROXIMATION IN FACTOR ANALYSIS
                                                                                                            BIOKA51
                                                                                                                     337
           ANALYSIS OF VARIANCE AS AN ALTERNATIVE TO FACTOR ANALYSIS
                                                                                                            JRSSB57
                                                                                                                     318
                                              USING FACTOR ANALYSIS TO ESTIMATE PARAMETERS
                                                                                                            JASA 69
                                                                                                                     808
THE PURPOSE AND UNDERLYING MODELS
                                                    FACTOR ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1
                                                                                                            BIOCS65
                                                                                                                     190
THE ROLE OF FACTOR ANALYSIS IN RESEARCH
                                                     FACTOR ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 2.
                                                                                                            BTOCS65
                                                                                                                     405
        A CHANGE-OVER DESIGN FOR TESTING A TREATMENT FACTOR AT FOUR EQUALLY SPACED LEVELS (CORR. 67 586)
                                                                                                            JRSSB67
                                                                                                                     370
                                                ON A FACTOR AUTOMORPHISM OF A NORMAL DYNAMICAL SYSTEM
                                                                                                             AMS 66 1528
   IN THE PRESENCE OF RANDOM VARIABILITY THE SINGLE FACTOR CASE
                                                                                    NUMERICAL OPTIMIZATION BIOKA69
LEVEL FACTORIAL DESIGNS
                                                     FACTOR CHANGES AND LINEAR TRENDS IN EIGHT-RUN TWO
                                                                                                            TECH 68
                                                                                                                     301
       NOTE. THE QUASI-F TEST FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HIERARGHAL DESIGN WITH A MIXE BIOCS66
D MO/
                                                                                                                     937
                 SIMPLE METHODS FOR ANALYZING THREE-FACTOR INTERACTION IN CONTINGENCY TABLES
                                                                                                            JASA 64
                                                                                                                     319
                LAMST AND THE HYPOTHESES OF NO THREE FACTOR INTERACTION IN CONTINGENCY TABLES
                                                                                                            JASA 69
                                                                                                                     207
                        THE EFFECTS OF ERRORS IN THE FACTOR LEVELS AND EXPERIMENTAL DESIGN
                                                                                                            TEGH 63
                                                                                                                     247
        INVERSE POLYNOMIALS, A USEFUL GROUP OF MULTI-FACTOR RESPONSE FUNCTIONS
                                                                                                            BIOCS66
                                                                                                                     128
                                                 THE FACTORIAL ANALYSIS OF CROP PRODUCTIVITY
                                                                                                                     100
                                                                                                            JRSSB54
                                      A CALCULUS FOR FACTORIAL ARRANGEMENTS
                                                                                                             AMS 62
                                                                                                                     600
                    APPLICATIONS OF THE CALCULUS FOR FACTORIAL ARRANGEMENTS II. TWO WAY ELIMINATION OF HET AMS 64
                                                                                                                     658
             UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL ARRANGEMENTS WITH CONFOUNDING
                                                                                                            JASA 67
                                                                                                                     638
```

TITLE WORD INDEX EXT - FAC

```
APPLICATIONS OF THE CALCULUS OF FACTORIAL ARRANGEMENTS. I. BLOCK AND DIRECT PRODUCT BIOKAGS
DESTGN
   A NOTE ON A NON-PARAMETRIC APPROACH TO THE 2-CUBE FACTORIAL DESIGN
                                                                                                             TECH 69 193
                                              SERIAL FACTORIAL DESIGN
                                                                                                             BTOKA68
                                                                                                                      67
                       THE 2-TO-THE-(K-P) FRACTIONAL FACTORIAL DESIGNS
                                                                                                             TECH 61 311
                     PARTIALLY DUPLICATED FRACTIONAL FACTORIAL DESIGNS
                                                                                                             TECH 63
         CONSTRUCTION OF CONFOUNDING PLANS FOR MIXED FACTORIAL DESIGNS
                                                                                                              AMS 65 1256
    SATURATED FRACTIONS OF 2-TO-THE-N AND 3-TO-THE-N FACTORIAL DESIGNS
                                                                                                             TECH 67
                                                                                                                     569
                                SATURATED SEQUENTIAL FACTORIAL DESIGNS
                                                                                                             TECH 68
                                                                                                                     535
                                            BALANCED FACTORIAL DESIGNS
                                                                                                             JRSSB66
                                                                                                                     559
    CHANGES AND LINEAR TRENDS IN EIGHT-RUN TWO LEVEL FACTORIAL DESIGNS
                                                                                                     FACTOR TECH 68
                                                                                                                     301
RUCTION AND ANALYSIS OF SOME CONFOUNDED ASYMMETRICAL FACTORIAL DESIGNS
                                                                                               ON THE CONST BIOCS65
                                                                                                                      948
ALYSIS OF SOME NEW SERIES OF CONFOUNDED ASYMMETRICAL FACTORIAL DESIGNS
                                                                                       CONSTRUCTION AND AN BIOCS67
                                                                                                                      813
                  ON A BOUND USEFUL IN THE THEORY OF FACTORIAL DESIGNS AND ERROR CORRECTING CODES
                                                                                                              AMS 64
                                                                                                                      408
 AND 2-TO-THE-N TIMES 3-TO-THE-M SERIES RESULTS ON FACTORIAL DESIGNS OF RESOLUTION IV FOR THE 2-TO-THE-N TECH 69
THE 2-TO-THE-(K-P) FRACTIONAL FACTORIAL DESIGNS, II
TECH 61
                                                                                                                     431
                                                                                                                     449
              ERRATA, 'THE 2-TO-THE-(K-P) FRACTIONAL FACTORIAL DESIGNS'
                                                                                                             TECH 63
                                                                                                                     417
                                                     FACTORIAL DISTRIBUTIONS
                                                                                                             AMS 65 1066
 KIND OF IRREGULAR FRACTIONAL P/ INDEX NUMBERS FOR FACTORIAL EFFECTS AND THEIR CONNECTION WITH A SPECIAL JASA 63
                                                                                                                     497
                                          SEQUENTIAL FACTORIAL ESTIMATION
                                                                                                             TECH 64
                                                                                                                      41
                                ERRATA, 'SEQUENTIAL FACTORIAL ESTIMATION'
                                                                                                            TECH 65
                                                                                                                      93
A DISTRIBUTION-FREE METHOD OF ANALIZING A 2 TO THE M FACTORIAL EXPERIMENT
                                                                                                            SASJ 68
  CLASS OF LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL EXPERIMENT
                                                                                              ON A COMPLETE AMS 63
                                                                                                                     769
      OF YATES' 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL EXPERIMENT
                                                                                              THE EXTENSION TECH 68
                                                                                                                      575
IRREGULAR FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL EXPERIMENT ON A SPECIAL SUBSET GIVING AN JRSSB67
                                                                                                                      292
                                  QUERY, ANALYSIS OF FACTORIAL EXPERIMENT (PARTIALLY CONFOUNDED 2-CUBE)
                                                                                                            TECH 67
                                                                                                                      170
                                  QUERY, ANALYSIS OF FACTORIAL EXPERIMENT (PARTIALLY CONFOUNDED 2-CUBE)
                                                                                                            TECH 67
                                                                                                                     490
NIC CALCULATOR
                                   THE ANALYSIS OF A FACTORIAL EXPERIMENT (WITH CONFOUNDING) ON AN ELECTRO JRSSB54
                                                                                                                      242
 MAIN EFFECTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL EXPERIMENT AS CALCULATED BY YATES'S ALGORIT BIOCS67
                                                                                                                     571
S OF THE/ ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL EXPERIMENT AS ORTHOGONAL LINEAR COMBINATION AMS 63
                                                                                                                     1068
                            FINDING NEW FRACTIONS OF FACTORIAL EXPERIMENTAL DESIGNS
                                                                                                            TECH 61 359
                  ERRATA, 'FINDING NEW FRACTIONS OF FACTORIAL EXPERIMENTAL DESIGNS'
                                                                                                            TECH 63
                                                                                                                     134
VARIANCE FOR PAIRED COMPARISONS
                                                    FACTORIAL EXPERIMENTÁTION IN SCHEFFE'S ANALYSIS OF
                                                                                                            JASA 58 529
                              PARTIAL DUPLICATION OF FACTORIAL EXPERIMENTS
                                                                                                            TECH 59
                                                                                                                      63
                                LOCATING OUTLIERS IN FACTORIAL EXPERIMENTS
                                                                                                                     149
                                                                                                            TECH 60
                                   RANDOMIZATION AND FACTORIAL EXPERIMENTS
                                                                                                             AMS 61
               IRREGULAR FRACTIONS OF THE 2-TO-THE-N FACTORIAL EXPERIMENTS
                                                                                                            TECH 61
                                                                                                                     479
       ORTHOGONAL MAIN-EFFECT PLANS FOR ASYMMETRICAL FACTORIAL EXPERIMENTS
                                                                                                            TECH 62
                                                                                                                      21
                               OPTIMAL STRATEGIES IN FACTORIAL EXPERIMENTS
                                                                                                                     780
                                                                                                             AMS 63
    A NOTE ON SMALL ORTHOGONAL MAIN EFFECT PLANS FOR FACTORIAL EXPERIMENTS
                                                                                                            TECH 64
                                                                                                                     220
                            QUERY, MISSING VALUES IN FACTORIAL EXPERIMENTS
                                                                                                            TECH 65
                    TESTING HYPOTHESES IN RANDOMIZED FACTORIAL EXPERIMENTS
                                                                                                              AMS 67 1494
               THE INTERPRETATION OF INTERACTIONS IN FACTORIAL EXPERIMENTS
                                                                                                            BIOKA52
                                                                                                                     65
                    ALIASING IN PARTIALLY CONFOUNDED FACTORIAL EXPERIMENTS
                                                                                                            BIOKA61
                             BALANCED CONFOUNDING OF FACTORIAL EXPERIMENTS
    A GENERAL COMPUTER PROGRAMME FOR THE ANALYSIS OF FACTORIAL EXPERIMENTS
                                                                                                            BIOCS66
                                                                                                                     503
TIONALLY DISTRIBUTION-FREE TESTS FOR INTERACTIONS IN FACTORIAL EXPERIMENTS
                                                                                       ON A CLASS OF CONDI AMS 69
                                                                                                                     658
F A SUBVECTOR OF PARAMETERS IN RANDOMIZED FRACTIONAL FACTORIAL EXPERIMENTS
                                                                            /D LEAST-SQUARES ESTIMATION O
                                                                                                             AMS 69
                       TABULAR ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS,
MATIONS OF THE DATA
                                         ANALYSIS OF FACTORIAL EXPERIMENTS BY ESTIMATING MONOTONE TRANSFOR JRSSB65
P OF PRE-AS/ BAYES SEQUENTIAL DESIGN OF FRACTIONAL FACTORIAL EXPERIMENTS FOR THE ESTIMATION OF A SUBGROU AMS 68
                                                     FACTORIAL EXPERIMENTS IN LIFE TESTING
                                                                                                            TECH 59
                                            ERRATA, 'FACTORIAL EXPERIMENTS IN LIFE TESTING'
                                                                                                            TECH 60
                                                                                                                     121
IC METHODS FOR ANALYZING 2-TO-THE-N-TIMES-3-TO-THE-M FACTORIAL EXPERIMENTS WITH APPLICATIONS
                                                                                                  SYSTEMAT TECH 67
                                 2 TO THE POWER OF P FACTORIAL EXPERIMENTS WITH THE FACTORS APPLIED
SEQUENTIALLY
                                                                                                           JASA 64
                                                                                                                     1205
               FRACTIONAL REPLICATION OF 2-TO-THE-P FACTORIAL EXPERIMENTS WITH THE FACTORS APPLIED SEQUEN JASA 68
TIALLY
                                  ON THE ANALYSIS OF FACTORIAL EXPERIMENTS WITHOUT REPLICATION
                                                                                                            TECH 59
                                                                                                                     343
RING NOT MORE THAN 256 TREATMENT CO/ THE DESIGN OF FACTORIAL EXPERIMENTS, A SURVEY OF SOME SCHEMES REQUI BIOKA59
                                                                                                                     251
      'ORTHOGONAL MAIN-EFFECT PLANS FOR ASYMMETRICAL FACTORIAL EXPERIMENTS'
                                                                                                   ERRATA, TECH 62
                        CORRECTIONS TO 'A THEOREM ON FACTORIAL MOMENTS AND ITS APPLICATIONS' 50 206
                                                                                                             AMS 61
                                                                                                                     620
BETWEEN LINE SEGMENTS
                                                 THE FACTORIAL MOMENTS OF THE DISTRIBUTION OF JOINS
                                                                                                            BIOKA54
                                                                                                                     555
            SYMMETRICAL AND ASYMMETRICAL FRACTIONAL FACTORIAL PLANS
                                                                                                            TECH 62
                                                                                                                      47
                  SEQUENCES OF TWO-LEVEL FRACTIONAL FACTORIAL PLANS
                                                                                                            TECH 69
                                                                                                                     477
  REPRESENTATIONS FOR SOME RESOLUTION VI FRACTIONAL FACTORIAL PLANS
                                                                                                NEAR-CYCLIC AMS 69 1840
                                     SOME TWO-LEVEL FACTORIAL PLANS WITH SPLIT PLOT CONFOUNDING
                                                                                                            TECH 64 253
THE ORTHOGONAL POLYNOMIALS OF THE FACTORIAL POWER SERIES PROBABILITY DISTRIBUTIONS
DESIGNS WITH BLOCKS ON CONSTRUCTING THE FACTORIAL REPLICATES OF THE TWO TO THE POWER OF M
                                                                                                            SASJ 67
                                                                                                                      49
                                                                                                             AMS 62 1440
    CHAIN-POOLING ANALYSIS OF VARIANCE FOR TWO-LEVEL FACTORIAL REPLICATION-FREE EXPERIMENTS
                                                                                                            TECH 69 NO.4
TOR INTERACTIONS FOR THE 2-TO-THE-N TIMES 3-TO-THE-N FACTORIAL SERIES OF DESIGNS /IMATION OF ALL TWO-FAC TECH 69 NO.4
                                                     FACTORIAL TREATMENTS IN RECTANGULAR LATTICE DESIGNS
                                                                                                            JASA 61
                                                                                                                     368
            USE OF HALF-NORMAL PLOTS IN INTERPRETING FACTORIAL TWO LEVEL EXPERIMENTS
                                                                                                            TECH 59
                                                                                                                     311
AND QUADRATIC TRENDS
                                                     FACTORIAL 2-TO-THE-'P-Q' PLANS ROBUST AGAINST LINEAR
                                                                                                            TECH 66
                                                                                                                     259
       ELEMENTS FROM DISTINCT FINITE FIELDS IN MIXED FACTORIALS
                                                                                                  COMBINING AMS 69
                                                                                                                     498
SS OF NON-ORTHOGONAL MAIN EFFECT PLANS IN K TO THE N FACTORIALS
                                                                    /APPROACH FOR CONSTRUCTING A USEFUL CLA JRSSB68
  COMPOSITE DESIGNS BASED ON IRREGULAR FRACTIONS OF FACTORIALS (CORR. 65 1036)
                                                                                                            BIOCS65
                                                                                                                     324
                                         ON EXTREMAL FACTORIZATION AND RECURRENT EVENTS
                                                                                                            JRSSB69
                            A NOTE ON AN APPROXIMATE FACTORIZATION IN DISCRIMINANT ANALYSIS
                                                                                                            BIOKA67
RIATE AUTOREGRESSIONS, AND THE APPROXIMATE CANONICAL FACTORIZATION OF A SPECTRAL DENSITY MATRIX
                                                                                                  /MULTIVA BIOKA63
                                                                                                                     129
                                                     FACTORIZATION OF MATRICES BY LEAST-SQUARES
                                                                                                            BIOKA62
                                            SPECTRAL FACTORIZATION OF MULTIPLE TIME SERIES
                                                                                                            BTOKA66
                                                                                                                     264
           DESIGNS FOR THE SEQUENTIAL APPLICATION OF FACTORS
                                                                                                            TECH 64
                                                                                                                     365
                           MIXTURE DESIGNS FOR THREE FACTORS
                                                                                                            JRSSB65
                                                                                                                     450
                                                                                                            JRSSB65
                                                                                                                     473
                            MIXTURE DESIGNS FOR FOUR FACTORS
THE GENERAL NON-ORTHOGONAL LAYOUT WITH ANY NUMBER OF FACTORS
                                                                                  MAIN-EFFECT ANALYSIS OF
                                                                                                                      88
                                                                                                             AMS 65
   ANALYZING VARIANCES WHICH ARE AFFECTED BY SEVERAL FACTORS
                                                                                 A MULTIPLICATIVE MODEL FOR JASA 60
                                                                                                                     245
  WHEN THE BIRTH AND DEATH RATES DEPEND UPON SEVERAL FACTORS
                                                                        THE ANALYSIS OF POPULATION GROWTH BIOCS69 NO.4
E RANDOMIZED BLOCK DESIGN AN EMPIRICAL STUDY INTO FACTORS AFFECTING THE F-TEST UNDER PERMUTATION FOR TH JASA 68 902
```

FAC - FIN TITLE WORD INDEX

```
FOR CHI APPROXIMATION TO THE RANCE
                                              SCALE FACTORS AND DECREES OF FREEDOM FOR SMALL SAMPLE SIZES BIOKA53 449
  2 TO THE POWER OF P FACTORIAL EXPERIMENTS WITH THE FACTORS APPLIED SEQUENTIALLY
                                                                                                           JASA 64 1205
ICATION OF 2-TO-THE-P FACTORIAL EXPERIMENTS WITH THE FACTORS APPLIED SEQUENTIALLY
                                                                                           FRACTIONAL REPL JASA 6B 644
                  RESPONSE SURFACE DESIGNS FOR THREE FACTORS AT THREE LEVELS
                                                                                                           TECH 59
                                                                                                                      1
                        RESPONSE SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS
                                                                                                           TECH 6B
                                                                                                                    177
S FOR SAMPLES FROM A NORMAL DISTRIBUTION
                                                    FACTORS FOR CALCULATING TWO-SIDED PREDICTION INTERVAL JASA 69
                                                                                                                   B7B
                           TABLES OF TOLERANCE-LIMIT FACTORS FOR NORMAL DISTRIBUTIONS
                                                                                                           TECH 60
                                                                                                                    483
                  ERRATA, 'TABLES OF TOLERANCE-LIMIT FACTORS FOR NORMAL DISTRIBUTIONS'
                           A NOTE ON THE MULTIPLYING FACTORS FOR VARIOUS CHI-SQUARE APPROXIMATIONS
                                                                                                           JRSSB54
                                                                                                                    296
                A NOTE ON DIRECTION AND COLLINEARITY FACTORS IN CANONICAL ANALYSIS
                                                                                                           BIOKA62
                                                                                                                    255
  ON THE DISTRIBUTIONS OF DIRECTION AND COLLINEARITY FACTORS IN DISCRIMINANT ANALYSIS
                                                                                                                    855
                                                                                                            AMS 68
                            ESTIMATION OF WEIGHTING FACTORS IN LINEAR REGRESSION AND ANALYSIS OF VARIANCE TECH 64
                                                                                                                      1
              THIRD ORDER ROTATABLE DESIGNS IN THREE FACTORS. ANALYSIS
                                                                                                                    219
                                                                                                           TECH 62
                      QUERY, LIFE TESTING AND EARLY FAILURE
                                                                                                           TECH 66
                                                                                                                    539
PONENTIALLY DISTRIBUTED LIFE-TIMES WITH TWO TYPES OF FAILURE
                                                                                        THE ANALYSIS OF EX JRSSB59
                                                                                                                   411
REDUNDANT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAILURE /SIAN CONFIDENCE LIMITS FOR RELIABILITY OF TECH 6B
                                                                                                                     2.9
                           AN ANALYSIS OF SOME RELAY FAILURE DATA FROM A COMPOSITE EXPONENTIAL POPULATION TECH 61
                                                                                                                    423
                A METHOD FOR DISCRIMINATING BETWEEN FAILURE DENSITY FUNCTIONS USED IN RELIABILITY PREDICT TECH 65
          ESTIMATION OF THE PROBABILITY OF DEFECTIVE FAILURE FROM DESTRUCTIVE TESTS
                                                                                                           TECH 63
S IN RECORDING CHILDLESS CASES IN POPULATION CENS/ FAILURE OF ENUMERATORS TO MAKE ENTRIES OF ZERO, ERROR JASA 61
                                                                                                                    909
                          EFFECTS OF SLOW-DOWNS AND FAILURE ON STOCHASTIC SERVICE SYSTEMS
                                                                                                           TECH 63
                                                                                                                    3B5
 POISSON PROCESS MODEL FOR THE ANALYSIS OF COMPUTER FAILURE PATTERNS (WITH DISCUSSION)
                                                                                               A BRANCHING JRSSB64
                                                                                                                   398
       THEORETICAL EXPLANATION OF OBSERVED DECREASE FAILURE RATE
                                                                                                           TECH 63 375
IKELIHOOD ESTIMATION FOR DISTRIBUTIONS WITH MONOTONE FAILURE RATE
                                                                                                 MAXIMUM I.
                                                                                                            AMS 65
                                                                                                                     69
  TEST PROCEDURES WHEN THE DISTRIBUTION HAS MONOTONE FAILURE RATE
                                                                                         EXPONENTIAL LIFE JASA 67
                                                                                                                    548
SAFE LIFE FOR CLASSES OF DISTRIBUTIONS CLASSIFIED BY FAILURE RATE
                                                                               ON THE DETERMINATION OF A TECH 68 361
                         RELATIONSHIP BETWEEN SYSTEM FAILURE RATE AND COMPONENT FAILURE RATES
                                                                                                           TECH 63
                                                                                                                    183
                                                                                           ASYMPTOTICALLY
  OPTIMAL STATISTICS IN SOME MODELS WITH INCREASING FAILURE RATE AVERACE
                                                                                                            AMS 67 1731
                        A NOTE ON TESTS FOR MONOTONE FAILURE RATE BASED ON INCOMPLETE DATA
                                                                                                            AMS 69 595
                                   TEST FOR MONOTONE FAILURE RATE BASED ON NORMALIZED SPACING
                                                                                                            AMS 69 1216
FIDENCE LIMITS FOR CLASSES OF DISTRIBUTIONS BASED ON FAILURE RATE, CORR. 67 950
                                                                                         TOLERANCE AND CON AMS 66 1593
                                 TESTS FOR MONOTONE FAILURE RATE, II
                                                                                                            AMS 69 1250
LATIONSHIP BETWEEN SYSTEM FAILURE RATE AND COMPONENT FAILURE RATES
                                                                                                        RE TECH 63 183
        CHARACTERISTICS OF A RATIO USED TO ESTIMATE FAILURE RATES, OCCURRENCES PER PERSON YEAR OF EXPOSUR BIOCS66 310
ION OF PARAMETERS OF MIXED EXPONENTIALLY DISTRIBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE TEST DA BIOKASB
                                                                                                                   504
                          A BIVARIATE WARNING-TIME, FAILURE-TIME DISTRIBUTION
                                                                                                           JASA 67
                                                                                                                    589
                                              EARLY FAILURES IN LIFE TESTING
                                                                                                           JASA 60 491
               ESTIMATION OF THE PROBABILITY OF ZERO FAILURES IN M BINOMIAL TRIALS
                                                                                                           JASA 67
                                                                                                                   272
  DISTRIBUTION SHAPE PARAMETER WHEN NO MORE THAN TWO FAILURES OCCUR PER LOT
                                                                                    ESTIMATION OF WEIBULL TECH 64 415
                    HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS
                                                                                                            AMS 67 1278
                                       CONFESSION OF FAITH, 1955
                                                                                                           JASA 56
                                                                                                                      1
                                 A CLASSIFICATION OF FALLACIOUS ARGUMENTS AND INTERPRETATIONS
                                                                                                                   125
                                                                                                           TECH 62
    COVARIANCE ANALYSIS WHEN THE CONTROL VARIABLE IS FALLIBLE
                                                                                              LARCE-SAMPLE JASA 60 307
    TESTS OF FIT BASED ON THE NUMBER OF OBSERVATIONS FALLING IN THE SHORTEST SAMPLE SPACINGS DETERMINED BY
                                                                                                            AMS 61 B3B
                       PERMUTATION WITHOUT RISING OR FALLING OMEGA-SEQUENCES
                                                                                                            AMS 67 1245
     A RECURRENCE FOR PERMUTATIONS WITHOUT RISINC OR FALLING SUCCESSIONS
                                                                                                            AMS 65 70B
             ON THE QUESTION OF WHETHER A DISEASE IS FAMILIAL
                                                                                                           JASA 67 409
    THE 'INEFFICIENCY' OF THE SAMPLE MEDIAN FOR MANY FAMILIAR SYMMETRIC DISTRIBUTIONS
                                                                                                           BIOKA55 520
       MOST POWERFUL TESTS FOR SOME NON-EXPONENTIAL FAMILIES
                                                                                                            AMS 6B
                                                                                                                    772
              LARCE DEVIATIONS THEORY IN EXPONENTIAL FAMILIES
                                                                                                            AMS 68 1402
        INVARIANT PROPER BAYES TESTS FOR EXPONENTIAL FAMILIES
                                                                                                            AMS 69 270
                       UNBIASED ESTIMATION IN CONVEX FAMILIES
                                                                                                            AMS 69 1523
       ON CERTAIN PROPERTIES OF THE EXPONENTIAL-TYPE FAMILIES
                                                                                                           JRSSB65
RELATION BETWEEN THE SEXES OF ADJACENT SIBS IN HUMAN FAMILIES
                                                                                    THE DETECTION OF A COR JASA 65 1035
    COMBINATIONS OF ORDER STATISTICS FROM RESTRICTED FAMILIES
                                                                                   INEQUALITIES FOR LINEAR
                                                                                                            AMS 66 1574
                          ONE-PARAMETER EXPONENTIAL FAMILIES CENERATED BY TRANSFORMATION GROUPS
                                                                                                            AMS 65 261
       CHARACTERIZATIONS OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND MULTIVARIATE DISTRIBUTIONS
                                                                                                            AMS 6B 433
 REMARKS ON TOPOLOGY AND CONVERGENCE IN SOME ORDERED FAMILIES OF DISTRIBUTION
                                                                                                  FURTHER
                                                                                                            AMS 69
                                                                                                                     51
       ON THE TOPOLOGICAL STRUCTURE OF SOME ORDERED FAMILIES OF DISTRIBUTIONS
                                                                                                            AMS 64 1216
                    GENERALIZED MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS
                                                                                                            AMS 69 339
                   SOME RESULTS ON TESTS OF SEPARATE FAMILIES OF HYPOTHESES
                                                                                                           BIOKA6B 355
                FURTHER RESULTS ON TESTS OF SEPARATE FAMILIES OF HYPOTHESES
                                                                                                           JRSSB62
                                                                                                                    406
                              SOME TESTS OF SEPARATE FAMILIES OF HYPOTHESES IN TIME SERIES ANALYSIS
                                                                                                           BIOKA67
                                                                                                                     39
          UPPER AND LOWER PROBABILITY INFERENCES FOR FAMILIES OF HYPOTHESES WITH MONOTONE DENSITY RATIOS
                                                                                                            AMS 69
                                                                                                                   953
                              UNIFORM CONVERGENCE OF FAMILIES OF MARTINGALES
            INVARIANT SETS FOR TRANSLATION-PARAMETER FAMILIES OF MEASURES
                                                                                                            AMS 69
                                                                                                                   162
SQUARE TYPE AND RELATED DESIGNS
                                         SOME NEW FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN
                                                                                                           TECH 67
                                                                                                                    229
                SELECTION PROCEDURES FOR RESTRICTED FAMILIES OF PROBABILITY DISTRIBUTIONS
                                                                                                            AMS 69 905
           ON THE PROBABILITY OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS
                                                                                                            AMS 64 1304
     THE VALIDITY OF INCOME REPORTED BY A SAMPLE OF FAMILIES WHO RECEIVED WELFARE ASSISTANCE DURING 1959 JASA 62
                                                                                                                    680
NO THE LATENT AND INFECTIOUS PERIODS OF MEASLES, II. FAMILIES WITH THREE OR MORE SUSCEPTIBLES /ESTIMATI BIOKA56
                                                                                                                    322
ING THE LATENT AND INFECTIOUS PERIODS OF MEASLES, I. FAMILIES WITH TWO SUSCEPTIBLES ONLY.
                                                                                                ON ESTIMAT BIOKA56
                                                                                                                     15
                                                                                                            AMS 6B
               LIKELIHOOD RATIO TESTS FOR RESTRICTED FAMILITES OF PROBABILITY DISTRIBUTIONS
                                                                                                                    547
         CHARACTERIZATIONS OF THE LINEAR EXPONENTIAL FAMILTY IN A PARAMETER BY RECURRENCE RELATIONS FOR FU AMS 69 1721
                A HYBRID PROBLEM ON THE EXPONENTIAL FAMILY
                                                                                                            AMS 65 1185
                  ON SUFFICIENCY AND THE EXPONENTIAL FAMILY
                                                                                                           JRSSB63 115
      MIXTURES OF DISTRIBUTIONS FROM THE EXPONENTIAL FAMILY
                                                                                      ESTIMATION OF FINITE JASA 69 NO.4
                                                                               GENERALIZED BAYES DECISION AMS 67 818
        FUNCTIONS, ADMISSIBILITY AND THE EXPONENTIAL FAMILY
                                                   A FAMILY OF CLOSED SEQUENTIAL PROCEDURES (CORR. 69 457) BIOKA62
                                                   A FAMILY OF COMBINATORIAL IDENTITIES
                                                                                                            AMS 66
                                   NOTE ON A CERTAIN FAMILY OF DISCRETE DISTRIBUTIONS
                                                                                                           BIOKA52
                                                                                                                    196
                                     A TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS
                                                                                                           JASA 64
                                                                                                                    133
                                                                                               TESTS OF C AMS 67
OMPOSITE HYPOTHESES FOR THE MULTIVARIATE EXPONENTIAL FAMILY, CORR. 67 1928
                                                                                                                    681
RICAL MEASUREMENTS AND RELATED PROBLEMS DEMAND FOR FARM PRODUCTS AT RETAIL AND THE FARM LEVEL. SOME EMPI JASA 5B OF PROBABILITY AND STATISTICS. XII. THE BOOK OF FATE STUDIES IN THE HISTORY BIOKA61
                                                                                                                    656
                                                                                                                    220
ION IN REGRESSION AS APPLIED TO EXTRAPOLATION IN S-N FATIGUE TESTING /N IN PRECISION FOR OPTIMAL ALLOCAT TECH 69
                                                                                                                    3B9
```

TITLE WORD INDEX FAC - FIN

THE HOLD OF LEACH BALL	MARADIE DIGERIDUETONG IN MEGETING COMPOGIES INDOMING	1110 63	1074
ES THE USE OF LEAST FAV	VORABLE DISTRIBUTIONS IN TESTING COMPOSITE HYPOTHES	AMS 61	1034
A BOBECACATNO WODEL OF BEL	DERAL GUVERNMENT EXPENDITURES	JASA 59	677
CROSSROAD CHOICES FOR THE FUTURE DEVELOPMENT OF THE FET	DERAL STATISTICAL SYSTEM	JASA 68	801
PROBLEMS IN ESTIMATING FEE A FORECASTING MODEL OF FEE CROSSROAD CHOICES FOR THE FUTURE DEVELOPMENT OF THE FEE THE AMERICAN STATISTICAL ASSOCIATION AND FEE	DERAL STATISTICS	JASA 64	1
DENOMINATOR THE CORRELATION BETWEEN FEE	ED EFFICIENCY AND RATE OF GAIN, A RATIO AND ITS	RIOCS65	739
CYCLIC QUEUES WITH FEE		JRSSB59	
OF EVOLUTIONARY OPERATION SUBJECT TO EMPIRICAL FEE	EDRACK A SIMPLE SYSTEM	TECH 66	19
PROBABILITY PROPORTIONAL TO SIZE A NOTE ON FEL	LLEGI'S METHOD OF SAMPLING WITHOUT REPLACEMENT WITH	JASA 67	79
N OF HISTORICAL STATISTICS THE FEM	MALE LABOR FORCE, A CASE STUDY IN THE INTERPRETATIO	JASA 60	71
ASIA, A DIGEST HIGHER FEM	MALE THAN MALE MORTALITY IN SOME COUNTRIES OF SOUTH	JASA 69	NO.4
PROBABILITY PROPORTIONAL TO SIZE A NOTE ON FEL N OF HISTORICAL STATISTICS THE FEM ASIA, A DIGEST ON NAHORDNUNG AND FER ANALYTICAL GRADUATION OF FER	RNORDNUNG IN SAMPLES OF LITERARY TEXTS	BIOKA54	116
ANALYTICAL GRADUATION OF FER	RTILITY RATES	JASA 56	461
DEMOGRAPHIC MODEL FOR ESTIMATING AGE-ORDER SPECIFIC FER	RTILITY RATES A	JASA 63	1774
MIYEN SELL- WAN CKO22-LEK	RTILIZATION IN A TETRASOMIC SPECIES	BI00208	480
I TEE_TESTING RESULTS BASED ON A REW	W HETEROCENFOUS LOCKORMAL ORSERVATIONS	TASA 67	15
FURTHER EXAMPLES OF INCONSISTENCIES IN THE FID	DUCTAL ARGUMENT	AMS 63	R44
ON THE DIFFICULTIES INHERENT IN FISHER'S FID	DUCIAL ARGUMENT	JASA 64	56
SOME LOGICAL ASPECTS OF THE FID	DUCIAL ARGUMENT	JRSSB63	111
DEPENDENCE OF THE FID	RNORDNONG IN SAMPLES OF LITERARY TEXTS RTILITY RATES RTILITY RATES A RTILIZATION IN A TETRASOMIC SPECIES RTILIZER IN 1954, AN INTER-STATE STUDY WHETEROGENEOUS LOGNORMAL OBSERVAITONS DUCIAL ARGUMENT DUCIAL ARGUMENT DUCIAL ARGUMENT ON THE SAMPLING RULE DUCIAL ARGUMENT ON THE SAMPLING RULE DUCIAL ARGUMENT WITH APPLICATION TO SURVEY SAMPLING	BIOKA57	464
** 1 12	DOUGHE MICCONDAL WILL MILDIONIZON TO DONATE DAM BING	UINDEDUG	110.2
A COMPARISON OF THE DIRECT AND FID	DUCIAL ARGUMENTS IN THE ESTIMATION OF A PARAMETER	JRSSB63	95
FIC	DUCIAL CONSISTENCY AND GROUP STRUCTURE DUCIAL DISTRIBUTIONS AND BAYES' THEOREM DUCIAL EXAMPLE OF C. STEIN DUCIAL INFERENCE	RIOKA62	55
FID	DUCTAL DISTRIBUTIONS AND BAYES' THEOREM	JRSSB58	102
ON A FIL	DUCTAL EXAMPLE OF U. STEIN	1K22R66	53
FIL	DUCTAL INFERENCE FOR LOCATION AND SCALE PARAMETERS	RTOKA64	17
SOME REMARKS ON CONFIDENCE OF FID	DUCIAL LIMITS	BTOKA54	275
FID	DUCIAL LIMITS FOR A VARIANCE COMPONENT	JRSSB63	128
EXACT FID	DUCIAL LIMITS IN NON-LINEAR ESTIMATION	JRSSB62	125
ON THE CONSISTENCY OF THE FID	DUCIAL METHOD	JRSSB62	425
THE FID	DUCIAL LIMITS DUCIAL LIMITS FOR A VARIANCE COMPONENT DUCIAL LIMITS IN NON-LINEAR ESTIMATION DUCIAL METHOD DUCIAL METHOD AND INVARIANCE DUCIAL PROBABILITY WITH A BIBLIOGRAPHY	BIOKA61	261
EXAMPLES BEARING ON THE DEFINITION OF FID	DUCIAL PROBABILITY WITH A BIBLIOGRAPHY	AMS 62	1349
FIC	DUCIAL THEORY AND INVARIANT ESTIMATION	AMS 66	643
REGRESSION ON A RANDOM FIE	DUCIAL THEORY AND INVARIANT PREDICTION	AMS 67	795
A METHOD OF ESTIMATING BIOLOGICAL POPULATIONS IN THE FIE	ELD ON	RIOKA53	216
THE EFFECT OF FIE	DUCIAL THEORY AND INVARIANT ESTIMATION DUCIAL THEORY AND INVARIANT PREDICTION ELD ELD ON ELD BLOCKING ON GAIN FROM SELECTION	BIOCS66	843
SURVIVAL, WANDERING AND VARIATION OF THE LONG-TAILED FIE	ELD MOUSE, APODEMUS SYLVATIOUS. III. WANDERING POWE	RIOKA25	389
		AMS 69	
THE CENTRAL LIMIT THEOREM FOR GENERALIZED RANDOM FIE		AMS 69	
HOMOGENEOUS GAUSS-MARKOV RANDOM FIE	ELDS	AMS 69	1625
COMBINING OF GROSSIAN KANDOW HOWOGENEOUS FIE	ELDS ARE ETIMER CONTINUOUS OR VERT IRREGULAR	AMS 60	1079
INTERPOLATION OF HOMOGENEOUS RANDOM FIE	ELDS ON DISCRETE GROUPS	AMS 69	251
ON A MULTIVARIATE VERSION OF FIE	ELDS ARE EITHER CONTINUOUS OR VERY IRREGULAR ELDS IN MIXED FACTORIALS ELDS ON DISCRETE GROUPS ELLER'S THEOREM ELLER'S THEOREM AND A GENERALIZATION	JRSSB59	59
FIE	ELLER'S THEOREM AND A GENERALIZATION	BIOKA67	567
A GENERALIZATION OF FIE	ELLER'S THEOREM TO THE RATIO OF COMPLEX PARAMETERS	JRSSB67	126
	FTY YEARS OF STATISTICAL METHODOLOGY		
. TABLETS, AND STERILE SOLIDS FIL	LL WEIGHT VARIATION RELEASE AND CONTROL OF CAPSULES	TECH 69	700
ON THE PROBABILITY DISTRIBUTION OF A FIL	TTERED RANDOM TELEGRAPH SIGNAL	AMS 68	890
FIL	LTERING NON-STATIONARY SIGNALS	JRSSB69	150
APPROXIMATE DESIGN OF DIGITAL FIL	LLING PROBLEM LTERED RANDOM TELEGRAPH SIGNAL LTERING NON-STATIONARY SIGNALS LTERS LTERS	TECH 65	387
INTERFERENCE IN THE MANUFACTURE OF NUCLEPORE FIL	LTERS	TECH 67	319
CONTROL' FURTHER COMMENTS ON THE 'FIN	NAL REPORT OF THE ADVISORY COMMITTEE ON WEATHER	JASA 61	580
VALIDATION OF CONSUMER FIN	NANCIAL CHARACTERISTICS, COMMON STOCK	JASA 69	415
THE RELIABILITY OF CONCUMED SUPPLY OF ETA	NANCIAL DOIDINGS DEMAND DEPOSITS	JASA 66	Z17
THE MANUFACTURE OF NUCLEPORE FILE CONTROL' FURTHER COMMENTS ON THE 'FIN VALIDATION OF CONSUMER FIN MINIMIZING RESPONSE ERRORS IN FIN THE RELIABILITY OF CONSUMER SURVEYS OF FIN THE RELIABILITY OF CONSUMER SURVEYS OF FIN THE RELIABILITY OF CONSUMER SURVEYS OF FIN RANK ORDERS IN THE TWO SAMPLE CASE	NANCIAL HOLDINGS. TIME-DEPOSITS	JASA 65	148
RANK ORDERS IN THE TWO SAMPLE CASE FIN	NE STRUCTURE OF THE ORDERING OF PROBABILITIES OF	AMS 66	98
INVARIANTS UNDER MIXING WHICH GENERALIZE DE FIN	NETTI'S THEOREM	AMS 62	
		AMS 63	
	NITE ABSORBENT MARKOV CHAINS TO SIB MATING POPULATI		
ON A GENERALIZATION OF THE FIN QUEUE LENGTH DISTRIBUTION FOR QUEUEING SYSTEMS WITH FIN BEHAVIOR OF A QUEUEING SYSTEM WITH BULK SERVICE AND FIN	NITE AKC-SINE LAW	AMS 62	
BEHAVIOR OF A QUEUEING SYSTEM WITH BULK SERVICE AND FIN	NITE CAPACITY THE ERGODIC NITE CAPACITY ON THE TRANSIENT		
	NITE CRITERION FOR INDECOMPOSABLE CHANNELS	AMS 63	
FIRST EMPTINESS IN A FIN		JRSSB61	
SEQUENTIAL COMPOUND RULES FOR THE FIN	NITE DECISION PROBLEM	JRSSB66	
		AMS 64	
	NITE DECISION PROBLEMS UNDER COMPLETE IGNORANCE	AMS 65	
AND RATE OF GENE LOSS OF FOUR METHODS OF REPRODUCING FIN COMBINING ELEMENTS FROM DISTINCT FIN		AMS 69	
EXPECTED ARC LENGTH OF A GAUSSIAN PROCESS ON A FIN		JRSSB56	
THE COMPOUND DECISION PROBLEM WITH M-BY-N FIN		AMS 66	
SEQUENTIAL COMPOUND DECISION PROBLEMS WITH M-BY-N FIN	NITE LOSS MATRIX THE	AMS 66	954
SEQUENTIAL RELIABILITY ASSURANCE IN FIN	NITE LOTS	TECH 69	61
TIONS FOR A STATIONARY PROCESS TO BE A FUNCTION OF A FIN	NITE MARKOV CHAIN SUFFICIENT CONDI	AMS 63	1033
IN THE THEORY OF RANDOM VARIABLES DEFINED ON A FIN	NITE MARKOV CHAIN SUFFICIENT CONDI NITE MARKOV CHAIN A CONVEXITY PROPERTY NITE MARKOV CHAINS	AMS 61	1260
A CHARACTERIZATION OF A CLASS OF FUNCTIONS OF FIN	TILL MINIOT OTHERS	AMS 63 AMS 65	1022
IDENTIFICATION OF STATE-CALCULABLE FUNCTIONS OF FIN		AMS 67	
	NITE MARKOV CHAINS	AMS 67	

```
FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES
                                                                                                            AMS 68 1020
                           THE SPECTRAL THEOREM FOR FINITE MATRICES AND COCHRAN'S THEOREM
                                                                                                            AMS 64 443
 CHARACTERIZATION OF SYMMETRIC STABLE PROCESSES WITH FINITE MEAN
                                                                                                       ON A AMS 6B 1498
    THE ROBBINS-ISBELL TWO-ARMED-BANDIT PROBLEM WITH FINITE MEMORY
                                                                                                             AMS 65 1375
      RANDOMIZED RULES FOR THE TWO-ARMED BANDIT WITH FINITE MEMORY
                                                                                                             AMS 68 2103
                            HYPOTHESIS TESTING WITH FINITE MEMORY
                                                                                                             AMS 69 828
                       ESTIMATION OF PARAMETERS OF A FINITE MIXTURE OF DISTRIBUTIONS
                                                                                                            JRSSB68 472
                                  IDENTIFIABILITY OF FINITE MIXTURES
                                                                                                             AMS 63 1265
                          ON THE IDENTIFIABILITY OF FINITE MIXTURES
                                                                                                             AMS 68 209
    A CONSISTENT ESTIMATOR FOR THE IDENTIFICATION OF FINITE MIXTURES
                                                                                                             AMS 69 1728
                                       ESTIMATION OF FINITE MIXTURES OF DISTRIBUTIONS FROM THE EXPONENTIAL JASA 69 NO. 4
 FAMILY.
                                                                                                             AMS 61
                      SAMPLING MOMENTS OF MEANS FROM FINITE MULTIVARIATE POPULATIONS
                                                                                                                     406
                  ON THE RANCE OF PARTIAL SUMS OF A FINITE NUMBER OF INDEPENDENT NORMAL VARIATES
   THE VARIANCE OF THE MAXIMUM OF PARTIAL SUMS OF A FINITE NUMBER OF INDEPENDENT NORMAL VARIATES
                                                                                                            BIOKA55
  ON THE MOMENTS OF THE MAXIMUM OF PARTIAL SUMS OF A FINITE NUMBER OF INDEPENDENT NORMAL VARIATES
                                                                                                                     79
                                                                                                           BIOKA56
                               FINDING THE SIZE OF A FINITE POPULATION
                                                                                                             AMS 67 1392
              CONFIDENCE INTERVALS FOR THE MEAN OF A FINITE POPULATION
                                                                                                             AMS 67 11B0
                 MOMENT-STATISTICS IN SAMPLES FROM A FINITE POPULATION
                                                                                                            BTOKA52
                                                                                                                     14
  COEFFICIENTS OF THE K-STATISTICS IN SAMPLES FROM A FINITE POPULATION
                                                                                                    MOMENT BIOKA52
     OF THE SAMPLE MEAN AS ESTIMATE OF THE MEAN OF A FINITE POPULATION
                                                                                              ADMISSIBILITY AMS 6B 606
REJECTIVE SAMPLING WITH VARYING PROBABILITIES FROM A FINITE POPULATION
                                                                                     ASYMPTOTIC THEORY OF
                                                                                                             AMS 64 1491
IMATOR IN SAMPLING WITH VARYING PROBABILITIES FROM A FINITE POPULATION /FOR THE ERROR-VARIANCE OF AN EST JASA 68
                                                                                                                     91
NTRAL SAMPLING MOMENTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION (ATY'S FORMULAE AND MADOW'S CENTRAL BIOKA61
                                                                                                                     199
                                AN OLD APPROACH TO FINITE POPULATION SAMPLING THEORY
                                                                                                           JASA 6B 1269
ESTIMATORS, CORR. 60 755
                                                SOME FINITE POPULATION UNBAISED RATIO AND REGRESSION
                                                                                                            JASA 59
                                                                                                                    594
          SOME PROPERTIES OF PASGAL DISTRIBUTION FOR FINITE POPULATION, CORR. 62 919
                                                                                                            JASA 62 172
  GENERALIZED MULTIVARIATE ESTIMATOR FOR THE MEAN OF FINITE POPULATIONS
                                                                                                            JASA 67 1009
 BAYES SEQUENTIAL DESIGNS OF FIXED SIZE SAMPLES FROM FINITE POPULATIONS
                                                                                                            JASA 69 NO.4
                   MULTIVARIATE RATIO ESTIMATION FOR FINITE POPULATIONS
                                                                                                            BIOK A5B
                                                                                                                    154
                ON THREE PROCEDURES OF SAMPLING FROM FINITE POPULATIONS
                                                                                                            BTOKA6B
                                                                                                                     43B
                   A UNIFIED THEORY OF SAMPLING FROM FINITE POPULATIONS
                                                                                                            JRSSB55
                                                                                                                    269
           DISTRIBUTION-FREE SUFFICIENCY IN SAMPLING FINITE POPULATIONS
                                                                                                            JRSSB68
                                                                                                                    551
NEW BINOMIAL APPROXIMATION FOR USE IN SAMPLING FROM FINITE POPULATIONS
                                                                                                          A JASA 60
                                                                                                                    718
   ADMISSIBILITY AND OPTIMUM ESTIMATORS FOR SAMPLING FINITE POPULATIONS
                                                                                                    HYPER- AMS 6B
                                                                                                                     621
POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE FINITE POPULATIONS
                                                                               RELATIONSHIP OF GENERALIZED AMS 68
                                                                                                                     643
TION AND BAYESIAN ANALYSIS OF GATERGORICAL DATA FROM FINITE POPULATIONS
                                                                          /E COMPOUND MULTINOMIAL DISTRIBU JASA 69
                                                                                                                     216
              SUBJECTIVE BAYESIAN MODELS IN SAMPLING FINITE POPULATIONS (WITH DISCUSSION)
                                                                                                           JRSSB69 NO.2
LING DISTRIBUTION OF THE RANCE FROM DISCRETE UNIFORM FINITE POPULATIONS AND A RANGE TEST FOR HOMOGENEITY
                                                                                                           JASA 69 NO.4
                 ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULATIONS OF UNKNOWN SIZE, CORR. 64 1297
                                                                                                            JASA 62 61
TWO-STAGE SUBSAMPLING PROCEDURE FOR RANKING MEANS OF FINITE POPULATIONS WITH AN APPLICATION TO BULK SAMPLI TECH 67
                                                                                                                     355
                    A NEW APPROACH TO SAMPLING FROM FINITE POPULATIONS. I
                                                                                                            JRSSB66 310
                     A NEW APPROACH TO SAMPLING FROM FINITE POPULATIONS. II
                                                                                                            JRSSB66 320
      ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE POPULATIONS, I
                                                                                                             AMS 65 1707
      ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE POPULATIONS, II
                                                                                                             AMS 65 1723
      ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE POPULATIONS, III
                                                                                                             AMS 65 1730
      ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE POPULATIONS, IV
                                                                                                             AMS 66 165B
      ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE POPULATIONS, V
                                                                                                             AMS 69 672
ONS OF SEVERAL CARIABLES
                                                  ON FINITE PRODUCTS OF POISSON-TYPE CHARACTERISTIC FUNCTI AMS 69
 THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE QUEUE
                                                                                      A NOTE ON EQUALISING JRSSB55
                                                                                                                     262
    ON CONFIDENCE BANDS FOR A RECRESSION LINE OVER A FINITE RANGE
                                                                                                    A NOTE JASA 68 1028
     A NOTE ON EXCHANGEABLE PROCESSES WITH STATES OF FINITE RANK
                                                                                                             AMS 69 NO.6
LASSI/ REMARKS CONCERNING THE APPLICATION OF EXACT FINITE SAMPLE DISTRIBUTION FUNCTIONS OF CENERALIZED C JASA 63 943
LINEAR IDENTIFIABILITY TEST STATISTICS
                                                ON FINITE SAMPLE DISTRIBUTIONS OF GENERALIZED CLASSICAL JASA 60
                                                                                                                     650
SIGAL LINEAR ESTIMATORS IN TW/ A NOTE ON THE EXACT FINITE SAMPLE PREQUENCY FUNCTIONS OF CENERALIZED CLAS JASA 61
SICAL LINEAR ESTIMATORS IN A/ A NOTE ON THE EXACT FINITE SAMPLE PREQUENCY FUNCTIONS OF CENERALIZED CLAS JASA 63
                                                                                                                     619
                                                                                                                    161
 ILLUSTRATION
                                                     FINITE SAMPLE MONTE CARLO STUDIES. AND AUTOREGRESSIVE JASA 67
                                                                                                                     B01
SEEMINGLY UNRELATED REGRESSION EQUATIONS, SOME EXACT FINITE SAMPLE RESULTS
                                                                                           ESTIMATORS FOR JASA 63
                                                                                                                    977
OF CRITICAL VALUES OF SOME RENYI TYPE STATISTICS FOR FINITE SAMPLE SIZES
                                                                                                   TABLES JASA 69 B70
 EXPERIMENTAL RANDOMIZATION IN BAYESIAN STATISTICS, FINITE SAMPLING AND TWO BAYESIANS
                                                                                               THE ROLE OF BIOKA69 NO.3
   AMALGAMATION INTO BLOCKS, BY WEIGHTED MEANS, OF A FINITE SET OF REAL NUMBERS
                                                                                              THE COMPLETE BIOKA59 317
        ENUMERATION OF LINEAR GRAPHS FOR MAPPINGS OF FINITE SETS
                                                                                                             AMS 62 178
                    WEAK QUALITATIVE PROBABILITY ON FINITE SETS
                                                                                                             AMS 69 NO.6
ON THE ITERATIVE METHOD OF DYNAMIC PROGRAMMING ON A FINITE SPACE DISCRETE TIME MARKOV PROCESS
                                                                                                             AMS 65 1279
STATISTICAL INFERENCE FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS
                                                                                                             AMS 66 1554
                         PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS
                                                                                                                     97
                                                                                                             AMS 69
RIBUTION OF SOME PROBABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS
                                                                                    ADMISSIBILITY AND DIST AMS 6B 1646
                                                                                                            AMS 62
  THE INFINITESIMAL GENERATOR OF A CONTINUOUS TIME, FINITE STATE MARKOV PROCESS
                                                                                               ESTIMATING
                                                                                                                    727
     THEOREMS FOR STATIONARY PROBABILITY MEASURES ON FINITE STATE SEQUENCES
                                                                                            SOME STRUCTURE AMS 64
                                                                                                                    550
                                  REPETITIVE PLAY IN FINITE STATISTICAL CAMES WITH UNKNOWN DISTRIBUTIONS
                                                                                                             AMS 66
                                                                                                                     976
                                                    FINITE STOPPING TIME AND FINITE EXPECTED STOPPING
                                                                                                           JRSSB65
                                                                                                                    284
                A TRANSIENT DISCRETE TIME QUEUE WITH FINITE STORACE
                                                                                                             AMS 62
                                                                                                                    130
                                                                            /FFERENTIAL FOR POSITIVE DIRE BIOCS67
CTIONAL SELECTION ON NORMAL VARIABLES WITHIN SETS OF FINITE SUBPOPULATIONS
                                                                                                                    295
TION FOR RANDOM VARIABLES COVARIANCE STATIONARY ON A FINITE TIME INTERVAL
                                                                              A MOVING AVERACE REPRESENTA BIOKA65
OWER PROBABILITY INFERENCES BASED ON A SAMPLE FROM A FINITE UNIVARIATE POPULATION
                                                                                             UPPER AND L BIOKA67
                           ON PRODUCT MOMENTS FROM A FINITE UNIVERSE
                                                                                                           JASA 6B
                                                                                                                    535
              MORE RESULTS ON PRODUCT MOMENTS FROM A FINITE UNIVERSE
                                                                                                           JASA 69
                                                                                                                    864
                            MEMORYLESS STRATEGIES IN FINITE-STACE DYNAMIC PROGRAMMING
                                                                                                            AMS 64
                                                                                                                    863
            .) IS A REALIZATION OF A NON-HOMOGENEOUS FINITE-STATE MARKOV GHAIN /-SUB-T), WHERE (Y-SUB-O, BIOKA65
                                                                                                                    277
NG THE EQUILIBRIUM AND TRANSITION PROBABILITIES OF A FINITE-STATE MARKOV CHAIN FROM THE SAME DATA /IMATI BIOGS6B 1B5
N ORNSTEIN-UHLENBECK PROGESS BY MONTE/ ESTIMATING FINITE-TIME MAXIMA AND MINIMA OF A STATIONARY GAUSSIA JASA 68 1517
                                        REPRESENTING FINITELY ADDITIVE INVARIANT PROBABILITIES
                                                                                                            AMS 68 2131
        SUFFICIENT CONDITIONS FOR THE EXISTENCE OF A FINITELY ADDITIVE PROBABILITY MEASURE
                                                                                                            AMS 67 7B0
   A NOTE ON THRIFTY STRATEGIES AND MARTINGALES IN A FINITELY ADDITIVE SETTING WILLIAM D. SUDDERTH
                                                                                                            AMS 69 NO 6
                       MARKOV RENEWAL PROCESSES WITH FINITELY MANY STATES
                                                                                                            AMS 61 1243
IFICANCE IN A 2-BY-2 GONTINGENCY TABLE, EXTENSION OF FINNEY'S TABLE
                                                                                             TESTS OF SIGN BIOKA53
                                                                                                                   74
       THE VARIABILITY OF PROFITIBILATY WITH SIZE OF FIRM, 1947-1958
                                                                                                           JASA 64 1183
```

TITLE WORD INDEX FIN - FIT

STRY EXPECTATIONS IN RELATION TO THOSE OF INDIVIDUAL	FIRMS	THE ACCURACY AND STRUCTURE OF INDU	JASA 5B	317
A STOCHASTIC ANALYSIS OF THE SIZE DISTRIBUTION OF				
ASYMPTOTIC POWER OF CERTAIN TEST CRITERIA, BASED ON				
TWO ASSOCIATE PBIB DESIGNS COMPONENTS OF COVARIANCE EXACT	FIRST	AND SECOND MOMENTS OF THE RANDOMIZATION TEST IN	JASA 69	NO.4
COMPONENTS OF COVARIANCE EXACT	FIRST	AND SECOND ORDER MOMENTS OF ESTIMATES OF	BIOKA69	NO.3
OM DOUBLY CENSORED SAMPLES, OF THE PARAMETERS OF THE	FIRST	ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FR	JASA 68	889
PROBABILITY TABLE FOR NUMBER OF RUNS OF SIGNS OF	FIRST	DIFFERENCES IN ORDERED SERIES	JASA 61	156
	FIRST	EMPTINESS IN A FINITE DAM	JRSSB61	343
PROBABILITY TABLE FOR NUMBER OF RUNS OF SIGNS OF	FIRST	EMPTINESS OF TWO DAMS IN PARALLEL.	AMS 61	219
TY OF REDUNDANT SYSTEMS WHEN TESTS ARE TERMINATED AT	FIRST	FATILIRE /STAN CONFIDENCE LIMITS FOR RELIABILIT	TECH 68	29
TY OF REDUNDANT SYSTEMS WHEN TESTS ARE TERMINATED AT COMPUTERS, THE SECOND REVOLUTION IN STATISTICS (THE OF THE BOUNDS OF THE PROBABILITY INTEGRAL WHEN THE SUMS OF INDEPENDENT RANDOM VARIABLES WITH INFINITE MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE RENEWAL THEOREMS WHEN THE MULTI-FACTOR DESIGNS OF RVATIONS IN MULTIVARIATE REGRESSION. EFFICIENCY OF A ON THE INVERSE OF THE COVARIANCE MATRIX OF A ON THE MEAN DURATION OF A BALL AND CELL GAME., A SOME RENEWAL THEOREMS WITH APPLICATION TO A SOME WALKS ON THE CONTINUUM	FIRST	FISHER MEMORIAL LECTURE)	BIOCS66	233
OF THE BOUNDS OF THE PROBABILITY INTEGRAL WHEN THE	FIRST	FOUR MOMENTS ARE CIVEN TARIE	BIOCSGO	700
CHARGOE TARREDUNDENT DAMRON VARIABLES WITH TARRANTE	LIVOI	MOMENT TABLE	DIUKAGU	355
MINITHAY ECTIMATION OF A DANDOM PROPARTITY THOSE	LTLOI	N MOMENT ARE KNOWN	AWS 67	101
MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE	FIRST	N MUMENTS ARE KNOWN	AMS 68	492
RENEWAL THEOREMS WHEN THE	FIRST	OR THE SECOND MOMENT IS INFINITE	AMS 68	1210
MULTI-FACTOR DESIGNS OF	FIRST	ORDER	BIOKA52	49
RVATIONS IN MULTIVARIATE REGRESSION, EFFICIENCY OF A	FIRST	ORDER METHOD MISSING OBSE	JASA 69	NO.4
ON THE INVERSE OF THE COVARIANCE MATRIX OF A	FIRST	ORDER MOVING AVERAGE	BIOKA69	NO.3
ON THE MEAN DURATION OF A BALL AND CELL GAME, A	FIRST	PASSAGE PROBLEM	AMS 66	517
SOME RENEWAL THEOREMS WITH APPLICATION TO A	FIRST	PASSAGE PROBLEM	AMS 66	699
A	FIRST	PASSAGE PROBLEM FOR THE WIENER PROCESS	AMS 67	1912
SOME	FIRST	PASSAGE PROBLEMS FOR S-SUB-N-OVER-ROOT-N	AMS 69	648
WALKS ON THE CONTINUUM THE	FIRST		AMS 63	1003
CERTAIN PROPERTIES OF GAUSSIAN PROCESSES AND THEIR				
R. AND ACKNOWLEDGEMENT OF PRIORITY 61 1345	FIRST	PASSAGE TIMES OF A GENERALIZED RANDOM WALK, COR	AMS 61	235
DESIGNS BALANCED FOR THE LINEAR COMPONENT OF	FIRST	RESIDUAL EFFECTS CHANGEOVER	BIOKA6B	297
OF CHANGEOVER DESIGNS WITH COMPLETE BALANCE FOR	FIRST	RESIDUAL EFFECTS THE ANALYSIS	BIOCS67	57B
ON THE DISTRIBUTION OF THE	FIRST	SAMPLE MOMENTS OF SHOT NOISE	TECH 64	2B7
OF CHANGEOVER DESIGNS WITH COMPLETE BALANCE FOR OF CHANGEOVER DESIGNS WITH COMPLETE BALANCE FOR ON THE DISTRIBUTION OF THE THE NULL DISTRIBUTION OF THE ON THE DISTRIBUTION OF	FIRST	SERIAL CORRELATION COEFFICIENT	BIOKA66	623
ON THE DISTRIBUTION OF	FIRST	SIGNIFICANT DIGITS	AMS 61	1223
APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND	FIRST	THREE MOMENTS ARE KNOWN /ARSON DENSITIES FOR	BIOKA68	559
ASYMPTOTIC VALUES OF THE	FIRST	TWO MOMENTS IN MARKOV RENEWAL PROCESSES	BIOKA67	597
RICAL MULTINOMIAL DISTRIBUTION A NOTE ON THE	FIRST	TWO MOMENTS OF THE MEAN DEVIATION OF THE SYMMET	BIOKA67	312
		1.945 BRITISH STEAMSHIPS		
		-MEDIAN TEST. A TWO-SIDED VERSION OF THE CONTROL		
FFICIENCY OF THE SAMPLE MEAN WHEN RESIDUALS FOLLOW A				
TITUTENOT OF THE SHAN BE MEAN WILL NEUTRON OF TOBER A	FIRST-		JRSSB66	
			JASA 56	
NOTE ON AN ARTICLE BY SIR RONALD	FISHER	S	JRSSB56	
NOTE ON SOME CRTICISMS MADE BY SIR RONALD			JRSSB56	
SOME EARLY CORRESPONDENCE BETWEEN W.S. GOSSETT, R.A.				
METHODOLOGY R. A.	LISUEL	AND THE LACT ETERY VEADS OF STATISTICAL	DIUNAGO	705
METHODOLOGI R. A.	LISHEL	AND THE EAST LILLT LEAKS OF STATISTICAL	JASA 65	393
THE BEHKENS-	-FISHER	C DISTRIBUTION AND WEIGHTED MEANS	JKSSB59	7.5
MULTI-SAMPLE TESTS FOR THE	FISHER	R DISTRIBUTION FOR DIRECTIONS	BIOKA69	169
APPROXIMATION TO THE GENERALIZED BEHRENS-	-FISHEF	R AND THE LAST FIFTY YEARS OF STATISTICAL R DISTRIBUTION AND WEIGHTED MEANS R DISTRIBUTION FOR DIRECTIONS R DISTRIBUTION INVOLVING THREE VARIATES R DISTRIBUTIONS.	BIOKA69	NO.3
IONS NOTES. TABLES OF PEARSON-LEE-	-FISHEF	R FUNCTIONS OF SINGLY TRUNCATED NORMAL DISTRIBUT	BIOCS65	219
THE SECOND REVOLUTION IN STATISTICS (THE FIRST	FISHER	R MEMORIAL LECTURE) COMPUTERS,	B10CS66	233
A SEQUENTIAL ANALOQUE OF THE BEHRENS-	-FISHEF	R PROBLEM	AMS 67	1384
SOME REMARKS ON SCHEFFE'S SOLUTION TO THE BEHRENS-	-FISHEF	R PROBLEM	JASA 69	NO.4
OF THE WILCOXON STATISTIC FOR A GENERALIZED BEHRENS-	-FISHEF	R PROBLEM USE	AMS 63	1596
INTERVAL OF PREASSIGNED LENGTH FOR THE BEHRENS-	-FISHER	R PROBLEM CONFIDENCE	AMS 67	1175
OF FREEDOM SOLUTION TO THE MULTIVARIATE BEHRENS-	-FISHER	R PROBLEM AN APPROXIMATE DEGREES	BIOKA65	139
ISON OF TWO TEST PROCEDURES PROPOSED FOR THE BEHRENS-	-FISHER	R PROBLEM A CONFIDENCE INTERVAL COMPAR	JASA 66	454
THE SECOND REVOLUTION IN STATISTICS (THE FIRST A SEQUENTIAL ANALOQUE OF THE BEHRENS- SOME REMARKS ON SCHEFFE'S SOLUTION TO THE BEHRENS- OF THE WILCOXON STATISTIC FOR A GENERALIZED BEHRENS- INTERVAL OF PREASSIGNED LENGTH FOR THE BEHRENS- OF FREEDOM SOLUTION TO THE MULTIVARIATE BEHRENS- ISON OF TWO TEST PROCEDURES PROPOSED FOR THE BEHRENS- NONPARAMETRIC ESTIMATES FOR SHIFT IN THE BEHRENS- BOUNDS ON THE DISTRIBUTION FUNCTIONS OF THE BEHRENS- A NOMOGRAM FOR THE 'STUDENT'	-FISHEF	C SITUATION ON SOME	AMS 66	593
BOUNDS ON THE DISTRIBUTION FUNCTIONS OF THE BEHRENS-	-FISHEF	C STATISTIC	AMS 66	639
A NOMOGRAM FOR THE 'STUDENT'	FISHEF	C T TEST	JASA 69	NO.4
A NEW PROOF OF THE PEARSON-	-LTDHFL	(IHEUREM, (ACKNOWLEDGEMENI OF FRIORIII, 00 044)	AWD 64	OTI
NOTE ON A PAPER BY RAY AND PITMAN +	FISHER		JRSSB62	
SOME SCHEFFE-TYPE TESTS FOR SOME BEHRENS-	-FISHEF	C-TYPE REGRESSION PROBLEMS	JASA 65	
WEEN THE MEA/ AN EXACT DISTRIBUTION OF THE BEHRENS-	-FISHEF	C-WELCH STATISTIC FUR TESTING THE DIFFERENCE BET		
W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-	FISHER		BIOCS68	
MEMORIAL TO SIR RONALD AYLMER	FISHER	R, 1B90-1962	JASA 62	
RONALD AYLMER	FISHEF	7, 1890–1962	BIOKA63	1
SIAN ANALYSIS OF A TWO-BY-TWO CONTINGENCY TABLE, AND				
APPROXIMATIONS TO THE UPPER 5 PERCENT POINTS OF				
			AMS 64	
NOTES. FURTHER ANALYSIS OF R. A.			BIOCS65	
		R'S EXACT METHOD OF COMPARING TWO PERCENTAGES		
ON THE DIFFICULTIES INHERENT IN			JASA 64	
EFFECT OF UNEQUAL VARIANCE—COVARIANCE MATRICES ON			BIOCS69	
	CICHEL	R'S PAPER, 'ON A TEST OF SIGNIFICANCE IN PEARSON	JRSSB56 JRSSB59	
				409
COEFFICIENT NOTE ON	FISHER			
COEFFICIENT NOTE ON A COEFFICIENT MEASURING THE GOODNESS OF	FISHEF FIT		TECH 66	327
COEFFICIENT NOTE ON A COEFFICIENT MEASURING THE GOODNESS OF GOODNESS OF	FISHEF FIT FIT		TECH 66 JASA 67	327 390
COEFFICIENT NOTE ON A COEFFICIENT MEASURING THE GOODNESS OF ON AN EXACT TREATMENT OF CONTINGENCY, GOODNESS OF	FISHER FIT FIT AN	ID OTHER PROBLEMS OF SIGNIFICANCE NOTE	TECH 66 JASA 67 BIOKA51	327 390 141
COEFFICIENT NOTE ON A COEFFICIENT MEASURING THE GOODNESS OF GOODNESS OF ON AN EXACT TREATMENT OF CONTINGENCY. GOODNESS OF KOLMOGOROV-SMIRNOV TESTS OF	FISHER FIT FIT AN FIT BA	ID OTHER PROBLEMS OF SIGNIFICANCE NOTE SED ON SOME GENERAL BOUNDS	TECH 66 JASA 67 BIOKA51 JASA 6B	327 390 141 919
COEFFICIENT NOTE ON A COEFFICIENT MEASURING THE GOODNESS OF GOODNESS OF ON AN EXACT TREATMENT OF CONTINGENCY, GOODNESS OF KOLMOGOROV-SMIRNOV TESTS OF E SHORTEST SAMPLE SPACINGS DETERMINED BY/ TESTS OF	FISHER FIT FIT AN FIT BA FIT BA	ID OTHER PROBLEMS OF SIGNIFICANCE NOTE SED ON SOME GENERAL BOUNDS SED ON THE NUMBER OF OBSERVATIONS FALLING IN TH	TECH 66 JASA 67 BIOKA51 JASA 6B AMS 61	327 390 141 919 838
COEFFICIENT NOTE ON A COEFFICIENT MEASURING THE GOODNESS OF GOODNESS OF ON AN EXACT TREATMENT OF CONTINGENCY, GOODNESS OF KOLMOGOROV-SMIRNOV TESTS OF E SHORTEST SAMPLE SPACINGS DETERMINED BY/ TESTS OF PTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' GOODNESS OF	FISHER FIT FIT AN FIT BA FIT BA FIT CF	ID OTHER PROBLEMS OF SIGNIFICANCE NOTE SED ON SOME GENERAL BOUNDS SED ON THE NUMBER OF OBSERVATIONS FALLING IN TH	TECH 66 JASA 67 BIOKA51 JASA 6B AMS 61 AMS 61	327 390 141 919 838 49
COEFFICIENT NOTE ON A COEFFICIENT MEASURING THE GOODNESS OF GOODNESS OF ON AN EXACT TREATMENT OF CONTINGENCY, GOODNESS OF KOLMOGOROV-SMIRNOV TESTS OF E SHORTEST SAMPLE SPACINGS DETERMINED BY/ TESTS OF PTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' GOODNESS OF ASYMPTOTIC POWERS OF CERTAIN TESTS OF GOODNESS OF	FISHER FIT FIT AN FIT BA FIT CF FIT CF	ID OTHER PROBLEMS OF SIGNIFICANCE NOTE USED ON SOME GENERAL BOUNDS USED ON THE NUMBER OF OBSERVATIONS FALLING IN THE UITERIA FOR MARKOV CHAINS AND MARKOV SEQUENCES UR TIME SERIES THE	TECH 66 JASA 67 BIOKA51 JASA 6B AMS 61 AMS 61 JRSSB58	327 390 141 919 838 49 143
COEFFICIENT NOTE ON A COEFFICIENT MEASURING THE GOODNESS OF GOODNESS OF ON AN EXACT TREATMENT OF CONTINGENCY, GOODNESS OF KOLMOGOROV-SMIRNOV TESTS OF E SHORTEST SAMPLE SPACINGS DETERMINED BY/ TESTS OF PTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' GOODNESS OF ASYMPTOTIC POWERS OF CERTAIN TESTS OF GOODNESS OF TESTS OF	FISHER FIT FIT AN FIT BA FIT CF FIT FO FIT IN	ID OTHER PROBLEMS OF SIGNIFICANCE NOTE SED ON SOME GENERAL BOUNDS SED ON THE NUMBER OF OBSERVATIONS FALLING IN TH SITERIA FOR MARKOV CHAINS AND MARKOV SEQUENCES OR TIME SERIES THE	TECH 66 JASA 67 BIOKA51 JASA 6B AMS 61 AMS 61 JRSSB58 BIOKA52	327 390 141 919 838 49 143 309
COEFFICIENT NOTE ON A COEFFICIENT MEASURING THE GOODNESS OF GOODNESS OF ON AN EXACT TREATMENT OF CONTINGENCY, GOODNESS OF KOLMOGOROV-SMIRNOV TESTS OF E SHORTEST SAMPLE SPACINGS DETERMINED BY/ TESTS OF PTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' GOODNESS OF ASYMPTOTIC POWERS OF CERTAIN TESTS OF GOODNESS OF TESTS OF AN INEQUALITY CONCERNING TESTS OF	FISHER FIT FIT AN FIT BA FIT CF FIT FO FIT IN FIT OF	ID OTHER PROBLEMS OF SIGNIFICANCE NOTE USED ON SOME GENERAL BOUNDS USED ON THE NUMBER OF OBSERVATIONS FALLING IN THE UITERIA FOR MARKOV CHAINS AND MARKOV SEQUENCES UR TIME SERIES UTHE THE SERIES UTHE SERIES UTHE SERIES UTHE KOLMOGOROV-SMIRNOV TYPE	TECH 66 JASA 67 BIOKA51 JASA 6B AMS 61 AMS 61 JRSSB58 BIOKA52 AMS 67	327 390 141 919 838 49 143 309 1240
COEFFICIENT NOTE ON A COEFFICIENT MEASURING THE GOODNESS OF GOODNESS OF ON AN EXACT TREATMENT OF CONTINGENCY, GOODNESS OF KOLMOGOROV-SMIRNOV TESTS OF E SHORTEST SAMPLE SPACINGS DETERMINED BY/ TESTS OF PTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' GOODNESS OF ASYMPTOTIC POWERS OF CERTAIN TESTS OF GOODNESS OF TESTS OF AN INEQUALITY CONCERNING TESTS OF POINTS THE GOODNESS OF	FISHER FIT FIT AN FIT BA FIT CF FIT FO FIT IN FIT OF	ID OTHER PROBLEMS OF SIGNIFICANCE NOTE USED ON SOME GENERAL BOUNDS USED ON THE NUMBER OF OBSERVATIONS FALLING IN THE UITERIA FOR MARKOV CHAINS AND MARKOV SEQUENCES UR TIME SERIES UTHE SERIES UTHE SERIES UTHE KOLMOGOROV-SMIRNOV TYPE UNITSTIC V-SUB-N, DISTRIBUTION AND SIGNIFICANCE	TECH 66 JASA 67 BIOKA51 JASA 6B AMS 61 AMS 61 JRSSB58 BIOKA52 AMS 67 BIOKA65	327 390 141 919 838 49 143 309 1240 309
COEFFICIENT NOTE ON A COEFFICIENT MEASURING THE GOODNESS OF GOODNESS OF ON AN EXACT TREATMENT OF CONTINGENCY, GOODNESS OF KOLMOGOROV-SMIRNOV TESTS OF E SHORTEST SAMPLE SPACINGS DETERMINED BY/ TESTS OF PTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' GOODNESS OF ASYMPTOTIC POWERS OF CERTAIN TESTS OF GOODNESS OF TESTS OF AN INEQUALITY CONCERNING TESTS OF POINTS THE GOODNESS OF ONARY TIME SERIES WITH NORMAL RESID/ A GOODNESS OF	FISHER FIT FIT AN FIT BA FIT CF FIT FO FIT IN FIT OF FIT ST FIT TE	ID OTHER PROBLEMS OF SIGNIFICANCE NOTE USED ON SOME GENERAL BOUNDS USED ON THE NUMBER OF OBSERVATIONS FALLING IN THE USERIES AT TIME SERIES UTHE SERIES UTHE SERIES UTHE KOLMOGOROV-SMIRNOV TYPE USATISTIC V-SUB-N. DISTRIBUTION AND SIGNIFICANCE USERS SECTRAL DISTRIBUTION FUNCTIONS OF STATI	TECH 66 JASA 67 BIOKA51 JASA 6B AMS 61 AMS 61 JRSSB58 BIOKA52 AMS 67 BIOKA65 BIOKA65	327 390 141 919 838 49 143 309 1240 309 257
COEFFICIENT NOTE ON A COEFFICIENT MEASURING THE GOODNESS OF GOODNESS OF ON AN EXACT TREATMENT OF CONTINGENCY, GOODNESS OF KOLMOGOROV-SMIRNOV TESTS OF E SHORTEST SAMPLE SPACINGS DETERMINED BY/ TESTS OF PTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' GOODNESS OF ASYMPTOTIC POWERS OF CERTAIN TESTS OF GOODNESS OF TESTS OF AN INEQUALITY CONCERNING TESTS OF POINTS THE GOODNESS OF	FISHER FIT FIT AN FIT BA FIT CF FIT FO FIT IN FIT OF FIT ST FIT TE	ID OTHER PROBLEMS OF SIGNIFICANCE NOTE USED ON SOME GENERAL BOUNDS USED ON THE NUMBER OF OBSERVATIONS FALLING IN THE USERIES AT TIME SERIES UTHE SERIES UTHE SERIES UTHE KOLMOGOROV-SMIRNOV TYPE USATISTIC V-SUB-N. DISTRIBUTION AND SIGNIFICANCE USERS SECTRAL DISTRIBUTION FUNCTIONS OF STATI	TECH 66 JASA 67 BIOKA51 JASA 6B AMS 61 AMS 61 JRSSB58 BIOKA52 AMS 67 BIOKA65 BIOKA65	327 390 141 919 838 49 143 309 1240 309 257

FIT - FOR TITLE WORD INDEX

```
ERRATA. 'A COEFFICIENT MEASURING THE COODNESS OF FIT'
                                                                                                             TECH 67
RTIAL ISOLATION (DISTANCE). MICRATION, AND DIFFERENT FITNESS REQUIREMENTS AMONC ENVIRONMENTAL POCKETS UPON BIOCS66
                         MAMMALIAN REPRODUCTIVE DATA FITTED TO A MATHEMATICAL MODEL
                        AODITIVE COMBINING ABILITIES FITTED TO PLANT BREEDING OATA
                                                                                                             BIOCS67
                                                                                                                       45
IN POLYNOMIAL RECRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NESS OF THE SPACINC OF OBSERVATIONS
                                                                                                             AMS 62
                               ORTHOCONAL POLYNOMIAL FITTING
                                                                                                             BIOKA53
                                                                                                                      361
         ON A POINT ARISINC IN POLYNOMIAL REGRESSION FITTING
                                                                                                             BIOKA64
                                                                                                                      501
    ESTIMATES OF THE PARAMETERS IN EXPONENTIAL CURVE FITTING
                                                                               A METHOD OF OBTAINING INITIAL BIOCS69
                                                                                                                      580
                                   NOTE. A METHOD OF FITTING A NON-LINEAR CURVE CONTAINING A SINGLE NON-
LINEARITY
                                                                                                             BTOCS65
                                                                                                                      506
                                                      FITTING A POLYNOMIAL TO CORRELATED EQUALLY SPACED
OBSERVATIONS
                                                                                                             BIOKA65
                                                                                                                      275
        A NOTE ON THE EQUIVALENCE OF TWO METHODS OF FITTING A STRAIGHT LINE THROUGH CUMULATIVE DATA
                                                                                                             JASA 64
                                                                                                                       863
CUMULATIVE DATA
                                                      FITTING A STRAIGHT LINE TO CERTAIN TYPES OF
                                                                                                             JASA 57
                                                                                                                       552
POPULATION
                                                      FITTING A STRAIGHT LINE TO DATA FROM A TRUNCATED
                                                                                                             BIOCS65
                        THE USE OF AUTORECRESSION IN FITTING AN EXPONENTIAL CURVE
                                                                                                             BIOKA58
            AN INVESTIGATION OF HARTLEY'S METHOD FOR FITTING AN EXPONENTIAL CURVE
                                                                                                             BIOKA59
                                                                                                                       281
               A FURTHER NOTE ON A SIMPLE METHOD FOR FITTING AN EXPONENTIAL CURVE
                                                                                                                      177
                                                                                                             BIOKA60
E AND NEGATIVE BINOMIAL FREQUENCY FUNCTIONS IN CURVE FITTING BY AITKEN'S METHOD /YNOMIALS OF THE POSITIV BIOKA61
E AND NEGATIVE BINOMIAL FREQUENCY FUNCTIONS IN CURVE FITTING BY AITKEN'S METHOD' /POLYNOMIALS OF POSITIV BIOKA61
                                                                                                                      115
                                                                                                                       476
                                                CURVE FITTING BY SECMENTED STRAIGHT LINES
                                                                                                             JASA 69
                                                                                                                     1079
  ESTIMATION OF VARIANCE COMPONENTS BY THE METHOD OF FITTING CONSTANTS
                                                                                               A NOTE ON THE BIOKAGS NO 3
                                                      FITTING CURVES TO LONGITUDINAL DATA
                                                                                                             BIOCS66
                                                                                                                      276
DATA
                                          A METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND CHEMICAL
                                                                                                             TECH 69
                                                                                                                       411
                          SELECTION OF VARIABLES FOR FITTING EQUATIONS TO DATA
                                                                                                             TECH 66
                                                                                                                       27
                       THE DERIVATION OF METHODS FOR FITTING EXPONENTIAL REGRESSION CURVES
                                                                                                             BIOKA64
                                                                                                                      504
      DISTRIBUTION OF THE RESIDUAL SUM OF SQUARES IN FITTING INEQUALITIES
                                                                                                             BIOKA67
                                                                                                                       69
NEGATIVE, NON-DECREASING OR CONVEX
                                     LEAST-SQUARES FITTING OF A POLYNOMIAL CONSTRAINED TO BE EITHER NON- JRSSB69
                                                                                                                      113
NALOGOUS TO THE TYPE A S/ A STUDY OF THE MATRIX OF FITTING OF A SERIES OF DISCRETE FREQUENCY FUNCTIONS A SASJ 67
                                                                                                                       55
NORMAL DISTRIBUTIONS
                                                  THE FITTING OF CROUPED TRUNCATED AND GROUPED CENSORED
                                                                                                                       252
                                                                                                             BIOKA52
                                                  THE FITTING OF MARKOFF SERIAL VARIATION CURVES
                                                                                                             JRSSB5B
                                                                                                                      120
OXIMATE CANONICAL FACTORIZATION OF A SPECT/
                                             ON THE FITTING OF MULTIVARIATE AUTOREGRESSIONS, AND THE APPR BIOKAG3
                                                                                                                      129
            THE MODIFIED GAUSS-NEWTON METHOD FOR THE FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST S TECH 61
QUARES
                                                                                                                      269
                             GROUPING METHODS IN THE FITTING OF POLYNOMIALS TO EQUALLY SPACED OBSERVATIONS BIOKA54
                                                                                                                       62
MISSING VALUES
                                                  THE FITTING OF POLYNOMIALS TO EQUIDISTANT DATA WITH
                                                                                                                       410
                                                                                                             BIOKA51
                             GROUPING METHODS IN THE FITTING OF POLYNOMIALS TO UNEQUALLY SPACED OBSERVATIO BIOKA56
                                                                                                                      149
                        THE DOOLITTLE METHOD AND THE FITTING OF POLYNOMIALS TO WEIGHTED DATA
                                                                                                             BIOKA53
                                                                                                                       229
                                                 THE FITTING OF REGRESSION CURVES WITH AUTOCORRELATED DATA BIOKA56
LABLE DATA BY THE MAXIMUM LIKELIHOOD METHOD (CORR/
                                                     FITTING OF SOME CONTAGIOUS DISTRIBUTIONS TO SOME AVAI BIOCS65
                                                                                                                       34
VARIABLES ARE SUBJECT TO ERROR
                                                      FITTING OF STRAIGHT LINES AND PREDICTION WHEN BOTH
                                                                                                                       657
                                                                                                             JASA 61
SUBJECT TO ERROR, CORR. 59 812
                                                  THE FITTING OF STRAIGHT LINES WHEN BOTH VARIABLES ARE
                                                                                                                      173
                                                                                                             JASA 59
       THE EFFICIENCY OF INTERNAL REGRESSION FOR THE FITTING OF THE EXPONENTIAL REGRESSION
                                                                                                             BTOKA59
                                                                                                                      293
                                TABLES TO FACILITATE FITTING S-SUB-U FREQUENCY CURVES
                                                                                                             BIOKA65
                                                                                                                      547
 ESTIMATED.
                                                      FITTING SEGMENTED CURVES WHOSE JOIN POINTS HAVE TO BE JASA 66 1097
CONTROLLED
                                                      FITTING STRAIGHT LINES WHEN ONE VARIABLE IS
                                                                                                             JASA 58
                                                                                                                      106
                             GRAPHICAL PROCEDURE FOR FITTING THE BEST LINE TO A SET OF POINTS
                                                                                                             TECH 60
                                                                                                                      477
ACCORDING TO THE C/
                     A SHORT-CUT GRAPHIC METHOD FOR FITTING THE BEST STRAIGHT LINE TO A SERIES OF POINTS
                                                                                                            JASA 57
                                                                                                                       13
                      SOME COMPARISONS OF METHODS OF FITTING THE DOSAGE RESPONSE CURVE FOR SMALL SAMPLES
                                                                                                             JASA 64
                                                                                                                      779
                                             AIDS FOR FITTING THE CAMMA DISTRIBUTION BY MAXIMUM LIKELIHOOD
                                                                                                             TECH 60
                                                                                                                       55
                                        NOMOGRAMS FOR FITTING THE LOGISTIC FUNCTION BY MAXIMUM LIKELIHOOD
                                                                                                             BIOKA60
                                                      FITTING THE RECTANGULAR HYPERBOLA
                                                                                                             BTOCS66
                                                                                                                      573
                                          A METHOD OF FITTING THE RECRESSION CURVE E(Y)=A+DX+BC-TO-X
                                                                                                             TECH 65
                                                                                                                       59
                               A COMPUTER PROGRAM FOR FITTING THE RICHARDS FUNCTION
                                                                                                             BIOCS69
                                                                                                                      401
                               SIMPLIFIED METHODS OF FITTING THE TRUNCATED NECATIVE BINOMIAL DISTRIBUTION BIOKA58
                                                                                                                       59
     ON NORMALIZING THE INCOMPLETE BETA-FUNCTION FOR FITTING TO DOSE-RESPONSE CURVES
                                                                                                             BIOKA60
                                                                                                                      173
                                        LINEAR CURVE FITTING USING LEAST DEVIATIONS
                                                                                                             JASA 58
                                                                                                                      118
. CORR. 62 917
                                      A NOTE ON CURVE FITTING WITH MINIMUM DEVIATIONS BY LINEAR PROGRAMMING JASA 61
                                                                                                                      359
                       REDUCED DESIGNS OF RESOLUTION FIVE
                                                                                                             TECH 61
                                                                                                                      459
                    COMPUTER EDITING OF SURVEY DATA, FIVE YEARS OF EXPERIENCE IN BLS MANPOWER SURVEYS
                                                                                                                      375
                                                                                                             JASA 66
    OF CORRELATION COEFFICIENTS UNDER ASSUMPTIONS OF FIXED AND MIXED VARIATES
                                                                                      THE SAMPLING VARIANCE BIOKA58
                                                                                                                      471
NT POINTS OF THE OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECTS ANALYSIS OF VARIANCE F TESTS, ALPHA EQU JASA 57
                                                                                                                      345
               AN ITERATIVE PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL BIOCS68
                                                                                                                       13
 ANALYSIS OF VARIANCE FOR THE TWO-WAY CLASSIFICATION FIXED EFFECTS MODEL WITH OBSERVATIONS WITHIN A ROW SE BIOKA69 NO.3
             NOTE. THE QUASI-F TEST FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HIERARCHAL DESIGN WITH BIOCS66
                                                                                                                      937
A MIXED MO/
                        THE SPREAD OF AN EPIDEMIC TO FIXED GROUPS WITHIN THE POPULATION
                                                                                                             BIOCS68 1007
                        TESTING THE HYPOTHESIS OF NO FIXED MAIN-EFFECTS IN SCHEFFE'S MIXED MODEL
                                                                                                              AMS 62 10B5
                                    HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS
                                                                                                              AMS 67 1278
            DISTRIBUTION OF TOTAL SERVICE TIME FOR A FIXED OBSERVATION INTERVAL
                                                                                                             JASA 62
                                                                                                                      376
TRANSITION MATRICES
                                               ON THE FIXED POINT PROBABILITY VECTOR OF REGULAR OR ERGODIC JASA 67
                                                                                                                      600
ON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED POINT, CORR. 60 755 EXTENSION OF THE WILCOX
                                                                                                             JASA 60
                                                                                                                      125
                                                  ON FIXED PRECISION ESTIMATION IN TIME SERIES
                                                                                                              AMS 69 1021
STRIBUTION HAVING A PRE/
                           ON THE NON-EXISTENCE OF A FIXED SAMPLE ESTIMATOR OF THE MEAN OF A LOG-NORMAL DI
                                                                                                              AMS 67
                                                                                                                      949
                         AN ASYMPTOTICALLY OPTIMAL FIXED SAMPLE SIZE PROCEDURE FOR COMPARING SEVERAL EXP
ERIMENTAL CATEGORIES WI/
                                                                                                             AMS 64 1571
REGRESSION PARAMETERS
                                                      FIXED SIZE CONFIDENCE ELLIPSOIDS FOR LINEAR
                                                                                                              AMS 66 1602
                         BAYES SEQUENTIAL DESIGNS OF FIXED SIZE SAMPLES FROM FINITE POPULATIONS
                                                                                                             JASA 69 NO.4
                                                    A FIXED SUBSET-SIZE APPROACH TO THE SELECTION PROBLEM
                                                                                                             BIOKA68 401
IBUTION OF TWO INDEPENDENT BINOMIALS, CONDITIONAL ON FIXED SUM
                                                                          NORMAL APPROXIMATION TO THE DISTR AMS 63 1593
  THE COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENCE INTERVAL FOR THE MEAN
                                                                                                             AMS 68 1946
                                                                                                          ON
                      UNEQUAL GROUP VARIANCES IN THE FIXED-EFFECTS ONE-WAY ANALYSIS OF VARIANCE, A BAYESIA BIOKA66
                                                                                                                      27
N SIDELIGHT
                                                 SOME FIXED-SAMPLE RANKING AND SELECTION PROBLEMS
                                                                                                              AMS 67 1079
                         ON THE ASYMPTOTIC THEORY OF FIXED-SIZE SEQUENTIAL CONFIDENCE BOUNDS FOR LINEAR RE
                                                                                                             AMS 65 463
GRESSION PARAMETERS
                                    SOME RESULTS FOR FIXED-TIME TRAFFIC SIGNALS
                                                                                                             JRSSB64
                                                                                                                      133
RS AND MEAN VECTOR
                                                  ON FIXED-WIDTH CONFIDENCE BOUNDS FOR REGRESSION PARAMETE JRSSB67
                                                                                                                      132
                     A GENERAL METHOD OF DETERMINING FIXED-WIDTH CONFIDENCE INTERVALS
                                                                                                              AMS 69
                                                                                                                      704
   THE PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED-WIDTH INTERVAL ESTIMATION OF THE MEAN
                                                                                                              AMS 66
                                                                                                                       36
                         ON THE ASYMPTOTIC THEORY OF FIXED-WIDTH SEQUENTIAL CONFIDENCE INTERVALS FOR THE
                                                                                                              AMS 65
                                                                                                                      457
              MORTALITY PATTERNS IN EIGHT STRAINS OF FLOUR BEETLE
                                                                                                             BIOCS65
                                                                                                                       99
             CANNIBALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN EXPERIMENT AND A STOCHASTIC MODEL
                                                                                                             BIOCS68 247
```

TITLE WORD INDEX FIT - FOR

	VARIATIONS	FLOW ANALYSIS FLOW IN BATCH CHEMICAL PLANTS	TECH 60	373
		FLUCTUATING OFFSPRING DISTRIBUTIONS ON THE SURVIVAL	TECH 61	
	OF A GENE SOME ELLEGIS OF		AMS 64	
	A		AMS 62	
		FLUCTUATION THEOREM FOR PROCESSES WITH INDEPENDENT		
	COMBINATORIAL RESULTS IN		AMS 63	
	COMBINATORIAL RESULTS IN MULTI-DIMENSIONAL GRADING WITH A GAUGE SUBJECT TO RANDOM OUTPUT		AMS 63 JRSSB54	
	PERIODOGRAM ANALYSIS AND VARIANCE	FLUCTUATIONS	JRSSB63	442
	SPECTRAL ANALYSIS IN THE PRESENCE OF VARIANCE	FLUCTUATIONS	JRSSB64	354
	ADEQUACY OF THE POISSON-MARKOFF MODEL FOR DENSITY		BIOKA57	43
	GAUSSIAN VECTOR PROCESS IN THE PRESENCE OF VARIANCE	FLUCTUATIONS CROSS SPECTRAL ANALYSIS OF FLUCTUATIONS IN A RANDOM SERIES	JRSSB64	1507 361
	FOURTER METHODS IN THE STUDY OF VARIANCE	FLUCTUATIONS IN TIME SERIES ANALYSIS	TECH 69	
	OF MARKED SPECIMENS IN ESTIMATING POPULATIONS OF	FLYING INSECTS ON THE UTILIZATION	BIOKA53	170
		FOLDED NORMAL DISTRIBUTION	TECH 61	
	CUMULATIVE SUM CHARTS FOR THE PARAMETERS FROM MOMENTS THE		TECH 63	
	ON BY MAXIMUM LIKELIHOOD THE	FOLDED NORMAL DISTRIBUTION. TWO METHODS OF ESTIMATING FOLDED NORMAL DISTRIBUTION, III. ACCURACY OF ESTIMATI	TECH 62	249
	TESTS FOR STOCK PRICE GENERALING MODELS AND TRADING	FULKLURE SUME QUANTITATIVE	JASA 67	321
		FOLLOW A FIRST-ORDER STATIONARY MARKOFF PROCESS	JASA 68	
		FOLLOW-UP A METHOD OF ANALYZING LOG-FOLLOW-UP FOR SURVIVAL IN THE PRESENCE OF MOVEMENT		
0	PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT		BIOKA65	
	LES ESPECES ET LES VARIABLES ECOLOGIQUES, PRINCIPES	FONDAMENTAUX /NALYSE STATISTIQUE DES LIAISONS ENTRE	BIOCS65	345
	ANALYSIS OF INDUSTRY STRUCTURE, AN APPLICATION TO	FOOD INDUSTRIES THE STATISTICAL FOOD MARKETING SERVICES FOOD RELATIONSHIPS	JASA 61	925
	ON SOME MEASURES OF SOME ANALYSES OF INCOME.	FOOD MARKETING SERVICES -FOOD RELATIONSHIPS	JASA 61 JASA 58	65 905
	THE NEW DESIGN OF THE CANADIAN LABOUR	FORCE SURVEY	JASA 67	421
		FORCE, A CASE STUDY IN THE INTERPRETATION OF HISTORIC		71
	RANDOM HYDRODYNAMIC		AMS 67 JASA 58	37
	THE TRENTILE DEVIATION METHOD OF WEATHER DATA REVISIONS AND ECONOMIC		JASA 58 JASA 67	398 470
		FORECASTING ACCURACY OF CONSUMER ATTITUDE DATA		
		FORECASTING INDUSTRIAL PRODUCTION	JASA 61	B69
	SERVICES A TEN YEARS OF CONSUMER ATTITUDE SURVEYS, THEIR	FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND	JASA 62 JASA 63	
	TEN TEAMS OF CONSOMER ATTITIONE SURVETS, THEIR	FORECASTING RECORD FORECASTING SHORT-TERM ECONOMIC CHANGE	JASA 69	1
	PRELIMINARY REGIONAL		JASA 63	1104
	OPTIMAL PROPERTIES OF EXPONENTIALLY WEIGHTED		JASA 60	
	A MATRIX MODEL FOR	FOREST MANAGEMENT FORMAL EXPRESSIONS WHICH CAN BE USED FOR THE DETERMIN	BIOCS69	
	CHANGES IN THE RATE AND COMPONENTS OF HOUSEHOLD		JASA 60	
		FORMER CANNOT BE ASSOCIATED WITH THE LATTER /RIBUTI	JRSSB56	217
		FORMING STRATA OF EQUAL AGGREGATE SIZE	JASA 64	
	STATISTICAL CLASSIFICATION WITH QUADRATIC SOME REMARKS CONCERNING KHATRI'S RESULT ON QUADRATIC		BIOKA63 BIOKA6B	
	CENTRAL LIMIT THEOREM FOR RANDOM LINEAR VECTOR			
		FORMS /LEMMA FOR PROVING THE EQUALITY OF TWO MATRIC		
	THE MATCHING DISTRIBUTIONS, POISSON LIMITING		JRSSB58 AMS 69	
	THE CHARACTERISTIC FUNCTION OF HERMITIAN QUADRATIC	FORMS IN COMPLEX NORMAL VARIABLES	BIOKA60	199
	ALMOST SURE CONVERGENCE OF QUADRATIC	FORMS IN INDEPENDENT RANDOM VARIABLES	AMS 6B	1502
	COMPUTING THE DISTRIBUTION OF QUADRATIC	FORMS IN NORMAL VARIABLES	BIOKA61	419
	SERIES REPRESENTATIONS OF DISTRIBUTIONS OF DUADRATIC	FORMS IN NORMAL VARIABLES I CENTRAL CASE	JKSSB54	247 B23
	SERIES REPRESENTATIONS OF DISTRIBUTIONS OF QUADRATIC	FORMS IN COMPLEX NORMAL VARIABLES FORMS IN INDEPENDENT RANDOM VARIABLES FORMS IN NORMAL VARIABLES FORMS IN NORMAL VARIABLES FORMS IN NORMAL VARIABLES FORMS IN NORMAL VARIABLES, I, CENTRAL CASE FORMS IN NORMAL VARIABLES, II, NON-CENTRAL CASE	AMS 67	ВЗВ
	CORRIGENDA, COMPUTING THE DISTRIBUTION OF QUADRATIC	FORMS IN NORMAL VARIABLES.	RIOKW95	284
	AN INEQUALITY FOR THE RATIO OF TWO QUADRATIC		AMS 6B	
	GENDA, 'ON THE STATISTICAL INDEPENDENCE OF QUADRATIC MOMENT GENERATING FUNCTIONS OF QUADRATIC		BIOKA59 BIOKA58	
	A NOTE ON THE STATISTICAL INDEPENDENCE OF QUADRATIC	FORMS IN THE ANALYSIS OF VARIANCE	BIOKA51	
			AMS 64	
		FORMS OF BIVARIATE DISTRIBUTIONS FORMS OF SOME INVARIANTS FOR DISTRIBUTIONS ADMITTING	AMS 63	
			BIOKA59	
	CORRIGENDA, 'EXTREMA OF QUADRATIC	FORMS WITH APPLICATIONS TO STATISTICS'	BIOKA61	474
			AMS 67	
	ON ERLANG'S OF ORTHOGONAL POLYNOMIALS FROM A GENERAL RECURRENCE	FORMULA NUMERICAL CONSTRUCTION	AMS 69 BIOCS6B	71 695
	EAR COMBINATIONS OF MEAN SQUARES BY SATTERTHWAITHE'S	FORMULA ESTIMATING THE DEGREES OF FREEDOM FOR LIN	TECH 69	NO.4
			BIOCS65	
		FORMULA FOR NORMAL MULTIVARIATE INTEGRALS FORMULA FOR THE CURVATURE OF THE LIKELIHOOD SURFACE O	BIOKA54 BIOKA60	
		FORMULA FOR THE DIFFERENCES OF THE POWERS AT ZERO	AMS 61	
	MPLE OF CONSECUTIVE OBSERVATIONS FROM/ ON DURBIN'S	FORMULA FOR THE LIMITING GENERALIZED VARIANCE OF A SA		
		FORMULA FOR THE LIMITING GENERALIZED VARIANCE OF A SA FORMULA FOR THE PROBABILITY OF OBTAINING A TREE FROM		
		FORMULA FOR THE PROBABILITY THAT TWO SPECIFIED SAMPLI		
	TREATMENT OF CENSORED DATA . PART I. FUNDAMENTAL	FORMULAE STATISTICAL	BIOKA54	22B
	FOR PRODUCTS OF TWO POLYKAYS WITH SOME GENERAL			
		FORMULAE AND MADOW'S CENTRAL LIMIT) /ING MOMENTS OF FORMULAE APPLIED TO THE SEQUENTIAL T-TEST	BIOKA61 BIOKA64	
		FORMULAE FOR ADDITION OR OMISSION OF A VARIATE IN MUL		
		FORMULAE FOR CALCULATING THE OPERATING CHARACTERISTIC		

FOR - FUN TITLE WORD INDEX

```
WEICHTED LIKELIHOODS
                                                  ON FORMULAE FOR CONFIDENCE POINTS BASED ON INTECRALS OF JRSSB63
                        SOME DISTRIBUTION AND MOMENT FORMULAE FOR THE MARKOV CHAIN
                                                                                                            JRSSB55
Y INTECRAL OF THE NON-CENTRAL CHI-SQU/ APPROXIMATE FORMULAE FOR THE PERCENTACE POINTS AND THE PROBABILIT BIOKAS4
                                         APPROXIMATE FORMULAE FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME BIOKA58
                                                                                                                     447
                                                     FORMULAE TO IMPROVE WALD'S APPROXIMATION FOR SOME
PROPERTIES OF SEQUENTIAL TESTS
                                                                                                            JRSS865
                                                                                                                      74
                                            VARIANCE FORMULAS FOR THE MEAN DIFFERENCE AND COEFFICIENT OF
CONCENTRATION
                                                                                                            JASA 62
                                                                                                                     648
                                         LOWER SOUND FORMULAS FOR THE MEAN INTERCORRELATION COEFFICIENT
                                                                                                            JASA 59
                                                                                                                     275
                        THE USE OF STATISTICS IN THE FORMULATION AND EVALUATION OF SOCIAL PROGRAMMES
                                                                                                            JASA 60
                                                                                                                     454
                      MAXIMUM ENTROPY FOR HYPOTHESIS FORMULATION, ESPECIALLY FOR MULTIDIMENSIONAL CONTINGE AMS 63
NCY TABLES
                                                                                                                     911
                                                     FOUNDATIONS FOR THE THEORY OF LEAST SQUARES
                                                                                                            JRSS869
                                                                                                                      89
                                                 THE FOUNDATIONS OF DECISION UNDER UNCERTAINTY, AN
ELEMENTARY EXPOSITION
                                                                                                            JASA 64
                                                                                                                     353
                                              ON THE FOUNDATIONS OF STATISTICAL INFERENCE
                                                                                                            JASA 62
                                                                                                                     269
                                              ON THE FOUNDATIONS OF STATISTICAL INFERENCE, BINARY
EXPERIMENTS
                                                                                                            AMS 61
                                                                                                                     414
                              DISCUSSION OF 'ON THE FOUNDATIONS OF STATISTICAL INFERENCE'
                                                                                                            JASA 62
                                                                                                                     307
 DIMENSIONAL MODELS OF EXTREME VERTICES DESIGNS FOR FOUR COMPONENT MIXTURES
                                                                                                     THREE TECH 67
                                                                                                                     472
    OF TESTS OF TWO MULTIVARIATE HYPOTHESES BASED ON FOUR CRITERIA
                                                                                         POWER COMPARISONS 810KA67
                                                                                                                     195
     OF EQUALITY OF TWO COVARIANCE MATRICES BASED ON FOUR CRITERIA
                                                                               POWER COMPARISIONS OF TESTS 810KA68
                                                                                                                     335
                TWO THIRD ORDER ROTATABLE DESIGNS IN FOUR DIMENSIONS
                                                                                                             AMS 64
                                                                                                                     445
CHANGE-OVER DESIGN FOR TESTING A TREATMENT FACTOR AT FOUR EQUALLY SPACED LEVELS (CORR. 67 586)
                                                                                                            JRSS867
                                                                                                                     370
GRECO-LATIN SQUARE
                                                     FOUR FACTOR ADDITIVE DESIGNS MORE GENERAL THAN THE
                                                                                                            TECH 62
                                                                                                                     361
                                                                                                            JRSS865
                                MIXTURE DESIGNS FOR FOUR FACTORS
                                                                                                                     473
   THE DISTRIBUTION OF KENDALL'S TAU FOR SAMPLES OF FOUR FROM A NORMAL SIVARIATE POPULATION WITH CORRELAT BIOKAG3
                        THE ORTHANT PROBABILITIES OF FOUR GAUSSIAN VARIATES
                                                                                                             AMS 69
                                                                                                                     152
THE INSREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR METHODS OF REPRODUCING FINITE DIPLOID POPULATION BIOCS65
                           NOTE ON AN APPLICATION OF FOUR MOMENT INEQUALITIES TO A PROBLEM IN QUEUES
                                                                                                            TECH 65
   80UNDS OF THE PROBABILITY INTEGRAL WHEN THE FIRST FOUR MOMENTS ARE GIVEN
                                                                                              TABLE OF THE BIOKAGO
                                       COMPARISON OF FOUR RATIO-TYPE ESTIMATES UNDER A MODEL
                                                                                                            JASA 69
MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF A FOUR- PARAMETER CENERALIZED GAMMA POPULATION FROM COM TECH 67
                                                                                                                     159
                                                     FOUR-LETTER WORDS. THE DISTRIBUTION OF PATTERN
FREQUENCIES IN RING PERMUTATIONS
                                                                                                            JRSSB67
                                                                                                                     550
WITH 5, 6, OR 7 TREATMENTS
                                                     FOUR-WAY BALANCED DESIGNS BASED ON YOUDEN SQUARES
                                                                                                            BIOGS67
                                                                                                                     803
            THE INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS
                                                                                                            JRSSB58
                                                                                                                     361
                                    THE STATISTICAL FOURIER ANALYSIS OF VARIANCES
                                                                                                            JRSS865
                                                                                                                     159
             THE INTERACTION ALCORITHM AND PRACTICAL FOURIER ANALYSIS, AN ADDENDUM
                                                                                                            JRSS860
                                                                                                                     372
                                                     FOURIER METHODS FOR EVOLVING SEASONAL PATTERNS
                                                                                                            JASA 65
                                                                                                                     492
 IN TIME SERIES ANALYSIS
                                                     FOURIER METHODS IN THE STUDY OF VARIANCE FLUCTUATIONS TECH 69
                                                                                                                     103
TIMATION OF PROBABILITY DENSITIES AND CUMULATIVES BY FOURIER SERIES METHODS
                                                                                                    THE ES JASA 68
                                                                                                                     925
  FOR THE NORMAL INTEGRAL INCLUDING A NEW CONTINUED FRACTION
                                                                                              INEQUALITIES BIOKA54
                                                                                                                     177
                                          IRRATIONAL FRACTION APPROXIMATIONS TO MILLS' RATIO
                                                                                                                     339
                                                                                                            BIOKA64
                                                                                                                     219
ATTRIBUTES
                                       ESTIMATION OF FRAGTION DEFECTIVE IN CURTAILED SAMPLING PLANS BY
                                                                                                            TEGH 67
                                      ESTIMATING THE FRACTION OF ACCEPTABLE PRODUCT
                                                                                                            TECH 65
                                                                                                                     43
                                  THE 2-TO-THE-(K-P) FRACTIONAL FACTORIAL DESIGNS
                                                                                                            TECH 61
                                                                                                                     311
                                PARTIALLY DUPLICATED FRACTIONAL FACTORIAL DESIGNS
                                                                                                            TECH 63
                                                                                                                     71
                                  THE 2-TO-THE-(K-P) FRACTIONAL FACTORIAL DESIGNS, II
                                                                                                            TECH 61
                                                                                                                     449
                         ERRATA,
                                 'THE 2-TO-THE-(K-P) FRACTIONAL FACTORIAL DESIGNS'
                                                                                                            TECH 63
                                                                                                                     417
STIMATION OF A SUBVECTOR OF PARAMETERS IN RANDOMIZED FRACTIONAL FACTORIAL EXPERIMENTS
                                                                                        /D LEAST-SQUARES E
                                                                                                           AMS 69 1344
                         8AYES SEQUENTIAL DESIGN OF FRACTIONAL FACTORIAL EXPERIMENTS FOR THE ESTIMATION O
F A SUBGROUP OF PRE-AS/
                                                                                                            AMS 68
                                                                                                                    973
                       SYMMETRICAL AND ASYMMETRICAL FRACTIONAL FACTORIAL PLANS
                                                                                                            TECH 62
  NEAR-CYCLIC REPRESENTATIONS FOR SOME RESOLUTION VI FRACTIONAL FACTORIAL PLANS
                                                                                                            AMS 69 1840
                              SEQUENCES OF TWO-LEVEL FRACTIONAL FACTORIAL PLANS
                                                                                                            TECH 69
                                                                                                                    477
                                         THE USE OF FRACTIONAL MOMENTS FOR ESTIMATING THE PARAMETERS OF A TECH 68
 MIXED EXPONENTIAL DISTRIBUTION
                                                                                                                     161
ND THEIR CONNECTION WITH A SPECIAL KIND OF IRREGULAR FRACTIONAL PLANS OF FACTORIAL EXPERIMENTS /FFECTS A JASA 63
                                                                                                                     497
                                                  ON FRACTIONAL POWERS OF A MATRIX
                                                                                                            JASA 67 1018
                  TRANSFORMATIONS TO NORMALITY USING FRACTIONAL POWERS OF THE VARIABLE
                                                                                                            JASA 57
                                                                                                                    237
            ON A SPECIAL SUBSET GIVING AN IRREGULAR FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL
                                                                                                           JRSS867
EXPERIMENT
                                                                                                                     292
                         TECHNIQUES FOR CONSTRUCTING FRACTIONAL REPLICATE PLANS
                                                                                                            JASA 63
                                                                                                                     45
                                            PARALLEL FRACTIONAL REPLICATES
                                                                                                            TECH 60
                                                                                                                     263
                            ESTIMATES OF EFFECTS FOR FRACTIONAL REPLICATES
                                                                                                            AMS 64
                                                                                                                    711
           ON THE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL REPLICATES
                                                                                                            AMS 68
                                                                                                                    657
                                        SEQUENCES OF FRACTIONAL REPLICATES IN THE 2-TO-THE-'P-Q' SERIES,
CORR. 62 919
                                                                                                            JASA 62
                                                                                                                    403
                              PARTIAL CONFOUNDING IN FRACTIONAL REPLICATION
                                                                                                            TECH 61
                                                                                                                    353
                  ON ESTIMATION AND CONSTRUCTION IN FRACTIONAL REPLICATION
                                                                                                            AMS 66 1033
                                                                                                            AMS 64
GENERALIZED LEAST SQUARES ESTIMATORS FOR RANDOMIZED FRACTIONAL REPLICATION DESIGNS
                                                                                                                    696
MENTS WITH THE FACTORS APPLIED SEQUENTIALLY
                                                     FRACTIONAL REPLICATION OF 2-TO-THE-P FACTORIAL EXPERI JASA 68
                                                                                                                     644
                                          RANDOMIZED FRACTIONAL WEIGHING DESIGNS
                                                                                                             AMS 66 1382
                                   ON NON-RANDOMIZED FRACTIONAL WEIGHING DESIGNS
                                                                                                             AMS 66 1836
GONAL LINEAR COMBINATIONS OF THE/
                                   ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL EXPERIMENT AS ORTHO
                                                                                                            AMS 63 1068
                                         FINDING NEW FRACTIONS OF FACTORIAL EXPERIMENTAL DESIGNS
                                                                                                            TECH 61
                                                                                                                    359
                                ERRATA, 'FINDING NEW FRACTIONS OF FACTORIAL EXPERIMENTAL DESIGNS'
                                                                                                            TECH 63
                COMPOSITE DESIGNS BASED ON IRREGULAR FRACTIONS OF FACTORIALS (CORR. 65 1036)
                                                                                                            BIOCS65
                                                                                                                    324
                                           IRREGULAR FRACTIONS OF THE 2-TO-THE-N FACTORIAL EXPERIMENTS
                                                                                                            TECH 61
DESIGNS
                                           SATURATED FRACTIONS OF 2-TO-THE-N AND 3-TO-THE-N FACTORIAL
                                                                                                            TECH 67
                                                                                                                    569
                                  SOME NONORTHOGONAL FRACTIONS OF 2-TO-THE-N DESIGNS
                                                                                                            JRSSB69 NO.2
                                           A NOTE ON FRACTIONS OF 3-TO-THE-(4N+1) DESIGNS
                                                                                                            TECH 65
                                                                                                                     69
                                     OBITUARY, C. G. FRAGA, JR.
                                                                                                            BIOCS66
                                                                                                                    634
           SOME NONRESPONSE SAMPLING THEORY WHEN THE FRAME CONTAINS AND UNKNOWN AMOUNT OF DUPLICATION
                                                                                                                     87
                                                                                                            JASA 68
     QUESTION RANDOMIZED RESPONSE MODEL. THEORETICAL FRAMEWORK
                                                                                             THE UNRELATED JASA 69
                                                                                                                    520
                                  OBITUARY, ADOLPHE FRANCESCHETTI
                                                                                                            BIOCS68
                                                                                                                    726
  IN THE HISTORY OF PROBABILITY AND STATISTICS. XIX. FRANCIS YSIDRO EDGEWORTH (1845-1926)
                                                                                                   STUDIES BIOKA68
                                                                                                                    269
TTERTHWAITHE'S FORMULA
                        ESTIMATING THE DEGREES OF FREEDOM FOR LINEAR COMBINATIONS OF MEAN SQUARES BY SA TECH 69 NO.4
                                   QUERY, DEGREES OF FREEDOM OF CHI-SQUARE
                                                                                                            TECH 67
                                                                                                                   489
                                       TABLES OF THE FREEMAN-TUKEY TRANSFORMATIONS FOR THE BINOMIAL AND
POISSON DISTRIBUTIONS
                                                                                                            BIOKA61
                                                                                                                    433
                                                    FRENCH SUMMARIES OF PAPERS IN JUNE 1967 ISSUE
                                                                                                            BIOCS67
                                                                                                                    581
DES CARACTERES QUANTITATIFS ET R/ DISTRIBUTIONS DE FREQUENCES, INTERPRETATION DU DETERMINISME GENETIQUE
                                                                                                           BIOCS68
                                                                                                                    277
    ANALYSIS OF VARIANCE OF PROPORTIONS WITH UNEQUAL FREQUENCIES
                                                                                                            JASA 63 1133
            A PROBLEM IN THE COMBINATION OF ACCIDENT FREQUENCIES
                                                                                                           BIOKA58 331
                                                                                                           BIOCS65
               BIOLOGICAL EXAMPLES OF SMALL EXPECTED FREQUENCIES
                                                                                                                     49
```

```
A TECH 69 321
 GRAPHICAL METHOD FOR MAKING MULTIPLE COMPARISONS OF FREQUENCIES
DARD CHI-SQUARE-TEST OF THE HYPOTHESIS OF EQUAL CELL FREQUENCIES
                                                                                     TWO ALTERNATIVES TO THE STAN BIOKA62
                                                                                                                               107
  FOR THE MIXED MODEL WITH DISPROPORTIONATE SUBCLASS FREQUENCIES
                                                                                     TWO-WAY ANALYSIS OF VARIANCE BIOCS65
E GOODNESS-OF-FIT TESTS FOR SMALL BUT EQUAL EXPECTED FREQUENCIES
                                                                           /CHI-SQUARE AND TWO MODIFIED CHI-SQUAR BIOKA66
                                                                                                                               619
S AMONG ENVIRONMENTAL POCKETS UPON STEADY STATE GENE FREQUENCIES
                                                                         /ION, AND DIFFEREN1 FITNESS REQUIREMENT BIOCS66
                                                                                                                               453
E GOODNESS OF FIT TEST WITH SMALL BUT EQUAL EXPECTED FREQUENCIES
                                                                         /XIMATION TO THE POWER OF THE CHI-SQUAR JASA 68
         A NOTE ON CONTINGENCY TABLES INVOLVING ZERO FREQUENCIES AND THE 21 TEST
                                                                                                                     TECH 63
IMATION OF THE INBREEDING COEFFICIENT FROM PHENOTYPE FREQUENCIES BY A METHOD OF MAXIMUM LIKELIHOOD SCORING BIOCS68
                                                                                                                               915
                       NOTES. ON ESTIMATING RECESSIVE FREQUENCIES FROM TRUNCATED SAMPLES
                                                                                                                               356
ICH THE ABUNDANCES OF SPECIES ARE LO/ THE EXPECTED FREQUENCIES IN A SAMPLE OF AN ANIMAL POPULATION IN WH BIOKAS1
                            ON THE ESTIMATION OF SMALL FREQUENCIES IN CONTINGENCY TABLES
                                                                                                                               113
      FOUR-LETTER WORDS, THE DISTRIBUTION OF PATTERN FREQUENCIES IN RING PERMUTATIONS
                                                                                                                               550
CHARACTERISTIC
                                           THE LIMITING FREQUENCIES OF INTEGERS WITH A GIVEN PARTITIONAL
                                                                                                                               134
             CHI-SQUARE STATISTIC BASED ON THE POOLED FREQUENCIES OF SEVERAL OBSERVATIONS
                                                                                                                     BIOKA63
                                         THE POPULATION FREQUENCIES OF SPECIES AND THE ESTIMATION OF POPULATI BIOKA53
                                                                                                                               237
                            QUADRATICS IN MARKOV-CHAIN FREQUENCIES, AND THE BINARY CHAIN OF ORDER 2
                                                                                                                               3B3
                                                     THE FREQUENCY COUNT OF A MARKOV CHAIN AND THE TRANSITION
                                                                                                                               41
                 TABLES TO FACILITATE FITTING S-SUB-U FREQUENCY CURVES.
                                                                                                                     BIOKA65
IONS BASED ON DISTANCES BETWEEN PERCENTAGE POINTS OF FREQUENCY CURVES.
                                                                                /XIMATE MEANS AND STANDARD DEVIAT BIOKA65
ION COEFFICIENT IN RANDOM SAMPLES OF ANY SIZE/ THE FREQUENCY DISTRIBUTION OF THE PRODUCT-MOMENT CORRELAT BIOKA51
MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFEREN/ THE FREQUENCY DISTRIBUTION OF THE SAMPLE MEAN WHERE EACH BIOKA63
LINEAR APPROXIMATOR FOR THE CLASS MARKS OF A GROUPED FREQUENCY DISTRIBUTION, WITH ESPECIAL REFERENCE TO TH TECH 68
                                                                                                                               793
                                                 SPECIES FREQUENCY DISTRIBUTIONS
                                                                                                                     BIOKA69 NO.3
                                                 UNUSUAL FREQUENCY DISTRIBUTIONS
                                                                                                                     BIOCS65
                                                                                                                              159
                                THE GOODNESS OF FIT OF FREQUENCY DISTRIBUTIONS OBTAINED FROM STOCHASTIC
PROCESSES
                                                                                                                     BIOKA54
                                                                                                                               450
                              DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTIONS VIA BAYES'S THEOREM
                                                                                                                     JRSSB65
                                                                                                                               290
          ESTIMATING PARAMETERS IN TRUNCATED PEARSON FREQUENCY DISTRIBUTIONS WITHOUT RESORT TO HIGHER MOME BIOKA53
                                                                                                                               50
                        INCREASING PROPERTIES OF POLYA FREQUENCY FUNCTIONS
                                                                                                                      AMS 65
                                                                                                                               272
UDY OF THE MATRIX OF FITTING OF A SERIES OF DISCRETE FREQUENCY FUNCTIONS ANALOGOUS TO THE TYPE A SERIES
                                                                                                                     SASJ 67
                                                                                                                               55
OGONAL POLYNOMIALS OF POSITIVE AND NEGATIVE BINOMIAL FREQUENCY FUNCTIONS IN CURVE FITTING BY AITKEN'S METH BIOKAGI
AL POLYNOMIALS OF THE POSITIVE AND NEGATIVE BINOMIAL FREQUENCY FUNCTIONS IN CURVE FITTING BY AITKEN'S METH BIOKAGI
                                                                                                                               476
                                                                                                                               115
STIMATORS IN TW/ A NOTE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF GENERALIZED CLASSICAL LINEAR E JASA 63
STIMATORS IN A/ A NOTE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF GENERALIZED CLASSICAL LINEAR E JASA 63
                                                                                                                               619
                                                                                                                               161
                                                     THE FREQUENCY JUSTIFICATION OF CERTAIN SEQUENTIAL TESTS BIOKA52
THE FREQUENCY JUSTIFICATION OF SEQUENTIAL TESTS, ADDENDUM BIOKA53
                                                                                                                              144
                                                                                                                               468
                                         BOUNDS FOR THE FREQUENCY OF MISLEADING BAYES INFERENCE
                                                                                                                      AMS 63 1109
HISTORIES
                                                          FREQUENCY RESPONSE FROM STATIONARY NOISE. TWO CASE
                                                                                                                     TECH 61
                                                                                                                              245
                                EQUAL AND PROPORTIONAL FREQUENCY SQUARES
                                                                                                                     JASA 67
                                                                                                                               226
                                  POISSON AND BINOMIAL FREQUENCY SURFACES
                                                                                                                     BIOKA66
                                                                                                                               617
                    A COMPARISON OF SOME BAYESIAN AND FREQUENTIST INFERENCES.
A COMPARISON OF SOME BAYESIAN AND FREQUENTIST INFERENCES. II
                                                                                                                     BTOKA65
                                                                                                                               19
                                                                                                                     BIOKA66
                                                                                                                               262
                       EQUIVALENCE AND SINGULARITY FOR FRIEDMAN URNS
                                                                                                                      AMS 66
                                                                                                                              26B
                           A MULTIVARIATE EXTENSION OF FRIEDMAN'S CHI-SQUARE-SUB-R-TEST
                                                                                                                     JASA 69 NO. 4
               A NOTE ON THE ASYMPTOTIC EFFICIENCY OF FRIEDMAN'S CHI-SQUARE-SUB-R-TEST
                                                                                                                     BTOKA67
                                                                                                                               677
                                                BERNARD FRIEDMAN'S URN
                                                                                                                      AMS 65
                                                                                                                              956
                                            STATISTICAL FRONTIERS
                                                                                                                     JASA 57
    THE LOG (-LOG) TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION RECORDS
                                                                                                                               627
                                                                                                                     BIOCS68
 FOR MANUFACTURERS' SERVICES FOR BAKERY PRODUCTS AND FRUITS AND VEGETABLES
                                                                                                            DEMAND JASA 65
                                                                                                                               740
AMPLE IN WHICH THE FORMER CANNOT BE ASSOCIATED WI/ FUDUCIAL DISTRIBUTIONS AND PRIOR DISTRIBUTIONS. AN EX JRSSB56
                                                                                                                               217
REMENT ERROR IN NONDESTRUCTIVE EVALUATION OF REACTOR FUEL ELEMENT QUALITY A PROGRAM TO ESTIMATE MEASU TECH 64
                                                                                                                               293
                            OPTIMAL SAMPLING FOR QUOTA FULFILMENT
                                                                                                                     BIOKA57
                                                                                                                               518
                                                   QUOTA FULFILMENT USING UNRESTRICTED RANDOM SAMPLING
                                                                                                                     BIOKA61
                                                                                                                              333
CONTINGENCY TABLES
                                                          FULL CONTINGENCY TABLES, LOGITS, AND SPLIT
                                                                                                                     BIOCS69
                                                                                                                              383
                                             THE ALMOST FULL DAM WITH POISSON INPUT
                                                                                                                     JRSSB66
                                                                                                                              329
                                             THE ALMOST FULL DAM WITH POISSON INPUT, FURTHER RESULTS
                                                                                                                     JRSSB66
                                                                                                                              448
GENERALIZED INVERSES IN THE LINEAR HYPOTHESIS NOT OF FULL RANK
                                                                                                         A NOTE ON
                                                                                                                      AMS 67
                                                                                                                               271
SUCCESSIVE CONDITIONAL EXPECTATIONS OF AN INTEGRABLE FUNCTION
                                                                                                                      AMS 62
                                                                                                                              B87
      HIERARCHICAL GROUPING TO OPTIMIZE AN OBJECTIVE FUNCTION
ON THE PERFORMANCE OF THE LINEAR DISCRIMINANT FUNCTION
                                                                                                                     JASA 63
                                                                                                                              236
                                                                                                                     TECH 64
                                                                                                                              179
  A NONPARAMETRIC ESTIMATE OF A MULTIVARIATE DENSITY FUNCTION
                                                                                                                      AMS 65 1049
  ESTIMATION OF AN ACCELERATED DEPRECIATION LEARNING FUNCTION
                                                                                                                     JASA 66
                                                                                                                             995
                 ON THE INVERSE GAUSSIAN DISTRIBUTION FUNCTION
                                                                                                                     JASA 68 1514
       EFFICIENT ESTIMATION OF A PROBABILITY DENSITY FUNCTION
                                                                                                                      AMS 69
                                                                                                                              854
   A TEST FOR SYMMETRY USING THE SAMPLE DISTRIBUTION FUNCTION
                                                                                                                      AMS 69 NO.6
  UNIFORM CONSISTENCY OF SOME ESTIMATES OF A DENSITY FUNCTION
                                                                                                                      AMS 69 1499
       A CONFIDENCE REGION FOR THE LOG-NORMAL HAZARD FUNCTION
                                                                                                                     TECH 69
                                                                                                                              387
 AN APPROXIMATION TO THE SYMMETRICAL INCOMPLETE BETA FUNCTION
                                                                                                                     BTOKA52
                                                                                                                              204
                   TESTING FOR A JUMP IN THE SPECTRAL FUNCTION
                                                                                                                     JRSSB61
                                                                                                                              394
          A COMPUTER PROGRAM FOR FITTING THE RICHARDS FUNCTION
                                                                                                                     BIOCS69
                                                                                                                              401
  A SIMPLE ESTIMATE OF THE RECIPROCAL OF THE DENSITY FUNCTION
                                                                                                                 ON AMS 6B 1083
  OF HYPOTHESES ABOUT THE PARAMETERS OF THE LOGISTIC FUNCTION
                                                                                                              TESTS BIOKAGG
                                                                                                                              535
      OF THE ESTIMATION OF LINEAR OPEN LOOP TRANSFER FUNCTION
                                                                                                         AN EXAMPLE TECH 63
                                                                                                                              227
THE ERROR IN THE LINEAR APPROXIMATION TO THE RENEWAL FUNCTION
                                                                                                        BOUNDS ON BIOKA64
                                                                                                                              355
MAXIMUM LIKELIHOOD ESTIMATION OF THE LOGISTIC GROWTH FUNCTION
FREE TESTS BASED ON THE SAMPLE DISTRIBUTION FUNCTION
                                                                                                        ASPECTS OF JASA 66
                                                                                                                              697
                                                                                                      DISTRIBUTION BIOKA66
                                                                                                                               99
   RELATING THE SPECTRAL DENSITY AND AUTOCORRELATION FUNCTION
                                                                                                     AN INFOUALITY BIOKA62
                                                                                                                              262
                                                                                                    BOUNDED LENGTH AMS 62
                                                                                                                              237
   CONFIDENCE INTERVALS FOR THE ZERO OF A REGRESSION FUNCTION
                                                                                                   OPTIMAL DESIGNS BIOKAGE
                                                                                                                               53
   IN REGRESSION PROBLEMS WITH A GENERAL CONVEX LOSS FUNCTION
                                                                                                 NOTES ESTIMATION BIOCS68
       OF NON-LINEAR PARAMETERS FOR A NON-ASYMPTOTIC FUNCTION
                                                                                                                              439
     FOR THE DISTRIBUTION OF THE LINEAR DISCRIMINANT FUNCTION '
                                                                                          AN ASYMPTOTIC EXPANSION AMS 63 1286
    OF INDEPENDENCE BASED ON THE SAMPLE DISTRIBUTION FUNCTION
                                                                                          DISTRIBUTION FREE TESTS
                                                                                                                      AMS 61
                                                                                                                              485
                                                                                    SUFFICIENT CONDITION FOR THE
                                                                                                                      AMS 69 NO.6
 MIXTURE OF EXPONENTIALS TO BE A PROBABILITY DENSITY FUNCTION
                                                                                 ESTIMATING THE MEAN OF A MULTIV
ARIATE NORMAL POPULATION WITH GENERAL QUADRATIC LOSS FUNCTION
                                                                                                                      AMS 66 1819
 COVARIANCE MATRICES ON FISHER'S LINEAR DISCRIMINANT FUNCTION
                                                                                 THE EFFECT OF UNEQUAL VARIANCE- BIOCS69 505
                  ESTIMATION OF A PROBABILITY DENSITY FUNCTION AND ITS DERIVATIVES
                                                                                                                      AMS 69 1187
               ON ESTIMATION OF A PROBABILITY DENSITY FUNCTION AND MODE
                                                                                                                      AMS 62 1065
```

FUN - FUN TITLE WORD INDEX

```
OF THE DIFFERENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION F AMS 62 525
                                THE AUTOCORRELATION FUNCTION AND THE SPECTRAL DENSITY FUNCTION
                                                                                                           BIOKA55 151
                                        DISCRIMINANT FUNCTION BETWEEN COMPOSITE HYPOTHESES AND RELATED
                                                                                                           BIOKA66
                                                                                                                    339
                 NOMOGRAMS FOR FITTING THE LOGISTIC FUNCTION BY MAXIMUM LIKELIHOOD
                                                                                                           BIOKA60
                                                                                                                    121
TABLES FOR USE IN ESTIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ANALYSIS. PART I. DESCRIPTION AND BIOKAST
                                                                                                                    411
EQUIVALENCE OF TWO METHODS OF COMPUTING DISCRIMINANT FUNCTION COEFFICIENTS
                                                                                                   NOTES.
                                                                                                           BIOCS67
RECENT PROPOSAL
                             ESTIMATION OF A LINEAR FUNCTION FOR A CALIBRATION LINE, CONSIDERATION OF A
                                                                                                           TECH 69 NO.4
 THE NON-CENTRAL F-DISTRIBUTI/ CHARTS OF THE POWER FUNCTION FOR ANALYSIS OF VARIANCE TESTS, DERIVED FROM
                                                                                                           BIOKA51
                                          LIKELIHOOD FUNCTION FOR CAPTURE-RECAPTURE SAMPLES
                                                                                                           BIOKA56
                                                                                                                    488
A CLASS OF WIDELY USED/
                          A TWO-VARIABLE GENERATING FUNCTION FOR COMPUTING THE SAMPLING PROBABILITIES OF
                                                                                                           JASA 64
                                                                                                                    487
                               ON THE MATRIX RENEWAL FUNCTION FOR MARKOV RENEWAL PROCESSES
                                                                                                            AMS 69 NO.6
                                    A DIFFERENT LOSS FUNCTION FOR THE CHOICE BETWEEN TWO POPULATIONS
                                                                                                           JRSSB59
                                                                                                                   203
                                      ON THE RENEWAL FUNCTION FOR THE WEIBULL DISTRIBUTION
                                                                                                           TECH 63
                                                                                                                    393
                      NOTES.COMPUTING A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSIONS
                                                                                                           BIOCS65 1011
                                        MAXIMIZING A FUNCTION IN A CONVEX REGION
                                                                                                           JRSSR59
                                                                                                                    338
ORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENSITY FUNCTION IN CERTAIN CASES
                                                                                    ON THE LACK OF A UNIF AMS 67
                                                                                                                    471
            COMPARISON OF ANALYSIS OF VARIANCE POWER FUNCTION IN THE PARAMETRIC AND RANDOM MODELS
                                                                                                           BIOK452 427
                                                                                                           JRSSB64
                  ESTIMATION OF THE SPECTRAL DENSITY FUNCTION IN THE PRESENCE OF HARMONIC COMPONENTS
                                                                                                                    123
       THE PROBABILITY THAT THE SAMPLE DISTRIBUTION FUNCTION LIES BETWEEN TWO PARALLEL STRAIGHT LINES
                                                                                                            AMS 68
                                                                                                                   398
RIVATION OF APPROXIMANTS TO THE INVERSE DISTRIBUTION FUNCTION OF A CONTINUOUS UNIVARIATE POPULATION FROM T BIOKA69 NO.3
FFICIENT CONDITIONS FOR A STATIONARY PROCESS TO BE A FUNCTION OF A FINITE MARKOV CHAIN
                                                                                                        SU AMS 63 1033
PARAMETRIC ESTIMATION OF THE TRANSITION DISTRIBUTION FUNCTION OF A MARKOV PROCESS
                                                                                                       NON
                                                                                                            AMS 69
                                                                                                                   1386
                                THE AUTOCORRELATION FUNCTION OF A SEQUENCE UNIFORMLY DISTRIBUTED MODULO 1 AMS 63 1243
                          NOTE ON THE CHARACTERISTIC FUNCTION OF A SERIAL-CORRELATION DISTRIBUTION
                                                                                                           BIOKA5B
                  ON THE ESTIMATION OF THE INTENSITY FUNCTION OF A STATIONARY POINT PROCESS
                                                                                                           JRSSB65
FICIENT CONSISTENT ESTIMATES OF THE SPECTRAL DENSITY FUNCTION OF A STATIONARY TIME SERIES
                                                                                            /PTOTICALLY EF JRSSB58
                                                                                                                    303
                  ON ESTIMATING THE SPECTRAL DENSITY FUNCTION OF A STOCHASTIC PROCESS (WITH DISCUSSION) JRSSB57
                                                                                                                     13
NORMAL VARIABLES
                                 THE CHARACTERISTIC FUNCTION OF HERMITIAN QUADRATIC FORMS IN COMPLEX
                                                                                                           BIOKA60
                                                                                                                    199
                            ON THE MOMENT GENERATING FUNCTION OF PILLAI'S V-SUPER-S CRITERION
                                                                                                           AMS 68
                                                                                                                    877
      ESTIMATION OF THE PROBABILITY OF AN EVENT AS A FUNCTION OF SEVERAL VARIABLES
                                                                                                           BIOKA67
                                                                                                                    167
                                          THE POWER FUNCTION OF SOME TESTS BASED ON RANGE
                                                                                                           BTOKA53
                                                                                                                    347
                                            THE DUAL FUNCTION OF STATISTICS
                                                                                                           JASA 60
                                                                                                                      1
          NOTE ON MR SRIVASTAVA'S PAPER ON THE POWER FUNCTION OF STUDENT'S TEST
                                                                                                           BIOKA5B
                                                                                                                    429
                EFFECT OF NON-NORMALITY ON THE POWER FUNCTION OF T-TEST
                                                                                                           BIOKA5B
                                                                                                                    421
                       THE BEHAVIOUR OF THE VARIANCE FUNCTION OF THE DIFFERENCE BETWEEN TWO ESTIMATED RESP JRSSB67
ONSES
                                                                                                                    174
           AN ALGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE ANA JASA 67
LYSTS
                                                                                                                    114
                                        ON THE POWER FUNCTION OF THE EXACT TEST FOR THE 2-BY-2 CONTINGENCY BIOKA60
 TABLE
                                                                                                                    393
                           CORRIGENDA, 'ON THE POWER FUNCTION OF THE EXACT TEST FOR THE 2-BY-2 CONTINGENCY BIOKA61
 TABLE!
                                                                                                                    475
 TABLE
                                           THE POWER FUNCTION OF THE EXACT TEST FOR THE 2-BY-3 CONTINGENCY TECH 64
                                                                                                                    439
           THE EFFECT OF NON-NORMALITY ON THE POWER FUNCTION OF THE F-TEST IN THE ANALYSIS OF VARIANCE
                                                                                                          BIOKA51
                                                                                                                     43
                                                                                                            AMS 62
                        EXACT AND APPROXIMATE POWER FUNCTION OF THE NON-PARAMETRIC TEST OF TENDENCY
                                                                                                                    471
B-N MULTIPLE-LATTICE DESIGN ESTIMATED REGRESSION FUNCTION OF THE Q-SUB-1 TO Q-SUB-N BY M-SUB-1 TO M-SU JRSSB69 NO.2
TRAL DISTRIBUTION OF THE SECOND ELEMENTARY SYMMETRIC FUNCTION OF THE ROOTS OF A MATRIX ON THE NON-CEN AMS 68
                EFFECT OF NON-NORMALITY ON THE POWER FUNCTION OF THE SIGN TEST
                                                                                                           JASA 64
ROPORTIONS IN A 2-BY-2 TAB/ CORRIGENDA, 'THE POWER FUNCTION OF THE TEST FOR THE DIFFERENCE BETWEEN TWO P BIOKA59
                               THE MOMENT GENERATING FUNCTION OF THE TRUNCATED MULTI-NORMAL DISTRIBUTION JRSSB61
                                                                                                                    223
LIFIED EXPRESSION FOR THE VARIANCE OF THE CHI-SQUARE FUNCTION ON A CONTINGENCY TABLE
                                                                                                   A SIMP BIOKA54
    DIMENSIONAL PROPERTIES OF A RANDOM DISTRIBUTION FUNCTION ON THE SQUARE
F QUOTIENT OF MAXIMUM VALUES IN SAMPLES FROM A POWER-FUNCTION POPULATION
                                                                             DISTRIBUTION OF PRODUCT AND O JASA 64
                                                                                                                    877
                                           A SAMPLE FUNCTION PROPERTY OF MARTINGALES
                                                                                                            AMS 66 1396
       SOME BASIC PROPERTIES OF THE INCOMPLETE GAMMA FUNCTION RATIO, CORR. 65 1584
                                                                                                            AMS 65
                                                                                                                    926
                             ON MINIMIZING A CONVEX FUNCTION SUBJECT TO LINEAR INEQUALITIES (WITH DISCUSS JRSSB55
                                                                                                                    173
                         MONOMIAL-MONOMIAL SYMMETRIC FUNCTION TABLES
                                                                                                           BIOKA59
                                                                                                                    205
 COMPARISON OF SUCCESSIVE SCREENING AND DISCRIMINANT FUNCTION TECHNIQUES IN MEDICAL TAXONOMY
                                                                                                         A BIOCS69 NO. 4
                       DISTRIBUTION OF DISCRIMINANT FUNCTION WHEN COVARIANCE MATRICES ARE PROPORTIONAL
                                                                                                            AMS 69
                                                                                                                    979
                              A NOTE ON THE RENEWAL FUNCTION WHEN THE MEAN RENEWAL LIFETIME IS INFINITE
                                                                                                           JRSSB61
                                                                                                                    230
NFIDENCE INTERVALS FOR THE P-POINT OF A DISTRIBUTION FUNCTION, II
NFIDENCE INTERVALS FOR THE P-POINT OF A DISTRIBUTION PUNCTION, III
                                                                                         BOUNDED LENGTH CO AMS 66
                                                                                                                    581
                                                                                         BOUNDED LENGTH CO AMS 66
                                                                                                                    586
                            THE NORMAL PROBABILITY FUNCTION, TABLES OF CERTAIN AREA-ORDINATE RATIOS AND BIOKA55
OF THEIR RECIPROCALS
                                                                                                                    217
ON THE ESTIMATION OF THE PARAMETERS OF THE LOGISTIC FUNCTION, USING THE MINIMUM LOGIT CHI-SQUARE METHOD
                                                                                                           BTOKA62
                                                                                                                    250
A USEFUL APPROXIMATION TO THE NORMAL DISTRIBUTION FUNCTION, WITH APPLICATION TO SIMULATION RIBUTION FREE TESTS BASED ON THE SAMPLE DISTRIBUTION FUNCTION' CORREC
                                                                                                                    647
                                                                                                           TECH 67
                                                                                        CORRECTION. 'DIST BIOKA67
                                                                                                                    333
               ON THE DISTRIBUTION OF THE SUPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CONTINUOUS
                                                                                                            AMS 69
STATE SPACES
                                                                                                                    844
BIRTH-AND-DEATH PRO/ ON THE PROBABILITY GENERATING FUNCTIONAL FOR THE CUMULATIVE POPULATION IN A SIMPLE
                                                                                                          BIOKA64
                                                                                                                    245
                                                     FUNCTIONAL FORM IN THE DEMAND FOR MONEY
                                                                                                           JASA 68
                                                                                                                    502
         ON THE ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS
                                                                                                            AMS 69 1409
PROCESSES
                                 AN EVALUATION OF A FUNCTIONAL ON INFINITELY DIVISIBLE STOCHASTIC
                                                                                                            AMS 64
                                                                                                                   336
            ESTIMATION OF THE PARAMETERS OF A LINEAR FUNCTIONAL RELATION
                                                                                                           JRSSB61
                                                                                                                    160
           MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR FUNCTIONAL RELATIONSHIP
                                                                                                            AMS 61 1048
                          REGRESSION, STRUCTURE AND FUNCTIONAL RELATIONSHIP
                                                                                                           BIOKA51
                                                                                                                    11
                                     ESTIMATION OF A FUNCTIONAL RELATIONSHIP
                                                                                                           BIOKA53
                                                                                                                     47
    CONFIDENCE LIMITS FOR THE GRADIENT IN THE LINEAR FUNCTIONAL RELATIONSHIP
                                                                                                           JRSSB56
                                                                                                                     65
                THE BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL RELATIONSHIP
                                                                                                           JRSSB68
                                                                                                                   190
IHOOD SOLUTION TO THE PROBLEM OF ESTIMATING A LINEAR FUNCTIONAL RELATIONSHIP
                                                                                        THE MAXIMUM LIKEL JRSSB69 NO.2
         A NOTE ON TESTS OF SIGNIFICANCE FOR LINEAR FUNCTIONAL RELATIONSHIPS
                                                                                                           BIOKA57
                                                                                                                    268
                                         ON CIRCULAR FUNCTIONAL RELATIONSHIPS
                                                                                                           JRSSB65
                                                                                                                    45
IFICANCE TESTS FOR DISCRIMINANT FUNCTIONS AND LINEAR FUNCTIONAL RELATIONSHIPS
                                                                                                      SIGN BIOKA55
                                                                                                                    360
      A GENERALIZED LEAST-SQUARES APPROACH TO LINEAR FUNCTIONAL RELATIONSHIPS (WITH DISCUSSION)
                                                                                                           JRSSB66
                                                                                                                    278
                                                                                                                    96
                           REGRESSION, STRUCTURE AND FUNCTIONAL RELATIONSHIPS.II.
                                                                                                           BIOKA52
                 SOME REMARKS ON CONTINUOUS ADDITIVE FUNCTIONALS
                                                                                                            AMS 67
                                                                                                                   1655
                                            ADDITIVE FUNCTIONALS AND EXCESSIVE FUNCTIONS
                                                                                                            AMS 65
                                                                                                                   409
                      SOME INVARIANCE PRINCIPLES FOR FUNCTIONALS OF A MARKOV CHAIN
                                                                                                            AMS 67
                                   SOME THEOREMS ON FUNCTIONALS OF MARKOV CHAINS
         SOME APPLICATIONS OF PROBABILITY GENERATING FUNCTIONALS TO THE STUDY OF INPUT-OUTPUT STREAMS
                                                                                                           JRSSB68 321
USE OF RANDOMIZATION IN THE INVESTIGATION OF UNKNOWN FUNCTIONS
                                                                                                           JASA 58
                                                                                                                   176
  ON THE ORDER AND THE TYPE OF ENTIRE CHARACTERISTIC FUNCTIONS
                                                                                                            AMS 62 1238
```

```
DETERMINING BOUNDS ON EXPECTED VALUES OF CERTAIN FUNCTIONS
                                                                                                                 AMS 62 1454
   ASYMPTOTIC EXPANSIONS FOR A CLASS OF DISTRIBUTION FUNCTIONS
                                                                                                                 AMS 63 1302
        INTERVAL ESTIMATION OF NON-LINEAR PARAMETRIC FUNCTIONS
                                                                                                                JASA 63
                                                                                                                        611
            INCREASING PROPERTIES OF POLYA FREQUENCY FUNCTIONS
                                                                                                                 AMS 65
                                                                                                                         272
                  ADDITIVE FUNCTIONALS AND EXCESSIVE FUNCTIONS
                                                                                                                 AMS 65
                                                                                                                         409
         INFINITELY DIFFERENTIABLE POSITIVE DEFINITE FUNCTIONS
                                                                                                                 AMS 66
                                                                                                                         504
          SOME PROPERTIES OF STATISTICAL RELIABILITY FUNCTIONS
                                                                                                                 AMS 66
                                                                                                                         826
                  SPECTRAL ESTIMATES USING NONLINEAR FUNCTIONS
                                                                                                                 AMS 66 1237
             SEQUENTIAL DESIGNS FOR SPHERICAL WEIGHT FUNCTIONS
                                                                                                               TECH 67
          SOME INTEGRAL TRANSFORMS OF CHARACTERISTIC FUNCTIONS
                                                                                                                AMS 68
                                                                                                                        1923
                   ON THE EVALUATION OF DISTRIBUTION FUNCTIONS
                                                                                                               JASA 68
                                                                                                                         715
                 STOCHASTIC APPROXIMATION FOR SMOOTH FUNCTIONS
                                                                                                                         299
                                                                                                                AMS 69
                            A NOTE ON CHARACTERISTIC FUNCTIONS
                                                                                                                 AMS 69
                                                                                                                         303
                                 SIMPLIFIED DECISION FUNCTIONS
                                                                                                               BIOKA54
                                                                                                                         241
                      ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS
                                                                                                               BIOKA55
                                                                                                                         425
             ON THE SMOOTHING OF PROBABILITY DENSITY FUNCTIONS
                                                                                                               JRSSB58
                                                                                                                         334
   PROPERTY, W, OF THE CLASS OF STATISTICAL DECISION FUNCTIONS
                                                                                                        ON THE AMS 66 1631
POLYNOMIALS, A USEFUL GROUP OF MULTI-FACTOR RESPONSE FUNCTIONS
                                                                                                      INVERSE BIOCS66
                                                                                                                        128
        BEHAVIOR AND INTEGRABILITY OF CHARACTERISTIC FUNCTIONS
                                                                                                     LIPSCHITZ AMS 67
                                                                                                                          32
  TIME TREATMENT OF A SIMPLE QUEUE USING GENERATING FUNCTIONS
                                                                                                  A CONTINUOUS JRSSB54
                                                                                                                         288
                                                                                                 ON CONTINUITY AMS 68
     PROPERTIES OF INFINITELY DIVISIBLE DISTRIBUTION FUNCTIONS
                                                                                                                         936
          SINGULAR INFINITELY DIVISIBLE DISTRIBUTION FUNCTIONS
                                                                                                 ON CONTINUOUS AMS 64
                                                                                                                         330
       AND INVARIANT MEASURES FOR MARKOFF TRANSITION FUNCTIONS
                                                                                                                AMS 65
                                                                                              INTEGRAL KERNELS
                                                                                                                         517
       OF THE NORMAL AND INVERSE NORMAL DISTRIBUTION FUNCTIONS
                                                                                          COMPUTER EVALUATION TECH 69 NO.4
  TRANSFORMS TO DETERMINE EXPANSIONS OF DISTRIBUTION FUNCTIONS
                                                                                           THE USE OF INTEGRAL BIOKAGO
                                                                                                                         460
EPARAMETERIZATION OF SOME SIGMOID OR OTHER NONLINEAR FUNCTIONS
                                                                                         GENERALIZATION AND R BIOCS65
     TO THE CHI-SQUARE AND NON-CENTRAL F PROBABILITY FUNCTIONS
                                                                                         NORMAL APPROXIMATION BIOKAGO
                                                                                                                         411
       FOR NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS
                                                                                         A LOCAL LIMIT THEOREM AMS 65
                                                                                                                         546
     EPIDEMIC, A COMPLETE SOLUTION IN TERMS OF KNOWM FUNCTIONS
                                                                                        THE SIMPLE STOCHASTIC BIOKA63
                                                                                                                         235
     RANK TESTS ON THE EQUALITY OF TWO DISTRIBUTION FUNCTIONS
                                                                                   ON THE POWER OF TWO-SAMPLE JRSSB64
                                                                                                                         293
RVICE-TIME DISTRIBUTIONS BY THE METHOD OF GENERATING FUNCTIONS
                                                                   /CHANNEL QUEUE WITH A GENERAL CLASS OF SE JRSSB5B
                                                                                                                         176
KELIHOOD AND BEST UNBIASED ESTIMATORS OF RELIABILITY FUNCTIONS
                                                                   /NCIES IN SMALL SAMPLES OF THE MAXIMUM LI JASA 66
                                                                                                                        1033
MATRIX OF FITTING OF A SERIES OF DISCRETE FREQUENCY FUNCTIONS ANALOGOUS TO THE TYPE A SERIES /DY OF THE SASJ 67
                                                                                                                          55
                                   CAUCHY-DISTRIBUTED FUNCTIONS AND A CHARACTERIZATION OF THE CAUCHY
DISTRIBUTION
                                                                                                                AMS 69
                                                                                                                        10B3
                       THE REAL STABLE CHARACTERISTIC FUNCTIONS AND CHAOTIC ACCELERATION
                                                                                                               JRSSB61
                                                                                                                         180
             SOME RESULTS RELATING MOMENT GENERATING FUNCTIONS AND CONVERGENCE RATES IN THE LAW OF LARGE
NUMBERS
                                                                                                                AMS 67
                                                                                                                         742
                       GROWTH-INVARIANT DISCRIMINANT FUNCTIONS AND GENERALIZED DISTANCES
                                                                                                               BIOCS66
                                                                                                                          96
             ADDITIONAL RESULTS CONCERNING ESTIMABLE FUNCTIONS AND GENERALIZED INVERSE MATRICES
                                                                                                                         4B6
                                                                                                               JRSSB65
                 SIGNIFICANCE TESTS FOR DISCRIMINANT FUNCTIONS AND LINEAR FUNCTIONAL RELATIONSHIPS
                                                                                                               BIOKA55
                                                                                                                         360
ORRELATED NORMAL RA/ ON THE DISTRIBUTION OF LINEAR FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED C BIOKA64
                                                                                                                         143
                                 ON MOMENT GENERATING FUNCTIONS AND RENEWAL THEORY
                                                                                                                 AMS 65 1298
  A SYSTEM OF INEQUALITIES FOR THE INCOMPLETE GAMMA FUNCTIONS AND THE NORMAL INTEGRAL
                                                                                                                 AMS 65
                                                                                                                        1.39
E LIMITS. ELIMINATION OF REQUIREMENT THAT CUMULATIVE FUNCTIONS BE CONTINUOUS DISTRIBUTION FREE TOLERANC TECH 63
WTON METHOD FOR THE FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST SQUARES THE MODIFIED GAUSS-NE TECH 61
                                                                                                                         51B
                                                                                                                         269
TION OF SAMPLING DISTRIBUTIONS AND MOMENT GENERATING FUNCTIONS BY SOLVING DIFFERENTIAL EQUATIONS /ERMINA JRSSB65
                                                                                                                         86
                                                POWER FUNCTIONS FOR COX'S TEST OF RANDOMNESS AGAINST TREND TECH 62
                                                                                                                         430
                                           GENERATING FUNCTIONS FOR MARKOV RENEWAL PROCESSES
                                                                                                                AMS 64
                                                                                                                        431
                          THE USE OF INCOMPLETE BETA FUNCTIONS FOR PRIOR DISTRIBUTIONS IN BINOMIAL SAMPLIN TECH 65
                                                                                                                         335
SED AND MAXIMUM LIKELIHOOD ESTIMATORS OF RELIABILITY FUNCTIONS FOR SYSTEMS IN SERIES AND IN PARALLEL /IA JASA 66 1052
ENCY TABLES
                             COMPARISON OF THE POWER FUNCTIONS FOR THE TEST OF INDEPENDENCE IN 2X2 CONTING AMS 64 1115
                A CLASS OF TESTS WITH MONOTONE POWER FUNCTIONS FOR TWO PROBLEMS IN MULTIVARIATE STATISTICA
                                                                                                                AMS 65 1794
I. ANALYSTS
      ESTIMATING THE COVARIANCE AND SPECTRAL DENSITY FUNCTIONS FROM A CLIPPED STATIONARY TIME SERIES
                                                                                                                        1B0
                                                                                                               JRSSB67
IALS OF THE POSITIVE AND NEGATIVE BINOMIAL FREQUENCY FUNCTIONS IN CURVE FITTING BY AITKEN'S METHOD /YNOM BIOKA61
YNOMIALS OF POSITIVE AND NEGATIVE BINOMIAL FREQUENCY FUNCTIONS IN CURVE FITTING BY AITKEN'S METHOD' /POL BIOKA61
                                                                                                                         115
                                                                                                                         476
BUTION PROBLEMS BASED ON POSITIVE DEFINITE QUADRATIC FUNCTIONS IN NORMAL VECTORS
                                                                                            ON CERTAIN DISTRI AMS 66
                                                                                                                         468
                                      HYPERGEOMETRIC FUNCTIONS IN NORMAL VECTORS
HYPERGEOMETRIC FUNCTIONS IN SEQUENTIAL ANALYSIS
                                                                                                                 AMS 65 1870
                              APPLICATION OF SPECIAL FUNCTIONS IN THE CHARACTERIZATION OF PROBABILITY
                                                                                                               SASJ 69
DISTRIBUTIONS
                                                                                                                         27
ITY, CONTINUITY AND DIFFERENTIABILITY OF A FAMILY ON FUNCTIONS INTRODUCED BY L. TACAKS ON THE INTEGRABLL AMS 63 1045
                          ON FINDING LOCAL MAXIMA OF FUNCTIONS OF A REAL VARIABLE CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES
                                                                                                               BIOKA67
                                                                                                                        310
                                                                                                                AMS 67
                                                                                                                         916
                                       ON THE BIAS OF FUNCTIONS OF CHARACTERISTIC ROOTS OF A RANDOM MATRIX BIOKA65
                                                                                                                          87
           A NOTE ON THE UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L
                                                                                                                 AMS 67 1296
L FAMILTY IN A PARAMETER BY RECURRENCE RELATIONS FOR FUNCTIONS OF CUMULANTS
                                                                                /NS OF THE LINEAR EXPONENTIA
                                                                                                                 AMS 69 1721
ADMISSIBILITY AND DISTRIBUTION OF SOME PROBABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS
                                                                                                                 AMS 6B 1646
                                                       FUNCTIONS OF FINITE MARKOV CHAINS
                                                                                                                 AMS 63 1022
                     A CHARACTERIZATION OF A CLASS OF FUNCTIONS OF FINITE MARKOV CHAINS
                                                                                                                 AMS 65
                                                                                                                        524
                  IDENTIFICATION OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS
                                                                                                                 AMS 67
                                                                                                                        201
                                                       FUNCTIONS OF FINITE MARKOV CHAINS
                                                                                                                 AMS 67
                                                                                                                         206
TYPE PROCESSES
                                                       FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL
                                                                                                                 AMS 68 1020
             STATISTICAL INFERENCE FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS
                                                                                                                 AMS 66 1554
                                      PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS
                                                                                                                 AMS 69
                                                                                                                         97
EITHER CONTINUOUS OR VERY IRREGULAR
                                               SAMPLE FUNCTIONS OF GAUSSIAN RANDOM HOMOGENEOUS FIELDS ARE
                                                                                                                 AMS 67
                                                                                                                        1579
IN TW/ A NOTE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF GENERALIZED CLASSICAL LINEAR ESTIMATORS
                                                                                                               JASA 61
                                                                                                                        619
 THE APPLICATION OF EXACT FINITE SAMPLE DISTRIBUTION FUNCTIONS OF GENERALIZED CLASSICAL LINEAR ESTIMATORS
                                                                                                               JASA 63
                                                                                                                        943
IN A/ A NOTE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF GENERALIZED CLASSICAL LINEAR ESTIMATORS
                                                                                                               JASA 63
                                                                                                                        161
                        OPTIMUM ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND SCALE PARAMETERS
                                                                                                                 AMS 69 NO 6
                                                                                                                 AMS 62
                  APPROXIMATIONS FOR THE ENTROPY FOR FUNCTIONS OF MARKOV CHAINS
                                                                                                                        9.30
                                                                                                                 AMS 68 1905
                                OPTIMAL STOPPING FOR FUNCTIONS OF MARKOV CHAINS
IBUTION OF HOMOGENEOUS AND NON-HOMOGENEOUS QUADRATIC FUNCTIONS OF NORMAL VARIABLES /TIONS, IV, THE DISTR AMS 62
                                                                                                                        542
                                           ON CERTAIN FUNCTIONS OF NORMAL VARIATES WHICH ARE UNCORRELATED
OF A HIGHER ORDER
                                                                                                              BIOKA60
                                                                                                                         175
                              ON UNCORRELATED LINEAR FUNCTIONS OF ORDER STATISTICS
                                                                                                               JASA 63
                                                                                                                         245
                                                                                                                AMS 69
                                                                                                                         770
                                               LINEAR FUNCTIONS OF ORDER STATISTICS
      ASYMPTOTIC NORMALITY OF LINEAR COMBINATIONS OF FUNCTIONS OF ORDER STATISTICS
                                                                                                                 AMS 69 NO 6
                                                                                                            AN AMS 68
  ELEMENTARY PROOF OF ASYMPTOTIC NORMALITY OF LINEAR FUNCTIONS OF ORDER STATISTICS
                                                                                                                        263
                                                                                                        A NOTE AMS 66
                                                                                                                         733
  ON RECURRENCE RELATIONS BETWEEN EXPECTED VALUES OF FUNCTIONS OF ORDER STATISTICS
             A RECURRENCE RELATION FOR DISTRIBUTION FUNCTIONS OF ORDER STATISTICS FROM BIVARIATE DISTRIBU JASA 69
                                                                                                                         600
```

FUN - GAU TITLE WORD INDEX

```
ASYMPTOTIC DISTRIBUTION OF LINEAR COMBINATIONS OF FUNCTIONS OF ORDER STATISTICS WITH APPLICATIONS TO ES AMS 67
RECURRENCE RELATIONS BETWEEN THE PROBABILITY DENSITY FUNCTIONS OF ORDER STATISTICS, AND SOME APPLICATIONS AMS 62
                                                                                                                    169
                                          ON LINEAR FUNCTIONS OF ORDERED CORRELATED NORMAL RANDOM
VARIABLES
                                                                                                           BTOKA65
                                                                                                                    367
                            ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES
                                                                                                           BTOCS6B
                                                                                                                     97
                                       ON THE SAMPLE FUNCTIONS OF PROGESSES WHICH CAN BE ADDED TO A
GALISSTAN PROCESS
                                                                                                            AMS 63
                                                                                                                    329
                                                     FUNCTIONS OF PROCESSES WITH MARKOVIAN STATES
                                                                                                            AMS 68
                                                                                                                    93R
                                                     FUNCTIONS OF PROCESSES WITH MARKOVIAN STATES, II
                                                                                                            AMS 69
                                                                                                                    B65
                          SOME MULTIVARIATE DENSITY FUNCTIONS OF PRODUCTS OF GAUSSIAN VARIATES.
                                                                                                           BTOKA65
                                                                                                                    645
NORMAL VARIABLES
                                  MOMENT GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY CORRELATED
                                                                                                           BIOKA5B
  ON FINITE PRODUCTS OF POISSON-TYPE CHARACTERISTIC FUNCTIONS OF SEVERAL CARIABLES
                                                                                                            AMS 69
                                                                                                                    434
N FUNCT/ ON THE PROBABILITY OF LARGE DEVIATIONS OF FUNCTIONS OF SEVERAL EMPIRICAL CUMULATIVE DISTRIBUTIO
                                                                                                            AMS 67
                                                                                                                    360
RELATED TEST
                                  LIMIT THEOREMS FOR FUNCTIONS OF SHORTEST TWO-SAMPLE SPACINGS AND A
                                                                                                            AMS 67
                                                                                                                    108
                 NOTES TABLES OF PEARSON-LEE-FISHER FUNCTIONS OF SINGLY TRUNCATED NORMAL DISTRIBUTIONS
                                                                                                           BIOCS65
S OF MULTIVARIATE NORMAL DIST/ PROPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICE
                                                                                                           AMS 69
                                                                                                                    697
                          MONOTONICITY OF THE POWER FUNCTIONS OF SOME TESTS OF INDEPENDENCE BETWEEN TWO
                                                                                                            AMS 64
SETS OF VARIATES
                                                                                                                    206
ANCE MATRICES./
                  MONOTONICITY PROPERTY OF THE POWER FUNCTIONS OF SOME TESTS OF THE EQUALITY OF TWO COVARI
                                                                                                            AMS 64 1059
                           MONOTONICITY OF THE POWER FUNCTIONS OF SOME TESTS OF THE MULTIVARIATE LINEAR
                                                                                                            AMS 64
                    EXCHANGEABLE PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS
                                                                                                            AMS 64
 A GOODNESS OF FIT TEST FOR SPECTRAL DISTRIBUTION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL RESID BIOKA56
                          BOUNDS ON THE DISTRIBUTION FUNCTIONS OF THE BEHRENS-FISHER STATISTIC
                                                                                                            AMS 66
                                                                                                                    639
                THE MOMENTS OF ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF A MATRIX IN MULTIVARIATE
                                                                                                            AMS 61 1152
DISTRIBUTIONS
                            ON ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF A MULTIVARIATE MATRIX.
                                                                                                            AMS 64 1186
             ON THE MOMENTS OF ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF TWO MATRICES
                                                                                                            AMS 64 1704
IONS TO A DIST/ ON MOMENTS OF ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF TWO MATRICES AND APPROXIMAT AMS 68 1274
                           ON ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF TWO MATRICES IN MULTIVARIAT BIOKAG5 499
E ANALYSIS.
                                                     FUNCTIONS OF THE SAMPLE MEAN AND SAMPLE VARIANCE OF A BIOCS69
 POISSON VARIATE
                                                                                                                    171
     THE ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS OF THE TWO-SAMPLE RANK VECTOR
                                                                                                           AMS 69 1011
            THE DISTRIBUTION FUNCTIONS OF TSAO'S TRUNCATED SMIRNOV STATISTICS
ON THE MONOTONIC CHARACTER OF THE POWER FUNCTIONS OF TWO MULTIVARIATE TESTS
                                                                                                            AMS 67 1208
                                                                                                            AMS 61 1145
         DESIGNS FOR THE SIMULTANEOUS ESTIMATION OF FUNCTIONS OF VARIANCE COMPONENTS FROM TWO-WAY GROSSED 810KA67
GLASSI/
                      SOME APPLICATIONS OF MEIJER-G FUNCTIONS TO DISTRIBUTION PROBLEMS IN STATISTICS
                                                                                                        BIOKA5B
                                                                                                                    578
 A METHOD FOR DISCRIMINATING BETWEEN FAILURE DENSITY FUNCTIONS USED IN RELIABILITY PREDICTIONS
                                                                                                           TECH 65
            LIKELIHOOD DISTRIBUTIONS FOR ESTIMATING FUNCTIONS WHEN BOTH VARIABLES ARE SUBJECT TO ERROR
                                                                                                           TECH 67
                                                                                                                    261
                      APPROXIMATIONS TO DISTRIBUTION FUNCTIONS WHICH ARE HYPERGEOMETRIC SERIES
                                                                                                           BIOKA68
                                                                                                                    243
                                 TABLES OF SYMMETRIC FUNCTIONS. PART IV.
                                                                                                           BIOKA53
                                                                                                                    427
                                 TABLES OF SYMMETRIC FUNCTIONS. PART V.
                                                                                                           BIOKA55
                                                                                                                    223
                                 TABLES OF SYMMETRIC FUNCTIONS. PARTS II AND III.
                                                                                                           BIOKA51
                                                                                                                    435
                          GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY AND THE EXPONENTIAL FAMILY
                                                                                                            AMS 67
                                                                                                                    81B
      TOPOGRAPHIC CORRELATION, POWER-LAW COVARIANCE FUNCTIONS, AND DIFFUSION
                                                                                                           BIOKA62
                                                                                                                    305
RENYI TYPE LIMIT THEOREMS FOR EMPIRICAL DISTRIBUTION FUNCTIONS, CORR. 65 1069
                                                                                                            AMS 65
                                                                                                                    322
        INTERVAL ESTIMATION OF NON-LINEAR PARAMETRIC FUNCTIONS, II
                                                                                                            JASA 64
                                                                                                                    168
        INTERVAL ESTIMATION OF NON-LINEAR PARAMETRIC FUNGTIONS, 111
                                                                                                           JASA 65 1191
                      ERRATA IN 'TABLES OF SYMMETRIC FUNCTIONS'
                                                                                                           BIOKA58
                         THE ESTIMATION OF 'TRANSFER FUNCTIONS' OF QUADRATIC SYSTEMS
                                                                                                           TEGH 61
    STATISTICAL TREATMENT OF CENSORED DATA . PART I. FUNDAMENTAL FORMULAE
                                                                                                           BIOKA54
IMMIGRATION PROCESS
                              THE ESTIMATION OF A FUNDAMENTAL INTERACTION PARAMETER IN AN EMIGRATION-
                                                 TWO FURTHER APPLICATIONS OF A MODEL FOR BINARY REGRESSION BIOKA58
                                                    FURTHER APPLICATIONS OF RANGE TO THE ANALYSIS OF
                                                                                                          BIOKA51
'S STATISTIC IN THE GENERAL CASE
                                                   A FURTHER APPROXIMATION TO THE DISTRIBUTION OF WILCOXON JRSSB54
                                                     FURTHER CONTRIBUTIONS TO MULTIVARIATE CONFIDENCE
                                                                                                           BIOKA57
BOUNDS
                                          A NOTE ON 'FURTHER CONTRIBUTIONS TO MULTIVARIATE GONFIDENCE
                                                                                                           BIOKA58
                                                                                                                    5B1
                                        CORRIGENDA, 'FURTHER CONTRIBUTIONS TO MULTIVARIATE CONFIDENCE
BOUNDS
                                                                                                           BIOKA61
                                                                                                                    474
                                                     FURTHER CRITICAL VALUES FOR THE SUM OF TWO VARIANCES
                                                                                                           BIOKA5B
                                                                                                                    279
                                                     FURTHER CRITICAL VALUES FOR THE TWO-MEANS PROBLEM
                                                                                                                    203
                                                                                                           BIOKA56
                    ON THE COMPARISON OF TWO MEANS, FURTHER DISCUSSION OF ITERATIVE METHODS FOR CALCULATI BIOKA54
NG TABLES
                                                                                                                    361
                                                   A FURTHER LOOK AT ROBUSTNESS VIA BAYES'S THEOREM
                                                                                                           BIOKA62
                                                                                                                    419
                                      CORRIGENDA, 'A FURTHER LOOK AT ROBUSTNESS VIA BAYES'S THEOREM-
                                                                                                           BIOKA63
                                                                                                                    546
                                                   A FURTHER NOTE ON A SIMPLE METHOD FOR FITTING AN
EXPONENTIAL CURVE
                                                                                                                    177
                                                                                                           BIOKA60
                                                   A FURTHER NOTE ON THE GEOMETRY OF LINEAR ESTIMATION
                                                                                                           BTOKA63
                                                                                                                    540
ANALYSTS
                                                SOME FURTHER NOTES ON DISTURBANCE ESTIMATES IN REGRESSION
                                                                                                           JASA 67
                                                                                                                    169
                                                     FURTHER NOTES ON THE ANALYSIS OF ACCIDENT DATA
                                                                                                           STOKA53
                                                                                                                    214
-VON MISES GOODNESS-OF-FIT STATISTIC)
                                                     FURTHER PERCENTAGE POINTS FOR W-SQUARE-SU8-N +(CRAMER 810KA68
                                                                                                                    428
                                                     FURTHER PROPERTIES OF AN ANGULAR TRANSFORMATION OF
THE CORRELATION COEFFICIENT
                                                                                                           BIOKA57
                                                                                                                    273
ESTIMATION OF VARIANCE COMPONENTS'
                                               SOME FURTHER REMARKS CONCERNING 'A GENERAL APPROACH TO THE
                                                                                                           TECH 68
                                                                                                                    551
CORRELATED OBSERVATIONS
                                                     FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH
                                                                                                           BIOKA68
                                                                                                                   575
                                                                                                            AMS 69
ORDERED FAMILIES OF DISTRIBUTION
                                                     FURTHER REMARKS ON TOPOLOGY AND CONVERGENCE IN SOME
                                                                                                                    51
            THE ALMOST FULL DAM WITH POISSON INPUT, FURTHER RESULTS
                                                                                                           JRSS866
                                               SOME FURTHER RESULTS IN THE NON-EQUILIBRIUM THEORY OF A
                                                                                                           JRSS857
                                                                                                                    326
TRAFFIC
                                                SOME FURTHER RESULTS IN THE THEORY OF PEDESTRIANS AND ROAD BIOKA54
                                                                                                                    375
 TRAFFIC
                          CORRIGENDA TO 'SOME FURTHER RESULTS IN THE THEORY OF PEDESTRIANS AND ROAD BIOKA58
                                                                                                                    291
                                              ON A FURTHER ROBUSTNESS PROPERTY OF THE TEST AND ESTIMATOR
                                                                                                           AMS 68
BASED ON WILCOXON'S SIGNED RANK STATISTIC
                                                                                                                    282
                                                    FURTHER SECOND ORDER ROTATABLE DESIGNS
                                                                                                            AMS 68 1995
                           CROSSROAD CHOICES FOR THE FUTURE DEVELOPMENT OF THE FEDERAL STATISTICAL SYSTEM JASA 68 801
UTOMATIC PRODUCTION AND CONTROL DEVICES AND EXPECTED FUTURE DEVELOPMENTS
                                                                                   THE PRESENT STATUS OF A TECH 66
                                                                                                                    73
                          OPTIMAL STOPPING WHEN THE FUTURE IS DISCOUNTED
                                                                                                            AMS 67
                                                                                                                    601
                                                THE FUTURE OF DATA ANALYSIS, CORR. 62 812
                                                                                                            AMS 62
                         SOME APPLICATIONS OF MEIJER-G FUNGTIONS TO DISTRIBUTION PROBLEMS IN STATISTICS
                                                                                                           STOKA58
                                                                                                                   578
                    THE EFFEGT OF FIELD BLOGKING ON GAIN FROM SELECTION
                                                                                                           BIOGS66
                                                                                                                    843
N AS APPLIED TO EXTRAPOLATION IN S-/ A NOTE ON THE GAIN IN PRECISION FOR OPTIMAL ALLOGATION IN REGRESSIO TEGH 69
                                                                                                                    389
THE GORRELATION BETWEEN FEED EFFICIENCY AND RATE OF GAIN, A RATIO AND 1TS DENOMINATOR
                                                                                                           BIOCS65
                                                                                                                    739
                                                                                                                    875
                          SGOOLING, EXPERIENGE, AND GAINS AND LOSSES IN HUMAN GAPITAL THROUGH MIGRATION
                                                                                                           JASA 67
                                             ON THE GALTON-WATSON BRANGHING PROCESS WITH MEAN LESS THAN
                                                                                                            AMS 67
                                                                                                                    264
                                    A THEOREM ON THE GALTON-WATSON PROCESS
                                                                                                            AMS 66
                                                                                                                    695
    ON RECENT THEOREMS GONCERNING THE SUPERGRITIGAL GALTON-WATSON PROCESS
                                                                                                            AMS 68 2098
IZE OR MAXIMIZE THE PROBABILITIES OF EXTINGTION IN A GALTON-WATSON PROGESS AND IN SOME RELATED MULTIPLIGAT AMS 68 1700
                                     THE MULTI-TYPE GALTON-WATSON PROGESS IN A GENETIGAL CONTEXT
                                                                                                           BIOGS68 147
```

TITLE WORD INDEX FUN - CAU

	CALEDON WARRANT PROGRESSION	AMC CC	1011
A LIMIT THEOREM FOR MULTIDIMENSIONAL	CALTON-WATSON PROCESSES CALTON-WATSON PROCESSES ADDITIONAL	AMS 66	1463
	CALTON-WATSON PROCESSES WITH RANDOM BRANCHING PROBABI	BIUKA68	589
LITIES . A NOTE ON MULTI-TYPE		BIOKA55	
THE DISTRIBUTION OF	ORDION S MANN STORY	AMS 68	
	CALTON'S TEST AND A RELATED SIMPLE ESTIMATE OF LOCATI		73
			486
ON MEASURABLE, NONLEAVABLE	CAMBLER'S RUIN PROBLEM WITH CORRELATION CAMBLINC HOUSES WITH A COAL CAME CAME CAME CAME GAME IS UNFAIR GAME VALUE DISTRIBUTIONS I CAME VALUE DISTRIBUTIONS II GAME, A FIRST PASSACE PROBLEM GAMES AND THE PETERSBURG PARADOX GAMES ASSOCIATED WITH A RENEWAL PROCESS	AMS 69	66
THE PROCRESS OF THE SCORE DURING A BASEBALL	CAME	JASA 61	703
THE LAST RETURN TO EQUILIBRIUM IN A COIN TOSSINC	CAME	AMS 64	1344
A REMARK ON THE COIN TOSSINC	CAME	AMS 64	1345
WEAK APPROACHABILITY IN A TWO-PERSON	CAME	AMS 69	789
THE PROBABILITY THAT A RANDOM	CAME VALUE DESCRIPTIONS I	AMS 66	1796
	CAME VALUE DISTRIBUTIONS I	AMC 67	251
ON THE MEAN DURATION OF A BALL AND CELL.	GAME A FIRST PASSACE PROBLEM	AMS 66	517
TO BAYES RISK IN SEQUENCES OF NON-FINITE	GAMES APPROXIMATION	AMS 69	467
RECURRENT	GAMES AND THE PETERSBURG PARADOX	AMS 61	187
	GAMES ASSOCIATED WITH A RENEWAL PROCESS GAMES WITH UNKNOWN DISTRIBUTIONS	AMS 62	697
REPETITIVE PLAY IN FINITE STATISTICAL	GAMES WITH UNKNOWN DISTRIBUTIONS	AMS 66	976
	GAMINC (A NOTE ON THE HISTORY OF PROBABILITY) /THE		1
	GAMINC, ARTIFICIAL INTELLICENCE AND ALLIED TOPICS		
A PARTIAL COEFFICIENT FOR GOODMAN AND KRUSKAL'S		JASA 67	189
OF THE SAMPLE VERSION OF THE MEASURE OF ASSOCIATION, CONDITION FOR THE SQUARE OF A RANDOM VARIABLE TO BE	CAMMA DISTRIBUTION GAMMA A NECESSARY AND SUFFICIENT	BIOKAGE	275
MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF	GAMMA AND WEIBULL POPULATIONS FROM COMPLETE AND FROM	TECH 65	639
IMAVIMIM LIVELTHOOD ECTIMATION OF THE DADAMETERS OF	CAMMA AND WEIGHT DODINATIONS FROM COMPLETE AND DROW	mpour co	105
ESTIMATION FROM THE ORDER STATISTICS OF UNEQUAL	GAMMA COMPONENTS SCALE PARAMETER	AMS 66	152
ORDER STATISTICS FROM THE	GAMMA DISTRIBUTION	TECH 60	243
A GENERALIZATION OF THE	CAMMA DISTRIBUTION	AMS 62	11B7
PROBABILITY PLOTS FOR THE	GAMMA DISTRIBUTION	TECH 62	1
AN APPLICATION OF A GENERALIZED	GAMMA COMPONENTS SCALE PARAMETER GAMMA DISTRIBUTION	AMS 64	1368
PARAMETER ESTIMATION FOR A GENERALIZED	CAMMA DISTRIBUTION	TECH 65	1142
NONPARAMETRIC LIFE TEST FOR SMALLER PERCENTILES OF A	CAMMA DISTRIBUTION ASYMPTOTIC EFFICIENCIES OF A	JASA 56	467
XIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF THE	GAMMA DISTRIBUTION AND THEIR BIAS MA	TECH 69	NO.4
	GAMMA DISTRIBUTION BY MAXIMUM LIKELIHOOD GAMMA DISTRIBUTION BY SAMPLE QUANTILES		
	GAMMA DISTRIBUTION FOR SMALL VALUES OF THE SHAPE PARA		
	GAMMA DISTRIBUTION IN ACCEPTANCE SAMPLING BASED ON		
	GAMMA DISTRIBUTION USING ORDER STATISTICS CAMMA DISTRIBUTION USING ORDER STATISTICS /UM-LIKEL		
CORRIGENDA 'ESTIMATION OF PARAMETERS OF THE	CAMMA DISTRIBUTION USING ORDER STATISTICS !	RIOKA63	546
DEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE	GAMMA DISTRIBUTION. ON PAIRS OF IN CAMMA DISTRIBUTION' GAMMA DISTRIBUTIONS GAMMA DISTRIBUTIONS CAMMA DISTRIBUTIONS CAMMA DISTRIBUTIONS CAMMA FUNCTION RATIO, CORR. 65 1584	BIOKA65	2B9
ERRATA, 'ORDER STATISTICS FROM THE	CAMMA DISTRIBUTION'	TECH 60	523
THE CANONICAL CORRELATION COEFFICIENTS OF BIVARIATE	GAMMA DISTRIBUTIONS	AMS 69	1401
STATISTICAL INFERENCE WITH BIVARIATE	GAMMA DISTRIBUTIONS	BIOKA69	NO.3
ONFIDENCE LIMITS FOR THE COEFFICIENT OF VARIATION IN	CAMMA DISTRIBUTIONS APPROXIMATE C	BIOCS65	733
A SYSTEM OF INEQUALITIES FOR THE INCOMPLETE	CAMMA FUNCTION RAILO, CORR. 65 1554	AMS 65	139
	GAMMA OF ORDER K RESPECTIVELY /, WHILE THE INTERARR		
	GAMMA OF ORDER LAMBDA RESPECTIVELY /HILE THE INTERA		
		TECH 67	
	GAMMA PARAMETERS WITH AN APPLICATION TO A RELIABILITY		
	CAMMA POPULATION FROM COMPLETE AND CENSORED SAMPLES		
	CAMMA POPULATIONS /XIMUM-LIKELIHOOD ESTIMATORS, FRO GAMMA RAY PULSE-HEIGHT SPECTRA	TECH 62	
SAMPLING RESULTS FOR REGRESSION ANALYSIS APPLIED TO	GAMMA RAY SPECTROMETER DATA, 1 SOME EXPERIMENTAL GAMMA RAY SPECTROMETER DATA, 2 SOME EXPERIMENTAL	BIOCS6B	353
NGLE SERVER QUELING PROCESS WITH RECURRENT INPUT AND	GAMMA SERVICE TIME THE TRANSIENT BEHAVIOR OF A SI	AMS 61	1286
STRIBUTION OF THE PRODUCT OF INDEPENDENT GENERALIZED	GAMMA VARIABLES WITH THE SAME SHAPE PARAMETER /T DI	AMS 68	1751
VARIABLES TANGED DIGERRANG AND INDEPENDENT	GAMMA DIGINIDOTED TROPOGIO OF TROPE	BIOKA62 BIOKA63	
OF IDENTICALLY DISTRIBUTIONS AND INDEPENDENT	GAMMA-DISTRIBUTED PRODUCTS OF RANDOM VARIABLES GAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIORITY 64 925)		
OF IDENTICALLY DISTRIBUTED EXPONENTIALLY CORRECATED	GAP TEST FOR RANDOM SEQUENCES	AMS 61	524
QUEUETNC FOR	CAPS IN TRAFFIC.	BIOKA65	79
OBILES STATISTICAL ESTIMATION OF THE	CASOLINE OCTANE NUMBER REQUIREMENT OF NEW MODEL AUTOM	TECH 60	5
	GAUGE SUBJECT TO RANDOM OUTPUT FLUCTUATIONS	JRSSB54	118
CUMULATIVE SUM SCHEMES USING	GAUGING	TECH 62	
YSIS OF THE DATA FOR SOME EXPERIMENTS CARRIED OUT BY	GAUSE WITH POPULATIONS OF THE PROTOZOA PARAMECIUM AUR GAUSS LINEAR MODEL /IN THE HISTORY OF PROBABILITY A	BIOKA67	1
A COORDINATE-FREE APPROACH WHEN ARE	GAUSS-MARKOV AND LEAST SQUARES ESTIMATORS IDENTICAL.	AMS 68	70
HOMOGENEOUS	GAUSS-MARKOV RANDOM FIELDS	AMS 69	1625
A GENERALIZATION OF THE	GAUSS-MARKOV THEOREM	JASA 66	
RESSION FUNCTIONS BY LEAST SQUARES THE MODIFIED	GAUSS-NEWTON METHOD FOR THE FITTING OF NON-LINEAR REG	TECH 61	269
A SIMPLE METHOD OF RESOLUTION OF A DISTRIBUTION INTO	GAUSSIAN COMPONENTS CAUSSIAN COMPONENTS AN ALGORITHM	BIOCS67	
FOR THE DECOMPOSITION OF A DISTRIBUTION INTO A BOUND FOR THE VARIATION OF	CAUSSIAN DENSITIES AN ALGORITHM	AMS 69	
CHARACTERIZATION OF THE INVERSE	GAUSSIAN DISTRIBUTION	AMS 62	800
REALITY OF A COVARIANCE MATRIX IN A CERTAIN COMPLEX	GAUSSIAN DISTRIBUTION A TEST FOR		
ANALYSIS BASED ON A CERTAIN MULTIVARIATE COMPLEX	GAUSSIAN DISTRIBUTION A TEST FOR GAUSSIAN DISTRIBUTION CLASSICAL STATISTICAL	AMS 65	98
ON THE INVERSE	GAUSSIAN DISTRIBUTION FUNCTION	JASA 00	1014
CAL ANALYSIS BASED ON A CERTAIN MULTIVARIATE COMPLEX	GAUSSIAN DISTRIBUTION, AN INTRODUCTION STATISTI	AMS 63 AMS 69	152
PRODUCT ENTROPY TO	CAUSSIAN DISTRIBUTIONS	AMS 69	
RADON-NIKODYM DERIVATIVES OF STATIONARY RADON-NIKODYM DERIVATIVES OF	GAUSSIAN MEASURES	AMS 66	
	OROGOIAN MEROUNES		

NIKODYM DERIVATIVE EQUIVALENT	GAUSSIAN	MEASURES WITH A PARTICULARLY SIMPLE RADON-	AMS 67	1027
FOR VARIANCE HETEROGENEITY IN THE RESIDUALS OF A				
OWN DISCRETE WAVEFORM WHICH IS RANDOMLY REPEATING IN				
MATING FINITE-TIME MAXIMA AND MINIMA OF A STATIONARY				
		PERCENTAGE POINTS		
DADUNI 10 GADDA1	CAUCSTAN	LEVOENINGE LOINIS	TECH 69	591
FIRST PASSACE TIME FOR A PARTICULAR THE EXPECTED NUMBER OF ZEROS OF A STATIONARY STATISTICAL CONTROL OF A DISTRIBUTION OF HIGH LEVEL CROSSINGS OF A STATIONARY FUNCTIONS OF PROCESSES WHICH CAN BE ADDED TO A OF THE CROSS-SPECTRUM OF A STATIONARY BIVARIATE	GAUSSIAN	L LKUCE22	AMS 61	610
THE EXPECTED NUMBER OF ZEROS OF A STATIONARY	GAUSSIAN	PROCESS	AMS 65	1043
STATISTICAL CONTROL OF A	GAUSSIAN	PROCESS	TECH 67	29
DISTRIBUTION OF HIGH LEVEL CROSSINGS OF A STATIONARY	GAUSSIAN	PROCESS ON A LIMIT	AMS 68	2108
FUNCTIONS OF PROCESSES WHICH CAN BE ADDED TO A	GAUSSIAN	PROCESS ON THE SAMPLE	AMS 63	329
OF THE CROSS-SPECTRUM OF A STATIONARY BIVARIATE	GAUSSIAN	PROCESS FROM ITS ZEROS ESTIMATION	JRSSB68	145
EXPECTED ARC LENCTH OF A	GAUSSIAN	PROCESS ON A FINITE INTERVAL	JRSSB56	257
ON LIMIT THEOREMS FOR	GAUSSIAN	PROCESSES	AMS 65	304
SAMPLING RATES AND APPEARANCE OF STATIONARY			TECH 66	91
EPSILON ENTROPY OF			AMS 69	
		PROCESSES AND THEIR FIRST PASSAGE TIMES	JRSSB65	
		PROCESSES FOR WHICH THE MEAN RATE OF CROSSIN		
RIFICATION CONCERNING CERTAIN EQUIVALENCE CLASSES OF			AMS 68	
MITTORITON CONCERNING CENTAIN EQUIVALENCE CLASSES OF		PROCESSES ON AN INTERVAL PROCESSES ON SEVERAL PARAMETERS		
AUG OD 1993) TRREGULAR GAMPIE RUNGMIONG OR			AMS 65	
		RANDOM HOMOGENEOUS FIELDS ARE EITHER CONTINU		
A NOTE ON THE ABSENCE OF TANGENCIES IN			AMS 68	
LAW OF LARGE NUMBERS FOR THE MAXIMUM IN A STATIONARY	GAUSSIAN	SEQUENCE		93
ZERO CROSSING PROBABILITIES FOR	GAUSSIAN	STATIONARY PROCESSES	AMS 62	
EQUIVALENCE OF	GAUSSIAN	STATIONARY PROCESSES	AMS 69	
ESTIMATION OF SPECTRA AFTER HARD CLIPPING OF	GAUSSIAN	SEQUENCE A I STATIONARY PROCESSES I STATIONARY PROCESSES I TIME PROCESSES I VARIATES I VARIATES	TECH 67	391
THE ORTHANT PROBABILITIES OF FOUR	GAUSSIAN	VARIATES	AMS 69	152
SOME MULTIVARIATE DENSITY FUNCTIONS OF PRODUCTS OF	GAUSSIAN	VARIATES.	BIOKA65	645
ON THE CROSS PERIODOCRAM OF A STATIONARY	GAUSSIAN	VECTOR PROCESS	AMS 67	593
FLUCTUATIONS CROSS SPECTRAL ANALYSIS OF	CAUSSIAN	VECTOR PROCESS IN THE PRESENCE OF VARIANCE	AMS 68	
ON DOMINATING AN AVERAGE ASSOCIATED WITH DEPENDENT			AMS 68	
THE ESTIMATION OF VARIANCES AFTER USING A			AMS 68	
ON AN EXTENSION OF			BIOKA53	
COMMENTS ON A POSTERIOR DISTRIBUTION OF			JRSSB64	
OFFSPRING DISTRIBUTIONS ON THE SURVIVAL OF A		SOME EFFECTS OF FLUCTUATING		
EMENTS AMONG ENVIRONMENTAL POCKETS UPON STEADY STATE				
ED EFFECTS ON THE INBREEDING COEFFICIENT AND RATE OF				
		APPROACH TO SOME SCREENING AND CLASSIFICATION		
			TECH 67	
ENTS' SOME FURTHER REMARKS CONCERNINC 'A	CENERAL	APPROACH TO THE ESTIMATION OF VARIANCE COMPON		
PERFORMANCE OF SOME CORRELATION COEFFICIENTS FOR A	GENERAL	BIVARIATE DISTRIBUTION THE	BIOKA60	
KOUMOGOROV-SMIRNOV 1ESIS OF FII BASED ON SOME	CENERAL	BUUNDS	JASA 68	
		BULK QUEUE AS A HILBERT PROBLEM (CORR. 64	JRSSB62 JRSSB65	
THE DETECTION OF PARTIAL ASSOCIATION, 2. THE				
OF THE RANK CORRELATION COEFFICIENT TAU IN THE			BIOKASS	409
TO THE DISTRIBUTION OF WILCOXON'S STATISTIC IN THE		CLASE A FURTHER AFFROATMATION	JRSSB34	255
		CLASS OF BULK QUEUES WITH POISSON INPUT CLASS OF COEFFICIENTS OF DIVERCENCE OF ONE	JRSSB66	
			AMS 68	
		CLASS OF ENUMERATIONS ARISING IN CENETICS		
OF THE EQUATIONS OF THE SINGLE CHANNEL QUEUE WITH A				
			BIOCS66	
THE LATENT ROOTS OF A SYMMETRIC RANDOM MATRIX UNDER			TECH 61	
OPETHAL DECIGNO IN DECEDERATION DECREES HITELIA			BIOKA68	
OPTIMAL DESIGNS IN REGRESSION PROBLEMS WITH A				53
			JRSSB68	
			BIOKA54	
METHOD FOR PRODUCTS OF TWO POLYKAYS WITH SOME				
N RELATION TO THE SINGLE-SERVER QUEUEING SYSTEM WITH				89
RRIVAL AND SERVING DISTRIBUTIONS ARE EXPONENTIAL AND				
A CLASS OF RANK ORDER TESTS FOR A			AMS 69	
SOME NOTES ON VARIANCE-RATIO TESTS OF THE			BIOKA64	
		LINEAR HYPOTHESIS IN MULTIVARIATE ANALYSIS		
OF SOME LEAST-SQUARES ESTIMATORS OF VARIANCE IN A THE STRONG RATIO LIMIT PROPERTY FOR SOME	GENERAL	LINEAR MUDEL ON THE BIAS	PINK 468	313
			BIOCS67	
		METHOD FOR APPROXIMATING TO THE DISTRIBUTION		
S UNDER VARIOUS PREVENTIVE MAINTENANCE POLICIES A				
		METHOD OF DETERMINING FIXED-WIDTH CONFIDENCE		
		METHOD, WITH APPLICATIONS TO LINEAR ESTIMATOR		
		MODEL FOR GENETIC EFFECTS		
			BIOKA64	
			AMS 68	
TWO-SIDED DISTRIBUTION-FREE TOLERANCE INTERVALS OF A			JASA 62	
		NON-NORMAL VARIANCE-RATIO SAMPLING DISTRIBUTI		
			AMS 65 JRSSB58	
A CONCISE DERIVATION OF				
THE ERGODICITY OF SERIES OF QUEUES WITH			AMS 65	
INVARIANT SEQUENTIAL PROBABILITY RATIO TESTS BASE/				
THE MEAN OF A MULTIVARIATE NORMAL POPULATION WITH				
		RANDOM WALK WITH A TWO-SIDED BOUNDARY		
ANALYSIS OF COVARIANCE BASED ON CONSTRUCTION OF ORTHOGONAL POLYNOMIALS FROM A	GENERAL	RANK SUUKES	AMS 69	910
	GENERAL	RECORRENCE FORMULA NUMERICAL	DIUC268	090
CONSTRUCTION OF ORTHOGONAL POLYNOMIALS FROM A	CENTER	DEMARKS ON CONCIL MING IN COMPTONICS		
CONSTRUCTION OF ORTHOGONAL FOLLNOWIALS FROM A	GENERAL	REMARKS ON CONSULTING IN STATISTICS	TECH 69	371
DISCUSSION) SOME	GENERAL GENERAL	REMARKS ON CONSULTING IN STATISTICS RESULTS IN SEQUENTIAL DESIGN (WITH	JRSSB65	371
DISCUSSION) SOME ON THE QUEUEING PROCESS, MARKOV OR POISSON INPUT,	GENERAL GENERAL	SERVICE TIME DISTRIBUTION, ONE SERVER	AMS 61	770
DISCUSSION) SOME	GENERAL GENERAL	SERVICE TIME DISTRIBUTION, ONE SERVER	AMS 61	770

TITLE WORD INDEX GAU - GEN

BATCH CHEMICAL PLANTS A	GENERAL SIMULATION PROGRAMME FOR MATERIAL FLOW IN	TECH 61	497
MULTIVARIATE ACCEPTANCE SAMPLING PROCEDURES FOR		JASA 65	
	GENERAL STEPWISE METHODS	AMS 63	873
	GENERAL STOCHASTIC EPIDEMIC	BIOKA53	
A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A		BIOKA55	
A NOTE ON THE ULTIMATE SIZE OF A		BIOKA67	
		BIOKA65	
A 'RENEWAL' LIMIT THEOREM FOR		AMS 62	98
	GENERAL SYSTEM OF DISTRIBUTIONS, I. ITS CURVE-SHAPE		
		JASA 68	
		TECH 62	
THREE FACTOR ADDITIVE DESIGNS MORE		TECH 62	
THE USE OF THE HANKEL TRANSFORM IN STATISTICS. I.		BIOKA54	44
	GENERAL THEORY AND THE CASE OF SIMPLE ORDER /ION OF		
	GENERAL THEORY OF PRIME-POWER LATTICE DESIGNS		
		AMS 69	
	GENERAL TIME DEPENDENT QUEUE WITH A SINGLE SERVER		
	GENERAL USE OF THE POISSON APPROXIMATION FOR BINOMIAL		74
THE QUOTIENT OF A RECTANGULAR OR TRIANGULAR AND A			
A	GENERAL VERSION OF DOEBLIN'S CONDITION	AMS 63	668
	GENERALISED COVARIANCE ANALYSIS WITH UNEQUAL ERROR	BIOCS69	NO.4
A	GENERALISED LOGIT-NORMAL DISTRIBUTION	BIOCS65	721
STRUCTURAL PROBABILITY AND A	GENERALIZATION	BIOKA66	1
FIELLER'S THEOREM AND A		BIOKA67	
OR OTHER NONLINEAR FUNCTIONS	GENERALIZATION AND REPARAMETERIZATION OF SOME SIGMOID		
	GENERALIZATION OF A METHOD OF HANURAV		
	GENERALIZATION OF A THEOREM OF BALAKRISHNAN	AMS 61	1337
	GENERALIZATION OF A THEOREM OF BALAKRISHNAN GENERALIZATION OF BAYESIAN INFERENCE (WITH GENERALIZATION OF CLASSICAL RENEWAL THEORY	JRSSB68	205
	GENERALIZATION OF CLASSICAL RENEWAL THEORY	JRSSB67	141
	GENERALIZATION OF FIELLER'S THEOREM TO THE RATIO OF	JRSSR67	126
	GENERALIZATION OF ITO'S THEOREM CONCERNING THE		
ATION FOR A CLASS OF DISCRETE DISTRIBUTIONS	GENERALIZATION OF JOHNSON'S PROPERTY OF THE MEAN DEVI	BIUNVEE	285
	GENERALIZATION OF KNOX'S APPROACH TO THE DETECTION OF		
	GENERALIZATION OF NEYMAN PEARSON'S LEMMA		
		BIOKA57	
MONOTONE CONVERGENCE OF BINOMIAL PROBABILITIES AND A		AMS 68	
MONOTONE CONVERGENCE OF DINOMIAL PRODADILITES AND A	GENERALIZATION OF CHURCHELS & DISEBIDINATION WITH MADI		
ES FUR CERTAIN SPECIAL CASES A BIVARIATE	GENERALIZATION OF STUDENT'S T-DISTRIBUTION, WITH TABL	BIUKA54	153
	GENERALIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIO		
	GENERALIZATION OF THE BALANCED INCOMPLETE BLOCK DESIG		
	GENERALIZATION OF THE BALLOT PROBLEM AND ITS APPLICAT		
1550) TIES IN PAIRED-COMPARISON EXPERIMENTS. A	GENERALIZATION OF THE BRADLEY-TERRY MODEL (CORR. 68	JASA 67	194
CONCEPTS OF INDEPENDENCE FOR PROPORTIONS WITH A A	GENERALIZATION OF THE DIRICHLET DISTRIBUTION	JASA 69	194
ON A	GENERALIZATION OF THE FINITE ARC-SINE LAW	AMS 62	909
A	GENERALIZATION OF THE GAMMA DISTRIBUTION	AMS 62	1187
A	GENERALIZATION OF THE GAUSS-MARKOV THEOREM	JASA 66	1063
Δ	GENERALIZATION OF THE INBREEDING COEFFICIENT		
**		B100262	665
A	GENERALIZATION OF THE LOGISTIG LAW OF GROWTH	BIOCS69	665 577
CLOSED QUEUEING SYSTEMS, A	GENERALIZATION OF THE LOGISTIG LAW OF GROWTH GENERALIZATION OF THE MACHINE INTERFERENCE MODEL	BIOCS69 JRSSB61	665 577 385
CLOSED QUEUEING SYSTEMS, A EXPERIMENTS WITH MIXTURES, A	GENERALIZATION OF THE LOGISTIG LAW OF GROWTH GENERALIZATION OF THE MACHINE INTERFERENCE MODEL GENERALIZATION OF THE SIMPLEX-LATTICE DESIGN	BIOCS69 JRSSB61 JRSSB68	665 577 385 123
The state of the s	GENERALIZATION OF THE T-METHOD OF MULTIPLE	011011 00	200
TO RANDOM WALKS	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS	BIOCS69 JRSSB61 JRSSB68 JASA 69 AMS 61	200
TO RANDOM WALKS A ON HOTELLING'S	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE	AMS 61 BIOKA59	549 160
TO RANDOM WALKS ON HOTELLING'S ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS	AMS 61 BIOKA59	549 160
TO RANDOM WALKS ON HOTELLING'S ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS SOME	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL	AMS 61 BIOKA59 BIOKA56 AMS 66	549 160 361 525
TO RANDOM WALKS ON HOTELLING'S ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS SOME BIVARIATE	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF NEYMAN'S TYPE A DISTRIBUTION	AMS 61 BIOKA59 BIOKA56 AMS 66 BIOKA66	549 160 361 525 241
TO RANDOM WALKS ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS BIVARIATE A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF NEYMAN'S TYPE A DISTRIBUTION GENERALIZATIONS OF T AND F	AMS 61 BIOKA59 BIOKA56 AMS 66 BIOKA66 AMS 67	549 160 361 525 241 613
TO RANDOM WALKS ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION)	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF NEYMAN'S TYPE A DISTRIBUTION GENERALIZATIONS OF T AND F GENERALIZATIONS OF T CHEBYCHEFF'S INEQUALITIES (WITH	AMS 61 BIOKA59 BIOKA56 AMS 66 BIOKA66 AMS 67 JRSSB56	549 160 361 525 241 613 139
TO RANDOM WALKS ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION)	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF NEYMAN'S TYPE A DISTRIBUTION GENERALIZATIONS OF T AND F GENERALIZATIONS OF TCHEBYCHEFF'S INEQUALITIES (WITH GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI	AMS 61 BIOKA59 BIOKA56 AMS 66 BIOKA66 AMS 67 JRSSB56 JASA 64	549 160 361 525 241 613 139 557
TO RANDOM WALKS ON HOTELLING'S ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS SOME BIVARIATE A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS SOME	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF NEYMAN'S TYPE A DISTRIBUTION GENERALIZATIONS OF T AND F GENERALIZATIONS OF T THEBYCHEFF'S INEQUALITIES (WITH GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM	AMS 61 BIOKA59 BIOKA56 AMS 66 BIOKA66 AMS 67 JRSSB56 JASA 64 AMS 65	549 160 361 525 241 613 139 557
TO RANDOM WALKS ON HOTELLING'S ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS SOME A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF NEYMAN'S TYPE A DISTRIBUTION GENERALIZATIONS OF T AND F GENERALIZATIONS OF THEBYCHEFF'S INEQUALITIES (WITH GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN	AMS 61 BIOKA59 BIOKA56 AMS 66 BIOKA66 AMS 67 JRSSB56 JASA 64 AMS 65 AMS 67	549 160 361 525 241 613 139 557 1292 511
TO RANDOM WALKS A ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF NEYMAN'S TYPE A DISTRIBUTION GENERALIZATIONS OF TAND F GENERALIZATIONS OF THE DISTRIBUTIONS OF THE MULTIVARIANT OF PRODUCT STATI GENERALIZATIONS OF THE MAXIMAL ERCODIC THEOREM GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZED DE FINETTI'S THEOREM	AMS 61 BIOKA59 BIOKA56 AMS 66 BIOKA66 AMS 67 JRSSB56 JASA 64 AMS 65 AMS 67 AMS 62	549 160 361 525 241 613 139 557 1292 511 916
TO RANDOM WALKS ON HOTELLING'S ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS SOME A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS OME THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH PARAMETER INVARIANTS UNDER MIXING WHICH	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF NEYMAN'S TYPE A DISTRIBUTION GENERALIZATIONS OF T AND F GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZE DE FINETTI'S THEOREM GENERALIZE DE FINETTI'S THEOREM. CONTINUOUS TIMES	AMS 61 BIOKA59 BIOKA56 AMS 66 BIOKA66 AMS 67 JRSSB56 JASA 64 AMS 65 AMS 67 AMS 62 AMS 63	549 160 361 525 241 613 139 557 1292 511 916 1194
TO RANDOM WALKS ON HOTELLING'S ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS SOME BIVARIATE A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH PARAMETER INVARIANTS UNDER MIXING WHICH MATION OF STRAIGHT-LINE RELATIONS WHEN BOTH VAR/ A	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF NEYMAN'S TYPE A DISTRIBUTION GENERALIZATIONS OF T AND F GENERALIZATIONS OF THE BYCHEFF'S INEQUALITIES (WITH GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZE DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZE DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE ESTI	AMS 61 BIOKA59 BIOKA56 AMS 66 BIOKA66 AMS 67 JRSSB56 JASA 64 AMS 65 AMS 67 AMS 65 AMS 67 AMS 62 AMS 63 TECH 69	549 160 361 525 241 613 139 557 1292 511 916 1194 255
TO RANDOM WALKS ON HOTELLING'S ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS BIVARIATE A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH PARAMETER INVARIANTS UNDER MIXING WHICH MATION OF STRAIGHT-LINE RELATIONS WHEN BOTH VAR/ A TYPE	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF NEYMAN'S TYPE A DISTRIBUTION GENERALIZATIONS OF T AND F GENERALIZATIONS OF THE BYCHEFF'S INEQUALITIES (WITH GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZE DE FINETTI'S THEOREM GENERALIZE DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE ESTI GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER	AMS 61 BIOKA59 BIOKA56 AMS 66 BIOKA66 AMS 67 JRSSB56 JASA 64 AMS 65 AMS 67 AMS 62 AMS 62 AMS 63 AMS 68	549 160 361 525 241 613 139 557 1292 511 916 1194 255 1264
TO RANDOM WALKS A CON HOTELLING'S ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS SOME A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH PARAMETER INVARIANTS UNDER MIXING WHICH MATION OF STRAIGHT-LINE RELATIONS WHEN BOTH VAR/ A TYPE GEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF TAND F GENERALIZATIONS OF TAND F GENERALIZATIONS OF THE BYTHE TOTAL GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZE DE FINETTI'S THEOREM GENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE ESTI GENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE ESTI GENERALIZED AS STATISTIC AND F STATISTICS AND IN MULTI	AMS 61 BIOKA59 BIOKA56 AMS 66 BIOKA66 AMS 67 JRSSB56 JASA 64 AMS 65 AMS 67 AMS 62 AMS 63 TECH 69 AMS 68 AMS 67	549 160 361 525 241 613 139 557 1292 511 916 1194 255 1264 1152
TO RANDOM WALKS ON HOTELLING'S ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS SOME BIVARIATE A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH PARAMETER INVARIANTS UNDER MIXING WHICH MATION OF STRAIGHT-LINE RELATIONS WHEN BOTH VAR/ A TYPE GEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE ASYMPTOTIC DISTRIBUTION FOR A	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF TAND F GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZE DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE ESTI GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED B STATISTIC AND F STATISTICS AND IN MULTI GENERALIZED BANACH MATCH BOX PROBLEM	AMS 61 BIOKA59 BIOKA56 AMS 66 BIOKA66 AMS 67 JRSSB56 AMS 65 AMS 65 AMS 65 AMS 65 AMS 62 AMS 63 TECH 69 AMS 68	549 160 361 525 241 613 139 557 1292 511 916 1194 255 1264 1152 1252
TO RANDOM WALKS A CON HOTELLING'S ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS SOME A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH PARAMETER INVARIANTS UNDER MIXING WHICH MATION OF STRAIGHT-LINE RELATIONS WHEN BOTH VAR/ A TYPE GEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF TAND F GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZED DE FINETTI'S THEOREM GENERALIZED DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED B STATISTIC AND F STATISTICS AND IN MULTI GENERALIZED B STATISTIC AND F STATISTICS AND IN MULTI GENERALIZED BANACH MATCH BOX PROBLEM GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY	AMS 61 BIOKA59 BIOKA56 AMS 66 BIOKA66 AMS 67 JASSA 64 AMS 65 AMS 67 AMS 62 AMS 68 AMS 68 AMS 67 AMS 67 AMS 67	549 160 361 525 241 613 139 557 1292 511 916 1194 255 1264 1152 1252 818
TO RANDOM WALKS ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH PARAMETER INVARIANTS UNDER MIXING WHICH MATION OF STRAIGHT-LINE RELATIONS WHEN BOTH VAR/ A TYPE GEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE ASYMPTOTIC DISTRIBUTION FOR A AND THE EXPONENTIAL FAMILY	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF TAND F GENERALIZATIONS OF TAND F GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MAXIMAL ERCODIC THEOREM GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZE DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED B STATISTIC AND F STATISTICS AND IN MULTI GENERALIZED B STATISTIC AND F STATISTICS AND IN MULTI GENERALIZED BANACH MATCH BOX PROBLEM GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS	AMS 61 BIOKA56 BIOKA56 AMS 66 BIOKA66 AMS 67 JASA 64 AMS 65 AMS 62 AMS 63 TECH 68 AMS 67 JASA 67 AMS 67 AMS 67 AMS 67 AMS 67 AMS 67	549 160 361 525 241 613 139 557 1292 511 916 1194 255 1264 1152 1252 1252 818 751
TO RANDOM WALKS ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH PARAMETER INVARIANTS UNDER MIXING WHICH MATION OF STRAIGHT-LINE RELATIONS WHEN BOTH VAR/ A TYPE GEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE ASYMPTOTIC DISTRIBUTION FOR A AND THE EXPONENTIAL FAMILY TOWARDS A THEORY OF	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF TAND F GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZE DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE ESTI GENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE ESTI GENERALIZED B STATISTIC AND F STATISTICS AND IN MULTI GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS	AMS 61 BIOKA59 BIOKA56 AMS 66 BIOKA66 JASA 64 AMS 65 JASA 64 AMS 62 AMS 67 AMS 63 TECH 69 AMS 67 AMS 67 AMS 67 AMS 63	549 160 361 525 241 613 139 557 1292 511 916 1194 255 1264 1152 1252 818 751
TO RANDOM WALKS ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS A COUNTER—EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH MATION OF STRAIGHT—LINE RELATIONS WHEN BOTH VAR/ A TYPE GEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE ASYMPTOTIC DISTRIBUTION FOR A AND THE EXPONENTIAL FAMILY TOWARDS A THEORY OF THREE VARIATES ON HOTELLING'S ADMENDATION TO THE BIVARIATES APPROXIMATION TO THE	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF THE DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MILTIVARIATE TOTSTRIBUTION AN GENERALIZATIONS OF THE MULTIVARIATE TOTSTRIBUTION AN GENERALIZATIONS OF THE MULTIVARIATE TOTSTRIBUTION AN GENERALIZED DE FINETTI'S THEOREM GENERALIZED DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED BAYENTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED BAYENTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED BAYEN TOTSTRIBUTIONS, ADMISSIBILITY GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BAYES TESTS GENERALIZED BAYES TESTS GENERALIZED BEHENS-FISHER DISTRIBUTION INVOLVING	AMS 61 BIOKA59 BIOKA66 AMS 66 BIOKA66 AMS 67 JRSSB56 AMS 65 AMS 65 AMS 67 AMS 63 TECH 69 AMS 68 AMS 67 JASA 67 AMS 68 AMS 66 AMS 68 AMS 66 AMS	549 160 361 525 241 613 139 557 1292 511 916 1194 255 1264 1152 1252 818 751 1
TO RANDOM WALKS ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS SOME BIVARIATE A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH PARAMETER INVARIANTS UNDER MIXING WHICH ANTION OF STRAIGHT-LINE RELATIONS WHEN BOTH VAR/ A TYPE GEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE ASYMPTOTIC DISTRIBUTION FOR A AND THE EXPONENTIAL FAMILY TOWARDS A THEORY OF THREE VARIATES APPROXIMATION TO THE USE OF THE WILCOXON STATISTIC FOR A	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF TAND F GENERALIZATIONS OF TAND F GENERALIZATIONS OF THE DISTRIBUTIONS OF THE DISTRIBUTIONS OF THE MULTIVARIATE TO SCHERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZE DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED B STATISTIC AND F STATISTICS AND IN MULTI GENERALIZED B STATISTIC AND F STATISTICS AND IN MULTI GENERALIZED BANACH MATCH BOX PROBLEM GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BAYES TESTS GENERALIZED BAYES TESTS GENERALIZED BAYES TESTS GENERALIZED BEHRENS-FISHER DISTRIBUTION INVOLVING GENERALIZED BEHRENS-FISHER DISTRIBUTION INVOLVING GENERALIZED BEHRENS-FISHER DISTRIBUTION INVOLVING	AMS 61 BIOKA59 BIOKA56 AMS 66 BIOKA66 AMS 67 JASA 64 AMS 65 AMS 67 AMS 63 TECH 69 AMS 67 JASA 67 AMS 67 AMS 67 AMS 68 BIOKA69 AMS 63	549 160 361 525 241 613 139 557 1292 511 916 255 1194 255 1264 1152 1252 1252 1252 110 130 130 130 130 130 130 130 130 130
TO RANDOM WALKS A CON HOTELLING'S ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS SOME BIVARIATE A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH MATION OF STRAIGHT-LINE RELATIONS WHEN BOTH VAR/ A TYPE GEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE ASYMPTOTIC DISTRIBUTION FOR A AND THE EXPONENTIAL FAMILY TOWARDS A THEORY OF APPROXIMATION TO THE USE OF THE WILCOXON STATISTIC FOR A UPPER PERCENTAGE POINTS OF THE	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF TAND F GENERALIZATIONS OF TAND F GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZED DE FINETTI'S THEOREM GENERALIZED DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE ESTI GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED BANACH MATCH BOX PROBLEM GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BHRENS-FISHER DISTRIBUTION INVOLVING GENERALIZED BHRENS-FISHER DISTRIBUTION INVOLVING GENERALIZED BHRENS-FISHER PROBLEM GENERALIZED BEHRENS-FISHER PROBLEM	AMS 61 BIOKA59 BIOKA56 AMS 66 BIOKA66 JASA 64 AMS 65 JASA 64 AMS 67 AMS 62 AMS 63 TECH 69 AMS 63 TECH 69 AMS 63 AMS 67 AMS 67 AMS 67 AMS 68 BIOKA69 AMS 68 BIOKA69	549 160 361 525 241 613 139 557 1292 511 916 1194 255 1264 1152 1252 1252 1252 1252 1252 1252 125
TO RANDOM WALKS ON HOTELLING'S ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS SOME BIVARIATE A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH PARAMETER INVARIANTS UNDER MIXING WHICH MATION OF STRAIGHT-LINE RELATIONS WHEN BOTH VAR/ A TYPE GEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE ASYMPTOTIC DISTRIBUTION FOR A AND THE EXPONENTIAL FAMILY TOWARDS A THEORY OF APPROXIMATION TO THE USE OF THE WILCOXON STATISTIC FOR A UPPER PERCENTAGE POINTS OF THE UPPER PERCENTAGE POINTS OF THE	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF TAND F GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZED DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE ESTI GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED BAYEN DECISION FUNCTIONS, ADMISSIBILITY GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BAYES TESTS GENERALIZED BHRENS-FISHER DISTRIBUTION INVOLVING GENERALIZED BEHRENS-FISHER DISTRIBUTION INVOLVING GENERALIZED BEHRENS-FISHER PROBLEM GENERALIZED BETA DISTRIBUTION. II	AMS 61 BIOKA56 AMS 66 BIOKA66 AMS 67 JASSA 64 AMS 65 JASSA 64 AMS 65 AMS 67 AMS 62 AMS 67 JASA 67 JASA 67 AMS 68 AMS 68 BIOKA69 AMS 68 BIOKA69 AMS 68	549 160 361 525 241 613 139 557 1292 511 916 1194 255 1264 1152 1252 818 751 1 NO.3 1596 237 441
TO RANDOM WALKS ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH PARAMETER INVARIANTS UNDER MIXING WHICH TYPE GEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE ASYMPTOTIC DISTRIBUTION FOR A AND THE EXPONENTIAL FAMILY TOWARDS A THEORY OF APPROXIMATION TO THE USE OF THE WILCOXON STATISTIC FOR A UPPER PERCENTAGE POINTS OF THE	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF TAND F GENERALIZATIONS OF THE MEDISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MAXIMAL ERCODIC THEOREM GENERALIZATIONS OF THE MAXIMAL ERCODIC THEOREM GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZED DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED BATALISTIC AND F STATISTICS AND IN MULTI GENERALIZED BATALISTIC AND F STATISTICS AND IN MULTI GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BAYES TESTS GENERALIZED BHRENS-FISHER DISTRIBUTION INVOLVING GENERALIZED BEHRENS-FISHER PROBLEM GENERALIZED BEHRENS-FISHER PROBLEM GENERALIZED BEHRENS-FISHER PROBLEM GENERALIZED BETA DISTRIBUTION. II GENERALIZED BETA DISTRIBUTION. II	AMS 61 BIOKA56 AMS 66 BIOKA66 AMS 67 JASA 64 AMS 67 AMS 67 AMS 66 AMS 67 AMS 63 TECH 69 AMS 67 AMS 67 AMS 67 AMS 63 TECH 69 AMS 63 BIOKA69 AMS 63 AMS 63 BIOKA69 AMS 63 AMS 65 AMS 65 AMS 65 AMS 67 AMS 63 AMS 67 AMS 63 AMS 65 AMS 65 AMS 67 AMS 63 AMS 67 AMS 66 AMS 63 AMS 65 AMS 65 AMS 66 AMS 66 AMS 67 AMS 66 AMS 67 AMS 66 AMS 67 AMS 68 BIOKA69 AMS 63 BIOKA69 AMS 63	549 160 361 525 241 613 139 557 1292 511 9194 255 1264 1152 818 751 10.3 1596 237 441 492
TO RANDOM WALKS ON HOTELLING'S ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH PARAMETER INVARIANTS UNDER MIXING WHICH MATION OF STRAIGHT-LINE RELATIONS WHEN BOTH VAR/ A TYPE GEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE ASYMPTOTIC DISTRIBUTION FOR A AND THE EXPONENTIAL FAMILY TOWARDS A THEORY OF APPROXIMATION TO THE USE OF THE WILCOXON STATISTIC FOR A UPPER PERCENTAGE POINTS OF THE TE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF TAND F GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZED DE FINETTI'S THEOREM GENERALIZED DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE ESTI GENERALIZED APPROTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED BANACH MATCH BOX PROBLEM GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BHRENS-FISHER DISTRIBUTION INVOLVING GENERALIZED BEHRENS-FISHER DISTRIBUTION INVOLVING GENERALIZED BEHRENS-FISHER PROBLEM GENERALIZED BETA DISTRIBUTION. II GENERALIZED BETA DISTRIBUTION. II GENERALIZED BETA DISTRIBUTION. III GENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING	AMS 61 BIOKA59 BIOKA56 AMS 66 BIOKA66 JASA 64 AMS 65 JASA 64 AMS 65 AMS 63 TECH 68 AMS 67 JASA 67 AMS 63 AMS 67 JASA 67 AMS 68 BIOKA68 BIOKA63 BIOKA67 EIOKA67 EIOKA67 BJASA 63	1549 160 361 525 241 613 139 557 1292 511 916 1194 255 818 751 1 NO.3 1596 237 441 492 161
TO RANDOM WALKS ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH PARAMETER INVARIANTS UNDER MIXING WHICH MATION OF STRAIGHT-LINE RELATIONS WHEN BOTH VAR/ A TYPE GEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE ASYMPTOTIC DISTRIBUTION FOR A AND THE EXPONENTIAL FAMILY TOWARDS A THEORY OF APPROXIMATION TO THE USE OF THE WILCOXON STATISTIC FOR A UPPER PERCENTAGE POINTS OF THE UPPER PERCENTAGE POINTS OF THE UPPER PERCENTAGE POINTS OF THE TE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF THREE-EQUATION/ ON THE EXACT DISTRIBUTIONS OF THE	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF TAND F GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZED DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE ESTI GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED BAYENTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BHRENS-FISHER DISTRIBUTION INVOLVING GENERALIZED BEHRENS-FISHER DISTRIBUTION INVOLVING GENERALIZED BEHRENS-FISHER PROBLEM GENERALIZED BETA DISTRIBUTION. II GENERALIZED BETA DISTRIBUTION. III GENERALIZED BETA DISTRIBUTION. III GENERALIZED BETA DISTRIBUTION. III GENERALIZED BETA DISTRIBUTION. III GENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING GENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING	AMS 61 BIOKA59 BIOKA56 AMS 66 BIOKA66 JASA 64 AMS 65 JASA 64 AMS 62 AMS 63 TECH 69 AMS 67 JASA 67 JASA 67 AMS 62 AMS 67 JASA 67 JASA 68 BIOKA69 AMS 68 BIOKA69 AMS 63 AMS 63 AMS 63 AMS 63 AMS 64 AMS 63 AMS 64 AMS 63 AMS 66 AMS 63 AMS 68 BIOKA69 AMS 63 AMS 63 AMS 63 AMS 68	549 160 361 525 241 613 139 557 1292 511 916 1194 255 1252 818 751 1 NO.3 1596 237 441 492 161 881
TO RANDOM WALKS ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS A COUNTER—EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH MATION OF STRAIGHT—LINE RELATIONS WHEN BOTH VAR/ A TYPE GEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE ASYMPTOTIC DISTRIBUTION FOR A AND THE EXPONENTIAL FAMILY TOWARDS A THEORY OF APPROXIMATION TO THE UPPER PERCENTAGE POINTS OF THE UPPER PERCENTAGE POINTS OF THE UPPER PERCENTAGE POINTS OF THE TE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF THREE-EQUATION/ ON THE EXACT DISTRIBUTION FUNCTIONS OF	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF NEYMAN'S TYPE A DISTRIBUTION GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZED DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE ESTI GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED BAYENTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED BAYEN DECISION FUNCTIONS, ADMISSIBILITY GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BAYES TESTS GENERALIZED BEHRENS-FISHER DISTRIBUTION INVOLVING GENERALIZED BEHRENS-FISHER PROBLEM GENERALIZED BETA DISTRIBUTION. I GENERALIZED BETA DISTRIBUTION. II GENERALIZED BETA DISTRIBUTION. III GENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING	AMS 61 BIOKA59 BIOKA66 AMS 66 BIOKA66 AMS 67 JASSB 64 AMS 65 AMS 62 AMS 63 TECH 69 AMS 67 JASA 67 JASA 67 AMS 68 BIOKA69 AMS 63 BIOKA69 AMS 63 BIOKA69 AMS 63 BIOKA67 BIOKA57 BIOKA58	549 160 361 525 241 613 139 557 1292 511 916 1194 255 1264 1152 1252 818 751 1 NO . 3 1596 237 441 492 161 881 943
TO RANDOM WALKS ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH PARAMETER INVARIANTS UNDER MIXING WHICH MATION OF STRAIGHT-LINE RELATIONS WHEN BOTH VAR/ A TYPE GEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE ASYMPTOTIC DISTRIBUTION FOR A AND THE EXPONENTIAL FAMILY TOWARDS A THEORY OF APPROXIMATION TO THE UPPER PERCENTAGE POINTS OF THE UPPER PERCENTAGE POINTS OF THE UPPER PERCENTAGE POINTS OF THE TE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF THERE—EQUATION/ ON THE EXACT DISTRIBUTION FOR THE ION OF EXACT FINITE SAMPLE PREQUENCY FUNCTIONS OF TE ON THE EXACT FINITE SAMPLE PREQUENCY FUNCTIONS OF	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF TAND F GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MAXIMAL ERCODIC THEOREM GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZED DE FINETTI'S THEOREM. GENERALIZED DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED BANACH MATCH BOX PROBLEM GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BAYES TESTS GENERALIZED BEHRENS-FISHER DISTRIBUTION INVOLVING GENERALIZED BEHRENS-FISHER DISTRIBUTION IN GENERALIZED BETA DISTRIBUTION. II GENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING GENERALIZED CLASSICAL LINEAR ESTIMATORS IN TWO LEADIN	AMS 61 BIOKA59 BIOKA56 AMS 66 BIOKA66 AMS 65 JASA 64 AMS 65 AMS 65 AMS 63 TECH 69 AMS 67 JASA 67 AMS 63 AMS 63 AMS 63 BIOKA69 BIOKA69 BIOKA69 BIOKA69 JASA 63 JASA 63 JASA 63 JASA 63 JASA 63	549 160 361 525 241 613 557 1292 511 916 1194 255 1252 1252 1252 818 751 1 NO .3 1596 237 441 492 161 884 619
TO RANDOM WALKS ON HOTELLING'S ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS SOME BIVARIATE A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH MATION OF STRAIGHT-LINE RELATIONS WHEN BOTH VAR/ A TYPE GEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE ASYMPTOTIC DISTRIBUTION FOR A AND THE EXPONENTIAL FAMILY TOWARDS A THEORY OF APPROXIMATION TO THE USE OF THE WILCOXON STATISTIC FOR A UPPER PERCENTAGE POINTS OF THE UPPER PERCENTAGE POINTS O	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF TAND F GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZED DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE ESTI GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED BANACH MATCH BOX PROBLEM GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BAYES TESTS GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BEHRENS-FISHER DISTRIBUTION INVOLVING GENERALIZED BEHRENS-FISHER DISTRIBUTION IN GENERALIZED BETA DISTRIBUTION. I GENERALIZED BETA DISTRIBUTION. II GENERALIZED BETA DISTRIBUTION. II GENERALIZED BETA DISTRIBUTION. II GENERALIZED BETA DISTRIBUTION. II GENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING GENERALIZED CLASSICAL LINEAR ESTIMATORS IN TWO LEADIN GENERALIZED CLASSICAL LINEAR ESTIMATORS IN TWO LEADIN	AMS 61 BIOKA59 BIOKA56 AMS 66 BIOKA66 JASA 64 AMS 65 JASA 64 AMS 65 AMS 67 AMS 63 TECH 69 AMS 63 AMS 67 AMS 67 AMS 67 AMS 68 BIOKA69 AMS 68 BIOKA69 AMS 68 BIOKA69 AMS 63 JASA 64 JASA 64 JASA 64 JASA 64 JASA 64 JASA 64	1549 160 361 525 241 613 557 1292 511 916 1194 2555 1264 1152 1252 818 751 1 NO.3 1596 441 492 161 881 943 619 535
TO RANDOM WALKS ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH MATION OF STRAIGHT-LINE RELATIONS WHEN BOTH VAR/ A TYPE GEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE ASYMPTOTIC DISTRIBUTION FOR A AND THE EXPONENTIAL FAMILY TOWARDS A THEORY OF APPROXIMATION TO THE USE OF THE WILCOXOM STATISTIC FOR A UPPER PERCENTAGE POINTS OF THE UPPER PERCENTAGE POINTS OF THE UPPER PERCENTAGE POINTS OF THE TE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF THE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF THE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF TE ON THE EXACT FINITE SAMPLE DISTRIBUTIONS OF THE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF TO OVER 1/2 A NOTE ON THE EXACT DISTRIBUTIONS OF THE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF TO OVER 1/2 A NOTE ON THE EXACT DISTRIBUTIONS OF THE ON THE EXACT FINITE SAMPLE DISTRIBUTIONS OF	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF TAND F GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE BUSTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZED DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE ESTI GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED BAYEN DECISION FUNCTIONS, ADMISSIBILITY GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BEHRENS-FISHER PROBLEM GENERALIZED BEHRENS-FISHER PROBLEM GENERALIZED BETA DISTRIBUTION. I GENERALIZED BETA DISTRIBUTION. II GENERALIZED BETA DISTRIBUTION. II GENERALIZED BETA DISTRIBUTION. II GENERALIZED BETA DISTRIBUTION. II GENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING GENERALIZED CLASSICAL LINEAR ESTIMATORS IN TWO LEADIN	AMS 61 BIOKA56 AMS 66 BIOKA66 AMS 67 JASA 64 AMS 65 JASA 64 AMS 65 AMS 67 AMS 62 AMS 67 JASA 67 AMS 68 AMS 67 JASA 67 AMS 68 BIOKA69 AMS 68 BIOKA69 AMS 63 JASA 63 JASA 63 JASA 63 JASA 63 JASA 63 JASA 63 JASA 63 JASA 63	549 160 361 525 241 613 139 557 1292 511 916 1194 255 1264 1152 1252 818 751 1 NO .3 1596 237 441 492 161 881 943 619 943 650
TO RANDOM WALKS ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS BIVARIATE A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH PARAMETER INVARIANTS UNDER MIXING WHICH MATION OF STRAIGHT-LINE RELATIONS WHEN BOTH VAR/ A TYPE GEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE ASYMPTOTIC DISTRIBUTION FOR A AND THE EXPONENTIAL FAMILY TOWARDS A THEORY OF THREE VARIATES APPROXIMATION TO THE UPPER PERCENTAGE POINTS OF THE TO N THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF THREE-EQUATION/ ON THE EXACT DISTRIBUTION FUNCTIONS OF THE ON THE EXACT FINITE SAMPLE PREQUENCY FUNCTIONS OF TE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF TE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF THE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF THE ON THE EXACT FINITE SAMPLE DISTRIBUTIONS OF THE TISTICS ON FINITE SAMPLE DISTRIBUTIONS OF THE TISTICS ON FINITE SAMPLE DISTRIBUTIONS OF THE ASYMPTOTIC EFFICIENCY OF DANIELS'S	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF TAND F GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZED DE FINETTI'S THEOREM. GENERALIZED DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED B STATISTIC AND F STATISTICS AND IN MULTI GENERALIZED BANACH MATCH BOX PROBLEM GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BAYES TESTS GENERALIZED BEHRENS-FISHER DISTRIBUTION INVOLVING GENERALIZED BEHRENS-FISHER DISTRIBUTION PROBLEMS GENERALIZED BETA DISTRIBUTION. II GENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING GENERALIZED CLASSICAL LINEAR ESTIMATORS IN ECONOMETRI GENERALIZED CLASSICAL LINEAR ESTIMATORS IN TWO LEADIN	AMS 61 BIOKA56 BIOKA56 AMS 66 BIOKA66 JASA 64 AMS 65 JASA 64 AMS 65 AMS 67 JASA 67 AMS 63 AMS 67 JASA 67 AMS 63 AMS 63 AMS 63 AMS 63 AMS 63 AMS 63 AMS 63 AMS 63 JASA 64 JASA 63 JASA 63 JASA 63 JASA 63 JASA 63 JASA 64 JASA 63 JASA 64 JASA 61 JASA 63 JASA 61 JASA 60 BIOKA69	549 160 361 525 241 613 557 1292 511 916 1194 255 1252 1252 1252 818 751 1 NO .3 1596 237 441 492 161 881 881 894 619 535 649
TO RANDOM WALKS ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH MATION OF STRAIGHT-LINE RELATIONS WHEN BOTH VAR/ A TYPE GEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE ASYMPTOTIC DISTRIBUTION FOR A AND THE EXPONENTIAL FAMILY TOWARDS A THEORY OF APPROXIMATION TO THE USE OF THE WILCOXOM STATISTIC FOR A UPPER PERCENTAGE POINTS OF THE UPPER PERCENTAGE POINTS OF THE UPPER PERCENTAGE POINTS OF THE TE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF THE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF THE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF TE ON THE EXACT FINITE SAMPLE DISTRIBUTIONS OF THE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF TO OVER 1/2 A NOTE ON THE EXACT DISTRIBUTIONS OF THE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF TO OVER 1/2 A NOTE ON THE EXACT DISTRIBUTIONS OF THE ON THE EXACT FINITE SAMPLE DISTRIBUTIONS OF	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF TAND F GENERALIZATIONS OF TAND F GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZED DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE ESTI GENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE ESTI GENERALIZED BAPPOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED BANACH MATCH BOX PROBLEM GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BEHRENS-FISHER DISTRIBUTION INVOLVING GENERALIZED BEHRENS-FISHER DISTRIBUTION INVOLVING GENERALIZED BEHRENS-FISHER PROBLEM GENERALIZED BETA DISTRIBUTION. II GENERALIZED BETA DISTRIBUTION. II GENERALIZED BETA DISTRIBUTION. II GENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING GENERALIZED CLASSICAL LINEAR ESTIMATORS IN TWO LEADIN	AMS 61 BIOKA56 BIOKA56 AMS 66 BIOKA66 JASA 64 AMS 65 JASA 64 AMS 62 AMS 62 AMS 63 TECH 69 AMS 67 JASA 67 AMS 63 AMS 68 BIOKA63 BIOKA67	1549 160 361 525 241 613 557 1292 511 916 1194 255 818 751 1 NO.3 441 492 161 881 943 619 535 650 499 128
TO RANDOM WALKS ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS BIVARIATE A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH PARAMETER INVARIANTS UNDER MIXING WHICH MATION OF STRAIGHT-LINE RELATIONS WHEN BOTH VAR/ A TYPE GEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE ASYMPTOTIC DISTRIBUTION FOR A AND THE EXPONENTIAL FAMILY TOWARDS A THEORY OF THREE VARIATES APPROXIMATION TO THE UPPER PERCENTAGE POINTS OF THE TO N THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF THREE-EQUATION/ ON THE EXACT DISTRIBUTION FUNCTIONS OF THE ON THE EXACT FINITE SAMPLE PREQUENCY FUNCTIONS OF TE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF TE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF THE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF THE ON THE EXACT FINITE SAMPLE DISTRIBUTIONS OF THE TISTICS ON FINITE SAMPLE DISTRIBUTIONS OF THE TISTICS ON FINITE SAMPLE DISTRIBUTIONS OF THE ASYMPTOTIC EFFICIENCY OF DANIELS'S	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF TAND F GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZED DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE ESTI GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED BAYENTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BEHRENS-FISHER DISTRIBUTION INVOLVING GENERALIZED BEHRENS-FISHER DISTRIBUTION INVOLVING GENERALIZED BEHRENS-FISHER PROBLEM GENERALIZED BETA DISTRIBUTION. II GENERALIZED BETA DISTRIBUTION. II GENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING GENERALIZED CLASSICAL LINEAR ESTIMATORS IN TWO LEADIN	AMS 61 BIOKA59 BIOKA56 AMS 66 BIOKA66 JASA 64 AMS 65 JASA 64 AMS 62 AMS 63 TECH 69 AMS 63 TECH 69 AMS 63 AMS 67 JASA 67 JASA 67 JASA 67 JASA 68 BIOKA69 AMS 63 JASA 64 JASA 63 JASA 63 JASA 64 JASA 63 JASA 64 JASA 63 JASA 64 JASA 63 JASA 64 JASA 63 JASA 64 JASA 63 JASA 64 JASA 64 JASA 63 JASA 64 JASA 64 JASA 64 JASA 63 JASA 64 JASA 63 JASA 64 JASA 64 JASA 64 JASA 65 JASA 66 JASA 66	160 361 525 241 613 139 557 1292 511 916 1194 255 1252 818 751 10.3 1596 1492 161 881 943 619 943 619 650 499 128 96
TO RANDOM WALKS ON HOTELLING'S ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS SOME BIVARIATE A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH PARAMETER INVARIANTS UNDER MIXING WHICH MATION OF STRAIGHT-LINE RELATIONS WHEN BOTH VAR/ A TYPE GEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE ASYMPTOTIC DISTRIBUTION FOR A AND THE EXPONENTIAL FAMILY TOWARDS A THEORY OF APPROXIMATION TO THE UPPER PERCENTAGE POINTS OF THE UPPER PERCENTAGE UPPER PERCENTAGE OF THE ASYMPTOTIC EFFICIENCY OF DANIELS'S THE ASYMPTOTIC EFFICIENCY OF DANIELS'S THE ASYMPTOTIC EFFICIENCY OF D	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF AND THE METALIZATIONS OF THE METALIZATIONS OF THE METALIZATIONS OF THE DISTRIBUTION OF THE GENERALIZATIONS OF THE MALTINES (WITH GENERALIZATIONS OF THE MALTINES THEOREM GENERALIZATIONS OF THE MALLITARIATE THEOREM GENERALIZATIONS OF THE MULTIVARIATE THEOREM GENERALIZATIONS OF THE MULTIVARIATE THEOREM GENERALIZED BE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED BANACH MATCH BOX PROBLEM GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BHRENS-FISHER DISTRIBUTION INVOLVING GENERALIZED BEHRENS-FISHER DISTRIBUTION INVOLVING GENERALIZED BETA DISTRIBUTION. II GENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING GENERALIZED CLASSICAL LINEAR ESTIMATORS IN CONOMETRI GENERALIZED CLASSICAL LINEAR ESTIMATORS IN TWO LEADING GENERALIZED CORRELATION COEFFICIENT GENERALIZED CORRELATION COEFFICIENT GENERALIZED CORRELATION COEFFICIENTS GENERALIZED DISTRIBUTIONS	AMS 61 BIOKA56 AMS 66 AMS 67 JASA 64 AMS 67 AMS 67 AMS 67 AMS 67 AMS 63 TECH 69 AMS 67 AMS 67 AMS 67 AMS 68 AMS 67 AMS 63 AMS 68 BIOKA69 AMS 63 AMS 63 JASA 63 JASA 63 JASA 64 JASA 63 JASA 64 JASA 63 JASA 66 BIOKA63 JASA 61 JASA 63 JASA 63 JASA 63 JASA 64 JASA 63 JASA 64 JASA 65 JASA 65 BIOKA63 BIOKA6	549 160 361 525 241 613 557 1292 511 916 1194 255 1252 1252 1252 1252 141 10 31 492 161 821 821 821 821 821 822 837 842 843 843 843 844 845 845 845 845 845 845 845 845 845
TO RANDOM WALKS ON HOTELLING'S ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS SOME BIVARIATE A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH PARAMETER INVARIANTS UNDER MIXING WHICH MATION OF STRAIGHT-LINE RELATIONS WHEN BOTH VAR/ A TYPE GEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE ASYMPTOTIC DISTRIBUTION FOR A AND THE EXPONENTIAL FAMILY TOWARDS A THEORY OF APPROXIMATION TO THE USE OF THE WILCOXON STATISTIC FOR A UPPER PERCENTAGE POINTS OF THE UPPER PERCENTAGE OF THE ASYMPTOTIC EFFICIENCY OF DANIELS'S GROWTH-INVARIANT DISCRIMINANT FUNCTIONS AND SOME INTERRELATIONS AMONG COMPOUND AND INTERRELATIONS AMONG	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF TAND F GENERALIZATIONS OF TAND F GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZED DE FINETTI'S THEOREM. GENERALIZED DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE ESTI GENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE ESTI GENERALIZED BAPPOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BEHRENS-FISHER DISTRIBUTION INVOLVING GENERALIZED BEHRENS-FISHER DISTRIBUTION INVOLVING GENERALIZED BEHRENS-FISHER PROBLEM GENERALIZED BETA DISTRIBUTION. II GENERALIZED BETA DISTRIBUTION. II GENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING GENERALIZED CLASSICAL LINEAR ESTIMATORS IN TWO LEADIN GENERALIZED CLASSICAL LINEAR	AMS 61 BIOKA59 BIOKA56 AMS 66 BIOKA66 JASA 64 AMS 65 JASA 64 AMS 65 AMS 63 TECH 69 AMS 63 TECH 69 AMS 63 AMS 67 JASA 67 AMS 68 BIOKA67 BIOKA57 BIOKA57 BIOKA57 BIOKA57 BIOKA57 BIOKA57 BIOKA63 JASA 63 JASA 64 JASA 63 JASA 64 JASA 63 JASA 63 JASA 64 JASA 65 JASA 65	549 160 361 525 241 613 557 1292 511 916 1194 255 818 751 1 NO.3 441 492 537 441 492 535 650 649 128 965 444
TO RANDOM WALKS ON HOTELLING'S ATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC ICATIONS TO STATISTICAL DESIGNS SOME BIVARIATE A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE DISCUSSION) STICS ARISING FROM RECTANGULAR POPULATIONS D THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE INVARIANTS UNDER MIXING WHICH PARAMETER INVARIANTS UNDER MIXING WHICH MATION OF STRAIGHT-LINE RELATIONS WHEN BOTH VAR/ A TYPE GEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE ASYMPTOTIC DISTRIBUTION FOR A AND THE EXPONENTIAL FAMILY TOWARDS A THEORY OF APPROXIMATION TO THE USE OF THE WILCOXON STATISTIC FOR A UPPER PERCENTAGE POINTS OF THE UPPER PERCENTAGE OF THE ASYMPTOTIC EFFICIENCY OF DANIELS'S GROWTH-INVARIANT DISCRIMINANT FUNCTIONS AND SOME INTERRELATIONS AMONG COMPOUND AND INTERRELATIONS AMONG	GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS GENERALIZATION T-SQUARE GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARI GENERALIZATIONS OF INSTINCT REPRESENTATIVES WITH APPL GENERALIZATIONS OF TAND F GENERALIZATIONS OF TAND F GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATI GENERALIZATIONS OF THE MAXIMAL ERCODIC THEOREM GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AN GENERALIZED DE FINETTI'S THEOREM. CONTINUOUS TIMES GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED BAYENTOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED BAYEN TOTIC EXPANSIONS OF CORNISH-FISHER GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS GENERALIZED BETA DISTRIBUTION. I GENERALIZED BETA DISTRIBUTION. II GENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING GENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING GENERALIZED CLASSICAL LINEAR ESTIMATORS IN TWO LEADIN	AMS 61 BIOKA59 BIOKA56 AMS 66 BIOKA66 JASA 64 AMS 65 JASA 64 AMS 65 AMS 63 TECH 69 AMS 63 TECH 69 AMS 63 AMS 67 JASA 67 AMS 68 BIOKA67 BIOKA57 BIOKA57 BIOKA57 BIOKA57 BIOKA57 BIOKA57 BIOKA63 JASA 63 JASA 64 JASA 63 JASA 64 JASA 63 JASA 63 JASA 64 JASA 65 JASA 65	549 160 361 525 241 613 557 1292 511 916 1194 255 818 751 1 NO.3 441 492 537 441 492 535 650 649 128 965 444

AN APPLIGATION OF A GENE			AMS 64	
TOLERANGE LIMITS FOR THE GENE			JASA 65	
PARAMETER ESTIMATION FOR A GENE			TEGH 65	
OD ESTIMATION OF THE PARAMETERS OF A FOUR- PARAMETER GENE				
/ EXACT DISTRIBUTION OF THE PRODUCT OF INDEPENDENT GENE	NERALIZED	GAMMA VARIABLES WITH THE SAME SHAPE PARAM	AMS 6B	1751
GENE	NERALIZED 1	HYPERBOLIG SEGANT DISTRIBUTIONS	JASA 68	329
GENE	NERALIZED I	HYPERGEOMETRIG DISTRIBUTIONS	JRSSB56	202
GENE GENE SINGULARITY IN HOTELLING'S WEIGHING DESIGNS AND A GENE DDITIONAL RESULTS GONGERNING ESTIMABLE FUNGTIONS AND GENE	NERALIZED	INVERSE (CORR. 69 719)	AMS 66	1021
DDITIONAL RESULTS GONGERNING ESTIMABLE FUNGTIONS AND GENE	NERALIZED :	INVERSE MATRICES A	JRSSB65	486
PROBLEMS IN MATHEMATICAL STATISTICS A NOTE ON A GENE	NERALIZED	INVERSE OF A MATRIX WITH APPLICATIONS TO	JRSSB62	152
		INVERSES IN THE LINEAR HYPOTHESIS NOT OF		
			BIOKA54	
FOR A GOMBINATORIAL METHOD FOR MULTIPLE PRODUCTS OF GENE	VERALIZED I	K-STATISTICS SOME BULES	AMS 6B	983
FRAGTIONAL REPLIGATION DESIGNS GENE AL RELATIONSHIPS (WITH DISCUSSION) A GENE	JEDALIZED	LEAST SQUARES ESTIMATORS FOR RANDOMIZED	IDCCDCC	270
F PARAMETERS IN RANDOMIZED FRAGTIONAL FAGTORIAL E/ GENE	MERALIZED .	LEAST SQUARES AFFROAGH TO LINEAR FUNGITON	JASSD60	2744
BEST LINEAR UNBIASED PREDIGTION IN THE GENE SOME DISTRIBUTIONS ARISING IN THE STUDY OF GENE	NEKALIZED .	LINEAR REGRESSION MODEL	JASA 62	369
SOME DISTRIBUTIONS ARISING IN THE STUDY OF GENE	NERALIZED I	MEAN DIFFERENGES MEAN DIFFERENGES OF THE BINOMIAL AND	BIOKA60	469
POISSON DISTRIBUTIONS THE GENE	NERALIZED	MEAN DIFFERENCES OF THE BINOMIAL AND	BIOKA59	223
RIGENDA. 'SOME DISTRIBUTIONS ARISING IN THE STUDY OF GENE	NERALIZED !	MEAN DIFFERENCES' GOR	BIOKA61	230
DISTRIBUTIONS GENE	NERALIZED I	MEANS AND ASSOCIATED FAMILIES OF	AMS 69	339
THE DISTRIBUTION OF HOTELLING'S GENE	NERALIZED I	MEASURE OF MULTIVARIATE DISPERSION	AMS 66	215
VARIABLE AND ITS APPLICATIONS ON THE GENE	NERALIZED I	MELLIN TRANSFORM OF A COMPLEX RANDOM	AMS 65	1459
DISTRIBUTIONS THE DISTRIBUTION OF HOTELLING'S GENE VARIABLE AND ITS APPLICATIONS N OF CORRELATION IN DISGRETE DATA THE USE OF A GENE THE GENE	NERALIZED	MULTINOMIAL DISTRIBUTION IN THE ESTIMATIO	JRSSB62	530
THE GENE	NERALIZED	MULTIPLE GORRELATION MATRIX	SASJ 69	NO.2
USEFULL ESPECIALLY FOR GROWTH GURVE PROBLEMS A GENE	NERALIZED I	MULTIVARIATE ANALYSIS OF VARIANGE MODEL	BIOKA64	313
NOTE ON THE MULTIVARIATE AND THE GENE	NERALIZED !	MULTIVARIATE BETA DISTRIBUTIONS MULTIVARIATE ESTIMATOR FOR THE MEAN OF	JASA 69	230
PLIFIED TEGHNIQUES FOR ESTIMATING PARAMETERS OF SOME GENE	NERALIZED	POISSON DISTRIBUTIONS SIM	BIOKA67	555
D GOMPLETE FINITE POPULATIONS RELATIONSHIP OF GENE	NERALIZED	POLYKAYS TO UNRESTRIGTED SUMS FOR BALANGE	AMS 68	643
AND BIPOLYKAYS, CORR. 66 746 GENE	NERALIZED	POLYKAYS, AN EXTENTION OF SIMPLE POLYKAYS	AMS 66	226
ATION TO A TRUN/ MAXIMUM LIKELIHOOD ESTIMATION FOR GENE	NERALIZED	POWER SERIES DISTRIBUTIONS AND ITS APPLIG	BIOKA62	227
ON A GENE	NERALIZED -	QUEUEING SYSTEM WITH POISSON ARRIVALS	JRSSB66	456
THE GENTRAL LIMIT THEOREM FOR GENE	NERALIZED :	RANDOM FIELDS	AMS 69	203
PRIORITY 61 1345 FIRST PASSAGE TIMES OF A GENE	NERALIZED :	RANDOM WALK, GORR. AND AGKNOWLEDGEMENT OF	AMS G1	235
THE RANDOMIZATION ANALYSIS OF A GENE	NERALIZED I	RANDOMIZED BLOGK DESIGN	BIOKA55	70
CORRIGENDA. 'THE RANDOMIZATION ANALYSIS OF A GENE	NERALIZED :	RANDOMIZED BLOGK DESIGN'	BIOKA56	235
THE RANDOMIZATION ANALYSIS OF A GENE CORRIGENDA, 'THE RANDOMIZATION ANALYSIS OF A GENE PROPERTIES OF GENE A ROBUST POINT ESTIMATOR IN A GENE A SIMPLE PROBABILISTIC PROOF OF THE DISGRETE GENE GENE	VERALIZED	RAYLEIGH DISTRIBUTIONS	AMS 63	
A ROBUST POINT ESTIMATOR IN A GENE	VERALIZED	REGRESSION MODEL	AMS 69	1784
A SIMPLE PROBABILISTIC PROOF OF THE DISCRETE GENE	NERALIZED I	RENEWAL THEOREM	AMS 65	1294
GENE	NERALIZED	RIGHT ANGULAR DESIGNS	AMS 65	1535
LIFE TESTING ON A GENE	NERALIZED :	SAVAGE STATISTIC WITH APPLICATIONS TO	AMS 68	1591
THE ESSENTIAL GOMPLETENESS OF THE GLASS OF GENE	VERALIZED :	RIGHT ANGULAR DESIGNS SAVAGE STATISTIG WITH APPLICATIONS TO SEQUENTIAL PROBABILITY RATIO TESTS	AMS 61	602
A GENE	JERALIZED	SINGLE-SERVER QUEUE WITH ERLANG INPUT	BIOK 462	242
		SUBMARTINGALES IN STOPPING PROBLEMS		
		T SQUARE IN THE MULTIVARIATE ANALYSIS OF		
ENTIAL EQUATIONS FOR THE DISTRIBUTION OF HOTELLING'S GENE				
R STATISTICS GHARAGTERIZATION OF NORMAL AND GENE				
			BIOKA65	
THE DISTRIBUTION OF THE GENE			AMS 65	
GORRIGENDA, 'ON DURBIN'S FORMULA FOR THE LIMITING GENE				
VATIONS FROM/ ON DURBIN'S FORMULA FOR THE LIMITING GENE				
		VARIANCE OF A SAMPLE OF GONSEGUTIVE OBSERVARIANCE, TESTING AND RANKING PROBLEM		
		WILGOXON TEST FOR GOMPARING ARBITRARILY		
		WILGOXON TEST FOR GOWN ARTING ARBITRARIES WILGOXON-MANN-WHITNEY STATISTIG		
		MULTIPLE GORRELATION MATRIX IN THE DUAL		
CASE DISTRIBUTION OF THE 'GENE THE COMBINATION OF INFORMATION IN GENE				
A NUMBERGAL PROCEDURE NO CENT	innamn a c	ANDLE COULDIANCE MARRIE CODE CC 1040		
A NUMERIGAL PROGEDURE TO GENE	VERALE A S.		AMS 68	
ONE DADAMENDO DADAMENTAL DANTITES GENE	VERAIED BY	A NANDUM GLUDED INTEKVAL	AMS 65	
ONE-PARAMETER EXPONENTIAL FAMILIES GENE				
		VARIABLE FROM THE TAIL OF THE NORMAL	AMS 61	
ILITIES OF A GLASS OF WIDELY USED/ A TWO-VARIABLE GENE				
		UNGTION OF PILLAI'S V-SUPER-S GRITERION		
		UNGTION OF THE TRUNGATED MULTI-NORMAL		
N A SIMPLE BIRTH-AND-DEATH PRO/ ON THE PROBABILITY GENE				
STREAMS SOME APPLIGATIONS OF PROBABILITY GENE				
A GONTINUOUS TIME TREATMENT OF A SIMPLE QUEUE USING GENE			JRSSB54	
CLASS OF SERVIGE-TIME DISTRIBUTIONS BY THE METHOD OF GENE				
OF LARGE NUMBERS SOME RESULTS RELATING MOMENT GENE				
		UNGTIONS AND RENEWAL THEORY	AMS 65	
E DETERMINATION OF SAMPLING DISTRIBUTIONS AND MOMENT GENE				
		UNGTIONS FOR MARKOV RENEWAL PROGESSES		
		UNGTIONS OF QUADRATIC FORMS IN SERIALLY		
SOME QUANTITATIVE TESTS FOR STOCK PRIGE GENE			JASA 67	
			BIOKA62	
			TECH 62	
			TEGH 63	
		F ROBINSON'S BALANGED INGOMPLETE BLOCK		
		F THE DISTRIBUTION OF SEVERAL NON-PARAMET		
STATISTIGS UNDER LEHMANN ALTERNATIVES REGURSIVE GENE				
			BIOKA55	
		A GONTINUOUS TIME, FINITE STATE MARKOV		
			RINGSER	277
NETIQUE DES GARAGTERES QUANTITATIFS ET REGHERGHE DE 'GENE				n=c
+(ON FORMULA FOR DETERMINING THE INGIDENCE OF MUTANT GENE	NES)	QUERY	BIOCS65	
+(ON FORMULA FOR DETERMINING THE INGIDENCE OF MUTANT GENE	NES)	QUERY		

TITLE WORD INDEX GEN - COO

INC 2. AN EVALUATION OF TWO METHODS OF ESTIMATION OF CENETY	C AND ENVIRONMENTAL VARIANCE /LLEL TEST CROSS	BIOCS67	325
DROSOPHILIA SUBOBSCURA' CO/ VECTORIAL ANALYSIS FOR CENETI	C CLINES IN BODY DIMENSIONS IN POPULATIONS OF '	BIOCS66	469
ING ALL DIGENIC EPISTATIC VARIANCES OF EQUAL MACN/ GENETIC	C COMPONENTS FOR NON-INBRED DIPLOID SPECIES HAV	BIOCS69	545
IDUAL VARIATES CONCERNED ESTIMATION OF GENETI			9
		BIOCS6B	951
AN EMPIRICAL STUDY OF THE DISTRIBUTION OF THE SAMPLE CENETI	C CORRELATION CORRETCIENT	BIOCS69	63
SELECTION BASIS IN ESTIMATION OF THE GENETI AN EMPIRICAL STUDY OF THE DISTRIBUTION OF THE SAMPLE GENETI A GENERAL MODEL FOR GENETI	C PERFORC	BIOCS66	864
		BIOGS67	
			397
MARKOV CHAINS WITH ABSORBING STATES, A GENETI ARIANCE OF THE CORRELATION COEFFICIENTS ESTIMATED IN GENETI	C EXAMPLE	AMS 61	716
			187
	C EXPERIMENTS WHEN ONLY ONE PARENT IS IDENTIFIE		
QN THE STOCHASTIC MATRIX IN A GENETI		BIOKA61	
	C MODEL OF THE MARKOV CHAIN TYPE	BIOKA63	251
SOME TRANSFORMATIONS OF SCALE AND THE ESTIMATION OF GENETI	C PARAMETERS FROM DAUCHTER-DAM REGRESSION	BIOCS67	B23
NUMERICAL RESULTS AND DIFFUSION APPROXIMATIONS IN A GENETI	C PROCESS	BIOKA63	241
SOME STATISTICAL PROPERTIES OF A GENETI	C SELECTION INDEX	BIOKA62	325
MATING DESIGN FOR ESTIMATING ENVIRONMENTAL AND GENETI THE MULTI-TYPE CALTON-WATSON PROCESS IN A CENETI	C TRENDS EXAMINATION OF A REPEAT	BIOCS65	63
THE MULTI-TYPE CALTON-WATSON PROCESS IN A CENET	CAL CONTEXT	BIOCS6B	147
A A CRAPHICAL METHOD FOR THE STUDY OF COMPLEX CENETI	CAL SYSTEMS WITH SPECIAL REFERENCE TO EQUILIBRI	BIOCS69	NO.4
THE DIFFUSION EQUATION AND A PSEUDO-DISTRIBUTION IN GENETI		JRSSB63	
A GENERAL CLASS OF ENUMERATIONS ARISING IN GENETI	CS	BIOCS67	517
FURTHER ANALYSIS OF R. A. FISHER'S ENUMERATIONS IN GENETI	CS NOTES.	BIOCS65	1012
A GENERAL CLASS OF ENUMERATIONS ARISING IN GENETY FURTHER ANALYSIS OF R. A. FISHER'S ENUMERATIONS IN GENETY OF MULTIPLE-TYPE BRANCHING PROCESSES IN POPULATION GENETY DIFFUSION APPROXIMATION TO CERTAIN DISTRIBUTIONS IN GENETY CERTAIN NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETY	CS SOME APPLICATIONS	JRSSB68	164
DIFFUSION APPROXIMATION TO CERTAIN DISTRIBUTIONS IN GENETI	CS THE ADEQUACY OF THE	BTOCS65	386
CERTAIN NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETI	CS STABILITY OF SOLUTIONS TO	BTOCS69	27
DISCRETE STOCHASTIC PROCESSES IN POPULATION CEMETA	CS (WITH DISCUSSION)	JESSER	21 R
CERTAIN NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETY DISCRETE STOCHASTIC PROCESSES IN POPULATION GENETY QUASI-STATIONARY DISTRIBUTIONS AND TIME-REVERSION IN GENETY ESTING HYPOTHESES AND ESTIMATING PARAMETERS IN HUMAN GENETY HEORETICAL ASPECTS OF DIFFUSION THEORY IN POPULATION GENETY	CCS (WITH DISCUSSION)	IRSSREE	253
EGALNG HADUAHEGES VND EGALWYALNG DYDYWEAEDS IN HIWYN CENERI	CS TE THE ACE OF ONCER TO DANDOM	BIONVEZ	200
POLICE HILLALDEDED WAS ESTIMATING LAVAMETED IN DOMIN OFNELL	CC COPP 63 350	DIOVEDO	220
HUNTONG DE EDECHENGES THEREBEREAUTON DE DESERVATION GENETI	OUR DEC CARACTERES OUANTERATES DE DECURROS	AWD 62	202
UTIONS DE FREQUENCES, INTERPRETATION DU DETERMINISME CENETI	QUE DES CARACTERES QUANTITATIFS ET RECHERCHE DE	BIOC268	277
ALYSE EN COMPOSANTES PRINCIPALES, SON UTILISATION EN CENETI			
STIMATION OF THE NUMBER OF CRITICAL SITES IN LIMITED CENOME			
NOTES. DISTRIBUTION AMONG RELATIVES OF CENOTY		BIOCS6B	
	PIQUES DANS LA SELECTION PAR INDEX SUR PLUSIEUR		
	RIC AND EXPONENTIAL DISTRIBUTIONS	AMS 66	1790
THE GENERAL MOMENT PROBLEM, A GEOMET	'RIC APPROACH	AMS 68	93
CONFIDENCE LIMITS IN THE CASE OF THE GEOMET	RIC DISTRIBUTION	BIOKA59	260
SAMP/ EXACT MOMENTS OF THE ORDER STATISTICS OF THE GEOMET	RIC DISTRIBUTION AND THEIR RELATION TO INVERSE	JASA 67	915
MIXTURES OF GEOMET	RIC DISTRIBUTIONS	JRSSB61	409
DISCUSSION) GEOMET	RIC DISTRIBUTIONS IN THE THEORY OF QUEUES (WITH	JRSSB59	1
CONTROL CHART TESTS BASED ON GEOMET	RIC MOVING AVERACES	TECH 59	239
CED DESIGNS WITH TWO ASSOCIATE CLASSES ON A GEOMET	RICAL METHOD OF CONSTRUCTION OF PARTIALLY BALAN	AMS 61	1177
SOME INTEGRAL EQUATIONS IN GEOMET	RICAL PROBABILITY	BIOKA66	365
HYPERSPHERE GEOMET	RICAL PROBABILITY AND RANDOM POINTS ON A	AMS 67	213
STUDENT'S DISTRIBUTION AND RIEMANN'S ELLIPTIC GEOMET	'RY	BIOKA57	264
	DU LUD LINBAR RECORDINENTAL		
GEOMET	RY AND LINEAR DISCRIMINATION	BIOKA60	
GEOMET THE CEOMET	RY AND LINEAR DISCRIMINATION RY OF A R-BY-C CONTINGENCY TABLE	BIOKAGO AMS 6B	185
GEOMET THE CEOMET THE GEOMET	RY AND LINEAR DISCRIMINATION RY OF A R-BY-C CONTINGENCY TABLE RY OF ESTIMATION		185 1186
GEOMET THE CEOMET THE GEOMET A NOTE ON THE GEOMET	RY AND LINEAR DISCRIMINATION RY OF A R-BY-C CONTINGENCY TABLE RY OF ESTIMATION RY OF LINEAR ESTIMATION	AMS 6B	185 1186
GEOMET THE CEOMET THE GEOMET A NOTE ON THE GEOMET A FURTHER NOTE ON THE GEOMET	RY AND LINEAR DISCRIMINATION RY OF A R-BY-C CONTINGENCY TABLE RY OF ESTIMATION RY OF LINEAR ESTIMATION RY OF LINEAR ESTIMATION	AMS 6B BIOKA51	185 1186 150 560
	RY OF A R-BY-C CONTINGENCY TABLE RY OF ESTIMATION RY OF LINEAR ESTIMATION RY OF LINEAR ESTIMATION RAY OF UNABALES FOR CONSTRUCTING PARTIALLY PALAN	AMS 6B BIOKA51 BIOKA62 BIOKA63	185 1186 150 560 540
		AMS 6B BIOKA51 BIOKA62 BIOKA63	185 1186 150 560 540
WORKING LIFE TABLES FOR MALES IN GHAMA SOME INEQUALITIES FOR MALES IN GHAMA SOME INEQUALITIES FOR THE QUEUE GI/GI THE BUSY PERIOD IN RELATION TO THE QUEUEING PROCESS GI-M-I CUSTOMER IMPATIENCE IN THE QUEUEINC SYSTEM GI-M-I THE NON-ABSOLUTE CONVERGENCE OF GIL-PE THE THIRD MOMENT OF GINI'S GIRDLE THE SPEED OF CLIVEN	PAY OF QUADRICS FOR CONSTRUCTING PARTIALLY BALAN 1960 DETERMINISTIC A CORRECTION DETE CLAEZ' INVERSION INTECRAL MEAN DIFFERENCE MEAN DIFFERENCE REDISCOVERED DISTRIBUTIONS ON A SPHERE KO-CANTELLI CONVERGENCE	AMS 6B BIOKA51 BIOKA62 BIOKA63 AMS 62 JASA 69 BIOKA62 BIOKA60 BIOKA60 BIOKA61 AMS 61 BIOKA68 BIOKA68 BIOKA64 AMS 69	185 1186 150 560 540 1175 102 315 246 45 472 33B 451 573 381 40
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR THE QUEUE GI/GI THE BUSY PERIOD IN RELATION TO THE QUEUEING PROCESS GI-M-J CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-J THE NON-ABSOLUTE CONVERGENCE OF GIL-M-J THE NON-ABSOLUTE CONVERGENCE OF GIL-M-J THE THIRD MOMENT OF GINI'S GINI'S GIRDLE THE SPEED OF CLIVEN MEASURES ON THE CLIVEN	DETERMINISTIC , A CORRECTION DETE LAEZ' INVERSION INTECRAL ; MEAN DIFFERENCE REDISCOVERED ; DISTRIBUTIONS ON A SPHERE IKO-CANTELLI CONVERGENCE IKO-CANTELLI THEOREM FOR INFINITE INVARIANT	AMS 6B BIOKA51 BIOKA63 BIOKA63 AMS 62 JASA 69 BIOKA69 BIOKA60 BIOKA61 AMS 61 BIOKA63 BIOKA68 BIOKA68 BIOKA68 BIOKA64 AMS 69 AMS 67	185 1186 150 560 540 1175 102 315 246 45 472 33B 451 573 381 40 1273
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR MALES IN GHANA CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-J CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-J RMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-J THE NON-ABSOLUTE CONVERGENCE OF GIL-PF THE THIRD MOMENT OF GINI'S GINI'S GINI'S GIRDLE THE SPEED OF CLIVEN MEASURES ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL	DETERMINISTIC , A CORRECTION LABZ' INVERSION INTECRAL ; MEAN DIFFERENCE ; MEAN DIFFERENCE REDISCOVERED ; DISTRIBUTIONS ON A SPHERE IKO—CANTELLI CONVERGENCE IKO—CANTELLI THEOREM FOR INFINITE INVARIANT	AMS 6B BIOKA62 BIOKA63 AMS 62 JASA 69 BIOKA62 BIOKA69 BIOKA69 BIOKA63 BIOKA63 BIOKA63 BIOKA64 AMS 61 AMS 69 AMS 67 AMS 69	185 1186 150 560 540 1175 102 315 246 45 472 33B 451 573 381 40 1273 66
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR MALES IN GHANA SOME INEQUALITIES FOR THE QUEUE GI/G1 THE BUSY PERIOD IN RELATION TO THE QUEUEING PROCESS GI-M-1 CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-1 THE NON-ABSOLUTE CONVERGENCE OF GIL-PF THE THIRD MOMENT OF GINI'S GINI'S GINI'S GIRDLE MEASURES ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL TEGHNIQUES IN THE DIFFERENTIAL DIACNOSIS OF NONTOXIC GOITRE	DETERMINISTIC . A CORRECTION DETE ELAEZ' INVERSION INTECRAL E MEAN DIFFERENCE E DISTRIBUTIONS ON A SPHERE EKO-CANTELLI CONVERGENCE EKO-CANTELLI THEOREM FOR INFINITE INVARIANT A COMPARISON OF STATISTICAL	AMS 6B BIOKA63 BIOKA63 AMS 62 JASA 69 BIOKA63 BIOKA65 BIOKA61 BIOKA61 AMS 61 BIOKA63 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68	185 1186 150 560 540 1175 102 315 246 45 472 33B 451 573 3B1 40 1273 66 103
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR MALES IN GHANA SOME INEQUALITIES FOR THE QUEUE GI/GI THE BUSY PERIOD IN RELATION TO THE QUEUEING PROCESS GI-M-I CUSTOMER IMPATIENCE IN THE QUEUEINC SYSTEM GI-M-I RMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEINC SYSTEM GI-M-I THE NON-ABSOLUTE CONVERGENCE OF GIL-PE THE THIRD MOMENT OF GINI'S GIRDLE MEASURES ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL TEGHNIQUES IN THE DIFFERENTIAL DIACNOSIS OF NONTOXIC GOITRE STIMATES FOR A SMALLER SAMPLE/ THE CONSTRUCTION OF GOOD I	DETERMINISTIC A CORRECTION DETERMINISTIC MEAN DIFFERENCE E MEAN DIFFERENCE REDISCOVERED DISTRIBUTIONS ON A SPHERE KO-CANTELLI CONVERGENCE KO-CANTELLI THEOREM FOR INFINITE INVARIANT A COMPARISON OF STATISTICAL LINEAR UNBIASED ESTIMATES FROM THE BEST LINEAR E	AMS 6B BIOKA62 BIOKA63 AMS 62 JASA 69 BIOKA62 BIOKA69 BIOKA60 BIOKA61 BIOKA61 BIOKA63 BIOKA64 BIOKA64 AMS 61 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA66 AMS 67 AMS 67 AMS 67	185 1186 150 560 540 1175 102 315 246 45 472 33B 451 40 1273 66 103 543
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR MALES IN GHANA CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-J CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-J THE NON-ABSOLUTE CONVERGENCE OF GIL-PF THE THIRD MOMENT OF GINI'S GIRDLE THE SPEED OF CLIVEN ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL TEGHNIQUES IN THE DISCUSSIONS OF MESSRS. TUKEY AND GOODD IS COMMENTS ON THE DISCUSSIONS OF MESSRS. TUKEY AND GOODD IS	DETERMINISTIC , A CORRECTION LAEZ' INVERSION INTECRAL ; MEAN DIFFERENCE ; MEAN DIFFERENCE REDISCOVERED ; DISTRIBUTIONS ON A SPHERE IKO—CANTELLI CONVERGENCE IKO—CANTELLI THEOREM FOR INFINITE INVARIANT . A COMPARISON OF STATISTICAL JINEAR UNBIASED ESTIMATES FROM THE BEST LINEAR E	AMS 6B BIOKA62 BIOKA62 BIOKA62 JASA 69 BIOKA62 BIOKA60 BIOKA60 BIOKA61 BIOKA61 BIOKA63 BIOKA64 AMS 61 BIOKA64 AMS 69 AMS 67 AMS 69 BIOKA64 TECH 65 TECH 61	185 1186 150 560 540 1175 102 315 246 45 472 33B 451 40 1273 66 103 543 229
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR MALES IN GHANA CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI —M-1 CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI —M-1 THE NON-ABSOLUTE CONVERGENCE OF GIL-PE THE THIRD MOMENT OF GINI'S GINI'S GIRDLE THE SPEED OF CLIVEN ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL TEGHNIQUES IN THE DIFFERENTIAL DIACNOSIS OF NONTOXIC GOITRES STIMATES FOR A SMALLER SAMPLE/ THE CONSTRUCTION OF GOOD I COMMENTS ON THE DISCUSSIONS OF MESSRS. TUKEY AND GOODMY ON A THEOREM OF BAHADUR AND GOODMY	DETERMINISTIC , A CORRECTION DETE CLAEZ' INVERSION INTECRAL S MEAN DIFFERENCE C MATCHILLI CONVERGENCE KO-CANTELLI THEOREM FOR INFINITE INVARIANT C A COMPARISON OF STATISTICAL LINEAR UNBIASED ESTIMATES FROM THE BEST LINEAR E NN N	AMS 6B BIOKA63 BIOKA63 AMS 62 JASA 69 BIOKA69 BIOKA69 BIOKA61 BIOKA61 AMS 61 BIOKA63 BIOKA63 BIOKA63 AMS 69 AMS 69 BIOK66 TECH 65 TECH 65 TECH 65	185 1186 150 560 540 1175 102 315 246 45 472 338 451 573 381 40 1273 66 103 543 229
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR MALES IN GHANA CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-I CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-I THE NON-ABSOLUTE CONVERGENCE OF GIL-PE THE THIRD MOMENT OF GINI'S GINI'S GINCLS MEASURES ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL TEGHNIQUES IN THE DIFFERENTIAL DIACNOSIS OF NONTOXIC GOITRE STIMATES FOR A SMALLER SAMPLE/ THE CONSTRUCTION OF GOOD I COMMENTS ON THE DISCUSSIONS OF MESSRS. TUKEY AND GOODM. A PARTIAL COEFFICIENT FOR GOODM.	DETERMINISTIC . A CORRECTION DETE ELAEZ' INVERSION INTECRAL E MEAN DIFFERENCE E DISTRIBUTIONS ON A SPHERE EKO-CANTELLI CONVERGENCE EKO-CANTELLI THEOREM FOR INFINITE INVARIANT A COMPARISON OF STATISTICAL LINEAR UNBIASED ESTIMATES FROM THE BEST LINEAR E IN N AND KRUSKAL'S GAMMA	AMS 6B BIOKA62 BIOKA63 AMS 62 JASA 69 BIOKA62 BIOKA69 BIOKA60 BIOKA61 BIOKA63 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 TECH 65 TECH 65 TECH 65 JASA 67	185 1186 150 560 540 1175 102 315 246 45 472 33B 451 573 381 40 1273 66 103 543 229 189
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR THE QUEUE GI/GI THE BUSY PERIOD IN RELATION TO THE QUEUEING PROCESS GI-M-I CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-I RMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEINC SYSTEM GI-M-I THE NON-ABSOLUTE CONVERGENCE OF GIL-PE THE THIRD MOMENT OF GINI'S GIRDLE MEASURES ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL TEGHNIQUES IN THE DIFFERENTIAL DIACNOSIS OF NONTOXIC GOITRE STIMATES FOR A SMALLER SAMPLE/ THE CONSTRUCTION OF GOODM. ON A THEOREM OF BAHADUR AND GOODM. A PARTIAL COEFFICIENT FOR GOODM. ARTIAL INTERPRETATION OF THE/ A SIMILARITY BETWEEN GOODM.	DETERMINISTIC , A CORRECTION DETE LAEZ' INVERSION INTECRAL ; MEAN DIFFERENCE ; MEAN DIFFERENCE REDISCOVERED ; DISTRIBUTIONS ON A SPHERE IKO-CANTELLI CONVERGENCE IKO-CANTELLI THEOREM FOR INFINITE INVARIANT A COMPARISON OF STATISTICAL ,INEAR UNBIASED ESTIMATES FROM THE BEST LINEAR E IN N AND KRUSKAL'S GAMMA IN AND KRUSKAL'S TAU AND KENDALL'S TAU, WITH A P	AMS 6B BIOKA62 BIOKA63 AMS 62 JASA 69 BIOKA62 BIOKA69 BIOKA60 BIOKA61 BIOKA61 BIOKA63 BIOKA64 AMS 61 BIOKA64 AMS 67 AMS 69 BIOKA64 TAMS 69 AMS 67 AMS 67	185 1186 150 560 540 1175 246 45 472 33B 451 573 3B1 40 1273 66 103 543 229 1 189 B04
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR THE QUEUE GI/GI THE BUSY PERIOD IN RELATION TO THE QUEUEING PROCESS GI-M-I CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-I RMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEINC SYSTEM GI-M-I THE NON-ABSOLUTE CONVERGENCE OF GIL-PE THE THIRD MOMENT OF GINI'S GIRDLE MEASURES ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL TEGHNIQUES IN THE DIFFERENTIAL DIACNOSIS OF NONTOXIC GOITRE STIMATES FOR A SMALLER SAMPLE/ THE CONSTRUCTION OF GOODM. ON A THEOREM OF BAHADUR AND GOODM. APARTIAL INTERPRETATION OF THE/ A SIMILARITY BETWEEN GOODM.	DETERMINISTIC , A CORRECTION , A CORPERIOR , CANTELLI CONVERGENCE , CANTELLI THEOREM FOR INFINITE INVARIANT , A COMPARISON OF STATISTICAL , INEAR UNBIASED ESTIMATES FROM THE BEST LINEAR E , IN , N AND KRUSKAL'S GAMMA , N AND KRUSKAL'S TAU AND KENDALL'S TAU, WITH A P , INSS CRITERIA FOR TWO-SAMPLE DISTRIBUTION-FREE	AMS 6B BIOK A62 BIOK A63 AMS 62 JASA 69 BIOK A62 BIOK A62 BIOK A61 BIOK A61 AMS 61 BIOK A63 BIOK A64 AMS 69 AMS 69 AMS 69 BIOCS 6B BIOCS 6B TECH 61 TEGH 61 AMS 66 JASA 67 JASA 62 AMS 66	185 1186 150 560 540 1175 102 315 246 45 472 33B 451 40 1273 66 103 543 229 1 189 B04 133
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR MALES IN GHANA CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-I CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-I THE NON-ABSOLUTE CONVERGENCE OF GIL-PE THE THIRD MOMENT OF GINI'S GINI'S GINI'S GINI'S GINDLE MEASURES ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL TEGHNIQUES IN THE DIFFERENTIAL DIACNOSIS OF NONTOXIC GOITRE STIMATES FOR A SMALLER SAMPLE/ THE CONSTRUCTION OF GOOD I COMMENTS ON THE DISCUSSIONS OF MESSRS. TUKEY AND GOODMA A PARTIAL COEFFICIENT FOR GOODMA ARTIAL INTERPRETATION OF THE/ A SIMILARITY BETWEEN GOODMA TESTS A COEFFICIENT MEASURING THE GOODNE	DETERMINISTIC , A CORRECTION DETE MEAN DIFFERENCE ; MEAN DIFFERENCE REDISCOVERED DISTRIBUTIONS ON A SPHERE IKO-CANTELLI THEOREM FOR INFINITE INVARIANT A COMPARISON OF STATISTICAL INEAR UNBIASED ESTIMATES FROM THE BEST LINEAR E IN N AND KRUSKAL'S GAMMA IN AND KRUSKAL'S GAMMA IN AND KRUSKAL'S TAU AND KENDALL'S TAU, WITH A P SS CRITERIA FOR TWO-SAMPLE DISTRIBUTION-FREE SS OF FIT	AMS 6B BIOK A63 BIOK A63 AMS 62 JASA 69 BIOK A62 BIOK A65 BIOK A61 AMS 61 BIOK A66 BIOK A68 BIOK A68 BIOK A68 BIOK A68 BIOK A68 BIOK A68 AMS 69 BIOK A68 TECH 65 TECH 65 JASA 67 JASA 62 AMS 67 AMS 69 BIOK A68 BIOK A68 BIOK A68 AMS 67 AMS 69 BIOK A68 BIOK A	185 1186 150 560 540 1175 246 45 472 33B 451 573 381 40 1273 66 103 543 229 1189 B04 133 327
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR MALES IN GHANA SOME INEQUALITIES FOR MALES IN GHANA CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-I CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-I THE NON-ABSOLUTE CONVERGENCE OF GIL-PE THE THIRD MOMENT OF GINI'S GINI'S GINI'S GINI'S GIRDLE MEASURES ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL TEGHNIQUES IN THE DIFFERENTIAL DIACNOSIS OF NONTOXIC GOITRE STIMATES FOR A SMALLER SAMPLE/ THE CONSTRUCTION OF GOODM. ON A THEOREM OF BAHADUR AND GOODM. A PARTIAL INTERPRETATION OF THE/ A SIMILARITY BETWEEN GOODM. ARTIAL INTERPRETATION OF THE/ A SIMILARITY BETWEEN GOODM. TESTS A COEFFICIENT MEASURING THE GOODM. GOODNE	DETERMINISTIC A CORRECTION DETE EMEAN DIFFERENCE DISTRIBUTIONS ON A SPHERE EMORATED THE CONVERGENCE CONTELLI THEOREM FOR INFINITE INVARIANT A COMPARISON OF STATISTICAL LINEAR UNBIASED ESTIMATES FROM THE BEST LINEAR E IN N AND KRUSKAL'S GAMMA IN AND KRUSKAL'S TAU AND KENDALL'S TAU, WITH A P SS OF FIT SS OF FIT	AMS 6B BIOKA62 BIOKA63 AMS 62 JASA 69 BIOKA62 BIOKA60 BIOKA60 BIOKA61 BIOKA61 BIOKA64 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 TECH 65 TECH 65 TECH 61 AMS 67 JASA 67 JASA 62 AMS 66 TECH 66 JASA 67	185 1186 150 560 540 1175 102 315 246 45 472 33B 451 573 381 573 381 273 66 103 543 229 189 804 133 327 390
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR MALES IN GHANA CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-J CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-J THE BUSY PERIOD IN RELATION TO THE QUEUEING SYSTEM GI-M-J RMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-J THE NON-ABSOLUTE CONVERGENCE OF GIL-PF THE THIRD MOMENT OF GINI'S GIRDLE THE SPEED OF CLIVEN ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL TEGHNIQUES IN THE DIFFERENTIAL DIACNOSIS OF NONTOXIC GOITRE STIMATES FOR A SMALLER SAMPLE/ THE CONSTRUCTION OF GOOD I COMMENTS ON THE DISCUSSIONS OF MESSRS. TUKEY AND GOODMA A PARTIAL COEFFICIENT FOR GOODMA ARTIAL INTERPRETATION OF THE/ A SIMILARITY BETWEEN GOODME TESTS A COEFFICIENT MEASURING THE GOODNE GOODNE TESTS OF GOODNE	DETERMINISTIC A CORRECTION DETE MEAN DIFFERENCE MEAN DIFFERENCE MEAN DIFFERENCE MEAN DIFFERENCE CONSTRUCTION ON A SPHERE MO-CANTELLI CONVERGENCE A COMPARISON OF STATISTICAL INEAR UNBIASED ESTIMATES FROM THE BEST LINEAR E N N N AND KRUSKAL'S GAMMA N AND KRUSKAL'S GAMMA N AND KRUSKAL'S TAU AND KENDALL'S TAU, WITH A P SS CRITERIA FOR TWO-SAMPLE DISTRIBUTION-FREE SS OF FIT SS OF FIT	AMS 6B BIOK A62 BIOK A63 AMS 62 JASA 69 BIOK A62 BIOK A62 BIOK A61 AMS 61 BIOK A63 BIOK A64 AMS 67 AMS 69 AMS 67 AMS 69 BIOCS6B TECH 65 TECH 65 JASA 67 JASA 67 JASA 67 JASA 67 JASA 67 JASS 66	185 1186 150 560 540 1175 102 315 246 45 472 338 451 273 86 103 543 229 1 189 804 133 327 390 81
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR MALES IN GHANA CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-J RMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-J THE NON-ABSOLUTE CONVERGENCE OF GIL-PE THE THIRD MOMENT OF GINI'S GIRDLE THE SPEED OF CLIVEN ON THE CLIVEN ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL TEGHNIQUES IN THE DIFFERENTIAL DIACNOSIS OF NONTOXIC GOITRES STIMATES FOR A SMALLER SAMPLE/ THE CONSTRUCTION OF GOOD IN COMMENTS ON THE DISCUSSIONS OF MESSRS. TUKEY AND GOODMA A PARTIAL COEFFICIENT FOR GOODMA A PARTIAL COEFFICIENT FOR GOODMA ARTIAL INTERPRETATION OF THE/ A SIMILARITY BETWEEN GOODME TESTS A COEFFICIENT MEASURING THE GOODME TESTS OF GOODNE TESTS OF GOODNE NOTE ON AN EXACT TREATMENT OF CONTINGENCY, GOODNE	DETERMINISTIC , A CORRECTION DETE CLAEZ' INVERSION INTECRAL S MEAN DIFFERENCE S MEAN DIFFERENCE S MEAN DIFFERENCE S MEAN DIFFERENCE C MEAN DIFFERENCE C MEAN DIFFERENCE A COMPARISON OF STATISTICAL INCANTELLI THEOREM FOR INFINITE INVARIANT A COMPARISON OF STATISTICAL INEAR UNBIASED ESTIMATES FROM THE BEST LINEAR E IN N AND KRUSKAL'S GAMMA IN AND KRUSKAL'S TAU AND KENDALL'S TAU, WITH A P SS CRITERIA FOR TWO-SAMPLE DISTRIBUTION-FREE SS OF FIT	AMS 6B BIOKA63 BIOKA63 AMS 62 JASA 69 BIOKA65 BIOKA65 BIOKA61 BIOKA66 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 AMS 69 BIOKS68 TECH 65 TECH 65 JASA 67 JASA 67 JASA 62 TECH 66 TECH 66 TECH 66 JASA 67 JASA 67 JASA 63 TECH 66	185 1186 150 560 540 1175 102 315 246 45 472 33B 451 40 1273 66 103 543 229 1 189 B04 133 327 390 81 141
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR MALES IN GHANA CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-I CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-I CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-I THE NON-ABSOLUTE CONVERGENCE OF GIL-PE THE THIRD MOMENT OF GINI'S GINI'S GINI'S GINI'S GINI'S ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL TEGHNIQUES IN THE DIFFERENTIAL DIACNOSIS OF NONTOXIC COMMENTS ON THE DISCUSSIONS OF MESSRS. TUKEY AND ON A THEOREM OF BAHADUR AND GOODME A PARTIAL COEFFICIENT FOR GOODME A PARTIAL INTERPRETATION OF THE/ A SIMILARITY BETWEEN GOODME TESTS A COEFFICIENT MEASURING THE GOODME NOTE ON AN EXACT TREATMENT OF CONTINGENCY, GOODNE SAMPLE SPACINGS THEORY, II. TESTS OF THE PARAMETRIC GOODME SAMPLE SPACINGS THEORY, II. TESTS OF THE PARAMETRIC GOODME	DETERMINISTIC . A CORRECTION DETE ELAEZ' INVERSION INTECRAL E MEAN DIFFERENCE E DISTRIBUTIONS ON A SPHERE EKO-CANTELLI CONVERGENCE EKO-CANTELLI THEOREM FOR INFINITE INVARIANT C A COMPARISON OF STATISTICAL LINEAR UNBIASED ESTIMATES FROM THE BEST LINEAR E IN IN AND KRUSKAL'S GAMMA IN AND KRUSKAL'S TAU AND KENDALL'S TAU, WITH A P ESS CRITERIA FOR TWO-SAMPLE DISTRIBUTION-FREE ESS OF FIT ESS OF FIT ESS OF FIT ESS OF FIT AND OTHER PROBLEMS OF SICNIFICANCE ESS OF FIT AND OTHER PROBLEMS /BUTIONS TO	AMS 6B BIOK A62 BIOK A63 AMS 62 JASA 69 BIOK A62 BIOK A60 BIOK A61 BIOK A61 BIOK A63 BIOK A68 BIOK A68 BIOK A68 BIOK A68 BIOK A68 AMS 69 AMS 69 BIOC G68 TECH 65 TECH 66 JASA 67 JASA 62 AMS 66 JASA 67 JASA 62 AMS 66 JASA 67 JASA 62 AMS 66 JASA 67 JASA 62 AMS 66 JASA 67 JASA 67 JASA 68	185 1186 150 560 540 1175 102 315 246 45 472 338 451 573 381 273 66 103 543 229 189 804 133 327 390 81 141 925
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR MALES IN GHANA CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-J CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-J CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-J THE NON-ABSOLUTE CONVERGENCE OF GIL-PF THE THIRD MOMENT OF GINI'S GIRDLE THE SPEED OF CLIVEN ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL TEGHNIQUES IN THE DIFFERENTIAL DIACNOSIS OF NONTOXIC GOITER STIMATES FOR A SMALLER SAMPLE/ THE CONSTRUCTION OF GOOD IN COMMENTS ON THE DISCUSSIONS OF MESSRS. TUKEY AND GOODMA ON A THEOREM OF BAHABUR AND GOODMA A PARTIAL COEFFICIENT FOR GOODMA ARTIAL INTERPRETATION OF THE/ A SIMILARITY BETWEEN GOODMA TESTS A COEFFICIENT MEASURING THE GOODMA TESTS OF GOODNE NOTE ON AN EXACT TREATMENT OF CONTINGENCY, GOODNE SAMPLE SPACINGS THEORY, II. TESTS OF THE PARAMETRIC ON THE ASYMPTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' GOODNE ON THE ASYMPTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' GOODNE	DETERMINISTIC A CORRECTION BETE MEAN DIFFERENCE MO-CANTELLI CONVERCENCE MO-CANTELLI THEOREM FOR INFINITE INVARIANT A COMPARISON OF STATISTICAL INNEAR UNBIASED ESTIMATES FROM THE BEST LINEAR E N N N N N N N N N N N N N	AMS 6B BIOK A62 BIOK A63 AMS 62 JASA 69 BIOK A62 BIOK A60 BIOK A60 BIOK A60 BIOK A60 BIOK A63 BIOK A64 AMS 67 AMS 67 AMS 69 BIOCS6B TECH 65 TECH 65 TECH 61 AMS 66 JASA 67 JASA 67 JASA 67 JASA 67 JASA 67 JASA 66 TECH 66 AMS 66	185 1186 150 560 540 1175 102 315 246 45 472 33B 401 273 66 103 543 229 1 189 149 133 327 981 141 925 49
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR MALES IN GHANA CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-J CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-J RMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-J THE NON-ABSOLUTE CONVERGENCE OF GLL-PF THE THIRD MOMENT OF GINI'S GIRDLE THE SPEED OF CLIVEN ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL TEGHNIQUES IN THE DIFFERENTIAL DIACNOSIS OF NONTOXIC GOITRESTIMATES FOR A SMALLER SAMPLE/ THE CONSTRUCTION OF GOOD IN ON A THEOREM OF BAHADUR AND GOODMA A PARTIAL COEFFICIENT FOR GOODMA A PARTIAL COEFFICIENT FOR GOODMA TESTS A COEFFICIENT MEASURING THE GOODME TESTS A COEFFICIENT MEASURING THE GOODME NOTE ON AN EXACT TREATMENT OF CONTINGENCY, GOODME SAMPLE SPACINGS THEORY, II. TESTS OF THE PARAMETRIC GOODNE ON THE ASYMPTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' GOODNE ASYMPTOTIC EXPANSIONS FOR TESTS OF GOODNE	DETERMINISTIC A CORRECTION DETE MEAN DIFFERENCE MEAN DIFFERENCE MEAN DIFFERENCE MEAN DIFFERENCE MEAN DIFFERENCE MEAN DIFFERENCE COMPARISON OF STATISTICAL A COMPARISON OF STATISTICAL MINIMAL UNBIASED ESTIMATES FROM THE BEST LINEAR E NO NO NO NO NO NO NO NO NO N	AMS 6B BIOK A63 BIOK A63 AMS 62 JASA 69 BIOK A62 BIOK A60 BIOK A60 BIOK A61 BIOK A63 BIOK A63 BIOK A64 AMS 69 AMS 67 AMS 69 BIOCS6B TECH 65 TECH 61 AMS 66 JASA 67 JASA 67 JAS	185 1186 150 560 540 1175 102 315 246 45 472 33B 451 103 543 229 1 189 B04 133 327 390 81 141 925 49 459
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR MALES IN GHANA CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-J CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-J THE BUSY PERIOD IN RELATION TO THE QUEUEING SYSTEM GI-M-J RMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-J THE NON-ABSOLUTE CONVERGENCE OF GIL-PE THE THIRD MOMENT OF GINI'S GIRDLE MEASURES ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL TEGHNIQUES IN THE DIFFERENTIAL DIACNOSIS OF NONTOXIC GOITRE STIMATES FOR A SMALLER SAMPLE/ THE CONSTRUCTION OF GOOD IN COMMENTS ON THE DISCUSSIONS OF MESSRS. TUKEY AND GOODMA A PARTIAL COEFFICIENT FOR GOODMA A PARTIAL INTERPRETATION OF THE/ A SIMILARITY BETWEEN GOODMA TESTS A COEFFICIENT MEASURING THE GOODME NOTE ON AN EXACT TREATMENT OF CONTINGENCY, GOODME NOTE ON AN EXACT TREATMENT OF CONTINGENCY, GOODME SAMPLE SPACINGS THEORY, II. TESTS OF THE PARAMETRIC GOODME ON THE ASYMPTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' GOODNE THE ASYMPTOTIC EXPANSIONS FOR TESTS OF GOODNE THE ASYMPTOTIC POWERS OF CERTAIN TESTS OF GOODNE	DETERMINISTIC A CORRECTION DETE CHAEZ' INVERSION INTECRAL E MEAN DIFFERENCE E DISTRIBUTIONS ON A SPHERE IKO-CANTELLI CONVERGENCE IKO-CANTELLI THEOREM FOR INFINITE INVARIANT A COMPARISON OF STATISTICAL INEAR UNBIASED ESTIMATES FROM THE BEST LINEAR E IN N AND KRUSKAL'S GAMMA IN AND KRUSKAL'S TAU AND KENDALL'S TAU, WITH A P SSS CRITERIA FOR TWO-SAMPLE DISTRIBUTION-FREE SS OF FIT SS OF FIT AND OTHER PROBLEMS OF SICNIFICANCE SS OF FIT AND TWO-SAMPLE PROBLEMS /BUTIONS TO SSS OF FIT CRITERIA FOR MARKOV CHAINS AND MARKOV SSS OF FIT FOR LINEAR AUTOREGRESSIVE SCHEMES SSS OF FIT FOR LINEAR AUTOREGRESSIVE SCHEMES	AMS 6B BIOK A51 BIOK A63 AMS 62 JASA 69 BIOK A62 BIOK A60 BIOK A61 BIOK A61 BIOK A61 BIOK A68 BIOK A68 BIOK A68 BIOK A68 AMS 69 AMS 69 BIOC S6B TECH 65 TECH 65 JASA 67 JASA 62 AMS 69 JASA 67 JASA 67 JRSSB63 BIOK A64 AMS 66 AMS 67 AMS 69 BIOK A64 AMS 66 AMS 67 AMS 68 AMS 66 JASA 67 JASA 68 AMS 61 BIOK 64 JASA 61 BIOK 64 JASA 61	185 1186 150 560 540 1175 102 315 246 45 472 3381 573 381 1273 66 103 543 229 1189 804 133 327 390 81 141 925 49 459 143
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR MALES IN GHANA CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-J CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-J RMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-J THE NON-ABSOLUTE CONVERGENCE OF GIL-PF THE THIRD MOMENT OF GINI'S GIRDLE THE SPEED OF CLIVEN ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL TEGHNIQUES IN THE DIFFERENTIAL DIACNOSIS OF NONTOXIC GOITER STIMATES FOR A SMALLER SAMPLE/ THE CONSTRUCTION OF GOOD IN ON A THEOREM OF BAHADUR AND GOODMA APARTIAL COEFFICIENT FOR GOODMA APARTIAL INTERPRETATION OF THE/ A SIMILARITY BETWEEN GOODMA TESTS A COEFFICIENT MEASURING THE GOODME NOTE ON AN EXACT TREATMENT OF CONTINGENCY, GOODNE SAMPLE SPACINGS THEORY, II. TESTS OF THE PARAMETRIC GOODNE ON THE ASYMPTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' THE ASYMPTOTIC EXPANSIONS FOR TESTS OF GOODNE THE ASYMPTOTIC EXPANSIONS FOR TESTS OF GOODNE THE ASYMPTOTIC EXPANSIONS FOR TESTS OF GOODNE FROM STOCHASTIC PROCESSES THE GOODNE	DETERMINISTIC A CORRECTION BETE MEAN DIFFERENCE MEAN DIFFERENCE MEAN DIFFERENCE MEAN DIFFERENCE MEAN DIFFERENCE MO-CANTELLI CONVERGENCE MO-CANTELLI THEOREM FOR INFINITE INVARIANT A COMPARISON OF STATISTICAL INEAR UNBIASED ESTIMATES FROM THE BEST LINEAR E NN NN NN NN NN NN NN NN NN	AMS 6B BIOKA62 BIOKA63 AMS 62 JASA 69 BIOKA60 BIOKA60 BIOKA60 BIOKA61 BIOKA63 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 AMS 69 AMS 69 AMS 69 AMS 60 JASA 67 JASA 62 JASA 67 JASA 62 AMS 66 JASA 67 JASA 66 JASA 67 JASA 68 BIOKA68 BIOKA68 BIOKA68	185 1186 150 560 540 1175 102 315 246 45 472 33B 40 1273 66 103 543 229 18 B04 133 327 189 B04 133 327 49 45 49 45 49 459 143 450
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR MALES IN GHANA CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-J CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-J CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-J THE NON-ABSOLUTE CONVERGENCE OF GIL-PF THE THIRD MOMENT OF GINI'S GIRDLE THE SPEED OF CLIVEN ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL TEGHNIQUES IN THE DIFFERENTIAL DIACNOSIS OF NONTOXIC GOITRE STIMATES FOR A SMALLER SAMPLE/ THE CONSTRUCTION OF GOOD IN A PARTIAL COFFICIENT FOR GOODMA APARTIAL INTERPRETATION OF THE/ A SIMILARITY BETWEEN GOODMA TESTS A COEFFICIENT MEASURING THE GOODME NOTE ON AN EXACT TREATMENT OF CONTINGENCY, GOODME SAMPLE SPACINGS THEORY, II. TESTS OF THE PARAMETRIC GOODME ASYMPTOTIC EXPANSIONS FOR TESTS OF GOODME THE ASYMPTOTIC POWERS OF CERTAIN TESTS OF GOODME	DETERMINISTIC A CORRECTION DETE MEAN DIFFERENCE MEAN DIFFERENCE MEAN DIFFERENCE MEAN DIFFERENCE CONTROLLI CONVERGENCE MEAN DIFFERENCE MEAN DIFFERENCE	AMS 6B BIOK A62 BIOK A63 AMS 62 JASA 69 BIOK A62 BIOK A62 BIOK A60 BIOK A61 AMS 61 BIOK A63 BIOK A64 AMS 69 AMS 69 AMS 66 AMS 66 AMS 66 JASA 67 JASA 67 JASA 67 JASA 67 JASA 67 JASA 66 JASA 67 JASA 67 JASA 66 JASA 67 JASA 66 JASA 67 JASA 66 JASA 67 JASA 67 JASA 61 JASA 6	185 1186 150 560 540 1175 246 45 472 338 451 40 1273 66 103 543 3229 1 189 804 133 327 390 81 141 925 49 459 143 450 309
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR MALES IN GHANA SOME INEQUALITIES FOR THE QUEUE GI/GI THE BUSY PERIOD IN RELATION TO THE QUEUEING PROCESS GI-M-J CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-J THE NON-ABSOLUTE CONVERGENCE OF GIL-PE THE THIRD MOMENT OF GINI'S GIRDLE MEASURES ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL TEGHNIQUES IN THE DIFFERENTIAL DIACNOSIS OF NONTOXIC GOITRE STIMATES FOR A SMALLER SAMPLE/ THE CONSTRUCTION OF GOOD IN COMMENTS ON THE DISCUSSIONS OF MESSRS. TUKEY AND GOODMA A PARTIAL COEFFICIENT FOR GOODMA A PARTIAL INTERPRETATION OF THE/ A SIMILARITY BETWEEN GOODMS NOTE ON AN EXACT TREATMENT OF CONTINGENCY, GOODMS NOTE ON AN EXACT TREATMENT OF CONTINGENCY, GOODMS SAMPLE SPACINGS THEORY, II. TESTS OF THE PARAMETRIC GOODMS ON THE ASYMPTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' ON THE ASYMPTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' ON THE ASYMPTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' SIGNIFICANCE POINTS THE GOODNE THE GOODNE THE ASYMPTOTIC POWERS OF CERTAIN TESTS OF GOODNE SIGNIFICANCE POINTS THE GOODNE ONS OF STATIONARY TIME SERIES WITH NORMAL RESID/ A GOODNE ONS OF STATIONARY TIME SERIES WITH NORMAL RESID/ A GOODNE	DETERMINISTIC , A CORRECTION DETE CLAEZ' INVERSION INTECRAL S MEAN DIFFERENCE S MEAN DIFFERENCE DISTRIBUTIONS ON A SPHERE KO-CANTELLI CONVERGENCE A COMPARISON OF STATISTICAL INEAR UNBIASED ESTIMATES FROM THE BEST LINEAR E NO NO NO NO NO NO NO NO NO N	AMS 6B BIOKA63 BIOKA63 AMS 62 JASA 69 BIOKA60 BIOKA60 BIOKA61 BIOKA63 BIOKA63 BIOKA63 BIOKA64 AMS 69 BIOCS6B TECH 65 TECH 65 JASA 67 JASA 68 BIOKA64 JASA 61 BIOKA65 BIOKA65 BIOKA65 BIOKA65	185 1186 150 560 540 1175 246 45 472 33B 451 40 1273 381 40 1273 66 103 543 229 1 189 80 141 925 49 143 459 143 459 143 459 143 459 1257
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR MALES IN GHANA CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-J CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-J THE BUSY PERIOD IN RELATION TO THE QUEUEING SYSTEM GI-M-J RMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-J THE NON-ABSOLUTE CONVERGENCE OF GIL-PE THE THIRD MOMENT OF GINI'S GINI'S GINI'S GIRDLE MEASURES ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL TEGHNIQUES IN THE DIFFERENTIAL DIACNOSIS OF NONTOXIC GOITRE STIMATES FOR A SMALLER SAMPLE/ THE CONSTRUCTION OF GOODD I COMMENTS ON THE DISCUSSIONS OF MESSRS. TUKEY AND ON A THEOREM OF BAHADUR AND GOODMA A PARTIAL COEFFICIENT FOR GOODMA A PARTIAL INTERPRETATION OF THE/ A SIMILARITY BETWEEN GOODMA TESTS A COEFFICIENT MEASURING THE GOODMS NOTE ON AN EXACT TREATMENT OF CONTINGENCY, GOODMS NOTE ON AN EXACT TREATMENT OF CONTINGENCY, GOODMS SAMPLE SPACINGS THEORY, II. TESTS OF THE PARAMETRIC GOODMS ON THE ASYMPTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' GOODNE THE ASYMPTOTIC EXPANSIONS FOR TESTS OF GOODNE THE ASYMPTOTIC POWERS OF CERTAIN TESTS OF GOODNE THE ASYMPTOTIC POWERS OF CERTAIN TESTS OF GOODNE ONS OF STATIONARY TIME SERIES WITH NORMAL RESID/ A GOODNE Y OF AN APPROXIMATION TO THE POWER OF THE CHI-SQUARE GOODNE	DETERMINISTIC A CORRECTION DETE CHAEZ' INVERSION INTECRAL S MEAN DIFFERENCE DISTRIBUTIONS ON A SPHERE CHACATELLI CONVERGENCE CHACATELLI THEOREM FOR INFINITE INVARIANT A COMPARISON OF STATISTICAL INEAR UNBIASED ESTIMATES FROM THE BEST LINEAR E NO NO NO NO NO NO NO NO NO N	AMS 6B BIOK A62 BIOK A63 AMS 62 JASA 69 BIOK A62 BIOK A60 BIOK A61 BIOK A61 BIOK A63 BIOK A68 BIOK A68 BIOK A68 BIOK A68 AMS 69 AMS 69 BIOCS6B TECH 65 TECH 65 JASA 67 JASA 66 JASA 67 JASA 66 JASA 67 JASA 68 BIOK A68 BIOK A68 BIOK A68 BIOK A68 BIOK A68 BIOK A68 BIOK A68 BIOK A64 BIOK A66 JASA 68	185 1186 150 560 540 1175 102 315 246 45 472 33B 40 1273 66 103 543 229 189 B04 133 327 390 81 141 925 49 459 459 459 309 257
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR MALES IN GHANA CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-J CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-J CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-J THE NON-ABSOLUTE CONVERGENCE OF GIL-PF THE THIRD MOMENT OF GINI'S GIRDLE THE SPEED OF CLIVEN ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL TEGHNIQUES IN THE DIFFERENTIAL DIACNOSIS OF NONTOXIC GOITR'S STIMATES FOR A SMALLER SAMPLE/ THE CONSTRUCTION OF GOODM A THEOREM OF BAHADUR AND GOODMA A PARTIAL COFFICIENT FOR GOODMA ARTIAL INTERPRETATION OF THE/ A SIMILARITY BETWEEN GOODME TESTS A COEFFICIENT MEASURING THE GOODNE NOTE ON AN EXACT TREATMENT OF CONTINGENCY, GOODNE SAMPLE SPACINGS THEORY, II. TESTS OF THE PARAMETRIC ON THE ASYMPTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' GOODNE THE ASYMPTOTIC EXPANSIONS FOR TESTS OF GOODNE ASYMPTOTIC EXPANSIONS FOR TESTS OF GOODNE FROM STOCHASTIC PROCESSES SIGNIFICANCE POINTS THE GOODNE SIGNIFICANCE POINTS THE GOODNE SIGNIFICANCE POINTS THE GOODNE THE GOODNE SIGNIFICANCE POINTS THE GOODNE SIGNIFICANCE POINTS THE GOODNE STRATIONARY TIME SERIES WITH NORMAL RESID/ A GOODNE ERRATA, 'A COEFFICIENT MEASURING THE GOODNE ERRATA, 'A COEFFICIENT MEASURING THE GOODNE ERRATA, 'A COEFFICIENT MEASURING THE	DETERMINISTIC A CORRECTION BETERMINISTIC A CORRECTION BETERMAN DIFFERENCE MEAN DIFFERENCE MEAN DIFFERENCE CONTROLLI CONVERGENCE CONTROLLI CONVERGENCE COMPARISON OF STATISTICAL A COMPARISON OF STATISTICAL INEAR UNBIASED ESTIMATES FROM THE BEST LINEAR E NO NO NO NO NO NO NO NO NO N	AMS 6B BIOK A61 BIOK A62 BIOK A62 BIOK A62 BIOK A62 BIOK A62 BIOK A64 BIOK A65 BIOK A65 BIOK A66 BIOK A64 BIOK A64 BIOK A66 BIOK	185 1186 150 560 540 1175 246 45 472 338 451 273 381 273 381 1273 66 103 229 1 189 804 133 327 390 81 141 925 49 459 143 450 309 257 912 195
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR MALES IN GHANA SOME INEQUALITIES FOR THE QUEUE GI/GI THE BUSY PERIOD IN RELATION TO THE QUEUEING PROCESS GI—M—I CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI—M—I THE NON—ABSOLUTE CONVERGENCE OF GIL—PE THE THIRD MOMENT OF GINI'S GIRDLE THE SPEED OF CLIVEN ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL TEGHNIQUES IN THE DIFFERENTIAL DIACNOSIS OF NONTOXIC GOITRE STIMATES FOR A SMALLER SAMPLE/ THE CONSTRUCTION OF GOOD IN COMMENTS ON THE DISCUSSIONS OF MESSRS. TUKEY AND GOODMA A PARTIAL INTERPRETATION OF THE/ A SIMILARITY BETWEEN GOODME ARTIAL INTERPRETATION OF THE/ A SIMILARITY BETWEEN GOODME NOTE ON AN EXACT TREATMENT OF CONTINGENCY, GOODME SAMPLE SPACINGS THEORY, II. TESTS OF THE PARAMETRIC GOODME ON THE ASYMPTOTIC DISTRIBUTION OF THE 'PSI—SQUARED' GOODME ASYMPTOTIC EXPANSIONS FOR TESTS OF GOODME SIGNIFICANCE POINTS THE GOODME ONS OF STATIONARY TIME SERIES WITH NORMAL RESID/ A GOODME ERRATA, 'A COEFFICIENT MEASURING THE GOODNE ONS OF STATIONARY TIME SERIES WITH NORMAL RESID/ A GOODNE ERRATA, 'A COEFFICIENT MEASURING THE GOODNE ONS OF STATIONARY TIME SERIES WITH NORMAL RESID/ A GOODNE ERRATA, 'A COEFFICIENT MEASURING THE GOODNE ONS OF STATIONARY TIME SERIES WITH NORMAL RESID/ A GOODNE ERRATA, 'A COEFFICIENT MEASURING THE GOODNE ONS OF STATIONARY TIME SERIES WITH NORMAL RESID/ A GOODNE ERRATA, 'A COEFFICIENT MEASURING THE OODNE OND HEASURABLE OF TESTS OF GOODNE ONS OF STATIONARY TIME SERIES WITH NORMAL RESID/ A GOODNE ONS OF STATIONARY TIME SERIES WITH NORMAL RESID/ A GOODNE ERRATA, 'A COEFFICIENT MEASURING THE OODNE ONS OF STATIONARY TIME SERIES WITH NORMAL RESID/ A GOODNE ONS OF STATIONARY TIME SERIES WITH NORMAL RESID/ A GOODNE ONS OF STATIONARY TIME SERIES WITH NORMAL RESID/ A GOODNE ONS OF STATIONARY TIME SERIES WITH NORMAL RESID/ A GOODNE ONS OF STATIONARY TIME SERIES WITH NORMAL RESID/ A GOODNE ONS OF STATIONARY TIME SERIES WITH NORMAL RESID/ A GOODNE ONS OF TESTS OF GOODNE	DETERMINISTIC , A CORRECTION DETE CLAEZ' INVERSION INTECRAL S MEAN DIFFERENCE S MEAN DIFFERENCE DISTRIBUTIONS ON A SPHERE KO-CANTELLI CONVERGENCE CHO-CANTELLI THEOREM FOR INFINITE INVARIANT A COMPARISON OF STATISTICAL LINEAR UNBIASED ESTIMATES FROM THE BEST LINEAR E NN NN AND KRUSKAL'S GAMMA NN AND KRUSKAL'S TAU AND KENDALL'S TAU, WITH A P SSS OF FIT SSS OF FIT SSS OF FIT SSS OF FIT SSS OF FIT AND OTHER PROBLEMS OF SICNIFICANCE SSS OF FIT AND TWO-SAMPLE DISTRIBUTION-FREE SSS OF FIT AND TWO-SAMPLE PROBLEMS /BUTIONS TO SSS OF FIT FOR LINEAR AUTOREGRESSIVE SCHEMES SSS OF FIT FOR TIME SERIES SSS OF FIT STATISTIC V-SUB-N, DISTRIBUTION AND SSS OF FIT TEST FOR SPECTRAL DISTRIBUTION FUNCTI SSS OF FIT TEST WITH SMALL BUT EQUAL EXPECTED FR SSS OF FIT SSS OF FIT TEST WITH SMALL BUT EQUAL EXPECTED FR SSS OF-FIT FOR LINEAR AUTOREGRESSIVE SCHEMES	AMS 6B BIOK A51 BIOK A62 BIOK A62 BIOK A62 BIOK A62 BIOK A65 BIOK A66 BIOK A65 BIOK A65 BIOK A65 BIOK A65 BIOK A66 BIOK A65 BIOK A65 BIOK A65 BIOK A65 BIOK A66 BIOK A65 BIOK A65 BIOK A65 BIOK A65 BIOK A66 BIOK A65 BIOK A65 BIOK A66 BIOK A66 BIOK A65 BIOK A66 BIOK A67 BIOK	185 1186 150 560 540 1175 246 45 472 33B 451 400 1273 66 103 5433 229 1 189 B04 133 327 390 81 141 925 459 143 450 257 912 195 492
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR MALES IN GHANA CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-J CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-J THE NON-ABSOLUTE CONVERGENCE OF GIL-PE THE THIRD MOMENT OF GINI'S GINI'S GINI'S GINI'S GIRDLE MEASURES ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL TEGHNIQUES IN THE DIFFERENTIAL DIACNOSIS OF NONTOXIC GOITRE STIMATES FOR A SMALLER SAMPLE/ THE CONSTRUCTION OF GOOD IN COMMENTS ON THE DISCUSSIONS OF MESSRS. TUKEY AND GOODMA A PARTIAL COEFFICIENT FOR GOODMA A PARTIAL INTERPRETATION OF THE/ A SIMILARITY BETWEEN GOODMA TESTS A COEFFICIENT MEASURING THE GOODMS NOTE ON AN EXACT TREATMENT OF CONTINGENCY, GOODMS NOTE ON AN EXACT TREATMENT OF CONTINGENCY, GOODMS SAMPLE SPACINGS THEORY, II. TESTS OF THE PARAMETRIC GOODMS ASYMPTOTIC EXPANSIONS FOR TESTS OF GOODMS THE ASYMPTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' GOODMS THE ASYMPTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' GOODMS THE ASYMPTOTIC EXPANSIONS FOR TESTS OF GOODMS SIGNIFICANCE POINTS THE GOODMS THE ASYMPTOTIC POWERS OF CERTAIN TESTS OF GOODMS SIGNIFICANCE POINTS THE GOODMS Y OF AN APPROXIMATION TO THE POWER OF THE CHI-SQUARE GOODMY Y OF AN APPROXIMATION TO THE POWER OF THE CHI-SQUARE GOODMS SAMPLE SPACINGS THEORY, II. TESTS OF THE CHI-SQUARE GOODMS THE ASYMPTOTIC POWERS OF CERTAIN TESTS OF GOODMS SIGNIFICANCE POINTS THE GOODMS SIGNIFICANCE POINTS THE GOODMS SIGNIFICANCE POINTS SAMPLE SERIES WITH NORMAL RESID/ A GOODMS Y OF AN APPROXIMATION TO THE POWER OF THE CHI-SQUARE GOODMS SAMPLINC PROPERTIES OF TESTS OF GOODMS SAMPLINC PROPERTIES OF TESTS OF GOODMS	DETERMINISTIC A CORRECTION DETE CLAEZ' INVERSION INTECRAL E MEAN DIFFERENCE E DISTRIBUTIONS ON A SPHERE IKO-CANTELLI CONVERGENCE IKO-CANTELLI THEOREM FOR INFINITE INVARIANT A COMPARISON OF STATISTICAL INEAR UNBIASED ESTIMATES FROM THE BEST LINEAR E IN N AND KRUSKAL'S GAMMA IN AND KRUSKAL'S GAMMA IN AND KRUSKAL'S TAU AND KENDALL'S TAU, WITH A P SSS CRITERIA FOR TWO-SAMPLE DISTRIBUTION-FREE SS OF FIT SSS OF FIT SSS OF FIT CRITERIA FOR MARKOV CHAINS AND MARKOV SSS OF FIT CRITERIA FOR MARKOV CHAINS AND MARKOV SSS OF FIT FOR LINEAR AUTOREGRESSIVE SCHEMES SS OF FIT TSTATISTIC V-SUB-N, DISTRIBUTION AND SSS OF FIT TEST FOR SPECTRAL DISTRIBUTION FUNCTI SSS OF FIT TEST FOR SPECTRAL DISTRIBUTION FUNCTI SSS OF FIT TEST WITH SMALL BUT EQUAL EXPECTED FR SSS OF FIT TOF A SINGLE (NON-ISOTROPIC) HYPOTHETI	AMS 6B BIOK A51 BIOK A62 BIOK A63 AMS 62 JASA 69 BIOK A65 BIOK A65 BIOK A65 BIOK A65 BIOK A65 BIOK A66 BIOK A66 JASA 67 JASA 62 AMS 69 JASA 67 JASA 66 JASA 67 JRSSB63 BIOK A64 BIOK A65 JASA 68 TECH 67 JASS A68 BIOK A65 JASA 68 TECH 67 JASA 68 TECH 67 JASA 68 TECH 67 JASA 68 BIOK A65 JASA 68 TECH 67 JASA 68 TECH 67 JASS A66 BIOK A65 BIOK A65 BIOK A65 BIOK A65 BIOK A65 BIOK A65 BIOK A66 BIOK A65 BIOK A66 BIOK A65 BIOK A6	185 1186 150 560 540 1175 102 315 246 45 472 338 45 472 3381 573 381 573 381 229 189 804 133 327 189 804 133 327 1925 49 459 459 459 459 459 459 459 459 459
WORKING LIFE TABLES FOR MALES IN GHANA SOME INEQUALITIES FOR MALES IN GHANA CUSTOMER IMPATIENCE IN THE QUEUEING PROCESS GI-M-J CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-J THE NON-ABSOLUTE CONVERGENCE OF GIL-PE THE THIRD MOMENT OF GINI'S GINI'S GINI'S GINI'S GIRDLE MEASURES ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A COAL TEGHNIQUES IN THE DIFFERENTIAL DIACNOSIS OF NONTOXIC GOITRE STIMATES FOR A SMALLER SAMPLE/ THE CONSTRUCTION OF GOOD IN COMMENTS ON THE DISCUSSIONS OF MESSRS. TUKEY AND GOODMA A PARTIAL COEFFICIENT FOR GOODMA A PARTIAL INTERPRETATION OF THE/ A SIMILARITY BETWEEN GOODMA TESTS A COEFFICIENT MEASURING THE GOODMS NOTE ON AN EXACT TREATMENT OF CONTINGENCY, GOODMS NOTE ON AN EXACT TREATMENT OF CONTINGENCY, GOODMS SAMPLE SPACINGS THEORY, II. TESTS OF THE PARAMETRIC GOODMS ASYMPTOTIC EXPANSIONS FOR TESTS OF GOODMS THE ASYMPTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' GOODMS THE ASYMPTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' GOODMS THE ASYMPTOTIC EXPANSIONS FOR TESTS OF GOODMS SIGNIFICANCE POINTS THE GOODMS THE ASYMPTOTIC POWERS OF CERTAIN TESTS OF GOODMS SIGNIFICANCE POINTS THE GOODMS Y OF AN APPROXIMATION TO THE POWER OF THE CHI-SQUARE GOODMY Y OF AN APPROXIMATION TO THE POWER OF THE CHI-SQUARE GOODMS SAMPLE SPACINGS THEORY, II. TESTS OF THE CHI-SQUARE GOODMS THE ASYMPTOTIC POWERS OF CERTAIN TESTS OF GOODMS SIGNIFICANCE POINTS THE GOODMS SIGNIFICANCE POINTS THE GOODMS SIGNIFICANCE POINTS SAMPLE SERIES WITH NORMAL RESID/ A GOODMS Y OF AN APPROXIMATION TO THE POWER OF THE CHI-SQUARE GOODMS SAMPLINC PROPERTIES OF TESTS OF GOODMS SAMPLINC PROPERTIES OF TESTS OF GOODMS	DETERMINISTIC , A CORRECTION DETE CLAEZ' INVERSION INTECRAL S MEAN DIFFERENCE S MEAN DIFFERENCE DISTRIBUTIONS ON A SPHERE KO-CANTELLI CONVERGENCE CHO-CANTELLI THEOREM FOR INFINITE INVARIANT A COMPARISON OF STATISTICAL LINEAR UNBIASED ESTIMATES FROM THE BEST LINEAR E NN NN AND KRUSKAL'S GAMMA NN AND KRUSKAL'S TAU AND KENDALL'S TAU, WITH A P SSS OF FIT SSS OF FIT SSS OF FIT SSS OF FIT SSS OF FIT AND OTHER PROBLEMS OF SICNIFICANCE SSS OF FIT AND TWO-SAMPLE DISTRIBUTION-FREE SSS OF FIT AND TWO-SAMPLE PROBLEMS /BUTIONS TO SSS OF FIT FOR LINEAR AUTOREGRESSIVE SCHEMES SSS OF FIT FOR TIME SERIES SSS OF FIT STATISTIC V-SUB-N, DISTRIBUTION AND SSS OF FIT TEST FOR SPECTRAL DISTRIBUTION FUNCTI SSS OF FIT TEST WITH SMALL BUT EQUAL EXPECTED FR SSS OF FIT SSS OF FIT TEST WITH SMALL BUT EQUAL EXPECTED FR SSS OF-FIT FOR LINEAR AUTOREGRESSIVE SCHEMES	AMS 6B BIOK A51 BIOK A62 BIOK A63 AMS 62 JASA 69 BIOK A65 BIOK A65 BIOK A65 BIOK A65 BIOK A65 BIOK A66 BIOK A66 JASA 67 JASA 62 AMS 69 JASA 67 JASA 66 JASA 67 JRSSB63 BIOK A64 BIOK A65 JASA 68 TECH 67 JASS A68 BIOK A65 JASA 68 TECH 67 JASA 68 TECH 67 JASA 68 TECH 67 JASA 68 BIOK A65 JASA 68 TECH 67 JASA 68 TECH 67 JASS A66 BIOK A65 BIOK A65 BIOK A65 BIOK A65 BIOK A65 BIOK A65 BIOK A66 BIOK A65 BIOK A66 BIOK A65 BIOK A6	185 1186 150 560 540 1175 102 315 246 45 472 338 45 472 3381 573 381 573 381 229 189 804 133 327 189 804 133 327 1925 49 459 459 459 459 459 459 459 459 459

COO - HAE TITLE WORD INDEX

THE USE OF THE CONCEPT OF A FUTURE OBSERVATION IN		JRSSB67	83
	GOODNESS-OF-FIT STATISTIG FOR THE CIRCLE, WITH SOME GOODNESS-OF-FIT STATISTIC U-SQUARE-SUB-N.II	BIOKA69 BIOKA64	161 393
CENTACE POINTS FOR W-SQUARE-SUB-N +(CRAMER-VON MISES	GOODNESS-OF-FIT STATISTIC) FURTHER PER GOODNESS-OF-FIT STATISTIC, U-SQUARE-SUB-N. I.	BIOKA68 BIOKA63	428 303
	GOODNESS-OF-FIT STATISTIC, U-SQUARE-SUB-N AND W-SQUA		630
T OBSERVATIONS THE CHI-SQUARE	GOODNESS-OF-FIT TEST FOR A CLASS OF CASES OF DEPENDEN	BIOKA64	250
	GOODNESS-OF-FIT TEST FOR NORMAL DISTRIBUTIONS GOODNESS-OF-FIT TESTS	BIOKA57	336
	GOODNESS-OF-FIT TESTS AGAINST SCALAR ALTERNATIVES	AMS 62 JASA 65	B07 410
SQUARE-SUB-N THE	COODNESS-OF-FIT TESTS BASED ON W-SQUARE-SUB-N AND U-	BIOKA62	397
	GOODNESS-OF-FIT TESTS FOR CONTINUOUS DISTRIBUTIONS GOODNESS-OF-FIT TESTS FOR EQUIPROBABLE ALTERNATIVES	JRSSB5B BIOKA68	44 441
	GOODNESS-OF-FIT TESTS FOR SMALL BUT EQUAL EXPECTED FR		619
	COODNESS-OF-FIT TESTS ON A CIRCLE	BIOKA61	109
COMPARISON OF THE PEARSON CHI-SQUARE AND KOLMOGOROV	GOODNESS-OF-FIT TESTS ON A CIRCLE.II GOODNESS-OF-FIT TESTS WITH RESPECT TO VALIDITY, CORR.	BIOKA62	57 854
ORRECTION. 'A COMPARATIVE STUDY OF SEVERAL ONE-SIDED	GOODNESS-OF-FIT TESTS' C	AMS 65	
A FORECASTING MODEL OF FEDERAL PURCHASES OF	GOODS AND SERVICES GOODS BY ACTUARIAL METHODS, GORR. 57 578	JASA 62 JASA 57	633 175
INCOME, INCOME CHANGE, AND DURABLE		JASA 64	
	COODS EXPENDITURES, WITH MAJOR EMPHASIS ON THE ROLE O		648
PROBLEMS IN ESTIMATING FEDERAL	GOSSETT, R.A. FISHER AND KARL PEARSON, WITH NOTES AND GOVERNMENT EXPENDITURES	JASA 59	445 717
	GRADIENT IN THE LINEAR FUNCTIONAL RELATIONSHIP	JRSSB56	65
FLUCTUATIONS SEQUENCES FOR SOLVINC LESER'S LEAST-SQUARES	CRADING WITH A GAUGE SUBJECT TO RANDOM OUTPUT GRADUATION EQUATIONS SUBSIDIARY	JRSSB54	118 112
	GRADUATION OF FERTILITY RATES	JASA 56	461
	GRAM-CHARLIER AND EDCEWORTH CURVES ARE POSITIVE DEFIN		425
LITY AND POSITIVITY IN THE ABBREVIATED EDGEWORTH AND EFFICIENCY OF THE METHOD OF MOMENTS AND THE		BIOKA51	253 5B
A BOREL SET NOT CONTAINING A		AMS 68	
MAJORANTS OF THE CHROMATIC NUMBER OF A RANDOM RMULA FOR THE PROBABILITY OF ORTAINING A TREE FROM A	GRAPH GRAPH CONSTRUCTED RANDOMLY EXCEPT FOR 'EXOCAMOUS BIAS	JRSSB69	NO.2 226
	GRAPH OF THE COMPLETE BIGRAPH	AMS 63	664
ON THE LINE DISARRAY	GRAPH OF THE COMPLETE BIPARTITE GRAPH GRAPHIC COMPUTATION OF TAU AS A COEFFICIENT OF	AMS 64 JASA 58	BB3 441
	GRAPHIC COMPUTATION OF TAU AS A COEFFICIENT OF DISARR		736
COEFFICIENT, CORR. 58 1031	GRAPHIC COMPUTATION OF THE MULTIPLE CORRELATION	JASA 57	479 13
	GRAPHIC METHOD FOR FITTING THE BEST STRAIGHT LINE TO GRAPHIC METHOD IN STATISTICAL MEASUREMENT	JASA 57	472
CENTROIDS	GRAPHIC METHODS BASED UPON PROPERTIES OF ADVANCING	JASA 59	66B
	GRAPHICAL ANALYSIS OF MULTIDIMENSIONAL CONTINGENCY GRAPHICAL ESTIMATION OF MIXED WEIBULL PARAMETERS IN	TECH 67 TECH 59	481 3B9
FREQUENCIES A	GRAPHICAL METHOD FOR MAKING MULTIPLE COMPARISONS OF	TECH 69	321
	-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX PROBLEMS GRAPHICAL METHOD FOR THE ANALYSIS OF STATISTICAL DIST		3B7 460
SYSTEMS WITH SPECIAL REFERENCE TO EQUILIBRIA A	GRAPHICAL METHOD FOR THE STUDY OF COMPLEX GENETICAL	BIOCS69	
	GRAPHICAL METHODS FOR INTERNAL COMPARISONS IN GRAPHICAL PRESENTATION OF DATA /ISTORY OF PROBABILI	AMS 64	613 241
SET OF POINTS	GRAPHICAL PROCEDURE FOR FITTING THE BEST LINE TO A	TECH 60	477
	GRAPHICAL PROCEDURES FOR USING DISTRIBUTION-FREE METH GRAPHICAL VERSION OF TUKEY'S CONFIDENCE INTERVAL FOR		610 193
DILUTION EXPERIMENTS	GRAPHICALLY ORIENTED TESTS FOR HOST VARIABILITY IN	BIOCS67	269
	GRAPHS (CORR. 69 1510) / CENTRAL LIMIT THEOREM FOR T		144
	GRAPHS FOR MAPPINGS OF FINITE SETS GRAPHS USEFUL FOR STATISTICAL INFERENCE	AMS 62 JASA 65	178 334
	GREATER THEN OR EQUAL TO 5 AND THE SET OF EVEN 512-RU		246
5 AND THE SET OF EVEN 512-RUN DESIGNS OF RESOLUTION FOUR FACTOR ADDITIVE DESIGNS MORE GENERAL THAN THE	GREATER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO GRECO-LATIN SQUARE	AMS 68 TECH 62	246 361
APPROXIMATE SOLUTIONS OF	CREEN'S TYPE FOR UNIVARIATE STOCHASTIC PROCESSES	JRSS860	376
	GREENBERG AND SARHAN'S METHOD OF INVERSION OF PARTITI GREENBERG'S INDEX OF LINCUISTIC DIVERSITY AND YULE'S		
MAJOR	GREENWOOD, 1880-1949	8I0KA51	1
	GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF TAU AS A -GRINDINC WITH AUTOMATIC RESET DEVICE	JASA 61 TECH 69	
OF MINIMUM LOCIT CHI-SQUARE ESTIMATE TO A PROBLEM OF	GRIZZLE WITH A NOTATION ON THE PROSLEM OF NO INTERACT	8I0CS68	75
	CROSS CORRELATION COEFFICIENTS AND PARTIAL CORRELATIO GROSS ERRORS IN CERTAIN VARIANCE COMPUTATIONS		
	CROSS NATIONAL PRODUCT AND ITS COMPONENTS, OF SELECTE		54
STATE		JASA 69	
DENSITY ESTIMATION IN A TOPOLOGICAL OF THE UNIFORM DISTRIBUTION ON A COMPACT TOPOLOGICAL		AMS 65 AMS 63	
A STATISTICAL PROBLEM TO BE INVARIANT UNDER A LIE	GROUP NECESSARY AND SUFFICIENT CONDITIONS FOR	AMS 63	492
QUEUEING AT A SINGLE SERVING POINT WITH ON THE ANALYSIS OF		JRSSB60 JASA 64	
ON THE SLOCK STRUCTURE OF SINCULAR	GROUP DIVISIBLE DESIGNS	AMS 66	1398
COMBINING INTRA AND INTER BLOCK ANALYSIS OF	GROUP DIVISIBLE DESIGNS GROUP DIVISIBLE DESIGNS ON THE 80UNDS OF THE NUMBER	TECH 66	
REDUCED	GROUP DIVISIBLE PAIRED COMPARISON DESIGNS	AMS 67	1887
	GROUP DIVISIBLE PARTIAL DIALLEL CROSSES GROUP DIVISIBLE PARTIALLY BALANCED INGOMPLETE BLOGK	8IOKA63	
	GROUP OF BALANGED BLOGK EXPERIMENTS HAVING ERROR VARI		
	GROUP OF EXPERIMENTS ON THE DISTRI	JRSSB66 JRSS854	
		BIOGS66	
,, , , , , , , , , , , , , , , , ,			

TITLE WORD INDEX COO - HAE

	CROUP OF RANDOM NUMBERS WILL BE USABLE IN SELECTING A		
DESIGN AND EVALUATION OF A REPETITIVE		TECH 65	
		TECH 63	
		TECH 61	
A NOTE ON G.S. WATSON'S PAPER 'A STUDY OF THE	CROUP SCREENING METHOD'	TECH 65	444
BALANCED INCOMPLETE BLOCK DESIGNS	COOLD SCHEENING MITTH WORE THAN TWO STACES	BIOC202	200
FIDUCIAL CONSISTENCY AND	CROUP SCREENING METHOD' GROUP SCREENING UTILIZING BALANCED AND PARTIALLY GROUP SCREENING WITH MORE THAN TWO STACES CROUP STRUCTURE GROUP STRUC	BIOKA65	55
THOGONAL LATIN SQUARES ON THE APPLICATION OF	CROUP STRUCTURE GROUP THEORY TO THE EXISTENCE AND NON-EXISTENCE OF OR CROUP-TESTING WITH AN UNKNOWN PROPORTION OF	BIOKA69	NO.3
DEFECTIVES BINOMIAL	CROUP-TESTING WITH AN UNKNOWN PROPORTION OF	TECH 66	631
THE STUDY OF POPULATION CROWTH IN ORCANISMS	CROUPED BY STAGES	BIOCS65	1
EFFICIENT ESTIMATION OF A SHIFT PARAMETER FROM		AMS 67	
ASYMPTOTICALLY MOST POWERFUL RANK ORDER TESTS FOR APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATES FROM		AMS 67	
THE ESTIMATION OF LOCATION AND SCALE PARAMETERS FROM		TECH 67 BIOKA54	
QUICK POWERFUL TESTS WITH		BIOKA68	
THE ASYMPTOTIC POWERS OF MULTIVARIATE TESTS WITH		JRSSB6B	
MODELS FOR THE ESTIMATION OF COMPETING RISKS FROM		BIOCS69	
OXIMATIONS TO THE MAXIMUM-LIKELIHOOD ESTIMATOR SING		BIOKA66	
	GROUPED FREQUENCY DISTRIBUTION, WITH ESPECIAL REFEREN		
	GROUPED OBSERVATIONS IN THE ESTIMATION OF STATISTICAL GROUPED OBSERVATIONS IN THE ESTIMATION OF THE PARAMET		
TATISTICS FOR ESTIMATING AND TESTING HYPOTHESES FROM		BIOKA66	545
OF LOCATION AND SCALE PARAMETERS IN A TRUNCATED	GROUPED SECH SQUARE DISTRIBUTION ESTIMATION	JASA 61	692
	GROUPED TRUNCATED AND GROUPED CENSORED NORMAL		
		JASA 57	
INTEGER PROGRAMMING AND THE THEORY OF		JASA 69 BIOKA52	
ON SOME INVARIANT CRITERIA FOR		JASA 67	
1550)	CROUPING ESTIMATORS IN HETEROSCEDASTIC DATA (CORR. 68	JASA 68	1B2
ON	GROUPING FOR MAXIMUM HOMOGENEITY	JASA 58	789
EFFICIENCY LOSS DUE TO	GROUPING IN DISTRIBUTION-FREE TESTS	JASA 67	954
EQUALLY SPACED OBSERVATIONS UNEQUALLY SPACED OBSERVATIONS	CROUPING METHODS IN THE FITTING OF POLYNOMIALS TO	BIOKA54	140
BALANCED INCOMPLETE BLOCK DESIGNS WITH DOUBLE	CROUPING METHODS IN THE FITTING OF POLYNOMIALS TO GROUPING OF BLOCKS INTO REPLICATIONS	BIOCS66	
A NOTE ON THE LOSS OF INFORMATION DUE TO	GROUPING OF OBSERVATIONS	BIOKA64	495
HIERARCHICAL	GROUPING OF OBSERVATIONS CROUPING TO OPTIMIZE AN OBJECTIVE FUNCTION GROUPING, RECRESSION AND CORRELATION IN ENGEL CURVE	JASA 63	236
A COMPARISON OF MAJOR UNITED STATES RELIGIOUS	GROUPS	JASA 61	
CROSS-INFECTION BETWEEN TWO OTHERWISE ISOLATED OF HOMOGENEOUS RANDOM FIELDS ON DISCRETE	CROUPS STOCHASTIC GROUPS INTERPOLATION		
EXPONENTIAL FAMILIES GENERATED BY TRANSFORMATION			
ION VARIANCES ARE UNKNO/ THE COMPARISON OF SEVERAL	CROUPS OF OBSERVATIONS WHEN THE RATIOS OF THE POPULAT	BTOKA51	324
TICLE SIZE DISTRIBUTION BASED ON OBSERVED WEIGHTS OF	GROUPS OF PARTICLES ESTIMATION OF PAR	TECH 65	505
LIKELIHOOD RATIOS OF STOCHASTIC PROCESSES RELATED BY	GROUPS OF TRANSFORMATIONS THE BEHAVIOR OF	AMS 65	529
THE SPREAD OF AN EPIDEMIC TO FIXED	GROUPS OF PARTICLES GROUPS OF TRANSFORMATIONS GROUPS WITHIN THE POPULATION GROUSE POPULATION DENSITIES GROUPS WITHIN THE POPULATION	BIOCS68	1007
POPULATION DIFFERENCES RETWEEN SPECIES	GROWING ACCORDING TO SIMPLE BIRTH AND DEATH PROCESSES	BIOCSOB BIOKA53	370
A GENERALIZATION OF THE LOGISTIC LAW OF	GROWTH	BIOCS69	577
STATISTICAL ASSOCIATION, A SKETCH OF ITS ORIGINS AND	GROWTH THE SOUTH AFRIGAN	SASJ 67	1
ANALYSIS OF	GROWTH AND DOSE RESPONSE CURVES	BIOCS69	357
MARKET LINEAR RELATIONSHIPS IN	GROWTH AND DOSE RESPONSE CURVES GROWTH AND INDUSTRY CONCENTRATION GROWTH AND SIZE STUDIES	JASA 68	22B
A MATHEMATICAL ANALYSTS OF THE	CROWTH AND SPREAD OF BREAST CANCER	BIOCS69	95
A MULTI-DIMENSIONAL LINEAR		AMS 68	
SELECTION FOR AN OPTIMUM	CROWTH CURVE	BIOCS68	
ANALYSIS OF VARIANCE MODEL USEFULL ESPECIALLY FOR	GROWTH CURVE PROBLEMS A CENERALIZED MULTIVARIATE	BIOKA64	313
A PROBABILITY STRUCTURE FOR NOTES. A NOTE ON THE ANALYSIS OF		BIOCS67 BIOCS6B	
	GROWTH CURVES /LEAST SQUARES WHEN THE PARAMETERS A		
	GROWTH DURING A DEVELOPMENT TESTING PROGRAM		
OF MAXIMUM LIKELIHOOD ESTIMATION OF THE LOGISTIC	GROWTH FUNCTION ASPECTS	JASA 66	697
		JASA 57	
THE STUDY OF POPULATION IN A TRANSIENT MARKOV CHAIN ARISING IN A RELIABILITY		BIOCS65	
	GROWTH MODEL ESTIMATION OF PARAMETERS GROWTH OF A RANDOM WALK	AMS 69	
	GROWTH OF A RECURRENT RANDOM WALK	AMS 66	
STOCHASTIC MODELS FOR THE POPULATION		BIOKA68	
		BIOCS66	
A MULTIVARIATE PALEONTOLOCICAL A TWO-DIMENSIONAL POISSON		BIOCS69 JRSSB65	
	GROWTH PROCESS WITH REMOVALS	JRSSB63	
ERAL FACTORS THE ANALYSIS OF POPULATION	GROWTH WHEN THE BIRTH AND DEATH RATES DEPEND UPON SEV	BIOCS69	NO.4
GENERALIZED DISTANCES	GROWTH-INVARIANT DISCRIMINANT FUNCTIONS AND		
TION 1947-1954 MARKET PARAMETER ESTIMATES AND AUTONOMOUS	GROWTH, COMPANY DIVERSIFICATION AND PRODUCT CONCENTRA	JASA 59	
	GROWTH, CORR. 59 812 GROWTH, SURVIVAL, WANDERING AND VARIATION OF THE LONG		
FILIATION WITH REFERENCES TO RELATED SOCIAL STU/ A	GUIDE TO THE LITERATURE ON STATISTICS OF RELIGIOUS AF	JASA 59	335
DISTRIBUTION ON	GUPTA'S ESTIMATES OF THE PARAMETERS OF THE NORMAL	BIOKA64	498
	H IS KNOWN /LE SIZE IN TWO-ACTION PROBLEMS WHEN THE		
SIMPLIFIED BETA-APPROXIMATIONS TO THE KRUSKAL-WALLIS		JASA 59	
POSTERIOR DISTRIBUTIONS THE EVALUATION OF RIGHT	H 106 CONTINUOUS SAMPLING PLANS UNDER THE ASSUMPTION HAAR MEASURE FOR CONVERGENCE IN PROBABILITY TO QUASI	AMS 65	440
1120111	THIRT MERCORE FOR CONTINUENCE OF THE CONTINUENCE OF		
ONS THEORETICAL GONSIDERATIONS REGARDING H. R. B.	HACK S SISIEM OF KANDOMIZATION FOR CROSS-CLASSIFICATI	D 1 011110 0	
	-HAENSZEL PROCEDURE CHI-SQUARE TESTS		690

HAL - HOM TITLE WORD INDEX

```
DISCUSSION OF THE PAPERS OF MESSRS. HALD, WETHERILL AND COX
                                                                                                              TECH 60 361
                            ESCAPE PROBABILITY FOR A HALF LINE
                                                                                                               AMS 64 1351
                                              USE OF HALF-NORMAL PLOTS IN INTERPRETING FACTORIAL TWO LEVEL TECH 59 311
 EXPERIMENTS
THEORY AND HYPOTHESIS TESTING
                                                      HALF-RECTIFIED TRUNCATED DISTRIBUTIONS, SAMPLING
                                                                                                              TECH 69
                       THE DISTRIBUTION OF THE MEAN HALF-SQUARE SUCCESSIVE DIFFERENCE
                                                                                                              BIOKA67
                                                  THE HALF-TABLE RATIO ESTIMATOR FOR A SIMPLE EXPONENTIAL
                                                                                                              BIOCS69
                                                                                                                       420
                                       THE USE OF THE HANKEL TRANSFORM IN STATISTICS. I. CENERAL THEORY AND BIOKA54
 EXAMPLES
                                                                                                                        44
COMPUTATION
                         THE USE OF THE HANKEL TRANSFORM IN STATISTICS. II. METHODS OF A COMPARISON OF A MODIFIED 'HANNAN' AND THE BUREAU OF LABOR STATISTICS
                                                                                                              BTOKA54
                                                                                                                        344
                                                                                                              JASA 65
                                                                                                                        442
PS SAMPLING SCHEME, A GENERALIZATION OF A METHOD OF HANURAV
                                                                                                AN EXACT (PI) JRSSB68
                                                                                                                        556
                         ESTIMATION OF SPECTRA AFTER HARD CLIPPING OF GAUSSIAN TIME PROCESSES
                                                                                                              TECH 67
                                                                                                                        391
                                   SHORT PROOF OF DR HARLEY'S THEOREM ON THE CORRELATION COEFFICIENT
                                                                                                                        571
                                                                                                              BIOKA58
APPLICATION TO HOG PRODUCTION
                                                      HARMONIC ANALYSIS OF SEASONAL VARIATION WITH AN
                                                                                                              JASA 62
                                                                                                                        655
                                                      HARMONIC ANALYSIS OF THE HUMAN FACE
                                                                                                              BIOCS65
                                                                                                                        491
 OF THE SPECTRAL DENSITY FUNCTION IN THE PRESENCE OF HARMONIC COMPONENTS
                                                                                                   ESTIMATION JRSSB64
                                                                                                                        123
                              COMPARISON OF ANOVA AND HARMONIC COMPONENTS OF VARIANCE
                                                                                                              TECH 69
  EXTENSIONS OF A LIMIT THEOREM OF EVERETT, ULAM AND HARRIS ON MULTITYPE BRANCHING PROCESSES TO A BRANCHIN AMS 67
                                                                                                                        992
                      ON DISTRIBUTIONS FOR WHICH THE HARTLEY-KHAMIS SOLUTION OF THE MOMENT-PROBLEM IS
                                                                                                              BTOKA51
                                                                                                                        74
        LARGE SAMPLE TABLES OF PERCENTAGE POINTS FOR HARTLEY'S CORRECTION TO BARTLETT'S CRITERION FOR TEST BIOKA62
                                                                                                                        4B7
                                 AN INVESTIGATION OF HARTLEY'S METHOD FOR FITTING AN EXPONENTIAL CURVE
                                                                                                                        281
                                                                                                              BIOKA59
                              OBITUARY, GORDON M. L. HASKELL
                                                                                                              BIOCS67
                                                                                                                        850
                                                                       DISCUSSION OF 'ESTIMATION OF PARAMET TECH 66
ERS FOR A MIXTURE OF NORMAL DISTRIBUTIONS! BY VICTOR HASSELBLAD
                                                                                                                        445
                                                  THE HAUSA PROBLEM AND SOME APPROXIMATIONS TO THE REQUIRED BIOKA63
 PROBABILITY
                                                                                                                        514
                                                      HAZARD ANALYSIS. I
                                                                                                              BIOKA64
              A CONFIDENCE REGION FOR THE LOC-NORMAL HAZARD FUNCTION
                                                                                                              TECH 69
                                                                                                                        387
                                               RANDOM HAZARD IN RELIABILITY PROBLEMS
                                                                                                              TECH 63
                                                                                                                        211
                ESTIMATION OF JUMPS, RELIABILITY AND HAZARD RATE
                                                                                                               AMS 65 1032
   TABLES OF BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE
                                                                                                              JASA 65
                                                                                                                        872
          OF PROBABILITY DISTRIBUTIONS WITH MONOTONE HAZARD RATE
                                                                                                   PROPERTIES AMS 63 375
      FOR THE CLASS OF DISTRIBUTIONS WITH INCREASING HAZARD RATE
                                                                                             TOLERANCE LIMITS
                                                                                                               AMS 64 1561
              BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE, I
                                                                                                               AMS 64 1234
              BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE, II
                                                                                                               AMS 64 1258
LIABILITY OF SAFETY SYSTEMS FOR PLANTS MANUFACTURING HAZARDOUS PRODUCTS /ICAL MODEL OF EVALUATING THE RE TECH 59 293
                     TIME-DEPENDENT SOLUTION OF THE 'HEAD-OF-THE-LINE' PRIORITY QUEUE
                                                                                                              JRSSB62
                                                                                                                        91
  OF THE HOUSEHOLD INTERVIEW DESIGN FOR THE NATIONAL HEALTH SURVEY
                                                                                                SOME PROBLEMS JASA 59
                                                                                                                         69
G AND LUNG C/ PROBLEMS OF STATISTICAL INFERENCE IN HEALTH WITH SPECIAL REFERENCE TO THE CIGARETTE SMOKIN JASA 69
                                                                                                                       739
                            A REVIEW OF 'SMOKING AND HEALTH'
                                                                                                              JASA 65
                                                                                                                        722
 ON THE SIZE OF AN EPIDEMIC AND THE NUMBER OF PEOPLE HEARING A RUMOUR
                                                                                                              JRSSB66
                                                                                                                       487
                                        ON QUEUES IN HEAVY TRAFFIC
                                                                                                                        383
                                                                                                              JRSSB62
                                APPRECIATION, OTTOKAR HEINISCH (70TH BIRTHDAY, 23RD APRIL, 1966)
                                                                                                              BIOCS66
                                                                                                                       195
                                      ANOTHER LOOK AT HENDERSON'S METHODS OF ESTIMATING VARIANCE COMPONENTS BIOCS68
 (WITH DISCUSSION)
 OF THE VARIANCE UNDER TRUNCATION AND VARIATIONS OF HENSEN'S INEQUALITY
                                                                                                 MONOTONICITY AMS 69 1106
                                 WHERE DO WE CO FROM HERE
                                                                                                              JASA 60
                                                                                                                        80
      PROBABILITY OF OBTAINING NEGATIVE ESTIMATES OF HERITABILITY
                                                                                                              BIOCS68
                                                                                                                       517
                CONFIDENCE INTERVALS FOR MEASURES OF HERITABILITY
                                                                                                              BIOCS69
                                                                                                                       424
    NOTES. OPTIMUM EXPERIMENTAL DESIGNS FOR REALIZED HERITABILITY ESTIMATES
                                                                                                              BTOCS67
                                                                                                                        361
         CORRECTION TO 'COEFFICIENTS OF VARIATION OF HERITABILITY ESTIMATES OBTAINED FROM VARIANCE ANALYSE BIOCS65
                                                                                                                       265
                                       ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH RELATED DAMS
                                                                                                              BIOCS69 NO 4
H UNEQUAL SUBCLASS NUMBERS
                                        ESTIMATES OF HERITABILITY FROM TRANSFORMED PERCENTACE SIB DATA WIT BIOCS65 1001
                    AN ALTERNATIVE DERIVATION OF THE HERMITE DISTRIBUTION
                                                                                                                        627
                                                                                                              BIOKA66
                             SOME PROPERTIES OF THE 'HERMITE' DISTRIBUTION
                                                                                                              BIOKA65
                      THE CHARACTERISTIC FUNCTION OF HERMITIAN QUADRATIC FORMS IN COMPLEX NORMAL VARIABLES BIOKAGO
                                                                                                                        199
FACTORIAL ARRANGEMENTS II TWO WAY ELIMINATION OF HETEROGENEITY
ESTS OF THE HYPOTHESIS OF EQUAL MEANS UNDER VARIANCE HETEROGENEITY
                                                                          APPLICATIONS OF THE CALCULUS FOR AMS 64
                                                                         SMALL SAMPLE BEHAVIOUR OF CERTAIN T BIOKA60
                                                                                                                       345
                                A TEST FOR VARIANCE HETEROGENEITY IN THE RESIDUALS OF A GAUSSIAN MOVING
AVERAGE
                                                                                                             JRSSB63
                                                                                                                        451
           ESTIMATION PROBLEMS WHEN A SIMPLE TYPE OF HETEROCENEITY IS PRESENT IN THE SAMPLE
                                                                                                              BIOKA51
                                                                                                                        90
                                                     HETEROGENEITY OF ERROR VARIANCES IN A RANDOMIZED
                                                                                                                        275
BLOCK DESIGN
                                                                                                              BIOKA57
ATIFICATION (ADDENDUM 67/
                             THE CHI-SQUARE TEST FOR HETEROGENEITY OF PROPORTIONS AFTER ADJUSTMENT FOR STR JRSSB66
                                                                                                                       150
                             USE OF RANCE IN TESTING HETEROGENEITY OF VARIANCE
                                                                                                              BIOKA66
                                                                                                                       221
                                                                                                                       229
                                ALTERNATIVE TESTS FOR HETEROGENEITY OF VARIANCE, SOME MONTE CARLO RESULTS
                                                                                                              BIOKA66
                                 THE DISTRIBUTION OF HETEROCENEITY UPON INBREEDINC
                                                                                                              JRSSB54
                                                                                                                        88
CONSTRUCTION OF DESIGNS FOR TWO-WAY ELIMINATION OF HETEROGENEITY, I ESTS OF THE HYPOTHESIS OF EQUAL MEANS UNDER VARIANCE HETEROGENEITY'
                                                                                             SOME METHODS OF JASA 66 1153
                                                                        /SMALL SAMPLE BEHAVIOUR OF CERTAIN T BIOKA61
                                                      HETEROGENEOUS ERROR VARIANCES IN SPLIT-PLOT
EXPERIMENTS
                                                                                                              BIOKA57
                 LIFE-TESTING RESULTS BASED ON A FEW HETEROCENEOUS LOCNORMAL OBSERVAITONS
                                                                                                              JASA 67
                                                                                                                        45
    METHODS OF ESTIMATING THE PARAMETERS OF DISCRETE HETEROGENEOUS POPULATIONS
                                                                                                        SOME JRSSB56
                                                                                                                       222
TISTICAL ANALYSIS USING LOCAL PROPERTIES OF SMOOTHLY HETEROMORPHIC STOCHASTIC SERIES
                                                                                                          STA BIOKA57
                                                                                                                       454
                                                                          VARIANCE OF WEIGHTED REGRESSION JASA 69 NO.4
 ESTIMATORS WHEN SAMPLING ERRORS ARE INDEPENDENT AND HETEROSCEDASTIC
                              GROUPING ESTIMATORS IN HETEROSCEDASTIC DATA (CORR. 68 1550)
                                                                                                              JASA 68 182
                                      ESTIMATION IN A HETEROSCEDASTIC REGRESSION MODEL
                                                                                                              JASA 68 552
                                       A NEW TEST FOR HETEROSKEDASTICITY
                                                                                                              JASA 69 316
                        ON THE TWO SAMPLE PROBLEM, A HEURISTIC METHOD FOR CONSTRUCTING TESTS
                                                                                                               AMS 61 1091
F TEST FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HIERARCHAL DESICN WITH A MIXED MODEL /E. THE QUASI- BIOCS66 937
HIERARCHICAL BIRTH AND DEATH PROCESSES. I. THEORY BIOKA60 235
                                                      HIERARCHICAL BIRTH AND DEATH PROCESSES. II.
                                                                                                              BIOKA60 245
         SIMULTANEOUS TESTS BY SEQUENTIAL METHODS IN HIERARCHICAL CLASSIFICATIONS
                                                                                                              BIOKA64
                                                                                                                       439
                                    AN ALGORITHM FOR HIERARCHICAL CLASSIFICATIONS
                                                                                                              BIOCS69 165
              BAYESIAN ANALYSIS OF A THREE-COMPONENT HIERARCHICAL DESIGN MODEL
                                                                                                              BIOKA67
                                                                                                                       109
                                                                                                              JASA 63 236
                                                      HIERARCHICAL CROUPING TO OPTIMIZE AN OBJECTIVE
FUNCTION
                      APPLICATION OF AN ESTIMATOR OF HICH EFFICIENCY IN BIVARIATE EXTREME VALUE THEORY
                                                                                                              JASA 69 NO.4
                          ON A LIMIT DISTRIBUTION OF HIGH LEVEL CROSSINGS OF A STATIONARY CAUSSIAN PROCESS AMS 68 2108
                             STATISTICAL THEORY OF A HIGH-SPEED PHOTOELECTRIC PLANIMETER
                                                                                                              BIOKA68 419
                              QUALITY AND QUANTITY IN HIGHER EDUCATION
                                                                                                              JASA 65
```

TITLE WORD INDEX HAL - HOM

OF COMMUNACIA A DIORCE	TOURS FRAIR WILL WALL WORKS TON IN COME COUNTRIES	1101 00	110
		JASA 69	
MACHINE COMPUTATION OF HI		JASA 56	489
			50
		JRSSB63	305
OF NORMAL VARIATES WHICH ARE UNCORRELATED OF A HI			175
AR AUTO-REGRESSIVE MODEL. II. NULL DISTRIBUTIONS FOR H		BIOKA56	186
	ICHER-ORDER PROPERTIES OF A STATIONARY POINT PROCESS		413 344
THE CENERAL BULK QUEUE AS A H: BABILISTIC AND STATISTICAL MODELS AND P/ SURVEY OF H:		JRSSB62	207
N THE HISTORY OF PROBABILITY AND STATISTICS. XV. THE H			1
	ISTORICAL NOTES ON THE WILCOXON UNPAIRED TWO-SAMPLE		356
LABOR FORCE, A CASE STUDY IN THE INTERPRETATION OF H			71
FREQUENCY RESPONSE FROM STATIONARY NOISE, TWO CASE H		TECH 61	245
		JASA 61	824
THE COMPUTER AND ITS RELEVANCE TO SIMULATION, C/ A HI			27
DOM MECHANISMS IN TALMUDIC LITERAT/ STUDIES IN THE H			316
	ISTORY OF PROBABILITY AND STATISTICS. I. DICING AND		1
, , , , , , , , , , , , , , , , , , , ,	ISTORY OF PROBABILITY AND STATISTICS. II. THE BEGINN		1
	ISTORY OF PROBABILITY AND STATISTICS. III. A NOTE ON		241
	ISTORY OF PROBABILITY AND STATISTICS. IV. A NOTE ON		248
	ISTORY OF PROBABILITY AND STATISTICS. IX. BIOGRAPHIC		293
	ISTORY OF PROBABILITY AND STATISTICS. V.A NOTE ON	BIOKA57	260
	ISTORY OF PROBABILITY AND STATISTICS. VI. A NOTE ON	BIOKA57	515
	ISTORY OF PROBABILITY AND STATISTICS. VII. THE PRINC		
	ISTORY OF PROBABILITY AND STATISTICS. VIII. DE MORCA		282
	ISTORY OF PROBABILITY AND STATISTICS. X. WHERE SHALL		447
	ISTORY OF PROBABILITY AND STATISTICS. XI. DANIEL BER		1
OF FATE STUDIES IN THE H	ISTORY OF PROBABILITY AND STATISTICS. XII. THE BOOK	BIOKA61	220
	ISTORY OF PROBABILITY AND STATISTICS. XIII. ISAAC TO		204
	ISTORY OF PROBABILITY AND STATISTICS. XIV. SOME INCI	BIOKA65	3
		BIOKA68	269
	ISTORY OF PROBABILITY AND STATISTICS. XV. THE HISTOR		1
	ISTORY OF PROBABILITY AND STATISTICS. XVII. SOME REF		341
	ISTORY OF PROBABILITY AND STATISTICS. XVIII. THOMAS		249
	ISTORY OF PROBABILITY AND STATISTICS. XX. SOME EARLY		445
	ISTORY OF PROBABILITY AND STATISTICS. XXI.ON THE EAR		459
	ISTORY OF PROBABILITY AND STATISTICS. XXII. PROBABIL		437
PROBABILITY AND STATISTICS, XIII. ISAAC TODHUNTER'S H		BIOKA63	204
	ITTING FOR STABLE PROCESSES ITTING PLACES FOR TRANSIENT STABLE PROCESS	AMS 67	
POWER OF THE BIVARIATE SIGN TEST OF BLUMEN AND HO			
	ODGES AND LEHMANN SHIFT ESTIMATOR IN THE TWO SAMPLE	AMS 66	
NULL DISTRIBUTION AND BAHADUR EFFICIENCY OF THE HO		AMS 62	803
	ODGES-LEHMANN ESTIMATES FOR SHIFT	AMS 65	174
OF DANIEL/ GORREGTIONS TO 'A RELATIONSHIP BETWEEN HO		AMS 61	619
Y OF A GIRCULAR DISTRIBUTION ON HO	ODGES'S BIVARIATE SIGN TEST AND A TEST FOR UNIFORMIT	BIOKA69	446
ON AN INEQUALITY OF HO		AMS 67	
	•	JASA 69	907
DISCUSSION OF HO		AMS 65	401
	OEL AND LEVINE ON EXTRAPOLATION	AMS 65	
OF SEASONAL VARIATION WITH AN APPLICATION TO HO CONSUMERS' PROPENSITIES TO HO		JASA 60	655 469
THE RELIABILITY OF CONSUMER SURVEYS OF FINANCIAL HO		JASA 65	148
ON CROUPING FOR MAXIMUM HO		JASA 58	789
RETE UNIFORM FINITE POPULATIONS AND A RANGE TEST FOR HO			
	OMOCENEITY AGAINST ORDERED ALTERNATIVES	AMS 63	945
	OMOCEMETRY ADDITED APPENDED SECTIONS AND INC		368
		JASA 63	97
	OMOGENEITY FOR ORDERED ALTERNATIVES	BIOKA59	36
	OMOCENEITY FOR ORDERED ALTERNATIVES. II	BIOKA59	
	OMOCENEITY FOR ORDERED VARIANCES		195
	OMOCENEITY FOR POPULATIONS COMPOSED OF NORMAL DISTRI		
THE RAPID CALCULATION OF CHI-SQUARE AS A TEST OF HO		BIOKA55 BIOKA68	
		BIOKA68	
S CORRECTION TO BARTLETT'S CRITERION FOR TESTING THE HO			
		JASA 69	
	OMOGENEITY OF GROUP MEANS THE EFFECT		
(WITH DISCUSSION) A TEST OF HO	OMOGENEITY OF MEANS UNDER RESTRICTED ALTERNATIVES		
		BIOKA55	
ON BARTLETT'S TEST AND LEHMANN'S TEST FOR HO		AMS 69	
	OMOGENEITY OF VARIANCES IN A TWO-WAY CLASSIFICATION		
		BIOCS65	
		BIOKA66	
TESTING FOR HO ERICAL NORMAL DISTRIBUTIONS, IV, THE DISTRIBUTION OF HO		BIOKA66	
	OMOGENEOUS BIRTH-AND-DEATH PROCESS AND ITS INTECRAL		
		JRSSB67	
OF EQUALITY OF TWO NORMAL POPULATION MEANS ASSUMING HO			
	OMOGENEOUS FIELDS ARE EITHER CONTINUOUS OR VERY IRRE		
HO	OMOGENEOUS GAUSS-MARKOV RANDOM FIELDS	AMS 69	1625
		AMS 64	566
CONCERNING THE STRONG LAW OF LARGE NUMBERS FOR NON-HO			
SAMPLE PATH VARIATIONS OF HO	OMOGENEOUS PROCESSES	AMS 69	
SAMPLE PATH VARIATIONS OF HO	OMOGENEOUS PROCESSES		
SAMPLE PATH VARIATIONS OF HO INTERPOLATION OF HO THE FIRST PASSAGE TIME DENSITY FOR HO	OMOGENEOUS PROCESSES OMOGENEOUS RANDOM FIELDS ON DISCRETE GROUPS OMOGENEOUS SKIP-FREE WALKS ON THE CONTINUUM	AMS 69 AMS 63	251 1003
SAMPLE PATH VARIATIONS OF HO INTERPOLATION OF HO THE FIRST PASSAGE TIME DENSITY FOR HO	OMOGENEOUS PROCESSES	AMS 69 AMS 63	251 1003

HOM - IDE TITLE WORD INDEX

```
SOME TESTS FOR HOMOSCEDASTICITY
ME EMPIRICAL DISTRIBUTIONS OF BIVARIATE T-SQUARE AND HOMOSCEDASTICITY CRITERION M UNDER UNEQUAL VARIANCE A JASA 63 1048
TWO-SIDED BOUNDARY
                                            A WIENER-HOPF TYPE METHOD FOR A GENERAL RANDOM WALK WITH A
                                                                                                            AMS 63 1168
ESTIMATION
                                                  ON HOROVITZ AND THOMPSON'S T-ONE CLASS OF LINEAR
                                                                                                            AMS 67 1882
                          AN OPTIMUM PROPERTY OF THE HORVITZ-THOMSON ESTIMATE
                                                                                                            JASA 67 1013
                     GRAPHICALLY ORIENTED TESTS FOR HOST VARIABILITY IN DILUTION EXPERIMENTS
                                                                                                           BIOCS67
                                                                                                                    269
                                   OPTIMIZATION OF A HOT ROLLING MILL
                                                                                                            JRSSB67
                                                                                                                    300
                          KOLMOGOROV'S REMARK ON THE HOTELLING CANONICAL CORRELATIONS
                                                                                                           BIOKA66
                                                  ON HOTELLING'S GENERALIZATION T-SQUARE
                                                                                                           BIOKA59
DISPERSION
                                 THE DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF MULTIVARIATE
ANALYSIS OF VARIANCE
                                                     HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVARIATE
                                                                                                           JRSSB63
                                                                                                                    358
INEAR DIFFERENTIAL EQUATIONS FOR THE DISTRIBUTION OF HOTELLING'S GENERALIZED T-SQUARE-SUB-ZERO /TEM OF L AMS 68
                                   THE ROBUSTNESS OF HOTELLING'S T-SQUARE
                                                                                                           JASA 67
                                                                                                                    124
 ON SOME ASYMPTOTICALLY NONPARAMETRIC COMPETITORS OF HOTELLING'S T-SQUARE, CORR. 65 1583
                                                                                                                    160
                                MINIMAX CHARACTER OF HOTELLING'S T-SQUARED TEST IN THE SIMPLEST CASE
                                                                                                             AMS 63 1524
E (CORR. 69 719)
                                      SINGULARITY IN HOTELLING'S WEIGHING DESIGNS AND A GENERALIZED INVERS AMS 66 1021
                                                  ON HOTELLING'S WEIGHING DESIGNS UNDER AUTO-CORRELATION
OF ERRORS
                                                                                                            AMS 65 1829
                            REGIONAL DISPARITIES IN HOUSEHOLD COMSUMPTION IN INDIA
                                                                                                            JASA 67
                                                                                                                    143
             ON ESTIMATING EPIDEMIC PARAMETERS FROM HOUSEHOLD DATA
                                                                                                           BIOKA64
                                                                                                                    511
RIABLE CHANCE OF INFECTION FOR THE ANALYSIS OF INTRA-HOUSEHOLD EPIDEMICS /E OF CHAIN-BINOMIALS WITH A VA BIOKA53
                                                                                                                    279
               CHANGES IN THE RATE AND COMPONENTS OF HOUSEHOLD FORMATION
                                                                                                           JASA 60
                                                                                                                    268
                     ESTIMATING THE SERVICE LIFE OF HOUSEHOLD GOODS BY ACTUARIAL METHODS, CORR 57 57B
                                                                                                           JASA 57
                                                                                                                    175
SURVEY
                                SOME PROBLEMS OF THE HOUSEHOLD INTERVIEW DESIGN FOR THE NATIONAL HEALTH
                                                                                                           JASA 59
                                                                                                                     69
A STUDY OF RESPONSE ERRORS IN EXPENDITURES DATA FROM HOUSEHOLD INTERVIEWS
                                                                                                           JASA 64
L MEETING FOR WILLIAM N. HURWITZ. THE DEVELOPMENT OF HOUSEHOLD SAMPLE SURVEYS /ATISTICAL SOCIETY MEMORIA JASA 69 NO.4
          AN ANALYSIS OF CONSISTENCY OF RESPONSE IN HOUSEHOLD SURVEYS
                                                                                                           JASA 61 320
   STATISTICAL PROGRAM DEVELOPMENT AND THE SURVEY OF HOUSEHOLDS
                                                                                                PHILIPPINE JASA 5B
                                                                                                                     78
MPARISON OF THREE STRATEGIES OF COLLECTING DATA FROM HOUSEHOLDS
                                                                                             A CRITICAL CO JASA 67
                                                                                                                    976
RAMETERS FROM THE SPREAD OF A DISEASE BY CONSIDERING HOUSEHOLDS OF TWO.
                                                                                      THE ESTIMATION OF PA BIOKA65
                                                                                                                    271
                       THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SAVING
                                                                                                           JASA 64
                                                                                                                    737
                 ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A GOAL
                                                                                                             AMS 69
                                                                                                                     66
 IN MULTIVARIATE ANALYSIS, BASED ON LECTURES BY P.L. HSU /BIANS OF CERTAIN MATRIX TRANSFORMATIONS USEFUL BIOKA51
                                                                                                                    345
R TESTING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL HYPOTHESIS /NS OF LIKELIHOOD RATIO CRITERIA FO AMS 67 1160
                                          THE CONVEX HULL OF A RANDOM SET OF POINTS
                                                                                                           BIOKA65
                                                                                                                    331
                                          THE CONVEX HULL OF PLANE BROWNIAN MOTION
                                                                                                            AMS 63
                                                                                                                    327
                           LIMITING SETS AND CONVEX HULLS OF SAMPLES FROM PRODUCT MEASURES
                                                                                                             AMS 59 1824
       SCOOLING, EXPERIENCE, AND GAINS AND LOSSES IN HUMAN CAPITAL THROUGH MIGRATION
                                                                                                           JASA 67
                                                                                                                    B75
                           HARMONIC ANALYSIS OF THE HUMAN FACE
                                                                                                           BIOCS65
                                                                                                                    491
 A CORRELATION BETWEEN THE SEXES OF ADJACENT SIBS IN HUMAN FAMILIES
                                                                                         THE DETECTION OF JASA 65 1035
     TESTING HYPOTHESES AND ESTIMATING PARAMETERS IN HUMAN GENETICS IF THE AGE OF ONSET IS RANDOM
                                                                                                           BIOKA63
                                                                                                                    265
                                    CONVERGENCE OF A HUMAN POPULATION TO A STABLE FORM
                                                                                                           JASA 6B
                                                                                                                    395
                                                                                                            JASA 58
                KARL PEARSON. AN APPRECIATION ON THE HUNDREDTH ANNIVERSARY OF HIS BIRTH
                                                                                                                     23
 MEMORIAL MEETING FOR WILLIAM N HURWITZ ON WILLIAM HURWITZ
                                                                           WASHINGTON STATISTICAL SOCIETY JASA 69 NO.4
                                                                                          WASHINGTON JASA 69 NO.4
 STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ.
                                                              CHANGES IN CENSUS METHODS
 STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. COMMENTS
                                                                                                WASHINGTON JASA 69 NO.4
 STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. ON WILLIAM HURWITZ
                                                                                                WASHINGTON JASA 69 NO.4
 STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. PROFESSOR WILLIAM N. HURWITZ
                                                                                               WASHINGTON JASA 69 NO.4
 STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. SOME BASIC PRINCIPLES OF STATISTICAL SURVEYS JASA 69 NO.4
 STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. THE DEVELOPMENT OF HOUSEHOLD SAMPLE SURVEYS JASA 69 NO.4
                                                   A HYBRID PROBLEM ON THE EXPONENTIAL FAMILY
                                                                                                            AMS 65 1185
 NOTES ON THE EVALUATION OF VARIABILITY IN ISOGENIC HYBRIDS
                                                                                                           BIOCS66
                                                                                                                   623
                                              RANDOM HYDRODYNAMIC FORCES ON OBJECTS
                                                                                                            AMS 67
                                                                                                                     37
                                                     HYPER-ADMISSIBILITY AND OPTIMUM ESTIMATORS FOR
SAMPLING FINITE POPULATIONS
                                                                                                            AMS 68
                                                                                                                    621
                          A TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS
                                                                                                           JASA 64
                                                                                                                    133
                             FITTING THE RECTANGULAR HYPERBOLA
                                                                                                           8I0CS66
                                         GENERALIZED HYPERBOLIC SECANT DISTRIBUTIONS
                                                                                                           JASA 68
                                                                                                                    329
                     MODIFIED SAMPLING, BINOMIAL AND HYPERGEOMETRIC CASES
                                                                                                           TECH 69 NO 4
                          PROPERTIES OF THE EXTENDED HYPERGEOMETRIC DISTRIBUTION
                                                                                                            AMS 65
                                                                                                                    938
MPLING INSPECTION PLANS BASED ON PRI/ THE COMPOUND HYPERGEOMETRIC DISTRIBUTION AND A SYSTEM OF SINGLE SA TECH 60
                                                                                                                    275
                                         GENERALIZED HYPERGEOMETRIC DISTRIBUTIONS
                                                                                                           JRSSB56
                                                                                                                    202
                                                    HYPERGEOMETRIC FUNCTIONS IN SEQUENTIAL ANALYSIS
                                                                                                            AMS 65 1B70
ETWEEN NEYMAN AND BAYES CONFIDENCE INTERVALS FOR THE HYPERGEOMETRIC PARAMETER
                                                                                        THE RELATIONSHIP B TECH 68
                                                                                                                    199
      A QUICKLY CONVERGENT EXPANSION FOR CUMULATIVE HYPERGEOMETRIC PROBABILITIES, DIRECT AND INVERSE
                                                                                                                    317
                                                                                                           BIOKA54
     'A QUICKLY CONVERGENT EXPANSION FOR CUMULATIVE HYPERGEOMETRIC PROBABILITIES, DIRECT AND INVERSE'
                                                                                                           BIOKA55
                                                                                                                    277
  APPROXIMATIONS TO DISTRIBUTION FUNCTIONS WHICH ARE HYPERGEOMETRIC SERIES
                                                                                                           BIOKA68
                                                                                                                    243
 A METHOD OF SEQUENTIAL ESTIMATION APPLICABLE TO THE HYPERGEOMETRIC, BINOMIAL, POISSON, AND EXPONENTIAL DI AMS 65 1494
                                                                                                            AMS 68 1473
    DISTRIBUTIONS DETERMINED BY CUTTING SIMPLEX WITH HYPERPLANES
      GEOMETRICAL PROBABILITY AND RANDOM POINTS ON A HYPERSPHERE
                                                                                                            AMS 67
                                                                                                                    213
                   PROBABILITY BOUNDS FOR A UNION OF HYPERSPHERICAL CONES
                                                                                                           JRSS865
                                                                                                                     57
       QUADRATIC EXTRAPOLATION AND A RELATED TEST OF HYPOTHESES
                                                                                                           JASA 56
                                                                                                                    644
ON THE INDEPENDENCE OF TESTS OF RANDOMNESS AND OTHER HYPOTHESES
                                                                                                           JASA 57
                                                                                                                     53
ON THE RESOLUTION OF STATISTICAL HYPOTHESES
ON OPTIMAL ASYMPTOTIC TESTS OF COMPOSITE STATISTICAL HYPOTHESES
                                                                                                           JiSA 61 978
                                                                                                            AMS 67 1845
                               ON ITERATED TESTS OF HYPOTHESES
                                                                                                           JiSA 67
                                                                                                                    520
                                            QUANTUM HYPOTHESES
                                                                                                           BIrKA55
                                                                                                                     45
                        SIMULTANEOUS TESTS OF LINEAR HYPOTHESES
                                                                                                           BIOKA55
                                                                                                                    441
       SOME RESULTS ON TESTS OF SEPARATE FAMILIES OF HYPOTHESES
                                                                                                           BIOKA68
                                                                                                                    355
     TESTING THE APPROXIMATE VALIDITY OF STATISTICAL HYPOTHESES
                                                                                                           JRSSB54
                                                                                                                    261
                             CONFIRMING STATISTICAL HYPOTHESES
                                                                                                           JRSSB57
                                                                                                                    125
                      THE WILCOXON TEST AND NON-NULL HYPOTHESES
                                                                                                           JRSSB60
                                                                                                                    402
    FURTHER RESULTS ON TESTS OF SEPARATE FAMILIES OF HYPOTHESES
                                                                                                           JRSSB62
                                                                                                                    406
                          RANK ORDER TESTS OF LINEAR HYPOTHESES
                                                                                                           JRSSB68 483
  LEAST FAVORABLE DISTRIBUTIONS IN TESTING COMPOSITE HYPOTHESES
                                                                                                           AMS 61 1034
                                                                                                THE USE OF
 BAYES APPROACH TO THE TESTING OF CERTAIN PARAMETRIC HYPOTHESES
                                                                                              AN EMPIRICAL AMS 63 1370
THE LIKELIHOOD RATIO FOR TESTING MULTIVARIATE LINEAR HYPOTHESES
                                                                                          DISTRIBUTION OF
                                                                                                           AMS 61 333
    TECHNIQUE FOR ESTIMATION AND TESTING STATISTICAL HYPOTHESES
                                                                            CONFIDENCE CURVES, AN OMNIBUS JASA 61 246
```

TEST WHEN THE MOMENT IS INFINITE UNDER ONE OF THE AMPLE SIZE FOR SEQUENTIAL TESTS. I. TESTS FOR SIMPLE	HANDOMINGOG	TNADMICCIDILIMY OR MUR DROW THRADIAND	4140 00	1.407
AMPLE SIZE FUR SEQUENITAL TESIS, I, TESIS FUR SIMPLE				
TURODULATON DOR DISCRIPTIVISTON DEBUIDDN BUO CONDOCTED				
INFORMATION FOR DISCRIMINATION BETWEEN TWO COMPOSITE				
IANCE MATRIX AND WILKS' CRITERION FOR TESTS OF THREE				
LE SPACE IN TESTS OF AN IMPORTANT CLASS OF COMPOSITE				
PLE SIZE FOR SEQUENTIAL TEST. II. TESTS OF COMPOSITE OF THE LIKELIHOOD RATIO CRITERIA FOR TESTINC LINEAR				190
		,		
FUNCTION TESTS OF CRITICAL RECIONS FOR TESTS OF INTERVAL		ABOUT THE PARAMETERS OF THE LOGISTIC	BIOKA66	535
		AND ESTIMATING PARAMETERS IN HUMAN GENETIC	JASA 66	204 265
		AND INDUCED TESTS	BIOKA63	41
DISCRIMINANT FUNCTION BETWEEN COMPOSITE				339
ON THE SMOOTH EMPIRICAL BAYES APPROACH TO TESTING OF			BIOKA68	83
MODIFIED KOLMOGOROV-SMIRNOV TESTS OF APPROXIMATE	HYPOTHESES	AND THEIR PROPERTIES SOME		
POWER COMPARISONS OF TESTS OF TWO MULTIVARIATE			BIOKA67	
		CONCERNING MATCHED SAMPLES (CORR. 69 194)		468
FACTORIAL INHERITANCE NOTES. STATISTICAL TESTS OF				429
		CONCERNING THE THREE-PARAMETER WEIBULL	JASA 6B	B53
CLASS OF SEQUENTIAL PROCEDURES FOR CHOOSING ONE OF K	HYPOTHESES	CONCERNING THE UNKNOWN DRIFT PARAMETER OF	AMS 67	1376
SEQUENTIAL DECISION PROCEDURE FOR CHOOSING ONE OF K	HYPOTHESES	CONCERNING THE UNKNOWN MEAN OF A NORMAL DI	AMS 63	549
		FOR MULTIPLE TREATMENTS, A SIGNIFICANCE	JASA 63	216
THE EFFECT OF TRUNCATION ON TESTS OF			AMS 65	
		FOR RANDOMIZED EXPERIMENTS WITH NONCONTROL		699
			AMS 67	681
CONSISTENT STATISTICS FOR ESTIMATING AND TESTING			BIOKA66	
			BIOKA67	659 228
A NOTE ON THE EQUIVALENCE OF TWO TEST CRITERIA FOR		IN CATEGORICAL DATA IN MULTINOMIAL EXPERIMENTS, CORR. 66 1246	JASA 66	228 236
SOME PROBLEMS INVOLVING LINEAR			BIOKA59	236 49
			AMS 67	
		IN THE COMPOSITE CASE, CORR. 63	AMS 62	
ULL DISTRIBUTIONS FOR HIGHER ORDER SCHEM/ TESTS OF				186
		IN THE LINEAR AUTOREGRESSIVE MODEL. PART		405
SOME TESTS OF SEPARATE FAMILIES OF			BIOKA67	39
EN THE RATIOS OF THE POPULATION V/ TESTS OF LINEAR	HYPOTHESES	IN UNIVARIATE AND MULTIVARIATE ANALYSIS WH	BIOKA54	19
ON THE	HYPOTHESES	OF 'NO INTERACTION' IN CONTINCENCY TABLES	BIOCS68	567
CONTINGENCY TABLES		OF 'NO INTERACTION' IN MULTI-DIMENSIONAL	TECH 6B	107
		OF NO THREE FACTOR INTERACTION IN CONTINGE		207
HEN SOME OUTLIERS ARE PRESENT, C/ ON SOME TESTS OF				548
, CORR. 64 12/ ASYMPTOTIC POWER OF TESTS OF LINEAR				877
AND LOWER PROBABILITY INFERENCES FOR FAMILIES OF				953
		WITH RESTRICTED ALTERNATIVES	JASA 65	
GENT TESTS AND LAGRANGIAN MULTIPLIER TESTS OF LINEAR TRIALS A BAYESIAN TEST OF SOME CLASSICAL				459 577
ON TESTING MORE THAN ONE		, WITH APPLICATIONS TO SEQUENTIAL CLINICAL	AMS 63	
A CLASS OF RANK ORDER TESTS FOR A GENERAL LINEAR			AMS 69	
ON COMPARING DIFFERENT TESTS OF THE SAME			BIOKA60	
NOTES ON VARIANCE-RATIO TESTS OF THE GENERAL LINEAR		SOME	BIOKA64	508
COMPARISONS AMONG TESTS OF THE GENERAL LINEAR		SENSITIVITY		
IN SCIENCE. THE SYMMETRIC TEST OF A COMPLETE	HVDOTHECTC			415
	UILOIHE212	STATISTICAL PROBLEMS	JASA 66	415
FUNCTIONS OF SOME TESTS OF THE MULTIVARIATE LINEAR	HYPOTHESIS	STATISTICAL PROBLEMS MONOTONICITY OF THE POWER	JASA 66 JASA 69	415 NO.4
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE	HYPOTHESIS HYPOTHESIS	STATISTICAL PROBLEMS MONOTONICITY OF THE POWER A SEQUENTIAL PROCEDURE FOR TESTING	JASA 66 JASA 69 AMS 64 JRSSB69	415 NO.4 200 NO.2
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL	HYPOTHESIS HYPOTHESIS HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES	JASA 66 JASA 69 AMS 64 JRSSB69 AMS 67	415 NO.4 200 NO.2 1160
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL	HYPOTHESIS HYPOTHESIS HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS	JASA 66 JASA 69 AMS 64 JRSSB69 AMS 67 JRSSB69	415 NO.4 200 NO.2 1160 NO.2
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR	HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES	JASA 66 JASA 69 AMS 64 JRSSB69 AMS 67 JRSSB69 JRSSB64	415 NO.4 200 NO.2 1160 NO.2 261
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR	HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T	JASA 66 JASA 69 AMS 64 JRSSB69 AMS 67 JRSSB69 JRSSB64 AMS 69	415 NO.4 200 NO.2 1160 NO.2 261 942
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR	HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T	JASA 66 JASA 69 AMS 64 JRSSB69 AMS 67 JRSSB69 JRSSB64 AMS 69 AMS 64	415 NO.4 200 NO.2 1160 NO.2 261 942 773
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR THE LINEAR EXAMINATION OF A QUANTUM	HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA	JASA 66 JASA 69 AMS 64 JRSSB69 AMS 67 JRSSB69 JRSSB64 AMS 69 AMS 64 BIOKA56	415 NO.4 200 NO.2 1160 NO.2 261 942 773 32
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR	HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POP	JASA 66 JASA 69 AMS 64 JRSSB69 AMS 67 JRSSB69 JRSSB69 AMS 64 BIOKA56 AMS 64	415 N0.4 200 N0.2 1160 N0.2 261 942 773 32 1807
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR EXAMINATION OF A QUANTUM RGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL A SHORT-CUT RULE FOR A ONE-SIDED TEST OF AL CONTINGENCY TABLES MAXIMUM ENTROPY FOR	HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POP FOR QUALITATIVE DATA PORMULATION, ESPECIALLY FOR MULTIDIMENSION	JASA 66 JASA 69 AMS 64 JRSSB69 AMS 67 JRSSB69 JRSSB64 AMS 69 AMS 64 BIOKA56 AMS 64 TECH 69	415 N0.4 200 N0.2 1160 N0.2 261 942 773 32 1807 197
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR EXAMINATION OF A QUANTUM RGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL A SHORT-CUT RULE FOR A ONE-SIDED TEST OF AL CONTINGENCY TABLES MAXIMUM ENTROPY FOR	HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POP FOR QUALITATIVE DATA FORMULATION, ESPECIALLY FOR MULTIDIMENSION	JASA 66 JASA 69 AMS 64 JRSSB69 AMS 67 JRSSB69 JRSSB64 AMS 64 BIOKA56 AMS 64 BIOKA56 AMS 63 BIOKA64	415 NO.4 200 NO.2 1160 NO.2 261 942 773 32 1807 197 911 467
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR EXAMINATION OF A QUANTUM RGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL A SHORT-CUT RULE FOR A ONE-SIDED TEST OF AL CONTINGENCY TABLES MAXIMUM ENTROPY FOR	HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POP FOR QUALITATIVE DATA FORMULATION, ESPECIALLY FOR MULTIDIMENSION	JASA 66 JASA 69 AMS 64 JRSSB69 AMS 67 JRSSB69 JRSSB64 AMS 69 AMS 64 BIOKA56 AMS 64 TECH 69 AMS 63 BIOKA64 BIOKA64	415 NO.4 200 NO.2 1160 NO.2 261 942 773 32 1807 197 911 467 149
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR EXAMINATION OF A QUANTUM RGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL A SHORT-CUT RULE FOR A ONE-SIDED TEST OF AL CONTINGENCY TABLES MAXIMUM ENTROPY FOR OF THE LIKELIHOOD-RATIO TESTS OF THE GENERAL LINEAR A COMPARISON OF TESTS OF THE WILKS-LAWLEY A NOTE ON GENERALIZED INVERSES IN THE LINEAR	HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POP FOR QUALITATIVE DATA FORMULATION, ESPECIALLY FOR MULTIDIMENSION IN MULTIVARIATE ANALYSIS POWER IN MULTIVARIATE ANALYSIS. NOT OF FULL RANK	JASA 66 JASA 69 AMS 64 JRSSB69 AMS 67 JRSSB69 JRSSB69 JRSSB64 AMS 64 BIOKA56 AMS 64 TECH 69 AMS 63 BIOKA65 AMS 63	415 NO.4 200 NO.2 1160 NO.2 261 942 773 32 1807 197 911 467 149 271
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR EXAMINATION OF A QUANTUM RGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL A SHORT-CUT RULE FOR A ONE-SIDED TEST OF AL CONTINGENCY TABLES MAXIMUM ENTROPY FOR OF THE LIKELIHOOD-RATIO TEST OF THE GENERAL LINEAR A COMPARISON OF TESTS OF THE WILKS-LAWLEY A NOTE ON GENERALIZED INVERSES IN THE LINEAR ALTERNATIVES TO THE STANDARD CHI-SQUARE-TEST OF THE	HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POP FOR QUALITATIVE DATA FORMULATION, ESPECIALLY FOR MULTIDIMENSION IN MULTIVARIATE ANALYSIS POWER IN MULTIVARIATE ANALYSIS. NOT OF FULL RANK OF EQUAL CELL FREQUENCIES TWO	JASA 66 JASA 69 AMS 64 JASSA69 AMS 67 JRSSB69 AMS 67 JRSSB69 AMS 64 BIOKA56 AMS 64 TECH 69 AMS 63 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA66	415 NO.4 200 NO.2 1160 NO.2 261 942 773 32 1807 197 911 467 149 271
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR EXAMINATION OF A QUANTUM RGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL A SHORT-CUT RULE FOR A ONE-SIDED TEST OF AL CONTINGENCY TABLES MAXIMUM ENTROPY FOR OF THE LIKELIHOOD-RATIO TEST OF THE GENERAL LINEAR A COMPARISON OF TESTS OF THE WILKS-LAWLEY A NOTE ON GENERALIZED INVERSES IN THE LINEAR ALTERNATIVES TO THE STANDARD CHI-SQUARE-TEST OF THE Y SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE	HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POP FOR QUALITATIVE DATA FORMULATION, ESPECIALLY FOR MULTIDIMENSION IN MULTIVARIATE ANALYSIS POWER IN MULTIVARIATE ANALYSIS. NOT OF FULL RANK OF EQUAL CELL FREQUENCIES TWO OF EQUAL CELL FREQUENCIES TWO OF EQUAL MEANS UNDER VARIANCE HETEROGENEIT	JASA 66 JASA 69 AMS 64 JRSSB69 AMS 67 JRSSB69 AMS 69 AMS 69 AMS 69 AMS 64 BIOKA66 AMS 64 BIOKA66 AMS 63 BIOKA66 BIOKA66 BIOKA65 AMS 63	415 NO.4 200 NO.2 1160 NO.2 261 942 773 32 1807 197 911 467 149 271 107 345
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR EXAMINATION OF A QUANTUM RGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL A SHORT-CUT RULE FOR A ONE-SIDED TEST OF AL CONTINGENCY TABLES MAXIMUM ENTROPY FOR OF THE LIKELIHOOD-RATIO TEST OF THE GENERAL LINEAR A COMPARISON OF TESTS OF THE WILKS-LAWLEY A NOTE ON GENERALIZED INVERSES IN THE LINEAR ALTERNATIVES TO THE STANDARD CHI-SQUARE-TEST OF THE Y SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE NDA, 'SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE	HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POP FOR QUALITATIVE DATA FORMULATION. ESPECIALLY FOR MULTIDIMENSION IN MULTIVARIATE ANALYSIS POWER IN MULTIVARIATE ANALYSIS. NOT OF FULL RANK OF EQUAL CELL FREQUENCIES TWO OF EQUAL MEANS UNDER VARIANCE HETEROGENEIT OF EQUAL MEANS UNDER VARIANCE HETEROCEMEIT	JASA 66 JASA 69 AMS 64 JRSSB69 AMS 67 JRSSB69 AMS 67 JRSSB64 AMS 69 AMS 64 BIOKA56 AMS 63 BIOKA65 BIOKA65 AMS 63 BIOKA66 BIOKA65	415 NO.4 200 NO.2 1160 NO.2 261 942 773 32 1807 197 911 467 149 271 107 345 230
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR EXAMINATION OF A QUANTUM RGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL A SHORT-CUT RULE FOR A ONE-SIDED TEST OF AL CONTINGENCY TABLES MAXIMUM ENTROPY FOR OF THE LIKELIHOOD-RATIO TEST OF THE GENERAL LINEAR A COMPARISON OF TESTS OF THE WILKS-LAWLEY A NOTE ON GENERALIZED INVERSES IN THE LINEAR ALTERNATIVES TO THE STANDARD CHI-SQUARE-TEST OF THE Y SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE NDA, 'SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE THE COEFFICIENT OF RANK CORRELATION FOR TESTING THE	HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POP FOR QUALITATIVE DATA FORMULATION, ESPECIALLY FOR MULTIDIMENSION IN MULTIVARIATE ANALYSIS POWER IN MULTIVARIATE ANALYSIS. NOT OF FULL RANK OF EQUAL CELL FREQUENCIES TWO OF EQUAL MEANS UNDER VARIANCE HETEROGENEIT OF INDEPENDENCE CRITICAL VALUES OF	JASA 66 JASA 69 AMS 64 JASSB69 AMS 67 JRSSB69 JRSSB69 JRSSB64 AMS 69 AMS 64 EICH 69 AMS 63 BIOKA65 AMS 67 BIOKA64 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66	415 NO.4 200 NO.2 1160 NO.2 261 942 773 32 1807 197 911 467 149 271 107 345 230 444
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR EXAMINATION OF A QUANTUM RGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL A SHORT-CUT RULE FOR A ONE-SIDED TEST OF AL CONTINGENCY TABLES MAXIMUM ENTROPY FOR OF THE LIKELIHOOD-RATIO TEST OF THE GENERAL LINEAR A COMPARISON OF TESTS OF THE WILKS-LAWLEY A NOTE ON GENERALIZED INVERSES IN THE LINEAR ALTERNATIVES TO THE STANDARD CHI-SQUARE-TEST OF THE Y SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE THE COEFFICIENT OF RANK CORRELATION FOR TESTING THE MIXED MODEL	HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POP FOR QUALITATIVE DATA FORMULATION, ESPECIALLY FOR MULTIDIMENSION IN MULTIVARIATE ANALYSIS POWER IN MULTIVARIATE ANALYSIS. NOT OF FULL RANK OF EQUAL CELL FREQUENCIES TWO OF EQUAL MEANS UNDER VARIANCE HETEROGENEIT OF EQUAL MEANS UNDER VARIANCE HETEROCENEIT OF INDEPENDENCE CRITICAL VALUES OF OF NO FIXED MAIN-EFFECTS IN SCHEFFE'S	JASA 66 JASA 69 AMS 64 JRSSB69 AMS 67 JRSSB69 JRSSB69 JRSSB66 AMS 69 AMS 64 BIOKA66 AMS 64 BIOKA66 BIOKA65 AMS 67 BIOKA66 BIOKA65 BIOKA66	415 NO.4 200 NO.2 1160 NO.2 261 942 773 32 1807 197 911 467 149 271 107 345 230 444
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR EXAMINATION OF A QUANTUM RGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL A SHORT-CUT RULE FOR A ONE-SIDED TEST OF AL CONTINGENCY TABLES MAXIMUM ENTROPY FOR OF THE LIKELIHOOD-RATIO TEST OF THE GENERAL LINEAR A COMPARISON OF TESTS OF THE WILKS-LAWLEY A NOTE ON GENERALIZED INVERSES IN THE LINEAR ALTERNATIVES TO THE STANDARD CHI-SQUARE-TEST OF THE Y SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE NDA, 'SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE THE COEFFICIENT OF RANK CORRELATION FOR TESTING THE	HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POP FOR QUALITATIVE DATA FORMULATION, ESPECIALLY FOR MULTIDIMENSION IN MULTIVARIATE ANALYSIS POWER IN MULTIVARIATE ANALYSIS. NOT OF FULL RANK OF EQUAL CELL FREQUENCIES TWO OF EQUAL MEANS UNDER VARIANCE HETEROGENEIT OF EQUAL MEANS UNDER VARIANCE HETEROGENEIT OF INDEPENDENCE CRITICAL VALUES OF OF NO FIXED MAIN-EFFECTS IN SCHEFFE'S REGIONS /LIHOOD RATIO TEST STATISTIC WHE	JASA 66 JASA 69 AMS 64 JRSSB69 AMS 67 JRSSB69 AMS 69 AMS 69 AMS 69 AMS 64 BIOKA56 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA61 BIOKA61 AMS 62 AMS 63	415 NO.4 200 NO.2 1160 NO.2 261 942 7773 32 1807 197 911 467 149 271 107 345 230 444 1085 2044
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR EXAMINATION OF A QUANTUM RGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL A SHORT-CUT RULE FOR A ONE-SIDED TEST OF AL CONTINGENCY TABLES MAXIMUM ENTROPY FOR A COMPARISON OF TESTS OF THE GENERAL LINEAR A COMPARISON OF TESTS OF THE WILKS-LAWLEY A NOTE ON GENERALIZED INVERSES IN THE LINEAR ALTERNATIVES TO THE STANDARD CHI-SQUARE-TEST OF THE Y SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE NDA, 'SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE THE COEFFICIENT OF RANK CORRELATION FOR TESTING THE MIXED MODEL TESTING THE NTHE TRUE PARAMETER IS 'NEAR' THE BOUNDARIES OF THE	HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POP FOR QUALITATIVE DATA FORMULATION, ESPECIALLY FOR MULTIDIMENSION IN MULTIVARIATE ANALYSIS POWER IN MULTIVARIATE ANALYSIS. NOT OF FULL RANK OF EQUAL CELL FREQUENCIES TWO OF EQUAL MEANS UNDER VARIANCE HETEROGENEIT OF INDEPENDENCE CRITICAL VALUES OF OF NO FIXED MAIN-EFFECTS IN SCHEFFE'S REGIONS /LIHOOD RATIO TEST STATISTIC WHE TEST FOR DETERMINING THE MEAN OF A NORMAL	JASA 66 JASA 69 AMS 64 JASSB69 AMS 67 JRSSB69 JRSSB69 AMS 64 BIOKA56 AMS 64 TECH 69 AMS 63 BIOKA66 BIOKA61 BIOKA61 AMS 68	415 NO.4 200 NO.2 1160 NO.2 261 942 7773 32 1807 197 911 467 149 271 107 345 230 444 1085 2044 1365
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR EXAMINATION OF A QUANTUM RGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL A SHORT-CUT RULE FOR A ONE-SIDED TEST OF AL CONTINGENCY TABLES MAXIMUM ENTROPY FOR OF THE LIKELIHOOD-RATIO TEST OF THE GENERAL LINEAR A COMPARISON OF TESTS OF THE WILKS-LAWLEY A NOTE ON GENERALIZED INVERSES IN THE LINEAR ALTERNATIVES TO THE STANDARD CHI-SQUARE-TEST OF THE Y SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE THE COEFFICIENT OF RANK CORRELATION FOR TESTING THE THE COEFFICIENT OF RANK CORRELATION FOR TESTING THE MIXED MODEL TESTING THE STING THE STIVE PARAMETER IS 'NEAR' THE BOUNDARIES OF THE POPULATION WITH KNOWN VARIANCE A SEQUENTIAL THREE	HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POP FOR QUALITATIVE DATA FORMULATION, ESPECIALLY FOR MULTIDIMENSION IN MULTIVARIATE ANALYSIS POWER IN MULTIVARIATE ANALYSIS. NOT OF FULL RANK OF EQUAL CELL FREQUENCIES TWO OF EQUAL MEANS UNDER VARIANCE HETEROGENEIT OF EQUAL MEANS UNDER VARIANCE HETEROGENEIT OF INDEPENDENCE CRITICAL VALUES OF OF NO FIXED MAIN-EFFECTS IN SCHEFFE'S REGIONS /LIHOOD RATIO TEST STATISTIC WHE TESTING HALF-RECTIFIED TESTING HALF-RECTIFIED TESTING WHEN THE SAMPLE SIZE IS TREATED AS	JASA 66 JASA 69 AMS 64 JRSSB69 AMS 67 JRSSB69 AMS 66 AMS 66 AMS 66 AMS 64 BIOKA66 AMS 63 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA61	415 N0.4 200 N0.2 1160 N0.2 261 942 773 3 1807 197 911 467 149 271 107 345 230 444 1085 2044 1365 47 53
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR THE LINEAR EXAMINATION OF A QUANTUM RGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL A SHORT-CUT RULE FOR A ONE-SIDED TEST OF AL CONTINGENCY TABLES MAXIMUM ENTROPY FOR A COMPARISON OF TEST OF THE GENERAL LINEAR A COMPARISON OF TESTS OF THE WILKS-LAWLEY A NOTE ON GENERALIZED INVERSES IN THE LINEAR ALTERNATIVES TO THE STANDARD CHI-SQUARE-TEST OF THE Y SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE NDA, 'SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE MIXED MODEL TESTING THE MIXED MODEL TESTING THE NTHE TRUE PARAMETER IS 'NEAR' THE BOUNDARIES OF THE POPULATION WITH KNOWN VARIANCE A SEQUENTIAL THREE TRUNCATED DISTRIBUTIONS, SAMPLING THEORY AND A RANDOM VARIABLE (WITH DISCUSSION)	HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POP FOR QUALITATIVE DATA FORMULATION, ESPECIALLY FOR MULTIDIMENSION IN MULTIVARIATE ANALYSIS POWER IN MULTIVARIATE ANALYSIS. NOT OF FULL RANK OF EQUAL CELL FREQUENCIES TWO OF EQUAL MEANS UNDER VARIANCE HETEROGENEIT OF INDEPENDENCE CRITICAL VALUES OF OF NO FIXED MAIN—EFFECTS IN SCHEFFE'S REGIONS /LIHOOD RATIO TEST STATISTIC WHE TESTING WHEN THE SAMPLE SIZE IS TREATED AS TESTING WHEN THE SAMPLE SIZE IS TREATED AS TESTING WHEN THE SAMPLE SIZE IS TREATED AS	JASA 66 JASA 69 AMS 64 JRSSB69 AMS 67 JRSSB69 AMS 66 AMS 64 BIOKA56 AMS 63 BIOKA65 AMS 63 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA61 BIOKA61 AMS 67 TECH 69 AMS 62 AMS 67 AMS 68 AMS 68	415 NO.4 200 NO.2 1160 NO.2 1160 942 773 32 1807 197 911 107 244 467 1107 230 444 1085 2044 11365 47 53 828
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR EXAMINATION OF A QUANTUM RGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL A SHORT-CUT RULE FOR A ONE-SIDED TEST OF AL CONTINGENCY TABLES MAXIMUM ENTROPY FOR OF THE LIKELIHOOD-RATIO TEST OF THE GENERAL LINEAR A COMPARISON OF TESTS OF THE WILKS-LAWLEY A NOTE ON GENERALIZED INVERSES IN THE LINEAR ALTERNATIVES TO THE STANDARD CHI-SQUARE-TEST OF THE VICKS-LAWLEY SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE NDA, 'SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE THE COEFFICIENT OF RANK CORRELATION FOR TESTING THE MIXED MODEL TESTING THE MIXED MODEL TESTING THE NITHE TRUE PARAMETER IS 'NEAR' THE BOUNDARIES OF THE TRUE TRUE PARAMETER IS 'NEAR' THE BOUNDARIES OF THE TRUNCATED DISTRIBUTIONS, SAMPLING THEORY AND A RANDOM VARIABLE (WITH DISCUSSION)	HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POP FOR QUALITATIVE DATA FORMULATION, ESPECIALLY FOR MULTIDIMENSION IN MULTIVARIATE ANALYSIS POWER IN MULTIVARIATE ANALYSIS. NOT OF FULL RANK OF EQUAL CELL FREQUENCIES TWO OF EQUAL MEANS UNDER VARIANCE HETEROGENEIT OF INDEPENDENCE CRITICAL VALUES OF OF NO FIXED MAIN-EFFECTS IN SCHEFFE'S REGIONS /LIHOOD RATIO TEST STATISTIC WHE TESTING WHEN THE SAMPLE SIZE IS TREATED AS TESTING WHEN THE SAMPLE SIZE IS TREATED AS TESTING WHEN THE SAMPLE SIZE IS TREATED AS TESTING WHEN THE REMORY TESTS FOR THE R-DEPENDENT MARGINALLY	JASA 66 JASA 69 JASA 69 AMS 64 JRSSB69 JRSSB69 JRSSB69 JRSSB64 AMS 64 TECH 69 AMS 64 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA60 BIOKA60 BIOKA61 AMS 62 AMS 67 TECH 69 JRSSB67 AMS 66 AMS 66 AMS 66 AMS 66 AMS 66	415 NO.44 200 NO.2 21160 NO.2 261 942 773 32 1807 197 467 149 271 1107 345 234 444 1085 2044 47 53 88 90
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR EXAMINATION OF A QUANTUM RGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL A SHORT-CUT RULE FOR A ONE-SIDED TEST OF AL CONTINGENCY TABLES MAXIMUM ENTROPY FOR OF THE LIKELIHOOD-RATIO TEST OF THE GENERAL LINEAR A COMPARISON OF TESTS OF THE WILKS-LAWLEY A NOTE ON GENERALIZED INVERSES IN THE LINEAR ALTERNATIVES TO THE STANDARD CHI-SQUARE-TEST OF THE Y SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE THE COEFFICIENT OF RANK CORRELATION FOR TESTING THE MIXED MODEL TESTING THE MIXED MODEL TESTING THE MIXED MODEL TESTING THE POPULATION WITH KNOWN VARIANCE A SEQUENTIAL THERE TRUNCATED DISTRIBUTIONS, SAMPLING THEORY AND A RANDOM VARIABLE (WITH DISCUSSION) STATIONARY PROCESSES SEQUENTIAL SEPARATE RECIMES	HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POP FOR QUALITATIVE DATA FORMULATION, ESPECIALLY FOR MULTIDIMENSION IN MULTIVARIATE ANALYSIS POWER IN MULTIVARIATE ANALYSIS. NOT OF FULL RANK OF EQUAL CELL FREQUENCIES TWO OF EQUAL MEANS UNDER VARIANCE HETEROGENEIT OF EQUAL MEANS UNDER VARIANCE HETEROCENEIT OF INDEPENDENCE CRITICAL VALUES OF OF NO FIXED MAIN-EFFECTS IN SCHEFFE'S REGIONS /LIHOOD RATIO TEST STATISTIC WHE TEST FOR DETERMINING THE MEAN OF A NORMAL TESTING HALF-RECTIFIED TESTING WHEN THE SAMPLE SIZE IS TREATED AS TESTING WITH FINITE MEMORY TESTS FOR THE R-DEPENDENT MARGINALLY THAT A LINEAR REGRESSION SYSTEM OBEYS TWO	JASA 66 JASA 69 JASA 69 AMS 64 JRSSB69 AMS 67 JRSSB69 JRSSB69 AMS 69 AMS 66 AMS 64 BIOKA66 AMS 63 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA61 BIOKA61 BIOKA61 BIOKA61 BIOKA61 BIOKA61 BIOKA61 BIOKA60 BIOKA60 BIOKA60 BIOKA60 BIOKA60 BIOKA60 BIOKA60 BIOKA61 BIOKA60	415 NO.44 200 NO.2 21160 NO.2 261 942 7733 32 1807 197 911 1467 149 271 107 345 230 444 1085 2044 1365 47 53 828 89 90 324
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR EXAMINATION OF A QUANTUM RGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL A SHORT-CUT RULE FOR A ONE-SIDED TEST OF AL CONTINGENCY TABLES MAXIMUM ENTROPY FOR OF THE LIKELIHOOD-RATIO TEST OF THE GENERAL LINEAR A COMPARISON OF TESTS OF THE WILKS-LAWLEY A NOTE ON GENERALIZED INVERSES IN THE LINEAR ALTERNATIVES TO THE STANDARD CHI-SQUARE-TEST OF THE Y SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE THE COEFFICIENT OF RANK CORRELATION FOR TESTING THE MIXED MODEL TESTING THE MIXED MODEL TESTING THE NIXED MODEL TESTING THE NIXED MODEL TESTING THE POPULATION WITH KNOWN VARIANCE A SEQUENTIAL THREE TRUNCATED DISTRIBUTIONS, SAMPLING THEORY AND A RANDOM VARIABLE (WITH DISCUSSION) STATIONARY PROCESSES SEQUENTIAL SEPARATE RECIMES TESTS OF THE AND RESTRICTED ORDER TESTING A MARKOV	HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POP FOR QUALITATIVE DATA FORMULATION, ESPECIALLY FOR MULTIDIMENSION IN MULTIVARIATE ANALYSIS POWER IN MULTIVARIATE ANALYSIS. NOT OF FULL RANK OF EQUAL MEANS UNDER VARIANCE HETEROGENEIT OF EQUAL MEANS UNDER VARIANCE HETEROCEMENT OF FOR DATA MEANS UNDER VARIANCE HETEROCEMENT OF INDEPENDENCE CRITICAL VALUES OF OF NO FIXED MAIN—EFFECTS IN SCHEFFE'S REGIONS /LIHOOD RATIO TEST STATISTIC WHE TESTING WHEN THE SAMPLE SIZE IS TREATED AS TESTING WHEN THE SAMPLE SIZE IS TREATED AS TESTING WITH FINITE MEMORY TESTS FOR THE R—DEPENDENT MARGINALLY THAT A LINEAR REGRESSION SYSTEM OBEYS TWO WITH INDEPENDENCE OF INTERMEDIATE STATES	JASA 66 JASA 69 AMS 64 JRSSB69 AMS 67 JRSSB69 AMS 66 BIOKA56 AMS 64 BIOKA56 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA60 BIOKA61	415 NO.44 200.20 20 1160 NO.22 261 942 773 32 1807 197 911 107 345 230 444 1365 47 53 828 90 324 605
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR EXAMINATION OF A QUANTUM RGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL A SHORT-CUT RULE FOR A ONE-SIDED TEST OF AL CONTINGENCY TABLES MAXIMUM ENTROPY FOR OF THE LIKELIHOOD-RATIO TEST OF THE GENERAL LINEAR A COMPARISON OF TESTS OF THE WILKS-LAWLEY A NOTE ON GENERALIZED INVERSES IN THE LINEAR ALTERNATIVES TO THE STANDARD CHI-SQUARE-TEST OF THE Y SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE NDA, 'SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE THE COEFFICIENT OF RANK CORRELATION FOR TESTING THE NIXED MODEL TESTING THE NIXED MODEL TESTING THE NIXED MODEL TESTING THE POPULATION WITH KNOWN VARIANCE A SEQUENTIAL THREE TRUNCATED DISTRIBUTIONS, SAMPLING THEORY AND A RANDOM VARIABLE (WITH DISCUSSION) STATIONARY PROCESSES SEQUENTIAL SEPARATE RECIMES TESTS OF THE AND RESTRICTED ORDER TESTING A MARKOV MULTIVARIATE LINEAR	HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING NO F LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POPFOR QUALITATIVE DATA FORMULATION, ESPECIALLY FOR MULTIDIMENSION IN MULTIVARIATE ANALYSIS POWER IN MULTIVARIATE ANALYSIS. NOT OF FULL RANK OF EQUAL MEANS UNDER VARIANCE HETEROGENEIT OF EQUAL MEANS UNDER VARIANCE HETEROGENEIT OF INDEPENDENCE CRITICAL VALUES OF OF NO FIXED MAIN-EFFECTS IN SCHEFFE'S REGIONS /LIHOOD RATIO TEST STATISTIC WHE TESTING HALF-RECTIFIED TESTING WHEN THE SAMPLE SIZE IS TREATED AS TESTING WITH FINITE MEMORY TESTS FOR THE R-DEPENDENT MARGINALLY THAT A LINEAR REGRESSION SYSTEM OBEYS TWO WITH INDEPENDENCE OF INTERMEDIATE STATES WITH LINEAR RESTRICTIONS	JASA 66 JASA 69 JASA 69 AMS 64 JRSSB69 JRSSB69 JRSSB69 JRSSB64 AMS 64 TECH 69 AMS 64 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA60 BIOKA67 BIOKA60 BIOKA67 TECH 69 JRSSB67 TECH 69 AMS 66 AMS 67 TECH 69 JRSSB67 AMS 66 JASA 60 JASA 60	415 NO.44 200 NO.2 2160 NO.2 261 942 773 32 1807 197 749 271 149 271 1408 230 444 1085 2044 47 53 828 90 324 605 348
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR EXAMINATION OF A QUANTUM RGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL A SHORT-CUT RULE FOR A ONE-SIDED TEST OF AL CONTINGENCY TABLES MAXIMUM ENTROPY FOR OF THE LIKELIHOOD-RATIO TEST OF THE GENERAL LINEAR A COMPARISON OF TESTS OF THE WILKS-LAWLEY A NOTE ON GENERALIZED INVERSES IN THE LINEAR ALTERNATIVES TO THE STANDARD CHI-SQUARE-TEST OF THE Y SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE NDA, 'SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE THE COEFFICIENT OF RANK CORRELATION FOR TESTING THE MIXED MODEL TESTING THE MIXED MODEL TESTING THE POPULATION WITH KNOWN VARIANCE A SEQUENTIAL THREE TRUNCATED DISTRIBUTIONS, SAMPLING THEORY AND A RANDOM VARIABLE (WITH DISCUSSION) STATIONARY PROCESSES SEQUENTIAL SEPARATE RECIMES TESTS OF THE AND RESTRICTED ORDER TESTING A MARKOV MULTIVARIATE LINEAR D EMPIRICA/ ON THE RANCE OF THE DIFFERENCE BETWEEN	HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POP FOR QUALITATIVE DATA FORMULATION, ESPECIALLY FOR MULTIDIMENSION IN MULTIVARIATE ANALYSIS POWER IN MULTIVARIATE ANALYSIS. NOT OF FULL RANK OF EQUAL CELL FREQUENCIES TWO OF EQUAL MEANS UNDER VARIANCE HETEROGENEIT OF EQUAL MEANS UNDER VARIANCE HETEROGENEIT OF EQUAL MEANS UNDER VARIANCE HETEROCENEIT OF INDEPENDENCE CRITICAL VALUES OF OF NO FIXED MAIN-EFFECTS IN SCHEFFE'S REGIONS /LIHOOD RATIO TEST STATISTIC WHE TESTING WHEN THE SAMPLE SIZE IS TREATED AS TESTING WITH FINITE MEMORY TESTS FOR THE R-DEPENDENT MARGINALLY THAT A LINEAR REGRESSION SYSTEM OBEYS TWO WITH INDEPENDENCE OF INTERMEDIATE STATES WITH LINEAR RESTRICTIONS AL DISTRIBUTION FUNCTION AND PYKE'S MODIFIE	JASA 66 JASA 69 JASA 69 AMS 64 JRSSB69 JRSSB69 JRSSB69 JRSSB69 AMS 64 BIOKA66 AMS 63 BIOKA64 BIOKA65 AMS 62 BIOKA66 BIOKA66 AMS 66 AMS 67 TECH 69 AMS 68 AMS 67 TECH 69 JRSSB67 AMS 63 AMS 66 JRSSB67 AMS 66	415 NO .4 4 200 NO .2 2160 NO .2 261 942 773 32 1807 1997 1449 271 1467 345 230 444 1085 2044 1365 53 828 605 324 605 348 525
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR EXAMINATION OF A QUANTUM RGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL A SHORT-CUT RULE FOR A ONE-SIDED TEST OF AL CONTINGENCY TABLES MAXIMUM ENTROPY FOR OF THE LIKELIHOOD-RATIO TEST OF THE GENERAL LINEAR A COMPARISON OF TESTS OF THE WILKS-LAWLEY A NOTE ON GENERALIZED INVERSES IN THE LINEAR ALTERNATIVES TO THE STANDARD CHI-SQUARE-TEST OF THE Y SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE THE COEFFICIENT OF RANK CORRELATION FOR TESTING THE MIXED MODEL TESTING THE MIXED MODEL TESTING THE NOTH THE TRUE PARAMETER IS 'NEAR' THE BOUNDARIES OF THE POPULATION WITH KNOWN VARIANCE A SEQUENTIAL THREE TRUNCATED DISTRIBUTIONS, SAMPLING THEORY AND A RANDOM VARIABLE (WITH DISCUSSION) STATIONARY PROCESSES SEQUENTIAL SEPARATE RECIMES TESTS OF THE MIXED TESTING A MARKOV MULTIVARIATE LINEAR MULTIVARIATE LINEAR TESTING A MARKOV MULTIVARIATE LINEAR MULTIVA	HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POP FOR QUALITATIVE DATA FORMULATION. ESPECIALLY FOR MULTIDIMENSION IN MULTIVARIATE ANALYSIS POWER IN MULTIVARIATE ANALYSIS. NOT OF FULL RANK OF EQUAL MEANS UNDER VARIANCE HETEROGENEIT OF EQUAL MEANS UNDER VARIANCE HETEROCENEIT OF INDEPENDENCE CRITICAL VALUES OF OF NO FIXED MAIN—EFFECTS IN SCHEFFE'S REGIONS /LIHOOD RATIO TEST STATISTIC WHE TESTING WHEN THE SAMPLE SIZE IS TREATED AS TESTING WHEN THE SAMPLE SIZE IS TREATED AS TESTING WITH FINITE MEMORY TESTS FOR THE R—DEPENDENT MARGINALLY THAT A LINEAR REGRESSION SYSTEM OBEYS TWO WITH INDEPENDENCE OF INTERMEDIATE STATES WITH LINEAR RESTRICTIONS ALD DISTRIBUTION FUNCTION AND PYKE'S MODIFIE AL PRINCIPAL COMPONENT	JASA 66 JASA 69 AMS 64 JRSSB69 AMS 67 JRSSB69 JRSSB69 AMS 66 BIOKA66 AMS 64 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA60 BIOKA61 BIOKA61 BIOKA61 BIOKA61 BIOKA60 BIOKA60 BIOKA61 BIOKA60 BIOKA61	415 NO.44 200.20 261 942 773 32 1807 197 911 107 345 230 444 1365 47 53 828 90 324 605 348 525 397
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR EXAMINATION OF A QUANTUM RGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL A SHORT-CUT RULE FOR A ONE-SIDED TEST OF AL CONTINGENCY TABLES MAXIMUM ENTROPY FOR OF THE LIKELIHOOD-RATIO TEST OF THE GENERAL LINEAR A COMPARISON OF TESTS OF THE WILKS-LAWLEY A NOTE ON GENERALIZED INVERSES IN THE LINEAR ALTERNATIVES TO THE STANDARD CHI-SQUARE-TEST OF THE NDA, 'SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE THE COEFFICIENT OF RANK CORRELATION FOR TESTING THE MIXED MODEL TESTING THE MIXED MODEL TESTING THE POPULATION WITH KNOWN VARIANCE A SEQUENTIAL THREE TRUNCATED DISTRIBUTIONS, SAMPLING THEORY AND A RANDOM VARIABLE (WITH DISCUSSION) STATIONARY PROCESSES SEQUENTIAL SEPARATE RECIMES TESTS OF THE AND RESTRICTED ORDER TESTING A MARKOV MULTIVARIATE LINEAR D EMPIRICA/ ON THE RANCE OF THE DIFFERENCE BETWEEN	HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POP FOR QUALITATIVE DATA FORMULATION, ESPECIALLY FOR MULTIDIMENSION IN MULTIVARIATE ANALYSIS POWER IN MULTIVARIATE ANALYSIS. NOT OF FULL RANK OF EQUAL CELL FREQUENCIES TWO OF EQUAL MEANS UNDER VARIANCE HETEROGENEIT OF INDEPENDENCE CRITICAL VALUES OF OF NO FIXED MAIN-EFFECTS IN SCHEFFE'S REGIONS /LIHOOD RATIO TEST STATISTIC WHE TESTING WHEN THE SAMPLE SIZE IS TREATED AS TESTING WITH FINITE MEMORY TESTS FOR THE R-DEPENDENT MARGINALLY THAT A LINEAR REGRESSION SYSTEM OBEYS TWO WITH INDEPENDENCE OF INTERMEDIATE STATES WITH LINEAR RESTRICTIONS AL DISTRIBUTION FUNCTION AND PYKE'S MODIFIE AL PRINCIPAL COMPONENT MINIMAX RISK AND	JASA 66 JASA 69 JASA 69 AMS 64 JRSSB69 JRSSB69 JRSSB69 JRSSB64 AMS 64 TECH 69 AMS 64 TECH 67 BIOKA65 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA61 BIOKA61 JASA 67 TECH 69 JRSSB67 AMS 67 TECH 69 JRSSB67 JRSSB67 JRSSB67 JRSSB67 JRSSB67 JRSSB63 AMS 66	415 NO .4 200 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR THE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR EXAMINATION OF A QUANTUM RGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL A SHORT-CUT RULE FOR A ONE-SIDED TEST OF AL CONTINGENCY TABLES MAXIMUM ENTROPY FOR OF THE LIKELIHOOD-RATIO TEST OF THE GENERAL LINEAR A COMPARISON OF TESTS OF THE WILKS-LAWLEY A NOTE ON GENERALIZED INVERSES IN THE LINEAR ALTERNATIVES TO THE STANDARD CHI-SQUARE-TEST OF THE Y SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE THE COEFFICIENT OF RANK CORRELATION FOR TESTING THE MIXED MODEL TESTING THE MIXED MODEL TESTING THE NOTH THE TRUE PARAMETER IS 'NEAR' THE BOUNDARIES OF THE POPULATION WITH KNOWN VARIANCE A SEQUENTIAL THREE TRUNCATED DISTRIBUTIONS, SAMPLING THEORY AND A RANDOM VARIABLE (WITH DISCUSSION) STATIONARY PROCESSES SEQUENTIAL SEPARATE RECIMES TESTS OF THE AND RESTRICTED ORDER TESTING A MARKOV MULTIVARIATE LINEAR DEMPIRICA/ ON THE RANCE OF THE DIFFERENCE BETWEEN THE GOODNESS-OF-FIT OF A SINGLE (NON-ISOTROPIC) UNBIASEDNESS FOR MULTIPLE DECISION PROBLEMS OF TYPE A NOTE ON ESTIMATION FROM A TYPE	HYPOTHESIS	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POP FOR QUALITATIVE DATA FORMULATION, ESPECIALLY FOR MULTIDIMENSION IN MULTIVARIATE ANALYSIS. NOT OF FULL RANK OF EQUAL CELL FREQUENCIES TWO OF EQUAL MEANS UNDER VARIANCE HETEROGENEIT OF EQUAL MEANS UNDER VARIANCE HETEROCENEIT OF INDEPENDENCE CRITICAL VALUES OF OF NO FIXED MAIN-EFFECTS IN SCHEFFE'S REGIONS /LIHOOD RATIO TEST STATISTIC WHE TESTING WHEN THE SAMPLE SIZE IS TREATED AS TESTING WITH FINITE MEMORY THAT A LINEAR REGRESSION SYSTEM OBEYS TWO WITH INDEPENDENCE OF INTERMEDIATE STATES WITH LINEAR RESTRICTIONS ALD INTERMEDIATE STATES WITH LINEAR RESTRICTIONS ALD TISTIBUTION FUNCTION AND PYKE'S MODIFIE AL PRINCIPAL COMPONENT MINIMAX RISK AND SAMPLE VALUE DISTRIBUTION	JASA 66 JASA 69 JASA 69 AMS 64 JRSSB69 JRSSB69 JRSSB69 JRSSB69 JRSSB66 AMS 64 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 JAMS 62 JRSSB67 AMS 63 JRSSB67 AMS 66 JASA 60 JRSSB67 JRSSB67 AMS 68 JRSSB67 AMS 69 JRSSB67 AMS 66 JASA 60 BIOKA61 JRSSB63 AMS 68 BIOKA61 JRSSB63	415 NO.44 200.200 NO.22 211600 NO.22 261 942 7773 32 1807 1197 911 1467 149 2711 107 345 230 444 1085 2044 1365 828 89 324 6005 348 90 324 6005 348 348 352 397 1684 367 325
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR EXAMINATION OF A QUANTUM RGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL A SHORT-CUT RULE FOR A ONE-SIDED TEST OF AL CONTINGENCY TABLES MAXIMUM ENTROPY FOR OF THE LIKELIHOOD-RATIO TEST OF THE GENERAL LINEAR A COMPARISON OF TESTS OF THE WILKS-LAWLEY A NOTE ON GENERALIZED INVERSES IN THE LINEAR ALTERNATIVES TO THE STANDARD CHI-SQUARE-TEST OF THE Y SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE THE COEFFICIENT OF RANK CORRELATION FOR TESTING THE MIXED MODEL TESTING THE MIXED MODEL TESTING THE NIXED MODEL TESTING THE POPULATION WITH KNOWN VARIANCE A SEQUENTIAL THREE TRUNCATED DISTRIBUTIONS, SAMPLING THEORY AND A RANDOM VARIABLE (WITH DISCUSSION) STATIONARY PROCESSES SEQUENTIAL THREE TRUNCATED ORDER TESTING THE AND RESTRICTED ORDER TESTING A MARKOV MULTIVARIATE LINEAR DEMPIRICA/ ON THE RANCE OF THE DIFFERENCE BETWEEN THE GOODNESS-OF-FIT OF A SINGLE (NON-ISOTROPIC) UNBIASEDNESS FOR MULTIPLE DECISION PROBLEMS OF TYPE OF THE NORMAL POPULATION PARAMETERS GIVEN A TYPE OF THE NORMAL POPULATION PARAMETERS ON THE	HYPOTHESIS HYPOTHETICA I I CENSORED I EXTREME—I IDEA OF BIA	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POP FOR QUALITATIVE DATA FORMULATION, ESPECIALLY FOR MULTIDIMENSION IN MULTIVARIATE ANALYSIS POWER IN MULTIVARIATE ANALYSIS. NOT OF FULL RANK OF EQUAL CELL FREQUENCIES TWO OF EQUAL MEANS UNDER VARIANCE HETEROGENEIT OF INDEPENDENCE CRITICAL VALUES OF OF NO FIXED MAIN—EFFECTS IN SCHEFFE'S REGIONS /LIHOOD RATIO TEST STATISTIC WHE TESTING WHEN THE SAMPLE SIZE IS TREATED AS TESTING WHEN THE SAMPLE SIZE IS TREATED AS TESTING WHEN THE SAMPLE SIZE IS TREATED AS TESTING WHEN THE ROPEPENDENT MARGINALLY THAT A LINEAR REGRESSION SYSTEM OBEYS TWO WITH INDEPENDENCE OF INTERMEDIATE STATES WITH LINEAR RESTRICTIONS AL DISTRIBUTION FUNCTION AND PYKE'S MODIFIE AL PRINCIPAL COMPONENT MINIMAX RISK AND SAMPLE SAMPLE ESTIMATION JALUE DISTRIBUTION	JASA 66 JASA 69 AMS 64 JRSSB69 AMS 67 JRSSB69 AMS 66 BIOKA56 AMS 64 BIOKA56 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA60 BIOKA61 BIOKA61	415 NO .4 200 .2 1160 NO .2 261 942 773 32 1807 197 107 149 271 107 345 230 444 1365 47 53 828 90 324 605 348 55397 1684 367 325 436
A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE TING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL A SEQUENTIAL PROCEDURE FOR TESTING A NULL THE LINEAR HE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR EXAMINATION OF A QUANTUM RGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL A SHORT-CUT RULE FOR A ONE-SIDED TEST OF AL CONTINGENCY TABLES MAXIMUM ENTROPY FOR OF THE LIKELIHOOD-RATIO TEST OF THE GENERAL LINEAR A COMPARISON OF TESTS OF THE WILKS-LAWLEY A NOTE ON GENERALIZED INVERSES IN THE LINEAR ALTERNATIVES TO THE STANDARD CHI-SQUARE-TEST OF THE VICKS-LAWLEY SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE NDA, 'SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE THE COEFFICIENT OF RANK CORRELATION FOR TESTING THE NIXED MODEL TESTING THE N	HYPOTHESIS HYPOTHETICA I I CENSORED I EXTREME—I IDEA OF BIA	A SEQUENTIAL PROCEDURE FOR TESTING /NS OF LIKELIHOOD RATIO CRITERIA FOR TES AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS AND IDEMPOTENT MATRICES AND INDEPENDENCE /ULL DISTRIBUTIONS OF T AND LARGE SAMPLE THEORY BASED ON A SINCLE SET OF DATA CONCERNING COMPLEX MULTIVARIATE NORMAL POP FOR QUALITATIVE DATA FORMULATION, ESPECIALLY FOR MULTIDIMENSION IN MULTIVARIATE ANALYSIS POWER IN MULTIVARIATE ANALYSIS. NOT OF FULL RANK OF EQUAL CELL FREQUENCIES TWO OF EQUAL MEANS UNDER VARIANCE HETEROGENEIT OF INDEPENDENCE CRITICAL VALUES OF OF NO FIXED MAIN-EFFECTS IN SCHEFFE'S REGIONS /LIHOOD RATIO TEST STATISTIC WHE TESTING HALF-RECTIFIED TESTING HALF-RECTIFIED TESTING WITH FINITE MEMORY TESTS FOR THE R-DEPENDENT MARGINALLY THAT A LINEAR REGRESSION SYSTEM OBEYS TWO WITH INDEPENDENCE OF INTERMEDIATE STATES WITH LINEAR RESTRICTIONS AL DISTRIBUTION FUNCTION AND PYKE'S MODIFIE AL PRINCIPAL COMPONENT MINIMAX RISK AND SAMPLE ALL STIMATION AS SION PROCEDURES	JASA 66 JASA 69 JASA 69 AMS 64 JRSSB69 JRSSB69 JRSSB69 JRSSB69 JRSSB66 AMS 64 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 JAMS 62 JRSSB67 AMS 63 JRSSB67 AMS 66 JASA 60 JRSSB67 JRSSB67 AMS 68 JRSSB67 AMS 69 JRSSB67 AMS 66 JASA 60 BIOKA61 JRSSB63 AMS 68 BIOKA61 JRSSB63	415 NO .4 4 200 NO .2 21160 NO .2 261 942 773 32 1807 197 749 271 107 345 230 444 1085 2044 605 387 7 53 387 4605 436 436 436 436 480

THE CLIEBAR HYPOTRESS OF DESCRIPTION STATE OF DESCR	ON TR	DEMDOMENT MANDIARC	AMG 66	005
THE REACT DISTRIBUTION OF THE SEARCH OF INDEPENDENT INCOME. PARKED DISTRIBUTION OF THE SEARCH OF INDEPENDENT INCOME. PARKED DISTRIBUTION OF THE SEARCH OF INDEPENDENT INCOME. ON THE IDENTIFICATION OF FINITE MIXTURES ON THE IDENTIFICATION OF FINITE MIXTURES ON THE IDENTIFICATION OF FINITE MIXTURES ARE SEARCH PROPERLY OF THE SEARCH OF FINITE MIXTURES ARE SEARCH PROPERLY OF THE SEARCH OF FINITE MIXTURES ARE SEARCH PROPERLY OF THE SEARCH OF FINITE MIXTURES ARE SEARCH PROPERLY OF THE SEARCH OF FINITE MIXTURES ARE SEARCH PROPERLY OF THE SEARCH OF FINITE MIXTURES ARE SEARCH PROPERLY OF THE SEARCH OF FINITE MIXTURES ARE SEARCH PROPERLY OF THE SEARCH OF FINITE MIXTURES ARE SEARCH PROPERLY OF THE SEARCH OF FINITE MIXTURES ARE SEARCH PROPERLY OF THE SEARCH OF FINITE MIXTURES ARE SEARCH PROPERLY OF THE SEARCH OF FINITE MIXTURES ARE SEARCH PROPERLY OF THE SEARCH OF THE INTERNATION OF THE	UN IL	DEMPOTENT MATRICES	AMS 66	295
THE REACT DISTRIBUTION OF TWO STAMS OF INDEPENDENCE OF SON-INDEPTIONAL DISTRIBUTION OF ALTREME BETTAGE OF SON-INDEPTIONAL DISTRIBUTION OF ALTREME STAMS OF ALTR	OHADRATIC FORMS AND ID	DEMPOTENT MATRICES WITH RANDOM FIRMENTS		
### AME CALLS: SAMEWOR WATE ALES SHOULD ARE DEPENDEDLY ON TO-DESTRICTATION DISTRICTATION OF ACTION WATERS AND STORY AND ACTION OF THE CONTROL	BALANCED INCOMPLETE BLOCK DESIGNS WITH SETS OF ID	DEMINITION MAINTOES WITH NANDOM ELEMENTS		
REPRESENTED NOT SHEET SHEET OF SOUR				
PAY AREADLES, LACADOMINDEDMY DISTRIBUTION OF THE SUM OF INDEPENDENT DISTRIBUTION SURPRIGHT SAME 45 977 AVABIABLES, LACADOMINDENCY DISTRIBUTION OF THE DESTRIBUTION OF THE REPORT SAME AS 4 977 SAMELE DISTRIBUTIONS OF CEMERALIZED CLASSICAL LINEAR EDUTITIFICATION OF FINITE NATURES SAMELE DISTRIBUTIONS OF CEMERALIZED CLASSICAL LINEAR EDUTITIFICATION OF FINITE NATURES SAMELE DISTRIBUTIONS OF CEMERALIZED CLASSICAL LINEAR EDUTITIFICATION OF PRINTERS OF PRODUCT MEASURES THE INDETITIORATION OF PRINTER SOME ON PINITES A COMMISSION OF THE INDETITIORATION OF PRINTERS OF PRODUCT MEASURES THE INDETITIORATION OF PRINTER SOME ON PINITES AVERAGE SYSTEMS IN CHEMICAL EXPERIMENTS SHEED ONLY ONE PARKET. IN CHEMICAL LINEAR ESTIMATORS IN THE LIMBUTION OF PRINTERS OF PRODUCT MEASURES IN CHEMICAL LINEAR ESTIMATORS IN THE LIMBUTION OF PRINTERS OF PRODUCT MEASURES. IN CHEMICAL LINEAR ESTIMATORS IN THE LIMBUTION OF PRINTERS OF PRODUCT MEASURES. IN CHEMICAL LINEAR ESTIMATORS IN THE LIMBUTION OF PRINTERS OF PRODUCT MEASURES. IN CHEMICAL LINEAR ESTIMATORS IN THE LIMBUTION OF PRINTERS OF PRODUCT MEASURES. IN CHEMICAL LINEAR ESTIMATORS IN THE LIMBUTION OF PRINTED CASES. /LE FREQUENCY PRINTINGS OF GENERAL LINEAR CHEMICALS IN THE LIMBUTION OF PRINTED CASES. AND ASSOCIATION OF PRINTED CONTRACT OF THE CHEMICAL LINEAR CHEMICAL CONTRACT OF THE CHEMICAL CHEMI				
AND THE PROPERTY OF CHERAL PROPERTY OF CONTROL OF CHEAT O				
ON THE IDENTIFIABILITY OF MINTER MINTERS PROMOT MASSINES AND 60 204 MARS 61 204 MARS 62 204 MARS 62 204 MARS 63 204 MARS 63 204 MARS 65 204 MARS 65 204 MARS 66 204 MARS 66 204 MARS 67 204 MARS 68 204 M				
IDENTIFICATION OF CREENALIZED CLASSICAL LINEAR DISTRIBUTIONS IN TOWN LOADING OFFICE CONTROL OF VICTOR ACCOUNTS OF CREENALIZED CLASSICAL LINEAR DISTRIBUTIONS OF CREENALIZED CLASSICAL LINEAR DISTRIBUTION OF CREENALIZED CLASSICAL LINEAR DISTRIBUTION OF CREENALIZED CLASSICAL DISTRIBUTION OF CREENALIZED CREENALIZED CLASSICAL DISTRIBUTION OF CREENALIZED CLASSICAL DISTRIBUTION OF CREENALIZED CLASSICAL DISTRIBUTION OF CREENALIZED CLASSICAL DISTRIBUTION OF A BRANCHIST CONTROLLAR OF CREENAL DISTRIBUTION OF A BRANCHIST CONTROLLAR OF CREENAL DISTRIBUTION OF A BRAN				
DESTRIBUTIONS OF GENERALIZED CLASSICAL LINEAR INTERFRECTION FOR PRODUCT MEASURES ASK 80 600	ON THE ID	DENTIFIABILITY OF FINITE MIXTURES	AMS 68	209
### PAPER DISTRIBUTIONS OF GENERALIZED CLASSICAL LINEARS IDENTIFICATION OF ANAL PEAR PERIODS FOR A DISEASE 500055 640 #### PAPER AND CONSISTENT ESTIMATOR FOR THE BESTITICATION OF ANALY PEAR PERIODS FOR A DISEASE 500055 640 ### APPEARS STREEMS TO THE STIMATOR FOR THE BESTITICATION OF FINITE MATTER AND ANALY AND ANALY OF CREATER TO THE STIMATOR OF THIS TEST AND ANALY AND ANALY OF CREATER TO THE STIMATOR OF THE ST			AMS 6I	244
THE IDENTIFICATION OF ANNUAL PERFECTION PROCESSES 655 FINITE MARKOV CHAIRS A CONSISTENT ESTIMATOR FOR HE IDENTIFICATION OF FINETURE MARKOW CHAIRS FINITE MARKOV CHAIRS A CONSISTENT ESTIMATOR FOR THE IDENTIFICATION OF FUETER MARKOW CHAIRS THE GENERAL STATE OF THE IDENTIFICATION OF FUETER MARKOW CHAIRS THE GENERAL LINEAR ESTIMATORS IN THE LEGATION OF FORETTIES IN GENERAL JACK 61 639 INCO CLASSICAL LINEAR ESTIMATORS IN THE LEGATION OF FORETTIES IN GENERAL JACK 61 639 INCO CLASSICAL LINEAR ESTIMATORS IN THE LEGATION OF FORETTIES IN GENERAL JACK 61 639 INCO CLASSICAL LINEAR ESTIMATORS IN THE LEGATION OF FORETTIES IN GENERAL JACK 63 630 INCO CLASSICAL LINEAR ESTIMATOR OF COMBINATORIAL IDENTIFICATION OF FUEL PROCESS. VARIABLES V				1300
A CONSISTENT STIMMON PARTS A CONSISTENT STIMMON PARTS A CONSISTENT STIMMON PARTS A CONSISTENT STIMMON PARTS AND SAME STIMMON PARTS AND SAME STIMMON PARTS IN CHARLES STIMMON SAME STIMMON SAME PARTS IN CHARLES STIMMON SAME STIMMON SAME PARTS IN CHARLES THE CLASSICAL LINEAR STIMMONS IN TWO LEADING OVER-IDENTIFIED CASES / LE PREQUENTY FUNCTIONS OF CENERAL JACK 6: 619 LEED CLASSICAL LINEAR STIMMONS IN TWO LEADING OVER-IDENTIFIED CASES / LE PREQUENTY FUNCTIONS OF CENERAL JACK 6: 619 THERE WILLIDDMENICIONAL-INFORMATION STIMMON SAME SAME SAME SAME SAME SAME SAME SAME				
A CONSISTENT SSILATOR FOR THE IDENTIFICATION OF FANTS TATE—CALCULAR FUNCTIONS OF AMES 67 728 AVERAGE SYSTEMS THE IDENTIFICATION OF STATE—CALCULAR FUNCTIONS OF AMES 67 728 INCIDENT STATE—CALCULAR FUNCTIONS OF AMES 67 728 INCIDENT STATE—CALCULAR FUNCTION OF AMES 728 INCIDENT STATE—CALCULAR FUNCTIONS OF AMES 728 INCIDENT STATE—CALCULAR FUNCTION OF AMES 728 AMES 67 729 INCIDENT STATE—CALCULAR FUNCTION OF THE GREEN AND AMES 68 728 INCIDENT STATE—CALCULAR FUNCTION OF THE GREEN AND AMES 68 728 POTHES CALCULAR FUNCTION OF AMES 728 A CEMERALIZATION OF MALE: IDENTITIES INCIDENT FOR AND OF FORCES 728 FOR FINITE DECISION FROLLESS UNDER CONFLICT INCOMPANIES UNDER FUNCTION OF AMES 728 FOR FINITE DECISION FROLLESS UNDER CONFLICT INCOMPANIE OF THE AMES AND AND AMES 728 FOR FINITE DECISION FROLLESS UNDER CONFLICT INCOMPANIE OF THE AMES AND AND AMES 728 FOR FINITE DECISION FROLLESS UNDER CONFLICT INCOMPANIE OF THE AMES OF THE AMES AND AMES 728 FOR FINITE DECISION FROLLESS UNDER CONFLICT INCOMPANIE OF THE AMES O				
APRAGE SYSTEM EXPERIENCENT SHEN OILY ONE PARTS THE IDENTIFICATION OF VECTOR MIXED AUTOREDRESSIVE WITH BUILDINGS OF THE CARGO OF VECTOR MIXED AUTOREDRESSIVE WITH BUILDINGS OF THE CARGO OF VECTOR MIXED AUTOREDRESSIVE WITH BUILDINGS OF THE CARGO OF VECTOR MIXED AUTOREDRESSIVE WITH BUILDINGS OF THE CARGO OF				
IN GENERAL EXPENSE EXPENSIVE SHAME ONLY ONE PREMENT IS DESTRICTED FOR SOME \$25. IN GENERAL LILEGE ESTHANTORS IN TWO LEADING OFFER SHEET FOR CASES (AF FREE EXPECTED EAR) SHAMES BIOLOGY \$4.00. IZED CLASSICAL LILEGE ESTHANTORS IN TWO LEADING OVER-TIDERTIFED CASES (AF FREE EXPECTED EAR) SHAMES BIOLOGY \$4.00. VARIABLES THANTORS IN TWO LEADING OVER-TIDERTIFED CASES (AFAST DISTRIBUTIONS OF THE GENERAL JAS. \$5.50. AMAGE \$5.50. VARIABLES THANTORS IN TWO LEADING OVER-TIDERTIFED CASES (AFAST DISTRIBUTIONS OF THE GENERAL JAS. \$6.50. VARIABLES THAN ON THE COMMENTARY OF WALLS (AFAST DISTRIBUTIONS OF THE GENERAL JAS. \$6.50. VARIABLES THAN ON THE COMMENTARY CHEENERS (AFAST DISTRIBUTIONS OF THE GENERAL JAS. \$6.50. VARIABLES AND STIMMAL LENGTHS ON AN IDENTITIES THAN APPLICATIONS TO RANDOM RAILS (AFAST DISTRIBUTION OF WALLS) IDENTITY FOR THE VARIANCE OF A RANDOM RAILS (AFAST DISTRIBUTION OF WALLS) IDENTITY FOR THE VARIANCE OF THE VARIABLE	A CONSISTENT ESTIMATOR FOR THE ID	DENTIFICATION OF FINITE MIXTURES		
IN GENERIC EXPERIENCING SHEED OLLY ONE PARENT IS IDENTIFIED CASES /LE PREQUENTY PRICTIONS OF THE GENERAL JASA 6, 303 IZED CLASSICAL LINEAR ESTIMATORS IN THE CARDING OVER-INCEPTIFIED CASES /LE PREQUENTY PRICTIONS OF THE GENERAL JASA 6, 303 THE CASE OF THE CASES /LE PREQUENTY PRICTIONS OF THE GENERAL JASA 6, 303 VARIABLES VARIABLES THREE MULTICIDENSIONAL -INTEGRAL DESIGNIS MANING WORDS OF EQUAL LEWITHS A GENERALIZATION OF ALL IS BESTIDIS MANING WORDS OF EQUAL LEWITHS A GENERALIZATION OF ALL IS BESTIDIS MANING WORDS OF EQUAL LEWITHS A GENERALIZATION OF ALL IS BESTIDIS MANING WORDS OF EQUAL LEWITHS A GENERALIZATION OF ALL IS BESTIDIS MANING WORDS OF EQUAL LEWITHS A GENERALIZATION OF ALL IS BESTIDIS MANING WORDS OF EQUAL LEWITHS A GENERALIZATION OF ALL IS BESTIDIS MANING WORDS OF EQUAL LEWITHS A GENERALIZATION OF ALL IS BESTIDIS MANING WORDS OF EQUAL LEWITHS FOR FINITE DECISION PROBLEMS UNDER COMPLETE INFORMANCE FOR FINITE DECISION PROBLEMS UNDER COMPLETE INFORMANCE SOFT THE LOCATION AND SCALE PARAMETERS OF INFORMANCE FOR FINITE DECISION PROBLEMS UNDER COMPLETE INFORMANCE FOR FINITE DECISION PROBLEMS UNDER COMPLETE INFORMANCE FOR FINITE DECISION PROBLEMS UNDER COMPLETE INFORMANCE FOR THE LOCATION AND SCALE PARAMETERS OF SCHOOL AND SCALE PROBLEMS OF SCHOOL AND SCALE PROBLEMS OF SCHOOL AND SCALE PROBLEMS OF SCHOOL AND SCH	FINITE MARKOV CHAINS	DENTIFICATION OF STATE-CALCULABLE FUNCTIONS OF		
IZED CLASSICAL LINEAR ESTIMATORS IN TWO LEADING OVER-IDENTIFIED CASES / LE FREQUENCY FUNCTIONS G CEMBERAL JASA 61 63 53 A TAXILLY OF COMMINATORAL IDENTIFIED CASES / ATA DISTRIBUTIONS OF THE CHEMICAL SECTION OF THE COMMINATORAL IDENTIFIED CASES / ATA DISTRIBUTIONS OF THE CHEMICAL SECTION OF THE				
ALE CLASSICAL LIBRAR ESTLATORS IN TWO LEADING OVER-IDENTITIES CASES / AACT DISTRIBUTIONS OF THE CURRAL JASA 63 505 AST AND A THREE MULTIDIANSIONAL-INTEGRAL IDENTITIES AND HIRST AND A THREE MULTIDIANSIONAL-INTEGRAL IDENTITIES AND A CHEMERAL JASA 63 505 AS 65 DOES AND ADDRESS AND ADD	IZED CLASSICAL LINEAR ESTIMATORS IN TWO LEADING OVER-ID	DENTIFIED CASES /LE FREQUENCY FUNCTIONS OF GENERAL	JASA 61	619
THREE MULTIDIARSIONAL-INTEGRAL IDENTITIES THE BAYESIAN APPLICATIONS AME 68 1615 VARIABLES THREE MULTIDIARSIONAL-INTEGRAL IDENTITIES THE BAYESIAN APPLICATIONS AME 68 1615 VARIABLES AND RESIDENT AND	IZED CLASSICAL LINEAR ESTIMATORS IN TWO LEADING OVER-ID	DENTIFIED CASES /XACT DISTRIBUTIONS OF THE GENERAL	JASA 63	535
DESIGNS HAVING WORDS OF EQUAL LEMSTS ON AH IDENTITY FRATTH'S VARIANCE OF A RATIO OF TWO RANDOM ALESS AND STIMATING TORRORS ON OH DENTITY RELATIONS TO RANDOM RALES OF ALE COMPATION OF THE PRESENT OF COURSE THE COLORS PROBLEMS LIGHTED THE PRESENT OF THE PRESENT OF COURSE THE PRESENT OF THE PRESENT OF RESPONSE THE PRESENT OF STIMATURE PRESENT OF RESPONSE THE PRESENT				
DESIGNS HAVING EORG OF EQUAL LENGTHS ON IDENTITY RELATIONSHIPS FOR TWO TO THE POWER OF N-R AREA GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS OF ARROWS MAKES (5 54) POTHESES AND ESTIMATING PARAMETERS IN MUMBAL COMPLIES IS IDENTITY WITH APPLICATIONS OF ARROWS MAKES FOR FINITE DECISION PROBLEMS UNDER COMPLETE IS THE AGE OF ONSET IS RANDOWS THE STRING MY SINCE AND APPLICATION FOR THE POWER OF THE PO	THREE MULTIDIMENSIONAL-INTEGRAL ID	DENTITIES WITH BAYESIAN APPLICATIONS	AMS 68	1615
A GENERALIZATION OF RALD'S IDENTITY WITH APPLICATIONS TO RANDOW WALKS COMPETITIVE QUEUEINS, IDLENESS PROBEABILITIES UNDER PRIORITY DESCRIPTIONS, 185856 489 POTHESES AND ESTIMATINO PARAMETERS IN HUMAN CENTICS IF THE AGE OF ONSET IS RANDOM POTENTIAL PROPERTY OF THE PROPERTY OF THE SACEAL ATTENUATIVES POR PINITE DECISION PROBLEM UNDER COMPLETE IOMORANCE NOT THE PROPERTY OF RESPONDENT INFORMATION OF DECISION PROBLEM UNDER COMPLETE IOMORANCE NOT THE PROPERTY OF RESPONDENT INFORMATION OF SUBJECT OF THE PROPERTY O				
COMPETITIVE QUEUEING, IDLEMESS PROBABILITIES UNDER PRIORITY DISCIPLINES MINIMAX RESULTS FOR FRANCAS 265 1744			AMS 66	IB42
POTRESES AND ESTIMATING PARAMETERS IN HUMAN CENTICS IF THE AGG OF ONSET IS RANDOM TESTING MY BIOKAGS 265 1778 FOR FINITE DECISION PROBLEMS UNDER COMMETE ICHORARDE NOTE ON DECISION FOR COMBETE ICHORARDE NOTE ON DECISION FOR LOSS 65 61078 ES OF THE LICATION AND SCALE PARAMETERS GIVEN A TYPE ICHORARDE NOTE ON DECISION FOR LOSS 65 61078 ES OF THE LICATION AND SCALE PARAMETERS GIVEN A TYPE ICHORARDE NOTE ON SURVEY RESULTS STEDIAL REFERENCE TO SAMPLES FROM A PEARSON TYPE III FOPULATION THE MEAN DEVIATION, THE HEAD OF THE SAMPLE PROPERTY OF THE SAMPLE STORY THE SAMPLE NOTE CARLO STUDIES. AND AUTOREDRESSIVE ILLUSTRATION THE MEAN DEVIATION, THE HEAD OF THE SAMPLE STORY				
A NEW TABLE OF FERCENTIAGE POINTS OF THE FEARSON TYPE III DESTRIBUTION SPECIAL REFERENCE TO SAMPLES FROM A PEARSON TYPE III DEPULATION SAMPLE KONTEC CARLOS STUDIES. AND AUTOMOCRESSIVE ILLUSTRATION BLUES OF SCHOOL LIFE, CORE 64 1797 PROCESSES WITH A V. AN APPLICATION FOR THE SOBOLEV IMBEDDING THRORENS TO CRITERIA FOR THE CONTINUITY OF ANS 69 517 CORR SB 1030 COMPLETE COUNTERBRIANCING OF IMBEDDING THRORENS TO CRITERIA FOR THE CONTINUITY OF AN BEACHING PROCESS ALLOWING IMMIGRATION FOR EAST OF THE MIGRATION WITH THE FOR THE SOBOLEV IMBEDDING THRORENS TO CRITERIA FOR THE CONTINUITY OF ANS 69 517 CORREST SO COMPLETE COUNTERBRIANCING OF IMBEDDING THRORENS TO CRITERIA FOR THE CONTINUITY OF ANS 69 517 A BRANCHING PROCESS ALLOWING IMMIGRATION OF DEATH THE MULTIPLE—BIOLAGE STATES SOME ASPECTS OF THE EMIGRATION—IMMIGRATION FOR EAST OF THE MIGRATION—THRORED STATES SOME ASPECTS OF THE EMIGRATION—IMMIGRATION FORCESS ONS TO LUNAR CRATERS A FUNDAMENTAL INTERACTION PARAMETER IN AN EMIGRATION—IMMIGRATION STORESS ONS TO LUNAR CRATERS A MULTIVARIATE IMMIGRATION STATISTICS OF THE UNITED STATES SOME ASPECTS OF THE MIGRATION—THRORED STATES SOME ASPECTS OF THROP STATES SOME ASPECTS OF THE MIGRATION—THRORED STATES SOME ASPECTS OF THROP STATE	COMPETITIVE QUEUEING, ID	DLENESS PROBABILITIES UNDER PRIORITY DISCIPLINES	JRSSB63	4B9
A NEW TABLE OF FERCENTIAGE POINTS OF THE TEARSON TYPE III CENSORED NORMAL SAMPLE /XINUM LIKELIHOOD ESTIMAT BIORAGE 1479 SPECIAL REFERENCE TO SAMPLES FROM A PEARSON TYPE III DOPULATION THE NEAN DEVIATION, WITH BIORAGE 478 STAFFLE MONTE CARLO STUDIES. AND AUTOMOCROSSIVE ILLUSTRATION BLUES OF SCHOOL LIFE, CORE 64 1293 PROCESSES WITH A V AN APPLICATION FOR THE SOBOLEV IMBEDDING THROREMS TO CRITERIA FOR THE CONTINUITY OF AN APPLICATION WERN THERE TO THE SOBOLEV IMBEDDING THROREMS TO CRITERIA FOR THE CONTINUITY OF A BRANCHING PROCESS ALLOWING IMMEDIATE SEQUENTIAL EFFECTS IN A LATIN SQUARE DESIGN JASA 88 95 127 A BEANCHING PROCESS ALLOWING IMMIGRATION FOR CESS A BRANCHING PROCESS ALLOWING IMMIGRATION FOR CESS A FUNDAMENTAL INTERACTION PARAMETER IN AN EMIGRATION—IMMIGRATION FORCESS A FUNDAMENTAL INTERACTION PARAMETER IN AN EMIGRATION—IMMIGRATION FORCESS ONS TO LUNAR CRATERS A FUNDAMENTAL INTERACTION PARAMETER IN AN EMIGRATION—IMMIGRATION STATISTICS OF THE UNITED STATES JOHN TO LUNAR CRATERS A MULTIVARIATE IMMIGRATION STATISTICS OF THE UNITED STATES JOHN TO LUNAR CRATERS A STATISTICAL PROCESS CONTROL AND IMMIGRATION STATISTICS OF THE UNITED STATES JOHN THE PARE OF A BRANCHING PROCESS AND MEMORIAL EMPORAGEMENT OF A BRANCHING PROCESS AND MEMORIAL EMPOREMENTS OF THE WIND STATES AND AND ARROWS AND AND ARROWS AND	POTHESES AND ESTIMATING PARAMETERS IN HUMAN GENETIGS IF	F THE AGE OF ONSET IS RANDOM TESTING HY	BIOKA63	265
A NEW TABLE OF FERCENTIAGE POINTS OF THE FEARSON TYPE III DESTRIBUTION SPECIAL REFERENCE TO SAMPLES FROM A PEARSON TYPE III DEPULATION SAMPLE KONTEC CARLOS STUDIES. AND AUTOMOCRESSIVE ILLUSTRATION BLUES OF SCHOOL LIFE, CORE 64 1797 PROCESSES WITH A V. AN APPLICATION FOR THE SOBOLEV IMBEDDING THRORENS TO CRITERIA FOR THE CONTINUITY OF ANS 69 517 CORR SB 1030 COMPLETE COUNTERBRIANCING OF IMBEDDING THRORENS TO CRITERIA FOR THE CONTINUITY OF AN BEACHING PROCESS ALLOWING IMMIGRATION FOR EAST OF THE MIGRATION WITH THE FOR THE SOBOLEV IMBEDDING THRORENS TO CRITERIA FOR THE CONTINUITY OF ANS 69 517 CORREST SO COMPLETE COUNTERBRIANCING OF IMBEDDING THRORENS TO CRITERIA FOR THE CONTINUITY OF ANS 69 517 A BRANCHING PROCESS ALLOWING IMMIGRATION OF DEATH THE MULTIPLE—BIOLAGE STATES SOME ASPECTS OF THE EMIGRATION—IMMIGRATION FOR EAST OF THE MIGRATION—THRORED STATES SOME ASPECTS OF THE EMIGRATION—IMMIGRATION FORCESS ONS TO LUNAR CRATERS A FUNDAMENTAL INTERACTION PARAMETER IN AN EMIGRATION—IMMIGRATION STORESS ONS TO LUNAR CRATERS A MULTIVARIATE IMMIGRATION STATISTICS OF THE UNITED STATES SOME ASPECTS OF THE MIGRATION—THRORED STATES SOME ASPECTS OF THROP STATES SOME ASPECTS OF THE MIGRATION—THRORED STATES SOME ASPECTS OF THROP STATE	MINIMAX RESULTS FOR IF	FRA SUALE ALTERNATIVES	AMS 69	177B
A NEW TABLE OF FERCENTIAGE POINTS OF THE FEARSON TYPE III DESTRIBUTION SPECIAL REFERENCE TO SAMPLES FROM A PEARSON TYPE III DEPULATION SAMPLE KONTEC CARLOS STUDIES. AND AUTOMOCRESSIVE ILLUSTRATION BLUES OF SCHOOL LIFE, CORE 64 1797 PROCESSES WITH A V. AN APPLICATION FOR THE SOBOLEV IMBEDDING THRORENS TO CRITERIA FOR THE CONTINUITY OF ANS 69 517 CORR SB 1030 COMPLETE COUNTERBRIANCING OF IMBEDDING THRORENS TO CRITERIA FOR THE CONTINUITY OF AN BEACHING PROCESS ALLOWING IMMIGRATION FOR EAST OF THE MIGRATION WITH THE FOR THE SOBOLEV IMBEDDING THRORENS TO CRITERIA FOR THE CONTINUITY OF ANS 69 517 CORREST SO COMPLETE COUNTERBRIANCING OF IMBEDDING THRORENS TO CRITERIA FOR THE CONTINUITY OF ANS 69 517 A BRANCHING PROCESS ALLOWING IMMIGRATION OF DEATH THE MULTIPLE—BIOLAGE STATES SOME ASPECTS OF THE EMIGRATION—IMMIGRATION FOR EAST OF THE MIGRATION—THRORED STATES SOME ASPECTS OF THE EMIGRATION—IMMIGRATION FORCESS ONS TO LUNAR CRATERS A FUNDAMENTAL INTERACTION PARAMETER IN AN EMIGRATION—IMMIGRATION STORESS ONS TO LUNAR CRATERS A MULTIVARIATE IMMIGRATION STATISTICS OF THE UNITED STATES SOME ASPECTS OF THE MIGRATION—THRORED STATES SOME ASPECTS OF THROP STATES SOME ASPECTS OF THE MIGRATION—THRORED STATES SOME ASPECTS OF THROP STATE	OCEDIDES FOR EINITE DECISION PROBLEMS UNDER COMPLETE IC	GNORANCE DECISION PROCEDURES	AMS 64	1644
A NEW TABLE OF FERCENTIAGE POINTS OF THE FEARSON TYPE III DESTRIBUTION SPECIAL REFERENCE TO SAMPLES FROM A PEARSON TYPE III DEPULATION SAMPLE KONTEC CARLOS STUDIES. AND AUTOMOCRESSIVE ILLUSTRATION BLUES OF SCHOOL LIFE, CORE 64 1797 PROCESSES WITH A V. AN APPLICATION FOR THE SOBOLEV IMBEDDING THRORENS TO CRITERIA FOR THE CONTINUITY OF ANS 69 517 CORR SB 1030 COMPLETE COUNTERBRIANCING OF IMBEDDING THRORENS TO CRITERIA FOR THE CONTINUITY OF AN BEACHING PROCESS ALLOWING IMMIGRATION FOR EAST OF THE MIGRATION WITH THE FOR THE SOBOLEV IMBEDDING THRORENS TO CRITERIA FOR THE CONTINUITY OF ANS 69 517 CORREST SO COMPLETE COUNTERBRIANCING OF IMBEDDING THRORENS TO CRITERIA FOR THE CONTINUITY OF ANS 69 517 A BRANCHING PROCESS ALLOWING IMMIGRATION OF DEATH THE MULTIPLE—BIOLAGE STATES SOME ASPECTS OF THE EMIGRATION—IMMIGRATION FOR EAST OF THE MIGRATION—THRORED STATES SOME ASPECTS OF THE EMIGRATION—IMMIGRATION FORCESS ONS TO LUNAR CRATERS A FUNDAMENTAL INTERACTION PARAMETER IN AN EMIGRATION—IMMIGRATION STORESS ONS TO LUNAR CRATERS A MULTIVARIATE IMMIGRATION STATISTICS OF THE UNITED STATES SOME ASPECTS OF THE MIGRATION—THRORED STATES SOME ASPECTS OF THROP STATES SOME ASPECTS OF THE MIGRATION—THRORED STATES SOME ASPECTS OF THROP STATE	THE FEFFCE OF BESPONDENT TO	CNORANCE ON SUBVEY RESULTS	1ASA 56	576
A PEW TABLE OF PERCENTAGE POINTS OF THE PEARSON TYPE III POTENTION THE MEAN DEVIATION, WITH BIORASS 478 SAMPLE MONTE CARLO STUDIES AND AUTOGEORESSIVE ILLUSTRATION PROCESSES WITH A V/ AN APPLICATION FOR THE SOBOLEY INTERDITION THEOREMS TO CRITERIA FOR THE COUNTERBALANCING OF IMMEDIATE SEQUENTIAL FEFTETS IN A LITIN SQUARE DESIGN JASA 68 1013 PROCESSES WITH A V/ AN APPLICATION FOR THE SOBOLEY INTERDITION THEOREMS TO CRITERIA FOR THE COUNTERBALANCING OF IMMEDIATE SEQUENTIAL FEFTETS IN A LITIN SQUARE DESIGN JASA 68 525 RECAPTURE CENSUS II ESTIMATION WHEN THERE IN IMMEDIATION FOR DEATH RECAPTURE CENSUS II ESTIMATION WHEN THERE IN IMMEDIATION FOR DEATH RECAPTURE CENSUS II ESTIMATION WHEN THERE IN IMMEDIATION FOR DEATH RECAPTURE CENSUS II ESTIMATION WHEN THERE IN IMMEDIATION FOR DEATH RECAPTURE CENSUS II ESTIMATION WHEN THERE IN IMMEDIATION FOR DEATH RECAPTURE CENSUS II ESTIMATION WHEN THERE IN IMMEDIATION FOR DEATH RECAPTURE CENSUS II ESTIMATION WHEN THERE IN IMMEDIATION FOR DEATH RECAPTURE CENSUS II ESTIMATION WHEN THERE IN IMMEDIATION FOR DEATH RECAPTURE CENSUS II ESTIMATION WHEN THERE IN IMMEDIATION FORCESS A FUNDAMENTAL INTERACTION FARMETER IN AN EMIGRATION FORCESS A FUNDAMENTAL INTERACTION FARMETER IN AN EMIGRATION FORCESS ONS TO LUNAR CRATERS A MULTIVARIATE IMMEDIATION FORCESS AND APPLICATI BIOKAGY 251 TONARY DISTRIBUTION OF A BRANCHING PROCESS ALLOWING IMMEGRATION STATISTIC MOBEL COMMENTS ON THE PAPER YAB BRANCHING PROCESS ALLOWING IMMEGRATION AND ENTRY AND AND ADDRESS STATISTICAL PROCESS CONTROL AND IMMEDIATION FOR AUTOMATIC PROCESS CONTROL STATISTICAL PROCESS CONTROL AND IMMEDIATE FOR AUTOMATIC PROCESS CONTROL OF REFLACEMENT POLICIES, AND REBERIAL THROBY IMPLICATIONS OF REPLACEMENT POLICIES, AND REBERIAL THROBY IMPLICATIONS OF REPLACEMENT POLICIES, AND REBERIAL THROBY IMPLICATIONS OF AUTOMATIC PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL OF REPLACEMENT POLICIES, AND REBERIAL THROBY IMPROVEMENT TO AUTOMATIC PROCESS FOR THE STATE OF THE MORE AND THE PAPER YAB BRANCHING PROCESS ALLOW				
PROCESSES WITH A V/ AN APPLICATION FOR THE SOBOLEV IMBEDIATY TABLES OF SCHOOL LIFE, CORR, 64 1299 JASA 63 ILIUS COMPLETE COUNTERBALANCING OF IMMEDIATE SQUENTIAL EFFECTS IN A LATIN SQUARE DESIGN JASA 58 5157 RECAPTURE CENSUS II ESTIMATION HER THERE IS IMMIGRATION OF DEATH A BRANCHING PROCESS ALLOWING IMMIGRATION OF DEATH A FUNDAMENTAL INTERACTION PARAMETER IN AN EMIGRATION-IMMIGRATION PROCESS A FUNDAMENTAL INTERACTION PARAMETER IN AN EMIGRATION-IMMIGRATION PROCESS A FUNDAMENTAL INTERACTION PARAMETER IN AN EMIGRATION-IMMIGRATION PROCESS A FUNDAMENTAL INTERACTION PARAMETER IN AN EMIGRATION-IMMIGRATION STATISTICS OF THE UNITED STATES AND SOME ASPECTS OF THE EMIGRATION STATISTICS OF THE UNITED STATES AND SOME ASPECTS OF SOME ASPECTS OF THE EMIGRATION STATISTICS OF THE UNITED STATES JACAB 963 AND SOME SILLARY AND STATISTICS OF THE UNITED STATES AND SOME SILLARY AND STATISTICS OF THE UNITED STATES JACAB 963 ATES FROM CAPTURE-ACAPTURE DATA WITH BOTH DEATH AND IMMIGRATION STATISTICS OF THE UNITED STATES ATES FROM CAPTURE-ACAPTURE DATA WITH BOTH DEATH AND IMMIGRATION STATISTICS OF THE UNITED STATES AND SOME BILLARY AND STATISTICS OF THE UNITED STATES AND SOME BILLARY AND STATISTICS OF THE UNITED STATES AND SOME BILLARY AND STATISTICS OF THE UNITED STATES COMMENTS ON THE FAFER ON SOME BILLARY AND STATISTICS OF THE UNITED STATES OF REPLACEMENT POLICIES AND STATISTICS OF THE UNITED STATES OF THE UNITED STA	A NEW TABLE OF PERCENTAGE POINTS OF THE PEARSON TYPE II	II DISTRIBUTION	TECH 69	177
PROCESSES WITH A V/ AN APPLICATION FOR THE SOBOLEV IMBEDIATY TABLES OF SCHOOL LIFE, CORR, 64 1299 JASA 63 ILIUS COMPLETE COUNTERBALANCING OF IMMEDIATE SQUENTIAL EFFECTS IN A LATIN SQUARE DESIGN JASA 58 5157 RECAPTURE CENSUS II ESTIMATION HER THERE IS IMMIGRATION OF DEATH A BRANCHING PROCESS ALLOWING IMMIGRATION OF DEATH A FUNDAMENTAL INTERACTION PARAMETER IN AN EMIGRATION-IMMIGRATION PROCESS A FUNDAMENTAL INTERACTION PARAMETER IN AN EMIGRATION-IMMIGRATION PROCESS A FUNDAMENTAL INTERACTION PARAMETER IN AN EMIGRATION-IMMIGRATION PROCESS A FUNDAMENTAL INTERACTION PARAMETER IN AN EMIGRATION-IMMIGRATION STATISTICS OF THE UNITED STATES AND SOME ASPECTS OF THE EMIGRATION STATISTICS OF THE UNITED STATES AND SOME ASPECTS OF SOME ASPECTS OF THE EMIGRATION STATISTICS OF THE UNITED STATES JACAB 963 AND SOME SILLARY AND STATISTICS OF THE UNITED STATES AND SOME SILLARY AND STATISTICS OF THE UNITED STATES JACAB 963 ATES FROM CAPTURE-ACAPTURE DATA WITH BOTH DEATH AND IMMIGRATION STATISTICS OF THE UNITED STATES ATES FROM CAPTURE-ACAPTURE DATA WITH BOTH DEATH AND IMMIGRATION STATISTICS OF THE UNITED STATES AND SOME BILLARY AND STATISTICS OF THE UNITED STATES AND SOME BILLARY AND STATISTICS OF THE UNITED STATES AND SOME BILLARY AND STATISTICS OF THE UNITED STATES COMMENTS ON THE FAFER ON SOME BILLARY AND STATISTICS OF THE UNITED STATES OF REPLACEMENT POLICIES AND STATISTICS OF THE UNITED STATES OF THE UNITED STA	SPEGIAL REFERENCE TO SAMPLES FROM A PEARSON TYPE II	II POPULATION THE MEAN DEVIATION, WITH	BIOKA58	478
PROCESSES WITH A V/ AN APPLICATION FOR THE SOBOLEV IMBEDDING THEOREMS TO CRITERIA FOR THE CONTINUITY OF AMS 69 517. CORR S 1030 COMPLETE COUNTERBALANCING OF IMMEDIATE SEQUENTIAL EFFECTS IN A LATIN SQUARE DESIGN JASS 85 525. A BRANCHING PROCESS ALLOWING IMMIGRATION POEDS. SOME ASPECTS OF THE ENIGRATION—IMMIGRATION PROCESS SOME ASPECTS OF THE ENIGRATION—IMMIGRATION PROCESS ONS TO LUNAR CRATERS ONS TO LUNAR CRATERS A MULTIVARIATE IMMIGRATION STATISTICS OF THE UNITED STATES JASS 58 59. ATES FROM CAPTURE—BEAT AND A MIGRATION—IMMIGRATION PROCESS ATES FROM CAPTURE—RECAPTURE DATA WITH BOTH DEATH AND IMMIGRATION STATISTICS OF THE UNITED STATES JASS 58 69. ATES FROM CAPTURE—RECAPTURE DATA WITH BOTH DEATH AND IMMIGRATION—STOCHASTIC MODEL. EXPLICIT ESTIM BIOKAGF 251 TONARY DISTRIBUTION OF A BRANCHING PROCESS ALLOWING IMMIGRATION—STOCHASTIC MODEL. STATISTICAL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL AND THE STATISSSES 176 COMMENTS ON THE PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION. A FEMALE OF THE STATISTICAL CASE THE STATISTICAL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL AND THE STATISTICAL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL AND THE STATISTICAL PROCESS CONTROL AND THE PROPERTY OF AUTOMATIC PROCESS CONTROL AND THE PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION. A FEMALE OF THE STATISTICAL CASE THE STATISTICAL PROCESS CONTROL AND THE PAPER 'A BRANCHING PROCESS CONTROL AND THE PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION. A THE QUEDLING SYSTEM GI-M-1. OF REPLACEMENT FOLICIES. AND THE PROPERTY OF AUTOMATIC PROCESS CONTROL AND THE STATISTICAL PROCESS CONTROL AND THE PAPER 'A BRANCHING PROCESS CONTROL AND T	SAMPLE MONTE CARLO STUDIES. AND AUTOREGRESSIVE IL	LLUSTRATION FINITE	JASA 67	801
CORR. 58 1030 COMPLETE COUNTERBALANCING OF IMMEDIATE SEQUENTIAL EFFECTS IN A LATIN SQUARE DESIGN JASA 88 525 RECAPTURE CENSUS II ESTIMATION WHEN THERE IS IMMIGRATION OF DEATH THE MULTIPLE—BIOKAS9 36 RECAPTURE CENSUS II ESTIMATION WHEN THERE IS IMMIGRATION OF DEATH THE MULTIPLE—BIOKAS9 36 PAGE 30 PAGE			JASA 63	
A BRANCHING PROCESS ALLOWING IMMIGRATION OR DEATH RECAPTURE CENSUS II. ESTIMATION HERE IS IMMIGRATION PROCESS A FUNDAMENTAL INTERACTION PARAMETER IN AN EMIGRATION—IMMIGRATION PROCESS ONE SOME ASFECTS OF THE ENIGRATION—IMMIGRATION PROCESS NOTES ON IMMIGRATION STATISTICS OF THE UNITED STATES ONS TO LUNAR CRATERS A MULTIVARIATE IMMIGRATION STATISTICS OF THE UNITED STATES A MULTIVARIATE IMMIGRATION STATISTICS OF THE UNITED STATES ONS TO LUNAR CAPTURE—RECAPTURE DATA WITH BOTH DEATH AND IMMIGRATION—STOCHASTIC MODEL. EXPLICIT ESTIM BIOKAGS 225 TIONARY DISTRIBUTION OF A BRANCHING PROCESS ALLOWING IMMIGRATION—STOCHASTIC MODEL. STATISTICAL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL OF REPLACEMENT POLICIES. AND RENEWAL THEORY INFLICATIONS OF VARIANCES A BAYESTAN APPROACH TO THE IMPACT OF AUTOMATIC PROCESS (CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL AND THE IMPACT O				
RECAPTURE CENSUS II. ESTIMATION WHEN THERE IS IMMIGRATION OR DEATH SOME ASPECTS OF THE EMIGRATION—IMMIGRATION PROCESS A FUNDAMENTAL INTERACTION PARAMETER IN AN EMIGRATION—IMMIGRATION PROCESS THE ESTIMATION OF AMS 63 238 AND TO LUNAR CRATERS A MULTIVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND APPLICATI BIOKAGE 251 TONARY DISTRIBUTION OF A BRANCHING PROCESS ALLOWING IMMIGRATION, A REMARK ON THE CRITICAL CASE THE STA JRSSB68 176 COMMENTS ON THE PAPER* A BRANCHING PROCESS ALLOWING IMMIGRATION, A REMARK ON THE CRITICAL CASE THE STA JRSSB68 176 COMMENTS ON THE PAPER* A BRANCHING PROCESS ALLOWING IMMIGRATION, A REMARK ON THE CRITICAL CASE THE STA JRSSB68 176 COMMENTS ON THE PAPER* A BRANCHING PROCESS ALLOWING IMMIGRATION, A REMARK ON THE CRITICAL CASE THE STA JRSSB68 176 COMMENTS ON THE PAPER* A BRANCHING PROCESS ALLOWING IMMIGRATION OF CORRECTIONS AND JRSSB66 176 COMMENTS ON THE PAPER* A BRANCHING PROCESS ALLOWING IMMIGRATION OF CORRECTIONS AND JRSSB66 176 COMMENTS ON THE PAPER A BRANCHING PROCESS ALLOWING IMMIGRATION OF CORRECTION AND JRSSB66 176 COMMENTS ON THE PAPER A BRANCHING PROCESS ALLOWING IMMIGRATION OF CORRECTION AND JRSSB66 176 COMMENTS ON THE PAPER A BRANCHING PROCESS ALLOWING IMMIGRATION OF CORRECTION AND JRSSB66 176 COMMENTS ON THE PAPER A BRANCHING PROCESS ALLOWING IMMIGRATION OF CORRECTION AND JRSSB66 176 COMMENTS ON THE PAPER A BRANCHING PROCESS ALLOWING IMMIGRATION OF COMPARISON OF COMPARISON AND A SALE AND				
ONS TO LUNAR CRATERS A MULTUARIATE IMMIGRATION STATISTICS OF THE UNITED STATES A TEST FROM CAPTURE-RECAPTURE DATA WITH BOTH DEATH AND IMMIGRATION. STATISTIC MODEL. EXPLICIT ESTIM BIOKA65 225 ATES FROM CAPTURE-RECAPTURE DATA WITH BOTH DEATH AND IMMIGRATION. A REMARK ON THE CRITICAL CASE THE STAT JRSSB68 176 COMMENTS ON THE PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION. A REMARK ON THE CRITICAL CASE THE STAT JRSSB68 176 COMMENTS ON THE PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION. A REMARK ON THE CRITICAL CASE THE STAT JRSSB68 176 COMMENTS ON THE PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION. A REMARK ON THE CRITICAL CASE THE STAT JRSSB68 176 COMMENTS ON THE PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION. A REMARK ON THE CRITICAL CASE THE STAT JRSSB68 176 COMMENTS ON THE PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION. A REMARK ON THE CRITICAL CASE THE STATE JRSSB68 176 COMMENTS ON THE COMPANIES OF THE OWNER THAT IN THE QUEUEING SYSTEM GI-M-1. A CORRECTIO BIOKAGE 45 BOTH OF PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION. A REMARK ON THE QUEUEING SYSTEM GI-M-1. A CORRECTIO BIOKAGE 472 OF PAPER AND THE COLOR OF THE CUSTOMER THAT IN THE QUEUEING SYSTEM GI-M-1. A CORRECTIO BIOKAGE 472 OF PAPER AND THE COLOR OF THE CUSTOMER THAT IN THE QUEUEING SYSTEM GI-M-1. A CORRECTIO BIOKAGE 477 DITHE OCCUPRENCE DISTRIBUTION OF WORD LENGTH AND ITS IMPORTANCE FOR THE STUDY OF QUANTITATIVE LINGUISTICS BIOKAGE 172 DEPARTMENT OF THE OCCUPRENCE DISTRIBUTION OF WORD LENGTH AND ITS IMPORTANCE FOR THE STUDY OF QUANTITATIVE LINGUISTICS BIOKAGE 172 DEPARTMENT OF THE OCCUPRENCE DISTRIBUTION OF MINIMA WITH IMPORTANCE OF ASSIMPTIONS OF VARIANCES A BAYESLAN APPROACH TO THE PROPERMATION OF A MINIMA WITH IMPORTANCE OF A SSIMPTION SETULDED THE SAME AND THE CRITICAL SHOPPOLYMON OF A MINIMA WITH IMPORTANCE OF A SSIMPTION SETULDED THE STATE OF THE SAME AND THE PAPER AND THE SAME AND THE PAPER AND THE SAME AND T		MMIGRATION	JRSSB65	13B
ONS TO LUNAR CRATERS A MULTUARIATE IMMIGRATION STATISTICS OF THE UNITED STATES A TEST FROM CAPTURE-RECAPTURE DATA WITH BOTH DEATH AND IMMIGRATION. STATISTIC MODEL. EXPLICIT ESTIM BIOKA65 225 ATES FROM CAPTURE-RECAPTURE DATA WITH BOTH DEATH AND IMMIGRATION. A REMARK ON THE CRITICAL CASE THE STAT JRSSB68 176 COMMENTS ON THE PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION. A REMARK ON THE CRITICAL CASE THE STAT JRSSB68 176 COMMENTS ON THE PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION. A REMARK ON THE CRITICAL CASE THE STAT JRSSB68 176 COMMENTS ON THE PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION. A REMARK ON THE CRITICAL CASE THE STAT JRSSB68 176 COMMENTS ON THE PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION. A REMARK ON THE CRITICAL CASE THE STAT JRSSB68 176 COMMENTS ON THE PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION. A REMARK ON THE CRITICAL CASE THE STATE JRSSB68 176 COMMENTS ON THE COMPANIES OF THE OWNER THAT IN THE QUEUEING SYSTEM GI-M-1. A CORRECTIO BIOKAGE 45 BOTH OF PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION. A REMARK ON THE QUEUEING SYSTEM GI-M-1. A CORRECTIO BIOKAGE 472 OF PAPER AND THE COLOR OF THE CUSTOMER THAT IN THE QUEUEING SYSTEM GI-M-1. A CORRECTIO BIOKAGE 472 OF PAPER AND THE COLOR OF THE CUSTOMER THAT IN THE QUEUEING SYSTEM GI-M-1. A CORRECTIO BIOKAGE 477 DITHE OCCUPRENCE DISTRIBUTION OF WORD LENGTH AND ITS IMPORTANCE FOR THE STUDY OF QUANTITATIVE LINGUISTICS BIOKAGE 172 DEPARTMENT OF THE OCCUPRENCE DISTRIBUTION OF WORD LENGTH AND ITS IMPORTANCE FOR THE STUDY OF QUANTITATIVE LINGUISTICS BIOKAGE 172 DEPARTMENT OF THE OCCUPRENCE DISTRIBUTION OF MINIMA WITH IMPORTANCE OF ASSIMPTIONS OF VARIANCES A BAYESLAN APPROACH TO THE PROPERMATION OF A MINIMA WITH IMPORTANCE OF A SSIMPTION SETULDED THE SAME AND THE CRITICAL SHOPPOLYMON OF A MINIMA WITH IMPORTANCE OF A SSIMPTION SETULDED THE STATE OF THE SAME AND THE PAPER AND THE SAME AND THE PAPER AND THE SAME AND T		MMIGRATION OR DEATH THE MULTIPLE—	BIOKA59	336
ONS TO LUNAR CRATERS A MULTUARIATE IMMIGRATION STATISTICS OF THE UNITED STATES A TEST FROM CAPTURE-RECAPTURE DATA WITH BOTH DEATH AND IMMIGRATION. STATISTIC MODEL. EXPLICIT ESTIM BIOKA65 225 ATES FROM CAPTURE-RECAPTURE DATA WITH BOTH DEATH AND IMMIGRATION. A REMARK ON THE CRITICAL CASE THE STAT JRSSB68 176 COMMENTS ON THE PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION. A REMARK ON THE CRITICAL CASE THE STAT JRSSB68 176 COMMENTS ON THE PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION. A REMARK ON THE CRITICAL CASE THE STAT JRSSB68 176 COMMENTS ON THE PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION. A REMARK ON THE CRITICAL CASE THE STAT JRSSB68 176 COMMENTS ON THE PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION. A REMARK ON THE CRITICAL CASE THE STAT JRSSB68 176 COMMENTS ON THE PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION. A REMARK ON THE CRITICAL CASE THE STATE JRSSB68 176 COMMENTS ON THE COMPANIES OF THE OWNER THAT IN THE QUEUEING SYSTEM GI-M-1. A CORRECTIO BIOKAGE 45 BOTH OF PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION. A REMARK ON THE QUEUEING SYSTEM GI-M-1. A CORRECTIO BIOKAGE 472 OF PAPER AND THE COLOR OF THE CUSTOMER THAT IN THE QUEUEING SYSTEM GI-M-1. A CORRECTIO BIOKAGE 472 OF PAPER AND THE COLOR OF THE CUSTOMER THAT IN THE QUEUEING SYSTEM GI-M-1. A CORRECTIO BIOKAGE 477 DITHE OCCUPRENCE DISTRIBUTION OF WORD LENGTH AND ITS IMPORTANCE FOR THE STUDY OF QUANTITATIVE LINGUISTICS BIOKAGE 172 DEPARTMENT OF THE OCCUPRENCE DISTRIBUTION OF WORD LENGTH AND ITS IMPORTANCE FOR THE STUDY OF QUANTITATIVE LINGUISTICS BIOKAGE 172 DEPARTMENT OF THE OCCUPRENCE DISTRIBUTION OF MINIMA WITH IMPORTANCE OF ASSIMPTIONS OF VARIANCES A BAYESLAN APPROACH TO THE PROPERMATION OF A MINIMA WITH IMPORTANCE OF A SSIMPTION SETULDED THE SAME AND THE CRITICAL SHOPPOLYMON OF A MINIMA WITH IMPORTANCE OF A SSIMPTION SETULDED THE STATE OF THE SAME AND THE PAPER AND THE SAME AND THE PAPER AND THE SAME AND T		WMTCRATION PROCESS THE ESTIMATION OF	AMS 63	228
ONS TO LUMAR CRATTERS AM MULTIVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND APPLICATI BIOKASS 255 TIONARY DISTRIBUTION OF A BRANCHING PROCESS ALLOWING IMMIGRATION. A REMARK ON THE CRITICAL CASE THE STA JRSSB68 176 COMMENTS ON THE PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION. A REMARK ON THE CRITICAL CASE THE STA JRSSB68 176 COMMENTS ON THE PAPER 'A BRANCHING PROCESS CALLOWING IMMIGRATION. A REMARK ON THE CRITICAL CASE THE STA JRSSB68 176 ON SOME BILHARZIA INFECTION AND IMMIGRATION MODELS STATISTICAL PROCESS CONTROL. THE PROCESS CONTROL THE PROCESS CONTROL. THE PROCESS CONTROL THE P		MMIGRATION TROCESS THE UNITED STATES	JASA 58	963
ATES FROM CAPTURE-RECAPTURE DATA WITH BOTH DEATH AND IMMIGRATION—STOCHASTIC MODEL. EXPLICIT ESTIM BIOKAGS 225 TIONARY DISTRIBUTION OF A BRANCHING PROCESS ALLOWING IMMIGRATION. A REWARK ON THE CRITICAL CASE THE STA JRSSB68 276 COMMENTS ON THE PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION. A REWARK ON THE CRITICAL CASE THE STA JRSSB68 213 ON SOME BILHARZIA INFECTION AND IMMIGRATION. A REWARK ON THE CRITICAL CASE THE STA JRSSB68 213 STATISTICAL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL THE PAPER STANDARD STANDA	ONS TO LUNAR CRATERS A MULTIVARIATE IM	MMIGRATION WITH MULTIPLE DEATH PROCESS AND APPLICATI		
COMMENTS ON THE PAPER 'A BRANCHING PROCESS ALLOWING ON SOME BILHARZIA INTECTION AND IMMUNISATION MODELS STATISTICAL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL DETERMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-1 DETERMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-1 DETERMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-1 OF REPLACEMENT POLICIES, AND RENEWAL THEORY IMPLICATIONS OF A BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS APPLIED TO THE COMPARISON BIOKA65 231 ERGCENT EFFORTS TO IMPROVE LAND USE INFORMATION THE COMPASISON BIOKA64 153 ERGCENT EFFORTS TO IMPROVE LAND USE INFORMATION STOCHASTIC APPROXIMATION OF MINIMA WITH IMPROVED ASWMPTOTIC SEXPROTORIES STEED TO AMBIEVE AS A SAME OF 1919 REGRESSION TION COMPARED WITH THE X-SQUARE APPROXIMATION AND AN IMPROVEMENT TO IT A COMPLETE MULTINOMIAL DISTRIBU BIOKA64 277 ES OF SEQUENTIAL TESTS ON THE POSSIBILITY OF THE MEAN A MODIFIED TECHNIQUE FOR IMPROVEMENTS ON THE POSSIBILITY OF THE MEAN QUALITY CONTROL SYSTEMS BASED ON IMPROVEMENTS THOU JASA 69 100 INACCURATELY MAD USEFUL LIFE OF ITEMS BY ELIMINATIN THE THE INACCURACY AND INFERENCE DESIGNS WHICH MINIMIZE MODEL INADDUSCIES CUBBILLAR TO FIT HE WALL CONFIDENCE SETS FOR THE MADDISSIBILITY OF THE BEST INVARIANT TEST WHEN THE AMS 67 1868 METERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCAL/ PERSENCE OF FRUIR INFORMATION OF THE INADMISSIBILITY OF THE USUAL CONFIDENCE SETS FOR THE MASS 67 1868 METERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCAL/ PERSENCE OF FUILD MERGINE TO THE DISTRIBUTION UNDER/ INADMISSIBILITY OF THE USU				225
STATISTICAL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL — 1 DETERMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI——1 NO F REPLACEMENT POLICIES, AND RENEWAL THEORY IMPATIENCE IN THE QUEUEING SYSTEM GI——1, A CORRECTIO BIOKAGI 475 D THE OCCURRENCE DISTRIBUTION OF WORD LENGTH AND ITS IMPORTANCE FOR THE STUDY OF QUANTITATIVE LINGUISTICS BIOKAGE 475 D THE OCCURRENCE DISTRIBUTION OF WORD LENGTH AND ITS IMPORTANCE FOR THE STUDY OF QUANTITATIVE LINGUISTICS BIOKAGE 422 OF VARIANCES A BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS APPLIED TO THE COMPARISON BIOKAGE 423 L REGIONS SIMILAR TO THE SAMPLE SPACE IN TESTS OF AN IMPORTANCE CAS OF COMPOSITE HYPOTHESES /ST CRITICA BIOKAGE 453 RECERT EFFORTS TO IMPROVE LAND USE INFORMATION JANA 66 647 STOCHASTIC APPROXIMATION OF MINIMA WITH IMPROVED ASSUMPTION SPEED ANS 67 191 REGRESSION IMPROVED SOUNDS ON A MEASURE OF SKEWNESS ANS 67 191 REGRESSION IMPROVED SOUNDS ON A MEASURE OF SKEWNESS ANS 67 191 REGRESSION IMPROVED SOUNDS ON A MEASURE OF SKEWNESS ANS 67 191 REFORMED ESTIMATORS FOR COREFTICIENTS IN LINEAR JASA 68 596 TION COMPARED WITH THE X-SQUARE APPROXIMATION AND AN IMPROVEMENT TO IT A COMPLETE MULTINOMIAL DISTRIBU BIOKAGE 4277 ES OF SEQUENTIAL TESTS OF AN IMPROVEMENT TO WALD'S APPROXIMATION FOR SOME PROPERTI JRSSSE4 136 SIDED TOLERANCE LIMITS FOR NORMAL POPULATIONS, SOME IMPROVEMENTS TO ALLY SAFENDE AND ALLY SAFENDE		MMIGRATION. A REMARK ON THE CRITICAL CASE THE STA	JRSSB68	176
STATISTICAL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL — 1 DETERMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI——1 NO F REPLACEMENT POLICIES, AND RENEWAL THEORY IMPATIENCE IN THE QUEUEING SYSTEM GI——1, A CORRECTIO BIOKAGI 475 D THE OCCURRENCE DISTRIBUTION OF WORD LENGTH AND ITS IMPORTANCE FOR THE STUDY OF QUANTITATIVE LINGUISTICS BIOKAGE 475 D THE OCCURRENCE DISTRIBUTION OF WORD LENGTH AND ITS IMPORTANCE FOR THE STUDY OF QUANTITATIVE LINGUISTICS BIOKAGE 422 OF VARIANCES A BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS APPLIED TO THE COMPARISON BIOKAGE 423 L REGIONS SIMILAR TO THE SAMPLE SPACE IN TESTS OF AN IMPORTANCE CAS OF COMPOSITE HYPOTHESES /ST CRITICA BIOKAGE 453 RECERT EFFORTS TO IMPROVE LAND USE INFORMATION JANA 66 647 STOCHASTIC APPROXIMATION OF MINIMA WITH IMPROVED ASSUMPTION SPEED ANS 67 191 REGRESSION IMPROVED SOUNDS ON A MEASURE OF SKEWNESS ANS 67 191 REGRESSION IMPROVED SOUNDS ON A MEASURE OF SKEWNESS ANS 67 191 REGRESSION IMPROVED SOUNDS ON A MEASURE OF SKEWNESS ANS 67 191 REFORMED ESTIMATORS FOR COREFTICIENTS IN LINEAR JASA 68 596 TION COMPARED WITH THE X-SQUARE APPROXIMATION AND AN IMPROVEMENT TO IT A COMPLETE MULTINOMIAL DISTRIBU BIOKAGE 4277 ES OF SEQUENTIAL TESTS OF AN IMPROVEMENT TO WALD'S APPROXIMATION FOR SOME PROPERTI JRSSSE4 136 SIDED TOLERANCE LIMITS FOR NORMAL POPULATIONS, SOME IMPROVEMENTS TO ALLY SAFENDE AND ALLY SAFENDE		MMIGRATION' CORRECTIONS AND	JRSSB66	213
DETERMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-1, A CORRECTIO BIOKAGI 472 OF REPLACEMENT POLICIES. AND RENEWAL THEORY OF THE COURT PROBLEM OF REPLACEMENT POLICIES. AND RENEWAL THEORY OF REPLACEMENT POLICIES. AND RENEWAL THEORY OF REPLACEMENT POLICIES. AND RENEWAL THEORY OF REPLACEMENT OF THE COURT PROBLEM OF REPROACH TO THE COURT PROBLEM OF REPROACH TO THE LONGUISTICS OF AN IMPORTANT CLASS OF COMPOSITE HYPOTHESES OF THE COMPARISON OF REPROACH TO THE IMPORTANT CLASS OF COMPOSITE HYPOTHESES OF AN IMPORTANT CLASS OF COMPOSITE HYPOTHESES OF SEQUENTIAL TESTS OF AN IMPROVE LAND USE INFORMATION OF MINIMA WITH IMPROVED ASYMPTOTIC SPEED OF SEQUENTIAL TESTS OF AN IMPROVE LAND USE INFORMATION OF A MISCOLAR OF THE PROVIDE OBUNDS ON A MESCURE OF SKEWNESS AND SEQUENTIAL TESTS SIDED TOLERANCE LIMITS FOR NORMAL POPULATIONS, SOME IMPROVEDED EQUINDS ON A MESCURE OF SKEWNESS TOWN OF A MODIFIED TECHNIQUE OF IMPROVING AN ESTIMATE OF THE MEAN BIOCS69 SEED OF THE MESON OF TH	ON SOME BILHARZIA INFECTION AND IM	MMUNISATION MODELS		
DETERMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-1, A CORRECTIO BIOKA61 472 OF REPLACEMENT POLICIES, AND RENEWAL THEORY IMPLICATIONS OF REPLACEMENT POLICIES, AND RENEWAL THEORY IMPLICATIONS OF VARIANCES OF VARIANCES A BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS APPLIED TO THE COMPARISON RECENT EFFORTS TO IMPORTANCE OF ASSUMPTIONS APPLIED TO THE COMPARISON RECENT EFFORTS TO IMPROVE LAND USE INFORMATION STOCHASTIC APPROXIMATION OF MINIMA WITH IMPROVED ASYMPTOTIC SPEED TION COMPARED WITH THE X-SQUARE APPROXIMATION AND AN IMPORTANCE OF ASSUMPTIONS OFFICIENTS IN LINEAR TION COMPARED WITH THE X-SQUARE APPROXIMATION AND AN IMPROVED ASYMPTOTIC SPEED A MODIFIED TECHNIQUE FOR IMPROVEMENT TO IT A COMPLETE MULTINOMIAL DISTRIBUTION OF AN ADDITION OF THE IMPROVED ASYMPTOTIC TO WALL'S APPROXIMATION FOR SOME PROPERTI JRSSSB4 136 G THOSE WITH SHORT LIVES ON THE POSSIBILITY OF IMPROVING AN ESTIMATE OF THE MEAN QUALITY CONTROL SYSTEMS BASED ON INACCURATELY MEASURED VARIABLES TREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER/ MEAN OF A MULTIVARIATE NORMAL POPULATION METERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCAL/ PERIMENT IN WHICH CERTAIN TREATMENT ARRANGEMENTS ARE INACURATELY MEASURED VARIABLES TREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER/ MEAN OF A MULTIVARIATE NORMAL POPULATION OF THE INACCURATELY MEASURED VARIABLES THE BIOKA65 121 PROCESS THE DISTRIBUTION UNDER/ METERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCAL/ PERIMENT IN WHICH CERTAIN TREATMENT ARRANGEMENTS ARE INACURATELY MEASURED VARIABLES THE BIOKA65 128 TREME QUANTILES OF THE NORMAL DISTRIBUTION OF THE INACURATELY MEASURED VARIABITES THE AMS 63 539 THE DISTRIBUTION OF HETEROGENEITY UPON INRESELLITY OF THE BEST INVARIANT EST WHEN THE AMS 63 539 THE DISTRIBUTION OF HETEROGENEITY UPON INRESELLITY OF THE BEST INVARIANT EST WHEN THE AMS 69 1863 TREME QUANTILES OF FRODUCING FIT/ EXPECTED EFFECTS ON THE INREBEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS66 448 METHODS OF REPRODUCING FIT/ EXPECTED EFFECTS ON THE INREBEDING COEFFICIENT F				
OF REPLACEMENT POLICIES, AND RENEWAL THEORY IMPLICATIONS OF COURRENCE DISTRIBUTION OF WORD LENGTH AND ITS IMPORTANCE FOR THE STUDY OF QUANTITATIVE LINCUISTICS BIOKA58 222 OF VARIANCES A BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS APPLIED TO THE COMPARISON RECENT STOCK ASSUME SPACE IN TESTS OF AN IMPORTANCE OF ASSUMPTIONS APPLIED TO THE COMPARISON RECENT STOCK ASSUME SPACE IN TESTS OF AN IMPORTANT CLASS OF COMPOSITE HYPOTHESES /ST CRITICA BIOKA53 31 ASA 66 647 STOCHASTIC APPROXIMATION OF MINIMA WITH IMPORTANT CLASS OF COMPOSITE HYPOTHESES /ST CRITICA BIOKA53 32 REGRESSION REGRESSION RECENT STOCK ASSUMPTIONS SPEED AMAS 67 1919 REGRESSION REGRESSION AND A MEASURE OF SKEWNESS AMAS 62 192 REGRESSION AND A MEASURE OF SKEWNESS AMAS 62 192 REGRESSION AND A MODIFIED TECHNIQUE FOR SPEED AMAS 67 193 REGRESSION AND A MEASURE OF SKEWNESS AMAS 62 193 RECENT STOCK ASSUME THE MYDOTH SERVED BOUNDS ON A MEASURE OF SKEWNESS AMAS 62 193 REGRESSION AND A MODIFIED TECHNIQUE FOR SPEED AMAS 67 193 REGRESSION AND A MEASURE OF SKEWNESS AMAS 62 193 REGRESSION AND A MEASURE OF SKEWNESS AMAS 62 193 REGRESSION AND A MEASURE OF SKEWNESS AMAS 62 193 REPROVED ESTIMATIONS FOR COEFFICIENTS IN LINEAR JASA 68 91 193 IMPROVEMENT TO WALD'S APPROXIMATION FOR SOME PROPERTI JASA 69 91 100 REPROVED AND ASSUME OF THE MEAN AMAS 67 193 RECENT SERVED AND ASSUME OF THE MEAN SEPTIMATION FOR SOME PROPERTI JASA 69 91 100 REGRESSION AND ASSUME OF THE MEAN USEFUL LIFE OF THEM BEAN USEFUL LIFE OF THEM BEAN INVARIANT INTEGRES BEDIAS 136 RECENT SET OF THE MEAN USEFUL LIFE OF THE MEAN USEFUL LIFE OF THEM BEAN INVARIANT TEST WHEN THE INACCURACY AND INVARIANT ESTIMATION OF EXAMS 69 180 INACCURACY AND INVARIANT SETS WHEN THE INADMISSIBILITY OF THE BEST INVARIANT TEST WHEN THE INADMISSIBILITY OF THE USUAL CONFIDENCE SETS FOR THE INADMISSIBILITY OF THE USUAL CONFIDENCE SETS FOR THE INADMISSIBILITY OF THE USUAL CONFIDENCE SETS FOR THE INADMISSIBILITY OF THE USUAL CESTIMATION OF EXAMS 69 180 INADMISSIBLE SAMPLES AND CONFIDENCE LIMITS INADMISSIBLE SAMPLES AND CONFID				
D THE OCCURRENCE DISTRIBUTION OF WORD LENGTH AND ITS IMPORTANCE FOR THE STUDY OF QUANTITATIVE LINGUISTICS BIOKA55 222 OF VARIANCES A BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS APPLIED TO THE COMPARISON BIOKA64 153 LREGIONS SIMILAR TO THE SAMPLE SPACE IN TESTS OF AN IMPORTANT CLASS OF COMPOSITE HYPOTHESES /ST CRITICA BIOKA55 231 NECOTAL STOCKASTIC APPROXIMATION OF MINIMA WITH IMPORTANT CLASS OF COMPOSITE HYPOTHESES /ST CRITICA BIOKA55 231 NECOTAL STOCKASTIC APPROXIMATION OF MINIMA WITH IMPORTANT CLASS OF COMPOSITE HYPOTHESES /ST CRITICA BIOKA55 231 NECOTAL STOCKASTIC APPROXIMATION OF MINIMA WITH IMPORTANT CLASS OF COMPOSITE HYPOTHESES /ST CRITICA BIOKA55 231 NECOTAL STOCKASTIC APPROXIMATION OF MINIMA WITH IMPORTANT CLASS OF COMPOSITE HYPOTHESES /ST CRITICA BIOKA56 231 NECOTAL STOCKASTIC APPROXIMATION OF MINIMA WITH IMPORTANT CLASS OF COMPOSITE HYPOTHESES /ST CRITICA BIOKA56 231 NECOTAL STATE OF MINIMA WITH IMPORTANT CLASS OF COMPOSITE HYPOTHESES /ST CRITICA BIOKA56 231 NECOTAL STATE OF MINIMAL BIOKAST 2019 AM 66 647 NECOTAL STATE OF MINIMAL BIOKAST 2019 AM 66 647 NECOTAL STATE OF MINIMAL BIOKAST 2019 AM 66 647 NECOTAL STATE OF MINIMAL BIOKAST 2019 AM 66 647 NECOTAL STATE OF SEQUENTIAL TESTS OF SEQUENTIAL TESTS ON THE PROVIDE STATE OF MINIMAL BIOKAST 2019 AM MOMENT IS INFINITE UNDER ONE OF THE HYPOTHESES IN ACCURATELY MEASURED VARIABLES 1010 AM 2019 AM 2				
OF VARIANCES A BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS APPLIED TO THE COMPARISON BIOKA64 153 L REGIONS SIMILAR TO THE SAMPLE SPACE IN TESTS OF AN IMPORTANT CLASS OF COMPOSITE HYPOTHESES /ST CRITICA BIOKA65 231 RECENT EFFORTS TO IMPROVE LAND USE INFORMATION JASA 66 647 STOCHASTIC APPROXIMATION OF MINIMA WITH IMPROVED ASYMPTOTIC SPEED AMS 67 191 IMPROVED BOUNDS ON A MEASURE OF SKEWNESS AMS 62 192 REGRESSION IMPROVED BOUNDS ON A MEASURE OF SKEWNESS AMS 62 192 REGRESSION IMPROVEMENT TO IT A COMPLETE MULTINOMIALD DISTRIBU BIOKA64 277 ES OF SEQUENTIAL TESTS AN IMPROVEMENT TO TO TALL COMPLETE MULTINOMIALD DISTRIBU BIOKA64 277 SIDED TOLERANCE LIMITS FOR NORMAL POPULATIONS, SOME IMPROVEMENTS TO WALD'S APPROXIMATION FOR SOME PROPERTI JRSSE54 136 G THOSE WITH SHORT LIVES ON THE POSSIBILITY OF IMPROVING AN ESTIMATE OF THE MEAN BIOCS69 5BB G THOSE WITH SHORT LIVES ON THE POSSIBILITY OF IMPROVING THE MEAN USEFUL LIFE OF ITEMS BY ELIMINATIN TECH 61 2BI INACCURACY AND INFERENCE DESIGNS WHICH MINIMIZE MODEL INADEQUACIES. CUBDIDAL REGIONS OF INTEREST BIOKA65 117 PRESENCE OF PRIOR INFORMATION ON THE INADMISSIBILITY OF THE BEST INVARIANT TEST WHEN THE AMS 63 539 MOMENT IS INFINITE UNDER ONE OF THE HYPOTHESES INVAMISSIBILITY OF THE BEST INVARIANT TEST WHEN THE AMS 63 539 MOMENT IS INFINITE UNDER ONE OF THE HYPOTHESES INVAMISSIBILITY OF THE BEST INVARIANT TEST WHEN THE AMS 63 539 MOMENT IS INFINITE UNDER ONE OF THE HYPOTHESES INVAMISSIBILITY OF THE USUAL ESTIMATORS OF SCALE PARA AMS 69 1843 METERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCAL/ PERIMENT IN WHICH CERTAIN TREATMENT ARRANGEMENTS ARE QUERY. INVAMISSIBLITY OF THE USUAL ESTIMATORS OF SCALE PARA AMS 69 1843 PROCESS THE DISTRIBUTION OF THE INSINSIBLE RANDOM ASSIGNMENTS THE DESIGN OF AN EXEMPLE AND				
RECENT EFFORTS TO IMPROVE LAND USE INFORMATION JASA 65 647 STOCHASTIC APPROXIMATION OF MINIMA WITH IMPROVED ASYMPTOTIC SPEED AMS 67 191 REGRESSION IMPROVED BOUNDS ON A MEASURE OF SKEWNESS AMS 62 192 REGRESSION IMPROVED ESTIMATORS FOR COEFFICIENTS IN LINEAR JASA 68 596 EMPROVED ESTIMATORS FOR COEFFICIENTS IN LINEAR JASA 68 596 SIDED TOLERANCE LIMITS FOR NORMAL POPULATIONS, SOME IMPROVEMENT TO WALD'S APPROXIMATION FOR SOME PROPERTI JRSSB54 216 A MODIFIED TECHNIQUE FOR IMPROVEMENTS TWO-JASA 69 610 A MODIFIED TECHNIQUE FOR IMPROVEMENT TO WALD'S APPROXIMATION FOR SOME PROPERTI JRSSB51 184 QUALITY CONTROL SYSTEMS BASED ON INACCURACY BAIL DIFFERNCE QUALITY CONTROL SYSTEMS BASED ON THE MEAN USEFUL LIFE OF ITEMS BY ELIMINATIN TECH 61 2BI ACCURACY MODIFIED THE MEAN USEFUL LIFE OF ITEMS BY ELIMINATIN TECH 61 2BI ACCURACY MODIFIED THE MEAN USEFUL LIFE OF ITEMS BY ELIMINATIN TECH 61 2BI ACCURACY MODIFIED THE MEAN USEFUL LIFE OF ITEMS BY ELIMINATIN TECH 61 2BI ACCURACY MODIFIED THE MEAN USEFUL LIFE OF ITEMS BY ELIMINATIN TECH 61 2BI ACCURACY MODIFIED THE MEAN USEFUL LIFE OF ITEMS BY ELIMINATIN TECH 61 2BI ACCURACY MODIFIED THE MEAN USEFUL LIFE OF ITEMS BY ELIMINATIN TECH 61 2BI ACCURACY MODIFIED THE MEAN USEFUL LIFE OF ITEMS BY ELIMINATIN TECH 61 2BI ACCURACY MODIFIED THE MEAN USEFUL LIFE OF ITEMS BY ELIMINATIN TECH 61 2BI ACCURACY MODIFIED THE MEAN USEFUL LIFE OF ITEMS BY ELIMINATIN TECH 61 2BI ACCURACY MODIFIED THE MEAN USEFUL LIFE OF ITEMS BY ELIMINATIN TECH 61 2BI ACCURACY MODIFIED THE MEAN USEFUL LIFE OF ITEMS BY ELIMINATIN TECH 61 2BI ACCUR				
REGRESSION TION COMPARED WITH THE X-SQUARE APPROXIMATION AND AN IMPROVED ASYMPTOTIC SPEED REGRESSION TION COMPARED WITH THE X-SQUARE APPROXIMATION AND AN IMPROVEMENT TO IT A COMPLETE MULTINOMIAL DISTRIBU BIOKAGE 277 SIDED TOLERANCE LIMITS FOR NORMAL POPULATIONS, SOME IMPROVEMENT TO WALD'S APPROXIMATION FOR SOME PROPERTI JSSSB54 136 G THOSE WITH SHORT LIVES ON THE POSSIBILITY OF IMPROVING AN ESTIMATE OF THE MEAN BIOCS69 5BB G THOSE WITH SHORT LIVES ON THE POSSIBILITY OF IMPROVING AN ESTIMATE OF THE MEAN BIOCS69 5BB G THOSE WITH SHORT LIVES ON THE POSSIBILITY OF IMPROVING AN ESTIMATE OF THE MEAN USEFUL LIFE OF ITEMS BY ELIMINATIN TECH 6I 2BI INACCURACY AND INFERENCE QUALITY CONTROL SYSTEMS BASED ON INACCURATELY MEASURED VARIABLES DESIGNS WHICH MINIMIZE MODEL INADDEQUACIES. CUBOIDAL REGIONS OF INTEREST THEME QUANTILES OF THE NORMAL DISTRIBUTION UNDER/ MEAN OF A MULTIVARIATE NORMAL POPULATION METERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCAL/ PERIMENT IN WHICH CERTAIN TREATMENT ARRANGEMENTS ARE QUERY. INADMISSIBILITY OF THE BEST INVARIANT ESTIMATOR OF EX AMS 69 1861 PROCESS THE DISTRIBUTION OF HETEROGENEITY UPON INSERDED DIPLOID SPECIES HAVING ALL DIGENIC EPISTATIC V BIOCS69 546 ARIANCES OF EQUAL MAGN/ GENETIC COMPONENTS FOR NON-INBRED DIPLOID SPECIES HAVING ALL DIGENIC EPISTATIC V BIOCS69 546 METHODS OF REPRODUCING FI/ EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR A METHOD OF MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 665 TINDIA SAMPLING TECHNIQUES FOR ESTIMATION OF THE INBREEDING COEFFICIENT FROM PHENOTYPE FREQUENCIES BY BIOCS66 750 TINDIA SAMPLING TECHNIQUES FOR ESTIMATION OF THE INBREEDING COEFFICIENT FROM PHENOTYPE FREQUENCIES BY BIOCS66 750 TINDIA SAMPLING TECHNIQUES FOR ESTIMATION OF TINGIDENCE OF FED SPIDER MITE ON TEA CROP IN NORTH—EAS BIOCS66 750	L REGIONS SIMILAR TO THE SAMPLE SPACE IN TESTS OF AN IM	MPORTANT CLASS OF COMPOSITE HYPOTHESES /ST CRITICA	BIOKA53	231
REGRESSION TION COMPARED WITH THE X-SQUARE APPROXIMATION AND AN IMPROVED ASYMPTOTIC SPEED REGRESSION TION COMPARED WITH THE X-SQUARE APPROXIMATION AND AN IMPROVEMENT TO IT A COMPLETE MULTINOMIAL DISTRIBU BIOKAGE 277 SIDED TOLERANCE LIMITS FOR NORMAL POPULATIONS, SOME IMPROVEMENT TO WALD'S APPROXIMATION FOR SOME PROPERTI JSSSB54 136 G THOSE WITH SHORT LIVES ON THE POSSIBILITY OF IMPROVING AN ESTIMATE OF THE MEAN BIOCS69 5BB G THOSE WITH SHORT LIVES ON THE POSSIBILITY OF IMPROVING AN ESTIMATE OF THE MEAN BIOCS69 5BB G THOSE WITH SHORT LIVES ON THE POSSIBILITY OF IMPROVING AN ESTIMATE OF THE MEAN USEFUL LIFE OF ITEMS BY ELIMINATIN TECH 6I 2BI INACCURACY AND INFERENCE QUALITY CONTROL SYSTEMS BASED ON INACCURATELY MEASURED VARIABLES DESIGNS WHICH MINIMIZE MODEL INADDEQUACIES. CUBOIDAL REGIONS OF INTEREST THEME QUANTILES OF THE NORMAL DISTRIBUTION UNDER/ MEAN OF A MULTIVARIATE NORMAL POPULATION METERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCAL/ PERIMENT IN WHICH CERTAIN TREATMENT ARRANGEMENTS ARE QUERY. INADMISSIBILITY OF THE BEST INVARIANT ESTIMATOR OF EX AMS 69 1861 PROCESS THE DISTRIBUTION OF HETEROGENEITY UPON INSERDED DIPLOID SPECIES HAVING ALL DIGENIC EPISTATIC V BIOCS69 546 ARIANCES OF EQUAL MAGN/ GENETIC COMPONENTS FOR NON-INBRED DIPLOID SPECIES HAVING ALL DIGENIC EPISTATIC V BIOCS69 546 METHODS OF REPRODUCING FI/ EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR A METHOD OF MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 665 TINDIA SAMPLING TECHNIQUES FOR ESTIMATION OF THE INBREEDING COEFFICIENT FROM PHENOTYPE FREQUENCIES BY BIOCS66 750 TINDIA SAMPLING TECHNIQUES FOR ESTIMATION OF THE INBREEDING COEFFICIENT FROM PHENOTYPE FREQUENCIES BY BIOCS66 750 TINDIA SAMPLING TECHNIQUES FOR ESTIMATION OF TINGIDENCE OF FED SPIDER MITE ON TEA CROP IN NORTH—EAS BIOCS66 750	RECENT EFFORTS TO IM	MPROVE LAND USE INFORMATION	JASA 66	647
REGRESSION TION COMPARED WITH THE X-SQUARE APPROXIMATION AND AN IMPROVEMENT TO IT A COMPLETE MULTINOMIAL DISTRIBU BIOKA64 277 ES OF SEQUENTIAL TESTS AN IMPROVEMENT TO UNLO'S APPROXIMATION FOR SOME PROPERTI JESSSE4 136 SIDED TOLERANCE LIMITS FOR NORMAL POPULATIONS, SOME IMPROVEMENTS A MODIFIED TECHNIQUE FOR IMPROVING AN ESTIMATE OF THE MEAN BIOCSOS BB G THOSE WITH SHORT LIVES ON THE POSSIBILITY OF IMPROVING AN ESTIMATE OF THE MEAN QUALITY CONTROL SYSTEMS BASED ON DESIGNS WHICH MINIMIZE MODEL INACCURACY AND INFERENCE DESIGNS WHICH MINIMIZE MODEL INADEQUACIES. CUBOIDAL REGIONS OF INTEREST BIOKA65 11 PRESENCE OF PRIOR INFORMATION ON THE INADMISSIBILITY OF THE BEST INVARIATE SITMATOR OF EXAMS 69 1801 THEME QUANTILES OF THE NORMAL DISTRIBUTION UNDER/MEAN OF A MULTIVARIATE NORMAL POPULATION METERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCAL/PERIMENT IN WHICH CERTAIN TREATMENT ARRANGEMENTS ARE QUERY. INADMISSIBLLITY OF THE USUAL CONFIDENCE SETS FOR THE AMS 67 1868 PROCESS THE DISTRIBUTION OF INADMISSIBLL RANDOM ASSIGNMENTS TECH 64 103 INADMISSIBLE RANDOM ASSIGNMENTS TECH 64 103 INADMISSIBLE RANDOM ASSIGNMENTS TECH 64 103 INADMISSIBLE SAMPLES AND CONFIDENCE LIMITS JASA 58 482 PROCESS THE DISTRIBUTION OF FITE TREATMENT OF THE INBREEDING COEFFICIENT A GENERALIZATION OF THE INBREEDING COEFFICIENT A METHOD OF REPRODUCING FI/ EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 447 A METHOD OF MAXIMUM LIKELIHOOD/PETIMATION OF THE INBREEDING COEFFICIENT AND PRIOR PREQUENCES BY BIOCS65 750 T INDIA SAMPLING TECHNIQUES FOR ESTIMATION OF INGIDENCE OF FED SPIDER MITE ON TEA CROP IN NORTH—EAS BIOCS66 355 TINDIA SAMPLING TECHNIQUES FOR ESTIMATION OF INGIDENCE OF FED SPIDER MITE ON TEA CROP IN NORTH—EAS BIOCS66 356		MPROVED ASYMPTOTIC SPEED		
TION COMPARED WITH THE X-SQUARE APPROXIMATION AND AN IMPROVEMENT TO IT A COMPLETE MULTINOMIAL DISTRIBU BIOKA64 277 ES OF SEQUENTIAL TESTS AN IMPROVEMENT TO WALD'S APPROXIMATION FOR SOME PROPERTI JRSSB54 136 AN IMPROVEMENTS TWO JASA 69 610 AN ODIFICE DISTRIBUTION OF TECHNIQUE FOR IMPROVEMENTS TWO JASA 69 610 A MODIFIED TECHNIQUE FOR IMPROVEMENTS TWO JASA 69 610 A MODIFIED TECHNIQUE FOR IMPROVING AN ESTIMATE OF THE MEAN BIOCS69 5BB ON THE POSSIBILITY OF IMPROVING AN ESTIMATE OF THE MEAN OF THE MEAN OBJUSTED BY ELIMINATIN TECH 61 2BI INACCURACY AND IMPRENCE JRSSB61 184 192 INACCURACY AND IMPREDIAGE JRSSB61 184 192 INACCURACY AND IM	DEGDEGGIOV.	MPROVED BOUNDS ON A MEASURE OF SKEWNESS	AMS 62	1192
SIDED TOLERANCE LIMITS FOR NORMAL POPULATIONS, SOME IMPROVEMENTS TWO— JASA 69 610 A MODIFIED TECHNIQUE FOR IMPROVING AN ESTIMATE OF THE MEAN BIOCS69 6BB G THOSE WITH SHORT LIVES ON THE POSSIBILITY OF IMPROVING AN ESTIMATE OF THE MEAN BIOCS69 6BB G THOSE WITH SHORT LIVES ON THE POSSIBILITY OF IMPROVING THE MEAN USEFUL LIFE OF ITEMS BY ELIMINATIN TECH 61 2BI NACCURACY AND INFERENCE JRSSB61 1B4 QUALITY CONTROL SYSTEMS BASED ON INACCURACY AND INFERENCE JRSSB61 1B4 QUALITY CONTROL SYSTEMS BASED ON INACCURACY AND INFERENCE BIOKA65 11I PRESENCE OF PRIOR INFORMATION ON THE INADMISSIBILITY OF SOME STANDARD ESTIMATES IN THE AMS 63 539 TREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER/ MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION UNDER/ MEAN OF A MULTIVARIATE NORMAL POPULATION INADMISSIBILITY OF THE BEST INVARIANT ESTIMATOR OF EX AMS 69 1B01 METERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCAL/ PERIMENT IN WHICH CERTAIN TREATMENT ARRANGEMENTS ARE NADMISSIBLE SAMPLES AND CONFIDENCE SETS FOR THE INADMISSIBLE SAMPLES AND CONFIDENCE SETS FOR THE INADMISSIBLE SAMPLES AND CONFIDENCE LIMITS JASA 58 482 ARIANCES OF EQUAL MAGN/ GENETIC COMPONENTS FOR NON-INBRED DIPLOID SPECIES HAVING ALL DIGENIC EPISTATIC V BIOCS69 545 THE DISTRIBUTION OF HETEROGENEITY UPON INBREEDING COEFFICIENT METHODS OF REPRODUCING FI/ EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT METHODS OF REPRODUCING FI/ EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 6447 A METHOD OF MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INBREEDING COEFFICIENT FROM PHENOTYPE FREQUENCIES BY BIOCS66 750 T INDIA SAMPLING TEGHNIQUES FOR ESTIMATION OF HIGIDENGE OF RED SPIDER MITE ON TEA CROP IN NORTH—EAS BIOCS66 3B5				
SIDED TOLERANCE LIMITS FOR NORMAL POPULATIONS, SOME IMPROVEMENTS G THOSE WITH SHORT LIVES ON THE POSSIBILITY OF IMPROVING AN ESTIMATE OF THE MEAN QUALITY CONTROL SYSTEMS BASED ON INACCURATELY MEASURED VARIABLES DESIGNS WHICH MINIMIZE MODEL INADOMLACIES, CUBOIDAL REGIONS OF INTEREST DESIGNS WHICH MINIMIZE MODEL INADOMLACIES, CUBOIDAL REGIONS OF INTEREST DESIGNS WHICH MINIMIZE MODEL INADOMLACIES, CUBOIDAL REGIONS OF INTEREST DESIGNS WHICH MINIMIZE MODEL INADOMLACIES, CUBOIDAL REGIONS OF INTEREST DESIGNS WHICH MINIMIZE MODEL INADOMLACIES, CUBOIDAL REGIONS OF INTEREST DESIGNS WHICH MINIMIZE MODEL INADOMLACIES, CUBOIDAL REGIONS OF INTEREST BIOKA55 HINADMISSIBILITY OF THE BEST INVARIANT TEST WHEN THE AMS 63 539 MOMENT IS INFINITE UNDER ONE OF THE HYPOTHESES INADMISSIBILITY OF THE BEST INVARIANT TEST WHEN THE AMS 69 1801 INADMISSIBILITY OF THE USUAL CONFIDENCE SETS FOR THE AMS 67 1868 METERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCAL/ PERIMENT IN WHICH CERTAIN TREATMENT ARRANGEMENTS ARE QUERY, INADMISSIBLE RANDOM ASSIGNMENTS QUERY, INADMISSIBLE SAMPLES AND CONFIDENCE LIMITS ARIANCES OF EQUAL MAGN/ GENETIC COMPONENTS FOR NON-INBRED DIPLOID SPECIES HAVING ALL DIGENIC EPISTATIC V BIOKA59 THE DISTRIBUTION OF HETEROGENEITY UPON INBREEDING A GENERALIZATION OF THE INBREEDING COEFFICIENT METHODS OF REPRODUCING FI/ EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT A METHOD OF MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 THE DISTRIBUTION OF THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 THE DISTRIBUTION OF THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 THE DISTRIBUTION OF THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 TORGNITURE GONTRACTS AND PRICE DIFFERENTIAL AGGEPTANCE JASA 64 149 TESTS QUERY + (ON FORMULA FOR DETERMINING THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 TORGNITURE GONTRACTS AND PRICE DIFFERENTIAL AGGEPTANCE JASA 64 149 TINDIA SAMPLING TECHNIQUES FOR ESTIM				
A MODIFIED TECHNIQUE FOR IMPROVING AN ESTIMATE OF THE MEAN G THOSE WITH SHORT LIVES ON THE POSSIBILITY OF IMPROVING THE MEAN USEFUL LIFE OF ITEMS BY ELIMINATIN TECH 61 281 INACCURACY AND INFERENCE QUALITY CONTROL SYSTEMS BASED ON INACCURATELY MEASURED VARIABLES DESIGNS WHICH MINIMIZE MODEL INADEQUACIES. CUBOIDAL REGIONS OF INTEREST DESIGNS WHICH MINIMIZE MODEL INADEQUACIES. CUBOIDAL REGIONS OF INTEREST MOMENT IS INFINITE UNDER ONE OF THE HYPOTHESES INADMISSIBILITY OF THE BEST INVARIANT TEST WHEN THE AMS 69 1483 TREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER/ MEAN OF A MULTIVARIATE NORMAL POPULATION METERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCAL/ PERIMENT IN WHICH CERTAIN TREATMENT ARRANGEMENTS ARE INADMISSIBLLITY OF THE USUAL CONFIDENCE SETS FOR THE QUERY, INADMISSIBLE RANDOM ASSIGNMENTS PROCESS THE DISTRIBUTION OF INADMISSIBLE SAMPLES AND CONFIDENCE LIMITS ARIANCES OF EQUAL MAGN/ GENETIC COMPONENTS FOR NON-INBRED DIPLOID SPECIES HAVING ALL DIGENIC EPISTATIC V BIOCS69 A METHODS OF REPRODUCING FI/ EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT METHODS OF REPRODUCING FI/ EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT METHODS OF REPRODUCING FI/ EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT FROM PHENOTYPE FREQUENCIES BY BIOCS65 A METHOD OF MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INBREEDING GOEFFICIENT FROM PHENOTYPE FREQUENCIES BY BIOCS65 A METHOD OF MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INBREEDING GOEFFICIENT FROM PHENOTYPE FREQUENCIES BY BIOCS65 TINDBIA SAMPLING TECHNIQUES FOR ESTIMATION OF INGIDENCE OF RED SPIDER MITE ON TEA CROP IN NORTH—EAS BIOCS65 TINDBIA SAMPLING TECHNIQUES FOR ESTIMATION OF INGIDENCE OF RED SPIDER MITE ON TEA CROP IN NORTH—EAS BIOCS65 BIOCS65 BIOCS65 TINDBIA SAMPLING TECHNIQUES FOR ESTIMATION OF INGIDENCE OF RED SPIDER MITE ON TEA CROP IN NORTH—EAS BIOCS65 BIOCS6				
G THOSE WITH SHORT LIVES ON THE POSSIBILITY OF IMPROVING THE MEAN USEFUL LIFE OF ITEMS BY ELIMINATIN TECH 61 2B1 INACCURACY AND INFERENCE JRSSB61 184 QUALITY CONTROL SYSTEMS BASED ON INACCURATELY MEASURED VARIABLES BIOKA65 472 DESIGNS WHICH MINIMIZE MODEL INADEQUACIES. CUBOIDAL REGIONS OF INTEREST BIOKA65 111 PRESENCE OF PRIOR INFORMATION ON THE INADMISSIBILITY OF SOME STANDARD ESTIMATES IN THE AMS 63 539 MOMENT IS INFINITE UNDER ONE OF THE HYPOTHESES INADMISSIBILITY OF THE BEST INVARIANT TEST WHEN THE AMS 63 1801 TREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER/MEAN OF A MULTIVARIATE NORMAL POPULATION INADMISSIBILITY OF THE BEST INVARIANT EST WHEN THE AMS 69 1801 METERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCAL/PERMENT IN WHICH CERTAIN TREATMENT ARRANGEMENTS ARE INADMISSIBLE TYPE OF THE USUAL ESTIMATORS OF SCALE PARA AMS 69 1801 INADMISSIBLE SAMPLES AND CONFIDENCE SETS FOR THE AMS 67 1868 METERS OF EQUAL MAGN/GENETIC COMPONENTS FOR NON-INBRED DIPLOID SPECIES HAVING ALL DIGENIC EPISTATIC V BIOCS69 545 THE DISTRIBUTION OF HETERGGENEITY UPON INBREDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 447 METHODS OF REPRODUCING FI/EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 447 A METHOD OF MAXIMUM LIKELIHOOD/ESTIMATION OF THE INBREEDING GOEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 447 A METHOD OF MAXIMUM LIKELIHOOD/ESTIMATION OF THE INBREEDING GOEFFICIENT FROM PHENOTYPE FREQUENCIES BY BIOCS66 447 TESTS QUERY + (ON FORMULA FOR DETERMINING THE INBREEDING GOEFFICIENT FROM PHENOTYPE FREQUENCIES BY BIOCS66 475 TINDIA SAMPLING TECHNIQUES FOR ESTIMATION OF INGIDENCE OF MUTANT GENES) BIOCS65 359 MICHORY TO THE WASHING THE MASSIBLE FOR INADIANCE OF THE DISTRIBUTION OF THE STEMPT OF THE MASSIBLE OF THE DISTRIBUTION OF THE STEMPT OF THE				
INACCURACY AND INFERENCE QUALITY CONTROL SYSTEMS BASED ON INACCURATELY MEASURED VARIABLES DESIGNS WHICH MINIMIZE MODEL INADEQUACIES. CUBOIDAL REGIONS OF INTEREST PRESENCE OF PRIOR INFORMATION ON THE INADMISSIBILITY OF SOME STANDARD ESTIMATES IN THE AMS 63 539 MOMENT IS INFINITE UNDER ONE OF THE HYPOTHESES INADMISSIBILITY OF THE BEST INVARIANT TEST WHEN THE AMS 69 1801 MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION UNDER/ INADMISSIBILITY OF THE BEST INVARIANT TEST WHEN THE AMS 69 1801 MEAN OF A MULTIVARIATE NORMAL POPULATION INADMISSIBILITY OF THE USUAL CONFIDENCE SETS FOR THE AMS 67 1668 METERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCAL/ INADMISSIBILITY OF THE USUAL ESTIMATORS OF SCALE PARA AMS 68 29 PERIMENT IN WHICH CERTAIN TREATMENT ARRANGEMENTS ARE INADMISSIBLE RANDOM ASSIGNMENTS TECH 64 103 INADMISSIBLE SAMPLES AND CONFIDENCE LIMITS JASA 58 482 PROCESS THE DISTRIBUTION OF HETEROGENEITY UPON INBREEDING SPECIES HAVING ALL DIGENIC EPISTATIC V BIOKASS 425 AMD AMDISTRIBUTION OF HETEROGENEITY UPON INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOKASS 425 METHOD OF MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 475 METHOD OF MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 475 METHOD OF MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 475 METHOD OF MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 475 METHOD OF MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INBREEDING COEFFICIENT AND PRICE DIFFERENTIAL AGGEPTANCE JASA 64 149 METHOD OF MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INBREEDING COEFFICIENT AND PRICE DIFFERENTIAL AGGEPTANCE JASA 64 149 METHOD OF MAXIMUM LIKELIHOOD/ ESTIMATION OF INGIDENCE OF MUTANT GENES) BIOCS66 585 585 585 585 585 585 585 585 585 5				
DESIGNS WHICH MINIMIZE MODEL INADEQUACIES. CUBOIDAL REGIONS OF INTEREST PRESENCE OF PRIOR INFORMATION ON THE INADMISSIBILITY OF SOME STANDARD ESTIMATES IN THE AMS 63 539 MOMENT IS INFINITE UNDER ONE OF THE HYPOTHESES INADMISSIBILITY OF THE BEST INVARIANT TEST WHEN THE AMS 69 1483 TREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER/ MEAN OF A MULTIVARIATE NORMAL POPULATION INADMISSIBILITY OF THE BEST INVARIATE ESTIMATOR OF EX AMS 69 1801 METERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCAL/ PERIMENT IN WHICH CERTAIN TREATMENT ARRANGEMENTS ARE INADMISSIBLE THE USUAL CONFIDENCE SETS FOR THE AMS 67 1868 QUERY, INADMISSIBLE RANDOM ASSIGNMENTS QUERY, INADMISSIBLE SAMPLES AND CONFIDENCE LIMITS JASA 58 482 PROCESS THE DISTRIBUTION OF INALMATE MARKS OVER A NON-HOMOGENEOUS BIRTH-DEATH BIOKA69 225 ARIANCES OF EQUAL MAGN/ GENETIC COMPONENTS FOR NON-INBRED DIPLOID SPECIES HAVING ALL DIGENIC EPISTATIC V BIOCS69 545 THE DISTRIBUTION OF HETEROGENEITY UPON INBREEDING COEFFICIENT METHODS OF REPRODUCING FI/ EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 447 A METHOD OF MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INBREEDING GOEFFICIENT FROM PHENOTYPE FREQUENGIES BY BIOCS66 477 A METHOD OF MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INBREEDING GOEFFICIENT FROM PHENOTYPE FREQUENGIES BY BIOCS66 471 TINDIA SAMPLING TECHNIQUES FOR ESTIMATION OF INGIDENCE OF RED SPIDER MITE ON TEA CROP IN NORTH-EAS BIOCS66 385	IN	NACCURACY AND INFERENCE	JRSSB6I	184
PRESENCE OF PRIOR INFORMATION ON THE INADMISSIBILITY OF SOME STANDARD ESTIMATES IN THE AMS 63 539 MOMENT IS INFINITE UNDER ONE OF THE HYPOTHESES INADMISSIBILITY OF THE BEST INVARIANT TEST WHEN THE AMS 69 1801 MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION UNDER/ MEAN OF A MULTIVARIATE NORMAL POPULATION INADMISSIBILITY OF THE BEST INVARIANT TEST WHEN THE AMS 69 1801 METERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCAL/ PERIMENT IN WHICH CERTAIN TREATMENT ARRANGEMENTS ARE INADMISSIBLITY OF THE USUAL ESTIMATORS OF SCALE PARA AMS 68 29 PERIMENT IN WHICH CERTAIN TREATMENT ARRANGEMENTS ARE INADMISSIBLE RANDOM ASSIGNMENTS QUERY, INADMISSIBLE SAMPLES AND CONFIDENCE LIMITS ANDMISSIBLE SAMPLES AND CONFIDENCE LIMITS INADMISSIBLE SAMPLES AND CONFIDENCE LIMITS ANDMISSIBLE SAMPLES AND CONFIDENCE LIMITS INADMISSIBLE SAMPLES AND CONFIDENCE LIMITS ANDMISSIBLE SAMPLES AND CONFIDENCE LIMITS INADMISSIBLE SAMPLES AND CONFIDENCE LIMITS ANDMISSIBLE SAMPLES AND CONFIDENCE LIMITS INADMISSIBLE SAMPLES AND CONFIDENCE LIMITS ANDMISSIBLE SAMPLES AND CONFIDENCE LIMITS INADMISSIBLE SA				
MOMENT IS INFINITE UNDER ONE OF THE HYPOTHESES TREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER/ MEAN OF A MULTIVARIATE NORMAL POPULATION METERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCAL/ PERIMENT IN WHICH CERTAIN TREATMENT ARRANGEMENTS ARE INADMISSIBLLITY OF THE USUAL CONFIDENCE SETS FOR THE QUERY, INADMISSIBLE RANDOM ASSIGNMENTS QUERY, INADMISSIBLE RANDOM ASSIGNMENTS TECH 64 INADMISSIBLE RANDOM ASSIGNMENTS THE DISTRIBUTION OF INANIMATE MARKS OVER A NON-HOMOGENEOUS BIRTH-DEATH BIOKA69 PROCESS THE DISTRIBUTION OF INANIMATE MARKS OVER A NON-HOMOGENEOUS BIRTH-DEATH BIOKA69 ARIANCES OF EQUAL MAGN/ GENETIC COMPONENTS FOR NON-INBRED DIPLOID SPECIES HAVING ALL DIGENIC EPISTATIC V BIOCS69 A GENERALIZATION OF THE INBREEDING COEFFICIENT A METHODS OF REPRODUCING FI/ EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 METHODS OF MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INBREEDING GOEFFICIENT FROM PHENOTYPE FREQUENCIES BY BIOCS65 QUERY + (ON FORMULA FOR DETERMINING THE INGREDINGE OF RED SPIDER MITE ON TEA CROP IN NORTH-EAS BIOCS65 TINDIA SAMPLING TECHNIQUES FOR ESTIMATION OF INGIDENCE OF RED SPIDER MITE ON TEA CROP IN NORTH-EAS BIOCS65				
TREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER/ MEAN OF A MULTIVARIATE NORMAL POPULATION METERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCAL/ PERIMENT IN WHICH CERTAIN TREATMENT ARRANGEMENTS ARE INADMISSIBLITY OF THE USUAL ESTIMATORS OF SCALE PARA AMS 68 29 QUERY, INADMISSIBLE RANDOM ASSIGNMENTS THE DESIGN OF AN EX BIOKA54 287 QUERY, INADMISSIBLE RANDOM ASSIGNMENTS TECH 64 103 INADMISSIBLE SAMPLES AND CONFIDENCE LIMITS PROCESS THE DISTRIBUTION OF INANIMATE MARKS OVER A NON-HOMOGENEOUS BIRTH-DEATH BIOKA69 225 ARIANCES OF EQUAL MAGN/ GENETIC COMPONENTS FOR NON-INBRED DIPLOID SPECIES HAVING ALL DIGENIC EPISTATIC V BIOCS65 THE DISTRIBUTION OF HETEROGENEITY UPON INBREEDING A GENERALIZATION OF THE INBREEDING COEFFICIENT METHODS OF REPRODUCING FI/ EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 447 A METHOD OF MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INBREEDING GOEFFICIENT FROM PHENOTYPE FREQUENGIES BY BIOCS66 915 TESTS QUERY +(ON FORMULA FOR DETERMINING THE INGENIEVE OF RED SPIDER MITE ON TEA CROP IN NORTH-EAS BIOCS66 3B5				
MEAN OF A MULTIVARIATE NORMAL POPULATION INADMISSIBILITY OF THE USUAL CONFIDENCE SETS FOR THE AMS 67 1868 METERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCAL/ PERIMENT IN WHICH CERTAIN TREATMENT ARRANGEMENTS ARE INADMISSIBLE THE USUAL ESTIMATORS OF SCALE PARA AMS 68 29 PERIMENT IN WHICH CERTAIN TREATMENT ARRANGEMENTS ARE INADMISSIBLE RANDOM ASSIGNMENTS QUERY, INADMISSIBLE SAMPLES AND CONFIDENCE LIMITS JASA 58 482 PROCESS THE DISTRIBUTION OF INANIMATE MARKS OVER A NON-HOMOGENEOUS BIRTH-DEATH BIOKA69 225 ARIANCES OF EQUAL MAGN/ GENETIC COMPONENTS FOR NON-INBRED DIPLOID SPECIES HAVING ALL DIGENIC EPISTATIC V BIOCS69 545 THE DISTRIBUTION OF HETEROGENEITY UPON INBREEDING METHODS OF REPRODUCING FI/ EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT METHODS OF REPRODUCING FI/ EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 447 A METHOD OF MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INBREEDING GOEFFIGIENT FROM PHENOTYPE FREQUENGIES BY BIOCS68 915 TESTS UNGENTIVE GONTRACTS AND PRICE DIFFERENTIAL AGGEPTANCE JASA 64 149 QUERY +(ON FORMULA FOR DETERMINING THE INGIDENCE OF RED SPIDER MITE ON TEA CROP IN NORTH-EAS BIOCS66 385	TREME OHANTIES OF THE MORMAL DISTRIBUTION UNDER /	NADWICCIBILITY OF THE BEGI INVAKIANT TEST WHEN THE	AMS 60	1801
METERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCAL/ INADMISSIBILITY OF THE USUAL ESTIMATORS OF SCALE PARA AMS 6B 29 PERIMENT IN WHICH CERTAIN TREATMENT ARRANGEMENTS ARE INADMISSIBLE THE DESIGN OF AN EX BIOKA54 287 QUERY, INADMISSIBLE SAMPLES AND CONFIDENCE LIMITS JASA 5B 4B2 PROCESS THE DISTRIBUTION OF INANIMATE MARKS OVER A NON-HOMOGENEOUS BIRTH-DEATH BIOKA69 225 ARIANCES OF EQUAL MAGN/ GENETIC COMPONENTS FOR NON-INBRED DIPLOID SPECIES HAVING ALL DIGENIC EPISTATIC V BIOCS69 545 THE DISTRIBUTION OF HETEROGENEITY UPON INBREEDING COEFFICIENT BIOCS65 665 METHODS OF REPRODUCING FI/ EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 447 A METHOD OF MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INBREEDING COEFFICIENT FROM PHENOTYPE FREQUENCIES BY BIOCS68 915 TESTS QUERY +(ON FORMULA FOR DETERMINING THE INGIDENCE OF MUTANT GENES) BIOCS65 3B5				
PERIMENT IN WHICH CERTAIN TREATMENT ARRANGEMENTS ARE INADMISSIBLE QUERY, INADMISSIBLE RANDOM ASSIGNMENTS TECH 64 103 INADMISSIBLE SAMPLES AND CONFIDENCE LIMITS PROCESS THE DISTRIBUTION OF INANIMATE MARKS OVER A NON-HOMOGENEOUS BIRTH-DEATH BIOKA69 225 ARIANCES OF EQUAL MAGN/ GENETIC COMPONENTS FOR NON-INBRED DIPLOID SPECIES HAVING ALL DIGENIC EPISTATIC V BIOCS69 THE DISTRIBUTION OF HETEROGENEITY UPON INBREEDING A GENERALIZATION OF THE INBREEDING COEFFICIENT BEDIANCE OF REPRODUCING FI/ EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 METHODS OF REPRODUCING FI/ EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT FROM PHENOTYPE FREQUENCIES BY BIOCS68 TESTS QUERY +(ON FORMULA FOR DETERMINING THE INGENORM OF RED SPIDER MITE ON TEA CROP IN NORTH-EAS BIOCS65 TINDIA SAMPLING TECHNIQUES FOR ESTIMATION OF INGIDENGE OF RED SPIDER MITE ON TEA CROP IN NORTH-EAS BIOCS65 385				
QUERY, INADMISSIBLE RANDOM ASSIGNMENTS INADMISSIBLE RANDOM ASSIGNMENTS INADMISSIBLE SAMPLES AND CONFIDENCE LIMITS INADMISSIBLE RANDOM ASSIGNMENTS INADMISSIBLE RANDOM CONFIDENCE IN INADMISSIBLE RANDOM ASSIGNMENTS INADMISSIBLE RANDOM CONFIDENCE IN INADMISSIBLE RANDOM ASSIGNMENTS INADMISSIBLE RANDOM CONFIDENCE INADMISSIBLE RANDOM CONFIDENCE IN INADMISSIBLE RANDOM ASSIGNMENTS INADMISSIBLE RANDOM CONFIDENCE INADMISSIBLE RANDOM CONFIDENCE INADA CONFIDENCE INADMISSIBLE RANDOM CONFIDENCE INADMISSIBLE RANDOM CONFIDENCE INADMISSIBLE RANDOM CONFIDENCE INADMISSIBLE RANDOM PRICE INTIDED INADMISSIBLE RANDOM CONFIDENCE INTIDED INDEMISSIBLE RANDOM CONFIDENCE INTIDED INADMISSIBLE RANDOM CONFIDENCE INTIDED INDEMISSIBLE RANDOM CONFIDENCE INTIDED INDEMISSION CONFIDENCE INTIDED INDEMISSION CONFIDENCE INTIDED INDEMISSION CONFIDENCE INTIDED INDEMISSION CONFID				
INADMISSIBLE SAMPLES AND CONFIDENCE LIMITS INADMISSIBLE SAMPLES A				
ARIANCES OF EQUAL MAGN/ GENETIC COMPONENTS FOR NON-INBRED DIPLOID SPECIES HAVING ALL DIGENIC EPISTATIC V BIOCS69 THE DISTRIBUTION OF HETEROGENEITY UPON INBREEDING COEFFICIENT A GENERALIZATION OF THE INBREEDING COEFFICIENT METHODS OF REPRODUCING FI/ EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 447 A METHOD OF MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INBREEDING GOEFFICIENT FROM PHENOTYPE FREQUENCIES BY BIOCS68 TESTS QUERY +(ON FORMULA FOR DETERMINING THE INGIDENCE OF MUTANT GENES) BIOCS65 T INDIA SAMPLING TECHNIQUES FOR ESTIMATION OF INGIDENGE OF RED SPIDER MITE ON TEA CROP IN NORTH—EAS BIOCS66 385	IN	NADMISSIBLE SAMPLES AND CONFIDENCE LIMITS		
THE DISTRIBUTION OF HETEROGENEITY UPON INBREEDING UPON COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 665 METHODS OF REPRODUCING FI/ EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 647 A METHOD OF MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INBREEDING GOEFFICIENT FROM PHENOTYPE FREQUENGIES BY BIOCS68 915 TESTS UPON TRACTS AND PRICE DIFFERENTIAL AGGEPTANCE JASA 64 149 GUERY +(ON FORMULA FOR DETERMINING THE INGIDENCE OF MUTANT GENES) 10 160 160 160 160 160 160 160 160 160				
A GENERALIZATION OF THE INBREEDING COEFFICIENT METHODS OF REPRODUCING FI/ EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 447 A METHOD OF MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INBREEDING COEFFICIENT AND PHENOTYPE FREQUENGIES BY BIOCS65 755 TESTS QUERY +(ON FORMULA FOR DETERMINING THE INGIDENCE OF MUTANT GENES) BIOCS65 750 TINDIA SAMPLING TEGHNIQUES FOR ESTIMATION OF INGIDENCE OF RED SPIDER MITE ON TEA CROP IN NORTH—EAS BIOCS66 3B5				
METHODS OF REPRODUCING FI/ EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR BIOCS65 447 A METHOD OF MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INBREEDING GOEFFICIENT FROM PHENOTYPE FREQUENCIES BY BIOCS68 915 TESTS QUERY +(ON FORMULA FOR DETERMINING THE INGEDENCE OF MUTANT GENES) TINDIA SAMPLING TECHNIQUES FOR ESTIMATION OF INGIDENCE OF RED SPIDER MITE ON TEA CROP IN NORTH-EAS BIOCS65 385				
A METHOD OF MAXIMUM LIKELIHOOD/ ESTIMATION OF THE INBREEDING GOEFFIGIENT FROM PHENOTYPE FREQUENGIES BY BIOCS6B 915 TESTS				
TESTS INGENTIVE GONTRAGTS AND PRICE DIFFERENTIAL AGGEPTANGE JASA 64 149 QUERY +(ON FORMULA FOR DETERMINING THE INGIDENGE OF MUTANT GENES) BIOGS65 750 T INDIA SAMPLING TEGHNIQUES FOR ESTIMATION OF INGIDENGE OF RED SPIDER MITE ON TEA CROP IN NORTH-EAS BIOGS66 3B5				
QUERY +(ON FORMULA FOR DETERMINING THE INGIDENCE OF MUTANT GENES) BIOGS65 750 T INDIA SAMPLING TECHNIQUES FOR ESTIMATION OF INGIDENCE OF RED SPIDER MITE ON TEA CROP IN NORTH-EAS BIOGS66 3B5				
T INDIA SAMPLING TEGHNIQUES FOR ESTIMATION OF INGIDENGE OF RED SPIDER MITE ON TEA CROP IN NORTH-EAS BIOGS66 3B5				
FOR THE MO/ EMPERIGAL RELATIONSHIP OF LUNG GANGER INGIDENGE TO GIGARETTE SMOKING AND A STOGHASTIC MODEL BIOGS65 B39	T INDIA SAMPLING TEGHNIQUES FOR ESTIMATION OF IN	NGIDENGE OF RED SPIDER MITE ON TEA CROP IN NORTH-EAS	BIOGS66	3B5
	BOD BUE NO / EMPERICAL DELABTONICITE OF LUNG GANGED IN	NGIDENCE TO GIGARETTE SMOKING AND A STOCHASTIC MODEL.	RIOGS65	B39

```
MATION OF A LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL SCALE PARAMETER
                                                                                           CONSISTENT ESTI AMS 69 1353
OMISATION TECHNIQUE (ERRATA, 69 6/

OMISATION TECHNIQUE (ERRATA, 69 6/

ON THE METHOD OF INCLUSION AND EXCLUSION

TESTING FOR THE THROUGH A TABLE OF SIGNI
 DISTRIBUTIONS OF KOLMOCOROV-SMIRNOV TYPE STATISTICS INCLUDING A TABLE OF SIGNIFICANCE POINTS FOR A PARTIC AMS 68 233
                                                                                                            1454 67
                                    TESTING FOR THE INCLUSION OF VARIABLES IN LINEAR RECRESSION BY A RAND TECH 66
                                                                                                                      695
        CHANGES IN THE SIZE DISTRIBUTION OF DIVIDEND INCOME
                                                                                                            JASA 61
                                                                                                                     250
            COMPONENTS OF EDUCATIONAL DIFFERENCES IN INCOME
                                                                                               OCCUPATIONAL JASA 61
                                                                                                                     783
           PROBLEMS IN MEASURING LONG TERM CROWTH IN INCOME AND WEALTH
                                                                                                            JASA 57
NAL PRODUCT AND ITS COMPONENTS, OF SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SAVINC /SS NATIO JASA 58
             EFFECT OF VARYING DECREES OF TRANSITORY INCOME ON INCOME ELASTICITY OF EXPENDITURES
                                                                                                            JASA 58
WELFARE ASSISTANCE DURING 1959 THE VALIDITY OF INCOME REPORTED BY A SAMPLE OF FAMILIES WHO RECEIVED
                                                                                                            JASA 62
                                           NATIONAL INCOME STATISTICS OF UNDERDEVELOPED COUNTRIES
                                                                                                            JASA 57
                                                                                                                     162
                 FISCAL-YEAR REPORTING FOR CORPORATE INCOME TAX
                                                                                                            JASA 56
INTEREST INCOME UNDER THE WISCONSIN STATE INDIVIDUAL INCOME TAX
                                                                         TAXPAYER COMPLIANCE IN REPORTING
                                                                                                            JASA 63
                                                                                                                     487
           TAXPAYER COMPLIANCE IN REPORTING INTEREST INCOME UNDER THE WISCONSIN STATE INDIVIDUAL INCOME TA JASA 63
                                                                                                                      4B7
                                    SOME ANALYSES OF INCOME-FOOD RELATIONSHIPS
                                                                                                                      905
                                                                                                            JASA 5B
                                                     INCOME, INCOME CHANGE, AND DURABLE GOODS DEMAND INCOME, WEALTH, AND THE DEMAND FOR MONEY, SOME
                                                                                                            JASA 64 1194
EVIDENCE FROM CROSS-SECTION DATA
                                                                                                            JASA 64
                                                                                                                     746
                              ON THE PROBLEM OF SELF-INCOMPATABILITY ALLELES
                                                                                                            BIOCS66
                                                                                                                     111
     ASSOCIATED WITH A TEST PROCEDURE, WHEN DATA ARE INCOMPLETE
                                                                               THE PROBABILITY OF REVERSAL JASA 61
NORMAL DISTRIBUTION WITH SOME APPLICATIONS INCOMPLETE AND ABSOLUTE MOMENTS OF THE MULTIVARIATE
                                                                                                            BTOKA53
                                                                                                                      20
               ADDITIONAL PERCENTAGE POINTS FOR THE INCOMPLETE BETA DISTRIBUTION
                                                                                                            RTOKA63
                                                                                                                      449
                 AN APPROXIMATION TO THE SYMMETRICAL INCOMPLETE BETA FUNCTION
                                                                                                            BIOKA52
                                                                                                                     204
BINOMIAL SAMPLING
                                          THE USE OF INCOMPLETE BETA FUNCTIONS FOR PRIOR DISTRIBUTIONS IN
                                                                                                            TECH 65
                                                                                                                     335
                                                                                                            BIOKA59 214
                    APPROXIMATE LINEARIZATION OF THE INCOMPLETE BETA-FUNCTION
DISTRIBUTION
                                    A CHART FOR THE INCOMPLETE BETA-FUNCTION AND THE CUMULATIVE BINOMIAL
                                                                                                            BTOKA51
                                                                                                                      423
                                  ON NORMALIZING THE INCOMPLETE BETA-FUNGTION FOR FITTING TO DOSE-RESPONSE BIOKA60 173
 CURVES
   ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED INCOMPLETE BLOCK
                                                                                                            JASA 69 1014
     A NOTE ON THE PARAMETERS OF PARTIALLY BALANCED INCOMPLETE BLOCK ASSOCIATION SCHEMES
                                                                                                             AMS 65 331
                       AN APPLICATION OF A BALANCED INCOMPLETE BLOCK DESIGN
                                                                                                            TECH 61
                                                                                                                      51
                                                                                                                    711
                                           A BLANCED INCOMPLETE BLOCK DESIGN
                                                                                                             AMS 65
FICIENCY OF THE CHI-SQUARE-SUB-R-TEST FOR A BALANCED INCOMPLETE BLOCK DESIGN
                                                                                         THE ASYMPTOTIC EF BIOKA59
                                                                                                                     475
OF RANDOMIZATION IN A GENERALIZATION OF THE BALANCED INCOMPLETE BLOCK DESIGN
                                                                                        SOME CONSEQUENCES AMS 63 1569
AND THE ANALYSIS OF VARIANCE OF A PARTIALLY BALANGED INCOMPLETE BLOCK DESIGN
                                                                                 THE RELATIONSHIP ALGEBRA
                                                                                                             AMS 65 1B15
                                                                              /INEAR MODELS WITH TWO RAND BIOKA68 101
OM COMPONENTS WITH SPECIAL REFERENCE TO THE BALANCED INCOMPLETE BLOCK DESIGN
RIBUTION OF THE F-STATISTIC IN A RANDOMIZED BALANCED INCOMPLETE BLOCK DESIGN UNDER THE NEYMAN MODEL /IST AMS 63 155B
                                     THE ANALYSIS OF INCOMPLETE BLOCK DESIGNS
                                                                                                            JASA 57 204
                          AN INEQUALITY FOR BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                             AMS 61 908
          THE EXISTENCE AND CONSTRUCTION OF BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                             AMS 61 361
    MULTIPLE COMPARISIONS WITH A CONTROL IN BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                            TECH 61 103
  CONSTRUCTION OF ROTATABLE DESIGNS THROUGH BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                             AMS 62 1421
        ON THE DUALS OF SYMMETRIC PARTIALLY-BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                             AMS 63 52B
         EXTENDED GROUP DIVISIBLE PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                             AMS 64
                                                                                                                     681
                        A PROCEDURE FOR CONSTRUCTING INCOMPLETE BLOCK DESIGNS
                                                                                                            TECH 64 3B9
                                                                                                             AMS 65 1807
                    ON A CLASS OF PARTIALLY BALANCED INGOMPLETE BLOCK DESIGNS
                                ROBUST ESTIMATION IN INGOMPLETE BLOCK DESIGNS
                                                                                                             AMS 66 1331
                      INDUCTIVE METHODS FOR BALANGED INCOMPLETE BLOCK DESIGNS
                                                                                                             AMS 66 1348
                             ON ROBUST ESTIMATION IN INCOMPLETE BLOCK DESIGNS
                                                                                                             AMS 67 15B7
                                A SERIES OF BALANCED INGOMPLETE BLOCK DESIGNS
                                                                                                             AMS 6B
                                                                                                                     681
                  SOME EXAMPLES OF MULTI-DIMENSIONAL INCOMPLETE BLOCK DESIGNS
                                                                                                             AMS 68 1577
                                  A NOTE ON BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                             AMS 69
                                                                                                                     679
                                                                                                            BIOKA57
        AN EXTENSION PROPERTY OF A CLASS OF BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                                     278
                       THE EFFICIENCY OF BLOCKING IN INGOMPLETE BLOCK DESIGNS
                                                                                                            BIOKA60
                                                                                                                     273
                                     NESTED BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                            BIOKA67
                                                                                                                     479
THE USE OF CONTROL OBSERVATIONS AS AN ALTERNATIVE TO INCOMPLETE BLOCK DESIGNS
                                                                                                            JRSSR62
                                                                                                                     464
                                             GYCLIC INCOMPLETE BLOCK DESIGNS
                                                                                                            JRSSB66
                                                                                                                     345
                                    ON JOHN'S CYCLIC INCOMPLETE BLOCK DESIGNS
                                                                                                            JRSSR67
                                                                                                                     243
     NOTES CYCLIC GENERATION OF ROBINSON'S BALANCED INGOMPLETE BLOCK DESIGNS
                                                                                                            BIOCS67
                                                                                                                     574
 SCREENING UTILIZING BALANCED AND PARTIALLY BALANCED INGOMPLETE BLOCK DESIGNS
                                                                                                      GROUP BIOCS65
                                                                                                                     B65
  PARAMETERS AND INTERSECTION OF BLOCKS OF BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                     ON THE AMS 62 1200
ATMENTS BETWEEN BLOCKS OF CERTAIN PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                 COMMON TRE AMS 68 999
ETRY OF QUADRICS FOR CONSTRUCTING PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                    APPLICATION OF THE GEOM AMS 62 1175
AY CROSS CLASSIFICATION WITH APPLICATION TO BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                 /FOR THE UNBALANCED TWO-W AMS 69
                                                                                                                     408
                                                                                                             AMS 66
                                                                                                                     739
ATMENTS BETWEEN BLOCKS OF CERTAIN PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                 /THE NUMBER OF COMMON TRE
 OF SIGMA-SQUARE-SUB-B-OVER-SICMA-SQUARE IN BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                  /USING AN INCORRECT VALUE BIOKA6B
BETWEEN ANY TWO BLOCKS OF GERTAIN PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                 /BER OF COMMON TREATMENTS
                                                                                                            AMS 65
                                                                                                                     337
LYSIS OF A CLASS OF TWO ASSOCIATE PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                 /EST IN THE INTRABLOCK ANA JASA 65
BER OF DISJOINT BLOCKS IN CERTAIN PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                 AN UPPER BOUND FOR THE NUM AMS 64
                                                                                                                     398
ICAL AND UNSYMMETRICAL TRIANGULAR PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS AND BALANCED INCOMPLETE BLOC
                         DUALS OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS AND SOME NONEXISTENCE THEORE AMS 66 1048
                                                     INCOMPLETE BLOCK DESIGNS FOR BIO-ASSAYS
              ON THE EFFICIENCY OF MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO-ASSAYS
                                                                                                            BTOCS69
                                                                                                                     591
                        THE USE OF CYCLIC BALANCED INCOMPLETE BLOCK DESIGNS FOR DIRECTIONAL SEED ORCHARD BIOCS67
                                                                                                                     761
ORCHARDS
                          THE USE OF CYCLIC BALANCED INCOMPLETE BLOCK DESIGNS FOR NON-DIRECTIONAL SEED
                                                                                                            BIOCS69
                                                                                                                     561
                                       SOME BALANCED INCOMPLETE BLOCK DESIGNS FOR TWO SETS OF TREATMENTS
                                                                                                            BIOKA66
                                                                                                                     497
CTATION SCHEMES
                               ON OBTAINING BALANCED INCOMPLETE BLOCK DESIGNS FROM PARTIALLY BALANCED ASSO AMS 67
                                                                                                                     61B
                          BALANCED SETS OF BALANCED INCOMPLETE BLOCK DESIGNS OF BLOCK SIZE THREE
                                                                                                            TECH 65
                                                                                                                     561
BLOCKS INTO REPLICATIONS
                                            BALANCED INCOMPLETE BLOCK DESIGNS WITH DOUBLE GROUPING OF
                                                                                                            BTOCS66
                                                                                                                     36B
 CLASSES ANALYSIS OF A CLASS OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH MORE THAN TWO ASSOCIATE AMS 61
                                                                                                                     800
 N2=/ A NOTE ON CONSTRUCTION OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH PARAMETERS V=28, N1=12,
                                                                                                            AMS 66 17B3
             BALANCED INCOMPLETE BLOCK DESIGNS WITH SOME LATIN SQUARE DESIG AMS 67

A NEW FAMILY OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH SOME LATIN SQUARE DESIG AMS 67
                                            BALANCED INCOMPLETE BLOCK DESIGNS WITH SETS OF IDENTICAL
                                                                                                            TECH 69 613
N PROPERTIES
                                                                                                                    571
EQUAL TO THE NUMBER OF TREATMENTS
                                          A NOTE ON INCOMPLETE BLOCK DESIGNS WITH THE NUMBER OF BLOCKS
                                                                                                             AMS 65 1877
OF TREATMENTS
                                 PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH TWO-WAY CLASSIFICATION
                                                                                                            AMS 69
                                                                                                                    175
                                 RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. I. THE METHOD OF PAIRED
COMPARTSONS
                                                                                                           RTOK 452
                                                                                                                     324
HE METHOD OF PAIRED COMPARISONS
                                    RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. II. ADDITIONAL TABLES FOR T BIOKA54
                                                                                                                    502
HE METHOD OF PA/ CORRIGENDA, 'THE RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. II. ADDITIONAL TABLES FOR T BIOKA64 288
```

INC - IND TITLE WORD INDEX

```
LTS ON ESTIMATION AND POWER FOR/ RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. III. SOME LARCE-SAMPLE RESU BIOKA55 450
  THE BLOCK STRUCTURES OF CERTAIN PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS, CORR. 67 624
                                                                                                        ON AMS 66 1016
                            ANALYTICAL TECHNIQUE FOR INCOMPLETE BLOCK EXPERIMENTS
                                                                                                            BIOCS66 B29
                           A NOTE ON THE ANALYSIS OF INCOMPLETE BLOCK EXPERIMENTS
                                                                                                            BIOKA65
                                                                                                                     633
       COMPARISON OF COMBINED ESTIMATORS IN BALANCED INCOMPLETE BLOCKS
                                                                                                             AMS 66 1832
                                   ON A PROPERTY OF INCOMPLETE BLOCKS
                                                                                                            JRSSB59
                                                                                                                    T72
  A NOTE ON TESTS FOR MONOTONE FAILURE RATE BASED ON INCOMPLETE DATA
                                                                                                             AMS 69
                                                                                                                     595
                                                                                                            BIOKA65
                   A METHOD OF CONSTRUCTING BALANCED INCOMPLETE DESIGNS
                                                                                                                     285
                                                                                             A METHOD OF A JASA 60
NALYZING LOG-NORMALLY DISTRIBUTED SURVIVAL DATA WITH INCOMPLETE FOLLOW-UP
                        SOME BASIC PROPERTIES OF THE INCOMPLETE GAMMA FUNCTION RATIO, CORR. 65 1584
                                                                                                            AMS 65
                    A SYSTEM OF INEQUALITIES FOR THE INCOMPLETE CAMMA FUNCTIONS AND THE NORMAL INTECRAL
                                                                                                             AMS 65
                                                                                                                     139
                                        ABSOLUTE AND INCOMPLETE MOMENTS OF THE MULTIVARIATE NORMAL
DISTRIBUTION
                                                                                                            BIOKA6I
                                                                                                                      77
                  MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE MULTIVARIATE DATA
                                                                                                                     647
                                                                                                            AMS 64
                       ESTIMATION OF PARAMETERS FROM INCOMPLETE MULTIVARIATE SAMPLES
                                                                                                            JASA 57
                                                                                                                     523
                       NONPARAMETRIC ESTIMATION FROM INCOMPLETE OBSERVATIONS
                                                                                                                     457
                                                                                                            JASA 58
                         ANALYSIS OF DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE CHARACTERS
                                                                                                            JRSSB56 259
                                       ON THE USE OF INCOMPLETE PRIOR INFORMATION IN REGRESSION ANALYSIS
                                                                                                            JASA 63
                                                                                                                     40 T
       AN ANALYSIS OF PAIRED COMPARISON DESIGNS WITH INCOMPLETE REPETITIONS
                                                                                                            BIOKA57
                                                                                                                     97
                     A SIMPLE CONGESTION SYSTEM WITH INCOMPLETE SERVICE
                                                                                                            JRSSB6I
                             CONCESTION SYSTEMS WITH INCOMPLETE SERVICE (CORR. 64 365)
                                                                                                            JRSSB62
                                                                                                                     107
                                                      INCOMPLETE SPLIT PLOT DESIGNS
                                                                                                            BIOCS67
                                                                                                                     793
AN EXPONENTIAL S/ USE OF CONCOMITANT VARIABLES AND INCOMPLETE SURVIVAL INFORMATION IN THE ESTIMATION OF
                                                                                                            BIOCS66
                                                                                                                     665
                                                     INCOMPLETE TWO-DIMENSIONAL CONTINGENCY TABLES
                                                                                                            BIOCS69
                                                                                                                     119
      BIASES IN PREDICTION BY REGRESSION FOR CERTAIN INCOMPLETELY SPECIFIED MODELS
                                                                                                            BIOKA63
                                                                                                                     391
                                INFERENCE FOR SOME INCOMPLETELY SPECIFIED MODELS INVOLVING NORMAL APPROX BIOCS67
IMATIONS TO DISCRETE DATA
                                                                                                                     335
                                                     INCONSISTENCIES IN A SCHEDULE OF PAIRED COMPARISONS BIOKAGI
                                                                                                                     303
                                 FURTHER EXAMPLES OF INCONSISTENCIES IN THE FIDUCIAL ARGUMENT
                                                                                                            AMS 63
                                                                                                                     B44
RE IN BALANCED INCOMPLETE BLOCK DESIG/ ON USINC AN INCORRECT VALUE OF SIGMA-SQUARE-SUB-B-OVER-SIGMA-SQUA BIOKAGB
                                                                                                                     254
EHAVIOR OF POSTERIOR DISTRIBUTIONS WHEN THE MODEL IS INCORRECT, CORR. 66 745
                                                                                                LIMITING B AMS 66
                                                                                                                     51
                  THE NUMBER OF NEW SPECIES, AND THE INCREASE IN POPULATION COVERACE, WHEN A SAMPLE IS INC BIOKA56
                                                                                                                      45
                                                     INCREASE IN RENT OF DWELLING UNITS FROM 1940 TO 1950 JASA 59
   INCREASE IN POPULATION COVERACE, WHEN A SAMPLE IS INCREASED THE NUMBER OF NEW SPECIES, AND THE BIOKA56
                                                                                                                      45
SYMPTOTICALLY OPTIMAL STATISTICS IN SOME MODELS WITH INCREASING FAILURE RATE AVERAGE
                                                                                                          A AMS 67 1731
TOLERANCE LIMITS FOR THE CLASS OF DISTRIBUTIONS WITH INCREASING HAZARD RATE
                                                                                                             AMS 64 I561
                            MERCINC OF OPINIONS WITH INCREASING INFORMATION
                                                                                                             AMS 62
                                                                                                                    882
                                                     INCREASING PROPERTIES OF POLYA FREQUENCY FUNCTIONS
                                                                                                             AMS 65
                                                                                                                    272
                       MARTINGALES WITH INDEPENDENT INCREMENTS
                                                                                                             AMS 69 1033
A FLUCTUATION THEOREM FOR PROCESSES WITH INDEPENDENT INCREMENTS, II
                                                                                                            AMS 69
                                                                                                                     688
   THE EFFECT OF OVERLAPPING IN BACTERIAL COUNTS OF INCUBATED COLONIES
                                                                                                            BIOKA53
                                                                                                                     220
                                                                                                            TECH 67
                               AN EXAMPLE OF ERRORS INCURRED BY ERRONEOUSLY ASSUMING NORMALITY FOR CUSUM
                                                                                                                     457
                              A FINITE CRITERION FOR INDECOMPOSABLE CHANNELS
                                                                                                             AMS 63
                                                                                                                     337
ES
                      ADDITIONAL LIMIT THEOREMS FOR INDECOMPOSABLE MULTIDIMENSIONAL GALTON-WATSON PROCESS
DISTRIBUTION
                     DISTRIBUTION OF DEFINITE AND OF INDEFINITE QUADRATIC FORMS FROM A NON-CENTRAL NORMAL
                                                                                                             AMS 63
                                                                                                                     T86
      CORRECTION TO 'DISTRIBUTION OF DEFINITE AND OF INDEFINITE QUADRATIC FORMS' 55 122
                                                                                                             AMS 62
                                                                                                                     813
                               PAIRWISE STATISTICAL INDEPENDENCE
                                                                                                             AMS 65 1313
                                                                                                             AMS 67
                          DISTRIBUTION-FREE TESTS OF INDEPENDENCE
                                                                                                                    429
      TO NORMALITY AND THE POWER OF NORMAL TESTS FOR INDEPENDENCE
                                                                               CO-ORDINATE TRANSFORMATIONS BIOKA69
                                                                                                                     139
TO NORMALITY AND THE POWER OF NORMAL TESTS FOR INDEPENDENCE
OF RANK CORRELATION FOR TESTING THE HYPOTHESIS OF INDEPENDENCE
ATIO CRITERIA FOR MULTIVARIATE LINEAR HYPOTHESIS AND INDEPENDENCE

CRITICAL VALUES OF THE COEFFICIENT BIOKAG1

/ULL DISTRIBUTIONS OF THE LIKELIHOOD R AMS 69
                                                                                                                     444
                                                                                                                     942
                        DISTRIBUTION FREE TESTS OF INDEPENDENCE BASED ON THE SAMPLE DISTRIBUTION FUNCTIO
                                                                                                             AMS 61
                                                                                                                     485
MONOTONICITY OF THE POWER FUNCTIONS OF SOME TESTS OF INDEPENDENCE BETWEEN TWO SETS OF VARIATES
                                                                                                             AMS 64
                                                                                                                     206
                   THE PERFORMANCE OF SOME TESTS OF INDEPENDENCE FOR CONTINGENCY-TYPE BIVARIATE DISTRIBUT BIOKA69
                                                                                                                     449
OF THE DIRICHLET DISTRIBUTION
                                        CONCEPTS OF INDEPENDENCE FOR PROPORTIONS WITH A A GENERALIZATION JASA 69
                                                                                                                     I94
                  A GLASS OF NONPARAMETRIC TESTS FOR INDEPENDENCE IN BIVARIATE POPULATIONS
                                                                                                             AMS 64
                                                                                                                     I38
TIVARIATE DISTRIBUTIONS CHARACTERIZATIONS OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND MUL
                                                                                                            AMS 68
                                                                                                                    433
                                            TESTS OF INDEPENDENCE IN INTRACLASS 2-BY-2 TABLES
                                                                                                            BIOKA6I
                                                                                                                     18I
                                CORRIGENDA, 'TEST OF INDEPENDENCE IN INTRACLASS 2-BY-2 TABLES'
                                                                                                            BIOKA6I
                                                                                                                     476
   COMPARISON OF THE POWER FUNCTIONS FOR THE TEST OF INDEPENDENCE IN 2X2 CONTINGENCY TABLES
                                                                                                             AMS 64 1115
                        CORRECTION TO 'ON THE MUTUAL INDEPENDENCE OF CERTAIN STATISTICS' 59 I258
                                                                                                             AMS 61 1344
                                              ON THE INDEPENDENCE OF CERTAIN WISHART VARIABLES
                                                                                                             AMS 63
                                                                                                                    935
                            A COMBINATORIAL TEST FOR INDEPENDENCE OF DICHOTOMOUS RESPONSES
                                                                                                            JASA 65
                                                                                                                    437
                   TESTING A MARKOV HYPOTHESIS WITH INDEPENDENCE OF INTERMEDIATE STATES AND RESTRICTED
ORDER
                                                                                                            BIOKA67
                                                                                                                     605
                                            PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES
                                                                                                            AMS 62
                                                                                                                     290
                                              ON THE INDEPENDENCE OF QUADRATIC EXPRESSIONS (CORR. 66 5B4)
                                                                                                            JRSSB63
                                                                                                                     377
                                              ON THE INDEPENDENCE OF QUADRATIC FORMS
                                                                                                            JRSSB66
                                                                                                                     582
                     CORRIGENDA, 'ON THE STATISTICAL INDEPENDENCE OF QUADRATIC FORMS IN NORMAL VARIATES.'
                                                                                                            BIOKA59
                                                                                                                     279
                          A NOTE ON THE STATISTICAL INDEPENDENCE OF QUADRATIC FORMS IN THE ANALYSIS OF
VARIANCE
                                                                                                            BIOKAST
                                         TESTING THE INDEPENDENCE OF REGRESSION DISTURBANCES
                                                                                                            JASA 61
                                                                                                                     793
                      CONDITIONS FOR WISHARTNESS AND INDEPENDENCE OF SECOND DEGREE POLYNOMIALS IN NORMAL
                                                                                                             AMS 62 T002
VECTOR
STRIBUTIONS OF LIKELIHOOD RATIO CRITERIA FOR TESTING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL HYPOT AMS 67 1160
                                                                                                           JASA 57
                                             ON THE INDEPENDENCE OF TESTS OF RANDOMNESS AND OTHER
HYPOTHESES
                                                                                                                     53
ST POWERFUL BOUNDARY RANDOMIZED SIMILAR TEST FOR THE INDEPENDENCE OF TWO POISSON VARIABLES /A LOCALLY MO AMS 61
                                                                                                                     809
                         A LARCE SAMPLE TEST FOR THE INDEPENDENCE OF TWO RENEWAL PROCESSES
                                                                                                             AMS 67 T037
CORR. 66 297
                 MULTIVARIATE BETA DISTRIBUTIONS AND INDEPENDENCE PROPERTIES OF THE WISHART DISTRIBUTIONS,
                                                                                                             AMS 64
                                                                                                                    261
                         A DISTRIBUTION-FREE TEST OF INDEPENDENCE WITH A SAMPLE OF PAIRED OBSERVATIONS
                                                                                                           JASA 62
                                                                                                                    II6
 CONTINCEN/ THE ANALYSIS OF CROSS-CLASSIFIED DATA, INDEPENDENCE, QUASI-INDEPENDENCE, AND INTERACTIONS IN JASA 68 1091
GHTED REGRESSION ESTIMATORS WHEN SAMPLING ERRORS ARE INDEPENDENT AND HETEROSCEDASTIC
                                                                                          VARIANCE OF WEI JASA 69 NO.4
          COMPARISON OF THE SENSITIVITIES OF SIMILAR INDEPENDENT AND NON-INDEPENDENT EXPERIMENTS
                                                                                                            BIOKA69
ND ALMOST SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDENT AND RANDOM VARIABLES AND MARTINCALE DIFFE AMS 68 1549
ON TO THE SINGLE-SERVER QUEUEINC SYSTEM WITH CENERAL INDEPENDENT ARRIVALS AND ERLANGIAN SERVICE-TIME /TI JRSSB60
                                                                                                                     89
    NORMAL APPROXIMATION TO THE DISTRIBUTION OF TWO INDEPENDENT BINOMIALS, CONDITIONAL ON FIXED SUM
                                                                                                            AMS 63 1593
                    RANK METHODS FOR GOMBINATION OF INDEPENDENT EXPERIMENTS IN THE ANALYSIS OF VARIANCE
                                                                                                             AMS 62
                                                                                                                     482
VARIABLES
                          INVERSE DISTRIBUTIONS AND INDEPENDENT GAMMA-DISTRIBUTED PRODUGTS OF RANDOM
                                                                                                           BIOKA63
                                                                                                                     505
 SHAPE PARAM/ EXACT DISTRIBUTION OF THE PRODUCT OF INDEPENDENT GENERALIZED CAMMA VARIABLES WITH THE SAME AMS 68 1751
ARIABLES, CORR./ EXAGT DISTRIBUTION OF THE SUM OF INDEPENDENT IDENTICALLY DISTRIBUTED DISCRETE RANDOM V JASA 65 837
                                    MARTINGALES WITH INDEPENDENT INCREMENTS
                                                                                                            AMS 69 T033
```

ON A FLUCTUATION THEOREM FOR PROCESSES WITH		AMS 69	688
	INDEPENDENT MULTINORMAL PROCESS, NEITHER MEAN NOR		347
IANCE-COMPONENT ESTIMATORS AS LINEAR COMBINATIONS OF	INDEPENDENT NONCENTRAL CHI-SQUARE VARIATES /OF VAR	AMS 69	NO.6
ON THE RANGE OF PARTIAL SUMS OF A FINITE NUMBER OF	INDEPENDENT NORMAL VARIATES	BIOKA53	35
OF THE MAXIMUM OF PARTIAL SUMS OF A FINITE NUMBER OF	INDEPENDENT NORMAL VARIATES THE VARIANCE	BIOKA55	96
OF THE MAXIMUM OF PARTIAL SUMS OF A FINITE NUMBER OF	INDEPENDENT NORMAL VARIATES INDEPENDENT NORMAL VARIATES INDEPENDENT NORMAL VARIATES INDEPENDENT OBSERVATIONS APPROXIMATE D	BIOKA56	79
ISTRIBUTION FOR LARGEST AND FOR SMALLEST OF A SET OF	INDEPENDENT OBSERVATIONS APPROXIMATE D	SASJ 69	NO.2
NTERVALS BETWEEN REGULAR EVENTS DISPLACED IN TIME BY	INDEPENDENT RANDOM DEVIATIONS OF LARGE DISPERSION /		
PROBABILITY INEQUALITIES FOR THE SUM OF	INDEPENDENT RANDOM VARIABLES		33
SUFFICIENT STATISTICS IN THE CASE OF	INDEPENDENT RANDOM VARIABLES	AMS 64	1456
SOME CONVERGENCE THEOREMS FOR	INDEPENDENT RANDOM VARIABLES	AMS 66	1482
ON A CHERISHEV-TIPE INEQUALITY FOR SUMS OF	INDEDENDENT DANDOM VARIABLES	AMS 66	567
ALMOST SUPE CONVERGENCE OF QUADRATIC FORMS IN	INDEPENDENT RANDOM VARIABLES	AMS 66 AMS 66 AMS 66 AMS 68	1502
THE MARKOV INFOUALITY FOR SUMS OF	INDEPENDENT RANDOM VARIABLES	AMS 69	
GAMMA-DISTRIBUTED PRODUCTS OF	INDEPENDENT RANDOM VARIABLES	BIOKA62	
ON WEYL'S CRITERION AND THE UNIFORM DISTRIBUTION OF	INDEPENDENT RANDOM VARIABLES NOTE	AMS 69	
THE LAW OF LARGE NUMBERS FOR LINEAR COMBINATIONS OF	INDEPENDENT RANDOM VARIABLES /E CONVERGENCE RATE OF	AMS 65	559
DEVIATIONS FROM THE EXPECTATION FOR SUMS OF BOUNDED,	INDEPENDENT RANDOM VARIABLES /PROBABILITY OF LARGE	BIOKA63	52B
	INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS		
	INDEPENDENT RANDOM VARIABLES WITH INFINITE EXPECTATIO		
		AMS 67	
IMITING DISTRIBUTIONS FOR SUMS OF A RANDOM NUMBER OF	INDEPENDENT RANDOM VECTORS ON L INDEPENDENT RESPECTIVELY /AND WHICH INTERARRIVAL A		375
THE JOINT ASSESSMENT OF NORMALITY OF SEVERAL		TECH 68	
MINIMUM CHI-SQUARED ESTIMATION USING	INDEPENDENT STATISTICS	AMS 67	267
MAXIMAL	INDEPENDENT SEQUENCES WITH THE STEIN PROPERTY INDEPENDENT STATISTICS INDEPENDENT STOCHASTIC PROCESSES INDEPENDENT STOCHASTIC PROCESSES INDEPENDENT STOCHASTIC SERIES THE COMPARISON INDEPENDENT STUDENT VARIABLES ON INDEPENDENT TRIALS INDEPENDENT TRIALS INDEPENDENT VARIABLES IN REGRESSION INDEPENDENT VARIABLES ARE ORTHOGONAL	AMS 61	704
ON ADDING	INDEPENDENT STOCHASTIC PROCESSES	AMS 64	B72
OF MEANS OF SETS OF OBSERVATIONS FROM SECTIONS OF	INDEPENDENT STOCHASTIC SERIES THE COMPARISON	JRSSB55	20B
THE DISTRIBUTION OF THE WEIGHTED DIFFERENCE OF TWO	INDEPENDENT STUDENT VARIABLES ON	JRSSB60	1BB
ON THE COMBINATION OF	INDEPENDENT TEST STATISTICS	AMS 67	659
ON THE DISTRIBUTION OF THE NUMBER OF SUCCESSES IN	INDEPENDENT TRIALS	AMS 64	1317
ON THE NUMBER OF SUCCESSES IN	INDEPENDENT TRIALS	AMS 65	1272
DISTRIBUTIONS OF PRODUCTS OF	INDEPENDENT VARIABLE IN REGRESSION	TECH 62	277
TRANSFORMATION OF THE	INDEPENDENT VARIABLES	TECH 62	531
REGRESSION WITH MISSING OBSERVATIONS AMONG THE	INDEPENDENT VARIABLES MULTIPLE	JASA 56	122
BANDS IN LINEAR REGRESSION WITH CONSTRAINTS ON THE	INDEPENDENT VARIABLES CONFIDENCE	JASA 6B	1020
RESSION ANALYSIS WITH MISSING OBSERVATIONS AMONG THE	INDEPENDENT VARIABLES LINEAR REG	JASA 59	834
	INDEPENDENT WISHART VARIATE /STIC ROOTS OF THE PROD INDEPENDENT, BOUNDED RANDOM VARIABLES		
	INDEPENDENT, BOUNDED RANDOM VARIABLES. /UNDS ON THE		
	IN SCIENCE AND NEW DEMANDS ON	JASA 60	
A TEST OF THE ACCURACY OF A PRODUCTION	INDEX	JASA 56	17
SOME ASPECTS OF SEASONALITY IN THE CONSUMER PRICE	INDEX	JASA 61	27
CONSTANTS AND COMPROMISE IN THE CONSUMER PRICE	INDEX	JASA 62	813
SAMPLING ERROR IN THE CONSUMER PRICE SOME STATISTICAL PROPERTIES OF A GENETIC SELECTION	INDEX	DIOMAGO	899 395
ON THE DETERMINATION OF CONFIDENCE LIMITS OF AN	INDEX	BIOCS66	603
NOTE ON THE PERIODOGRAM OF THE BEVERIDGE WHEAT PRICE	INDEX A	JRSSB55	22B
IN APPLYING LINEAR PROGRAMMING TO THE CONSUMER PRICE	INDEX POTENTIALS	JASA 66	982
FOR ANTI-CANCER AGENTS BASED ON THE THERAPEUTIC	INDEX A SCREENING SYSTEM	BIOCS65	150
BOOK REVIEWS, 10 YEAR	INDEX (1959-1968)	TECH 69	223
USE OF VARYING SEASONAL WEIGHTS IN PRICE	INDEX INDIRECT INDEX INDIRECT INDIRECT INDIRECT INDEX INDIRECT INDIRECT INDIRECT INDEX INDIRECT IND	JASA 58	882 66
A REGRESSION METHOD FOR REAL ESTATE PRICE	INDEX CONSTRUCTION	JASA 63	
A PRICE AND PRODUCTIVITY	INDEX FOR A NONHOMOGENEOUS PRODUCT	JASA 64	469
ON THE CONSTRUCTION OF AN	INDEX FOR INDIRECT SELECTION		291
			420
10N WITH A SPECIAL KIND OF IRREGULAR FRACTIONAL P/ NOTE ON THE POISSON	INDEX NUMBERS FOR FACTORIAL EFFECTS AND THEIR CONNECT	JASA 63 BIOKA53	
THE POWER OF THE POISSON		BIOKA53	
		BIOKA65	
IC THE MATHEMATICAL RELATION BETWEEN GREENBERG'S	INDEX OF LINGUISTIC DIVERSITY AND YULE'S CHARACTERIST	BIOKA5B	26B
	INDEX OF MANUFACTURING PRODUCTION IN NEW ENGLAND		
THE USE OF LAMBDA AS AN			174
	INDEX OF PRECISION	BIOCS69	E 7 C
	INDEX OF PRECISION INDEX OF QUALITY CHANGE	JASA 61	
	INDEX OF PRECISION INDEX OF QUALITY CHANGE INDEX SELECTION AND ESTIMATION FROM A SINGLE SAMPLE	JASA 61 BIOKA63	195
ON AN ATION DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR	INDEX OF PRECISION INDEX OF QUALITY CHANGE INDEX SELECTION AND ESTIMATION FROM A SINGLE SAMPLE INDEX SELECTION WITH RESTRICTIONS INDEX SUR PLUSIEURS CARACTERES PONDER	JASA 61 BIOKA63 BIOCS68	195 1015
ON AN ATION DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR	INDEX OF PRECISION INDEX OF QUALITY CHANGE INDEX SELECTION AND ESTIMATION FROM A SINGLE SAMPLE INDEX SELECTION WITH RESTRICTIONS INDEX SUR PLUSIEURS CARACTERES PONDER INDEX TO TECHNOMETRICS, VOLUMES 1-7	JASA 61 BIOKA63 BIOCS68 BIOCS69 TECH 66	195 1015 295 216
ON AN ATION DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR ERRATA TO	INDEX OF PRECISION INDEX OF QUALITY CHANGE INDEX SELECTION AND ESTIMATION FROM A SINGLE SAMPLE INDEX SELECTION WITH RESTRICTIONS INDEX SUR PLUSIEURS CARACTERES PONDER INDEX TO TECHNOMETRICS, VOLUMES 1-7 INDEX TO TECHNOMETRICS, VOLUMES 1-7	JASA 61 BIOKA63 BIOCS68 BIOCS69 TECH 66 TECH 66	195 1015 295 216 387
ON AN ATION DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR ERRATA TO STANDARD ERRORS FOR	INDEX OF PRECISION INDEX OF QUALITY CHANGE INDEX SELECTION AND ESTIMATION FROM A SINGLE SAMPLE INDEX SELECTION WITH RESTRICTIONS INDEX SUR PLUSIEURS CARACTERES INDEX TO TECHNOMETRICS, VOLUMES 1-7 INDEX TO TECHNOMETRICS, VOLUMES 1-7 INDEXES FROM COMPLEX SAMPLES	JASA 61 BIOKA63 BIOCS68 BIOCS69 TECH 66 TECH 66 JASA 68	195 1015 295 216 387 512
ON AN ATION DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR ERRATA TO STANDARD ERRORS FOR AN EXPERIMENT WITH WEIGHTED	INDEX OF PRECISION INDEX OF QUALITY CHANGE INDEX SELECTION AND ESTIMATION FROM A SINGLE SAMPLE INDEX SELECTION WITH RESTRICTIONS INDEX SUR PLUSIEURS CARACTERES PONDER INDEX TO TECHNOMETRICS, VOLUMES 1-7 INDEX TO TECHNOMETRICS, VOLUMES 1-7 INDEXES FROM COMPLEX SAMPLES INDEXES OF CYCLICAL DIFFUSION	JASA 61 BIOKA63 BIOCS68 BIOCS69 TECH 66 TECH 66 JASA 68 JASA 5B	195 1015 295 216 387 512 39
ON AN ATION DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR ERRATA TO STANDARD ERRORS FOR AN EXPERIMENT WITH WEIGHTED REGIONAL DISPARITIES IN HOUSEHOLD COMSUMPTION IN	INDEX OF PRECISION INDEX OF QUALITY CHANGE INDEX SELECTION AND ESTIMATION FROM A SINGLE SAMPLE INDEX SELECTION WITH RESTRICTIONS INDEX SUR PLUSIEURS CARACTERES PONDER INDEX TO TECHNOMETRICS, VOLUMES 1-7 INDEX TO TECHNOMETRICS, VOLUMES 1-7 INDEXES FROM COMPLEX SAMPLES INDEXES OF CYCLICAL DIFFUSION INDIA	JASA 61 BIOKA63 BIOCS68 BIOCS69 TECH 66 TECH 66 JASA 68 JASA 5B JASA 67	195 1015 295 216 387 512 39 143
ON AN ATION DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR ERRATA TO STANDARD ERRORS FOR AN EXPERIMENT WITH WEIGHTED REGIONAL DISPARITIES IN HOUSEHOLD COMSUMPTION IN	INDEX OF PRECISION INDEX OF QUALITY CHANGE INDEX SELECTION AND ESTIMATION FROM A SINGLE SAMPLE INDEX SELECTION WITH RESTRICTIONS INDEX SUR PLUSIEURS CARACTERES PONDER INDEX TO TECHNOMETRICS, VOLUMES 1-7 INDEX TO TECHNOMETRICS, VOLUMES 1-7 INDEXES FROM COMPLEX SAMPLES INDEXES OF CYCLICAL DIFFUSION INDIA INDIA SAMPLING TECHNIQUES FOR ESTIMATION OF IN	JASA 61 BIOKA63 BIOCS68 BIOCS69 TECH 66 TECH 66 JASA 68 JASA 5B JASA 67	195 1015 295 216 387 512 39 143 385
ON AN ATION DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR ERRATA TO STANDARD ERRORS FOR AN EXPERIMENT WITH WEIGHTED REGIONAL DISPARITIES IN HOUSEHOLD COMSUMPTION IN CIDENCE OF RED SPIDER MITE ON TEA CROP IN NORTH-EAST ECONOMETRIC EXPLORATION OF	INDEX OF PRECISION INDEX OF QUALITY CHANGE INDEX SELECTION AND ESTIMATION FROM A SINGLE SAMPLE INDEX SELECTION WITH RESTRICTIONS INDEX SUR PLUSIEURS CARACTERES PONDER INDEX TO TECHNOMETRICS, VOLUMES 1-7 INDEX TO TECHNOMETRICS, VOLUMES 1-7 INDEXES FROM COMPLEX SAMPLES INDEXES OF CYCLICAL DIFFUSION INDIA INDIA SAMPLING TECHNIQUES FOR ESTIMATION OF IN INDIAN SAVING BEHAVIOR INDIANS AND THE TEFN-AGE WIDOWS	JASA 61 BIOKA63 BIOCS68 BIOCS69 TECH 66 TECH 66 JASA 68 JASA 5B JASA 67 BIOCS66 JASA 69	195 1015 295 216 387 512 39 143 385 90
ON AN ATION DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR ERRATA TO STANDARD ERRORS FOR AN EXPERIMENT WITH WEIGHTED REGIONAL DISPARITIES IN HOUSEHOLD COMSUMPTION IN CIDENCE OF RED SPIDER MITE ON TEA CROP IN NORTH-EAST ECONOMETRIC EXPLORATION OF THE CASE OF THE STIMATES OF THE UNITED STATES NONWHITE POPULATION AS	INDEX OF PRECISION INDEX OF QUALITY CHANGE INDEX SELECTION AND ESTIMATION FROM A SINGLE SAMPLE INDEX SELECTION WITH RESTRICTIONS INDEX SUR PLUSIEURS CARACTERES PONDER INDEX TO TECHNOMETRICS, VOLUMES 1-7 INDEX TO TECHNOMETRICS, VOLUMES 1-7 INDEXES FROM COMPLEX SAMPLES INDEXES OF CYCLICAL DIFFUSION INDIA INDIA SAMPLING TECHNIQUES FOR ESTIMATION OF IN INDIAN SAVING BEHAVIOR INDIANS AND THE TEEN-AGE WIDOWS INDICATED BY TRENDS IN DEATH RATES BIAS IN E	JASA 61 BIOKA63 BIOCS68 BIOCS69 TECH 66 TECH 66 JASA 68 JASA 67 BIOCS66 JASA 69 JASA 69 JASA 62 JASA 61	195 1015 295 216 387 512 39 143 385 90 338 44
ON AN ATION DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR ERRATA TO STANDARD ERRORS FOR AN EXPERIMENT WITH WEIGHTED REGIONAL DISPARITIES IN HOUSEHOLD COMSUMPTION IN CIDENCE OF RED SPIDER MITE ON TEA CROP IN NORTH-EAST ECONOMETRIC EXPLORATION OF THE CASE OF THE STIMATES OF THE UNITED STATES NONWHITE POPULATION AS SELECTION	INDEX OF PRECISION INDEX OF QUALITY CHANGE INDEX SELECTION AND ESTIMATION FROM A SINGLE SAMPLE INDEX SELECTION WITH RESTRICTIONS INDEX SUR PLUSIEURS CARACTERES INDEX TO TECHNOMETRICS, VOLUMES 1-7 INDEX TO TECHNOMETRICS, VOLUMES 1-7 INDEXES FROM COMPLEX SAMPLES INDEXES OF CYCLICAL DIFFUSION INDIA INDIA INDIA INDIA SAMPLING TECHNIQUES FOR ESTIMATION OF IN INDIAN SAVING BEHAVIOR INDIANS AND THE TEEN-AGE WIDOWS INDICATED BY TRENDS IN DEATH RATES BIAS IN E INDICES FOR QUADRATIC MODELS OF TOTAL MERIT	JASA 61 BIOKA63 BIOCS68 BIOCS69 TECH 66 TECH 66 JASA 68 JASA 67 BIOCS66 JASA 69 JASA 69 JASA 61 BIOCS6B	195 1015 295 216 387 512 39 143 3B5 90 338 44 937
ON AN ATION DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR ERRATA TO STANDARD ERRORS FOR AN EXPERIMENT WITH WEIGHTED REGIONAL DISPARITIES IN HOUSEHOLD COMSUMPTION IN CIDENCE OF RED SPIDER MITE ON TEA CROP IN NORTH-EAST ECONOMETRIC EXPLORATION OF THE CASE OF THE STIMATES OF THE UNITED STATES NONWHITE POPULATION AS	INDEX OF PRECISION INDEX OF QUALITY CHANGE INDEX SELECTION AND ESTIMATION FROM A SINGLE SAMPLE INDEX SELECTION WITH RESTRICTIONS INDEX SUR PLUSIEURS CARACTERES PONDER INDEX TO TECHNOMETRICS, VOLUMES 1-7 INDEXES TROM COMPLEX SAMPLES INDEXES FROM COMPLEX SAMPLES INDEXES OF CYCLICAL DIFFUSION INDIA INDIA SAMPLING TECHNIQUES FOR ESTIMATION OF IN INDIAN SAVING BEHAVIOR INDIANS AND THE TEEN-AGE WIDOWS INDICATED BY TRENDS IN DEATH RATES BIAS IN E INDICES FOR QUADRATIC MODELS OF TOTAL MERIT INDICES OF A COMPLEX ITEM	JASA 61 BIOKA63 BIOCS68 BIOCS69 TECH 66 TECH 66 JASA 68 JASA 5B JASA 67 BIOCS66 JASA 69 JASA 62 JASA 61 BIOCS6B TECH 63	195 1015 295 216 387 512 39 143 385 90 338 44 937 400
ON AN ATION DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR ERRATA TO STANDARD ERRORS FOR AN EXPERIMENT WITH WEIGHTED REGIONAL DISPARITIES IN HOUSEHOLD COMSUMPTION IN CIDENCE OF RED SPIDER MITE ON TEA CROP IN NORTH-EAST ECONOMETRIC EXPLORATION OF THE CASE OF THE STIMATES OF THE UNITED STATES NONWHITE POPULATION AS SELECTION ONE-SIDED CONFIDENCE INTERVALS FOR THE QUALITY	INDEX OF PRECISION INDEX OF QUALITY CHANGE INDEX SELECTION AND ESTIMATION FROM A SINGLE SAMPLE INDEX SELECTION WITH RESTRICTIONS INDEX SUR PLUSIEURS CARACTERES PONDER INDEX TO TECHNOMETRICS, VOLUMES 1-7 INDEX TO TECHNOMETRICS, VOLUMES 1-7 INDEXES FROM COMPLEX SAMPLES INDEXES OF CYCLICAL DIFFUSION INDIA SAMPLING TECHNIQUES FOR ESTIMATION OF IN INDIAN SAVING BEHAVIOR INDIAN SAVING BEHAVIOR INDIANS AND THE TEEN-AGE WIDOWS INDICATED BY TRENDS IN DEATH RATES BIAS IN E INDICES OF A COMPLEX ITEM INDICES OF A SYNCHRONY IN CELLULAR CULTURES	JASA 61 BIOKA63 BIOCS68 BIOCS69 TECH 66 TECH 66 JASA 68 JASA 67 BIOCS66 JASA 69 JASA 69 JASA 61 BIOCS6B	195 1015 295 216 387 512 39 143 385 90 338 44 937 400 693
ON AN ATION DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR ERRATA TO STANDARD ERRORS FOR AN EXPERIMENT WITH WEIGHTED REGIONAL DISPARITIES IN HOUSEHOLD COMSUMPTION IN CIDENCE OF RED SPIDER MITE ON TEA CROP IN NORTH-EAST ECONOMETRIC EXPLORATION OF THE CASE OF THE STIMATES OF THE UNITED STATES NONWHITE POPULATION AS SELECTION ONE-SIDED CONFIDENCE INTERVALS FOR THE QUALITY A BAYESIAN	INDEX OF PRECISION INDEX OF QUALITY CHANGE INDEX SELECTION AND ESTIMATION FROM A SINGLE SAMPLE INDEX SELECTION WITH RESTRICTIONS INDEX SUR PLUSIEURS CARACTERES PONDER INDEX TO TECHNOMETRICS, VOLUMES 1-7 INDEX TO TECHNOMETRICS, VOLUMES 1-7 INDEXES FROM COMPLEX SAMPLES INDEXES OF CYCLICAL DIFFUSION INDIA SAMPLING TECHNIQUES FOR ESTIMATION OF IN INDIAN SAVING BEHAVIOR INDIANS AND THE TEEN-AGE WIDOWS INDICATED BY TRENDS IN DEATH RATES BIAS IN E INDICES FOR QUADRATIC MODELS OF TOTAL MERIT INDICES OF A COMPLEX ITEM INDICES OF SYNCHRONY IN CELLULAR CULTURES INDIFFERENCE PROCEDURE	JASA 61 BIOKA63 BIOCS69 BIOCS69 TECH 66 TECH 66 JASA 68 JASA 5B JASA 67 BIOCS66 JASA 69 JASA 62 JASA 61 BIOCS68 BIOCS67	195 1015 295 216 387 512 39 143 3B5 90 338 44 937 400 693 1104

IND - INF TITLE WORD INDEX

ON THE CONSTRUCTION OF AN INDEX FOR		BIOCS65	291
	INDIRECT SELECTION, 1. MASS SELECTION	BIOCS65	682
	' INDIRECT-ADJUSTED RATES IN THE PRESENCE OF CONFOUNDIN		997
SOME FEATURES OF THE GENERATION TIMES OF	'INDISTINGUISHABLE OBJECTS STATISTICAL TESTING OF DI	BIOKA55	137 16
THE ANALYSIS OF LATIN SQUARE DESIGNS WITH		JRSSB58	193
	' INDIVIDUAL FIRMS THE ACCURACY AND STRUCTURE		317
	INDIVIDUAL INCOME TAX TAXPAYER COMPLIANCE IN		487
CASE OF ALL-OR-NONE RESPONSES	INDIVIDUAL MATCHING WITH MULTIPLE CONTROLS IN THE	BIOCS69	339
OF GENETIC CONTRIBUTION OF PRINCIPAL COMPONENTS TO		BIOCS69	9
CORRELATION COEFFICIENTS MEASURED ON THE SAME		JASA 69	366
A BRANCHING PROCESS IN WHICH LINEAR HYPOTHESES AND	I INDIVIDUALS HAVE VARIABLE LIFETIMES	BIOKA64	262
STATISTICAL METHODS AND SCIENTIFIC		BIOKA64 JRSSB55	41 69
DESIGNS	INDUCTIVE METHODS FOR BALANCED INCOMPLETE BLOCK	AMS 66	
THE TIME INTERVALS BETWEEN		BIOKA52	16B
FORECASTING	INDUSTRIAL PRODUCTION	JASA 61	869
A STATISTICAL INVESTIGATION OF THE		JASA 60	284
THE AUTOMATIC COMPUTER IN		JASA 56	565
A COMPUTER SIMULATION MODEL OF THE TEXTILE OF COST-QUANTITY RELATIONSHIPS IN THE AIRCRAFT		JASA 67	
	INDUSTRY CONCENTRATION	JASA 6B	228
	INDUSTRY EXPECTATIONS IN RELATION TO THOSE OF INDIVID		317
THE STATISTICAL ANALYSIS OF	'INDUSTRY STRUCTURE, AN APPLICATION TO FOOD INDUSTRIES	JASA 61	925
OBLEMS IN THE INTERNATIONAL STANDARDIZATION OF INTER		JASA 64	256
	'INEFFICIENCY' OF THE SAMPLE MEDIAN FOR MANY FAMILIAR		520
SOME SHARP MULTIVARIATE TCHEBYCHEFF	•	AMS 67	393
ALTERNATIVE PROOFS FOR CERTAIN UPCROSSING A COMPARISON TEST FOR MARTINGALE		AMS 67 AMS 69	735 505
NOTE ON A 'MULTIVARIATE' FORM OF BONFERRONI'S		AMS 69	692
OF THE RESIDUAL SUM OF SQUARES IN FITTING	INEQUALITIES DISTRIBUTION		69
AGAINST ALTERNATIVE RESTRICTED BY A NUMBER OF LINEAR		AMS 66	1161
ON MINIMIZING A CONVEX FUNCTION SUBJECT TO LINEAR		JRSSB55	173
GENERALIZATIONS OF TCHEBYCHEFF'S		JRSSB56	139
	INEQUALITIES FOR BOUNDED RANDOM VARIABLES INEQUALITIES FOR CENTRAL AND NON-CENTRAL DISTRIBUTION	BIOKA67	641
DAM WITH ORDERED INPUTS	INEQUALITIES FOR CENTRAL AND NON-CENTRAL DISTRIBUTION INEQUALITIES FOR FIRST EMPTINESS PROBABILITIES OF A	JRSSB62	102
ICS FROM RESTRICTED FAMILIES	INEQUALITIES FOR LINEAR COMBINATIONS OF ORDER STATIST		
CATIONS TO SIMULTANEOUS CONFIDENCE BOU/ ON CERTAIN	INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR APPLI		
	INEQUALITIES FOR SUMS OF BOUNDED RANDOM VARIABLES	JASA 63	13
	INEQUALITIES FOR THE INCOMPLETE GAMMA FUNCTIONS AND	AMS 65	139
CONTINUED FRACTION	INEQUALITIES FOR THE NORMAL INTEGRAL INCLUDING A NEW		177
	INEQUALITIES FOR THE QUEUE GI/G1 INEQUALITIES FOR THE SUM OF INDEPENDENT RANDOM	BIOKA62 JASA 62	315 33
	INEQUALITIES FOR THE SUM OF INDEPENDENT, BOUNDED RAND		559
EXPECTATIONS	INEQUALITIES OF CHEBYSHEV TYPE INVOLVING CONDITIONAL	AMS 69	
ANDOM VARIABLES, 1 LESS THAN OR EQUAL TO R, R LES/	INEQUALITIES OF THE RTH ABSOLUTE MOMENT OF A SUM OF R	AMS 65	299
	INEQUALITIES ON CHARACTERISTIC ROOTS OF MATRICES	BIOKA63	522
	INEQUALITIES ON CHARACTERISTIC ROOTS OF MATRICES'	BIOKA65	669
NOTE ON AN APPLICATION OF FOUR MOMENT	INEQUALITIES TO A PROBLEM IN QUEUES INEQUALITIES WITH APPLICATIONS TO THE WEAK CONVERGENC	TECH 65 AMS 69	435 6B1
	INEQUALITIES WITH- EXTENSIONS TO CONTINUOUS PARAMETER		6B7
A NOTE ON HOEFFDING'S		JASA 69	907
VARIANCE UNDER TRUNCATION AND VARIATIONS OF HENSEN'S		AMS 69	
	INEQUALITY AND ALMOST SURE CONVERGENCE	AMS 69	
	INEQUALITY CONCERNING TESTS OF FIT OF THE KOLMOGOROV-		
	INEQUALITY FOR A CLASS OF BIVARIATE CHI-SQUARE INEQUALITY FOR BALANCED INCOMPLETE BLOCK DESIGNS	JASA 69 AMS 61	333 90B
	INEQUALITY FOR EXPECTED VALUES OF SAMPLE QUANTILES	AMS 67	
	INEQUALITY FOR MARTINGALES AND A CHARACTERISTIC PROPE		764
	INEQUALITY FOR SUMS OF INDEPENDENT RANDOM VARIABLES	AMS 66	24B
		AMS 69	
		AMS 6B	
	INEQUALITY FOR THE SAMPLE COEFFICIENT OF VARIATION INEQUALITY FOR THE SUM OF INDEPENDENT, BOUNDED RANDOM		
	INEQUALITY IN CONSTRAINED RANDOM VARIABLES	AMS 6B	
	INEQUALITY IN TERMS OF THE RANGE	TECH 62	
AA	INEQUALITY INVOLVING MULTINOMIAL PROBABILITIES	BIOKA68	
	INEQUALITY OF HOEFFDING	AMS 67	
	INEQUALITY OF UNKNOWN VARIANCES COMBINATIONS INEQUALITY ON A BIVARIATE STUDENT'S 'T' DISTRIBUTION		
	INEQUALITY ON A BIVARIATE STODENT'S 'T' DISTRIBUTION INEQUALITY RELATING THE SPECTRAL DENSITY AND AUTOCORR		
		JASA 65	
	INEQUALITY RESTRICTIONS IN REGRESSION ANALYSIS	JASA 66	166
FFECTIVENESS OF VOIDING AS A DEFENCE AGAINST BLADDER			
	INFECTION AND IMMUNISATION MODELS	SASJ 6B	
	INFECTION FOR THE ANALYSIS OF INTRA-HOUSEHOLD EPIDEMI INFECTION IN CHAIN-BINOMIAL THEORY	BIOKA56	
	INFECTION IN CHAIN-BINOWIAL IMEGRI INFECTION OF BACTERIA /MATION OF THE NUMBER OF CRIT		
THE BASIC BIRTH-DEATH MODEL FOR MICROBIAL		JRSSB65	
A DISTRIBUTION ARISING IN THE STUDY OF	INFECTIOUS DISEASES	BIOKA54	
		BIOKA56	15
	INFECTIOUS PERIODS OF MEASLES, II. FAMILIES WITH THRE		
DEMIC FOR SMALL POPULATIONS WITH ONE OR MORE INITIAL ON FIDUCIAL	INFECTIVES THE SIMPLE STOCHASTIC EPI	AMS 61	
SOME THOUGHTS ON STATISTICAL		AMS 62	
	-		

TITLE WORD INDEX IND - INF

ON THE FOUNDATIONS OF STATISTICAL	INFERENCE	JASA 62	269
BOUNDS FOR THE FREQUENCY OF MISLEADING BAYES	INFERENCE	AMS 65	1109
SOME GRAPHS USEFUL FOR STATISTICAL	INFERENCE	1ASA 65	334
SOME ASPECTS OF EXPERIMENTAL	INFERENCE	JASA 66	11
ON PARTIAL 'A PRIORI' INFORMATION IN STATISTICAL	INFERENCE	AMS 67	1671
SOME NOTES ON PISTIMETRIC	INFERENCE	JRSSB60	338
INACCURACY AND	INFERENCE	JRSSB61	184
A CENERALIZATION OF BAYESIAN	INFERENCE (WITH DISCUSSION)	JRSSB68	205
ON A PARADOX CONCERNING	INFERENCE ABOUT A COVARIANCE MATRIX	AMS 63	1414
REGRESSION	INFERENCE ABOUT THE INTERSECTION IN TWO-PHASE	BIOKA69	NO.3
MODEL 252) CONSISTENCY IN STATISTICAL	INFERENCE ABOUT A COVARIANCE MATRIX INFERENCE ABOUT THE INTERSECTION IN TWO-PHASE INFERENCE ABOUT VARIANCE COMPONENTS IN THE ONE-WAY INFERENCE ABOUT VARIANCE COMPONENTS IN THE ONE-WAY INFERENCE AND DECISION (WITH DISCUSSION) (CORR. 66	JASA 65	1
ASYMPTOTICALLY OPTIMUM SEQUENTIAL		AMS 63	
		JRSSB64	
	INFERENCE CONCERNINC PROBABILITIES AND QUANTILES		
	INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE D		
	INFERENCE FOR LOCATION AND SCALE PARAMETERS		
	INFERENCE FOR PROBABILISTIC FUNCTIONS OF FINITE STATE		
LVING NORMAL APPROXIMATIONS TO DISCRETE DATA	INFERENCE FOR SOME INCOMPLETELY SPECIFIED MODELS INVO	BIOCS67	335
OUALITY OF STATISTICAL INFORMATION AND STATISTICAL	INFERENCE FROM A KNOCKOUT TOURNAMENT INFERENCE IN A RAPIDLY CHANCING WORLD THE INFERENCE IN ABSORBING MARKOV CHAINS. INFERENCE IN AN AUTHORSHIP PROBLEM	1ASA 67	080 1
SOME PROBLEMS OF STATISTICAL	INFERENCE IN ABSORBING MARKOV CHAINS.	BTOKA65	127
	INFERENCE IN AN AUTHORSHIP PROBLEM	JASA 63	275
ARETTE SMOKING AND LUNG C/ PROBLEMS OF STATISTICAL	INFERENCE IN HEALTH WITH SPECIAL REFERENCE TO THE CIG	JASA 69	739
		AMS 65	
	INFERENCE IN SOME LINEAR MODELS WITH ONE OBSERVATION		
	INFERENCE IN THE CLASSICAL OCCUPANCY PROBLEM, UNBIASE		
	INFERENCE ON A GENETIC MODEL OF THE MARKOV CHAIN TYPE INFERENCE PROBLEMS THE EQUAL PROBABILITY		
	INFERENCE PROBLEMS ABOUT PARAMETERS WHICH ARE SUBJECT		
	INFERENCE PROCEDURES IN LARGE SAMPLES (WITH DISCUSSIO		46
MULTIVARIATE REGRESSION PROBLEMS SEQUENTIAL	INFERENCE PROCEDURES OF STEIN'S TYPE FOR A CLASS OF	AMS 62	1039
ON SOME EXTENSIONS OF BAYESIAN		JRSSB60	
A NOTE ON CRITERION ROBUSTNESS AND	INFERENCE ROBUSTNESS INFERENCE STATEMENTS (WITH DISCUSSION) INFERENCE WITH BIVARIATE CAMMA DISTRIBUTIONS	BIOKA64	169
BAYESIAN INTERPRETATION OF STANDARD	INFERENCE STATEMENTS (WITH DISCUSSION)	JRSSB65	169
STATISTICAL STATISTICAL V NONDADAMETRIC	INFERENCE WITH BIVARIATE CAMMA DISTRIBUTIONS INFERENCE. AN ALTERNATIVE APPROACH TO LINEAR MODELS	BIOKA69	NO.3
		BIOCS69	
ON THE FOUNDATIONS OF STATISTICAL	INFERENCE, AND STRATEGY INFERENCE, BINARY EXPERIMENTS INFERENCE, CORR. 64 1296 /NCTIONS OF CENERALIZED CL	AMS 61	
ASSICAL LINEAR ESTIMATORS IN ECONOMETRIC STATISTICAL	INFERENCE, CORR. 64 1296 /NCTIONS OF CENERALIZED CL		943
DISCUSSION OF 'ON THE FOUNDATIONS OF STATISTICAL	INFERENCE'	JASA 62	307
	INFERENCES ABOUT GAMMA PARAMETERS WITH AN APPLICATION		
		JASA 67	
	INFERENCES ABOUT THE NORMAL DISTRIBUTION WITH APPLICA		89
	INFERENCES ABOUT THE VARIANCE OF A NORMAL DISTRIBUTIO INFERENCES ABOUT THE VARIANCE OF A NORMAL DISTRIBUTIO		
	INFERENCES BASED ON A SAMPLE FROM A FINITE UNIVARIATE		
	INFERENCES CONCERNING A POPULATION CORRELATION COEFFI		
	INFERENCES DRAWN FROM TESTS OF SIGNIFICANCE, OR VICE		30
	INFERENCES FOR FAMILIES OF HYPOTHESES WITH MONOTONE		
DISTRIBUTION	INFERENCES ON THE PARAMETERS OF THE WEIBULL	TECH 69	
		BIOKA67	329 19
A COMPARISON OF SOME BAYESIAN AND FREQUENTIST A COMPARISON OF SOME BAYESIAN AND FREQUENTIST		BIOKA65 BIOKA66	
ON	INFERENCES: II INFERRING ORDER RELATIONS IN ANALYSIS OF VARIANCE	BIOCS65	337
THEOREMS WHEN THE FIRST OR THE SECOND MOMENT IS	INFERRING ORDER RELATIONS IN ANALYSIS OF VARIANCE INFINITE RENEWAL INFINITE A NOTE ON THE INFINITE ON A CLASS OF GAUSSIAN INFINITE DAM WITH DISCRETE ADDITIVE INPUTS INFINITE DAW WITH DISCRETE ADDITIVE INPUTS INFINITE DIVISIVILITY OF EXPONENTIAL MIXTURES	AMS 6B	1210
RENEWAL FUNCTION WHEN THE MEAN RENEWAL LIFETIME IS	INFINITE A NOTE ON THE	JRSSB61	230
PROCESSES FOR WHICH THE MEAN RATE OF CROSSINGS IS	INFINITE ON A CLASS OF GAUSSIAN	JRSSB67	4B9
TRIBUTIONS OF THE NEGATIVE EXPERIMENTAL TYPE FOR THE	INFINITE DAM STATIONARY DIS	JRSSB57	342
THE TIME-DEPENDENT SOLUTION FOR AN	INFINITE DAM WITH DISCRETE ADDITIVE INPUTS INFINITE DIVISIVILITY OF EXPONENTIAL MIXTURES	AMS 67	1303
NOTE ON THE	INFINITE DIVISIVILITY OF INTECER-VALUED RANDOM	AMS 67	1000
	INFINITE EXPECTATIONS /HORT PROOF OF A KNOWN LIMIT	AMS 69	1114
A NOTE ON SUMS OF INDEPENDENT RANDOM VARIABLES WITH	INFINITE FIRST MOMENT	AMS 67	751
ON THE GLIVENKO-CANTELLI THEOREM FOR		AMS 67	
	INFINITE UNDER ONE OF THE HYPOTHESES INADMISSI INFINITELY DIFFERENTIABLE POSITIVE DEFINITE FUNCTIONS		
	INFINITELY DIFFERENTIABLE POSITIVE DEFINITE FUNCTIONS INFINITELY DIVISIBLE DENSITIES	AMS 69	
		AMS 64	
	INFINITELY DIVISIBLE DISTRIBUTION FUNCTIONS	AMS 68	
	INFINITELY DIVISIBLE DISTRIBUTIONS, RECENT RESULTS	AMS 62	
	INFINITELY DIVISIBLE LAWS AND A RENEWAL THEOREM FOR		
	INFINITELY DIVISIBLE MIXTURES INFINITELY DIVISIBLE RENEWAL DISTRIBUTIONS	AMS 68	
		AMS 69	
THE SEQUENTIAL DESIGN OF EXPERIMENTS FOR		AMS 61	
STATE MARKOV PROCESS ESTIMATING THE	INFINITESIMAL GENERATOR OF A CONTINUOUS TIME, FINITE	AMS 62	727
T OF PRIORITY 63 1111) ON CONVERGENCE TO	INFINITY IN THE LAW OF LARGE NUMBERS, (ACKNOWLEDGEMEN	AMS 63	219
BALANCED DESIGNS ON THE ADMISSIBILITY AT	INFINITY, WITHIN THE CLASS OF RANDOMIZED DESIGNS, OF	AMS 68	1978
	INFLUENCE OF MOMENTS ON THE ASYMPTOTIC DISTRIBUTION		
SURVEY RESULTS MERCING OF OPINIONS WITH INCREASING		JASA 58 AMS 62	
OPTIMUM STRATIFIED SAMPLING USING PRIOR		JASA 65	
A NOTE ON MINIMUM DISCRIMINATION		AMS 66	
RECENT EFFORTS TO IMPROVE LAND USE	INFORMATION	JASA 66	647

INF - INT

THE TWO CONCEPTS OF	INFORMATION	JASA 67	685
ON THE OPTIMUM RATE OF TRANSMITTING	INFORMATION	AMS 69	NO.6
THE STATISTICAL SIGNIFICANCE OF ODD BITS OF	INFORMATION	BIOKA52	228
BINOMIAL SAMPLING SCHEMES AND THE CONCEPT OF	INFORMATION	BIOKA57	179
ON LOCAL INFERENCE AND	INFORMATION	JRSSB64	253
EXPONENTIAL SURVIVAL PROBABILITIES WITH CONCOMITANT IN STRATIFIED AND MULTISTAGE SAMPLES USING PRIOR	INFORMATION ESTIMATION OF	BIOC262	826 964
OF SOME STANDARD ESTIMATES IN THE PRESENCE OF PRIOR	INFORMATION ON THE INADMISSIBILITY	AMS 63	539
A RECORD MATCHING PROCESS WITH COMPLETE INVARIANT		JASA 67	454
	INFORMATION ABOUT ALTERNATIVE DISTRIBUTIONS IS BASED	AMS 62	213
		JRSSB60	172
		AMS 62	
DISTRIBUTION TURN OF STATESTICAL	INFORMATION AND SAMPLING FROM THE EXPONENTIAL INFORMATION AND STATISTICAL INFERENCE IN A RAPIDLY	TECH 69	41
		AMS 68	2056
A NOTE ON THE LOSS OF		BIOKA64	
NOTES. MINIMUM DISCRIMINATION	INFORMATION ESTIMATION	BIOCS68	
, PARTS I, II, AND III ON CASH EQUIVALENTS AND	INFORMATION EVALUATION IN DECISIONS UNDER UNCERTAINTY	JASA 68	252
	INFORMATION FOR DISCRIMINATION BETWEEN TWO COMPOSITE		
	INFORMATION FOR ESTIMATING THE PROPORTIONS IN MIXTURE INFORMATION FROM A DIALLEL MATING DESIGN /AL RELATI		
	INFORMATION FROM A SECOND SAMPLE IN ESTIMATING	BIOKA69	
	INFORMATION FROM UNCORRELATED LINEAR MODELS BY SIMPLE		
SOME ASSOCIATED SPRT'S THE	INFORMATION IN A RANK-ORDER AND THE STOPPING TIME OF	AMS 68	1661
	INFORMATION IN AN EXPERIMENT	JRSSB59	67
		JRSSB68	
	INFORMATION IN REGRESSION ANALYSIS	AMS 63 JASA 63	
ON A METHOD OF USING MULTI-AUXILIARY		JASA 65	
		AMS 67	
	INFORMATION IN STATISTICS	AMS 65	
	INFORMATION SUPPLIED BY CENSORED SAMPLES OF GROUPED O		245
OBSERVATIONS IN THE ESTIMATION O/ ON THE AMOUNT OF NOTE ON THE ERGODIC THEOREM OF	INFORMATION SUPPLIED BY TRUNCATED SAMPLES OF GROUPED	AMS 61	
	INFORMATION THEORY	AMS 64	
	INFORMATION TO DESIGN A ROUTINE PARALLEL LINE ASSAY	BIOCS67	257
	INFORMATION TO OBTAIN UNIFORMLY BETTER ESTIMATORS		1064
	INFORMATION, (PI)PS SAMPLING OF TWO UNITS FROM A STR		374
	INFORMATION, AND SEQUENTIAL EXPERIMENTS INFORMATIVE STOPPING RULES AND INFERENCES ABOUT	AMS 62 JASA 67	404 763
TOTOBATION SIZE	INHALATION IN RELATION TO TYPE AND AMOUNT OF SMOKING		35
ON THE DIFFICULTIES	INHERENT IN FISHER'S FIDUCIAL ARGUMENT	JASA 64	56
	INHERITANCE NOTES. STATISTICAL TESTS OF HYPOTHESES		429
	INITIAL ESTIMATES OF THE PARAMETERS IN EXPONENTIAL	BIOCS69	580
	INITIAL INFECTIVES THE SIMPLE STOCHASTIC INITIAL SAMPLES ARE MISCLASSIFIED	TECH 66	1B3 657
	INITIAL STOCK AND CONSUMER INVESTMENT IN AUTOMOBILES		7B9
	INNER WINDOW SPECTRAL ANALYSIS	TECH 61	235
	INNOVATION VARIANCE OF A STATIONARY TIME SERIES		141
A GENERAL CLASS OF BULK QUEUES WITH POISSON A GENERALIZED SINGLE-SERVER QUEUE WITH ERLANG		AMS 67 BIOKA62	
THE ALMOST FULL DAM WITH POISSON	INPUT	JRSSB66	329
LINEAR SYSTEM HAVING A NORMAL STATIONARY STOCHASTIC	INPUT ON THE LINEAR CONTROL OF A	JRSSB68	381
	INPUT AND GAMMA SERVICE TIME THE TRANSIENT BEHAVI		
DEPENDENCE OF A SINGLE-SERVER QUEUE WITH POISSON			
PROBABILITY GENERATING FUNCTIONALS TO THE STUDY OF THE ALMOST FULL DAM WITH POISSON		JRSSB66	44B
	INPUT. GENERAL SERVICE TIME DISTRIBUTION, ONE SERVER	AMS 61	
RESERVOIRS WITH SERIALLY CORRELATED		TECH 63	B5
FIRST EMPTINESS PROBABILITIES OF A DAM WITH ORDERED			102
SOLUTION FOR AN INFINITE DAM WITH DISCRETE ADDITIVE			
	INSECTS ON THE UTILIZATION OF INSENSITIVITY TO NON-OPTIMAL DESIGN IN BAYESIAN		
A BAYES SEQUENTIAL SAMPLING		AMS 65	
A DYNAMIC PROGRAMMING APPLICATION IN PRODUCTION LINE	INSPECTION	TECH 67	
THE DECISION THEORY APPROACH TO SAMPLING		JRSSB66	
	INSPECTION AND STATISTICAL DECISIONS (WITH		
VALIDATING RESULTS OF SAMPLING	INSPECTION AND STATISTICAL DECISIONS (WITH INSPECTION BY ATTRIBUTES	TECH 63	23
THE MOST ECONOMICAL SEQUENTIAL SAMPLING SCHEME FOR	INSPECTION BY VARIABLES	JRSSB59	
		JASA 58	
		JRSSB58	
RECTIFYING	INSPECTION OF CONTINUOUS PROCESSES WITH NO AUTOCORREL INSPECTION OF LOTS	JASA 61	807
SOME THEORETICAL ASPECTS OF THE LOT PLOT SAMPLING	INSPECTION PLAN	JASA 56	84
A RECTIFYING	INSPECTION PLAN	JRSSB55	124
RELATIVE COSTS OF COMPUTERIZED ERROR	INSPECTION PLANS INSPECTION PLANS INSPECTION PLANS INSPECTION PLANS MARKOVIAN DECISION MODELS FOR TH	JASA 69	NO.4
THEOREMS FOR THE DUDGE-ROMIG LTPD SINGLE SAMPLING F EVALUATION OF A LARGE CLASS OF CONTINUOUS SAMPLING	THOREGITON PLANS MARKOVIAN DECISION MODELS FOR TH	AMS 65	1408
OMETRIC DISTRIBUTION AND A SYSTEM OF SINGLE SAMPLING	INSPECTION PLANS BASED ON PRIOR DISTRIBUTIONS AND COS	TECH 60	275
WEIBULL PROCESSES SAMPLING	INSPECTION PLANS FOR DISCRIMINATING BETWEEN TWO	TECH 65	589
	INSPECTION SCHEME SOME REMARKS INSPECTION SCHEMES		
	INSTRUMENTAL VARIABLE ESTIMATION OF STRAIGHT-LINE REL INSTRUMENTAL VARIABLES THE ESTIMATION OF RELAT		
	INSUFFICIENT OBSERVATIONS, CORR. 65 1249		

TITLE WORD INDEX INF - INT

	THE SECOND PROGRAMMENT AND THE SECOND OF SPONDING		
INCINIMO DIVICIVII IMV AC	INTECER PROCRAMMING AND THE THEORY OF CROUPINC INTECER-VALUED RANDOM VARIABLES	JASA 69 AMS 67	506
		JRSSB59	134
LIPSCHITZ BEHAVIOR AND	INTECRABILITY OF CHARACTERISTIC FUNCTIONS	AMS 67	32
FAMILY ON FUNCTIONS INTRODUCED BY L. TACAKS ON THE	INTEGRABILITY, CONTINUITY AND DIFFERENTIABILITY OF A	AMS 63	1045
SUCCESSIVE CONDITIONAL EXPECTATIONS OF AN		AMS 62	B87
THE BIVARIATE NORMAL		BIOKA51	475
A NOTE ON THE EVALUATION OF THE MULTIVARIATE NORMAL ON BOUNDS FOR THE NORMAL		BIOKA53 BIOKA55	458
TWO EXPANSIONS FOR THE QUADRIVARIATE NORMAL		BIOKASS	
A NOTE ON THE QUADRIVARIATE NORMAL		BIOKA61	
ON THE HOMOGENEOUS BIRTH-AND-DEATH PROCESS AND ITS	INTEGRAL	BIOKA66	61
EQUALLY CORRELATED VARIATES AND THE MULTINORMAL		JRSSB58	
NON-ABSOLUTE CONVERCENCE OF CIL-PELAEZ' INVERSION	TAMBODAL	AMS 61	
PPROXIMATION FOR THE SYMMETRIC, QUADRIVARIATE NORMAL FOR THE INCOMPLETE GAMMA FUNCTIONS AND THE NORMAL		BIOKA56	206 139
	INTEGRAL PROBABILITY CONTENT OF REGIONS UNDER SPHER	AMS 61	171
	INTEGRAL AND CERTAIN PERCENTAGE POINTS OF A MULTIVARI	BIOKA55	258
NEW ASYMPTOTIC EXPANSION FOR THE NORMAL PROBABILITY		JRSSB62	177
	-INTECRAL DERIVATION OF THE NON-CENTRAL CHI-SQUARE		796
	INTEGRAL EQUATION IN ACE DEPENDENT BRANCHING INTEGRAL EQUATION OF RENEWAL THEORY	AMS 65 JRSSB63	432
	INTEGRAL EQUATIONS IN GEOMETRICAL PROBABILITY		365
	INTECRAL EXPRESSIONS FOR TAIL PROBABILITIES OF THE MU		167
		BIOKA65	119
		BIOKA54	177
TRANSITION FUNCTIONS OFFSET CIRCLE	INTECRAL KERNELS AND INVARIANT MEASURES FOR MARKOFF INTEGRAL OF THE BIVARIATE NORMAL DISTRIBUTION OVER AN		517 758
	INTEGRAL OF THE BIVARIATE NORMAL DISTRIBUTION OVER AN		177
	INTEGRAL OF THE CORRELATION COEFFICIENT	BIOKA54	
	INTEGRAL OF THE DISTRIBUTION OF RANGE	BIOKA52	
	INTECRAL OF THE GAMMA DISTRIBUTION FOR SMALL VALUES O		
	INTECRAL OF THE MULTIVARIATE T DISTRIBUTION INTECRAL OF THE NON-CENTRAL CHI-SQUARE DISTRIBUTION	BIOKA61	
REDUCTION OF THE MULTIVARIATE NORMAL		BIOKA67	293
	INTEGRAL TRANSFORMATION	BIOKA59	481
	INTEGRAL TRANSFORMS OF CHARACTERISTIC FUNCTIONS	AMS 68	
	INTEGRAL TRANSFORMS TO DETERMINE EXPANSIONS OF DISTRI INTEGRAL WHEN THE FIRST FOUR MOMENTS ARE GIVEN	BIOKA60	460
EXPANSIONS OF T DENSITIES AND RELATED COMPLETE		AMS 67	
A REDUCTION FORMULA FOR NORMAL MULTIVARIATE		BIOKA54	351
NUMERICAL EVALUATION OF CERTAIN MULTIVARIATE NORMAL		AMS 62	
BIBLIOGRAPHY ON THE MULTIVARIATE NORMAL	INTECRALS AND DERIVATIVES THEORY AND RELATED TOPICS	AMS 69 AMS 63	
DIDEIOGNATHI ON THE MODITYANIATE NONMAE	INTEGRALS OF BRANCHING PROCESSES	BIOKA67	
			792
ON FORMULAE FOR CONFIDENCE POINTS BASED ON		JRSSB63	
	INTEGRALS TO STOCHASTIC INTEGRALS INTEGRALS WITH APPLICATIONS TO RELIABILITY PROBLEMS	AMS 65 AMS 65	
EDCEMENT OF PRIORITY ON 'ON INTERCHANGING LIMITS AND			
TESTS	THERESE AND DIGHT OF ACTIVED OF THE		1407
	INTEGRATED RISK OF ASYMPTOTICALLY BAYES SEQUENTIAL	AMS 67	
	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING	AMS 67 TECH 67	1399 441
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS	AMS 67 TECH 67 JASA 60	1399 441 736
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACT	AMS 67 TECH 67 JASA 60 JASA 61	1399 441 736 BB9
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE ESTIMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE	AMS 67 TECH 67 JASA 60 JASA 61 JRSSB65 AMS 65	1399 441 736 BB9 332 1437
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE ESTIMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE INTENTITY ONE INTENTIONS CONSUMER DURABLE GOODS EXPENDITURES, W	AMS 67 TECH 67 JASA 60 JASA 61 JRSSB65 AMS 65 JASA 63	1399 441 736 BB9 332 1437 64B
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE ESTIMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND COMBININC INTRA AND	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTELLIGENCE AND ALLIED TOPICS INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE CONSUMER DURABLE GOODS EXPENDITURES, WINTER BLOCK ANALYSIS OF GROUP DIVISIBLE DESIGNS	AMS 67 TECH 67 JASA 60 JASA 61 JRSSB65 AMS 65 JASA 63 TECH 66	1399 441 736 BB9 332 1437 64B 1BB
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE ESTIMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND COMBININC INTRA AND ESTIMATORS	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE INTENTITY ONE INTENTIONS CONSUMER DURABLE GOODS EXPENDITURES, W	AMS 67 TECH 67 JASA 60 JASA 61 JRSSB65 AMS 65 JASA 63 TECH 66 AMS 64	1399 441 736 BB9 332 1437 64B 1BB
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE ESTIMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND COMBININC INTRA AND USE OF STIMATORS USE OF OF ESTIMATES FROM SIMILAR EXPERIMENTS, ALLOWING FOR PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE INTENTIONS CONSUMER DURABLE GOODS EXPENDITURES, W INTER BLOCK ANALYSIS OF GROUP DIVISIBLE DESIGNS INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER INTER-EXPERIMENT VARIATION INTER-INDUSTRY TABLES, CORR. 64 1299	AMS 67 TECH 67 JASA 60 JASA 61 JRSSB65 AMS 65 JASA 63 TECH 66 AMS 64 JASA 67 JASA 67	1399 441 736 BB9 332 1437 64B 1BB 1064 241 256
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE ESTIMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND COMBININC INTRA AND USE OF OF ESTIMATORS USE OF OF ESTIMATES FROM SIMILAR EXPERIMENTS, ALLOWING FOR PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF O25) A MATHEMATICAL MODEL FOR THE ESTIMATION OF	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE INTENTIONS CONSUMER DURABLE GOODS EXPENDITURES, WINTER BLOCK ANALYSIS OF GROUP DIVISIBLE DESIGNS INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER INTER-EXPERIMENT VARIATION THE COMBINATION INTER-INDUSTRY TABLES, CORR 64 1299 INTER-PLANT COMPETITION (CORRECTION TO REFERENCE 68 1)	AMS 67 TECH 67 JASA 60 JASA 61 JRSSB65 AMS 65 JASA 63 TECH 66 AMS 64 JASA 67 JASA 64 BIOCS67	1399 441 736 BB9 332 1437 64B 1BB 1064 241 256 1B9
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE ESTIMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND COMBININC INTRA AND ESTIMATORS USE OF ESTIMATES FROM SIMILAR EXPERIMENTS. ALLOWING FOR PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF 025) A MATHEMATICAL MODEL FOR THE ESTIMATION OF	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE INTENSITY ONE INTENSITY ONE INTER BLOCK ANALYSIS OF GROUP DIVISIBLE DESIGNS INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER INTER-EXPERIMENT VARIATION THE COMBINATION INTER-INDUSTRY TABLES, CORR. 64 1299 INTER-PLANT COMPETITION (CORRECTION TO REFERENCE 68 1 INTER-PLANT STORAGE IN CONTINUOUS MANUFACTURING	AMS 67 TECH 67 JASA 60 JASA 61 JRSSB65 AMS 65 JASA 63 TECH 66 AMS 64 JASA 67 JASA 64 BIOCS67 TECH 60	1399 441 736 BB9 332 1437 64B 1BB 1064 241 256 1B9 393
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE ESTIMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND COMBININC INTRA AND ESTIMATORS USE OF ESTIMATES FROM SIMILAR EXPERIMENTS, ALLOWING FOR PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF O25) A MATHEMATICAL MODEL FOR THE ESTIMATION OF THE DEMAND FOR FERTILIZER IN 1954, AN	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE INTENSITY ONE INTENTIONS CONSUMER DURABLE GOODS EXPENDITURES, W INTER BLOCK ANALYSIS OF GROUP DIVISIBLE DESIGNS INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER INTER-EXPERIMENT VARIATION THE COMBINATION INTER-INDUSTRY TABLES, CORR. 64 1299 INTER-PLANT COMPETITION (CORRECTION TO REFERENCE 68 1 INTER-PLANT STORAGE IN CONTINUOUS MANUFACTURING INTER-STATE STUDY	AMS 67 TECH 67 JASA 60 JASA 61 JRSSB65 AMS 65 JASA 63 TECH 66 AMS 64 JASA 67 JASA 64 BIOCS67 TECH 60 JASA 59	1399 441 736 BB9 332 1437 64B 1BB 1064 241 256 1B9 393 377
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE ESTIMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND COMBININC INTRA AND ESTIMATORS USE OF ESTIMATES FROM SIMILAR EXPERIMENTS. ALLOWING FOR PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF 025) A MATHEMATICAL MODEL FOR THE ESTIMATION OF	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE INTENSITY ONE INTENTIONS CONSUMER DURABLE GOODS EXPENDITURES, W INTER BLOCK ANALYSIS OF GROUP DIVISIBLE DESIGNS INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER INTER-EXPERIMENT VARIATION THE COMBINATION THE COMBINATION INTER-INDUSTRY TABLES, CORR. 64 1299 INTER-PLANT COMPETITION (CORRECTION TO REFERENCE 68 1 INTER-PLANT STORAGE IN CONTINUOUS MANUFACTURING INTER-STATE STUDY INTERACTION	AMS 67 TECH 67 JASA 60 JASA 61 JRSSB65 AMS 65 JASA 63 TECH 66 AMS 64 JASA 67 JASA 64 BIOCS67 TECH 60 BIOCS65	1399 441 736 BB9 332 1437 64B 1BB 1064 241 256 1B9 393 377 651
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE ESTIMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND COMBININC INTRA AND ESTIMATORS USE OF OF ESTIMATES FROM SIMILAR EXPERIMENTS, ALLOWING FOR PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF O25) A MATHEMATICAL MODEL FOR THE ESTIMATION OF THE DEMAND FOR FERTILIZER IN 1954, AN PAIRED COMPARISON MODELS WITH TESTS FOR COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OF LATIN SQUARES WITHIN A CERTAIN TYPE OF ROW-COLUMN	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE INTENSITY ONE INTERNITONS CONSUMER DURABLE GOODS EXPENDITURES, WINTER BLOCK ANALYSIS OF GROUP DIVISIBLE DESIGNS INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER INTER-EXPERIMENT VARIATION THE COMBINATION INTER-INDUSTRY TABLES, CORR. 64 1299 INTER-PLANT COMPETITION (CORRECTION TO REFERENCE 68 1 INTER-PLANT STORAGE IN CONTINUOUS MANUFACTURING INTERACTION INTERACTION VARIANCE INTERACTION VARIANCE INTERACTION VARIANCE	AMS 67 TECH 67 JASA 60 JASA 61 JRSSB65 AMS 65 JASA 63 TECH 66 AMS 64 JASA 67 JASA 64 BIOCS67 TECH 60 JASA 59 BIOCS65 BIOKA63	1399 441 736 BB9 332 1437 64B 1BB 1064 241 256 1B9 393 377 651 327 379
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE ESTIMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND COMBININC INTRA AND ESTIMATORS USE OF ESTIMATORS USE OF PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF THE DEMAND FOR FERTILIZER IN 1954, AN PAIRED COMPARISON MODELS WITH TESTS FOR COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OF LATIN SQUARES WITHIN A CERTAIN TYPE OF ROW-COLUMN BLEM OF GRIZZLE WITH A NOTATION ON THE PROBLEM OF NO	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE INTENSITY ONE INTENTIONS CONSUMER DURABLE GOODS EXPENDITURES, W INTER BLOCK ANALYSIS OF GROUP DIVISIBLE DESIGNS INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER INTER-EXPERIMENT VARIATION THE COMBINATION INTER-INDUSTRY TABLES, CORR. 64 1299 INTER-PLANT COMPETITION (CORRECTION TO REFERENCE 68 1 INTER-PLANT STORAGE IN CONTINUOUS MANUFACTURING INTERACTION INTERACTION INTERACTION INTERACTION INTERACTION (MUM LOGIT CHI-SQUARE ESTIMATE TO A PRO	AMS 67 TECH 67 JASA 60 JASA 61 JRSSE65 AMS 65 JASA 63 TECH 66 AMS 64 JASA 67 JASA 64 BIOCS67 TECH 60 BIOCS65 BIOKA63 TECH 59 BIOCS68	1399 441 736 8B9 332 1437 64B 1BB 1064 241 256 1B9 393 377 651 327 379 75
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE BETTMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND COMBININC INTRA AND ESTIMATORS USE OF FESTIMATES FROM SIMILAR EXPERIMENTS. ALLOWING FOR PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF OR THE DEMAND FOR FERTILIZER IN 1954, AN PAIRED COMPARISON MODELS WITH TESTS FOR COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OF LATIN SQUARES WITHIN A CERTAIN TYPE OF ROW-COLUMN BLEM OF GRIZZLE WITH A NOTATION ON THE PROBLEM OF NO	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE INTENSITY ONE INTENTIONS CONSUMER DURABLE GOODS EXPENDITURES, WINTER BLOCK ANALYSIS OF GROUP DIVISIBLE DESIGNS INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER INTER-EXPERIMENT VARIATION THE COMBINATION INTER-INDUSTRY TABLES, CORR. 64 1299 INTER-PLANT STORAGE IN CONTINUOUS MANUFACTURING INTER-STATE STUDY INTER-STATE STUDY INTERACTION INTERACTION VARIANCE INTERACTION ANALYSIS	AMS 67 TECH 67 JASA 60 JASA 61 JRSSB65 AMS 65 JASA 63 TECH 66 AMS 64 JASA 67 JASA 67 TECH 60 JASA 59 BIOCS65 BIOKA63 TECH 59 BIOCS68 JRSSB58	1399 441 736 BB9 332 1437 64B 1BB 1064 241 256 1B9 393 377 651 327 379 75 361
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE ESTIMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND COMBININC INTRA AND ESTIMATORS USE OF ESTIMATES FROM SIMILAR EXPERIMENTS, ALLOWING FOR PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF COSTON A MATHEMATICAL MODEL FOR THE ESTIMATION OF THE DEMAND FOR FERTILIZER IN 1954, AN PAIRED COMPARISON MODELS WITH TESTS FOR COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OF LATIN SQUARES WITHIN A CERTAIN TYPE OF ROW-COLUMN BLEM OF GRIZZLE WITH A NOTATION ON THE PROBLEM OF NO THE AN ADDENDUM THE 2-TO-THE-M-TIMES-3-TO-THE-M DESIGNS AND TWO-FACTOR	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE INTENSITY ONE INTENTIONS CONSUMER DURABLE GOODS EXPENDITURES, W INTER BLOCK ANALYSIS OF GROUP DIVISIBLE DESIGNS INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER INTER-EXPERIMENT VARIATION THE COMBINATION INTER-INDUSTRY TABLES, CORR. 64 1299 INTER-PLANT COMPETITION (CORRECTION TO REFERENCE 68 1 INTER-PLANT STORAGE IN CONTINUOUS MANUFACTURING INTERACTION INTERACTION INTERACTION VARIANCE INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS, INTERACTION ALIASING ORTHOGONAL MAIN-EFFECT	AMS 67 TECH 67 JASA 60 JASA 61 JRSSE65 AMS 65 JASA 63 TECH 66 AMS 64 JASA 67 JASA 64 BIOCS67 TECH 60 BIOCS65 BIOKA63 TECH 59 BIOCS68 JRSSE5B JRSSE5B JRSSE60 TECH 60	1399 441 736 8B9 332 1437 64B 1BB 1064 241 256 1B9 393 377 651 327 379 75 361 372 559
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE ESTIMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND COMBININC INTRA AND ESTIMATORS USE OF ESTIMATES FROM SIMILAR EXPERIMENTS. ALLOWING FOR PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF OR PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF THE DEMAND FOR FERTILIZER IN 1954, AN PAIRED COMPARISON MODELS WITH TESTS FOR COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OF LATIN SQUARES WITHIN A CERTAIN TYPE OF ROW-COLUMN BLEM OF GRIZZLE WITH A NOTATION ON THE PROBLEM OF NO THE AN ADDENDUM AN ADDENDUM THE AN ADDENDUM 2-TO-THE-N-TIMES-3-TO-THE-M DESIGNS AND TWO-FACTOR OF A STOCHASTIC MODEL FOR THE PREDATOR-PREY TYPE OF	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE INTENSITY ONE INTENTIONS CONSUMER DURABLE GOODS EXPENDITURES, W INTER BLOCK ANALYSIS OF GROUP DIVISIBLE DESIGNS INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER INTER-EXPERIMENT VARIATION THE COMBINATION INTER-INDUSTRY TABLES, CORR. 64 1299 INTER-PLANT STORAGE IN CONTINUOUS MANUFACTURING INTER-STATE STUDY INTER-STATE STUDY INTERACTION INTERACTION /MUM LOGIT CHI-SQUARE ESTIMATE TO A PRO INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS, INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS, INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS, INTERACTION ALIASING ORTHOGONAL MAIN-EFFECT	AMS 67 TECH 67 JASA 60 JASA 61 JRSSB65 AMS 65 JASA 63 TECH 66 AMS 64 JASA 67 JASA 67 JASA 69 BIOCS67 TECH 60 BIOCS65 BIOKA63 TECH 59 BIOCS65 JRSSB60 JRSSB60 JRSSB60 TECH 68 BIOKA60	1399 441 736 BB9 332 1437 64B 1BB 1064 241 256 1B9 393 377 651 327 379 75 361 372 559 219
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE ESTIMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND COMBININC INTRA AND ESTIMATORS USE OF ESTIMATES FROM SIMILAR EXPERIMENTS. ALLOWING FOR PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF OR PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF THE DEMAND FOR FERTILIZER IN 1954, AN PAIRED COMPARISON MODELS WITH TESTS FOR COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OF LATIN SQUARES WITHIN A CERTAIN TYPE OF ROW-COLUMN BLEM OF GRIZZLE WITH A NOTATION ON THE PROBLEM OF NO THE AN ADDENDUM AN ADDENDUM THE AN ADDENDUM 2-TO-THE-N-TIMES-3-TO-THE-M DESIGNS AND TWO-FACTOR OF A STOCHASTIC MODEL FOR THE PREDATOR-PREY TYPE OF	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE INTENSITY ONE INTENTIONS CONSUMER DURABLE GOODS EXPENDITURES, W INTER BLOCK ANALYSIS OF GROUP DIVISIBLE DESIGNS INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER INTER-EXPERIMENT VARIATION THE COMBINATION INTER-INDUSTRY TABLES, CORR. 64 1299 INTER-PLANT STORAGE IN CONTINUOUS MANUFACTURING INTER-STATE STUDY INTER-STATE STUDY INTERACTION INTERACTION /MUM LOGIT CHI-SQUARE ESTIMATE TO A PRO INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS, INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS, INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS, INTERACTION ALIASING ORTHOGONAL MAIN-EFFECT	AMS 67 TECH 67 JASA 60 JASA 61 JRSSB65 AMS 65 JASA 63 TECH 66 AMS 67 JASA 64 BIOCS67 TECH 60 JASA 59 BIOCS65 BIOCS65 BIOCS68 JRSSB5B JRSSB5B JRSSB5B JRSSB5B JRSSB60 TECH 68 BIOKA63	1399 441 736 BB9 332 1437 64B 1BB 1064 241 256 1B9 393 377 75 361 327 379 75 361 372 559 219
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE ESTIMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND COMBININC INTRA AND ESTIMATORS USE OF OF ESTIMATES FROM SIMILAR EXPERIMENTS, ALLOWING FOR PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF OC5) A MATHEMATICAL MODEL FOR THE ESTIMATION OF THE DEMAND FOR FERTILIZER IN 1954, AN PAIRED COMPARISON MODELS WITH TESTS FOR COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OF LATIN SQUARES WITHIN A CERTAIN TYPE OF ROW-COLUMN BLEM OF GRIZZLE WITH A NOTATION ON THE PROBLEM OF NO THE AN ADDENDUM THE AN ADDENDUM THE 2-TO-THE-N-TIMES-3-TO-THE-M DESIGNS AND TWO-FACTOR OF A STOCHASTIC MODEL FOR THE PREDATOR-PREY TYPE OF SIMPLE METHODS FOR ANALYZING THREE-FACTOR LAMST AND THE HYPOTHESES OF NO THREE FACTOR	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE INTENTIONS CONSUMER DURABLE GOODS EXPENDITURES, W INTER BLOCK ANALYSIS OF GROUP DIVISIBLE DESIGNS INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER INTER-EXPERIMENT VARIATION THE COMBINATION INTER-INDUSTRY TABLES, CORR. 64 1299 INTER-PLANT COMPETITION (CORRECTION TO REFERENCE 68 1 INTER-PLANT STORAGE IN CONTINUOUS MANUFACTURING INTERACTION VARIANCE INTERACTION / MUM LOGIT CHI-SQUARE ESTIMATE TO A PRO INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS, INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS, INTERACTION ALIASING ORTHOGONAL MAIN-EFFECT INTERACTION ALIASING ORTHOGONAL MAIN-EFFECT INTERACTION BETWEEN TWO SPECIES THE PROPERTIES INTERACTION IN CONTINGENCY TABLES	AMS 67 TECH 67 JASA 61 JASA 60 JASA 65 JASA 65 AMS 65 JASA 63 TECH 66 AMS 64 JASA 64 BIOCS67 TECH 60 JASA 59 BIOCS65 BIOKA63 TECH 68 BIOCS68 TECH 68 BIOCS68 TECH 68 BIOKA60 TECH 68	1399 441 736 BB9 332 1437 64B 1BB 1064 241 256 1B9 393 377 651 327 379 75 361 372 559 219 307
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE BETTMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND COMBININC INTRA AND ESTIMATORS USE OF OF ESTIMATES FROM SIMILAR EXPERIMENTS, ALLOWING FOR PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF OSS. THE DEMAND FOR FERTILIZER IN 1954, AN PAIRED COMPARISON MODELS WITH TESTS FOR COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OF LATIN SQUARES WITHIN A CERTAIN TYPE OF ROW-COLUMN BLEM OF GRIZZLE WITH A NOTATION ON THE PROBLEM OF NO THE AN ADDENDUM AN ADDENDUM AN ADDENDUM 2-TO-THE-N-TIMES-3-TO-THE-M DESIGNS AND TWO-FACTOR OF A STOCHASTIC MODEL FOR THE PREDATOR-PREY TYPE OF SIMPLE METHODS FOR ANALYZING THREE-FACTOR LAMST AND THE HYPOTHESES OF NO THREE FACTOR ANALYZIS OF VARIANCE OF DISPROPORTIONATE DATA WHEN	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE INTENTIONS CONSUMER DURABLE GOODS EXPENDITURES, W INTER BLOCK ANALYSIS OF GROUP DIVISIBLE DESIGNS INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER INTER-EXPERIMENT VARIATION THE COMBINATION INTER-INDUSTRY TABLES, CORR. 64 1299 INTER-PLANT COMPETITION (CORRECTION TO REFERENCE 68 1 INTER-PLANT STORAGE IN CONTINUOUS MANUFACTURING INTERACTION VARIANCE INTERACTION / MUM LOGIT CHI-SQUARE ESTIMATE TO A PRO INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS, INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS, INTERACTION ALIASING ORTHOGONAL MAIN-EFFECT INTERACTION ALIASING ORTHOGONAL MAIN-EFFECT INTERACTION BETWEEN TWO SPECIES THE PROPERTIES INTERACTION IN CONTINGENCY TABLES	AMS 67 TECH 67 JASA 60 JASA 61 JRSSE65 AMS 65 JASA 63 TECH 66 AMS 64 JJASA 67 JASA 64 BIOCS67 TECH 60 BIOCS65 BIOKA63 TECH 59 BIOCS68 BIOKA63 JRSSE68 JRSSE68 JRSSE68 BIOKA64 JASA 64 JASA 64 JASA 64 JASA 64 BIOCS65	1399 441 736 BB9 332 1437 64B 1BB 1064 241 256 1B9 393 377 651 327 379 651 327 379 219 319 207 115
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE ESTIMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND COMBININC INTRA AND ESTIMATORS USE OF OF ESTIMATES FROM SIMILAR EXPERIMENTS, ALLOWING FOR PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF OPEN A MATHEMATICAL MODEL FOR THE ESTIMATION OF THE DEMAND FOR FERTILIZER IN 1954, AN PAIRED COMPARISON MODELS WITH TESTS FOR COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OF LATIN SQUARES WITHIN A CERTAIN TYPE OF ROW-COLUMN BLEM OF GRIZZLE WITH A NOTATION ON THE PROBLEM OF NO THE AN ADDENDUM AN ADDENDUM 2-TO-THE-N-TIMES-3-TO-THE-M DESIGNS AND TWO-FACTOR OF A STOCKASTIC MODEL FOR THE PREDATOR-PREY TYPE OF SIMPLE METHODS FOR ANALYZING THREE-FACTOR LAMST AND THE HYPOTHESES OF NO THREE FACTOR ANALYSIS OF VARIANCE OF DISPROPORTIONATE DATA WHEN PROCESS THE ESTIMATION OF A FUNDAMENTAL ON THE HYPOTHESES OF 'NO	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE INTENSITY ONE CONSUMER DURABLE GOODS EXPENDITURES, WINTER BLOCK ANALYSIS OF GROUP DIVISIBLE DESIGNS INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER INTER-EXPERIMENT VARIATION THE COMBINATION INTER-INDUSTRY TABLES, CORR. 64 1299 INTER-PLANT COMPETITION (CORRECTION TO REFERENCE 68 1 INTER-PLANT STORAGE IN CONTINUOUS MANUFACTURING INTER-STATE STUDY INTERACTION VARIANCE INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS, INTERACTION BETWEEN TWO SPECIES THE PROPERTIES INTERACTION IN CONTINGENCY TABLES INTERACTION IN CONTINGENCY TABLES INTERACTION PARAMETER IN AN EMIGRATION—IMMIGRATION INTERACTION IN CONTINGENCY TABLES	AMS 67 TECH 67 JASA 61 JASA 60 JASA 66 JASSB65 AMS 65 JASA 67 JASA 64 BIOCS67 TECH 60 JASA 59 BIOCS65 BIOKA63 TECH 68 BIOKA63 TECH 68 BIOKA64 JASA 69 ECH 68 BIOKA60 TECH 68 BIOKA60 AMS 63 JRSSB6B AMS 63 BIOCS65 AMS 63	1399 441 736 BB9 332 1437 64B 1BB 1064 2256 1B9 393 377 651 327 75 361 372 559 219 207 115 238 567
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE ESTIMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND COMBINING INTRA AND ESTIMATORS USE OF OF ESTIMATES FROM SIMILAR EXPERIMENTS, ALLOWING FOR PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF O25) A MATHEMATICAL MODEL FOR THE ESTIMATION OF THE DEMAND FOR FERTILIZER IN 1954, AN PAIRED COMPARISON MODELS WITH TESTS FOR COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OF LATIN SQUARES WITHIN A CERTAIN TYPE OF ROW-COLUMN THE AN ADDENDUM THE AN ADDENDUM THE AN ADDENDUM THE AN ADDENDUM THE SIMPLE WITH A NOTATION ON THE PROBLEM OF NO SIMPLE METHODS FOR ANALYZING THREE-FACTOR ANALYZING THREE-FACTOR ANALYZING THREE-FACTOR ANALYZIS OF VARIANCE OF DISPROPORTIONATE DATA WHEN PROCESS THE ESTIMATION OF A FUNDAMENTAL ON THE HYPOTHESES OF 'NO HYPOTHESES OF 'NO HYPOTHESES OF 'NO	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE INTENSITY ONE INTENSITY ONE INTENSITY ONE INTER BLOCK ANALYSIS OF GROUP DIVISIBLE DESIGNS INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER INTER-EXPERIMENT VARIATION INTER-INDUSTRY TABLES, CORR. 64 1299 INTER-PLANT COMPETITION (CORRECTION TO REFERENCE 68 1 INTER-PLANT STORAGE IN CONTINUOUS MANUFACTURING INTERACTION INTERACTION INTERACTION INTERACTION INTERACTION INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS INTERACTION IN CONTINGENCY TABLES INTERACTION IN CONTINGENCY TABLES INTERACTION IN CONTINGENCY TABLES INTERACTION IN PRESENT INTERACTION PARAMETER IN AN EMIGRATION—IMMIGRATION INTERACTION IN MULTI-DIMENSIONAL CONTINGENCY TABLES INTERACTION IN MULTI-DIMENSIONAL CONTINGENCY TABLES INTERACTION IN MULTI-DIMENSIONAL CONTINGENCY TABLES	AMS 67 TECH 67 JASA 60 JASA 61 JRSSE65 AMS 65 JASA 63 TECH 66 AMS 64 JJASA 67 JASA 64 BIOCS67 TECH 60 JASA 59 BIOCS68 JRSSE5B JRSSE5B JRSSE5B JRSSE60 TECH 69 BIOKA60 TECH 69 BIOKA60 TECH 69 BIOKA60 TECH 69 BIOKA60	1399 441 736 BB9 332 1437 64B 1BB 1064 241 256 1B9 393 377 651 327 379 75 361 372 2559 219 319 207 115 238 567 107
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE ESTIMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND COMBININC INTRA AND ESTIMATORS USE OF ESTIMATES FROM SIMILAR EXPERIMENTS. ALLOWING FOR PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF OR AMATHEMATICAL MODEL FOR THE ESTIMATION OF THE DEMAND FOR FERTILIZER IN 1954, AN PAIRED COMPARISON MODELS WITH TESTS FOR COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OF LATIN SQUARES WITHIN A CERTAIN TYPE OF ROW-COLUMN BLEM OF GRIZZLE WITH A NOTATION ON THE PROBLEM OF NO THE AN ADDENDUM THE AN ADDENDUM THE AN ADDENDUM THE OF A STOCHASTIC MODEL FOR THE PREDATOR-PREY TYPE OF SIMPLE METHODS FOR ANALYZING THREE-FACTOR LAMST AND THE HYPOTHESES OF NO THREE FACTOR ANALYSIS OF VARIANCE OF DISPROPORTIONATE DATA WHEN PROCESS THE ESTIMATION OF A FUNDAMENTAL ON THE HYPOTHESES OF 'NO HYPOTHESES OF 'NO HYPOTHESES OF 'NO DESIGN FOR	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE INTENSITY ONE INTENSITY ONE INTENSITY ONE INTERSITY INTERSITY ONE INTERSITY INTERSITY ONE INTERSITY ONE INTERSITY ONE INTERSITY ONE INTERSITY INTERSITY ONE INTERSITY INTERSITY ONE INTERSITY	AMS 67 TECH 67 JASA 60 JASA 61 JRSSB65 AMS 65 JASA 63 TECH 66 AMS 64 JIASA 67 JASA 67 JASA 69 BIOCS65 BIOKA63 TECH 59 BIOCS65 BIOKA63 JRSSB60	1399 441 736 BB9 332 1437 64B 1BB 1064 241 256 1B9 393 377 651 327 379 361 372 559 219 319 207 115 238 567 107 389
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE ESTIMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND COMBININC INTRA AND ESTIMATORS USE OF OF ESTIMATES FROM SIMILAR EXPERIMENTS, ALLOWING FOR PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF OPEN A MATHEMATICAL MODEL FOR THE ESTIMATION OF THE DEMAND FOR FERTILIZER IN 1954, AN PAIRED COMPARISON MODELS WITH TESTS FOR COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OF LATIN SQUARES WITHIN A CERTAIN TYPE OF ROW-COLUMN BLEM OF GRIZZLE WITH A NOTATION ON THE PROBLEM OF NO THE AN ADDENDUM 2-TO-THE-N-TIMES-3-TO-THE-M DESIGNS AND TWO-FACTOR OF A STOCKASTIC MODEL FOR THE PREDATOR-PREY TYPE OF SIMPLE METHODS FOR ANALYZING THREE-FACTOR ANALYSIS OF VARIANCE OF DISPROPORTIONATE DATA WHEN PROCESS THE ESTIMATION OF A FUNDAMENTAL ON THE HYPOTHESES OF 'NO HYPOTHESES OF 'NO DESIGN FOR ON PLACKETT'S TEST FOR CONTINGENCY TABLE	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE INTENSITY ONE INTENSITY ONE INTENSITY ONE INTERSITY INTERSITY ONE INTERSITY INTERSITY ONE INTERSITY ONE INTERSITY ONE INTERSITY ONE INTERSITY INTERSITY ONE INTERSITY INTERSITY ONE INTERSITY	AMS 67 TECH 67 JASA 61 JASA 60 JASA 66 JASSB65 AMS 65 JASA 63 TECH 66 AMS 64 JASA 64 BIOCS67 TECH 60 JASA 59 BIOCS65 BIOKA63 TECH 68 BIOKA60 TECH 68 BIOKA60 JASA 69 BIOCS65 AMS 63 BIOCS65 AMS 63 BIOCS65 AMS 63 BIOCS66	1399 441 736 BB9 332 1437 64B 1BB 1064 2256 1B9 393 377 651 327 75 361 372 559 219 207 115 238 567 107 389 179
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE ESTIMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND COMBINING INTRA AND ESTIMATORS USE OF FESTIMATES FROM SIMILAR EXPERIMENTS, ALLOWING FOR PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF OR A MATHEMATICAL MODEL FOR THE ESTIMATION OF THE DEMAND FOR FERTILIZER IN 1954, AN PAIRED COMPARISON MODELS WITH TESTS FOR COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OF LATIN SQUARES WITHIN A CERTAIN TYPE OF ROW-COLUMN BLEM OF GRIZZLE WITH A NOTATION ON THE PROBLEM OF NO THE AN ADDENDUM THE 2-TO-THE-N-TIMES-3-TO-THE-M DESIGNS AND TWO-FACTOR SIMPLE METHODS FOR ANALYZING THREE-FACTOR LAMIST AND THE HYPOTHESES OF NO THREE FACTOR ANALYSIS OF VARIANCE OF DISPROPORTIONATE DATA WHEN PROCESS THE ESTIMATION OF A FUNDAMENTAL ON THE HYPOTHESES OF 'NO DESIGN FOR ON PLACKETT'S TEST FOR CONTINGENCY TABLE OF KNOX'S APPROACH TO THE DETECTION OF SPACE-TIME EFFECT PLANS PERMITTING ESTIMATION OF ALL TWO-FACTOR	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENLIS OF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE INTENSITY ONE CONSUMER DURABLE GOODS EXPENDITURES, WINTER BLOCK ANALYSIS OF GROUP DIVISIBLE DESIGNS INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER INTER-EXPERIMENT VARIATION THE COMBINATION THE COMBINATION INTER-PLANT COMPETITION (CORRECTION TO REFERENCE 68 1 INTER-PLANT STORAGE IN CONTINUOUS MANUFACTURING INTER-STATE STUDY INTERACTION VARIANCE INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS INTERACTION IN CONTINGENCY TABLES INTERACTION IN MULTI-DIMENSIONAL CONTINGENCY TABLES INTERACTION IN MULTI-DIMENSIONAL CONTINGENCY TABLES INTERACTIONS INTERACTIONS DISEASE CLUSTERING. A GENERALIZATION INTERACTIONS INTERACTIONS FOR THE PROPERTY OF THE 2—TO—THE—N TIMES 3—TO—THE—N FACT	AMS 67 TECH 67 JASA 60 JASA 61 JRSSE65 AMS 65 JASA 63 TECH 66 AMS 64 JICCH 67 JASA 64 BIOCS67 TECH 69 BIOCS65 BIOKA63 TECH 59 BIOCS68 BIOKA63 JRSSE5B JRSSE60 TECH 69 JASA 64 JASA 65 BIOCS68 TECH 68 TECH 68	1399 441 736 BB9 332 1437 64B 1BB 1064 241 256 1B9 393 77 651 327 379 651 327 379 115 238 567 107 389 179 107 180 141 180 180
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE ESTIMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND COMBINING INTRA AND ESTIMATORS USE OF OF ESTIMATES FROM SIMILAR EXPERIMENTS. ALLOWING FOR PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF ORE OF ESTIMATED OF THE ESTIMATION OF ORE OF AMATHEMATICAL MODEL FOR THE ESTIMATION OF ORE OF AMATHEMATICAL MODEL FOR THE ESTIMATION OF ORE OF LATIN SQUARES WITHIN A CERTAIN TYPE OF ROW-COLUMN BLEM OF GRIZZLE WITH A NOTATION ON THE PROBLEM OF NO THE AN ADDENDUM THE 2-TO-THE-M-TIMES-3-TO-THE-M DESIGNS AND TWO-FACTOR LAMST AND THE HYPOTHESES OF NO THREE FACTOR ANALYSIS OF VARIANCE OF DISPROPORTIONATE DATA WHEN PROCESS THE ESTIMATION OF A FUNDAMENTAL ON THE HYPOTHESES OF 'NO HYPOTHESES OF 'NO DESIGN FOR ON PLACKETT'S TEST FOR CONTINGENCY TABLE OF KNOX'S APPROACH TO THE DETECTION OF SPACE-TIME EFFECT PLANS PERMITTING ESTIMATION OF ALL TWO-FACTOR EST. THE SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITY SOF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE INTENSITY ONE CONSUMER DURABLE GOODS EXPENDITURES, WINTER BLOCK ANALYSIS OF GROUP DIVISIBLE DESIGNS INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER INTER-EXPERIMENT VARIATION THE COMBINATION INTER-INDUSTRY TABLES, CORR. 64 1299 INTER-PLANT COMPETITION (CORRECTION TO REFERENCE 68 1 INTER-PLANT STORAGE IN CONTINUOUS MANUFACTURING INTER-STATE STUDY INTERACTION VARIANCE INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS, INTERACTION IN CONTINGENCY TABLES INTERACTION IN CONTINGENCY TABLES INTERACTION IN CONTINGENCY TABLES INTERACTION IN REMEDE THE PROPERTIES INTERACTION IN CONTINGENCY TABLES INTERACTION IN CONTINGENCY TABLES INTERACTION IN MULTI-DIMENSIONAL CONTINGENCY TABLES INTERACTION IN MULTI-DIMENSIONAL CONTINGENCY TABLES INTERACTION IN MULTI-DIMENSIONAL CONTINGENCY TABLES INTERACTIONS DISEASE CLUSTERING, A GENERALIZATION INTERACTIONS FOR THE 2-TO-THE-N TIMES 3-TO-THE-N FACT INTERACTIONS FOR THE 2-TO-THE-N TIMES 3-TO-THE-N FACT	AMS 67 TECH 67 JASA 61 JASS 865 AMS 65 AMS 65 AMS 66 AMS 66 AMS 66 JASA 64 BIOCS67 TECH 66 JASA 59 BIOCS65 BIOKA65 TECH 59 BIOCS68 JRSSB5B JRSSB5B JRSSB5B JRSSB5B JRSSB5B JRSSB5B JRSSB5B JRSSB63 BIOCS65 TECH 68 BIOKA60 JASA 69 BIOCS65 TECH 68 BIOCS68	1399 441 736 BB9 332 1437 64B 1BB 1064 2256 1B9 393 377 651 327 379 75 361 372 559 219 207 115 238 567 107 389 179 541 NO.4
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE ESTIMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND COMBINING INTRA AND ESTIMATORS USE OF PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF O25) A MATHEMATICAL MODEL FOR THE ESTIMATION OF A MATHEMATICAL MODEL FOR THE ESTIMATION OF COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH TESTS FOR COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OF LATIN SQUARES WITHIN A CERTAIN TYPE OF ROW-COLUMN THE AN ADDENDUM THE AN ADDENDUM THE AN ADDENDUM THE SIMPLE METHODS FOR ANALYZING THREE-FACTOR ON THE HYPOTHESES OF 'NO DESIGN FOR ON PLACKETT'S TEST FOR CONTINGENCY TABLE OF KNOX'S APPROACH TO THE DETECTION OF SPACE-TIME EFFECT PLANS PERMITTING ESTIMATION OF ALL TWO-FACTOR ES. THE SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND A NOTE ON	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE INTENSITY ONE INTENSITY ONE INTENSITY ONE INTERNITONS CONSUMER DURABLE GOODS EXPENDITURES, WINTER BLOCK ANALYSIS OF GROUP DIVISIBLE DESIGNS INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER INTER-EXPERIMENT VARIATION THE COMBINATION INTER-INDUSTRY TABLES, CORR. 64 1299 INTER-PLANT COMPETITION (CORRECTION TO REFERENCE 68 1 INTER-PLANT STORAGE IN CONTINUOUS MANUFACTURING INTERACTION INTERACTION INTERACTION INTERACTION INTERACTION /MUM LOGIT CHI-SQUARE ESTIMATE TO A PRO INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS, INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS, INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS, INTERACTION BETWEEN TWO SPECIES INTERACTION IN CONTINGENCY TABLES INTERACTION IN CONTINGENCY TABLES INTERACTION IN CONTINGENCY TABLES INTERACTION' IN CONTINGENCY TABLES INTERACTION' IN MULTI-DIMENSIONAL CONTINGENCY TABLES INTERACTION' IN MULTI-DIMENSIONAL CONTINGENCY TABLES INTERACTIONS IN A 2 TO THE POWER N FAGTORIAL EXPERIME INTERACTIONS IN A 2 TO THE POWER N FAGTORIAL EXPERIME INTERACTIONS IN CONTINGENCY TABLES	AMS 67 TECH 67 JASA 61 JASS 65 JASA 63 JRSSB65 AMS 65 JASA 63 TECH 66 AMS 67 JASA 64 BIOCS67 TECH 60 JASA 59 BIOCS65 BIOKA63 JRSSB5B JRSSB60 TECH 68 BIOKA60 JASA 64 JASA 64 JASA 64 JASA 64 JASA 63 BIOCS65 AMS 63 BIOCS65 AMS 63 BIOCS65 TECH 68 TECH 69 BIOCS67 JRSSB62	1399 441 7366 BB9 332 1437 664B 1BB 1064 2566 1B9 75 361 327 75 361 327 75 361 327 75 361 327 75 361 327 75 361 327 75 361 327 75 361 327 75 361 327 75 361 327 75 361 327 75 361 327 75 361 327 75 361 327 75 361 327 75 361 327 75 361 327 75 361 327 75 361 327 372 559 219 319 3207 115 5238 377 165 567 107 389 541 NO . 4 571 162
BIBLIOCRAPHY ON SIMULATION, GAMING, ARTIFICIAL ERISTICS IN TWO DIFFERENT POPULATIONS ON COMPARING ON THE ESTIMATION OF THE LIMIT THEOREMS FOR QUEUES WITH TRAFFIC ITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND COMBINING INTRA AND ESTIMATORS USE OF PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF THE DEMAND FOR FERTILIZER IN 1954, AN PAIRED COMPARISON MODELS WITH TESTS FOR COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH OF LATIN SQUARES WITHIN A CERTAIN TYPE OF ROW-COLUMN HELD OF A STOCHASTIC MODEL FOR THE PROBLEM OF NO FACTOR OF A STOCHASTIC MODEL FOR THE PREDATOR-PREY TYPE OF SIMPLE METHODS FOR ANALYZING THREE-FACTOR LAMST AND THE HYPOTHESES OF NO THREE FACTOR ANALYSIS OF VARIANCE OF DISPROPORTIONATE DATA WHEN PROCESS THE ESTIMATION OF A FUNDAMENTAL ON THE HYPOTHESES OF 'NO DESIGN FOR ON PLACKETT'S TEST FOR CONTINGENCY TABLE OF KNOX'S APPROACH TO THE DETECTION OF SPACE-TIME EFFECT PLANS PERMITTING ESTIMATION OF ALL TWO-FACTOR S. THE SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND A NOTE ON ASSIFIED DATA, INDEPENDENCE, QUASI-INDEPENDENCE, AND	INTEGRATION TECHNIQUES TO STATISTICAL TOLERANCING INTELLIGENCE AND ALLIED TOPICS INTENSITY SOF ASSOCIATION BETWEEN TWO BINARY CHARACT INTENSITY FUNCTION OF A STATIONARY POINT PROCESS INTENSITY ONE INTENSITY ONE CONSUMER DURABLE GOODS EXPENDITURES, WINTER BLOCK ANALYSIS OF GROUP DIVISIBLE DESIGNS INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER INTER-EXPERIMENT VARIATION THE COMBINATION INTER-INDUSTRY TABLES, CORR. 64 1299 INTER-PLANT COMPETITION (CORRECTION TO REFERENCE 68 1 INTER-PLANT STORAGE IN CONTINUOUS MANUFACTURING INTER-STATE STUDY INTERACTION VARIANCE INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS, INTERACTION IN CONTINGENCY TABLES INTERACTION IN CONTINGENCY TABLES INTERACTION IN CONTINGENCY TABLES INTERACTION IN REMEDE THE PROPERTIES INTERACTION IN CONTINGENCY TABLES INTERACTION IN CONTINGENCY TABLES INTERACTION IN MULTI-DIMENSIONAL CONTINGENCY TABLES INTERACTION IN MULTI-DIMENSIONAL CONTINGENCY TABLES INTERACTION IN MULTI-DIMENSIONAL CONTINGENCY TABLES INTERACTIONS DISEASE CLUSTERING, A GENERALIZATION INTERACTIONS FOR THE 2-TO-THE-N TIMES 3-TO-THE-N FACT INTERACTIONS FOR THE 2-TO-THE-N TIMES 3-TO-THE-N FACT	AMS 67 TECH 67 JASA 60 JASA 61 JRSSE65 AMS 65 JASA 63 TECH 66 AMS 64 JASA 67 JASA 64 BIOCS67 TECH 69 BIOCS65 BIOKA63 TECH 59 BIOCS68 BIOKA63 TECH 59 BIOCS68 BIOKA63 TECH 59 BIOCS68 BIOKA63 TECH 69 BIOCS65 AMS 63 BIOCS66 TECH 68 JRSSE60 TECH 68 JRSSE60 TECH 68 TECH 69 BIOCS67 JRSSE63	1399 441 736 BB9 332 1437 64B 1BB 1064 241 256 1B9 393 377 651 327 379 75 361 372 2559 219 319 207 115 238 567 107 389 179 541 NO.4 571 162 1091

INT - INT TITLE WORD INDEX

```
A CLASS OF CONDITIONALLY DISTRIBUTION-FREE TESTS FOR INTERACTIONS IN FACTORIAL EXPERIMENTS
                                                                                                        ON AMS 69 658
                                                     INTERACTIONS IN MULTI-FACTOR CONTINCENCY TABLES
                                                                                                            JRSSB62 251
                                                     INTERACTIONS IN MULTIDIMENSIONAL CONTINGENCY TABLES
                                                                                                             AMS 64 632
                                  MODELS FOR THE NON-INTERACTIVE JOINT ACTION OF A MIXTURE OF STIMULI IN
                                                                                                            BIOKA66
                                                                                                                      49
S FOR THE QUEUEING SYSTEM WITH ONE SERVER, WHILE THE INTERARRIVAL AND SERVING DISTRIBUTIONS ARE DETERMINIS JRSSB63
                                                                                                                     477
ESS OF THE QUEUEING SYSTEM WITH ONE SERVER AND WHICH INTERARRIVAL AND SERVING DISTRIBUTIONS ARE EXPONENTIA JRSSB59
                                                                                                                     375
TURE PROCESS OF THE QUEUE WITH ONE SERVER, WHILE THE INTERARRIVAL AND SERVING DISTRIBUTIONS ARE EXPONENTIA JRSSB66
A METHOD OF ESTIMATING THE INTERCENSAL POPULATION OF COUNTIES

JASA 56
                                                                                                                     336
                                                                                                                     587
  EVALUATION OF CENSUS SURVIVAL RATES IN ESTIMATING INTERCENSAL STATE NET MIGRATION
                                                                                                            JASA 62
                                                                                                                     841
                 ACKNOWLEDGEMENT OF PRIORITY ON 'ON INTERCHANGING LIMITS AND INTEGRALS', 60 74
ON QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR UNBALANCED DESIGNS
                                                                                                             AMS 66 1407
                                                                                                            JRSSB61 493
                   LOWER BOUND FORMULAS FOR THE MEAN INTERCORRELATION COEFFICIENT
                                                                                                            JASA 59
                                                                                                                    275
TY OF 'EXPLICIT CAUSAL CHAINS' AGAINST THE CLASS OF 'INTERDEPENDENT' MODELS /N THE STATISTICAL TESTABILI JASA 65 10B0
   MINIMIZE MODEL INADEQUACIES. CUBOIDAL REGIONS OF INTEREST
                                                                                              DESIGNS WHICH BIOKA65
                                                                                                                     111
MPLING UNITS TO STRATA WHEN THERE ARE R RESPONSES OF INTEREST
                                                                                  OPTIMUM ALLOCATION OF SA JASA 65
                                                                                                                     225
                               MATRIX INVERSION, ITS INTEREST AND APPLICATION IN ANALYSIS OF DATA
                                                                                                            JASA 59
                                                                                                                     755
                   TAXPAYER COMPLIANCE IN REPORTING INTEREST INCOME UNDER THE WISCONSIN STATE INDIVIDUAL
                                                                                                            JASA 63
                                                                                                                     487
          DISCRETE DYNAMIC PROGRAMMING WITH A SMALL INTEREST RATE
                                                                                                             AMS 69
                                                                                                                     366
         SOME CONTRIBUTIONS TO THE THEORY OF MACHINE INTERFERENCE
                                                                                                            BTOKA63
                                                                                                                     1.35
                                          ON MACHINE INTERFERENCE
                                                                                                            JRSSB56
                                                                                                                     280
                         ON SOME PROBLEMS OF MACHINE INTERFERENCE
                                                                                                            JRSSB59
                                                                                                                     106
                                        A PROBLEM OF INTERFERENCE BETWEEN TWO QUEUES
                                                                                                            BIOKA53
                                                                                                                      58
                                                     INTERFERENCE IN THE MANUFACTURE OF NUCLEPORE FILTERS
                                                                                                            TECH 67
                                                                                                                     319
  QUEUEING SYSTEMS, A CENERALIZATION OF THE MACHINE INTERFERENCE MODEL
                                                                                                     CLOSED JRSSB61
                                                                                                                     385
                     NORMAL APPROXIMATION TO MACHINE INTERFERENCE WITH MANY REPAIR MEN
                                                                                                            JRSSB57
                                                                                                                     334
           USE OF MEAN DEVIATION IN THE ANALYSIS OF INTERLABORATORY TESTS
                                                                                                            TECH 67
                                                                                                                     149
MPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE SPECIFICITY
                                                                                            TWO-SAMPLE CO AMS 62
                                                                                                                     432
   TESTING A MARKOV HYPOTHESIS WITH INDEPENDENCE OF INTERMEDIATE STATES AND RESTRICTED ORDER
                                                                                                            BIOKA67
                                                                                                                     605
                               CRAPHICAL METHODS FOR INTERNAL COMPARISONS IN MULTIRESPONSE EXPERIMENTS
                                                                                                             AMS 64
                                                                                                                     613
IN THE ESTIMATION OF NET MIGRATION IN THE STUDIES OF INTERNAL MIGRATION
                                                                                                   ERRORS
                                                                                                            JASA 69 NO.4
                                                     INTERNAL MIGRATION STATISTICS FOR THE UNITED STATES
                                                                                                            JASA 60 664
                                   THE EFFICIENCY OF INTERNAL REGRESSION FOR THE FITTING OF THE EXPONENTIA BIOKA59 293
L RECRESSION
                                    A NOTE ON WILKS' INTERNAL SCATTER
                                                                                                             AMS 65 130B
                                  PRACTICAL VALUE OF INTERNATIONAL EDUCATIONAL STATISTICS
                                                                                                            JASA 56 605
S, CORR. 64 1299
                                     PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF INTER-INDUSTRY TABLE JASA 64
                                                                                                                     256
 COUNTRIES
                                     THE ACCURACY OF INTERNATIONAL TRADE DATA, THE CASE OF SOUTHEAST ASIAN JASA 69 452
                                      REPLICATED, OR INTERPENETRATING, SAMPLES OF UNEQUAL SIZES
                                                                                                             AMS 67 1142
                         LAGRANGIAN COEFFICIENTS FOR INTERPOLATION BETWEEN TABLED PERCENTAGE POINTS
                                                                                                            BIOKA6B
DISCRETE GROUPS
                                                      INTERPOLATION OF HOMOGENEOUS RANDOM FIELDS ON
                                                                                                             AMS 69
                                                 THE INTERPOLATION OF TIME SERIES BY RELATED SERIES
                                                                                                            JASA 62 729
NORMAL RANGE
                                                      INTERPOLATIONS AND APPROXIMATIONS RELATED TO THE
                                                                                                            BIOKA55
ES QUANTITATIFS ET R/ DISTRIBUTIONS DE FREQUENCES, INTERPRETATION DU DETERMINISME GENETIQUE DES CARACTER BIOCS6B
                                                                                                                     277
                                              ON THE INTERPRETATION OF AGE DISTRIBUTIONS
                                                                                                            JASA 67
         THE FEMALE LABOR FORCE, A CASE STUDY IN THE INTERPRETATION OF HISTORICAL STATISTICS
                                                                                                            JASA 60
EXPERIMENTS
                                                  THE INTERPRETATION OF INTERACTIONS IN FACTORIAL
                                                                                                            BIOKA52
                                                 THE INTERPRETATION OF NEGATIVE COMPONENTS OF VARIANCE
                                                                                                            BIOKA54
                                                                                                                     544
 DISCUSSION)
                                            BAYESIAN INTERPRETATION OF STANDARD INFERENCE STATEMENTS (WITH JRSSB65
                                                                                                                     169
THE LATIN SQUARE
                                                 THE INTERPRETATION OF THE EFFECTS OF NON-ADDITIVITY IN
                                                                                                            BIOKA58
                                                                                                                      69
 AND KRUSKAL'S TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION OF THE LATTER /ARITY BETWEEN GOODMAN JASA 62
                                                                                                                     804
                                        ANALYSIS AND INTERPRETATION OF THE VARIETY CROSS DIALLEL AND
RELATED POPULATIONS
                                                                                                            BIOCS66
                                                                                                                     439
       A CLASSIFICATION OF FALLACIOUS ARCUMENTS AND INTERPRETATIONS
                                                                                                            TECH 62
                                                                                                                     125
CORR. 58 1030
                                       PROBABILISTIC INTERPRETATIONS FOR THE MEAN SQUARE CONTINGENCY,
                                                                                                            JASA 58 102
                       USE OF HALF-NORMAL PLOTS IN INTERPRETING FACTORIAL TWO LEVEL EXPERIMENTS
                                                                                                            TECH 59
                                                                                                                     311
                   DESIGN OF AN OPTIMAL SEQUENCE OF INTERRELATED SAMPLING PLANS
                                                                                                            JASA 64
                                                                                                                      96
DISTRIBUTIONS
                                                SOME INTERRELATIONS AMONC COMPOUND AND CENERALIZED
                                                                                                            BIOKA57 265
                                                    INTERRELATIONS AMONG GENERALIZED DISTRIBUTIONS AND
THEIR COMPONENTS
                                                                                                            BIOCS66
                                                                                                                      44
ISTICS OF SAMPLES FROM ANY CONTINUOUS POPULATION
                                                     INTERRELATIONS BETWEEN CERTAIN LINEAR SYSTEMATIC STAT BIOKA51
                                                                                                                     377
                                A WAITING LINE WITH INTERRUPTED SERVICE, INCLUDING PRIORITIES
                                                                                                            JRSSB62
                                                                                                                     73
                           QUEUES SUBJECT TO SERVICE INTERRUPTION
                                                                                                             AMS 62 1314
A THEORETICAL ANALYSIS OF DELAYS AT AN UNCONTROLLED INTERSECTION
                                                                                                            BIOKA62 163
                     THE CAPACITY OF AN UNCONTROLLED INTERSECTION
                                                                                                            BIOKA67
                                                                                                                     657
                                 INFERENCE ABOUT THE INTERSECTION IN TWO-PHASE REGRESSION
                                                                                                            BIOKA69 NO.3
                               ON THE PARAMETERS AND INTERSECTION OF BLOCKS OF BALANCED INCOMPLETE BLOCK
                                                                                                             AMS 62 1200
 LIMIT THEOREM FOR THE NUMBER OF EDGES IN THE RANDOM INTERSECTION OF TWO CRAPHS (CORR. 69 1510) /CENTRAL
                                                                                                            AMS 69 144
                         ESTIMATES FOR THE POINTS OF INTERSECTION OF TWO POLYNOMIAL RECRESSIONS
                                                                                                            JASA 64 214
                                    DELAY AT TRAFFIC INTERSECTIONS
                                                                                                            JRSSB66 202
                                                     INTERSECTIONS OF RANDOM CHORDS OF A CIRCLE
                                                                                                            BIOKA64 373
               ON THE NUMBER OF RENEWALS IN A RANDOM INTERVAL
                                                                                                            BIOKA60 449
AND LOWER PROBABILITIES GENERATED BY A RANDOM CLOSED INTERVAL
                                                                                                     UPPER
                                                                                                             AMS 68
                                                                                                                     957
       ARC LENCTH OF A GAUSSIAN PROCESS ON A FINITE INTERVAL
                                                                                                   EXPECTED JRSSB56
                                                                                                                     257
       OF TOTAL SERVICE TIME FOR A FIXED OBSERVATION INTERVAL
                                                                                               DISTRIBUTION JASA 62
                                                                                                                     376
    IN THE ESTIMATION OF THE MEAN BY SHRINKAGE TO AN INTERVAL
                                                                                         ACCURACY BORROWING JASA 68
                                                                                                                     953
     EQUIVALENCE CLASSES OF CAUSSIAN PROCESSES ON AN INTERVAL
                                                                         A CLARIFICATION CONCERNING CERTAIN AMS 68 1078
                                                                    A MOVING AVERAGE REPRESENTATION FOR RAN BIOKA65 295
DOM VARIABLES COVARIANCE STATIONARY ON A FINITE TIME INTERVAL
                                                     INTERVAL ANALYSIS AND THE LOCARITHMIC TRANSFORMATION
                                                                                                            JRSSB58
                                                                                                                     187
DISTRIBUTION, WITH ESPECIAL REFERENCE TO THE UNEQUAL INTERVAL CASE
                                                                     /CLASS MARKS OF A CROUPED FREQUENCY
                                                                                                            TECH 68
FOR THE BEHRENS-FISHER PROBLEM
                                        A CONFIDENCE INTERVAL COMPARISON OF TWO TEST PROCEDURES PROPOSED
                                                                                                            JASA 66
E APPLIED TO THE SIMPLE QUEUE WITH ARBITRARY ARRIVAL INTERVAL DISTRIBUTION /DIFFERENCE EQUATION TECHNIQU JRSSB58 168
                   CONFIDENCE PROPERTIES OF BAYESIAN INTERVAL ESTIMATES
                                                                                                            JRSSB68 535
                                   SOME PROBLEMS IN INTERVAL ESTIMATION (WITH DISCUSSION)
                                                                                                            JRSSB54 175
                                                      INTERVAL ESTIMATION FOR LINEAR COMBINATIONS OF MEANS JASA 64 1141
POPULATIONS
                                          SEQUENTIAL INTERVAL ESTIMATION FOR THE MEANS OF NORMAL
                                                                                                             AMS 69 509
                                                     INTERVAL ESTIMATION FOR THE PARAMETER OF A BINOMIAL
DISTRIBUTION
                                                                                                            BIOKA58 275
                                                      INTERVAL ESTIMATION IN LINEAR REGRESSION WHEN BOTH
                                                                                                            JASA 64 1112
VARIABLES ARE SUBJECT TO ERROR
                                          CONFIDENCE INTERVAL ESTIMATION IN NON-LINEAR REGRESSION
                                                                                                            JRSSB63 330
RESPONSES ARE CORRELATED
                                            NOTE ON INTERVAL ESTIMATION IN NON-LINEAR REGRESSION WHEN
                                                                                                            JRSSB64 267
```

TITLE WORD INDEX INT - INT

```
INVARIANT INTERVAL ESTIMATION OF A LOCATION PARAMETER
                                                                                                                AMS 68 193
                                          LINEAR-LOSS INTERVAL ESTIMATION OF LOCATION AND SCALE PARAMETERS BIOKA68 141
FUNCTIONS
                                                       INTERVAL ESTIMATION OF NON-LINEAR PARAMETRIC
                                                                                                               JASA 63
                                                                                                                        611
                                                       INTERVAL ESTIMATION OF NON-LINEAR PARAMETRIC
                                                                                                               JASA 64
                                                                                                                        168
FUNCTIONS. II
                                                       INTERVAL ESTIMATION OF NON-LINEAR PARAMETRIC
                                                                                                               JASA 65 1191
FUNCTIONS, 111
POPULATIONS WITH KNOWN VARIANCES
                                                       INTERVAL ESTIMATION OF THE LARCEST MEAN OF K NORMAL
                                                                                                               JASA 69
                                                                                                                        296
RMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED-WIDTH INTERVAL ESTIMATION OF THE MEAN
                                                                                                    THE PERFO AMS 66
                                                                                                                         36
 A BIVARIATE NORMAL DISTRIBUTION IN THE CASE OF A/ INTERVAL ESTIMATION OF THE SLOPE OF THE MAJOR AXIS OF BIOCS68
                                                                                                                        679
WEIBULL AND EXTREME-VALUE DISTRIBUTIONS POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TWO-PARAMETER TECH 68
THE SCALE PARAMETER OF A WEIBULL POPUL/ POINT AND INTERVAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR TECH 65
                                                                                                                        231
                                                                                                                        405
                        CRITERIA FOR BEST SUBSTITUTE INTERVAL ESTIMATORS, WITH AN APPLICATION TO THE NORMA JASA 64
L DISTRIBUTION
                                                                                                                AMS 62
                                             A RANDOM INTERVAL FILLING PROBLEM
                                                                                                                        702
           A CRAPHICAL VERSION OF TUKEY'S CONFIDENCE INTERVAL FOR SLIPPACE
                                                                                                               TECH 68
                                                                                                                        193
                                  QUERY, CONFIDENCE INTERVAL FOR STANDARO DEVIATION FROM A SINCLE
                                                                                                               TECH 66
                                                                                                                        367
                                        A CONFIDENCE INTERVAL FOR THE AVAILABILITY RATIO
                                                                                                               TECH 67
                                                                                                                        465
   THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENCE INTERVAL FOR THE MEAN ON THE COST OF NOT KNOWING AMS 68 1946
                                         A CONFIDENCE INTERVAL FOR VARIANCE COMPONENTS
                                                                                                               BIOKA62
                                                                                                                        278
                     CRITICAL REGIONS FOR TESTS OF INTERVAL HYPOTHESES ABOUT THE VARIANCE
                                                                                                               JASA 66
                                                                                                                        204
                                    QUERY, TOLERANCE INTERVAL IN RECRESSION
                                                                                                               TECH 68
                                                                                                                        207
 PROBLEM
                                           CONFIDENCE INTERVAL OF PREASSICNED LENGTH FOR THE BEHRENS-FISHER AMS 67 1175
                          A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A STOCHASTIC PROCESS
                                                                                                                AMS 64
                                                                                                                        866
    OF PROBLEMS RELATEO TO THE RANOOM DIVISION OF AN INTERVAL' 53 239
                                                                                   CORRECTION TO 'ON A CLASS
                                                                                                                AMS 62
                                                                                                                        812
                                LENCTH OF CONFIDENCE INTERVALS
                                                                                                               JASA 61
                                                                                                                        549
                        MORE ON LENCTH OF CONFIDENCE INTERVALS
                                                                                                               JASA 62
                                                                                                                        586
              EXISTENCE OF BOUNDED LENGTH CONFIDENCE INTERVALS
                                                                                                                AMS 63 1474
                         ADMISSIBILITY OF CONFIDENCE INTERVALS
                                                                                                                AMS 66
                                                                                                                        629
                             SIMULTANEOUS PREDICTION INTERVALS
                                                                                                               TECH 68
                                                                                                                        323
                               APPROXIMATE CONFIDENCE INTERVALS
                                                                                                               BIOKA53
                                                                                                                         12
                  SEQUENTIALLY OFTERMINEO CONFIDENCE INTERVALS
                                                                                                               BIOKA57
                                                                                                                        279
                        SOME NOTES ON ORDERED RANGOM INTERVALS
                                                                                                               JRSSB56
                                                                                                                         79
                 A SEQUENTIAL TEST FOR RANDOMNESS OF INTERVALS
                                                                                                               JRSSB56
                                                                                                                         95
         EXPECTEO-COVER AND LINEAR-UTILITY TOLERANCE INTERVALS
                                                                                                               JRSSB66
                                                                                                                         57
CENERAL METHOD OF DETERMINING FIXED-WIOTH CONFIDENCE INTERVALS
                                                                                                                AMS 69
                                                                                                                        704
                                                                   SOME PROBABILITIES, EXPECTATIONS AND VAR JASA 66 1191
IANCES FOR THE SIZE OF LARCEST CLUSTERS AND SMALLEST INTERVALS
                     NOTES. SIMULTANEOUS CONFIDENCE INTERVALS AND EXPERIMENTAL DESIGN WITH NORMAL CORRELA BIOCS68
                                                                                                                        434
LIFE TEST EXPERIMENTS
                               A NOTE ON PREDICTION INTERVALS BASED ON PARTIAL OBSERVATIONS IN CERTAIN
                                                                                                               TECH 68
                                                                                                                        850
NORMAL SAMPLE
                                          CONFIDENCE INTERVALS BASED ON THE MEAN ABSOLUTE DEVIATION OF A
                                                                                                               JASA 65
                                                                                                                        257
                               TESTS AND CONFIDENCE INTERVALS BASED ON THE METRIC D2
                                                                                                                AMS 63
                                                                                                                        618
PEARSON AND WYNN'S PAPER
                                                 TIME INTERVALS BETWEEN ACCIDENTS, A NOTE ON MAGUIRE,
                                                                                                               BTOKA53
                                                                                                                        212
                                             THE TIME INTERVALS BETWEEN INDUSTRIAL ACCIDENTS
                                                                                                               BIOKA52
                                                                                                                        168
INOEPENOENT RANDOM DEVIATIONS OF LARGE OISPE/ THE INTERVALS BETWEEN RECULAR EVENTS DISPLACED IN TIME BY JRSSB61
RANDOM NUMBERS THE DISTRIBUTION OF INTERVALS BETWEEN SUCCESSIVE MAXIMA IN A SERIES OF BIOKAS7
                                                                                                                        476
RANOOM NUMBERS
                                                                                                                        524
STRATIFIED SAMPLING AND OISTRIBUTION-FREE CONFIDENCE INTERVALS FOR A MEDIAN
                                                                                                               JASA 65
                                                                                                                        772
                               ON TWO-SIDED TOLERANCE INTERVALS FOR A NORMAL DISTRIBUTION
                                                                                                                AMS 64
                                                                                                                        762
 OF THE SAMPLE MEAN ABSOLUTE DEVIATION IN CONFIDENCE INTERVALS FOR A NORMAL VARIATE
                                                                                              THE CORRECT USE TECH 66
                                                                                                                        663
                                                                                                                        423
                                           CONFIDENCE INTERVALS FOR A PROPORTION
                                                                                                               BIOKA56
                            CORRICENDA TO 'CONFIDENCE INTERVALS FOR A PROPORTION'
                                                                                                               BIOKA58
                                                                                                                        291
                             NONPARAMETRIC CONFIDENCE INTERVALS FOR A SHIFT PARAMETER
                                                                                                                AMS 63 1507
                         OISTRIBUTION-FREE TOLERANCE INTERVALS FOR CONTINUOUS SYMMETRICAL POPULATIONS
                                                                                                                AMS 62 1167
                              SIMULTANEOUS CONFIDENCE INTERVALS FOR CONTRASTS AMONG MULTINOMIAL POPULATIONS
CONFIDENCE INTERVALS FOR DISTANCE IN THE ANALYSIS OF VARIANCE
                                                                                                                AMS 64
                                                                                                                        716
                                                                                                               BIOKA58
                                                                                                                        360
CASE
                                  WILCOXON CONFIDENCE INTERVALS FOR LOCATION PARAMETERS IN THE OISCRETE
                                                                                                               JASA 67
                                                                                                                        184
                                           CONFIDENCE INTERVALS FOR MEASURES OF HERITABILITY
                                                                                                               BIOCS69
                                                                                                                        424
                LARCE SAMPLE SIMULTANEOUS CONFIDENCE INTERVALS FOR MULTINOMIAL PROPORTIONS
                                                                                                               TECH 64
                                                                                                                        191
                          ON SIMULTANEOUS CONFIDENCE INTERVALS FOR MULTINOMIAL PROPORTIONS
                                                                                                               TECH 65
                                                                                                                        247
SCHEMES (WITH DISCUSSION)
                                           CONFIDENCE INTERVALS FOR PARAMETERS IN MARKOV AUTORECRESSIVE
                                                                                                               JRSSB54
                                                                                                                        195
                                       DISCRIMINATION INTERVALS FOR PERCENTILES IN RECRESSION
                                                                                                               JASA 69 1031
TIAL OBSERVATIONS
                          ON MULTIVARIATE PREDICTION INTERVALS FOR SAMPLE MEAN AND COVARIANCE BASED ON PAR JASA 67
                                                                                                                        634
        FACTORS FOR CALCULATING TWO-SIDED PREDICTION INTERVALS FOR SAMPLES FROM A NORMAL DISTRIBUTION
                                                                                                               JASA 69
                                                                                                                        878
     TWO METHODS OF OBTAINING APPROXIMATE CONFIDENCE INTERVALS FOR SYSTEM RELIABILITY
                                                                                                  COMPARISON TECH 68
                                                                                                                         37
        TABLE OF NEYMAN-SHORTEST UNBIASEO CONFIDENCE INTERVALS FOR THE BINOMIAL PARAMETER
                                                                                                               BIOKA60
                                                                                                                        381
RMAL AND LOC NORMAL DISTRIBUTIONS
                                           CONFIDENCE INTERVALS FOR THE COEFFICIENT OF VARIATION FOR THE NO BIOKA64
                                                                                                                         25
                                           CONFIDENCE INTERVALS FOR THE EXPECTATION OF A POISSON VARIABLE BIOKA59
                                                                                                                        441
THE RELATIONSHIP BETWEEN NEYMAN AND BAYES CONFIDENCE INTERVALS FOR THE HYPERCEOMETRIC PARAMETER
                                                                                                               TECH 68
                                                                                                                        199
YMPTOTIC THEORY OF FIXED-WIOTH SEQUENTIAL CONFIDENCE INTERVALS FOR THE MEAN
                                                                                                    ON THE AS AMS 65
                                                                                                                        457
                                                                                           AN EXTENSION OF A
THEOREM OF CHOW AND ROBBINS ON SEQUENTIAL CONFIDENCE INTERVALS FOR THE MEAN
                                                                                                                AMS 69
                                                                                                                        667
                                           CONFIDENCE INTERVALS FOR THE MEAN OF A FINITE POPULATION
                                                                                                                AMS 67 1180
KNOWN VARIANCE
                                   SHORTER CONFIDENCE INTERVALS FOR THE MEAN OF A NORMAL DISTRIBUTION WITH
                                                                                                                AMS 63
                                                                                                                        574
UNKNOWN VARIANCE
                               SEQUENTIAL CONFIDENCE INTERVALS FOR THE MEAN OF A NORMAL POPULATION WITH
                                                                                                               JRSSB57
                                                                                                                        1.3.3
UTEO VARIABLES
                                           CONFIDENCE INTERVALS FOR THE MEANS OF DEPENDENT NORMALLY DISTRIB JASA 59
                                                                                                                        613
IΙ
                            BOUNGED LENGTH CONFIDENCE INTERVALS FOR THE P-POINT OF A DISTRIBUTION FUNCTION.
                                                                                                                AMS 66
                                                                                                                        581
                            BOUNDED LENGTH CONFIDENCE INTERVALS FOR THE P-POINT OF A DISTRIBUTION FUNCTION,
 III
                                                                                                                AMS 66
                                                                                                                        586
NC A SUFFICIENT STATISTIC WHEN THE RAN/
                                           CONFIGENCE INTERVALS FOR THE PARAMETER OF A DISTRIBUTION ADMITTI JRSSB55
                                                                                                                         86
POISSON OISTRIBUTIONS
                                              SHORTER INTERVALS FOR THE PARAMETER OF THE BINOMIAL AND
                                                                                                               BIOKA57
                                                                                                                        436
       TABLES OF NEYMAN-SHORTEST UNBIASEO CONFIDENCE INTERVALS FOR THE POISSON PARAMETER
                                                                                                               BIOKA61
                                                                                                                        191
THE USE OF SAMPLE QUASI-RANGES IN SETTING CONFIDENCE INTERVALS FOR THE POPULATION STANDARD DEVIATION
                                                                                                               JASA 61
                                                                                                                        260
  AN ALMOST UNBIASED METHOD OF OBTAINING CONFIDENCE INTERVALS FOR THE PROBABILITY OF MISCLASSIFICATION IN BIOCS67
                                                                                                                        639
                                           CONFIDENCE INTERVALS FOR THE PRODUCT OF TWO BINOMIAL PARAMETERS
                                                                                                               JASA 57
                                                                                                                        482
                                 ONE-SIDED CONFIDENCE INTERVALS FOR THE QUALITY INDICES OF A COMPLEX ITEM
                                                                                                                        400
                                                                                                               TECH 63
 MEASURES OF EFFECTIVENESS
                                       TWO CONFIDENCE INTERVALS FOR THE RATIO OF TWO PROBABILITIES AND SOME JASA 57
                                                                                                                         36
                                   OPTIMAL CONFIDENCE INTERVALS FOR THE VARIANCE OF A NORMAL DISTRIBUTION
                                                                                                              JASA 59
                                                                                                                        674
                            BOUNDEO LENGTH CONFIDENCE INTERVALS FOR THE ZERO OF A REGRESSION FUNCTION
                                                                                                                AMS 62
                                                                                                                        237
                              SIMULTANEOUS CONFIDENCE INTERVALS FOR VARIANCES
                                                                                                               JASA 69
                                                                                                                        324
                                           CONFIGENCE INTERVALS FROM CENSOREO SAMPLES
                                                                                                                AMS 61
                                                                                                                        828
                                            CONFIDENCE INTERVALŞ FROM CENSOREO SAMPLES, II
                                                                                                               TECH 66
                                                                                                                        291
                               APPROXIMATE CONFIGENCE INTERVALS III. A BIAS CORRECTION
                                                                                                               BIOKA55
                                                                                                                        201
```

```
ON THE LENGTHS OF INTERVALS IN A STATIONARY POINT PROCESS (CORR. 63
500)
                                                                                                              JRSSB62
                                                                                                                       364
               AN APPROACH TO SIMULTANEOUS TOLERANCE INTERVALS IN REGRESSION
                                                                                                                AMS 67 1536
                               SIMULTANEOUS TOLERANCE INTERVALS IN REGRESSION
                                                                                                               BIOKA63
                                                                                                                       155
                UNLIMITED SIMUTANEOUS DISCRIMINATION INTERVALS IN RECRESSION
                                                                                                               BIOKA67
                                                                                                                        133
          SOME TWO-SIDED DISTRIBUTION-FREE TOLERANCE INTERVALS OF A CENERAL NATURE
                                                                                                               JASA 62
                                                                                                                        775
 BOTH THE SIGN TEST AND DISTRIBUTION-FREE CONFIDENCE INTERVALS OF THE MEDIAN FOR SAMPLE SIZES TO 1,000
                                                                                                               JASA 64
                                                                                                                        935
                                   SHORTER CONFIDENCE INTERVALS USING PRIOR OBSERVATIONS
                                                                                                               JASA 69
                                                                                                                        378
                               APPROXIMATE CONFIDENCE INTERVALS. II. MORE THAN ONE UNKNOWN PARAMETER
                                                                                                               BIOKA53
                                                                                                                        306
                      SOME PROBLEMS OF THE HOUSEHOLD INTERVIEW DESIGN FOR THE NATIONAL HEALTH SURVEY
                                                                                                               JASA 59
                                                                                                                         69
                                     INFLUENCE OF THE INTERVIEWER ON THE ACCURACY OF SURVEY RESULTS
                                                                                                               JASA 58
                                                                                                                        635
                                           STUDIES OF INTERVIEWER VARIANCE FOR ATTITUDINAL VARIABLES
                                                                                                               JASA 62
                                                                                                                         92
                     THE IDENTIFICATION OF EFFECTIVE INTERVIEWERS
                                                                                                               JASA 64
                                                                                                                       1165
 RESPONSE ERRORS IN EXPENDITURES DATA FROM HOUSEHOLD INTERVIEWS
                                                                                                    A STUDY OF
                                                                                                              JASA 64
                                                                                                                         1B
                                            COMBINING INTRA AND INTER BLOCK ANALYSIS OF GROUP DIVISIBLE
                                                                                                               TECH 66
                                                                                                                        188
CROSS PRODUCTS OF NORMAL VARIATES IN THE PRESENCE OF INTRA-CLASS CORRELATION /ON OF SUMS OF SQUARES AND H A VARIABLE CHANCE OF INFECTION FOR THE ANALYSIS OF INTRA-HOUSEHOLD EPIDEMICS /E OF CHAIN-BINOMIALS WI
                                                                                                                AMS 62 1461
                                                                                  /E OF CHAIN-BINOMIALS WIT BIOKA53
                                                                                                                        279
ALLY BALANCED INCOMPLETE BLO/
                                ON THE F-TEST IN THE INTRABLOCK ANALYSIS OF A CLASS OF TWO ASSOCIATE PARTI JASA 65
                                                                                                                        285
                                  SOME TESTS FOR THE INTRACLASS CORRELATION MODEL
                                                                                                                AMS 65 1802
               QUERY, MAXIMUM LIKELIHOOD ESTIMATE IN INTRACLASS CORRELATION MODEL
                                                                                                               TECH 69 NO.4
   FOR THE EQUALITY OF COVARIANCE MATRICES UNDER THE INTRACLASS CORRELATION MODEL
                                                                                                               AMS 67 12B6
                            TESTS OF INDEPENDENCE IN INTRACLASS 2-BY-2 TABLES
                                                                                                               BIOKA61
                                                                                                                        1B1
                CORRIGENDA, 'TEST OF INDEPENDENCE IN INTRACLASS 2-BY-2 TABLES'
                                                                                                               BIOKA61
ENESS (ACKNOWLEDGEMENT 66 5B5)
                                         A TEST FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACCIDENT PRON JRSSB66
                                                                                                                        180
                                 FACTOR ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 2. THE ROLE OF FACTOR BIOCS65
                                                                                                                        934
YING MODELS
                                                                                                                        190
ANALYSIS IN RESEARCH
                                                                                                                        405
F ANALYSIS OF VARIANCE AND MULTIVARIATE ANALYS/
                                                  AN INTRODUCTION TO SOME NON-PARAMETRIC GENERALIZATIONS O BIOKA56
                                                                                                                        361
                              STATISTICAL ANALYSIS OF INTROCRESSION
                                                                                                               BIOCS66
                                                                                                                        4BB
                               STATISTICAL MODELS AND INVARIANCE
                                                                                                                AMS 67 1061
                             ON INVARIANCE AND ALMOST INVARIANCE
                                                                                                                AMS 68 1573
                              THE FIDUCIAL METHOD AND INVARIANCE
                                                                                                               BIOKA61 261
                                                   ON INVARIANCE AND ALMOST INVARIANCE
                                                                                                                AMS 68 1573
                                                       INVARIANCE OF MAXIMUM LIKELIHOOD ESTIMATIONS
                                                                                                                AMS 66
                                                                                                                       744
     ON EXTENDED RATE OF CONVERGENCE RESULTS FOR THE INVARIANCE PRINCIPLE
                                                                                                                AMS 69 NO.6
VARIABLES
                                                  THE INVARIANCE PRINCIPLE FOR A LATTICE OF RANDOM
                                                                                                                AMS 68
                                                                                                                       3B2
                                                   AN INVARIANCE PRINCIPLE IN RENEWAL THEORY
                                                                                                                AMS 62
                                                                                                                        6R5
                                   THE LIKELIHOOD AND INVARIANCE PRINCIPLES
                                                                                                               JRSSB67
                                                                                                                        533
                                                 SOME INVARIANCE PRINCIPLES FOR FUNCTIONALS OF A MARKOV
CHAIN
                                                                                                                AMS 67
                                                                                                                          1
            THE RELATIONSHIP BETWEEN SUFFICIENCY AND INVARIANCE WITH APPLICATIONS IN SEQUENTIAL ANALYSIS
                                                                                                                AMS 65
                                                                                                                        575
                                                       INVARIANT CONDITIONAL DISTRIBUTIONS
                                                                                                                AMS 65
                                                                                                                        829
                ON SOME INVARIANT CRITERIA FOR GROUPING DATA JASA 67
TABLES FOR OBTAINING THE BEST LINEAR INVARIANT ESTIMATES OF PARAMETERS OF THE WEIBULL DIST TECH 67
                                                                                                               JASA 67 1159
RIBUTTON
                                                                                                                        629
                              FIDUCIAL THEORY AND INVARIANT ESTIMATION
ON THE ADMISSIBILITY OF INVARIANT ESTIMATORS OF ONE OR MORE LOCATION PARAMETE
                                                                                                                AMS 66
                                                                                                                        643
                                                                                                                AMS 66 10B7
BILITIES FOR A RECORD MATCHING PROCESS WITH COMPLETE INVARIANT INFORMATION
                                                                                                OUTCOME PROBA JASA 67
                                                                                                                        454
                                                       INVARIANT INTERVAL ESTIMATION OF A LOCATION PARAMETER
                                                                                                                AMS 68
                                                                                                                        193
                                                 SOME INVARIANT LAWS RELATED TO THE ARC SINE LAW
                                                                                                                AMS 68
                                                                                                                        25B
                                      EXISTENCE OF AN INVARIANT MEASURE AND AN ORNSTEIN'S ERGODIC THEOREM
                                                                                                                AMS 69
                                                                                                                         79
                                            A NOTE ON INVARIANT MEASURES
                                                                                                                        729
                                                                                                                AMS 66
       ON THE GLIVENKO-CANTELLI THEOREM FOR INFINITE INVARIANT MEASURES
                                                                                                                AMS 67 1273
                                 INTEGRAL KERNELS AND INVARIANT MEASURES FOR MARKOFF TRANSITION FUNCTIONS
                                                                                                                AMS 65
                                                                                                                       517
                                       QUASI-LINEARLY INVARIANT PREDICTION
                                                                                                                AMS 66
                                                                                                                       1684
                                  FIDUCIAL THEORY AND INVARIANT PREDICTION
                                                                                                                AMS 67
                                                                                                                        795
                                                       INVARIANT PRIOR DISTRIBUTIONS
                                                                                                                AMS 64
                                                                                                                        836
                      REPRESENTING FINITELY ADDITIVE INVARIANT PROBABILITIES
                                                                                                                AMS 6B 2131
                                                       INVARIANT PROBABILITIES FOR CERTAIN MARKOV PROCESSES
                                                                                                                AMS 66
                                                                                                                       837
                                                       INVARIANT PROPER BAYES TESTS FOR EXPONENTIAL FAMILIES
                                                                                                                AMS 69
                                                                                                                       270
                                              OPTIMAL INVARIANT RANK TESTS FOR THE K-SAMPLE PROBLEM
                                                                                                                AMS 65 1207
                                                                                                                AMS 68 1048
OUNDS ON THE SAMPLE SIZE DISTRIBUTION FOR A CLASS OF INVARIANT SEQUENTIAL PROBABILITY RATIO TESTS
GENERAL PROOF OF TERMINATION WITH PROBABILITY ONE OF INVARIANT SEQUENTIAL PROBABILITY RATIO TESTS BASED ON
                                                                                                                AMS 67
                                                                                                                         8
MEASURES
                                                       INVARIANT SETS FOR TRANSLATION-PARAMETER FAMILIES OF
                                                                                                                AMS 69
                                                                                                                       162
OF THE HYPOTHESES INADMISSIBILITY OF THE BEST INVARIANT TEST WHEN THE MOMENT IS INFINITE UNDER ONE
                                                                                                                AMS 69 1483
                                                                                                                AMS 65
ES CHARACTER OF T-SQUARED, R-SQUARED AND OTHER FULLY INVARIANT TESTS FOR CLASSICAL MULTIVARIATE NORMAL PRO
                                                                                                                       747
                                              OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS
                                                                                                                AMS 67
                                                                                                                        422
UFFICIENT CONDITIONS FOR A STATISTICAL PROBLEM TO BE INVARIANT UNDER A LIE GROUP
                                                                                             NECESSARY AND S
                                                                                                                AMS 63
                                                                                                                        492
STATISTICS
                                  EXACT FORMS OF SOME INVARIANTS FOR DISTRIBUTIONS ADMITTING SUFFICIENT
                                                                                                               BIOKA55
                                                                                                                        533
                                                       INVARIANTS UNDER MIXING WHICH GENERALIZE DE FINETTI'S
 THEOREM. CONTINUOUS TIMES PARAMETER
                                                       INVARIANTS UNDER MIXING WHICH GENERALIZE DE FINETTI'S
                                                                                                                AMS 63 1194
                       INADMISSIBILITY OF THE BEST INVARIATE ESTIMATOR OF EXTREME QUANTILES OF THE NORMA
L DISTRIBUTION UNDER/
                                                                                                                AMS 69 1801
                        SOME RESULTS IN THE THEORY OF INVENTORY
                                                                                                               BIOKA64
                                                                                                                        487
                 A MINIMUM COST MODEL OF SPARE PARTS INVENTORY CONTROL
                                                                                                               TECH 67
 OF TRUNCATED DISTRIBUTIONS IN PROCESS START-UPS AND INVENTORY CONTROL
                                                                                                 APPLICATIONS TECH 61
                                                                                                                        429
                                       MANUFACTURERS' INVENTORY CYCLES AND MONETARY POLICY
                                                                                                               JASA 58
                                                                                                                        680
                          EX ANTE AND EX POST DATA IN INVENTORY INVESTMENT
                                                                                                               JASA 61
                                                                                                                        518
                         THE SOLUTION OF QUEUEING AND INVENTORY MODELS BY SEMI-MARKOV PROCESSES
                                                                                                               JRSSB61
                                                                                                                        113
       A CORRECTION TO 'THE SOLUTION OF QUEUEING AND INVENTORY MODELS BY SEMI-MARKOV PROCESSES'
                                                                                                               JRSSB63
                                                                                                                        455
                                                                                                               JRSSB62
                                      SOME RESULTS ON INVENTORY PROBLEMS (WITH DISCUSSION)
 CUMULATIVE HYPERGEOMETRIC PROBABILITIES, DIRECT AND INVERSE
                                                                          A QUICKLY CONVERGENT EXPANSION FOR BIOKA54
   IN HOTELLING'S WEICHING DESIGNS AND A GENERALIZED INVERSE (CORR. 69 719)
                                                                                                  SINGULARITY AMS 66 1021
                  ON THE EQUIVALENCE OF BINOMIAL AND INVERSE BINOMIAL ACCEPTANCE SAMPLING PLANS AND AN ACK TECH 63
NOWLEDGEMENT
                                                                                                                       119
                QUERY, COMPARISON OF SAMPLE SIZES IN INVERSE BINOMIAL SAMPLING
                                                                                                               TECH 67
                                                                                                                        337
                                 A NOTE ON DIRECT AND INVERSE BINOMIAL SAMPLING
                                                                                                               BTOKA63
                                                                                                                        544
                                                       INVERSE CUMULATIVE APPROXIMATION AND APPLICATIONS
                                                                                                               BIOKA68
                                                                                                                        29
ATE POPULATION/
                   DERIVATION OF APPROXIMANTS TO THE INVERSE DISTRIBUTION FUNCTION OF A CONTINUOUS UNIVARI BIOKA69 NO.3
                                                       INVERSE DISTRIBUTIONS AND INDEPENDENT GAMMA-DISTRIBUT BIOKA63
ED PRODUCTS OF RANDOM VARIABLES
                                                                                                                        505
                              CHARACTERIZATION OF THE INVERSE GAUSSIAN DISTRIBUTION
                                                                                                                AMS 62
                                                                                                                        800
```

		THE PORT OF THE PROPERTY PROPERTY.	1464 60	2524
TARI.	ES OF	INVERSE GAUSSIAN DISTRIBUTION FUNCTION INVERSE GAUSSIAN PERCENTACE POINTS	JASA 68 TECH 69	
CONCERNING ESTIMABLE FUNCTIONS AND CENERA	LIZED	INVERSE MATRICES ADDITIONAL RESULTS		486
A NOTE ON THE EXPECTED VALUE		INVERSE MATRIX	BIOKA69	NO.3
			JASA 63	468
COMPUTER EVALUATION OF THE NORMA			TECH 69 AMS 67	
MATHEMATICAL STATISTICS A NOTE ON A CENERA		INVERSE OF A MATRIX WITH APPLICATIONS TO PROBLEMS IN		
		INVERSE OF ANOTHER INDEPENDENT WISHART VARIATE /STI		944
		INVERSE OF THE COVARIANCE MATRIX OF A FIRST ORDER	BIOKA69	
WEIGHTED REGRESSION, QUANTAL RESPONSE DATA RESPONSE FUNCTIONS		INVERSE POLYNOMIALS INVERSE POLYNOMIALS, A USEFUL CROUP OF MULTI-FACTOR	BIOCS68 BIOCS66	979 128
		INVERSE RECRESSION METHODS OF CALIBRATION	TECH 67	425
ATION CLASSICA	L AND	INVERSE REGRESSION METHODS OF CALIBRATION IN EXTRAPOL	TECH 69	605
TESTING FOR LINEAR CONTA			JRSSB69	
OF THE GEOMETRIC DISTRIBUTION AND THEIR RELATI		INVERSE SAMPLING AND RELIABILITY OF REDUNDANT SYSTEMS INVERSE SAMPLING WITH UNEQUAL PROBABILITIES	BIOKA64	915 1B5
		INVERSE YATES ALGORITHM		177
		INVERSE' /ENDA, 'A QUICKLY CONVERGENT EXPANSION FOR		277
		INVERSELY SAMPLED POLLEN COUNTS /THE COMPOUND NEGA-INVERSES IN THE ANALYSIS OF VARIANCE	BIOKA63 AMS 64	47 B95
		INVERSES IN THE LINEAR HYPOTHESIS NOT OF FULL RANK	AMS 67	
MODIFIED SQUARE ROOT METHOD OF M	MATRIX	INVERSION	TECH 62	2B2
ERRATA, 'MODIFIED SQUARE ROOT METHOD OF M			TECH 62	622
		INVERSION BY THE SQUARE ROOT METHOD INVERSION IN MULTIPLE REGRESSION AND MULTIVARIATE DIS	JASA 56 JRSSB63	288 352
THE NON-ABSOLUTE CONVERGENCE OF GIL-PE			AMS 61	338
		INVERSION OF CUMULANT OPERATORS FOR POWER-SERIES DIST		321
		INVERSION OF PARTITIONED MATRICES IN THE ANALYSIS OF INVERSION THEOREM	JASA 65 BIOKA51	
(ACUNOMI EDGEMENT OF PRIORITY) INOTE O	M THE	INVERSION THEOREM:	BIOKASI BIOKAS2	215
M	MATRIX	INVERSION WITH THE SQUARE ROOT METHOD	TECH 64	197
OF DATA M	IATRIX	INVERSION, ITS INTEREST AND APPLICATION IN ANALYSIS		755
CORR. 65 1251		INVERSIONS IN LARCE POPULATIONS INVERTED DIRICHLET DISTRIBUTION WITH APPLICATIONS.	BIOCS68 JASA 65	501 793
		INVERTED MULTIVARIATE T DISTRIBUTION /ARIATE GENERA		511
		INVERTING A CLASS OF PATTERNED MATRICES		227
ORTHONORMAL BASES OF ERROR SPACES AND THEIR US EMPLOYING RANDOM SUBSAMPLE MEANS		INVESTIGATING THE NORMALITY AND VARIANCES OF RESIDUAL INVESTICATING THE PROPERTIES OF A SAMPLE MEAN BY	JASA 67 JASA 56	1022 54
STRATIFICATION, A PRAC			JASA 66	74
OF F-RATIOS FOR THE SPLIT-PLOT DESIGN, AN EMPI	RICAL	INVESTIGATION THE RANDOMIZATION DISTRIBUTION		431
		INVESTIGATION /REGRESSION COEFFICIENTS IN SAMPLES F		61 260
TWO SAMPLE TEST OF LEHMANN'S	AN	INVESTIGATION INTO THE DISTRIBUTION OF THE F-RATIO IN INVESTIGATION INTO THE SMALL SAMPLE PROPERTIES OF A	JASA 6B	345
S COMPOSED OF NORMAL DISTRIBUTIONS EM	PIRIC	INVESTIGATION INTO THE SMALL SAMPLE PROPERTIES OF A INVESTIGATION OF A TEST OF HOMOGENEITY FOR POPULATION INVESTIGATION OF HARTLEY'S METHOD FOR FITTINC AN INVESTIGATION OF LEAST SQUARES REGRESSION INVOLVING INVESTIGATION OF LINEAR RELATIONS FITTED BY THE METHO	JASA 58	551
EXPONENTIAL CURVE	AN	INVESTIGATION OF HARTLEY'S METHOD FOR FITTING AN	BIOKA59	281 105
D OF LEAST SQUARES (WITH DISCUSSION) TOPICS I	N THE	INVESTIGATION OF LINEAR RELATIONS FITTED BY THE METHO	JRSSB67	1
MALL SAMPLES FROM THE NORMAL DISTRIBUTION, 2. E	ST/	INVESTIGATION OF RULES FOR DEALING WITH OUTLIERS IN S	TECH 69	527
DURES IN NONLINEAR REGRESSION PROBLEMS A NUME		INVESTIGATION OF SEVERAL ONE-DIMENSIONAL SEARCH PROCE INVESTICATION OF THE BURN-IN PROBLEM	TECH 69	265 61
HE PROPERTIES OF CHI-SQUARE-TESTS IN THE ANALY/		INVESTIGATION OF THE EFFECT OF MISCLASSIFICATION ON T		95
		INVESTIGATION OF THE INDUSTRIALIZATION CONTROVERSY	JASA 60	2B4
USE OF RANDOMIZATION I	N THE	INVESTIGATION OF THE SIZE AND POWER OF TESTS EMPLOYIN INVESTIGATION OF UNKNOWN FUNCTIONS	JASA 58	431 176
EX ANTE AND EX POST DATA IN INVE	NTORY	INVESTIGATION OF UNKNOWN FUNCTIONS INVESTMENT INVESTMENT (WITH DISCUSSION)	JASA 61	518
STOCHASTIC MODELS OF CA	PITAL	INVESTMENT (WITH DISCUSSION)	JRSSB69	1
THE RELATIVE EFFICA	ACY OF	INVESTMENT ANTICIPATIONS INVESTMENT BEHAVIOR IN UNITED STATES MANUFACTURING	JASA 66 JASA 69	104 67
APPROXIMATIONS DATA AN			JASA 65	503
APPRAISAL TYPE A CTORY AND SON		INVESTMENT ESTIMATES OF UNDERDEVELOPED COUNTRIES, AN	JASA 58	669
		INVESTMENT IN AUTOMOBILES INVESTMENT TRUST MANAGEMENT	JASA 63 JASA 63	7B9
GENETIC EQUILIBRIUM UNDER SELEC			BIOCS67	
		(INVITED PAPER) /ILITY TESTING, BIOLOGICAL BACKGROUN		
THE ACCURACY OF CENSUS LITERACY STATISTI ALSEMBLANCE DES COURBES DE SURVIE DE MICROORGAN		IRRADIES ESTIMATION PAR LA METHODE DU MAXIMUM DE VR	JASA 59 BIOCS66	
		IRRATIONAL FRACTION APPROXIMATIONS TO MILLS' RATIO	BIOKA64	
HOMOCENEOUS FIELDS ARE EITHER CONTINUOUS OR				
		IRRECULAR FRACTIONAL PLANS OF FACTORIAL EXPERIMENTS IRREGULAR FRACTIONAL REPLICATE OF A 2 TO THE POWER N	JASA 63 JRSSB67	
		IRREGULAR FRACTIONS OF FACTORIALS (CORR. 65 1036)	BIOCS65	
EXPERIMENTS DYING THE DENTAL CO. A DATH DECRAPHING APPROA	OU TO	IRRECULAR FRACTIONS OF THE 2-TO-THE-N FACTORIAL	TECH 61	
		IRREVERSIBLE MARKOV CHAINS WITH AN APPLICATION IN STU-ISBELL TWO-ARMED-BANDIT PROBLEM WITH FINITE MEMORY	AMS 65	
		ISN'T MY PROCESS TOO VARIABLE FOR EVOP.	TECH 68	439
NOTES. ON THE EVALUATION OF VARIABILI			BIOCS66	
STOCHASTIC CROSS-INFECTION BETWEEN TWO OTHE S REQUIREMENTS AMONG ENVIRONME/ EFFECTS OF PA		ISOLATED CROUPS ISOLATION (DISTANCE), MIGRATION, AND DIFFERENT FITNES	BIOKA57 BIOCS66	
STATIS	STICAL	ISOMORPHISM	AMS 66	203
ALLOCATION ARISING IN CHEMICAL ANALYSES BY MUL	TIPLE	ISOTOPE DILUTION A PROBLEM OF OPTIMUM ITEM ONE-SIDED CONFIDENCE	TECH 61	509
		ITEM ONE-SIDED CONFIDENCE ITEM BY ITEM, SELECTION TECHNIQUES AND DIGITAL COMPUT		
THE POSSIBILITY OF IMPROVING THE MEAN USEFUL LI	IFE OF	ITEMS BY ELIMINATING THOSE WITH SHORT LIVES ON	TECH 61	281
IAL SAMPLING ACCEPTANCE SCHEMES FOR LARGE BATCH A REMARK ON THE LAW O		ITEMS WHERE THE MEAN QUALITY HAS A NORMAL PRIOR DISTR	BIOKA68 AMS 67	
A REMARK ON THE EAW O	N. IME	TIENVIED PAGNITIUM	VIIIO OI	555

CONVERCENCE RATES FOR THE LAW OF THE		AMS 6B	
	ITERATED LOGARITHM FOR MIXING STOCHASTIC PROCESSES ITERATED LOGARITHM FOR NON-DECREASING STABLE PROCESSE	AMS 69	
		JASA 62	149
	ITERATED PROCEDURE FOR TESTING THE EQUALITY OF SEVERA		435
		JASA 67	520
		JASA 62	579
MINIMAX SOLUTION OF STATISTICAL DECISION PROBLEMS BY COMPONENTS FOR THE TWO-WAY CLASSIFICATION WITH		AMS 66	
ON THE SOLUTION OF THE LIKELIHOOD EQUATION BY		BIOKA6I	452
ON THE SOLUTION OF LIKELIHOOD EQUATIONS BY		BIOKA62	479
'ON THE SOLUTION OF THE LIKELIHOOD EQUATION BY			2B4
THE ASYMPTOTIC ERROR OF		AMS 68	266
EQUATIONS	ITERATIVE ESTIMATION OF A SET OF LINEAR REGRESSION	JASA 64	
	ITERATIVE ESTIMATION OF VARIANCE COMPONENTS FOR NON- ITERATIVE MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAME		NO.4 205
SPACE DISCRETE TIME MARKOV PROCESS ON THE		AMS 65	
THE COMPARISON OF TWO MEANS, FURTHER DISCUSSION OF	ITERATIVE METHODS FOR CALCULATING TABLES ON	BIOKA54	
	ITERATIVE PROCEDURE FOR ESTIMATING FIXED EFFECTS AND		13
	ITH ORDER STATISTIC OF THE EXPONENTIAL MODEL /UTION ITO'S THEOREM CONCERNING THE POINTWISE ERGODIC	AMS 63 AMS 6B	652
AND THE PROBABILITY INTEGRAL FOR A PEARSON TYPE			I19
	IV FOR THE 2-TO-THE-N AND 2-TO-THE-N TIMES 3-TO-THE-M		431
	IV. EMPIRICAL VARIANCES OF RANK CORRELATION COEFFICIE		437
A TRUSTWORTHY IMATORS USING U STATISTICS AND A RELATIONSHIP TO THE		AMS 64	
	JACKKNIFING U-STATISTICS	AMS 69	567 NO 6
	JACKKNIFING VARIANCES	AMS 68	567
MULTIVARIATE ANALYSIS' NOTE ON 'THE	JACOBIANS OF CERTAIN MATRIX TRANSFORMATION USEFUL IN	BIOKA53	43
MULTIVARIATE ANALYSIS, BASED ON LECTURES BY/ THE	JACOBIANS OF CERTAIN MATRIX TRANSFORMATIONS USEFUL IN	BIOKA5I	345
ON THE SAMPLE SIZE AND COVERAGE FOR THE SOME APPLICATIONS OF THE	JIRINA SEQUENTIAL PROCEDURE TO OBSERVATIONS WITH	AMS 63	B47 B57
AN APPROACH TO THE SCHEDULING OF		JRSSB6I	484
	JOHN'S CYCLIC INCOMPLETE BLOCK DESIGNS	JRSSB67	243
	-JOHNSON SERIES FOR THE EXPECTED VALUES OF NORMAL ORDE		79
	JOHNSON SYSTEM OF PROBABILITY DISTRIBUTIONS	BIOKA59	229
	JOHNSON'S PROPERTY OF THE MEAN DEVIATION FOR A CLASS JOIN POINTS HAVE TO BE ESTIMATED	JASA 66	285
THE FACTORIAL MOMENTS OF THE DISTRIBUTION OF		BIOKA54	555
CENERAL MODELS FOR QUANTAL RESPONSE TO THE	JOINT ACTION OF A MIXTURE OF DRUGS	BIOKA64	413
	JOINT ACTION OF A MIXTURE OF STIMULI IN BIOLOCICAL	BIOKA66	49
SAMPLES THE STATISTIC	JOINT ASSESSMENT OF NORMALITY OF SEVERAL INDEPENDENT		825
	JOINT ASYMPTOTIC DISTRIBUTION OF THE MEDIAN AND A U- JOINT CONFIDENCE LIMITS FOR RANKED OBSERVATIONS	JRSSB57 TECH 66	144 368
	JOINT DESIGN CRITERION FOR THE DUAL PROBLEM OF MODEL		145
RUNS IN A RANDOM SEQUENCE THE	JOINT DISTRIBUTION OF ASCENDING PAIRS AND ASCENDING	BIOKA67	330
	JOINT DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS	JASA 69	300
	JOINT DISTRIBUTION OF THE CIRCULAR SERIAL CORRELATION JOINT DISTRIBUTION OF THE ERRORS IS OF ANY CONTINUOUS		I61 I25
		BIOKA68	424
	JOINT DISTRIBUTIONS WITH PRESCRIBED MOMENTS	AMS 65	286
	JOINT EFFICIENCY OF THE ESTIMATES OF THE PARAMETERS O		46
POPULATIONS TINCTION BETWEEN THE CONDITIONAL PROBABILITY AND THE	JOINT ESTIMATION OF THE PARAMETERS OF TWO NORMAL	JASA 62 BIOKA64	446 4BI
CONSTRUCTION OF	JOINT PROBABILITY DISTRIBUTIONS	AMS 68	1354
BIVARIATE K-STATISTICS AND CUMULANTS OF THEIR	JOINT SAMPLING DISTRIBUTION	BIOKA5I	179
PAIRWISE INDEPENDENCE OF	JOINTLY DEPENDENT VARIABLES	AMS 62	290
TBUTION OF SOME STATISTICS USEFUL IN THE ANALYSIS OF	JOINT SAMPLING DISTRIBUTION JOINTLY DEPENDENT VARIABLES JOINTLY STATIONARY TIME SERIES ON THE DISTR JORDAN, 1871-1959	AMS 68	1849
	JORDAN'S PROCEDURE FOR MATRIX INVERSION IN MULTIPLE R		352
ON THE NOTES BY NEYMAN, BARTLETT AND WELCH IN THIS	JOURNAL (VOL. 18, NO. 2, 1956) COMMENT	JRSSB57	179
COMPARISON DESIGNS FOR TESTING CONCORDANCE BETWEEN	JUDGES	BIOKA56	113
	JUDGING ALL CONTRASTS IN THE ANALYSIS OF VARIANCE (CO JUDCMENT. SOME METHODOLOGICAL SUGGESTIONS	JASA 67	
SEQUENTIAL SEARCH PROCEDURE FOR LOCATING A RESPONSE		TECH 62	
	JUMP ANALYSIS	BIOKA59	
		JRSSB61	
		AMS 65 BIOKA53	
RESPONSE CRITERIA FOR THE BIOASSAY OF VITAMIN		BIOCS69	
QUERY, COMPLETED RUNS OF LENCTH		TECH 67	
EQUILIBRIA UNDER SELECTION FOR	K ALLELES	BIOCS66	
BAYESIAN STRATIFIED TWO-PHASE SAMPLING RESULTS,		BIOKA68	
ON TESTING THE EQUALITY OF CONSTRUCTION OF SECOND ORDER ROTATABLE DESIGNS IN		BIOKA69	177
	K HYPOTHESES CONCERNING THE UNKNOWN DRIFT PARAMETER O	AMS 67	1376
A SEQUENTIAL PROCEDURE FOR SELECTING THE LARCEST OF	K MEANS	AMS 6B	BB
		JRSSB60	1 206
	K NORMAL POPULATIONS WITH KNOWN VARIANCES K POPULATIONS CONTAINING THE BEST	JASA 69 AMS 67	
	K POPULATIONS WITH CONSTRAINTS ON THE PROBABILITIES		
G DISTRIBUTIONS ARE DETERMINISTIC AND GAMMA OF ORDER	K RESPECTIVELY /, WHILE THE INTERARRIVAL AND SERVIN	JRSSB63	477
	K TO THE N FACTORIALS /APPROACH FOR CONSTRUCTING A		
APPROXIMATE SPECIFICATION AND THE CHOICE OF A A SIMPLE MATHEMATICAL RELATIONSHIP AMONC		JASA 67 JASA 66	
SENSITIVITY TO SPECIFICATION ERROR OF DIFFERENT			

TITLE WORD INOEX ITE - KOL

```
THE CONSTRUCTION OF SATURATED TWO TO THE POWER OF K-P DESIGNS
                                                                                                                   AMS 67 1110
                                                     A K-SAMPLE ANALOGUE OF WATSON'S U-SQUARE STATISTIC
                                                                                                                  BIOKA66 579
                                                                                                                  AMS 67 1726
                                                      A K-SAMPLE EXTENSION OF THE ONE-SIOED TWO-SAMPLE
SMIRNOV TESTS STATISTIC
                                               SEVERAL K-SAMPLE KOLMOGOROV-SMIROV TESTS
                                                                                                                   AMS 65 1019
                                          A K-SAMPLE MODEL IN OROER STATISTICS
A NOTE ON 'A K-SAMPLE MODEL IN ORDER STATISTICS' BY W. J. CONOVER
                                                                                                                   AMS 65 1223
                                                                                                                   AMS 66 2B7
                OPTIMAL INVARIANT RANK TESTS FOR THE K-SAMPLE PROBLEM
                                                                                                                   AMS 65 1207
                      ON ANALYSIS OF VARIANCE FOR THE K-SAMPLE PROBLEM
                                                                                                                   AMS 66 1747
                                  CONTRIBUTIONS TO THE K-SAMPLE PROBLEM, A SYMMETRIC STATISTIC
                                                                                                                   AMS 69 NO.6
                                                ON TWO K-SAMPLE RANK TESTS FOR CENSORED OATA
                                                                                                                   AMS 67 1520
                                                   TWO K-SAMPLE SLIPPAGE TESTS
                                                                                                                  JASA 6B 614
                                   A DISTRIBUTION-FREE K-SAMPLE TEST AGAINST OROERED ALTERNATIVES
                                                                                                                  BIOKA54 133
                            COMPUTATION WITH MULTIPLE K-STATISTICS
                                                                                                                  JASA 63 120
                        TWO APPLICATIONS OF BIVARIATE K-STATISTICS
                                                                                                                  BIOKA51
                                                                                                                           368
       TENSOR NOTATION AND THE SAMPLING CUMULANTS OF K-STATISTICS
                                                                                                                  BIOKA52 319
                                TABLES OF GENERALIZED K-STATISTICS
                                                                                                                  BIOKA54
                                                                                                                           253
NATORIAL METHOD FOR MULTIPLE PRODUCTS OF GENERALIZED K-STATISTICS
                                                                                         SOME RULES FOR A COMBI
                                                                                                                  AMS 68
                                                                                                                           9B3
                                             BIVARIATE K-STATISTICS AND CUMULANTS OF THEIR JOINT SAMPLING
                                                                                                                  BIOKA51
                           MOMENT COEFFICIENTS OF THE K-STATISTICS IN SAMPLES FROM A FINITE POPULATION
                                DISTRIBUTIONS OF A M. KAC STATISTIC
              ADDENDUM. THE LIMITING DISTRIBUTION OF KAMAT'S TEST STATISTIC
TER FROM QUANTAL DATA, AND ITS RELA/ ADAPTATION OF KARBER'S METHOD FOR ESTIMATING THE EXPONENTIAL PARAME BIOCS67 739

EXPONENTIAL POPULATIONS ON A THEOREM OF KARLIN REGARDING ADMISSIBILITY OF LINEAR ESTIMATES IN AMS 66 1809
 EXPONENTIAL POPULATIONS
                                       ON A THEOREM OF KARLIN REGARDING ADMISSIBLE ESTIMATES FOR EXPONENTIAL
                                                                                                                   AMS 69
 POPULATIONS
  COEFFICIENTS. III. DISTRIBUTION OF THE TRANSFORMED KENDALL COEFFICIENT TESTS FOR RANK CORRELATION BIOKAG2
                                                                                                                           185
              SIMULATED DISTRIBUTIONS FOR SMALL N OF KENDALL'S PARTIAL RANK CORRELATION COEFFICIENT
                                                                                                                  BIOKA63
                                                                                                                           520
                                                                                                                  BIOKA56 474
                           BOUNDS FOR THE VARIANCE OF KENDALL'S RANK CORRELATION STATISTIC
                                   THE DISTRIBUTION OF KENDALL'S SCORE S FOR A PAIR OF TIED RANKINGS
                                                                                                                  BIOKA60 151
    ESTIMATES OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S TAU
                                                                                                                  JASA 6B 1379
                                     DISTRIBUTIONS OF KENDALL'S TAU BASED ON PARTIALLY ORDEREO SYSTEMS
                                                                                                                  BIOKA55 417
IATE POPULATION WITH CORRELAT/
                                 THE DISTRIBUTION OF KENDALL'S TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVAR BIOKAG3 53B
                                    A MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRARY TIES IN BOTH
                                                                                                                 JASA 57
                                                                                                                            33
                                   THE THIRD MOMENT OF KENDALL'S TAU IN NORMAL SAMPLES
                                                                                                                  BIOKA62 177
                    A COMPUTER METHOD FOR CALCULATING KENDALL'S TAU WITH UNGROUPED DATA
                                                                                                                  JASA 66
                                                                                                                           436
  A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION OF THE L JASA 62
                                                                                                                          B04
                                              INTEGRAL KERNELS AND INVARIANT MEASURES FOR MARKOFF TRANSITION
 FUNCTIONS
                                                                                                                  AMS 65
                                                                                                                           517
               ON DISTRIBUTIONS FOR WHICH THE HARTLEY-KHAMIS SOLUTION OF THE MOMENT-PROBLEM IS EXACT
                                                                                                                  BIOKA51
                                                                                                                            74
                              SOME REMARKS CONCERNING KHATRI'S RESULT ON QUADRATIC FORMS
                                                                                                                  BIOKA68
                                                                                                                          593
                                                        KHINCHIN'S WORK IN MATHEMATICAL PROBABILITY
                                                                                                                  AMS 62 1227
                                 ON CONVERGENCE OF THE KIEFER-WOLFOWITZ APPROXIMATION PROCEDURE
                                                                                                                   AMS 67 1031
                                         A CONTINUOUS KIEFER-WOLFOWITZ PROCEDURE FOR RANDOM PROCESSES,
                                                                                                                   AMS 64 590
                                   ERRORS OF THE THIRD KIND IN STATISTICAL CONSULTING
                                                                                                                  JASA 57
                                                                                                                           133
ACTORIAL EFFECTS AND THEIR CONNECTION WITH A SPECIAL KIND OF IRREGULAR FRACTIONAL PLANS OF FACTORIAL EXPER JASA 63 497
ENOMIN/ ROBUSTNESS OF THE F-TEST TO ERRORS OF BOTH KINDS AND THE CORRELATION BETWEEN THE NUMERATOR AND D JASA 68
                                                                                                                           660
   THE MATHEMATICAL ANALYSIS OF AN EPIDEMIC WITH TWO KINDS OF
                                                                                                   SUSCEPTIBLES BIOCS6B
                                  NOTE ON A THEOREM OF KINGMAN AND A THEOREM OF CHUNG
                                                                                                                   AMS 66 1844
                        PROBABILISTIC COMPLETION OF A KNOCKOUT TOURNAMENT
                                                                                                                   AMS 66 495
                                                                                                                          583
                                     INFERENCE FROM A KNOCKOUT TOURNAMENT
                                                                                                                   AMS 6B
ENCE INTERVAL FOR THE MEAN
                                    ON THE COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFID AMS 68 1946
                                                                                                                  BIOKA64 219
                BAYES'S THEOREM AND THE USE OF PRIOR KNOWLEDGE IN REGRESSION ANALYSIS
                                                                                             MINIMAX ESTIMATION AMS 68
   OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN
                                                                                                                           492
     RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES ARE KNOWN
                                                                                    A NOTE ON LINEAR STRUCTURAL BIOKA67
                                                                                                                            670
NIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE KNOWN
SITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN
LE OBSERVATIONS ARE LOGNORMAL AND THE PRECISION H IS KNOWN
ARSON DENSITIES FOR APPROXIMATING A SKEW DEN BIOKAGE
LE SIZE IN TWO-ACTION PROBLEMS WHEN THE SAMP JASA 6B
                                                                              NOTE ON THE MOMENT-PROBLEM FOR U BIOKA56
                                                                                                                           224
                                                                                                                            559
                                                                                                                          653
RIBUTION OF THE ERRORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A SCALE PARAMETER /THE JOINT DIST BIOKAGI
                                                                                                                           125
ON ESTIMATING THE MEAN OF A NORMAL DISTRIBUTION WITH KNOWN COEFFICIENT OF VARIATION
                                                                                                         A NOTE JASA 68 1039
                                 THE UTILIZATION OF A KNOWN COEFFICIENT OF VARIATION IN THE ESTIMATION
PROCEDURE
                                                                                                                  JASA 64 1225
           THE DISTRIBUTION OF NONCENTRAL MEANS WITH KNOWN COVARIANCE
                                                                                                                   AMS 61 B74
        THE PERCENTILE POINTS OF DISTRIBUTIONS HAVING KNOWN CUMULANTS
                                                                                                                  TECH 60 209
      'THE PERCENTILE POINTS OF DISTRIBUTIONS HAVING KNOWN CUMULANTS'
                                                                                                         ERRATA, TECH 60 523
WHERE THE QUOTIENT OF THEIR COORDINATES FOLLOWS SOME KNOWN DISTRIBUTION ON BIVARIATE RANDOM VARIABLES
                                                                                                                  AMS 64 1673
IABLES WITH INFINITE EXPECTATI/ A SHORT PROOF OF A KNOWN LIMIT THEOREM FOR SUM OF INDEPENDENT RANDOM VAR AMS 69 1114
FOR THE SCALE PARAMETER OF A WEIBULL POPULATION WITH KNOWN SHAPE PARAMETER /ASED ON M ORDER STATISTICS. TECH 65 405
                  MEASUREMENTS MADE BY MATCHING WITH KNOWN STANDARDS
                                                                                                                  TECH 59 101
MEADUREMENTS MADE BY WALDTING WITH KNOWN VARIANCE
FOR DETERMINING THE MEAN OF A NORMAL POPULATION WITH KNOWN VARIANCE
OF BEST AND OUTLYING NORMAL POPULATIONS WITH KNOWN VARIANCES
OF THE BEST AMONGST THREE NORMAL POPULATIONS WITH KNOWN VARIANCES
OF THE BEST AMONGST THREE NORMAL POPULATIONS WITH KNOWN VARIANCES
ON THE CHOICE
                                                                                                                  AMS 63 574
                                                                                                                   AMS 67 1365
                                                                                                      DETECTION BIOKA61 457
                                                                                                   ON THE CHOICE BIOKA5B 436
   OF THE LARGEST MEAN OF K NORMAL POPULATIONS WITH KNOWN VARIANCES
                                                                                            INTERVAL ESTIMATION JASA 69
                                                                                                                            296
             DISEASE CLUSTERING, A GENERALIZATION OF KNOX'S APPROACH TO THE DETECTION OF SPACE-TIME INTERA BIOCSGB 541
CTIONS
                                      A REMARK ON THE KOLMOGOROFF-PETROVSKII CRITERION
                                                                                                                   AMS 69 1086
                                                  SOME KOLMOGOROFF-TYPE INEQUALITIES FOR BOUNDED RANDOM
VARIABLES
                                                                                                                  BIOKA67
                                                                                                                          641
CHARACTERISTIC PROPERTY
                                      A BEST POSSIBLE KOLMOGOROFF-TYPE INEQUALITY FOR MARTINGALES AND A
                                                                                                                  AMS 69
                                                                                                                           764
               ON THE PITMAN EFFICIENCY OF ONE-SIDED KOLMOGOROV AND SMIRNOV TESTS FOR NORMAL ALTERNATIONS
                                                                                                                   AMS 66 940
                                       ON THE CHAPMAN-KOLMOGOROV EQUATION
                                                                                                                   AMS 61 1333
             COLLAPSED MARKOV CHAINS AND THE CHAPMAN-KOLMOGOROV EQUATION
                                                                                                                   AMS 63 233
         A COMPARISON OF THE PEARSON CHI-SQUARE AND KOLMOGOROV GOODNESS-OF-FIT TESTS WITH RESPECT TO VALI JASA 65 854
                       TABLE OF PERCENTAGE POINTS OF KOLMOGOROV STATISTICS
                                                                                                                  JASA 56 111
                   EXACT BAHADUR EFFICIENCIES FOR THE KOLMOGOROV-SMIRNOV AND KUIPER ONE-SAMPLE AND TWO-SAMP
                                                                                                                  AMS 67 1475
 APPROXIMATE SAMPLING DISTRIBUTION OF THE TWO SAMPLE KOLMOGOROV-SMIRNOV CRITERION D-SUB-MN, M LESS THAN OR JASA 69 NO.4
                  ON THE ASYMPTOTIC EFFICIENCY OF THE KOLMOGOROV-SMIRNOV TEST
                                                                                                                  JASA 65 843
              ASYMPTOTIC EFFICIENCY OF THE TWO SAMPLE KOLMOGOROV-SMIRNOV TEST
                                                                                                                  JASA 67
                                                                                                                           932
VARIANCE UNKNOWN
                                                ON THE KOLMOGOROV-SMIRNOV TEST FOR NORMALITY WITH MEAN AND
                                                                                                                 JASA 67
                                                                                                                          399
ION WITH MEAN UNKNOWN
                                                 ON THE KOLMOGOROV-SMIRNOV TEST FOR THE EXPONENTIAL DISTRIBUT JASA 69
                                                                                                                           387
            ON THE ASYMPTOTIC POWER OF THE ONE-SAMPLE KOLMOGOROV-SMIRNOV TESTS
```

```
KOLMOCOROV-SMIRNOV TESTS AND RENYI'S MODIFICATION
                                                                                                                  BIOCS6B 1019
                                         SOME MODIFIED KOLMOGOROV-SMIRNOV TESTS OF APPROXIMATE HYPOTHESES
AND THEIR PROPERTIES
                                                                                                                   AMS 62 513
                                                        KOLMOGOROV-SMIRNOV TESTS OF FIT BASED ON SOME CENERAL JASA 68
                                                                                                                           919
   LOCAL ASYMPTOTIC POWER AND EFFICIENCY OF TESTS OF KOLMOGOROV-SMIRNOV TYPE
                                                                                                                   AMS 67 1705
        AN INEQUALITY CONCERNING TESTS OF FIT OF THE KOLMOGOROV-SMIRNOV TYPE
                                                                                                                   AMS 67 1240
     RESULTS FOR ONE-SIDED DISTRIBUTION TESTS OF THE KOLMOGOROV-SMIRNOV TYPE
                                                                                                      SOME EXACT
                                                                                                                   AMS 61 499
OF SIGNIFICAN/ THE CALCULATION OF DISTRIBUTIONS OF KOLMOGOROV-SMIRNOV TYPE STATISTICS INCLUDING A TABLE
                                                                                                                   AMS 68
                                                                                                                           233
                                      SEVERAL K-SAMPLE KOLMOGOROV-SMIROV TESTS
                                                                                                                   AMS 65 1019
                                                        KOLMOGOROV'S REMARK ON THE HOTELLING CANONICAL
                                                                                                                  BIOKA66 5B5
     FROM THE RELATION BETWEEN TWO STATISTICS OF THE KOLOMOGOROV-SMIRNOV TYPE
                                                                                                         RESULTS AMS 69 1833
                                                                                            /IBUTION OF THE COEF BIOKA65
FICIENT OF VARIATION, COMMENT ON A CRITICISM MADE BY KOOPMANS, OWEN AND ROSENBLATT
                                                                                                                          303
 ON MATRIX DIFFERENTIATION WITH SPECIAL REFERENCE TO KRONECKER MATRIX PRODUCTS
                                                                                                   SOME THEOREMS JASA 69
                                                                                                                           953
                         ASSOCIATION MATRICES AND THE KRONECKER PRODUCT OF DESIGNS
                                                                                                                   AMS 68
                                                                                                                           676
                SIMPLIFIED BETA-APPROXIMATIONS TO THE KRUSKAL-WALLIS H TEST
                                                                                                                  JASA 59
                                                                                                                           225
                A PARTIAL COEFFICIENT FOR GOODMAN AND KRUSKAL'S CAMMA
                                                                                                                  JASA 67
                                                                                                                           189
PRETATION OF THE/
                    A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S TAU AND KENDALL'S TAU, WITH A PARTIAL INTER JASA 62
                                                                                                                           B04
 BAHADUR EFFICIENCIES FOR THE KOLMOCOROV-SMIRNOV AND KUIPER ONE-SAMPLE AND TWO-SAMPLE STATISTICS
                                                                                                         EXACT AMS 67 1475
                       A NOTE ON RECIONS FOR TESTS OF KURTOSIS
                                                                                                                  BTOKA53 465
                                             A NOTE ON KURTOSIS
                                                                                                                  JRSSR64 111
                                 COMMENTS ON PAPER BY KURTZ, LINK, TUKEY AND WALLACE
                                                                                                                  TECH 65 163
  THE UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L
                                                                                                       A NOTE ON AMS 67 1296
PATIAL RELATIONSHIP AMONG EIGHT POPULATIONS ZEA MAYS L. UTILIZING INFORMATION FROM A DIALLEL MATING DESIGN BIOCS6B B67
                                              BALANCED L-RESTRICTIONAL PRIME POWERED LATTICE DESIGNS
                                                                                                                   AMS 67 1127
CYCLIC COLLINEATIONS FOR OBTAINING A BALANCED SET OF L-RESTRICTIONAL PRIME-POWERED LATTICE DESIGNS
                                                                                                                   AMS 67 1293
                                                     AN L-TO-THE-P CONVERGENCE THEOREM
                                                                                                                   AMS 69 106B
S, SON UTILISATION EN CENETIQUE ET SES RAPPORTS AVEC L'ANALYSE DISC/ L'ANALYSE EN COMPOSANTES PRINCIPALE BIOCS66
EN CENETIQUE ET SES RAPPORTS AVEC L'ANALYSE DISC/ L'ANALYSE EN COMPOSANTES PRINCIPALES, SON UTILISATION BIOCS66
                                                                                                                           343
                                                                                                                            343
ET LES VARI/ L'ETUDE DES COMMUNAUTES VEGETALES PAR L'ANALYSE STATISTIQUE DES LIAISONS ENTRE LES ESPECES BIOCS65
ET LES VARI/ L'ETUDE DES COMMUNAUTES VECETALES PAR L'ANALYSE STATISTIQUE DES LIAISONS ENTRE LES ESPECES BIOCS65
                                                                                                                           890
                                                                                                                           345
                                   LES MANQUANTS DANS L'ESSAI THERAPEUTIQUE
                                                                                                                  BIOCS67
                                                                                                                            145
STIQUE DES LIAISONS ENTRE LES ESPECES ET LES VARI/ L'ETUDE DES COMMUNAUTES VECETALES PAR L'ANALYSE STATI BIOCS65
STIQUE DES LIAISONS ENTRE LES ESPECES ET LES VARI/ L'ETUDE DES COMMUNAUTES VEGETALES PAR L'ANALYSE STATI BIOCS65
                                                                                                                            345
                                                                                                                            R90
           PONDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX SUR PLUSIEURS CARACTERES
                                                                                                                  BIOCS69
                                                                                                                            295
                                                        LABOR FORCE ENTRY AND ATTACHMENT OF YOUNG PEOPLE
CORR 66 1248
                                                                                                                  JASA 66
                                                                                                                           117
                                            THE FEMALE LABOR FORCE. A CASE STUDY IN THE INTERPRETATION OF
HISTORICAL STATISTICS
                                                                                                                  JASA 60
                                                                                                                            71
 COMPARISON OF A MODIFIED 'HANNAN' AND THE BUREAU OF LABOR STATISTICS
                                                                                                                A JASA 65
                                                                                                                           442
     OPTIMIZATION OF QUALITY CONTROL IN THE CHEMICAL LABORATORY
                                                                                                                  TECH 66
                                                                                                                            519
           THE STATISTICAL CONSULTANT IN A SCIENTIFIC LABORATORY
                                                                                                                  TECH 69
                                                                                                                           247
                       THE NEW DESIGN OF THE CANADIAN LABOUR FORCE SURVEY
                                                                                                                  JASA 67
                                                                                                                            421
                                                   THE LADY TASTING TEA, AND ALLIED TOPICS
                                                                                                                  JASA 59 776
                                   THE ESTIMATION OF A LAGGED REGRESSION RELATION
                                                                                                                  BIOKA67
                                                                                                                            409
                                                                                                                           2B9
                                            THE USE OF LACRANCE, MULTIPLIERS WITH RESPONSE SURFACES
                                                                                                                  TECH 59
TABLED PERCENTAGE POINTS
                                                        LACRANGIAN COEFFICIENTS FOR INTERPOLATION BETWEEN
                                                                                                                  BIOKA6B
                                                                                                                            19
     LOCALLY ASYMPTOTICALLY MOST STRINGENT TESTS AND LACRANGIAN MULTIPLIER TESTS OF LINEAR HYPOTHESES.
                                                                                                                  BIOKA65 459
       AN APPLICATION OF VARIABLE WEIGHT DISTRIBUTED LAGS
                                                                                                                  JASA 67 1277
                                                        LACUERRE SERIES FORMS OF NON-CENTRAL CHI-SQUARE AND F BIOKA65 415
                                            THE USE OF LAMBDA AS AN INDEX OF PRECISION
                                                                                                                  BIOCS69
                                                                                                                           174
ING DISTRIBUTIONS ARE EXPONENTIAL AND GAMMA OF ORDER LAMBDA RESPECTIVELY /HILE THE INTERARRIVAL AND SERV JRSSB66 336
MULTINOMIAL EXPERIMENTS, CORR. 66 1246
                                                        LAMP TESTS OF LINEAR AND LOGLINEAR HYPOTHESES IN
                                                                                                                  JASA 66
                                                                                                                           236
ON IN CONTINGENCY TABLES
                                                        LAMST AND THE HYPOTHESES OF NO THREE FACTOR INTERACTI JASA 69 207
                             RECENT EFFORTS TO IMPROVE LAND USE INFORMATION
                                                                                                                  JASA 66
  OF ZONAL POLYNOMIAL COEFFICIENTS BY THE USE OF THE LAPLACE-BELTRAMI OPERATOR
                                                                                                    CALCULATION AMS 6B 1711
ORMAL PRIO/ SERIAL SAMPLING ACCEPTANCE SCHEMES FOR LARGE BATCHES OF ITEMS WHERE THE MEAN QUALITY HAS A N BIOKA68
                                        ON LOOKING AT LARGE CORRELATION MATRICES
                                                                                                                  BIOKA69 249
 WHICH ARE NOT ATTRACTED TO THE NORMAL LAW
                                                    ON LARGE DEVIATION PROBLEMS FOR SUMS OF RANDOM VARIABLES AMS 67 1575
                                 ON THE PROBABILITY OF LARGE DEVIATIONS AND EXACT SLOPES
                                                                                                                   AMS 69 NO.6
NDED, INDEPENDENT RANDOM VA/
                                 ON THE PROBABILITY OF LARCE DEVIATIONS FROM THE EXPECTATION FOR SUMS OF BOU BIOKAG3
                                 ON THE PROBABILITY OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS
                                ON THE PROBABILITY OF LARCE DEVIATIONS OF FUNCTIONS OF SEVERAL EMPIRICAL CU
ON THE PROBABILITY OF LARCE DEVIATIONS OF THE MEAN FOR RANDOM VARIABLES IN
MULATIVE DISTRIBUTION FUNCT/
                                                                                                                   AMS 67
                                                                                                                           360
AN INTERVAL OF LENGTH ONE
                                                                                                                   AMS 65 2B0
                                                        LARCE DEVIATIONS THEORY IN EXPONENTIAL FAMILIES
                                                                                                                   AMS 68 1402
EFFICIENCY OF TESTS
                                         AN EXAMPLE OF LARCE DISCREPANCY BETWEEN MEASURES OF ASYMPTOTIC
                                                                                                                   AMS 6B 179
ISPLACED IN TIME BY INDEPENDENT RANDOM DEVIATIONS OF LARCE DISPERSION /NTERVALS BETWEEN RECULAR EVENTS D JRSSB61
     LOCAL CONVERCENCE OF MARTINGALES AND THE LAW OF LARGE NUMBERS
                                                                                                                   AMS 65 552
                                                                                                                   AMS 68 134B
                             A NOTE ON THE WEAK LAW OF LARGE NUMBERS
           ON THE RATE OF CONVERGENCE FOR THE LAW OF LARGE NUMBERS
                                                                                                                   AMS 69 NO.6
RATING FUNCTIONS AND CONVERGENCE RATES IN THE LAW OF LARGE NUMBERS
                                                                             SOME RESULTS RELATING MOMENT GENE
                                                                                                                   AMS 67
RATING FUNCTIONS AND CONVERGENCE RATES IN THE LAW OF LARGE NUMBERS SOME RESULTS RELATING MOMENT GENE AMS 67 742

D STATISTICS. XXI.ON THE EARLY HISTORY OF THE LAW OF LARGE NUMBERS /IES IN THE HISTORY OF PROBABILITY AN BIOKA6B 459
                                A BOUND FOR THE LAW OF LARGE NUMBERS FOR DISCRETE MARKOV PROCESSES
                                                                                                                   AMS 61
                                                                                                                           336
RANDOM VARI/ ON THE CONVERCENCE RATE OF THE LAW OF LARCE NUMBERS FOR LINEAR COMBINATIONS OF INDEPENDENT
                                                                                                                   AMS 65
                     CONVERGENCE RATES FOR THE LAW OF LARGE NUMBERS FOR LINEAR COMBINATIONS OF MARKOV PROCE
                                                                                                                   AMS 66
                                                                                                                           711
           AN EXPONENTIAL BOUND ON THE STRONC LAW OF LARCE NUMBERS FOR LINEAR STOCHASTIC PROCESSES WITH AB
                                  ON THE STRONG LAW OF LARGE NUMBERS FOR MARTINGALES
                                                                                                                   AMS 67
                                                                                                                            610
           SOME THEOREMS CONCERNING THE STRONG LAW OF LARCE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS
ABLE AND MIXING/ CONVERGENCE RATES FOR THE LAW OF LARGE NUMBERS FOR THE LINEAR COMBINATIONS OF EXCHANGE AMS 65 1B40
                                              A LAW OF LARGE NUMBERS FOR THE MAXIMUM IN A STATIONARY
                                                                                                                           93
GAUSSIAN SEQUENCE
                         CHI-SQUARE PROBABILITIES FOR LARCE NUMBERS OF DEGREES OF FREEDOM
                                                                                                                  BIOKA56
                                                                                                                             92
             ON CONVERGENCE TO INFINITY IN THE LAW OF LARCE NUMBERS, (ACKNOWLEDGEMENT OF PRIORITY 63 1111)
                                                                                                                           219
APPROXIMATION OF THE SIMPLE STOCHASTIC EPIDEMIC IN A LARGE POPULATION
                                                                                                A PERTURBATION
                                                                                                                  BTOKA68
                                                                                                                           199
         SURVIVAL PROBABILITIES OF NEW INVERSIONS IN LARGE POPULATIONS
                                                                                                                  BIOCS6B
             THE SIMPLE STOCHASTIC EPIDEMIC CURVE FOR LARCE POPULATIONS OF SUSCEPTIBLES
                                                                                                                  BTOKA65
 LIKELIHOODS AND COMPARISON WITH POINT ESTIMATES AND LARGE SAMPLE APPROXIMATIONS
                                                                                                     EXAMPLES OF JASA 69
RM WHICH IS RANDOMLY REPEATING IN GAUSSIAN NOISE
                                                       LARGE SAMPLE ESTIMATION OF AN UNKNOWN DISCRETE WAVEFO
                                                                                                                  AMS 65
                                                                                                                            489
                                            REMARKS ON LARGE SAMPLE ESTIMATORS FOR SOME DISCRETE DISTRIBUTIO TECH 67
                                                 ON THE LARGE SAMPLE PROPERTIES OF A GENERALIZED WILCOXON-
MANN-WHITNEY STATISTIC
                                                                                                                   AMS 67
MATION FOR DISCRIMINATION BETWEEN TWO COMPOSITE/ A LARGE SAMPLE SEQUENTIAL TEST, USING CONCOMITANT INFOR JASA 66
```

	LARCE SAMPLE SIMULTANEOUS CONFIDENCE INTERVALS FOR	TECH 64	191
	LARCE SAMPLE TABLES OF PERCENTAGE POINTS FOR HARTLEY'		487
	LARCE SAMPLE TEST FOR THE INDEPENDENCE OF TWO RENEWAL		
THE LINEAR HYPOTHESIS AND		AMS 64	773
A NOTE ON QUANTILES IN	LARCE SAMPLES	AMS 66	
A NOTE ON QUANTILES IN OF EXTREME-VALUE DATA BY SAMPLE QUANTILES FOR VERY ICIENT ESTIMATES AND OPTIMUM INFERENCE PROCEDURES IN	LARCE SAMPLES ANALYSIS		877
ICIENT ESTIMATES AND UPTIMUM INFERENCE PROCEDURES IN	LARCE SCALE SURVEY THE USE OF SYSTEMATIC	JRSSB62	46
FOR A POPULATION MEAN WHICH REDUCES THE EFFECT OF			
UNCERTAIN CONCENTRATION A	LARCE SAMPLE BIOASSAY DESIGN WITH RANDOM DOSES AND	BIOKA55	
VARIABLE IS FALLIBLE	LARGE-SAMPLE COVARIANCE ANALYSIS WHEN THE CONTROL	JASA 60	
	LARGE-SAMPLE ESTIMATION OF PARAMETERS FOR AUTORECRESS		
		BIOKA61	
		JRSSB62	
RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. III. SOME	LARGE-SAMPLE RESULTS ON ESTIMATION AND POWER FOR A ME	BIOKA55	450
	LARGE-SAMPLE SIGN TESTS FOR TREND IN DISPERSION	BIOKA66	2B9
ESTIMATION OF THE	LARCER TRANSLATION PARAMETER	AMS 68	502
PROCEDURES FOR SELECTING THE T POPULATION WITH THE			
	LARGEST ALPHA-QUANTILE /PARAMETRIC PROCEDURES FOR S		
	LARGEST AND FOR SMALLEST OF A SET OF INDEPENDENT OBSE		
	LARGEST CANONICAL CORRELATION COEFFICIENT	SASJ 69	
	LARGEST GHARACTERISTIC ROOT OF A MATRIX IN MULTIVARIA		
	LARGEST GLUSTERS AND SMALLEST INTERVALS SOME PROBA		
	LARGEST LATENT ROOT AND THE GORRESPONDING LATENT VECT		
	LARGEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF T LARCEST LATENT ROOT OF THE COVARIANCE MATRIX	AMS 67	
TIAL PROCEDURE FOR SELECTING THE POPULATION WITH THE			
	LARGEST MEAN OF K NORMAL POPULATIONS WITH KNOWN VARIA		296
	LARGEST MEAN WHEN COMPARISONS CAN BE MADE ONLY IN PAI		
A SEQUENTIAL PROCEDURE FOR SELECTING THE		AMS 68	
	LARCEST OF K NORMAL POPULATION MEANS (WITH DISCUSSION		1
		BIOKA64	270
	LARGEST OF SIX ROOTS OF A MATRIX IN MULTIVARIATE	BIOKA59	
	LARGEST OF TWO NORMAL MEANS		
	LARGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NUL		
	LARGEST OR THE SMALLEST ROOT OF A MATRIX IN MULTIVARI		
	LARGEST ROOT OF A MATRIX IN MULTIVARIATE ANALYSIS	AMS 67	
	LARGEST ROOT OF A MATRIX IN MULTIVARIATE ANALYSIS LARGEST VARIANCE RATIO S-SQUARE-MAX-OVER-S-SQUARE-SUB	BIOKA67	
	LAST FIFTY YEARS OF STATISTICAL METHODOLOGY		
	LAST RETURN TO EQUILIBRIUM IN A COIN TOSSING GAME	AMS 64	
	LATENT AND INFECTIOUS PERIODS OF MEASLES, I. FAMILIES		15
	LATENT AND INFECTIOUS PERIODS OF MEASLES, II. FAMILIE		322
	LATENT CLASS ANALYSIS AND DIFFERENTIAL MORTALITY	JASA 62	430
	LATENT ROOT AND THE CORRESPONDING LATENT VECTOR FOR P		
	LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE GENER		
		BIOKA66	
	LATENT ROOT OF THE COVARIANCE MATRIX	AMS 67	
	LATENT ROOTS AND VECTORS WITH SPECIAL REFERENCE TO TH		97
	LATENT ROOTS DERIVED FROM NORMAL SAMPLES LATENT ROOTS OF A SYMMETRIC RANDOM MATRIX UNDER CENER	AMS 64	
	LATENT ROOTS OF CERTAIN STOCHASTIC MATRIX ONDER CENER	BIOKA62	
	LATENT ROOTS OF COVARIANCE AND CORRELATION MATRICES		
	LATENT ROOTS OF THE ESTIMATED COVARIANCE MATRIX	AMS 65	
	LATENT VECTORS FOR PRINCIPAL COMPONENTS ANALYSIS	AMS 65	
	LATENT VECTORS OF RANDOM SYMMETRIC MATRICES	BIOKA61	
THREE FACTOR ADDITIVE DESIGNS MORE GENERAL THAN THE	LATIN SQUARE	TECH 62	1B7
THE MODIFIED	LATIN SQUARE	JRSSB57	
ALTERNATIVES TO A	LATIN SQUARE	BIOCS68	
TERPRETATION OF THE EFFECTS OF NON-ADDITIVITY IN THE	LATIN SQUARE THE IN	BIOKA58	
ARTIALLY RALANCED INCOMPLETE RICCY DESIGNS WITH SOME	LATÎN SQUARE LATÎN SQUARE THE ÎN LATÎN SQUARE DESÎGN LATÎN SQUARE DESÎGN PROPERTIES A NEW FAMILY OF P	JASA 57	218 571
OUNTERBALANCING OF IMMEDIATE SEQUENTIAL EFFECTS IN A	LATIN SQUARE DESIGN FROTERILES A NEW FAMILY OF F	JASA 58	525
	LATIN SQUARE DESIGN, CORK. 3B 1030 COMPLETE C		
NEW FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE		TECH 67	
SOME NON-ORTHOGONAL PARTITIONS OF 4X4, 5X5, AND 6X6	LATIN SQUARES	AMS 66	666
SEQUENTIAL COUNTERBALANCING IN		AMS 66	
ORY TO THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL	LATIN SQUARES ON THE APPLICATION OF CROUP THE		
METHODS OF CONSTRUCTING SETS OF MUTUALLY ORTHOGONAL	LATIN SQUARES USING A COMPUTER . ON	TECH 60	
METHODS OF CONSTRUCTING SETS OF MUTUALLY ORTHOGONAL INTERACTION ANALYSIS OF	LATIN SQUARES USING A COMPUTER: 11 ON LATIN SQUARES WITHIN A CERTAIN TYPE OF ROW-COLUMN	TECH 61 TECH 59	
	LATTER /ARITY BETWEEN GOODMAN AND KRUSKAL'S TAU AND		
	LATTER /RIBUTIONS AND PRIOR DISTRIBUTIONS, AN EXAMP		
DENSITY WHICH IS MEASURABLE WITH RESPECT TO A SIGMA-			
CONDITIONAL EXPECTATION GIVEN A SIGMA-		AMS 65	
	-LATTICE DESIGN ESTIMATED REGRESSION FUNCTION OF T		
	-LATTICE DESIGN FOR EXPERIMENTS WITH MIXTURES	JRSSB69	
FACTORIAL TREATMENTS IN RECTANGULAR		JASA 61	
GENERAL THEORY OF PRIME-POWER		JASA 65	
BALANCED L-RESTRICTIONAL PRIME POWERED		AMS 67	
NING A BALANCED SET OF L-RESTRICTIONAL DRIME DOWNERDED	MOLLING MENTIONS OF CITAL COLLINGALIUNG FUR UBIAL		
NING A BALANCED SET OF L-RESTRICTIONAL PRIME-POWERED SIMPLEX		TECH 62	
SIMPLEX	LATTICE DESIGNS FOR MUTICOMPONENT SYSTEMS	TECH 62 AMS 68	
SIMPLEX THE INVARIANCE PRINCIPLE FOR A	LATTICE DESIGNS FOR MUTICOMPONENT SYSTEMS		382
SIMPLEX THE INVARIANCE PRINCIPLE FOR A THE ERRORS OF GENERALIZED	LATTICE DESIGNS FOR MUTICOMPONENT SYSTEMS LATTICE OF RANDOM VARIABLES LATTICE SAMPLING LATTICE SQUARE DESIGN	AMS 68 JRSSB54 JASA 66	382 140 821
SIMPLEX THE INVARIANCE PRINCIPLE FOR A THE ERRORS OF	LATTICE DESIGNS FOR MUTICOMPONENT SYSTEMS LATTICE OF RANDOM VARIABLES LATTICE SAMPLING LATTICE SQUARE DESIGN	AMS 68 JRSSB54 JASA 66	382 140 821

LAT - LEV TITLE WORD INDEX

```
THEORY OF PROBABILITY DISTRIBUTIONS OF POINTS ON A LATTICE' 58 256
                                                                                              CORRECTIONS TO 'THE AMS 61 619
RESENTATION FOR CONDITIONAL EXPECTATIONS GIVEN SIGMA-LATTICES
                                                                                                              A REP AMS 66 1279
    SOME STATISTICAL PROBLEMS CONNECTED WITH CRYSTAL LATTICES (WITH DISCUSSION)
                                                                                                                     JRSSB64 367
              ESTIMATING A MIXED-EXPONENTIAL RESPONSE LAW
                                                                                                                              493
                                                                                                                     JASA 61
                         AN EXTENSION OF THE ARC SINE LAW
                                                                                                                      AMS 62
                                                                                                                              681
           ON A GENERALIZATION OF THE FINITE ARC-SINE LAW
                                                                                                                      AMS 62 909
          SOME INVARIANT LAWS RELATED TO THE ARC SINE LAW
                                                                                                                      AMS 68 258
                                    A NOTE ON THE WEAK LAW
                                                                                                                      AMS 6B 2I59
CHARACTERIZING THE NORMAL DISTRIBUTION BY STUDENT'S LAW
                                                                                                                 ON BIOKA66
                                                                                                                              603
     FORM OF THE BOREL-CANTELLI LEMMA AND THE STRONG LAW
                                                                                                          A SHARPER AMS 65
           THE CHI SQUARE DISTRIBUTION BY THE STUDENT LAW
                                                                                                 ON CHARACTERIZING JASA 66
NDOM VARIABLES WHICH ARE NOT ATTRACTED TO THE NORMAL LAW ON LARGE DEVIATION PROBLEMS FOR SUMS OF RA AMS 67 1575
                                                                                                                             23
   ATIONALITY A SUBJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' TEST FOR APPROXIMATE NUMERICAL JASA 69
DISCUSSION OF 'A SUBJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' TEST FOR APPROXIMATE NUMERICAL JASA 69
 RATIONALITY
                                                                                                                      AMS 64 424
                                                 A LIMIT LAW CONCERNING MOVING AVERAGES
                     A GENERALIZATION OF THE LOGISTIC LAW OF GROWTH
                                                                                                                     BIOCS69
                                                                                                                              577
             LOCAL CONVERGENCE OF MARTINGALES AND THE LAW OF LARGE NUMBERS
                                                                                                                      AMS 65
                                                                                                                              552
                                    A NOTE ON THE WEAK LAW OF LARGE NUMBERS
                                                                                                                      AMS 68 I348
                   ON THE RATE OF CONVERGENCE FOR THE LAW OF LARGE NUMBERS
                                                                                                                      AMS 69 NO 6
   GENERATING FUNCTIONS AND CONVERGENCE RATES IN THE LAW OF LARGE NUMBERS
                                                                                    SOME RESULTS RELATING MOMENT AMS 67
                                                                                                                              742
LITY AND STATISTICS. XXI.ON THE EARLY HISTORY OF THE LAW OF LARGE NUMBERS
                                                                                  /IES IN THE HISTORY OF PROBABI BIOKA68
                                                                                                                              459
                                       A BOUND FOR THE LAW OF LARGE NUMBERS FOR DISCRETE MARKOV PROCESSES
                                                                                                                      AMS 6T
                                                                                                                              336
ENDENT RANDOM VARI/ ON THE CONVERGENCE RATE OF THE LAW OF LARGE NUMBERS FOR LINEAR COMBINATIONS OF INDEP
V PROCESSES CONVERGENCE RATES FOR THE LAW OF LARGE NUMBERS FOR LINEAR COMBINATIONS OF MARKO
                                                                                                                      AMS 65 559
                                                                                                                      AMS 66
                                                                                                                              7 T T
WITH ABSOLUTEL/ AN EXPONENTIAL BOUND ON THE STRONG LAW OF LARGE NUMBERS FOR LINEAR STOCHASTIC PROCESSES
                                                                                                                      AMS 61 583
                                         ON THE STRONG LAW OF LARGE NUMBERS FOR MARTINGALES
                                                                                                                      AMS 67
                                                                                                                              610
                  SOME THEOREMS CONCERNING THE STRONG LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAIN
                                                                                                                      AMS 64 566
XCHANGEABLE AND MIXING/ CONVERGENCE RATES FOR THE LAW OF LARGE NUMBERS FOR THE LINEAR COMBINATIONS OF E
                                                                                                                      AMS 65 TB40
                                                       A LAW OF LARGE NUMBERS FOR THE MAXIMUM IN A STATIONARY
GAUSSIAN SEQUENCE
                                                                                                                              93
                                                                                                                      AMS 62
                    ON CONVERGENCE TO INFINITY IN THE LAW OF LARGE NUMBERS, (ACKNOWLEDGEMENT OF PRIORITY 63
 T111)
                                                                                                                      AMS 63
                                                                                                                              219
                                      A REMARK ON THE LAW OF THE ITERATED LOGARITHM
                                                                                                                      AMS 67 599
                            CONVERGENCE RATES FOR THE LAW OF THE ITERATED LOGARITHM
                                                                                                                      AMS 68 T479
                                             THE LAW OF THE ITERATED LOGARITHM FOR MIXING STOCHASTIC
A DELICATE LAW OF THE ITERATED LOGARITHM FOR NON-DECREASING STAB
PROCESSES
                                                                                                                      AMS 69 NO.6
LE PROCESSES (ADDENDUM, 69 1855)
                                                                                                                      AMS 68 1B1B
                   A COMPARISON OF TESTS OF THE WILKS-LAWLEY HYPOTHESIS IN MULTIVARIATE ANALYSIS.
                                                                                                                     BIOKA65 I49
   CONVOLUTIONS OF DISTRIBUTIONS ATTRACTED TO STABLE LAWS
                                                                                                                      AMS 68 I381
                                                                                                 EXACT CONFIDENCE BIOKA64 347
 REGIONS FOR THE PARAMETERS IN NON-LINEAR REGRESSION LAWS
                            ON INFINITELY DIVISIBLE LAWS AND A RENEWAL THEOREM FOR NON-NEGATIVE RANDOM
                                                                                                                     AMS 68 139
VARIABLES
                                         SOME INVARIANT LAWS RELATED TO THE ARC SINE LAW
                                                                                                                      AMS 68 258
          A NOTE ON OPTIMUM ALLOCATION FOR A ONE-WAY LAYOUT
                                                                                                                     BIOKA62
                                                                                                                              563
     AN APPROXIMATE METHOD OF ANALYSIS FOR A TWO-WAY LAYOUT
                                                                                                                    BIOCS65 376
RIATE COVARIANCE COMPONENTS FOR THE BALANCED ONE-WAY LAYOUT
                                                                       MAXIMUM LIKELIHOOD ESTIMATION OF MULTIVA AMS 69 IIOO
  MAIN-EFFECT ANALYSIS OF THE GENERAL NON-ORTHOGONAL LAYOUT WITH ANY NUMBER OF FACTORS
                                                                                                                      AMS 65
                                                                                                                             BB
 ON SOME OPTIMUM NONPARAMETRIC PROCEDURES IN TWO-WAY LAYOUTS
                                                                                                                     JASA 67 1214
   ON A CLASS OF ALIGNED RANK ORDER TESTS IN TWO-WAY LAYOUTS
                                                                                                                      AMS 68 1115
OF 'SPLIT PLOT' EXPERIMENTS IN COMPLETELY RANDOMIZED LAYOUTS
                                                                      SOME ASPECTS OF THE STATISTICAL ANALYSIS JASA 69
    THE ENUMERATION OF ELECTION RETURNS BY NUMBER OF LEAD POSITIONS
                                                                                                                      AMS 64 369
                            ON A THEOREM OF CRAMER AND LEADBETTER
                                                                                                                      AMS 66
                                                                                                                              6B2
                                                                                                                      AMS 64 1819
                           CONVERGENCE PROPERTIES OF A LEARNING ALGORITHM
                                             A NOTE ON 'LEARNING CURVES'
                                                                                                                     JASA 69 NO.4
    BAYESIAN MODEL OF DECISION-MAKING AS A RESULT OF LEARNING FROM EXPERIENCE
                                                                                                                      AMS 69 NO.6
            ESTIMATION OF AN ACCELERATED DEPRECIATION LEARNING FUNCTION
                                                                                                                     JASA 66 995
                                                                                                                    TECH 6B 379
                                                       A LEARNING MODEL FOR PROCESSES WITH TOOL WEAR
    DISTRIBUTIONS ASSOCIATED WITH CERTAIN STOCHASTIC LEARNING MODELS
                                                                                                           LIMITING AMS 62 12B1
      DISTRIBUTIONS FOR SOME RANDOM WALKS ARISING IN LEARNING MODELS
                                                                                                           LIMITING AMS 66 393
                            LINEAR CURVE FITTING USING LEAST DEVIATIONS
                                                                                                                     JASA 5B
                                                                                                                              II8
                                             THE USE OF LEAST FAVORABLE DISTRIBUTIONS IN TESTING COMPOSITE
HYPOTHESES
                                                                                                                     AMS 6T T034
                                       NOTE ON STEPWISE LEAST SQUARES
                                                                                                                     JASA 6I
                                           THE LOGIC OF LEAST SQUARES
                                                                                                                    JRSSB63
                                                                                                                             T24
                        FOUNDATIONS FOR THE THEORY OF LEAST SQUARES
JRSSB69
                                                                                                                               89
                                                                                                                              269
TIGATION OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST SQUARES (WITH DISCUSSION) TOPICS IN THE INVES JRSSB67
UNIFIED LEAST SQUARES ANALYSIS JASA 65 523

IONS AND ERROR STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST SQUARES AND ANALYSIS OF VARIANCE PROCEDURES ARE JASA 69 NO.4

LEAST SQUARES AND BEST UNBIASED ESTIMATES AMS 62 266

SSION PARAMETERS. (ACKNOWLEDGEMENT/ COMPARISON OF LEAST SQUARES AND MINIMUM VARIANCE ESTIMATES OF REGRE AMS 62 462
         THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST SQUARES AND TWO-STAGE LEAST SQUARES ESTIMATORS JASA 69
EGRESSION

A THEOREM ON LEAST SQUARES AND VECTOR CORRELATION IN MULTIVARIATE

JASA 69
                                                                                                                              923
LINEAR REGRESSION
                                                                                                                              413
QUERY. BAULE'S EQUATION +(LEAST SQUARES ESTIMATE OF SOIL CONTENT)

BIOSS69

RESTRICTED LOCATION FOR THE STATIONARY POINT

LEAST SQUARES ESTIMATES AND PARABOLIC REGRESSION WITH JASA 64
                                                                                                                              159
                                                                                                                              564
                                              NONLINEAR LEAST SQUARES ESTIMATION
                                                                                                                     AMS 65
                                                                                                                              638
                                                         LEAST SQUARES ESTIMATION OF LOCATION AND SCALE PARAME BIOKA52
TERS USING ORDER STATISTICS
                                                                                                                               88
                                                 ON THE LEAST SQUARES ESTIMATION OF NON-LINEAR RELATIONS LEAST SQUARES ESTIMATION OF THE COMPONENTS OF A
                                                                                                                     AMS 69
                                                                                                                              462
SYMMETRIC MATRIX
                                                                                                                     TECH 66
                                                                                                                              360
                                       ON A RESTRICTED LEAST SQUARES ESTIMATOR
                                                                                                                    JASA 69
                                                                                                                             964
HE 'PREDICTOR' VARIABLES A/ SOME PROPERTIES OF THE LEAST SQUARES ESTIMATOR IN REGRESSION ANALYSIS WHEN T AMS 62 1365
                      ON THE ASYMPTOTIC EFFICIENCY OF LEAST SQUARES ESTIMATORS
                                                                                                                     AMS 66 1676
                  ASYMPTOTIC PROPERTIES OF NON-LINEAR LEAST SQUARES ESTIMATORS
                                                                                                                     AMS 69 633
DISTRIBUTION OF ORDINARY LEAST SQUARES AND TWO-STAGE LEAST SQUARES ESTIMATORS
                                                                                              THE EXACT SAMPLING JASA 69 923
SSIONS ASYMPTOTIC NORMALITY AND CONSISTENCY OF THE LEAST SQUARES ESTIMATORS FOR FAMILIES OF LINEAR REGRE AMS 63 447
REPLICATION DESIGNS
                      GENERALIZED LEAST SQUARES ESTIMATORS FOR RANDOMIZED FRAUTIUNAL AMS 64
WHEN ARE GAUSS-MARKOV AND LEAST SQUARES ESTIMATORS IDENTICAL A COORDINATE-FREE AMS 68
                                            GENERALIZED LEAST SQUARES ESTIMATORS FOR RANDOMIZED FRACTIONAL
                                                                                                                     AMS 64 696
                                                                                                                               70
                                          A THEOREM ON LEAST SQUARES IN MULTIVARIATE LINEAR REGRESSION JASA 67 1494
EST AND SIMPLE LEAST SQUARES LINEAR ESTIMATORS IN LINEAR MODELS / AMS 67 1092
NON-NEGATIVE COVARIANCE MATRICES AND BEST AND SIMPLE LEAST SQUARES LINEAR ESTIMATORS IN LINEAR MODELS
OM THE POINT OF VIEW OF THE USER AN APPRAISAL OF LEAST SQUARES PROGRAMS FOR THE ELECTRONIC COMPUTER FR JASA 67 819
```

4.1.4	DE ROLL TIPEL	2111	
LINEAR	LEAST SQUARES REGRESSION	AMS 67	1679
TESTING FOR SERIAL CORRELATION IN		BIOKA57	57
TIME SERIES	LEAST SQUARES REGRESSION ANALYSIS FOR TREND-REDUCED	JRSSB55	91
PROGRAMMING RESTRICTED	LEAST SQUARES REGRESSION AND CONVEX QUADRATIC	TECH 69	NO.4
	LEAST SQUARES REGRESSION COEFFICIENTS COMPARI		
	LEAST SQUARES REGRESSION INVOLVING TREND-REDUCED MARK		105
TESTING FOR SERIAL CORRELATION IN		BIOKA51	159
CONDITIONS FOR OPTIMALITY AND VALIDITY AND SIMPLE		AMS 69	
	LEAST SQUARES TYPE QUADRATIC FORMS /LEMMA FOR PROVI		969 447
	LEAST SQUARES WHEN THE PARAMETERS ARE STOCHASTIC AND LEAST SQUARES WITH INSUFFICIENT OBSERVATIONS, CORR.	JASA 64	-
		JASA 61	998
		JRSSB67	101
FACTORIZATION OF MATRICES BY		BIOKA62	239
HIPS (WITH DISCUSSION) A GENERALIZED	LEAST-SQUARES APPROACH TO LINEAR FUNCTIONAL RELATIONS	JRSSB66	278
		JRSSB68	490
A NOTE ON THE EFFICIENCY OF		JRSSB6B	284
		BIOKA53	
A NECESSARY AND SUFFICIENT CONDITION THAT ORDINARY	LEAST-SQUARES ESTIMATION OF A SUBVECTOR OF PARAMETERS	JASA 67	
		BIOKA68	313
	LEAST-SQUARES FITTING OF A POLYNOMIAL CONSTRAINED TO		113
SUBSIDIARY SEQUENCES FOR SOLVING LESER'S		JRSSB62	112
	LEAST-SQUARES PROBLEMS AND THE ROBUSTNESS OF THE F-TE		В3
TESTS FOR SPECIFICATION ERRORS IN CLASSICAL LINEAR	LEAST-SQUARES REGRESSION ANALYSIS	JRSSB69	NO.2
	LEAST-SQUARES RESIDUALS TESTS FOR SERIAL CORRELATIO		1
TIME SERIES ANALYSIS BY MODIFIED		JASA 66	152
REVOLUTION IN STATISTICS (THE FIRST FISHER MEMORIAL			233
	LECTURE, KARL PEARSON, 1B57-1957 LECTURES BY P.L. HSU /BIANS OF CERTAIN MATRIX TRANS	BIOKA57	303 345
OBITUARY, SULLY		BIOCS67	366
	-LEE-FISHER FUNCTIONS OF SINGLY TRUNCATED NORMAL DISTR		219
	LEFT OF THE I'TH ORDER STATISTIC FOR ARBITRARY DISTRI		644
SON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE		BIOKA68	559
QUASI-STATIONARY BEHAVIOUR OF A		AMS 69	532
UTION OF THE MANN-WHITNEY-WILCOXON U-STATISTIC UNDER DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER			666 284
	LEHMANN ALTERNATIVES CORR. 67 1309 STOPPING TIME	AMS 66	
	-LEHMANN ESTIMATES FOR SHIFT		174
ON THE HODGES AND	LEHMANN SHIFT ESTIMATOR IN THE TWO SAMPLE PROBLEM	AMS 66	1814
THE SMALL SAMPLE PROPERTIES OF A TWO SAMPLE TEST OF			345
	LEHMANN'S TEST FOR HOMOGENEITY OF VARIANCES	AMS 69	
THE MOMENTS OF THE TESTS I. A GENERALIZATION OF NEYMAN PEARSON'S	LEIPNIK DISTRIBUTION LEMMA ON SLIPPAGE	BIOKA57	270
	LEMMA AND ITS APPLICATIONS TO MULTIVARIATE DISTRIBUTI		671
A SHARPER FORM OF THE BOREL-CANTELLI		AMS 65	800
A COMBINATORIAL	LEMMA FOR COMPLEX NUMBERS	AMS 61	901
	LEMMA FOR MONOTONE LIKELIHOOD RATIO FAMILIES	AMS 67	611
	LEMMA FOR MULTIPLE INFERENCE	AMS 65	
	LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH A LENGTH AND ITS IMPORTANCE FOR THE STUDY OF QUANTITATI		969 222
	LENGTH CONFIDENCE INTERVALS	AMS 63	
	LENGTH CONFIDENCE INTERVALS FOR THE P-POINT OF A	AMS 66	581
DISTRIBUTION FUNCTION, III BOUNDED	LENGTH CONFIDENCE INTERVALS FOR THE P-POINT OF A	AMS 66	586
	LENGTH CONFIDENCE INTERVALS FOR THE ZERO OF A	AMS 62	237
	LENGTH DISTRIBUTION FOR QUEUEING SYSTEMS WITH FINITE		190
	LENGTH FOR THE BEHRENS-FISHER PROBLEM LENGTH K ABOVE AND BELOW MEDIAN	AMS 67 TECH 67	682
	LENGTH OF A CUMULATIVE SUM SCHEME /RE FOR DETERMINI		263
	LENGTH OF A CURVE	BIOKA66	359
EXPECTED ARC	LENGTH OF A GAUSSIAN PROCESS ON A FINITE INTERVAL	JRSSB56	257
		JASA 61	
MORE ON PROPORTIONAL SAMPLING IN LIFE	LENGTH OF CONFIDENCE INTERVALS	JASA 62 TECH 67	
TO THE POWER OF N-R DESIGNS HAVING WORDS OF EQUAL			
	LENGTHS IN CUMULATIVE CHART QUALITY CONTROL SCHEMES		
(CORR. 63 500) ON THE	LENGTHS OF INTERVALS IN A STATIONARY POINT PROCESS	JRSSB62	364
	LEPTOKURTOSIS /UTIONS OF BIVARIATE T-SQUARE AND HOM		
	LES ESPECES ET LES VARIABLES ECOLOGIQUES, PRINCIPES F		
GETALES PAR L'ANALISE STATISTIQUE DES LIAISONS ENTRE			
SUBSIDIARY SEQUENCES FOR SOLVING	LES ESPECES ET LES VARIABLES ECOLOGIQUES, UN EXEMPLE	RIUCSEZ	
	LES MANQUANTS DANS L'ESSAI THERAPEUTIQUE	BIOCS67 JRSSB62	
	LES MANQUANTS DANS L'ESSAI THERAPEUTIQUE LESER'S LEAST-SQUARES GRADUATION EQUATIONS		55
TWO SAMPLE KOLMOGOROV-SMIRNOV CRITERION D-SUB-MN, N	LES MANQUANTS DANS L'ESSAI THERAPEUTIQUE LESER'S LEAST-SQUARES GRADUATION EQUATIONS LESINGS. (SUMMARY OF PAPERS) LESS THAN OR EQUAL TO N /MPLING DISTRIBUTION OF THE	JRSSB62 SASJ 6B JASA 69	NO.4
TWO SAMPLE KOLMOGOROV-SMIRNOV CRITERION D-SUB-MN, N AND CONFIDENCE LIMITS, FOR THE PROBABILITY THAT Y IS	LES MANQUANTS DANS L'ESSAI THERAPEUTIQUE LESER'S LEAST-SQUARES CRADUATION EQUATIONS LESINGS. (SUMMARY OF PAPERS) LESS THAN OR EQUAL TO N /MPLING DISTRIBUTION OF THE LESS THAN X, WHEN X AND Y ARE NORMAL /ENCE BOUNDS,	JRSSB62 SASJ 6B JASA 69 JASA 64	NO.4 906
TWO SAMPLE KOLMOGOROV-SMIRNOV CRITERION D-SUB-MN, M AND CONFIDENCE LIMITS, FOR THE PROBABILITY THAT Y IS THE ROBBINS-MONRO METHOD FOR ESTIMATING THE MEDIAN	LES MANQUANTS DANS L'ESSAI THERAPEUTIQUE LESER'S LEAST-SQUARES CRADUATION EQUATIONS LESINGS. (SUMMARY OF PAPERS) LESS THAN OR EQUAL TO N /MPLING DISTRIBUTION OF THE LESS THAN X, WHEN X AND Y ARE NORMAL /ENCE BOUNDS, LETHAL DOSE	JRSSB62 SASJ 6B JASA 69 JASA 64 JRSSB65	NO.4 906 2B
TWO SAMPLE KOLMOGOROV-SMIRNOV CRITERION D-SUB-MN, M AND CONFIDENCE LIMITS. FOR THE PROBABILITY THAT Y IS THE ROBBINS-MONRO METHOD FOR ESTIMATING THE MEDIAN MARK TWAIN AND THE QUINTUS CURTIUS SNODGRASS	LES MANQUANTS DANS L'ESSAI THERAPEUTIQUE LESER'S LEAST-SQUARES GRADUATION EQUATIONS LESINGS. (SUMMARY OF PAPERS) LESS THAN OR EQUAL TO N /MPLING DISTRIBUTION OF THE LESS THAN X, WHEN X AND Y ARE NORMAL /ENCE BOUNDS, LETHAL DOSE LETTERS, A STATISTICAL TEST OF AUTHORSHIP	JRSSB62 SASJ 6B JASA 69 JASA 64 JRSSB65 JASA 63	NO.4 906 2B 85
TWO SAMPLE KOLMOGOROV-SMIRNOV CRITERION D-SUB-MN, N AND CONFIDENCE LIMITS, FOR THE PROBABILITY THAT Y IS THE ROBBINS-MONRO METHOD FOR ESTIMATING THE MEDIAN MARK TWAIN AND THE QUINTUS CURTIUS SNOOGRASS NCY	LES MANQUANTS DANS L'ESSAI THERAPEUTIQUE LESER'S LEAST-SQUARES CRADUATION EQUATIONS LESINGS. (SUMMARY OF PAPERS) LESS THAN OR EQUAL TO N /MPLING DISTRIBUTION OF THE LESS THAN X, WHEN X AND Y ARE NORMAL /ENCE BOUNDS, LETHAL DOSE	JRSSB62 SASJ 6B JASA 69 JASA 64 JRSSB65 JASA 63 JASA 69	NO.4 906 2B 85 971
TWO SAMPLE KOLMOGOROV-SMIRNOV CRITERION D-SUB-MN, N AND CONFIDENCE LIMITS, FOR THE PROBABILITY THAT Y IS THE ROBBINS-MONRO METHOD FOR ESTIMATING THE MEDIAN MARK TWAIN AND THE QUINTUS CURTIUS SNOOGRASS NCY	LES MANQUANTS DANS L'ESSAI THERAPEUTIQUE LESER'S LEAST-SQUARES CRADUATION EQUATIONS LESINGS. (SUMMARY OF PAPERS) LESS THAN OR EQUAL TO N /MPLING DISTRIBUTION OF THE LESS THAN X, WHEN X AND Y ARE NORMAL /ENCE BOUNDS, LETHAL DOSE LETTERS, A STATISTICAL TEST OF AUTHORSHIP LEVEL AND OTHER SMALL SAMPLE MEASURES OF TEST EFFICIE LEVEL AS A SENSITIVITY INDEX FOR TEST STATISTICS	JRSSB62 SASJ 6B JASA 69 JASA 64 JRSSB65 JASA 63 JASA 69	NO.4 906 2B 85 971 420
TWO SAMPLE KOLMOGOROV-SMIRNOV CRITERION D-SUB-MN, MAND CONFIDENCE LIMITS, FOR THE PROBABILITY THAT Y IS THE ROBBINS-MONRO METHOD FOR ESTIMATING THE MEDIAN MARK TWAIN AND THE QUINTUS CURTIUS SNODGRASS NCY THE MEDIAN SIGNIFICANCE EXPECTED SIGNIFICANCE THE MOMENTS OF THE NUMBER OF CROSSINGS OF A ON A LIMIT DISTRIBUTION OF HIGH	LES MANQUANTS DANS L'ESSAI THERAPEUTIQUE LESER'S LEAST-SQUARES GRADUATION EQUATIONS LESINGS. (SUMMARY OF PAPERS) LESS THAN OR EQUAL TO N /MPLING DISTRIBUTION OF THE LESS THAN X, WHEN X AND Y ARE NORMAL /ENCE BOUNDS, LETHAL DOSE LETTERS, A STATISTICAL TEST OF AUTHORSHIP LEVEL AND OTHER SMALL SAMPLE MEASURES OF TEST EFFICIE LEVEL AS A SENSITIVITY INDEX FOR TEST STATISTICS LEVEL BY A STATIONARY NORMAL PROCESS LEVEL CROSSINGS OF A STATIONARY GAUSSIAN PROCESS	JRSSB62 SASJ 6B JASA 69 JASA 64 JRSSB65 JASA 63 JASA 69 JASA 65 AMS 65 AMS 68	NO.4 906 2B 85 971 420 1656 2108
TWO SAMPLE KOLMOGOROV-SMIRNOV CRITERION D-SUB-MN, N AND CONFIDENCE LIMITS, FOR THE PROBABILITY THAT Y IS THE ROBBINS-MONRO METHOD FOR ESTIMATING THE MEDIAN MARK TWAIN AND THE QUINTUS CURTIUS SNODGRASS NCY THE MEDIAN SIGNIFICANCE EXPECTED SIGNIFICANCE THE MOMENTS OF THE NUMBER OF CROSSINGS OF A ON A LIMIT DISTRIBUTION OF HIGH SOME NEW THREE	LES MANQUANTS DANS L'ESSAI THERAPEUTIQUE LESER'S LEAST-SQUARES CRADUATION EQUATIONS LESINGS. (SUMMARY OF PAPERS) LESS THAN OR EQUAL TO N /MPLING DISTRIBUTION OF THE LESS THAN X, WHEN X AND Y ARE NORMAL /ENCE BOUNDS, LETHAL DOSE LETTERS, A STATISTICAL TEST OF AUTHORSHIP LEVEL AND OTHER SMALL SAMPLE MEASURES OF TEST EFFICIE LEVEL AS A SENSITIVITY INDEX FOR TEST STATISTICS LEVEL BY A STATIONARY NORMAL PROCESS LEVEL CROSSINGS OF A STATIONARY GAUSSIAN PROCESS LEVEL DESIGNS FOR THE STUDY OF QUANTITATIVE VARIABLES	JRSSB62 SASJ 6B JASA 69 JASA 64 JRSSB65 JASA 63 JASA 69 JASA 65 AMS 65 AMS 68 TECH 60	NO.4 906 2B 85 971 420 1656 2108 455
TWO SAMPLE KOLMOGOROV-SMIRNOV CRITERION D-SUB-MN, MAND CONFIDENCE LIMITS, FOR THE PROBABILITY THAT Y IS THE ROBBINS-MONRO METHOD FOR ESTIMATING THE MEDIAN MARK TWAIN AND THE QUINTUS CURTIUS SNODGRASS NCY THE MEDIAN SIGNIFICANCE EXPECTED SIGNIFICANCE ON A LIMIT DISTRIBUTION OF HIGH SOME NEW THREE ' ERRATA, 'SOME NEW THREE	LES MANQUANTS DANS L'ESSAI THERAPEUTIQUE LESER'S LEAST-SQUARES GRADUATION EQUATIONS LESINGS. (SUMMARY OF PAPERS) LESS THAN OR EQUAL TO N /MPLING DISTRIBUTION OF THE LESS THAN X, WHEN X AND Y ARE NORMAL /ENCE BOUNDS, LETHAL DOSE LETTERS, A STATISTICAL TEST OF AUTHORSHIP LEVEL AND OTHER SMALL SAMPLE MEASURES OF TEST EFFICIE LEVEL AS A SENSITIVITY INDEX FOR TEST STATISTICS LEVEL BY A STATIONARY NORMAL PROCESS LEVEL CROSSINGS OF A STATIONARY GAUSSIAN PROCESS LEVEL DESIGNS FOR THE STUDY OF QUANTITATIVE VARIABLES	JRSSB62 SASJ 6B JASA 69 JASA 64 JRSSB65 JASA 63 JASA 65 AMS 65 AMS 68 TECH 60 TECH 61	NO.4 906 2B 85 971 420 1656 2108 455 576
TWO SAMPLE KOLMOGOROV-SMIRNOV CRITERION D-SUB-MN, MAND CONFIDENCE LIMITS. FOR THE PROBABILITY THAT Y IS THE ROBBINS-MONRO METHOD FOR ESTIMATING THE MEDIAN MARK TWAIN AND THE QUINTUS CURTIUS SNODGRASS NCY THE MEDIAN SIGNIFICANCE EXPECTED SIGNIFICANCE ON A LIMIT DISTRIBUTION OF HIGH SOME NEW THREE FRATA, 'SOME NEW THREE OF HALF-NORMAL PLOTS IN INTERPRETING FACTORIAL TWO	LES MANQUANTS DANS L'ESSAI THERAPEUTIQUE LESER'S LEAST-SQUARES GRADUATION EQUATIONS LESINGS. (SUMMARY OF PAPERS) LESS THAN OR EQUAL TO N /MPLING DISTRIBUTION OF THE LESS THAN X, WHEN X AND Y ARE NORMAL /ENCE BOUNDS, LETHAL DOSE LETTERS, A STATISTICAL TEST OF AUTHORSHIP LEVEL AND OTHER SMALL SAMPLE MEASURES OF TEST EFFICIE LEVEL AS A SENSITIVITY INDEX FOR TEST STATISTICS LEVEL BY A STATIONARY NORMAL PROCESS LEVEL CROSSINGS OF A STATIONARY GAUSSIAN PROCESS LEVEL DESIGNS FOR THE STUDY OF QUANTITATIVE VARIABLES LEVEL DESIGNS, FOR THE STUDY OF QUANTITATIVE VARIABLES LEVEL EXPERIMENTS USE	JRSSB62 SASJ 6B JASA 69 JASA 64 JRSSB65 JASA 63 JASA 69 JASA 65 AMS 65 AMS 68 TECH 60 TECH 61 TECH 59	NO.4 906 2B 85 971 420 1656 2108 455 576 311
TWO SAMPLE KOLMOGOROV-SMIRNOV CRITERION D-SUB-MN, MAND CONFIDENCE LIMITS, FOR THE PROBABILITY THAT Y IS THE ROBBINS-MONRO METHOD FOR ESTIMATING THE MEDIAN MARK TWAIN AND THE QUINTUS CURTIUS SNODGRASS NCY THE MEDIAN SIGNIFICANCE EXPECTED SIGNIFICANCE ON A LIMIT DISTRIBUTION OF HIGH SOME NEW THREE OF HALF-NORMAL PLOTS IN INTERPRETING FACTORIAL TWO FACTOR CHANGES AND LINEAR TRENDS IN EIGHT-RUN TWO	LES MANQUANTS DANS L'ESSAI THERAPEUTIQUE LESER'S LEAST-SQUARES GRADUATION EQUATIONS LESINGS. (SUMMARY OF PAPERS) LESS THAN OR EQUAL TO N /MPLING DISTRIBUTION OF THE LESS THAN X, WHEN X AND Y ARE NORMAL /ENCE BOUNDS, LETHAL DOSE LETTERS, A STATISTICAL TEST OF AUTHORSHIP LEVEL AND OTHER SMALL SAMPLE MEASURES OF TEST EFFICIE LEVEL AS A SENSITIVITY INDEX FOR TEST STATISTICS LEVEL BY A STATIONARY NORMAL PROCESS LEVEL CROSSINGS OF A STATIONARY GAUSSIAN PROCESS LEVEL CROSSINGS OF A STATIONARY GAUSSIAN PROCESS LEVEL DESIGNS FOR THE STUDY OF QUANTITATIVE VARIABLES LEVEL DESIGNS, FOR THE STUDY OF QUANTITATIVE VARIABLES LEVEL EXPERIMENTS USE LEVEL FACTORIAL DESIGNS	JRSSB62 SASJ 6B JASA 69 JASA 64 JRSSB65 JASA 63 JASA 65 AMS 65 AMS 68 TECH 60 TECH 61	NO.4 906 2B 85 971 420 1656 2108 455 576 311 301

DEV - DIM	SE HOND INDEA		
THE CONDITIONAL	LEVEL OF STUDENT'S T TEST	AMS 67	1068
	LEVEL. SOME EMPIRICAL MEASUREMENTS AND RELATED PROBLE		656
RESPONSE SURFACE DESIGNS FOR THREE FACTORS AT THREE		TECH 59	1
SURFACE DESIGNS FOR FACTORS AT TWO AND THREE	LEVELS RESPONSE	TECH 68	177
TESTINC A TREATMENT FACTOR AT FOUR EQUALLY SPACED	LEVELS ON LEVELS RESPONSE LEVELS (CORR. 67 586) A CHANCE-OVER DESICN FOR	JRSSB67	370
PROCESSES ON CROSSINCS OF	LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC	AMS 66	260
THE EFFECTS OF ERRORS IN THE FACTOR		TECH 63	
	LEVELS OF POLYNOMIAL RECRESSION WITH ONE OR TWO		
	LEVELS OF STIMULUS CANNOT BE CONTROLLED, CORR. 56 650		
	LEVELS OF THE SYMMETRIC BINOMIAL CUMULATIVE DISTRIBUT		
A THEOREM OF		AMS 65 AMS 67	
AN EXAMPLE OF THE DIFFERENCE BETWEEN THE	LEVY AND LEVY-PROKHOROV METRICS	AMS 69	
AN EXAMPLE OF THE DIFFERENCE BETWEEN THE LEVY AND	LEVY-PROKHOROV METRICS	AMS 69	
COMMUNAUTES VEGETALES PAR L'ANALYSE STATISTIQUE DES	LIAISONS ENTRE LES ESPECES ET LES VARIABLES ECOLOGIQU		
	LIAISONS ENTRE LES ESPECES ET LES VARIABLES ECOLOGIQU		
	LIE GROUP NECESSARY AND SUFFICIENT CONDITIONS		
PROBABILITY THAT THE SAMPLE DISTRIBUTION FUNCTION	LIES BETWEEN TWO PARALLEL STRAIGHT LINES THE		
SYSTEMS STRUCTURE AND THE EXISTENCE OF A SYSTEM	LIFE	TECH 64	
A SYSTEM OF MODELS FOR THE	LIFE CYCLE OF A BIOLOGICAL ORGANISM	BIOKA68	
THREE ORDER STATISTIC CONFIDENCE ROUNDS ON RELIABLE	LIFE CYCLE OF A BIOLOGICAL ORGANISM LIFE DESIGNS FOR ESTIMATION LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE CENSORING	TECH 62	381 306
	LIFE FOR CLASSES OF DISTRIBUTIONS CLASSIFIED BY FAILU		
	LIFE FOR THE EXPONENTIAL DISTRIBUTION WITH CHANGING		
ON EVALUATION OF WARRANTY ASSURANCE WHEN	LIFE HAS A WEIBULL DISTRIBUTION	BIOKA69	
F THE ASSUMPTION THAT THE UNDERLYING DISTRIBUTION OF	LIFE IS EXPONENTIAL, PART I /STS FOR THE VALIDITY O	TECH 60	В3
THE ASSUMPTIONS THAT THE UNDERLYING DISTRIBUTION OF	LIFE IS EXPONENTIAL, PART II /S FOR THE VALIDITY OF	TECH 60	167
PROPORTIONAL SAMPLING IN	LIFE LENCTH STUDIES LIFE OF AN EXPONENTIAL DISTRIBUTION	TECH 67	205
ESTIMATES OF BOUNDED RELATIVE ERROR FOR THE MEAN	LIFE OF AN EXPONENTIAL DISTRIBUTION	TECH 61	107
	LIFE OF HOUSEHOLD GOODS BY ACTUARIAL METHODS, CORR. LIFE OF ITEMS BY ELIMINATING THOSE WITH SHORT LIVES		
ON CROWTH DARAMETER PETTMATTON FOR FARIV	I TEE CTACEC	PTOCCCC	160
A COMPARISON OF TWO	LIFE TABLE METHODS	BIOCS67	51
A	LIFE TABLE THAT AGREES WITH THE DATA	JASA 66	305
A	LIFE TABLE THAT ACREES WITH THE DATA. II	JASA 68	1253
WORKINC	LIFE TABLES FOR MALES IN CHANA 1960	JASA 69	102
CCESSIVE CENS/ METHOD OF CONSTRUCTION OF ATTRITION	LIFE TABLE METHODS LIFE TABLE THAT AGREES WITH THE DATA LIFE TABLE THAT ACREES WITH THE DATA LIFE TABLES FOR MALES IN CHANA 1960 LIFE TABLES FOR THE SINGLE POPULATION BASED ON TWO SU	JASA 67	1433
TABLES FOR A PRECEDENCE	LIFE TEST	TECH 63	491
STATISTICAL		TECH 60	
ESTIMATION FROM		TECH 59 TECH 60	9 44 7
DISTRIBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED	LIFE TEST DATA /PARAMETERS OF MIXED EXPONENTIALLY	BIOKA58	504
	LIFE TEST EXPERIMENTS A NOTE ON PREDICTION		850
	LIFE TEST FOR SMALLER PERCENTILES OF A GAMMA DISTRIBU		467
COMPARATIVE COST OF TWO	LIFE TEST PROCEDURES	TECH 62	140
	LIFE TEST PROCEDURES WHEN THE DISTRIBUTION HAS MONOTO		
		TECH 66	591
DISTRIBUTIONS AN OPTIMAL SEQUENTIAL ACCELERATED		TECH 62 TECH 62	
A PROBLEM IN	I TOP MOCMING	TAGA ED	750
FACTORIAL EXPERIMENTS IN	LIFE TESTINC	TECH 59	269
EARLY FAILURES IN	LIFE TESTING	JASA 60	491
PROGRESSIVELY CENSORED SAMPLES IN	LIFE TESTING	TECH 63	327
THE SAMPLING DISTRIBUTION OF AN ESTIMATE ARISING IN	LIFE TESTING	TECH 63	361
ON PRECEDENCE		TECH 65	359
A GENERALIZED SAVAGE STATISTIC WITH APPLICATIONS TO OF RELIABILITY FOR SOME DISTRIBUTIONS USEFUL IN	TIER TECTING ON	TECH 64	215
NEGATIVE MOMENTS OF THE POSITIVE BINOMIAL USEFUL IN	LIFE TESTING AN APPROXIMATION OF THE	TECH 60	227
QUERY.	LIFE TESTING AND EARLY FAILURE	TECH 66	539
A BIBLIOCRAPHY ON	LIFE TESTING AND RELATED TOPICS	BIOKA5B	
		JASA 64	
		JASA 67	
	LIFE TESTING AND RELIABILITY ESTIMATION FOR THE TWO		
CRAPHICAL ESTIMATION OF MIXED WEIBULL PARAMETERS IN		TECH 59	
DISTRIBUTION THE ROBUSTNESS OF SOME EXPERIMENTAL DESIGN PROBLEMS IN ATTRIBUTE	LIFE TESTING PROCEDURES DERIVED FROM THE EXPONENTIAL	JASA 62	
ERRATA, 'FACTORIAL EXPERIMENTS IN		TECH 60	
GAMMA DISTRIBUTION IN ACCEPTANCE SAMPLING BASED ON		JASA 61	
ON THE POWER OF PRECEDENCE	LIFE TESTS	TECH 67	154
OPERATING CHARACTERISTIC FOR TRUNCATED SEQUENTIAL		AMS 62	
A STATISTICAL MODEL FOR		JASA 58	
LOCNORMAL OBSERVATIONS THE ANALYSIS OF EXPONENTIALLY DISTRIBUTED		JASA 67 JRSSB59	
ILLUSTRATIVE TABLES OF SCHOOL		JASA 63	
A NOTE ON THE RENEWAL FUNCTION WHEN THE MEAN RENEWAL		JRSSB61	
BRANCHING PROCESS IN WHICH INDIVIDUALS HAVE VARIABLE		BIOKA64	
ON THE	LIFTING PROPERTY, V	AMS 65	819
OVERFLOW AT A TRAFFIC	LIGHT	BIOKA59	
ON THE TRANSPORT		JASA 66	
ON THE TRAFFIC AIDS FOR FITTING THE CAMMA DISTRIBUTION BY MAXIMUM		AMS 64 TECH 60	
MOMENT ESTIMATORS AND MAXIMUM		BIOKA58	
DISTRIBUTION. III. ACCURACY OF ESTIMATION BY MAXIMUM	LIKELIHOOD NOMOGRAMS LIKELIHOOD THE FOLDED NORMAL LIKELIHOOD STUDIES IN THE HISTORY OF PROBABI	TECH 62	249
LITY AND STATISTICS. XI. DANIEL BERNOULLI ON MAXIMUM	LIKELIHOOD STUDIES IN THE HISTORY OF PROBABI	BIOKA61	1

```
MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION OF TRANSITION
                                                                                                               JASA 6B 1162
    THE EFFICIENCIES IN SMALL SAMPLES OF THE MAXIMUM LIKELIHOOD AND BEST UNBIASED ESTIMATORS OF RELIABILIT JASA 66 1033
                                                                                                               .TRSSB67 533
                                                  THE LIKELIHOOD AND INVARIANCE PRINCIPLES
                       NOTES. EQUIVALENCE OF MAXIMUM LIKELIHOOD AND THE METHOD OF MOMENTS IN PROBIT ANALYS BIOCS67
                                                                                                                        154
                                              MAXIMUM LIKELIHOOD CHARACTERIZATION OF DISTRIBUTIONS
                                                                                                                AMS 61 1214
                                    A GENERAL MAXIMUM LIKELIHOOD DISCRIMINANT
                                                                                                               BIOCS67 313
WHEN BOTH VARIABLES ARE SUBJECT TO ERROR
                                                      LIKELIHOOD DISTRIBUTIONS FOR ESTIMATING FUNCTIONS
                                                                                                               TECH 67
                                                                                                                        261
                              ON THE SOLUTION OF THE LIKELIHOOD EQUATION BY ITERATION PROCESSES
                                                                                                               BIOKA61
                                                                                                                        452
                 CORRIGENDA, 'ON THE SOLUTION OF THE LIKELIHOOD EQUATION BY ITERATION PROCESSES'
                                                                                                               BIOKA62
                                                                                                                        284
UATION OF THE MAXIMUM-LIKELIHOOD ESTIMATOR WHERE THE LIKELIHOOD EQUATION HAS MULTIPLE ROOTS
                                                                                                         EVAL BIOKA66
                                                                                                                        151
A NOTE ON THE CONSISTENCY AND MAXIMA OF THE ROOTS OF LIKELIHOOD EQUATIONS

METRIC CASE

ON THE SOLUTION OF LIKELIHOOD EQUATIONS BY ITERATION PROCESSES MULTIPARA BIOKA62
                                                                                                                         56
                                                                                                                        479
EANS OF THE CAPTURE-RECAPTURE METHOD. I. THE MAXIMUM LIKELIHOOD EQUATIONS FOR ESTIMATING THE DEATH-RATE
                                                                                                               BTOKA51 269
                    REMARK ON THE LINEARIZED MAXIMUM LIKELIHOOD ESTIMATE
                                                                                                                AMS 67 1876
                                                                             /ES. PART II. COMPARISON BETWEE BIOKA57
N MINIMUM NORMIT CHI-SQUARE ESTIMATE AND THE MAXIMUM LIKELIHOOD ESTIMATE
                                                                                                                       411
                                      QUERY, MAXIMUM LIKELIHOOD ESTIMATE IN INTRACLASS CORRELATION MODEL
THE MAXIMUM LIKELIHOOD ESTIMATE OF THE NON-CENTRALITY PARAMETER
                                                                                                               TECH 69 NO 4
OF A NONCENTRAL CHI-SQUARE VARIATE
                                                                                                               JASA 67 125B
BUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LIKELIHOOD ESTIMATES FOR A MULTIVARIATE NORMAL DISTRI JASA 57
                                                                                                                        200
                                  APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATES FROM GROUPED DATA
                                                                                                                        599
                                                                                                               TECH 67
                             THE BIAS OF THE MAXIMUM LIKELIHOOD ESTIMATES OF THE LOCATION AND SCALE PARAME BIOKA61
TERS GIVEN A TYPE II CENS/
                                                                                                                        448
                                   TABLES FOR MAXIMUM LIKELIHOOD ESTIMATES. SINGLY TRUNCATED AND SINGLY
                                                                                                               TECH 61
CENSORED SAMPLES
                                                                                                                        535
INOMIAL PROBABILITIES WITH AN APPLICATION TO MAXIMUM LIKELIHOOD ESTIMATION
                                                                                MONOTONE CONVERGENCE OF B AMS 67 15B3
                                              MAXIMUM LIKELIHOOD ESTIMATION FOR DISTRIBUTIONS WITH MONOTONE
                                                                                                               AMS 65
                                                                                                                         69
 FAILURE RATE
                                              MAXIMUM LIKELIHOOD ESTIMATION FOR GENERALIZED POWER SERIES DI BIOKA62
STRIBUTIONS AND ITS APPLICATION TO A TRUN/
                                                                                                                        227
                                       NOTES. MAXIMUM LIKELIHOOD ESTIMATION FOR THE TRUNCATED POISSON
                                                                                                               BIOCS66
                                                                                                                        620
ED ON COMPLETE AND ON CENSORED SAMPLES
                                              MAXIMUM LIKELIHOOD ESTIMATION IN THE WEIBULL DISTRIBUTION BAS TECH 65
                                                                                                                        579
ED ON COMPLETE AND ON CENSORED S/ ERRATA, 'MAXIMUM LIKELIHOOD ESTIMATION IN THE WEIBULL DISTRIBUTION BAS TECH 66
                                                                                                                        570
                                              MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR FUNCTIONAL
                                                                                                                AMS 61 104B
RELATIONSHIP
SHIP
                                A NOTE ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR STRUCTURAL RELATION JASA 64 1175
                                              MAXIMUM LIKELIHOOD ESTIMATION OF MULTIVARIATE COVARIANCE COMP AMS 69 1100
ONENTS FOR THE BALANCED ONE-WAY LAYOUT
                                              MAXIMUM LIKELIHOOD ESTIMATION OF SURVIVAL CURVE PARAMETERS
                                                                                                              BIOCS6B
                                                                                                                        595
                                              MAXIMUM LIKELIHOOD ESTIMATION OF THE DISTRIBUTIONS OF TWO STO JASA 66 1067
CHASTICALLY ORDERED RANDOM VARIABLES
                                   ASPECTS OF MAXIMUM LIKELIHOOD ESTIMATION OF THE LOGISTIC GROWTH FUNCTION JASA 66
                                                                                                                        697
WEIBULL POPULATIONS FROM COMPLETE AND FRO/ MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF GAMMA AND TECH 65
                                                                                                                        639
ISTRIBUTION FROM SMALLEST ORDER STATISTICS
                                              MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF THE BETA D TECH 67
                                                                                                                        607
                                              MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF THE GAMMA TECH 69 NO.4
DISTRIBUTION AND THEIR BIAS
METER LOGNORMAL POPULATIONS FROM CO/ LOCAL-MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF THREE-PARA JASA 66
                                                                                                                        842
                                   SEQUENTIAL MAXIMUM LIKELIHOOD ESTIMATION OF THE SIZE OF A POPULATION
                                                                                                                AMS 68 1057
                                              MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE MULTIVARIATE
                                                                                                                AMS 64
                                                                                                                        647
MENT OF PRIORITY FOR 'AN OPTIMUM PROPERTY OF MAXIMUM LIKELIHOOD ESTIMATION' 60 1208
                                                                                                  ACKNOWLEDGE AMS 61 1343
                                INVARIANCE OF MAXIMUM LIKELIHOOD ESTIMATIONS
                                                                                                                AMS 66
                                                                                                                        744
TH LEAST SQUARES, WEIGHTED LEAST SQUARES AND MAXIMUM LIKELIHOOD ESTIMATORS
                                                                                /CES, SAMPLING EXPERIMENTS WI BIOCS68
                                                                                                                        607
ESSIVE DISTURB/
                  ASYMPTOTIC DISTRIBUTION OF MAXIMUM LIKELIHOOD ESTIMATORS IN A LINEAR MODEL WITH AUTOREGR
                                                                                                                AMS 69
                                                                                                                        583
THE CASE OF AUTOCORRELATED RESIDUALS
                                              MAXIMUM LIKELIHOOD ESTIMATORS OF REGRESSION COEFFICIENTS FOR TECH 65
STEMS IN SE/ MINIMUM VARIANCE UNBIASED AND MAXIMUM LIKELIHOOD ESTIMATORS OF RELIABILITY FUNCTIONS FOR SY JASA 66 1052
OPULATIONS
                THE ASYMPTOTIC PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATORS WHEN SAMPLING FROM ASSOCIATED P BIOKA62
    ASYMPTOTIC VARIANCES AND COVARIANCES OF MAXIMUM-LIKELIHOOD ESTIMATORS, FROM CENSORED SAMPLES, OF THE
                                                                                                                AMS 67
                                                                                                                        557
                                                      LIKELIHOOD FUNCTION FOR CAPTURE-RECAPTURE SAMPLES
                                                                                                               BIOKA56
OLVING TWO/ THE USE OF TRANSFORMATIONS AND MAXIMUM LIKELIHOOD IN THE ANALYSIS OF QUANTAL EXPERIMENTS INV BIOKA55
                                                                                                                        3B2
                                              MAXIMUM LIKELIHOOD IN THREE-WAY CONTINGENCY TABLES
                                                                                                               JRSSB63
 DISTRIBUTIONS TO SOME AVAILABLE DATA BY THE MAXIMUM LIKELIHOOD METHOD (CORR. 65 514) /F SOME CONTAGIOUS BIOCS65
                                                                                                                         34
                                              MAXIMUM LIKELIHOOD PAIRED COMPARISON RANKING BY LINEAR
                                                                                                               BIOKA69 NO.3
                               ON THE SUFFICIENCY AND LIKELIHOOD PRINCIPLES
                                                                                                               JASA 63
                                                                                                                        641
                 DISTRIBUTIONS POSSESSING A MONOTONE LIKELIHOOD RATIO
                                                                                                               JASA 56
                                                                                                                        637
                                                       LIKELIHOOD RATIO AND CONFIDENCE-REGION TESTS
                                                                                                               JRSSB65
                                                       LIKELIHOOD RATIO COMPUTATIONS OF OPERATING
                                                                                                                AMS 66 1704
     METHOD FOR APPROXIMATING TO THE DISTRIBUTION OF LIKELIHOOD RATIO CRITERIA
                                                                                                     A GENERAL BIOKA56
                                                                                                                        295
   ASYMPTOTIC EXPANSIONS OF THE DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR COVARIANCE MATRIX
                                                                                                                AMS 69 NO.6
OTIC EXPANSIONS OF THE NON-NULL DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR HYP
                                                                                                                AMS 69
 SETS OF VARIATES U/ ON THE EXACT DISTRIBUTIONS OF LIKELIHOOD RATIO CRITERIA FOR TESTING INDEPENDENCE OF
                                                                                                               AMS 67 1160
ES ABOUT REGRES/
                  ON THE EXACT DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR TESTING LINEAR HYPOTHES
                                                                                                                AMS 66 1319
                      EXACT DISTRIBUTIONS OF WILKS'S LIKELIHOOD RATIO CRITERION
                                                                                                               BTOKA66 347
                       A TECHNICAL LEMMA FOR MONOTONE LIKELIHOOD RATIO FAMILIES
                                                                                                                AMS 67
                                                                                                                        611
HYPOTHESES
                                  DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTING MULTIVARIATE LINEAR
                                                                                                                AMS 61
                                                                                                                        333
                                      DISTRIBUTION OF LIKELIHOOD RATIO IN TESTING AGAINST TREND
                                                                                                                AMS 69
                                     THE POWER OF THE LIKELIHOOD RATIO TEST
                                                                                                                AMS 67
                                                   THE LIKELIHOOD RATIO TEST FOR MARKOFF CHAINS
                                                                                                               BIOKA55
                                                                                                                        531
                                   CORRIGENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOFF CHAINS'
                                                                                                               BIOKA57
                                                                                                                        301
                                               ON THE LIKELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE
TESTING PROBLEM II
                                                                                                                AMS 65 1061
                                               ON THE LIKELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTIN
                                                                                                               AMS 64 1B1
G PROBLEM, CORR, 64 1388
ER IS 'NEAR' THE B/ ON THE DISTRIBUTION OF THE LOG LIKELIHOOD RATIO TEST STATISTIC WHEN THE TRUE PARAMET
                                                                                                                AMS 68 2044
                          SIMPLIFIED RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS
                                                                                                               BIOKA58
                                                                                                                       181
PROBABILITY DISTRIBUTIONS
                                                       LIKELIHOOD RATIO TESTS FOR RESTRICTED FAMILITES OF
                                                                                                                AMS 6B
                                                                                                                        547
                                  THE BEHAVIOR OF LIKELIHOOD RATIOS OF STOCHASTIC PROCESSES RELATED BY
GROUPS OF TRANSFORMATIONS
                                                                                                                AMS 65
                                                                                                                        529
NT FROM PHENOTYPE FREQUENCIES BY A METHOD OF MAXIMUM LIKELIHOOD SCORING /ION OF THE INBREEDING COEFFICIE BIOCS6B
                                                                                                                        915
LINEAR FUNCTIONAL RELATIONSHIP THE MAXIMUM LIKELIHOOD SOLUTION TO THE PROBLEM OF ESTIMATING A JRSSB69 ION ADMITTING/ A FORMULA FOR THE CURVATURE OF THE LIKELIHOOD SURFACE OF A SAMPLE DRAWN FROM A DISTRIBUT BIOKAGO
                                                                                                               JRSSB69 NO.2
                                                                                                                        203
          CORRIGENDA, 'MOMENT ESTIMATORS AND MAXIMUM LIKELIHOOD.'
                                                                                                               BIOKA59
                                                                                                                        502
          IVARIATE ANALYSIS POWER OF THE LIKELIHOOD-RATIO TEST OF THE GENERAL LINEAR HYPOTHESI BIOKA64 CORRIGENDA, 'MOMENT ESTIMATORS AND MAXIMUM LIKELIHOOD' BIOKA61
S IN MULTIVARIATE ANALYSIS
                                                                                                                        467
                                                                                                                        474
FOR CONFIDENCE POINTS BASED ON INTEGRALS OF WEIGHTED LIKELIHOODS
                                                                                                 ON FORMULAE
                                                                                                               JRSSB63
                                                                                                                        31B
                                SIMILARITIES BETWEEN LIKELIHOODS AND ASSOCIATED DISTRIBUTIONS A POSTERIORI JRSSB61
                                                                                                                        460
                                         EXAMPLES OF LIKELIHOODS AND COMPARISON WITH POINT ESTIMATES AND
LARGE SAMPLE APPROXIMATIONS
                                                                                                              JASA 69
                                                                                                                        46B
RRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATION LIMIT
APPROXIMATING THE LOWER BINOMIAL CONFIDENCE LIMIT (CORR. 69 669)
                                                                               A SINGLE SAMPLING PLAN FOR CO JASA 59
                                                                                                                        248
                                                                                                               JASA 6B 1413
                                               ON THE LIMIT BEHAVIOUR OF EXTREME ORDER STATISTICS
                                                                                                                AMS 63
                                                                                                                       992
```

```
STATISTICAL EVALUATION OF SPLITTING LIMIT CRITERIA IN MEASUREMENT DISPUTES
                                                                                                                    TECH 63 263
62 1466
STATIONARY CAUSSIAN PROCESS
                                                        LIMIT DISTRIBUTION IN THE THEORY OF COUNTERS, CORR.
                                                                                                                     AMS 61 1271
                                                 ON A LIMIT DISTRIBUTION OF HICH LEVEL CROSSINGS OF A
                                                                                                                     AMS 68 2108
         ON SOME RESULTS OF N V. SMIRNOV CONCERNINC LIMIT DISTRIBUTIONS FOR VARIATIONAL SERIES
                                                                                                                     AMS 69 480
                                                         LIMIT DISTRIBUTIONS OF A BRANCHING STOCHASTIC PROCESS
                                                                                                                     AMS 64
                                                                                                                             557
PLOSIVE STOCHASTIC DIFFERENCE EQU/ CONSISTENCY AND LIMIT DISTRIBUTIONS OF ESTIMATORS OF PARAMETERS IN EX
                                                                                                                     AMS 61
                                                                                                                             195
         CONTRIBUTIONS TO SAMPLE SPACINCS THEORY, I. LIMIT DISTRIBUTIONS OF SUMS OF RATIOS OF SPACINCS
                                                                                                                     AMS 66
                                                                                                                             904
                                                      A LIMIT LAW CONCERNING MOVING AVERACES
                                                                                                                     AMS 64
                                                                                                                             424
                                                    THE LIMIT OF A RATIO OF CONVOLUTIONS
                                                                                                                     AMS 63
                                                                                                                             457
                                                    THE LIMIT OF THE NTH POWER OF A DENSITY
                                                                                                                     AMS 65 1878
                                       THE STRONG RATIO LIMIT PROPERTY FOR SOME GENERAL MARKOV PROCESSES
                                                                                                                     AMS 69
                                                                                                                             986
                                                A LOCAL LIMIT THEOREM
                                                                                                                     AMS 64
                                                                                                                             419
        ON THE CONVERGENCE OF MOMENTS IN THE CENTRAL LIMIT THEOREM
                                                                                                                     AMS 65
                                                                                                                             808
                   ON A STOPPING RULE AND THE CENTRAL LIMIT THEOREM
                                                                                                                     AMS 67 1915
                  ON CONVERGENCE RATES IN THE CENTRAL LIMIT THEOREM
                                                                                                                     AMS 69
                                                                                                                             475
   MOMENTS OF A STOPPING RULE RELATED TO THE CENTRAL LIMIT THEOREM
                                                                                                                     AMS 69 1236
                                                A LOCAL LIMIT THEOREM FOR A CERTAIN CLASS OF RANDOM WALKS
                                                                                                                     AMS 66 855
                                            A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCHASTIC PROCESSES
                                                                                                                     AMS 62
                                                                                                                              98
                                            THE CENTRAL LIMIT THEOREM FOR CENERALIZED RANDOM FIELDS
                                                                                                                     AMS 69
                                                                                                                             203
                                               A STABLE LIMIT THEOREM FOR MARKOV TESTS
                                                                                                                     AMS 69 1467
                         THE REMAINDER IN THE CENTRAL LIMIT THEOREM FOR MIXING STOCHASTIC PROCESSES
                                                                                                                     AMS 69 601
PROCESSES
                                                      A LIMIT THEOREM FOR MULTIDIMENSIONAL GALTON-WATSON
                                                                                                                     AMS 66 1211
                                                A LOCAL LIMIT THEOREM FOR NONLATTICE MULTI-DIMENSIONAL
DISTRIBUTION FUNCTIONS
                                                                                                                     AMS 65 546
                                              A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES
                                                                                                                     AMS 61 677
                                                      A LIMIT THEOREM FOR PASSAGE TIMES IN ERGODIC REGENERATI
A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A
VE PROCESSES
                                                                                                                     AMS 66 866
STOCHASTIC PROCESS
                                                                                                                     AMS 64 866
A MULTIVARIATE CENTRAL LIMIT THEOREM FOR RANDOM LINEAR VECTOR FORMS
WITH INFINITE EXPECTATI/ A SHORT PROOF OF A KNOWN LIMIT THEOREM FOR SUM OF INDEPENDENT RANDOM VARIABLES
                                                                                                                     AMS 66 1825
                                                                                                                     AMS 69 1114
VARIABLES

A LIMIT THEOREM FOR SUMS OF MINIMA OF STOCHASTIC

NTERSECTION OF TWO GRAPHS (CORR. 69 151/ A CENTRAL LIMIT THEOREM FOR THE NUMBER OF EDGES IN THE RANDOM I
                                                                                                                     AMS 65 1041
                                                                                                                     AMS 69 144
E BRANCHING PROCESSES TO A BRANCH/ EXTENSIONS OF A LIMIT THEOREM OF EVERETT, ULAM AND HARRIS ON MULTITYP
ON AN OPERATOR LIMIT THEOREM OF ROTA
                                                                                                                     AMS 67 992
                                                                                                                     AMS 65 1864
                          CONDITIONED LIMIT THEOREMS STOCHASTIC POINT PROCESSES, LIMIT THEOREMS
                                                                                                                     AMS 63 1147
                                                                                                                     AMS 67 771
NTINUOUS TIME MARKOV BRANCHING PROCESSES AND RELATED LIMIT THEOREMS EMBEDDING NEW CONDITIONS FOR CENTRAL LIMIT THEOREMS (CORR. 69 1855)
                                                                               EMBEDDING OF URN SCHEMES INTO CO
                                                                                                                     AMS 68 1801
                                                                                                                     AMS 69 319
                                      SOME RENYI TYPE LIMIT THEOREMS FOR EMPIRICAL DISTRIBUTION FUNCTIONS,
CENTRAL LIMIT THEOREMS FOR FAMILIES OF SEQUENCES OF RANDOM
CORR. 65 1069
                                                                                                                     AMS 65 322
VARTABLES
                                                                                                                     AMS 63 439
SPACINGS AND A RELATED TEST
                                                      LIMIT THEOREMS FOR FUNCTIONS OF SHORTEST TWO-SAMPLE ON LIMIT THEOREMS FOR CAUSSIAN PROCESSES
                                                                                                                     AMS 67 108
                                                                                                                     AMS 65 304
GALTON-WATSON PROCESSES
                                           ADDITIONAL LIMIT THEOREMS FOR INDECOMPOSABLE MULTIDIMENSIONAL
                                                                                                                     AMS 66 1463
                                                         LIMIT THEOREMS FOR MARKOV RENEWAL PROCESSES
                                                                                                                     AMS 64 1746
                                                    SOME LIMIT THEOREMS FOR NON-HOMOGENEOUS MARKOV CHAINS
                                                                                                                     AMS 66 1224
                                                         LIMIT THEOREMS FOR QUEUES WITH TRAFFIC INTENSITY ONE
                                                                                                                     AMS 65 1437
                                                         LIMIT THEOREMS FOR RANDOMLY SELECTED PARTIAL SUMS
                                                                                                                     AMS 62 85
                                                         LIMIT THEOREMS FOR STOPPED RANDOM WALKS
                                                                                                                     AMS 64 1332
                                                         LIMIT THEOREMS FOR STOPPED RANDOM WALKS. II
                                                                                                                     AMS 66 860
                                                         LIMIT THEOREMS FOR STOPPED RANDOM WALKS, III
                                                                                                                     AMS 66 1510
SAMPLINC INSPECTION PLANS
                                                    SOME LIMIT THEOREMS FOR THE DODGE-ROMIG LTPD SINGLE
                                                                                                                    TECH 62 497
                                              A NOTE ON LIMIT THEOREMS FOR THE ENTROPY OF MARKOV CHAINS
                                                                                                                     AMS 66
                                                                                                                             522
SECUENCES
                                                         LIMIT THEOREMS FOR THE MAXIMUM TERM IN STATIONARY
                                                                                                                     AMS 64 502
                                                                                                                             864
                                                         LIMIT THEOREMS FOR THE MULTI-URN EHREFEST MODEL
                                                                                                                     AMS 68
                             CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES
                                                                                                                     AMS 68 1158
                    DESIGN AND OPERATION OF A DOUBLE-LIMIT VARIABLES SAMPLING PLAN
                                                                                                                    JASA 58
INITE POPULATION (ATY'S FORMULAE AND MADOW'S CENTRAL LIMIT) /ING MOMENTS OF THE MEAN IN SAMPLES FROM A F BIOKAG1
ACT/ ESTIMATION OF THE NUMBER OF CRITICAL SITES IN LIMITED GENOME EXPRESSION DURING VIRAL INFECTION OF B BIOCS69
                                                                                                                             537
                         A SYSTEM OF TWO SERVERS WITH LIMITED WAITING ROOMS AND CERTAIN ORDER OF VISITS
                                                                                                                   BIOKA68
                                                                                                                             223
MODEL IS INCORRECT, CORR. 66 745
                                                         LIMITING BEHAVIOR OF POSTERIOR DISTRIBUTIONS WHEN THE
                                                                                                                    AMS 66
                                                                                                                              51
                                         ADDENDUM, THE LIMITING DISTRIBUTION OF KAMAT'S TEST STATISTIC
                                                                                                                    BIOKA56
                                                         LIMITING DISTRIBUTION OF THE MAXIMUM OF A DIFFUSION
                                                                                                                     AMS 64
                                                                                                                             319
S OF DEPENDENT RANDOM VARIABLES
                                                         LIMITING DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCE
                                                                                                                    AMS 62
                                                                                                                             894
                                                      ON LIMITING DISTRIBUTIONS ARISING IN BULK SERVICE QUEUES JRSSB56
                                                                                                                             265
                                                         LIMITING DISTRIBUTIONS ASSOCIATED WITH CERTAIN
STOCHASTIC LEARNING MODELS
                                                                                                                     AMS 62 1281
IN LEARNING MODELS
                                                         LIMITING DISTRIBUTIONS FOR SOME RANDOM WALKS ARISING
                                                                                                                     AMS 66
                                                                                                                             393
                                                      ON LIMITING DISTRIBUTIONS FOR SUMS OF A RANDOM NUMBER OF
 INDEPENDENT RANDOM VECTORS
                                                                                                                     AMS 69
                                                                                                                              935
                                                         LIMITING DISTRIBUTIONS OF RESPONSE PROBABILITIES
                                                                                                                     AMS 65
                                                                                                                             706
                 THE MATCHINC DISTRIBUTIONS, POISSON LIMITING FORMS AND DERIVED METHODS OF APPROXIMATION
                                                    THE LIMITING FREQUENCIES OF INTEGERS WITH A GIVEN PARTITI JRSSB59
ONAL CHARACTERISTIC
                                                                                                                             134
IVE OBSERVATIONS FROM/ ON DURBIN'S FORMULA FOR THE LIMITING GENERALIZED VARIANCE OF A SAMPLE OF CONSECUT BIOKA61
IVE OBSE/ CORRIGENDA. 'ON DURBIN'S FORMULA FOR THE LIMITING GENERALIZED VARIANCE OF A SAMPLE OF CONSECUT BIOKA61
ANALOGOUS TO NORMAL ANALYSIS OF VARIANCE THE LIMITING POWER OF CATEGORICAL DATA CHI-SQUARE TESTS AMS 63
                                                                                                                             197
                                                                                                                             476
                                                                                                                     AMS 63 1432
PROBABILITY RATIO TEST
                                A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL
                                                                                                                    JASA 60
                                                                                                                             660
                                                         LIMITING SETS AND CONVEX HULLS OF SAMPLES FROM
PRODUCT MEASURES
                                                                                                                     AMS 69 1824
                  INADMISSIBLE SAMPLES AND CONFIDENCE LIMITS
                                                                                                                    JASA 58
                                                                                                                             482
                            MINIMUM RISK SPECIFICATION LIMITS
                                                                                                                    JASA 59
                                                                                                                            260
                TABLES OF DISTRIBUTION-FREE TOLERANCE LIMITS
                                                                                                                     AMS 64 1361
              SAMPLE SIZE DETERMINATION FOR TOLERANCE LIMITS
                                                                                                                    TECH 68 343
               SOME REMARKS ON CONFIDENCE OF FIDUCIAL LIMITS
                                                                                                                    BIOKA54
                                                                                                                             275
      RISKS FOR ASYMMETRICAL TESTS AND SPECIFICATION LIMITS
                                                                                           PRODUCER AND CONSUMER JASA 66
    ACKNOWLEDGEMENT OF PRIORITY ON 'ON INTERCHANCING LIMITS AND INTEGRALS', 60 74
                                                                                                                     AMS 66 1407
                                       QUERY, TOLERANCE LIMITS FOR A BINOMIAL DISTRIBUTION
                                                                                                                    TECH 69 201
AND RANCE OR MEAN RANGE
                                  TABLES FOR TOLERANCE LIMITS FOR A NORMAL POPULATION BASED ON SAMPLE MEAN
                                                                                                                    JASA 57
                                                                                                                              88
                                      NOTES.CONFIDENCE LIMITS FOR A RATIO USING WILCOXON'S SICNED RANK TEST BIOCS65
                                                                                                                             231
                                               FIDUCIAL LIMITS FOR A VARIANCE COMPONENT
                                                                                                                    JRSSB63 128
CONFIDENCE COEFFICIENT
                                                        LIMITS FOR A VARIANCE COMPONENT WITH AN EXACT
                                                                                                                    AMS 61 466
                           TOLERANCE AND CONFIDENCE LIMITS FOR CLASSES OF DISTRIBUTIONS BASED ON FAILURE AMS 66 1593
RATE, CORR 67 950
```

TITLE WORD INDEX

```
APPROXIMATE CONFIDENCE LIMITS FOR COMPONENTS OF VARIANCE
                                       SIMULTANEOUS CONFIDENCE LIMITS FOR CROSS-PRODUCT RATIOS IN CONTINGENCY TABLES JRSSB64
                                                                                                                                                              86
                                                         CONFIDENCE LIMITS FOR MULTIVARIATE RATIOS
                                                                                                                                                  JRSSB61
                 AN APPROXIMATION TO TWO-SIDED TOLERANCE LIMITS FOR NORMAL POPULATIONS
                                                                                                                                                 TECH 66
                                                                                                                                                             115
                                           TWO-SIDED TOLERANCE LIMITS FOR NORMAL POPULATIONS, SOME IMPROVEMENTS
                                                                                                                                                 JASA 69
                                                                                                                                                              610
         RELATIONSHIPS BETWEEN BAYESIAN AND CONFIDENCE LIMITS FOR PREDICTIONS (WITH DISCUSSION)
                                                                                                                                                 JRSSB64
                                                                                                                                                             176
                                                         CONFIDENCE LIMITS FOR QUANTILES OF MORTALITY DISTRIBUTIONS
                                                                                                                                                 BIOCS69
                                                                                                                                                              176
                                       QUERY, JOINT CONFIDENCE LIMITS FOR RANKED OBSERVATIONS
S ARE TERMINATED AT FIRST FAI/ BAYESIAN CONFIDENCE LIMITS FOR RELIABILITY OF REDUNDANT SYSTEMS WHEN TEST TECH 68
                                                                                                                                                               29
 A SIMPLE PROCEDURE FOR DETERMINING UPPER AND LOWER LIMITS FOR THE AVERAGE SAMPLE RUN LENGTH OF A CUMULAT JRSSB67
                         TABLES OF SIMULTANEOUS CONFIDENCE LIMITS FOR THE BINOMIAL AND AND POISSON DISTRIBUTIONS BIOKAG9
                                                                                                                                                              452
                                           TABLES OF CONFIDENCE LIMITS FOR THE BINOMIAL DISTRIBUTION
                                                                                                                                                 JASA 60 521
                                                          TOLERANCE LIMITS FOR THE CLASS OF DISTRIBUTIONS WITH INCREASING
 HAZARD RATE
                                                                                                                                                  AMS 64 1561
                                        APPROXIMATE CONFIDENCE LIMITS FOR THE COEFFICIENT OF VARIATION IN GAMMA
DISTRIBUTIONS
                                                                                                                                                  BIOCS65 733
                                                          TOLERANCE LIMITS FOR THE GENERALIZED GAMMA DISTRIBUTION
                                                                                                                                                  JASA 65 1142
RELATIONSHIP
                                                         CONFIDENCE LIMITS FOR THE GRADIENT IN THE LINEAR FUNCTIONAL
                                                                                                                                                 JRSSB56
                                                                                                                                                             65
                                            BAYESIAN CONFIDENCE LIMITS FOR THE PRODUCT OF N BINOMIAL PARAMETERS
                                                                                                                                                 BIOKA66
                                     SMALL SAMPLE PROBABILITY LIMITS FOR THE RANGE CHART (CORR. 68 1549)
                                                                                                                                                 JASA 67 14BB
                                                                        LIMITS FOR THE RATIO OF MEANS (WITH DISCUSSION)
                                                                                                                                                  JRSSB54
                                                                                                                                                            186
                                        APPROXIMATE CONFIDENCE LIMITS FOR THE RELATIVE RISK (CORR. 63 234)
                                                                                                                                                  JRSSB62
                                                                                                                                                             454
                                                                                                                                                              495
SYSTEMS
                                        APPROXIMATE CONFIDENCE LIMITS FOR THE RELIABILITY OF SERIES AND PARALLEL
                                                                                                                                                  TECH 65
                                                         CONFIDENCE LIMITS FOR THE RELIABILITY OF SERIES SYSTEMS
                                                                                                                                                 JASA 67 1452
                                                     ON CONFIDENCE LIMITS FOR THE RELIABILITY OF SYSTEMS
                                                                                                                                                   AMS 68 1463
                                               QUERY, CONFIDENCE LIMITS FROM RANK TESTS
                                                                                                                                                  TECH 65
                                                                                                                                                             257
                                                   EXACT FIDUCIAL LIMITS IN NON-LINEAR ESTIMATION
                                                                                                                                                  JRSSB62
                                                                                                                                                              125
                                                         CONFIDENCE LIMITS IN THE CASE OF THE GEOMETRIC DISTRIBUTION
                                                                                                                                                  BIOKA59
                                                                                                                                                             260
                        ON THE DETERMINATION OF CONFIDENCE LIMITS OF AN INDEX
                                                                                                                                                  BIOCS66
                                                                                                                                                              603
                                                            POISSON LIMITS OF MULTIVARIATE RUN DISTRIBUTIONS
                                                                                                                                                   AMS 65
                                                                                                                                                             215
                                                         ONE SAMPLE LIMITS OF SOME TWO-SAMPLE RANK TESTS
                                                                                                                                                  JASA 64
                                                                                                                                                              645
                       TABLES FOR CONSTRUCTING CONFIDENCE LIMITS ON THE MULTIPLE CORRELATION COEFFICIENT
                                                                                                                                                  JASA 63 10B2
                          A METHOD OF ASSIGNING CONFIDENCE LIMITS TO LINEAR COMBINATIONS OF VARIANCES
                                                                                                                                                  RIOKA55
                                                                                                                                                             471
                                            A NOTE ON TOLERANCE LIMITS WITH TYPE I CENSORING
                                                                                                                                                  TECH 68
                                                                                                                                                              392
                                 DISTRIBUTION FREE TOLERANCE LIMITS. ELIMINATION OF REQUIREMENT THAT GUMULATIVE FU TECH 63
                                                                                                                                                              51B
ONPARAMETRIC UPPER CONFIDENCE BOUNDS, AND CONFIDENCE LIMITS, FOR THE PROBABILITY THAT Y IS LESS THAN X, WH JASA 64 906
            PARAMETER-FREE AND NON-PARAMETRIC TOLERANCE LIMITS, THE EXPONENTIAL CASE
                                                                                                                                                  TECH 62
                                                                                                                                                               75
                                                                  THE LINDISFARNE SCRIBES' PROBLEM
                                                                                                                                                  JRSSB58
                                                                                                                                                               93
SOME EXTENSIONS OF BAYESIAN INFERENCE PROPOSED BY MR LINDLEY
                                                                                                                                            ON JRSSB60
                                                                                                                                                             299
                               A COMMENT ON D.V. LINDLEY'S STATISTICAL PARADOX ESGAPE PROBABILITY FOR A HALF LINE
                                                                                                                                                  BIOKA57 533
                                                                                                                                                   AMS 64 1351
                  THE ASYMMETRIG CAUCHY PROCESSES ON THE LINE
                                                                                                                                                   AMS 69
                                                                                                                                                             137
  PROBABILITY DISTRIBUTIONS ARISING FROM POINTS ON A LINE
                                                                                                                                                  BIOKA54
                                                                                                                                                              553
                       TESTS FOR RANDOMNESS OF POINTS ON A LINE
                                                                                                                                                  BIOKA56 104
   GOMPARISON OF TESTS FOR RANDOMNESS OF POINTS ON A LINE
                                                                                                                                                  BIOKA63
                                                                                                                                                              315
                                                                                                                                                  JRSSB59
                        THE DISTRIBUTION OF VACANCIES ON A LINE
                                                                                                                                                             364
                                    A NOTE ON VACANCIES ON A LINE
                                                                                                                                                  JRSSB61
                                                                                                                                                              207
   OF THE SIZE OF THE MAXIMUM CLUSTER OF POINTS ON A LINE
                                                                                                                          THE DISTRIBUTION JASA 65
                                                                                                                                                             532
     FOR SEVERAL PREDICTIONS FROM A SINGLE REGRESSION LINE
                                                                                                                        PREDICTION REGIONS TECH 61
                                                                                                                                                               21
    OF PRIOR INFORMATION TO DESIGN A ROUTINE PARALLEL LINE ASSAY
                                                                                                                                           USE BIOCS67
                                                                                                                                                              257
                                                           STRAIGHT LINE CONFIDENCE REGIONS OF LINEAR MODELS
                                                                                                                                                  JASA 67 1365
                                                              ON THE LINE GRAPH OF THE COMPLETE BIPARTITE GRAPH
                                                                                                                                                   AMS 64 8B3
      A DYNAMIC PROGRAMMING APPLICATION IN PRODUCTION LINE INSPECTION
                                                                                                                                                  TECH 67
                                                                                                                                                               73
            A NOTE ON CONFIDENCE BANDS FOR A REGRESSION LINE OVER A FINITE RANGE
                                                                                                                                                  JASA 68 1028
                               CONFIDENCE BANDS IN STRAIGHT LINE REGRESSION
                                                                                                                                                  1454 64
                                                                                                                                                             1R2
THE EQUIVALENCE OF TWO METHODS OF FITTING A STRAIGHT LINE SEGMENTS

THE FACTORIAL BIOKAS4

ORT—CUT GRAPHIC METHOD FOR FITTING THE PRESS CONSISTENCY OF THE PRESS CONSISTENC
                                                                                                                                                              555
                                                                                                                                                              B63
ORT-CUT GRAPHIC METHOD FOR FITTING THE BEST STRAIGHT LINE TO A SERIES OF POINTS ACCORDING TO THE CRITERION JASA 57
                                                                                                                                                               13
                GRAPHICAL PROCEDURE FOR FITTING THE BEST LINE TO A SET OF POINTS
                                                                                                                                                  TECH 60
                                              FITTING A STRAIGHT LINE TO CERTAIN TYPES OF CUMULATIVE DATA
                                                                                                                                                  JASA 57
                                                                                                                                                              552
                                              FITTING A STRAIGHT LINE TO DATA FROM A TRUNCATED POPULATION
                                                                                                                                                  BIOCS65
                                                                                                                                                              715
                  LINE TRANSECT METHOD OF ESTIMATING GROUSE POPULATION BIOCS68
SIMULATION STUDY OF ESTIMATORS FOR THE LINE TRANSECT SAMPLING METHOD BIOCS69
DENSITIES
                                                                                                                                                              135
                                                                                                                                                              317
                                                          A WAITING LINE WITH INTERRUPTED SERVICE. INCLUDING PRIORITIES
                                                                                                                                                  JRSSR62
                                                                                                                                                               73
   ESTIMATION OF A LINEAR FUNCTION FOR A CALIBRATION LINE, CONSIDERATION OF A RECENT PROPOSAL
                                                                                                                                                  TECH 69 NO 4
                                                              ON THE LINE, GRAPH OF THE COMPLETE BIGRAPH
                                                                                                                                                   AMS 63
                                                                                                                                                              664
MENTS, CORR. 66 1246
                                                    LAMP TESTS OF LINEAR AND LOGLINEAR HYPOTHESES IN MULTINOMIAL EXPERI
                                                                                                                                                              236
                                                                                                                                                  JASA 66
                                                                        LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT
ANALYSIS
                                                                                                                                                              359
                                                                                                                                                  BIOKA61
ANALYSIS'
                                                      CORRIGENDA, 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT
                                                                                                                                                  BTOKA62
                                                                                                                                                              284
         FACTORIAL 2-TO-THE-(P-Q) PLANS ROBUST AGAINST LINEAR AND QUADRATIC TRENDS
                                                                                                                                                  TECH 66
                                                                                                                                                              259
                                  BOUNDS ON THE ERROR IN THE LINEAR APPROXIMATION TO THE RENEWAL FUNCTION
                                                                                                                                                  BTOKA64
                                                                                                                                                              355
TOTAL DEVIATIONS (ACKNOWLEDGEMENT 67 5B7)
                                                                        LINEAR APPROXIMATION USING THE CRITERION OF LEAST
                                                                                                                                                  JRSSB67
                                                                                                                                                              101
ADJUSTMENT METHODS
                                                                        LINEAR APPROXIMATIONS TO THE CENSUS AND BLS SEASONAL
                                                                                                                                                  JASA 68
                                                                                                                                                              445
ADJUSTMENT METHODS
FREQUENCY DISTRIBUTION, WITH ESPECIAL REFERENCE/ A LINEAR APPROXIMATOR FOR THE CLASS MARKS OF A GROUPED
FOR HIGHER ORDER SCHEM/ TESTS OF HYPOTHESES IN THE LINEAR AUTO-REGRESSIVE MODEL. II. NULL DISTRIBUTIONS
                                                                                                                                                  TECH 68
                                                                                                                                                              793
                                                                                                                                                  BTOKA56
                                                                                                                                                              186
                                   TESTS OF HYPOTHESES IN THE LINEAR AUTOREGRESSIVE MODEL. PART I.
                                                                                                                                                  BIOKA54
                                                                                                                                                              405
 SAMPLING PROPERTIES OF TESTS OF GOODNESS-OF-FIT FOR LINEAR AUTOREGRESSIVE SCHEMES
                                                                                                                                                  JRSSB62
                                                                                                                                                              492
YMPTOTIC EXPANSIONS FOR TESTS OF GOODNESS OF FIT FOR LINEAR AUTOREGRESSIVE SCHEMES
                                                                                                                                              AS BIOKA64
                                                                                                                                                             459
 EFFICIENCIES OF METHODS OF ESTIMATING PARAMETERS IN LINEAR AUTOREGRESSIVE SCHEMES
                                                                                                                                 COMPARATIVE BIOKA61
                                                                                                                                                              427
                                                                                                                 ON THE ECONOMIC CHOICE JRSSB67
   OF EXPERIMENT SIZES FOR DECISION REGARDING CERTAIN LINEAR COMBINATIONS
                                                                                                                                                              503
NVERGENCE RATES FOR THE LAW OF LARGE NUMBERS FOR THE LINEAR COMBINATIONS OF EXCHANGEABLE AND MIXING STOCHA AMS 65 1840
WITH APPLICATIONS TO E/ ASYMPTOTIC DISTRIBUTION OF LINEAR COMBINATIONS OF FUNCTIONS OF ORDER STATISTICS

ASYMPTOTIC NORMALITY OF LINEAR COMBINATIONS OF FUNCTIONS OF ORDER STATISTICS
                                                                                                                                                   AMS 67
                                                                                                                                                              52
                                                                                                                                                   AMS 69 NO 6
SULTS ON THE COMPLETE AND ALMOST SURE GONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDENT AND RANDOM VARIABL

AR/ EXPRESSION OF VARIANCE-COMPONENT ESTIMATORS AS LINEAR COMBINATIONS OF INDEPENDENT NONCENTRAL CHI-SQU
                                                                                                                                                  AMS 68 1549
                                                                                                                                                  AMS 69 NO 6
THE CONVERGENCE RATE OF THE LAW OF LARGE NUMBERS FOR LINEAR COMBINATIONS OF INDEPENDENT RANDOM VARIABLES CONVERGENCE RATES FOR THE LAW OF LARGE NUMBERS FOR LINEAR COMBINATIONS OF MARKOV PROCESSES
                                                                                                                                                  AMS 65
                                                                                                                                                              559
                                                                                                                                                   AMS 66
                                                                                                                                                              711
                    ESTIMATING THE DEGREES OF FREEDOM FOR LINEAR COMBINATIONS OF MEAN SQUARES BY SATTERTHWAITHE TECH 69 NO.4
```

LIN - LIN TITLE WORD INDEX

```
INTERVAL ESTIMATION FOR LINEAR COMBINATIONS OF MEANS
                                                                                                                                        JASA 64 1141
VARIATES
                                                                   LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE
                                                                                                                                         AMS 66 480
ED FAMILIES
                                             INEQUALITIES FOR LINEAR COMBINATIONS OF ORDER STATISTICS FROM RESTRICT AMS 66 1574
                                                               ON LINEAR COMBINATIONS OF SEVERAL VARIANCES
                                                                                                                                        JASA 56 132
                                                                                                                         /FOR FRACTI
ONS OF A COMPLETE FACTORIAL EXPERIMENT AS ORTHOCONAL LINEAR COMBINATIONS OF THE OBSERVATIONS
                                                                                                                                         AMS 63 1068
TOR OF A MULTIVARIATE DISTRIBUTION ESTIMATES OF LINEAR COMBINATIONS OF THE PARAMETERS IN THE MEAN VEC
                                                                                                                                         AMS 65
                                                                                                                                                   78
            A METHOD OF ASSIGNING CONFIDENCE LIMITS TO LINEAR COMBINATIONS OF VARIANCES
                                                                                                                                        BIOKA55
                                                                                                                                                   471
                     CHANGEOVER DESIGNS BALANCED FOR THE LINEAR COMPONENT OF FIRST RESIDUAL EFFECTS
                                                                                                                                        BIOKA68
                                                                                                                                                   297
                                                   TESTING FOR LINEAR CONTACION, INVERSE SAMPLING
ON THE LINEAR CONTROL OF A LINEAR SYSTEM HAVING A NORMAL
                                                                                                                                        JRSSB69 NO.2
STATIONARY STOCHASTIC INPUT
                                                                                                                                        JRSSB68 381
                                                                   LINEAR CURVE FITTING USING LEAST DEVIATIONS
                                                                                                                                         JASA 58
                                                                                                                                                   118
WISHART DISTRIBUTION DERIVED BY SOLVINC SIMULTANEOUS LINEAR DIFFERENTIAL EQUATIONS
                                                                                                                                        BIOKA51
                                                                                                                                                    470
 HOTELLING'S GENERALIZED T-SQUARE-SUB/ A SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS FOR THE DISTRIBUTION OF AN ASYMPTOTIC EXPANSION FOR THE DISTRIBUTION OF THE LINEAR DISCRIMINANT FUNCTION
                                                                                                                                         AMS 68
                                                                                                                                                   B15
                                                                                                                                          AMS 63 1286
                                  ON THE PERFORMANCE OF THE LINEAR DISCRIMINANT FUNCTION
                                                                                                                                         TECH 64
                                                                                                                                                   179
 OF UNEQUAL VARIANCE-COVARIANCE MATRICES ON FISHER'S LINEAR DISCRIMINANT FUNCTION
                                                                                                                          THE EFFECT BIOCS69
                                                                                                                                                    505
                                 ESTIMATION ASSOCIATED WITH LINEAR DISCRIMINANTS
                                                                                                                                         AMS 67
                                                                                                                                                    807
                                                  GEOMETRY AND LINEAR DISCRIMINATION
                                                                                                                                        BIOKA60
                                                                                                                                                    185
                                 ELIMINATION OF VARIATES IN LINEAR DISCRIMINATION PROBLEMS
                                                                                                                                        BTOCS66
                                                                                                                                                    268
ITY OF TWO COVARIANCE MATRICES IN RELATION TO A BEST LINEAR DISCRIMINATOR ANALYSIS
                                                                                                              TESTS FOR THE EQUAL AMS 64
                                                                                                                                                    191
   STAGE NORMAL SAMPLING IN TWO-ACTION PROBLEMS WITH LINEAR ECONOMICS
                                                                                                                                  TWO- JASA 69 NO. 4
S OF SINGLE EXPONENTIAL DISTRIBUT/ TABLES FOR BEST LINEAR ESTIMATES BY ORDER STATISTICS OF THE PARAMETER JASA 57
                                                                                                                                                   58
TION OF GOOD LINEAR UNBIASED ESTIMATES FROM THE BEST LINEAR ESTIMATES FOR A SMALLER SAMPLE SIZE /ONSTRUC TECH 65
                                                                                                                                                    543
   ON A THEOREM OF KARLIN REGARDING ADMISSIBILITY OF LINEAR ESTIMATES IN EXPONENTIAL POPULATIONS
                                                                                                                                         AMS 66 1809
                                                                    LINEAR ESTIMATES OF A POPULATION SCALE PARAMETER
                                                                                                                                        BIOKA67
                                                                                                                                                    551
                                                                   LINEAR ESTIMATES OF PARAMETERS IN THE EXTREME VALUE
DISTRIBUTION
                                                                                                                                        TECH 66
                                                ALL ADMISSIBLE LINEAR ESTIMATES OF THE MEAN VECTOR
                                                                                                                                         AMS 66
                                                                                                                                                    458
AMETERS OF A DOUBLE EXPONENTIAL POPULATION BEST LINEAR ESTIMATES UNDER SYMMETRIC CENSORING OF THE PAR JASA 66
                                                                                                                                                    248
                                                                   LINEAR ESTIMATES WITH POLYNOMIAL COEFFICIENTS
                                                                                                                                        BIOKA66 129
              ON HOROVITZ AND THOMPSON'S T-ONE CLASS OF LINEAR ESTIMATION
                                                                                                                                         AMS 67 1882
                        A NOTE ON THE GEOMETRY OF LINEAR ESTIMATION
A FURTHER NOTE ON THE GEOMETRY OF LINEAR ESTIMATION
                                                                                                                                        RTOKA62
                                                                                                                                                   560
                                                                                                                                        BTOKA63
                                                                                                                                                    540
                                                                   LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY
PULSE-HEICHT SPECTRA
                                                                                                                                        TECH 62 565
SERIES
                                                               ON LINEAR ESTIMATION FOR REGRESSION PROBLEMS ON TIME
                                                                                                                                         AMS 62 1077
                                                     ON ROBUST LINEAR ESTIMATORS
                                                                                                                                         AMS 69
                                                                                                                                                   24
 SAMPLE FREQUENCY FUNCTIONS OF GENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING THREE-EQUATION CASE
                                                                                                                                         JASA 63
                                                                                                                                                    161
THE EXACT DISTRIBUTIONS OF THE GENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING THREE-EQUATION CASE
                                                                                                                                        JASA 64
                                                                                                                                                    881
MPLE DISTRIBUTION FUNCTIONS OF GENERALIZED CLASSICAL LINEAR ESTIMATORS IN ECONOMETRIC STATISTICAL INFERENC JASA 63
                                                                                                                                                    943
OVARIANCE MATRICES AND BEST AND SIMPLE LEAST SQUARES LINEAR ESTIMATORS IN LINEAR MODELS //NON-NEGATIVE C AMS 67 1092
IES WITHOUT REPLACEMENT ON A CLASS OF LINEAR ESTIMATORS IN SAMPLING WITH VARYING PROBABILIT JASA 65
                                                                                                                                                    637
 SAMPLE FREQUENCY FUNCTIONS OF GENERALIZED CLASSICAL LINEAR ESTIMATORS IN TWO LEADING OVER-IDENTIFIED GASE JASA 61
THE EXACT DISTRIBUTIONS OF THE GENERALIZED CLASSICAL LINEAR ESTIMATORS IN TWO LEADING OVER-IDENTIFIED CASE JASA 63
                                                                                                                                                    535
  ROBUSTNESS. A GENERAL METHOD, WITH APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION
                                                                                                                             OPTIMAL JASA 67 1230
CE RELATIONS FOR FUNCTIO/ CHARACTERIZATIONS OF THE LINEAR EXPONENTIAL FAMILTY IN A PARAMETER BY RECURREN
                                                                                                                                         AMS 69 1721
EXPONENTIAL DISTRIBUTION
                                                                  LINEAR FORMS IN THE ORDER STATISTICS FROM AN
                                                                                                                                          AMS 64 270
 OF A RECENT PROPOSAL
                                               ESTIMATION OF A LINEAR FUNCTION FOR A CALIBRATION LINE, CONSIDERATION TECH 69 NO.4
                       ESTIMATION OF THE PARAMETERS OF A LINEAR FUNCTIONAL RELATION
                                                                                                                                        JRSSB61 160
                                                                                                                                          AMS 61 104B
                       MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR FUNCTIONAL RELATIONSHIP
              CONFIDENCE LIMITS FOR THE GRADIENT IN THE LINEAR FUNCTIONAL RELATIONSHIP
                                                                                                                                         JRSSB56
                                                                                                                                                   65
                              THE BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL RELATIONSHIP
                                                                                                                                         JRSSB68
                                                                                                                                                    190
  LIKELIHOOD SOLUTION TO THE PROBLEM OF ESTIMATING A LINEAR FUNCTIONAL RELATIONSHIP
                                                                                                                         THE MAXIMUM JRSSB69 NO.2
    SIGNIFICANCE TESTS FOR DISCRIMINANT FUNCTIONS AND LINEAR FUNCTIONAL RELATIONSHIPS
                                                                                                                                        BIOKA55
                                                                                                                                                   360
                     A NOTE ON TESTS OF SIGNIFICANCE FOR LINEAR FUNCTIONAL RELATIONSHIPS
                                                                                                                                         BIOKA57
                                                                                                                                                    268
                A CENERALIZED LEAST-SQUARES APPROACH TO LINEAR FUNCTIONAL RELATIONSHIPS (WITH DISCUSSION)
                                                                                                                                         JRSSB66
                                                                                                                                                    278
                                    ON THE DISTRIBUTION OF LINEAR FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF OR BIOKA64 143
DERED CORRELATED NORMAL RA/
                                      OPTIMUM ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND SGALE PARAMETERS
                                                                                                                                         AMS 69 NO.6
                                               ON UNCORRELATED LINEAR FUNCTIONS OF ORDER STATISTICS
                                                                                                                                         JASA 63 245
       AN ELEMENTARY PROOF OF ASYMPTOTIC NORMALITY OF LINEAR FUNCTIONS OF ORDER STATISTICS
                                                                                                                                         AMS 68
                                                                   LINEAR FUNCTIONS OF ORDER STATISTICS
                                                                                                                                                    770
VARIABLES
                                                               ON LINEAR FUNCTIONS OF ORDERED GORRELATED NORMAL RANDOM
                                                                                                                                        BTOKA65
                                                                                                                                                    367
                                                ENUMERATION OF LINEAR GRAPHS FOR MAPPINGS OF FINITE SETS
                                                                                                                                                    178
                                                                                                                                         AMS 62
                                          A MULTI-DIMENSIONAL LINEAR GROWTH BIRTH AND DEATH PROCESS
                                                                                                                                          AMS 68
                                                                                                                                                    727
                                       SIMULTANEOUS TESTS OF LINEAR HYPOTHESES
                                                                                                                                                    441
                                                                                                                                        BIOKA55
                                         RANK ORDER TESTS OF LINEAR HYPOTHESES
                                                                                                                                        JRSSB68
                                                                                                                                                    483
     OF THE LIKELIHOOD RATIO FOR TESTING MULTIVARIATE LINEAR HYPOTHESES
                                                                                                                       DISTRIBUTION AMS 61
                                                                                                                                                    333
BUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR TESTING LINEAR HYPOTHESES ABOUT REGRESSION COEFFICIENTS /RI AMS 66 1319
                                                                   LINEAR HYPOTHESES AND INDUCED TESTS
                                                                                                                                        BIOKA64
                                                                                                                                                   41
                                    SOME PROBLEMS INVOLVING LINEAR HYPOTHESES IN MULTIVARIATE ANALYSIS
                                                                                                                                        BTOKA59
                                                                                                                                                     49
YSIS WHEN THE RATIOS OF THE POPULATION V/ TESTS OF LINEAR HYPOTHESES IN UNIVARIATE AND MULTIVARIATE AND MULT
                                                                                                                                                     19
                                                                                                                                                   877
                                                                                                                                                   459
  SENSITIVITY COMPARISONS AMONG TESTS OF THE GENERAL LINEAR HYPOTHESIS
                                                                                                                                        JASA 66
                                                                                                                                                    415
             A CLASS OF RANK ORDER TESTS FOR A GENERAL LINEAR HYPOTHESIS
                                                                                                                                         AMS 69 1325
    SOME NOTES ON VARIANCE-RATIO TESTS OF THE GENERAL LINEAR HYPOTHESIS
                                                                                                                                        BIOKA64
                                                                                                                                                   508
   POWER FUNCTIONS OF SOME TESTS OF THE MULTIVARIATE LINEAR HYPOTHESIS
                                                                                                               MONOTONICITY OF THE AMS 64
                                                                                                                                                    200
                                                              THE LINEAR HYPOTHESIS AND IDEMPOTENT MATRICES
                                                                                                                                        JRSSB64
                                                                                                                                                    261
NS OF THE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR HYPOTHESIS AND INDEPENDENCE /ULL DISTRIBUTIO
                                                                                                                                                    942
                                                                                                                                        AMS 69
                                                                                                                                                   773
                                                              THE LINEAR HYPOTHESIS AND LARGE SAMPLE THEORY
                                                                                                                                         AMS 64
   POWER OF THE LIKELIHOOD-RATIO TEST OF THE GENERAL LINEAR HYPOTHESIS IN MULTIVARIATE ANALYSIS
                                                                                                                                        BIOKA64
                                                                                                                                                   467
                   A NOTE ON CENERALIZED INVERSES IN THE LINEAR HYPOTHESIS NOT OF FULL RANK
                                                                                                                                                    271
                                                                                                                                         AMS 67
                                                  MULTIVARIATE LINEAR HYPOTHESIS WITH LINEAR RESTRICTIONS
                                                                                                                                        JRSSB63
                                                                                                                                                   348
                                                                                                                           ON JASA 60
FINITE SAMPLE DISTRIBUTIONS OF GENERALIZED CLASSICAL LINEAR IDENTIFIABILITY TEST STATISTICS
                                                                                                                                                    650
 TESTS AGAINST ALTERNATIVE RESTRICTED BY A NUMBER OF LINEAR INEQUALITIES /INGENT SOMEWHERE MOST POWERFUL AMS 66 1161
            ON MINIMIZING A CONVEX FUNCTION SUBJECT TO LINEAR INEQUALITIES (WITH DISCUSSION)
                                                                                                                                        JRSSB55 173
                           TABLES FOR OBTAINING THE BEST LINEAR INVARIANT ESTIMATES OF PARAMETERS OF THE WEIBU TECH 67
LL DISTRIBUTION
                                                                    LINEAR LEAST SQUARES REGRESSION
                                                                                                                                         AMS 67 1679
```

LIN - LIN

```
TESTS FOR SPECIFICATION ERRORS IN CLASSICAL LINEAR LEAST-SQUARES RECRESSION ANALYSIS
                                                                                                            JRSSB69 NO.2
     SEQUENTIAL SAMPLING. TWO DECISION PROBLEMS WITH LINEAR LOSSES FOR BINOMIAL AND NORMAL RANDOM VARIABLE BIOKA65
                                                                                                                     507
                                  ESTIMATION FROM A LINEAR MARKOV PROCESS
                                                                                                            BIOKA60
                                                                                                                      482
STRIBUTION OF THE CORRELATION BETWEEN TWO STATIONARY LINEAR MARKOV SERIES STRIBUTION OF THE CORRELATION BETWEEN TWO STATIONARY LINEAR MARKOV SERIES. II.
                                                                                         THE APPROXIMATE DI BIOKA62
                                                                                                                     379
                                                                                         THE APPROXIMATE DI BIOKA65
                                                                                                                      301
                        DATA TRANSFORMATIONS AND THE LINEAR MODEL
                                                                                                             AMS 67 1456
   LEAST-SQUARES ESTIMATORS OF VARIANCE IN A CENERAL LINEAR MODEL
                                                                                        ON THE BIAS OF SOME BIOKA68
                                                                                                                     313
                                                                    /IN THE HISTORY OF PROBABILITY AND STA BIOKAG7
TISTICS, XV. THE HISTORICAL DEVELOPMENT OF THE GAUSS LINEAR MODEL
                                                                                                                       1
C DISTRIBUTION OF MAXIMUM LIKELIHOOD ESTIMATORS IN A LINEAR MODEL WITH AUTORECRESSIVE DISTURBANCES /TOTI AMS 69
                                                                                                                     583
                               SOME ESTIMATORS FOR A LINEAR MODEL WITH RANDOM COEFFICIENTS
                                                                                                            JASA 68
                                                                                                                      5B4
                   ON THE ESTIMATION OF CONTRASTS IN LINEAR MODELS
                                                                                                             AMS 65
                                                                                                                     198
                 STRAICHT LINE CONFIDENCE REGIONS OF LINEAR MODELS
                                                                                                             JASA 67 1365
          LINEAR SEGMENT CONFIDENCE BANDS FOR SIMPLE LINEAR MODELS
                                                                                                            JASA 67
                                                                                                                     403
      ROBUSTNESS OF SOME NONPARAMETRIC PROCEDURES IN LINEAR MODELS
                                                                                                             AMS 68 1913
                     ANALYSIS OF CATECORICAL DATA BY LINEAR MODELS
                                                                                                            BIOCS69
                                                                                                                     489
         BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS
                                                                                                 CONFIDENCE JASA 66
                                                                                                                      182
                                                                                             ASYMPTOTICALLY AMS 63 1494
 NONPARAMETRIC INFERENCE, AN ALTERNATIVE APPROACH TO LINEAR MODELS
  ON COMBINABILITY OF INFORMATION FROM UNCORRELATED LINEAR MODELS BY SIMPLE WEICHTING
                                                                                                             AMS 66 1338
                        ESTIMATION AND INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIA JASA 68 1201
BLE ARE CONSTRAINED
      ASYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR MODELS WITH ONE OBSERVATION PER CELL
                                                                                                             AMS 64
                                                                                                                      726
                          ROBUST PROCEDURES FOR SOME LINEAR MODELS WITH ONE OBSERVATION PER CELL
                                                                                                             AMS 67
                                                                                                                      878
 REFERENCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL BIOKA68
                                                                                                                      101
                                  MISSINC VALUES IN LINEAR MULTIPLE DISCRIMINANT ANALYSIS
                                                                                                            BIOCS68
                                                                                                                      835
                     AN EXAMPLE OF THE ESTIMATION OF LINEAR OPEN LOOP TRANSFER FUNCTION
                                                                                                            TECH 63
                                                                                                                      227
     MAXIMUM LIKELIHOOD PAIRED COMPARISON RANKING BY LINEAR PROGRAMMING
                                                                                                            BIOKA69 NO.3
      AN OUTLINE OF LINEAR PROGRAMMING AN OUTLINE OF LINEAR PROGRAMMING (WITH DISCUSSION)
                                                                                                            JRSSB55
                                                                                                                      165
                                       AN OUTLINE OF LINEAR PROGRAMMING AN OUTLINE OF LINEAR PROGRAMMING
(WITH DISCUSSION)
                                                                                                            JRSSB55
                                                                                                                      165
                       ABOUT SENSITIVITY ANALYSIS IN LINEAR PROGRAMMING MODELS
                                                                                                            SASJ 67
                                                                                                                      33
                 ON THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROGRAMMING PROBLEMS
                                                                                                            JASA 58
                                                                                                                      161
                                                     LINEAR PROGRAMMING TECHNIQUES FOR REGRESSION ANALYSIS JASA 59
                                                                                                                      206
                              POTENTIALS IN APPLYING LINEAR PROGRAMMING TO THE CONSUMER PRICE INDEX
                                                                                                            JASA 66
                                                                                                                      9B2
  A NOTE ON CURVE FITTING WITH MINIMUM DEVIATIONS BY LINEAR PROGRAMMING, CORR. 62 917
                                                                                                            JASA 61
                                                                                                                      359
                      ASYMPTOTIC NORMALITY OF SIMPLE LINEAR RANK STATISTICS UNDER ALTERNATIVES
                                                                                                             AMS 68
                                                                                                                      325
                      ASYMPTOTIC NORMALITY OF SIMPLE LINEAR RANK STATISTICS UNDER ALTERNATIVES, II
                                                                                                             AMS 69 NO 6
    FOR MULTIPLE TREATMENTS, A SIGNIFICANCE TEST FOR LINEAR RANKS
                                                                                         ORDERED HYPOTHESES JASA 63
                                                                                                                     216
                               STEPWISE MULTIVARIATE LINEAR REGRESSION
                                                                                                            JASA 63
                                                                                                                      770
             DESIGN FOR OPTIMAL PREDICTION IN SIMPLE LINEAR REGRESSION
                                                                                                            JASA 65
                                                                                                                      205
                         SHORTER CONFIDENCE BANDS IN LINEAR REGRESSION
                                                                                                            JASA 67 1050
          A THEOREM ON LEAST SQUARES IN MULTIVARIATE LINEAR REGRESSION
                                                                                                            JASA 67 1494
             IMPROVED ESTIMATORS FOR COEFFICIENTS IN LINEAR REGRESSION
                                                                                                             JASA 68
                                                                                                                     596
CHOICE OF VARIABLES IN THE DESIGN OF EXPERIMENTS FOR LINEAR REGRESSION
                                                                                                       THE BIOKA69
                                                                                                                      55
     AND MULTIPLE DISCRIMINATION REGIONS IN MULTIPLE LINEAR REGRESSION
                                                                                                     SINGLE SASJ 68
                                                                                                                      67
 THE MEAN SQUARE ERROR CRITERION FOR RESTRICTIONS IN LINEAR REGRESSION
                                                                                                  A TEST OF JASA 6B
                                                                                                                      55B
LEAST SQUARES AND VECTOR CORRELATION IN MULTIVARIATE LINEAR REGRESSION
                                                                                              A THEOREM ON JASA 66
                                                                                                                      413
     OF WILCOXON TYPE CONFIDENCE REGIONS IN MULTIPLE LINEAR REGRESSION
                                                                                        ASYMPTOTIC BEHAVIOR AMS 69
                                                                                                                    NO.6
LTIVARIATE STATISTICS II. POINT ESTIMATION IN SIMPLE LINEAR REGRESSION
                                                                                MISSING OBSERVATIONS IN MU JASA 67
                                                                                                                      10
DIFFERENCES
                                           MULTIPLE LINEAR REGRESSION ANALYSIS WITH ADJUSTMENT FOR CLASS JASA 61
                                                                                                                      729
AMONG THE INDEPENDENT VARIABLES
                                                     LINEAR REGRESSION ANALYSIS WITH MISSING OBSERVATIONS
                                                                                                            JASA 59
                                                                                                                      B34
                  ESTIMATION OF WEIGHTING FACTORS IN LINEAR REGRESSION AND ANALYSIS OF VARIANCE
                                                                                                             TECH 64
                                                                                                                       1
A 69 6/
           TESTING FOR THE INCLUSION OF VARIABLES IN LINEAR REGRESSION BY A RANDOMISATION TECHNIQUE (ERRAT TECH 66
                                                                                                                      695
                    ITERATIVE ESTIMATION OF A SET OF LINEAR REGRESSION EQUATIONS
                                                                                                            JASA 64
                                                                                                                      845
                                           A NOTE ON LINEAR REGRESSION IN TRIVARIATE DISTRIBUTIONS
                                                                                                             JASA 68 1042
                             ON COMPARING TWO SIMPLE LINEAR REGRESSION LINES
                                                                                                             SASJ 6B
                                                                                                                      33
          THE USE OF EMPIRICAL BAYES ESTIMATORS IN A LINEAR REGRESSION MODEL
                                                                                                             BTOKA68
                                                                                                                      525
            EMPIRICAL BAYES ESTIMATORS IN A MULTIPLE LINEAR REGRESSION MODEL
                                                                                                             BIOKA69
                                                                                                                      367
                                                     LINEAR REGRESSION ON PROPORTIONS
                                                                                                             BTOCS69
                                                                                                                      5B5
                FIXED SIZE CONFIDENCE ELLIPSOIDS FOR LINEAR REGRESSION PARAMETERS
                                                                                                             AMS 66 1602
HEORY OF FIXED-SIZE SEQUENTIAL CONFIDENCE BOUNDS FOR LINEAR REGRESSION PARAMETERS
                                                                                        ON THE ASYMPTOTIC T
                                                                                                             AMS 65
                                                                                                                      463
                THE ESTIMATION OF THE PARAMETER OF A LINEAR REGRESSION SYSTEM OBEYING TWO SEPARATE REGIMES JASA 58
                                                                                                                      B7.3
                      TESTS OF THE HYPOTHESIS THAT A LINEAR RECRESSION SYSTEM OBEYS TWO SEPARATE REGIMES
                                                                                                            JASA 60
                                                                                                                     324
                              INTERVAL ESTIMATION IN LINEAR REGRESSION WHEN BOTH VARIABLES ARE SUBJECT TO
ERROR
                                                                                                            JASA 64 1112
                  NOTE ON INTERVAL ESTIMATION IN NON-LINEAR REGRESSION WHEN RESPONSES ARE CORRELATED
                                                                                                             JRSSB64
                                                                                                                     267
 VARIABLES
                                 CONFIDENCE BANDS IN LINEAR REGRESSION WITH CONSTRAINTS ON THE INDEPENDENT JASA 68 1020
RIANCES, SAMPLING EXPERIMENTS WITH LEAST SQUARES,/ LINEAR REGRESSION WITH NON-CONSTANT, UNKNOWN ERROR VA BIOCS68
                                                                                                                     607
ENCY OF THE LEAST SQUARES ESTIMATORS FOR FAMILIES OF LINEAR REGRESSIONS ASYMPTOTIC NORMALITY AND CONSIST AMS 63
                                                                                                                      447
                             CONFIDENCE REGION FOR A LINEAR RELATION
                                                                                                             AMS 64
                                                                                                                      7B0
                               ON A TEST FOR SEVERAL LINEAR RELATIONS
                                                                                                             JRSSB69
                                                                                                                      65
S (WITH DISCUSSION)
                     TOPICS IN THE INVESTIGATION OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST SQUARE JRSSB67
                                                                                                                        1
                                                     LINEAR RELATIONSHIPS BETWEEN VARIABLES AFFECTED BY
ERRORS
                                                                                                            BIOCS66
                                                                                                                      252
                                                     LINEAR RELATIONSHIPS IN GROWTH AND SIZE STUDIES
                                                                                                             BIOCS6B
                                                                                                                      639
MPLITUDE SPECTRA FOR STOCHASTIC PROCESSES WITH QUASI-LINEAR RESIDUALS
                                                                            A NOTE ON THE ESTIMATION OF A JASA 66
                                                                                                                      397
     FOR ANALYZING A SET OF TIME SERIES SUBJECT TO A LINEAR RESTRICTION
                                                                                            SOME TECHNIQUES JASA 63
                                                                                                                      513
     TABLES FOR THE MEAN SQUARE ERROR TEST FOR EXACT LINEAR RESTRICTIONS IN REGRESSION
                                                                                                            JASA 69 NO.4
                                                     LINEAR SEGMENT CONFIDENCE BANDS FOR SIMPLE LINEAR
                                                                                                             JASA 67
                                                                                                                     403
DISTRIBUTION
                                                EXACT LINEAR SEQUENTIAL TESTS FOR THE MEAN OF A NORMAL
                                                                                                            BIOKA56
                                                                                                                      452
ACTERIZATIONS OF NORMALITY BY CONSTANT RECRESSION OF LINEAR STATISTICS ON ANOTHER LINEAR STATISTIC
                                                                                                       CHAR AMS 67 1894
    SPECTRAL PROPERTIES OF NON-STATIONARY SYSTEMS OF LINEAR STOCHASTIC DIFFERENCE EQUATIONS
                                                                                                            JASA 69
                                                                                                                     5B1
TRIBUTION OF THE AUTOCORRELATIONS OF A SAMPLE FROM A LINEAR STOCHASTIC PROCESS
                                                                                      ON THE ASYMPTOTIC DIS AMS 64 1296
NENTIAL BOUND ON THE STRONG LAW OF LARGE NUMBERS FOR LINEAR STOCHASTIC PROCESSES WITH ABSOLUTELY CONVERGEN
                                                                                                             AMS 61
                                                                                                                     5B3
                                        MULTIVARIATE LINEAR STRUCTURAL RELATIONS
                                                                                                            BIOKA5B
                                                                                                                     136
    A NOTE ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR STRUCTURAL RELATIONSHIP
                                                                                                            JASA 64 1175
                               SIMULTANEOUS PAIRWISE LINEAR STRUCTURAL RELATIONSHIPS
                                                                                                             BIOCS69
                                                                                                                     129
                                           A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL
                                                                                                             BIOKA67
                                                                                                                      670
 A DECOMPOSITION THEOREM FOR VECTOR VARIABLES WITH A LINEAR STRUCTURE
                                                                                                             AMS 69 1845
         CONSISTENT ESTIMATES OF THE PARAMETERS OF A LINEAR SYSTEM
                                                                                                              AMS 69 NO.6
                    ASYMPTOTIC JOINT DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM MULTIVARIATE DISTRI JASA 69
```

LIN - LOC TITLE WORO INDEX

```
INTERRELATIONS BETWEEN CERTAIN LINEAR SYSTEMATIC STATISTICS OF SAMPLES FROM ANY CONT BIOKA51
INUOUS POPULATION
DEPENOENT NORMAL VARIABLES
                                                      LINEAR TRANSFORMATION TO A SET OF STOCHASTICALLY
                                                                                                         JASA 57 247
                                 ESTIMATION OF QUASI-LINEAR TRENO AND SEASONAL VARIATION
                                                                                                              JASA 63 1033
                                  FACTOR CHANCES AND LINEAR TRENDS IN EIGHT-RUN TWO LEVEL FACTORIAL
                                                                                                              TECH 6B 301
            ASYMPTOTIC POWER OF CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS
                                                                                                              BIOCS68
                                                                                                                      315
                  A SEQUENTIAL METHOD OF TESTING THE LINEAR TRENDS OF RESPONSES IN DOSE TRIALS
                                                                                                              BIOCS68
                                                                                                                      663
ITION THAT ORDINARY LEAST-SQUARES ESTIMATORS BE BEST LINEAR UNBIASED
                                                                            A NECESSARY AND SUFFICIENT COND JASA 67 1302
TES FOR A SMALLER SAMPLE/
                           THE CONSTRUCTION OF GOOD LINEAR UNBIASED ESTIMATES FROM THE BEST LINEAR ESTIMA TECH 65
                                                                                                                      543
                                                 BEST LINEAR UNBIASED ESTIMATION FOR MULTIVARIATE STATIONAR TECH 6B
Y PROCESSES
                                                                                                                       523
EXPERIMENT
                              ON A COMPLETE CLASS OF LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL
                                                                                                              AMS 63
                                                                                                                      769
OGISTIC DISTRIBUTION USING ORDER STATISTICS
                                                 BEST LINEAR UNBIASED ESTIMATORS OF THE PARAMETERS OF THE L TECH 67
                                                                                                                       43
REGRESSION MODEL
                                                 BEST LINEAR UNBIASED PREDICTION IN THE GENERALIZED LINEAR JASA 62
                                                                                                                       369
     A MULTIVARIATE CENTRAL LIMIT THEOREM FOR RANDOM LINEAR VECTOR FORMS
                                                                                                               AMS 66 1B25
                                                      LINEAR-LOSS INTERVAL ESTIMATION OF LOCATION AND SCALE BIOKA68 141
 PARAMETERS
                                  EXPECTED-COVER AND LINEAR-UTILITY TOLERANCE INTERVALS
                                                                                                              JRSSB66
                                                                                                                       57
                                   MINIMUM VARIANCE, LINEAR, UNBIASED SEASONAL ADJUSTMENT OF ECONOMIC TIME JASA 64
 SERIES, CORR, 65 1250
                                                                                                                       6B1
                          ON BEALE'S MEASURES OF NON-LINEARITY
                                                                                                                      623
                                                                                                              TECH 65
                         SIGN AND WILCOXON TESTS FOR LINEARITY
                                                                                                               AMS 67 1759
                                          ASYMPTOTIC LINEARITY OF A RANK STATISTIC IN REGRESSION PARAMETER
                                                                                                               AMS 69 NO.6
                                            A TEST OF LINEARITY VERSUS CONVEXITY OF A MEDIAN REGRESSION
CHRVE
                                                                                                               AMS 62 1096
                                          APPROXIMATE LINEARIZATION OF THE INCOMPLETE BETA-FUNCTION
                                                                                                              BIOKA59 214
                                        REMARK ON THE LINEARIZED MAXIMUM LIKELIHOOD ESTIMATE
                                                                                                              AMS 67 1876
                                                QUASI-LINEARLY INVARIANT PREDICTION
                                                                                                               AMS 66 1684
                                               ALMOST LINEARLY-OPTIMUM COMBINATION OF UNBIASED ESTIMATES
                                                                                                              JASA 61
                                                                                                                       36
           ON COMPARING TWO SIMPLE LINEAR REGRESSION LINES
                                                                                                              SASJ 68
                                                                                                                      33
                 CURVE FITTING BY SEGMENTED STRAIGHT LINES
                                                                                                              JASA 69 1079
     TESTS OF SIGNIFICANCE FOR CONCURRENT REGRESSION LINES
                                                                                                              BIOKA53 297
                         CONTROL CHARTS WITH WARNING LINES
                                                                                                              BIOKA55
               A MODIFIED CONTROL CHART WITH WARNING LINES
                                                                                                              BIOKA62 171
        THE STANDARD DEVIATION BY CUSUMS AND WARNING LINES
                                                                                                 CONTROLLING TECH 63
     TESTS FOR THE PARALLELISM OF SEVERAL RECRESSION LINES
                                                                                   ON A CLASS OF RANK ORDER AMS 69 1668
RIBUTION FUNCTION LIES BETWEEN TWO PARALLEL STRAIGHT LINES
                                                                       THE PROBABILITY THAT THE SAMPLE DIST
                                                                                                               AMS 6B
                                 FITTING OF STRAIGHT LINES AND PREDICTION WHEN BOTH VARIABLES ARE SUBJECT JASA 61
ATIVE TEST FOR THE CONCURRENCE OF SEVERAL REGRESSION LINES AND RELATED PROBLEMS
                                                                                                   A CONSERV BIOKAGG
                        BULK SAMPLING. PROBLEMS AND LINES OF ATTACK
                                                                                                              TECH 62
                                                                                                                      319
                             THE FITTING OF STRAIGHT LINES WHEN BOTH VARIABLES ARE SUBJECT TO ERROR, CORR.
                                                                                                             JASA 59
                                                                                                                      173
                                    FITTING STRAIGHT LINES WHEN ONE VARIABLE IS CONTROLLED
                                                                                                              JASA 58
                                                                                                                      106
           ON THE CONCURRENCE OF A SET OF REGRESSION LINES
                                                                                                              BIOKA52
                                                                                                                       109
E MATHEMATICAL RELATION BETWEEN GREENBERC'S INDEX OF LINGUISTIC DIVERSITY AND YULE'S CHARACTERISTIC
                                                                                                          TH BIOKA58
                                                                                                                      268
GTH AND ITS IMPORTANCE FOR THE STUDY OF QUANTITATIVE LINGUISTICS /HE OCCURRENCE DISTRIBUTION OF WORD LEN BIOKA58
                                                                                                                      222
                         COMMENTS ON PAPER BY KURTZ, LINK, TUKEY AND WALLACE
                                                                                                              TECH 65
                                                                                                                      163
                                 A THEORY FOR RECORD LINKAGE
                                                                                                              JASA 69 NO.4
                                 A MODEL FOR OPTIMUM LINKAGE OF RECORDS
                                                                                                              JASA 68 1321
                                        ON PARTIALLY LINKED BLOCK OESIGNS
                                                                                                               AMS 66 1401
                        A SOLUTION TO THE PROBLEM OF LINKING MULTIVARIATE DOCUMENTS
                                                                                                              JASA 69 163
                                                      LIPSCHITZ BEHAVIOR AND INTEGRABILITY OF CHARACTERISTI
C FUNCTIONS
                                                                                                              AMS 67
                                                                                                                       32
                     CONSUMERS' PROPENSITIES TO HOLD LIQUID ASSETS
                                                                                                              JASA 60
                                                                                                                      469
 FOR ESTIMATING THE COMPOSITION OF A THREE COMPONENT LIQUID MIXTURE
                                                                                                     METHODS TECH 64 343
                                                      LISTING EXPECTED MEAN SQUARE COMPONENTS
                                                                                                              BIOCS65 459
                          ON THE PROBLEM OF MATCHING LISTS BY SAMPLES
                                                                                                              JASA 59 403
                                         ON MATCHING LISTS BY SAMPLES
                                                                                                              JASA 61
                                                                                                                       151
                              THE ACCURACY OF CENSUS LITERACY STATISTICS IN IRAN
                                                                                                              JASA 59
                                                                                                                      57B
TISTICS. IV A NOTE ON AN EARLY STATISTICAL STUDY OF LITERARY STYLE
                                                                        /THE HISTORY OF PROBABILITY AND STA BIOKA56
                                                                                                                       248
ISTICS. VIII. DE MORGAN AND THE STATISTICAL STUDY OF LITERARY STYLE
                                                                       /THE HISTORY OF PROBABILITY AND STAT BIOKA5B
                                                                                                                       2B2
ON NAHORDNUNG AND FERNORDNUNG IN SAMPLES OF BALBOOK VALUES IN MULTIVARIATE STATISTICS, I. REVIEW OF THE LITERATURE /DIES IN THE HISTORY OF PROBABILITY AND BIOKA67 AMS 64
                                                                                                                       116
                                                                                                                      595
H REFERENCES TO RELATED SOCIAL STU/

A GUIDE TO THE LITERATURE ON A CLASS OF COVERAGE PROBLEMS

A REVIEW OF THE LITERATURE ON STATEMENT OF COVERAGE PROBLEMS

A REVIEW OF THE LITERATURE ON STATEMENT OF COVERAGE PROBLEMS
                                                                                                                       316
                                                                                                              AMS 64
                                                                                                                      232
                                      A GUIDE TO THE LITERATURE ON STATISTICS OF RELIGIOUS AFFILIATION WIT JASA 59
                                                                                                                       335
        A REVIEW OF RESPONSE SURFACE METHODOLOGY. A LITERATURE SURVEY
                                                                                                              TECH 66 571
                                       STATISTICS WE LIVE BY
                                                                                                              JASA 62
USEFUL LIFE OF ITEMS BY ELIMINATING THOSE WITH SHORT LIVES
                                                                  ON THE POSSIBILITY OF IMPROVING THE MEAN
                                                                                                              TECH 61
                                                                                                                       281
                         PRODUCT DIVERSIFICATION AND LIVING COSTS, A FURTHER COMMENT
                                                                                                              JASA 66
                                                                                                                       788
             PRODUCT DIVERSIFICATION AND THE COST OF LIVING, CORR. 64 1296
                                                                                                              JASA 63
                                                                                                                       807
 A MARKOV PROCESS
                           DEVELOPMENT OF RANDOMIZED LOAD SEQUENCES WITH TRANSITION PROBABILITIES BASED ON TECH 66
                                                                                                                       107
MULTIVARIATE TESTS
                                                      LOCAL AND ASYMPTOTIC MINIMAX PROPERTIES OF
                                                                                                              AMS 64
                                                                                                                       21
KOLMOGOROV-SMIRNOV TYPE
                                                      LOCAL ASYMPTOTIC POWER AND EFFICIENCY OF TESTS OF
                                                                                                              AMS 67 1705
                                                                                                              AMS 6B 2123
                                              ON THE LOCAL BEHAVIOR OF MARKOV TRANSITION PROBABILITIES
                                                      LOCAL CONDITIONAL SUFFICIENCY
                                                                                                              JRSSB64
                                                                                                                       52
NUMBERS
                                                      LOCAL CONVERGENCE OF MARTINGALES AND THE LAW OF LARGE AMS 65
                                                                                                                       552
                                                   ON LOCAL INFERENCE AND INFORMATION
                                                                                                              JRSSB64
                                                                                                                       253
                                                    A LOCAL LIMIT THEOREM
                                                                                                              AMS 64
                                                                                                                       419
                                                                                                              AMS 66
                                                      LOCAL LIMIT THEOREM FOR A CERTAIN CLASS OF RANDOM
                                                                                                                       855
WALKS
                                                    A LOCAL LIMIT THEOREM FOR NONLATTICE MULTI-DIMENSIONAL
                                                                                                              AMS 65
DISTRIBUTION FUNCTIONS
                                                                                                                       546
                                          ON FINDING LOCAL MAXIMA OF FUNCTIONS OF A REAL VARIABLE
                                                                                                              BIOKA67
                                                                                                                       310
                          STATISTICAL ANALYSIS USING LOCAL PROPERTIES OF SMOOTHLY HETEROMORPHIC STOCHASTIC BIOKA57
                                                                                                                       454
                              SAMPLING PROPERTIES OF LOCAL STATISTICS IN STATIONARY STOCHASTIC SERIES
                                                                                                              BIOKA55
                                                                                                                      160
                                                   ON LOCAL UNBIASED ESTIMATION
                                                                                                              JRSSB64
                                                                                                                       46
 OF THREE-PARAMETER LOGNORMAL POPULATIONS FROM CO/
                                                      LOCAL-MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS JASA 66
                                                                                                                       B42
                                                      LOCALLY AND ASYMPTOTICALLY MINIMAX TESTS OF A
                                                                                                              AMS 68
MULTIVARIATE PROBLEM
                                                                                                                      171
NGIAN MULTIPLIER TESTS OF LINEAR HYPOTHESES
                                                      LOCALLY ASYMPTOTICALLY MOST STRINGENT TESTS AND LAGRA BIOKA65
                                                                                                                       459
                                                      LOCALLY MINIMAX TESTS
                                                                                                              AMS 67
                                                                                                                       340
T FOR THE INDEPENDENCE OF TWO POISSON VARIAB/ ON A LOCALLY MOST POWERFUL BOUNDARY RANDOMIZED SIMILAR TES
                                                                                                              AMS 61
                                                                                                                      809
                                                                                                              AMS 61
                                                                                                                       88
                    ASYMPTOTIC EFFICIENCY OF CERTAIN LOCALLY MOST POWERFUL RANK TESTS
                                                      LOCALLY UNBIASED TYPE M TEST
                                                                                                                      298
                                                                                                              JSSB66
                   A SEQUENTIAL SEARCH PROCEDURE FOR LOCATING A RESPONSE JUMP
                                                                                                             TECH 62
                                                                                                                      610
```

TITLE WORD INDEX LIN - LOG

```
LOCATING OUTLIERS IN FACTORIAL EXPERIMENTS
                                                                                                            TECH 60 149
                                                                                                             AMS 65 847
                         ON SOME ROBUST ESTIMATES OF LOCATION
                           A BIVARIATE SICN TEST FOR LOCATION
                                                                                                             AMS 66 1771
              A DEVELOPMENT OF TUKEY'S QUICK TEST OF LOCATION
                                                                                                            JASA 66 949
                                ROBUST ESTIMATION OF LOCATION
                                                                                                            JASA 67
                                                                                                                     353
                 ASYMPTOTICALLY ROBUST ESTIMATORS OF LOCATION
                                                                                                            JASA 67
                                                                                                                     950
                                         DIAMOND-PIN LOCATION
                                                                                                            TECH 67 131
   OF CALTON'S TEST AND A RELATED SIMPLE ESTIMATE OF LOCATION
                                                                                     THE ASYMPTOTIC THEORY AMS 67
                                                                                                                      73
   METHOD, WITH APPLICATIONS TO LINEAR ESTIMATORS OF LOCATION
                                                                             OPTIMAL ROBUSTNESS. A CENERAL JASA 67 1230
              ROBUSTNESS OF THE WILCOXON ESTIMATE OF LOCATION ACAINST A CERTAIN DEPENDENCE
                                                                                                             AMS 68 1196
                  SOME QUICK SICN TESTS FOR TREND IN LOCATION AND DISPERSION
                                                                                                            BIOKA55
                                                                                                                      80
                              UNBIASED ESTIMATION OF LOCATION AND SCALE PARAMETERS
                                                                                                             AMS 66 1671
          OPTIMUM ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND SCALE PARAMETERS
                                                                                                             AMS 69 NO.6
                              FIDUCIAL INFERENCE FOR LOCATION AND SCALE PARAMETERS
                                                                                                            BIOKA64
                  LINEAR-LOSS INTERVAL ESTIMATION OF LOCATION AND SCALE PARAMETERS
                                                                                                            BIOKA68
                                                                                                                    141
IMATORS OF SCALE PARAMETERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCALE PARAMETERS
                                                                                     /ITY OF THE USUAL EST
                                                                                                             AMS 68
                                                                                                                      29
           CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND SCALE PARAMETERS BY ORDER STATISTICS FRO
                                                                                                             AMS 39
M SINGLY/
                                                                                                                     325
ULATION FROM CENSORED SAMPLES
                                       ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE RECTANGULAR POP JRSSB59
                                                                                                                     356
                                  THE ESTIMATION OF LOCATION AND SCALE PARAMETERS FROM GROUPED DATA
                                                                                                            BIOKA54
                                                                                                                     296
 THE BIAS OF THE MAXIMUM LIKELIHOOD ESTIMATES OF THE LOCATION AND SCALE PARAMETERS GIVEN A TYPE II CENSORE BIOKAG1
                                                                                                                     448
SECH SQUARE DISTRIBUTION
                                      ESTIMATION OF LOCATION AND SCALE PARAMETERS IN A TRUNCATED GROUPED JASA 61
                                                                                                                     692
                                                                                                            AMS 62
 OF DISTRIBUTIONS, CORR. 63 1603
                                                     LOCATION AND SCALE PARAMETERS IN EXPONENTIAL FAMILIES
                                                                                                                     986
                         LEAST SQUARES ESTIMATION OF LOCATION AND SCALE PARAMETERS USING ORDER STATISTICS BIOKA52
                                                                                                                      88
   A COMPARISON OF TWO SORTS OF TEST FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED DATA
                                                                                                            JRSSB57
                                                                                                                     119
                                                                                                             AMS 63
                                        ESTIMATES OF LOCATION BASED ON RANK TESTS
                                                                                                                     598
  ESTIMATES AND PARABOLIC REGRESSION WITH RESTRICTED LOCATION FOR THE STATIONARY POINT
                                                                                             LEAST SQUARES JASA 64
                                                                                                                     564
                                                                                                             AMS 66
                           ON THE PROBLEM OF TESTING LOCATION IN MULTIVARIATE POPULATIONS FOR RESTRICTED
                                                                                                                     113
ALTERNATIVES
               ON THE THEORY OF RANK ORDER TESTS FOR LOCATION IN THE MULTIVARIATE ONE SAMPLE PROBLEM
                                                                                                             AMS 67 1216
    WITH DICHOTOMOUS AND CONTINUOUS VARIABLES I. THE LOCATION MODEL
                                                                            MULTIVARIATE TWO SAMPLE TESTS
                                                                                                             AMS 69 290
                  ORDER STATISTICS ESTIMATORS OF THE LOCATION OF THE CAUCHY DISTRIBUTION
                                                                                                            JASA 66 1205
                                   ESTIMATION OF THE LOCATION OF THE CUSP OF A CONTINUOUS DENSITY
                                                                                                             AMS 68
                                                                                                                      76
                              ROBUST ESTIMATION OF A LOCATION PARAMETER
                                                                                                             AMS 64
                                                                                                                      73
     ADMISSIBILITY OF QUANTILE ESTIMATES OF A SINGLE LOCATION PARAMETER
                                                                                                             AMS 64 1019
                  INVARIANT INTERVAL ESTIMATION OF A LOCATION PARAMETER
                                                                                                             AMS 68
                                                                                                                    193
                                     ESTIMATORS OF A LOCATION PARAMETER IN THE ABSOLUTELY CONTINUOUS CASE
                                                                                                             AMS 64 949
                          CONSISTENT ESTIMATION OF A LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL
                                                                                                             AMS 69 1353
SCALE PARAMETER
                          A NOTE ON THE TEST FOR THE LOCATION PARAMETER OF AN EXPONENTIAL DISTRIBUTION
                                                                                                             AMS 69 1838
                     A NOTE ON THE ESTIMATION OF THE LOCATION PARAMETER OF THE CAUCHY DISTRIBUTION
                                                                                                            JASA 66
                                                                                                                     852
ISTRIBUTIONS ON SOME PERMISSIBLE ESTIMATORS OF THE LOCATION PARAMETER OF THE WEIBULL AND CERTAIN OTHER D TECH 67
                                                                                                                     293
                             ON ESTIMATING SCALE AND LOCATION PARAMETERS
                                                                                                            JASA 63
                                                                                                                     658
OTICALLY NEARLY EFFICIENT ESTIMATORS OF MULTIVARIATE LOCATION PARAMETERS
                                                                                                            AMS 69 1809
ADMISSIBILITY OF INVARIANT ESTIMATORS OF ONE OR MORE LOCATION PARAMETERS
                                                                                                    ON THE
                                                                                                             AMS 66 1087
   ESTIMATION, I. VARIANCE BOUNDS FOR ESTIMATORS OF LOCATION PARAMETERS
                                                                                            ON NON-REGULAR JASA 69 1056
 EXPERIMENTS AND THEIR USE FOR EXPERIMENTS INVOLVING LOCATION PARAMETERS
                                                                             NON-EQUIVALENT COMPARISONS OF
                                                                                                             AMS 61
                                                                                                                     326
                   WILCOXON CONFIDENCE INTERVALS FOR LOCATION PARAMETERS IN THE DISCRETE CASE
                                                                                                            JASA 67
                                                                                                                     184
    ROBUSTNESS OF SOME PROCEDURES FOR THE TWO-SAMPLE LOCATION PROBLEM
                                                                                                            JASA 64
                                                                                                                     665
        SMALL SAMPLE POWER CURVES FOR THE TWO SAMPLE LOCATION PROBLEM
                                                                                                            TECH 69
                                                                                                                     299
                                                                                                            JRSSB67
  A NON-PARAMETRIC TEST FOR THE BIVARIATE TWO-SAMPLE LOCATION PROBLEM
                                                                                                                     320
NPARAMETRIC CONFIDENCE REGIONS FOR SOME MULTIVARIATE LOCATION PROBLEMS
                                                                                                         NO JASA 68 1373
                                                                                                            JASA 60
                      ON CONDITIONAL EXPECTATIONS OF LOCATION STATISTICS
                                ERRATA, 'DIAMOND-PIN LOCATION'
                                                                                                            TECH 67
                                                                                                                     498
                   THE TWO-SAMPLE SCALE PROBLEM WHEN LOCATIONS ARE UNKNOWN
                                                                                                             AMS 65 1236
ON PARTITIONING A SET OF NORMAL POPULATIONS BY THEIR LOCATIONS WITH RESPECT TO A CONTROL
                                                                                                             AMS 69 1300
IBRIUM UNDER SELECTION AT A MULTI-ALLELIC SEX-LINKED LOCUS (ACKNOWLEDGEMENT 68 1025)
                                                                                                      EQUIL BIOCS68
                                                                                                                     187
                                                 THE LOG (-LOG) TRANSFORMATION IN THE ANALYSIS OF FRUIT
                                                                                                           BIOCS68
RETENTION RECORDS
                                                                                                                    627
AMETER IS 'NEAR' THE B/ ON THE DISTRIBUTION OF THE LOG LIKELIHOOD RATIO TEST STATISTIC WHEN THE TRUE PAR AMS 68 2044
FOR THE COEFFICIENT OF VARIATION FOR THE NORMAL AND LOG NORMAL DISTRIBUTIONS
                                                                                      CONFIDENCE INTERVALS BIOKA64
                                                                                                                     25
                                           THE LOG (-LOG) TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTIO BIOCS68
                                                                                                                    627
N RECORDS
                                           A NOTE ON LOG-LINEAR REGRESSION
                                                                                                            JASA 68 1034
                 PROGRESSIVELY CENSORED SAMPLES FROM LOG-NORMAL AND LOGISTIC DISTRIBUTIONS
                                                                                                            TECH 69 NO.4
                       ESTIMATING THE PARAMETERS OF LOG-NORMAL DISTRIBUTION FROM CENSORED SAMPLES
                                                                                                            JASA 68 134
NAL CLOSEN/ SEQUENTIAL ESTIMATION OF THE MEAN OF A LOG-NORMAL DISTRIBUTION HAVING A PRESCRIBED PROPORTIO AMS 66 1688
ISTENCE OF A FIXED SAMPLE ESTIMATOR OF THE MEAN OF A LOG-NORMAL DISTRIBUTION HAVING A PRESCRIBED PROPORTIO AMS 67 949
                         A CONFIDENCE REGION FOR THE LOG-NORMAL HAZARD FUNCTION
                                                                                                            TECH 69
                                                                                                                     387
 THE DISTRIBUTION OF THE LOGARITHM OF THE SUM OF TWO LOG-NORMAL VARIATES
                                                                                                            JASA 69
                                                                                                                     655
AL POPULATION IN WHICH THE ABUNDANCES OF SPECIES ARE LOG-NORMALLY DISTRIBUTED /ES IN A SAMPLE OF AN ANIM BIOKASI
                                                                                                                     427
                              A METHOD OF ANALYZING LOG-NORMALLY DISTRIBUTED SURVIVAL DATA WITH INCOMPLET JASA 60
                                                                                                                     534
                                      THE MOMENTS OF LOG-WEIBULL ORDER STATISTICS
                                                                                                            TECH 69
                                                                                                                     373
                 A REMARK ON THE LAW OF THE ITERATED LOGARITHM
                                                                                                             AMS 67
                                                                                                                     599
       CONVERGENCE RATES FOR THE LAW OF THE ITERATED LOGARITHM
                                                                                                             AMS 68 1479
                             THE LAW OF THE ITERATED LOGARITHM FOR MIXING STOCHASTIC PROCESSES
                                                                                                             AMS 69 NO.6
                      A DELICATE LAW OF THE ITERATED LOGARITHM FOR NON-DECREASING STABLE PROCESSES (ADDEND
UM. 69 1855)
                                                                                                             AMS 68 1818
          SOME PROPERTIES OF THE DISTRIBUTION OF THE LOGARITHM OF NON-CENTRAL F
                                                                                                            BIOKA60
                             THE DISTRIBUTION OF THE LOGARITHM OF THE SUM OF TWO LOG-NORMAL VARIATES
                                                                                                            JASA 69
                 ON ESTIMATING THE PARAMETERS OF THE LOGARITHMIC SERIES AND NEGATIVE BINOMIAL DISTRIBUTION BIOKA69
                                                                                                                     411
                                       TABLES OF THE LOGARITHMIC SERIES DISTRIBUTION
                                                                                                             AMS 64
                                                                                                                     284
         A NOTE ON SOME ASYMPTOTIC PROPERTIES OF THE LOGARITHMIC SERIES DISTRIBUTION
                                                                                                            BIOKA61
                                                                                                                     212
L IN POPULATION AND COMMUNITY ECOLOG/ MULTIVARIATE LOGARITHMIC SERIES DISTRIBUTION AS A PROBABILITY MODE JASA 67
INTERVAL ANALYSIS AND THE LOGARITHMIC TRANSFORMATION JRSSB58
                                                                                                            JRSSB58
                                                                                                                    187
                                                 THE LOGIC OF LEAST SQUARES
                                                                                                            JRSSB63
                                                SOME LOGICAL ASPECTS OF THE FIDUCIAL ARGUMENT
                                                                                                            JRSSB63
                                                                                                                     111
                                      ESTIMATING THE LOGISTIC CURVE
                                                                                                            JASA 57
                                                                                                                     567
 ON THE BIVARIATE MOMENTS OF ORDER STATISTICS FROM A LOGISTIC DISTRIBUTION
                                                                                                             AMS 66 1002
                 ESTIMATION OF THE PARAMETERS OF THE LOGISTIC DISTRIBUTION
                                                                                                            BIOKA66
                                                                                                                     565
ATION, FROM CENSORED SAMPLES, OF THE PARAMETERS OF A LOGISTIC DISTRIBUTION
                                                                                  MAXIMUM-LIKELIHOOD ESTIM JASA 67
                                                                                                                     675
  MOMENTS OF THE ORDER STATISTICS FROM THE TRUNCATED LOGISTIC DISTRIBUTION
                                                                                 EXACT MOMENTS AND PRODUCT JASA 66
                                                                                                                     514
```

```
TATISTICS AND THE DISTRIBUTION OF THE RANCE FROM THE LOCISTIC DISTRIBUTION /ENTACE POINTS OF THE ORDER S AMS 65 907

ESTIMATION OF THE PARAMETERS OF THE LOCISTIC DISTRIBUTION BY SAMPLE QUANTILES BICKAG9 NO.3

LINEAR UNBIASED ESTIMATORS OF THE PARAMETERS OF THE LOCISTIC DISTRIBUTION USING ORDER STATISTICS BEST TECH 67 43
                                               BIVARIATE LOCISTIC DISTRIBUTIONS
                                                                                                                       JASA 61
                                                                                                                                 335
  PROCRESSIVELY CENSORED SAMPLES FROM LOG-NORMAL AND LOCISTIC DISTRIBUTIONS
                                                                                                                       TECH 69 NO.4
     TESTS OF HYPOTHESES ABOUT THE PARAMETERS OF THE LOCISTIC FUNCTION

NOMOGRAMS FOR FITTING THE LOCISTIC FUNCTION BY MAXIMUM LIKELIHOOD
                                                                                                                       BTOKA66
                                                                                                                                 535
                                                                                                                       BTOKA60
                                                                                                                                 191
   A NOTE ON THE ESTIMATION OF THE PARAMETERS OF THE LOGISTIC FUNCTION, USING THE MINIMUM LOCIT CHI-SQUARE BIOKAGE ASPECTS OF MAXIMUM LIKELIHOOD ESTIMATION OF THE LOCISTIC CROWTH FUNCTION

JASA 66
                                                                                                                                 250
                                                                                                                                 697
                                A CENERALIZATION OF THE LOCISTIC LAW OF CROWTH
                                                                                                                       BTOCS69
                                                                                                                                 577
                                                           LOGISTIC ORDER STATISTICS
                                                                                                                        AMS 63
                                                                                                                                 65B
                                                      THE LOCISTIC PROCESS, TABLES OF THE STOCHASTIC EPIDEMIC
CURVE AND APPLICATIONS
                                                                                                                       JRSSB60
                                                                                                                                 332
    PROPERTIES OF THE MEDIAN AND OTHER STATISTICS OF LOCISTIC VARIATES
                                                                                                                        AMS 65 1779
       LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ANALYSIS 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ANALYSIS'
                                                                                                                       BIOKA61
                                                                                                                                 359
                                                                                                          CORRICENDA BIOKAGO
                                                                                                                                 2R4
             ON THE BIAS OF VARIOUS ESTIMATORS OF THE LOCIT AND ITS VARIANCE WITH APPLICATION TO QUANTAL BI BIOKA67
OASSAY
H A NOTATION ON THE PROBLE/ APPLICATION OF MINIMUM LOCIT CHI-SQUARE ESTIMATE TO A PROBLEM OF CRIZZLE WIT BIOCSGB
RAMETERS OF THE LOCISTIC FUNCTION, USING THE MINIMUM LOCIT CHI-SQUARE METHOD /N THE ESTIMATION OF THE PA BIOKA62 R OF TESTS OF LINEAR HYPOTHESES USING THE PROBIT AND LOCIT TRANSFORMATIONS, CORR. 64 1297 /YMPTOTIC POWE JASA 62
                                                                                                                                 250
                                                                                                                                 B77
                                           A CENERALISED LOCIT-NORMAL DISTRIBUTION
                                                                                                                       BTOCS65
                                                                                                                                 721
                               FULL CONTINCENCY TABLES, LOCITS. AND SPLIT CONTINGENCY TABLES
                                                                                                                       BIOCS69
                                                                                                                                 3B3
                              LAMP TESTS OF LINEAR AND LOCLINEAR HYPOTHESES IN MULTINOMIAL EXPERIMENTS.
CORR 66 1246
                                                                                                                       JASA 66
                                                                                                                                 236
TWO-ACTION PROBLEMS WHEN THE SAMPLE OBSERVATIONS ARE LOCNORMAL AND THE PRECISION H IS KNOWN /LE SIZE IN
                                                                                                                       JASA 6B
                                                                                                                                 653
                                                           LOCNORMAL APPROXIMATION TO PRODUCTS AND QUOTIENTS
                                                                                                                       BIOKA56
                                                                                                                                 404
                 A TABLE FOR ESTIMATING THE MEAN OF A LOCNORMAL DISTRIBUTION
                                                                                                                        JASA 69
                                                                                                                                 632
      ON THE PROBLEM OF ESTIMATION FOR THE BIVARIATE LOCNORMAL DISTRIBUTION
                                                                                                                       BIOKA64
                                                                                                                                 522
                                   ON A PROPERTY OF THE LOCNORMAL DISTRIBUTION
                                                                                                                       JRSSB63
                                                                                                                                 392
POINT-SOURCE EPIDEMIC
                                    THE THREE-PARAMETER LOGNORMAL DISTRIBUTION AND BAYESIAN ANALYSIS OF A
                                                                                                                       JASA 63
                                                                                                                                  72
SCRIPTION AND ESTIMATION PROBLEMS, CORR. 63 1/ THE LOCNORMAL DISTRIBUTION AND THE TRANSLATION METHOD, DE JASA 63 LIFE TEST SAMPLINC PLANS FOR NORMAL AND LOCNORMAL DISTRIBUTIONS TECH 62
                                                                                                                                 231
                                                                                                                                151
                                               TRUNCATED LOCNORMAL DISTRIBUTIONS. I. SOLUTION BY MOMENTS
                                                                                                                       BIOKA51
                                                                                                                                 414
   LIFE-TESTING RESULTS BASED ON A FEW HETEROCENEOUS LOCNORMAL OBSERVAITONS
                                                                                                                       JASA 67
                                                                                                                                  45
 SEQUENTIALLY TESTING OBSERVED ARITHMETIC MEANS FROM LOGNORMAL POPULATIONS ACAINST A CIVEN STANDARD
                                                                                                                  /FOR TECH 68
                                                                                                                                 605
HOOD ESTIMATION OF THE PARAMETERS OF THREE-PARAMETER LOGNORMAL POPULATIONS FROM COMPLETE AND CENSORED SAMP JASA 66
                                                                                                                                 842
          NOTES.ON ESTIMATING THE ARITHMETIC MEANS OF LOCNORMALLY-DISTRIBUTED POPULATIONS
                                                                                                                       BIOCS65
                                  PROBLEMS IN MEASURING LONG TERM CROWTH IN INCOME AND WEALTH
THE CROWTH, SURVIVAL, WANDERING AND VARIATION OF THE LONG-TAILED FIELD MOUSE, APODEMUS SYLVATICUS. III. WA BIOKA52
                                                                                                                                 389
                                                           LONCEST RUN OF CONSECUTIVE OBSERVATIONS HAVING A
                                       FITTING CURVES TO LONGITUDINAL DATA
                                                                                                                       BIOCS66
COMPONENTS (WITH DISCUSSION)
                                                 ANOTHER LOOK AT HENDERSON'S METHODS OF ESTIMATING VARIANCE
                                                A FURTHER LOOK AT ROBUSTNESS VIA BAYES'S THEOREM
                                                                                                                       BIOKA62
                                                                                                                                 419
                                 CORRICENDA, 'A FURTHER LOOK AT ROBUSTNESS VIA BAYES'S THEOREM.'
                                                                                                                       BIOKA63
                                                       ON LOOKING AT LARCE CORRELATION MATRICES
                                                                                                                       BIOKA69
                                                                                                                                 249
          AN EXAMPLE OF THE ESTIMATION OF LINEAR OPEN LOOP TRANSFER FUNCTION
                                                                                                                       TECH 63
                                                       THE LOOSE SUBORDINATION OF DIFFERENTIAL PROCESSES TO
                                                                                                                         AMS 69 1603
                          BAYES ESTIMATION WITH CONVEX LOSS
 A.P.O. RULE IN SEQUENTIAL ESTIMATION WITH QUADRATIC LOSS
                                                                                                                        AMS 69
                                                                                                                                  417
TILES OF THE NORMAL DISTRIBUTION UNDER SQUARED ERROR LOSS
                                                                    /THE BEST INVARIATE ESTIMATOR OF EXTREME QUAN
                                              EFFICIENCY LOSS DUE TO CROUPING IN DISTRIBUTION-FREE TESTS
                                                                                                                       JASA 67
                                                                                                                                 954
DESIGNS IN REGRESSION PROBLEMS WITH A CENERAL CONVEX LOSS FUNCTION
                                                                                                             OPTIMAL
                                                                                                                       BIOKA6B
ULTIVARIATE NORMAL POPULATION WITH CENERAL QUADRATIC LOSS FUNCTION
                                                                                         ESTIMATING THE MEAN OF A M
                                                                                                                       AMS 66 1819
           ANCILLARY STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION PROBLEMS
                                                                                                                         AMS 6B 1756
FOR ADMISSIBILITY OF ESTIMATORS WHEN STRICTLY CONVEX LOSS IS USED /A NECESSARY AND SUFFICIENT CONDITION
                                                                                                                         AMS 6B
                                                                                                                                  23
    THE COMPOUND DECISION PROBLEM WITH M-BY-N FINITE LOSS MATRIX
       COMPOUND DECISION PROBLEMS WITH M-BY-N FINITE LOSS MATRIX
                                                                                                                         AMS 66
                                                                                                                                 954
FECTS ON THE INBREEDING COEFFICIENT AND RATE OF CENE LOSS OF FOUR METHODS OF REPRODUCING FINITE DIPLOID PO BIOCS65
                                           A NOTE ON THE LOSS OF INFORMATION DUE TO CROUPING OF OBSERVATIONS
                                                                                                                       BIOKA64
                                                                                                                                 495
            CONVERGENCE THEOREMS FOR MULTIPLE CHANNEL LOSS PROBABILITIES
                                                                                                                        AMS 63
                                                                                                                                 260
                                         AVERAGE RENEWAL LOSS RATES
                                                                                                                         AMS 63
QUENTIAL SAMPLING, TWO DECISION PROBLEMS WITH LINEAR LOSSES FOR BINOMIAL AND NORMAL RANDOM VARIABLES.
                                                                                                                    SE BIOKA65
                  SCOOLING, EXPERIENCE, AND CAINS AND LOSSES IN HUMAN CAPITAL THROUGH MICRATION
                                                                                                                       JASA 67
                                    CONVERCENCE OF THE LOSSES OF CERTAIN DECISION RULES FOR THE SEQUENTIAL
COMPOUND DECISION PROBLEM
                                                                                                                        AMS 64 1606
  PARAMETER WHEN NO MORE THAN TWO FAILURES OCCUR PER LOT
                                                                         ESTIMATION OF WEIBULL DISTRIBUTION SHAPE TECH 64 415
                       SOME THEORETICAL ASPECTS OF THE LOT PLOT SAMPLING INSPECTION PLAN
                                                                                                                       JASA 56
                                                                                                                                  B4
                                       THE CONDITION FOR LOT SIZE PRODUCTION
                                                                                                                       JASA 56
                                                                                                                                 627
                               RECTIFYING INSPECTION OF LOTS
                                                                                                                        JASA 61
                                                                                                                                 807
           SEQUENTIAL RELIABILITY ASSURANCE IN FINITE LOTS
                                                                                                                        TECH 69
                                                                                                                                  61
                              SURVEILLANCE PROGRAMS FOR LOTS IN STORACE
                                                                                                                       TECH 62
                                                                                                                                515
                                       APPROXIMATING THE LOWER BINOMIAL CONFIDENCE LIMIT (CORR. 69 669)
                                                                                                                       JASA 68 1413
QUADRANT ORIENTED-ATOM PERCOLATION PROCESS
                                                        A LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE-
                                                                                                                       JRSSB63 401
COEFFICIENT
                                                           LOWER BOUND FORMULAS FOR THE MEAN INTERCORRELATION
                                                                                                                       JASA 59
                                                                                                                                 275
                                                                                                                       JASA 61
                                  THE OTHER SIDE OF THE LOWER BOUND. A NOTE WITH A CORRECTION
                                                                                                                                 670
MULTIHYPOTHESIS TESTS
                                                           LOWER BOUNDS FOR AVERAGE SAMPLE NUMBER OF SEQUENTIAL
                                                                                                                        AMS 67 1343
                                                           LOWER BOUNDS FOR MINIMUM COVARIANCE MATRICES IN TIME
SERIES RECRESSION PROBLEMS
                                                                                                                        AMS 64 362
                    AN ELEMENTARY METHOD OF OBTAINING LOWER BOUNDS ON THE ASYMPTOTIC POWER OF RANK TESTS
                                                                                                                         AMS 68 2128
                   A CHARACTERIZATION OF THE UPPER AND LOWER CLASSES IN TERMS OF CONVERGENCE RATES
                                                                                                                         AMS 69 1120
        A SIMPLE PROCEDURE FOR DETERMINING UPPER AND LOWER LIMITS FOR THE AVERACE SAMPLE RUN LENGTH OF A C JRSSB67
                                                                                                                                 263
 CHI-DISTRIBUTION, ONE DEGREE OF FREEDOM
                                                   EXACT LOWER MOMENTS OF ORDER STATISTICS IN SAMPLES FROM THE AMS 62 1292
INTERVAL.
                                                UPPER AND LOWER PROBABILITIES GENERATED BY A RANDOM CLOSED
                                                                                                                        AMS 68
                                               UPPER AND LOWER PROBABILITIES INDUCED BY A MULTIVALUED MAPPING
                                               UPPER AND LOWER PROBABILITY INFERENCES BASED ON A SAMPLE FROM A BIOKAGT
UPPER AND LOWER PROBABILITY INFERENCES FOR FAMILIES OF HYPOTHES AMS 69
 FINITE UNIVARIATE POPULATION
ES WITH MONOTONE DENSITY RATIOS
                                                                                                                                 953
              SOME LIMIT THEOREMS FOR THE DODCE-ROMIG LTPD SINCLE SAMPLING INSPECTION PLANS
                                                                                                                       TECH 62
                                                                                                                                 497
 WITH MULTIPLE DEATH PROCESS AND APPLICATIONS TO LUNAR CRATERS

WITH SPECIAL REFERENCE TO THE CICARETTE SMOKINC AND LUNG CANCER CONTROVERSY

A MULTIVARIATE IMMIGRATION BIOKA67

/STICAL INFERENCE IN HEALTH JASA 69
                                                                                                                                 739
HASTIC MODEL FOR THE MO/ EMPERICAL RELATIONSHIP OF LUNC CANCER INCIDENCE TO CIGARETTE SMOKING AND A STOC BIOCS65 839
```

```
ITH PARTICULAR REFERENCE TO THE STUDY OF SMOKINC AND LUNC CANCER, CORR. 60 754 /ING EXPONENTIAL RISKS, W JASA 60 415
                                                  SMOKING AND LUNC CANCER, SOME OBSERVATIONS ON TWO RECENT REPORTS JASA 58
               A PERFECT MEASURABLE SPACE THAT IS NOT A LUSIN SPACE
                                                                                                                                      AMS 67 1918
                                          THE CHICK ASSAY OF LYSINE
                                                                                                                                     BIOCS66 58
                                          A DECOMPOSITION OF L1-BOUNDED MARTINCALES
                                                                                                                                      AMS 68 134
    USE OF A TABLE OF PERCENTACE POINTS OF BARTLETT'S M
                                                                                                       ON THE COMPUTATION AND BIOKA69 273
       OF BOX'S APPROXIMATIONS TO THE DISTRIBUTION OF M
                                                                                              SOME COMMENTS ON THE ACCURACY BIOKA69
                                                                                                                                                219
                                                                                                                                    JASA 67 272
    ESTIMATION OF THE PROBABILITY OF ZERO FAILURES IN M BINOMIAL TRIALS
  THE FACTORIAL REPLICATES OF THE TWO TO THE POWER OF M DESIGNS WITH BLOCKS
                                                                                                                                     AMS 62 1440
                                                                                                                 ON CONSTRUCTING
HE TWO SAMPLE KOLMOGOROV-SMIRNOV CRITERION D-SUB-MN, M LESS THAN OR EQUAL TO N /MPLINC DISTRIBUTION OF T JASA 69 NO.4
              POINT AND INTERVAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE SCALE PARAMETER OF A WEIB TECH 65 405
                                     LOCALLY UNBIASED TYPE M TEST
                                                                                                                                     JRSSB66 298
OF BIVARIATE T-SQUARE AND HOMOSCEDASTICITY CRITERION M UNDER UNEQUAL VARIANCE AND LEPTOKURTOSIS /UTIONS
                                                                                                                                    JASA 63 1048
       THE SEQUENTIAL COMPOUND DECISION PROBLEMS WITH M-BY-N FINITE LOSS MATRIX
                                                                                                                                      AMS 66 954
                      THE COMPOUND DECISION PROBLEM WITH M-BY-N FINITE LOSS MATRIX
                                                                                                                                      AMS 66 412
          ASYMPTOTIC NORMALITY OF SAMPLE QUANTILES FOR M-DEPENDENT PROCESSES
                                                                                                                                      AMS 68 1724
                                    ASYMPTOTIC EXTREMES FOR M-DEPENDENT RANDOM VARIABLES
                                                                                                                                      AMS 64 1322
                                                                                                                                     JASA 65 134
                             SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT TIME SERIES
                             A NOTE ON THE QUEUEING SYSTEM M-M-1 WITH BALKING.
                                                                                                                                     BIOKA65
                                                                                                                                                643
                      THE OUTPUT PROCESS OF A STATIONARY M/M/S QUEUEINC SYSTEM
                                                                                                                                      AMS 68 1144
                                                                 MACHINE COMPUTATION OF HIGHER MOMENTS
                                                                                                                                     JASA 56 489
                     SOME CONTRIBUTIONS TO THE THEORY OF MACHINE INTERFERENCE
                                                                                                                                     BIOKA63 135
                                                             ON MACHINE INTERFERENCE
                                                                                                                                     JRSSB56
                                                                                                                                                280
                                        ON SOME PROBLEMS OF MACHINE INTERFERENCE
                                                                                                                                     JRSSB59
                                                                                                                                                106
     CLOSED QUEUEINC SYSTEMS, A GENERALIZATION OF THE MACHINE INTERFERENCE MODEL
                                                                                                                                     JRSSB61
                                                                                                                                                385
                                    NORMAL APPROXIMATION TO MACHINE INTERFERENCE WITH MANY REPAIR MEN
                                                                                                                                     JRSSR57
                                                                                                                                                334
               AN APPROACH TO THE SCHEDULING OF JOBS ON MACHINES
                                                                                                                                     JRSSB61
                                                                                                                                                484
 TABLE FOR PREDICTING THE PRODUCTION FROM A CROUP OF MACHINES UNDER THE CARE OF ONE OPERATIVE
                                                                                                                                  A JRSSB54
                                                                                                                                                285
WHEN WALKING TIME AND REPAIR/ THE EFFICIENCY OF N MACHINES UNI-DIRECTIONALLY PATROLLED BY ONE OPERATOR JRSSB57
WHEN WALKING TIME IS CONSTANT/ THE EFFICIENCY OF N MACHINES UNI-DIRECTIONALLY PATROLLED BY ONE OPERATOR JRSSB57
                                                                                                                                                166
                                                                                                                                                173
                     THE EFFICIENCY OF AUTOMATIC WINDING MACHINES WITH CONSTANT PATROLLING TIME
                                                                                                                                     JRSSB59
                                                                                                                                                381
                                                   ESTIMATING MACHINING ERRORS IN SET-UPS WITH AUTOMATIC RESETTING
                                                                                                                                    TECH 64
                                                                                                                                                423
SAMPLES FROM A FINITE POPULATION (ATY'S FORMULAE AND MADOW'S CENTRAL LIMIT) /ING MOMENTS OF THE MEAN IN BIOKA61
CIES HAVING ALL DIGENIC EPISTATIC VARIANCES OF EQUAL MACHITUDE /IC COMPONENTS FOR NON-INBRED DIPLOID SPE BIOCS69
'N BENADERING VIR 'N MAGREEKS WAARSKYNLIKHEIDSVERDELING SASJ 69
                                                                                                                                                199
                                                                                                                                                545
                                                                                                                                     SASJ 69 NO 2
           TIME INTERVALS BETWEEN ACCIDENTS, A NOTE ON MAGUIRE, PEARSON AND WYNN'S PAPER
A SAMPLING PROCEDURE FOR MAILED QUESTIONNAIRES
                                                                                                                                     BIOKA53 212
                                                                                                                                     JASA 56
                                                                                                                                                209
A NOTE ON SMALL ORTHOGONAL MAIN EFFECT PLANS FOR FACTORIAL EXPERIMENTS CH FOR CONSTRUCTING A USEFUL CLASS OF NON-O5FZOGONAL MAIN EFFECT PLANS IN K TO THE N FACTORIALS
                                                                                                                                     TECH 64
                                                                                                                                                220
                                                                                                                           /APPROA JRSSB68
                                                                                                                                                371
ACTORIAL E/ NOTES. THE SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO THE POWER N F BIOCS67
ON THE MONOTONICITY PROPERTY OF THE THREE MAIN TESTS FOR MULTIVARIATE ANALYSIS OF VARIANCE JRSSB64
                                                                                                                                                571
UN THE MUNDITART TO THE MUNDITART TO THE MUNDITART TO THE GENERAL NO. CALLAYOUT WITH ANY NUMBER OF FACTORS

MAIN-EFFECT ANALYSIS OF THE GENERAL NO. CALLAYOUT WITH ANY NUMBER OF FACTORIAL.
                                                                                                                                                 88
                                                                                                                                     AMS 65
                                                                                                                                     AMS 61 1167
EXPERIMENTS
                                                   ORTHOGONAL MAIN-EFFECT PLANS FOR ASYMMETRICAL FACTORIAL
                                                                                                                                     TECH 62
                                                                                                                                                21
                                        ERRATA, 'ORTHOGONAL MAIN-EFFECT PLANS FOR ASYMMETRICAL FACTORIAL EXPERIME TECH 62
NTS 1
                                                                                                                                                440
ORTHOGONAL MAIN_EFFECT PLANS PERMITTING ESTIMATION OF ALL TWO-FA TECH 69 NO.4
TWO-FACTOR INTERACTION ALIASING
                                                   ORTHOGONAL MAIN-EFFECT 2-TO-THE-N-TIMES-3-TO-THE-M DESIGNS AND TECH 68 559
            TESTING THE HYPOTHESIS OF NO FIXED MAIN-EFFECTS IN SCHEFFE'S MIXED MODEL
THE ECONOMIC DESIGN OF MEAN CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS
                                                                                                                                      AMS 62 1085
                                                                                                                                     JASA 56 228
THE ECONOMIC DESIGN OF MEAN CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS

JASA 56 228
ABILITY ANALYSIS OF SYSTEMS UNDER VARIOUS PREVENTIVE MAINTENANCE POLICIES A GENERAL METHOD FOR THE RELI AMS 62 137
E DES CARACTERES QUANTITATIFS ET RECHERCHE DE 'GENES MAJEURS' / INTERPRETATION DU DETERMINISME GENETIQU BIOCSES 277
T FROM THE RANGE OF THE DEVIATIONS ABOUT THE REDUCED MAJOR AXIS /R ESTIMATINC THE CORRELATION COEFFICIEN BIOCAS 218
CASE OF A/ INTERVAL ESTIMATION OF THE SLOPE OF THE MAJOR AXIS OF A BIVARIATE NORMAL DISTRIBUTION IN THE BIOCSE 679
NTIONS CONSUMER DURABLE COODS EXPENDITURES, WITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND INTE JASA 63 648
A COMPARISON OF MAJOR UNITED STATES RELIGIOUS GROUPS
JASA 61 568
MAJORANTS OF THE CHROMATIC NUMBER OF A RANDOM CRAPH
JRSSB69 NO.2

ASES IN POPULATION CENS/
FAILURE OF ENUMERATORS TO MAKE ENTRIES OF ZERO, ERRORS IN RECORDING CHILDLESS C JASA 61 909
STATISTICIAN AND POLICY MAKER, A PARTNERSHIP IN THE MAKINC
DIGEST
HIGHER FEMALE THAN MALE MORTALITY IN SOME COUNTRIES OF SOUTH ASIA, A JASA 69 NO.4
                                    WORKING LIFE TABLES FOR MALES IN GHANA 1960
                                                                                                                                     JASA 69
                                                                                                                                                102
MODEL.
                                                                  MAMMALIAN REPRODUCTIVE DATA FITTED TO A MATHEMATICAL
                                                                                                                                    BIOCS69
                                                                                                                                                529
                                                         A POOR MAN'S MONTE CARLO (WITH DISCUSSION)
                                                                                                                                     JRSSB54
                                                                                                                                                 2.3
                THE VARYING QUALITY OF INVESTMENT TRUST MANACEMENT
                                                                                                                                     JASA 63 1011
                                 A MATRIX MODEL FOR FOREST MANAGEMENT
                                                                                                                                     BIOCS69
                                                                                                                                                309
TIAL CORRELATION AND RECRESSION, WITH APPLICATION TO MANIFOLD, ORDERED CONTINCENCY TABLES /CT-MOMENT PAR BIOKA59
                                                                                                                                                241
                         AN APPROXIMATION TO THE WILCOXON-MANN-WHITNEY DISTRIBUTION
                                                                                                                                     JASA 69
                                                                                                                                                591
                                       NOTE ON THE WILCOXON-MANN-WHITNEY STATISTIC
                                                                                                                                      AMS 65 1058
                                               ON THE TRIMMED MANN-WHITNEY STATISTIC
                                                                                                                                      AMS 68 1610
   LARCE SAMPLE PROPERTIES OF A GENERALIZED WILCOXON-MANN-WHITNEY STATISTIC
                                                                                                                           ON THE AMS 67
                                                                                                                                                905
                         ON THE EFFICIENCY OF TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS
                                                                                                                                      AMS 63
                                                                                                                                                612
                                               EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND RECTANGULAR
 ALTERNATIVES
                                                                                                                                      AMS 66
                                                                                                                                                945
                                 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIX JASA 60
ED POINT, CORR, 60 755
                                                                                                                                                125
       RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES
                                                                                                                                     AMS 66
                                                                                                                                                284
              A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC
                                                                                                                                     JASA 61
                                                                                                                                                687
          AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC
                                                                                                                                     JASA 64
                                                                                                                                                925
                       TABLES OF THE DISTRIBUTION OF THE MANN-WHITNEY-WILCOXON U-STATISTIC UNDER LEHMANN ALTER TECH 67
                   ON THE ADMISSIBILITY OF SOME TESTS OF MANOVA
                                                                                                                                     AMS 64
                                                                                                                                                789
                                                                                                       COMPUTER EDITING JASA 66
      OF SURVEY DATA, FIVE YEARS OF EXPERIENCE IN BLS MANPOWER SURVEYS
                                                             LES MANQUANTS DANS L'ESSAI THERAPEUTIQUE
                                                                                                                                     BIOCS67
                                                                                                                                                145
 TESTS WITH ONE DECREE OF FREEDOM. EXTENSIONS OF THE MANTEL-HAENSZEL PROCEDURE
                                                                                                                       CHI-SQUARE JASA 63
                                       INTERFERENCE IN THE MANUFACTURE OF NUCLEPORE FILTERS
                                                                                                                                     TECH 67
                                                                                                                                                319
                                                   MANUFACTURERS' INVENTORY CYCLES AND MONETARY POLICY
DEMAND FOR MANUFACTURERS' SERVICES FOR BAKERY PRODUCTS AND
                                                                                                                                     JASA 58
 FRUITS AND VEGETABLES
                                                                                                                                     JASA 65
                       INTER-PLANT STORACE IN CONTINUOUS MANUFACTURING
                                                                                                                                     TECH 60
                                                                                                                                                393
 1953, CORR 60 755
                                  REGIONAL CYCLES OF MANUFACTURING EMPLOYMENT IN THE UNITED STATES, 1914-
                                                                                                                                    JASA 60
                                                                                                                                               151
                    CHANCES IN CONCENTRATION OF DOMESTIC MANUFACTURING ESTABLISHMENT OUTPUT 1939-1958
                                                                                                                                     JASA 62
```

MAN - MAR TITLE WORD INDEX

```
UATING THE RELIABILITY OF SAFETY SYSTEMS FOR PLANTS MANUFACTURING HAZARDOUS PRODUCTS /ICAL MODEL OF EVAL TECH 59 293
                                         AN INDEX OF MANUFACTURING PRODUCTION IN NEW ENGLAND
                                                                                                          JASA 5B 336
TICIPATIONS AND INVESTMENT BEHAVIOR IN UNITED STATES MANUFACTURING 1947-1960
                                                                                                       AN JASA 69
                                                                                                                    67
    AND LOWER PROBABILITIES INDUCED BY A MULTIVALUED MAPPING
                                                                                                    UPPER AMS 67 325
             PRESERVATION OF WEAK CONVERCENCE UNDER MAPPINGS
                                                                                                            AMS 67 1661
                    ENUMERATION OF LINEAR GRAPHS FOR MAPPINGS OF FINITE SETS
                                                                                                            AMS 62 17B
                                                     MAPS BASED ON PROBABILITIES
                                                                                                           JASA 59
                                                                                                                    385
               MARTINGALE EXTENSIONS OF A THEOREM OF MARCINKIEWICZ AND ZYGMUND
                                                                                                            AMS 69
              THE MARTINGALE VERSION OF A THEOREM OF MARCINKIEWICZ AND ZYGUMD
                                                                                                            AMS 67
                    A TEST FOR HOMOGENEITY OF THE MARCINAL DISTRIBUTIONS IN A TWO-WAY CLASSIFICATION
                                                                                                           BIOKA55
                                                                                                                   412
                                       SYMMETRY AND MARGINAL HOMOGENEITY OF AN R-BY-R CONTINGENCY TABLE
                                                                                                           JASA 69 NO.4
A MARKOVIAN MODEL FOR THE ANALYSIS OF THE EFFECTS OF MARCINAL TESTING ON SYSTEM RELIABILITY
                                                                                                            AMS 62 754
 PROBABILITY IN 2-BY-2 CONTINGENCY TABLES WITH SMALL MARCINAL TOTALS /LE METHOD OF CALCULATING THE EXACT BIOKA55
                                                                                                                    522
     SEQUENTIAL HYPOTHESIS TESTS FOR THE R-DEPENDENT MARGINALLY STATIONARY PROCESSES
                                                                                                                    90
                                                                                                            AMS 66
    THE EXISTENCE OF PROBABILITY MEASURES WITH GIVEN MARGINALS
                                                                                                            AMS 65 423
 A NOTE ON MULTIVARIATE DISTRIBUTIONS WITH SPECIFIED MARGINALS
                                                                                                           JASA 67 1460
                   PROBABILITY DENSITIES WITH GIVEN MARGINALS
                                                                                                            AMS 6B 1236
                      CONTINGENCY TABLES WITH GIVEN MARGINALS
                                                                                                           BIOKA6B
                                                                                                                   179
ETRIC STATISTICAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE EXPERIMENT
                                                                                                A NONPARAM BIOCS65 936
         ESTIMATES OF SURVIVAL FROM THE SIGHTING OF MARKED ANIMALS
                                                                                                           BIOKA64
                                                                                                                    429
     ON THE ESTIMATION OF POPULATION PARAMETERS FROM MARKED MEMBERS
                                                                                                           BIOKA55
INSECTS
                              ON THE UTILIZATION OF MARKED SPECIMENS IN ESTIMATING POPULATIONS OF FLYING
                                                                                                          BTOKA53
                                                     MARKET GROWTH AND INDUSTRY CONCENTRATION
                                                                                                           JASA 68
                                                                                                                    228
CONCENTRATION 1947-1954
                                                     MARKET GROWTH, COMPANY DIVERSIFICATION AND PRODUCT
                                                                                                           JASA 60
                                                                                                                    640
                                                     MARKET MAKING AND REVERSAL OF THE STOCK EXCHANGE
                                                                                                           JASA 66
                                                                                                                    B97
SSOCIATION WITH SPECIAL CONSIDERATION OF THE CASE OF MARKET ORIENTATION OF PRODUCTION /ASURING SPATIAL A JASA 56
                                                                                                                    597
                           ON SOME MEASURES OF FOOD MARKETING SERVICES
                                                                                                           JASA 61
                                                                                                                    . 65
 NOTE ON THE COMPARISON OF SEVERAL REALIZATIONS OF A MARKOFF CHAIN
                                                                                                           BIOKA59 412
                                         A TEST FOR MARKOFF CHAINS
                                                                                                           BTOKA54
                                                                                                                    430
                      THE LIKELIHOOD RATIO TEST FOR MARKOFF CHAINS
                                                                                                           BIOKA55 531
SIMPLIFIED RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS
                                                                                                           BIOKA5B
                                                                                                                    181
        CORRIGENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOFF CHAINS'
                                                                                                           BIOKA57 301
         THE CONSISTENCY AND ADEQUACY OF THE POISSON-MARKOFF MODEL FOR DENSITY FLUCTUATIONS
                                                                                                           BIOKA57
                                                                                                                    43
 MEAN WHEN RESIDUALS FOLLOW A FIRST-ORDER STATIONARY MARKOFF PROCESS CORRIGENDA, 'CONDITIONED MARKOFF PROCESSES.'
                                                                                EFFICIENCY OF THE SAMPLE JASA 6B 1237
                                     THE FITTING OF MARKOFF SERIAL VARIATION CURVES
                                                                                                           JRSSB5B
                                                                                                                   120
 OF LEAST SQUARES REGRESSION INVOLVING TREND-REDUCED MARKOFF SERIES
                                                                                A NUMERICAL INVESTIGATION JRSSB55
                                                                                                                    1.05
        INTEGRAL KERNELS AND INVARIANT MEASURES FOR MARKOFF TRANSITION FUNCTIONS
                                                                                                            AMS 65
                                                                                                                    517
             CONFIDENCE INTERVALS FOR PARAMETERS IN MARKOV AUTOREGRESSIVE SCHEMES (WITH DISCUSSION)
                                                                                                           JRSSB54 195
           SOME RESULTS ON MULTITYPE CONTINUOUS TIME MARKOV BRANCHING PROCESSES
                                                                                                            AMS 6B
                                                                                                                    347
       EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND RELATED LIMIT THEOREMS
                                                                                                            AMS 68 1B01
           TESTS AUXILIARY TO CHI-SQUARED TESTS IN A MARKOV CHAIN
                                                                                                            AMS 63
                                                                                                                    56
                        AN INTRINSICALLY DETERMINED MARKOV CHAIN
                                                                                                            AMS 67
                                                                                                                   934
                                                                                                            AMS 67
    SOME INVARIANCE PRINCIPLES FOR FUNCTIONALS OF A MARKOV CHAIN
                                THE TAIL FIELD OF A MARKOV CHAIN
                                                                                                            AMS 69 127
                THE ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN
                                                                                                            AMS 69
                                                                                                                    665
      SOME DISTRIBUTION AND MOMENT FORMULAE FOR THE MARKOV CHAIN
                                                                                                           JRSSB55 235
  THE THEORY OF RANDOM VARIABLES DEFINED ON A FINITE MARKOV CHAIN
                                                                                   A CONVEXITY PROPERTY IN
                                                                                                                  1260
   A STATIONARY PROCESS TO BE A FUNCTION OF A FINITE MARKOV CHAIN
                                                                                SUFFICIENT CONDITIONS FOR AMS 63 1033
                                                                  /-SUB-T), WHERE (Y-SUB-0, Y-SUB-1,... BIOKA65
  IS A REALIZATION OF A NON-HOMOGENEOUS FINITE-STATE MARKOV CHAIN
                                                                   /IENCY CONDITIONS FOR THE MAXIMUM-LIKE BIOKA55
LIHOOD ESTIMATOR OF AN UNKNOWN PARAMETER IN A SIMPLE MARKOV CHAIN
                          THE TAIL SIGMA-FIELD OF A MARKOV CHAIN AND A THEOREM OF OREY
                                                                                                           AMS 64 1291
                           THE FREQUENCY COUNT OF A MARKOV CHAIN AND THE TRANSITION TO CONTINUOUS TIME
                                                                                                           AMS 61
                                                                                                                    41
             ESTIMATION OF PARAMETERS IN A TRANSIENT MARKOV CHAIN ARISING IN A RELIABILITY CROWTH MODEL
                                                                                                            AMS 69 1542
BRIUM AND TRANSITION PROBABILITIES OF A FINITE-STATE MARKOV CHAIN FROM THE SAME DATA //MATING THE EQUILI BIOCS6B 185
                                                 ON MARKOV CHAIN POTENTIALS
                                                                                                            AMS 61
                                                                                                                   709
                INFERENCE ON A CENETIC MODEL OF THE MARKOV CHAIN TYPE
                                                                                                           BIOKA63
                                                                                                                   251
                                                                    /ENCY CONDITIONS FOR THE MAXIMUM-LIKE BIOKA56 497
LIHOOD ESTIMATOR OF AN UNKNOWN PARAMETER IN A SIMPLE MARKOV CHAIN'
                          SOME PROPERTIES OF REGULAR MARKOV CHAINS
                                                                                                            AMS 61
                                                                                                                     59
     APPROXIMATIONS FOR THE ENTROPY FOR FUNCTIONS OF MARKOV CHAINS
                                                                                                            AMS 62
                                                                                                                    930
                    TESTS FOR CONTINCENCY TABLES AND MARKOV CHAINS
                                                                                                           TECH 62
                                                                                                                    573
                                                                                                            AMS 63 1022
                                FUNCTIONS OF FINITE MARKOV CHAINS
                    SOME THEOREMS ON FUNCTIONALS OF MARKOV CHAINS
                                                                                                            AMS 64 1275
A CHARACTERIZATION OF A CLASS OF FUNCTIONS OF FINITE MARKOV CHAINS
                                                                                                            AMS 65 524
               ON STOCHASTIC PROCESSES DERIVED FROM MARKOV CHAINS
                                                                                                            AMS 65 1286
              A SYSTEM OF DENUMERABLY MANY TRANSIENT MARKOV CHAINS
                                                                                                            AMS 66 406
         A NOTE ON LIMIT THEOREMS FOR THE ENTROPY OF MARKOV CHAINS
                                                                                                            AMS 66
                                                                                                                    522
             SOME LIMIT THEOREMS FOR NON-HOMOGENEOUS MARKOV CHAINS
                                                                                                            AMS 66 1224
                                                                                                            AMS 67
                                                                                                                   206
                                FUNCTIONS OF FINITE MARKOV CHAINS
                  OPTIMAL STOPPING FOR FUNCTIONS OF MARKOV CHAINS
                                                                                                            AMS 68 1905
                                                                                                            AMS 69
                                                                                                                    97
             PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS
         A NOTE ON SEQUENCES OF CONTINUOUS PARAMETER MARKOV CHAINS
                                                                                                            AMS 69 107B
                    A NOTE ON SUFFICIENCY IN RECULAR MARKOV CHAINS
                                                                                                          BIOKA60 452
ENTIFICATION OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS
                                                                                                       TD AMS 67 201
    SEQUENTIAL DESIGNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS
                                                                                                TRUNCATED BIOCS6B 159
         PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS
                                                                                             EXCHANGEABLE AMS 64
                                                                                                                    429
NFERENCE FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS
                                                                                            STATISTICAL I AMS 66 1554
                                                                                 SOME THEOREMS CONCERNING
                                                                                                           AMS 64
 THE STRONG LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS
                                                                                                                  566
                                                                      ADMISSIBILITY AND DISTRIBUTION OF S AMS 68 1646
OME PROBABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS
                                                                                                           JRSSB59
                        BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS (WITH DISCUSSION)
                                                                                                                    36
                  SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS AND CERTAIN RANDOM WALKS
                                                                                                           BIOKA56
                                                                                                                    276
                                FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES
                                                                                                            AMS 6B 1020
ON OF THE 'PSI-SQUARED' GOODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTI
                                                                                                          AMS 61
                                                                                                                  49
                                          COLLAPSED MARKOV CHAINS AND THE CHAPMAN-KOLMOGOROV EQUATION
                                                                                                           AMS 63 233
                     APPLICATION OF FINITE ABSORBENT MARKOV CHAINS TO SIB MATING POPULATIONS WITH SELECTIO BIOCS69
                                                                                                                    17
            SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES
                                                                                                          BIOKA56 2B5
```

TITLE WORD INDEX MAN - MAR

```
EXAMPLE.
                                                       MARKOV CHAINS WITH ABSORBING STATES. A GENETIC
                                                                                                               AMS 61 716
        A PATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WITH AN APPLICATION IN STUDYING THE DEN BIOCS66 791
TAL C/
 SOME PROBLEMS OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS.
                                                                                                              BTOKA65 127
                              STATISTICAL METHODS IN MARKOV CHAINS, CORR. 61 1343
                                                                                                               AMS 61
                                                                                                                        12
   BAYES SOLUTION OF SEQUENTIAL DECISION PROBLEM FOR MARKOV DEPENDENT OBSERVATIONS
                                                                                                               AMS 64 1656
                                            TESTING A MARKOV HYPOTHESIS WITH INDEPENDENCE OF INTERMEDIATE THE MARKOV INEQUALITY FOR SUMS OF INDEPENDENT RANDOM
STATES AND RESTRICTED ORDER
                                                                                                              BIOKA67 605
VARIABLES
                                                                                                               AMS 69 NO 6
                                         A TWO-STATE MARKOV MODEL FOR BEHAVIORAL CHANCE
                                                                                                              JASA 68 993
                             N THE QUEUEINC PROCESS, MARKOV OR POISSON INPUT, CENERAL SERVICE TIME DISTRIB
UTION. ONE SERVER
                                                                                                              AMS 61
                                                                                                                       770
 NOTE ON DYNKIN'S 'ALPHA, XI' SUBPROCESS OF STANDARD MARKOV PROCESS
                                                                                                               AMS 67 1647
                               OPTIMAL STOPPING IN A MARKOV PROCESS
                                                                                                               AMS 68 1333
                             ESTIMATION FROM A LINEAR MARKOV PROCESS
                                                                                                              BIOKA60 482
                                 THE INSPECTION OF A MARKOV PROCESS
                                                                                                              JRSSB58 111
IMATION OF THE TRANSITION DISTRIBUTION FUNCTION OF A MARKOV PROCESS
                                                                                           NONPARAMETRIC EST AMS 69 1386
TESIMAL CENERATOR OF A CONTINUOUS TIME, FINITE STATE MARKOV PROCESS
                                                                                       ESTIMATING THE INFINI
                                                                                                               AMS 62
                                                                                                                       727
                                                                       ON THE ITERATIVE METHOD OF AME 66
DEVELOPMENT OF RANDOMIZED LOAD TECH 66
AMS 63
 DYNAMIC PROCRAMMING ON A FINITE SPACE DISCRETE TIME MARKOV PROCESS
                                                                                                               AMS 65 1279
  SEQUENCES WITH TRANSITION PROBABILITIES BASED ON A MARKOV PROCESS
                                                    A MARKOV PROCESS ON BINARY NUMBERS
                                                                                                               AMS 63 416
                                         A MENDELIAN MARKOV PROCESS WITH BINOMIAL TRANSITION PROBABILITIES BIOKAGE
                                                                                                                        37
   A BOUND FOR THE LAW OF LARCE NUMBERS FOR DISCRETE MARKOV PROCESSES
                                                                                                               AMS 61
                    REMARK CONCERNING TWO-STATE SEMI-MARKOV PROCESSES
                                                                                                               AMS 61
                                                                                                                        615
                                          MIXTURES OF MARKOV PROCESSES
                                                                                                               AMS 62 114
    NOTE ON EXTREME VALUES, COMPETING RISKS AND SEMI-MARKOV PROCESSES
                                                                                                               AMS 63 1104
          SOME APPLICATIONS OF MONOTONE OPERATORS IN MARKOV PROCESSES
                                                                                                               AMS 65 1421
                             ASYMPTOTIC INFERENCE IN MARKOV PROCESSES
                                                                                                               AMS 65
                 INVARIANT PROBABILITIES FOR CERTAIN MARKOV PROCESSES
                                                                                                               AMS 66 837
                                       ON STATIONARY MARKOV PROCESSES
                                                                                                               AMS 67
                                                                                                                       588
       ON THE ERCODICITY FOR NON-STATIONARY MULTIPLE MARKOV PROCESSES
                                                                                                               AMS 68 1448
       A RANDOM TIME CHANCE RELATINC SEMI-MARKOV AND MARKOV PROCESSES
                                                                                                               AMS 68
                                                                                                                       358
    THE STRONC RATIO LIMIT PROPERTY OR SOME CENERAL MARKOV PROCESSES
                                                                                                               AMS 69
                                                                                                                       986
               ASYMPTOTICALLY MOST POWERFUL TESTS IN MARKOV PROCESSES
                                                                                                               AMS 69 1207
                                         CONDITIONED MARKOV PROCESSES
                                                                                                              BIOKA58 241
NIQUENESS THEOREM FOR STATIONARY MEASURES OF ERCODIC MARKOV PROCESSES
                                                                                                          A U AMS 64 1781
                                                                                                          THE JRSSB61 113
   SOLUTION OF QUEUEING AND INVENTORY MODELS BY SEMI-MARKOV PROCESSES
 THE LAW OF LARCE NUMBERS FOR LINEAR COMBINATIONS OF MARKOV PROCESSES
                                                                                       CONVERCENCE RATES FOR
                                                                                                              AMS 66
                                                                                                                       711
                         AN APPROACH TO THE STUDY OF MARKOV PROCESSES (WITH DISCUSSION)
                                                                                                              JRSSB66 417
                              MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDICTION THEORY
                                                                                                               AMS 63 424
                              NON-SINCULAR RECURRENT MARKOV PROCESSES HAVE STATIONARY MEASURES
                                                                                                               AMS 64 869
THE DISTRIBUTION OF THE SUPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CONTINUOUS STATE SPACES
                                                                                                         ON
                                                                                                               AMS 69
                                                                                                                       844
   SOLUTION OF QUEUEINC AND INVENTORY MODELS BY SEMI-MARKOV PROCESSES'
                                                                                        A CORRECTION TO 'THE JRSSB63 455
                                   HOMOCENEOUS CAUSS-MARKOV RANDOM FIELDS
                                                                                                               AMS 69 1625
                             CENERATINC FUNCTIONS FOR MARKOV RENEWAL PROCESSES
                                                                                                               AMS 64 431
                                  LIMIT THEOREMS FOR MARKOV RENEWAL PROCESSES
                                                                                                               AMS 64 1746
                  ON THE MATRIX RENEWAL FUNCTION FOR MARKOV RENEWAL PROCESSES
                                                                                                               AMS 69 NO.6
       ASYMPTOTIC VALUES OF THE FIRST TWO MOMENTS IN MARKOV RENEWAL PROCESSES
                                                                                                              BIOKA67
                                                                                                                      597
 EXISTENCE AND UNIQUENESS OF STATIONARY MEASURES FOR MARKOV RENEWAL PROCESSES
                                                                                                          THE AMS 66 1439
                                                      MARKOV RENEWAL PROCESSES WITH FINITELY MANY STATES
                                                                                                               AMS 61 1243
                                                      MARKOV RENEWAL PROCESSES, DEFINITIONS AND PRELIMINARY AMS 61 1231
               ESTIMATION OF THE PARAMETERS IN SHORT MARKOV SEQUENCES
                                                                                                              JRSSB63
                                                                                                                       206
    OF THE CORRELATION BETWEEN TWO STATIONARY LINEAR MARKOV SERIES
                                                                               THE APPROXIMATE DISTRIBUTION BIOKA62 379
ION OF THE CORRELATION BETWEEN TWO STATIONARY LINEAR MARKOV SERIES. II.
                                                                                HE APPROXIMATE DISTRIBUT BIOKA65 301
                          A STABLE LIMIT THEOREM FOR MARKOV TESTS
                                                                                                               AMS 69 1467
                            ON THE LOCAL BEHAVIOR OF MARKOV TRANSITION PROBABILITIES
                                                                                                               AMS 68 2123
ORDER 2
                                        QUADRATICS IN MARKOV-CHAIN FREQUENCIES, AND THE BINARY CHAIN OF
                                                                                                              JRSSB63 383
                                      ARBITRARY STATE MARKOVIAN DECISION PROCESSES
                                                                                                               AMS 68 2118
                          NON-DISCOUNTED DENUMERABLE MARKOVIAN DECISION MODELS
                                                                                                               AMS 68 412
CE CLASS OF CONTINUOUS SAMPLING INSPECTION PLANS MARKOVIAN DECISION MODELS FOR THE EVALUATION OF A LAF
TO A COUNTABLE SYSTEM OF EQUALITIES ARISING IN MARKOVIAN DECISION PROCESSES A SOLUTION
DENUMERABLE STATE MARKOVIAN DECISION PROCESSES, AVERAGE COST CRITERION
                                                    MARKOVIAN DECISION MODELS FOR THE EVALUATION OF A LAR
                                                                                                               AMS 65 1408
                                                                                                               AMS 67 582
                                                                                                               AMS 66 1545
MARGINAL TESTING ON SYSTEM RELIABILITY
                                                  A MARKOVIAN MODEL FOR THE ANALYSIS OF THE EFFECTS OF
                                                                                                               AMS 62 754
            A RANDOM SET PROCESS IN THE PLANE WITH A MARKOVIAN PROPERTY
                                                                                                               AMS 65 1859
                                                      MARKOVIAN SEQUENTIAL REPLACEMENT PROCESSES
                                                                                                               AMS 65 1677
                          FUNCTIONS OF PROCESSES WITH MARKOVIAN STATES
                                                                                                               AMS 68
                                                                                                                       938
         A SINGLE STATE OF A STATIONARY PROCESS INTO MARKOVIAN STATES
                                                                                                              AMS 68 1069
                         FUNCTIONS OF PROCESSES WITH MARKOVIAN STATES, II
                                                                                                               AMS 69 865
                 A LINEAR APPROXIMATOR FOR THE CLASS MARKS OF A GROUPED FREQUENCY DISTRIBUTION, WITH ESPEC TECH 68 793
                       THE DISTRIBUTION OF INANIMATE MARKS OVER A NON-HOMOGENEOUS BIRTH-DEATH PROCESS
                                                                                                              BIOKA69
                  ON THE EXPECTED VALUE OF A STOPPED MARTINCALE
                                                                                                               AMS 66 1505
                   CONVERCENCE OF SUMS OF SQUARES OF MARTINCALE DIFFERENCES
                                                                                                               AMS 68
                                                                                                                       123
COMBINATIONS OF INDEPENDENT AND RANDOM VARIABLES AND MARTINCALE DIFFERENCES /SURE CONVERGENCE OF LINEAR
                                                                                                               AMS 68 1549
AND ZYCMUND
                                                      MARTINCALE EXTENSIONS OF A THEOREM OF MARCINKIEWICZ
                                                                                                               AMS 69
                                                                                                                      427
                                A COMPARISON TEST FOR MARTINCALE INEQUALITIES
                                                                                                               AMS 69 505
                                                      MARTINCALE TRANSFORMS
                                                                                                               AMS 66 1494
                       DIVERCENCE PROPERTIES OF SOME MARTINCALE TRANSFORMS
                                                                                                               AMS 69 1852
ZYGUMD
                                                  THE MARTINCALE VERSION OF A THEOREM OF MARCINKIEWICZ AND
                                                                                                               AMS 67
                                                                                                                       725
                        A NOTE ON CONVERGENCE OF SUB-MARTINCALES
                                                                                                               AMS 64 1811
                        A SAMPLE FUNCTION PROPERTY OF MARTINCALES
                                                                                                               AMS 66 1396
              ON THE STRONG LAW OF LARCE NUMBERS FOR MARTINCALES
                                                                                                               AMS 67 610
                       A DECOMPOSITION OF L1-BOUNDED MARTINCALES
                                                                                                               AMS 68
                                                                                                                       1.34
                                 BOUNDS ON MOMENTS OF MARTINCALES
                                                                                                               AMS 68 1719
             COMPARISON TESTS FOR THE CONVERGENCE OF MARTINCALES
                                                                                                               AMS 68 2141
                  UNIFORM CONVERGENCE OF FAMILIES OF MARTINGALES
                                                                                                               AMS 69 1071
     A BEST POSSIBLE KOLMOCOROFF-TYPE INEQUALITY FOR MARTINGALES AND A CHARACTERISTIC PROPERTY
                                                                                                               AMS 69 764
                                 LOCAL CONVERCENCE OF MARTINGALES AND THE LAW OF LARGE NUMBERS
                                                                                                               AMS 65 552
                            VARIATION QUADRATIQUE DES MARTINGALES CONTINUES A DROITE
                                                                                                               AMS 69
                                                                                                                       284
 SUDDERTH
                    A NOTE ON THRIFTY STRATECIES AND MARTINCALES IN A FINITELY ADDITIVE SETTING WILLIAM D. AMS 69 NO.6
```

MAR - MAX TITLE WORD INDEX

```
MARTINGALES WITH INDEPENDENT INCREMENTS
                                                                                                                 AMS 69 1033
                 THE VALUE OF INDIRECT SELECTION, 1. MASS SELECTION
                                                                                                                BIOCS65
                                                                                                                          682
NOTE ON A METHOD FOR THE ANALYSIS OF SICNIFICANCE EN MASSE
                                                                                                                          586
                                                                                                                TECH 68
ERNA/ ASYMPTOTIC RELATIVE EFFICIENCY OF MOOD'S AND MASSEY'S TWO SAMPLE TESTS ACAINST SOME PARAMETRIC ALT
                                                                                                                AMS 62 1375
                                               THE BIC MATCH
                                                                                                                 AMS 68 159
    ASYMPTOTIC DISTRIBUTION FOR A CENERALIZED BANACH MATCH BOX PROBLEM
                                                                                                                JASA 67 1252
                      EXTENDED TABLES OF THE WILCOXON MATCHED PAIR SIGNED RANK STATISTIC
                                                                                                                JASA 65
                                                                                                                          864
                                                   THE MATCHED PAIRS DESIGN IN THE CASE OF ALL-OR-NONE
RESPONSES
                                                                                                                BTOCS68
                                                                                                                          339
                          ON THE EFFICIENCY OF MATCHED PAIRS IN BERNOULLI TRIALS
AN EXACT TEST FOR COMPARING MATCHED PROPORTIONS IN CROSSOVER DESIGNS
                                                                                                                BIOKA68
                                                                                                                          365
                                                                                                                BIOKA69
                                                                                                                          75
                         NOTE ON CHI SQUARE TESTS FOR MATCHED SAMPLES
THE EFFICIENCY OF MATCHED SAMPLES
                                                                                                                JRSSR68
                                                                                                                          368
                                                                                                                BTOCS65
                                                                                                                          623
                       TESTS OF HYPOTHESES CONCERNING MATCHED SAMPLES (CORR. 69 194)
                                                                                                                JRSSB67
                                                                                                                          46B
                              THE DISTRIBUTION OF THE MATCHING COEFFICIENT
                                                                                                                BIOCS67
                                                                                                                          647
DERIVED METHODS OF APPROXIMATION
                                    THE MATCHING DISTRIBUTIONS, POISSON LIMITING FORMS AND ON THE PROBLEM OF MATCHING LISTS BY SAMPLES
                                                                                                                JRSSB58
                                                                                                                          7.3
                                                                                                                JASA 59
                                                                                                                          403
                                                    ON MATCHING LISTS BY SAMPLES
                                                                                                                JASA 61
                                                                                                                          151
                                    THE EFFECT OF MIS-MATCHING ON THE MEASUREMENT OF RESPONSE ERRORS
                                                                                                                JASA 65 1005
                                         THE TWO-PACK MATCHING PROBLEM
                                                                                                                JRSSB60 114
                  OUTCOME PROBABILITIES FOR A RECORD MATCHING PROCESS WITH COMPLETE INVARIANT INFORMATION
                                                                                                                JASA 67
                                                                                                                          454
                                 MEASUREMENTS MADE BY MATCHING WITH KNOWN STANDARDS
                                                                                                                TECH 59
                                                                                                                          101
                                           INDIVIDUAL MATCHING WITH MULTIPLE CONTROLS IN THE CASE OF ALL-
OR-NONE RESPONSES
                                                                                                                BIOCS69
                                                                                                                          339
                  A GENERAL SIMULATION PROGRAMME FOR MATERIAL FLOW IN BATCH CHEMICAL PLANTS
                                                                                                                TECH 61
                                                                                                                          497
COMPUTATION OF THE UNRESTRICTED AOQL WHEN DEFECTIVE MATERIAL IS REMOVED BUT NOT REPLACED
                                                                                                            THE JASA 69
                                                                                                                          665
                                                                                                                         151
              A STATISTICAL MODEL FOR LIFE-LENGTH OF MATERIALS
                                                                                                                JASA 58
                                     SUSCEPTIBLES THE MATHEMATICAL ANALYSIS OF AN EPIDEMIC WITH TWO KINDS
                                                                                                                BTOCS68
                                                                                                                          557
                                                    ON MATHEMATICAL ANALYSIS OF STYLE
A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF
                                                                                                                BIOKA52
                                                                                                                          122
BREAST CANCER
                                                                                                                BIOCS69
                                                                                                                          95
SPECTRA
                                                       MATHEMATICAL CONSIDERATIONS IN THE ESTIMATION OF
                                                                                                                TECH 61
                                                                                                                          167
             MAMMALIAN REPRODUCTIVE DATA FITTED TO A MATHEMATICAL MODEL
                                                                                                                BTOCS69
                                                                                                                          529
COMPETITION (CORRECTION TO REFERENCE 68 1025)
                                                   A MATHEMATICAL MODEL FOR THE ESTIMATION OF INTER-PLANT BIOCS67
                                                                                                                          189
ENT FOR REGULARLY SPACED CROPS
                                                     A MATHEMATICAL MODEL RELATINC PLANT YIELD WITH ARRANGEM BIOCS67
                                                                                                                          505
ACCIDENT REPEATEDNESS AMONG CHILDREN
                                                     A MATHEMATICAL MODEL WITH APPLICATIONS TO A STUDY OF
                                                                                                                JASA 65 1046
     AN ALTERNATIVE SYSTEM FOR THE CLASSIFICATION OF MATHEMATICAL MODELS FOR QUANTAL RESPONSES TO MIXTURES BIOCS65
                                                                                                                         181
                                                       MATHEMATICAL MODELS FOR RANKING FROM PAIRED
                                                                                                                JASA 60
                                    KHINCHIN'S WORK IN MATHEMATICAL PROBABILITY
                                                                                                                 AMS 62 1227
                                                       MATHEMATICAL PROBABILITY IN THE NATURAL SCIENCES
                                                                                                                TECH 59
                                                                                                                          21
NCUISTIC DIVERSITY AND YULE'S CHARACTERISTIC THE MATHEMATICAL RELATION BETWEEN CREENBERG'S INDEX OF LI BIOKA5B
                                                                                                                          268
                                             A SIMPLE MATHEMATICAL RELATIONSHIP AMONG K-CLASS ESTIMATORS
PHYSICAL DECAY OF CHAMBER AEROSOLS
                                                       MATHEMATICAL REPRESENTATION OF THE BIOLOGICAL AND
                                                                                                                BIOCS65
                                                                                                                          551
INVERSE OF A MATRIX WITH APPLICATIONS TO PROBLEMS IN MATHEMATICAL STATISTICS A NOTE SOME REFLEXIONS ON CONTINUITY IN THE DEVELOPMENT OF MATHEMATICAL STATISTICS, 1885-1920
                                                                                     A NOTE ON A GENERALIZED
                                                                                                               JRSSB62
                                                                                                                          152
                                                                                             /ATISTICS. XVII. BIOKA67
                                                    A MATHEMATICAL THEORY OF ANIMAL TRAPPING
                                                                                                                          307
                                                     A MATHEMATICAL THEORY OF PATTERN RECOGNITION
                                                                                                                 AMS 63
                                                                                                                          2B4
D STATISTICS. XIII. ISAAC TODHUNTER'S HISTORY OF THE MATHEMATICAL THEORY OF PROBABILITY AN BIOKAG3
                                                                                                                          204
                                 CONTRIBUTIONS TO THE MATHEMATICS OF ANIMAL TRAPPING
                                                                                                                BIOCS66
                                                                                                                          925
ONS ZEA MAYS L UTILIZING INFORMATION FROM A DIALLEL MATING DESIGN /AL RELATIONSHIP AMONG EIGHT POPULATI BIOCS68
C TRENDS
                              EXAMINATION OF A REPEAT MATING DESIGN FOR ESTIMATING ENVIRONMENTAL AND GENETI BIOCS65
                                                                                                                          63
APPLICATION OF FINITE ABSORBENT MARKOV CHAINS TO SIB MATING POPULATIONS WITH SELECTION
                                                                                                                BIOCS69
                                                                                                                           17
                                 A NOTE ON IDEMPOTENT MATRICES
                                                                                                                 AMS 64
                                                                                                                          BBO
                          EICENVALUES OF NON-NEGATIVE MATRICES
                                                                                                                 AMS 64 1797
                                        ON IDEMPOTENT MATRICES
                                                                                                                 AMS 66
                                                                                                                          295
          ON TESTS OF THE EQUALITY OF TWO COVARIANCE MATRICES
                                                                                                                 AMS 68
                                                                                                                          275
                    ON INVERTING A CLASS OF PATTERNED MATRICES
                                                                                                                BIOKA56
                                                                                                                          227
                   LATENT VECTORS OF RANDOM SYMMETRIC MATRICES
                                                                                                                BIOKA61
                                                                                                                          133
               THE LATENT ROOTS OF CERTAIN STOCHASTIC MATRICES
                                                                                                                BIOKA62
                                                                                                                          264
        SOME INEQUALITIES ON CHARACTERISTIC ROOTS OF MATRICES
                                                                                                                BIOKA63
                                                                                                                          522
                                TESTS FOR CORRELATION MATRICES
                                                                                                                BIOKA68
                                                                                                                          327
             ON TESTING THE EQUALITY OF K COVARIANCE MATRICES
                                                                                                                BIOKA69
                                                                                                                          216
                      ON LOOKING AT LARGE CORRELATION MATRICES
                                                                                                                BIOKA69
                                                                                                                          249
                           SOME TESTS FOR CORRELATION MATRICES
                                                                                                                BIOKA69
                                                                                                                          443
                 THE LINEAR HYPOTHESIS AND IDEMPOTENT MATRICES
                                                                                                                JRSSB64
                                                                                                                          261
ON DISCRIMINATION IN THE CASE OF UNEQUAL COVARIANCE MATRICES
                                                                                                         A NOTE BIOKA68
                                                                                                                          586
  ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF TWO MATRICES
                                                                                             ON THE MOMENTS OF AMS 64 1704
                                                                                            ON THE FIXED POINT JASA 67
 PROBABILITY VECTOR OF REGULAR OR ERGODIC TRANSITION MATRICES
                                                                                                                          600
NCERNING ESTIMABLE FUNCTIONS AND GENERALIZED INVERSE MATRICES
                                                                                         ADDITIONAL RESULTS CO JRSSB65
                                                                                                                          4B6
                                                                                         TESTS OF SIGNIFICANCE BIOKA56
                                                                                                                         128
  FOR THE LATENT ROOTS OF COVARIANCE AND CORRELATION MATRICES
  CRITERIA FOR THE EQUALITY OF ONE OR TWO COVARIANCE MATRICES
                                                                                     UNBIASEDNESS OF SOME TEXT AMS 6B 16B6
RIATE NORMAL DISTRIBUTIONS WITH DIFFERENT COVARIANCE MATRICES
                                                                              CLASSIFICATION INTO TWO MULTIVA AMS 62
                                                                                                                        420
                                                                          AN EMPIRICAL COMPARISON OF DISTANCE BIOCS6B
  STATISTICS FOR POPULATIONS WITH UNEQUAL COVARIANCE MATRICES
                                                                                                                          683
                                                                      SOME RESULTS ON THE NON-CENTRAL MULTIVA AMS 65 1511
RIATE BETA DISTRIBUTION AND MOMENTS OF TRACES OF TWO MATRICES
                                                                    EVALUATION OF DETERMINANTS, CHARACTERISTI JRSSB60
C EQUATIONS AND THEIR ROOTS FOR A CLASS OF PATTERNED MATRICES
                                                                                                                          34B
   SIMULTANEOUS TESTS FOR THE EQUALITY OF COVARIANCE MATRICES
                                                                 AGAINST CERTAIN ALTERNATIVES
                                                                                                                 AMS 68 1303
                                                                 AGAINST ONE-SIDED ALTERNATIVES
                                                                                                                 AMS 62 1463
 OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES
                                                                                                   /A PROPERTY
F ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF TWO MATRICES AND APPROXIMATIONS TO A DISTRIBUTION /TS 0
                                                                                                                 AMS 68 1274
IMATO/ ON CANONICAL FORMS, NON-NEGATIVE COVARIANCE MATRICES AND BEST AND SIMPLE LEAST SQUARES LINEAR EST
                                                                                                                 AMS 67 1092
                     THE SPECTRAL THEOREM FOR FINITE MATRICES AND COCHRAN'S THEOREM
                                                                                                                 AMS 64 443
                           DECOMPOSITION OF SYMMETRIC MATRICES AND DISTRIBUTIONS OF QUADRATIC FORMS
                                                                                                                 AMS 65
                                                                                                                          6B3
           A RELATIONSHIP BETWEEN ARBITRARY POSITIVE MATRICES AND DOUBLY STOCHASTIC MATRICES
                                                                                                                 AMS 64
                                                                                                                          876
                                          ASSOCIATION MATRICES AND THE KRONECKER PRODUCT OF DESIGNS
                                                                                                                 AMS 68
                                                                                                                          676
ARIATE ANALYSIS OF VARIANCE WHEN VARIANCE-COVARIANCE MATRICES ARE NOT EQUAL /SQUARE-SUB-O TEST IN MULTIV BIOKA64
ISTRIBUTION OF DISCRIMINANT FUNCTION WHEN COVARIANCE MATRICES ARE PROPORTIONAL D AMS 69
                                                                                                                          71
                                                                                                                          979
        A TEST FOR EQUALITY OF MEANS WHEN COVARIANCE MATRICES ARE UNEQUAL
                                                                                                                 AMS 63
                                                                                                                          671
 COMPARISIONS OF TESTS OF EQUALITY OF TWO COVARIANCE MATRICES BASED ON FOUR CRITERIA
                                                                                                         POWER BIOKA68 335
                                     FACTORIZATION OF MATRICES BY LEAST-SQUARES
                                                                                                                BIOKA62 239
                         REPRESENTATION OF SIMILARITY MATRICES BY TREES
                                                                                                                JASA 67 1140
```

TITLE WORD INDEX MAR - MAX

```
TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE SPECIFICITY AMS 62
                                             ADJOINT MATRICES FOR POLYNOMIAL RECRESSION (CORRECTIONS 68
                                                                                                                      401
10251
  ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF TWO MATRICES IN MULTIVARIATE ANALYSIS.
                                                                                                          ON BIOKA65
NALYSIS TESTS FOR THE EQUALITY OF TWO COVARIANCE MATRICES IN RELATION TO A BEST LINEAR DISCRIMINATOR A AMS 64
                                                                                                                      191
BERG AND SARHAN'S METHOD OF INVERSION OF PARTITIONED MATRICES IN THE ANALYSIS OF NON-ORTHOGONAL DATA /EN JASA 65 1200
                LOWER BOUNDS FOR MINIMUM COVARIANCE MATRICES IN TIME SERIES REGRESSION PROBLEMS
                                                                                                              AMS 64 362
 POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTIONS.
                                                                                                         /OF
                                                                                                              AMS 69
           THE EFFECT OF UNEQUAL VARIANCE-COVARIANCE MATRICES ON FISHER'S LINEAR DISCRIMINANT FUNCTION
                                                                                                             BIOCS69
                TESTS FOR THE EQUALITY OF COVARIANCE MATRICES UNDER THE INTRACLASS CORRELATION MODEL
                                                                                                              AMS 67 12B6
      SOME RESULTS ON THE DISTRIBUTION OF TWO RANDOM MATRICES USED IN CLASSIFICATION PROCEDURES, CORR. 64
924
                                                                                                              AMS 63 1B1
      A USEFUL LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH APPLICATIONS TO LEAST SQUARES TYPE QUAD JASA 69
RA/
                      QUADRATIC FORMS AND IDEMPOTENT MATRICES WITH RANDOM ELEMENTS
                                                                                                              AMS 69 1430
IONS OF SOME TESTS OF THE EQUALITY OF TWO COVARIANCE MATRICES, CORR. 65 1318 /ROPERTY OF THE POWER FUNCT
                                                                                                              AMS 64 1059
       'SOME INEQUALITIES ON CHARACTERISTIC ROOTS OF MATRICES'
                                                                                                 CORRIGENDA, BIOKA65 669
ISTRIBUTION AND THE INVERTED MULTIVARIATE T DISTR/ MATRICVARIATE GENERALIZATIONS OF THE MULTIVARIATE T D AMS 67
                                                                                                                      511
ON A PARADOX CONCERNING INFERENCE ABOUT A COVARIANCE MATRIX
                                                                                                              AMS 63 1414
                           ON FRACTIONAL POWERS OF A MATRIX
                                                                                                             JASA 67 1018
      ON THE A PRIORI DISTRIBUTION OF THE COVARIANCE MATRIX
                                                                                                              AMS 69 109B
                THE GENERALIZED MULTIPLE CORRELATION MATRIX
                                                                                                             SASJ 69 NO.2
SOME APPLICATIONS OF THE SINGULAR DECOMPOSITION OF A MATRIX
                                                                                                             TECH 69 NO.4
 PERCENTAGE POINTS OF THE EXTREME ROOTS OF A WISHART MATRIX
                                                                                                             BIOKA68
         A NOTE ON THE EXPECTED VALUE OF AN INVERSE MATRIX
                                                                                                             BIOKA69 NO.3
   A NOTE ON THE BARTLETT DECOMPOSITION OF A WISHART MATRIX
                                                                                                             JRSSB64
   COMPOUND DECISION PROBLEM WITH M-BY-N FINITE LOSS MATRIX
                                                                                                         THE AMS 66
 SQUARES ESTIMATION OF THE COMPONENTS OF A SYMMETRIC MATRIX
                                                                                                       LEAST TECH 66
                                                                                                                      360
   OF FUNCTIONS OF CHARACTERISTIC ROOTS OF A RANDOM MATRIX
                                                                                                 ON THE BIAS BIOKA65
  COMPOUND DECISION PROBLEMS WITH M-BY-N FINITE LOSS MATRIX
                                                                                              THE SEQUENTIAL AMS 66
                                                                                                                       954
 OF THE DETERMINANT OF A COMPLEX WISHART DISTRIBUTED MATRIX
                                                                                            THE DISTRIBUTION AMS 63
                                                                                                                      17B
        OF THE LARGEST LATENT ROOT OF THE COVARIANCE MATRIX
                                                                                         ON THE DISTRIBUTION
                                                                                                              AMS 67 114B
        OF A STATISTIC USED FOR TESTING A COVARIANCE MATRIX
                                                                                         ON THE DISTRIBUTION BIOKAGS
                                                                                                                      171
RIANCES OF NORMAL VARIABLES WITH SINGULAR COVARIANCE MATRIX
                                                                                 CONDITIONAL MEANS AND COVA JASA 64 1203
                                                                     ASYMPTOTIC EXPANSIONS OF THE DISTRIBUT AMS 69 NO.6
IONS OF THE LIKELIHOOD RATIO CRITERIA FOR COVARIANCE MATRIX
TION OF THE LATENT ROOTS OF THE ESTIMATED COVARIANCE MATRIX
                                                                   AN ASYMPTOTIC EXPANSION FOR THE DISTRIBU
                                                                                                              AMS 65 1153
ITERIA FOR TESTING COMPOUND SYMMETRY OF A COVARIANCE MATRIX
                                                                   ON THE EXACT DISTRIBUTIONS OF VOTAW'S CR
                                                                                                              AMS 69
                                                                                                                      836
COND ELEMENTARY SYMMETRIC FUNCTION OF THE ROOTS OF A MATRIX
                                                                  ON THE NON-CENTRAL DISTRIBUTION OF THE SE
                                                                                                              AMS 68
                                                                                                                      B33
                                                               /MULTIVARIATE AUTORECRESSIONS, AND THE APPRO BIOKA63
XIMATE CANONICAL FACTORIZATION OF A SPECTRAL DENSITY MATRIX
                                                                                                                       129
                                                                 EXPRESSING THE NORMAL DISTRIBUTION WITH C BIOKA63
OVARIANCE MATRIX A+B IN TERMS OF ONE WITH COVARIANCE MATRIX A
                                                                                                                       535
  EXPRESSING THE NORMAL DISTRIBUTION WITH COVARIANCE MATRIX A+B IN TERMS OF ONE WITH COVARIANCE MATRIX A
                                                                                                             BIOKA63
                    ON THE MOMENTS OF THE TRACE OF A MATRIX AND APPROXIMATIONS TO ITS NON-CENTRAL DISTRIBU
                                                                                                              AMS 66 1312
                                                     MATRIX AND MULTIPLE DECREMENT IN POPULATION ANALYSIS BIOCS67
                    MINIMIZATION OF EIGENVALUES OF A MATRIX AND OPTIMALITY OF PRINCIPAL COMPONENTS
                                                                                                              AMS 6B
                                                                                                                      859
RIBUTIONS OF THE RATIOS OF THE ROOTS OF A COVARIANCE MATRIX AND WILKS' CRITERION FOR TESTS OF THREE HYPOTH
                                                                                                             AMS 69 NO.6
                 MULTIVARIATE MAXIMA AND MINIMA WITH MATRIX DERIVATIVES
                                                                                                             JASA 69 NO.4
                                SOME APPLICATIONS OF MATRIX DERIVATIVES IN MULTIVARIATE ANALYSIS
                                                                                                             JASA 67
                                                                                                                      607
                                    SOME THEOREMS ON MATRIX DIFFERENTIATION WITH SPECIAL REFERENCE TO KRON JASA 69
ECKER MATRIX PRODUCTS
                                                                                                                       953
                  A TEST FOR REALITY OF A COVARIANCE MATRIX IN A CERTAIN COMPLEX GAUSSIAN DISTRIBUTION
                                                                                                              AMS 65
                                                                                                                       115
                                   ON THE STOCHASTIC MATRIX IN A GENETIC MODEL OF MORAN
                                                                                                             BIOKA61
                                                                                                                       203
        ON THE DISTRIBUTION OF THE LARGEST ROOT OF A MATRIX IN MULTIVARIATE ANALYSIS
                                                                                                              AMS 67
                                                                                                                       616
ON THE DISTRIBUTION OF THE LARGEST OF SIX ROOTS OF A MATRIX IN MULTIVARIATE ANALYSIS
                                                                                                             BIOKA59
   UPPER PERCENTAGE POINTS OF THE LARGEST ROOT OF A MATRIX IN MULTIVARIATE ANALYSIS
                                                                                                             BIOKA67
                                                                                                                       189
 THE DISTRIBUTION OF THE LARGEST OF SEVEN ROOTS OF A MATRIX IN MULTIVARIATE ANALYSIS
                                                                                                          ON BIOKA64
ISTRIBUTION OF THE LARCEST OR THE SMALLEST ROOT OF A MATRIX IN MULTIVARIATE ANALYSIS
                                                                                                   ON THE D BIOKA56
                                                                                                                       122
 OF ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF A MATRIX IN MULTIVARIATE ANALYSIS OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE ANALYSIS
                                                                                                 THE MOMENTS AMS 61 1152
                                                                                           AN ALGORITHM FOR JASA 67
                                                                                                                     114
DISTRIBUTION OF THE LARGEST CHARACTERISTIC ROOT OF A MATRIX IN MULTIVARIATE ANALYSIS.
                                                                                                     ON THE BIOKA65
STRIBUTION OF THE 'GENERALIZED' MULTIPLE CORRELATION MATRIX IN THE DUAL CASE
                                                                                                          DI AMS 64 1801
                      MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION
                                                                                                             TECH 62
                                                                                                                      282
             ERRATA, 'MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION '
                                                                                                             TECH 62
                                                                                                                      622
                                            A NOTE ON MATRIX INVERSION BY THE SQUARE ROOT METHOD
                                                                                                             JASA 56
                                                                                                                      288
ATE DISTAN/ APPLICATIONS OF JORDAN'S PROCEDURE FOR MATRIX INVERSION IN MULTIPLE REGRESSION AND MULTIVARI JRSSB63
                                                                                                                       352
                                                      MATRIX INVERSION WITH THE SQUARE ROOT METHOD
                                                                                                             TECH 64
                                                                                                                       197
                                                      MATRIX INVERSION, ITS INTEREST AND APPLICATION IN
ANALYSIS OF DATA
                                                                                                             JASA 59
                                                                                                                       755
                                                    A MATRIX MODEL FOR FOREST MANAGEMENT
                                                                                                             BIOCS69
                                                                                                                      309
                     SOME STOCHASTIC VERSIONS OF THE MATRIX MODEL FOR POPULATION DYNAMICS
                                                                                                             JASA 69
                                                                                                                      111
SERIES
                                      THE COVARIANCE MATRIX OF A CONTINUOUS AUTOREGRESSIVE VECTOR TIME-
                                                                                                              AMS 63 1259
                    ON THE INVERSE OF THE COVARIANCE MATRIX OF A FIRST ORDER MOVING AVERACE
                                                                                                             BIOKA69 NO.3
                          THE EQUILIBRIUM COVARIANCE MATRIX OF DYNAMIC ECONOMETRIC MODELS
                                                                                                             JASA 69
UNCTIONS ANALOGOUS TO THE TYPE A S/ A STUDY OF THE MATRIX OF FITTING OF A SERIES OF DISCRETE FREQUENCY F SASJ 67
                            ON THE USE OF THE DIRECT MATRIX PRODUCT IN ANALYSING CERTAIN STOCHASTIC POPULA BIOKAGE
TION MODELS
                                                                                                                       397
 DIFFERENTIATION WITH SPECIAL REFERENCE TO KRONECKER MATRIX PRODUCTS
                                                                                    SOME THEOREMS ON MATRIX JASA 69
                                               ON THE MATRIX RENEWAL FUNCTION FOR MARKOV RENEWAL PROCESSES
                                                                                                              AMS 69 NO.6
                  NOTE ON 'THE JACOBIANS OF CERTAIN MATRIX TRANSFORMATION USEFULL IN MULTIVARIATE ANALYSI BIOKA53
S, BASED ON LECTURES BY/ THE JACOBIANS OF CERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE ANALYSI BIOKA51
STRIBUTION OF THE LATENT ROOTS OF A SYMMETRIC RANDOM MATRIX UNDER GENERAL CONDITIONS /ERISTICS OF THE DI AMS 61
IVARIATE ANALYSIS
                               THE CONSTRUCTION OF A MATRIX USED IN DERIVING TESTS OF SIGNIFICANCE IN MULT BIOKA64
SAMPLES
                                    DISTRIBUTIONS OF MATRIX VARIATES AND LATENT ROOTS DERIVED FROM NORMAL
                                                                                                              AMS 64
STATISTICS
                A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH APPLICATIONS TO PROBLEMS IN MATHEMATICAL
                                                                                                             JRSSB62
  SYMMETRIC FUNCTIONS OF THE ROOTS OF A MULTIVARIATE MATRIX. DISTRIBUTIONS
                                                                                               ON ELEMENTARY AMS 64 1186
 NUMERICAL PROCEDURE TO GENERATE A SAMPLE COVARIANCE MATRIX, CORR. 66 1248
                                                                                                           A JASA 66
                                                                                                                      199
       ON THE DISTRIBUTION OF A MULTIPLE CORRELATION MATRIX, NON-CENTRAL MULTIVARIATE BETA DISTRIBUTIONS
                                                                                                              AMS 68
                            THE INVERSE OF A CERTAIN MATRIX, WITH APPLICATION
                                                                                                               AMS 67 1289
           ON THE CALCULATION OF CERTAIN CONSTRAINED MAXIMA
                                                                                                             TECH 62 135
                                 SAMPLE SEQUENCES OF MAXIMA
                                                                                                              AMS 67 1570
HLENBECK PROCESS BY MONTE/
                              ESTIMATING FINITE-TIME MAXIMA AND MINIMA OF A STATIONARY GAUSSIAN ORNSTEIN-U JASA 68 1517
                                        MULTIVARIATE MAXIMA AND MINIMA WITH MATRIX DERIVATIVES
                                                                                                             JASA 69 NO.4
    THE DISTRIBUTION OF INTERVALS BETWEEN SUCCESSIVE MAXIMA IN A SERIES OF RANDOM NUMBERS
                                                                                                             BIOKA57 524
```

MAX - MEA TITLE WORD INDEX

```
ON FINDING LOCAL MAXIMA OF FUNCTIONS OF A REAL VARIABLE
                                                                                                            BIOKA67 310
                       A NOTE ON THE CONSISTENCY AND MAXIMA OF THE ROOTS OF LIKELIHOOD EQUATIONS
                                                                                                            BIOKA54
                              MUTUAL INFORMATION AND MAXIMAL CORRELATION AS MEASURES OF DEPENDENCE
                                                                                                             AMS 62
                              GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM
                                                                                                             AMS 65 1292
                                                     MAXIMAL INDEPENDENT STOCHASTIC PROCESSES
                                                                                                             AMS 61 704
G PROBLEMS
                                  A NOTE ON RISK AND MAXIMAL REGULAR GENERALIZED SUBMARTINGALES IN STOPPIN AMS 67
                                         CONSTRAINED MAXIMISATION AND THE DESIGN OF EXPERIMENTS
                                                                                                            TECH 69
                                        A NOTE ON THE MAXIMIZATION OF A NON-CENTRAL CHI-SQUARE PROBABILITY
                                                                                                             AMS 64
                                  HOW TO MINIMIZE OR MAXIMIZE THE PROBABILITIES OF EXTINCTION IN A GALTON-
WATSON PROCESS AND IN SOME REL/
                                                     MAXIMIZING A FUNCTION IN A CONVEX REGION
                                                                                                            JRSSB59
                          ON THE DISTRIBUTION OF THE MAXIMUM AND MINIMUM OF RATIOS OF ORDER STATISTICS
NONPARAMETRIC TWO-WAY CLASSIFICATION WITH PRESCRIBED MAXIMUM ASYMPTOTIC ERROR PROBABILITY
                                                                                               SEQUENTIAL.
                                                                                                             AMS 69
                 THE DISTRIBUTION OF THE SIZE OF THE MAXIMUM CLUSTER OF POINTS ON A LINE
                                                                                                                     532
                                                                                                             JASA 65
ROORGANISMES IRRADIES ESTIMATION PAR LA METHODE DU MAXIMUM DE VRAISEMBLANCE DES COURBES DE SURVIE DE MIC BIOCS66
                                                 THE MAXIMUM DEVIATION OF SAMPLE SPECTRAL DENSITIES
                                                                                                             AMS 67 1558
                                              ON THE MAXIMUM DEVIATION OF THE SAMPLE DENSITY
                                                                                                                     475
                                                                                                              AMS 67
Y FOR MULTIDIMENSIONAL CONTINGENCY TABLES
                                                     MAXIMUM ENTROPY FOR HYPOTHESIS FORMULATION, ESPECIALL
                                                                                                             AMS 63
                                                                                                                     911
              ON SEQUENTIAL TESTS WHICH MINIMIZE THE MAXIMUM EXPECTED SAMPLE SIZE
                                                                                                            JASA 62
                                                                                                                     551
     SAMPLING PLANS WHICH APPROXIMATELY MINIMIZE THE MAXIMUM EXPECTED SAMPLE SIZE
                                                                                                            JASA 64
                                                                                                                      67
                 UPPER 5 AND 1 PERCENT POINTS OF THE MAXIMUM F-RATIO
                                                                                                            BIOKA52
                                                                                                                      422
                        DISTRIBUTION OF THE ABSOLUTE MAXIMUM FOR CERTAIN BROWNIAN MOTIONS
                                                                                                             AMS 65
                                                                                                                      311
                                     ON GROUPING FOR MAXIMUM HOMOGENEITY
                                                                                                            JASA 5B
                                                                                                                     7B9
                      A LAW OF LARGE NUMBERS FOR THE MAXIMUM IN A STATIONARY GAUSSIAN SEQUENCE
                                                                                                             AMS 62
                                                                                                                      9.3
          AIDS FOR FITTING THE GAMMA DISTRIBUTION BY MAXIMUM LIKELIHOOD
                                                                                                             TECH 60
                                                                                                                      55
                              MOMENT ESTIMATORS AND MAXIMUM LIKELTHOOD
                                                                                                             BTOKA58
                                                                                                                     411
      NOMOGRAMS FOR FITTING THE LOGISTIC FUNCTION BY MAXIMUM LIKELIHOOD
                                                                                                            BIOKA60
                                                                                                                     121
 NORMAL DISTRIBUTION, III ACCURACY OF ESTIMATION BY MAXIMUM LIKELIHOOD
                                                                                                 THE FOLDED TECH 62
                                                                                                                     249
 PROBABILITY AND STATISTICS. XI. DANIEL BERNOULLI ON MAXIMUM LIKELIHOOD
                                                                                 STUDIES IN THE HISTORY OF BIOKAG1
                                                                                                                       1
                                                     MAXIMUM LIKELTHOOD AND BAYESTAN ESTIMATION OF
TRANSITION PROBABILITIES.
                                                                                                            JASA 68 1162
           THE EFFICIENCIES IN SMALL SAMPLES OF THE MAXIMUM LIKELIHOOD AND BEST UNBIASED ESTIMATORS OF RE JASA 66 1033
LIABILIT/
                               NOTES. EQUIVALENCE OF MAXIMUM LIKELIHOOD AND THE METHOD OF MOMENTS IN PROBI BIOCS67
T ANALYSIS
                                                                                                                     154
                                                     MAXIMUM LIKELIHOOD CHARACTERIZATION OF DISTRIBUTIONS
                                                                                                             AMS 61 1214
                                           A GENERAL MAXIMUM LIKELIHOOD DISCRIMINANT
                                                                                                            BIOCS67
                                                                                                                    313
NED BY MEANS OF THE CAPTURE-RECAPTURE METHOD. I. THE MAXIMUM LIKELIHOOD EQUATIONS FOR ESTIMATING THE DEATH BIOKAS1 269
                           REMARK ON THE LINEARIZED MAXIMUM LIKELIHOOD ESTIMATE
                                                                                                             AMS 67 1876
N BETWEEN MINIMUM NORMIT CHI-SQUARE ESTIMATE AND THE MAXIMUM LIKELIHOOD ESTIMATE
                                                                                    /ES. PART II. COMPARISO BIOKA57
                                                                                                                    411
                                              QUERY, MAXIMUM LIKELIHOOD ESTIMATE IN INTRACLASS CORRELATION TECH 69 NO.4
 MODEL.
AMETER OF A NONCENTRAL CHI-SQUARE VARIATE
                                                THE MAXIMUM LIKELIHOOD ESTIMATE OF THE NON-CENTRALITY PAR JASA 67 125B
L DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LIKELIHOOD ESTIMATES FOR A MULTIVARIATE NORMA JASA 57
                                                                                                                     200
                                         APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATES FROM GROUPED DATA
                                                                                                            TECH 67
                                                                                                                     599
E PARAMETERS GIVEN A TYPE II CENS/
                                     THE BIAS OF THE MAXIMUM LIKELIHOOD ESTIMATES OF THE LOCATION AND SCAL BIOKAG1
                                                                                                                      448
SINGLY CENSORED SAMPLES
                                          TABLES FOR MAXIMUM LIKELIHOOD ESTIMATES. SINGLY TRUNCATED AND
                                                                                                           TECH 61 535
NCE OF BINOMIAL PROBABILITIES WITH AN APPLICATION TO MAXIMUM LIKELIHOOD ESTIMATION
                                                                                         MONOTONE CONVERGE AMS 67 1583
                                                                                                             AMS 65
MONOTONE FAILURE RATE
                                                     MAXIMUM LIKELIHOOD ESTIMATION FOR DISTRIBUTIONS WITH
                                                                                                                      69
ERIES DISTRIBUTIONS AND ITS APPLICATION TO A TRUN/
                                                     MAXIMUM LIKELIHOOD ESTIMATION FOR GENERALIZED POWER S BIOKA62
                                                                                                                      227
                                              NOTES. MAXIMUM LIKELIHOOD ESTIMATION FOR THE TRUNCATED
                                                                                                            BIOCS66
                                                                                                                      620
TION BASED ON COMPLETE AND ON CENSORED SAMPLES
                                                     MAXIMUM LIKELIHOOD ESTIMATION IN THE WEIBULL DISTRIBU TECH 65
                                                                                                                      579
TION BASED ON COMPLETE AND ON CENSORED S/ ERRATA, 'MAXIMUM LIKELIHOOD ESTIMATION IN THE WEIBULL DISTRIBU TECH 66 570
                                                     MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR FUNCTIONAL
RELATIONSHIP
                                                                                                             AMS 61 1048
                                       A NOTE ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR STRUCTURAL JASA 64 1175
RELATIONSHIP
NCE COMPONENTS FOR THE BALANCED ONE-WAY LAYOUT
                                                     MAXIMUM LIKELIHOOD ESTIMATION OF MULTIVARIATE COVARIA AMS 69 1100
                                                     MAXIMUM LIKELIHOOD ESTIMATION OF SURVIVAL CURVE
                                                                                                            BIOCS6B
 TWO STOCHASTICALLY ORDERED RANDOM VARIABLES
                                                      MAXIMUM LIKELIHOOD ESTIMATION OF THE DISTRIBUTIONS OF JASA 66 1067
                                         ASPECTS OF MAXIMUM LIKELIHOOD ESTIMATION OF THE LOGISTIC GROWTH JASA 66 697
THE GAMMA DISTRIBUTION AND THEIR BIAS
                                                     MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF
                                                                                                             TECH 69 NO.4
                                                     MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF GA TECH 65 639
MMA AND WEIBULL POPULATIONS FROM COMPLETE AND FRO/
E BETA DISTRIBUTION FROM SMALLEST ORDER STATISTICS
                                                     MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF TH TECH 67
                                                                                                        AMS 68 1057
POPULATION
                                          SEQUENTIAL MAXIMUM LIKELIHOOD ESTIMATION OF THE SIZE OF A
MULTIVARIATE DATA
                                                     MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE
                                                                                                             AMS 64 647
NOWLEDGEMENT OF PRIORITY FOR 'AN OPTIMUM PROPERTY OF MAXIMUM LIKELIHOOD ESTIMATION' 60 120B
                                                                                                        ACK AMS 61 1343
                                       INVARIANCE OF MAXIMUM LIKELIHOOD ESTIMATIONS
                                                                                                              AMS 66
MENTS WITH LEAST SQUARES, WEIGHTED LEAST SQUARES AND MAXIMUM LIKELIHOOD ESTIMATORS
                                                                                      /CES, SAMPLING EXPERI BIOCS6B
AUTOREGRESSIVE DISTURB/
                         ASYMPTOTIC DISTRIBUTION OF MAXIMUM LIKELIHOOD ESTIMATORS IN A LINEAR MODEL WITH
                                                                                                             AMS 69
NTS FOR THE CASE OF AUTOCORRELATED RESIDUALS
                                                     MAXIMUM LIKELIHOOD ESTIMATORS OF REGRESSION COEFFICIE TECH 65
S FOR SYSTEMS IN SE/ MINIMUM VARIANCE UNBIASED AND MAXIMUM LIKELIHOOD ESTIMATORS OF RELIABILITY FUNCTION JASA 66 1052
CIATED POPULATIONS
                        THE ASYMPTOTIC PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATORS WHEN SAMPLING FROM ASSO BIOKA62
ENTS INVOLVING TWO/ THE USE OF TRANSFORMATIONS AND MAXIMUM LIKELIHOOD IN THE ANALYSIS OF QUANTAL EXPERIM BIOKAS5
                                                     MAXIMUM LIKELIHOOD IN THREE-WAY CONTINGENCY TABLES
                                                                                                            JRSSB63
NTAGIOUS DISTRIBUTIONS TO SOME AVAILABLE DATA BY THE MAXIMUM LIKELIHOOD METHOD (CORR. 65 514)
                                                                                                 /F SOME CO BIOCS65
LINEAR PROGRAMMING
                                                     MAXIMUM LIKELIHOOD PAIRED COMPARISON RANKING BY
                                                                                                            BIOKA69 NO.3
OEFFICIENT FROM PHENOTYPE FREQUENCIES BY A METHOD OF MAXIMUM LIKELIHOOD SCORING
                                                                                  /ION OF THE INBREEDING C BIOCS68
                                                 THE MAXIMUM LIKELIHOOD SOLUTION TO THE PROBLEM OF ESTIMAT JRSSB69 NO.2
ING A LINEAR FUNCTIONAL RELATIONSHIP
                  CORRIGENDA, 'MOMENT ESTIMATORS AND MAXIMUM LIKELIHOOD.
CORRIGENDA, 'MOMENT ESTIMATORS AND MAXIMUM LIKELIHOOD'
                                                                                                            BIOKA59
                                                                                                                     502
                                                                                                                     474
                                                                                                            BIOKA61
                        LIMITING DISTRIBUTION OF THE MAXIMUM OF A DIFFUSION PROCESS
                                                                                                              AMS 64
                                                                                                                     319
                             THE DISTRIBUTION OF THE MAXIMUM OF A SEMI-MARKOV PROCESS
                                                                                                             AMS 68
                                                                                                             JASA 66
                                                                                                                      35
                                     RECOGNIZING THE MAXIMUM OF A SEQUENCE
                                   ON MOMENTS OF THE MAXIMUM OF NORMED PARTIAL SUMS
                                                                                                             AMS 69
                               THE VARIANCE OF THE MAXIMUM OF PARTIAL SUMS OF A FINITE NUMBER OF INDEPEN BIOKA55 ON THE MOMENTS OF THE MAXIMUM OF PARTIAL SUMS OF A FINITE NUMBER OF INDEPEN BIOKA56
                                                                                                                      96
DENT NORMAL VARIATES
DENT NORMAL VARIATES
                                                                                                                      79
                                        A NOTE ON THE MAXIMUM SAMPLE EXCURSIONS OF STOCHASTIC APPROXIMATION AMS 66
 PROCESSES
                                                                                                                     513
                                        BOUNDS ON THE MAXIMUM SAMPLE SIZE OF A BAYES SEQUENTIAL PROCEDURE
                                                                                                             AMS 65
                                                                                                                     859
                                                                                                                     271
                             THE DISTRIBUTION OF THE MAXIMUM SUM OF RANKS
                                                                                                            TECH 67
                        LIMITING DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABL AMS 62
ES
                                                                                                                     894
                              LIMIT THEOREMS FOR THE MAXIMUM TERM IN STATIONARY SEQUENCES
                                                                                                             AMS 64
                                                                                                                     502
ATTON
         DISTRIBUTION OF PRODUCT AND OF QUOTIENT OF MAXIMUM VALUES IN SAMPLES FROM A POWER-FUNCTION POPUL JASA 64
                                                                                                                     877
```

TITLE WORD INDEX MAX - MEA

```
THE MAXIMUM VARIANCE OF RESTRICTED UNIMODAL DISTRIBUTIONS AMS 69 1746
                       THE SAMPLING DISTRIBUTION OF A MAXIMUM-LIKELIHOOD ESTIMATE
                                  HIGHER MOMENTS OF A MAXIMUM-LIKELIHOOD ESTIMATE
                                          A METHOD OF MAXIMUM-LIKELIHOOD ESTIMATION
OF VARIANCE MODEL
                                                        MAXIMUM-LIKELIHOOD ESTIMATION FOR THE MIXED ANALYSIS
                                                                                                                             93
ETERS OF THE GAMMA DISTRIBUTION USING OR/ SEPARATE MAXIMUM-LIKELIHOOD ESTIMATION OF SCALE OR SHAPE PARAM BIOKAG3
FOUR- PARAMETER GENERALIZED GAMMA POPULATION FROM/ MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF A TECH 67
MMA AND WEIBULL POPULATIONS FROM COMPLET/ ERRATA, 'MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF GA TECH 67
RMAL POPULATIONS FROM SINGLY AND DOUBLY/ ITERATIVE MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF NO BIOKAGE
REE-PARAMETER LOGNORMAL POPULATIONS FROM CO/ LOCAL-MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF TH JASA 66
                                                                                                                            842
ED TESTS OF SIGNIFICANCE
                                                        MAXIMUM-LIKELIHOOD ESTIMATION PROCEDURES AND ASSOCIAT JRSSB60
                       SOME REMARKS ON A METHOD OF A MAXIMUM-LIKELIHOOD ESTIMATION PROPOSED BY RICHARDS
                                                                                                                            209
OF THE PARAMETERS OF A LOGISTIC DISTRIBUTION
                                                        MAXIMUM-LIKELIHOOD ESTIMATION, FROM CENSORED SAMPLES, JASA 67
OF THE PARAMETERS OF A LOGISTIC DISTRIBUTION

MAXIMUM-LIKELIHOOD ESTIMATION, FROM CENSORED SAMPLES, JASA 67

AMPLES, OF THE PARAMETERS OF THE FIRST ASYMPTOTIC/

MAXIMUM-LIKELIHOOD ESTIMATION, FROM DOUBLY CENSORED S JASA 6B
AMPLES, OF THE SCALE PARAMETERS OF TY/ CONDITIONAL MAXIMUM-LIKELIHOOD ESTIMATION, FROM SINGLY CENSORED S TECH 68
UM VARIANC/ A CLASS OF DISTRIBUTIONS FOR WHICH THE MAXIMUM-LIKELIHOOD ESTIMATOR IS UNBIASED AND OF MINIM BIOKA56
                                                                                                                             200
    SOME THEOREMS AND SUFFICIENCY CONDITIONS FOR THE MAXIMUM-LIKELIHOOD ESTIMATOR OF AN UNKNOWN PARAMETER BIOKA55
TO 'SOME THEOREMS AND SUFFICIENCY CONDITIONS FOR THE MAXIMUM-LIKELIHOOD ESTIMATOR OF AN UNKNOWN PARAMETER
                             APPROXIMATIONS TO THE MAXIMUM-LIKELIHOOD ESTIMATOR USING GROUPED DATA
ATION HAS MULTIPLE ROOTS
                                    EVALUATION OF THE MAXIMUM-LIKELIHOOD ESTIMATOR WHERE THE LIKELIHOOD EQU BIOKAGE
                                                                                                                            151
 OF THE P/ ASYMPTOTIC VARIANCES AND COVARIANCES OF MAXIMUM-LIKELIHOOD ESTIMATORS, FROM CENSORED SAMPLES.
                                                                                                                   AMS 67
                                             A NOTE ON MAXIMUM-LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM
                                                        MAXIMUM-LIKELIHOOD PAIRED COMPARISON RANKINGS
BUTTONS IN TWO DIMENSIONS
                                                      A MAXIMUM-MINIMUM PROBLEM RELATED TO STATISTICAL DISTRI BIOKA57
                                                                                                                            384
           ESTIMATION OF A MEAN WHEN ONE OBSERVATION MAY BE SPURIOUS
                                                                                                                   TECH 69
                                                                                                                             331
   SPATIAL RELATIONSHIP AMONG EIGHT POPULATIONS ZEA MAYS L. UTILIZING INFORMATION FROM A DIALLEL MATING D BIOCSGB
                                                                                                                            867
REME VERTICES DESIGN OF MIXTURE EXPERIMENTS' BY R.A. MCLEAN AND V.L. ANDERSON
                                                                                             DISCUSSION OF 'EXT TECH 66
                                                                                                                            455
        SOME SHRINKAGE TECHNIQUES FOR ESTIMATING THE MEAN
                                                                                                                   JASA 68 113
              A NOTE ON THE RATE OF CONVERGENCE OF A MEAN
                                                                                                                   BIOKA62
                                                                                                                            574
   EFFECT OF NON-NORMALITY ON A SEQUENTIAL TEST FOR MEAN
                                                                                                                   BIOKA64
                                                                                                                            281
 AN UNBIASED ESTIMATOR FOR POWERS OF THE ARITHMETIC MEAN
                                                                                                                   JRSSB61
                                                                                                                            154
                     A MULTI-STAGE TEST FOR A NORMAL MEAN
                                                                                                                   JRSSB68 461
        A NOTE ON THE POSTERIOR MEAN OF A POPULATION MEAN
                                                                                                                   JRSSB69 NO.2
                                                                                                                 A BIOCS69 5BB
 MODIFIED TECHNIQUE FOR IMPROVING AN ESTIMATE OF THE MEAN
TERIZATION OF SYMMETRIC STABLE PROCESSES WITH FINITE MEAN
                                                                                                     ON A CHARAC AMS 6B 149B
 OF THE EXTREME STUDENTIZED DEVIATE FROM THE SAMPLE MEAN
                                                                                             ON THE DISTRIBUTION BIOKA59
                                                                                                                            467
OMPARING VARIOUS TWO-SAMPLE TESTS FOR DIFFERENCES IN MEAN
                                                                                           A MONTE CARLO STUDY C TECH 68
                                                                                                                            509
 OF THE EXTREME STUDENTIZED DEVIATE FROM THE SAMPLE MEAN
                                                                                        UPPER PERCENTAGE POINTS BIOKA59
                                                                                                                            473
 FIXED-WIDTH SEQUENTIAL CONFIDENCE INTERVALS FOR THE MEAN
                                                                                    ON THE ASYMPTOTIC THEORY OF AMS 65
                                                                                                                             457
        OF A SEQUENTIAL PROGEDURE FOR ESTIMATING THE MEAN
                                                                                   ON THE ASYMPTOTIC EFFICIENCY AMS 66 1173
OF THE 'STUDENTIZED' EXTREME DEVIATE FROM THE SAMPLE MEAN
                                                                                   TABLES OF PERGENTAGE POINTS BIOKA52
 OF THE EXTREME STUDENTIZED DEVIATE FROM THE SAMPLE MEAN
                                                                                REVISED UPPER PERCENTAGE POINTS BIOKA56
                                                                                                                             449
EDURE FOR THE FIXED-WIDTH INTERVAL ESTIMATION OF THE MEAN
                                                                          THE PERFORMANCE OF A SEQUENTIAL PROC AMS 66
                                                                                                                             36
 ROBBINS ON SEQUENTIAL CONFIDENCE INTERVALS FOR THE MEAN
                                                                         AN EXTENSION OF A THEOREM OF CHOW AND AMS 69
                                                                                                                            667
AND STATISTICS. VII. THE PRINCIPLE OF THE ARITHMETIC MEAN
                                                                         STUDIES IN THE HISTORY OF PROBABILITY BIOKA5B
                                                                                                                             130
HEN MAKING A FIXED WIDTH CONFIDENCE INTERVAL FOR THE MEAN
                                                                    ON THE COST OF NOT KNOWING THE VARIANCE W AMS 68 1946
S FROM THE NORMAL DISTRIBUTION, 2. ESTIMATION OF THE MEAN
                                                                /LES FOR DEALING WITH OUTLIERS IN SMALL SAMPLE TECH 69
                                                                                                                            527
 NORMAL VARIATE
                        THE CORRECT USE OF THE SAMPLE MEAN ABSOLUTE DEVIATION IN CONFIDENCE INTERVALS FOR A TECH 66
                                                                                                                            663
                                                                                                                   JASA 65
                    CONFIDENCE INTERVALS BASED ON THE MEAN ABSOLUTE DEVIATION OF A NORMAL SAMPLE
                                                                                                                            257
                                                                                                                    AMS 63
                                            THE SAMPLE MEAN AMONG THE EXTREME NORMAL ORDER STATISTICS
                                                                                                                             3.3
                                            THE SAMPLE MEAN AMONG THE MODERATE ORDER STATISTIGS
                                                                                                                    AMS 62 1160
SAMPLES FROM NON-NORMAL POPULATIONS THE MEAN AND COEFFICIENT OF VARIATION OF RANGE IN SMALL BIOKA54
AMPLES FROM NON-NORMAL POPULATIO/ CORRIGENDA, 'THE MEAN AND COEFFICIENT OF VARIATION OF RANGE IN SMALL S BIOKA55
                                                                                                                  BIOKA54
                                                                                                                             469
                                                                                                                             277
    ON MULTIVARIATE PREDICTION INTERVALS FOR SAMPLE MEAN AND COVARIANCE BASED ON PARTIAL OBSERVATIONS
                                                                                                                  JASA 67
                                                                                                                             634
RANCE LIMITS FOR A NORMAL POPULATION BASED ON SAMPLE MEAN AND RANGE OR MEAN RANGE
                                                                                                TABLES FOR TOLE JASA 57
                                                                                                                             88
                              FUNCTIONS OF THE SAMPLE MEAN AND SAMPLE VARIANCE OF A POISSON VARIATE
                                                                                                                   BIOCS69
                                                                                                                             171
                                        ESTIMATING THE MEAN AND STANDARD DEVIATION FROM A CENSORED NORMAL
                                                                                                                   BIOKA67
USING QUANTILES
                                           TESTING THE MEAN AND STANDARD DEVIATION OF A NORMAL DISTRIBUTION TECH 6B
                                                                                                                             781
FROM A CENSORED SAMPLE
                                    ESTIMATION OF THE MEAN AND STANDARD DEVIATION OF A NORMAL POPULATION
                                                                                                                  BTOKA52
                                                                                                                             260
                                 APPROXIMATIONS TO THE MEAN AND STANDARD DEVIATION OF RECIPROCALS OF OBSERVA TECH 63
TIONS
                                                                                                                             522
. AND ITS ECONOMIC A/ THE RELATIONSHIP BETWEEN THE MEAN AND VARIANCE OF A STATIONARY BIRTH-DEATH PROCESS BIOKAG2
                                                                                                                            253
                                                        MEAN AND VARIANCE OF AN ENTRY IN A CONTINGENCY TABLE BIOKA51
                                                                                                                             468
                        ASYMPTOTIC EXPANSIONS FOR THE MEAN AND VARIANCE OF THE SERIAL CORRELATION COEFFICIE BIOKAGI
                                                                                                                             85
                                                 ON THE MEAN AND VARIANCE OF THE SMALLER OF TWO DRAWINGS FROM BIOKA62
 A BINOMIAL POPULATION
                                                                                                                            566
   ON THE KOLMOGOROV-SMIRNOV TEST FOR NORMALITY WITH MEAN AND VARIANCE UNKNOWN
                                                                                                                   JASA 67
                                                                                                                             399
                          ADMISSIBILITY OF THE SAMPLE MEAN AS ESTIMATE OF THE MEAN OF A FINITE POPULATION
                                                                                                                    AMS 6B
                                                                                                                            606
            INVESTIGATING THE PROPERTIES OF A SAMPLE MEAN BY EMPLOYING RANDOM SUBSAMPLE MEANS
                                                                                                                   JASA 56
                                                                                                                             54
         ACCURAGY BORROWING IN THE ESTIMATION OF THE MEAN BY SHRINKAGE TO AN INTERVAL
                                                                                                                   JASA 6B
                                                                                                                            953
PROCESS
                                THE ECONOMIC DESIGN OF MEAN CHARTS USED TO MAINTAIN CURRENT CONTROL OF A
                                                                                                                   JASA 56
                                                                                                                             228
                          THE STATISTICAL TREATMENT OF MEAN DEVIATION
                                                                                                                   BIOKA54
                                        MOMENTS OF THE MEAN DEVIATION
                                                                                                                   BIOKA54
                                                                                                                             541
                                     A PROPERTY OF THE MEAN DEVIATION FOR A CLASS OF CONTINUOUS DISTRIBUTION BIOKAGE
                                                                                                                             288
       A GENERALIZATION OF JOHNSON'S PROPERTY OF THE MEAN DEVIATION FOR A CLASS OF DISCRETE DISTRIBUTIONS
                                                                                                                  BTOKA66
                                                                                                                             2B5
                                     A PROPERTY OF THE MEAN DEVIATION FOR THE PEARSON TYPE DISTRIBUTIONS
                                                                                                                   BIOKA66
                                                                                                                             2B7
   (ACKNOWLEDGEMENT OF PRIORITY), 'A PROPERTY OF THE MEAN DEVIATION FOR THE PEARSON TYPE DISTRIBUTIONS
                                                                                                                   RIOKA67
                                                                                                                            333
TESTS
                                                 USE OF MEAN DEVIATION IN THE ANALYSIS OF INTERLABORATORY
                                                                                                                   TECH 67
                                                                                                                            149
                          THE MEAN DIFFERENCE AND THE MEAN DEVIATION OF SOME DISCONTINUOUS DISTRIBUTIONS
                                                                                                                   BTOKA58
                                                                                                                             549
                                         A NOTE ON THE MEAN DEVIATION OF THE BINOMIAL DISTRIBUTION
                                                                                                                   BIOKA57
                                                                                                                             532
                         CORRIGENDA TO 'A NOTE ON THE MEAN DEVIATION OF THE BINOMIAL DISTRIBUTION
                                                                                                                   BIOKA58
                                                                                                                             587
                                                    THE MEAN DEVIATION OF THE POISSON DISTRIBUTION
                                                                                                                   BIOKA58
               A NOTE ON THE FIRST TWO MOMENTS OF THE MEAN DEVIATION OF THE SYMMETRICAL MULTINOMIAL DISTRIB BIOKAG7
                                                                                                                             312
FROM A PEARSON TYPE III POPULATION
                                                    THE MEAN DEVIATION, WITH SPECIAL REFERENCE TO SAMPLES
                                                                                                                   BIOKA58
                                                                                                                             478
                            THE THIRD MOMENT OF GINI'S MEAN DIFFERENCE
                                                                                                                   BIOKA53
                                                                                                                             451
                             VARIANCE FORMULAS FOR THE MEAN DIFFERENCE AND COEFFICIENT OF CONCENTRATION
                                                                                                                   JASA 62
                                                                                                                             648
                                                    THE MEAN DIFFERENCE AND THE MEAN DEVIATION OF SOME
DISCONTINUOUS DISTRIBUTIONS
                                                                                                                   BIOKA58
                                                                                                                            549
                                                 GINI'S MEAN DIFFERENCE REDISCOVERED
                                                                                                                   BIOKA68
```

```
DISCRIMINATION IN THE CASE OF ZERO MEAN DIFFERENCES
                                                                                                           BIOKA63
   DISTRIBUTIONS ARISING IN THE STUDY OF CENERALIZED MEAN DIFFERENCES
                                                                                                      SOME BIOKAGO
                                     THE CENERALIZED MEAN DIFFERENCES OF THE BINOMIAL AND POISSON DISTRIBU BIOKA59
                                                                                                                    223
   DISTRIBUTIONS ARISING IN THE STUDY OF CENERALIZED MEAN DIFFERENCES'
                                                                                        CORRICENDA, 'SOME BIOKA61
                                                                                                                    230
PASSACE PROBLEM
                                              ON THE MEAN DURATION OF A BALL AND CELL CAME, A FIRST
                                                                                                            AMS 66
                                                                                                                    517
                                                 THE MEAN EFFICIENCY OF EQUI-REPLICATE DESIGNS
                                                                                                           BIOKA68
                                                                                                                    251
     ON THE EFFECT OF STRAGCLERS ON THE RISK OF SOME MEAN ESTIMATORS IN SMALL SAMPLES
                                                                                                            AMS 66
                                                                                                                    441
       ON THE PROBABILITY OF LARCE DEVIATIONS OF THE MEAN FOR RANDOM VARIABLES IN AN INTERVAL OF LENGTH ON
                                                                                                           AMS 65
                                                                                                                    280
  ON APPROXIMATIONS TO SAMPLING DISTRIBUTIONS OF THE MEAN FOR SAMPLES FROM NON-NORMAL POPULATIONS
                                                                                                            AMS 63 1308
CEDURE FOR SELECTING THE POPULATION WITH THE LARCEST MEAN FROM K NORMAL POPULATIONS
                                                                                        A SEQUENTIAL PRO
                                                                                                            AMS 64
                                                                                                                   174
                             THE DISTRIBUTION OF THE MEAN HALF-SQUARE SUCCESSIVE DIFFERENCE
                                                                                                           BIOKA67
                                                                                                                    419
                        A GENERAL EXPRESSION FOR THE MEAN IN A SIMPLE STOCHASTIC EPIDEMIC
                                                                                                           BIOKA54
                                                                                                                    272
              A PROCEDURE TO ESTIMATE THE POPULATION MEAN IN RANDOM EFFECTS MODELS
                                                                                                           TECH 67
                                                                                                                    577
LAE AND MADOW/ THE CENTRAL SAMPLING MOMENTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION (ATY'S FORMU BIOKA61
                                                                                                                    199
                        LOWER BOUND FORMULAS FOR THE MEAN INTERCORRELATION COEFFICIENT
                                                                                                           JASA 59
         ON THE GALTON-WATSON BRANCHING PROCESS WITH MEAN LESS THAN ONE
                                                                                                            AMS 67
                                                                                                                    264
         ESTIMATES OF BOUNDED RELATIVE ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTION
                                                                                                           TECH 61
                                                                                                                    107
     OF THE INDEPENDENT MULTINORMAL PROCESS, NEITHER MEAN NOR PRECISION KNOWN
                                                                                        BAYESIAN ANALYSIS JASA 65
                                                                                                                    347
NORMAL PROCESSES
                                             ON THE MEAN NUMBER OF CURVE CROSSINGS BY NON-STATIONARY
                                                                                                            AMS 65
                                                                                                                    509
                               THE ESTIMATION OF THE MEAN OF A CENSORED NORMAL DISTRIBUTION BY ORDERED
                                                                                                           BIOKA56
                                                                                                                    482
  SOME OPTIMAL SEQUENTIAL SCHEMES FOR ESTIMATING THE MEAN OF A CUMULATIVE NORMAL QUANTAL RESPONSE CURVE
                                                                                                           JRSSB62
                                                                                                                    393
                        CONFIDENCE INTERVALS FOR THE MEAN OF A FINITE POPULATION
                                                                                                            AMS 67 1180
 ADMISSIBILITY OF THE SAMPLE MEAN AS ESTIMATE OF THE MEAN OF A FINITE POPULATION
                                                                                                            AMS 68 606
 PROPORTIONAL CLOSEN/ SEQUENTIAL ESTIMATION OF THE MEAN OF A LOG-NORMAL DISTRIBUTION HAVING A PRESCRIBED
                                                                                                            AMS 66 1688
THE NON-EXISTENCE OF A FIXED SAMPLE ESTIMATOR OF THE MEAN OF A LOG-NORMAL DISTRIBUTION HAVING A PRESCRIBED
                                                                                                           AMS 67
                                                                                                                    949
                         A TABLE FOR ESTIMATING THE MEAN OF A LOGNORMAL DISTRIBUTION
                                                                                                           JASA 69
                                                                                                                    632
   A NOTE ON CONSERVATIVE CONFIDENCE REGIONS FOR THE MEAN OF A MULTIVARIATE NORMAL
                                                                                                            AMS 67
                                                                                                                    278
DISCUSSION)
                             CONFIDENCE SETS FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION (WITH
                                                                                                           JRSSB62 265
INADMISSIBILITY OF THE USUAL CONFIDENCE SETS FOR THE MEAN OF A MULTIVARIATE NORMAL POPULATION
                                                                                                            AMS 67 1868
 QUADRATIC LOSS FUNCTION
                                     ESTIMATING THE MEAN OF A MULTIVARIATE NORMAL POPULATION WITH GENERAL
                                                                                                           AMS 66 1819
               EXACT LINEAR SEQUENTIAL TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION
                                                                                                           BIOKA56
                                                                                                                   452
                       TABLES FOR WALD TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION
                                                                                                           BIOKA59
                                                                                                                   169
 METHODS FOR EXACT TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A NORMAL DISTRIBUTION
                                                                                                    DIRECT TECH 69 NO.4
                                                                                    /CISION PROCEDURE FOR AMS 63 549
 CHOOSING ONE OF K HYPOTHESES CONCERNING THE UNKNOWN MEAN OF A NORMAL DISTRIBUTION
                           SEQUENTIAL TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION II, LARGE T
                                                                                                            AMS 64 162
                             SEQUENTIAL TEST FOR THE MEAN OF A NORMAL DISTRIBUTION III, SMALL T
                                                                                                            AMS G5
                                                                                                                    28
                            SEQUENTIAL TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION IV, DISCRETE CASE
                                                                                                            AMS 65
                                                                                                                    55
CHANGES IN TIME
                             ESTIMATING THE CURRENT MEAN OF A NORMAL DISTRIBUTION WHICH IS SUBJECTED TO
                                                                                                            AMS 64 999
OF VARIATION
                            A NOTE ON ESTIMATING THE MEAN OF A NORMAL DISTRIBUTION WITH KNOWN COEFFICIENT
                                                                                                          JASA 68 1039
                SHORTER CONFIDENCE INTERVALS FOR THE MEAN OF A NORMAL DISTRIBUTION WITH KNOWN VARIANCE
                                                                                                            AMS 63 574
                             CONTROL CHARTS FOR THE MEAN OF A NORMAL POPULATION
                                                                                                           JRSSB54 131
SEQUENTIAL THREE HYPOTHESIS TEST FOR DETERMINING THE MEAN OF A NORMAL POPULATION WITH KNOWN VARIANCE
                                                                                                            AMS 67 1365
             SEQUENTIAL CONFIDENCE INTERVALS FOR THE MEAN OF A NORMAL POPULATION WITH UNKNOWN VARIANCE
                                                                                                           JRSSB57 133
                             A NOTE ON THE POSTERIOR MEAN OF A POPULATION MEAN
                                                                                                           JRSSB69 NO.2
AND MINIMAX PROCEDURES FOR ESTIMATING THE ARITHMETIC MEAN OF A POPULATION WITH TWO-STAGE SAMPLING BAYES
                                                                                                            AMS 66 1186
                                 THE VARIANCE OF THE MEAN OF A STATIONARY PROCESS
                                                                                                           JRSSB57
                                                                                                                  282
  ADMISSIBILITY OF THE USUAL CONFIDENCE SETS FOR THE MEAN OF A UNIVARIATE OR BIVARIATE NORMAL POPULATION
                                                                                                           AMS 69 1042
         GENERALIZED MULTIVARIATE ESTIMATOR FOR THE MEAN OF FINITE POPULATIONS
                                                                                                           JASA 67 1009
                  INTERVAL ESTIMATION OF THE LARGEST MEAN OF K NORMAL POPULATIONS WITH KNOWN VARIANCES
                                                                                                           JASA 69 296
                         ON DETECTING CHANGES IN THE MEAN OF NORMAL VARIATES
                                                                                                            AMS 69 116
                                 THE VARIANCE OF THE MEAN OF SYSTEMATIC SAMPLES
                                                                                                           BIOKA56
                                                                                                                   137
                                         QUERY, THE MEAN OF THE TAIL OF A DISTRIBUTION
                                                                                                           TECH 64
                                                                                                                   331
ES OF EQUAL SIZE UNBAISED ESTIMATION OF THE COMMON MEAN OF TWO NORMAL DISTRIBUTIONS BASED ON SMALL SAMPL JASA 66
                                                                                                                    467
EPTANCE SCHEMES FOR LARGE BATCHES OF ITEMS WHERE THE MEAN QUALITY HAS A NORMAL PRIOR DISTRIBUTION /G ACC BIOKA68
                                                                                                                   393
               ON THE DISTRIBUTIONS OF THE RANGE AND MEAN RANGE FOR SAMPLES FROM A NORMAL DISTRIBUTION
                                                                                                           BIOKA66
      ON A CLASS OF GAUSSIAN PROCESSES FOR WHICH THE MEAN RATE OF CROSSINGS IS INFINITE
                                                                                                           JRSSB67
                                                                                                                   489
             A NOTE ON THE RENEWAL FUNCTION WHEN THE MEAN RENEWAL LIFETIME IS INFINITE
                                                                                                                   230
                                                                                                           JRSSB61
MEAN SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARE
                                                                                                  ON THE BIOKA53
                                                                                                                  116
                                   LISTING EXPECTED MEAN SQUARE COMPONENTS
                                                                                                          BIOCS65
                                                                                                                   459
              PROBABILISTIC INTERPRETATIONS FOR THE MEAN SQUARE CONTINGENCY CORR. 5B 1030
                                                                                                          JASA 5B
                                                                                                                   1.02
COMPONENTS
                                                    MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE
                                                                                                           JASA 69 NO.4
LINEAR REGRESSION
                                       A TEST OF THE MEAN SQUARE ERROR CRITERION FOR RESTRICTIONS IN
                                                                                                           JASA 6B
                                                                                                                  558
IN RECRESSION
                                     TABLES FOR THE MEAN SQUARE ERROR TEST FOR EXACT LINEAR RESTRICTIONS
                                                                                                          JASA 69 NO.4
                                                                                                                  397
                                  APPROXIMATIONS FOR MEAN SQUARE SUCCESSIVE DIFFERENCE CRITICAL VALUES
                                                                                                           TECH 6B
                                          A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCES
                                                                                                           JASA 59
                                                                                                                   B01
MEAN SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARE'
                                                                                   CORRIGENDA TO 'ON THE
                                                                                                          BIOKA58
                                                                                                                   587
D POWER OF TESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN SQUARES
                                                                   /TE CARLO INVESTIGATION OF THE SIZE AN BIOKA68
                                                                                                                   431
  EXPECTATIONS, VARIANCES AND COVARIANCES OF 'ANOVA' MEAN SQUARES BY 'SYNTHESIS'
                                                                                                          BIOCS67
                                                                                                                   105
 EXPECTATIONS, VARIANCES, AND CONVARIANCES OF ANOVA MEAN SQUARES BY 'SYNTHESIS'
                                                                                                       ON BIOCS68
                                                                                                                   963
NG THE DEGREES OF FREEDOM FOR LINEAR COMBINATIONS OF MEAN SQUARES BY SATTERTHWAITHE'S FORMULA
                                                                                                 ESTIMATI TECH 69 NO.4
                                           EXPECTED MEAN SQUARES FOR NESTED CLASSIFICATIONS
                                                                                                          BIOCS69
                                                                                                                  427
PARENT IS IDENTIFIED
                                       THE EXPECTED MEAN SQUARES IN GENETIC EXPERIMENTS WHEN ONLY ONE
                                                                                                          BIOCS65
                                                                                                                   436
MEAN SQUARE
                                             ON THE MEAN SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT BIOKA53
                                                                                                                   116
                              CORRIGENDA TO 'ON THE MEAN SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT
MEAN SQUARE
                                                                                                          BIOKA5B
                                                                                                                   5B7
 SMIRNOV TEST FOR THE EXPONENTIAL DISTRIBUTION WITH MEAN UNKNOWN
                                                                                       ON THE KOLMOGOROV- JASA 69
                                                                                                                   387
               ON THE POSSIBILITY OF IMPROVING THE MEAN USEFUL LIFE OF ITEMS BY ELIMINATING THOSE WITH
SHORT LIVES
                                                                                                                   2B1
                                                                                                          TECH 61
FICULTIES INVOLVED IN THE ESTIMATION OF A POPULATION MEAN USING TRANSFORMED SAMPLE DATA
                                                                                                      DIF TECH 66
                                                                                                                   535
                       ON THE COMPARISON OF SEVERAL MEAN VALUES, AN ALTERNATIVE APPROACH
                                                                                                          BIOKA51
                                                                                                                   330
             ALL ADMISSIBLE LINEAR ESTIMATES OF THE MEAN VECTOR
                                                                                                           AMS 66
                                                                                                                   45B
                                                                                                                   132
     CONFIDENCE BOUNDS FOR REGRESSION PARAMETERS AND MEAN VECTOR
                                                                                           ON FIXED-WIDTH JRSSB67
                                                                                                                    78
ATES OF LINEAR COMBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A MULTIVARIATE DISTRIBUTION ESTIM AMS 65
                                                                                                                   262
                           A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINIT JRSSB55
       SELECTION OF THE POPULATION WITH THE LARGEST MEAN WHEN COMPARISONS CAN BE MADE ONLY IN PAIRS
                                                                                                                   5B1
                                    ESTIMATION OF A MEAN WHEN ONE OBSERVATION MAY BE SPURIOUS
                                                                                                          TECH 69 331
                           EFFICIENCY OF THE SAMPLE MEAN WHEN RESIDUALS FOLLOW A FIRST-ORDER STATIONARY JASA 6B 1237
DIFFEREN/ THE FREQUENCY DISTRIBUTION OF THE SAMPLE MEAN WHERE EACH MEMBER OF THE SAMPLE IS DRAWN FROM A BIOKA63 508
```

TITLE WORD INDEX MEA - MEA

COMBINATIONS OF UNBIASED ESTIMATORS OF THE MEAN WHICH CONSIDER INEQUALITY OF UNKNOWN VARIANCES ONS AN ESTIMATOR FOR A POPULATION MEAN WHICH REDUCES THE EFFECT OF LARGE TRUE OBSERVATI JASA 6 DISTRIBUTIONS A MEAN-SQUARE-ERROR CHARACTERIZATION OF BINOMIAL-TYPE HE MEANING TRUNCATION TO MEET REQUIREMENTS ON MEANS MULTIPLE COMPARISONS AMONG MEANS ON MULTIPLE DECISION METHODS FOR RANKING POPULATION MEANS ON A CLASS OF SIMPLE SEQUENTIAL TESTS ON MEANS ON A CLASS OF SIMPLE SEQUENTIAL TESTS ON MEANS INTERVAL ESTIMATION FOR LIMEAR COMBINATIONS OF MEANS ESTIMATION FOR THE LARGEST OF TWO NORMAL MEANS THE BEHRENS-FISHER DISTRIBUTION AND WEICHTED MEANS ON COMBINING ESTIMATES OF A RATIO OF MEANS ON COMBINING ESTIMATES OF A RATIO OF MEANS SEQUENTIAL PROCEDURE FOR SELECTING THE LARGEST OF K MEANS OF LARGE DEVIATIONS OF FRAILES OF SAMPLE MEANS OF LARGE DEVIATIONS OF FAILIES OF SAMPLE MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS VARIANCES ON THE F-TEST FOR THE HOMOCENEITY OF GROUP MEANS VARIANCES ON THE F-TEST FOR THE HOMOCENEITY OF GROUP MEANS ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS (WITH DISCUSSION) VARIANCES TESTING EQUALITY OF MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINCUL ON THE ACCURACY OF WEIGHTED MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINCUL ON THE ACCURACY OF WEIGHTED MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINCUL ON THE ACCURACY OF WEIGHTED MEANS AND SANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAS ON THE ACCURACY OF WEIGHTED MEANS AND SANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAS ON THE ACCURACY OF WEIGHTED MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAS OF MULTIVARIATE SEQUENTIAL PROCEDURE BETWEEN SAMPLE MEANS AND STANDARD DEVIATIONS OF NON-ORTH J MSSAS EEN PERCENTAGE POINT	1200 620 785 527 52 248 345 1141 861 73 180 201 226 88 146 1304 423 463 1413 12B 186 1 1 403 339 1203 304 465 533 445 145
DISTRIBUTIONS A MEAN-SQUARE-ERROR CHARACTERIZATION OF BINOMIAL-TYPE THE MEANINC OF BIOASSAY BIOCSG TRUNCATION TO MEET REQUIREMENTS ON MEANS MULTIPLE COMPARISONS AMONG MEANS ON MULTIPLE DECISION METHODS FOR RANKING POPULATION MEANS ON A CLASS OF SIMPLE SEQUENTIAL TESTS ON MEANS ON A CLASS OF SIMPLE SEQUENTIAL TESTS ON MEANS INTERVAL ESTIMATION FOR LINEAR COMBINATIONS OF MEANS ESTIMATION OF THE LARCEST OF TWO NORMAL MEANS THE BEHRENS-FISHER DISTRIBUTION AND WEICHTED MEANS ESTIMATORS FOR THE PROBLECT OF THE NORMAL MEANS ON COMBINING ESTIMATES OF A RATIO OF MEANS ON COMBINING ESTIMATES OF A RATIO OF MEANS SEQUENTIAL PROCEDURE FOR SELECTING THE LARGEST OF K MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS ON THE PROBLEM OF THE AMALGAMATION OF WEIGHTED MEANS ON THE PROBLEM OF THE AMALGAMATION OF WEIGHTED MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS ON THE PROBLEM OF THE MANCONNELLY OF MEANS ON THE EFFECT OF UNEQUAL CROUP VARIANCES ON THE F-TEST FOR THE HOMOCENSITY OF MEANS ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS WITH DISCUSSION) VARIANCES TESTING EQUALITY OF MEANS AFTER A PRELIMINARY TEST OF EQUALITY OF MEANS AFTER A PRELIMINARY TEST OF EQUALITY OF MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAS ON THE ACCURACY OF WEIGHTED MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAS ON THE ACCURACY OF WEIGHTED MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAS OF MULTIVARIATE MEANS AND STANDARD DEVIATIONS OF NORMAL PROSECUES AND A MEAN SAND STANDARD DEVIATIONS OF NORMON HISSESSES EEN PERCENTAGE POINTS OF FREQUENCY CU/ APPROXIMATE	620 785 527 52 248 345 1141 861 73 180 201 226 88 146 1304 423 463 1413 12B 186 1 403 339 1203 304 465 533 435
THE MEANING OF BIOASSAY TRUNCATION TO MEET REQUIREMENTS ON MEANS MULTIPLE COMPARISONS AMONG MEANS ON MULTIPLE DECISION METHODS FOR RANKING POPULATION MEANS ON A CLASS OF SIMPLE SEQUENTIAL TESTS ON MEANS ON A CLASS OF SIMPLE SEQUENTIAL TESTS ON MEANS INTERVAL ESTIMATION FOR LINEAR COMBINATIONS OF MEANS ESTIMATION OF THE LARCEST OF TWO NORMAL MEANS ESTIMATORS FOR THE PRODUCT OF ARITHMETIC MEANS ON COMBINING ESTIMATES OF A RATIO OF MEANS NOTES ORTHOGONAL POLYNOMIALS FOR UNEQUALLY WEIGHED MEANS SEQUENTIAL PROCEDURE FOR SELECTING THE LARCEST OF K MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS CORRELATED ESTIMATION OF THE AMALGAMATION OF WEIGHTED MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS OF LARGE DEVIATION OF THE AMALGAMATION OF WEIGHTED MEANS CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS VARIANCES ON THE F-TEST FOR THE HOMOCENEITY OF GROUP MEANS VARIANCES ON THE F-TEST FOR THE HOMOCENEITY OF GROUP MEANS ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS AR COVARIANCE MATRIX ON THE ACCURACY OF WEIGHTED MEANS ARE COVARIANCE MATRIX ON THE ACCURACY OF WEIGHTED MEANS AND SOSCIATED FAMILIES OF DISTRIBUTIONS ARE COVARIANCE MATRIX ON THE ACCURACY OF WEIGHTED MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS ARE COVARIANCE MATRIX ON THE ACCURACY OF WEIGHTED MEANS AND SOCIATED FAMILIES OF DISTRIBUTIONS CORRELATION BETWEEN SAMPLE MEANS AND SASOCIATED FAMILIES OF DISTRIBUTIONS AMS 6 EEN PERCENTAGE POINTS OF FREQUENCY CU/ APPROXIMATE MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINCUL JASA 6 EINCAS CORRELATION BETWEEN SAMPLE MEANS AND STANDARD ERRORS IN THE ANALYSIS OF NON-ORTH JRSSE6 ES FOR TH/ STATISTICAL DEPENDENCE BETWEEN SUBCLASS MEANS AND THE NUMBERS OF OBSERVATIONS IN THE SUBCLASS JASA 6 SIZE, CORR. 64 1297 ESTIMATION OF MEANS AND TOTALS FROM PINITE POPULATIONS OF VARIATION OF MEANS AND TOTALS FROM PINITE POPULATIONS OF VARIATION AMS ASSOCIATED FAMILIES OF	785 527 52 248 345 1141 73 180 201 226 88 146 1304 423 463 1413 12B 186 1 403 339 1203 304 465 533 435
TRUNCATION TO MEET REQUIREMENTS ON MEANS MULTIPLE COMPARISONS AMONC MEANS ON MULTIPLE DECISION METHODS FOR RANKING POPULATION MEANS ON A CLASS OF SIMPLE SEQUENTIAL TESTS ON MEANS INTERVAL ESTIMATION FOR LINEAR COMBINATIONS OF MEANS ESTIMATION FOR LINEAR COMBINATIONS OF MEANS ESTIMATION OF THE LARCEST OF TWO NORMAL MEANS ESTIMATORS FOR THE PRODUCT OF ARITHMETIC MEANS ON COMBINING ESTIMATES OF A RATIO OF MEANS ON COMBINING ESTIMATES OF A RATIO OF MEANS SEQUENTIAL PROCEDURE FOR SELECTING THE LARGEST OF K MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS OF HE PROBLEM OF THE AMALGAMATION OF WEIGHTED MEANS CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS VARIANCES ON THE F-TEST FOR THE HOMOCEMEITY OF GROUP MEANS VARIANCES ON THE F-TEST FOR THE HOMOCEMEITY OF GROUP MEANS VARIANCES TESTING EQUALITY OF MEANS AN OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS (WITH DISCUSSION) VARIANCES TESTING EQUALITY OF MEANS (WITH DISCUSSION) ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS AR COVARIANCE MATRIX ON THE ACCURACY OF WEIGHTED MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS ARCOVARIANCE MATRIX ON THE ACCURACY OF WEIGHTED MEANS AND STANDARD ERRORS IN THE ANALYSIS OF NON-ORTH JRSSE6 EEN PERCENTAGE POINTS OF FREQUENCY CU/ APPROXIMATE MEANS AND STANDARD ERRORS IN THE ANALYSIS OF NON-ORTH JRSSE6 ES FOR TH/ STATISTICAL DEPENDENCE BETWEEN SUBCLASS MEANS AND STANDARD ERRORS IN THE ANALYSIS OF NON-ORTH JRSSE6 ES FOR TH/ STATISTICAL DEPENDENCE BETWEEN SUBCLASS MEANS AND THE NUMBERS OF OBSERVATIONS IN THE SUBCLASS JASA 6 SIZE, CORR. 64 1297 ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULATION OF UKNNOWN AS THE SUBCLASS MEANS AND THE NUMBERS OF OBSERVATIONS IN THE SUBCLASS JASA 6 SIZE, CORR. 64 1297 ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULATION OF UKNNOWN AS THE SUBCLASS MEANS	527 522 248 345 1141 861 73 180 201 226 88 146 1304 423 463 1413 128 186 1 1 403 339 1203 304 465 533 304 465 533 465 533 465 533 533 533 534 635 635 635 635 635 635 635 635
MULTIPLE COMPĀRISONS AMONC MEANS ON MULTIPLE DECISION METHODS FOR RANKING POPULATION MEANS ON A CLASS OF SIMPLE SEQUENTIAL TESTS ON MEANS INTERVAL ESTIMATION FOR LINEAR COMBINATIONS OF MEANS ESTIMATION OF THE LARCEST OF TWO NORMAL MEANS THE BEHRENS-FISHER DISTRIBUTION AND WEICHTED MEANS ESTIMATORS FOR THE PRODUCT OF ARITHMETIC MEANS ON COMBINING ESTIMATES OF A RATIO OF MEANS NOTES.ORTHOGONAL POLYNOMIALS FOR UNEQUALLY WEIGHED MEANS SEQUENTIAL PROCEDURE FOR SELECTING THE LARCEST OF K MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS OF HORDOWN OF THE AMALGAMATION OF WEIGHTED MEANS OF HORDOWN OF THE AMALGAMATION OF WEIGHTED MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR THE AMALGAMATION OF WEIGHTED MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS WITH DISCUSSION) VARIANCES AR COVARIANCE MATRIX CENERALIZED MEANS ON THE ACCURACY OF WEIGHTED MEANS ON THE ACCURACY OF WEIGHTED MEANS ON THE ACCURACY OF WEIGHTED MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINCUL CORNELATION BETWEEN SAMPLE MEANS AND SAMPLE RANCES ON THE ACCURACY OF WEIGHTED MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINCUL CORNELATION BETWEEN SAMPLE MEANS AND SAMPLE RANCES ON THE ACCURACY OF WEIGHTED MEANS AND SAMPLE RANCES CORRELATION BETWEEN SAMPLE MEANS AND SAMPLE RANCES ON THE ACCURACY OF WEIGHTED MEANS AND STANDARD DEVIATIONS IN THE SUBCLASS JASA 6 EEN PERCENTAGE POINTS OF FREQUENCY CU/ APPROXIMATE MEANS AND STANDARD DEVIATIONS OF VARIATION ANS 6 SEQUENTIAL THE ACCURACY OF WEIGHTED MEAN	52 248 345 1141 861 73 180 201 226 88 146 1304 423 463 1413 128 186 1 403 339 1203 304 465 533 435
ON MULTIPLE DECISION METHODS FOR RANKING POPULATION MEANS INTERVAL ESTIMATION FOR LINEAR COMBINATIONS OF MEANS INTERVAL ESTIMATION FOR LINEAR COMBINATIONS OF MEANS ESTIMATION OF THE LARCEST OF TWO NORMAL MEANS THE BEHRENS-FISHER DISTRIBUTION AND WEICHTED MEANS ON COMBINING ESTIMATES OF A RATIO OF MEANS ON COMBINING ESTIMATES OF A RATIO OF MEANS SEQUENTIAL PROCEDURE FOR SELECTING THE LARGEST OF K MEANS SEQUENTIAL PROCEDURE FOR SELECTING THE LARGEST OF K MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS OF LARGE DEVIATIONS OF FAMILES OF SAMPLE MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS VARIANCES ON THE F-TEST FOR THE HOMOCENEITY OF GROUP MEANS VARIANCES ON THE F-TEST FOR THE HOMOCENEITY OF MEANS ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS VARIANCES TESTING EQUALITY OF MEANS AR COVARIANCE MATRIX ON THE ACCURACY OF WEIGHTED MEANS AND ASSOCIATED FAMILES OF DISTRIBUTIONS AR COVARIANCE MATRIX ON THE ACCURACY OF WEIGHTED MEANS AND ASSOCIATED FAMILES OF DISTRIBUTIONS CORRELATION BETWEEN SAMPLE MEANS AND ASSOCIATED FAMILES OF DISTRIBUTIONS ON THE ACCURACY OF WEIGHTED MEANS AND ASSOCIATED FAMILES OF DISTRIBUTIONS CORRELATION BETWEEN SAMPLE MEANS AND ASSOCIATED FAMILES OF DISTRIBUTIONS ON THE ACCURACY OF WEIGHTED MEANS AND ASSOCIATED FAMILES OF DISTRIBUTIONS EEN PERCENTAGE POINTS OF FREQUENCY CU/ APPROXIMATE MEANS AND ASSOCIATED FAMILES OF DISTRIBUTIONS AND EDICASS SECONAL EXPERIMENTS BY ELECTRONIC CO/ ESTIMATION OF MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAS SIZE, CORR. 64 1297 A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS AND TOTALS FROM FINITE POPULATIONS OF VARIATION A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS AND TOTALS FROM FINITE POPULATIONS OF VARIATION A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS AND TOTALS FROM FINITE POPULATIONS OF VARIATION A TEST OF EQUALITY OF TWO NORMAL POPU	248 345 1141 861 73 180 201 226 88 146 1304 423 463 1413 12B 186 1 403 339 1203 304 465 533 435
ON A CLASS OF SIMPLE SEQUENTIAL TESTS ON MEANS INTERVAL ESTIMATION FOR LINEAR COMBINATIONS OF MEANS ESTIMATION OF THE LARGEST OF TWO NORMAL MEANS THE BEHRENS-FISHER DISTRIBUTION AND WEICHTED MEANS ESTIMATORS FOR THE PRODUCT OF ARITHMETIC MEANS ON COMBINING ESTIMATES OF A RATIO OF MEANS NOTES.ORTHOGONAL POLYNOMIALS FOR UNEQUALLY WEIGHED MEANS SEQUENTIAL PROCEDURE FOR SELECTING THE LARGEST OF K MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS VARIANCES ON THE F-TEST FOR THE HOMOCENEITY OF GROUP MEANS VARIANCES ON THE HOMOCENEITY OF GROUP MEANS ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS (WITH DISCUSSION) ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS (WITH DISCUSSION) VARIANCES TESTING EQUALITY OF MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS AMS 6 AR COVARIANCE MATRIX CONDITIONAL MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINCUL JASA 6 CORRELATION BETWEEN SAMPLE MEANS AND STANDARD ERRORS IN THE ANALYSIS OF NON-ORTH JRSSE6 EEN PERCENTAGE POINTS OF FREQUENCY CU/ APPROXIMATE MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAS CORRELATION BETWEEN SAMPLE MEANS AND STANDARD ERRORS IN THE ANALYSIS OF NON-ORTH JRSSE6 EEN PERCENTAGE POINTS OF FREQUENCY CU/ ESTIMATION OF MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAG SEQUENTIAL PROCEDURE BETWEEN SUBCLASS MEANS AND TOTALS FROM FINITE POPULATIONS OF UNKNOWN A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS AND STANDARD ERRORS IN THE ANALYSIS OF NON-ORTH JRSSE6 SIZE, CORR 64 1297 ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULATIONS OF UNKNOWN A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS AND STANDARD ERRORS IN THE POPULATION OF MEANS AND STANDARD POPULATIONS OF UNKNOWN A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS AND STANDARD ERRORS IN THE ANALYSIS OF NON-ORTH JRSSE6	345 1141 861 73 180 201 226 88 146 1304 423 463 1413 12B 186 1 1 403 339 1203 304 465 533 435
INTERVAL ESTIMATION FOR LINEAR COMBINATIONS OF MEANS ESTIMATION OF THE LARCEST OF TWO NORMAL MEANS THE BEHERNS-FISHER DISTRIBUTION AND WEICHTED MEANS ESTIMATORS FOR THE PRODUCT OF ARITHMETIC MEANS ON COMBINING ESTIMATES OF A RATIO OF MEANS NOTES.ORTHOGONAL POLYNOMIALS FOR UNEQUALLY WEIGHED MEANS SEQUENTIAL PROCEDURE FOR SELECTING THE LARGEST OF K MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS ON THE ACCURACY OF WEIGHTED MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS AR COVARIANCE MATRIX CONDITIONAL MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINCUL JASA 6 EEN PERCENTAGE POINTS OF FREQUENCY CU/ APPROXIMATE MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAS CORRELATION OF MEANS AND STANDARD DEVIATIONS OF NON-ORTH JRSSE6 ES FOR TH/ STATISTICAL DEPENDENCE BETWEEN SUBCLASS MEANS AND THE NUMBERS OF OBSERVATIONS IN THE SUBCLASS JASA 6 SIZE, CORR. 64 1297 ESTIMATION OF MEANS AND THE NUMBERS OF OBSERVATIONS IN THE SUBCLASS JASA 6 SIZE, CORR. 64 1297 ESTIMATION OF MEANS AND THE NUMBERS OF OBSERVATIONS IN THE SUBCLASS JASA 6 SIZE, CORR. 64	1141 861 73 180 201 226 88 146 1304 423 463 1413 12B 186 1 403 339 1203 304 465 533 435
ESTIMATION OF THE LARCEST OF TWO NORMAL MEANS THE BEHRENS-FISHER DISTRIBUTION AND WEICHTED MEANS ESTIMATORS FOR THE PRODUCT OF ARITHMETIC MEANS ON COMBINING ESTIMATES OF A RATIO OF MEANS SEQUENTIAL PROCEDURE FOR SELECTING THE LARGEST OF K MEANS SEQUENTIAL PROCEDURE FOR SELECTING THE LARGEST OF K MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS VARIANCES ON THE F-TEST FOR THE HOMOCENEITY OF GROUP MEANS ON SELECTING THE LARGEST OF K NORMAL POPULATION VARIANCES TESTING EQUALITY OF MEANS AR COVARIANCE MATRIX ON THE ACCURACY OF WEIGHTED MEANS CONDITIONAL MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS AR COVARIANCE MATRIX ON THE ACCURACY OF WEIGHTED MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINCUL JASA 6 OGONAL EXPERIMENTS BY ELECTRONIC CO/ ESTIMATION OF MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETWEEN SUBCLASS SIZE, CORR. 64 1297 ESTIMATION OF MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION ASSOCIATED FRONTE FOR VARIATION OF MEANS AND TATALS FROM FINITE POPULATIONS OF VARIATION ATS OF THE ANALYSIS OF NON-ORTH JASA 6 SIZE, CORR. 64 1297 ESTIMATION OF MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION ASSOCIATED FRONTE FOR THE ANALYSIS OF NON-ORTH JASA 6 SIZE, CORR. 64 1297 ESTIMATION OF MEANS AND TATALS FROM FINITE POPULATIONS OF VARIATION ASSOCIATED FRONTE FOR THE ANALYSIS OF NON-ORTH JASA 6 SIZE, CORR. 64 1297 ESTIMATION OF MEANS AND TATALS FROM FINITE POPULATIONS OF VARIATION ASSOCIATED FRONTE FOR THE ANALYSIS OF NON-ORTH JASA 6 SIZE, CORR. 64 1297 ESTIMATION OF MEANS AND TATALS FROM FINITE POPULATIONS OF VARIATION ASSOCIATED FRONTE FOR THE ANALYSIS OF NON-ORTH JASA 6	861 73 180 201 226 88 146 1304 423 463 1413 12B 186 1 403 339 1203 304 465 533 435
THE BEHRENS-FISHER DISTRIBUTION AND WEICHTED MEANS ESTIMATORS FOR THE PRODUCT OF ARTHMETIC MEANS ON COMBINING ESTIMATES OF A RATIO OF MEANS NOTES.ORTHOGONAL POLYNOMIALS FOR UNEQUALLY WEIGHED MEANS SEQUENTIAL PROCEDURE FOR SELECTING THE LARGEST OF K MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS OF THE PROBLEM OF THE AMALGAMATION OF WEIGHTED MEANS CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS VARIANCES ON THE F-TEST FOR THE HOMOGENEITY OF GROUP MEANS ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS VARIANCES VARIANCES OF THE PROBLEM OF THE AMALGAMATION OF MEANS ON THE ACCURACY OF WEIGHTED MEANS ARE COVARIANCE MATRIX ON THE ACCURACY OF WEIGHTED MEANS AFTER A PRELIMINARY TEST OF EQUALITY OF BIOKAS CENERALIZED MEANS AND COVARIANCES OF DISTRIBUTIONS ARE COVARIANCE MATRIX ON THE ACCURACY OF WEIGHTED MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINCUL JASA 6 CENERALIZED MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINCUL JASA 6 OGONAL EXPERIMENTS BY ELECTRONIC CO/ ESTIMATION OF MEANS AND SAMPLE RROPES SIZE, CORR. 64 1297 ESTIMATION OF MEANS AND STANDARD ERRORS IN THE ANALYSIS OF NON-ORTH JRSSE6 SIZE, CORR. 64 1297 ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULATIONS OF VARIATION AMS 6	73 180 201 226 88 146 1304 423 463 1413 12B 186 1 403 339 1203 304 465 533 435
ON COMBINING ESTIMATES OF A RATIO OF MEANS NOTES.ORTHOGONAL POLYNOMIALS FOR UNEQUALLY WEIGHED MEANS SEQUENTIAL PROCEDURE FOR SELECTING THE LARGEST OF K MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS VARIANCES ON THE F-TEST FOR THE HONGENEITY OF GROUP ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS AR COVARIANCE MATRIX ON THE ACCURACY OF WEIGHTED MEANS ON THE ACCURACY OF WEIGHTED MEANS AND AND STANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAGE OGONAL EXPERIMENTS BY ELECTRONIC CO/ ESTIMATION OF MEANS SIZE, CORR. 64 1297 ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULATIONS OF VARIATION A TEST OF EQUALITY OF TWO NORMAL POPULATION OF MEANS AND TOTALS FROM FINITE POPULATIONS OF VARIATION A TEST OF EQUALITY OF TWO NORMAL POPULATION OF MEANS AND TOTALS FROM FINITE POPULATIONS OF VARIATION A TEST OF EQUALITY OF TWO NORMAL POPULATION OF MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION A TEST OF EQUALITY OF TWO NORMAL POPULATION ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION A TEST OF EQUALITY OF TWO NORMAL POPULATION ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION A TEST OF EQUALITY OF TWO NORMAL POPULATION ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION A TEST OF EQUALITY OF TWO NORMAL POPULATION ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION A SECURITY OF TWO NORMAL POPULATION ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION A SECURITY OF TWO NORMAL POPULATION ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION A SECURITY OF TWO NORMAL POP	201 226 88 146 1304 423 463 1413 12B 186 1 403 339 1203 304 465 533 435
NOTES.ORTHOGONAL POLYNOMIALS FOR UNEQUALLY WEIGHED MEANS SEQUENTIAL PROCEDURE FOR SELECTING THE LARGEST OF K MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS OF THE PROBLEM OF THE AMALGAMATION OF WEIGHTED MEANS CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS VARIANCES ON THE F-TEST FOR THE HOMOGENEITY OF GROUP MEANS ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS VARIANCES TESTING EQUALITY OF MEANS ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS VARIANCES OF THE PROBLEM OF THE AMALGAMATION OF MEANS ON THE ACCURACY OF WEIGHTED MEANS ON THE ACCURACY OF WEIGHTED MEANS ON THE ACCURACY OF WEIGHTED MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINCUL JASA 6 OGONAL EXPERIMENTS BY ELECTRONIC CO/ ESTIMATION OF MEANS AND STANDARD DEVIATIONS IN THE SUBCLASS SIZE, CORR. 64 1297 ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULATIONS OF VARIATION AMS 6 BIOCS6 MEANS ON THE PROBLEM TWO—STAGE BIOKAS AMS 6 ON THE PROBABILITY AMS 6	226 88 146 1304 423 463 1413 12B 186 1 403 339 1203 304 465 533 435
SEQUENTIAL PROCEDURE FOR SELECTING THE LARGEST OF K MEANS PROCEDURES FOR ESTIMATING THE DIFFERENCE BETWEEN MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS CORRELATED ESTIMATES OF A RATIO OF WEIGHTED MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS VARIANCES ON THE F-TEST FOR THE HOMOCEMEITY OF GROUP MEANS ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS (WITH DISCUSSION) VARIANCES TESTING EQUALITY OF MEANS AR COVARIANCE MATRIX CONDITIONAL MEANS ON THE ACCURACY OF WEIGHTED MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS ARS 6 CORRELATION BETWEEN SAMPLE MEANS ON THE ACCURACY OF WEIGHTED MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAS CORNAL EXPERIMENTS BY ELECTRONIC CO/ ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULATIONS IN THE SUBCLASS SIZE, CORR. 64 1297 ESTIMATION OF MEANS AND TEATIOS FOR DEANS AND TOTALS FROM FINITE POPULATIONS OF VARIATION AMS 6 AMS 6 TWO—STAGE BIOKAS TWO—STAGE BIOKAS AMS 6 AMS 6 AMS 6 THE RANDOMIZATION JECKS BIOKAS AND COURTIONAL MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS AMS 6 CORRELATION BETWEEN SAMPLE MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS AMS 6 CORRELATION BETWEEN SAMPLE MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAS CORRELATION SETMENTS BY ELECTRONIC CO/ ESTIMATION OF MEANS AND STANDARD DEVIATIONS IN THE SUBCLASS JASA 6 ES FOR TH/ STATISTICAL DEPENDENCE BETWEEN SUBCLASS MEANS AND THE NUMBERS OF OBSERVATIONS IN THE SUBCLASS JASA 6 ES FOR TH/ STATISTICAL DEPENDENCE BETWEEN SUBCLASS MEANS AND THE NUMBERS OF OBSERVATIONS OF UNKNOWN JASA 6 A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION AMS 6	88 146 1304 423 463 1413 12B 186 1 403 339 1203 304 465 533 435
PROCEDURES FOR ESTIMATING THE DIFFERENCE BETWEEN MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS CORRELATED ESTIMATES OF A RATIO OF WILDIVARIATE MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS VARIANCES ON THE F-TEST FOR THE HOMOCENEITY OF GROUP LIMITS FOR THE RATIO OF MEANS ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS VARIANCES TESTING EQUALITY OF MEANS AR COVARIANCE MATRIX ON THE ACCURACY OF WEIGHTED MEANS ON THE ACCURACY OF WEIGHTED MEANS ON THE ACCURACY OF WEIGHTED MEANS CORRELATION BETWEEN SAMPLE MEANS ON THE ACCURACY OF WEIGHTED MEANS EEN PERCENTAGE POINTS OF FREQUENCY CU/ APPROXIMATE MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAG OGONAL EXPERIMENTS BY ELECTRONIC CO/ ESTIMATION OF MEANS AND STANDARD DEVIATIONS IN THE SUBCLASS BIOKAS ON THE NORMAL POPULATION OF MEANS AND STANDARD DEVIATIONS IN THE SUBCLASS JASA 6 SIZE, CORR 64 1297 ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULATIONS OF UNKNOWN JASA 6 AT EST OF EQUALITY OF TWO NORMAL POPULATION OF MEANS AND TOTALS FROM FINITE POPULATIONS OF UNKNOWN JASA 6 SIZE, CORR 64 1297 ESTIMATION OF MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION AMS 6	146 1304 423 463 1413 12B 186 1 403 339 1203 304 465 533 435
OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS BASES OF THE PROBLEM OF THE AMALGAMATION OF WEIGHTED MEANS CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS VARIANCES ON THE F-TEST FOR THE HOMOGENEITY OF GROUP MEANS ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS VARIANCES TESTING EQUALITY OF MEANS AR COVARIANCE MATRIX CONDITIONAL MEANS ON THE ACCURACY OF WEIGHTED MEANS AND SAMPLE RATIOS CORRELATION BETWEEN SAMPLE MEANS OGONAL EXPERIMENTS BY ELECTRONIC CO/ ESTIMATION OF MEANS AND SAMPLE RRORES SIZE, CORR. 64 1297 ESTIMATION OF MEANS AND COVARIANCE HORDS IN THE ANALYSIS OF NON-ORTH JASA 6 SIZE, CORR. 64 1297 ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULATIONS OF VARIATION AMS 6 ON THE PROBABILITY AMS 6 THE RANDOMIZATION THE RANDOMIZATION THE RANDOMIZATION THE AND MILITURE MEANS AND ESTIMATION OF MEANS AND SAMPLE RANGES SIZE, CORR. 64 1297 ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULATIONS OF VARIATION AMS 6 ON THE PROBABILITY AMS 6 THE RANDOMIZATION THE RANDOMIZATION THE RANDOMIZATION THE RANDOMIZATION THE RANDOMIZATION THE AND MILITURE MEANS AND ESTADDARY TEST OF EQUALITY OF MEANS AND STANDARD ERRORS IN THE ANALYSIS OF NON-ORTH JRSSE6 ES FOR TH/ STATISTICAL DEPENDENCE BETWEEN SUBCLASS MEANS AND THE NUMBERS OF OBSERVATIONS IN THE SUBCLASS JASA 6 SIZE, CORR. 64 1297 ESTIMATION OF MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION AMS 6 ON THE PROBABILITY AND STREAMS THE RANDOMIZATION THE RANDOMIZA	1304 423 463 1413 12B 186 1 403 339 1203 304 465 533 435
BASES OF THE PROBLEM OF THE AMALGAMATION OF WEIGHTED MEANS CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS VARIANCES ON THE F-TEST FOR THE HOMOCEMEITY OF GROUP MEANS ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS VARIANCES TESTING EQUALITY OF MEANS AR COVARIANCE MATRIX CONDITIONAL MEANS ON THE ACCURACY OF WEIGHTED MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS AMS 6 CORRELATION BETWEEN SAMPLE MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINCUL JASA 6 CORRELATION BETWEEN SAMPLE MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAS COGNAL EXPERIMENTS BY ELECTRONIC CO/ ESTIMATION OF MEANS AND STANDARD DEVIATIONS IN THE ANALYSIS OF NON-ORTH JRSS66 ES FOR TH/ STATISTICAL DEPENDENCE BETWEEN SUBCLASS SIZE, CORR 64 1297 ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULATIONS OF VARIATION ANS 6 AR CENTRAL TO TWO NORMAL POPULATION MEANS AND TOTALS FROM FINITE POPULATIONS OF VARIATION ANS 6	423 463 1413 12B 186 1 403 339 1203 304 465 533 435
CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS VARIANCES ON THE F-TEST FOR THE HOMOCENEITY OF GROUP MEANS ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS VARIANCES TESTING EQUALITY OF MEANS ON THE ACCURACY OF WEIGHTED MEANS AND SAMPLE RANGES EEN PERCENTAGE POINTS OF FREQUENCY CU/ APPROXIMATE MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAG OGONAL EXPERIMENTS BY ELECTRONIC CO/ ESTIMATION OF MEANS AND STANDARD ERRORS IN THE ANALYSIS OF NON-ORTH JRSSB6 ES FOR TH/ STATISTICAL DEPENDENCE BETWEEN SUBCLASS MEANS AND THE NUMBERS OF OBSERVATIONS IN THE SUBCLASS JASA 6 SIZE, CORR. 64 1297 ESTIMATION OF MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION AMS 6	463 1413 128 186 1 403 339 1203 304 465 533 435
OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS VARIANCES ON THE F-TEST FOR THE HOMOCENEITY OF GROUP MEANS LIMITS FOR THE RATIO OF MEANS ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS ON THE SETING EQUALITY OF MEANS AFTER A PRELIMINARY TEST OF EQUALITY OF MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS AR COVARIANCE MATRIX ON THE ACCURACY OF WEIGHTED MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS CONDITIONAL MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS ON THE ACCURACY OF WEIGHTED MEANS AND RATIOS CORRELATION BETWEEN SAMPLE MEANS AND SAMPLE RANGES EEN PERCENTAGE POINTS OF FREQUENCY CU/ APPROXIMATE MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAG OGONAL EXPERIMENTS BY ELECTRONIC CO/ ESTIMATION OF MEANS AND STANDARD ERRORS IN THE ANALYSIS OF NON-ORTH JRSSEG ES FOR TH/ STATISTICAL DEPENDENCE BETWEEN SUBCLASS MEANS AND TOTALS FROM FINITE POPULATIONS IN THE SUBCLASS JASA 6 SIZE, CORR. 64 1297 ESTIMATION OF MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION AMS 6 AND ASSOCIATED FAMILIES OF DISTANCES BETW BIOKAG MEANS AND TOTALS FROM FINITE POPULATIONS OF UNKNOWN JASA 6 SIZE, CORR. 64 1297 ESTIMATION OF MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION AMS 6	1413 128 186 1 403 339 1203 304 465 533 435
VARIANCES ON THE F-TEST FOR THE HOMOCENEITY OF GROUP MEANS LIMITS FOR THE RATIO OF MEANS (WITH DISCUSSION) ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS (WITH DISCUSSION) VARIANCES TESTING EQUALITY OF MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS AR COVARIANCE MATRIX CONDITIONAL MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINCUL JASA 6 ON THE ACCURACY OF WEIGHTED MEANS AND RATIOS CORRELATION BETWEEN SAMPLE MEANS AND RATIOS EEN PERCENTAGE POINTS OF FREQUENCY CU/ APPROXIMATE MEANS AND SAMPLE RANGES OGONAL EXPERIMENTS BY ELECTRONIC CO/ ESTIMATION OF MEANS AND STANDARD DEVIATIONS IN THE ANALYSIS OF NON-ORTH JRSSE6 ES FOR TH/ STATISTICAL DEPENDENCE BETWEEN SUBCLASS MEANS AND TOTALS FROM FINITE POPULATIONS OF UNKNOWN JASA 6 A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION AMS 6	12B 186 1 403 339 1203 304 465 533 435
LIMITS FOR THE RATIO OF MEANS (WITH DISCUSSION) ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS (WITH DISCUSSION) VARIANCES TESTING EQUALITY OF MEANS AFTER A PRELIMINARY TEST OF EQUALITY OF BIOKAG CENERALIZED MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS AMS 6 AR COVARIANCE MATRIX CONDITIONAL MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINCUL JASA 6 ON THE ACCURACY OF WEIGHTED MEANS AND RATIOS CORRELATION BETWEEN SAMPLE MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS AMS 6 CORRELATION BETWEEN SAMPLE MEANS AND SATIOS EEN PERCENTAGE POINTS OF FREQUENCY CU/ APPROXIMATE MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAG OGONAL EXPERIMENTS BY ELECTRONIC CO/ ESTIMATION OF MEANS AND STANDARD DEVIATIONS IN THE ANALYSIS OF NON-ORTH JRSSEG ES FOR TH/ STATISTICAL DEPENDENCE BETWEEN SUBCLASS SIZE, CORR. 64 1297 ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULATIONS OF UNKNOWN JASA 6 A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION AMS 6	186 1 403 339 1203 304 465 533 435
ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS (WITH DISCUSSION) VARIANCES TESTING EQUALITY OF MEANS AFTER A PRELIMINARY TEST OF EQUALITY OF BIOKAG CENERALIZED MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS AMS 6 AR COVARIANCE MATRIX ON THE ACCURACY OF WEIGHTED MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINCUL JASA 6 CORRELATION BETWEEN SAMPLE MEANS AND RATIOS CORRELATION BETWEEN SAMPLE MEANS AND SAMPLE RANGES EEN PERCENTAGE POINTS OF FREQUENCY CU/ APPROXIMATE MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAG OGONAL EXPERIMENTS BY ELECTRONIC CO/ ESTIMATION OF MEANS AND STANDARD ERRORS IN THE ANALYSIS OF NON-ORTH JRSSEG ES FOR TH/ STATISTICAL DEPENDENCE BETWEEN SUBCLASS MEANS AND THE NUMBERS OF OBSERVATIONS IN THE SUBCLASS JASA 6 SIZE, CORR. 64 1297 ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULATIONS OF UNKNOWN JASA 6 A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION AMS 6	1 403 339 1203 304 465 533 435
VARIANCES TESTING EQUALITY OF MEANS APTER A PRELIMINARY TEST OF EQUALITY OF BIOKAG CENERALIZED MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS AMS 6 AR COVARIANCE MATRIX ON THE ACCURACY OF WEIGHTED MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINCUL JASA 6 ON THE ACCURACY OF WEIGHTED MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINCUL JASA 6 CORRELATION BETWEEN SAMPLE MEANS AND RATIOS EEN PERCENTAGE POINTS OF FREQUENCY CU/ APPROXIMATE MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAG OGONAL EXPERIMENTS BY ELECTRONIC CO/ ESTIMATION OF MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAG ES FOR TH/ STATISTICAL DEPENDENCE BETWEEN SUBCLASS MEANS AND THE NUMBERS OF OBSERVATIONS IN THE SUBCLASS JASA 6 SIZE, CORR. 64 1297 A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION AMS 6	403 339 1203 304 465 533 435
AR COVARIANCE MATRIX CONDITIONAL MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS ON THE ACCURACY OF WEIGHTED MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINCUL JASA 6 CORRELATION BETWEEN SAMPLE MEANS AND RATIOS CORRELATION BETWEEN SAMPLE MEANS AND SAMPLE RANGES EEN PERCENTAGE POINTS OF FREQUENCY CU/ APPROXIMATE MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAG OGONAL EXPERIMENTS BY ELECTRONIC CO/ ESTIMATION OF MEANS AND STANDARD ERRORS IN THE ANALYSIS OF NON-ORTH JRSSEG ES FOR TH/ STATISTICAL DEPENDENCE BETWEEN SUBCLASS MEANS AND THE NUMBERS OF OBSERVATIONS IN THE SUBCLASS JASA 6 SIZE, CORR. 64 1297 ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULATIONS OF UNKNOWN JASA 6 A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION AMS 6	1203 304 465 533 435
ON THE ACCURACY OF WEIGHTED MEANS AND RATIOS CORRELATION BETWEEN SAMPLE MEANS AND SAMPLE RANGES EEN PERCENTAGE POINTS OF FREQUENCY CU/ APPROXIMATE MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAGE OGONAL EXPERIMENTS BY ELECTRONIC CO/ ESTIMATION OF MEANS AND STANDARD ERRORS IN THE ANALYSIS OF NON-ORTH JRSSEG ES FOR TH/ STATISTICAL DEPENDENCE BETWEEN SUBCLASS MEANS AND THE NUMBERS OF OBSERVATIONS IN THE SUBCLASS JASA 6 SIZE, CORR. 64 1297 A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION AMS 6	304 465 533 435
CORRELATION BETWEEN SAMPLE MEANS AND SAMPLE RANGES EEN PERCENTAGE POINTS OF FREQUENCY CU/ APPROXIMATE MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAGO OGONAL EXPERIMENTS BY ELECTRONIC CO/ ESTIMATION OF MEANS AND STANDARD ERRORS IN THE ANALYSIS OF NON-ORTH JRSSBG ES FOR TH/ STATISTICAL DEPENDENCE BETWEEN SUBCLASS MEANS AND THE NUMBERS OF OBSERVATIONS IN THE SUBCLASS JASA GOORS, CORR. 64 1297 ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULATIONS OF UNKNOWN JASA GOORS AT TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION AMS GOODS	465 533 435
EEN PERCENTAGE POINTS OF FREQUENCY CU/ APPROXIMATE MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETW BIOKAG OGONAL EXPERIMENTS BY ELECTRONIC CO/ ESTIMATION OF MEANS AND STANDARD ERRORS IN THE ANALYSIS OF NON-ORTH JRSSEG ES FOR TH/ STATISTICAL DEPENDENCE BETWEEN SUBCLASS MEANS AND THE NUMBERS OF OBSERVATIONS IN THE SUBCLASS JASA 6 SIZE, CORR. 64 1297 ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULATIONS OF UNKNOWN JASA 6 A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION AMS 6	533 435
OGONAL EXPERIMENTS BY ELECTRONIC CO/ ESTIMATION OF MEANS AND STANDARD ERRORS IN THE ANALYSIS OF NON-ORTH JRSSE6 ES FOR TH/ STATISTICAL DEPENDENCE BETWEEN SUBCLASS MEANS AND THE NUMBERS OF OBSERVATIONS IN THE SUBCLASS JASA 6 SIZE, CORR. 64 1297 ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULATIONS OF UNKNOWN JASA 6 A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION AMS 6	435
ES FOR TH/ STATISTICAL DEPENDENCE BETWEEN SUBCLASS MEANS AND THE NUMBERS OF OBSERVATIONS IN THE SUBCLASS JASA 6 SIZE, CORR. 64 1297 ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULATIONS OF UNKNOWN JASA 6 A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION AMS 6	
SIZE, CORR. 64 1297 ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULATIONS OF UNKNOWN JASA 6 A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION AMS 6	1484
A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION AMS 6	
BAYESIAN ESTIMATION OF MEANS FOR THE RANDOM EFFECT MODEL JASA 6	
SAMPLING MOMENTS OF MEANS FROM FINITE MULTIVARIATE POPULATIONS AMS 6	
A CHART FOR SEQUENTIALLY TESTING OBSERVED ARITHMETIC MEANS FROM LOGNORMAL POPULATIONS AGAINST A GIVEN STAN TECH 6	
ON THE PROPORTION OF OBSERVATIONS ABOVE SAMPLE MEANS IN A BIVARIATE NORMAL DISTRIBUTION AMS 6	
NOTE ON MULTIPLE COMPARISONS FOR ADJUSTED MEANS IN THE ANALYSIS OF COVARIANCE BIOKAS	256
TESTINC EQUALITY OF MEANS IN THE PRESENCE OF CORRELATION BIOKAG	
TEST FOR THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN MEANS IN TWO NORMAL POPULATIONS HAVING UNEQUAL VARIAN BIOKAS	
ANALYSIS BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH APPLICATION TO RECRESSION BIOKAG	
CONFIDENCE INTERVALS FOR THE MEANS OF DEPENDENT NORMALLY DISTRIBUTED VARIABLES JASA 5	
LK/ A TWO-STACE SUBSAMPLINC PROCEDURE FOR RANKING MEANS OF FINITE POPULATIONS WITH AN APPLICATION TO BU TECH 6 NOTES.ON ESTIMATING THE ARITHMETIC MEANS OF LOGNORMALL-DISTRIBUTED POPULATIONS BIOCS6	
RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF DEVIANDARIATE NORMAL DISTRIBUTIONS JASA 6	
SEQUENTIAL INTERVAL ESTIMATION FOR THE MEANS OF NORMAL POPULATIONS AMS 6	
NOTES. SAMPLE SIZE FOR THE ESTIMATION OF MEANS OF NORMAL POPULATIONS BIOCS6	B46
EXTENSIONS OF SOMERVILLE'S PROCEDURE FOR RANKING MEANS OF NORMAL POPULATIONS SOME BIOKAG	411
ESTIMATION OF MEANS OF NORMAL POPULATIONS FROM OBSERVED MINIMA BIOKAS	
A TWO-SAMPLE MULTIPLE DECISION PROCEDURE FOR RANKING MEANS OF NORMAL POPULATIONS WITH A COMMON UNKNOWN VAR BIOKAS	
NDENT STOCHASTIC SERIES THE COMPARISON OF MEANS OF SETS OF OBSERVATIONS FROM SECTIONS OF INDEPE JRSSB5	
ANALYSIS OF EFFECTS OF ANTIBIOTICS ON BACTERIA BY MEANS OF STOCHASTIC MODELS BIOCSO	
ATION OF POPULATION PARAMETERS FROM DATA OBTAINED BY MEANS OF THE CAPTURE-RECAPTURE METHOD. I. THE MAXIMUM BIOKAS ATION OF POPULATION PARAMETERS FROM DATA OBTAINED BY MEANS OF THE CAPTURE-RECAPTURE METHOD. III.AN EXAMPLE BIOKAS	
VARIANCES RANKING MEANS OF TWO NORMAL POPULATIONS WITH UNKNOWN BIOKAS	
LCH STATISTIC FOR TESTING THE DIFFERENCE BETWEEN THE MEANS OF TWO NORMAL POPULATIONS WITH UNKNOWN VARIANCE JRSSB6	
THE TWO MEANS PROBLEM A SECONDARILY BAYES APPROACH BIOKAG	
A TEST OF HOMOCENEITY OF MEANS UNDER RESTRICTED ALTERNATIVES (WITH DISCUSSION) JRSSB6	
EHAVIOUR OF CERTAIN TESTS OF THE HYPOTHESIS OF EQUAL MEANS UNDER VARIANCE HETEROGENEITY SMALL SAMPLE B BIOKAG	
EHAVIOUR OF CERTAIN TESTS OF THE HYPOTHESIS OF EQUAL MEANS UNDER VARIANCE HETEROGENEITY' /SMALL SAMPLE B BIOKAG	
A TEST FOR EQUALITY OF MEANS WHEN COVARIANCE MATRICES ARE UNEQUAL AMS 6	
ON POOLING MEANS WHEN VARIANCE IS UNKNOWN JASA 6	
TESTING OF MEANS WITH DIFFERENT ALTERNATIVES TECH 6 THE DISTRIBUTION OF NONCENTRAL MEANS WITH KNOWN COVARIANCE AMS 6	
CALCULATING TABLES ON THE COMPARISON OF TWO MEANS, FURTHER DISCUSSION OF ITERATIVE METHODS FOR BIOKAS	
THE COMPLETE AMALGAMATION INTO BLOCKS, BY WEIGHTED MEANS, OF A FINITE SET OF REAL NUMBERS BIOKAS	
ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF MEASLES, I. FAMILIES WITH TWO SUSCEPTIBLES ONLY. BIOKAS	
ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF MEASLES, II. FAMILIES WITH THREE OR MORE SUSCEPTIBLES BIOKAS	322
A PERFECT MEASURABLE SPACE THAT IS NOT A LUSIN SPACE AMS 6	
ON ESTIMATING A DENSITY WHICH IS MEASURABLE WITH RESPECT TO A SICMA-LATTICE AMS 6	
ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A GOAL AMS 6 ON MEASURES EQUIVALENT TO WIENER MEASURE AMS 6	
ON MEASURES EQUIVALENT TO WIENER MEASURE FOR THE EXISTENCE OF A FINITELY ADDITIVE PROBABILITY MEASURE SUFFICIENT CONDITIONS AMS 6	
EXISTENCE OF AN INVARIANT MEASURE AND AN ORNSTEIN'S ERGODIC THEOREM AMS 6	
POSTERIOR DISTRIBUTIONS RIGHT HAAR MEASURE FOR CONVERCENCE IN PROBABILITY TO QUASI AMS 6	440
NOTES. A MEASURE OF 'OVERALL VARIABILITY' IN POPULATIONS BIOCS6	
ON A MEASURE OF ASSOCIATION AMS 6	
DISTRIBUTION OF THE SAMPLE VERSION OF THE MEASURE OF ASSOCIATION, GAMMA JASA 6	
A NOTE ON AVERAGE TAU AS A MEASURE OF CONCORDANCE JASA 6	
THE DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF MULTIVARIATE DISPERSION AMS 6 SAMPLING FOR PROBABILITY PROPORTIONATE TO SOME MEASURE OF SIZE ESTIMATION ON DOUBLE AMS 6	
SAMPLING FOR PROBABILITY PROPORTIONATE TO SOME MEASURE OF SIZE ESTIMATION ON DOUBLE AMS 6 IMPROVED BOUNDS ON A MEASURE OF SKEWNESS AMS 6	
UN A MEADURE OF LEST EFFICIENCI PROFUSED BI K. K. BARADUR AMS D	
ON A MEASURE OF TEST EFFICIENCY PROPOSED BY R. R. BAHADUR AMS 6 PROPERTIES OF THE STATIONARY MEASURE OF THE CRITICAL CASE SIMPLE BRANCHING PROCESS AMS 6	1537 977
	1537 977 6 669

```
QUALITY CONTROL SYSTEMS BASED ON INACCURATELY MEASURED VARIABLES
                                                                                                               BTOKA51
                                                                                                                        472
APPLICATIONS OF A NEW CRAPHIC METHOD IN STATISTICAL MEASUREMENT
                                                                                                               JASA 57
                                                                                                                        472
                       APPROACHES TO NATIONAL OUTPUT MEASUREMENT
                                                                                                               JASA 58
                                                                                                                        948
           REGRESSION FOR TIME SERIES WITH ERRORS OF MEASUREMENT
                                                                                                                        293
                                                                                                               BIOKA63
        IN MENTAL TEST THEORY ARISINC FROM ERRORS OF MEASUREMENT
                                                                                                                        472
                                                                                                      PROBLEMS JASA 59
TATISTICAL EVALUATION OF SPLITTING LIMIT CRITERIA IN MEASUREMENT DISPUTES
                                                                                                             S TECH 63
                                                                                                                        263
CTOR FUEL ELEMENT QUALITY
                               A PROCRAM TO ESTIMATE MEASUREMENT ERROR IN NONDESTRUCTIVE EVALUATION OF REA TECH 64
                                                                                                                        293
                                            A NOTE ON MEASUREMENT ERRORS AND DETECTING REAL DIFFERENCES
                                                                                                               JASA 61
                                                                                                                        314
                                            ERRORS OF MEASUREMENT IN STATISTICS
                                                                                                               TECH 68
                                                                                                                        637
                             RANKING METHODS AND THE MEASUREMENT OF ATTITUDES
                                                                                                               JASA 58
                                                                                                                        720
AIRCRAFT INDUSTRY
                                        A NOTE ON THE MEASUREMENT OF COST-QUANTITY RELATIONSHIPS IN THE
                                                                                                               JASA 68 1247
                                                  THE MEASUREMENT OF PRICE CHANCES IN CONSTRUCTION
                                                                                                               JASA 69
                                                                                                                        771
                   THE EFFECT OF MIS-MATCHING ON THE MEASUREMENT OF RESPONSE ERRORS
                                                                                                               JASA 65 1005
  AN ANALYSIS OF QUANTAL RESPONSE DATA IN WHICH THE MEASUREMENT OF RESPONSE IS SUBJECT TO ERROR
                                                                                                               BIOCS65
                                                                                                                        811
                                                      MEASUREMENT OF THE POTENCIES OF DRUG MIXTURES
                                                                                                               BTOCS69
                                                                                                                        477
                           PRECISION OF SIMULTANEOUS MEASUREMENT PROCEDURES
                                                                                                               JASA 63
                                                                                                                        474
                              TWO PROBLEMS IN SETS OF MEASUREMENTS
                                                                                                               BIOKA54
                                                                                                                        560
                CORRELATIONS BETWEEN SIMILAR SETS OF MEASUREMENTS
                                                                                                               BTOCS66
                                                                                                                        781
RODUCTS AT RETAIL AND THE FARM LEVEL. SOME EMPIRICAL MEASUREMENTS AND RELATED PROBLEMS DEMAND FOR FARM P JASA 58
                                                                                                                        656
    OF MULTIVARIATE ANALYSIS OF VARIANCE TO REPEATED MEASUREMENTS EXPERIMENTS
                                                                                                  APPLICATION BIOCS66
                                                                                                                        B10
                                                       MEASUREMENTS MADE BY MATCHINC WITH KNOWN STANDARDS
                                                                                                               TECH 59
                                                                                                                        101
       A CHARACTERIZATION OF THE WEAK CONVERCENCE OF MEASURES
                                                                                                                AMS 61
                                                                                                                        561
   RADON-NIKODYM DERIVATIVES OF STATIONARY GAUSSIAN MEASURES
RADON-NIKODYM DERIVATIVES OF GAUSSIAN MEASURES
                                                                                                                AMS 64
                                                                                                                        517
                                                                                                                AMS 66
                                                                                                                        321
                ON TWO EQUIVALENCE RELATIONS BETWEEN MEASURES
                                                                                                                AMS 66
                                                                                                                        686
                                 A NOTE ON INVARIANT MEASURES
                                                                                                                AMS 66
                                                                                                                        729
              IDENTIFIABILITY OF MIXTURES OF PRODUCT MEASURES
                                                                                                                AMS 67 1300
INVARIANT SETS FOR TRANSLATION-PARAMETER FAMILIES OF MEASURES
                                                                                                                AMS 69
                                                                                                                        162
                   DISTINGUISHABILITY OF PROBABILITY MEASURES
                                                                                                                AMS 69
                                                                                                                        381
                     ON DISTINCUISHING TRANSLATES OF MEASURES
                                                                                                                AMS 69 1773
                                            RANKS AND MEASURES
                                                                                                               BIOKA62 133
THE CLIVENKO-CANTELLI THEOREM FOR INFINITE INVARIANT MEASURES
                                                                                                           ON . AMS 67 1273
 SINGULAR RECURRENT MARKOV PROCESSES HAVE STATIONARY MEASURES
                                                                                                          NON-
                                                                                                                AMS 64 B69
       SETS AND CONVEX HULLS OF SAMPLES FROM PRODUCT MEASURES
                                                                                                      LIMITING
                                                                                                                AMS 69 1824
                           DISTANCES OF PROBABILITY MEASURES AND RANDOM VARIABLES
                                                                                                                AMS 6B 1563
                                  PERFECT PROBABILITY MEASURES AND REGULAR CONDITIONAL PROBABILITIES
                                                                                                                AMS 66 1273
                                                                                                                AMS 67
                                                   ON MEASURES EQUIVALENT TO WIENER MEASURE
                                                                                                                        261
                      INTECRAL KERNELS AND INVARIANT MEASURES FOR MARKOFF TRANSITION FUNCTIONS
                                                                                                                AMS 65
                                                                                                                        517
                                                                                                                AMS 66 1439
          THE EXISTENCE AND UNIQUENESS OF STATIONARY MEASURES FOR MARKOV RENEWAL PROCESSES
                                              ORDINAL MEASURES OF ASSOCIATION
                                                                                                               JASA 58
                                                                                                                        B14
                                                      MEASURES OF ASSOCIATION FOR CROSS CLASSIFICATIONS,
                                                                                                                        123
II. FURTHER DISCUSSION AND REFERENCES
                                                                                                               JASA 59
111. APPROXIMATE SAMPLING THEORY
                                                      MEASURES OF ASSOCIATION FOR CROSS CLASSIFICATIONS,
                                                                                                               JASA 63
                                                                                                                        310
                THE EFFECT OF NON-SAMPLINC ERRORS ON MEASURES OF ASSOCIATION IN 2-BY-2 CONTINGENCY TABLES
                                                                                                               JASA 69
                                                                                                                        852
             AN EXAMPLE OF LARGE DISCREPANCY BETWEEN MEASURES OF ASYMPTOTIC EFFICIENCY OF TESTS
                                                                                                                AMS 6B
                                                                                                                        179
                                                       MEASURES OF CONCENTRATION
                                                                                                               JASA 67
                                                                                                                        162
                                                   ON MEASURES OF CORRELATION IN TIME SERIES OF EVENTS
                                                                                                               BIOCS69
                                                                                                                         73
       MUTUAL INFORMATION AND MAXIMAL CORRELATION AS MEASURES OF DEPENDENCE
                                                                                                                AMS 62
                                                                                                                        587
         APPROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCE BIOKA57
                                                                                                                        349
               APPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE
                                                                                                               BIOKA53
NTERVALS FOR THE RATIO OF TWO PROBABILITIES AND SOME MEASURES OF EFFECTIVENESS
                                                                                             TWO CONFIDENCE I JASA 57
                                                                                                                         36
                 A UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERGODIC MARKOV PROCESSES
                                                                                                                AMS 64 1781
                                              ON SOME MEASURES OF FOOD MARKETING SERVICES
                                                                                                               JASA 61
                                                                                                                        65
                             CONFIDENCE INTERVALS FOR MEASURES OF HERITABILITY
                                                                                                               BIOCS69
                                           ON BEALE'S MEASURES OF NON-LINEARITY
                                                                                                               TECH 65
THE MEDIAN SIGNIFICANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF TEST EFFICIENCY
                                                                                                               JASA 69
                                                                                                                        971
                       THE EPSILON ENTROPY ON CERTAIN MEASURES ON (0.1)
                                                                                                                AMS 68 1310
 SOME STRUCTURE THEOREMS FOR STATIONARY PROBABILITY MEASURES ON FINITE STATE SEQUENCES
                                                                                                                AMS 64
                                          PROBABILITY MEASURES ON PRODUCT SPACES
                                                                                                               SASJ 67
                                  EQUIVALENT GAUSSIAN MEASURES WITH A PARTICULARLY SIMPLE RADON-NIKODYM
   RELATIONS BETWEEN WEAK AND UNIFORM CONVERGENCE OF MEASURES WITH APPLICATIONS
                                                                                                                AMS 62
                                                                                                                        659
                         THE EXISTENCE OF PROBABILITY MEASURES WITH GIVEN MARCINALS
                                                                                                                AMS 65
SION OF A RADON-NIKODYM DERIVATIVE TO THE PROBLEM OF MEASURINC ASSOCIATION /THE RELEVANCE OF THE DISPER JRSSB65
                                          PROBLEMS IN MEASURING LONG TERM CROWTH IN INCOME AND WEALTH
                                                                                                               JASA 57
                                                  THE MEASURING PROCESS
                                                                                                               TECH 59
                                                      MEASURING RECESSIONS
                                                                                                               JASA 58
            THE USE OF AN ITERATED MOVING AVERACE IN MEASURING SEASONAL VARIATIONS
                                                                                                               JASA 62
                                                                                                                         149
ION OF THE CASE OF MARKET ORIENTATION OF PRODUCTI/ MEASURING SPATIAL ASSOCIATION WITH SPECIAL CONSIDERAT JASA 56
                                                                                                                         597
                              THE RATIONAL ORIGIN FOR MEASURING SUBJECTIVE VALUES
                                                                                                               JASA 57
                                                                                                                         45B
                                                    ON MEASURING THE EXTREME ACED IN THE POPULATION
                                                                                                               JASA 68
                                                                                                                         29
                                        A COEFFICIENT MEASURING THE COODNESS OF FIT
                                                                                                               TECH 66
                                                                                                                        327
                               ERRATA, 'A COEFFICIENT MEASURING THE GOODNESS OF FIT'
                                                                                                               TECH 67
                                                                                                                        195
                                                       MEASURING THE LENGTH OF A CURVE
                                                                                                               BIOKA66
     ON THE USE OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE SUPPORT FOR A COMPLETE ORDER
                                                                                                               JASA 61
                                             A CHANCE MECHANISM OF THE VARIATION IN THE NUMBER OF BIRTHS
                                                                                                               JASA 6B
PER COUPLE
                  THE EXPERIMENTAL STUDY OF PHYSICAL MECHANISMS
                                                                                                               TECH 65
ORY OF PROBABILITY AND STATISTICS XVI. RANDOM MECHANISMS IN TALMUDIC LITERATURE /DIES IN THE HIST BIOKA67
DISCRIMINATION AMONG MECHANISTIC MODELS / TECH 67
                                                                                                                        316
                                                                                                                         57
               EXPERIMENTAL DEVELOPMENT OF NUTRITIVE MEDIA FOR MICRO-ORGANISMS
                                                                                                               BIOKA68
         APPROXIMATIONS TO THE MOMENTS OF THE SAMPLE MEDIAN
                                                                                                                AMS 62
                                                                                                                        157
   QUERY, COMPLETED RUNS OF LENGTH K ABOVE AND BELOW MEDIAN AND DISTRIBUTION-FREE CONFIDENCE INTERVALS FOR A MEDIAN
                                                                                                               TECH 67
                                                                                          STRATIFIED SAMPLING JASA 65
   I. ITS CURVE-SHAPE CHARACTERISTICS II. THE SAMPLE MEDIAN ON A GENERAL SYSTEM OF DISTRIBUTION OF THE MEDIAN AND A U-STATISTIC PROPERTIES OF THE MEDIAN AND OTHER STATISTICS OF LOGISTIC VARIATES
                                                                       ON A GENERAL SYSTEM OF DISTRIBUTIONS, JASA 68
                                                                                                                        627
                                                                                                              JRSSB57
                                                                                                                        144
                                                                                                                AMS 65 1779
                    THE 'INEFFICIENCY' OF THE SAMPLE MEDIAN FOR MANY FAMILIAR SYMMETRIC DISTRIBUTIONS
                                                                                                               BIOKA55
                                                                                                                        520
ST AND DISTRIBUTION-FREE CONFIDENCE INTERVALS OF THE MEDIAN FOR SAMPLE SIZES TO 1.000 /BOTH THE SIGN TE JASA 64
```

TITLE WORD INDEX MEA - MET

```
THE ROBBINS-MONRO METHOD FOR ESTIMATING THE MEDIAN LETHAL DOSE
                                                                                                             JRSSB65
                                     VARIANCE OF THE MEDIAN OF SAMPLES FROM A CAUCHY DISTRIBUTION JASA 60 322
VARIANCE OF THE MEDIAN OF SMALL SAMPLES FROM SEVERAL SPECIAL POPULATI JASA 60 148
ONS
                                  SOME NONPARAMETRIC MEDIAN PROCEDURES
                                                                                                               AMS 61
                                                                                                                       846
          A TEST OF LINEARITY VERSUS CONVEXITY OF A MEDIAN REGRESSION CURVE
                                                                                                               AMS 62 1096
MEASURES OF TEST EFFICIENCY
                                                  THE MEDIAN SIGNIFICANCE LEVEL AND OTHER SMALL SAMPLE
                                                                                                             JASA 69
                                                                                                                      971
     MEDIAN TEST. A TWO-SIDED VERSION OF THE CONTROL MEDIAN TEST
                                                                                                  THE FIRST- JASA 68
                                                                                                                      692
                                                    A MEDIAN TEST WITH SEQUENTIAL APPLICATION
                                                                                                             BIOKA63
                                                                                                                        55
                    CONFIDENCE SETS FOR MULTIVARIATE MEDIANS
                                                                                                              AMS 61
                                                                                                                       477
                                       QUANTILES AND MEDIANS
                                                                                                               AMS 65
                                                                                                                       921
                                                   ON MEDIANS AND QUASI-MEDIANS
                                                                                                              JASA 67
                                                                                                                      926
  SCREENING AND DISCRIMINANT FUNCTION TECHNIQUES IN MEDICAL TAXONOMY
                                                                                 A COMPARISON OF SUCCESSIVE BIOCS69 NO.4
                   A MODEL FOR SELECTING ONE OF TWO MEDICAL TREATMENTS
                                                                                                             JASA 63 388
                                           SEQUENTIAL MEDICAL TRIALS
                                                                                                             JASA 63
                                                                                                                       365
PAPER
                                           SEQUENTIAL MEDICAL TRIALS, SOME COMMENTS ON F. J. ANSCOMBE'S
                                                                                                             JASA 63
                                                                                                                       384
             WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ: CHANGES IN CENSUS MET JASA 69 NO.4
HODS
             WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. COMMENTS
                                                                                                             JASA 69 NO.4
             WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. ON WILLIAM HURWITZ
                                                                                                             JASA 69 NO.4
HURWITZ
             WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. PROFESSOR WILLIAM N
                                                                                                             JASA 69 NO.4
 OF STATI/
             WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. SOME BASIC PRINCIPLES JASA 69 NO.4
             WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. THE DEVELOPMENT OF HO JASA 69 NO.4
USEHOLD S/
STATISTICS
                                SOME APPLICATIONS OF MEIJER-G FUNCTIONS TO DISTRIBUTION PROBLEMS IN
                                                                                                             BIOKA58 578
 APPLICATIONS
                                  ON THE GENERALIZED MELLIN TRANSFORM OF A COMPLEX RANDOM VARIABLE AND ITS AMS 65 1459
 THE ESTIMATION OF POPULATION PARAMETERS FROM MARKED MEMBERS
                                                                                                          ON BIOKASS 269
               THE DIFFERENCE BETWEEN CONSECUTIVE MEMBERS OF A SERIES OF RANDOM VARIABLES ARRANGED IN O BIOKA57
RDER OF SIZE
                                                                                                                       211
                                                                                              COMPUTERS, THE BIOCS66
   SECOND REVOLUTION IN STATISTICS (THE FIRST FISHER MEMORIAL LECTURE)
                      WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. CHANGES IN JASA 69 NO.4
CENSUS METHODS
                      WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. COMMENTS
                                                                                                             JASA 69 NO.4
                      WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. ON WILLIAM
HURWITZ
                                                                                                             JASA 69 NO.4
LLIAM N. HURWITZ
                      WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. PROFESSOR WI JASA 69 NO.4
RINCIPLES OF STATI/
                      WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. SOME BASIC P JASA 69 NO.4
ENT OF HOUSEHOLD S/
                      WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ.
                                                                                                THE DEVELOPM JASA 69 NO.4
                                                      MEMORIAL TO SIR RONALD AYLMER FISHER, 1890-1962
                                                                                                            JASA 62 727
                      HYPOTHESIS TESTING WITH FINITE MEMORY
                                                                                                               AMS 69
                                                                                                                      828
ROBBINS-ISBELL TWO-ARMED-BANDIT PROBLEM WITH FINITE MEMORY
                                                                                                        THE AMS 65 1375
          RULES FOR THE TWO-ARMED BANDIT WITH FINITE MEMORY
                                                                                                  RANDOMIZED
                                                                                                               AMS 68 2103
   BOUNDS ON THE PROBABILITY OF ERROR FOR A DISCRETE MEMORYLESS CHANNEL
                                                                                                 EXPONENTIAL
                                                                                                               AMS 61 577
                                           A NOTE ON MEMORYLESS RULES FOR CONTROLLING SEQUENTIAL CONTROL
                                                                                                               AMS 66
PROCESSES
                                                                                                                       276
                                                      MEMORYLESS STRATEGIES IN FINITE-STAGE DYNAMIC
                                                                                                               AMS 64
PROXIMATION TO MACHINE INTERFERENCE WITH MANY REPAIR MEN
                                                                                                             JRSSB57
                                                                                                                       334
                                                    A MENDELIAN MARKOV PROCESS WITH BINOMIAL TRANSITION
PROBABILITIES
                                                                                                             BIOKA66
                                                                                                                        37
 TOPICS, CORR, 65 1249
                                     A SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTINC AND RELATED JASA 64 1231
                                          PROBLEMS IN MENTAL TEST THEORY ARISING FROM ERRORS OF MEASUREMENT JASA 59
                                                      MERGING OF OPINIONS WITH INCREASING INFORMATION
                                                                                                               AMS 62
     SELECTION INDICES FOR QUADRATIC MODELS OF TOTAL MERIT
                                                                                                              BIOCS68
                                                                                                                     937
  THE ROLE OF SIGNIFICANCE TESTING, SOME DATA WITH A MESSAGE
                                                                                                             BIOKA69 NO.3
               EXPECTED UTILITY FOR QUEUES SERVICING MESSAGES WITH EXPONENTIALLY DECAYING UTILITY
                                                                                                              AMS 61 587
       A NOTE ON MATRIX INVERSION BY THE SQUARE ROOT METHOD
                                                                                                              JASA 56
                                                                                                                       288
                     A STUDY OF THE GROUP SCREENING METHOD
                                                                                                              TECH 61 371
               MATRIX INVERSION WITH THE SQUARE ROOT METHOD
                                                                                                              TECH 64
                                                                                                                      197
                  A DYNAMIC STOCHASTIC APPROXIMATION METHOD
                                                                                                               AMS 65 1695
                         SEQUENTIAL ANALYSIS, DIRECT METHOD
                                                                                                              TECH 68
                                                                                                                      125
             MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD
                                                                                                              BIOKA53
                                                                                                                       383
                                     THE ANGLE-COUNT METHOD
                                                                                                              BIOKA67
                                                                                                                       615
                  ON THE CONSISTENCY OF THE FIDUCIAL METHOD
                                                                                                              JRSSB62
                                                                                                                      425
 OF SURVIVORSHIP IN CHRONIC DISEASE, THE 'ACTUARIAL' METHOD
                                                                                                  ESTIMATION JASA 58
                                                                                                                       420
  STUDY OF ESTIMATORS FOR THE LINE TRANSECT SAMPLING METHOD
                                                                                                  SIMULATION BIOCS69 317
MULTIVARIATE REGRESSION, EFFICIENCY OF A FIRST ORDER METHOD
                                                                                   MISSING OBSERVATIONS IN
                                                                                                             JASA 69 NO.4
OLVED IN ESTIMATING BACTERIAL NUMBERS BY THE PLATING METHOD
                                                                          NOTES. ON THE DILUTION ERRORS INV BIOCS67
                                                                                                                      158
OGISTIC FUNCTION, USING THE MINIMUM LOGIT CHI-SQUARE METHOD
                                                               /N THE ESTIMATION OF THE PARAMETERS OF THE L BIOKA62
                                                                                                                       250
IAL FREQUENCY FUNCTIONS IN CURVE FITTING BY AITKEN'S METHOD
                                                               /YNOMIALS OF THE POSITIVE AND NEGATIVE BINOM BIOKA61
                                                                                                                       115
                                                                              /F SOME CONTAGIOUS DISTRIBUTI BIOCS65
ONS TO SOME AVAILABLE DATA BY THE MAXIMUM LIKELIHOOD METHOD (CORR. 65 514)
                                                                                                                        34
                      ON ESTIMATION BY THE SWEEP-OUT METHOD (CORR. 69 229)
                                                                                                             BTOKA68
                                                                                                                      305
                       THE MULTIVARIATE SADDLE POINT METHOD AND CHI-SQUARED FOR THE MULTINOMIAL DISTRIBUTI AMS 61
                                                                                                                       535
                                         THE FIDUCIAL METHOD AND INVARIANCE
                                                                                                              BIOKA61
                                                                                                                       261
TESTS
                          THE AVERAGE CRITICAL VALUE METHOD AND THE ASYMPTOTIC RELATIVE EFFICIENCY OF
                                                                                                              BIOKA67
                                                                                                                       308
DATA
                                       THE DOOLITTLE METHOD AND THE FITTING OF POLYNOMIALS TO WEIGHTED
                                                                                                              BIOKA53
                                                                                                                      229
                                   A WIENER-HOPF TYPE METHOD FOR A GENERAL RANDOM WALK WITH A TWO-SIDED
                                                                                                              AMS 63 1168
AL TESTS IN TIME SERIE/ THE AVERAGE CRITICAL VALUE METHOD FOR ADJUDGING RELATIVE EFFICIENCY OF STATISTIC BIOKAG6
                                                                                                                      109
LIKELIHOOD RATIO CRITERIA
                                            A GENERAL METHOD FOR APPROXIMATING TO THE DISTRIBUTION OF
                                                                                                              BIOKA56
                                                                                                                       295
                                               BAYES' METHOD FOR BOOKIES
                                                                                                               AMS 69 1177
PRODUCTS
                                            NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND
                                                                                                             TECH 62 419
DATA
                                           A COMPUTER METHOD FOR CALCULATING KENDALL'S TAU WITH UNGROUPED
                                                                                                             JASA 66 436
                                              A QUICK METHOD FOR CHOOSING A TRANSFORMATION
                                                                                                              TECH 63
                                                                                                                       317
                                                   A METHOD FOR CLUSTER ANALYSIS
                                                                                                              BIOCS65
                                                                                                                      362
              ON THE TWO SAMPLE PROBLEM, A HEURISTIC METHOD FOR CONSTRUCTING TESTS
                                                                                                               AMS 61 1091
EXPERIMENT
                         A NONPARAMETRIC STATISTICAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE
                                                                                                              BIOCS65
                                                                                                                      936
CTIONS USED IN RELIABILITY PREDICTIONS
                                                    A METHOD FOR DISCRIMINATING BETWEEN FAILURE DENSITY FUN TECH 65
M THE RANCE OF THE DEVIATIONS ABOUT THE R/ A RAPID METHOD FOR ESTIMATING THE CORRELATION COEFFICIENT FRO BIOKAS3
QUANTAL DATA, AND ITS RELA/ ADAPTATION OF KARBER'S METHOD FOR ESTIMATING THE EXPONENTIAL PARAMETER FROM
                                                                                                             BIOCS67
                                                                                                                       739
                                   THE ROBBINS-MONRO METHOD FOR ESTIMATING THE MEDIAN LETHAL DOSE
                                                                                                              JRSSB65
                                                                                                                        28
                       AN INVESTIGATION OF HARTLEY'S METHOD FOR FITTING AN EXPONENTIAL CURVE
                                                                                                              BTOKA59
                                                                                                                       281
                          A FURTHER NOTE ON A SIMPLE METHOD FOR FITTING AN EXPONENTIAL CURVE
                                                                                                              BIOKA60
                                                                                                                       177
OF POINTS ACCORDING TO THE C/ A SHORT-CUT GRAPHIC METHOD FOR FITTING THE BEST STRAIGHT LINE TO A SERIES JASA 57
VARIANCE (CORR. 69 229) (CORR. 69 229) A METHOD FOR JUDGING ALL CONTRASTS IN THE ANALYSIS OF BIOKA53
                                                                                                                        1.3
                                                                                                                        87
                                          A GRAPHICAL METHOD FOR MAKING MULTIPLE COMPARISONS OF FREQUENCIES TECH 69
                                                                                                                       321
```

MET - MET TITLE WORD INDEX

```
A USEFUL METHOD FOR MODEL BUILDING
TCS
                      SOME RULES FOR A COMBINATORIAL METHOD FOR MULTIPLE PRODUCTS OF GENERALIZED K-STATIST AMS 68 983
 FORMULAE
                                      A COMBINATORIAL METHOD FOR PRODUCTS OF TWO POLYKAYS WITH SOME GENERAL
                                                                                                               AMS 64 1174
                                        A DEFORMATION METHOD FOR QUADRATIC PROCRAMMING
                                                                                                              JRSSB64 141
                         SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC PROCRAMMING
                                                                                                              JRSSB65
                                                                                                                       166
                                         A RECRESSION METHOD FOR REAL ESTATE PRICE INDEX CONSTRUCTION
                                                                                                              JASA 63
                                                                                                                       933
                                         A SEQUENTIAL METHOD FOR SCREENING EXPERIMENTAL VARIABLES
                                                                                                              JASA 62
                                                                                                                       455
  MULTIVARIATE-COVARIANCE AND CANONICAL ANALYSIS, A METHOD FOR SELECTINC THE MOST EFFECTIVE DISCRIMINATOR BIOCS68
                                      THE UP-AND-DOWN METHOD FOR SMALL SAMPLES
                                                                                                              JASA 65
                                                                                                                       967
                         AN A POSTERIORI PROBABILITY METHOD FOR SOLVINC AN OVERDETERMINED SYSTEM OF EQUATI TECH 66
                                     A SEMI-CRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX PROBLEMS
                                                                                                                       3B7
                                                                                                              TECH 60
                                          A NOTE ON A METHOD FOR THE ANALYSIS OF SICNIFICANCE EN MASSE
A CRAPHICAL METHOD FOR THE ANALYSIS OF STATISTICAL DISTRIBUTIONS
BIOKAS3
                                                                                                                       586
INTO TWO NORMAL COMPONENTS
                                                                                                                       460
 DESIGNS IN K DIMENSIONS
                                                    A METHOD FOR THE CONSTRUCTION OF SECOND ORDER ROTATABLE AMS 67
                                                                                                                       177
                         A METHOD FOR THE FITTING OF NON-LINEAR RECRESSION FUNCT TECH 61
THE MOOIFIED CAUSS-NEWTON METHOD FOR THE FITTING OF NON-LINEAR RECRESSION FUNCT TECH 61

AMS 62
IONS BY LEAST SQUARES
                                                                                                                       269
                                                                                                               AMS 62
VARIOUS PREVENTIVE MAINTENANCE POLICIES A CENERAL METHOD FOR THE RELIABILITY ANALYSIS OF SYSTEMS UNDER
                                                                                                                       137
H SPECIAL REFERENCE TO EQUILIBRIA
                                          A CRAPHICAL METHOD FOR THE STUDY OF COMPLEX GENETICAL SYSTEMS WIT BIOCS69
                                                                                                                      NO.4
      ASYMPTOTIC PROPERTIES OF THE BLOCK UP-AND-DOWN METHOD IN BIO-ASSAY
                                                                                                               AMS 67 1B22
                     THE MULTIPLE SAMPLE UP-AND-DOWN METHOD IN BIOASSAY
                                                                                                              JASA 69
                                                                                                                       147
                       APPLICATIONS OF A NEW CRAPHIC METHOD IN STATISTICAL MEASUREMENT
                                                                                                              JASA 57
                                                                                                                       472
RICHARDS
                                   SOME REMARKS ON A METHOD OF A MAXIMUM-LIKELIHOOD ESTIMATION PROPOSED BY JRSSB63
                                                                                                                       209
                                                    A METHOD OF ADJUSTMENT FOR DEFECTIVE DATA
                                                                                                              JASA 58
                                                                                                                       736
                                  A DISTRIBUTION-FREE METHOD OF ANALYZING A 2 TO THE M FACTORIAL EXPERIMENT SASJ 68
                                                                                                                       101
IVE BINOMIAL AND OTHER CONTACIOUS DISTRIBUTIONS A METHOD OF ANALYSING UNTRANSFORMED DATA FROM THE NECAT BIOKAGB
                                                                                                                       163
                                     AN APPROXIMATE METHOD OF ANALYSIS FOR A TWO-WAY LAYOUT
                                                                                                              BIOCS65
                                                                                                                       376
                                        A SUCCESTED METHOD OF ANALYSIS OF A CERTAIN CLASS OF EXPERIMENTS
IN CARCINOCENESIS
                                                                                                              BIOCS66
 DATA WITH INCOMPLETE FOLLOW-UP
                                                    A METHOD OF ANALYZINC LOC-NORMALLY DISTRIBUTED SURVIVAL JASA 60
                                                                                                                       534
COMBINATIONS OF VARIANCES
                                                    A METHOD OF ASSICNING CONFIDENCE LIMITS TO LINEAR
                                                                                                              BIOKA55
                                                                                                                       471
          A NOTE ON THE APPLICATION OF QUENOUILLE'S METHOD OF BIAS REDUCTION TO THE ESTIMATION OF RATIOS BIOKAS9
                                                                                                                       477
 CONTINGENCY TABLES WITH SMALL MARCINAL/ A SIMPLE METHOD OF CALCULATING THE EXACT PROBABILITY IN 2-BY-2 BIOKA55
                                                                                                                       522
                                             ON A NEW METHOD OF CAPACITY ESTIMATION
                                                                                                              JASA 64
                                                                                                                       529
                          PROCRAMMING FISHER'S EXACT METHOD OF COMPARING TWO PERCENTACES
                                                                                                              TECH 60
                                                                                                                       103
HE SINGLE POPULATION BASED ON TWO SUCCESSIVE CENS/

A METHOD OF CONSTRUCTING BALANCED INCOMPLETE DESIGNS. BIOKA65 285

METHOD OF CONSTRUCTION OF ATTRITION LIFE TABLES FOR T JASA 67 1433
WITH TWO ASSOCIATE CLASSES
                                    ON A CEOMETRICAL METHOD OF CONSTRUCTION OF PARTIALLY BALANCED DESIGNS
                                                                                                               AMS 61 1177
                                      A REPRODUCIBLE METHOD OF COUNTING PERSONS OF SPANISH SURNAME
                                                                                                              JASA 61
                                                                                                                       88
HE SAMPLE SPACE IN TESTS OF AN IMPORTANT/ A SIMPLE METHOD OF DERIVING BEST CRITICAL RECIONS SIMILAR TO T BIOKA53
                                                                                                                       231
                                           A CENERAL METHOD OF DETERMINING FIXED-WIDTH CONFIDENCE
                                                                                                               AMS 69 704
ETE TIME MARKOV PROCESS
                                     ON THE ITERATIVE METHOD OF DYNAMIC PROCRAMMING ON A FINITE SPACE DISCR
                                                                                                               AMS 65 1279
                              ON A DISTRIBUTION-FREE METHOD OF ESTIMATING ASYMPTOTIC EFFICIENCY OF A CLASS
 OF NONPARAMETRIC TESTS
                                                                                                               AMS 66 1759
                                                 ON A METHOD OF ESTIMATING BIOLOGICAL POPULATIONS IN THE
                                                                                                              BIOKA53
                                        LINE TRANSECT METHOD OF ESTIMATING CROUSE POPULATION DENSITIES
                                                                                                              BIOCS6B
                 A NOTE ON THE CENSUS SURVIVAL RATIO METHOD OF ESTIMATING NET MICRATION
                                                                                                              JASA 62
                                            A SIMPLE METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO
                                                                                                              BIOCS65
                                         AN EFFICIENT METHOD OF ESTIMATING SEEMINGLY UNRELATED RECRESSIONS
ANO TESTS FOR ACCRECATION BIAS
                                                                                                              JASA 62
                                                    A METHOD OF ESTIMATING THE INTERCENSAL POPULATION OF
                                                                                                              JASA 56
COUNTIES
                                                                                                                       587
                                SOME PROPERTIES OF A METHOD OF ESTIMATING THE SIZE OF MOBILE ANIMAL
POPULATIONS
                                                                                                              BIOKA69
                                                                                                                       407
                                              A QUICK METHOD OF ESTIMATING THE STANDARD DEVIATION
             ON THE CHOICE OF A STRATECY FOR A RATIO METHOD OF ESTIMATION
                                                                                                              JRSSB67
                                                                                                                       392
        ESTIMATION OF QUANTAL RESPONSE CURVES, A NEW METHOD OF ESTIMATION
E DATA SUITABLE FOR USE WITH AN ELECTRONIC COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN MULTIVARIAT JRSSB60
                                                                                                                       302
A SIMPLE APPROACH TO THE BAYES CHOICE CRITERION, THE METHOD OF EXTREME PROBABILITIES
                                                                                                              JASA 64 1227
                                        A SYSTEMATIC METHOD OF FINDING DEFINING CONTRASTS
                                                                                                              JASA 57
SINGLE NON-LINEARITY
                                              NOTE. A METHOD OF FITTING A NON-LINEAR CURVE CONTAINING A
                                                                                                              BIOCS65
                                                                                                                       506
NOTE ON THE ESTIMATION OF VARIANCE COMPONENTS BY THE METHOD OF FITTING CONSTANTS
                                                                                                             BIOKA69 NO.3
                                                    A METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND TECH 69
                                                    A METHOD OF FITTING THE RECRESSION CURVE E(Y)=A+DX+BC-
                                                                                                                        59
A CENERAL CLASS OF SERVICE-TIME DISTRIBUTIONS BY THE METHOD OF CENERATINC FUNCTIONS / CHANNEL QUEUE WITH JRSSB58
EXACT (PI)PS SAMPLING SCHEME, A GENERALIZATION OF A METHOD OF HANURAV
                                                                                                             JRSSB68
                                                                                                                       556
                                               ON THE METHOD OF INCLUSION AND EXCLUSION
                                                                                                              JASA 67
               APPLICATION OF GREENBERG AND SARHAN'S METHOD OF INVERSION OF PARTITIONED MATRICES IN THE AN JASA 65
                                                                                                                      1200
 THE INVESTIGATION OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST SQUARES (WITH DISCUSSION) TOPICS IN JRSSB67
                                 MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION
                                                                                                              TECH 62
                       ERRATA, 'MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION '
                                                                                                              TECH 62
                                                                                                                       622
BREEDING COEFFICIENT FROM PHENOTYPE FREQUENCIES BY A METHOD OF MAXIMUM LIKELIHOOD SCORING
                                                                                              /ION OF THE IN BIOCS68
                                                                                                                       915
                                                    A METHOD OF MAXIMUM-LIKELIHOOD ESTIMATION
                                                                                                             JRSSB61
                                                                                                                       469
                                   EFFICIENCY OF THE METHOD OF MOMENTS AND THE CRAM-CHARLIER TYPE A
                                                                                                                        58
DISTRIBUTION
                                                                                                              BIOKA51
                                                  THE METHOD OF MOMENTS APPLIED TO A MIXTURE OF TWO
EXPONENTIAL DISTRIBUTIONS
                                                                                                               AMS 61
                                                                                                                       143
TRUNCATED BINOMIAL AN/ THE ASYMPTOTIC VARIANCES OF METHOD OF MOMENTS ESTIMATES OF THE PARAMETERS OF THE
                                                                                                                       990
                                                                                                              JASA 61
    NOTES. EQUIVALENCE OF MAXIMUM LIKELIHOOD AND THE METHOD OF MOMENTS IN PROBIT ANALYSIS
                                                                                                              BIOCS67
                                                                                                                       154
                                                                                                              JRSSB68
               ASYMPTOTICALLY EFFICIENT TESTS BY THE METHOD OF N RANKINGS
                                                                                                                       312
ABILITY OF MISCLASSIFICATION I/ AN ALMOST UNBIASED METHOD OF OBTAINING CONFIDENCE INTERVALS FOR THE PROB BIOCS67
                                                                                                                       639
RS IN EXPONENTIAL CURVE FITTING
                                                    A METHOD OF OBTAINING INITIAL ESTIMATES OF THE PARAMETE BIOCS69
                                                                                                                       580
POWER OF RANK TESTS
                                        AN ELEMENTARY METHOD OF OBTAINING LOWER BOUNDS ON THE ASYMPTOTIC
                                                                                                               AMS 68
                                                                                                                      2128
                         ON A CORRECTION TERM IN THE METHOD OF PAIRED COMPARISONS
                                                                                                              BIOKA52
                                                                                                                       211
OMPLETE BLOCK DESIGNS. II. ADDITIONAL TABLES FOR THE METHOD OF PAIRED COMPARISONS
                                                                                        RANK ANALYSIS OF INC BIOKA54
E LARCE-SAMPLE RESULTS ON ESTIMATION AND POWER FOR A METHOD OF PAIRED COMPARISONS
                                                                                     /OCK DESIGNS. III. SOM BIOKA55
                                                                                                                       450
   RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. I. THE METHOD OF PAIRED COMPARISONS.
                                                                                                                       324
                                                                                                             BIOKA52
OMPLETE BLOCK DESIGNS. II. ADDITIONAL TABLES FOR THE METHOD OF PAIRED COMPARISONS.
                                                                                        /ANK ANALYSIS OF INC BIOKA64
                                                                                                                       288
                                            A SIMPLE METHOD OF RESOLUTION OF A DISTRIBUTION INTO GAUSSIAN BIOCS67
                                                                                                                       115
COMPONENTS
PROPORTIONAL TO SIZE
                                                    A METHOD OF SAMPLING WITH PROBABILITY EXACTLY
                                                                                                              JRSSB54
TY PROPORTIONAL TO SIZE
                                  A NOTE ON FELLEGI'S METHOD OF SAMPLING WITHOUT REPLACEMENT WITH PROBABILI JASA 67
ERCEOMETRIC, BINOMIAL, POISSON, AND EXPONENTIAL/
                                                    A METHOD OF SEQUENTIAL ESTIMATION APPLICABLE TO THE HYP
                                                                                                              AMS 65 1494
CLE SERVER AND CONSTANT PARAMETERS AN ELEMENTARY METHOD OF SOLUTION OF THE QUEUEINC PROBLEM WITH A SIN JRSSB56 125
                                   A PROPERTY OF THE METHOD OF STEEPEST ASCENT
                                                                                                               AMS 64
                                                                                                                       435
                                                    A METHOD OF SYSTEMATIC SAMPLING BASED ON ORDER
PROPERTIES
                                                                                                              BIOKA53
                                                                                                                      452
```

TITLE WORD INDEX MET - MET

```
DOSE TRIALS
                                          A SEQUENTIAL METHOD OF TESTING THE LINEAR TRENDS OF RESPONSES IN
                                                                                                               BIOCS68
                   SOME EXAMPLES OF BAYES' METHOD OF THE EXPERIMENTAL DETERMINATION OF PROBABILI JRSSB62
TIES A PRIORI
                                                                                                                          118
                                              A SIMPLE METHOD OF TREND CONSTRUCTION
                                                                                                                 JRSSB61
                                                                                                                           91
                                                  ON A METHOD OF USING MULTI-AUXILIARY INFORMATION IN SAMPLE JASA 65
SURVEYS
                               THE TRENTILE DEVIATION METHOD OF WEATHER FORECAST EVALUATION
                                                                                                                JASA 58
                                                                                                                          398
                                                     A METHOD TO DETERMINE THE RELIABILITY OF TELEMETRY
                                                                                                                 JASA 62
                                                                                                                          686
SYSTEMS REPORTS
          APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESSION PROBLEMS
                                                                                                                 TECH 68
                                                                                                                          843
      A NOTE ON ESTIMATION OF RATIOS BY QUENOUILLE'S METHOD.
                                                                                                                 BIOKA65
                                                                                                                          647
ING U STATISTICS AND A RELATIONSHIP TO THE JACKKNIFE METHOD.
                                                                         NOTES. ASSUMPTION-FREE ESTIMATORS US BIOCS67
                                                                                                                          567
FROM DATA OBTAINED BY MEANS OF THE CAPTURE-RECAPTURE METHOD. I. THE MAXIMUM LIKELIHOOD EQUATIONS FOR ESTIM BIOKAS1
                                                                                                                          269
FROM DATA OBTAINED BY MEANS OF THE CAPTURE-RECAPTURE METHOD. I.I. THE ESTIMATION OF TOTAL NUMBERS /ETERS BIOKA52
FROM DATA OBTAINED BY MEANS OF THE CAPTURE-RECAPTURE METHOD. III. AN EXAMPLE OF THE PRACTICAL APPLICATIONS BIOKA53
                                                                                                                          363
      THE LOGNORMAL DISTRIBUTION AND THE TRANSLATION METHOD, DESCRIPTION AND ESTIMATION PROBLEMS, CORR. 63 JASA 63
LOCATION OFTIMAL ROBUSTNESS. A GENERAL METHOD, WITH APPLICATIONS TO LINEAR ESTIMATORS OF
G.S. WATSON'S PAPER 'A STUDY OF THE GROUP SCREENING METHOD'
                                                                                                                 JASA 67 1230
                                                                                                      A NOTE ON TECH 65
IAL FREQUENCY FUNCTIONS IN CURVE FITTING BY AITKEN'S METHOD'
                                                                  /POLYNOMIALS OF POSITIVE AND NEGATIVE BINOM BIOKA61
RVIE DE MICROORGANISMES IRRADIES ESTIMATION PAR LA METHODE DU MAXIMUM DE VRAISEMBLANCE DES COURBES DE SU BIOCS66
                                                                                                                          673
                                                  SOME METHODOLOGICAL NOTES ON THE DEFLATION OF CONSTRUCTION JASA 59
                                                                                                                          535
                THE QUANTIFICATION OF JUDGMENT. SOME METHODOLOGICAL SUGGESTIONS
                                                                                                                 JASA 67 1105
R. A. FISHER AND THE LAST FIFTY YEARS OF STATISTICAL METHODOLOGY
                                                                                                                 JASA 65
                                                                                                                         395
                         A REVIEW OF RESPONSE SURFACE METHODOLOGY. A LITERATURE SURVEY
                                                                                                                 TECH 66
                                                                                                                          571
         SEASONAL ADJUSTMENTS BY ELECTRONIC COMPUTER METHODS
                                                                                                                 JASA 57
                                                                                                                          415
         RECENT ADVANCES IN SAMPLE SURVEY THEORY AND METHODS
                                                                                                                  AMS 62 325
            MULTIVARIATE THEORY FOR GENERAL STEPWISE METHODS
                                                                                                                  AMS 63
                                                                                                                          873
                      A REMARK ON MULTIPLE COMPARISON METHODS
                                                                                                                 TECH 65
                                                                                                                          223
              COMPARISONS OF SOME TWO STAGE SAMPLING METHODS
                                                                                                                  AMS 66
                                                                                                                          891
ON THE CHOICE OF DESIGN IN STOCHASTIC APPROXIMATION METHODS
                                                                                                                  AMS 6B
                                                                                                                          457
               ASYMPTOTIC NORMALITY IN NONPARAMETRIC METHODS
                                                                                                                  AMS 6B
                                                                                                                          905
                       A COMPARISON OF TWO LIFE TABLE METHODS
                                                                                                                 BTOCS67
                                                                                                                           51
OXIMATIONS TO THE CENSUS AND BLS SEASONAL ADJUSTMENT METHODS
                                                                                                    LINEAR APPR JASA 6B
 EXPONENTIALLY WEIGHTED MOVING AVERAGES AND RELATED METHODS
                                                                                                  PREDICTION BY JRSSB61
                                                                                                                          414
BABILITY DENSITIES AND CUMULATIVES BY FOURIER SERIES METHODS
                                                                                         THE ESTIMATION OF PRO JASA 68
STIMATING THE DISTRIBUTION OF A RATIO BY MONTE CARLO METHODS
                                                                            USE OF WILCOXON TEST THEORY IN E AMS 62 1194
ROPERTIES OF CERTAIN BIOLOGICAL SYSTEMS BY NUMERICAL METHODS
                                                                        A STOCHASTIC MODEL FOR STUDYING THE P BIOKA58
                                                                                                                           16
   MEETING FOR WILLIAM N. HURWITZ. CHANGES IN CENSUS METHODS
                                                                     WASHINGTON STATISTICAL SOCIETY MEMORIAL JASA 69 NO.4
                                           STATISTICAL METHODS AND SCIENTIFIC INDUCTION
                                                                                                                JRSSB55
                                                                                                                           69
                                                                                                                          720
                                               RANKING METHODS AND THE MEASUREMENT OF ATTITUDES
                                                                                                                 JASA 58
 SOME CONTRIBUTIONS TO THE AVERAGE RANK CORRELATION METHODS AND TO THE DISTRIBUTION OF THE AVERAGE RANK C JASA 63
                                                                                                                          756
                                               GRAPHIC METHODS BASED UPON PROPERTIES OF ADVANCING CENTROIDS JASA 59
DISCUSSION)
                                     SOME STATISTICAL METHODS CONNECTED WITH SERIES OF EVENTS (WITH
                                                                                                                 JRSSB55
                                                                                                                          129
                    THE USE OF NON-LINEAR REGRESSION METHODS FOR ANALYSING SENSITIVITY AND QUANTAL RESPONS BIOCS67
                                                                                                                          563
CONTINGENCY TABLES
                                                SIMPLE METHODS FOR ANALYZING THREE-FACTOR INTERACTION IN
                                                                                                                JASA 64
                                                                                                                          319
TORIAL EXPERIMENTS WITH APPLICATIONS
                                            SYSTEMATIC METHODS FOR ANALYZING 2-TO-THE-N-TIMES-3-TO-THE-M FAC TECH 67
                                                                                                                          245
                                             INDUCTIVE METHODS FOR BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                                  AMS 66 134B
ARISON OF TWO MEANS, FURTHER DISCUSSION OF ITERATIVE METHODS FOR CALCULATING TABLES ON THE COMP BIOKA54 361
THE ANALYSIS OF VARIANCE RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMENTS IN AMS 62 482
                                                 RAPID METHODS FOR ESTIMATING CORRELATION COEFFICIENTS
                                                                                                                BIOKA51
                                                                                                                          464
                                                       METHODS FOR ESTIMATING THE COMPOSITION OF A THREE
COMPONENT LIQUID MIXTURE
                                                                                                                 TECH 64
                                                                                                                          343
                                               FOURIER METHODS FOR EVOLVING SEASONAL PATTERNS
DIRECT METHODS FOR EXACT TRUNCATED SEQUENTIAL TESTS OF THE
                                                                                                                 JASA 65
                                                                                                                         492
MEAN OF A NORMAL DISTRIBUTION
                                                                                                                 TECH 69 NO.4
                                    THE DERIVATION OF METHODS FOR FITTING EXPONENTIAL REGRESSION CURVES
                                                                                                                 BIOKA64 504
EXPERIMENTS
                                            GRAPHICAL METHODS FOR INTERNAL COMPARISONS IN MULTIRESPONSE
                                                                                                                 AMS 64
                                                                                                                          613
                                        QUICK ANALYSIS METHODS FOR RANDOM BALANCE SCREENING EXPERIMENTS
                                                                                                                 TECH 59 195
                                 ON MULTIPLE DECISION METHODS FOR RANKING POPULATION MEANS
                                                                                                                  AMS 62
                                                                                                                          24B
                                                  NEW METHODS FOR REASONING TOWARDS POSTERIOR DISTRIBUTIONS AMS 66
BASED ON SAMPLE DATA
                                                                                                                          355
                                      QUALITY CONTROL METHODS FOR SEVERAL RELATED VARIABLES
                                                                                                                 TECH 59
                                                                                                                          359
                                 PROBABILITY PLOTTING METHODS FOR THE ANALYSIS OF DATA
                                                                                                                 BIOKA68
                                           STATISTICAL METHODS FOR THE MOVER-STAYER MODEL
                                                                                                                 JASA 61
                                                                                                                          B41
                         CORRECTIONS TO 'SADDLE POINT METHODS FOR THE MULTINOMIAL DISTRIBUTIONS' 57 861
                                                                                                                  AMS 61
                                                                                                                          619
                                                                                                                          1B9
                                 A NOTE ON REGRESSION METHODS IN CALIBRATION
                                                                                                                 TECH 69
         SOME FURTHER APPLICATIONS OF NON-PARAMETRIC METHODS IN DILUTION (-DIRECT) ASSAYS
                                                                                                                 BIOCS65
                                                                                                                          799
                                                                                                                          439
                    SIMULTANEOUS TESTS BY SEQUENTIAL METHODS IN HIERARCHICAL CLASSIFICATIONS
                                                                                                                 BIOKA64
                                       STATISTICAL METHODS IN MARKOV CHAINS, CORR. 61 1343
APPLICATION OF METHODS IN SEQUENTIAL ANALYSIS TO DAM THEORY
                                                                                                                  AMS 61
                                                                                                                           12
                                                                                                                  AMS 63 1588
LL-SAMPLE PROPERTIES OF SEVERAL TWO-STAGE REGRESSION METHODS IN THE CONTEXT OF AUTOCORRELATED ERRORS
                                                                                                            SMA JASA 69
                                                                                                                          253
   GRAPHICAL PROCEDURES FOR USING DISTRIBUTION-FREE METHODS IN THE ESTIMATION OF RELATIVE POTENCY IN DILU BIOCSEG
                                                                                                                          610
SPACED OBSERVATIONS
                                              GROUPING METHODS IN THE FITTING OF POLYNOMIALS TO EQUALLY GROUPING METHODS IN THE FITTING OF POLYNOMIALS TO UNEQUALLY
                                                                                                                 BIOKA54
                                                                                                                           62
SPACED OBSERVATIONS
                                                                                                                 BTOKA56
                                                                                                                          149
                                               FOURIER METHODS IN THE STUDY OF VARIANCE FLUCTUATIONS IN TIME TECH 69
 SERIES ANALYSIS
   DISTRIBUTIONS, POISSON LIMITING FORMS AND DERIVED METHODS OF APPROXIMATION
                                                                                                  THE MATCHING JRSSB58
                                                                                                                           73
                                                    ON METHODS OF ASYMPTOTIC APPROXIMATION FOR MULTIVARIATE BIOKA67
DISTRIBUTIONS
                                                                                                                          367
                                                ON TWO METHODS OF BIAS REDUCTION IN THE ESTIMATION OF RATIOS BIOKA66
                                                                                                                          571
                     CLASSICAL AND INVERSE REGRESSION METHODS OF CALIBRATION
                                                                                                                 TECH 67
                                                                                                                          425
                     CLASSICAL AND INVERSE REGRESSION METHODS OF CALIBRATION IN EXTRAPOLATION
                                                                                                                 TECH 69
                                                                                                                          605
                                 A COMPARISON OF SOME METHODS OF CLUSTER ANALYSIS
                                                                                                                 BIOCS67
                                                                                                                          623
ENT FOR CLUSTERS OF UNEQUAL SIZES
                                                       METHODS OF CLUSTER SAMPLING WITH AND WITHOUT REPLACEM BIOKA62
                                                                                                                           27
  THE USE OF THE HANKEL TRANSFORM IN STATISTICS. II. METHODS OF COMPUTATION
                                                                                                                 BIOKA54
                                                                                                                          344
                            NOTES. EQUIVALENCE OF TWO METHODS OF COMPUTING DISCRIMINANT FUNCTION COEFFICIEN BIOCS67
                                                                                                                          153
                                                  SOME METHODS OF CONSTRUCTING EXACT TESTS
                                                                                                                 BIOKA61
                                                                                                                           41
                                    CORRECTION, 'SOME METHODS OF CONSTRUCTING EXACT TESTS.'
                                                                                                                 BIOKA66
                                                                                                                          629
LATIN SQUARES USING A COMPUTER
                                                    ON METHODS OF CONSTRUCTING SETS OF MUTUALLY ORTHOGONAL
                                                                                                                 TECH 60
                                                                                                                          507
LATIN SQUARES USING A COMPUTER. II
                                                    ON METHODS OF CONSTRUCTING SETS OF MUTUALLY ORTHOGONAL
                                                                                                                 TECH 61
                                                                                                                          111
BALANCED SEQUENCES
                                                        METHODS OF CONSTRUCTION AND ANALYSIS OF SERIALLY
                                                                                                                 JRSSB57
                                                                                                                          2B6
ATION OF HETEROGENEITY, I
                                                  SOME METHODS OF CONSTRUCTION OF DESIGNS FOR TWO-WAY ELIMIN JASA 66 1153
                                               ON SOME METHODS OF CONSTRUCTION OF PARTIALLY BALANCED ARRAYS
                                                                                                                 AMS 61 1181
                 THE FOLDED NORMAL DISTRIBUTION. TWO METHODS OF ESTIMATING PARAMETERS FROM MOMENTS
                                                                                                                 TECH 61 551
```

MET - MIX TITLE WORD INDEX

```
SIVE SCHEMES
                        COMPARATIVE EFFICIENCIES OF METHODS OF ESTIMATINC PARAMETERS IN LINEAR AUTORECRES BIOKA61
HETEROCENEOUS POPULATIONS
                                               SOME METHODS OF ESTIMATING THE PARAMETERS OF DISCRETE
                                                                                                          JRSSR56
                                                                                                                    222
                        ANOTHER LOOK AT HENDERSON'S METHODS OF ESTIMATING VARIANCE COMPONENTS (WITH DISCU BIOCS6B
SSION
                                                                                                                    749
                              EFFICIENCY OF CERTAIN METHODS OF ESTIMATION FOR THE NEGATIVE BINOMIAL AND N BIOKA62
EYMAN TYPE A DISTRIBUTIONS
                                                                                                                    215
                                                    METHODS OF ESTIMATION INVOLVING DISCOUNTING
                                                                                                          JRSSB67
                                                                                                                    355
ARTIAL DIALLEL TEST CROSSING 2. AN EVALUATION OF TWO METHODS OF ESTIMATION OF GENETIC AND ENVIRONMENTAL VA BIOCS67
                                                                                                                    325
                   A NOTE ON THE EQUIVALENCE OF TWO METHODS OF FITTING A STRAIGHT LINE THROUGH CUMULATIVE JASA 64
DATA
                                                                                                                    863
SMALL SAMPLES
                                SOME COMPARISONS OF METHODS OF FITTING THE DOSACE RESPONSE CURVE FOR
                                                                                                          JASA 64
                                                                                                                    779
                                         SIMPLIFIED METHODS OF FITTING THE TRUNCATED NEGATIVE BINOMIAL
DISTRIBUTION
                                                                                                           BIOKA5B
                                                                                                                    59
 FOR SYSTEM RELIABILITY
                                  COMPARISON OF TWO METHODS OF OBTAINING APPROXIMATE CONFIDENCE INTERVALS TECH 68
                                                                                                                    37
                                               SOME METHODS OF PROBABILITY NON-REPLACEMENT SAMPLING
                                                                                                          JASA 69
                                                                                                                    175
ILITIES PROPORTIONAL TO SIZE WHEN THE SIZ/
                                            SEVERAL METHODS OF RE-DESIGNING AREA SAMPLES UTILIZING PROBAB JASA 68 1280
INBREEDING COEFFICIENT AND RATE OF CENE LOSS OF FOUR METHODS OF REPRODUCING FINITE DIPLOID POPULATIONS / BIOCS65
                                                                                                                    447
                                             ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY
                                                                                                           JASA 62
                                                                                                                    184
 SOME DISTANCE PROPERTIES OF LATENT ROOT AND VECTOR METHODS USED IN MULTIVARIATE ANALYSIS
                                                                                                           BTOKA66
                                                                                                                    325
              TESTS OF RANDOMNESS BASED ON DISTANCE METHODS.
                                                                                                           BIOKA65
                                                                                                                    345
    THE SERVICE LIFE OF HOUSEHOLD GOODS BY ACTUARIAL METHODS, CORR. 57 578
                                                                                               ESTIMATING JASA 57
                                                                                                                    175
        TESTS AND CONFIDENCE INTERVALS BASED ON THE METRIC D2
                                                                                                            AMS 63
                                                                                                                    618
  THE DIFFERENCE BETWEEN THE LEVY AND LEVY-PROKHOROV METRICS
                                                                                             AN EXAMPLE OF
                                                                                                            AMS 69
                                                                                                                    322
STANDARD METROPOLITAN AREAS
                                                THE METROPOLITAN AREA CONCEPT, AN EVALUATION OF THE 1950 JASA 65
                                                                                                                    617
      THE MIGRATION OF EMPLOYED PERSONS TO AND FROM METROPOLITAN AREAS OF THE UNITED STATES
                                                                                                           JASA 67 141B
                                        RESEARCH ON METROPOLITAN POPULATION, EVALUATION OF DATA
                                                                                                           JASA 56 591
                                   THE PRECISION OF MICHEY'S UNBIASED RATIO ESTIMATOR
                                                                                                           BIOKA67
                                                                                                                    321
     EXPERIMENTAL DEVELOPMENT OF NUTRITIVE MEDIA FOR MICRO-ORCANISMS
                                                                                                           BIOKA68
                                                                                                                    43
                    THE BASIC BIRTH-DEATH MODEL FOR MICROBIAL INFECTIONS
                                                                                                           JRSSB65
                                                                                                                    338
DU MAXIMUM DE VRAISEMBLANCE DES COURBES DE SURVIE DE MICROORGANISMES IRRADIES ESTIMATION PAR LA METHODE BIOCS66
                                                                                                                    673
 THE ASYMPTOTIC VARIANCE OF THE SAMPLE QUANTILES AND MID-RANGES
                                                                                     ON SOME PROPERTIES OF JRSSB61 453
                                          A NOTE ON MIDRANGE
                                                                                                            AMS 65 1052
POPULATION MIDRANGE
                                                THE MIDRANGE OF A SAMPLE AS AN ESTIMATOR OF THE
                                                                                                           JASA 57 537
  THE CENSUS SURVIVAL RATIO METHOD OF ESTIMATING NET MICRATION
                                                                                                A NOTE ON JASA 62 175
                                                                                          ERRORS IN THE ES JASA 69 NO.4
TIMATION OF NET MICRATION IN THE STUDIES OF INTERNAL MICRATION
  SURVIVAL RATES IN ESTIMATING INTERCENSAL STATE NET MICRATION
                                                                                      EVALUATION OF CENSUS JASA 62 841
       AND GAINS AND LOSSES IN HUMAN CAPITAL THROUGH MICRATION
                                                                                     SCOOLING, EXPERIENCE, JASA 67
                                                                                                                    875
                                        A MODEL FOR MIGRATION ANALYSIS
                                                                                                           JASA 61 675
                                                    MICRATION EXPECTANCY IN THE UNITED STATES
                                                                                                           JASA 63 444
                     ERRORS IN THE ESTIMATION OF NET MICRATION IN THE STUDIES OF INTERNAL MIGRATION
                                                                                                           JASA 69 NO.4
                                           NOTES. A MICRATION MODEL
                                                                                                           BI0CS66 409
N AREAS OF THE UNITED STATES
                                                THE MICRATION OF EMPLOYED PERSONS TO AND FROM METROPOLITA JASA 67 1418
IONS
                         STOCHASTIC BIRTH, DEATH AND MICRATION PROCESSES FOR SPATIALLY DISTRIBUTED POPULAT BIOKA68
                                                                                                                    189
                                           INTERNAL MICRATION STATISTICS FOR THE UNITED STATES
                                                                                                                    664
                             THE EXTENT OF REPEATED MICRATION, AND ANALYSIS BASED ON THE DANISH POPULATIO JASA 64 1121
NVIRONME/ EFFECTS OF PARTIAL ISOLATION (DISTANCE), MICRATION, AND DIFFERENT FITNESS REQUIREMENTS AMONG E BIOCS66 453
    CURRENT WEIGHT-HEIGHT RELATIONSHIPS OF YOUTHS OF MILITARY AGE
                                                                                                           JASA 62
                      OPTIMIZATION OF A HOT ROLLING MILL
   EXPANSION FOR THE NORMAL PROBABILITY INTECRAL AND MILL'S RATIO
                                                                                          A NEW ASYMPTOTIC JRSSB62
                                                                                                                    177
                                                THE MILLS RATIO AND THE PROBABILITY INTECRAL FOR A PEARSO BIOKA65
N TYPE IV DISTRIBUTION.
                                                                                                                    119
CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO MILLS' RATIO
                                                                                                            AMS 63
                                                                                                                    892
          NEW CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO
                                                                                                           JASA 69
                                                                                                                    647
               IRRATIONAL FRACTION APPROXIMATIONS TO MILLS' RATIO
                                                                                                           BIOKA64
                                                                                                                    339
             TAIL AREAS OF THE T-DISTRIBUTION FROM A MILLS' RATIO-LIKE EXPANSION
                                                                                                           AMS 63
                                                                                                                    335
                                   A TEST FOR RANDOM MINCLING OF THE PHASES OF A MOSAIC
                                                                                                           BIOCS67
                                                                                                                    657
                                                                                                ESTIMATION BIOKA57
        OF MEANS OF NORMAL POPULATIONS FROM OBSERVED MINIMA
                                                                                                                   2B2
OCESS BY MONTE/
                  ESTIMATING FINITE-TIME MAXIMA AND MINIMA OF A STATIONARY GAUSSIAN ORNSTEIN-UHLENBECK PR JASA 6B 1517
                         A LIMIT THEOREM FOR SUMS OF MINIMA OF STOCHASTIC VARIABLES
                                                                                                            AMS 65 1041
                         STOCHASTIC APPROXIMATION OF MINIMA WITH IMPROVED ASYMPTOTIC SPEED
                                                                                                            AMS 67
                                                                                                                   191
                             MULTIVARIATE MAXIMA AND MINIMA WITH MATRIX DERIVATIVES
                                                                                                           JASA 69 NO.4
                          NON-LINEAR RECRESSION WITH MINIMAL ASSUMPTIONS
                                                                                                           JASA 62 572
                                               ON A MINIMAL ESSENTIALLY COMPLETE CLASS OF EXPERIMENTS
                                                                                                            AMS 66 435
ICATION MIXED MODEL DESIGN
                                                     MINIMAL SUFFICIENT STATISTICS FOR THE TWO-WAY CLASSIF JASA 65 182
                                              RANDOM MINIMAL TREES
                                                                                                           BIOKA68 255
THE SIMPLEST CASE
                                                     MINIMAX CHARACTER OF HOTELLING'S T-SQUARED TEST IN
                                                                                                            AMS 63 1524
SIMPLEST CASE
                                                     MINIMAX CHARACTER OF THE R-SQUARED-TEST IN THE
                                                                                                            AMS 64 1475
                                         BOUNDS IN A MINIMAX CLASSIFICATION PROCEDURE
                                                                                                           BIOKA65 653
                                           NOTE ON A MINIMAX DESIGN FOR CLUSTER SAMPLING
                                                                                                           AMS 6B 27B
                                                     MINIMAX DESIGNS IN TWO DIMENSIONAL REGRESSION
                                                                                                            AMS 65 1097
                                      ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE PROCEDURES
                                                                                                            AMS 66 619
                                      ADMISSIBLE AND MINIMAX ESTIMATES OF PARAMETERS IN TRUNCATED SPACES
                                                                                                            AMS 61
                                                                                                                   136
                                                    MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE
FIRST N MOMENTS ARE KNOWN
                                                                                                            AMS 6B
                           UNIFORM APPROXIMATION OF MINIMAX POINT ESTIMATES
                                                                                                            AMS 64 1031
                                                  A MINIMAX PROCEDURE FOR CHOOSING BETWEEN TWO POPULATION JRSSB57 255
S USING SEQUENTIAL SAMPLING
 OS A POPULATION WITH TWO-STAGE SAMPLING BAYES AND MINIMAX PROCEDURES FOR ESTIMATING THE ARITHMETIC MEAN
                                                                                                            AMS 66 1186
                     ASMPTOTICALLY OPTIMAL BAYES AND MINIMAX PROCEDURES IN SEQUENTIAL ESTIMATION
                                                                                                            AMS 68 422
                                LOCAL AND ASYMPTOTIC MINIMAX PROPERTIES OF MULTIVARIATE TESTS
                                                                                                            AMS 64
                                                     MINIMAX RESULTS FOR IFRA SCALE ALTERNATIVES
                                                                                                            AMS 69 1778
PROBLEMS OF TYPE I
                                                     MINIMAX RISK AND UNBIASEDNESS FOR MULTIPLE DECISION
                                                                                                            AMS 69 1684
ITERATION
                                                     MINIMAX SOLUTION OF STATISTICAL DECISION PROBLEMS BY
                                                                                                            AMS 66 1643
                                             LOCALLY MINIMAX TESTS
                                                                                                            AMS 67
                          LOCALLY AND ASYMPTOTICALLY MINIMAX TESTS OF A MULTIVARIATE PROBLEM
                                                                                                            AMS 68 171
                                                     MINIMAX THEOREMS ON CONDITIONALLY COMPACT SETS
                                                                                                            AMS 63 1536
SPACING OF OBSERVATIONS IN POLYNOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NESS OF THE
                                                                                                           AMS 62 810
                                       A PROBLEM IN MINIMAX VARIANCE POLYNOMIAL EXTRAPOLATION
                                                                                                            AMS 66
                                                                                                                   898
POPULATIONS USING SEQUENTIAL SAMPLING
                                                   A MINIMAX-REGRET PROCEDURE FOR CHOOSING BETWEEN TWO
                                                                                                           JRSSB63 297
                              CONTROL CHARTS AND THE MINIMIZATION OF COSTS (WITH DISCUSSION)
                                                                                                           JRSSB63
                                                                                                                    49
                                                    MINIMIZATION OF EIGENVALUES OF A MATRIX AND OPTIMALIT AMS 68 859
Y OF PRINCIPAL COMPONENTS
                                      DESIGNS WHICH MINIMIZE MODEL INADEQUACIES. CUBOIDAL RECIONS OF
                                                                                                          BIOKA65
                                                                                                                   111
INTEREST
IN A CALTON-WATSON PROCESS AND IN SOME REL/ HOW TO MINIMIZE OR MAXIMIZE THE PROBABILITIES OF EXTINCTION AMS 68 1700
```

TITLE WORD INDEX MET - MIX

ON SEQUENTIAL TESTS WHICH MINIMIZE THE MAXIMUM	EXPECTED SAMPLE SIZE JASA	62	551
ON SEQUENTIAL TESTS WHICH MINIMIZE THE MAXIMUM SAMPLING PLANS WHICH APPROXIMATELY MINIMIZE THE MAXIMUM	EXPECTED SAMPLE SIZE JASA		67
	FUNCTION SUBJECT TO LINEAR INEQUA JRSS	B55	173
POSSIBILITIES MINIMIZING RESPONSE F	ERRORS IN FINANCIAL DATA. THE JASA	68	217
	ION AND EXPERIMENTAL DESIGN FOR TECH		461
	ESTIMATION USING INDEPENDENT AMS		267
	F SPARE PARTS INVENTORY CONTROL TECH		661
PROBLEMS LOWER BOUNDS FOR MINIMUM COVARIANCE MA			362
917 A NOTE ON CURVE FITTING WITH MINIMUM DEVIATIONS BY			359
A NOTE ON MINIMUM DISCRIMINATION			
NOTES. MINIMUM DISCRIMINATION			707
BETWEEN MULTIVARIATE POPULATIONS, THE PROBLEM OF MINIMUM DISTANCES ZZLE WITH A NOTATION ON THE PROBLE/ APPLICATION OF MINIMUM LOGIT CHI-SQU			550 75
F THE PARAMETERS OF THE LOGISTIC FUNCTION, USING THE MINIMUM LOGIT CHI-SQL	INDE WEARDD IN A LEADERM OF GET DION	200	250
PTION AND USE OF TABLES. PART II. COMPARISON BETWEEN MINIMUM NORMIT CHI-SQ	DIARE ESTIMATE AND THE MAYIMIM IT RIOL	A57	411
A NOTE ON CRAIG'S PAPER ON THE MINIMUM OF BINOMIAL V			
ON THE DISTRIBUTION OF THE MAYIMUM AND MINIMUM OF RATIOS OF	ORDER STATISTICS AMS	69	
MINIMUM RISK SPECIFIC	CATION LIMITS JASA		260
N COEFFICIENTS COMPARISON OF THE VARIANCE OF MINIMUM VARIANCE AND	WEIGHTED LEAST SQUARES REGRESSIO AMS	63	984
(ACKNOWLEDGEMENT/ COMPARISON OF LEAST SQUARES AND MINIMUM VARIANCE EST	IMATES OF REGRESSION PARAMETERS, AMS	62	462
THE MAXIMUM-LIKELIHOOD ESTIMATOR IS UNBIASED AND OF MINIMUM VARIANCE FOR	ALL SAMPLE SIZES /NS FOR WHICH BIOM	A56	200
	ATIFICATION, CORR. 63 1161 JASA		88
MATORS OF RELIABILITY FUNCTIONS FOR SYSTEMS IN SE/ MINIMUM VARIANCE UNB	IASED AND MAXIMUM LIKELIHOOD ESTI JASA	66	1052
PROBLEMS OF ADDITIVE NUMBER THEORY PROBLEMS OF ADDITIVE NUMBER THEORY MINIMUM VARIANCE UNBION FOR THE TRUNCATED EXPONENTIAL DISTRIBUTION PROBABILITIES MINIMUM VARIANCE UNBION MINIMUM MINIMUM VARIANCE UNBION MINIMUM MIN	IASED ESTIMATION AND CERTAIN AMS	63	1050
ON MINIMUM VARIANCE UNB	IASED ESTIMATION OF RELIABILITY AMS	69	710
FUR THE TRUNCATED EXPONENTIAL DISTRIBUTION MINIMUM VARIANCE UNB	LASED ESTIMATION OF RELIABILITY TECH	69	609
PROBABILITIES MINIMUM VARIANCE UNBI T OF ECONOMIC TIME SERIES, CORR. 65 1250 MINIMUM VARIANCE, LIN	LASED ESTIMATORS FOR POISSON TECH	62	409
T OF ECONOMIC TIME SERIES, CORR. 65 1250 MINIMUM VARIANCE, LIN THE EFFECT OF MIS-MATCHING ON THE N			
POPULATIONS WITH CONSTRAINTS ON THE PROBABILITIES OF MISCLASSIFICATION			
BTAINING CONFIDENCE INTERVALS FOR THE PROBABILITY OF MISCLASSIFICATION IN			
SAMPLE SIZE, AND A/ ON EXPECTED PROBABILITIES OF MISCLASSIFICATION IN			
TS IN THE ANALY/ AN INVESTIGATION OF THE EFFECT OF MISCLASSIFICATION ON			95
DISCRIMINANT ANALYSIS WHEN THE INITIAL SAMPLES ARE MISCLASSIFIED		66	
ESTIMATING FROM MISCLASSIFIED DATA	JASA		
ERRATA, 'MISCLASSIFIED DATA FF	ROM A BINOMIAL POPULATION' TECH	66	215
	ROM A BINOMINAL POPULATION TECH		109
	ROM CURTAILED SAMPLING PLANS TECH		489
TESTS FOR THE VON MISES DISTRIBUTION	BION		149
SOME RELATIONSHIPS BETWEEN THE NORMAL AND VON MISES DISTRIBUTIONS	BIO		684
SOME RELATIONSHIPS AMONG THE VON MISES DISTRIBUTIONS (269
PERCENTAGE POINTS FOR W-SQUARE-SUB-N +(CRAMER-VON MISES GOODNESS-OF-FIT BIAS OF THE ONE-SAMPLE CRAMER-VON MISES TEST			428 246
		66	
	PRINCE		
BOUNDS FOR THE FREQUENCY OF MISLEADING BAYES INFI		63	
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS	AMS	62	455
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS.	THE BINOMIAL CASE AMS	62 65	455
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS	THE BINOMIAL CASE AMS	62 65 \$65	455 971 216
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS, A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING	THE BINOMIAL CASE AMS NOTES. THE ANALYSIS OF BIOG ESTIMATION IN THE TRUNCATED JAS/	62 65 865 60	455 971 216 342
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LI NTAL DESIGNS THE ESTIMATION OF MISSING AND MIXED-UP	THE BINOMIAL CASE AMS NOTES THE ANALYSIS OF BIOG ESTIMATION IN THE TRUNCATED JASK IKELIHOOD ESTIMATES FOR A MULTIVA JASK OBSERVATIONS IN SEVERAL EXPERIME BIOG	62 65 865 60 57	455 971 216 342
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS, A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LI NTAL DESIGNS THE ESTIMATION OF MISSING AND MIXED-UP MISSING DATA IN REGRE	THE BINOMIAL CASE NOTES. THE ANALYSIS OF BIOGESTIMATION IN THE TRUNCATED JAS/ (KELIHOOD ESTIMATES FOR A MULTIVA JAS/ OBSERVATIONS IN SEVERAL EXPERIME BIOGESTIMANLYSIS JRSS	62 65 865 60 57 A59 B68	455 971 216 342 200 91 67
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LINTAL DESIGNS THE ESTIMATION OF MISSING AND MIXED-UP MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING ENTRIES /DE	THE BINOMIAL CASE NOTES THE ANALYSIS OF BIOG ESTIMATION IN THE TRUNCATED JAS/ IKELIHOOD ESTIMATES FOR A MULTIVA JAS/ OBSERVATIONS IN SEVERAL EXPERIME BIOG SSSION ANALYSIS EPENDENCE, QUASI-INDEPENDENCE. AN JAS/	62 65 865 60 57 A59 B68	455 971 216 342 200 91 67
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS, A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LINTAL DESIGNS THE ESTIMATION OF MISSING AND MIXED-UP MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING ENTRIES /DE RRORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MISSING FROM A RANDOM	THE BINOMIAL CASE NOTES: THE ANALYSIS OF BIOG ESTIMATION IN THE TRUNCATED JASA IKELIHOOD ESTIMATES FOR A MULTIVA JASA OBSERVATIONS IN SEVERAL EXPERIME BIOG ESSION ANALYSIS OPENDENCE, QUASI-INDEPENDENCE, AN JASA MISED BLOCK EXPERIMENT WITH ADDIT BIOG	62 65 865 60 57 A59 B68 68 868	455 971 216 342 200 91 67 1091 632
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS, A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LI NTAL DESIGNS THE STIMATION OF MISSING AND MIXED-UP MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING ENTRIES /DI RRORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MISSING FROM A RANDOM AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS	THE BINOMIAL CASE NOTES. THE ANALYSIS OF BIOG ESTIMATION IN THE TRUNCATED JASA IKELIHOOD ESTIMATES FOR A MULTIVA JASA OBSERVATIONS IN SEVERAL EXPERIME BIOG ESSION ANALYSIS SPENDENCE, QUASI-INDEPENDENCE. AN JASA MISED BLOCK EXPERIMENT WITH ADDIT BIOG ESTIMATION OF PAR JASA	62 65 565 60 57 A59 B68 68 S66 68	455 971 216 342 200 91 67 1091 632 159
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LI NTAL DESIGNS THE ESTIMATION OF MISSING AND MIXED-UP MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING ENTRIES /DE RRORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MISSING FROM A RADDOM AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS	THE BINOMIAL CASE NOTES THE ANALYSIS OF BIOGRAPH BIOGRAPH OF BIOG	62 65 565 60 57 A59 B68 68 56 68	455 971 216 342 200 91 67 1091 632 159 122
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LINTAL DESIGNS THE ESTIMATION OF MISSING AND MIXED-UP MISSING DATA IN REGRED INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING ENTRIES /DE RRORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS LINEAR REGRESSION ANALYSIS WITH MISSING OBSERVATIONS LINEAR REGRESSION ANALYSIS WITH MISSING OBSERVATIONS	THE BINOMIAL CASE NOTES. THE ANALYSIS OF BIOG ESTIMATION IN THE TRUNCATED JAS/ IKELIHOOD ESTIMATES FOR A MULTIVA JAS/ OBSERVATIONS IN SEVERAL EXPERIME BIOG ESSION ANALYSIS PENDENCE, QUASI-INDEPENDENCE, AN JAS/ MISED BLOCK EXPERIMENT WITH ADDIT BIOG ESTIMATION OF PAR JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ AMONG THE INDEPENDENT VARIABLES JAS/	62 65 865 60 57 A59 868 68 866 68 56 56	455 971 216 342 200 91 67 1091 632 159 122 834
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LI NTAL DESIGNS THE ESTIMATION OF MISSING AND MIXED-UP MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING ENTRIES /DI RRORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MISSING FROM A RANDOM AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS LINEAR REGRESSION ANALYSIS WITH MISSING OBSERVATIONS EFFICIENCY OF A FIRST ORDER METHOD MISSING OBSERVATIONS BY CONTROL	THE BINOMIAL CASE NOTES: THE ANALYSIS OF BIOG ESTIMATION IN THE TRUNCATED JASA IKELIHOOD ESTIMATES FOR A MULTIVA JASA OBSERVATIONS IN SEVERAL EXPERIME BIOG ESSION ANALYSIS PENDENCE, QUASI-INDEPENDENCE, AN JASA MISED BLOCK EXPERIMENT WITH ADDIT BIOG ESTIMATION OF PAR JASA AMONG THE INDEPENDENT VARIABLES JASA AMONG THE INDEPENDENT VARIABLES JASA IN MULTIVARIATE REGRESSION, JASA	62 65 565 60 57 A59 B68 68 566 69	455 971 216 342 200 91 67 1091 632 159 122 834 NO.4
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING ENTRIES /DI RRORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MISSING FROM A RANDOM AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS LINEAR REGRESSION ANALYSIS WITH MISSING OBSERVATIONS EFFICIENCY OF A FIRST ORDER METHOD MISSING OBSERVATIONS POINT ESTIMATION IN SIMPLE LINEAR REGRESSION MISSING OBSERVATIONS OBSERVATIONS OBSERVATIONS OBSERVATIONS MISSING OBSERVATIONS	THE BINOMIAL CASE NOTES. THE ANALYSIS OF BIOG ESTIMATION IN THE TRUNCATED JAS/ IKELIHOOD ESTIMATES FOR A MULTIVA JAS/ OBSERVATIONS IN SEVERAL EXPERIME BIOG ESSION ANALYSIS PENDENCE, QUASI-INDEPENDENCE, AN JAS/ MISED BLOCK EXPERIMENT WITH ADDIT BIOG ESTIMATION OF PAR JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ AMONG THE INDEPENDENT VARIABLES JAS/	62 65 565 60 57 A59 B68 68 566 68 59 69 67	455 971 216 342 200 91 67 1091 632 159 122 834
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS, A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LI NTAL DESIGNS THE STIMATION OF MISSING AND MIXED-UP MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING ENTRIES // RRORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MISSING OBSERVATIONS AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS LINEAR REGRESSION ANALYSIS WITH MISSING OBSERVATIONS EFFICIENCY OF A FIRST ORDER METHOD MISSING OBSERVATIONS POINT ESTIMATION IN SIMPLE LINEAR REGRESSION MISSING OBSERVATIONS	THE BINOMIAL CASE NOTES. THE ANALYSIS OF BIOG ESTIMATION IN THE TRUNCATED JASA IKELIHOOD ESTIMATES FOR A MULTIVA JASA OBSERVATIONS IN SEVERAL EXPERIME BIOG ESSION ANALYSIS SPENDENCE, QUASI-INDEPENDENCE. AN JASA MISED BLOCK EXPERIMENT WITH ADDIT BIOG ESTIMATION OF PAR JASA AMONG THE INDEPENDENT VARIABLES JASA AMONG THE INDEPENDENT VARIABLES JASA IN MULTIVARIATE REGRESSION, JASA IN MULTIVARIATE STATISTICS II. JASA IN MULTIVARIATE STATISTICS, III JASA IN MULTIVARIATE STATISTICS, IV JASA IN MULTIVARIATE STATISTICS, IV	62 65 65 60 57 A59 B68 66 68 59 67 69 69	455 971 216 342 200 91 67 1091 632 159 122 834 NO.4
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LI NTAL DESIGNS THE ESTIMATION OF MISSING AND MIXED-UP MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING ENTRIES /DI RRORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MISSING FROM A RANDOM AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS EFFICIENCY OF A FIRST ORDER METHOD POINT ESTIMATION IN SIMPLE LINEAR REGRESSION WISSING OBSERVATIONS MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP STEMANDOM SING OBSERVATIONS MISSING OBSERVATIONS	THE BINOMIAL CASE NOTES. THE ANALYSIS OF AMM. ESTIMATION IN THE TRUNCATED JAS/ EXELIHOOD ESTIMATES FOR A MULTIVA JAS/ OBSERVATIONS IN SEVERAL EXPERIME BIOL SESION ANALYSIS SPENDENCE, QUASI-INDEPENDENCE. AN JAS/ MISED BLOCK EXPERIMENT WITH ADDIT BIOC ESTIMATION OF PAR JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ IN MULTIVARIATE EGRESSION, JAS/ IN MULTIVARIATE STATISTICS II. JAS/ IN MULTIVARIATE STATISTICS, III IN MULTIVARIATE STATISTICS, III IN MULTIVARIATE STATISTICS, IV IN SPLIT-PLOT EXPERIMENTS WHERE	62 65 565 60 57 A59 B68 68 56 69 69 69 A61	455 971 216 342 200 91 67 1091 632 159 122 834 NO .4 10 337 359 468
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LI NTAL DESIGNS THE ESTIMATION OF MISSING AND MIXED-UP D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING ENTRIES /DE RRORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MISSING FROM A RANDOM AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS LINEAR REGRESSION ANALYSIS WITH DISSING OBSERVATIONS EFFICIENCY OF A FIRST ORDER METHOD POINT ESTIMATION IN SIMPLE LINEAR REGRESSION WHOLE-PLOTS ARE MISSING OR MIXED UP WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP	THE BINOMIAL CASE NOTES. THE ANALYSIS OF BIOLOGICAL STIMATION IN THE TRUNCATED JASJ EXELIHOOD ESTIMATES FOR A MULTIVA JASJ OBSERVATIONS IN SEVERAL EXPERIME BIOLOGICAL STIMATES FOR A MULTIVA JASJ SEPENDENCE, QUASI-INDEPENDENCE, AN JASJ AMONG THE INDEPENDENT WITH ADDIT BIOLOGICAL STIMATION OF PAR JASJ AMONG THE INDEPENDENT VARIABLES JASJ AMONG THE INDEPENDENT VARIABLES JASJ IN MULTIVARIATE REGRESSION, JASJ IN MULTIVARIATE STATISTICS, III JASJ IN MULTIVARIATE STATISTICS, III JASJ IN SPLIT-PLOT EXPERIMENTS WHERE BIOL ESTIMATION OF MISSING OBSERVAT BIOLOGICAL STATISTICS BIOLOGICAL STATISTIC	62 65 865 860 57 A59 B68 68 866 59 69 69 69 A61 A61	455 971 216 342 200 91 67 1091 632 159 122 834 NO . 4 10 337 359 468 468
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LI NTAL DESIGNS THE ESTIMATION OF MISSING AND MIXED-UP RORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT RRORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS LINEAR REGRESSION ANALYSIS WITH MISSING OBSERVATIONS LINEAR REGRESSION ANALYSIS WITH MISSING OBSERVATIONS POINT ESTIMATION IN SIMPLE LINEAR REGRESSION WHOLE-PLOTS ARE MISSING OR MIXED UP STIMATION OF MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP NOTE ON THE MISSING OF MIXED UP NOTE ON THE MISSING OF MIXED UP NOTE ON THE MISSING OF MIXED UP	THE BINOMIAL CASE NOTES THE ANALYSIS OF BIOG ESTIMATION IN THE TRUNCATED JASS (IKELIHOOD ESTIMATES FOR A MULTIVA JASS OBSERVATIONS IN SEVERAL EXPERIME BIOG ESSION ANALYSIS EPENDENCE, QUASI-INDEPENDENCE. AN JASS AMONG THE INDEPENDENT WITH ADDIT BIOG ESTIMATION OF PAR JASS AMONG THE INDEPENDENT VARIABLES JASS AMONG THE INDEPENDENT VARIABLES JASS IN MULTIVARIATE REGRESSION, JASS IN MULTIVARIATE STATISTICS, III IN MULTIVARIATE STATISTICS, III JASS IN MULTIVARIATE STATISTICS, IV JASS IN MULTIVARIATE STATISTICS, IV JASS IN SPLIT-PLOT EXPERIMENTS WHERE ESTIMATION OF MISSING OBSERVAT BIOGRAPHICAL STATISTICS BIOGRAPHICAL STATISTIC	62 65 565 60 57 A59 B68 568 568 67 69 69 A61 A61	455 971 216 342 200 91 67 1091 632 159 122 834 NO . 4 10 337 359 468 468 933
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LI NTAL DESIGNS THE ESTIMATION OF MISSING AND MIXED-UP MISSING DISTRIBUTION WHEN SOME OBSERVATION OF MISSING DATA IN REGRE DINTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING ENTRIES /DI RRORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS AME MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS EFFICIENCY OF A FIRST ORDER METHOD POINT ESTIMATION IN SIMPLE LINEAR REGRESSION WISSING OBSERVATIONS MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS OBSERVATIONS OBSERVATIONS MISSING OBSERVATIONS MISSING OBSERVATIONS MISSING OBSERVATIONS MISSING OBSERVATIONS OBSERVATIONS MISSING OBSERVATIONS OBSERVATIONS MISSING OBSERVATIONS OBTANTIBLE OF THE OBTANT OF THE MISSING OBTANT OF THE OBTANT OF THE	THE BINOMIAL CASE NOTES. THE ANALYSIS OF BINOMIAL CASE NOTES. THE ANALYSIS OF BINOMIAL CASE ESTIMATION IN THE TRUNCATED JAS/ OBSERVATIONS IN SEVERAL EXPERIME BIOL SION ANALYSIS SPENDENCE, QUASI-INDEPENDENCE. AN JAS/ MISED BLOCK EXPERIMENT WITH ADDIT BIOC ESTIMATION OF PAR JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ IN MULTIVARIATE REGRESSION, JAS/ IN MULTIVARIATE STATISTICS II. JAS/ IN MULTIVARIATE STATISTICS, III JAS/ IN MULTIVARIATE STATISTICS, IV JAS/ IN SPLIT-PLOT EXPERIMENTS WHERE ESTIMATION OF MISSING OBSERVAT BIOL RE IN A RANDOMIZED BLOCK DESIGN JAS/ RE IN A RANDOMIZED BLOCK DESIGN TECH	62 65 865 60 57 A59 B68 868 868 569 67 69 69 A61 A61 67	455 971 216 342 200 91 67 1091 159 122 834 NO .4 10 337 359 468 468 933 679
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LI NTAL DESIGNS THE ESTIMATION OF MISSING AND MIXED-UP MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING ENTRIES /DE RRORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MISSING FROM A RADDOM AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS LINEAR REGRESSION ANALYSIS WITH MISSING OBSERVATIONS EFFICIENCY OF A FIRST ORDER METHOD MISSING OBSERVATIONS POINT ESTIMATION IN SIMPLE LINEAR REGRESSION WHOLE-PLOTS ARE MISSING OR MIXED UP STIMATION OF MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP NOTE ON THE MISSING OBSERVATIONS QUERY. BIVARIATE SAMPLES WITH MISSING VALUES THE FITTING OF POLYNOMIALS TO EQUIDISTANT DATA WITH MISSING VALUES	THE BINOMIAL CASE NOTES THE ANALYSIS OF BIO ESTIMATION IN THE TRUNCATED JAS/ IKELIHOOD ESTIMATES FOR A MULTIVA JAS/ OBSERVATIONS IN SEVERAL EXPERIME BIO ESSION ANALYSIS EPENDENCE, QUASI-INDEPENDENCE. AN JAS/ AISED BLOCK EXPERIMENT WITH ADDIT BIO ESTIMATION OF PAR JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ IN MULTIVARIATE REGRESSION, JAS/ IN MULTIVARIATE STATISTICS, III JAS/ IN MULTIVARIATE STATISTICS, III JAS/ IN MULTIVARIATE STATISTICS, IV JAS/ IN SPLIT-PLOT EXPERIMENTS WHERE BIO ESTIMATION OF MISSING OBSERVAT RE IN A RANDOMIZED BLOCK DESIGN JAS/ BIO	62 65 60 57 A59 B68 S66 56 69 67 69 A61 A61 A61 A51	455 971 216 342 200 91 67 1091 632 159 122 159 122 468 468 933 468 468 933 410
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LI NTAL DESIGNS THE ESTIMATION OF MISSING AND MIXED-UP MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING OBSERVATIONS AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS LINEAR REGRESSION ANALYSIS WITH MISSING OBSERVATIONS EFFICIENCY OF A FIRST ORDER METHOD MISSING OBSERVATIONS POINT ESTIMATION IN SIMPLE LINEAR REGRESSION MISSING OBSERVATIONS MISSI	THE BINOMIAL CASE NOTES. THE ANALYSIS OF BIOG ESTIMATION IN THE TRUNCATED JAS/ LKELIHOOD ESTIMATES FOR A MULTIVA JAS/ OBSERVATIONS IN SEVERAL EXPERIME BIOG ESSION ANALYSIS EPENDENCE, QUASI-INDEPENDENCE. AN JAS/ MISED BLOCK EXPERIMENT WITH ADDIT BIOG ESTIMATION OF PAR JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ IN MULTIVARIATE REGRESSION, JAS/ IN MULTIVARIATE STATISTICS, II JAS/ IN SPLIT-PLOT EXPERIMENTS WHERE ESTIMATION OF MISSING OBSERVAT BEGIN A RANDOMIZED BLOCK DESIGN TECC TORIAL EXPERIMENTS	62 65 60 57 459 868 868 569 67 69 69 461 461 461 461 465	455 971 216 342 200 91 67 1091 632 159 122 834 NO.4 10 337 359 468 468 933 679 410 649
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LI NTAL DESIGNS THE ESTIMATION OF MISSING AND MIXED-UP MISSING DINTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING FROM A RANDOM AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS EFFICIENCY OF A FIRST ORDER METHOD POINT ESTIMATION IN SIMPLE LINEAR REGRESSION WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF THE MISSING OBSERVATIONS OBSERVATIONS OBSERVATIONS OBSERVATIONS OBSERVATIONS OBSERVATIONS OBSERVATIONS MISSING OBSERVATIONS OBSERV	THE BINOMIAL CASE NOTES. THE ANALYSIS OF BINOMIAL CASE NOTES. THE ANALYSIS OF BINOMIAL CASE ESTIMATION IN THE TRUNCATED JAS/ OBSERVATIONS IN SEVERAL EXPERIME BIOF ESSION ANALYSIS OPENDENCE, QUASI-INDEPENDENCE. AN JAS/ AISED BLOCK EXPERIMENT WITH ADDIT BIOF ESTIMATION OF PAR JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ IN MULTIVARIATE REGRESSION, IN MULTIVARIATE STATISTICS, II JAS/ IN MULTIVARIATE STATISTICS, II JAS/ IN MULTIVARIATE STATISTICS, IV IN SPLIT-PLOT EXPERIMENTS WHERE ESTIMATION OF MISSING OBSERVAT BIOF ECTORIAL EXPERIMENTS UEAR TECH BIOF ETCORIAL EXPERIMENTS UEAR BIOF ETCORIAL EXPERIMENTS UEAR	62 65 865 60 57 868 868 868 56 67 69 461 461 461 465 868	455 971 216 342 200 91 67 1091 632 159 122 834 NO.4 10 337 359 468 468 933 679 410 835
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING ENTRIES /DI RRORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MISSING FROM A RANDOM AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS EFFICIENCY OF A FIRST ORDER METHOD MISSING OBSERVATIONS POINT ESTIMATION IN SIMPLE LINEAR REGRESSION MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS OBSERVATIONS OBSERVATIONS TO OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATI	THE BINOMIAL CASE NOTES. THE ANALYSIS OF BINOMIAL CASE NOTES. THE ANALYSIS OF BINOMIAL CASE ESTIMATION IN THE TRUNCATED JAS/ OBSERVATIONS IN SEVERAL EXPERIME BIOF ESSION ANALYSIS OPENDENCE, QUASI-INDEPENDENCE. AN JAS/ AISED BLOCK EXPERIMENT WITH ADDIT BIOF ESTIMATION OF PAR JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ IN MULTIVARIATE REGRESSION, IN MULTIVARIATE STATISTICS, II JAS/ IN MULTIVARIATE STATISTICS, II JAS/ IN MULTIVARIATE STATISTICS, IV IN SPLIT-PLOT EXPERIMENTS WHERE ESTIMATION OF MISSING OBSERVAT BIOF ECTORIAL EXPERIMENTS UEAR TECH BIOF ETCORIAL EXPERIMENTS UEAR BIOF ETCORIAL EXPERIMENTS UEAR	62 65 60 57 868 868 56 67 69 69 461 461 67 455 868 868 868 869 869 869 869 869 869 869	455 971 216 342 200 91 67 1091 632 159 122 834 NO . 4 10 337 359 468 933 679 410 649 835 302
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING DATA IN REGRE RORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MISSING FROM A RANDOM AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS EFFICIENCY OF A FIRST ORDER METHOD POINT ESTIMATION IN SIMPLE LINEAR REGRESSION WHOLE-PLOTS ARE MISSING OR MIXED UP WHOLE-PLOTS ARE MISSING OR MIXED UP NOTE ON THE MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP NOTE ON THE MISSING OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP NOTE ON THE MISSING OBSERVATIONS OBSERVATIONS WITH AN ELECTRONIC COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN LIV OF THE LITERATURE SPECTRAL ANALYSIS WITH MISSING VALUES IN MUI OF THE LITERATURE MISSING VALUES IN MUI MISSING VALUES IN MUI	THE BINOMIAL CASE NOTES THE ANALYSIS OF BIOGRAPH OF B	62 65 865 67 459 868 866 67 69 69 67 69 67 69 67 69 67 69 67 69 67 67 68 68 68 68 68 68 68 68 68 68 68 68 68	455 971 216 342 200 91 67 1091 632 159 122 834 NO .4 10 337 359 468 933 679 468 933 679 468 933 679 468 933 679 469 933 679 949 949 949 949 949 949 949 949 949 9
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LI NTAL DESIGNS THE ESTIMATION OF MISSING AND MIXED-UP MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING FROM A RANDOM AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS EFFICIENCY OF A FIRST ORDER METHOD POINT ESTIMATION IN SIMPLE LINEAR REGRESSION MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF THE MISSING OBSERVATIONS OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF THE MISSING OBSERVATIONS OBSERVATIONS OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF THE MISSING OBSERVATIONS OBSERVATIONS OBSERVATIONS OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP QUERY. BIVARIATE SAMPLES WITH MISSING VALUES THE FITTING OF POLYNOMIALS TO EQUIDISTANT DATA WITH MISSING VALUES IN FACMING OF THE MISSING VALUES IN MUL MISSING VALUES IN MUL WITH AN ELECTRONIC COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN MUL OF THE LITERATURE WITH AN ELECTRONIC COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN MUL MISSING VALUES IN MUL MISSING VALUES IN PARTICLE OF THE MISSING VALUES IN MUL MISSING VALUES IN PARTICLE OF THE MISSING VALUES IN MUL MISSING VALUES IN PARTICLE OF THE MISSING VALUES IN MUL MISSING VALUES IN PARTICLE OF THE MISSING VALUES IN MUL MISSING VALUES IN PARTICLE OF THE MISSING VALUES IN MUL MISSING VALUES IN PARTICLE OF THE MISSING VALUES IN MUL MISSING VALUES IN PARTICLE OF	THE BINOMIAL CASE NOTES. THE ANALYSIS OF BIOG ESTIMATION IN THE TRUNCATED JAS/ IKELIHOOD ESTIMATES FOR A MULTIVA JAS/ OBSERVATIONS IN SEVERAL EXPERIME BIOG BESSION ANALYSIS EPENDENCE, QUASI-INDEPENDENCE, AN JAS/ MISED BLOCK EXPERIMENT WITH ADDIT BIOG ESTIMATION OF PAR JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ IN MULTIVARIATE REGRESSION, JAS/ IN MULTIVARIATE STATISTICS, III JAS/ IN MULTIVARIATE STATISTICS, IV JAS/ IN SPLIT-PLOT EXPERIMENTS WHERE ESTIMATION OF MISSING OBSERVAT BIOG RE IN A RANDOMIZED BLOCK DESIGN TECK CTORIAL EXPERIMENTS TECK EVER MULTIPLE DISCRIMINANT LIVARIATE DATA SULTABLE FOR USE JTIVARIATE DATA SULTABLE FOR USE LTIVARIATE DATA SULTABLE FOR USE LTIVARIATE STATISTICS, IREVIEW JAS/	62 65 865 866 67 868 868 866 67 69 861 861 865 866 866 866 866 866 866 866 866 866	455 971 216 342 200 91 67 1091 632 159 122 834 NO.4 10 337 468 468 468 933 679 410 835 302 595 595
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LI NTAL DESIGNS THE ESTIMATION OF MISSING AND MIXED-UP MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING FROM A RANDOM AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS EFFICIENCY OF A FIRST ORDER METHOD POINT ESTIMATION IN SIMPLE LINEAR REGRESSION MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF THE MISSING OBSERVATIONS OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF THE MISSING OBSERVATIONS OBSERVATIONS OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF THE MISSING OBSERVATIONS OBSERVATIONS OBSERVATIONS OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP QUERY. BIVARIATE SAMPLES WITH MISSING VALUES THE FITTING OF POLYNOMIALS TO EQUIDISTANT DATA WITH MISSING VALUES IN FACMING OF THE MISSING VALUES IN MUL MISSING VALUES IN MUL WITH AN ELECTRONIC COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN MUL OF THE LITERATURE WITH AN ELECTRONIC COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN MUL MISSING VALUES IN MUL MISSING VALUES IN PARTICLE MATER ANALYSIS WITH AN ELECTRONIC COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN MUL MISSING VALUES IN PARTICLE MATER ANALYSIS WITH AND MATER AN	THE BINOMIAL CASE NOTES: THE ANALYSIS OF BIOG ESTIMATION IN THE TRUNCATED JAS/ IKELIHOOD ESTIMATES FOR A MULTIVA JAS/ OBSERVATIONS IN SEVERAL EXPERIME BIOG ESSION ANALYSIS PENDENCE, QUASI-INDEPENDENCE, AN JAS/ MISED BLOCK EXPERIMENT WITH ADDIT BIOG ESTIMATION OF PAR JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ IN MULTIVARIATE ESCRESSION, JAS/ IN MULTIVARIATE STATISTICS II. JAS/ IN MULTIVARIATE STATISTICS, III JAS/ IN MULTIVARIATE STATISTICS, III JAS/ IN SPLIT-PLOT EXPERIMENTS WHERE ESTIMATION OF MISSING OBSERVAT BIOG RE IN A RANDOMIZED BLOCK DESIGN JAS/ CTORIAL EXPERIMENTS TECT VEAR MULTIPLE DISCRIMINANT BIOG LTIVARIATE STATISTICS, I REVIEW JAS/ STORIAL EXPERIMENTS TECT VEAR MULTIPLE DISCRIMINANT BIOG LTIVARIATE STATISTICS, I REVIEW JAS/ STORIAL EXPERIMENTS TECT VEAR MULTIPLE DISCRIMINANT BIOG LTIVARIATE STATISTICS, I REVIEW JAS/ STORIAL EXPERIMENTS STATISTICS, I REVIEW JAS/ STORIAL EXPERIMENTS TECT THE STATISTICS, I REVIEW JAS/ STORIAL EXPERIMENTS STATISTICS, I REVIEW JAS/ STORIAL EXPERIMENTS TECT THE STATISTICS, I REVIEW JAS/ STORIAL EXPERIMENTS STATISTICS, I REVIEW JAS/ STORIAL PROPERTOR STATISTICS, I REVIEW JAS/ STORIAL PROPERTOR STATISTICS, I REVIEW JAS/ STORI	62 65 865 60 A59 B68 868 868 569 69 69 A61 A61 A65 868 868 866 868 868 868 868 869 869 869	455 971 216 342 200 91 67 1091 632 159 122 834 NO.4 10 337 468 468 468 933 679 410 835 302 595 595
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LI NTAL DESIGNS THE STIMATION OF MISSING AND MIXED-UP MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING OBSERVATIONS AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS WHOLE-PLOTS AFE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP QUERY. BIVARIATE SAMPLES WITH MISSING VALUES IN FACMISHING OF POLYNOMIALS TO EQUIDISTANT DATA WITH MISSING VALUES IN FACMISHING OF POLYNOMIALS TO EQUIDISTANT DATA WITH MISSING VALUES IN FACMISHING OF THE LITERATURE QUERY, BIVARIATE SAMPLES WITH MISSING VALUES IN PART MISSING VA	THE BINOMIAL CASE NOTES. THE ANALYSIS OF BIO ESTIMATION IN THE TRUNCATED OBSERVATIONS IN SEVERAL EXPERIME BIO ESSION ANALYSIS SPENDENCE, QUASI-INDEPENDENCE. AN JAS/ MISED BLOCK EXPERIMENT WITH ADDIT BIO ESTIMATION OF PAR JAS/ AMONG THE INDEPENDENT VARIABLES AMONG THE INDEPENDENT VARIABLES AMONG THE INDEPENDENT VARIABLES IN MULTIVARIATE STATISTICS II. JAS/ IN MULTIVARIATE STATISTICS, III JAS/ IN MULTIVARIATE STATISTICS, III JAS/ IN SPLIT-PLOT EXPERIMENTS WHERE ESTIMATION OF MISSING OBSERVAT BIO ESTIMATION OF MISSING OBSERVAT BIO TORIAL EXPERIMENTS VER MULTIPLE DISCRIMINANT LTIVARIATE DATA SUITABLE FOR USE LTORIAL EXPERIMENTS VER MULTIPLE DISCRIMINANT LTIVARIATE STATISTICS, I REVIEW STATIAL DIALLEL CROSS EXPERIMENTS SPONSE SURFACE DESIGNS TEC! THE 'PARTIAL ADJUSTMENT' AND 'ADA AMAMONG THE TRUNCATED BIO THE 'PARTIAL ADJUSTMENT' AND 'ADA AME AME AME AME AME AME AME	62 65 865 60 67 459 868 868 866 67 69 461 461 461 461 461 461 461 461 461 461	455 971 216 342 200 91 67 1091 632 159 122 834 NO.4 10 337 468 468 933 679 410 835 302 595 595 302 596 791 339
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING ENTRIES /DI RRORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MISSING FROM A RANDOM AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS EFFICIENCY OF A FIRST ORDER METHOD MISSING OBSERVATIONS POINT ESTIMATION IN SIMPLE LINEAR REGRESSION MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING VALUES IN FACTOR OF THE MISSING VALUES IN FACTOR OF THE MISSING VALUES IN MUSTAIN OF THE LITERATURE WITH AN ELECTRONIC COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN PART OF THE LITERATURE QUERY, BIVARIATE SAMPLES WITH MISSING VALUES IN PART OF THE LITERATURE QUERY, BIVARIATE SAMPLES WITH MISSING VALUES IN PART OF THE LITERATURE QUERY, BIVARIATE SAMPLES WITH MISSING VALUES IN PART OF THE LITERATURE MISSING VALUES IN PART OF THE MISSING V	THE BINOMIAL CASE NOTES: THE ANALYSIS OF BIO ESTIMATION IN THE TRUNCATED JAS/ IKELIHOOD ESTIMATES FOR A MULTIVA JAS/ OBSERVATIONS IN SEVERAL EXPERIME BIO ESSION ANALYSIS PENDENCE, QUASI-INDEPENDENCE, AN JAS/ MISED BLOCK EXPERIMENT WITH ADDIT BIO ESTIMATION OF PAR JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ IN MULTIVARIATE REGRESSION, JAS/ IN MULTIVARIATE STATISTICS II. JAS/ IN MULTIVARIATE STATISTICS, III JAS/ IN MULTIVARIATE STATISTICS, III JAS/ IN MULTIVARIATE STATISTICS, IV IN SPLIT-PLOT EXPERIMENTS WHERE BIO ESTIMATION OF MISSING OBSERVAT BIO RE IN A RANDOMIZED BLOCK DESIGN JAS/ SEE IN A RANDOMIZED BLOCK DESIGN JECT VEAR MULTIPLE DISCRIMINANT BIO LIVARIATE STATISTICS, I REVIEW JAS/ RITAL DIALLEL CROSS EXPERIMENTS SPONSE SURFACE DESIGNS FHE 'PARTIAL ADJUSTMENT' AND 'ADA JAS/ NORTH-EAST INDIA SAMPLING BIO	62 65 565 560 57 A59 B68 S66 67 69 A61 A61 A65 S68 B66 S68 B66 S68 S66 S66 S66 S66 S66 S66 S66 S66 S	455 971 216 342 200 91 67 1091 632 159 122 834 NO . 4 10 337 468 468 933 679 410 649 835 302 595 302 595 308 308 308 308 308 308 308 308 308 308
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING ENTRIES /DI RRORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MISSING FROM A RANDOM AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS EFFICIENCY OF A FIRST ORDER METHOD MISSING OBSERVATIONS POINT ESTIMATION IN SIMPLE LINEAR REGRESSION MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING VALUES IN FACTOR OF THE MISSING VALUES IN FACTOR OF THE MISSING VALUES IN MUSTAIN OF THE LITERATURE WITH AN ELECTRONIC COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN PART OF THE LITERATURE QUERY, BIVARIATE SAMPLES WITH MISSING VALUES IN PART OF THE LITERATURE QUERY, BIVARIATE SAMPLES WITH MISSING VALUES IN PART OF THE LITERATURE QUERY, BIVARIATE SAMPLES WITH MISSING VALUES IN PART OF THE LITERATURE MISSING VALUES IN PART OF THE MISSING V	THE BINOMIAL CASE NOTES: THE ANALYSIS OF BIO ESTIMATION IN THE TRUNCATED JAS/ IKELIHOOD ESTIMATES FOR A MULTIVA JAS/ OBSERVATIONS IN SEVERAL EXPERIME BIO ESSION ANALYSIS PENDENCE, QUASI-INDEPENDENCE, AN JAS/ MISED BLOCK EXPERIMENT WITH ADDIT BIO ESTIMATION OF PAR JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ IN MULTIVARIATE REGRESSION, JAS/ IN MULTIVARIATE STATISTICS II. JAS/ IN MULTIVARIATE STATISTICS, III JAS/ IN MULTIVARIATE STATISTICS, III JAS/ IN MULTIVARIATE STATISTICS, IV IN SPLIT-PLOT EXPERIMENTS WHERE BIO ESTIMATION OF MISSING OBSERVAT BIO RE IN A RANDOMIZED BLOCK DESIGN JAS/ SEE IN A RANDOMIZED BLOCK DESIGN JECT VEAR MULTIPLE DISCRIMINANT BIO LIVARIATE STATISTICS, I REVIEW JAS/ RITAL DIALLEL CROSS EXPERIMENTS SPONSE SURFACE DESIGNS FHE 'PARTIAL ADJUSTMENT' AND 'ADA JAS/ NORTH-EAST INDIA SAMPLING BIO	62 65 560 57 A59 B68 B68 S66 69 69 A61 A61 67 A51 S68 B60 68 68 66 68 66 68 66 69 69 69 69 69 69 69 69 69 69 69 69	455 971 216 342 200 91 67 1091 632 159 122 834 NO .4 10 337 359 468 468 933 679 410 649 835 302 595 903 867 1130 867 1130 867
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LI NTAL DESIGNS THE ESTIMATION OF MISSING AND MIXED-UP MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING FROM A RANDOM AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS EFFICIENCY OF A FIRST ORDER METHOD POINT ESTIMATION IN SIMPLE LINEAR REGRESSION MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OF ONE OF THE MISSING OBSERVATIONS OF ONE OF THE MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OF OF THE MISSING OBSERVATIONS OF OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OF OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP QUERY. BIVARIATE SAMPLES WITH MISSING VALUES IN FACMISH OF THE MISSING VALUES IN FACMISH OF THE MISSING VALUES IN FACMISH OF THE MISSING VALUES IN PARTIFICATION OF MISSING VALUES IN MISSING VALUES IN MISSING VALUES IN MISSING V	THE BINOMIAL CASE NOTES. THE ANALYSIS OF BIOMER'S THE ANALYSIS OF BIOMER'S THE ANALYSIS OF BIOMER'S THE ANALYSIS OF BIOMER'S TOR A MULTIVA JASK OBSERVATIONS IN SEVERAL EXPERIME BIOMER'S TOR A MULTIVA JASK AND ANALYSIS SPENDENCE, QUASI-INDEPENDENCE. AN JASK AND ANALYSIS SPENDENCE, QUASI-INDEPENDENCE. AN JASK AND AND THE INDEPENDENT VARIABLES JASK AND THE INDEPENDENT SHERE BIOMER'S THE SET IN A RANDOMIZED BLOCK DESIGN JASK TECHNOLOGY TO THE SET IN A RANDOMIZED BLOCK DESIGN JASK TECHNOLOGY THE SET INDEPENDENT OF THE SET	62 65 60 57 A59 B68 B68 S66 69 69 A61 A61 A61 668 S68 669 A61 A61 67 A61 68 666 666 669 A61 A66 A66 A66 A66 A66 A66 A66 A66 A66	455 971 216 342 200 91 67 1091 129 122 834 NO.4 10 337 468 468 468 933 679 410 835 309 903 389 903 389 1130 381 9130 9130 9130 9130 9130 9130 9130 913
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING NTAL DESIGNS THE ESTIMATION OF MISSING AND MIXED-UP MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING ENTRIES /DI RRORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MULTIPLE REGRESSION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS EFFICIENCY OF A FIRST ORDER METHOD POINT ESTIMATION IN SIMPLE LINEAR REGRESSION MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP STIMATION OF MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP QUERY. BIVARIATE SAMPLES WITH MISSING OBSERVATIONS OBSERVATIONS OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP QUERY. BIVARIATE SAMPLES WITH MISSING VALUES THE FITTING OF POLYNOMIALS TO EQUIDISTANT DATA WITH MISSING VALUES WITH AN ELECTRONIC COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN MUI MISSING VALUES IN MUI MISSING VALUES IN MUI MISSING VALUES IN PAR MISSING VALUES	THE BINOMIAL CASE NOTES: THE ANALYSIS OF BIODE ESTIMATION IN THE TRUNCATED JAS/ KELIHOOD ESTIMATES FOR A MULTIVA JAS/ OBSERVATIONS IN SEVERAL EXPERIME BIODE SSSION ANALYSIS SPENDENCE, QUASI-INDEPENDENCE. AN JAS/ MISED BLOCK EXPERIMENT WITH ADDIT BIODE ESTIMATION OF PAR JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ IN MULTIVARIATE REGRESSION, IN MULTIVARIATE STATISTICS II. JAS/ IN MULTIVARIATE STATISTICS, III JAS/ IN MULTIVARIATE STATISTICS, II JAS/ IN MULTIVARIATE STATISTICS, IV IN SPLIT-PLOT EXPERIMENTS WHERE ESTIMATION OF MISSING OBSERVAT BIODE ESTIMATION OF MISSING OBSERVAT BIODE ESTIMATION OF MISSING OBSERVAT BIODE CTORIAL EXPERIMENTS VERAR MULTIPLE DISCRIMINANT LTIVARIATE DATA SULTABLE FOR USE VERAR MULTIPLE DISCRIMINANT LTIVARIATE STATISTICS, I. REVIEW JAS/ SPONSE SURFACE DESIGNS TEC: TECT TRIAL DALLEL CROSS EXPERIMENTS SPONSE SURFACE DESIGNS THE 'PARTIAL ADJUSTMENT' AND 'ADD ADA NORTH-EAST INDIA SAMPLING PLING PLANS RIANCE MODEL MOVING AVERAGE SYSTEMS	62 65 56 56 57 45 88 88 88 86 88 69 69 46 14 66 66 88 86 86 86 86 86 86 86 86 86 86	455 971 216 342 200 91 67 1091 632 159 122 834 NO . 4 10 3379 468 468 933 679 410 649 835 302 595 302 595 389 867 1130 385 341 93 223
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING NTAL DESIGNS THE ESTIMATION OF MISSING MAXIMUM LISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING ENTRIES /DI RRORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MISSING FROM A RANDOM AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS LINEAR REGRESSION ANALYSIS WITH MISSING OBSERVATIONS EFFICIENCY OF A FIRST ORDER METHOD POINT ESTIMATION IN SIMPLE LINEAR REGRESSION WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP NOTE ON THE MISSING VALUES THE FITTING OF POLYNOMIALS TO EQUIDISTANT DATA WITH MISSING VALUES THE FITTING OF POLYNOMIALS TO EQUIDISTANT DATA WITH MISSING VALUES IN FACAMALYSIS WITH AN ELECTRONIC COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN MUMINSING VALUES IN PACAMALYSIS WITH AN ELECTRONIC COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN PACAMALYSIS QUERY, BIVARIATE SAMPLES WITH MISSING VALUES IN PACAMALYSIS QUERY, BIVARIATE SAMPLES WITH MISSING VALUES IN PACAMALYSIS OF VALUES OF PROSEDER MITE ON TEA CROP IN 19 PROCEDURES AND TABLES FOR EVALUATING DEPENDENT MIXED AUTOREGRESSIVE WASHING VALUES IN FACAMALY AND THE MIXED BOUNDIAL DISTRIBUTION THE MIXED BOUNDIAL DISTRIBUTION OF PEOR A CONTINUOUS PRIOR DISTRIBUTION THE MIXED BOUNDIAL DISTRIBUTION OF PEOR A CONTINUOUS PRIOR DISTRIBUTION THE MIXED BOUNDIAL DISTRIBUTION OF MIXED AUTOREGRESSIVE UTIO	THE BINOMIAL CASE NOTES THE ANALYSIS OF BIO ESTIMATION IN THE TRUNCATED JAS/ IKELIHOOD ESTIMATES FOR A MULTIVA JAS/ OBSERVATIONS IN SEVERAL EXPERIME BIO ESSION ANALYSIS EPENDENCE, QUASI-INDEPENDENCE, AN JAS/ AMONG THE INDEPENDENT WITH ADDIT BIO ESTIMATION OF PAR JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ IN MULTIVARIATE REGRESSION, IN MULTIVARIATE STATISTICS, III JAS/ IN MULTIVARIATE STATISTICS, III JAS/ IN MULTIVARIATE STATISTICS, III JAS/ IN MULTIVARIATE STATISTICS, IV IN SPLIT-PLOT EXPERIMENTS WHERE BIO ESTIMATION OF MISSING OBSERVAT BIO RE IN A RANDOMIZED BLOCK DESIGN JECT EVERT MULTIVARIATE STATISTICS, IREVIEW JAS/ RE IN A RANDOMIZED BLOCK DESIGN TECT EXTENDED TO SERVER MENTS NEAR MULTIPLE DISCRIMINANT BIO EXTIVARIATE STATISTICS, I REVIEW JAS/ RETIAL DIALLEL CROSS EXPERIMENTS SPONSE SURFACE DESIGNS THE 'PARTIAL ADJUSTMENT' AND 'ADA JAS/ NORTH-EAST INDIA SAMPLING BIO PLING PLANS RIANCE MODEL -MOVING AVERAGE SYSTEMS BUOTION AND THE POSTERIOR DISTRIB JRSS	62 65 65 66 67 67 69 66 66 66 66 66 66 66 66 66 66 66 66	455 971 216 342 200 91 67 1091 632 159 122 834 NO .4 10 337 359 468 468 933 679 410 649 410 649 595 903 389 867 1130 385 341 933 359 123 359 123 369 123 369 123 369 123 369 123 369 123 369 123 369 123 369 123 369 123 369 123 369 123 369 123 369 123 369 123 369 123 369 123 369 123 123 123 123 123 123 123 123 123 123
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LI NTAL DESIGNS THE ESTIMATION OF MISSING AND MIXED-UP MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING FROM A RANDOM AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS EFFICIENCY OF A FIRST ORDER METHOD MISSING OBSERVATIONS MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP STIMATION OF MISSING OBSERVATIONS MISSING OBSERVATIONS MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP QUERY. BIVARIATE SAMPLES WITH MISSING OBSERVATIONS OF THE FITTING OF POLYNOMIALS TO EQUIDISTANT DATA WITH MISSING VALUES IN FACMING MISSING VALUES IN FACMING MISSING VALUES IN FACMING MISSING VALUES IN FACMING MISSING VALUES IN MISSING VALUES IN PART OF THE FITTION OF POLYNOMIALS TO EQUIDISTANT DATA WITH MISSING VALUES IN PART OF THE MISSING VALUES OF VALUES OF THE MISSING VALUES OF VALU	THE BINOMIAL CASE NOTES. THE ANALYSIS OF BIOMESTIMATION IN THE TRUNCATED JASK OBSERVATIONS IN SEVERAL EXPERIME BIOMESSION ANALYSIS SPENDENCE, QUASI-INDEPENDENCE, AN JASK AMONG THE INDEPENDENT VARIABLES JASK AMONG THE STATISTICS, II JASK IN MULTIVARIATE STATISTICS, IV JASK IN MULTIVARIATE STATISTICS, IV JASK TORTHAL EXPERIMENTS WHERE BIOMESTIMATION OF MISSING OBSERVAT BIOMESTIMATION OF MISSING OBSERVATION OF MISSING OBSE	62 655 660 579 8568 868 868 667 699 691 691 691 691 691 691 691 691 691	455 971 216 342 200 91 67 1091 129 129 834 NO.4 10 337 468 468 468 933 679 410 835 309 903 389 130 381 903 381 903 381 903 903 903 903 903 903 903 903 903 903
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LISSING NATA IN REGRE DINTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING DATA IN REGRE DINTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING ENTRIES /DE RRORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MISSING FORM A RANDOM AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS EFFICIENCY OF A FIRST ORDER METHOD MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP STIMATION IN SIMPLE LINEAR REGRESSION WHOLE-PLOTS ARE MISSING OR MIXED UP QUERY, BIVARIATE SAMPLES WITH MISSING OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP STIMATION OF POLYNOMIALS TO EQUIDISTANT DATA WITH QUERY, BIVARIATE SAMPLES WITH MISSING VALUES THE FITTING OF POLYNOMIALS TO EQUIDISTANT DATA WITH MISSING VALUES IN FACAMALYSIS WITH AN ELECTRONIC COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN MUMINAL MISSING VALUES IN MUMINAL MISSING VALUES IN MUMINAL MISSING VALUES IN PACAMALYSIS QUERY, BIVARIATE SAMPLES WITH MISSING VALUES IN PACAMALYSIS QUERY, BIVARIATE SAMPLES WITH MISSING VALUES IN PACAMALYSIS WITH AN ELECTRONIC COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN PACAMALYSIS QUERY, BIVARIATE SAMPLES WITH MISSING VALUES IN MUMINAL MISSING VALUES IN PACAMALYSIS OF VALUE TECHNIQUES FOR ESTIMATION OF TOTE OF RED SPIDER MITE ON TEA CROP IN 12 THE PROCESS CURVE AND THE EQUIVALENT MIXED DISCRETE AND COMMITTED DISCRETE MIXED DISCRETE AND COMMITTED DISCRETE MIXED DISCRETE AND COMMITTED DISCRETE MIXED DISCRETE AND COMMITTED MIXED DISCRETE MIXED DISC	THE BINOMIAL CASE NOTES THE ANALYSIS OF BIO ESTIMATION IN THE TRUNCATED JAS/ IKELIHOOD ESTIMATES FOR A MULTIVA JAS/ OBSERVATIONS IN SEVERAL EXPERIME BIO ESSION ANALYSIS EPENDENCE, QUASI-INDEPENDENCE, AN JAS/ AMONG THE INDEPENDENT VARIABLES AMONG THE INDEPENDENT VARIABLES AMONG THE INDEPENDENT VARIABLES IN MULTIVARIATE REGRESSION, JAS/ IN MULTIVARIATE STATISTICS, III JAS/ IN MULTIVARIATE STATISTICS, III JAS/ IN MULTIVARIATE STATISTICS, IV IN SPLIT-PLOT EXPERIMENTS WHERE ESTIMATION OF MISSING OBSERVAT RE IN A RANDOMIZED BLOCK DESIGN TECTORIAL EXPERIMENTS NEAR MULTIPLE DISCRIMINANT TIVARIATE DATA SUITABLE FOR USE LIVARIATE STATISTICS, I REVIEW ASA RETIAL DIALLEL CROSS EXPERIMENTS BIO ETHE 'PARTIAL ADJUSTMENT' AND 'ADA PLING PLANS RIANCE MODEL -MOVING AVERAGE SYSTEMS BIO ENTINUOUS VARIABLES, CORR, 65 343 AMB BIO BIO BIO BIO BIO BIO BIO BIO BIO BI	62 65 66 66 67 69 66 66 66 66 66 66 66 66 66 66 66 66	455 971 216 342 200 91 67 1091 632 159 122 834 NO . 4 10 337 359 468 933 679 410 649 835 302 595 903 389 867 1130 385 341 93 223 359 468 468 933 867 1130 867 1130 867 1130 867 1130 867 1130 867 1130 867 1130 867 1130 867 1130 867 1130 867 1130 867 1130 867 1130 867 867 867 867 867 867 867 867 867 867
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE RIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING NTAL DESIGNS THE ESTIMATION OF MISSING MAXIMUM LI NTAL DESIGNS THE ESTIMATION OF MISSING AND MIXED-UP MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING DATA IN REGRE D INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING FROM A RANDOM AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS EFFICIENCY OF A FIRST ORDER METHOD POINT ESTIMATION IN SIMPLE LINEAR REGRESSION MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OBSERVATIONS WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MISSING OBSERVATIONS OF THE FITTING OF POLYNOMIALS TO EQUIDISTANT DATA WITH MISSING VALUES THE FITTING OF POLYNOMIALS TO EQUIDISTANT DATA WITH MISSING VALUES IN FACM MISSING VALUES IN MU MISSING VALUES IN MU MISSING VALUES IN MU MISSING VALUES IN MU MISSING VALUES IN PART MISSING VALUE	THE BINOMIAL CASE NOTES THE ANALYSIS OF BIO ESTIMATION IN THE TRUNCATED JAS/ IKELIHOOD ESTIMATES FOR A MULTIVA JAS/ OBSERVATIONS IN SEVERAL EXPERIME BIO ESSION ANALYSIS EPENDENCE, QUASI-INDEPENDENCE, AN JAS/ AMONG THE INDEPENDENT VARIABLES AMONG THE INDEPENDENT VARIABLES AMONG THE INDEPENDENT VARIABLES IN MULTIVARIATE REGRESSION, JAS/ IN MULTIVARIATE STATISTICS, III JAS/ IN MULTIVARIATE STATISTICS, III JAS/ IN MULTIVARIATE STATISTICS, IV IN SPLIT-PLOT EXPERIMENTS WHERE ESTIMATION OF MISSING OBSERVAT RE IN A RANDOMIZED BLOCK DESIGN TECTORIAL EXPERIMENTS NEAR MULTIPLE DISCRIMINANT TIVARIATE DATA SUITABLE FOR USE LIVARIATE STATISTICS, I REVIEW ASA RETIAL DIALLEL CROSS EXPERIMENTS BIO ETHE 'PARTIAL ADJUSTMENT' AND 'ADA PLING PLANS RIANCE MODEL -MOVING AVERAGE SYSTEMS BIO ENTINUOUS VARIABLES, CORR, 65 343 AMB BIO BIO BIO BIO BIO BIO BIO BIO BIO BI	62 65 66 66 67 69 66 66 66 66 66 66 66 66 66 66 66 66	455 971 216 342 200 91 67 1091 632 159 122 834 NO . 4 10 337 359 468 933 679 410 649 835 302 595 903 389 867 1130 385 341 93 223 359 468 468 933 867 1130 867 1130 867 1130 867 1130 867 1130 867 1130 867 1130 867 1130 867 1130 867 1130 867 1130 867 1130 867 1130 867 867 867 867 867 867 867 867 867 867
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH ARADOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING MAXIMUM LISTED OF POISSON DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LISTED OF MISSING AND MIXED-UP MISSING AND MIXED-UP MISSING DATA IN REGRESTOR OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MISSING DATA IN REGRESTED TO WITH MISSING FROM A RANDOM AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS MISSING	THE BINOMIAL CASE NOTES. THE ANALYSIS OF BIOMERICAN AMERICAN AMER	62 65 65 66 66 66 66 66 66 66 68 66 68 66 86 68 68	455 971 216 342 200 91 67 1091 632 159 122 84 NO .4 10 337 468 468 468 933 679 410 649 835 302 595 302 595 130 389 130 130 389 130 130 130 130 130 130 130 130 130 130
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING MAXIMUM LINTAL DESIGNS THE ESTIMATION OF MISSING AND MIXED-UP MISSING AND MIXED-UP MISSING DATA IN REGRET OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MISSING ONE OF TREATMENT COMPARISONS WHEN OBSERVATION WITH MISSING OBSERVATIONS AND MILTIPLE REGRESSION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS MISSING O	THE BINOMIAL CASE NOTES. THE ANALYSIS OF BIOG ESTIMATION IN THE TRUNCATED JAS/ KELLHOOD ESTIMATES FOR A MULTIVA JAS/ BUSSION ANALYSIS SPENDENCE, QUASI-INDEPENDENCE, AN JAS/ MISED BLOCK EXPERIMENT WITH ADDIT ESTIMATION OF PAR JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ IN MULTIVARIATE REGRESSION, IN MULTIVARIATE STATISTICS II. JAS/ IN MULTIVARIATE STATISTICS, III JAS/ IN MULTIVARIATE STATISTICS, III JAS/ IN MULTIVARIATE STATISTICS, IV IN SPLIT-PLOT EXPERIMENTS WHERE ESTIMATION OF MISSING OBSERVAT BIOG RE IN A RANDOMIZED BLOCK DESIGN JAS/ VERAM MULTIPLE DISCRIMINANT TECT EVERAM MULTIPLE DISCRIMINANT BIOG LIVARIATE STATISTICS, I REVIEW JAS/ SPONSE SURFACE DESIGNS TECT THE 'PARTIAL ADJUSTMENT' AND 'ADD JAS/ SPONSE SURFACE DESIGNS TECT PHE 'PARTIAL ADJUSTMENT' AND 'ADD JAS/ SPONSE SURFACE DESIGNS TECT THE 'PARTIAL ADJUSTMENT' AND 'ADD JAS/ SPONSE SURFACE DESIGNS TECT THE 'PARTIAL ADJUSTMENT' AND 'ADD JAS/ SPONSE SURFACE SYSTEMS BIOG THE 'PARTIAL ADJUSTMENT' AND 'ADD JAS/ SPONSE SURFACE SYSTEMS BIOG THE 'PARTIAL ADJUSTMENT' AND 'ADD JAS/ SPONSE SURFACE SYSTEMS BIOG THE 'PARTIAL ADJUSTMENT' AND 'ADD JAS/ SPONSE SURFACE SYSTEMS BIOG THE 'PARTIAL ADJUSTMENT' AND 'ADD JAS/ SPONSE SURFACE SYSTEMS BIOG THE 'PARTIAL ADJUSTMENT' AND 'ADD JAS/ SPONSE SURFACE SYSTEMS BIOG THE 'PARTIAL ADJUSTMENT' AND 'ADD JAS/ STRIBUTION THE USE OF F TECT STRIBUTED FAILURE TIME DISTRIB BIOG STRIBUTED FAILUR	62 65 56 56 60 57 45 86 86 86 66 67 69 69 46 61 46 61 76 86 86 86 86 86 86 86 86 86 86 86 86 86	455 971 216 342 200 91 67 1091 632 159 122 834 No.4 10 337 468 468 933 367 410 649 410 649 410 649 410 649 410 649 410 649 410 649 410 649 410 649 410 649 410 649 410 649 410 410 410 410 410 410 410 410 410 410
SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS SPECTRAL ANALYSIS WITH ARADOMLY MISSED OBSERVATIONS. A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING MAXIMUM LISTED OF POISSON DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING MAXIMUM LISTED OF MISSING AND MIXED-UP MISSING AND MIXED-UP MISSING DATA IN REGRESTOR OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MISSING DATA IN REGRESTED TO WITH MISSING FROM A RANDOM AMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS MULTIPLE REGRESSION WITH MISSING OBSERVATIONS MISSING	THE BINOMIAL CASE NOTES. THE ANALYSIS OF BIOG ESTIMATION IN THE TRUNCATED JAS/ KELLHOOD ESTIMATES FOR A MULTIVA JAS/ BUSSION ANALYSIS SPENDENCE, QUASI-INDEPENDENCE, AN JAS/ MISED BLOCK EXPERIMENT WITH ADDIT ESTIMATION OF PAR JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ AMONG THE INDEPENDENT VARIABLES JAS/ IN MULTIVARIATE REGRESSION, IN MULTIVARIATE STATISTICS II. JAS/ IN MULTIVARIATE STATISTICS, III JAS/ IN MULTIVARIATE STATISTICS, III JAS/ IN MULTIVARIATE STATISTICS, IV IN SPLIT-PLOT EXPERIMENTS WHERE ESTIMATION OF MISSING OBSERVAT BIOG RE IN A RANDOMIZED BLOCK DESIGN JAS/ VERAM MULTIPLE DISCRIMINANT TECT EVERAM MULTIPLE DISCRIMINANT BIOG LIVARIATE STATISTICS, I REVIEW JAS/ SPONSE SURFACE DESIGNS TECT THE 'PARTIAL ADJUSTMENT' AND 'ADD JAS/ SPONSE SURFACE DESIGNS TECT PHE 'PARTIAL ADJUSTMENT' AND 'ADD JAS/ SPONSE SURFACE DESIGNS TECT THE 'PARTIAL ADJUSTMENT' AND 'ADD JAS/ SPONSE SURFACE DESIGNS TECT THE 'PARTIAL ADJUSTMENT' AND 'ADD JAS/ SPONSE SURFACE SYSTEMS BIOG THE 'PARTIAL ADJUSTMENT' AND 'ADD JAS/ SPONSE SURFACE SYSTEMS BIOG THE 'PARTIAL ADJUSTMENT' AND 'ADD JAS/ SPONSE SURFACE SYSTEMS BIOG THE 'PARTIAL ADJUSTMENT' AND 'ADD JAS/ SPONSE SURFACE SYSTEMS BIOG THE 'PARTIAL ADJUSTMENT' AND 'ADD JAS/ SPONSE SURFACE SYSTEMS BIOG THE 'PARTIAL ADJUSTMENT' AND 'ADD JAS/ SPONSE SURFACE SYSTEMS BIOG THE 'PARTIAL ADJUSTMENT' AND 'ADD JAS/ STRIBUTION THE USE OF F TECT STRIBUTED FAILURE TIME DISTRIB BIOG STRIBUTED FAILUR	62 65 66 67 69 67 66 88 66 66 68 66 69 66 88 66 69 66 88 66 69 66 88 66 68 68	455 971 216 342 200 91 67 1091 632 159 122 834 NO . 4 10 337 359 468 468 933 679 410 649 835 302 595 903 389 867 1130 385 341 93 359 468 468 933 469 469 469 469 469 469 469 469 469 469

MIX - MOD TITLE WORD INDEX

```
XED FACTOR IN AN UNBALANCED HIERARCHAL DESIGN WITH A MIXED MODEL /E. THE QUASI-F TEST FOR AN UNNESTED FI BIOCS66 937
                                  A DISCONTINUITY IN MIXED MODEL ANALYSIS

WAY CLASSIFICATION MIXED MODEL DESIGN

MINIMAL JASA 65
                                                                                                                       573
SUFFICIENT STATISTICS FOR THE TWO-WAY CLASSIFICATION MIXED MODEL DESIGN
                                                                                                                       182
                                                    A MIXED MODEL OF REGRESSIONS
                                                                                                              BIOKA69
ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE PROCEDURE FOR BIOCS68
                   BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH APPLICATION TO REGRESSION ANALYSIS BIOKAGE
                                                                                                                        11
    TWO-WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE SUBCLASS FREQUENCIE BIOCS65
SOME ASPECTS OF THE STATISTICAL ANALYSIS OF THE 'MIXED MODEL'
                                                                                                                        27
    SEQUENTIAL ANALYSIS OF VARIANCE UNDER RANDOM AND MIXED MODELS
                                                                                                              JASA 67 1401
                                    THE ESTIMATION OF MIXED MOVING-AVERAGE AUTOREGRESSIVE SYSTEMS
                                                                                                              BIOKA69 NO.3
                         DISTRIBUTION FREE TESTS FOR MIXED PROBABILITY DISTRIBUTIONS
                                                                                                              BIOKA69 NO 3
                                           ON THEIL'S MIXED REGRESSION ESTIMATOR
                                                                                                              JASA 69
                                                                                                                       273
                                                      MIXED SELF- AND CROSS-FERTILIZATION IN A TETRASOMIC
SPECIES
                                                                                                            BIOCS6B
                                                                                                                       4B5
          THE ANALYSIS OF STATIONARY PROCESSES WITH MIXED SPECTRA. 1
                                                                                                              JRSSB62
                                                                                                                       215
              ANALYSIS OF STATIONARY PROCESSES WITH MIXED SPECTRA, 2
                                                                                                              JRSSB62
                                                                                                                        511
IT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP STIMATION OF MISSING OBSERVATIONS IN SPL BIOKA61
                                                                                                                       468
RELATION COEFFICIENTS UNDER ASSUMPTIONS OF FIXED AND MIXED VARIATES

THE SAMPLING VARIANCE OF COR BIOKA58
TUBES

A GRAPHICAL ESTIMATION OF MIXED WEIBULL PARAMETERS IN LIFE TESTING ELECTRON

TECH 59
                                                                                                                       471
                                                                                                            TECH 59 389
                                         ESTIMATING A MIXED-EXPONENTIAL RESPONSE LAW
                                                                                                               JASA 61
                       THE ESTIMATION OF MISSING AND MIXED-UP OBSERVATIONS IN SEVERAL EXPERIMENTAL DESIGNS BIOKA59
            CONSTRUCTION OF SEQUENCES ESTIMATING THE MIXING DISTRIBUTION
                                                                                                               AMS 68
                                                                                                                        286
                                ON THE ESTIMATION OF MIXING DISTRIBUTIONS
                                                                                                                AMS 66 177
                               BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS
                                                                                                                AMS 68 1289
       THE WILCOXON TWO-SAMPLE STATISTIC ON STRONGLY MIXING PROCESSES
                                                                                                               AMS 68 1202
                    ON A THEOREM OF RENYI CONCERNING MIXING SEQUENCES OF SETS
                                                                                                                AMS 61
                          EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES
                                                                                                               AMS 65
      THE REMAINDER IN THE CENTRAL LIMIT THEOREM FOR MIXING STOCHASTIC PROCESSES
                                                                                                                AMS 69
               THE LAW OF THE ITERATED LOGARITHM FOR MIXING STOCHASTIC PROCESSES
BERS FOR THE LINEAR COMBINATIONS OF EXCHANGEABLE AND MIXING STOCHASTIC PROCESSES
                                                                                     /R THE LAW OF LARGE NUM
                                                                                                              AMS 65 1B40
                                    INVARIANTS UNDER MIXING WHICH GENERALIZE DE FINETTI'S THEOREM
                                                                                                               AMS 62 916
OUS TIMES PARAMETER
                                     INVARIANTS UNDER MIXING WHICH GENERALIZE DE FINETTI'S THEOREM. CONTINU
                                                                                                                AMS 63 1194
                        MODELS FOR THE RESPONSE OF A MIXTURE
                                                                                                               JRSSB68
         THE COMPOSITION OF A THREE COMPONENT LIQUID MIXTURE
                                                                                      METHODS FOR ESTIMATING TECH 64
                                                      MIXTURE DESIGNS FOR FOUR FACTORS
                                                                                                              JRSSB65
                                                      MIXTURE DESIGNS FOR THREE FACTORS
                                                                                                               JRSSB65
                          EXTREME VERTICES DESIGN OF MIXTURE EXPERIMENTS
                                                                                                              TECH 66
           DISCUSSION OF 'EXTREME VERTICES DESIGN OF MIXTURE EXPERIMENTS' BY R.A. MCLEAN AND V.L. ANDERSON TECH 66
               ESTIMATION OF PARAMETERS OF A FINITE MIXTURE OF DISTRIBUTIONS

ESTIMATION OF PARAMETERS OF A FINITE MIXTURE OF DISTRIBUTIONS

GENERAL
                                                                                                              JRSSB68
MODELS FOR QUANTAL RESPONSE TO THE JOINT ACTION OF A MIXTURE OF DRUGS
                                                                                                              BIOKA64
                         SUFFICIENT CONDITION FOR THE MIXTURE OF EXPONENTIALS TO BE A PROBABILITY DENSITY
                                                                                                               AMS 69 NO.6
                      ESTIMATING THE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS
                                                                                                              BIOKA69 NO.3
       DISCUSSION OF 'ESTIMATION OF PARAMETERS FOR A MIXTURE OF NORMAL DISTRIBUTIONS' BY VICTOR HASSELBLAD TECH 66 445
    MODELS FOR THE NON-INTERACTIVE JOINT ACTION OF A MIXTURE OF STIMULI IN BIOLOGICAL ASSAY
                                                                                                             BIOKA66
           MOMENT ESTIMATORS FOR THE PARAMETERS OF A MIXTURE OF TWO BINOMIAL DISTRIBUTIONS
                                                                                                              AMS 62
                  THE METHOD OF MOMENTS APPLIED TO A MIXTURE OF TWO EXPONENTIAL DISTRIBUTIONS
                                                                                                               AMS 61
                                                                                                                       143
                                                    A MIXTURE OF TWO RECURRENT RANDOM WALKS NEED NOT BE
                                                                                                               AMS 6B 1753
                      ESTIMATION OF PARAMETERS FOR A MIXTURE OR NORMAL DISTRIBUTIONS
                                                                                                              TECH 66 431
                        RESPONSE SURFACE DESIGNS FOR MIXTURE PROBLEMS
                                                                                                              TECH 68 739
                                   IDENTIFIABILITY OF MIXTURES
                                                                                                               AMS 61 244
                            IDENTIFIABILITY OF FINITE MIXTURES
                                                                                                               AMS 63 1265
    NOTE ON THE INFINITE DIVISIVILITY OF EXPONENTIAL MIXTURES
                                                                                                               AMS 67 1303
                     ON THE IDENTIFIABILITY OF FINITE MIXTURES
                                                                                                               AMS 68 209
                     A CLASS OF INFINITELY DIVISIBLE MIXTURES
                                                                                                               AMS 68 1153
             DESIGN AND ANALYSIS OF EXPERIMENTS WITH MIXTURES
                                                                                                               AMS 68 1517
                                    EXPERIMENTS WITH MIXTURES
                                                                                                              JRSSB59 201
 REPLY TO MR QUENOUILLE'S COMMENTS ABOUT MY PAPER ON MIXTURES
                                                                                                              .IRSSR61
                                                                                                                       171
                        EXPERIMENTS WITH P-COMPONENT MIXTURES
                                                                                                              JRSSB6B 137
                MEASUREMENT OF THE POTENCIES OF DRUG MIXTURES
                                                                                                              BIOCS69
                                                                                                                       477
                                                                                                A CONSISTENT AMS 69 1728
          ESTIMATOR FOR THE IDENTIFICATION OF FINITE MIXTURES
  TO THE SIMPLEX-LATTICE DESIGN FOR EXPERIMENTS WITH MIXTURES
                                                                                              AN ALTERNATIVE JRSSB69
                                                                                                                      NO.2
      OF EXTREME VERTICES DESIGNS FOR FOUR COMPONENT MIXTURES
                                                                                    THREE DIMENSIONAL MODELS TECH 67
                                                                                                                       472
                                    EXPERIMENTS WITH MIXTURES (CORR. 59 238)
                                                                                                              JRSSR5R
                                                                                                                       344
    THE SIMPLEX-CENTROID DESIGN FOR EXPERIMENTS WITH MIXTURES (WITH DISCUSSION)
                                                                                                              JRSSB63 235
                         ESTIMATING THE PARAMETERS OF MIXTURES OF BINOMIAL DISTRIBUTIONS
                                                                                                              JASA 64
                                                                                                                       510
                                                   ON MIXTURES OF DISTRIBUTIONS
                                                                                                               AMS 66
                                                                                                                       2B1
                          AN ESTIMATION PROCEDURE FOR MIXTURES OF DISTRIBUTIONS
                                                                                                              JRSSB68
                                                                                                                        444
 ESTIMATION OF FINITE MIXTURES OF DISTRIBUTIONS FROM THE EXPONENTIAL FAMILY JASA 69 NO.4

THE CONSTRUCTION OF MODELS FOR QUANTAL RESPONSES TO MIXTURES OF DRUGS A COMPARISON OF TWO APPROACHES TO BIOCS67 27
TION OF MATHEMATICAL MODELS FOR QUANTAL RESPONSES TO MIXTURES OF DRUGS IN BIOLOGICAL ASSAY /E CLASSIFICA BIOCS65
                                                                                                                       181
       INFORMATION FOR ESTIMATING THE PROPORTIONS IN MIXTURES OF EXPONENTIAL AND NORMAL DISTRIBUTIONS
                                                                                                              JASA 63
                                                                                                                       91B
                                                      MIXTURES OF GEOMETRIC DISTRIBUTIONS
                                                                                                              JRSSB61 409
                                                      MIXTURES OF MARKOV PROCESSES
                                                                                                               AMS 62
                                                                                                                       114
                                             SAMPLING MIXTURES OF MULTI-SIZED PARTICLES, AN APPLICATION OF TECH 69
RENEWAL THEORY
                                                                                                                       285
                                             SAMPLING MIXTURES OF PARTICLES
                                                                                                              TECH 67
                                                                                                                       365
R ACTION, THE ANALYSIS OF UN/ QUANTAL RESPONSES TO MIXTURES OF POISONS UNDER CONDITIONS OF SIMPLE SIMILA BIOKA58
                                                                                                                        74
                                  IDENTIFIABILITY OF MIXTURES OF PRODUCT MEASURES
                                                                                                               AMS 67 1300
                            ON STREAMS OF EVENTS AND MIXTURES OF STREAMS
                                                                                                              JRSSB66 218
                                        ESTIMATION IN MIXTURES OF TWO NORMAL DISTRIBUTIONS
                                                                                                              TECH 67
DESIGN
                                     EXPERIMENTS WITH MIXTURES, A GENERALIZATION OF THE SIMPLEX-LATTICE
                                                                                                             JRSSB68 123
                                                                                                 SOME BIOKA69
    PROPERTIES OF A METHOD OF ESTIMATING THE SIZE OF MOBILE ANIMAL POPULATIONS
                                                                                                                       407
                           ON ESTIMATING THE SIZE OF MOBILE POPULATIONS FROM RECAPTURE DATA
                                                                                                              BIOKA51 293
              TESTS FOR THE DISPERSION AND FOR THE MODAL VECTOR OF A DISTRIBUTION ON A SPHERE
                                                                                                              BIOKA67
                                                                                                                       211
 ON ESTIMATION OF A PROBABILITY DENSITY FUNCTION AND MODE
                                                                                                               AMS 62 1065
                        SOME DIRECT ESTIMATES OF THE MODE
                                                                                                               AMS 65 131
                                 ON ESTIMATION OF THE MODE
                                                                                                               AMS 67 1446
                                                  THE MODE OF A MULTINOMIAL DISTRIBUTION
                                                                                                             BIOKA64 513
```

```
TO CICARETTE SMOKINC AND A STOCHASTIC MODEL FOR THE MODE OF ACTION OF CARCINOCENS /UNC CANCER INCIDENCE BIOCS65
            STATISTICAL METHODS FOR THE MOVER-STAYER MODEL
                                                                                                               JASA 61
                                                                                                                        841
                                                                                                                AMS 65 1802
           SOME TESTS FOR THE INTRACLASS CORRELATION MODEL
          ESTIMATION FOR A ONE-PARAMETER EXPONENTIAL MODEL
                                                                                                               JASA 65
                                                                                                                        560
  INFERENCE ABOUT VARIANCE COMPONENTS IN THE ONE-WAY MODEL
                                                                                                               JASA 65
                                                                                                                        806
                   A NOTE ON AN 'ERRORS IN VARIABLES' MODEL
                                                                                                               JASA 66
                                                                                                                        128
                 DATA TRANSFORMATIONS AND THE LINEAR MODEL
                                                                                                                AMS 67 1456
             A MULTI-PROPORTIONS RANDOMIZED RESPONSE MODEL
                                                                                                               JASA 67
                                                                                                                        990
                      CORRELATED ERRORS IN THE RANDOM MODEL
                                                                                                               JASA 67 1387
 RELIABILITY ESTIMATION OF THE TRUNCATED EXPONENTIAL MODEL
                                                                                                               TECH 67
                                                                                                                        332
                                                                                                                AMS 68
           LIMIT THEOREMS FOR THE MULTI-URN EHREFEST MODEL
                                                                                                                        864
  BAYESIAN ESTIMATION OF MEANS FOR THE RANDOM EFFECT MODEL
                                                                                                               JASA 68
                                                                                                                        174
          ESTIMATION IN A HETEROSCEDASTIC RECRESSION MODEL
                                                                                                               JASA 68
                                                                                                                        552
                      A BLACK BOX OR A COMPREHENSIVE MODEL
                                                                                                               TECH 68
                                                                                                                        219
    TESTING AND ESTIMATION FOR A CIRCULAR STATIONARY MODEL
                                                                                                                AMS 69 1358
A ROBUST POINT ESTIMATOR IN A CENERALIZED RECRESSION MODEL
                                                                                                                AMS 69 1784
     COMPARISON OF FOUR RATIO-TYPE ESTIMATES UNDER A MODEL
                                                                                                               JASA 69
                                                                                                                        574
SPEARMAN SIMULTANEOUS ESTIMATION FOR A COMPARTMENTAL MODEL
THE CHOICE OF THE DECREE OF A POLYNOMIAL MODEL
                                                                                                               TECH 69
                                                                                                                        551
                                                                                                               JRSSB68
                                                                                                                        469
        SPEARMAN ESTIMATION FOR A SIMPLE EXPONENTIAL MODEL
                                                                                                               BIOCS65
                                                                                                                        858
                                   NOTES. A MICRATION MODEL
                                                                                                               BIOCS66
                                                                                                                        409
                 ESTIMATION FOR A SIMPLE EXPONENTIAL MODEL
                                                                                                               BIOCS67
                                                                                                                        717
MAMMALIAN REPRODUCTIVE DATA FITTED TO A MATHEMATICAL MODEL
                                                                                                               BIOCS69
                                                                                                                        529
 HALF-TABLE RATIO ESTIMATOR FOR A SIMPLE EXPONENTIAL MODEL
                                                                                                           THE BIOCS69
                                                                                                                        420
                                                                                                      NOTE ON BIOKA67
  TESTINC HYPOTHESES IN AN UNBALANCED RANDOM EFFECTS MODEL
                                                                                                                        659
   ANALYSIS OF A THREE-COMPONENT HIERARCHICAL DESIGN MODEL
                                                                                                     BAYESIAN BIOKA67
                                                                                                                        109
OF EMPIRICAL BAYES ESTIMATORS IN A LINEAR REGRESSION MODEL
                                                                                                      THE USE BIOKA68
                                                                                                                        525
    BAYES ESTIMATORS IN A MULTIPLE LINEAR RECRESSION MODEL
                                                                                                     EMPIRICAL BIOKA69
                                                                                                                        367
     PROBABILITY AND PREDICTION FOR THE MULTIVARIATE MODEL
                                                                                                    STRUCTURAL JRSSB69 NO.2
       LIKELIHOOD ESTIMATE IN INTRACLASS CORRELATION MODEL
                                                                                               QUERY, MAXIMUM TECH 69 NO.4
       ESTIMATION FOR THE MIXED ANALYSIS OF VARIANCE MODEL
                                                                                           MAXIMUM-LIKELIHOOD BIOKA67
                                                                                                                         93
     PREDICTION IN THE GENERALIZED LINEAR REGRESSION MODEL
                                                                                         BEST LINEAR UNBIASED JASA 62
                                                                                                                        369
         OF NO FIXED MAIN-EFFECTS IN SCHEFFE'S MIXED MODEL
                                                                                       TESTING THE HYPOTHESIS AMS 62 1085
        A GENERALIZATION OF THE MACHINE INTERFERENCE MODEL
                                                                                     CLOSED QUEUEING SYSTEMS, JRSSB61
                                                                                                                        385
  SQUARES ESTIMATORS OF VARIANCE IN A GENERAL LINEAR MODEL
                                                                                   ON THE BIAS OF SOME LEAST- BIOKA68
                                                                                                                        313
GOVARIANCE MATRICES UNDER THE INTRACLASS CORRELATION MODEL
                                                                                   TESTS FOR THE EQUALITY OF
                                                                                                                AMS 67 1286
                                                                            ESTIMATION OF PARAMETERS IN A TR
ANSIENT MARKOV CHAIN ARISING IN A RELIABILITY GROWTH MODEL
                                                                                                                AMS 69
                                                                                                                       1542
ADULT FLOUR BEETLES, AN EXPERIMENT AND A STOCHASTIC MODEL OF THE ECONOMIC DESIGN OF X-CHARTS BASED ON DUNCAN'S MODEL
                                                                           CANNIBALISM OF THE PUPAL STAGE BY BIOCS68
                                                                                                                        247
                                                                         AN ALCORITHM FOR THE DETERMINATION JASA 68
                                                                                                                        304
DICHOTOMOUS AND CONTINUOUS VARIABLES I. THE LOCATION MODEL
CTOR IN AN UNBALANCED HIERARCHAL DESIGN WITH A MIXED MODEL
                                                                         MULTIVARIATE TWO SAMPLE TESTS WITH
                                                                                                                AMS 69
                                                                                                                        290
                                                               /E. THE QUASI-F TEST FOR AN UNNESTED FIXED FA BIOCS66
                                                                                                                        937
  XV. THE HISTORICAL DEVELOPMENT OF THE GAUSS LINEAR MODEL
                                                               /IN THE HISTORY OF PROBABILITY AND STATISTICS BIOKA67
ED BALANCED INCOMPLETE BLOCK DESIGN UNDER THE NEYMAN MODEL
                                                               /ISTRIBUTION OF THE F-STATISTIC IN A RANDOMIZ AMS 63
                                                                                                                       1558
TURE DATA WITH BOTH DEATH AND DILUTION-DETERMINISTIC MODEL
                                                               /OF POPULATION PARAMETERS FROM MULTIPLE RECAP BIOKA63
                                                                                                                        113
                                                               /UTION OF ORDER STATISTICS AND DISTRIBUTION O AMS 63
F THE REDUCED ITH ORDER STATISTIC OF THE EXPONENTIAL MODEL
                                                                                                                        652
  EXPERIMENTS. A GENERALIZATION OF THE BRADLEY-TERRY MODEL (CORR. 68 1550)
                                                                                   TIES IN PAIRED-COMPARISON JASA 67
                                                                                                                         194
        PATTERNS IN RESIDUALS, A TEST FOR REGRESSION MODEL ADEQUACY IN RADIONUCLIDE ASSAY
                                                                                                               TECH 65
                                                                                                                         603
                             A DISCONTINUITY IN MIXED MODEL ANALYSIS
                                                                                                               BIOCS69
                                                                                                                        573
TE PAIRED COMPARISONS. THE EXTENSION OF A UNIVARIATE MODEL AND ASSOCIATED ESTIMATION AND TEST PROCEDURES
                                                                                                               BIOKA69
                                                                                                                         81
                                         A PRODUCTION MODEL AND CONTINUOUS SAMPLING PLAN
                                                                                                               JASA 59
                                                                                                                        231
    OF THE GASOLINE OGTANE NUMBER REQUIREMENT OF NEW MODEL AUTOMOBILES
                                                                                     STATISTICAL ESTIMATION TECH 60
                                                                                                                          5
                                  A USEFUL METHOD FOR MODEL BUILDING
                                                                                                               TECH 62
                                                                                                                         301
                                           SEQUENTIAL MODEL BUILDING FOR PREDICTION IN REGRESSION ANALYSIS,
                                                                                                               AMS 63
                                                                                                                         462
                                                       MODEL BUILDING WITH THE AID OF STOCHASTIC PROCESSES
                                                                                                               TECH 64
                                                                                                                         133
     STATISTICS FOR THE TWO-WAY CLASSIFICATION MIXED MODEL DESIGN
                                                                                          MINIMAL SUFFICIENT JASA 65
                                                                                                                        182
    A JOINT DESIGN CRITERION FOR THE DUAL PROBLEM OF MODEL DISCRIMINATION AND PARAMETER ESTIMATION
                                                                                                               TECH 68
                                                                                                                         145
                                A NOTE ON DESIGNS FOR MODEL DISCRIMINATION, VARIANCE UNKNOWN CASE
                                                                                                               TECH 69
                                                                                                                        396
                                   A NON-NULL RANKING MODEL FOR A SEQUENCE OF M ALTERNATIVES
                                                                                                               BIOKA61
                                                                                                                         441
SEVERAL FACTORS
                                     A MULTIPLICATIVE MODEL FOR ANALYZING VARIANCES WHICH ARE AFFECTED BY
                                                                                                               JASA 60
                                                                                                                        245
                                   A TWO-STATE MARKOV MODEL FOR BEHAVIORAL CHANCE
                                                                                                               JASA 68
                                                                                                                         993
                       TWO FURTHER APPLICATIONS OF A MODEL FOR BINARY REGRESSION
                                                                                                               RTOKA58
                                                                                                                        562
                                                    A MODEL FOR CHEMICAL MUTACENESIS IN BACTERIOPHAGE
                                                                                                               BTOCS65
                                                                                                                        875
 A SIMPLIFIED MODEL FOR DELAYS IN OVERTAKING ON A TWO-LANE ROAD
THE GONSISTENCY AND ADEQUACY OF THE POISSON-MARKOFF MODEL FOR DENSITY FLUCTUATIONS
                                                                                                               JRSSR58
                                                                                                                         408
                                                                                                               BTOKA57
                                                                                                                         43
                                         A STOCHASTIC MODEL FOR DISTRIBUTIONS OF BIOLOGICAL RESPONCE TIMES
                                                                                                                        562
                                                                                                               BIOCS65
                                         A DEMOGRAPHIC MODEL FOR ESTIMATING ACE-ORDER SPECIFIC FERTILITY
RATES
                                                                                                                         774
                                                                                                               JASA 63
                                             A MATRIX MODEL FOR FOREST MANACEMENT
                                                                                                               BIOCS69
                                                                                                                         309
                                             A GENERAL MODEL FOR GENETIC EFFECTS
                                                                                                               BIOCS66
                                                                                                                         864
                                        A STATISTICAL MODEL FOR LIFE-LENGTH OF MATERIALS
                                                                                                               JASA 58
                                                                                                                         151
                                THE BASIC BIRTH-DEATH MODEL FOR MICROBIAL INFECTIONS
                                                                                                               JRSSB65
                                                                                                                         338
                                                     A MODEL FOR MIGRATION ANALYSIS
                                                                                                               JASA 61
                                                                                                                        675
                                                     A MODEL FOR OPTIMUM LINKAGE OF RECORDS
                                                                                                               JASA 68
                                                                                                                       1321
  ON A RELATIONSHIP BETWEEN TWO REPRESENTATIONS OF A MODEL FOR PAIRED COMPARISONS
                                                                                                               BIOCS69
       ESTIMATION OF THE PARAMETER IN THE STOCHASTIC MODEL FOR PHAGE ATTACHMENT TO BACTERIA
                                                                                                                AMS 68
                                                                                                                        183
               SOME STOCHASTIC VERSIONS OF THE MATRIX MODEL FOR POPULATION DYNAMICS
                                                                                                               JASA 69
                                                                                                                         111
                                            A LEARNING MODEL FOR PROCESSES WITH TOOL WEAR
                                                                                                               TECH 68
                                                                                                                         379
                                                     A MODEL FOR RAINFALL OCCURRENCE
                                                                                                               JRSSB64
                                                                                                                         345
                                            A MODIFIED MODEL FOR RAINFALL OCCURRENCE
                                                                                                               JRSSB67
                                                                                                                        151
                                            A QUEUEINC MODEL FOR ROAD TRAFFIC FLOW (WITH DISCUSSION)
                                                                                                               JRSSB61
                                                                                                                         64
                                                     A MODEL FOR SELECTING ONE OF TWO MEDICAL TREATMENTS
                                                                                                               JASA 63
                                                                                                                         388
                                          A TWO-STAGE MODEL FOR SELECTING ONE OR TWO TREATMENTS
                                                                                                               BIOCS65
                                                                                                                         169
                                         A STOCHASTIC MODEL FOR STUDYING THE PROPERTIES OF CERTAIN BIOLOGIC BIOKA58
AL SYSTEMS BY NUMERICAL METHODS
                                                                                                                         16
                                                                                                               JRSSB64
 (WITH DISCUSSION)
                          A BRANCHING POISSON PROCESS MODEL FOR THE ANALYSIS OF COMPUTER FAILURE PATTERNS
                                                                                                                         398
 TESTING ON SYSTEM RELIABILITY
                                  A MARKOVIAN MODEL FOR THE ANALYSIS OF THE EFFECTS OF MARGINAL
                                                                                                                AMS 62
                                                                                                                         754
                                       A MATHEMATICAL MODEL FOR THE ESTIMATION OF INTER-PLANT COMPETITION ( BIOCS67
CORRECTION TO REFERENCE 68 1025)
                                                                                                                        189
NCER INCIDENCE TO CICARETTE SMOKING AND A STOCHASTIC MODEL FOR THE MODE OF ACTION OF CARCINOGENS /UNG GA BIOCS65
                                                                                                                        839
```

MOD - MOM TITLE WORD INDEX

```
THE PROPERTIES OF A STOCHASTIC MODEL FOR THE PREDATOR-PREY TYPE OF INTERACTION BETWE BIOKAGO 219
EN TWO SPECIES
                                                       A MODEL FOR THE SPREAD OF EPIDEMICS BY CARRIERS
                                                                                                                     BTOCS65
                                      A TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED CANCER
PATTENTS
                                                                                                                     JASA 65
                                                                                                                               16
                       THE PROPERTIES OF A STOCHASTIC MODEL FOR TWO COMPETING SPECIES
                                                                                                                     BTOKA58
APPLICATION TO SOME EXPERIMENTAL DATA A STOCHASTIC MODEL FOR TWO COMPETING SPECIES OF TRIBOLIUM AND ITS BIOKA62
          CORRIGENDA, 'THE PROPERTIES OF A STOCHASTIC MODEL FOR TWO COMPETING SPECIES.'
                                                                                                                     BIOKA59
                                                                                                                               279
                                         AN ECONOMETRIC MODEL FOR UNITED STATES AGRICULTURE
                                                                                                                     JASA 59
NOTES. ESTIMATION AFTER PRELIMINARY TESTING IN ANOVA MODEL I
                                                                                                                     BIOCS65
                                                                                                                              752
             TESTING AGAINST ORDERED ALTERNATIVES IN MODEL I ANALYSIS OF VARIANCE, NORMAL THEORY AND NONPA AMS 67 1740
RAMETRIC
                                                   SOME MODEL I PROBLEMS OF SELECTION
                                                                                                                      AMS 61
                                                                                                                               990
                 THEOREMS CONCERNING EISENHART'S MODEL II
ON THE BAYES CHARACTER OF A STANDARD MODEL II ANALYSIS OF VARIANCE TEST
                                                                                                                      AMS 61
                                                                                                                               261
                                                                                                                      AMS 69 1094
                                      THE SPECTRUM OF A MODEL II NESTED ANOVA AND ITS APPLICATIONS
                                                                                                                     TECH 69
                                                                                                                              91
                                  A K-SAMPLE MODEL IN ORDER STATISTICS
A NOTE ON 'A K-SAMPLE MODEL IN ORDER STATISTICS' BY W. J. CONOVER
                                                                                                                      AMS 65 1223
                                                                                                                      AMS 66
                                                                                                                              287
ARB GO A ROBERT AND COMMUNITY ECONOGY AND SOME OF JASA 67

DESIGNS WHICH MINIMIZE MODEL IN POPULATION AND COMMUNITY ECOLOGY AND SOME OF JASA 67

DESIGNS WHICH MINIMIZE MODEL INADEQUACIES. CUBOIDAL REGIONS OF INTEREST BIOKA65

IMITING BEHAVIOR OF POSTERIOR DISTRIBUTIONS WHEN THE MODEL IS INCORRECT. CORR. 66 745

L AMS 66
                                                                                                                               655
                                                                                                                              111
                                                                                                                               51
                                      THE DETERMINISTIC MODEL OF A SIMPLE EPIDEMIC FOR MORE THAN ONE COMMUNIT BIOKAS5
                                                                                                                              126
               GROSS STATE PRODUCT AND AN ECONOMETRIC MODEL OF A STATE
                                                                                                                     JASA 69
                                                                                                                               7R7
                                           A STOCHASTIC MODEL OF ACHE TRANSPORTATION IN THE PERIPHERAL NERVE
TRUNKS
                                                                                                                    BTOKA62
                                                                                                                               447
                                           A STATISTICAL MODEL OF BOOK USE AND ITS APPLICATION TO THE BOOK
STORAGE PROBLEM
                                                                                                                     JASA 69 NO.4
                                           A STOCHASTIG MODEL OF CREDIT SALES DEBT
                                                                                                                     JASA 66 1010
                                                BAYESIAN MODEL OF DECISION-MAKING AS A RESULT OF LEARNING FROM
 EXPERIENCE
                                                                                                                      AMS 69 NO.6
 FOR PLANTS MANUFACTURING HAZARDOUS/
                                          A STATISTICAL MODEL OF EVALUATING THE RELIABILITY OF SAFETY SYSTEMS TECH 59
                                           A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES
                                                                                                                     JASA 62
                ON THE STOCHASTIC MATRIX IN A GENETIG MODEL OF MORAN
                                                                                                                     BIOKA61
                                                 A MIXED MODEL OF REGRESSIONS
                                                                                                                     BIOKA69
                                                                                                                               327
                                          A MINIMUM COST MODEL OF SPARE PARTS INVENTORY CONTROL
                                                                                                                     TECH 67
                                                                                                                               661
                                 INFERENCE ON A GENETIC MODEL OF THE MARKOV CHAIN TYPE
                                                                                                                     BIOKA63
                                                                                                                               251
                                  A COMPUTER SIMULATION MODEL OF THE TEXTILE INDUSTRY
                                                                                                                     JASA 67 133B
                                A QUARTERLY ECONOMETRIC MODEL OF THE UNITED STATES
                                                                                                                     JASA 61
ARLY SPACED CROPS
                                         A MATHEMATICAL MODEL RELATING PLANT YIELD WITH ARRANGEMENT FOR REGUL BIOCS67
ATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE PROCEDURE FOR ESTIM BIOCSGB
                                          A CORRELATION MODEL USEFUL IN THE STUDY OF TWINS
      A GENERALIZED MULTIVARIATE ANALYSIS OF VARIANCE MODEL USEFULL ESPECIALLY FOR GROWTH CURVE PROBLEMS
                                                                                                                     BIOKA64
              BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH APPLICATION TO REGRESSION ANALYSIS
                                                                                                                     BIOKA66
EDNESS AMONG CHILDREN
                                         A MATHEMATICAL MODEL WITH APPLICATIONS TO A STUDY OF ACCIDENT REPEAT JASA 65 1046
                   BAYESIAN ANALYSIS OF THE REGRESSION MODEL WITH AUTO-CORRELATED ERRORS
                                                                                                                    JASA 64
IBUTION OF MAXIMUM LIKELIHOOD ESTIMATORS IN A LINEAR MODEL WITH AUTOREGRESSIVE DISTURBANCES /TOTIC DISTR AMS 69
          TWO-WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE SUBCLASS FREQUENCIES
                                                                                                                    BIOCS65 308
ARIANCE FOR THE TWO-WAY CLASSIFICATION FIXED EFFECTS MODEL WITH OBSERVATIONS WITHIN A ROW SERIALLY CORRELA BIOKA69 NO.3
TIC CONFIDENCE BOUNDS ON RELIABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE CENSORING /REE. ORDER STATIS JASA 69
                                                                                                                              306
                                                                                                                     JASA 68
                          SOME ESTIMATORS FOR A LINEAR MODEL WITH RANDOM COEFFICIENTS
                                                                                                                               584
TURE DATA WITH BOTH DEATH AND IMMIGRATION-STOCHASTIC MODEL. EXPLICIT ESTIMATES FROM CAPTURE-RECAP BIOKA65
TESTS OF HYPOTHESES IN THE LINEAR AUTO-REGRESSIVE MODEL. II. NULL DISTRIBUTIONS FOR HIGHER ORDER SCHEME BIOKA56
                                                                          EXPLICIT ESTIMATES FROM CAPTURE-RECAP BIOKA65
                                                                                                                               186
    TESTS OF HYPOTHESES IN THE LINEAR AUTOREGRESSIVE MODEL, PART I.
                                                                                                                     BIOKA54
                                                                                                                               405
           THE UNRELATED QUESTION RANDOMIZED RESPONSE MODEL, THEORETICAL FRAMEWORK
                                                                                                                     JASA 69
                                                                                                                               520
   ASPECTS OF THE STATISTICAL ANALYSIS OF THE 'MIXED MODEL' APPLICATIONS OF THE PSEUDOINVERSE TO MODELING
                                                                                                               SOME BIOCS68
                                                                                                                               27
                                                                                                                     TECH 66
                                                                                                                               351
        ON THE ESTIMATION OF CONTRASTS IN LINEAR MODELS
DESIGNS FOR DISCRIMINATING BETWEEN TWO RIVAL MODELS
                                                                                                                      AMS 65
                                                                                                                               19B
                                                                                                                     TECH 65
                                                                                                                               307
                         CONDITIONAL-NORMAL REGRESSION MODELS
                                                                                                                     JASA 66
                                                                                                                               477
   LINEAR SEGMENT CONFIDENCE BANDS FOR SIMPLE LINEAR MODELS
                                                                                                                     JASA 67
                                                                                                                               403
           STRAIGHT LINE CONFIDENCE REGIONS OF LINEAR MODELS
                                                                                                                     JASA 67 1365
    ABOUT SENSITIVITY ANALYSIS IN LINEAR PROGRAMMING MODELS
                                                                                                                     SASJ 67
                                                                                                                                3.3
                      DISCRIMINATION AMONG MECHANISTIC MODELS
                                                                                                                     TECH 67
                                                                                                                                57
        NON-DISCOUNTED DENUMERABLE MARKOVIAN DECISION MODELS
                                                                                                                      AMS 68
                                                                                                                               412
        ON SOME BILHARZIA INFECTION AND IMMUNISATION MODELS
                                                                                                                     SASJ 68
                                                                                                                               61
    CONFIDENCE REGIONS FOR VARIANCE RATIOS OF RANDOM MODELS
                                                                                                                               660
                                                                                                                     JASA 69
EFFICIENT ESTIMATION OF PARAMETERS IN MOVING-AVERAGE MODELS DISCRIMINATION BETWEEN ALTERNATIVE BINARY RESPONSE MODELS
                                                                                                                     BIOKA59
                                                                                                                               306
                                                                                                                     BIOKA67
                                                                                                                               573
                    THE PROBABILITIES OF SOME EPIDEMIC MODELS
                                                                                                                     RIOKA69
                                                                                                                               197
                     A TEST FOR DISCRIMINATING BETWEEN MODELS
                                                                                                                     BIOKA69
                                                                                                                               337
  ESTIMATION OF PARAMETERS IN TIME-SERIES REGRESSION MODELS
                                                                                                                     JRSSB60
                                                                                                                              1.39
               ANALYSIS OF CATEGORICAL DATA BY LINEAR MODELS
                                                                                                                     BIOCS69
                                                                                                                               489
EQUILIBRIUM COVARIANCE MATRIX OF DYNAMIC ECONOMETRIC MODELS
                                                                                                               THE JASA 69
                                                                                                                               277
  SAMPLE ESTIMATION OF PARAMETERS FOR MOVING-AVERAGE MODELS
                                                                                                             LARGE- BIOKA61
                                                                                                                               343
 A UNIQUENESS RELATION IN CERTAIN ACCIDENT PRONENESS MODELS
                                                                                                            NOTE ON JASA 67
                                                                                                                               2BB
   INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS MODELS
                                                                                                            OPTIMUM AMS 67
                                                                                                                               422
  BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS
                                                                                                         CONFIDENCE JASA 66
                                                                                                                              182
          OF SOME NONPARAMETRIC PROCEDURES IN LINEAR MODELS
                                                                                                         ROBUSTNESS AMS 6B 1913
          ANALYSIS OF VARIANCE UNDER RANDOM AND MIXED MODELS
                                                                                                         SEQUENTIAL JASA 67 1401
   TO ESTIMATE THE POPULATION MEAN IN RANDOM EFFECTS MODELS
                                                                                                        A PROCEDURE TECH 67
                                                                                                                               577
TRIBUTIONS FOR SOME RANDOM WALKS ARISING IN LEARNING MODELS
                                                                                                       LIMITING DIS AMS 66
                                                                                                                               393
       ESTIMATION BY PARTIAL TOTALS FOR COMPARTMENTAL MODELS
                                                                                                       SIMULTANEOUS JASA 68
    DETERMINANTS OF MOVING-AVERAGE AND AUTOREGRESSIVE MODELS
                                                                                                 ON THE COVARIANCE BIOKAGO
                                                                                                                               194
   OF ANTIBIOTICS ON BACTERIA BY MEANS OF STOCHASTIC MODELS
                                                                                               ANALYSIS OF EFFECTS BIOCS66
    BY REGRESSION FOR CERTAIN INCOMPLETELY SPECIFIED MODELS
                                                                                              BIASES IN PREDICTION BIOKA63
                                                                                                                              391
AMETRIC INFERENCE, AN ALTERNATIVE APPROACH TO LINEAR MODELS
                                                                                             ASYMPTOTICALLY NONPAR AMS 63 1494
          ASSOCIATED WITH CERTAIN STOCHASTIC LEARNING MODELS
                                                                                            LIMITING DISTRIBUTIONS
                                                                                                                      AMS 62 1281
DUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS
                                                                                        FACTOR ANALYSIS, AN INTRO BIOCS65
                                                                                                                              190
VARIANCE POWER FUNCTION IN THE PARAMETRIC AND RANDOM MODELS
                                                                                     COMPARISON OF ANALYSIS OF BIOKA52
A COMPARISON OF THEORETICAL BIOKA60
                                                                                                                               427
AND EMPIRICAL RESULTS FOR SOME STOCHASTIC POPULATION MODELS
  PRODUCT IN ANALYSING CERTAIN STOCHASTIC POPULATION MODELS
                                                                                  ON THE USE OF THE DIRECT MATRIX BIOKA66
IONS ESTIMATORS TO THE STOCHASTIC ASSUMPTIONS OF THE MODELS
                                                                        ON THE SENSITIVITY OF SIMULTANEOUS-EQUAT JASA 66
```

AND SIMPLE LEAST SQUARES LINEAR ESTIMATORS IN LINEAR			
	MODELS /NON-NECATIVE COVARIANCE MATRICES AND BEST	AMS 67	1092
THE 'PARTIAL ADJUSTMENT' AND 'ADAPTIVE EXPECTATIONS'	MODELS /ALL SAMPLE BIAS DUE TO MISSPECIFICATION IN	JASA 66	1130
	MODELS /CURRENCE OF REPLICATIONS IN OPTIMAL DESIGNS		
CAUSAL CHAINS' ACAINST THE CLASS OF 'INTERDEPENDENT'			
	MODELS AND HYPOTHESES WITH RESTRICTED ALTERNATIVES	JASA 65	
	MODELS AND INVARIANCE	AMS 67	
BIULUCICAL BACKCRUUND PROBABILISIIC AND SIAIISIICAL	MODELS AND PROBLEMS (INVITED PAPER) /ILITY TESTING,		
SOME QUANTITATIVE TESTS FOR STOCK PRICE GENERATING	MODELS AND TRADING FOLKLORE	JASA 67	
THE SOLUTION OF QUEUEING AND INVENTORY	MODELS BY SEMI-MARKOV PROCESSES	JRSSB61	
SOME QUANTITATIVE TESTS FOR STOCK PRICE GENERATING THE SOLUTION OF QUEUEING AND INVENTORY ORRECTION TO 'THE SOLUTION OF QUEUEINC AND INVENTORY OMBINABILITY OF INFORMATION FROM UNCORRELATED LINEAR	MODELS BY SEMI-MARKOV PROCESSES' A C	JRSSB63	
OMBINABILITY OF INFORMATION FROM UNCORRELATED LINEAR	MODELS BY SIMPLE WEIGHTINC ON C	AMS 66	
	MODELS FOR A BACTERIAL CROWTH PROCESS WITH REMOVALS	JRSSB63	
IMATIONS TO THE VARIANCE IN DISCRETE-TIME STOCHASTIC	MODELS FOR BIOLOGICAL SYSTEMS A NOTE ON SOME APPROX	BIOKA60	196
	MODELS FOR CATALOGUING PROBLEMS	AMS 67	1255
SYSTEMS ON THEORETICAL	MODELS FOR COMPETITIVE AND PREDATORY BIOLOCICAL	BIOKA57	27
SYSTEMS ON THEORETICAL US DOSAGE RESPONSE CURVES	MODELS FOR COMPLEX CONTINGENCY TABLES AND POLYCHOTOMO	BIOCS66	83
CONTAGION IN STOCHASTIC	MODELS FOR EPIDEMICS	AMS 68	1B63
FURTHER	MODELS FOR ESTIMATING CORRELATION IN DISCRETE DATA	JRSSB64	82
MIXTURE OF DRUGS GENERAL	MODELS FOR QUANTAL RESPONSE TO THE JOINT ACTION OF A	BIOKA64	413
COMPARISON OF TWO APPROACHES TO THE CONSTRUCTION OF	MODELS FOR QUANTAL RESPONSES TO MIXTURES OF DRUGS A	BIOCS67	27
NATIVE SYSTEM FOR THE CLASSIFICATION OF MATHEMATICAL	MODELS FOR QUANTAL RESPONSES TO MIXTURES OF DRUGS IN	BIOCS65	181
MATHEMATICAL	MODELS FOR RANKING FROM PAIRED COMPARISONS	JASA 60	503
GROUPED DATA	MODELS FOR THE ESTIMATION OF COMPETING RISKS FROM	BIOCS69	329
OUS SAMPLING INSPECTION PLANS MARKOVIAN DECISION	MODELS FOR THE EVALUATION OF A LARCE CLASS OF CONTINU	AMS 65	1408
A SYSTEM OF	MODELS FOR THE LIFE CYCLE OF A BIOLOGICAL ORGANISM	BIOKA68	211
MIXTURE OF STIMULI IN BIOLOGICAL ASSAY		BIOKA66	49
		BIOKA6B	469
	MODELS FOR THE RESPONSE OF A MIXTURE	JRSSB68	349
COUPLE PROBABILITY	MODELS FOR THE VARIATION IN THE NUMBER OF BIRTHS PER	JASA 63	721
PROCESSES	MODELS FOR TWO-DIMENSIONAL STATIONARY STOCHASTIC	BIOKA55	170
	MODELS FROM THE BAYESIAN POINT OF VIEW (CORR. 68 1551		
	MODELS IN SAMPLING FINITE POPULATIONS (WITH DISCUSSIO		
	MODELS IN THE ANALYSIS OF VARIANCE (WITH DISCUSSION)	JRSSB60	195
RIBUTION OF VA/ BAYESIAN ANALYSIS OF RANDOM-EFFECT	MODELS IN THE ANALYSIS OF VARIANCE. I. POSTERIOR DIST	BIOKA65	37
	MODELS IN THE ANALYSIS OF VARIANCE. II. EFFECT OF AUT		477
	MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE		
	MODELS INVOLVING NORMAL APPROXIMATIONS TO DISCRETE DA		
STOCHASTIC	MODELS OF CAPITAL INVESTMENT (WITH DISCUSSION)	JRSSB69	1
MIXTURES THREE DIMENSIONAL	MODELS OF EXTREME VERTICES DESIGNS FOR FOUR COMPONENT	TECH 67	472
STEREOSCOPIC	MODELS OF MULTIVARIATE STATISTICAL DATA		
	MODELS OF THE SECOND KIND IN RECRESSION ANALYSIS	JRSSB67	266
SELECTION INDICES FOR QUADRATIC	MODELS OF TOTAL MERIT	BIOCS68	937
SOME STOCHASTIC	MODELS RELATING TIME AND DOSAGE IN RESPONSE CURVES	BIOCS65	583
ASVMPTOTICALLY OPTIMAL STATISTICS IN SOME	MODELS WITH INCREASING FAILURE RATE AVERAGE	AMS 67	3077
ASIMITOTICALLI OTTIMAL STATISTICS IN SOME	MODELS WITH INCHEADING PAIRCE WATE AVENAGE	Amb Oi	1731
VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION		BIOKA63	
VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES.	BIOKA63	327
CORR. 65 343 CORR. 65 SAS ROBUST PROCEDURES FOR SOME LINEAR	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL	BIOKA63 AMS 61 AMS 67	327 448 878
CORR. 65 343 CORR. 65 SAS ROBUST PROCEDURES FOR SOME LINEAR	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL	BIOKA63 AMS 61 AMS 67	327 448 878
CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH TESTS FOR INTERACTION	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65	327 448 878 726 651
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL A MODELS WITH TESTS FOR INTERACTION MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERE	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68	327 448 878 726 651 101
CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL A MODELS WITH TESTS FOR INTERACTION MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERE	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA57	327 448 878 726 651 101 114
CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL A MODELS WITH TESTS FOR INTERACTION MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERE	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA57 BIOCS69	327 448 878 726 651 101 114 457
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL A MODELS WITH TESTS FOR INTERACTION MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERE	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA57 BIOCS69 AMS 68	327 448 878 726 651 101 114 457 2016
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL A MODELS WITH TESTS FOR INTERACTION MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERE MODELS. I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE ORDER STATISTICS	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA57 BIOCS69 AMS 68 AMS 62	327 448 878 726 651 101 114 457 2016 1160
CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE N PERCENTACE POINTS AND	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL A MODELS WITH TESTS FOR INTERACTION MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERE MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA68 BIOKS69 AMS 68 AMS 62 AMS 61	327 448 878 726 651 101 114 457 2016 1160 888
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE N PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL A MODELS WITH TESTS FOR INTERACTION MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERE MODELS. I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA67 BIOCS69 AMS 68 AMS 62 AMS 61 BIOCS68	327 448 878 726 651 101 114 457 2016 1160 888 1019
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE N PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL A MODELS WITH TESTS FOR INTERACTION MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERE MODELS, I MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION MODIFICATION OF CERTAIN RANK TESTS	BIOKA63 AMS 61 AMS 67 AMS 68 BIOCS65 BIOKA68 BIOKA57 BIOCS69 AMS 68 AMS 62 AMS 61 BIOCS68 AMS 63	327 448 878 726 651 101 114 457 2016 1160 888 1019 1101
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE N PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A ION PROBLEMS APPLICATION OF A	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL A MODELS WITH TESTS FOR INTERACTION MODELS WITH TESTS FOR INTERACTION MODELS, INFERENCE, AND STRATEGY MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESS	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA57 BIOCS69 AMS 68 AMS 61 BIOCS68 AMS 61 BIOCS63 AMS 61	327 448 878 726 651 101 114 457 2016 1160 888 1019 1101 843
CORR. 65 343 CORR. 65 343 ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE SAMPLE MEAN AMONG THE SAMPLE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A ION PROBLEMS RY TIES IN BOTH RANKINGS	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL A MODELS WITH TESTS FOR INTERACTION MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERE MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESS MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRA	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA57 BIOCS69 AMS 68 AMS 62 AMS 61 BIOCS68 AMS 63 TECH 68 JASA 57	327 448 878 726 651 101 114 457 2016 1160 888 1019 1101 843 33
CORR. 65 343 CORR. 65 343 ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE SAMPLE MEAN AMONG THE SAMPLE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A ION PROBLEMS RY TIES IN BOTH RANKINGS	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL A MODELS WITH TESTS FOR INTERACTION MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERE MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESS MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRA	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA57 BIOCS69 AMS 68 AMS 62 AMS 61 BIOCS68 AMS 63 TECH 68 JASA 57	327 448 878 726 651 101 114 457 2016 1160 888 1019 1101 843 33
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE N PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A ION PROBLEMS RY TIES IN BOTH RANKINGS A PERCENTILE	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL A MODELS WITH TESTS FOR INTERACTION MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERE MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESS MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRA MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS TO THE VARIATE—DIFFERENCE METHOD	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA67 BIOS69 AMS 68 AMS 62 AMS 61 BIOCS69 AMS 61 TECH 68 JASA 67 JASA 65 BIOKA53	327 448 878 726 651 101 114 457 2016 1160 888 1019 1101 843 33 1127 383
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE N PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A ION PROBLEMS RY TIES IN BOTH RANKINGS A PERCENTALE A COMPARISON OF A	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH TESTS FOR INTERACTION MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERE MODELS. I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESS MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MODIFICED 'HANNAN' AND THE BUREAU OF LABOR STATISTICS	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOCS69 AMS 68 AMS 62 AMS 61 BIOCS68 AMS 63 TECH 68 JASA 57 JASA 65 BIOKA53 JASA 65	327 448 878 726 651 101 114 457 2016 1160 888 1019 1101 843 33 1127 383 442
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A 10N PROBLEMS RY TIES IN BOTH RANKINGS APPLICATION OF A PERCENTILE A COMPARISON OF A ASSAYS ON THE EFFICIENCY OF	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH TESTS FOR INTERACTION MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERE MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESS MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRA MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MODIFICAT ON TO THE VARIATE-DIFFERENCE METHOD MODIFICED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO-	BIOKA63 AMS 61 AMS 67 AMS 667 AMS 667 BIOKA68 BIOKA57 BIOCS69 AMS 68 AMS 61 BIOCS68 AMS 63 TECH 68 JASA 57 JASA 65 BIOKA53 JASA 65 BIOKA53	327 448 878 726 651 101 114 457 2016 1160 888 1019 1101 843 33 1127 383 442 591
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A ION PROBLEMS RY TIES IN BOTH RANKINGS APPLICATION OF A PERCENTILE A COMPARISON OF A ASSAYS ON THE EFFICIENCY OF	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH TESTS FOR INTERACTION MODELS WITH TESTS FOR INTERACTION MODELS, I MODELS, I MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESS MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRA MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS TO THE VARIATE—DIFFERENCE METHOD MODIFICATIONS TO THE VARIATE—DIFFERENCE METHOD MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO— MODIFIED BAYES STOPPINC RULE	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA68 BIOKA57 BIOCS69 AMS 62 AMS 61 BIOCS68 AMS 61 BIOCS68 AMS 65 BIOKA68 BIOKA57 BIOCS68 BIOKA53 BIOCS68 BIOCS68 BIOCS68 BIOCS68	327 448 878 726 651 101 114 457 2016 1160 888 1019 1101 843 33 1127 383 442 591 1404
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE N PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A ION PROBLEMS APPLICATION OF A RY TIES IN BOTH RANKINGS A PERCENTILE A COMPARISON OF A ASSAYS ON THE EFFICIENCY OF UT/ COMPARATIVE VALIDITY OF THE CHI-SQUARE AND TWO	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH TESTS FOR INTERACTION MODELS WITH TESTS FOR INTERACTION MODELS, INFERENCE, AND STRATEGY MODELS, INFERENCE, AND STRATEGY MODERATE ORDER STATISTICS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRA MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MODIFIED 'HANNAN' AND THE BUREAU OF LABOR STATISTICS MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED BAYES STOPPING RULE MODIFIED CHI-SQUARE GOODNESS-OF-FIT TESTS FOR SMALL B	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA67 BIOCS69 AMS 62 AMS 61 BIOCS68 AMS 61 BIOCS68 AMS 63 AECH 68 JASA 57 JASA 65 BIOCS69 BIOKA63 JASA 65 BIOCS69 AMS 63 BIOKA63	327 448 878 726 651 101 114 457 2016 1160 888 1019 1101 843 33 1127 383 442 591 1404 619
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A RY TIES IN BOTH RANKINGS APPLICATION OF A PERCENTILE A COMPARISON OF A ASSAYS ON THE EFFICIENCY OF UT/ COMPARATIVE VALIDITY OF THE CHI-SQUARE AND TWO COMPOUNDING	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH TESTS FOR INTERACTION MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERE MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESS MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRA MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MODIFIED 'HANNAN' AND THE BUREAU OF LABOR STATISTICS MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED CHI-SQUARE GOODNESS-OF-FIT TESTS FOR SMALL B MODIFIED COMPOUND POISSON PROCESS WITH NORMAL	BIOKA63 AMS 61 AMS 67 AMS 68 AMS 68 BIOKA68 BIOKA68 BIOKS69 AMS 68 AMS 61 BIOCS68 AMS 63 TECH 68 JASA 65 BIOKA63 BIOKA63 BIOKA63 JASA 65 BIOKA63 AMS 63 AMS 64 AMS 64 AMS 64 AMS 64 AMS 65 BIOCS68 AMS 65 BIOKA63 AMS 66	327 448 878 726 651 101 114 457 2016 1160 888 1019 1101 843 33 1127 383 442 591 1404 619 637
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A ION PROBLEMS RY TIES IN BOTH RANKINGS APPLICATION OF A RY TIES IN BOTH RANKINGS ACCOMPARISON OF A ASSAYS ON THE EFFICIENCY OF UT/ COMPARATIVE VALIDITY OF THE CHI-SQUARE AND TWO COMPOUNDING	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH TESTS FOR INTERACTION MODELS WITH TESTS FOR INTERACTION MODELS, I MODELS, I MODELS, I MODELS, INFERNCE, AND STRATEGY MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESS MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRA MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MODIFICED HANNAN' AND THE BUREAU OF LABOR STATISTICS MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED CHI-SQUARE GOODNESS-OF-FIT TESTS FOR SMALL B MODIFIED COMPOUND POISSON PROCESS WITH NORMAL	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA68 BIOKA57 BIOCS69 AMS 62 AMS 61 BIOCS68 AMS 61 BIOCS68 AMS 65 BIOKA63 TECH 68 JASA 65 BIOKA63 JASA 65 BIOKA66 JASA 66	327 448 878 726 651 101 114 457 2016 1160 888 1019 1101 843 33 1127 383 442 591 1404 619 637 171
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A ION PROBLEMS RY TIES IN BOTH RANKINGS A PPLICATION OF A ASSAYS ON THE EFFICIENCY OF ASSAYS ON THE EFFICIENCY OF A UT/ COMPARATIVE VALIDITY OF THE CHI-SQUARE AND TWO COMPOUNDING A CORRELATION AND REGRESSION	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH TESTS FOR INTERACTION MODELS WITH TESTS FOR INTERACTION MODELS, I MEDELS, INFERENCE, AND STRATEGY MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRA MODIFICATIONS TO THE VARIATE—DIFFERENCE METHOD MODIFICATIONS TO THE VARIATE—DIFFERENCE METHOD MODIFICED HANNAN' AND THE BUREAU OF LABOR STATISTICS MODIFICED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED BAYES STOPPINC RULE MODIFIED COMPOUND POISSON PROCESS WITH NORMAL MODIFIED COMPOUND POISSON PROCESS WITH NORMAL MODIFIED CONTROL CHART WITH WARNING LINES MODIFIED DOOLITTLE APPROACH FOR MULTIPLE AND PARTIAL	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA67 BIOCS69 AMS 62 AMS 61 BIOCS68 AMS 63 TECH 68 JASA 57 JASA 65 BIOCS69 AMS 63 JASA 65 BIOCS69 AMS 63 JASA 65 BIOKA63 JASA 68 BIOKA62 JASA 68	327 448 878 726 651 101 114 457 2016 888 1019 1101 843 33 1127 383 442 591 1404 619 637 171 133
CORRELATION AND REGRESSION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A APPLICATION OF A PERCENTILE A COMPARISON OF A ON THE EFFICIENCY OF COMPOUNDING CORRELATION AND REGRESSION A ETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH TESTS FOR INTERACTION MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERE MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRA MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MODIFIED 'HANNAN' AND THE BUREAU OF LABOR STATISTICS MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED CHI-SQUARE GOODOMESS-OF-FIT TESTS FOR SMALL B MODIFIED CHI-SQUARE GOODOMESS-OF-FIT TESTS FOR SMALL B MODIFIED COMPOUND POISSON PROCESS WITH NORMAL MODIFIED CONTROL CHART WITH WARNING LINES MODIFIED DOOLITTLE APPROACH FOR MULTIPLE AND PARTIAL MODIFIED DOOLITTLE APPROACH FOR MULTIPLE AND PARTIAL	BIOKA63 AMS 61 AMS 67 AMS 68 AMS 67 BIOCS65 BIOKA68 BIOCS69 AMS 68 AMS 62 AMS 61 BIOCS68 AMS 63 TECH 68 JASA 65 BIOCS69 AMS 63 JASA 65 BIOCS69 AMS 63 JASA 65 BIOCS69 AMS 63 AMS 63 AMS 63 AMS 63 AMS 64 AMS 65 AMS 65 AMS 66	327 448 878 726 651 101 114 457 2016 1160 888 1019 1101 33 1127 383 442 591 1404 619 637 171 133 525
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A ION PROBLEMS APPLICATION OF A PERCENTILE A COMPARISON OF A PERCENTILE A COMPARISON OF A ASSAYS ON THE EFFICIENCY OF UT/ COMPARATIVE VALIDITY OF THE CHI-SQUARE AND TWO COMPOUNDING A CORRELATION AND REGRESSION ETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S A NOTE ON A	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH TESTS FOR INTERACTION MODELS WITH TESTS FOR INTERACTION MODELS, I MODELS, I MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESS MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MODIFIED 'HANNAN' AND THE BUREAU OF LABOR STATISTICS MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED CHI-SQUARE GOODNESS-OF-FIT TESTS FOR SMALL B MODIFIED COMPOUND POISSON PROCESS WITH NORMAL MODIFIED CONTROL CHART WITH WARNING LINES MODIFIED DOOLITTLE APPROACH FOR MULTIPLE AND PARTIAL MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FERENCE B MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FERENCE B	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA68 BIOKA68 AMS 62 AMS 62 AMS 63 TECH 68 JASA 65 BIOKA53 JASA 65 BIOKA63 AMS 63 BIOKA63 JASA 65 BIOKA63 JASA 65 BIOKA63 JASA 65 JASA 66	327 448 878 726 651 101 457 2016 888 1019 1101 843 33 1127 383 442 591 1404 619 637 171 133 525 518
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A ION PROBLEMS APPLICATION OF A RY TIES IN BOTH RANKINGS APPLICATION OF A ASSAYS ON THE EFFICIENCY OF UT/ COMPARATIVE VALIDITY OF THE CHI-SQUARE AND TWO COMPOUNDING ASSAYS CORRELATION AND REGRESSION ETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S A NOTE ON A INEAR REGRESSION FUNCTIONS BY LEAST SQUARES	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH TESTS FOR INTERACTION MODELS WITH TESTS FOR INTERACTION MODELS, I MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESS MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRA MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS TO THE VARIATE—DIFFERENCE METHOD MODIFIED HANNAN' AND THE BUREAU OF LABOR STATISTICS MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED BAYES STOPPING RULE MODIFIED CHI-SQUARE GOODNESS—OF—FIT TESTS FOR SMALL B MODIFIED COMPOUND POISSON PROCESS WITH NORMAL MODIFIED CONTROL CHART WITH WARNING LINES MODIFIED DOOLITTLE APPROACH FOR MULTIPLE AND PARTIAL MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FERENCE B MODIFIED GAUSS—NEWTON METHOD FOR THE FITTING OF NON—L	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA68 BIOKA57 BIOCS69 AMS 62 AMS 61 BIOCS68 AMS 63 TECH 68 JASA 57 JASA 65 BIOKA53 JASA 65 BIOCS69 AMS 63 BIOKA66 JASA 68	327 448 878 726 651 101 114 457 2016 1888 1019 1101 843 33 1127 383 442 591 1404 619 637 171 133 525 318 269
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A APPLICATION OF A RY TIES IN BOTH RANKINGS APPLICATION OF A ASSAYS ON THE EFFICIENCY OF UT/ COMPARATIVE VALIDITY OF THE CHI-SQUARE AND TWO COMPOUNDING A CORRELATION AND REGRESSION A ETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S A NOTE ON A INEAR REGRESSION FUNCTIONS BY LEAST SQUARES THE HYPOTHESES AND THEIR PROPERTIES SOME	MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL A MODELS WITH TESTS FOR INTERACTION MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERE MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRA MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MODIFIED 'HANNAN' AND THE BUREAU OF LABOR STATISTICS MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED CHI-SQUARE GOODOMESS-OF-FIT TESTS FOR SMALL B MODIFIED CHI-SQUARE GOODOMESS-OF-FIT TESTS FOR SMALL B MODIFIED COMPOUND POISSON PROCESS WITH NORMAL MODIFIED CONTROL CHART WITH WARNING LINES MODIFIED DOOLITTLE APPROACH FOR MULTIPLE AND PARTIAL MODIFIED EMPURICAL DISTRIBUTION FUNCTION /FRENCE B MODIFIED EMPURICAL DISTRIBUTION FUNCTION /FRENCE B MODIFIED EMPURICAL DISTRIBUTION FUNCTION /FRENCE B MODIFIED GAUSS-NEWTON METHOD FOR THE FITTING OF NON-L MODIFIED KOLMOGOROV-SMIRNOV TESTS OF APPROXIMATE	BIOKA63 AMS 61 AMS 67 AMS 68 AMS 68 BIOKA68 BIOKA68 BIOKS69 AMS 68 AMS 62 AMS 61 BIOCS68 AMS 63 TECH 68 BIOKS69 AMS 63 JASA 65 BIOCS69 AMS 63 JASA 66 BIOKA62 JASA 68 BIOKA62 JASA 68 BIOKA66 JASA 68	327 448 878 726 651 101 114 457 2016 888 1019 1101 843 33 1127 383 442 591 1404 619 637 171 133 525 318 269 513
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A PERCENTILE A COMPARISON OF A PERCENTILE A COMPARISON OF A PERCENTILE A COMPARATIVE VALIDITY OF THE CHI-SQUARE AND TWO COMPOUNDING CORRELATION AND REGRESSION ETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S A NOTE ON A INEAR REGRESSION FUNCTIONS BY LEAST SQUARES THE HYPOTHESES AND THEIR PROPERTIES SOME	MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH TESTS FOR INTERACTION MODELS WITH TESTS FOR INTERACTION MODELS WITH TESTS FOR INTERACTION MODELS, I MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESS MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRA MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MODIFIED 'HANNAN' AND THE BUREAU OF LABOR STATISTICS MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED CHI-SQUARE GOODNESS-OF-FIT TESTS FOR SMALL B MODIFIED COMPOUND POISSON PROCESS WITH NORMAL MODIFIED COMPOUND POISSON PROCESS WITH NORMAL MODIFIED CONTROL CHART WITH WARNING LINES MODIFIED CONTROL CHART WITH WARNING LINES MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FERENCE B MODIFIED BALANCED MODIFIED SAUSS-NEWTON METHOD FOR THE FITTING OF NON-L MODIFIED LATIN SQUARE	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA68 BIOKA68 AMS 62 AMS 62 AMS 63 TECH 68 JASA 65 BIOKA53 JASA 65 BIOKA63 JASA 66 BIOKA62 JASA 65 BIOKA62 JASA 65 TECH 68 JASA 65 AMS 63 BIOKA66 JASA 66 BIOKA62 JASA 68 BIOKA62 JASA 68 BIOKA62 JASA 68 BIOKA62 JASA 58 AMS 62 JASA 68 TECH 61 AMS 63	327 448 878 726 651 101 457 2016 888 1019 1101 843 3127 383 442 591 1404 619 637 171 133 525 513 305
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A ION PROBLEMS APPLICATION OF A RY TIES IN BOTH RANKINGS A COMPARISON OF A ASSAYS ON THE EFFICIENCY OF UT/ COMPARATIVE VALIDITY OF THE CHI-SQUARE AND TWO COMPOUNDING CORRELATION AND REGRESSION ETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S A NOTE ON A INEAR REGRESSION FUNCTIONS BY LEAST SQUARES THE HYPOTHESES AND THEIR PROPERTIES SOME TIME SERIES ANALYSIS BY	MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH TESTS FOR INTERACTION MODELS WITH TESTS FOR INTERACTION MODELS, I MODELS, I MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESS MODIFICATION OF TWO-SAMPLE RANK TESTS MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS TO THE VARIATE—DIFFERENCE METHOD MODIFIED HANNAN' AND THE BUREAU OF LABOR STATISTICS MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED CHI-SQUARE GOODNESS—OF—FIT TESTS FOR SMALL B MODIFIED COMPOUND POISSON PROCESS WITH NORMAL MODIFIED CONTROL CHART WITH WARNING LINES MODIFIED DOOLITTLE APPROACH FOR MULTIPLE AND PARTIAL MODIFIED EMPANDENTIALLY WEIGHTED PREDICTOR MODIFIED GAUSS—NEWTON METHOD FOR THE FITTING OF NON-L MODIFIED LATIN SQUARE MODIFIED LATIN SQUARE MODIFIED LATIN SQUARE	BIOKA63 AMS 61 AMS 67 AMS 68 AMS 68 BIOKA68 BIOKA68 BIOKS69 AMS 68 AMS 62 AMS 61 BIOCS68 AMS 63 TECH 68 BIOKS69 AMS 63 JASA 65 BIOCS69 AMS 63 JASA 66 BIOKA62 JASA 68 BIOKA62 JASA 68 BIOKA66 JASA 68	327 448 878 726 651 101 114 457 2016 1160 888 1019 33 1127 383 442 591 1404 619 637 171 133 525 318 325 318 318 318 318 318 318 318 318 318 318
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A PPERCENTACE POINTS AND RENYI'S APPLICATION OF A PERCENTILE A COMPARISON OF A PERCENTILE A COMPARISON OF A ON THE EFFICIENCY OF COMPOUNDING CORRELATION AND REGRESSION ETWEEN HYPOTHESICAL DISTRIBUTION FUNCTION AND PYKE'S A NOTE ON A INEAR REGRESSION FUNCTIONS BY LEAST SQUARES THE HYPOTHESES AND THEIR PROPERTIES SOME TIME SERIES ANALYSIS BY	MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH TESTS FOR INTERACTION MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERE MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRA MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MODIFIED 'HANNAN' AND THE BUREAU OF LABOR STATISTICS MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED CHI-SQUARE GOODOMESS-OF-FIT TESTS FOR SMALL B MODIFIED CHI-SQUARE GOODOMESS-OF-FIT TESTS FOR SMALL B MODIFIED COMPOUND POISSON PROCESS WITH NORMAL MODIFIED CONTROL CHART WITH WARNING LINES MODIFIED DOOLITTLE APPROACH FOR MULTIPLE AND PARTIAL MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FERENCE B MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FERENCE B MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FERENCE B MODIFIED GAUSS-NEWTON METHOD FOR THE FITTING OF NON-L MODIFIED KOLMOGOROV-SMIRNOV TESTS OF APPROXIMATE MODIFIED LAAST-SQUARES TECHNIQUES MODIFIED MODEL FOR RAINFALL OCCURRENCE	BIOKA63 AMS 61 AMS 67 AMS 68 AMS 68 BIOKA68 BIOKA68 BIOKS69 AMS 62 AMS 61 BIOCS68 AMS 61 BIOCS68 AMS 63 TECH 68 JASA 57 JASA 65 BIOKS69 AMS 63 BIOKA66 JASA 68	327 448 878 726 651 101 114 457 2016 888 1019 1101 843 33 1127 383 442 591 1404 619 637 171 133 525 318 269 513 305 152 152
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A PPERCENTACE POINTS AND RENYI'S APPLICATION OF A PERCENTILE A COMPARISON OF A PERCENTILE A COMPARISON OF A ON THE EFFICIENCY OF COMPOUNDING CORRELATION AND REGRESSION ETWEEN HYPOTHESICAL DISTRIBUTION FUNCTION AND PYKE'S A NOTE ON A INEAR REGRESSION FUNCTIONS BY LEAST SQUARES THE HYPOTHESES AND THEIR PROPERTIES SOME TIME SERIES ANALYSIS BY	MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH TESTS FOR INTERACTION MODELS WITH TESTS FOR INTERACTION MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERE MODELS, I MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESS MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRA MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MODIFIED 'HANNAN' AND THE BUREAU OF LABOR STATISTICS MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED CHI-SQUARE GOODNESS-OF-FIT TESTS FOR SMALL B MODIFIED COMPOUND POISSON PROCESS WITH NORMAL MODIFIED CONTROL CHART WITH WARNING LINES MODIFIED DOOLITTLE APPROACH FOR MULTIPLE AND PARTIAL MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FERENCE B MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FERENCE B MODIFIED EMPONENTIALLY WEIGHTED PREDICTOR MODIFIED EMPONENTIALLY WEIGHTED PREDICTOR MODIFIED CHAUSS-NEWTON METHOD FOR THE FITTING OF NON-L MODIFIED LATIN SQUARE MODIFIED LATIN SQUARE MODIFIED LATIN SQUARE MODIFIED LATIN SQUARE MODIFIED DHODEL FOR RAINFALL OCCURRENCE	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA68 BIOKA67 BIOCS69 AMS 62 AMS 61 BIOCS68 AMS 63 TECH 68 JASA 65 BIOKA53 JASA 66 BIOKA63 JASA 66 BIOKA66 JASA 58 AMS 62 JASA 58 AMS 62 JASA 68 BIOKA62 JASA 68 BIOKA62 JASA 68 BIOKA62 JASA 68 BIOKA66 JASA 68 BIOKA66 JASA 68 BIOKA66 JASA 66 JASA 66 JASA 66 JASA 66 JASA 66 JASA 66 JASSB67 JASA 66	327 448 878 726 651 101 114 457 2016 888 1019 1101 843 33 1127 383 442 591 1404 619 637 171 133 525 513 305 152 151 139
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A PPERCENTACE POINTS AND RENYI'S APPLICATION OF A PERCENTILE A COMPARISON OF A PERCENTILE A COMPARISON OF A ON THE EFFICIENCY OF UT/ COMPARATIVE VALIDITY OF THE CHI-SQUARE AND TWO COMPOUNDING CORRELATION AND REGRESSION ETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S A NOTE ON A INEAR REGRESSION FUNCTIONS BY LEAST SQUARES THE HYPOTHESES AND THEIR PROPERTIES SOME THE	MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH TESTS FOR INTERACTION MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERE MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRA MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MODIFIED 'HANNAN' AND THE BUREAU OF LABOR STATISTICS MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED CHI-SQUARE GOODOMESS-OF-FIT TESTS FOR SMALL B MODIFIED CHI-SQUARE GOODOMESS-OF-FIT TESTS FOR SMALL B MODIFIED COMPOUND POISSON PROCESS WITH NORMAL MODIFIED CONTROL CHART WITH WARNING LINES MODIFIED DOOLITTLE APPROACH FOR MULTIPLE AND PARTIAL MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FERENCE B MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FERENCE B MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FERENCE B MODIFIED GAUSS-NEWTON METHOD FOR THE FITTING OF NON-L MODIFIED KOLMOGOROV-SMIRNOV TESTS OF APPROXIMATE MODIFIED LAAST-SQUARES TECHNIQUES MODIFIED MODEL FOR RAINFALL OCCURRENCE	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA68 BIOKA57 BIOCS69 AMS 62 AMS 61 BIOCS68 AMS 61 BIOCS68 AMS 65 BIOKA66 BIOKA57 BIOCS68 AMS 66 BIOKA66 BIOKA66 BIOKA66 JASA 68 BIOKA66 JASA 58 AMS 62 JASSB57 JASA 66 JRSSB67 JASA 66 JRSSB67 JASA 66	327 448 878 726 651 101 114 457 2016 1160 888 1019 33 1127 383 442 591 1404 619 637 171 133 525 318 269 513 305 515 152 152 151 159 NO.4
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A APPLICATION OF A RY TIES IN BOTH RANKINGS A APPLICATION OF A ASSAYS ON THE EFFICIENCY OF UT/ COMPARATIVE VALIDITY OF THE CHI-SQUARE AND TWO COMPOUNDING CORRELATION AND REGRESSION ETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S A NOTE ON A ETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S INEAR REGRESSION FUNCTIONS BY LEAST SQUARES THE HYPOTHESES AND THEIR PROPERTIES SOME TIME SERIES ANALYSIS BY A ESTIMATING THE PARAMETERS OF A	MODELS WITH INTERACTION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH TESTS FOR INTERACTION MODELS WITH TESTS FOR INTERACTION MODELS, I MODELS, I MODELS, I MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESS MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRA MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MODIFIED HANNAN' AND THE BUREAU OF LABOR STATISTICS MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED CHI-SQUARE GOODNESS-OF-FIT TESTS FOR SMALL B MODIFIED CONTROL CHART WITH WARNING LINES MODIFIED CONTROL CHART WITH WARNING LINES MODIFIED CONTROL CHART WITH WARNING LINES MODIFIED EMPRICAL DISTRIBUTION FUNCTION /FERENCE B MODIFIED EXPONENTIALLY WEIGHTED PREDICTOR MODIFIED EXPONENTIALLY WEIGHTED PREDICTOR MODIFIED EXPONENTIALLY WEIGHTED PREDICTOR MODIFIED LATIN SQUARE MODIFIED LATIN SQUARE MODIFIED LEAST-SQUARES TECHNIQUES MODIFIED LEAST-SQUARES TECHNIQUES MODIFIED DOISSON DISTRIBUTION MODIFIED SAMPLING, BINOMIAL AND HYPERGEOMETRIC CASES	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA68 BIOKA57 BIOCS69 AMS 62 AMS 61 BIOCS68 AMS 61 BIOCS68 AMS 65 BIOKA66 BIOKA57 BIOCS68 AMS 66 BIOKA66 BIOKA66 BIOKA66 JASA 68 BIOKA66 JASA 58 AMS 62 JASSB57 JASA 66 JRSSB67 JASA 66 JRSSB67 JASA 66	327 448 878 726 651 101 114 457 2016 888 1019 1101 843 33 1127 383 442 591 1404 619 637 171 133 525 311 269 513 305 152 151 159 100 100 110 110 110 110 110 110 110 11
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A APPLICATION OF A PERCENTILE A COMPARISON OF A PERCENTILE A COMPARATIVE VALIDITY OF THE CHI-SQUARE AND TWO COMPOUNDING CORRELATION AND REGRESSION A ON THE PEFFICIENCY OF A UT/ COMPARATIVE VALIDITY OF THE CHI-SQUARE AND TWO COMPOUNDING CORRELATION AND REGRESSION A NOTE ON A ETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S A NOTE ON A INEAR REGRESSION FUNCTIONS BY LEAST SQUARES THE TIME SERIES ANALYSIS BY ESTIMATING THE PARAMETERS OF A ERRATA,	MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH TESTS FOR INTERACTION MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERE MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS MODES OF ORDER STATISTICS MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRA MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MODIFIED 'HANNAN' AND THE BUREAU OF LABOR STATISTICS MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED CHI-SQUARE GOODNESS-OF-FIT TESTS FOR SMALL B MODIFIED CHI-SQUARE GOODNESS-OF-FIT TESTS FOR SMALL B MODIFIED COMPOUND POISSON PROCESS WITH NORMAL MODIFIED DOOLITITLE APPROACH FOR MULTIPLE AND PARTIAL MODIFIED DOOLITITLE APPROACH FOR MULTIPLE AND PARTIAL MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FERENCE B MODIFIED GAUSS-NEWTON METHOD FOR THE FITTING OF NON-L MODIFIED CHI-SQUARE MODIFIED KOLMOGOROV-SMIRNOV TESTS OF APPROXIMATE MODIFIED LEAST-SQUARES TECHNIQUES MODIFIED MODEL FOR RAINFALL OCCURRENCE MODIFIED DANDLING, BINOMIAL AND HYPERGEOMETRIC CASES MODIFIED SAMPLING, BINOMIAL AND HYPERGEOMETRIC CASES MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION	BIOKA63 AMS 61 AMS 67 AMS 68 BIOKA68 BIOKA68 BIOKA67 BIOCS69 AMS 61 BIOCS68 AMS 61 BIOCS68 AMS 63 TECH 68 JASA 65 BIOKA68 BIOKA66 JASA 65 BIOKA66 JASA 68 BIOKA66 JRSSB67 JASA 66 JRSSB67 JASA 66 JRSSB67	327 448 878 726 651 101 114 457 20160 888 1019 1101 843 33 1127 383 442 591 1404 619 637 171 133 525 318 269 513 305 152 151 139 NO.4 282 622
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A APPLICATION OF A RY TIES IN BOTH RANKINGS A PERCENTILE A COMPARISON OF A A PERCENTILE A COMPARISON OF A ON THE EFFICIENCY OF COMPOUNDING CORRELATION AND REGRESSION ETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S A NOTE ON A ETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S INEAR REGRESSION FUNCTIONS BY LEAST SQUARES THE HYPOTHESES AND THEIR PROPERTIES SOME TIME SERIES ANALYSIS BY A ESTIMATING THE PARAMETERS OF A ERRATA, ON MEAN	MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL A MODELS WITH TESTS FOR INTERACTION MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERE MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS MODES OF ORDER STATISTICS MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRA MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MODIFIED 'HANNAN' AND THE BUREAU OF LABOR STATISTICS MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED CHI-SQUARE GOODNESS-OF-FIT TESTS FOR SMALL B MODIFIED COMPOUND POISSON PROCESS WITH NORMAL MODIFIED CONTROL CHART WITH WARNING LINES MODIFIED DOOLITITLE APPROACH FOR MULTIPLE AND PARTIAL MODIFIED DOOLITITLE APPROACH FOR MULTIPLE AND PARTIAL MODIFIED BALSS-NEWTON METHOD FOR THE FITTING OF NON-L MODIFIED CAUSS-NEWTON METHOD FOR THE FITTING OF NON-L MODIFIED KOLMOGOROV-SMIRNOV TESTS OF APPROXIMATE MODIFIED LEAST-SQUARE MODIFIED LEAST-SQUARE MODIFIED LEAST-SQUARE MODIFIED SOULARE ROOT METHOD OF MATRIX INVERSION 'MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION 'MODIFIED TECHNIQUE FOR IMPROVING AN ESTIMATE OF THE	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA68 BIOKA68 BIOKA67 BIOCS69 AMS 62 AMS 61 BIOCS68 AMS 63 TECH 68 JASA 65 BIOKA53 JASA 65 BIOKA53 JASA 66 BIOKA66 JASA 58 AMS 62 JASA 58 AMS 62 JRSSB68 TECH 61 AMS 63 TECH 61 TECH 62 TECH 69 TECH 69 TECH 62 TECH 62	327 448 878 726 651 101 114 457 2016 1160 888 1019 1101 843 33 1127 383 442 511 1404 619 637 171 133 525 521 513 139 NO.4 282 622 541
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A APPLICATION OF A RY TIES IN BOTH RANKINGS A PERCENTILE A COMPARISON OF A A PERCENTILE A COMPARISON OF A ON THE EFFICIENCY OF COMPOUNDING CORRELATION AND REGRESSION ETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S A NOTE ON A ETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S INEAR REGRESSION FUNCTIONS BY LEAST SQUARES THE HYPOTHESES AND THEIR PROPERTIES SOME TIME SERIES ANALYSIS BY A ESTIMATING THE PARAMETERS OF A ERRATA, ON MEAN	MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH TESTS FOR INTERACTION MODELS WITH TESTS FOR INTERACTION MODELS. I MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESS MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRA MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MODIFIED HANNAN' AND THE BUREAU OF LABOR STATISTICS MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED COMPOUND POISSON PROCESS WITH NORMAL MODIFIED COMPOUND POISSON PROCESS WITH NORMAL MODIFIED CONTROL CHART WITH WARNING LINES MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FERENCE B MODIFIED EXPONENTIALLY WEIGHTED PREDICTOR MODIFIED EXPONENTIALLY WEIGHTED PREDICTOR MODIFIED LATIN SQUARE MODIFIED LATIN SQUARE MODIFIED LEAST-SQUARES TECHNIQUES MODIFIED LEAST-SQUARES TECHNIQUES MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION MODIFIED SYSTEMATIC SAMPLING	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA68 BIOKA68 AMS 62 AMS 61 BIOCS69 AMS 61 BIOCS68 AMS 61 BIOCS68 AMS 65 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 JASA 68 BIOKA66 JASA 68 BIOKA66 JASA 68 BIOKA66 JASA 68 TECH 61 AMS 62 JRSSB67 JASA 66 TECH 69 TECH 62 TECH 62 BIOKA66	327 448 878 726 651 101 114 457 2016 888 1019 1101 843 33 1127 383 442 591 1404 619 637 171 133 525 318 269 513 305 515 152 151 139 109 1101 1101 1101 1101 1101 1101
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A ION PROBLEMS APPLICATION OF A PERCENTILE A COMPARISON OF A PERCENTILE A COMPARISON OF A PERCENTILE A COMPARISON OF A ON THE EFFICIENCY OF COMPOUNDING CORRELATION AND REGRESSION ETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S A NOTE ON A INEAR REGRESSION FUNCTIONS BY LEAST SQUARES THE TIME SERIES ANALYSIS BY A ESTIMATING THE PARAMETERS OF A MEAN SEQUENTIAL RANK TESTS II. FUNCTION OF A SEQUENCE UNIFORMLY DISTRIBUTED	MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH TESTS FOR INTERACTION MODELS WITH TESTS FOR INTERACTION MODELS WITH TESTS FOR INTERACTION MODELS, I MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRA MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MODIFIED 'HANNAN' AND THE BUREAU OF LABOR STATISTICS MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED COMPOUND POISSON PROCESS WITH NORMAL MODIFIED CONTROL CHART WITH WARNING LINES MODIFIED CONTROL CHART WITH WARNING LINES MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FERENCE B MODIFIED EXPONENTIALLY WEIGHTED PREDICTOR MODIFIED EXPONENTIALLY WEIGHTED PREDICTOR MODIFIED KOLMOGOROV-SMIRNOV TESTS OF APPROXIMATE MODIFIED LATIN SQUARE MODIFIED LATIN SQUARE MODIFIED LATIN SQUARE MODIFIED LATIN SQUARE MODIFIED SQUASHENOVARES TECHNIQUES MODIFIED SAMPLING, BINOMIAL AND HYPERGEOMETRIC CASES MODIFIED SAMPLING, BINOMIAL AND HYPERGEOMETRIC CASES MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION ' MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION ' MODIFIED TECHNIQUE FOR IMPROVING AN ESTIMATE OF THE MODIFIED TWO-SAMPLE PROCEDURES	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA68 BIOKA68 AMS 62 AMS 61 BIOCS68 AMS 61 BIOCS68 AMS 63 TECH 68 JASA 65 BIOKA66 JASA 65 BIOKA66 JASA 66 BIOKA66 JASA 68 BIOKA66 JASA 68 TECH 61 AMS 62 JASSA 66 TECH 61 TECH 62 TECH 63 TECH 63 TECH 63 TECH 66 TECH 67 TECH 62 TECH 67 TECH 62 TECH 67 TECH 62 TECH 68 TECH 67 TECH 68 TECH 69 AMS 63	327 448 878 726 651 101 114 457 2016 1160 888 1019 1101 843 33 1127 383 442 591 1404 619 637 171 133 525 152 152 152 152 152 152 152 152 152
CORR. 65 343 MULTIVARIATE CORRELATION CORR. 65 343 MULTIVARIATE CORRELATION ROBUST PROCEDURES FOR SOME LINEAR SYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR PAIRED COMPARISON NCE TO THE BALANCED I/ BAYESIAN ANALYSIS OF LINEAR NON-NULL RANKING CONVERGENCE RATES FOR PROBABILITIES OF THE SAMPLE MEAN AMONG THE PERCENTACE POINTS AND KOLMOGOROV-SMIRNOV TESTS AND RENYI'S ON A ION PROBLEMS APPLICATION OF A PERCENTILE A COMPARISON OF A PERCENTILE A COMPARISON OF A PERCENTILE A COMPARISON OF A ON THE EFFICIENCY OF COMPOUNDING CORRELATION AND REGRESSION ETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S A NOTE ON A INEAR REGRESSION FUNCTIONS BY LEAST SQUARES THE TIME SERIES ANALYSIS BY A ESTIMATING THE PARAMETERS OF A MEAN SEQUENTIAL RANK TESTS II. FUNCTION OF A SEQUENCE UNIFORMLY DISTRIBUTED	MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH TESTS FOR INTERACTION MODELS WITH TESTS FOR INTERACTION MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERE MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTIO MODIFICATION MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRA MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS OF THE VARIATE-DIFFERENCE METHOD MODIFIED 'HANNAN' AND THE BUREAU OF LABOR STATISTICS MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED CHI-SQUARE GOODNESS-OF-FIT TESTS FOR SMALL B MODIFIED COMPOUND POISSON PROCESS WITH NORMAL MODIFIED COMPOUND POISSON PROCESS WITH NORMAL MODIFIED COMPOUND POISSON PROCESS WITH NORMAL MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FERENCE B MODIFIED BALSS-NEWTON METHOD FOR THE FITTING OF NON-L MODIFIED GOUSS-NEWTON METHOD FOR THE FITTING OF NON-L MODIFIED KOLMOGOROV-SMIRNOV TESTS OF APPROXIMATE MODIFIED LATIN SQUARE MODIFIED LATIN SQUARES TECHNIQUES MODIFIED MODEL FOR RAINFALL OCCURRENCE MODIFIED SUARE ROOT METHOD OF MATRIX INVERSION 'MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION 'MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION 'MODIFIED SYSTEMATIC SAMPLING MODIFIED TECHNIQUE FOR IMPROVING AN ESTIMATE OF THE	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA68 BIOKA68 BIOKA68 AMS 62 AMS 61 BIOCS68 AMS 61 BIOCS68 AMS 63 TECH 68 JASA 65 BIOKA66 JASA 65 BIOKA66 JASA 66 BIOKA66 JASA 68 BIOKA66 JASA 68 TECH 61 AMS 62 JASSA 66 TECH 61 TECH 62 TECH 63 TECH 63 TECH 63 TECH 66 TECH 67 TECH 62 TECH 67 TECH 62 TECH 67 TECH 62 TECH 68 TECH 67 TECH 68 TECH 69 AMS 63	327 448 878 726 651 101 114 457 2016 1160 888 1019 1101 843 33 1127 383 442 591 1404 619 637 171 133 525 152 152 152 152 152 152 152 152 152
CORRELATION AND REGRESSION ASSAYS ON THE EFFICIENCY OF THE CHI-SQUARE AND TWO COMPOUNDING CORRELATION AND REGRESSION CORRELATION OF A SEQUENTIAL RANK TESTS II. FUNCTION OF A SEQUENTIAL RANK TESTS II. FUNCTION OF A SEQUENCE UNIFORMLY DISTRIBUTED STOCHASTIC PROCESS THE SARPLE WEARNAMORE THE SEPARATION OF A SEQUENTIAL RANK TESTS II. CORPOLABLY TO THE CHI-SQUARE AND TWO COMPOUNDING CORRELATION OF A SEQUENCE UNIFORMLY DISTRIBUTED STOCHASTIC PROCESS THE SERIES ANALYSIS BY A SEQUENCE UNIFORMLY DISTRIBUTED STOCHASTIC PROCESS THE SEQUENTIAL RANK TESTS II. FUNCTION OF A SEQUENCE UNIFORMLY DISTRIBUTED STOCHASTIC PROCESS THE SEQUENTIAL RANK TESTS II. FUNCTION OF A SEQUENCE UNIFORMLY DISTRIBUTED STOCHASTIC PROCESS THE SEPARATION OF A SEQUENCE UNIFORMLY DISTRIBUTED STOCHASTIC PROCESS THE SEQUENTIAL RANK TESTS II. FUNCTION OF A SEQUENCE UNIFORMLY DISTRIBUTED STOCHASTIC PROCESS THE SEPARATION OF THE SEPARATION OF TO STOCHASTIC PROCESS THE SEPARATION OF THE SEPARATION OF TO STOCHASTIC PROCESS THE SEPARATION OF THE SEPARATION OF TO STOCHASTIC PROCESS THE SEPARATION OF THE SEPARATION OF TO STOCHASTIC PROCESS THE SEPARATION OF THE SEPARATION OF TO STOCHASTIC PROCESS THE SEPARATION OF THE SEPARATION OF TO STOCHASTIC PROCESS THE SEPARATION OF THE SEPARATION OF TO STOCHASTIC PROCESS THE SEPARATION OF THE SEPARATION OF TO STOCHASTIC PROCESS THE SEPARATION OF THE SEPARATION OF TO STOCHASTIC PROCESS THE SEPARATION OF THE SEPARATION OF TO STOCHASTIC PROCESS THE SEPARATION OF THE SEPARATION OF TO STOCHASTIC PROCESS THE SEPARATION OF THE SEPARATION OF TO STOCHASTIC PROCESS THE SEPARATION OF THE SEPARATION OF TO STOCHASTIC PROCESS THE SEPARATION OF THE SEPARATION OF TO STOCHASTIC PROCESS THE SEPARATION OF THE SEPARATION OF TO STOCHASTIC PROCESS THE SEPARATION OF THE SEPARATION OF TO STOCHASTIC PROCESS THE SEPARATION OF THE SEPARATION OF TO STOCHASTIC PROCESS THE SEPARATION OF THE SEPARATION OF TO	MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, MODELS WITH ONE OBSERVATION PER CELL MODELS WITH ONE OBSERVATION PER CELL MODELS WITH TOO RANDOM COMPONENTS WITH SPECIAL REFERE MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERE MODELS, I MODELS, INFERENCE, AND STRATEGY MODERATE DEVIATIONS MODERATE DEVIATIONS MODERATE ORDER STATISTICS MODES OF ORDER STATISTICS MODES OF ORDER STATISTICS MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF CERTAIN RANK TESTS MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRA MODIFICATION OF TWO-SAMPLE RANK TESTS MODIFICATIONS OF TWO-SAMPLE RANK TESTS MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MODIFIED 'HANNAN' AND THE BUREAU OF LABOR STATISTICS MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO- MODIFIED CHI-SQUARE GOODNESS-OF-FIT TESTS FOR SMALL B MODIFIED CHI-SQUARE GOODNESS-OF-FIT TESTS FOR SMALL B MODIFIED CONTROL CHART WITH WARNING LINES MODIFIED BOUTTOL CHART WITH WARNING LINES MODIFIED BOUTTOL CHART WITH WARNING LINES MODIFIED BOUTTOL CHART WITH WARNING LINES MODIFIED GAUSS-NEWTON METHOD FOR THE FITTING OF NON-L MODIFIED GAUSS-NEWTON METHOD FOR THE FITTING OF NON-L MODIFIED MODEL FOR RAINFALL OCCURRENCE MODIFIED MODEL FOR RAINFALL OCCURRENCE MODIFIED LEAST-SQUARES TECHNIQUES MODIFIED SAMPLING, BINOMIAL AND HYPERGEOMETRIC CASES MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION 'MODIFIED TECHNIQUE FOR IMPROVING AN ESTIMATE OF THE MODIFIED TWO-SAMPLE PROCEDURES	BIOKA63 AMS 61 AMS 67 AMS 64 BIOCS65 BIOKA63 BIOKA63 BIOCS69 AMS 62 AMS 63 TECH 68 JASA 67 JASA 65 BIOKA63 JASA 66 BIOKA62 JASA 68 BIOKA62 JASA 58 AMS 62 JASA 66 TECH 61 AMS 63 BIOKA66 JASA 66 AMS 63 BIOKA66 AMS 63 BIOKA66 AMS 63 BIOKA66 AMS 63 BIOKA66 AMS 63 BIOKA68 AG BIOKA68 BIOCS69 TECH 62 BIOCS69 TECH 62 AG	327 448 878 726 651 101 114 457 2016 2016 2016 1101 843 33 3127 383 442 591 1404 619 637 171 133 525 318 269 513 305 152 151 139 NO.4 282 622 541 588 615 1243 69 751

```
NORMAL SAMPLES
                                                        MOMENT CONSTANTS FOR THE DISTRIBUTION OF RANCE IN
                                                                                                                 BIOKA51 463
                                                        MOMENT CONVERCENCE OF SAMPLE EXTREMES
                                                                                                                  AMS 6B 881
                                                        MOMENT CROSSINCS AS RELATED TO DENSITY CROSSINCS
                                                                                                                 JRSSB65
                                                                                                                          91
                     A UNIQUENESS THEOREM CONCERNING MOMENT DISTRIBUTIONS
                                                                                                                 JASA 65 1203
                                  THE DISTRIBUTION OF MOMENT ESTIMATORS
                                                                                                                 BIOKA59
                                                       MOMENT ESTIMATORS AND MAXIMUM LIKELIHOOD
                                                                                                                 BIOKA5B
                                          CORRIGENDA, 'MOMENT ESTIMATORS AND MAXIMUM LIKELIHOOD.'
                                          CORRIGENDA, 'MOMENT ESTIMATORS AND MAXIMUM LIKELIHOOD'
                                                                                                                 BIOKA61
TWO BINOMIAL DISTRIBUTIONS
                                                       MOMENT ESTIMATORS FOR THE PARAMETERS OF A MIXTURE OF
                                                                                                                  AMS 62
ANCED R-WAY CLASSIFICATION
                                         VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBAL BIOCS6B
TH SPECIAL REFERENCE TO TYPE II CENSORE/ EFFIGIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPENDENT WI BIOKA62
 BINOMIAL DISTRIBUTION
                                          THE BIAS OF MOMENT ESTIMATORS WITH AN APPLICATION TO THE NEGATIVE BIOKA62
                                SOME DISTRIBUTION AND MOMENT FORMULAE FOR THE MARKOV CHAIN
CRITERION
                                                ON THE MOMENT GENERATING FUNCTION OF PILLAI'S V-SUPER-S
                                                                                                                 AMS 68
NORMAL DISTRIBUTION
                                                   THE MOMENT GENERATING FUNCTION OF THE TRUNCATED MULTI-
                                                                                                                 JRSSB61
THE LAW OF LARGE NUMBERS SOME RESULTS RELATING MOMENT GENERATING FUNCTIONS AND CONVERGENCE RATES IN
                                                                                                                 AMS 67 742
                                                     ON MOMENT GENERATING FUNCTIONS AND RENEWAL THEORY
Q/ THE DETERMINATION OF SAMPLING DISTRIBUTIONS AND MOMENT GENERATING FUNCTIONS BY SOLVING DIFFERENTIAL E JRSSB65
                                                                                                                          B6
SERIALLY CORRELATED NORMAL VARIABLES
                                                       MOMENT GENERATING FUNCTIONS OF QUADRATIC FORMS IN
                                                                                                                 BIOKA58
                       NOTE ON AN APPLICATION OF FOUR MOMENT INEQUALITIES TO A PROBLEM IN QUEUES
                                                                                                                          435
       RENEWAL THEOREMS WHEN THE FIRST OR THE SECOND MOMENT IS INFINITE
                                                                                                                  AMS 6B 1210
 INADMISSIBILITY OF THE BEST INVARIANT TEST WHEN THE MOMENT IS INFINITE UNDER ONE OF THE HYPOTHESES
                                                                                                                 AMS 69 1483
QUAL TO R, R LES/ INEQUALITIES OF THE RTH ABSOLUTE MOMENT OF A SUM OF RANDOM VARIABLES, 1 LESS THAN OR E AMS 65
                                            THE THIRD MOMENT OF CINI'S MEAN DIFFERENCE
                                                                                                                 BIOKA53
                                             THE THIRD MOMENT OF KENDALL'S TAU IN NORMAL SAMPLES
                                                                                                                 BIOKA62
                                           THE CENERAL MOMENT PROBLEM, A CEOMETRIC APPROACH
                                                                                                                 AMS 6B
 BOTH TERMINALS ARE KNOWN
                                           NOTE ON THE MOMENT-PROBLEM FOR UNIMODAL DISTRIBUTIONS WHEN ONE OR BIOKAS6
                                                                                                                          224
BUTIONS FOR WHICH THE HARTLEY-KHAMIS SOLUTION OF THE MOMENT-PROBLEM IS EXACT
                                                                                                     ON DISTRI BIOKA51
                                                       MOMENT-STATISTICS IN SAMPLES FROM A FINITE POPULATION BIOKA52
                                                                                                                           14
                       MACHINE COMPUTATION OF HIGHER MOMENTS
                                                                                                                 JASA 56
                                                                                                                          4B9
                  JOINT DISTRIBUTIONS WITH PRESCRIBED MOMENTS
                                                                                                                  AMS 65
                                                                                                                          286
       SOME STRIKING PROPERTIES OF BINOMIAL AND BETA MOMENTS
                                                                                                                  AMS 69 1753
   TRUNCATED LOGNORMAL DISTRIBUTIONS. I. SOLUTION BY MOMENTS
TABLES OF POISSON POWER MOMENTS
                                                                                                                 BTOKA51
                                                                                                                          414
                                                                                                                 BIOKA56
                                                                                                                          489
                ON SERIES EXPANSIONS FOR THE RENEWAL MOMENTS
                                                                                                                 BIOKA63
                                                                                                                           75
ARACTERIZATIONS OF SOME DISTRIBUTIONS BY CONDITIONAL MOMENTS
                                                                                                             CH AMS 65
                                                                                                                          703
                                                                                          SOME PROBLEMS ARTSING BIOKAGS
 IN APPROXIMATING TO PROBABILITY DISTRIBUTIONS USING MOMENTS
                                                                                                                           95
TRIBUTION TWO METHODS OF ESTIMATING PARAMETERS FROM MOMENTS
                                                                                         THE FOLDED NORMAL DIS TECH 61
SON FREQUENCY DISTRIBUTIONS WITHOUT RESORT TO HIGHER MOMENTS
                                                                      ESTIMATING PARAMETERS IN TRUNCATED PEAR BIOKA53
                                                                                                                           50
                   ON EXACT GROUPING CORRECTIONS TO MOMENTS AND CUMULANTS
                                                                                                                 BIOKA52
                                                                                                                          429
              CORRECTIONS TO 'A THEOREM ON FACTORIAL MOMENTS AND ITS APPLICATIONS' 50 206
                                                                                                                  AMS 61
                                                                                                                          620
 AND THE DISTRIBUTION OF THE RANGE FROM THE/ EXACT MOMENTS AND PERCENTAGE POINTS OF THE ORDER STATISTICS AMS 65
                                                                                                                          907
AND THE DISTRIBUTION OF THE RANGE FROM THE /
NDEPENDENT, BOUNDED RANDOM VA/ UPPER BOUNDS ON THE MOMENTS AND PROBABILITY INEQUALITIES FOR THE SUM OF I BIOKA65
FROM THE TRUNCATED LOGISTIC DISTRIBUTION EXACT MOMENTS AND PRODUCT MOMENTS OF THE ORDER STATISTICS JASA 66
                                                                                                                          559
                                                                                                                          514
                      EFFICIENCY OF THE METHOD OF MOMENTS AND THE GRAM-CHARLIER TYPE A DISTRIBUTION
THE METHOD OF MOMENTS APPLIED TO A MIXTURE OF TWO EXPONENTIAL
                                                                                                                 BIOKA51
                                                                                                                           58
                                                                                                                 AMS 61
                                                                                                                          143
                                                                                TABLE OF THE BOUNDS BIOKAGO
    OF THE PROBABILITY INTECRAL WHEN THE FIRST FOUR MOMENTS ARE GIVEN
                                                                                                                          399
    ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN
                                                                                                       MINIMAX AMS 68
                                                                                                                          492
C A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN /ARSON DENSITIES FOR APPROXIMATIN BIOKAGE
BINOMIAL AN/ THE ASYMPTOTIC VARIANCES OF METHOD OF MOMENTS ESTIMATES OF THE PARAMETERS OF THE TRUNCATED JASA 61
                                                                                                                          559
                                                                                                                          990
                                THE USE OF FRACTIONAL MOMENTS FOR ESTIMATING THE PARAMETERS OF A MIXED EXPO TECH 68
NENTIAL DISTRIBUTION
                                                                                                                          161
                                           ON PRODUCT MOMENTS FROM A FINITE UNIVERSE
                                                                                                                JASA 6B
                                                                                                                          535
                              MORE RESULTS ON PRODUCT MOMENTS FROM A FINITE UNIVERSE
                                                                                                                 JASA 69
                                                                                                                          864
                              MONOTONE CONVERGENCE OF MOMENTS IN AGE DEPENDENT BRANCHING PROCESSES
                                                                                                                 AMS 66 1B06
                  ASYMPTOTIC VALUES OF THE FIRST TWO MOMENTS IN MARKOV RENEWAL PROCESSES
                                                                                                                 BTOKA67 597
 EQUIVALENCE OF MAXIMUM LIKELIHOOD AND THE METHOD OF MOMENTS IN PROBIT ANALYSIS
                                                                                                         NOTES. BIOCS67
                                                                                                                          154
                                ON THE CONVERGENCE OF MOMENTS IN THE CENTRAL LIMIT THEOREM
                                                                                                                 AMS 65
                                                                                                                          BOB
                                                   THE MOMENTS OF A DOUBLY NONCENTRAL T-DISTRIBUTION
                                                                                                                 JASA 67
                                                                                                                          278
                                                HIGHER MOMENTS OF A MAXIMUM-LIKELIHOOD ESTIMATE
                                                                                                                 JRSSB63
                                                                                                                          305
                                                        MOMENTS OF A SERIAL CORRELATION COEFFICIENT
                                                                                                                 JRSSB65
                                                                                                                          308
LIMIT THEOREM
                                                        MOMENTS OF A STOPPING RULE RELATED TO THE CENTRAL
                                                                                                                  AMS 69 1236
                                                        MOMENTS OF A TRUNCATED BIVARIATE NORMAL DISTRIBUTION
                                                                                                                 JRSSB61
                               A NOTE ON THE NEGATIVE MOMENTS OF A TRUNCATED POISSON VARIATE
                                                                                                                 JASA 64 1220
                                                   THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T
                                                                                                                 AMS 64
                                                    ON MCMENTS OF CUMULATIVE SUMS
                                                                                                                  AMS 66 1803
ROOTS OF TWO MATRICES
                                                ON THE MOMENTS OF ELEMENTARY SYMMETRIC FUNCTIONS OF THE
                                                                                                                  AMS 64 1704
                                                   THE MOMENTS OF ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOT AMS 61 1152
S OF A MATRIX IN MULTIVARIATE ANALYSIS
S OF TWO MATRICES AND APPROXIMATIONS TO A DIST/
                                                    ON MOMENTS OF ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOT
                                                                                                                 AMS 6B 1274
                         EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF COVARIANCE
              ON THE MOMENTS OF THE RANGE AND PRODUCT MOMENTS OF EXTREME ORDER STATISTICS IN NORMAL SAMPLES BIOKA56
                                         ON ASYMPTOTIC MOMENTS OF EXTREME STATISTICS
                                             A NOTE ON MOMENTS OF GAMMA ORDER STATISTICS
                                                                                                                 TECH 67
                                                                                                                          315
                                                   THE MOMENTS OF LOG-WEIBULL ORDER STATISTICS
                                                                                                                 TECH 69
                                             BOUNDS ON MOMENTS OF MARTINGALES
                                                                                                                  AMS 68 1719
                                              SAMPLING MOMENTS OF MEANS FROM FINITE MULTIVARIATE POPULATIONS AMS 61 406
                                                        MOMENTS OF NEGATIVE ORDER AND RATIO-STATISTICS
                                                                                                                 JRSSB55
                                                                                                                          122
                    BOUNDS AND APPROXIMATIONS FOR THE MOMENTS OF ORDER STATISTICS
                                                                                                                 JASA 69 NO.4
                                                    ON MOMENTS OF ORDER STATISTICS AND QUASI-RANGES FROM
NORMAL POPULATIONS
                                                                                                                  AMS 63 633
                         RECURRENCE RELATIONS BETWEEN MOMENTS OF ORDER STATISTICS FOR EXCHANCEABLE VARIATES
                                                                                                                 AMS 68 272
                                     ON THE BIVARIATE MOMENTS OF ORDER STATISTICS FROM A LOGISTIC DISTRIBUT
                                                                                                                  AMS 66 1002
                                                        MOMENTS OF ORDER STATISTICS FROM A NORMAL POPULATION
                                                                                                                BIOKA59 433
                                                        MOMENTS OF ORDER STATISTICS FROM THE EQUICORRELATED
MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                                  AMS 62 12B6
POPULATIONS
                                                ON THE MOMENTS OF ORDER STATISTICS IN SAMPLES FROM NORMAL
                                                                                                                 BTOKA54 200
                 ON THE MOMENTS OF UNDER STATISTICS IN SAMPLES FROM NORMAL CORRIGENDA, 'ON THE MOMENTS OF ORDER STATISTICS IN SAMPLES FROM NORMAL
POPULATIONS'
                                                                                                                 BIOKA54 568
DISTRIBUTION, ONE DEGREE OF FREEDOM EXACT LOWER MOMENTS OF ORDER STATISTICS IN SAMPLES FROM THE CHIRELATED POPULATIONS RELATIONS AMONC MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO
                                                                                                                 AMS 62 1292
                                                                                                                 TECH 63 514
```

TITLE WORD INDEX MOM - MOR

```
AMS 65
                                                            MOMENTS OF RANDOMLY STOPPED SUMS
                                                                                                                                    789
                              THE EFFECT OF TIES ON THE MOMENTS OF RANK CRITERIA
                                                                                                                         BIOKA57
                                                                                                                                    526
                                                            MOMENTS OF SAMPLE MOMENTS OF CENSORED SAMPLES FROM A
                                                                                                                                    211
NORMAL POPULATION
                                                                                                                         BIOKA58
                                           CORRICENDA TO 'MOMENTS OF SAMPLE MOMENTS OF CENSORED SAMPLES FROM A
NORMAL POPULATION'
                                                                                                                         BIOKA58
                                                                                                                                    587
               ON THE DISTRIBUTION OF THE FIRST SAMPLE MOMENTS OF SHOT NOISE
                                                                                                                                    2B7
                                                    ON THE MOMENTS OF SOME ONE-SIDED STOPPING RULES
                                                 ON SECOND MOMENTS OF STOPPING RULES
                                                                                                                           AMS 66
                                                BOUNDS ON MOMENTS OF SUMS OF RANDOM VARIABLES
                                                                                                                           AMS 69 1506
                          ASYMPTOTIC EXPANSIONS FOR THE MOMENTS OF THE DISTRIBUTION OF CORRELATION COEFFICIEN BIOKAG6
                                                                                                                                    258
                                            THE FACTORIAL MOMENTS OF THE DISTRIBUTION OF JOINS BETWEEN LINE
SEGMENTS
                                                                                                                         BIOKA54
                                                            MOMENTS OF THE DISTRIBUTION OF SAMPLE SIZE IN A SPRT
                                                        THE MOMENTS OF THE LEIPNIK DISTRIBUTION
                                                                                                                         BIOKA57
                                                                                                                                   270
                                                        ON MOMENTS OF THE MAXIMUM OF NORMED PARTIAL SUMS
                                                                                                                           AMS 69
                                                                                                                                    527
NUMBER OF INDEPENDENT NORMAL VARIATES
                                                    ON THE MOMENTS OF THE MAXIMUM OF PARTIAL SUMS OF A FINITE
                                                                                                                                    79
                                                            MOMENTS OF THE MEAN DEVIATION
                                                                                                                          BIOKA54
                                                                                                                                    541
                                 A NOTE ON THE FIRST TWO MOMENTS OF THE MEAN DEVIATION OF THE SYMMETRICAL MULT BIOKAG7
                                                                                                                                    312
ON (ATY'S FORMULAE AND MADOW/
                                   THE CENTRAL SAMPLING MOMENTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATI BIOKAG1
                                ABSOLUTE AND INCOMPLETE MOMENTS OF THE MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                                         BIOKA61
                                                                                                                                    77
                                 INCOMPLETE AND ABSOLUTE MOMENTS OF THE MULTIVARIATE NORMAL DISTRIBUTION WITH
                                                                                                                          BIOKA53
                                                                                                                                     20
                                                       THE MOMENTS OF THE NON-CENTRAL T-DISTRIBUTION
                                                                                                                          BIOKA61
                                                                                                                                   465
STATIONARY NORMAL PROCESS
                                                       THE MOMENTS OF THE NUMBER OF CROSSINCS OF A LEVEL BY A
                                                                                                                          AMS 65
                                                                                                                                   1656
RIBUTION AND THEIR RELATION TO INVERSE SAMP/
                                                    EXACT MOMENTS OF THE ORDER STATISTICS OF THE GEOMETRIC DIST JASA 67
                                                                                                                                    915
                                                                                                                                    227
                      AN APPROXIMATION OF THE NEGATIVE MOMENTS OF THE POSITIVE BINOMIAL USEFUL IN LIFE TESTI TECH 60
                  RECURRENCE RELATIONS FOR THE INVERSE MOMENTS OF THE POSITIVE BINOMIAL VARIABLE
                                                                                                                         JASA 63
                                                                                                                                    468
                                                            MOMENTS OF THE RADIAL ERROR, CORR. 65 1251
                                                                                                                          JASA 62
                                                                                                                                    187
                                        FIRST AND SECOND MOMENTS OF THE RANDOMIZATION TEST IN TWO ASSOCIATE
                                                                                                                          JASA 69 NO.4
                                         ON THE MOMENTS OF THE RANGE AND PRODUCT MOMENTS OF EXTREME
ORDER STATISTICS IN NORMAL SAMPLES
                                                                                                                          BIOKA56
                                                                                                                                   458
                                                            MOMENTS OF THE RANK CORRELATION COEFFICIENT TAU IN
                                                                                                                          BIOKA53
                                                                                                                                    409
                                   APPROXIMATIONS TO THE MOMENTS OF THE SAMPLE MEDIAN
                                                                                                                           AMS 62
                                                                                                                                    157
TO ITS NON-CENTRAL DISTRIBUTION ON THE MOMENTS OF THE TRACE OF A MATRIX AND APPROXIMATIONS N THE NON-CENTRAL MULTIVARIATE BETA DISTRIBUTION AND MOMENTS OF TRACES OF TWO MATRICES SOME RESULTS O
                                                                                                                           AMS 66 1312
                                                                                                                           AMS 65 1511
                   ON THE INFLUENCE OF MOMENTS ON THE ASYMPTOTIC DISTRIBUTION OF SUMS OF MANUFACTURERS' INVENTORY CYCLES AND MONETARY POLICY
                                                                                                                           AMS 63 1042
RANDOM VARIABLES
                                                                                                                          JASA 58
                                                                                                                                  680
FUNCTIONAL FORM IN THE DEMAND FOR MONEY

FUNCTIONAL FORM IN THE DEMAND FOR MONEY. SOME EVIDENCE FROM CROSS-SECTION DATA

OF HYPOTHESES CONCERNING THE DECREE OF DOMINANCE IN MONOFACTORIAL INHERITANCE NOTES. STATISTICAL TESTS BIOCS68

MONOMIAL-MONOMIAL SYMMETRIC FUNCTION TABLES

BIOKAS9
                                                                                                                                    502
                                                                                                                                    746
                                                                                                                                    429
                                                                                                                                    205
                                                            MONOTONE CONVERGENCE OF BINOMIAL PROBABILITIES AND A MONOTONE CONVERCENCE OF BINOMIAL PROBABILITIES WITH
GENERALIZATION OF RAMANUJAN'S EQUATION
                                                                                                                           AMS 68 1191
AN APPLICATION TO MAXIMUM LIKELIHOOD ESTIMATION
                                                                                                                           AMS 67 1583
BRANCHING PROCESSES
                                                            MONOTONE CONVERGENCE OF MOMENTS IN ACE DEPENDENT
                                                                                                                           AMS 66 1806
                                     NOTE ON COMPLETELY MONOTONE DENSITIES
                                                                                                                           AMS 69 1130
OBABILITY INFERENCES FOR FAMILIES OF HYPOTHESES WITH MONOTONE DENSITY RATIOS MAXIMUM LIKELIHOOD ESTIMATION FOR DISTRIBUTIONS WITH MONOTONE FAILURE RATE
                                                                                                   UPPER AND LOWER PR
                                                                                                                           AMS 69
                                                                                                                                   953
                                                                                                                           AMS 65
                                                                                                                                    69
      LIFE TEST PROCEDURES WHEN THE DISTRIBUTION HAS MONOTONE FAILURE RATE
                                                                                                            EXPONENTIAL JASA 67
                                                                                                                                    548
                                     A NOTE ON TESTS FOR MONOTONE FAILURE RATE BASED ON INCOMPLETE DATA
                                                                                                                           AMS 69
                                                                                                                                    595
                                                 TEST FOR MONOTONE FAILURE RATE BASED ON NORMALIZED SPACING
                                                                                                                           AMS 69 1216
                                                 TESTS FOR MONOTONE FAILURE RATE, II
                                                                                                                           AMS 69 1250
         PROPERTIES OF PROBABILITY DISTRIBUTIONS WITH MONOTONE HAZARD RATE
                                                                                                                           AMS 63
                                                                                                                                    375
               TABLES OF BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE
                                                                                                                          JASA 65
                                                                                                                                    872
                          BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE, I
                                                                                                                           AMS 64 1234
                          BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE, II
                                                                                                                           AMS 64 1258
                             DISTRIBUTIONS POSSESSING A MONOTONE LIKELIHOOD RATIO
                                                                                                                          JASA 56
                                                                                                                                    637
                                   A TECHNICAL LEMMA FOR MONOTONE LIKELIHOOD RATIO FAMILIES
                                                                                                                           AMS 67
                                                                                                                                    611
                                    SOME APPLICATIONS OF MONOTONE OPERATORS IN MARKOV PROCESSES
                                                                                                                           AMS 65 1421
                                           ON ESTIMATING MONOTONE PARAMETERS
                                                                                                                           AMS 68 1030
                                  A CLASS OF TESTS WITH MONOTONE POWER FUNCTIONS FOR TWO PROBLEMS IN MULTIVAR
IATE STATISTICAL ANALYSIS
                                                                                                                           AMS 65 1794
      ANALYSIS OF FACTORIAL EXPERIMENTS BY ESTIMATING MONOTONE TRANSFORMATIONS OF THE DATA
                                                                                                                         JRSSB65
                                                                                                                                  251
                                                    ON THE MONOTONIC CHARACTER OF THE POWER FUNCTIONS OF TWO
                                                                                                                           AMS 61 1145
                                                    ON THE MONOTONICITY OF E-SUB-P(S-SUB-T-OVER-T)
                                                                                                                           AMS 68 1755
                              EXISTENCE, UNIQUENESS AND MONOTONICITY OF SEQUENTIAL PROBABILITY RATIO TESTS
                                                                                                                           AMS 63 1541
THE MULTIVARIATE LINEAR HYPOTHESIS
                                                            MONOTONICITY OF THE POWER FUNCTIONS OF SOME TESTS OF
                                                                                                                           AMS 64
                                                                                                                                  200
INDEPENDENCE BETWEEN TWO SETS OF VARIATES
                                                            MONOTONICITY OF THE POWER FUNCTIONS OF SOME TESTS OF
                                                                                                                           AMS 64
                                                                                                                                    206
                                                            MONOTONICITY OF THE VARIANCE UNDER TRUNCATION AND
VARIATIONS OF HENSEN'S INEQUALITY
                                                                                                                           AMS 69 1106
TESTS OF THE EQUALITY OF TWO COVARIANCE MATRICES,/
                                                           MONOTONICITY PROPERTY OF THE POWER FUNCTIONS OF SOME
                                                                                                                           AMS 64 1059
                                                   ON THE MONOTONICITY PROPERTY OF THE THREE MAIN TESTS FOR
MULTIVARIATE ANALYSIS OF VARIANCE
                                                                                                                          JRSSB64
                                                                                                                                    77
                                              THE ROBBINS-MONRO METHOD FOR ESTIMATING THE MEDIAN LETHAL DOSE
                                                                                                                          JRSSB65
                                                                                                                                     28
                            AN EXTENSION OF THE ROBBINS-MONRO PROCEDURE
                                                                                                                           AMS 67
                                                                                                                                    181
A POOR MAN'S MONTE CARLO (WITH DISCUSSION)

STS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN SQ/ A MONTE CARLO INVESTICATION OF THE SIZE AND POWER OF TE BIOKA68
THEORY IN ESTIMATING THE DISTRIBUTION OF A RATIO BY MONTE CARLO METHODS

USE OF WILCOXON TEST AMS 62
                                                                                                                                    2.3
                                                                                                                                   431
                                                                                     USE OF WILCOXON TEST AMS 62 1194
LTERNATIVE TESTS FOR HETEROGENEITY OF VARIANCE, SOME MONTE CARLO RESULTS
                                                                                                                       A BIOKA66
                                                                                                                                   229
PERMUTATION IN THE SIMPLE RANDOMIZED BLOCK D/ SOME MONTE CARLO RESULTS ON THE POWER OF THE F-TEST UNDER BIOKAG6
                                                                                                                                    199
                                             A SIMPLIFIED MONTE CARLO SIGNIFICANCE TEST PROCEDURE
                                                                                                                          JRSSB68
                                                                                                                                    582
 A STATIONARY GAUSSIAN ORNSTEIN-UHLENBECK PROCESS BY MONTE CARLO SIMULATION /E-TIME MAXIMA AND MINIMA OF JASA 6B 1517
CLUSTER PROBLEM

A MONTE CARLO SOLUTION OF A TWO-DIMENSIONAL UNSTRUCTURE BIOKA67 625
D CLUSTER PROBLEM
                                SEQUENTIAL RANK TESTS I. MONTE CARLO STUDIES OF THE TWD-SAMPLE PROCEDURE
                                                                                                                          TECH 65
                                                                                                                                    463
                                            FINITE SAMPLE MONTE CARLO STUDIES. AND AUTOREGRESSIVE ILLUSTRATION
                                                                                                                          JASA 67
                                                                                                                                    801
 FOR DIFFERENCES IN MEAN

A MONTE CARLO STUDY COMPARING VARIOUS TWO-SAMPLE TESTS TECH 68

-PARAMETRIC ANALYSIS OF VARIANCE IN SMALL SAMPLES, A MONTE CARLO STUDY OF THE ADEQUACY OF THE ASYMPTOTIC A BIOCS69
FOR DIFFERENCES IN MEAN
                                                                                                                                    509
                                                                                                                                    593
GRESSION TECHNIQUE TO PRODUCE AREA BREAKDOWNS OF THE MONTHLY NATIONAL ESTIMATES OF RETAIL TRADE /OF A RE JASA 66
                                                                                                                                    496
  THE USE OF ROTATING SAMPLES IN THE CENSUS BUREAU'S MONTHLY SURVEYS
                                                                                                                          JASA 63
                                                                                                                                    454
AMETRIC ALTERNA/ ASYMPTOTIC RELATIVE EFFICIENCY OF MOOD'S AND MASSEY'S TWO SAMPLE TESTS AGAINST SOME PAR AMS 62 1375
N AND ITS NORMAL APPROX/ EXACT CRITICAL VALUES FOR MOOD'S DISTRIBUTION-FREE TEST STATISTIC FOR DISPERSID TECH 68 497
                                                   NOTE ON MOOD'S TEST
                                                                                                                           AMS 64 1825
                                             ESTIMATES OF MORALITY AND POPULATION FROM SURVEY-REMOVAL RECORDS
                                                                                                                          BIOCS65
                                                                                                                                    921
       ON THE STOCHASTIC MATRIX IN A CENETIC MODEL OF MORAN
                                                                                                                          BIOKA61
                                                                                                                                    203
```

MOR - MUL TITLE WORD INDEX

```
THE HISTORY OF PROBABILITY AND STATISTICS. VIII DE MORGAN AND THE STATISTICAL STUDY OF LITERARY STYLE
                                                                                                                BIOKA58
                                                                                                                          282
AL TESTING OF DIFFERENCES IN CASUAL BEHAVIOUR OF TWO MORPHOLOGICALLY INDISTINGUISHABLE OBJECTS STATISTIC BIOCS67
                                                                                                                          137
              LATENT CLASS ANALYSIS AND DIFFERENTIAL MORTALITY
                                                                                                                 JASA 62
                                                                                                                          430
                                                 PANEL MORTALITY AND PANEL BIAS
                                                                                                                 JASA 59
                                                                                                                           52
EXPERIMENT
                                    THE ESTIMATION OF MORTALITY AND RECRUITMENT FROM A SINCLE TACCINC
                                                                                                                BIOCS65
                                                                                                                          529
                   CONFIDENCE LIMITS FOR QUANTILES OF MORTALITY DISTRIBUTIONS
                                                                                                                BT0CS69
                                                                                                                          176
                              HICHER FEMALE THAN MALE MORTALITY IN SOME COUNTRIES OF SOUTH ASIA. A DIGEST
                                                                                                                 JASA 69 NO.4
                                      ACE PATTERNS OF MORTALITY OF AMERICAN NECROES, 1900-02 TO 1959-61
                                                                                                                 JASA 69
                                                                                                                         433
                                                        MORTALITY PATTERNS IN EICHT STRAINS OF FLOUR BEETLE
                                                                                                                 BIOCS65
                                                                                                                           99
   OF A PATIENT POPULATION WITH RESPECT TO DIFFERENT MORTALITY RISKS
                                                                                                   PARTITIONING JASA 63
                                                                                                                          701
       A TEST FOR RANDOM MINGLING OF THE PHASES OF A MOSAIC
                                                                                                                 BIOCS67
                                                                                                                          657
        THE CONCEPT OF RANDOMNESS IN THE PATTERNS OF MOSAICS
                                                                                                                 BTOCS65
                                                                                                                          90B
                                                   THE MOST ECONOMICAL BINOMIAL SEQUENTIAL PROBABILITY RATIO BIOKAGO
 TEST
                                                                                                                          103
E AND CANONICAL ANALYSIS, A METHOD FOR SELECTING THE MOST EFFECTIVE DISCRIMINATORS IN A MULTIVARIATE SITUA BIOCS68
                                                                                                                          845
E INDEPENDENCE OF TWO POISSON VARIAB/ ON A LOCALLY MOST POWERFUL BOUNDARY RANDOMIZED SIMILAR TEST FOR TH AMS 61
                                                                                                                          809
             EXISTENCE AND UNIQUENESS OF A UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR THE BINOMI BIOKA56
                                                                                                                          465
                                        ASYMPTOTICALLY MOST POWERFUL RANK ORDER TESTS FOR GROUPED DATA
                                                                                                                  AMS 67 1229
            ASYMPTOTIC EFFICIENCY OF CERTAIN LOCALLY MOST POWERFUL RANK TESTS
                                                                                                                  AMS 61
                                                                                                                           BB
                                        ASYMPTOTICALLY MOST POWERFUL RANK TESTS FOR THE TWO-SAMPLE PROBLEM
WITH CENSORED DATA
                                                                                                                  AMS 65 1243
                                        ASYMPTOTICALLY MOST POWERFUL RANK-ORDER TESTS
                                                                                                                  AMS 62 1124
THE MOST STRINGENT AND THE MOST STRINCENT SOMEWHERE MOST POWERFUL TEST FOR CERTAIN PROBLEMS WITH RESTRICT
                                                                                                                  AMS 68
                                                                                                                          531
                                                        MOST POWERFUL TESTS FOR SOME NON-EXPONENTIAL FAMILIES
                                                                                                                  AMS 68
                                                                                                                          772
                                        ASYMPTOTICALLY MOST POWERFUL TESTS IN MARKOV PROCESSES
                                                                                                                  AMS 69 1207
POWERFUL TEST FOR CERTAIN PRO/ A COMPARISON OF THE MOST STRINGENT AND THE MOST STRINGENT SOMEWHERE MOST
                                                                                                                  AMS 6B
                                                                                                                          531
IN PRO/ A COMPARISON OF THE MOST STRINGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFUL TEST FOR CERTA ALTERNATIVE RESTRICTED BY A NUMBER OF LINEAR INEQ/ MOST STRINGENT SOMEWHERE MOST POWERFUL TEST AGAINST
                                                                                                                  AMS 68
                                                                                                                          531
                                                                                                                  AMS 66 1161
                               LOCALLY ASYMPTOTICALLY MOST STRINGENT TESTS AND LAGRANGIAN MULTIPLIER TESTS
OF LINEAR HYPOTHESES.
                                                                                                                 BIOKA65
                                                                                                                          459
                    THE CONVEX HULL OF PLANE BROWNIAN MOTION
                                                                                                                  AMS 63
                                                                                                                          327
 THE EXISTENCE OF CERTAIN STOPPING TIMES ON BROWNIAN MOTION
                                                                                                                  AMS 69
                                                                                                                          715
 SUBORDINATION OF DIFFERENTIAL PROCESSES TO BROWNIAN MOTION
                                                                                                      THE LOOSE
                                                                                                                  AMS 69 1603
 THEOREM FOR THE ANGULAR COMPONENT OF PLANE BROWNIAN MOTION
                                                                                             AN OCCUPATION TIME
                                                                                                                  AMS 67
                                                                                                                           25
ATION OF THE EQUIVALENCE CONDITIONS FOR THE BROWNIAN MOTION TO THE EQUIVALENCE CONDITIONS FOR CERTAIN STAT
                                                                                                                  AMS 69 NO.6
        OF THE ABSOLUTE MAXIMUM FOR CERTAIN BROWNIAN MOTIONS
                                                                                                   DISTRIBUTION
                                                                                                                  AMS 65
                                                                                                                         311
AL, WANDERING AND VARIATION OF THE LONG-TAILED FIELD MOUSE, APODEMUS SYLVATICUS, III. WANDERING POWER AND BIOKA52
                                                                                                                          389
 A NOTE ON FOLLOW-UP FOR SURVIVAL IN THE PRESENCE OF MOVEMENT
                                                                                                                 JASA 61
                                                                                                                          119
                          STATISTICAL METHODS FOR THE MOVER-STAYER MODEL
                                                                                                                 JASA 61
                                                                                                                          841
   INVERSE OF THE COVARIANCE MATRIX OF A FIRST ORDER MOVING AVERAGE
                                                                                                         ON THE BIOKA69 NO.3
                               THE USE OF AN ITERATED MOVING AVERAGE IN MEASURING SEASONAL VARIATIONS
                                                                                                                 JASA 62 149
VARIANCE STATIONARY ON A FINITE TIME INTERVAL
                                                     A MOVING AVERAGE REPRESENTATION FOR RANDOM VARIABLES CO BIOKA65
                                                                                                                          295
               CONTROL CHART TESTS BASED ON GEOMETRIC MOVING AVERAGES
                                                                                                                 TECH 59
                                                                                                                          239
                               A LIMIT LAW CONCERNING MOVING AVERAGES
                                                                                                                  AMS 64
                                                                                                                         424
                 PREDICTION BY EXPONENTIALLY WEIGHTED MOVING AVERACES AND RELATED METHODS
                                                                                                                 JRSSB61
                                                                                                                          414
                                             A NOTE ON MOVING RANGES
                                                                                                                 BTOKA55
                                                                                                                          512
                                  DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCHASTIC PROCESSES
                                                                                                                 JASA 67
                                                                                                                          484
                    ON THE COVARIANCE DETERMINANTS OF MOVING-AVERAGE AND AUTOREGRESSIVE MODELS
                                                                                                                 BIOKA60
                                                                                                                         194
                              THE ESTIMATION OF MIXED MOVING-AVERAGE AUTOREGRESSIVE SYSTEMS
                                                                                                                 BIOKA69 NO 3
                EFFICIENT ESTIMATION OF PARAMETERS IN MOVING-AVERAGE MODELS
                                                                                                                 BTOKA59
                                                                                                                          306
           LARGE-SAMPLE ESTIMATION OF PARAMETERS FOR MOVING-AVERAGE MODELS
                                                                                                                 BTOKA61
                                                                                                                          343
IANCE OF A SAMPLE OF CONSECUTIVE OBSERVATIONS FROM A MOVING-AVERAGE PROCESS / HE LIMITING CENERALIZED VAR BIOKA61
IANCE OF A SAMPLE OF CONSECUTIVE OBSERVATIONS FROM A MOVING-AVERAGE PROCESS' / E LIMITING GENERALIZED VAR BIOKA61
TION OF PARAMETERS FOR AUTORECRESSIVE PROCESSES WITH MOVING-AVERAGE RESIDUALS LARGE-SAMPLE ESTIMA BIOKA62
                                                                                                                          197
                                                                                                                          476
                                                                                                                          117
                                                                                       STATIONARITY CONDITIONS BIOKASS
  FOR STOCHASTIC PROCESSES OF THE AUTOREGRESSIVE AND MOVING-AVERAGE TYPE
                                                                                                                          215
                     EQUILIBRIUM UNDER SELECTION AT A MULTI-ALLELIC SEX-LINKED LOCUS (ACKNOWLEDGEMENT 6B
1025)
                                                                                                                 BIOCS68
                                                                                                                          187
                                  ON A METHOD OF USING MULTI-AUXILIARY INFORMATION IN SAMPLE SURVEYS
                                                                                                                 JASA 65
                                                                                                                           270
                                                        MULTI-COMPONENT SYSTEMS AND STRUCTURES AND THEIR
RELIABILITY
                                                                                                                 TECH 61
                                                                                                                           55
                    HYPOTHESES OF 'NO INTERACTION' IN MULTI-DIMENSIONAL CONTINGENCY TABLES
                                                                                                                 TECH 68
                                                                                                                           107
                 A LOCAL LIMIT THEOREM FOR NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS
                                                                                                                  AMS 65
                                                                                                                          546
                             COMBINATORIAL RESULTS IN MULTI-DIMENSIONAL FLUCTUATION THEORY, CORR. 64 924
                                                                                                                  AMS 63
                                                                                                                           402
                                      SOME EXAMPLES OF MULTI-DIMENSIONAL INCOMPLETE BLOCK DESIGNS
                                                                                                                  AMS 68 1577
                                                      A MULTI-DIMENSIONAL LINEAR GROWTH BIRTH AND DEATH
                                                                                                                  AMS 68
                                                                                                                         727
ONS TO THE WEAK CONVERGENCE OF RANDOM PROCESSES WITH MULTI-DIMENSIONAL TIME PARAMETERS /S WITH APPLICATI
                                                                                                                  AMS 69
                                                                                                                          681
                                        DESIGNING SOME MULTI-FACTOR ANALYTICAL STUDIES
                                                                                                                 JASA 67 1121
                                       INTERACTIONS IN MULTI-FACTOR CONTINGENCY TABLES
                                                                                                                 JRSSB62
                                                                                                                          251
                                                        MULTI-FACTOR DESIGNS OF FIRST ORDER
                                                                                                                 BIOKA52
                                                                                                                           49
               INVERSE POLYNOMIALS, A USEFUL GROUP OF MULTI-FACTOR RESPONSE FUNCTIONS
                                                                                                                 BIOCS66
                                                                                                                          128
     THE MOMENT GENERATING FUNCTION OF THE TRUNCATED MULTI-NORMAL DISTRIBUTION
                                                                                                                 JRSSB61
                                                                                                                          223
                                                      A MULTI-PROPORTIONS RANDOMIZED RESPONSE MODEL
                                                                                                                 JASA 67
                                                                                                                           990
                                                                                                                  AMS 67
                                                        MULTI-SAMPLE ANALOGUES OF SOME ONE-SAMPLE TESTS
                                                                                                                          523
                                                    THE MULTI-SAMPLE SINCLE RECAPTURE CENSUS
                                                                                                                 BTOKA62
                                                                                                                          339
DIRECTIONS
                                                        MULTI-SAMPLE TESTS FOR THE FISHER DISTRIBUTION FOR
                                                                                                                          169
                                                                                                                 BIOKA69
                                  SAMPLING MIXTURES OF MULTI-SIZED PARTICLES, AN APPLICATION OF RENEWAL
                                                                                                                 TECH 69
                                                                                                                           285
THEORY
            ESTIMATES IN SUCCESSIVE SAMPLING USING A MULTI-STAGE DESIGN
                                                                                                                 JASA 68
                                                                                                                           99
OF SEVERAL POPULATIONS
                                                      A MULTI-STAGE PROCEDURE FOR THE SELECTION OF THE BEST
                                                                                                                 JASA 62
                                                                                                                          785
                                                      A MULTI-STAGE RENEWAL PROCESS
                                                                                                                 JRSSB63
                                                                                                                          150
     ON VARIANCES OF RATIOS AND THEIR DIFFERENCES IN MULTI-STAGE SAMPLES, CORR. 63 1162
                                                                                                                 JASA 59
                                                                                                                           416
                                                                                                                          830
                                         ESTIMATION IN MULTI-STAGE SURVEYS
                                                                                                                 JASA 69
                                                      A MULTI-STAGE TEST FOR A NORMAL MEAN
                                                                                                                 JRSSB68
                                                                                                                           461
                POLYNOMIAL PROJECTING PROPERTIES OF MULTI-TERM PREDICTORS OR CONTROLLERS IN NON-STATIONAR JRSSB65
Y TIME SERIES
                                                                                                                          144
                                                   THE MULTI-TYPE GALTON-WATSON PROCESS IN A GENETICAL
                                                                                                                           147
                                                                                                                 BIOCS68
CONTEXT
                                             A NOTE ON MULTI-TYPE GALTON-WATSON PROCESSES WITH RANDOM BRANCH BIOKA68
ING PROBABILITIES
                                                                                                                          589
                               LIMIT THEOREMS FOR THE MULTI-URN EHREFEST MODEL
                                                                                                                  AMS 68
                                                                                                                          864
                                                                                                                  AMS 64
                                       INTERACTIONS IN MULTIDIMENSIONAL CONTINGENCY TABLES
                                                                                                                          632
                  A NOTE ON THE GRAPHICAL ANALYSIS OF MULTIDIMENSIONAL CONTINGENCY TABLES
                                                                                                                 TECH 67
                                                                                                                          481
  ENTROPY FOR HYPOTHESIS FORMULATION. ESPECIALLY FOR MULTIDIMENSIONAL CONTINGENCY TABLES
                                                                                                        MAXIMUM AMS 63
                                                                                                                         911
                                   A LIMIT THEOREM FOR MULTIDIMENSIONAL GALTON-WATSON PROCESSES
                                                                                                                  AMS 66 1211
         ADDITIONAL LIMIT THEOREMS FOR INDECOMPOSABLE MULTIDIMENSIONAL GALTON-WATSON PROCESSES
                                                                                                                  AMS 66 1463
```

TITLE WORD INDEX MOR - MUL

OBSERVATIONS ANALYSIS OF	MULTIFACTOR CLASSIFICATIONS WITH UNEQUAL NUMBERS OF		525
LOWER BOUNDS FOR AVERACE SAMPLE NUMBER OF SEQUENTIAL		AMS 67	
	MULTINOMIAL AND NECATIVE MULTINOMIAL DISTRIBUTIONS.		
SMOOTHED ESTIMATES FOR	MULTINOMIAL CELL PROBABILITIES	AMS 68	561
BIAS IN	MULTINOMIAL CLASSIFICATION	JASA 68	298
A BAYESIAN STUDY OF THE	MULTINOMIAL DISTRIBUTION	AMS 67	1423
SOME APPLICATIONS OF TWO APPROXIMATIONS TO THE	MULTINOMIAL DISTRIBUTION	BIOKA60	463
THE MODE OF A	MULTINOMIAL DISTRIBUTION	BIOKA64	513
PERCENTAGE POINTS OF THE RANGE FROM A SYMMETRIC	MULTINOMIAL CLASSIFICATION MULTINOMIAL DISTRIBUTION A NOTE ON THE FIRST	BIOKA68	377
EQUENTIAL TEST OF THE EQUALITY OF PROBABILITIES IN A	MULTINUMIAL DISTRIBUTION A S	JASA 62	769 535
TWO MOMENTS OF THE MEAN DEVIATION OF THE SYMMETRICAL	MULTINOMIAL DISTRIBUTION A NOTE ON THE FIRST	BIOKA67	312
ERGORICAL DATA FROM FINITE POPULATION OF THE COMPOUND	MULTINOMIAL DISTRIBUTION AND BAYESIAN ANALYSIS OF CAT	JASA 69	216
	MULTINOMIAL DISTRIBUTION AND CORRELATIONS AMONG INVER		
	MULTINOMIAL DISTRIBUTION AND THE DETERMINATION OF		
	MULTINOMIAL DISTRIBUTION COMPARED WITH THE X-SQUARE A		
	MULTINOMIAL DISTRIBUTION IN THE ESTIMATION OF CORRELA		
	MULTINOMIAL DISTRIBUTION, SOME PROPERTIES AND APPLICA		
IBUTION. AND CORRELATIONS AMONG P/ ON THE COMPOUND	MULTINOMIAL DISTRIBUTION, THE MULTIVARIATE BETA-DISTR	BIOKA62	65
ASYMPTOTICALLY OPTIMUM TESTS FOR	MULTINOMIAL DISTRIBUTIONS	AMS 65	369
A DAVECTAN STONETCANCE TEST FOR	MULTINOMIAL DISTRIBUTIONS (WITH DISCUSSION)	BIUKADO	167 399
COPPECATORS TO ISABBLE POINT METHODS FOR THE	MULTINOMIAL DISTRIBUTIONS (WITH DISCUSSION)	AMS 61	619
ON ELECTIONS TO SYDDER LOTHIN WELLOOD LOW THE	MULTINOMIAL DISTRIBUTIONS MULTINOMIAL DISTRIBUTIONS MULTINOMIAL DISTRIBUTIONS (WITH DISCUSSION) MULTINOMIAL DISTRIBUTIONS' 57 861 MULTINOMIAL ESTIMATION MULTINOMIAL EXPERIMENTS, CORR. 66 1246 MULTINOMIAL POPULATIONS S	JRSSR66	45
LAMP TESTS OF LINEAR AND LOGLINEAR HYPOTHESES IN	MULTINOMIAL EXPERIMENTS, CORR. 66 1246	JASA 66	236
IMULTANEOUS CONFIDENCE INTERVALS FOR CONTRASTS AMONG	MULTINOMIAL POPULATIONS S	AMS 64	716
AN INEQUALITY INVOLVING	MULTINUMIAL PRUBABILITIES	RIOKA68	422
SQUARE DISTRIBUTIONS	MULTINOMIAL PROBABILITIES AND THE CHI-SQUARE AND X-	BIOKA63	145
	MULTINOMIAL PROBABILITIES AND THE CHI-SQUARE AND X-		
LARGE SAMPLE SIMULTANEOUS CONFIDENCE INTERVALS FOR		TECH 64	
ON SIMULTANEOUS CONFIDENCE INTERVALS FOR		TECH 65	
	MULTINOMIAL SAMPLING WITH PARTIALLY CATEGORIZED DATA	JASA 68 JRSSB62	
EQUALLY CORRELATED VARIATES AND THE		JRSSB52 JRSSB58	
	MULTINORMAL PROCESS. NEITHER MEAN NOR PRECISION KNOWN		
	MULTIPARAMETER BAYESIAN INDIFFERENCE PROCEDURES (WITH		
	MULTIPARAMETER PROBLEMS FROM A BAYESIAN POINT OF VIEW		
OF LIKELIHOOD EQUATIONS BY ITERATION PROCESSES			
A MODIFIED DOOLITTLE APPROACH FOR	MULTIPLE AND PARTIAL CORRELATION AND REGRESSION		
CONVERGENCE THEOREMS FOR		AMS 63	
THE SCORING OF	MULTIPLE CHOICE QUESTIONNARES MULTIPLE CLASSIFICATION ANALYSIS FOR ARBITRARY	AMS 62	
	MULTIPLE COMPARISIONS IN ONE AND TWO-WAY CLASSIFICATI		
	MULTIPLE COMPARISIONS USING RANK SUMS	TECH 64	
INCOMPLETE BLOCK DESIGNS	MULTIPLE COMPARISIONS WITH A CONTROL IN BALANCED	TECH 61	103
INCOMPLETE BLOCK DESIGNS A REMARK ON OL AN ASYMPTOTICALLY DISTRIBUTION-FREE	MULTIPLE COMPARISON METHODS	TECH 65	
OL AN ASYMPTOTICALLY DISTRIBUTION-FREE	MULTIPLE COMPARISON PROCEDURE, TREATMENT VERSUS CONTR		
		SASJ 69 JASA 59	
A BAYESIAN APPROACH TO		TECH 65	
SIMULTANEOUS TEST PROCEDURES, SOME THEORY OF		AMS 69	
A GENERALIZATION OF THE T-METHOD OF		JASA 69	290
	MULTIPLE COMPARISONS AMONG MEANS	JASA 61	52
ANALYSIS OF COVARIANCE NOTE ON	MULTIPLE COMPARISONS FOR ADJUSTED MEANS IN THE MULTIPLE COMPARISONS FOR BALANCED SINGLE AND DOUBLE	BIOKA58	256
CLASSIFICATIONS. PART 1, RESULTS SHORT-CUT	MULTIPLE COMPARISONS FOR BALANCED SINGLE AND DOUBLE	TECH 65	95
LASSIFICATIONS, PART 2. DERIVATIONS AND/ SHORT-CUT	MULTIPLE COMPARISONS FOR BALANCED SINGLE AND DOUBLE C	BIOKA65	485 359
CORRIGENDA TITNEAD AND MONTITNEAD	MULTIPLE COMPARISONS IN LOGIT ANALYSIS MULTIPLE COMPARISONS IN LOGIT ANALYSIS'	BIOKAGI	284
A GRAPHICAL METHOD FOR MAKING	MULTIPLE COMPARISONS OF FREQUENCIES	TECH 69	321
SIMULTANEOUS TEST PROCEDURES FOR	MULTIPLE COMPARISONS IN LOGIT ANALYSIS' MULTIPLE COMPARISONS OF FREQUENCIES MULTIPLE COMPARISONS ON CATEGORICAL DATA MULTIPLE COMPARISONS PROBLEM	JASA 66	1081
		JASA 69	NO.4
PROBLEMS BAYES RULES FOR A COMMON	MULTIPLE COMPARISONS PROBLEM AND RELATED STUDENT-T	AMS 61	
TABLES FOR A TREATMENTS VERSUS CONTROL		TECH 65	
	MULTIPLE COMPARISONS SIGN TEST, ALL PAIRS OF MULTIPLE COMPARISONS USING RANK SUMS	BIOCS67 TECH 65	
	MULTIPLE COMPARISONS WITH A CONTROL FOR MULTIPLY-CLAS		
	MULTIPLE CONTRASTS USING T-DISTRIBUTIONS	JASA 65	
	MULTIPLE CONTROLS IN THE CASE OF ALL-OR-NONE RESPONSE		
TABLES FOR CONSTRUCTING CONFIDENCE LIMITS ON THE	MULTIPLE CORRELATION COEFFICIENT	JASA 63	1082
A RELATIVELY SIMPLE FORM OF THE DISTRIBUTION OF THE		JRSSB68	
	MULTIPLE CORRELATION COEFFICIENT /DISCRIMINANT ANAL		
	MULTIPLE CORRELATION COEFFICIENT, CORR. 58 1031 MULTIPLE CORRELATION MATRIX	JASA 57 SASJ 69	
	MULTIPLE CORRELATION MATRIX IN THE DUAL CASE	AMS 64	
	MULTIPLE CORRELATION MATRIX, NON-CENTRAL MULTIVARIATE		
THE ASYMPTOTIC POWERS OF CERTAIN TESTS BASED ON		JRSSB56	
	MULTIPLE COVARIATE ANALYSIS (CORR. 66 962)	BIOCS65	
	MULTIPLE DEATH PROCESS AND APPLICATIONS TO LUNAR CRAT		
	MULTIPLE DECISION (SELECTION AND RANKING) RULES MULTIPLE DECISION METHODS FOR RANKING POPULATION	TECH 65 AMS 62	
CHOICE OF THE DEGREE OF A POLYNOMIAL REGRESSION AS A		AMS 62	
	MULTIPLE DECISION PROBLEMS OF TYPE I	AMS 69	
AL POPULATIONS WITH A COMMON UNKNOWN/ A TWO-SAMPLE	MULTIPLE DECISION PROCEDURE FOR RANKING MEANS OF NORM	BIOKA54	170
	MULTIPLE DECISION PROCEDURES	AMS 69	
IN PROBLEMS IN ANALYSIS OF VARIANCES	MULTIPLE DECISION PROCEDURES BASED ON RANKS FOR CERTA	AMS 69	619

```
MATRIX AND MULTIPLE DECREMENT IN POPULATION ANALYSIS
                                                                                                             BIOCS67
                            MISSINC VALUES IN LINEAR MULTIPLE DISCRIMINANT ANALYSIS
                                                                                                             BIOCS6B B35
REGRESSION
                                          SINCLE AND MULTIPLE DISCRIMINATION RECIONS IN MULTIPLE LINEAR
                                                                                                             SASJ 68
                                                                                                                       67
           THE ANALYSIS OF PERSISTENCE IN A CHAIN OF MULTIPLE EVENTS
                                                                                                             BTOKA64
                                                                                                                      405
                           PERSISTENCE IN A CHAIN OF MULTIPLE EVENTS WHEN THERE IS SIMPLE DEPENDENCE
                                                                                                             BIOKA62
                                                                                                                      351
                                         A LEMMA FOR MULTIPLE INFERENCE
                                                                                                              AMS 65 1873
 OFTIMUM ALLOCATION ARISING IN CHEMICAL ANALYSES BY MULTIPLE ISOTOPE DILUTION
                                                                                                A PROBLEM OF TECH 61 509
                                    COMPUTATION WITH MULTIPLE K-STATISTICS
                                                                                                             JASA 63 120
     BEHAVIOR OF WILCOXON TYPE CONFIDENCE RECIONS IN MULTIPLE LINEAR RECRESSION
                                                                                                  ASYMPTOTIC
                                                                                                             AMS 69 NO.6
FOR CLASS DIFFERENCES
                                                     MULTIPLE LINEAR RECRESSION ANALYSIS WITH ADJUSTMENT
                                                                                                             JASA 61 729
                     EMPIRICAL BAYES ESTIMATORS IN A MULTIPLE LINEAR RECRESSION MODEL
                                                                                                             BIOKA69
                                                                                                                      367
                ON THE ERCODICITY FOR NON-STATIONARY MULTIPLE MARKOV PROCESSES
                                                                                                              AMS 68 1448
                                A TABLE FOR RANK SUM MULTIPLE PAIRED COMPARISONS
                                                                                                             TECH 67 561
           SOME RULES FOR A COMBINATORIAL METHOD FOR MULTIPLE PRODUCTS OF GENERALIZED K-STATISTICS
                                                                                                              AMS 68
                                                                                                                     9B3
                                                SOME MULTIPLE PRODUCTS OF POLYKAYS
                                                                                                              AMS 69 1297
 APPROXIMATIONS TO THE CRITICAL VALUES FOR DUNCAN'S MULTIPLE RANGE TEST
                                                                                                     NOTES BIOCS66 179
                                         PARTIAL AND MULTIPLE RANK CORRELATION
                                                                                                             BIOKA51
                                                                                                                       26
DETERMINI/ ESTIMATES OF POPULATION PARAMETERS FROM MULTIPLE RECAPTURE DATA WITH BOTH DEATH AND DILUTION- BIOKA63
                                                                                                                      113
                             ERRORS OF PREDICTION IN MULTIPLE REGRESSION
                                                                                                             TECH 67
                                                                                                                      309
                         AUGMENTING EXISTING DATA IN MULTIPLE REGRESSION
                                                                                                             TECH 68
                                                                                                                       73
                          THE CHOICE OF VARIABLES IN MULTIPLE REGRESSION (WITH DISCUSSION)
                                                                                                             JRSSB68
                                                                                                                       31
     SEASONAL ADJUSTMENT OF ECONOMIC TIME SERIES AND MULTIPLE RECRESSION ANALYSIS
                                                                                                             JASA 63
                                                                                                                      993
'S FORMULAE FOR ADDITION OR OMISSION OF A VARIATE IN MULTIPLE REGRESSION ANALYSIS
                                                                                       EXTENSION OF COCHRAN JASA 63
                                                                                                                      527
                                                     MULTIPLE REGRESSION ANALYSIS OF A POISSON PROCESS
                                                                                                             JASA 61
                                                                                                                      235
ATIONS OF JORDAN'S PROCEDURE FOR MATRIX INVERSION IN MULTIPLE REGRESSION AND MULTIVARIATE DISTANCE ANALYSI
                                                                                                            JRSSR63
                                                                                                                      352
AY-CLASSIFICATION TABLES WHEN THE CROSS/ UNBIASED MULTIPLE REGRESSION COEFFICIENTS ESTIMATED FROM ONE-W JASA 66
                                                                                                                      720
PLOT INFORMATION
                                                     MULTIPLE REGRESSION COMBINING WITHIN- AND BETWEEN-
                                                                                                             BIOCS66
                                                                                                                       26
                                  ON THE ANALYSIS OF MULTIPLE REGRESSION IN K CATEGORIES
                                                                                                             BIOKA57
                                                                                                                       67
                                                      MULTIPLE REGRESSION IN PROCESS DEVELOPMENT
                                                                                                             TECH 68
                                                                                                                      257
THE INDEPENDENT VARIABLES
                                                      MULTIPLE REGRESSION WITH MISSING OBSERVATIONS AMONG
                                                                                                             JASA 56 122
                                                      MULTIPLE REGRESSION WITH STATIONARY ERRORS
                                                                                                             JASA 66
                                                                                                                      917
THE GENERALIZATION OF PROBIT ANALYSIS TO THE CASE OF MULTIPLE RESPONSES
                                                                                                             BIOKA57 131
KELIHOOD ESTIMATOR WHERE THE LIKELIHOOD EQUATION HAS MULTIPLE ROOTS
                                                                               EVALUATION OF THE MAXIMUM-LI BIOKA66
                                                      MULTIPLE RUNS
                                                                                                             BIOKA57 168
                                        A COMPOUNDED MULTIPLE RUNS DISTRIBUTION
                                                                                                             JASA 69 NO.4
                                      CORRIGENDA TO 'MULTIPLE RUNS'
                                                                                                             BIOkA57 534
                                                 THE MULTIPLE SAMPLE UP-AND-DOWN METHOD IN BIOASSAY
                                                                                                             JASA 69
                                                                                                                      147
                           SPECTRAL FACTORIZATION OF MULTIPLE TIME SERIES
                                                                                                             BIOKA66
                                                                                                                      264
                              ORDERED HYPOTHESES FOR MULTIPLE TREATMENTS, A SIGNIFICANCE TEST FOR LINEAR
                                                                                                             JASA 63
                                                                                                                      216
TION OF THE Q-SUB-1 TO Q-SUB-N BY M-SUB-1 TO M-SUB-N MULTIPLE-LATTICE DESIGN ESTIMATED REGRESSION FUNC JRSSB69 NO.2
IS IMMIGRATION OR DEATH
                                                 THE MULTIPLE-RECAPTURE CENSUS II. ESTIMATION WHEN THERE
                                                                                                             BIOKA59
                                                                                                                     336
                                       A NOTE ON THE MULTIPLE-RECAPTURE CENSUS.

THE MULTIPLE-RECAPTURE CENSUS. I. ESTIMATION OF A CLOSED
                                                                                                             BTOKA65
                                                                                                                      249
POPULATION
                                                                                                             BIOKA58
                                                                                                                      343
                                SOME APPLICATIONS OF MULTIPLE-TYPE BRANCHING PROCESSES IN POPULATION
                                                                                                             JRSSB68
GENETICS
                                                                                                                     164
                                                      MULTIPLEX SAMPLING
                                                                                                              AMS 63 1322
                                              APPLIED MULTIPLEX SAMPLING
                                                                                                             TECH 63
                                                                                                                      341
                                  THE RELIABILITY OF MULTIPLEX SYSTEMS WITH REPAIR
                                                                                                             JRSSB66
                                                                                                                      459
                                                   A MULTIPLICATIVE MODEL FOR ANALYZING VARIANCES WHICH
                                                                                                             JASA 60
ARE AFFECTED BY SEVERAL FACTORS
                                                                                                                      245
CTION IN A GALTON-WATSON PROCESS AND IN SOME RELATED MULTIPLICATIVE POPULATION PROCESSES /ITIES OF EXTIN
                                                                                                             AMS 68 1700
                              RANDOMIZED ROUNDED-OFF MULTIPLIERS IN SAMPLING THEORY
                                                                                                             JASA 61
                                                                                                                      328
                                 THE USE OF LAGRANGE MULTIPLIERS WITH RESPONSE SURFACES
                                                                                                             TECH 59
                                                                                                                      289
             SINGLE-STAGE PROCEDURES FOR RANKING MULTIPLY-CLASSIFIED VARIANCES OF NORMAL POPULATIONS MULTIPLE COMPARISONS WITH A CONTROL FOR MULTIPLY-CLASSIFIED VARIANCES OF NORMAL POPULATIONS
                                                                                                             TECH 68
                                                                                                                      693
                                                                                                             TECH 68
                                                                                                                      715
                                       A NOTE ON THE MULTIPLYINC FACTORS FOR VARIOUS CHI-SQUARE APPROXIMAT JRSSB54
TONS
                                                                                                                      296
TS FOR PARAMETER ESTIMATION IN NON-LINEAR SITUATIONS MULTIRESPONSE CASE /IONS IN THE DESIGN OF EXPERIMEN BIOKA67
                                                                                                                      662
       GRAPHICAL METHODS FOR INTERNAL COMPARISONS IN MULTIRESPONSE EXPERIMENTS
                                                                                                              AMS 64 613
                  ON A GENERAL CLASS OF DESIGNS FOR MULTIRESPONSE EXPERIMENTS
                                                                                                              AMS 68 1825
   DESIGN OF EXPERIMENTS FOR PARAMETER ESTIMATION IN MULTIRESPONSE SITUATIONS
                                                                                                             BIOKA66 525
                                 CHARACTERIZATION OF MULTISAMPLE DISTRIBUTION-FREE STATISTICS
                                                                                                              AMS 64
                                                                                                                      735
STATISTICS
                                              ON SOME MULTISAMPLE PERMUTATION TESTS BASED ON A CLASS OF U-
                                                                                                             JASA 67 1201
                        SOME NONPARAMETRIC TESTS FOR MULTISAMPLE PROBLEMS
                                                                                                             TECH 68
                                                                                                                     578
                                                   ON MULTISTAGE ESTIMATION
                                                                                                              AMS 63 1452
               OPTIMAL ALLOCATION IN STRATIFIED AND MULTISTAGE SAMPLES USING PRIOR INFORMATION
                                                                                                             JASA 68
                                                                                                                     964
DISTRIBUTIONS AND COSTS
                                                      MULTISTAGE SAMPLING PROCEDURES BASED ON PRIOR
                                                                                                              AMS 67
                                                                                                                      464
NS OF A LIMIT THEOREM OF EVERETT, ULAM AND HARRIS ON MULTITYPE BRANCHING PROCESSES TO A BRANCHING PROCESS
                                                                                                              AMS 67
                                                                                                                      992
                                                                                                              AMS 68 347
                                     SOME RESULTS ON MULTITYPE CONTINUOUS TIME MARKOV BRANCHING PROCESSES
          UPPER AND LOWER PROBABILITIES INDUCED BY A MULTIVALUED MAPPING
                                                                                                              AMS 67
                                                                                                                      325
GENERAL SPECIFICATION ELLIPSOIDS
                                                      MULTIVARIATE ACCEPTANCE SAMPLING PROCEDURES FOR
                                                                                                             JASA 65
                                                                                                                      905
                              SOME CONSIDERATIONS IN MULTIVARIATE ALLOMETRY
                                                                                                                      747
                                                                                                             BIOCS66
BABILITY INTEGRAL AND CERTAIN PERCENTAGE POINTS OF A MULTIVARIATE ANALOGUE OF STUDENT'S T-DISTRIBUTION
                                                                                                           / BIOKA55
                                                                                                                      258
                                                   A MULTIVARIATE ANALOCUE OF THE ONE-SIDED TEST
                                                                                                             BTOKA63
                                                                                                                      403
           SOME NON-CENTRAL DISTRIBUTION PROBLEMS IN MULTIVARIATE ANALYSIS
                                                                                                              AMS 63 1270
                              BAYESIAN ESTIMATION IN MULTIVARIATE ANALYSIS
                                                                                                              AMS 65
                                                                                                                     150
          SOME APPLICATIONS OF MATRIX DERIVATIVES IN MULTIVARIATE ANALYSIS
                                                                                                             JASA 67
                                                                                                                      607
                                                                                                              AMS 69
                               ONE SIDED PROBLEMS IN MULTIVARIATE ANALYSIS
                                                                                                                      549
                                                                                                             BIOKA52
                                 SOME EXACT TESTS IN MULTIVARIATE ANALYSIS
                                                                                                                       17
        SOME PROBLEMS INVOLVING LINEAR HYPOTHESES IN MULTIVARIATE ANALYSIS
                                                                                                             BIOKA59
                                                                                                                       49
                      THE DISCARDING OF VARIABLES IN MULTIVARIATE ANALYSIS
                                                                                                             BIOKA67
                                                                                                                      357
                ADDING A POINT TO VECTOR DIAGRAMS IN MULTIVARIATE ANALYSIS
                                                                                                             BIOKA6B
                                                                                                                      582
              ON THE EXACT DISTRIBUTION OF A TEST IN MULTIVARIATE ANALYSIS
                                                                                                             JRSSB58
                                                                                                                      108
 THE DISTRIBUTION OF THE LARGEST ROOT OF A MATRIX IN MULTIVARIATE ANALYSIS
                                                                                                          ON
                                                                                                             AMS 67
                                                                                                                      616
PERCENTAGE POINTS OF THE LARGEST ROOT OF A MATRIX IN MULTIVARIATE ANALYSIS
                                                                                                      UPPER BIOKA67
                                                                                                                      189
TRIBUTION OF THE LARCEST OF SIX ROOTS OF A MATRIX IN MULTIVARIATE ANALYSIS
                                                                                                  ON THE DIS BIOKA59
                                                                                                                      237
IBUTION OF THE LARGEST OF SEVEN ROOTS OF A MATRIX IN MULTIVARIATE ANALYSIS
                                                                                                ON THE DISTR BIOKA64
                                                                                                                      270
PROPERTIES OF LATENT ROOT AND VECTOR METHODS USED IN MULTIVARIATE ANALYSIS
                                                                                             SOME DISTANCE BIOKA66
                                                                                                                      325
IHOOD-RATIO TEST OF THE CENERAL LINEAR HYPOTHESIS IN MULTIVARIATE ANALYSIS
                                                                                       POWER OF THE LIKEL BIOKA64
                                                                                                                      467
```

TITLE WORD INDEX MUL - MUL

OF THE LARGEST OR THE SMALLEST ROOT OF A MATRIX IN A MATRIX USED IN DERIVING TESTS OF SIGNIFICANCE IN TARY SYMMETRIC FUNCTIONS OF THE ROOTS OF A MATRIX IN THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN FOR THE DETERMINANT OF A NON-CENTRAL B STATISTIC IN	MULTIVARIATE	ANALYSIS ON THE DISTRIBUTION	BIOKA56	122
A MATRIX USED IN DERIVING TESTS OF SIGNIFICANCE IN	MULTIVARIATE	ANALYSIS THE CONSTRUCTION OF	BIOKA64	503
TARY SYMMETRIC FUNCTIONS OF THE ROOTS OF A MATRIX IN	MULTIVARIATE	ANALYSIS THE MOMENTS OF ELEMEN	AMS 61	1152
TUE 7000 OF A SUNCTION OF THE DISPURSION MATRIX IN	MIII TTUADIATE	ANALYSIS AN ALCOPITUM FOR OPTAINING	1454 67	114
THE ZERO OF A PONCTION OF THE DISTENSION MAINTA IN	MULTIVARIATE	ANALISIS AN ALGORITHM FOR OBTAINING	CASA OT	114
FOR THE DETERMINANT OF A NON-CENTRAL B STATISTIC IN	MULTIVARIATE	ANALYSIS AN ASYMPTOTIC DISTRIBUTION	SASJ 68	-77
RAMETRIC GENERALIZATIONS OF ANALYSIS OF VARIANCE AND				361
THE GENERALIZED B STATISTIC AND F STATISTICS AND IN	MULTIVARIATE	ANALYSIS /THE SMALLEST LATENT ROOT OF	AMS 67	1152
PROGRAMMING UNIVARIATE AND	MULTIVARIATE	ANALYSIS OF VARIANCE	TECH 63	95
ADMISSIBLE TESTS IN	MIII.TTVARTATE	ANALYSIS OF VARIANCE	AMS 67	69B
STMIL TANIOUS TEST PROCEDURES IN	MILITTUADIATE	ANALYSIS OF WARTANCE	DIUNYES	4B9
THE GENERALIZED B STATISTIC AND F STATISTICS AND IN PROGRAMMING UNIVARIATE AND ADMISSIBLE TESTS IN SIMULTANIOUS TEST PROCEDURES IN HOTELLING'S GENERALIZED T SQUARE IN THE NON-CENTRAL DISTRIBUTIONS OF TWO TEST CRITERIA IN MONOTONICITY PROPERTY OF THE THREE MAIN TESTS FOR	MULTIVARIATE	ANALYCIC OF MARTANCE	DIONAGO	358
HUTELLING'S GENERALIZED I SQUARE IN THE	MULTIVARIATE	ANALISIS OF VARIANCE	COGCCAL	338
NON-CENTRAL DISTRIBUTIONS OF TWO TEST CRITERIA IN	MULTIVARIATE	ANALYSIS OF VARIANCE ON THE	AMS 68	215
MONOTONICITY PROPERTY OF THE THREE MAIN TESTS FOR	MULTIVARIATE	ANALYSIS OF VARIANCE ON THE	JRSSB64	77
BEIWEEN IWU/ UN CUNFIDENCE BOUNDS ASSUCIATED WITH	MULIIVARIAIE	ANALISIS OF VARIANCE AND NUNINDEPENDENCE	AMS 00	1736
COVARIANCE CASE, CORR. 64 1296	MULTIVARIATE	ANALYSIS OF VARIANCE FOR A SPECIAL	JASA 63	660
COVARIANCE CASE, CORR. 64 1296 IALLY FOR GROWTH CURVE PROBLEMS A GENERALIZED	MULTIVARIATE	ANALYSIS OF VARIANCE MODEL USEFULL ESPEC	BTOKA64	313
A COMPARISON OF THE POWERS OF TWO				455
CORRIGENDA, 'A COMPARISON OF THE POWERS OF TWO			BIOKA63	546
		ANALYSIS OF VARIANCE TO REPEATED MEASURE		810
I/ ON THE ROBUSTNESS OF THE T-SQUARE-SUB-O TEST IN				71
		ANALYSIS OF WEAKLY STATIONARY STOCHASTIC		1765
ON V/ TESTS OF LINEAR HYPOTHESES IN UNIVARIATE AND	MULTIVARIATE	ANALYSIS WHEN THE RATIOS OF THE POPULATI	BIOKA54	19
OMPARISON OF TESTS OF THE WILKS-LAWLEY HYPOTHESIS IN SYMMETRIC FUNCTIONS OF THE ROOTS OF TWO MATRICES IN OF THE LARGEST CHARACTERISTIC ROOT OF A MATRIX IN	MULTIVARIATE	ANALYSIS. A C	BIOKA65	149
SYMMETRIC FUNCTIONS OF THE ROOTS OF TWO MATRICES IN	MULTIVARIATE	ANALYSIS. ON ELEMENTARY	BIOKA65	499
OF THE LARGEST CHARACTERISTIC ROOT OF A MATRIX IN	MIILTIVARIATE	ANALYSIS ON THE DISTRIBUTION	BTOKA65	405
ACOBIANS OF CERTAIN MATRIX TRANSFORMATIONS USEFUL IN	MIII TTUADIATE	ANALYCIC BACED ON LECTURES BY P. I. USII	BIOMAS1	345
ACOBIANS OF CERTAIN MATRIX TRANSFORMATION USEFULL IN				43
DISTRIBUTIONS . NOTE ON THE			JASA 69	230
ONICAL FACTORIZATION OF A SPECT/ ON THE FITTING OF				129
AN APPROXIMATE DEGREES OF FREEDOM SOLUTION TO THE	MULTIVARIATE	BEHRENS-FISHER PROBLEM	BIOKA65	139
THE NON-CENTRAL	MULTIVARIATE	BETA DISTRIBUTION	AMS 61	104
AN APPROXIMATE DEGREES OF FREEDOM SOLUTION TO THE THE NON-CENTRAL MULTIVARIATE NORMALITY	MULTIVARIATE	BETA DISTRIBUTION AND A TEST FOR	JRSSB68	511
OF TWO MATRICES SOME RESULTS ON THE NON-CENTRAL	MULTIVARIATE	BETA DISTRIBUTION AND MOMENTS OF TRACES		
				230
NOTE ON THE MULTIVARIATE AND THE GENERALIZED BUTION OF A MULTIPLE CORRELATION MATRIX, NON-CENTRAL	MULTIVARIATE	DETA DISTRIBUTIONS ON THE DISTRIBUTIONS	JASA 65	227
ERTIES OF THE WISHART DISTRIBUTIONS, CORR. 66 297				261
		BETA TYPE TWO DISTRIBUTION	SASJ 69	
G P/ ON THE COMPOUND MULTINOMIAL DISTRIBUTION, THE				65
VECTOR FORMS A TO CONTINUOUS PARAMETER PROCESSES SOME	MULTIVARIATE	CENTRAL LIMIT THEOREM FOR RANDOM LINEAR	AMS 66	1825
TO CONTINUOUS PARAMETER PROCESSES SOME	MULTIVARIATE	CHEBYSHEV INEQUALITIES WITH- EXTENSIONS	AMS 61	687
SOME DISTRIBUTION-FREE			AMS 69	
	MILLTINADIATE	COMPETITION PROCESSES	AMS 64	350
	MODILIAMIAIL	OURI ETTTON TROOLSSES	AND O-	
CIACCICAL CTATICTICAL ANALYCIC DACED ON A CEDTAIN		COMPLEY CALICCIAN DISTRIBUTION	AMC CE	
CLASSICAL STATISTICAL ANALYSIS BASED ON A CERTAIN	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION	AMS 65	9B
OCTION STATISTICAL ANALYSIS BASED ON A CERTAIN	MULTIVARIATE	CUMPLEX GAUSSIAN DISTRIBUTION, AN INTROD	AMS 63	9B 152
FURTHER CONTRIBUTIONS TO	MULTIVARIATE	CUMPLEX GAUSSIAN DISTRIBUTION, AN INTROD	AMS 63 BIOKA57	9B 152 399
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO	MULTIVARIATE MULTIVARIATE MULTIVARIATE	CONFIDENCE BOUNDS CONFIDENCE BOUNDS	AMS 63 BIOKA57 BIOKA58	9B 152 399 581
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO	MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE	CONFIDENCE BOUNDS' CONFIDENCE BOUNDS'	AMS 63 BIOKA57	9B 152 399
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO	MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE	CONFIDENCE BOUNDS' CONFIDENCE BOUNDS'	AMS 63 BIOKA57 BIOKA58	9B 152 399 581
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343	MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE	CONFIDENCE BOUNDS' CONFIDENCE BOUNDS'	AMS 63 BIOKA57 BIOKA58 BIOKA61	9B 152 399 581 474 44B
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF	MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORFELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 69	9B 152 399 581 474 44B
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE	MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 69 AMS 64	9B 152 399 581 474 44B 1100 647
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN	MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 69 AMS 64 JRSSB60	9B 152 399 581 474 44B 1100 647 302
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 69 AMS 64 JRSSB60 AMS 65	9B 152 399 581 474 44B 1100 647 302 1049
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA. 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME	MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 69 AMS 64 JRSSB60 AMS 65 BIOKA65	9B 152 399 581 474 44B 1100 647 302 1049 645
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA. 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME	MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 69 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67	9B 152 399 581 474 44B 1100 647 302 1049 645 21
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA. 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME	MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF	AMS 63 BIOKA57 BIOKA68 BIOKA61 AMS 69 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66	9B 152 399 581 474 44B 1100 647 302 1049 645 21 215
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME NONCENTRAL DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF DIRICHLET DISTRIBUTIONS THE	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 69 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66	9B 152 399 581 474 44B 1100 647 302 1049 645 21 215 467
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME NONCENTRAL DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF DIRICHLET DISTRIBUTIONS DISPRESION DISTRIBUTION DISTRIBUTION ESTIMATES OF LINEAR CO	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 69 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 AMS 66	9B 152 399 581 474 44B 1100 647 302 1049 645 21 215 467 78
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME NONCENTRAL DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A THE	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF DIRICHLET DISTRIBUTIONS DISPERSION THE DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION OF COMPLEX NORMAL VARIABLES	AMS 63 BIOKA57 BIOKA68 BIOKA61 AMS 69 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 BIOKA56 BIOKA56	9B 152 399 581 474 44B 1100 647 302 1049 645 21 215 467
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME NONCENTRAL DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A THE	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF DIRICHLET DISTRIBUTIONS DISPERSION THE DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION OF COMPLEX NORMAL VARIABLES	AMS 63 BIOKA57 BIOKA68 BIOKA61 AMS 69 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 BIOKA56 BIOKA56	9B 152 399 581 474 44B 1100 647 302 1049 645 21 215 467 78
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME NONCENTRAL DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A THE	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF DIRICHLET DISTRIBUTIONS DISPERSION THE DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION OF COMPLEX NORMAL VARIABLES	AMS 63 BIOKA57 BIOKA68 BIOKA61 AMS 69 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 BIOKA56 BIOKA56	9B 152 399 581 474 44B 1100 647 302 1049 645 21 215 467 78 212
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA. 'FURTHER CONTRIBUTIONS TO CORRIGENDA. 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORFLATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF DIRICHLET DISTRIBUTIONS DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION OF COMPLEX NORMAL VARIABLES DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS	AMS 63 BIOKA57 BIOKA68 BIOKA61 AMS 69 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 BIOKA56 BIOKA56	9B 152 399 581 474 44B 1100 647 302 1049 645 21 215 467 78 212 671
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA. 'FURTHER CONTRIBUTIONS TO CORRIGENDA. 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORFLATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF DIRICHLET DISTRIBUTIONS DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION OF COMPLEX NORMAL VARIABLES DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 65	9B 152 399 581 474 44B 1100 647 302 1049 645 21 215 467 78 212 671 367 300
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA. 'FURTHER CONTRIBUTIONS TO CORRIGENDA. 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORFLATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF DIRICHLET DISTRIBUTIONS DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION OF COMPLEX NORMAL VARIABLES DISTRIBUTIONS THEORY DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS CHARACTERIZATIONS DISTRIBUTIONS CHARACTERIZATIONS	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA65 AMS 65 BIOKA65 AMS 65	9B 152 399 581 474 44B 1100 647 302 1049 645 21 215 467 78 212 671 367 300 433
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME NONCENTRAL DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MEINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND A NOTE ON	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS DISPRSION THE DISTRIBUTIONS DISTRIBUTION DISTRIBUTION DISTRIBUTION ESTIMATES OF LINEAR CO DISTRIBUTION FOMPLEX NORMAL VARIABLES DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS CHARACTERIZATIONS DISTRIBUTIONS WITH SPECIFIED MARGINALS	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 69 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA67 JASA 69 JASA 69	9B 152 399 581 474 44B 1100 647 302 1049 645 21 215 467 78 212 671 367 300 433 1460
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELHHOOD ESTIMATION OF MAXIMUM LIKELHHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME NONCENTRAL DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A THE LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND A NOTE ON A SOLUTION TO THE PROBLEM OF LINKING	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF DIRICHLET DISTRIBUTIONS DISPRESION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION OF COMPLEX NORMAL VARIABLES DISTRIBUTION THEORY GENERA DISTRIBUTIONS WITH SPECIFIED MARGINALS DOCUMENTS	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 65 JASA 69 AMS 68	9B 152 399 581 474 44B 1100 647 302 1049 645 21 215 467 78 212 671 367 300 433 460 163
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA. 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME NONCENTRAL DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A THE LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND A NOTE ON A SOLUTION TO THE PROBLEM OF LINKING POPULATIONS GENERALIZED	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF DIRICHLET DISTRIBUTIONS DISFRESION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION OF COMPLEX NORMAL VARIABLES DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS CHARACTERIZATIONS DISTRIBUTIONS WITH SPECIFIED MARGINALS DOCUMENTS ESTIMATOR FOR THE MEAN OF FINITE	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA67 JASA 69 AMS 68 JASA 67 JASA 69	9B 152 399 581 474 44B 1100 647 302 1049 645 21 215 467 78 212 671 367 300 443 1460 1163 1009
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME NONCENTRAL DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND A NOTE ON A SOLUTION TO THE PROBLEM OF LINKING POPULATIONS GENERALIZED	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF DIRICHLET DISTRIBUTIONS DISFRESION THE DISTRIBUTION ESTIMATES OF LINEAR CO DISTRIBUTION ESTIMATES OF LINEAR CO DISTRIBUTION FOMPLEX NORMAL VARIABLES DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS CHARACTERIZATIONS DISTRIBUTIONS WITH SPECIFIED MARGINALS DOCUMENTS ESTIMATOR FOR THE MEAN OF FINITE EXPONENTIAL DISTRIBUTION	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 64 JRSSB60 AMS 65 BIOKA65 BIOKA65 AMS 66 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA67 JASA 69 JASA 67 JASA 67 JASA 67	9B 152 399 1581 474 44B 1100 647 302 1049 645 21 215 467 78 212 671 300 433 1460 1163 30 30 30 30 30 30 30 30 30 30 30 30 30
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELHHOOD ESTIMATION OF MAXIMUM LIKELHHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME NONCENTRAL DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A THE LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND A NOTE ON A SOLUTION TO THE PROBLEM OF LINKING POPULATIONS GENERALIZED A PARAMETER ESTIMATION FOR A	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS DENSITY FUNCTIONS OF PRODUCTS OF DISTRIBUTIONS DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION ESTIMATES OF LINEAR CO DISTRIBUTION FORMPLEX NORMAL VARIABLES DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS WITH SPECIFIED MARGINALS DOCUMENTS ESTIMATOR FOR THE MEAN OF FINITE EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 69 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 65 JASA 69 JASA 67 JASA 69 JASA 67 JASA 67 JASA 67 JASA 67	9B 152 399 474 44B 11100 645 21 215 467 78 212 215 671 300 163 1009 30 84B
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELHHOOD ESTIMATION OF MAXIMUM LIKELHHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME NONCENTRAL DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A THE LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND A SOLUTION TO THE PROBLEM OF LINKING POPULATIONS PARAMETER ESTIMATION FOR A TESTS OF COMPOSITE HYPOTHESES FOR THE	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF DIRICHLET DISTRIBUTIONS DISPRSION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION OF COMPLEX NORMAL VARIABLES DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS WITH SPECIFIED MARGINALS DOCUMENTS ESTIMATOR FOR THE MEAN OF FINITE EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL FAMILY, CORR. 67 1928	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 65 JASA 67 JASA 67	9B 152 399 474 44B 11100 645 21 215 467 78 212 215 671 367 300 433 1009 30 163 1009 368 84B 681
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA. 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND A NOTE ON A SOLUTION TO THE PROBLEM OF LINKING FOPULATIONS PARAMETER ESTIMATION FOR A TESTS OF COMPOSITE HYPOTHESES FOR THE	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF DIRICHLET DISTRIBUTIONS DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION THEORY SCHORL DISTRIBUTION THEORY GENERA DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS SISTRIBUTIONS DISTRIBUTIONS ESSIMATOR FOR THE MEAN OF FINITE EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTIONS EXPONENTIAL FAMILY, CORR. 67 1928 EXPONENTIAL—TYPE DISTRIBUTIONS	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 64 JRSSB60 AMS 65 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 65 JASA 67 JASA 69 JASA 67 JASA 67 JASA 68 AMS 68	9B 152 399 152 399 1581 474 44B 1100 6447 302 1049 215 467 78 212 671 367 367 300 433 1460 30 84B 16316 681 1316
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA. 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND A NOTE ON A SOLUTION TO THE PROBLEM OF LINKING FOPULATIONS PARAMETER ESTIMATION FOR A TESTS OF COMPOSITE HYPOTHESES FOR THE	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF DIRICHLET DISTRIBUTIONS DISPRSION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION OF COMPLEX NORMAL VARIABLES DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS WITH SPECIFIED MARGINALS DOCUMENTS ESTIMATOR FOR THE MEAN OF FINITE EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL FAMILY, CORR. 67 1928	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 64 JRSSB60 AMS 65 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 65 JASA 67 JASA 69 JASA 67 JASA 67 JASA 68 AMS 68	9B 152 399 152 399 1581 474 44B 1100 6447 302 1049 215 467 78 212 671 367 367 300 433 1460 30 84B 16316 681 1316
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA. 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND A NOTE ON A SOLUTION TO THE PROBLEM OF LINKING FOPULATIONS PARAMETER ESTIMATION FOR A TESTS OF COMPOSITE HYPOTHESES FOR THE	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF DIRICHLET DISTRIBUTIONS DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION ESTIMATES OF LINEAR CO DISTRIBUTION FOMPLEX NORMAL VARIABLES DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS WITH SPECIFIED MARGINALS DOCUMENTS ESTIMATOR FOR THE MEAN OF FINITE EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTIONS EXPONENTIAL TAMILY, CORR. 67 1928	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 64 JRSSB60 AMS 65 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 65 JASA 67 JASA 69 JASA 67 JASA 67 JASA 68 AMS 68	9B 152 399 581 474 44B 1100 647 302 1049 645 21 215 467 78 212 367 300 163 1009 84B 681 1316 681 000.4
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA. 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELHHOOD ESTIMATION OF MAXIMUM LIKELHHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME NONCENTRAL DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A THE LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND A NOTE ON A SOLUTION TO THE PROBLEM OF LINKING POPULATIONS PARAMETER ESTIMATION FOR A TESTS OF COMPOSITE HYPOTHESES FOR THE R-TEST A COUNTER-EXAMPLE RELATING TO CERTAIN	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF DIRICHLET DISTRIBUTIONS DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION ESTIMATES OF LINEAR CO DISTRIBUTION FOMPLEX NORMAL VARIABLES DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS WITH SPECIFIED MARGINALS DOCUMENTS ESTIMATOR FOR THE MEAN OF FINITE EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTIONS EXPONENTIAL TAMILY, CORR. 67 1928	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 69 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 JASA 69 JASA 69 JASA 67 JASA 69 JASA 67 JASA 69 JASA 67 JASA 69 JASA 69 JASA 69 JASA 69 JASA 69 JASA 69 JASA 69	9B 152 399 581 474 44B 1100 647 302 21 215 212 367 300 433 1009 30 84B 681 1316 681 613
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA. 'FURTHER CONTRIBUTIONS TO CORRIGENDA. 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND A NOTE ON A SOLUTION TO THE PROBLEM OF LINKING POPULATIONS PARAMETER ESTIMATION FOR A TESTS OF COMPOSITE HYPOTHESES FOR THE R-TEST A COUNTER-EXAMPLE RELATING TO CERTAIN NOTE ON	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORFLATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION OF COMPLEX NORMAL VARIABLES DISTRIBUTION THEORY GENERA DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS WITH SPECIFIED MARGINALS DOCUMENTS ESTIMATOR FOR THE MEAN OF FINITE EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL TAMILY, CORR. 67 1928 EXPONENTIAL—TYPE DISTRIBUTIONS EXTENSION OF FRIEDMAN'S CHI—SQUARE—SUB—GENERALIZATIONS OF T AND F GOODNESS—OF—FIT TESTS	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 61 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 BIOKA56 BIOKA56 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA67 JASA 69 JASA 67 JASA 69 JASA 67 JASA 68 JASA 67 JASA 68 JASA 69 AMS 68	9B 152 399 152 399 1581 474 44B 1100 647 302 1049 21 215 671 300 433 1460 433 1009 30 84B 681 1316 6NO.4 807
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME NONCENTRAL DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MEINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND A NOTE ON A SOLUTION TO THE PROBLEM OF LINKING POPULATIONS POPULATIONS A COUNTER-EXAMPLE RELATING TO CERTAIN NOTE ON POWER COMPARISONS OF TESTS OF TWO	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF DIRICHLET DISTRIBUTIONS DISFRESION THE DISTRIBUTION ESTIMATES OF LINEAR CO DISTRIBUTION COMPLEX NORMAL VARIABLES DISTRIBUTION FOOMPLEX NORMAL VARIABLES DISTRIBUTIONS WITH SPECIFIED MARGINALS DOCUMENTS ESTIMATOR FOR THE MEAN OF FINITE EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL FAMILY, CORR. 67 1928 EXPONENTIAL—TYPE DISTRIBUTIONS EXTENSION OF FRIEDMAN'S CHI—SQUARE—SUB— GENERALIZATIONS OF T AND F GOODDNESS—OF—FIT TESTS HYPOTHESES BASED ON FOUR CRITERIA	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 69 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 JASA 69 JASA 67 JASA 69 JASA 67 JASA 69 JASA 69 AMS 68 JASA 69 AMS 68	9B 152 399 581 474 44B 1100 647 302 1049 645 21 215 467 78 212 367 300 84B 681 1316 807 195
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELHHOOD ESTIMATION OF MAXIMUM LIKELHHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME NONCENTRAL DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A THE LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND A NOTE ON A SOLUTION TO THE PROBLEM OF LINKING POPULATIONS PARAMETER ESTIMATION FOR A TESTS OF COMPOSITE HYPOTHESES FOR THE R-TEST A COUNTER-EXAMPLE RELATING TO CERTAIN NOTE ON POWER COMPARISONS OF TESTS OF TWO AND APPLICATIONS TO LUNAR CRATERS A	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION OF PRODUCTS OF DIRICHLET DISTRIBUTIONS DISPRESSION THE DISTRIBUTIONS DISTRIBUTION ESTIMATES OF LINEAR CO DISTRIBUTION FOR EMPLEX NORMAL VARIABLES DISTRIBUTION FOR THE MEAN OF FINITE STRIBUTIONS OF ASYMPTOTIC JOINT DISTRIBUTIONS OF CHARACTERIZATIONS DISTRIBUTIONS WITH SPECIFIED MARGINALS DOCUMENTS ESTIMATOR FOR THE MEAN OF FINITE EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL FAMILY, CORR. 67 1928 EXPONENTIAL—TYPE DISTRIBUTIONS EXTENSION OF FRIEDMAN'S CHI—SQUARE—SUB—GENERALIZATIONS OF T AND F GOODNESS—OF—FIT TESTS HYPOTHESES BASED ON FOUR CRITERIA IMMIGRATION WITH MULTIPLE DEATH PROCESS	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 69 AMS 66 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 67 JASA 69 JASA 67 JASA 67 JASA 67 JASA 67 JASA 67 AMS 68 AMS 67 AMS 68 AMS 67 AMS 68	9B 152 399 581 474 44B 1100 647 302 1049 645 21 215 467 307 308 433 1009 645 1000 647 367 300 641 63 807 1009 551
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELHHOOD ESTIMATION OF MAXIMUM LIKELHHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME NONCENTRAL DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MEINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A THE LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND A NOTE ON A SOLUTION TO THE PROBLEM OF LINKING POPULATIONS PARAMETER ESTIMATION FOR A TESTS OF COMPOSITE HYPOTHESES FOR THE R-TEST A COUNTER-EXAMPLE RELATING TO CERTAIN NOTE ON POWER COMPARISONS OF TESTS OF TWO AND APPLICATIONS TO LUNAR CRATERS A REDUCTION FORMULA FOR NORMAL	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF DIRICHLET DISTRIBUTIONS DISPRESION THE DISTRIBUTION DISTRIBUTION DISTRIBUTION ESTIMATES OF LINEAR CO DISTRIBUTION OF COMPLEX NORMAL VARIABLES DISTRIBUTIONS DISTRIBUTIONS ASYMPTOTIC JOINT DISTRIBUTIONS WITH SPECIFIED MARGINALS DOCUMENTS ESTIMATOR FOR THE MEAN OF FINITE EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL TAMILY, CORR. 67 1928 EXPONENTIAL TYPE DISTRIBUTIONS EXTENSION OF FRIEDMAN'S CHI—SQUARE—SUB— GENERALIZATIONS OF T AND F GOODNESS—OF—FIT TESTS HYPOTHESES BASED ON FOUR CRITERIA IMMIGRATION WITH MULTIPLE DEATH PROCESS INTEGRALS	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 61 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 BIOKA56 BIOKA56 BIOKA56 AMS 65 BIOKA56 AMS 65 JASA 67 JASA 68 JASA 67 JASA 68 JASA 69 AMS 67 AMS 68 JASA 69 AMS 67 AMS 68 JASA 69 AMS 67 AMS 62 BIOKA67 BIOKA67	9B 152 399 152 399 399 399 399 399 399 399 399 399 39
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA. 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND A NOTE ON A SOLUTION TO THE PROBLEM OF LINKING FOPULATIONS PARAMETER ESTIMATION FOR A TESTS OF COMPOSITE HYPOTHESES FOR THE R-TEST A COUNTER-EXAMPLE RELATING TO CERTAIN NOTE ON POWER COMPARISONS OF TESTS OF TWO AND APPLICATIONS TO LUNAR CRATERS A REDUCTION FORMULA FOR NORMAL DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTING	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION ESTIMATES OF LINEAR CO DISTRIBUTION THEORY GENERA DISTRIBUTIONS DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL FAMILY, CORR. 67 1928 EXPONENTIAL TAMILY, CORR. 67 1928 EXPONENTIAL TAMILY, CORR. 67 1928 EXPONENTIAL TO STAND EXPENSION OF FRIEDMAN'S CHI-SQUARE-SUB- GENERALIZATIONS OF T AND F GOODNESS-OF-FIT TESTS HYPOTHESES BASED ON FOUR CRITERIA IMMIGRATION WITH MULTIPLE DEATH PROCESS LINEAR HYPOTHESES	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 61 AMS 64 JRSSB60 AMS 65 BIOKA56 SASJ 67 AMS 66 BIOKA56 AMS 65 BIOKA67 JASA 69 JASA 67 JASA 69 JASA 67 JASA 69 JASA 67 JASA 68 JASA 69	9B 152 467 399 581 474 44B 11100 647 302 1049 645 21 215 467 78 212 671 367 300 30 84B 681 616 807 195 251 333
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME NONCENTRAL DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MEINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM A SOLUTION TO THE PROBLEM OF LINKING POPULATIONS A SOLUTION TO THE PROBLEM OF LINKING POPULATIONS A COUNTER-EXAMPLE RELATING TO CERTAIN NOTE ON POWER COMPARISONS OF TESTS OF TWO AND APPLICATIONS TO LUNAR CRATERS A REDUCTION FORMULA FOR NORMAL DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTS OF THE	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS DENSITY FUNCTIONS OF PRODUCTS OF DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION ESTIMATES OF LINEAR CO DISTRIBUTION FOOMPLEX NORMAL VARIABLES DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS WITH SPECIFIED MARGINALS DOCUMENTS ESTIMATOR FOR THE MEAN OF FINITE EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL TAMILY, CORR. 67 1928 EXEMPTION TAMILY, CORR. 67 1928 EXEMPTION TAMILY,	AMS 63 BIOKA57 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 69 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 65 JASA 67 JASA 69 JASA 67 JASA 69 JASA 67 JASA 67 JASA 69 AMS 67 AMS 68 AMS 67 AMS 66	9B 152 399 581 474 44B 1100 647 302 1049 645 21 215 4667 300 163 807 1009 84B 681 1016 681 1016 681 351 351 351 352 200
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA. 'FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA. 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELHOOD ESTIMATION OF MAXIMUM LIKELHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME NONCENTRAL DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A THE LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM A SOLUTION TO THE PROBLEM OF LINKING POPULATIONS GENERALIZED A PARAMETER ESTIMATION FOR A TESTS OF COMPOSITE HYPOTHESES FOR THE R-TEST A COUNTER-EXAMPLE RELATING TO CERTAIN NOTE ON POWER COMPARISONS OF TESTS OF TWO AND APPLICATIONS TO LUNAR CRATERS A REDUCTION FORMULA FOR NORMAL DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTING TONICITY OF THE POWER FUNCTIONS OF SOME TESTS OF THE L DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF DIRICHLET DISTRIBUTIONS DISPRESION METABLES OF LINEAR CO DISTRIBUTION DISTRIBUTION DISTRIBUTION ESTIMATES OF LINEAR CO DISTRIBUTION FORMAL VARIABLES DISTRIBUTIONS DISTRIBUTIONS ASYMPTOTIC JOINT DISTRIBUTIONS WITH SPECIFIED MARGINALS DOCUMENTS ESTIMATOR FOR THE MEAN OF FINITE EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL TAMILY, CORR. 67 1928 EXPONENTIAL TYPE DISTRIBUTIONS EXTENSION OF FRIEDMAN'S CHI-SQUARE-SUB- GENERALIZATIONS OF T AND F GOODDESS-OF-FIT TESTS HYPOTHESES BASED ON FOUR CRITERIA IMMIGRATION WITH MULTIPLE DEATH PROCESS INTEGRALS LINEAR HYPOTHESIS MONO LINEAR	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 61 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 BIOKA56 BIOKA56 BIOKA56 AMS 65 BIOKA56 AMS 67 JASA 67 BIOKA56 AMS 68 AMS 67 AMS 68 AMS 67 AMS 68 JASA 67 AMS 68 AMS 67 AMS 68 AMS 67 AMS 69	9B 152 399 581 474 44B 1100 647 302 1049 645 21 215 367 300 308 84B 681 1316 681 1316 681 333 351 351 351 351 351 351 351 300 942
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA. 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND A NOTE ON A SOLUTION TO THE PROBLEM OF LINKING POPULATIONS PARAMETER ESTIMATION FOR A TESTS OF COMPOSITE HYPOTHESES FOR THE R-TEST A COUNTER-EXAMPLE RELATING TO CERTAIN NOTE ON POWER COMPARISONS OF TESTS OF TWO AND APPLICATIONS TO LUNAR CRATERS A REDUCTION FORMULA FOR NORMAL DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTING TONICITY OF THE POWER FUNCTIONS OF SOME TESTS OF THE L DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR RESTRICTIONS	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF DIRICHLET DISTRIBUTIONS DISTREBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION ESTIMATES OF LINEAR CO DISTRIBUTION THEORY GENERA DISTRIBUTIONS DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL FAMILY, CORR. 67 1928 EXPONENTIAL FAMILY, CORR. 67 1928 EXPONENTIAL TYPE DISTRIBUTIONS EXTENSION OF FRIEDMAN'S CHI-SQUARE-SUB- GENERALIZATIONS OF T AND F GOODNESS-OF-FIT TESTS HYPOTHESES BASED ON FOUR CRITERIA IMMIGRATION WITH MULTIPLE DEATH PROCESS INTEGRALS LINEAR HYPOTHESIS AND INDEPENDENCE /UL LINEAR HYPOTHESIS WITH LINEAR	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 61 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 BIOKA56 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA67 JASA 69 JASA 67 JASA 69 JASA 67 JASA 68 JASA 69 JASA 67 JASA 68 JASA 67 JASA 68 JASA 67 JASA 68 JASA 67 JASA 68 JASA 69 JASA 67 JASA 68 JASA 69 JRSSB 63	9B 152 467 44B 11100 647 367 448 11100 645 21 215 467 78 212 212 671 367 300 30 84B 681 616 163 807 195 251 333 200 942 348
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME NONCENTRAL DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MEINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM A SOLUTION TO THE PROBLEM OF LINKING OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND A NOTE ON A SOLUTION TO THE PROBLEM OF LINKING POPULATIONS A COUNTER-EXAMPLE RELATING TO CERTAIN NOTE ON POWER COMPARISONS OF TESTS OF TWO AND APPLICATIONS TO LUNAR CRATERS A REDUCTION FORMULA FOR NORMAL DISTRIBUTION OF THE LIKELIHOOD RATIO CRITERIA FOR RESTRICTIONS STEPWISE	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF DIRICHLET DISTRIBUTIONS DISFRESION DISTRIBUTION DISTRIBUTION DISTRIBUTION ESTIMATES OF LINEAR CO DISTRIBUTION FOOMPLEX NORMAL VARIABLES DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS WITH SPECIFIED MARGINALS DOCUMENTS ESTIMATOR FOR THE MEAN OF FINITE EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL TAMILY, CORR. 67 1928 EXPONENTIAL—TYPE DISTRIBUTIONS EXTENSION OF FRIEDMAN'S CHI—SQUARE—SUB— GENERALIZATIONS OF T AND F GOODNESS—OF—FIT TESTS HYPOTHESES BASED ON FOUR CRITERIA IMMIGRATION WITH MULTIPLE DEATH PROCESS LINEAR HYPOTHESIS LINEAR HYPOTHESIS LINEAR HYPOTHESIS AND INDEPENDENCE /UL LINEAR HYPOTHESIS WITH LINEAR	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 61 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 BIOKA56 BIOKA56 BIOKA56 AMS 65 BIOKA56 AMS 67 JASA 67 BIOKA56 AMS 68 AMS 67 AMS 68 AMS 67 AMS 68 JASA 67 AMS 68 AMS 67 AMS 68 AMS 67 AMS 69	9B 152 467 44B 11100 647 367 448 11100 645 21 215 467 78 212 212 671 367 300 30 84B 681 616 163 807 195 251 333 200 942 348
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA. 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND A NOTE ON A SOLUTION TO THE PROBLEM OF LINKING POPULATIONS PARAMETER ESTIMATION FOR A TESTS OF COMPOSITE HYPOTHESES FOR THE R-TEST A COUNTER-EXAMPLE RELATING TO CERTAIN NOTE ON POWER COMPARISONS OF TESTS OF TWO AND APPLICATIONS TO LUNAR CRATERS A REDUCTION FORMULA FOR NORMAL DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTING TONICITY OF THE POWER FUNCTIONS OF SOME TESTS OF THE L DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR RESTRICTIONS	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF DIRICHLET DISTRIBUTIONS DISPRESION METALISH OF COMPLEX NORMAL VARIABLES DISTRIBUTION DISTRIBUTION ESTIMATES OF LINEAR CO DISTRIBUTION FORMAL VARIABLES DISTRIBUTIONS DISTRIBUTIONS ASYMPTOTIC JOINT DISTRIBUTIONS WITH SPECIFIED MARGINALS DOCUMENTS ESTIMATOR FOR THE MEAN OF FINITE EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL TAMILY, CORR. 67 1928 EXPONENTIAL TYPE DISTRIBUTIONS EXTENSION OF FRIEDMAN'S CHI-SQUARE-SUB- GENERALIZATIONS OF T AND F GOODDESS-OF-FIT TESTS HYPOTHESES BASED ON FOUR CRITERIA IMMIGRATION WITH MULTIPLE DEATH PROCESS INTEGRALS LINEAR HYPOTHESIS LINEAR HYPOTHESIS MONO LINEAR HYPOTHESIS WITH LINEAR LINEAR REGRESSION LINEAR REGRESSION	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 61 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 67 JASA 67 AMS 68 JASA 69 JASA 67 AMS 62 BIOKA67 B	9B 152 399 581 474 44B 1100 647 302 1645 21 215 367 300 433 11460 163 163 1009 3251 351 353 351 353 351 353 348 770 413
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA. 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME NONCENTRAL DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A THE LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM A NOTE ON A SOLUTION TO THE PROBLEM OF LINKING POPULATIONS CENERALIZED A PARAMETER ESTIMATION FOR A TESTS OF COMPOSITE HYPOTHESES FOR THE R-TEST A COUNTER-EXAMPLE RELATING TO CERTAIN NOTE ON AND APPLICATIONS TO LUNAR CRATERS A REDUCTION FORMULA FOR NORMAL DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTING TONICITY OF THE POWER FUNCTIONS OF SOME TESTS OF THE L DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR RESTRICTIONS STEPWISE A THEOREM ON LEAST SQUARES AND VECTOR CORRELATION IN	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTION DENSITY FUNCTIONS OF PRODUCTS OF DIRICHLET DISTRIBUTIONS DISPRESION METALISH OF COMPLEX NORMAL VARIABLES DISTRIBUTION DISTRIBUTION ESTIMATES OF LINEAR CO DISTRIBUTION FORMAL VARIABLES DISTRIBUTIONS DISTRIBUTIONS ASYMPTOTIC JOINT DISTRIBUTIONS WITH SPECIFIED MARGINALS DOCUMENTS ESTIMATOR FOR THE MEAN OF FINITE EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL TAMILY, CORR. 67 1928 EXPONENTIAL TYPE DISTRIBUTIONS EXTENSION OF FRIEDMAN'S CHI-SQUARE-SUB- GENERALIZATIONS OF T AND F GOODDESS-OF-FIT TESTS HYPOTHESES BASED ON FOUR CRITERIA IMMIGRATION WITH MULTIPLE DEATH PROCESS INTEGRALS LINEAR HYPOTHESIS LINEAR HYPOTHESIS MONO LINEAR HYPOTHESIS WITH LINEAR LINEAR REGRESSION LINEAR REGRESSION	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 61 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 67 JASA 67 AMS 68 JASA 69 JASA 67 AMS 62 BIOKA67 B	9B 152 399 581 474 44B 1100 647 302 1645 21 215 367 300 433 11460 163 163 1009 3251 351 353 351 353 351 353 348 770 413
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME NONCENTRAL DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MEINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM A SOLUTION TO THE PROBLEM OF LINKING OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND A NOTE ON A SOLUTION TO THE PROBLEM OF LINKING POPULATIONS A COUNTER-EXAMPLE RELATING TO CERTAIN NOTE ON POWER COMPARISONS OF TESTS OF TWO AND APPLICATIONS TO LUNAR CRATERS A REDUCTION FORMULA FOR NORMAL DISTRIBUTION OF THE LIKELIHOOD RATIO CRITERIA FOR RESTRICTIONS STEPWISE	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION ESTIMATES OF LINEAR CO DISTRIBUTION THEORY GENERA DISTRIBUTION THEORY GENERA DISTRIBUTIONS ESTIMATOR FOR THE MEAN OF FINITE EXPONENTIAL DISTRIBUTION EXPONENTIAL FAMILY, CORR. 67 1928 EXPONENTIAL FAMILY, CORR	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 61 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 BIOKA56 BIOKA56 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA67 JASA 67 JASA 67 JASA 67 JASA 67 AMS 68 JASA 67 JASA 67 JASA 69 JASA 67 JASA 69 JASA 69 JASA 69 JASA 69 JASA 69 JASA 64 JASA 65 JASA 65 JASA 66 JASA 66	9B 152 399 581 474 44B 11100 647 351 467 78 212 212 671 367 300 30 84B 807 195 251 333 200 413 1494 494 413 1494
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME NONCENTRAL DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MEINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND A NOTE ON A SOLUTION TO THE PROBLEM OF LINKING POPULATIONS GENERALIZED A PARAMETER ESTIMATION FOR A TESTS OF COMPOSITE HYPOTHESES FOR THE R-TEST A COUNTER-EXAMPLE RELATING TO CERTAIN NOTE ON POWER COMPARISONS OF TESTS OF TWO AND APPLICATIONS TO LUNAR CRATERS A REDUCTION FORMULA FOR NORMAL DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTING TONICITY OF THE POWER FUNCTIONS OF SOME TESTS OF THE L DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR RESTRICTIONS STEPWISE A THEOREM ON LEAST SQUARES AND VECTOR CORRELATION IN A THEOREM ON LEAST SQUARES IN	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTION DENSITY FUNCTIONS DISTRIPTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION ESTIMATES OF LINEAR CO DISTRIBUTION FORMPLEX NORMAL VARIABLES DISTRIBUTIONS CHARACTERIZATIONS DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL FAMILY, CORR. 67 1928 EXPONENTIAL FAMILY, CORR. 67 1928 EXPONENTIAL TYPE DISTRIBUTIONS EXTENSION OF FRIEDMAN'S CHI-SQUARE-SUB- GENERALIZATIONS OF T AND F GEODONESS-OF-FIT TESTS HYPOTHESES BASED ON FOUR CRITERIA IMMIGRATION WITH MULTIPLE DEATH PROCESS INTEGRALS LINEAR HYPOTHESIS LINEAR HYPOTHESIS AND INDEPENDENCE /UL LINEAR HYPOTHESIS WITH LINEAR LINEAR REGRESSION LINEAR REGRESSION LINEAR REGRESSION LINEAR STRUCTURAL RELATIONS	AMS 63 BIOKA57 BIOKA58 BIOKA58 BIOKA58 BIOKA61 AMS 61 AMS 69 AMS 65 BIOKA65 SASJ 67 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA67 JASA 69 JASA 67 JASA 69 JASA 67 JASA 69 AMS 67 BIOKA57 BIOKA58	9B 152 399 581 474 44B 1100 647 302 1009 645 21 215 467 78 212 367 300 30 84B 681 1009 30 84B 681 807 195 251 333 200 942 348 770 443 4136
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELHOOD ESTIMATION OF MAXIMUM LIKELHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME NONCENTRAL DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MEINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM A SOLUTION TO THE PROBLEM OF LINKING OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND A NOTE ON A SOLUTION TO THE PROBLEM OF LINKING POPULATIONS GENERALIZED A PARAMETER ESTIMATION FOR A TESTS OF COMPOSITE HYPOTHESES FOR THE R-TEST A COUNTER-EXAMPLE RELATING TO CERTAIN NOTE ON POWER COMPARISONS OF TESTS OF TWO AND APPLICATIONS TO LUNAR CRATERS A REDUCTION FORMULA FOR NORMAL DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTING TONICITY OF THE POWER FUNCTIONS OF SOME TESTS OF THE L DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR RESTRICTIONS STEPWISE A THEOREM ON LEAST SQUARES AND VECTOR CORRELATION IN A THEOREM ON LEAST SQUARES IN	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORRELATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS DENSITY FUNCTIONS DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION STATEBUTION DISTRIBUTION SOUTH AND ANY OF PRODUCTS OF CENERA DISTRIBUTION ESTIMATES OF LINEAR CO DISTRIBUTION OF COMPLEX NORMAL VARIABLES DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS WITH SPECIFIED MARGINALS DOCUMENTS ESTIMATOR FOR THE MEAN OF FINITE EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL TAMILY, CORR. 67 1928 EXPONENTIAL TO ISTRIBUTIONS EXTENSION OF FRIEDMAN'S CHI-SQUARE-SUB- GENERALIZATIONS OF T AND F GENERALIZATIONS OF TOTAL RELATIONS LINEAR REGRESSION LINEAR REGRESSION LINEAR REGRESSION LINEAR REGRESSION LINEA	AMS 63 BIOKA57 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 69 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 BIOKA56 BIOKA56 BIOKA56 AMS 65 BIOKA56 AMS 65 BIOKA56 AMS 67 AMS 68 AMS 67 BIOKA67 BIOKA67 BIOKA67 BIOKA67 BIOKA54 AMS 61 AMS 61 AMS 64 AMS 69 JASA 66 JASA 67 JASA 66 JASA 67 BIOKA54 AMS 61 AMS 64 AMS 69 BIOKA58 AMS 66 BIOKA58	9B 152 399 581 474 44B 1366 84B 1316 1316 133 333 200 942 348 691 1436 1436 1436 1436 1436 1436 1436 143
FURTHER CONTRIBUTIONS TO A NOTE ON 'FURTHER CONTRIBUTIONS TO CORRIGENDA, 'FURTHER CONTRIBUTIONS TO AND CONTINUOUS VARIABLES, CORR. 65 343 ONE-WAY LAYOUT MAXIMUM LIKELIHOOD ESTIMATION OF MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN A NONPARAMETRIC ESTIMATE OF A GAUSSIAN VARIATES. SOME NONCENTRAL DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF A NOTE ON THE CIRCULAR MEINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A LIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO ON METHODS OF ASYMPTOTIC APPROXIMATION FOR DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND A NOTE ON A SOLUTION TO THE PROBLEM OF LINKING POPULATIONS GENERALIZED A PARAMETER ESTIMATION FOR A TESTS OF COMPOSITE HYPOTHESES FOR THE R-TEST A COUNTER-EXAMPLE RELATING TO CERTAIN NOTE ON POWER COMPARISONS OF TESTS OF TWO AND APPLICATIONS TO LUNAR CRATERS A REDUCTION FORMULA FOR NORMAL DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTING TONICITY OF THE POWER FUNCTIONS OF SOME TESTS OF THE L DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR RESTRICTIONS STEPWISE A THEOREM ON LEAST SQUARES AND VECTOR CORRELATION IN A THEOREM ON LEAST SQUARES IN	MULTIVARIATE	COMPLEX GAUSSIAN DISTRIBUTION, AN INTROD CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CONFIDENCE BOUNDS' CORFLATION MODELS WITH MIXED DISCRETE COVARIANCE COMPONENTS FOR THE BALANCED DATA DATA SUITABLE FOR USE WITH AN ELECTRONIC DENSITY FUNCTION DENSITY FUNCTIONS DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION DISTRIBUTION OF COMPLEX NORMAL VARIABLES DISTRIBUTIONS DISTRIBUTIONS DISTRIBUTIONS CHARACTERIZATIONS DISTRIBUTIONS WITH SPECIFIED MARGINALS DISTRIBUTIONS WITH SPECIFIED MARGINALS DISTRIBUTIONS WITH SPECIFIED MARGINALS DISTRIBUTIONS WITH SPECIFIED MARGINALS DISTRIBUTIONS OF TAME MEAN OF FINITE EXPONENTIAL DISTRIBUTION EXPONENTIAL DISTRIBUTION EXPONENTIAL FAMILY, CORR. 67 1928 EXPONENTIAL FAMILY, CORR. 67 1928 EXPONENTIAL TYPE DISTRIBUTIONS EXTENSION OF FRIEDMAN'S CHI-SQUARE—SUB— GENERALIZATIONS OF T AND F GOODNESS—OF—FIT TESTS HYPOTHESES BASED ON FOUR CRITERIA IMMIGRATION WITH MULTIPLE DEATH PROCESS INTEGRALS LINEAR HYPOTHESIS LINEAR HYPOTHESIS AND INDEPENDENCE /UL LINEAR REGRESSION LINEAR STRUCTURAL RELATIONS LOCATION PARAMETERS LOCATION PROBLEMS	AMS 63 BIOKA57 BIOKA58 BIOKA61 AMS 61 AMS 61 AMS 64 JRSSB60 AMS 65 BIOKA65 SASJ 67 AMS 66 BIOKA56 BIOKA56 BIOKA56 BIOKA56 AMS 65 BIOKA56 AMS 67 JASA 69 AMS 67 JASA 67 BIOKA67	9B 152 399 581 474 44B 1100 647 302 1049 645 21 215 367 300 433 1494 136 681 333 351 351 353 348 470 413 1494 136 1809 1373

MUL - NEE TITLE WORD INDEX

```
ON ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF A MULTIVARIATE MATRIX DISTRIBUTIONS
                                                                                                            AMS 64 11B6
                                                     MULTIVARIATE MAXIMA AND MINIMA WITH MATRIX
DERIVATIVES
                                                                                                           JASA 69 NO.4
NOTE ON COMBINING CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS
                                                                                                        A TECH 64 463
                                 CONFIDENCE SETS FOR MULTIVARIATE MEDIANS
                                                                                                             AMS 61
                                                                                                                    477
       STRUCTURAL PROBABILITY AND PREDICTION FOR THE MULTIVARIATE MODEL
                                                                                                            JRSSB69 NO 2
                                                     MULTIVARIATE NONPARAMETRIC SEVERAL-SAMPLE TESTS
                                                                                                            AMS 66
                                                                                                                    611
ON CONSERVATIVE CONFIDENCE REGIONS FOR THE MEAN OF A MULTIVARIATE NORMAL
                                                                                                   A NOTE
                                                                                                             AMS 67
                                                                                                                     27B
                           PROBABILITY INTEGRALS OF MULTIVARIATE NORMAL AND MULTIVARIATE T
                                                                                                             AMS 63 792
         SOME RESULTS ON THE ORDER STATISTICS OF THE MULTIVARIATE NORMAL AND PARETD TYPE 1 POPULATIONS
                                                                                                             AMS 64 1815
VALUATION OF PROBABILITIES OF CONVEX POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIONS
                                                                                                ON THE E JRSSB66
                                  POSTERIOR ODDS FOR MULTIVARIATE NORMAL CLASSIFICATION
                                                                                                           JRSSB64
                                                                                                                      69
                           A CHARACTERIZATION OF THE MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                            AMS 62
 MOMENTS OF ORDER STATISTICS FROM THE EQUICORRELATED MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                             AMS 62
                                                                                                                   12B6
                    A CHARACTERISTIC PROPERTY OF THE MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                             AMS 66 1B29
              ABSOLUTE AND INCOMPLETE MOMENTS OF THE MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                            BIOKA61
                                                                                                                      77
                        A NOTE ON THE EQUICORRELATED MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                            BIOKA62
                                                                                                                     269
        ORTHANT PROBABILITIES FOR THE EQUICORRELATED MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                            BIOKA62
                                                                                                                     433
              BAYESIAN ESTIMATION OF PARAMETERS OF A MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                            JRSSB65
                                                                                                                     279
                  A CENTRAL TOLERANCE REGION FOR THE MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                            JRSSB6B
                                                                                                                     599
ONFIDENCE, PREDICTION, AND TOLERANCE REGIDNS FOR THE MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                          C JASA 66
                                                                                                                     605
                   CONFIDENCE SETS FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION (WITH DISCUSSION)
                                                                                                           JRSSB62
                                                                                                                     265
 DICHOTOMISED
                  ESTIMATION OF THE PARAMETERS FOR A MULTIVARIATE NORMAL DISTRIBUTION WHEN ONE VARIABLE IS BIOKA65
                                                                                                                     664
                                                                                                                     200
NS ARE MISSING
                  MAXIMUM LIKELIHOOD ESTIMATES FOR A MULTIVARIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIO JASA 57
TIONS
                     ESTIMATION OF PARAMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVA JASA 6B
                                                                                                                     159
              INCOMPLETE AND ABSOLUTE MOMENTS OF THE MULTIVARIATE NORMAL DISTRIBUTION WITH SOME APPLICATIO BIDKAS3
                   ASYMPTOTICALLY OPTIMAL TESTS FOR MULTIVARIATE NORMAL DISTRIBUTIONS
                                                                                                            AMS 67
                                                                                                                    1829
     RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF MULTIVARIATE NORMAL DISTRIBUTIONS
                                                                                                                    626
RIANCE MATRICES
                             CLASSIFICATION INTO TWO MULTIVARIATE NORMAL DISTRIBUTIONS WITH DIFFERENT COVA AMS 62
                                                                                                                     420
IONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTIONS. /OF PDWER FUNCT AMS 69
                                                                                                                    697
                     A NOTE ON THE EVALUATION OF THE MULTIVARIATE NORMAL INTEGRAL REDUCTION OF THE MULTIVARIATE NORMAL INTEGRAL TO CHARACTERISTIC FORM
                                                                                                           BIOKA53
                                                                                                                     45B
                                                                                                           BIOKA67
                                                                                                                     293
                 THE NUMERICAL EVALUATION OF CERTAIN MULTIVARIATE NORMAL INTEGRALS
                                                                                                            AMS 62
                                                                                                                    571
                                 BIBLIOGRAPHY ON THE MULTIVARIATE NORMAL INTECRALS AND RELATED TOPICS
                                                                                                             AMS 63
                                                                                                                     829
NVARIANT SEQUENTIAL PROBABILITY RATIO TESTS BASED ON MULTIVARIATE NORMAL OBSERVATIONS /BABILITY ONE OF I AMS 67
                                                                                                                      8
                                   APPROXIMATIONS TO MULTIVARIATE NORMAL ORTHANT PROBABILITIES
                                                                                                             AMS 63
                                                                                                                     191
                         POSTERIOR DISTRIBUTIONS FOR MULTIVARIATE NORMAL PARAMETERS
                                                                                                            JRSSB63
ILITY OF THE USUAL CONFIDENCE SETS FOR THE MEAN OF A MULTIVARIATE NORMAL POPULATION
                                                                                                 INADMISSIB AMS 67 186B
                    ESTIMATION OF PARAMETERS OF A MULTIVARIATE NORMAL POPULATION FROM TRUNCATED AND CEN JRSSB60 307
SORED SAMPLES
                                                                                                            AMS 66 1819
 LDSS FUNCTION
                           ESTIMATING THE MEAN OF A MULTIVARIATE NORMAL POPULATION WITH GENERAL QUADRATIC
    CLASSIFICATION RULES FOR CLASSIFICATION INTO TWD MULTIVARIATE NORMAL POPULATIONS
                                                                                                   OPTIMUM
                                                                                                            AMS 65 1174
RISTIC ROOT UNDER NULL HYPOTHESIS CONCERNING COMPLEX MULTIVARIATE NORMAL POPULATIONS
                                                                                         /SMALLEST CHARACTE
                                                                                                            AMS 64 1B07
                                                 DN MULTIVARIATE NORMAL PROBABILITIES DF RECTANCLES
                                                                                                             AMS 68 1425
QUARED AND OTHER FULLY INVARIANT TESTS FOR CLASSICAL MULTIVARIATE NORMAL PROBLEMS /TER DF T-SQUARED, R-S
                                                                                                            AMS 65 747
                            ASYMPTOTIC EFFICIENCY OF MULTIVARIATE NORMAL SCORE TEST
                                                                                                             AMS 67 1753
       MULTIVARIATE BETA DISTRIBUTION AND A TEST FOR MULTIVARIATE NORMALITY
                                                                                                            JRSSB68 511
                           ASSESSING THE ACCURACY OF MULTIVARIATE DBSERVATIONS
                                                                                                            JASA 66
                                                                                                                    403
                                                                                                         ON AMS 67 1216
  THE THEORY OF RANK ORDER TESTS FOR LDCATION IN THE MULTIVARIATE ONE SAMPLE PROBLEM
                                RANK ORDER TESTS FOR MULTIVARIATE PAIRED COMPARISONS
                                                                                                             AMS 69 ND 6
NIVARIATE MODEL AND ASSOCIATED ESTIMATION AND TES/ MULTIVARIATE PAIRED COMPARISONS. THE EXTENSION OF A U BIOKA69
                                                   A MULTIVARIATE PALEONTOLOGICAL CROWTH PROBLEM
                                                                                                           BIOCS69
                                                     MULTIVARIATE PARETD DISTRIBUTIONS, CORR. 63 1603
                                                                                                            AMS 62 100B
                         A NDTE ON REGRESSION IN THE MULTIVARIATE POISSON DISTRIBUTION
                                                                                                            JASA 67
                                                                                                                    251
-TYPE ESTIMATION
                                    APPLICATIONS OF MULTIVARIATE POLYKAYS TO THE THEORY OF UNBIASED RATIO JASA 57
                                                                                                                    511
               SAMPLING MOMENTS OF MEANS FROM FINITE MULTIVARIATE POPULATIONS
                                                                                                             AMS 61
                                                                                                                    406
               ON THE PROBLEM OF TESTING LOCATION IN MULTIVARIATE POPULATIONS FOR RESTRICTED ALTERNATIVES
                                                                                                            AMS 66
                                                                                                                    113
DISTANCES
                         COMPARING DISTANCES BETWEEN MULTIVARIATE POPULATIONS, THE PROBLEM OF MINIMUM
                                                                                                             AMS 67
                                                                                                                    550
 COVARIANCE BASED ON PARTIAL OBSERVATIONS
                                                 DN MULTIVARIATE PREDICTION INTERVALS FOR SAMPLE MEAN AND JASA 67
                                                                                                                    634
                         UNBIASED ESTIMATION OF SOME MULTIVARIATE PROBABILITY DENSITIES
                                                                                                            AMS 69 1261
                 CUBICAL AND SPHERICAL ESTIMATION OF MULTIVARIATE PROBABILITY DENSITY
                                                                                                            JASA 6B 1495
       LOCALLY AND ASYMPTOTICALLY MINIMAX TESTS OF A MULTIVARIATE PROBLEM
                                                                                                            AMS 68 171
NC
                                   AN APPLICATION OF MULTIVARIATE QUALITY CONTROL TO PHOTOGRAPHIC PROCESSI JASA 57
                                                     MULTIVARIATE QUANTAL ANALYSIS
                                                                                                           JRSSB58 398
                                                  ON MULTIVARIATE RATIO AND PRODUCT ESTIMATORS
                                                                                                           BIOKA69 NO.3
                                                     MULTIVARIATE RATIO ESTIMATION FOR FINITE POPULATIONS
                                                                                                          BIOKA58 154
                               CONFIDENCE LIMITS FOR MULTIVARIATE RATIOS
                                                                                                           JRSSB61
                                                                                                                    108
                                                                                                           JRSSB64 277
                       ON THE BAYESIAN ESTIMATION OF MULTIVARIATE RECRESSION
NORMALITY ASSUMPTIONS
                                                     MULTIVARIATE RECRESSION OF DUMMY VARIATES UNDER
                                                                                                           JASA 63 1054
 INFERENCE PROCEDURES OF STEIN'S TYPE FOR A CLASS OF MULTIVARIATE REGRESSION PROBLEMS
                                                                                                SEQUENTIAL AMS 62 1039
S ARE OR/ EX POST DETERMINATION OF SIGNIFICANCE IN MULTIVARIATE REGRESSION WHEN THE INDEPENDENT VARIABLE JRSSB67
                                                                                                                    154
METHOD
                            MISSING OBSERVATIONS IN MULTIVARIATE RECRESSION, EFFICIENCY OF A FIRST ORDER JASA 69 NO.4
                                  POISSON LIMITS OF MULTIVARIATE RUN DISTRIBUTIONS
                                                                                                            AMS 65 215
THE MULTINOMIAL DISTRIBUTION
                                                 THE MULTIVARIATE SADDLE POINT METHOD AND CHI-SQUARED FOR
                                                                                                            AMS 61
                                                                                                                    535
            ESTIMATION OF PARAMETERS FROM INCOMPLETE MULTIVARIATE SAMPLES
                                                                                                           JASA 57
                                                                                                                    523
                          AN EMPIRICAL EVALUATION OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS
                                                                                                            AMS 62 1413
          NOTE ON A CHI-SQUARE APPROXIMATION FOR THE MULTIVARIATE SIGN TEST
                                                                                                           JRSSB65
                                                                                                                     82
                                                  ON MULTIVARIATE SICN TESTS
                                                                                                           JRSSB62
                                                                                                                    159
FOR SELECTING THE MOST EFFECTIVE DISCRIMINATORS IN A MULTIVARIATE SITUATION
                                                                              /NONICAL ANALYSIS, A METHOD
                                                                                                           BIOCS6B
                                                                                                                    845
                 BEST LINEAR UNBIASED ESTIMATION FOR MULTIVARIATE STATIONARY PROCESSES
                                                                                                           TECH 68
                                                                                                                    523
TS WITH MONOTONE POWER FUNCTIONS FOR TWO PROBLEMS IN MULTIVARIATE STATISTICAL ANALYSIS
                                                                                            A CLASS OF TES
                                                                                                           AMS 65 1794
                              STEREOSCOPIC MODELS OF MULTIVARIATE STATISTICAL DATA
                                                                                                           BTOCS66
                                                                                                                    35B
E LINEAR REGRESSION
                             MISSING OBSERVATIONS IN MULTIVARIATE STATISTICS II. POINT ESTIMATION IN SIMPL JASA 67
                                                                                                                     10
                                                                                                          JASA 66
                                   MISSINC VALUES IN MULTIVARIATE STATISTICS, I. REVIEW OF THE LITERATURE
                                                                                                                    595
                             MISSING OBSERVATIONS IN MULTIVARIATE STATISTICS, III
                                                                                                           JASA 69
                                                                                                                    337
                             MISSING OBSERVATIONS IN MULTIVARIATE STATISTICS, IV
                                                                                                           JASA 69 359
CENTRAL WISHART DISTRIBUTION AND CERTAIN PROBLEMS OF MULTIVARIATE STATISTICS', 46 409
                                                                                        /ECTION: 'THE NON- AMS 64
                                                                                                                    923
                                                     MULTIVARIATE STOCHASTIC PROCESSES WITH PERIODIC
COEFFICIENTS
                                                                                                           JRSSB69
```

TITLE WORD INDEX MUL - NEE

	MULTIVARIATE STRATIFIED SURVEYS MULTIVARIATE SURVEYS, AN ANALYTICAL SOLUTION	JASA 68	530
OPTIMUM ALLOCATION IN	MULTIVARIATE SURVEYS, AN ANALYTICAL SOLUTION	JRSSB67	115
ESTS OF SIGNIFICANCE ON THE DIMENSIONALITY OF NORMAL	MULTIVARIATE SYSTEMS /F THE COMPUTING ROUTINE FOR T		70
A PROPERTY OF THE	MULTIVARIATE T AND THE RANKING PROBLEM MULTIVARIATE T DISTRIBUTION	AMS 65	
ON THE EVALUATION OF THE PROBABILITY INTEGRAL OF THE		BIOKA61	
TAME M DICER / MAMPICUADIANE CENEDALIZATIONS OF THE	MILETVADIATE T DISTRICTION AND THE INVESTED MILETVAD	AMS 67	511
A STEPWISE	MULTIVARIATE T-DISTRIBUTION	SASJ 69	17
SOME SHARP	MULTIVARIATE T-DISTRIBUTION MULTIVARIATE T-DISTRIBUTION MULTIVARIATE T-DISTRIBUTIONS MULTIVARIATE TCHEBYCHEFF INEQUALITIES MULTIVARIATE TECHNIQUES MULTIVARIATE TEST CRITERIA MULTIVARIATE TESTING PROBLEM II MULTIVARIATE TESTING PROBLEM, CORR. 64 1388 MULTIVARIATE TESTS	AMS 68	393
PERMUTATION SUPPORT FOR	MULTIVARIATE TECHNIQUES	BIOKA64	65
ON THE EXACT DISTRIBUTION OF A CLASS OF	MULTIVARIATE TEST CRITERIA	AMS 62	1197
ON THE LIKELIHOOD RATIO TEST OF A NORMAL	MULTIVARIATE TESTING PROBLEM II	AMS 65	1061
LOCAL AND ASYMPTOTIC MINIMAX PROPERTIES OF	MULTIVARIATE TESTING PROBLEM, CORR. 64 1386	AMS 64	21
		AMS 68	1654
A NOTE ON THE DERIVATION OF SOME EXACT		BIOKA60	480
MONOTONIC CHARACTER OF THE POWER FUNCTIONS OF TWO	MULTIVARIATE TESTS OF SIGNIFICANCE	BIOCS69	1145 411
THE ASYMPTOTIC POWERS OF	MULTIVARIATE TESTS WITH GROUPED DATA	JRSSB68	338
	MULTIVARIATE TESTS OF SIGNIFICANCE MULTIVARIATE TESTS WITH GROUPED DATA MULTIVARIATE THEORY FOR GENERAL STEPWISE METHODS MULTIVARIATE THEORY FOR GENERAL STEPWISE METHODS	AMS 63	873
RANDOMIZATION TESTS FOR A	MULTIVARIATE TWO SAMPLE TESTS WITH DICHOTOMOUS AND MULTIVARIATE TWO-SAMPLE PROBLEM MULTIVARIATE VERSION OF FIELLER'S THEOREM MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND	JASA 58	729
ON A	MULTIVARIATE VERSION OF FIELLER'S THEOREM	JRSSB59	59
PREDIGTION THEORY	MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND MULTIVARIATE-COVARIANCE AND CANONICAL ANALYSIS, A MET	RIOCSER	424 845
KNOWN	MULTIVARIATE-NORMAL CLASSIFICATION WITH COVARIANCE		
		AMS 69	
A MODEL FOR CHEMICAL QUERY +(ON FORMULA FOR DETERMINING THE INCIDENCE OF		BIOCS65 BIOCS65	
SIMPLEX LATTICE DESIGNS FOR	MUTICOMPONENT SYSTEMS	TECH 62	
CORREGTION TO 'ON THE	MUTUAL INDEPENDENCE OF CERTAIN STATISTICS: 59 1258	AMS 61	1344
MEASURES OF DEPENDENCE	MUTUAL INFORMATION AND MAXIMAL CORRELATION AS MUTUAL SINGULARITY OF PRIORS	AMS 62	5B7 375
	MUTUALLY ORTHOGONAL LATIN SQUARES USING A COMPUTER	TECH 60	507
	MUTUALLY ORTHOGONAL LATIN SQUARES USING A COMPUTER.		111
-SMIRNOV CRITERION D-SUB-MN, M LESS THAN OR EQUAL TO COEFFICIENTS FOR ORTHOGONAL POLYNOMIALS UP TO	N /MPLING DISTRIBUTION OF THE TWO SAMPLE KOLMOGOROV N = 26 COMPLETE SET OF LEADING		
	'N BENADERING VIR 'N MAGREEKS WAARSKYNLIKHEIDSVERDELIN		
	N FACTORIAL EXPERIMENT ON A SPECIAL SUBSET GIVING A		
LASS OF NON OPTHOCONAL MAIN SEEECT DLANS IN V TO THE	N FACTORIAL EXPERIMENT AS CALGULATED BY YATES'S ALGOR N FACTORIALS /APPROACH FOR CONSTRUCTING A USEFUL C		
ESTIMATION OF THE PARAMETER	N IN THE BINOMIAL DISTRIBUTION	JASA 68	
WEIGHING DESIGNS WHEN	N 13 000	AMS 66	
	N MAGHINES UNI-DIRECTIONALLY PATROLLED BY ONE OPERATO N MACHINES UNI-DIRECTIONALLY PATROLLED BY ONE OPERATO		
	'N MAGREEKS WAARSKYNLIKHEIDSVERDELING	SASJ 69	
ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST	N MOMENTS ARE KNOWN MINIMAX		
`ASYMPTOTICALLY EFFICIENT TESTS BY THE METHOD OF THE ROBUSTNESS OF HOMOGENEITY TESTS IN 2 BY	N TABLES	JRSSB6B BIOCS65	19
ON IDENTITY RELATIONSHIPS FOR TWO TO THE POWER OF	N-R DESIGNS HAVING WORDS OF EQUAL LENGTHS N-WAY CROSS CLASSIFICATION N-WAY CROSS CLASSIFICATION' N'TH POWER OF A DENSITY ERRATA,	AMS 66	1842
A NOTE ON THE DETERMINATION OF CONNECTEDNESS IN AN	N-WAY CROSS CLASSIFICATION	TECH 64	319
A NOTE ON THE DETERMINATION OF CONNECTEDNESS IN AN ASYMPTOTIC EXPANSIONS ASSOCIATED WITH THE	N-WAY CROSS CLASSIFICATION' ERRATA,	AMS 67	2B1
TEXTS ON	NAHORDNUNG AND FERNORDNUNG IN SAMPLES OF LITERARY	BIOKA54	116
	NAIR'S TRANSFORMATION OF THE CORRELATION COEFFICIENT		
STATISTICAL DISCREPANCY IN THE REVISED UNITED STATES TECHNIQUE TO PRODUCE AREA BREAKDOWNS OF THE MONTHLY	NATIONAL AGCOUNTS ON THE NATIONAL ESTIMATES OF RETAIL TRADE /OF A REGRESSION		
PROBLEMS OF THE HOUSEHOLD INTERVIEW DESIGN FOR THE	NATIONAL HEALTH SURVEY SOME	JASA 59	69
	NATIONAL INCOME STATISTICS OF UNDERDEVELOPED	JASA 57	
	NATIONAL OUTPUT MEASUREMENT NATIONAL PRODUCT AND ITS COMPONENTS, OF SELECTED NATI	JASA 58 JASA 58	948 54
ERRORS IN THE 1960 CENSUS ENUMERATION OF	NATIVE WHITES	JASA 64	437
ASYMPTOTIC RENEWAL RESULTS FOR A THE POLYKAYS OF THE		JRSSB67 BIOKA60	141 53
MATHEMATICAL PROBABILITY IN THE		TECH 59	21
DISTRIBUTION-FREE TOLERANCE INTERVALS OF A GENERAL		JASA 62	775
DESIGN OF EXPERIMENTS FOR INFINITELY MANY STATES OF FRACTIONAL FACTORIAL PLANS	NATURE THE SEQUENTIAL NEAR-CYCLIC REPRESENTATIONS FOR SOME RESOLUTION VI	AMS 61 AMS 69	
OOD RATIO TEST STATISTIC WHEN THE TRUE PARAMETER IS	'NEAR' THE BOUNDARIES OF THE HYPOTHESIS REGIONS /LIH		
		BIOKA69	
	NEAREST POINT OF A COSELY PACKED LATTICE. NEAREST-NEIGHBOUR SYSTEMS /NAL PROBABILITY AND THE	BIOKA65 BIOKA64	
PARAMETERS ASYMPTOTICALLY	NEARLY EFFICIENT ESTIMATORS OF MULTIVARIATE LOCATION	AMS 69	1809
	NEARLY EXTREMAL VALUES IN SAMPLES FROM A NORMAL DISTR NECESSARY AND SUFFICIENT CONDITION FOR ADMISSIBILITY		89 23
•	NECESSARY AND SUFFICIENT CONDITION FOR ADMISSIBILITY NECESSARY AND SUFFICIENT CONDITION FOR THE SQUARE OF		
T-SQUARES ESTIMATORS BE BEST LINEAR UNBIASED A	NECESSARY AND SUFFICIENT CONDITION THAT ORDINARY LEAS	JASA 67	1302
	NECESSARY AND SUFFICIENT CONDITIONS FOR A STATISTICAL NECESSARY BEST ESTIMATOR'	AMS 63 JASA 69	
BRANCHING PROCESS WITH RANDOM ENVIRONMENT	NECESSARY CONDITIONS FOR ALMOST SURE EXTINCTION OF	AMS 6B	2136
	NECESSARY CONDITIONS FOR THE EXISTENCE OF SOME SYMMET		
	NECESSARY RESTRICTIONS FOR DISTRIBUTIONS A POSTERIORI NECESSARY SAMPLE SIZE, AND A RELATION WITH THE MULTIP		
A MIXTURE OF TWO RECURRENT RANDOM WALKS		AMS 68	

NEE - NON TITLE WORD INDEX

```
THE OUTER NEEDLE OF SOME BAYES SEQUENTIAL CONTINUATION RECIONS BIOKAGE 455
                                   APPROXIMATING THE NECATIVE BINOMIAL
                                                                                                             TECH 66 345
 EFFICIENCY OF CERTAIN METHODS OF ESTIMATION FOR THE NECATIVE BINOMIAL AND NEYMAN TYPE A DISTRIBUTIONS
                                                                                                             BIOKA62
                                                                                                                      215
   A METHOD OF ANALYSING UNTRANSFORMED DATA FROM THE NECATIVE BINOMIAL AND OTHER CONTACIOUS DISTRIBUTIONS
                                                                                                             BIOKA68
                                                                                                                      163
                                        A NOTE ON THE NECATIVE BINOMIAL DISTRIBUTION
                                                                                                             TECH 62
                                                                                                                      609
                                        THE TRUNCATED NECATIVE BINOMIAL DISTRIBUTION
                                                                                                             BTOKA55
         SIMPLIFIED METHODS OF FITTING THE TRUNCATED NEGATIVE BINOMIAL DISTRIBUTION
                                                                                                             BIOKA58
                                        A NOTE ON THE NEGATIVE BINOMIAL DISTRIBUTION
                                                                                                             BIOKA64
BIAS OF MOMENT ESTIMATORS WITH AN APPLICATION TO THE NEGATIVE BINOMIAL DISTRIBUTION
                                                                                                        THE BIOKA62
                                                                                                                      193
S OF THE RECIPROCAL OF A VARIABLE FROM A DECAPITATED NEGATIVE BINOMIAL DISTRIBUTION
                                                                                        /STANDARD DEVIATION JASA 62
                                                                                                                      439
                            ON THE EVALUATION OF THE NEGATIVE BINOMIAL DISTRIBUTION WITH EXAMPLES
                                                                                                             TECH 60
                                                                                                                      501
IMATING THE PARAMETERS OF THE LOCARITHMIC SERIES AND NEGATIVE BINOMIAL DISTRIBUTIONS
                                                                                                      ON EST BIOKA69
                                                                                                                      411
ATES OF THE PARAMETERS OF THE TRUNCATED BINOMIAL AND NEGATIVE BINOMIAL DISTRIBUTIONS
                                                                                        /D OF MOMENTS ESTIM JASA 61
                                                                                                                      990
                                                      NEGATIVE BINOMIAL DISTRIBUTIONS WITH A COMMON K
                                                                                                             BTOKA58
                                                                                                                      37
  'THE USE OF ORTHOGONAL POLYNOMIALS OF POSITIVE AND NECATIVE BINOMIAL FREQUENCY FUNCTIONS IN CURVE FITTIN BIOKA61
HE USE OF ORTHOGONAL POLYNOMIALS OF THE POSITIVE AND NEGATIVE BINOMIAL FREQUENCY FUNCTIONS IN CURVE FITTIN BIOKA61
                                                                                                                      115
                   THE RECIPROCAL OF THE DECAPITATED NEGATIVE BINOMIAL VARIABLE, CORR. 63 1162
                                                                                                                      906
                     ON STABILIZING THE BINOMIAL AND NEGATIVE BINOMIAL VARIANCES
                                                                                                             JASA 61
               ON TESTING FOR GOODNESS-OF-FIT OF THE NEGATIVE BINOMIAL WHEN EXPECTATIONS ARE SMALL
                    TRANSFORMATIONS OF THE BINOMIAL, NEGATIVE BINOMIAL, POISSON AND CHI-SQUARE DISTRIBUTIO BIOKA54
                                                                                                                      302
     CORRIGENDA TO 'TRANSFORMATIONS OF THE BINOMIAL, NEGATIVE BINOMIAL, POISSON AND CHI-SQUARE DISTRIBUTIO BIOKA56
N/
                          ERRATA, 'APPROXIMATING THE NEGATIVE BINOMIAL'
                                                                                                             TECH 67
                                                                                                                      49B
                               THE INTERPRETATION OF NEGATIVE COMPONENTS OF VARIANCE
                                                                                                             BTOKA54
                                                                                                                      544
              THE EFFECTIVE USE OF BOTH POSITIVE AND NEGATIVE GONTROLS IN SCREENING EXPERIMENTS
                                                                                                             BTOCS67
                                                                                                                      285
                                                     NECATIVE DYNAMIC PROGRAMMING
                                                                                                              AMS 66
                                                                                                                      871
                            PROBABILITY OF OBTAINING NECATIVE ESTIMATES OF HERITABILITY
                                                                                                             BTOCS68
                                                                                                                     517
                                      THE PROBLEM OF NEGATIVE ESTIMATES OF VARIANCE COMPONENTS
                                                                                                                      273
                                                                                                              AMS 62
                     STATIONARY DISTRIBUTIONS OF THE NECATIVE EXPERIMENTAL TYPE FOR THE INFINITE DAM
                                                                                                             JRSSB57
                                                                                                                      342
UANTILES FOR THE ESTIMATION OF THE PARAMETERS OF THE NEGATIVE EXPONENTIAL DISTRIBUTION /PTOTIC OPTIMUM Q AMS 66
                                                                                                                      143
DER STATI/ OPTIMUM ESTIMATORS OF THE PARAMETERS OF NEGATIVE EXPONENTIAL DISTRIBUTIONS FROM ONE OR TWO OR
                                                                                                             AMS 63
                                                                                                                     117
ORDER STATISTIC FOR THE PARAMETER OF A ONE-PARAMETER NEGATIVE EXPONENTIAL POPULATION /DS. BASED ON ONE TECH 64
R STATISTICS, CORR./ ESTIMATING THE PARAMETERS OF NEGATIVE EXPONENTIAL POPULATIONS FROM ONE OR TWO ORDE AMS 61 107B
                                                  THE NEGATIVE EXPONENTIAL WITH CUMULATIVE ERROR
                                                                                                             BIOCS6B
                                                                                                                     363
                                  EIGENVALUES OF NON-NEGATIVE MATRICES
                                                                                                              AMS 64 1797
                                       A NOTE ON THE NEGATIVE MOMENTS OF A TRUNCATED POISSON VARIATE
                                                                                                             JASA 64 1220
                             AN APPROXIMATION OF THE NEGATIVE MOMENTS OF THE POSITIVE BINOMIAL USEFUL IN
                                                                                                            TECH 60
                                                                                                                     227
ONC INVERSELY SAMPLED POLLEN COUN/ ON THE COMPOUND NEGATIVE MULTINOMIAL DISTRIBUTION AND CORRELATIONS AM BIOKA63
                                                                                                                       47
SSIONS FOR TAIL PROBABILITIES OF THE MULTINOMIAL AND NEGATIVE MULTINOMIAL DISTRIBUTIONS. INTEGRAL EXPRE BIOKA65
                                                                                                                      167
                                          MOMENTS OF NECATIVE ORDER AND RATIO-STATISTICS
                                                                                                             JRSSB55
                                               QUERY, NEGATIVE VARIANCE ESTIMATES
                                                                                                             TECH 65
                                                                                                                       75
                                                      NEGATIVE VARIANCE ESTIMATES AND STATISTICAL DEPENDENC JASA 68 1000
E IN NESTED SAMPLING
              AGE PATTERNS OF MORTALITY OF AMERICAN NEGROES, 1900-02 TO 1959-61
                                                                                                             JASA 69
                                                                                                                     433
                                             NEAREST NEIGHBOURS IN A POISSON ENSEMBLE
                                                                                                             BIOKA69
      MODEL OF ACHE TRANSPORTATION IN THE PERIPHERAL NERVE TRUNKS
                                                                                               A STOCHASTIC BIOKA62
                                                                                                                      447
IFICANCE OF COMPONENTS OF VARIANCE IN THE UNBALANCED NESTED ANALYSIS OF VARIANCE (CORRECTION 6B 1025) /N BIOCS68
                          THE SPECTRUM OF A MODEL II NESTED ANOVA AND ITS APPLICATIONS
                                                                                                             TECH 69
                                                                                                                      91
                                                      NESTED BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                             BIOKA67
                                                                                                                     479
       VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED GLASSIFICATION
                                                                                                              AMS 61 1161
S OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION
                                                                              /NC VARIANCES OF THE ESTIMATE
                                                                                                              AMS 63
                                                                                                                     521
                           EXPECTED MEAN SQUARES FOR NESTED CLASSIFICATIONS
                                                                                                             BTOCS69
                                                                                                                      427
VARIANCE COMPONENTS I. EMPIRICAL STUDIES OF BALANCED NESTED DESIGN
                                                                                 SAMPLINC DISTRIBUTIONS OF
                                                                                                            TECH 66
                                                                                                                      457
IANCE COMPONENTS II. EMPIRICAL STUDIES OF UNBALANCED NESTED DESIGNS
                                                                              SAMPLING DISTRIBUTIONS OF VAR TECH 68 719
      ESTIMATION OF VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE SAMPLES
                                                                                                             TECH 67
                                                                                                                      373
 PROCEDURES FOR ESTIMATING PARAMETERS IN A TWO-STAGE NESTED PROCESS /MPARISONS OF DESIGNS AND ESTIMATION TECH 67
                                                                                                                      499
    VARIANCE ESTIMATES AND STATISTICAL DEPENDENCE IN NESTED SAMPLING
                                                                                                   NECATIVE JASA 68 1000
   ON THE CENSUS SURVIVAL RATIO METHOD OF ESTIMATING NET MIGRATION
                                                                                                     A NOTE JASA 62
                                                                                                                     175
      SURVIVAL RATES IN ESTIMATING INTERCENSAL STATE NET MIGRATION
                                                                                       EVALUATION OF CENSUS JASA 62
                         ERRORS IN THE ESTIMATION OF NET MICRATION IN THE STUDIES OF INTERNAL MIGRATION
                                                                                                            JASA 69 NO.4
                             A FAVORABLE SIDE BET IN NEVADA BACCARAT
                                                                                                             JASA 66
                                                                                                                     313
ON THE RELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURGHASES
                                                                                                           JASA 59
             AN INDEX OF MANUFACTURING PRODUCTION IN NEW ENGLAND
                                                                                                             JASA 58
                                                                                                                      336
OMETRIC PARAMETER
                            THE RELATIONSHIP BETWEEN NEYMAN AND BAYES CONFIDENCE INTERVALS FOR THE HYPERGE TECH 68
ANDOMIZED BALANCED INCOMPLETE BLOCK DESIGN UNDER THE NEYMAN MODEL /ISTRIBUTION OF THE F-STATISTIC IN A R AMS 63 1558

ON SLIPPAGE TESTS I. A GENERALIZATION OF NEYMAN PEARSON'S LEMMA

AMS 68 1693
 METHODS OF ESTIMATION FOR THE NEGATIVE BINOMIAL AND NEYMAN TYPE A DISTRIBUTIONS
                                                                                      EFFICIENCY OF CERTAIN BIOKA62
                                                                                                                     215
 BINOMIAL PARAMETER
                                            TABLE OF NEYMAN-SHORTEST UNBIASED CONFIDENCE INTERVALS FOR THE BIOKAGO
                                                                                                                      381
 POISSON PARAMETER
                                           TABLES OF NEYMAN-SHORTEST UNBIASED CONFIDENCE INTERVALS FOR THE BIOKA61
                             COMMENT ON THE NOTES BY NEYMAN, BARTLETT AND WELCH IN THIS JOURNAL (VOL. 1B, JRSSB57
                                                                                                                      179
NO. 2, 1956)
              ON THE DERIVATION AND APPLICABILITY OF NEYMAN'S TYPE A DISTRIBUTION
                                                                                                             BIOKA58
                                                                                                                      32
                        BIVARIATE GENERALIZATIONS OF NEYMAN'S TYPE A DISTRIBUTION
                                                                                                             BIOKA66
                                                                                                                     241
 GAUSSIAN MEASURES WITH A PARTICULARLY SIMPLE RADON-NIKODYM DERIVATIVE
                                                                                                 EQUIVALENT AMS 67 1027
TWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 533)
                                                                                             ASSOCIATION BE JRSSB65
RESULT ON THE RELEVANCE OF THE DISPERSION OF A RADON-NIKODYM DERIVATIVE TO THE PROBLEM OF MEASURING ASSOCI JRSSB65
                                               RADON-NIKODYM DERIVATIVES OF GAUSSIAN MEASURES
                                                                                                              AMS 66
                                                                                                                      321
                                               RADON-NIKODYM DERIVATIVES OF STATIONARY GAUSSIAN MEASURES
                                                                                                             AMS 64
               LEADING AMERICAN STATISTICIANS IN THE NINETEENTH CENTURY
                                                                                                            JASA 57
                                                                                                                     301
                LEADING BRITISH STATISTICIANS OF THE NINETEENTH CENTURY
                                                                                                            JASA 60
                                                                                                                      38
               LEADING AMERICAN STATISTICIANS OF THE NINETEENTH CENTURY II
                                                                                                            JASA 58
                                                                                                                      6B9
                                                                                                                     506
               SOME EXTENSIONS OF THE WALD-WOLFOWITZ-NOETHER THEOREM
                                                                                                             AMS 61
                          REGRESSION WITH SYSTEMATIC NOISE
                                                                                                             1454 64
                                                                                                                     422
THE DISTRIBUTION OF THE FIRST SAMPLE MOMENTS OF SHOT NOISE
                                                                                                            TECH 64
                                                                                                                     2B7
                                                               LARGE SAMPLE ESTIMATION OF AN UNKNOWN DISCR AMS 65
ETE WAVEFORM WHICH IS RANDOMLY REPEATING IN GAUSSIAN NOISE
                                                                                                                     4R9
YSTEMS, ARBITRARY SYSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS ERROR ESTIMATION OF STOCHASTIC S
FREQUENCY RESPONSE FROM STATIONARY NOISE, TWO CASE HISTORIES
                                                                                                             AMS 6B
                                                                                                                     785
                                                                                                            TECH 61
                                                                                                                     245
                           ON THE CODING THEOREM FOR NOISELESS CHANNEL
                                                                                                             AMS 61
                                                                                                                     594
                                                   A NOMOGRAM FOR CHI-SQUARE, CORR. 66 1246
                                                                                                            JASA 65 344
```

TITLE WORD INDEX NEE - NON NOM - NON A NOMOCRAM FOR THE 'STUDENT' *FISHER T TEST JASA 69 NO.4 MAXIMUM LIKELIHOOD NOMOCRAMS FOR FITTING THE LOGISTIC FUNCTION BY BIOKA60 121 NTS, CORR. 62 917 A NOMOCRAPH FOR COMPUTING PARTIAL CORRELATION COEFFICIE JASA 61 995 THE NON-ABSOLUTE CONVERCENCE OF CIL-PELAEZ' INVERSION AMS 61 338 NON-ADDITIVITIES IN A LATIN SQUARE DESIGN JASA 57 218 POWER OF TUKEY'S TEST FOR NON-ADDITIVITY JRSSB63 213 THE INTERPRETATION OF THE EFFECTS OF NON-ADDITIVITY IN THE LATIN SQUARE BIOKA58 NON-ADDITIVITY IN TWO-WAY ANALYSIS OF VARIANCE JASA 61 B78 NOTES. ESTIMATION OF NON-LINEAR PARAMETERS FOR A NON-ASYMPTOTIC FUNCTION BIOCS68 THE PREDICTIVE JASA 64 ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLES 987 A CROSS-SECTION ANALYSIS OF NON-BUSINESS AIR TRAVEL JASA 58 928 AN ASYMPTOTIC DISTRIBUTION FOR THE DETERMINANT OF A NON-CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS SASJ 68 SERIES REPRESENTATIONS OF DISTR AMS 67 IBUTIONS OF QUADRATIC FORMS IN NORMAL VARIABLES, II, NON-CENTRAL CASE
TABLE OF PERCENTACE POINTS OF NON-CENTRAL CHI B38 255 BTOKA69 NOTE ON AN APPROXIMATION TO THE DISTRIBUTION OF NON-CENTRAL CHI-SQUARE BIOKA59 364 PPER 5 PERCENT POINTS OF FISHER'S B DISTRIBUTION AND NON-CENTRAL CHI-SQUARE APPROXIMATIONS TO THE U BIOKA57 528 LAGUERRE SERIES FORMS OF NON-CENTRAL CHI-SQUARE AND F DISTRIBUTIONS BIOKA65 415 A CONTOUR-INTECRAL DERIVATION OF THE NON-CENTRAL CHI-SQUARE DISTRIBUTION AMS 62 796 ANOTHER DERIVATION OF THE NON-CENTRAL CHI-SQUARE DISTRIBUTION JASA 64 957 ON THE NON-CENTRAL CHI-SQUARE DISTRIBUTION BTOKA59 235 APPROXIMATIONS TO THE NON-CENTRAL CHI-SQUARE DISTRIBUTION BTOKA63 199 ERCENTAGE POINTS AND THE PROBABILITY INTEGRAL OF THE NON-CENTRAL CHI-SQUARE DISTRIBUTION /ULAE FOR THE P BIOKA54 538 441 A NOTE ON THE MAXIMIZATION OF A NON-CENTRAL CHI-SQUARE PROBABILITY AMS 64 THE DISTRIBUTION OF THE PRODUCT OF TWO CENTRAL OR NON-CENTRAL CHI-SQUARE VARIATES AMS 62 1016 LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES AMS 66 480 THE NON-CENTRAL CHI-SQUARED AND BETA DISTRIBUTIONS BTOKA63 542 OF THE TRACE OF A MATRIX AND APPROXIMATIONS TO ITS NON-CENTRAL DISTRIBUTION ON THE MOMENTS AMS 66 1312 METRIC FUNCTION OF THE ROOTS OF A MATRIX ON THE NON-CENTRAL DISTRIBUTION OF THE SECOND ELEMENTARY SYM AMS 68 SOME NON-CENTRAL DISTRIBUTION PROBLEMS IN MULTIVARIATE AMS 63 1270 AMS 65 1521 SOME INEQUALITIES FOR CENTRAL AND NON-CENTRAL DISTRIBUTIONS MULTIVARIATE ANALYSIS OF VARIANCE ON THE NON-CENTRAL DISTRIBUTIONS OF TWO TEST CRITERIA IN AMS 68 215 PROPERTIES OF THE DISTRIBUTION OF THE LOGARITHM OF NON-CENTRAL F SOME BIOKAGO 417 A NOTE ON APPROXIMATING TO THE NON-CENTRAL F DISTRIBUTION BIOKA66 606 NORMAL APPROXIMATION TO THE CHI-SQUARE AND NON-CENTRAL F PROBABILITY FUNCTIONS BIOKA60 411 ION FOR ANALYSIS OF VARIANCE TESTS, DERIVED FROM THE NON-CENTRAL F-DISTRIBUTION /ARTS OF THE POWER FUNCT BICKAS1 112 SOME NON-CENTRAL F-DISTRIBUTIONS EXPRESSED IN CLOSED FORM BIOKA64 107 THE NON-CENTRAL MULTIVARIATE BETA DISTRIBUTION AMS 61 104 S OF TRACES OF TWO MATRICES SOME RESULTS ON THE NON-CENTRAL MULTIVARIATE BETA DISTRIBUTION AND MOMENT AMS 65 1511 THE DISTRIBUTION OF A MULTIPLE CORRELATION MATRIX, NON-CENTRAL MULTIVARIATE BETA DISTRIBUTIONS ON AMS 68 227 OF DEFINITE AND OF INDEFINITE QUADRATIC FORMS FROM A NON-CENTRAL NORMAL DISTRIBUTION DISTRIBUTION AMS 63 186 DISTRIBUTION OF A DEFINITE QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. 63 673 AMS 61 8B3 THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AMS 64 298 AN APPROXIMATION TO THE DISTRIBUTION OF NON-CENTRAL T BIOKA58 484 TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION AMS 64 315 VARIATIONS OF THE NON-CENTRAL T AND BETA DISTRIBUTIONS AMS 64 1583 RELATION BETWEEN THE DISTRIBUTIONS OF NON-CENTRAL T AND OF A TRANSFORMED CORRELATION COEFFI BIOKAS7 219 A NOTE CN REPRESENTATIONS OF THE DOUBLY NON-CENTRAL T DISTRIBUTION JASA 68 1013 REPRESENTATIONS OF THE CENTRAL AND NON-CENTRAL T DISTRIBUTIONS BIOKA64 451 THE MOMENTS OF THE NON-CENTRAL T-DISTRIBUTION BTOKA61 465 A SPECIAL CASE OF A BIVARIATE NON-CENTRAL T-DISTRIBUTION BIOKA65 437 CILITATE THE COMPUTATION OF PERCENTAGE POINTS OF THE NON-CENTRAL T-DISTRIBUTION TABLES TO FA AMS 62 580 SOME PERCENTAGE POINTS OF THE NON-CENTRAL T-DISTRIBUTION, CORR. 63 1163 JASA 63 176 APPROXIMATIONS TO THE NON-CENTRAL T, WITH APPLICATIONS ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T, WITH APPLICATIONS' TECH 63 295 TECH 64 482 OF MULTIVARIATE STATISTICS', 46/ CORRECTION. 'THE NON-CENTRAL WISHART DISTRIBUTION AND CERTAIN PROBLEMS AMS 64 923
VARIATE THE MAXIMUM LIKELIHOOD ESTIMATE OF THE NON-CENTRALITY PARAMETER OF A NONCENTRAL CHI-SQUARE JASA 67 1258 IMENTS WITH LEAST SQUARES,/ LINEAR REGRESSION WITH NON-CONSTANT, UNKNOWN ERROR VARIANCES, SAMPLING EXPER BIOCS68
A POLYNOMIAL CONSTRAINED TO BE EITHER NON-NEGATIVE, NON-DECREASING OR CONVEX LEAST-SQUARES FITTING OF JRSSB69 607 113 A DELICATE LAW OF THE ITERATED LOGARITHM FOR NON-DECREASING STABLE PROCESSES (ADDENDUM, 69 1855) AMS 68 1818 USE OF CYCLIC BALANCED INCOMPLETE BLOCK DESIGNS FOR NON-DIRECTIONAL SEED ORCHARDS THE BIOCS69 561 NON-DISCOUNTED DENUMERABLE MARKOVIAN DECISION MODELS AMS 68 SOME FURTHER RESULTS IN THE NON-EQUILIBRIUM THEORY OF A SIMPLE QUEUE JRSSB57 CUMULATIVE PROBABILITIES TREATMENT OF THE NON-EQUILIBRIUM THEORY OF SIMPLE QUEUES BY MEANS OF JRSSB63 SE FOR EXPERIMENTS INVOLVING LOCATION PARAMETERS NON-EQUIVALENT COMPARISONS OF EXPERIMENTS AND THEIR U AMS 61 OF A LOG-NORMAL DISTRIBUTION HAVING A PRE/ ON THE NON-EXISTENCE OF A FIXED SAMPLE ESTIMATOR OF THE MEAN AMS 67 NON-EXISTENCE OF EVERYWHERE PROPER CONDITIONAL AMS 63 DISTRIBUTIONS 223 THE APPLICATION OF GROUP THEORY TO THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN SQUARES BIOKA69 NO.3 MOST POWERFUL TESTS FOR SOME NON-EXPONENTIAL FAMILIES AMS 68 772 APPROXIMATION TO BAYES RISK IN SEQUENCES OF NON-FINITE GAMES AMS 69 467 THE DISTRIBUTION OF INANIMATE MARKS OVER A NON-HOMOGENEOUS BIRTH-DEATH PROCESS BIOKA69 225 NON-HOMOGENEOUS BRANCHING POISSON PROCESSES JRSSB67 343 LE FOR DIFFERENT CLASSIFICATIONS WITH CORRELATED AND NON-HOMOGENEOUS ERRORS /AN ANALYSIS OF VARIANCE TAB JRSSB59 114 WHERE (Y-SUB-O, Y-SUB-1....) IS A REALIZATION OF A NON-HOMOGENEOUS FINITE-STATE MARKOV CHAIN /-SUB-T), BIOKA65 SOME LIMIT THEOREMS FOR NON-HOMOGENEOUS MARKOV CHAINS AMS 66 1224 OREMS CONCERNING THE STRONG LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV CHAINS SOME THE AMS 64 566 THE STATISTICS OF A PARTICULAR NON-HOMOGENEOUS POISSON PROCESS BTOKA64 399 STRIBUTIONS, IV. THE DISTRIBUTION OF HOMOCENEOUS AND NON-HOMOGENEOUS QUADRATIC FUNCTIONS OF NORMAL VARIABL AMS 62 542 ROBUSTNESS OF NON-IDEAL DECISION PROCEDURES JASA 63 480 COHERENT STRUCTURES OF NON-IDENTICAL COMPONENTS TECH 63 191 THEOREM FOR RANDOM VARIABLES WHICH ARE DEPENDENT OR NON-IDENTICALLY DISTRIBUTED A RENEWAL AMS 63 390 AN EXTENSION OF ROSEN'S THEOREM TO NON-IDENTICALLY DISTRIBUTED RANDOM VARIABLES AMS 68 897 IC VARIANCES OF EQUAL MAGN/ CENETIC COMPONENTS FOR NON-INBRED DIPLOID SPECIES HAVING ALL DIGENIC EPISTAT BIOCS69 545 OF THE SENSITIVITIES OF SIMILAR INDEPENDENT AND NON-INDEPENDENT EXPERIMENTS COMPARISON BIOKAG9 17 AN EXAMPLE OF DISCREPANCIES IN INFERENCES UNDER NON-INFORMATIVE STOPPING RULES BIOKA67 IN BIOLOGICAL ASSAY MODELS FOR THE NON-INTERACTIVE JOINT ACTION OF A MIXTURE OF STIMULI BIOKA66 49

```
NOTE. A METHOD OF FITTING A NON-LINEAR CURVE CONTAINING A SINGLE NON-LINEARITY
                                                                                                              BIOCS65 506
ENTS
                      THE NUMERICAL SOLUTION OF SOME NON-LINEAR EQUATIONS, USEFUL IN THE DESIGN OF EXPERIM JRSSB65
                                                                                                                       466
            AN APPLICATION OF STEPWISE REGRESSION TO NON-LINEAR ESTIMATION
                                                                                                              TECH 68
                                                                                                                        63
                            EXACT FIDUCIAL LIMITS IN NON-LINEAR ESTIMATION
                                                                                                              JRSSR62
                                                                                                                       125
                                CONFIDENCE RECIONS IN NON-LINEAR ESTIMATION (WITH DISCUSSION)
                                                                                                              JRSSB60
                                                                                                                        41
                 THE ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS OF THE TWO-SAMPLE RANK VECTOR
                                                                                                               AMS 69 1011
                            ASYMPTOTIC PROPERTIES OF NON-LINEAR LEAST SQUARES ESTIMATORS
                                                                                                               AMS 69
                                                                                                                       633
MAL DESIGNS OF EXPERIMENTS TO ESTIMATE PARAMETERS IN NON-LINEAR MODELS /CURRENCE OF REPLICATIONS IN OPTI JRSSB68
                                                                                                                        290
                             LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOCIT ANALYSIS CORRIGENDA, 'LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ANALYSIS'
                                                                                                              BTOKA61
                                                                                                                        359
                                                                                                              BIOKA62
                                                                                                                        284
                                 NOTES. ESTIMATION OF NON-LINEAR PARAMETERS FOR A NON-ASYMPTOTIC FUNCTION
                                                                                                              BTOCS68
                                                                                                                        130
                               INTERVAL ESTIMATION OF NON-LINEAR PARAMETRIC FUNCTIONS
                                                                                                              JASA 63
                                                                                                                        611
                               INTERVAL ESTIMATION OF NON-LINEAR PARAMETRIC FUNCTIONS. II
                                                                                                              JASA 64
                                                                                                                       168
                               INTERVAL ESTIMATION OF NON-LINEAR PARAMETRIC FUNCTIONS, 111
                                                                                                              JASA 65 1191
                                      ON A PROBLEM IN NON-LINEAR PREDICTION THEORY
                                                                                                               AMS 65 1554
                                       CONVERGENCE IN NON-LINEAR REGRESSION
                                                                                                              TECH 63
                                                                                                                       513
                   CONFIDENCE INTERVAL ESTIMATION IN NON-LINEAR REGRESSION
                                                                                                              JRSSR63
                                                                                                                       330
 THE MODIFIED GAUSS-NEWTON METHOD FOR THE FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST SQUARES
                                                                                                              TECH 61
                                                                                                                        269
      EXACT CONFIDENCE REGIONS FOR THE PARAMETERS IN NON-LINEAR RECRESSION LAWS
                                                                                                                        347
                                                                                                              BIOKA64
TY AND QUANTAL RESPONSE DATA
                                          THE USE OF NON-LINEAR REGRESSION METHODS FOR ANALYSING SENSITIVI BIOCS67
                                                                                                                        563
                      NOTE ON INTERVAL ESTIMATION IN NON-LINEAR REGRESSION WHEN RESPONSES ARE CORRELATED
                                                                                                              JRSSB64
                                                                                                                        267
                                                      NON-LINEAR REGRESSION WITH MINIMAL ASSUMPTIONS
                                                                                                              JASA 62
                                                                                                                        572
                  ON THE LEAST SQUARES ESTIMATION OF NON-LINEAR RELATIONS
                                                                                                               AMS 69
                            DESIGN OF EXPERIMENTS IN NON-LINEAR SITUATIONS
                                                                                                              BIOKA59
                                                                                                                        77
HE DESIGN OF EXPERIMENTS FOR PARAMETER ESTIMATION IN NON-LINEAR SITUATIONS
                                                                                /OF PRIOR DISTRIBUTIONS IN T BIOKA67
HE DESIGN OF EXPERIMENTS FOR PARAMETER ESTIMATION IN NON-LINEAR SITUATIONS MULTIRESPONSE CASE /IONS IN T BIOKA67
                              ON BEALE'S MEASURES OF NON-LINEARITY
   OF FITTING A NON-LINEAR CURVE CONTAINING A SINGLE NON-LINEARITY
                                                                                               NOTE. A METHOD BIOCS65
LEAST SQUARES LINEAR ESTIMATO/ ON CANONICAL FORMS, NON-NEGATIVE COVARIANCE MATRICES AND BEST AND SIMPLE
                                                                                                               AMS 67 1092
                                                      NON-NEGATIVE ESTIMATES OF VARIANCE COMPONENTS
                                                                                                              TECH 63
                                       EIGENVALUES OF NON-NEGATIVE MATRICES
                                                                                                               AMS 64 1797
 INFINITELY DIVISIBLE LAWS AND A RENEWAL THEOREM FOR NON-NEGATIVE RANDOM VARIABLES
                                                                                                               AMS 68
                                                                                                                       139
                     TESTING FOR CORRELATION BETWEEN NON-NECATIVE VARIATES
                                                                                                              BIOKA67
RES FITTING OF A POLYNOMIAL CONSTRAINED TO BE EITHER NON-NEGATIVE, NON-DECREASING OR CONVEX
                                                                                                   LEAST-SQUA JRSSB69
                                                                                                                        113
                    ORDER STATISTICS FROM A CLASS OF NON-NORMAL DISTRIBUTIONS
                                                                                                              BIOKA69
                                                                                                                        415
                      PRODUCER AND CONSUMER RISKS IN NON-NORMAL POPULATION
                                                                                                               TECH 66
                                                                                                                        335
     OF THE REGRESSION COEFFICIENT IN SAMPLES FROM A NON-NORMAL POPULATION
                                                                                             THE DISTRIBUTION BIOKA54
                                                                                                                        548
                THE DISTRIBUTION OF RANGE IN CERTAIN NON-NORMAL POPULATIONS
                                                                                                                        463
                                                                                                              BIOKA54
     ON THE EXTREME VALUES AND RANGE OF SAMPLES FROM NON-NORMAL POPULATIONS
                                                                                                              BIOKA67
                                                                                                                        541
FFICIENT OF VARIATION OF RANGE IN SMALL SAMPLES FROM NON-NORMAL POPULATIONS
                                                                                             THE MEAN AND COE BIOKA54
                                                                                                                        469
 SAMPLING DISTRIBUTIONS OF THE MEAN FOR SAMPLES FROM NON-NORMAL POPULATIONS
                                                                                        ON APPROXIMATIONS TO AMS 63 1308
 THE DISTRIBUTION OF THE F-RATIO IN SAMPLES FROM TWO NON-NORMAL POPULATIONS
                                                                                /MPIRICAL INVESTIGATION INTO BIOKA58
OF RECRESSION COEFFICIENTS IN SAMPLES FROM BIVARIATE NON-NORMAL POPULATIONS. I. THEORETICAL INVESTIGATION BIOKAGO
                                                                                                                         61
                                                                                                              BIOKA55
               'THE DISTRIBUTION OF RANGE IN CERTAIN NON-NORMAL POPULATIONS'
FFICIENT OF VARIATION OF RANGE IN SMALL SAMPLES FROM NON-NORMAL POPULATIONS'
                                                                                 /RICENDA, 'THE MEAN AND COE BIOKA55
   SAMPLE POWER FOR THE ONE SAMPLE WILCOXON TEST FOR NON-NORMAL SHIFT ALTERNATIVES
                                                                                                        SMALL
                                                                                                              AMS 65 1767
COEFFICIENT IN RANDOM SAMPLES OF ANY SIZE DRAWN FROM NON-NORMAL UNIVERSES /E PRODUCT-MOMENT CORRELATION BIOKAS1
                             SAMPLING FROM BIVARIATE NON-NORMAL UNIVERSES BY MEANS OF COMPOUND NORMAL
                                                                                                              BIOKA52
                            APPROXIMATING THE CENERAL NON-NORMAL VARIANCE-RATIO SAMPLING DISTRIBUTIONS
                                                                                                              BIOKA64
   ON VARIABLES ACCEPTANCE SAMPLING WITH EMPHASIS ON NON-NORMALITY
                                                                                      SUMMARY OF RECENT WORK TECH 69 NO.4
                                                      NON-NORMALITY AND TESTS ON VARIANCES.
                                                                                                              BIOKA53 318
                                                      NON-NORMALITY IN TWO-SAMPLE T-TESTS
                                                                                                              BIOKA53
                                                                                                                        223
                                        ROBUSTNESS TO NON-NORMALITY OF REGRESSION TESTS
                                                                                                              BIOKA62
                                                                                                                         93
                           CORRIGENDA, 'ROBUSTNESS TO NON-NORMALITY OF REGRESSION TESTS'
                                                                                                              BIOKA65
                                                                                                                        669
                                            EFFECT OF NON-NORMALITY ON A SEQUENTIAL TEST FOR MEAN
                                                                                                              BIOKA64
                                                                                                                        281
                                            EFFECT OF NON-NORMALITY ON STEIN S TWO SAMPLE TEST
                                                                                                               AMS 65
                                                                                                                        651
                                     ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF
VARIANCE
                                                                                                               JRSSB62
                                                                                                                       140
                                        EFFECT OF NON-NORMALITY ON THE POWER FUNCTION OF T-TEST
THE EFFECT OF NON-NORMALITY ON THE POWER FUNCTION OF THE F-TEST IN
                                                                                                              BTOKA58
                                                                                                                        421
THE ANALYSIS OF VARIANCE
                                                                                                              BIOKA51
                                                                                                                        43
                                            EFFECT OF NON-NORMALITY ON THE POWER FUNCTION OF THE SIGN TEST
                                                                                                              JASA 64
                                                                                                                        142
VARIANCE TEST
                                            EFFECT OF NON-NORMALITY ON THE POWER OF THE ANALYSIS OF
                                                                                                              BIOKA59
                                                                                                                        114
COMPONENTS ANALYSIS

THE NON-NULL DISTRIBUTION OF A STATISTIC IN PRINCIPAL
BIOKAGE
EL. II NULL DISTRIBUTIONS FOR HIGHER ORDER SCHEMES, NON-NULL DISTRIBUTIONS
/LINEAR AUTO-RECRESSIVE MOD BIOKAGE
                                                                                                                        590
                                                                                                                        186
                      ASYMPTOTIC EXPANSIONS OF THE NON-NULL DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITER AMS 69
IA FOR MULTIVARIATE/
                                                                                                                       942
                                THE WILCOXON TEST AND NON-NULL HYPOTHESES
                                                                                                              JRSSB60
                                                                                                                       402
                                                    A NON-NULL RANKING MODEL FOR A SEQUENCE OF M
ALTERNATIVES
                                                                                                              BIOKA61
                                                                                                                        441
                                                      NON-NULL RANKING MODELS. I
                                                                                                              BIOKA57
                                                                                                                       114
ENERAL THEORY AND THE CA/ EFFICIENT UTILIZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE ANALYSIS. G
                                                                                                              AMS 63 1347
                                    INSENSITIVITY TO NON-OPTIMAL DESIGN IN BAYESIAN DECISION THEORY
                                                                                                              JASA 65
                                                                                                                       584
       THE ANALYSIS OF VARIANCE OF DESIGNS WITH MANY NON-ORTHOGONAL CLASSIFICATIONS
                                                                                                              JRSSB66
                                                                                                                       110
     ITERATIVE ESTIMATION OF VARIANCE COMPONENTS FOR NON-ORTHOGONAL DATA
                                                                                                              BT0CS69 NO. 4
                                                                             /ENBERG AND SARHAN'S METHOD OF
                                                                                                              JASA 65 1200
INVERSION OF PARTITIONED MATRICES IN THE ANALYSIS OF NON-ORTHOGONAL DATA
                            ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN
                                                                                                              JASA 66
                                                                                                                       803
                                                      NON-ORTHOGONAL DESIGNS OF EVEN RESOLUTION
                                                                                                              TECH 68
                                                                                                                        291
                    THE ANALYSIS OF VARIANCE OF SOME NON-ORTHOGONAL DESIGNS WITH SPLIT PLOTS
                                                                                                              BIOKA69
                                                                                                                        43
TION OF MEANS AND STANDARD ERRORS IN THE ANALYSIS OF NON-ORTHOGONAL EXPERIMENTS BY ELECTRONIC COMPUTER
                                                                                                            / JRSSB62
                                                                                                                       435
                MAIN-EFFECT ANALYSIS OF THE GENERAL NON-ORTHOGONAL LAYOUT WITH ANY NUMBER OF FACTORS
                                                                                                               AMS 65
                                                                                                                         88
 UNIFIED APPROACH FOR CONSTRUCTING A USEFUL CLASS OF NON-ORTHOGONAL MAIN EFFECT PLANS IN K TO THE N FACTOR JRSSB68
                                                                                                                       371
                                                 SOME NON-ORTHOGONAL PARTITIONS OF 4X4, 5X5, AND 6X6 LATIN
                                                                                                               AMS 66
SOLIARES
                                                                                                                        666
IANCES OF ESTIMATES OF COMPONENTS OF VARIANCE FROM A NON-ORTHOGONAL TWO-WAY CLASSIFICATION
                                                                                                SAMPLING VAR BIOKA64
                                                                                                                        491
 A MONTE CARLO STUDY OF THE ADEQUACY OF THE ASYMP/
                                                      NON-PARAMETRIC ANALYSIS OF VARIANCE IN SMALL SAMPLES, BIOCS69
                                                                                                                        593
                                          A NOTE ON A NON-PARAMETRIC APPROACH TO THE 2-CUBE FACTORIAL
DESIGN
                                                                                                              TECH 69
                                                                                                                       193
                                                    A NON-PARAMETRIC COMPARISON OF TWO SAMPLES ONE OF WHICH BIOKA66
 IS CENSORED
                                                                                                                       599
STICAL DECISION PROBLEMS
                              A SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES APPROACH TO SOME STATI BIOKA67 451
                                        ON TWO-STAGE NON-PARAMETRIC ESTIMATION
                                                                                                               AMS 64 1099
E AND MULTIVARIATE ANALYS/ AN INTRODUCTION TO SOME NON-PARAMETRIC GENERALIZATIONS OF ANALYSIS OF VARIANC BIOKA56 361
```

TITLE WORD INDEX NON - NON

SOME FURTHER APPLICATIONS OF		
		BIOCS65 799
	NON-PARAMETRIC TEST FOR THE BIVARIATE TWO-SAMPLE	JRSSB67 320
		JRSSB69 9B
	NON-PARAMETRIC TEST FOR THE BIVARIATE TWO-SAMPLE LOCA NON-PARAMETRIC TEST OF DANIELS' 60 1190 /S TO 'A RE	
EXACT AND APPROXIMATE POWER FUNCTION OF THE		AMS 62 471
RECURSIVE CENERATION OF THE DISTRIBUTION OF SEVERAL		JASA 68 353
POWER OF SOME TWO-SAMPLE		BIOKA60 355
	NON-PARAMETRIC TESTS FOR M-DEPENDENT TIME SERIES	
ASYMPTOTIC EFFICIENCY OF A CLASS OF	NON-PARAMETRIC TESTS FOR RECRESSION PARAMETERS	AMS 67 884
	NON-PARAMETRIC TESTS FOR RECRESSION PARAMETERS NON-PARAMETRIC TESTS FOR SCALE NON-PARAMETRIC TESTS, CORR. 66 1249	AMS 62 498
ON SOME TWO-SAMPLE	NON-PARAMETRIC TESTS, CORR. 66 1249	JASA 65 1118
	NON-PARAMETRIC TOLERANCE LIMITS, THE EXPONENTIAL CASE	
A POWER COMPARISON OF TWO TESTS OF		TECH 66 493
WILCOVON'S AND ALLIED TEST STATISTICS	NON-PANDOMIZED FRACIIONAL WEIGHING DESIGNS	AMS 00 1030
RINS TEST	NON-RANDOMNESS IN A SEQUENCE OF TWO ALTERNATIVES. I.	BIOK 58 53
TORS OF LOCATION PARAMETERS ON	NON-RANDOMIZED FRACTIONAL WEICHINC DESICNS NON-RANDOMNESS IN A SEQUENCE OF TWO ALTERNATIVES. I. NON-RANDOMNESS IN A SEQUENCE OF TWO ALTERNATIVES. II. NON-REGULAR ESTIMATION, I. VARIANCE BOUNDS FOR ESTIMA	JASA 69 1056
SOME METHODS OF PROBABILITY	NON-REPLACEMENT SAMPLING	JASA 69 175
	NON-ROTATING SAMPLES SAMPLING WITH VARYING	JASA 63 1B3
	NON-SAMPLING ERRORS ON MEASURES OF ASSOCIATION IN 2-	
IN WHICH A SEQUENTIAL ESTIMATION PROCEDURE IS	NON-SEQUENTIAL A CLASS OF SITUATIONS	BIOKA67 229
STATIONARY MEASURES	NON-SINGULAR RECURRENT MARKOV PROCESSES HAVE	AMS 64 869
A TEST FOR	NON-STATIONARY MULTIPLE MARKON PROCESSES	0K99R9A 140
ON THE MEAN NUMBER OF CURVE CROSSINGS BY	NON-STATIONARY NORMAL PROCESSES	AMS 65 500
RECURSIVE RELATIONS FOR PREDICTORS OF	NON-STATIONARY PROCESSES	JRSSB65 523
DESIGN RELATIONS FOR	NON-STATIONARY PROCESSES	JRSSB66 228
ON THE PREDICTION OF	NON-STATIONARY PROCESSES	JRSSB67 570
EVOLUTIONARY SPECTRAL AND	NON-STATIONARY PROCESSES (WITH DISCUSSION)	JRSSB65 204
ON THE CONCEPT OF THE SPECTRUM FOR	NON-SEQUENTIAL A CLASS OF SITUATIONS NON-SINGULAR RECURRENT MARKOV PROCESSES HAVE NON-STATIONARITY OF TIME-SERIES NON-STATIONARY MULTIPLE MARKOV PROCESSES NON-STATIONARY PROCESSES NON-STATIONARY PROCESSES NON-STATIONARY PROCESSES NON-STATIONARY PROCESSES NON-STATIONARY PROCESSES (WITH DISCUSSION) NON-STATIONARY PROCESSES (WITH DISCUSSION) NON-STATIONARY SIGNALS	JRSSB68 1
FILTERING E EQUATIONS SPECTRAL PROPERTIES OF	NON-STATIONARY SIGNALS NON-STATIONARY SYSTEMS OF LINEAR STOCHASTIC DIFFERENC	JRSSB69 150
	NON-STATIONARY TIME SERIES	BIOKA65 1B1
	NON-STATIONARY TIME SERIES POLYNOMIAL PROJECTING P	
	NON-UNIQUE QUANTILES	AMS 66 451
WEIGHTED PROBITS ALLOWING FOR A	NON-ZERO RESPONSE IN THE CONTROLS	BIOKA56 207
LIHOOD ESTIMATE OF THE NON-CENTRALITY PARAMETER OF A	NONCENTRAL CHI-SQUARE VARIATE THE MAXIMUM LIKE NONCENTRAL CHI-SQUARE VARIATES /OF VARIANCE-COMPON	JAS 67 1258
	NONCENTRAL CHI-SQUARE VARIATES /UF VARIANCE-COMPON NONCENTRAL DISTRIBUTION OF THE LARCEST CANONICAL	
	NONCENTRAL MEANS WITH KNOWN COVARIANCE	AMS 61 874
THE	NONCENTRAL MULTIVARIATE BETA TYPE TWO DISTRIBUTION	SASJ 69 NO.2
	NONCENTRAL MULTIVARIATE BETA TYPE TWO DISTRIBUTION NONCENTRAL MULTIVARIATE DIRICHLET DISTRIBUTIONS	SASJ 67 21
THE MOMENTS OF A DOUBLY	NONCENTRAL T-DISTRIBUTION	JASA 67 278
SERIES REPRESENTATIONS OF THE DOUBLY		JASA 6B 1004
A SURVEY OF PROPERTIES AND APPLICATIONS OF THE	NONCONTROLLED PREDICTOR VARIABLES /PTIMAL TESTS OF	TECH 68 445
	NONCOVERACE OF SAMPLE DWELLINGS	JASA 5B 509
	NONDESTRUCTIVE EVALUATION OF REACTOR FUEL ELEMENT QUA	
PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS AND SOME		AMS 66 1048
		JASA 64 469
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A	AMS 66 1736
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS	AMS 66 1736 AMS 65 546
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE. STABILITY OF SOLUTIONS TO GERTAIN	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE FOUNTIONS OF POPULATION GENETICS	AMS 66 1736 AMS 65 546 AMS 69 66 BIOCS69 27
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE. STABILITY OF SOLUTIONS TO GERTAIN	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE FOUNTIONS OF POPULATION GENETICS	AMS 66 1736 AMS 65 546 AMS 69 66 BIOCS69 27
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE. STABILITY OF SOLUTIONS TO GERTAIN	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE FOUNTIONS OF POPULATION GENETICS	AMS 66 1736 AMS 65 546 AMS 69 66 BIOCS69 27
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE. STABILITY OF SOLUTIONS TO GERTAIN	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE FOUNTIONS OF POPULATION GENETICS	AMS 66 1736 AMS 65 546 AMS 69 66 BIOCS69 27
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE. STABILITY OF SOLUTIONS TO GERTAIN	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE FOUNTIONS OF POPULATION GENETICS	AMS 66 1736 AMS 65 546 AMS 69 66 BIOCS69 27
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE. STABILITY OF SOLUTIONS TO GERTAIN SIMULTANEOUS ERRATA 'SIMULTANEOUS SPECTRAL ESTIMATES USINC AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS NONLINEAR ESTIMATION NONLINEAR ESTIMATION' NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR LEAST SQUARES ESTIMATION	AMS 66 1736 AMS 65 546 AMS 69 66 BIOCS69 27 TECH 67 353 AMS 66 1237 BIOCS65 708 AMS 65 638
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE, STABILITY OF SOLUTIONS TO GERTAIN SIMULTANEOUS ERRATA 'SIMULTANEOUS SPECTRAL ESTIMATES USINC AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS NONLINEAR ESTIMATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR LEAST SQUARES ESTIMATION NONLINEAR RECRESSION PROBLEMS	AMS 66 1736 AMS 65 546 AMS 69 66 BIOCS69 27 TECH 66 319 TECH 67 353 AMS 66 1237 BIOCS65 708 AMS 65 638 TECH 68 843
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE, STABILITY OF SOLUTIONS TO GERTAIN SIMULTANEOUS ERRATA 'SIMULTANEOUS SPECTRAL ESTIMATES USINC AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS NONLINEAR ESTIMATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR RECRESSION PROBLEMS A NUMERICAL INVESTIGA	AMS 66 1736 AMS 65 546 AMS 69 66 BIOCS69 27 TECH 66 319 TECH 67 353 AMS 66 1237 BIOCS65 708 AMS 65 638 TECH 68 843
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE, STABILITY OF SOLUTIONS TO GERTAIN SIMULTANEOUS ERRATA 'SIMULTANEOUS SPECTRAL ESTIMATES USINC AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO TION OF SEVERAL ONE-DIMENSIONAL SEARCH PROGEDURES IN THE CONDITIONAL WISHART, NORMAL AND OR BLOCKS ARE OF UNEQUAL S/ NOTES. APPLICATIONS OF	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS NONLINEAR ESTIMATION' NONLINEAR FUNCTIONS NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR REGRESSION PROBLEMS NONLINEAR REGRESSION PROBLEMS NONLINEAR REGRESSION PROBLEMS NONLINEAR REGRESSION PROBLEMS NONNORMAL NONORTHOCOMAL DESIGNS TO SITUATIONS WHERE TREATMENTS	AMS 66 1736 AMS 65 546 AMS 69 66 BIOCS69 27 TECH 66 319 TECH 67 353 AMS 66 1237 FIOCS65 708 AMS 65 638 TECH 68 843 TECH 69 265 AMS 68 593 BIOCS66 629
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE, STABILITY OF SOLUTIONS TO GERTAIN SIMULTANEOUS ERRATA 'SIMULTANEOUS SPECTRAL ESTIMATES USINC AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO TION OF SEVERAL ONE-DIMENSIONAL SEARCH PROGEDURES IN THE CONDITIONAL WISHART, NORMAL AND OR BLOCKS ARE OF UNEQUAL S/ NOTES. APPLICATIONS OF SOME	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS NONLINEAR ESTIMATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR REGRESSION PROBLEMS NONLINEAR REGRESSION PROBLEMS NONLINEAR REGRESSION PROBLEMS NONLINEAR REGRESSION PROBLEMS NONCHOLONAL DESIGNS TO SITUATIONS WHERE TREATMENTS NONORTHOGONAL FRACTIONS OF 2-TO THE-N DESIGNS	AMS 66 1736 AMS 65 546 AMS 69 66 BIOCS69 27 TECH 66 319 TECH 67 353 AMS 66 1237 BIOCS65 708 AMS 65 638 TECH 69 265 AMS 68 593 BIOCS66 629 JRSSB69 NO.2
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE, STABILITY OF SOLUTIONS TO GERTAIN SIMULTANEOUS ERRATA 'SIMULTANEOUS SPECTRALE ESTIMATES USINC AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO TION OF SEVERAL ONE-DIMENSIONAL SEARCH PROGEDURES IN THE CONDITIONAL WISHART, NORMAL AND OR BLOCKS ARE OF UNEQUAL S/ NOTES. APPLICATIONS OF SOME BIVARIATE SYMMETRY TESTS, PARAMETRIC AND	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS NONLINEAR ESTIMATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR RECRESSION PROBLEMS A NUMERICAL INVESTIGA NONNORMAL NONORTHOCOMAL DESIGNS TO SITUATIONS WHERE TREATMENTS NONORTHOGONAL FRACTIONS OF 2-TO THE-N DESICNS NONPARAMETRIC	AMS 66 1736 AMS 65 546 AMS 69 66 BIOCS69 27 TECH 66 319 TECH 67 353 AMS 66 1237 BIOCS65 708 AMS 65 638 TECH 69 265 AMS 68 593 BIOCS66 629 AMS 68 593 BIOCS66 629 AMS 68 259
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE, STABILITY OF SOLUTIONS TO GERTAIN SIMULTANEOUS ERRATA 'SIMULTANEOUS SPECTRAL ESTIMATES USINC AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO TION OF SEVERAL ONE-DIMENSIONAL SEARCH PROGEDURES IN THE CONDITIONAL WISHART, NORMAL AND OR BLOCKS ARE OF UNEQUAL S/ NOTES. APPLICATIONS OF SOME BIVARIATE SYMMETRY TESTS, PARAMETRIC AND S IN MODEL I ANALYSIS OF VARIANCE, NORMAL THEORY AND	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAV ABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS NONLINEAR ESTIMATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR RECRESSION PROBLEMS A NUMERICAL INVESTIGA NONNORMAL NONDINEAR REGRESSION FOBLEMS NONORTHOGONAL DESIGNS TO SITUATIONS WHERE TREATMENTS NONORTHOGONAL FRACTIONS OF 2-TO THE-N DESICNS NONPARAMETRIC TESTINC AGAINST ORDERED ALTERNATIVE	AMS 66 1736 AMS 65 546 AMS 69 66 BIOCS69 27 TECH 66 319 TECH 67 353 AMS 66 1237 BIOCS65 708 AMS 65 638 TECH 68 843 TECH 68 843 TECH 68 843 BIOCS 66 629 JRSSB69 NO.2 AMS 67 1740
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE, STABILITY OF SOLUTIONS TO GERTAIN SIMULTANEOUS ERRATA 'SIMULTANEOUS SPECTRAL ESTIMATES USINC AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO TION OF SEVERAL ONE-DIMENSIONAL SEARCH PROGEDURES IN THE CONDITIONAL WISHART, NORMAL AND OR BLOCKS ARE OF UNEQUAL S/ NOTES. APPLICATIONS OF SOME BIVARIATE SYMMETRY TESTS, PARAMETRIC AND S IN MODEL I ANALYSIS OF VARIANCE, NORMAL THEORY AND ADAPTIVE	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS NONLINEAR ESTIMATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR RECRESSION PROBLEMS NONLINEAR RECRESSION PROBLEMS A NUMERICAL INVESTIGA NONNORMAL DESIGNS TO SITUATIONS WHERE TREATMENTS NONORTHOCONAL DESIGNS TO SITUATIONS WHERE TREATMENTS NONORTHOGONAL FRACTIONS OF 2-TO THE-N DESICNS NONPARAMETRIC TESTINC AGAINST ORDERED ALTERNATIVE NONPARAMETRIC CLASSIFICATION	AMS 66 1736 AMS 65 546 AMS 69 66 BIOCS69 27 TECH 66 319 TECH 67 353 AMS 66 1237 BIOCS65 708 AMS 65 638 TECH 69 265 AMS 68 593 BIOCS66 629 AMS 68 593 BIOCS66 629 AMS 68 259
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE, STABILITY OF SOLUTIONS TO GERTAIN SIMULTANEOUS ERRATA 'SIMULTANEOUS SPECTRAL ESTIMATES USINC AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO TION OF SEVERAL ONE-DIMENSIONAL SEARCH PROGEDURES IN THE CONDITIONAL WISHART, NORMAL AND OR BLOCKS ARE OF UNEQUAL S/ NOTES. APPLICATIONS OF BIVARIATE SYMMETRY TESTS, PARAMETRIC AND S IN MODEL I ANALYSIS OF VARIANCE, NORMAL THEORY AND ADAPTIVE CORR. 65 15B3 ON SOME ASYMPTOTICALLY TEST ASYMPTOTIC EFFICIENCY OF TWO	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS NONLINEAR ESTIMATION' NONLINEAR FUNCTIONS NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR RECRESSION PROBLEMS NONLINEAR RECRESSION PROBLEMS NONLINEAR RECRESSION PROBLEMS NONLINEAR RECRESSION PROBLEMS NONNORMAL NONORTHOCONAL DESIGNS TO SITUATIONS WHERE TREATMENTS NONORTHOGONAL FRACTIONS OF 2-TO THE-N DESICNS NONPARAMETRIC NONPARAMETRIC TESTINC AGAINST ORDERED ALTERNATIVE NONPARAMETRIC CLASSIFICATION	AMS 66 1736 AMS 65 546 AMS 69 66 BIOCS69 27 TECH 66 319 TECH 67 353 AMS 66 1237 BIOCS65 638 AMS 65 638 TECH 69 266 AMS 68 593 BIOCS66 629 JRSSB69 NO.2 AMS 67 1740 TECH 69 NO.4
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE, STABILITY OF SOLUTIONS TO GERTAIN SIMULTANEOUS ERRATA 'SIMULTANEOUS SPECTRAL ESTIMATES USINC AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO TION OF SEVERAL ONE-DIMENSIONAL SEARCH PROGEDURES IN THE CONDITIONAL WISHART, NORMAL AND OR BLOCKS ARE OF UNEQUAL S/ NOTES. APPLICATIONS OF SOME BIVARIATE SYMMETRY TESTS, PARAMETRIC AND S IN MODEL I ANALYSIS OF VARIANCE, NORMAL THEORY AND ADAPTIVE CORR. 65 15B3 ON SOME ASYMPTOTICALLY TEST ASYMPTOTIC EFFICIENCY OF TWO PARAMETER	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAV ABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS NONLINEAR ESTIMATION NONLINEAR ESTIMATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR RECRESSION PROBLEMS A NUMERICAL INVESTIGA NONNORMAL NONDINEAR REGRESSION PROBLEMS A NUMERICAL INVESTIGA NONORTHOGONAL DESIGNS TO SITUATIONS WHERE TREATMENTS NONORTHOGONAL FRACTIONS OF 2-TO THE-N DESICNS NONPARAMETRIC TESTINC AGAINST ORDERED ALTERNATIVE NONPARAMETRIC COMPETITORS OF HOTELLINC'S T-SQUARE, NONPARAMETRIC COMPETITORS OF HOTELLINC'S TWO SAMPLE NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC CONFIDENCE INTERVALS FOR A SHIFT	AMS 66 1736 AMS 65 546 AMS 69 66 BIOCS69 27 TECH 66 319 TECH 67 353 AMS 66 1237 BIOCS65 708 AMS 65 638 TECH 68 843 TECH 68 843 TECH 68 263 BIOCS66 629 JRSSB69 NO.2 AMS 67 1740 TECH 69 NO.4 AMS 65 160 JASA 67 939 AMS 63 1507
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE, STABILITY OF SOLUTIONS TO GERTAIN SIMULTANEOUS ERRATA 'SIMULTANEOUS SPECTRAL ESTIMATES USINC AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO TION OF SEVERAL ONE-DIMENSIONAL SEARCH PROGEDURES IN THE CONDITIONAL WISHART, NORMAL AND OR BLOCKS ARE OF UNEQUAL S/ NOTES. APPLICATIONS OF BIVARIATE SYMMETRY TESTS, PARAMETRIC AND S IN MODEL I ANALYSIS OF VARIANCE, NORMAL THEORY AND ADAPTIVE CORR. 65 15B3 ON SOME ASYMPTOTICALLY TEST ASYMPTOTIC EFFICIENCY OF TWO	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS NONLINEAR ESTIMATION NONLINEAR ESTIMATION' NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR REGRESSION PROBLEMS A NUMERICAL INVESTIGA NONNORMAL NONCHOCONAL DESIGNS TO SITUATIONS WHERE TREATMENTS NONORTHOGONAL FRACTIONS OF 2-TO THE-N DESICNS NONPARAMETRIC COMPETITORS OF HOTELLINC'S T-SQUARE, NONPARAMETRIC COMPETITORS OF HOTELLINC'S T-SQUARE, NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC COMPIENCE REGIONS FOR SOME MULTIVARIAT	AMS 66 1736 AMS 65 546 AMS 69 66 BIOCS69 27 TECH 66 319 TECH 67 353 AMS 66 1237 BIOCS65 708 AMS 65 638 TECH 69 265 AMS 68 593 BIOCS66 629 JRSSB69 NO.2 AMS 69 259 AMS 67 1740 TECH 69 NO.4 AMS 65 160 JASA 67 939 AMS 63 1507 JASA 68 1373
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE, STABILITY OF SOLUTIONS TO GERTAIN SIMULTANEOUS ERRATA 'SIMULTANEOUS SPECTRAL ESTIMATES USINC AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO TION OF SEVERAL ONE-DIMENSIONAL SEARCH PROGEDURES IN THE CONDITIONAL WISHART, NORMAL AND OR BLOCKS ARE OF UNEQUAL S/ NOTES. APPLICATIONS OF SOME BIVARIATE SYMMETRY TESTS, PARAMETRIC AND S IN MODEL I ANALYSIS OF VARIANCE, NORMAL THEORY AND ADAPTIVE CORR. 65 15B3 ON SOME ASYMPTOTICALLY TEST ASYMPTOTIC EFFICIENCY OF TWO PARAMETER E LOCATION PROBLEMS	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS NONLINEAR ESTIMATION NONLINEAR ESTIMATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR RECRESSION PROBLEMS A NUMERICAL INVESTIGA NONNORMAL NONCHACE DESIGNS TO SITUATIONS WHERE TREATMENTS NONORTHOGONAL FRACTIONS OF 2-TO THE-N DESICNS NONPARAMETRIC TESTINC AGAINST ORDERED ALTERNATIVE NONPARAMETRIC CLASSIFICATION NONPARAMETRIC CLASSIFICATION NONPARAMETRIC COMPETITORS OF HOTELLINC'S T-SQUARE, NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC COMPIDENCE REGIONS FOR SOME MULTIVARIAT NONPARAMETRIC DISGRIMINATION USING TOLERANGE REGIONS	AMS 66 1736 AMS 65 546 AMS 69 66 BIOCS69 27 TECH 66 319 TECH 67 353 AMS 66 1237 BIOCS65 708 AMS 65 638 TECH 69 265 AMS 68 593 BIOCS66 629 AMS 67 1740 TECH 69 NO.4 AMS 67 1740 TECH 69 NO.4 AMS 65 160 JASA 67 939 AMS 63 1507 AMS 68 1373 AMS 68 664
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE, STABILITY OF SOLUTIONS TO GERTAIN SIMULTANEOUS ERRATA 'SIMULTANEOUS SPECTRAL ESTIMATES USINC AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO TION OF SEVERAL ONE-DIMENSIONAL SEARCH PROGEDURES IN THE CONDITIONAL WISHART, NORMAL AND OR BLOCKS ARE OF UNEQUAL S/ NOTES. APPLICATIONS OF BIVARIATE SYMMETRY TESTS, PARAMETRIC AND S IN MODEL I ANALYSIS OF VARIANCE, NORMAL THEORY AND ADAPTIVE CORR. 65 15B3 ON SOME ASYMPTOTICALLY TEST ASYMPTOTIC EFFICIENCY OF TWO PARAMETER E LOCATION PROBLEMS A UNIFIED DERIVATION OF SOME	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAV ABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS NONLINEAR ESTIMATION' NONLINEAR ESTIMATION' NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR RECRESSION PROBLEMS A NUMERICAL INVESTIGA NONLINEAR REGRESSION PROBLEMS A NUMERICAL INVESTIGA NONNORMAL MONORTHOCONAL DESIGNS TO SITUATIONS WHERE TREATMENTS NONORTHOGONAL FRACTIONS OF 2-TO THE-N DESICNS NONPARAMETRIC CLASSIFICATION NONPARAMETRIC CLASSIFICATION NONPARAMETRIC COMPETITORS OF HOTELLINC'S T-SQUARE, NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC CONFIDENCE INTERVALS FOR A SHIFT NONPARAMETRIC CONFIDENCE REGIONS FOR SOME MULTIVARIAT NONPARAMETRIC DISGRIMINATION USING TOLERANGE REGIONS NOT THE TRANSMETRIC DISGRIMINATION USING TOLERANGE REGIONS N	AMS 66 1736 AMS 65 546 AMS 69 66 BIOCS69 27 TECH 66 319 TECH 67 353 AMS 66 1237 BIOCS65 708 AMS 65 638 TECH 68 843 TECH 68 843 TECH 68 843 BIOCS 66 629 JRSSB69 NO.2 AMS 67 1740 TECH 69 NO.4 AMS 65 160 AMS 65 160 AMS 67 1740 TECH 69 NO.4 AMS 67 1740 JASA 67 939 AMS 63 1507 JASA 68 1373 AMS 68 164 JASA 64 1042
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE, STABILITY OF SOLUTIONS TO GERTAIN SIMULTANEOUS ERRATA 'SIMULTANEOUS SPECTRAL ESTIMATES USINC AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO TION OF SEVERAL ONE-DIMENSIONAL SEARCH PROGEDURES IN THE CONDITIONAL WISHART, NORMAL AND OR BLOCKS ARE OF UNEQUAL S/ NOTES. APPLICATIONS OF SOME BIVARIATE SYMMETRY TESTS, PARAMETRIC AND S IN MODEL I ANALYSIS OF VARIANCE, NORMAL THEORY AND ADAPTIVE CORR. 65 15B3 ON SOME ASYMPTOTICALLY TEST ASYMPTOTIC EFFICIENCY OF TWO PARAMETER E LOCATION PROBLEMS A UNIFIED DERIVATION OF SOME FUNCTION A	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS NONLINEAR ESTIMATION NONLINEAR ESTIMATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR RECRESSION PROBLEMS A NUMERICAL INVESTIGA NONNORMAL NONORTHOCONAL DESIGNS TO SITUATIONS WHERE TREATMENTS NONDRARAMETRIC TESTINC AGAINST ORDERED ALTERNATIVE NONPARAMETRIC CLASSIFICATION NONPARAMETRIC CLASSIFICATION NONPARAMETRIC COMPETITORS OF HOTELLINC'S T-SQUARE, NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC CONFIDENCE INTERVALS FOR SHIFT NONPARAMETRIC CONFIDENCE REGIONS FOR SOME MULTIVARIAT NONPARAMETRIC DISGRIMINATION USING TOLERANGE REGIONS NONPARAMETRIC DISGRIMINATION USING TOLERANGE REGIONS NONPARAMETRIC ESTIMATES FOR SHIFT IN THE BEHRENS-	AMS 66 1736 AMS 65 546 BIOCS69 66 BIOCS69 27 TECH 66 1237 BIOCS65 708 AMS 66 1237 BIOCS65 638 TECH 69 265 AMS 68 593 BIOCS66 629 AMS 67 1740 TECH 69 NO.4 AMS 67 1740 TECH 69 NO.4 AMS 67 1740 JASA 68 1507 AMS 63 1507 JASA 68 1373 AMS 68 1644 JASA 64 1042 AMS 65 1042 AMS 65 1593
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE, STABILITY OF SOLUTIONS TO GERTAIN SIMULTANEOUS ERRATA 'SIMULTANEOUS SPECTRAL ESTIMATES USINC AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO TION OF SEVERAL ONE-DIMENSIONAL SEARCH PROGEDURES IN THE CONDITIONAL WISHART, NORMAL AND OR BLOCKS ARE OF UNEQUAL S/ NOTES. APPLICATIONS OF BIVARIATE SYMMETRY TESTS, PARAMETRIC AND S IN MODEL I ANALYSIS OF VARIANCE, NORMAL THEORY AND ADAPTIVE CORR. 65 15B3 ON SOME ASYMPTOTICALLY TEST ASYMPTOTIC EFFICIENCY OF TWO PARAMETER E LOCATION PROBLEMS A UNIFIED DERIVATION OF SOME FUNCTION A FISHER SITUATION ON SOME	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS NONLINEAR ESTIMATION NONLINEAR ESTIMATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR RECRESSION PROBLEMS A NUMERICAL INVESTIGA NONNORMAL NONORTHOCONAL DESIGNS TO SITUATIONS WHERE TREATMENTS NONPARAMETRIC TESTINC AGAINST ORDERED ALTERNATIVE NONPARAMETRIC CLASSIFICATION NONPARAMETRIC CLASSIFICATION NONPARAMETRIC COMPETITORS OF HOTELLINC'S T-SQUARE, NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC CONFIDENCE INTERVALS FOR A SHIFT NONPARAMETRIC CONFIDENCE REGIONS FOR SOME MULTIVARIAT NONPARAMETRIC CONFIDENCE REGIONS FOR SOME MULTIVARIAT NONPARAMETRIC DISGRIMINATION USING TOLERANGE REGIONS NONPARAMETRIC DISGRIMINATION USING TOLERANGE REGIONS NONPARAMETRIC DISGRIMINATION USING TOLERANGE REGIONS NONPARAMETRIC ESTIMATE OF A MULTIVARIAT DENSITY NONPARAMETRIC ESTIMATE OF SOR SHIFT IN THE BEHRENS-NONPARAMETRIC ESTIMATE OF SOR SHIFT IN THE BEHRENS-NONPARAMETRIC ESTIMATE OF SOR SHIFT IN THE BEHRENS-NONPARAMETRIC ESTIMATEON FROM INCOMPLETE OBSERVATIONS	AMS 66 1736 AMS 65 546 BIOCS69 27 TECH 66 319 TECH 67 353 AMS 66 1237 BIOCS65 708 AMS 65 638 TECH 68 265 AMS 68 9259 AMS 67 1740 TECH 69 NO.4 AMS 67 1740 TECH 69 NO.4 AMS 63 1507 JASA 67 1373 AMS 63 1507 JASA 68 1373 AMS 63 1507 JASA 64 1042 AMS 65 1049 AMS 65 593 JASA 67 593 JASA 68 6593
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE, STABILITY OF SOLUTIONS TO GERTAIN SIMULTANEOUS ERRATA 'SIMULTANEOUS SPECTRAL ESTIMATES USINC AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO TION OF SEVERAL ONE-DIMENSIONAL SEARCH PROGEDURES IN THE CONDITIONAL WISHART, NORMAL AND OR BLOCKS ARE OF UNEQUAL S/ NOTES. APPLICATIONS OF SOME BIVARIATE SYMMETRY TESTS, PARAMETRIC AND ADAPTIVE CORR. 65 15B3 ON SOME ASYMPTOTICALLY TEST ASYMPTOTIC EFFICIENCY OF TWO PARAMETER E LOCATION PROBLEMS A UNIFIED DERIVATION OF SOME FUNCTION A PISHER SITUATION OF A MARKOV PROCESS	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS NONLINEAR ESTIMATION NONLINEAR ESTIMATION' NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR RECRESSION PROBLEMS A NUMERICAL INVESTIGA NONNORMAL RESSION PROBLEMS A NUMERICAL INVESTIGA NONNORMAL FRACTIONS OF 2-TO THE-N DESICNS NONFARAMETRIC COMPETITORS OF HOTELLINC'S T-SQUARE, NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC CONFIDENCE REGIONS FOR SOME MULTIVARIAT NONPARAMETRIC DISGRIMINATION USING TOLERANGE REGIONS NONPARAMETRIC ESTIMATES FOR A MULTIVARIATE DENSITY NONPARAMETRIC ESTIMATES FOR SHIFT IN THE BEHRENS-NONPARAMETRIC ESTIMATES FOR SHIFT IN THE BEHRENS-NONPARAMETRIC ESTIMATION FROM INCOMPLETE OBSERVATIONS NONPARAMETRIC ESTIMATION OF THE TRANSITION DISTRIBUTI	AMS 66 1736 AMS 69 66 BIOCS69 27 TECH 66 319 TECH 67 353 AMS 66 1237 BIOCS65 708 AMS 65 638 TECH 68 843 TECH 69 265 AMS 68 593 BIOCS66 629 JRSSB69 NO.2 AMS 67 1740 TECH 69 NO.4 AMS 65 160 JASA 67 939 AMS 63 1507 JASA 68 1373 AMS 68 664 AMS 68 1640 AMS 65 1049 AMS 65 1049 AMS 66 593 AMS 66 1588
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE, STABILITY OF SOLUTIONS TO GERTAIN SIMULTANEOUS FORTAL SIMULTANEOUS SPECTRAL ESTIMATES USINC AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO TION OF SEVERAL ONE-DIMENSIONAL SEARCH PROGEDURES IN THE CONDITIONAL WISHART, NORMAL AND OR BLOCKS ARE OF UNEQUAL S/ NOTES. APPLICATIONS OF SOME BIVARIATE SYMMETRY TESTS, PARAMETRIC AND S IN MODEL I ANALYSIS OF VARIANCE, NORMAL THEORY AND ADAPTIVE CORR. 65 15B3 ON SOME ASYMPTOTICALLY TEST ASYMPTOTIC EFFICIENCY OF TWO PARAMETER E LOCATION PROBLEMS A UNIFIED DERIVATION OF SOME FUNCTION A PRISHER SITUATION ON SOME ON SOME ASYMPTOTICALLY	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS NONLINEAR ESTIMATION NONLINEAR ESTIMATION' NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR RECRESSION PROBLEMS A NUMERICAL INVESTIGA NONNORMAL NONORTHOCONAL DESIGNS TO SITUATIONS WHERE TREATMENTS NONPARAMETRIC TESTINC AGAINST ORDERED ALTERNATIVE NONPARAMETRIC COMPETITORS OF HOTELLINC'S T-SQUARE, NONPARAMETRIC COMPETITORS OF HOTELLINC'S T-SQUARE, NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC CONFIDENCE REGIONS FOR SOME MULTIVARIAT NONPARAMETRIC CONFIDENCE REGIONS FOR SOME MULTIVARIAT NONPARAMETRIC DISTRIBUTIONS NONPARAMETRIC DISTRIBUTIONS NONPARAMETRIC ESTIMATE OF A MULTIVARIATE DENSITY NONPARAMETRIC ESTIMATE OF A MULTIVARIATE DENSITY NONPARAMETRIC ESTIMATE OF SOME HIFT IN THE BEHRENS-NONPARAMETRIC ESTIMATEON FROM INCOMPLETE OBSERVATIONS NONPARAMETRIC ESTIMATION OF THE TRANSITION DISTRIBUTI NONPARAMETRIC INFERENCE IN SOME LINEAR MODELS WITH	AMS 66 1736 AMS 65 546 BIOCS69 66 BIOCS69 27 TECH 66 319 TECH 67 353 AMS 66 1237 BIOCS65 708 AMS 68 63 1237 BIOCS65 629 JASS66 629 JASS66 629 AMS 67 1740 AMS 67 1740 AMS 63 1507 AMS 68 1533 AMS 68 1533 AMS 68 1533 AMS 68 1540 AMS 68 1560 JASA 67 939 AMS 63 1507 AMS 68 1573 AMS 68 1560 JASA 67 939 AMS 63 1507 AMS 68 1573 AMS 68 1573 AMS 68 1573 AMS 68 1593 JASA 58 457 AMS 69 1386
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE, STABILITY OF SOLUTIONS TO GERTAIN SIMULTANEOUS ERRATA 'SIMULTANEOUS SPECTRAL ESTIMATES USINC AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO TION OF SEVERAL ONE-DIMENSIONAL SEARCH PROGEDURES IN THE CONDITIONAL WISHART, NORMAL AND OR BLOCKS ARE OF UNEQUAL S/ NOTES. APPLICATIONS OF BIVARIATE SYMMETRY TESTS, PARAMETRIC AND S IN MODEL I ANALYSIS OF VARIANCE, NORMAL THEORY AND CORR. 65 15B3 ON SOME ASYMPTOTICALLY TEST ASYMPTOTIC EFFICIENCY OF TWO PARAMETER E LOCATION PROBLEMS A UNIFIED DERIVATION OF SOME FUNCTION FUNCTION OF A MARKOV PROCESS ONE OBSERVATION PER CELL LINEAR MODELS A SYMPTOTICALLY ASYMPTOTICALLY LINEAR MODELS A SYMPTOTICALLY ASYMPTOTICALLY ASYMPTOTICALLY ASYMPTOTICALLY ASYMPTOTICALLY ASYMPTOTICALLY ASYMPTOTICALLY ASYMPTOTICALLY ASYMPTOTICALLY	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS NONLINEAR ESTIMATION NONLINEAR ESTIMATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR RECRESSION PROBLEMS A NUMERICAL INVESTIGA NONNORMAL NONORTHOGONAL DESIGNS TO SITUATIONS WHERE TREATMENTS NONPARAMETRIC TESTINC AGAINST ORDERED ALTERNATIVE NONPARAMETRIC CLASSIFICATION NONPARAMETRIC CLASSIFICATION NONPARAMETRIC COMPETITORS OF HOTELLINC'S T-SQUARE, NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC CONFIDENCE INTERVALS FOR A SHIFT NONPARAMETRIC CONFIDENCE REGIONS FOR SOME MULTIVARIAT NONPARAMETRIC DISGRIMINATION USING TOLERANGE REGIONS NONPARAMETRIC DISGRIMINATION USING TOLERANGE REGIONS NONPARAMETRIC ESTIMATES FOR SHIFT IN THE BEHRENS-NONPARAMETRIC ESTIMATES FOR SHIFT IN THE BEHRENS-NONPARAMETRIC ESTIMATE OF SOR SHIFT IN THE BEHRENS-NONPARAMETRIC ESTIMATE OF SOR SHIFT IN THE BEHRENS-NONPARAMETRIC ESTIMATES FOR SHIFT IN THE BEHRENS-NONPARAMETRIC ESTIMATE OF SOR SHIFT IN THE BEHRENS-NONPARAMETRIC ESTIMATE OF SOR SHIFT IN THE BEHRENS-NONPARAMETRIC ESTIMATES FOR SHIFT IN THE BEHRE	AMS 66 1736 AMS 65 546 AMS 69 66 BIOCS69 27 TECH 66 319 TECH 67 353 AMS 66 1237 BIOCS65 708 AMS 65 638 TECH 68 843 TECH 69 265 AMS 68 593 BIOCS66 629 JRSSB69 NO.2 AMS 67 1740 TECH 69 NO.4 AMS 65 160 JASA 67 939 AMS 63 1507 JASA 68 1373 AMS 63 1507 JASA 68 1373 AMS 65 1042 AMS 65 593 JASA 58 457 AMS 69 1386 AMS 64 726 AMS 66 13494
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE, STABILITY OF SOLUTIONS TO GERTAIN SIMULTANEOUS ERRATA 'SIMULTANEOUS SPECTRAL ESTIMATES USINC AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO TION OF SEVERAL ONE-DIMENSIONAL SEARCH PROGEDURES IN THE CONDITIONAL WISHART, NORMAL AND OR BLOCKS ARE OF UNEQUAL S/ NOTES. APPLICATIONS OF SOME BIVARIATE SYMMETRY TESTS, PARAMETRIC AND ADAPTIVE CORR. 65 15B3 ON SOME ASYMPTOTICALLY TEST ASYMPTOTIC EFFICIENCY OF TWO PARAMETER E LOCATION PROBLEMS A UNIFIED DERIVATION OF SOME FUNCTION A SYMPTOTICALLY AND ADAPTIVE CORR. 65 15B3 ON SOME ASYMPTOTICALLY ASYMPTOTIC EFFICIENCY OF TWO PARAMETER E LOCATION PROBLEMS ON FUNCTION A WARKOV PROCESS ONE OBSERVATION PER CELL ASYMPTOTICALLY LINEAR MODELS ASYMPTOTICALLY CAMMA DISTRIBUTION ASYMPTOTIC EFFICIENCIES OF A	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS NONLINEAR ESTIMATION NONLINEAR ESTIMATION' NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR RECRESSION PROBLEMS A NUMERICAL INVESTIGA NONNORMAL NONORTHOCONAL DESIGNS TO SITUATIONS WHERE TREATMENTS NONPARAMETRIC TESTINC AGAINST ORDERED ALTERNATIVE NONPARAMETRIC COMPETITORS OF HOTELLINC'S T-SQUARE, NONPARAMETRIC COMPETITORS OF HOTELLINC'S T-SQUARE, NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC CONFIDENCE REGIONS FOR SOME MULTIVARIAT NONPARAMETRIC CONFIDENCE REGIONS FOR SOME MULTIVARIAT NONPARAMETRIC DISTRIBUTIONS NONPARAMETRIC DISTRIBUTIONS NONPARAMETRIC ESTIMATE OF A MULTIVARIATE DENSITY NONPARAMETRIC ESTIMATE OF A MULTIVARIATE DENSITY NONPARAMETRIC ESTIMATE OF SOME HIFT IN THE BEHRENS-NONPARAMETRIC ESTIMATEON FROM INCOMPLETE OBSERVATIONS NONPARAMETRIC ESTIMATION OF THE TRANSITION DISTRIBUTI NONPARAMETRIC INFERENCE IN SOME LINEAR MODELS WITH	AMS 66 1736 AMS 65 546 AMS 69 66 BIOCS69 27 TECH 66 319 TECH 67 353 AMS 66 1237 BIOCS65 708 AMS 65 638 TECH 68 843 TECH 69 265 AMS 68 593 BIOCS66 629 JRSSB69 NO.2 AMS 67 1740 TECH 69 NO.4 AMS 65 160 JASA 67 939 AMS 63 1507 JASA 68 1373 AMS 63 1507 JASA 68 1373 AMS 65 1042 AMS 65 593 JASA 58 457 AMS 69 1386 AMS 64 726 AMS 66 13494
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE, STABILITY OF SOLUTIONS TO GERTAIN SIMULTANEOUS SPECTRAL SIMULTANEOUS SPECTRAL ESTIMATES USINC AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO TION OF SEVERAL ONE-DIMENSIONAL SEARCH PROGEDURES IN THE CONDITIONAL WISHART, NORMAL AND OR BLOCKS ARE OF UNEQUAL S/ NOTES. APPLICATIONS OF SOME BIVARIATE SYMMETRY TESTS, PARAMETRIC AND S IN MODEL I ANALYSIS OF VARIANCE, NORMAL THEORY AND CORR. 65 15B3 ON SOME ASYMPTOTICALLY PARAMETER E LOCATION PROBLEMS A UNIFIED DERIVATION OF SOME FUNCTION FISHER SITUATION ON SOME ON FUNCTION OF A MARKOV PROCESS ONE OBSERVATION PER CELL LINEAR MODELS ASYMPTOTIC EFFICIENCIES OF A SOME ASYMPTOTIC NORMALITY IN	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS NONLINEAR ESTIMATION NONLINEAR ESTIMATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR RECRESSION PROBLEMS A NUMERICAL INVESTIGA NONNORMAL NONORTHOCONAL DESIGNS TO SITUATIONS WHERE TREATMENTS NONPARAMETRIC CHASTICATION OF 2-TO THE-N DESICNS NONPARAMETRIC CLASSIFICATION NONPARAMETRIC COMPETITORS OF HOTELLINC'S T-SQUARE, NONPARAMETRIC COMPETITORS OF HOTELLINC'S T-SQUARE, NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC CONFIDENCE NETRIVALS FOR SOME MULTIVARIAT NONPARAMETRIC CONFIDENCE REGIONS FOR SOME MULTIVARIAT NONPARAMETRIC DISTRIBUTIONS NONPARAMETRIC ESTIMATEONS POR SOME MULTIVARIAT NONPARAMETRIC ESTIMATE FOR SHIFT IN THE BEHRENS-NONPARAMETRIC ESTIMATES FOR SHIFT IN THE BEHRENS-NONPARAMETRIC ESTIMATION FROM INCOMPLETE OBSERVATIONS NONPARAMETRIC INFERENCE IN SOME LINEAR MODELS WITH NONPARAMETRIC LIFE TEST FOR SMALLER PERCENTILES OF A MONPARAMETRIC LIFE TEST FOR SMALLER PERCENTILES OF A NONPARAMETRIC METHODS	AMS 66 1736 AMS 65 546 BIOCS69 66 BIOCS69 27 TECH 66 1237 BIOCS65 708 AMS 66 1237 BIOCS65 638 TECH 69 265 AMS 68 593 BIOCS66 629 AMS 67 1740 TECH 69 NO.4 AMS 67 1740 JASA 68 1507 AMS 63 1507 AMS 63 1507 AMS 65 160 JASA 67 939 AMS 63 1507 AMS 65 1504 JASA 67 939 AMS 63 1507 AMS 65 1504 JASA 64 1042 AMS 65 1504 JASA 64 1042 AMS 65 1504 JASA 64 1042 AMS 65 1503 JASA 68 1373 AMS 65 1504 JASA 64 1042 AMS 65 1503 JASA 67 939 AMS 66 1503 JASA 68 1373 AMS 68 1386 AMS 64 1042 AMS 68 1386 AMS 68 1386 AMS 68 1386 AMS 68 1386 AMS 68 1886
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE, STABILITY OF SOLUTIONS TO GERTAIN SIMULTANEOUS ERRATA 'SIMULTANEOUS SPECTRAL ESTIMATES USINC AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO TION OF SEVERAL ONE-DIMENSIONAL SEARCH PROGEDURES IN THE CONDITIONAL WISHART, NORMAL AND OR BLOCKS ARE OF UNEQUAL S/ NOTES. APPLICATIONS OF BIVARIATE SYMMETRY TESTS, PARAMETRIC AND S IN MODEL I ANALYSIS OF VARIANCE, NORMAL THEORY AND CORR. 65 15B3 ON SOME ASYMPTOTICALLY TEST ASYMPTOTIC EFFICIENCY OF TWO PARAMETER E LOCATION PROBLEMS A UNIFIED DERIVATION OF SOME FUNCTION A APPLICATION OF SOME FUNCTION OF A MARKOV PROCESS ONE OBSERVATION PER CELL ASYMPTOTICALLY LINEAR MODELS ASYMPTOTICALLY LINEAR MODELS ASYMPTOTICALLY CAMMA DISTRIBUTION ASYMPTOTIC EFFICIENCIES OF A SOME ASYMPTOTIC NORMALITY IN THE	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS NONLINEAR ESTIMATION NONLINEAR ESTIMATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR RECRESSION PROBLEMS A NUMERICAL INVESTIGA NONNORMAL NONORTHOGONAL DESIGNS TO SITUATIONS WHERE TREATMENTS NONPARAMETRIC CLASSIFICATION OF 2-TO THE-N DESICNS NONPARAMETRIC CLASSIFICATION NONPARAMETRIC CLASSIFICATION NONPARAMETRIC COMPETITORS OF HOTELLINC'S T-SQUARE, NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC COMFIDENCE INTERVALS FOR A SHIFT NONPARAMETRIC CONFIDENCE INTERVALS FOR A SHIFT NONPARAMETRIC CONFIDENCE REGIONS FOR SOME MULTIVARIAT NONPARAMETRIC DISGRIMINATION USING TOLERANGE REGIONS NONPARAMETRIC ESTIMATE OF A MULTIVARIATE DENSITY NONPARAMETRIC ESTIMATE OF A MULTIVARIATE DENSITY NONPARAMETRIC ESTIMATE OF THE TRANSITION DISTRIBUTI NONPARAMETRIC ESTIMATION FORM INCOMPLETE OBSERVATIONS NONPARAMETRIC ESTIMATION FORM INCOMPLETE OBSERVATIONS NONPARAMETRIC ESTIMATION OF THE TRANSITION DISTRIBUTI NONPARAMETRIC ESTIMATION OF THE TRANSITION DISTRIBUTI NONPARAMETRIC INFERENCE IN SOME LINEAR MODELS WITH NONPARAMETRIC INFERENCE, AN ALTERNATIVE APPROACH TO NONPARAMETRIC LIFE TEST FOR SMALLER PERCENTILES OF A NONPARAMETRIC METHODS NONPARAMETRIC METHODS NONPARAMETRIC METHODS	AMS 66 1736 AMS 65 546 AMS 69 66 BIOCS69 27 TECH 66 1337 AMS 66 1237 BIOCS65 708 AMS 65 638 TECH 68 843 TECH 68 843 TECH 68 843 TECH 68 9259 AMS 67 1740 TECH 69 NO.4 AMS 65 160 JASA 67 939 AMS 63 1507 JASA 68 1373 AMS 63 1507 JASA 68 1373 AMS 65 1049 AMS 63 1373 AMS 68 1494 JASA 68 1494 JASA 68 1467 AMS 61 101
SSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND A LOCAL LIMIT THEOREM FOR ON MEASURABLE, STABILITY OF SOLUTIONS TO GERTAIN SIMULTANEOUS ERRATA 'SIMULTANEOUS SPECTRAL ESTIMATES USINC AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO TION OF SEVERAL ONE-DIMENSIONAL SEARCH PROGEDURES IN THE CONDITIONAL WISHART, NORMAL AND OR BLOCKS ARE OF UNEQUAL S/ NOTES. APPLICATIONS OF BIVARIATE SYMMETRY TESTS, PARAMETRIC AND S IN MODEL I ANALYSIS OF VARIANCE, NORMAL THEORY AND CORR. 65 15B3 ON SOME ASYMPTOTICALLY TEST ASYMPTOTIC EFFICIENCY OF TWO PARAMETER E LOCATION PROBLEMS A UNIFIED DERIVATION OF SOME FUNCTION A APPLICATION OF SOME FUNCTION OF A MARKOV PROCESS ONE OBSERVATION PER CELL ASYMPTOTICALLY LINEAR MODELS ASYMPTOTICALLY LINEAR MODELS ASYMPTOTICALLY CAMMA DISTRIBUTION ASYMPTOTIC EFFICIENCIES OF A SOME ASYMPTOTIC NORMALITY IN THE	NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES /NDS A NONLATTICE MULTI-DIMENSIONAL DISTRIBUTION FUNCTIONS NONLEAVABLE GAMBLING HOUSES WITH A COAL NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS NONLINEAR ESTIMATION NONLINEAR ESTIMATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR FUNCTIONS GENERALIZATION NONLINEAR RECRESSION PROBLEMS A NUMERICAL INVESTIGA NONNORMAL NONORTHOCONAL DESIGNS TO SITUATIONS WHERE TREATMENTS NONPARAMETRIC CHASTICATION OF 2-TO THE-N DESICNS NONPARAMETRIC CLASSIFICATION NONPARAMETRIC COMPETITORS OF HOTELLINC'S T-SQUARE, NONPARAMETRIC COMPETITORS OF HOTELLINC'S T-SQUARE, NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE NONPARAMETRIC CONFIDENCE NETRIVALS FOR SOME MULTIVARIAT NONPARAMETRIC CONFIDENCE REGIONS FOR SOME MULTIVARIAT NONPARAMETRIC DISTRIBUTIONS NONPARAMETRIC ESTIMATEONS POR SOME MULTIVARIAT NONPARAMETRIC ESTIMATE FOR SHIFT IN THE BEHRENS-NONPARAMETRIC ESTIMATES FOR SHIFT IN THE BEHRENS-NONPARAMETRIC ESTIMATION FROM INCOMPLETE OBSERVATIONS NONPARAMETRIC INFERENCE IN SOME LINEAR MODELS WITH NONPARAMETRIC LIFE TEST FOR SMALLER PERCENTILES OF A MONPARAMETRIC LIFE TEST FOR SMALLER PERCENTILES OF A NONPARAMETRIC METHODS	AMS 66 1736 AMS 69 56 BIOCS69 27 TECH 66 319 TECH 67 353 AMS 66 1237 BIOCS65 708 AMS 65 63 ECH 68 843 TECH 68 843 TECH 69 265 AMS 68 593 BIOCS66 629 JRSSB69 NO.2 AMS 67 1740 AMS 67 1740 AMS 68 160 JASA 67 183 AMS 68 164 JASA 64 1042 AMS 65 1049 AMS 66 1593 JASA 66 1593 JASA 67 1788

NON - NOR TITLE WORD INDEX

```
ROBUSTNESS OF SOME NONPARAMETRIC PROCEDURES IN LINEAR MODELS
                         ON THE EFFICIENCY OF OPTIMAL NONPARAMETRIC PROCEDURES IN THE TWO
                                      ON SOME OPTIMUM NONPARAMETRIC PROCEDURES IN TWO-WAY LAYOUTS
                                                                                                               JASA 67 1214
A CONTROL
                                                       NONPARAMETRIC RANKING PROCEDURES FOR COMPARISON WITH AMS 68 2075
                                         MULTIVARIATE NONPARAMETRIC SEVERAL-SAMPLE TESTS
                                                                                                                 AMS 66 611
 FROM A MARK-RECAPTURE EXPERIMENT
                                                    A NONPARAMETRIC STATISTICAL METHOD FOR CULLING RECRUITS BIOCS65
                                                       NONPARAMETRIC STATISTICS
                                                                                                                JASA 57 331
EAD IN UNPAIRED SAMPLES, CORR. 61 1005
                                                     A NONPARAMETRIC SUM OF RANKS PROCEDURE FOR RELATIVE SPR JASA 60 429
                                                       NONPARAMETRIC SYMMETRY TESTS FOR CIRCULAR
DISTRIBUTIONS
                                                                                                                BIOKA69 NO.3
                                 A NONPARAMETRIC TEST FOR THE PROBLEM OF SEVERAL SAMPLES AMS 61 1108
CERTAIN UNCORRELATED NONPARAMETRIC TEST STATISTICS JASA 68 707
  OF ESTIMATING ASYMPTOTIC EFFICIENCY OF A CLASS OF NONPARAMETRIC TESTS ON A DISTRIBUTION-FREE METHOD AMS 66 1759
RIES SOME NONPARAMETRIC TESTS FOR COMOVEMENTS BETWEEN TIME JASA 61 11
SERIES
                                                                                                              JASA 61
                                           A CLASS OF NONPARAMETRIC TESTS FOR INDEPENDENCE IN BIVARIATE
POPULATIONS
                                                                                                                 AMS 64 13B
                                                 SOME NONPARAMETRIC TESTS FOR MULTISAMPLE PROBLEMS
                                                                                                                TECH 6B
                                                                                                                         57B
                                             A NOTE ON NONPARAMETRIC TESTS FOR SCALE
                                                                                                                AMS 67 274
                                                       NONPARAMETRIC TESTS FOR SHIFT AT UNKNOWN TIME POINT
                                                                                                                AMS 68 1731
                                       ASYMPTOTICALLY NONPARAMETRIC TESTS OF SYMMETRY
                                                                                                                AMS 67 B49
                                        ON A CLASS OF NONPARAMETRIC TWO-SAMPLE TESTS FOR CIRCULAR DISTRIBUT AMS 69 1791
                                    THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM TESTS FOR UNIFORM BIOKAG9 NO.3
ITY OF A CIRCULAR DISTRIBUTION
MAXIMUM ASYMPTOTIC ERROR PROBABILITY
                                          SEQUENTIAL NONPARAMETRIC TWO-WAY CLASSIFICATION WITH PRESCRIBED
                                                                                                                AMS 69
LIMITS. FOR THE PROBABILITY THAT Y IS LESS THAN/ NONPARAMETRIC UPPER CONFIDENCE BOUNDS, AND CONFIDENCE JASA 64
                          OPTIMAL SAMPLE DESIGN WITH NONRESPONSE
                                                                                                                JASA 67
                            A NOTE ON THE EFFECTS OF NONRESPONSE ON SURVEYS
                                                                                                                JASA 57
                                                                                                                          29
AND UNKNOWN AMOUNT OF DUPLICATION
                                              SOME NONRESPONSE SAMPLING THEORY WHEN THE FRAME CONTAINS
                                                                                                               JASA 68
                                                                                                                         87
           APPROXIMATE DISTRIBUTION OF EXTREMES FOR NONSAMPLE CASES
                                                                                                                JASA 64
                                                                                                                         429
   TEST FOR SERIAL CORRELATION SUITABLE FOR USE WITH NONSTATIONARY TIME SERIES
                                                                                                       A QUICK JASA 63
                                                                                                                         728
                                                                                   A COMPARISON OF STA BIOCS6B
TISTICAL TECHNIQUES IN THE DIFFERENTIAL DIAGNOSIS OF NONTOXIC GOITRE
              BIAS IN ESTIMATES OF THE UNITED STATES NONWHITE POPULATION AS INDICATED BY TRENDS IN DEATH JASA 61
                 STIRLING BEHAVIOR IS ASYMPTOTICALLY NORMAL
                                                                                                                 AMS 67
                                                                                                                         410
 CONFIDENCE REGIONS FOR THE MEAN OF A MULTIVARIATE NORMAL
PROBABILITY THAT Y IS LESS THAN X, WHEN X AND Y ARE NORMAL
/ENCE BOUNDS, AND CONFIDENCE LIMITS, FOR THE JASA 64
                                                                                        A NOTE ON CONSERV IVE AMS 67 278
                                                                                                                         906
CIENCY OF ONE-SIDED KOLMOGOROV AND SMIRNOV TESTS FOR NORMAL ALTERNATIONS
   OF CATEGORICAL DATA CHI-SQUARE TESTS ANALOGOUS TO NORMAL ANALYSIS OF VARIANCE
                                                                                           ON THE PITMAN EFFI AMS 66
                                                                                                                         940
                                                                                           THE LIMITING POWER AMS 63 1432
                      QUERY, THE SUM OF VALUES FROM A NORMAL AND A TRUNCATED NORMAL DISTRIBUTION
                                                                                                               TECH 64 104
                      QUERY, THE SUM OF VALUES FROM A NORMAL AND A TRUNCATED NORMAL DISTRIBUTION (CONTD)
                                                                                                                TECH 64 469
                              QUERY, COMBINATION OF A NORMAL AND A UNIFORM DISTRIBUTION
                                                                                                               TECH 65 449
USING ORDER STATISTICS
                                  CHARACTERIZATION OF NORMAL AND GENERALIZED TRUNCATED NORMAL DISTRIBUTIONS AMS 66 1011
                          COMPUTER EVALUATION OF THE NORMAL AND INVERSE NORMAL DISTRIBUTION FUNCTIONS
                                                                                                               TECH 69 NO.4
  INTERVALS FOR THE COEFFICIENT OF VARIATION FOR THE NORMAL AND LOG NORMAL DISTRIBUTIONS CONFIDENCE BIOKA64 25
                         LIFE TEST SAMPLING PLANS FOR NORMAL AND LOGNORMAL DISTRIBUTIONS
                                                                                                               TECH 62
                                                                                                                         151
                PROBABILITY INTEGRALS OF MULTIVARIATE NORMAL AND MULTIVARIATE T
                                                                                                                AMS 63
                             THE CONDITIONAL WISHART, NORMAL AND NONNORMAL
                                                                                                                 AMS 6B
 RESULTS ON THE ORDER STATISTICS OF THE MULTIVARIATE NORMAL AND PARETO TYPE 1 POPULATIONS
                                                                                                         SOME AMS 64 1815
PROBABILITIES OF CONVEX POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIONS ON THE EVALUATION OF JRSSB66 366
                      SOME RELATIONSHIPS BETWEEN THE NORMAL AND VON MISES DISTRIBUTIONS
                                                                                                                BIOKA67
TRIBUTION-FREE TEST STATISTIC FOR DISPERSION AND ITS NORMAL APPROXIMATION /RITICAL VALUES FOR MOOD'S DIS TECH 68 497
COMMON, RELATED TAIL PROBABILITIES, I A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER JASA 68 1416 COMMON, RELATED TAIL PROBABILITIES, II A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER JASA 68 1457
PROCESSES
                                 ON THE USE OF THE NORMAL APPROXIMATION IN THE TREATMENT OF STOCHASTIC JRSSB57
MANY REPAIR MEN
                                                       NORMAL APPROXIMATION TO MACHINE INTERFERENCE WITH
                                                                                                                JRSSB57 334
CENTRAL F PROBABILITY FUNCTIONS
                                                       NORMAL APPROXIMATION TO THE CHI-SQUARE AND NON-
                                                                                                                BIOKA60 411
ENDENT BINOMIALS, CONDITIONAL ON FIXED SUM

NORMAL APPROXIMATION TO THE DISTRIBUTION OF TWO INDEP AMS 63 1593

RIBUTION WHEN ZERO DIFFERENCES ARE PRESENT

THE NORMAL APPROXIMATION TO THE SIGNED-RANK SAMPLING DIST JASA 67 1068
NCE FOR SOME INCOMPLETELY SPECIFIED MODELS INVOLVINC NORMAL APPROXIMATIONS TO DISCRETE DATA INFERE BIOCS67 335
RIBUTION OF KENDALL'S TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPULATION WITH CORRELATION RHO
                                                                                                           /T BIOKA63
FOR THE BIVARIATE TWO-SAMPLE LOCATION PROBLEM IN THE NORMAL CASE /SAMPLE POWER OF A NON-PARAMETRIC TEST JRSSB68
                     POSTERIOR ODDS FOR MULTIVARIATE NORMAL CLASSIFICATION
                                                                                                                JRSSB64
                                                                                                                          69
                                         MULTIV RIATE-NORMAL CLASSIFICATION WITH COVARIANCE KNOWN
                                                                                                                AMS 65 1787
  A MODIFIED COMPOUND POISSON PROCESS WITH NORMAL COMPOUNDING
CONFIDENCE INTERVALS AND EXPERIMENTAL DESIGN WITH NORMAL CORRELATION
PENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED NORMAL DATA
 THE ANALYSIS OF STATISTICAL DISTRIBUTIONS INTO TWO NORMAL COMPONENTS
                                                                                      A GRAPHICAL METHOD FOR BIOKA53
                                                                                                                         460
                                                                                                               JASA 6B
                                                                                                                         637
                                                                                          NOTES. SIMULTANEOUS BIOCS68
                                                                                                                         434
DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED NORMAL DATA /ENT ESTIMATORS WHEN THE VARIABLES ARE BIOKA62
                                                                                                                         155
                              CHANGE CONSTRAINTS AND NORMAL DEVIATES
                                                                                                                JASA 62
                    CORRIGENDA TO 'CORRELATED RANDOM NORMAL DEVIATES' PUBLISHED IN TRACTS FOR COMPUTERS,
                                                                                                               BIOKA56
     ON A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNAT AMS 62 1463
  OPTIMAL CONFIDENCE INTERVALS FOR THE VARIANCE OF A NORMAL DISTRIBUTION
                                                                                                               JASA 59
                                           THE FOLDED NORMAL DISTRIBUTION
                                                                                                                TECH 61
              A CHARACTERIZATION OF THE MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                                 AMS 62
                                                                                                                         533
  ESTIMATION OF PARAMETERS OF A TRUNCATED BIVARIATE NORMAL DISTRIBUTION
                                                                                                                JASA 63
                                                                                                                         519
                CUMULATIVE SUM CHARTS FOR THE FOLDED NORMAL DISTRIBUTION
                                                                                                               TECH 63
                                                                                                                         451
              ON TWO-SIDED TOLERANCE INTERVALS FOR A NORMAL DISTRIBUTION
                                                                                                                AMS 64
                                                                                                                         762
         ORTHANT PROBABILITIES FOR THE QUADRIVARIATE NORMAL DISTRIBUTION
                                                                                                                AMS 64 1685
          GENERATING A VARIABLE FROM THE TAIL OF THE NORMAL DISTRIBUTION
                                                                                                               TECH 64 101
         CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL DISTRIBUTION
                                                                                                               TECH 64 377
       A CHARACTERISTIC PROPERTY OF THE MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                                AMS 66 1829
               VARIABLES SAMPLING PLANS BASED ON THE NORMAL DISTRIBUTION
                                                                                                               TECH 67 417
                                                                                                                AMS 6B 1747
  ON THE ROBUSTNESS OF SOME CHARACTERIZATIONS OF THE NORMAL DISTRIBUTION
     THE COVERING CIRCLE OF A SAMPLE FROM A CIRCULAR NORMAL DISTRIBUTION
                                                                                                               BIOKA52 137
     EXACT LINEAR SEQUENTIAL TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION
                                                                                                               BIOKA56
                                                                                                                         452
                                                                                                               BIOKA59
             TABLES FOR WALD TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION
                                                                                                                         169
TABLES FOR MAKINC INFERENCES ABOUT THE VARIANCE OF A NORMAL DISTRIBUTION
                                                                                                               BIOKA60
                                                                                                                         433
 ABSOLUTE AND INCOMPLETE MOMENTS OF THE MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                               BIOKA61
                                                                                                                         77
           A NOTE ON THE EQUICORRELATED MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                               BIOKA62
                                                                                                                         269
       ON GUPTA'S ESTIMATES OF THE PARAMETERS OF THE NORMAL DISTRIBUTION
                                                                                                               BIOKA64 498
                    MOMENTS OF A TRUNCATED BIVARIATE NORMAL DISTRIBUTION
                                                                                                               JRSSB61 405
```

```
BAYESIAN ESTIMATION OF THE VARIANCE OF A NORMAL DISTRIBUTION
                                                                                                               JRSSR64
                                                                                                                         63
 BAYESIAN ESTIMATION OF PARAMETERS OF A MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                               JRSSB65
                                                                                                                        279
                                                                                                              JRSSB68
     A CENTRAL TOLERANCE RECION FOR THE MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                                        599
RTHOGONAL AND DUAL CONFIGURATIONS AND THE RECIPROCAL NORMAL DISTRIBUTION
                                                                                                          BIO AMS 69
                                                                                                                        393
   MOMENT CENERATING FUNCTION OF THE TRUNCATED MULTI-NORMAL DISTRIBUTION
                                                                                                          THE JRSSB61
                                                                                                                        223
     THE SUM OF VALUES FROM A NORMAL AND A TRUNCATED NORMAL DISTRIBUTION
                                                                                                       QUERY, TECH 64
                                                                                                                        104
   PROBABILITIES FOR THE EQUICORRELATED MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                      ORTHANT BIOKA62
                                                                                                                        433
       POINTS AND MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTION
                                                                                                   PERCENTACE AMS 61
                                                                                                                        8<sub>BB</sub>
        OF RADICAL ERROR IN THE BIVARIATE ELLIPTICAL NORMAL DISTRIBUTION
                                                                                                 DISTRIBUTION TECH 62
                                                                                                                        138
EDICTION, AND TOLERANCE REGIONS FOR THE MULTIVARIATE NORMAL DISTRIBUTION
                                                                                               CONFIDENCE, PR JASA 66
                                                                                                                        605
                                                                                                               AMS 62
     STATISTICS FROM THE EQUICORRELATED MULTIVARIATE NORMAL DISTRIBUTION
                                                                                             MOMENTS OF ORDER
                                                                                                                       12B6
   OF OBSERVATIONS ABOVE SAMPLE MEANS IN A BIVARIATE NORMAL DISTRIBUTION
                                                                                            ON THE PROPORTION AMS 6B 1350
   EXACT TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A NORMAL DISTRIBUTION
                                                                                           DIRECT METHODS FOR TECH 69
TWEEN VARIATE-VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL DISTRIBUTION
                                                                                           THE CORRELATION BE BIOKA66
                                                                                                                        281
THE SAMPLE VARIANCES IN A SINGLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION
                                                                                         CORRELATION BETWEEN BIOKA68
                                                                                                                        433
      OF THE RANGE AND MEAN RANGE FOR SAMPLES FROM A NORMAL DISTRIBUTION
                                                                                         ON THE DISTRIBUTIONS BIOKAGE
XTREMAL AND NEARLY EXTREMAL VALUES IN SAMPLES FROM A NORMAL DISTRIBUTION
                                                                                        THE DISTRIBUTION OF E BIOKA63
                                                                                                                         89
  TWO-SIDED PREDICTION INTERVALS FOR SAMPLES FROM A NORMAL DISTRIBUTION
                                                                                      FACTORS FOR CALCULATING JASA 69
TUTE INTERVAL ESTIMATORS, WITH AN APPLICATION TO THE NORMAL DISTRIBUTION
                                                                                     CRITERIA FOR BEST SUBSTI JASA 64 1133
AND OF INDEFINITE QUADRATIC FORMS FROM A NON-CENTRAL NORMAL DISTRIBUTION
                                                                                   DISTRIBUTION OF DEFINITE
                                                                                                                AMS 63
                                                                                                                        1 B6
RESULTING FROM CERTAIN SIMPLE TRANSFORMATIONS OF THE NORMAL DISTRIBUTION
                                                                                PROPERTIES OF DISTRIBUTIONS
                                                                                                              BIOKA52
                                                                                                                        290
ONE OF K HYPOTHESES CONCERNING THE UNKNOWN MEAN OF A NORMAL DISTRIBUTION
                                                                              /CISTON PROCEDURE FOR CHOOSING
                                                                                                               AMS 63
                                                                                                                        549
                                                                              /IAN ESTIMATION OF LATENT ROOTS BIOKA69
 AND VECTORS WITH SPECIAL REFERENCE TO THE BIVARIATE NORMAL DISTRIBUTION
                                                                                                                         97
HE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION
                                                                             ON THE EXACT DISTRIBUTIONS OF T AMS 67 1170
     THE SUM OF VALUES FROM A NORMAL AND A TRUNCATED NORMAL DISTRIBUTION (CONTD)
                                                                                                       QUERY, TECH 64
                                                                                                                        469
      CONFIDENCE SETS FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION (WITH DISCUSSION)
                                                                                                               JRSSR62
                                                                                                                        265
            THE ESTIMATION OF THE MEAN OF A CENSORED NORMAL DISTRIBUTION BY ORDERED VARIABLES
                                                                                                               BIOKA56
                                                                                                                        482
                                ON CHARACTERIZING THE NORMAL DISTRIBUTION BY STUDENT'S LAW
                                                                                                               BIOKA66
                                                                                                                        603
NGENCY TABLE
                    SOME PROPERTIES OF THE BIVARIATE NORMAL DISTRIBUTION CONSIDERED IN THE FORM OF A CONTI BIOKA57
                                                                                                                        289
                    TABLES FOR USE IN ESTIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ANALYSIS. PART BIOKAS7
 I. DESCRIPTION/
                                                                                                                        411
SIMULATION
                       A USEFUL APPROXIMATION TO THE NORMAL DISTRIBUTION FUNCTION, WITH APPLICATION TO
                                                                                                                        647
       COMPUTER EVALUATION OF THE NORMAL AND INVERSE NORMAL DISTRIBUTION FUNCTIONS
                                                                                                               TECH 69
                                                                                                                       NO.4
NCE OF A FIXED SAMPLE ESTIMATOR OF THE MEAN OF A LOG-NORMAL DISTRIBUTION HAVING A PRESCRIBED PROPORTIONAL
                  SEQUENTIAL TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION II, LARGE T
SEQUENTIAL TEST FOR THE MEAN OF A NORMAL DISTRIBUTION III, SMALL T
                                                                                                                AMS 64
                                                                                                                        162
                                                                                                                AMS 65
                                                                                                                         28
MATION OF THE SLOPE OF THE MAJOR AXIS OF A BIVARIATE NORMAL DISTRIBUTION IN THE CASE OF A SMALL SAMPLE
                                                                                                             / BIOCS68
                                                                                                                        679
        CORRELATION IN A SINGLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION IV. EMPIRICAL VARIANCES OF RANK C BIOKA68
                                                                                                                        437
                  SEQUENTIAL TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION IV, DISCRETE CASE
ANALOGUES OF THE NORMAL DISTRIBUTION ON THE CIRCLE AND THE SPHERE
                                                                                                                AMS 65
                                                                                                                         55
                                                                                                               BTOKA63
                                                                                                                         81
                           INTEGRAL OF THE BIVARIATE NORMAL DISTRIBUTION OVER AN OFFSET CIRCLE
                                                                                                              JASA 62
                                                                                                                        758
            A TABLE OF THE INTEGRAL OF THE BIVARIATE NORMAL DISTRIBUTION OVER AN OFSET CIRCLE
                                                                                                               JRSSR60
                                                                                                                        177
IN RELIABILITY ANAL/ APPLICATIONS OF THE BIVARIATE NORMAL DISTRIBUTION TO A STRESS VS. STRENGTH PROBLEM TECH 64
                                                                                                                        325
                                                                                                               AMS 69
BEST INVARIATE ESTIMATOR OF EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQUARED ERROR LOSS
                                                                                                        /THE
                                                                                                                       1801
                                                                                                                AMS 39
FROM SINGLY AND DOUBLY CENSORED SAMPLES, PART I. THE NORMAL DISTRIBUTION UP TO SAMPLES OF SIZE 10'
                                                                                                                        325
        TESTING THE MEAN AND STANDARD DEVIATION OF A NORMAL DISTRIBUTION USING QUANTILES
                                                                                                               TECH 68
                                                                                                                        781
     ESTIMATION OF THE PARAMETERS FOR A MULTIVARIATE NORMAL DISTRIBUTION WHEN ONE VARIABLE IS DICHOTOMISED BIOKA65
                                                                                                                        664
                      SIMPLIFIED ESTIMATORS FOR THE NORMAL DISTRIBUTION WHEN SAMPLES ARE SINGLY CENSORED TECH 59
                                                                                                                        217
    MAXIMUM LIKELIHOOD ESTIMATES FOR A MULTIVARIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSIN JASA 57
                                                                                                                        200
TIME
                    ESTIMATING THE CURRENT MEAN OF A NORMAL DISTRIBUTION WHICH IS SUBJECTED TO CHANGES IN
                                                                                                               AMS 64
                                                                                                                        999
SAMPLING
               TWO THEOREMS FOR INFERENCES ABOUT THE NORMAL DISTRIBUTION WITH APPLICATIONS IN ACCEPTANCE JASA 64
                                                                                                                         89
                                      EXPRESSING THE NORMAL DISTRIBUTION WITH COVARIANCE MATRIX A+B IN TER BIOKA63
MS OF ONE WITH COVARIANCE MATRIX A
                                                                                                                        535
                  A NOTE ON ESTIMATING THE MEAN OF A NORMAL DISTRIBUTION WITH KNOWN COEFFICIENT OF VARIATI JASA 68
      SHORTER CONFIDENCE INTERVALS FOR THE MEAN OF A NORMAL DISTRIBUTION WITH KNOWN VARIANCE
                                                                                                                AMS 63
        ESTIMATION OF PARAMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS
                                                                                                              JASA 68
                                                                                                                        159
 INCOMPLETE AND ABSOLUTE MOMENTS OF THE MULTIVARIATE NORMAL DISTRIBUTION WITH SOME APPLICATIONS
                                                                                                              BIOKA53
                                                                                                                         20
         CORRELATION IN A SINGLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION. II. RANK CORRELATION
                                                                                                              BTOKA65
                                                                                                                        639
ND VA/
         CORRELATION IN A SINGLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS A BIOKA66
                                                                                                                        278
TERS FROM MOMENTS
                                           THE FOLDED NORMAL DISTRIBUTION. TWO METHODS OF ESTIMATING PARAME TECH 61
                                                                                                                        551
TABLES FOR MAKING INFERENCES ABOUT THE VARIANCE OF A NORMAL DISTRIBUTION.
                                                                                                CORRIGENDA ' BIOKA61
                                                                                                                        230
                                          THE FOLDED NORMAL DISTRIBUTION, III. ACCURACY OF ESTIMATION BY
MAXIMUM LIKELIHOOD
                                                                                                              TECH 62
                                                                                                                        249
 FOR DEALINC WITH OUTLIERS IN SMALL SAMPLES FROM THE NORMAL DISTRIBUTION, 2. ESTIMATION OF THE MEAN /LES TECH 69
                                                                                                                        527
RESULTING FROM CERTAIN SIMPLE TRANSFORMATIONS OF THE NORMAL DISTRIBUTION'
                                                                            /'PROPERTIES OF DISTRIBUTIONS BIOKA53
                                                                                                                        236
TISTICS FOR SAMPLES OF SIZE TWENTY AND LESS FROM THE NORMAL DISTRIBUTION' 56 410
                                                                                    /PRODUCTS OF ORDER STA AMS 61 1345
               TABLES OF TOLERANCE-LIMIT FACTORS FOR NORMAL DISTRIBUTIONS
                                                                                                              TECH 60
                                                                                                                       483
           ESTIMATION OF PARAMETERS FOR A MIXTURE OR NORMAL DISTRIBUTIONS
                                                                                                              TECH 66
                                                                                                                       431
       ASYMPTOTICALLY OPTIMAL TESTS FOR MULTIVARIATE NORMAL DISTRIBUTIONS
                                                                                                                AMS 67 1829
                       ESTIMATION IN MIXTURES OF TWO NORMAL DISTRIBUTIONS
                                                                                                               TECH 67
                     CENSORED SAMPLES FROM TRUNCATED NORMAL DISTRIBUTIONS
                                                                                                              BIOKA55
             THE CHI-SQUARE GOODNESS-OF-FIT TEST FOR NORMAL DISTRIBUTIONS
                                                                                                              BIOKA57
                                                                                                                        336
                ORDER STATISTICS FROM A CLASS OF NON-NORMAL DISTRIBUTIONS
                                                                                                              BIOKA69
                                                                                                                        415
           ESTIMATING THE COMPONENTS OF A MIXTURE OF NORMAL DISTRIBUTIONS
                                                                                                              BIOKA69 NO.3
   FITTING OF GROUPED TRUNCATED AND GROUPED CENSORED NORMAL DISTRIBUTIONS
                                                                                                          THE BIOKA52
                                                                                                                        252
  ON TABLES FOR THE COMPARISION OF THE SPREAD OF TWO NORMAL DISTRIBUTIONS
                                                                                                       A NOTE BIOKA67
                                                                                                                        683
ROBABILITIES OF RANK ORDERS FOR TWO WIDELY SEPARATED NORMAL DISTRIBUTIONS
                                                                                                   ON EXACT P AMS 67 1491
    CONFIDENCE REGIONS FOR THE MEANS OF MULTIVARIATE NORMAL DISTRIBUTIONS
                                                                                                  RECTANGULAR JASA 67
                                                                                                                        626
 OF PEARSON-LEE-FISHER FUNCTIONS OF SINGLY TRUNCATED NORMAL DISTRIBUTIONS
                                                                                                 NOTES TABLES BIOCS65
                                                                                                                        219
BOUNDED RELATIVE ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTIONS
                                                                                                ESTIMATES OF JASA 56
                                                                                                                        481
 BIVARIATE NON-NORMAL UNIVERSES BY MEANS OF COMPOUND NORMAL DISTRIBUTIONS
                                                                                                SAMPLING FROM BIOKA52
                                                                                                                        238
ATING THE PROPORTIONS IN MIXTURES OF EXPONENTIAL AND NORMAL DISTRIBUTIONS
                                                                                       INFORMATION FOR ESTIM JASA 63
                                                                                                                        918
OF A TEST OF HOMOGENEITY FOR POPULATIONS COMPOSED OF NORMAL DISTRIBUTIONS
                                                                                      EMPIRIC INVESTICATION JASA 58
ANEOUS CONFIDENCE BOU/ ON CERTAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR APPLICATIONS TO SIMULT AMS 67
                                                                                                                       1853
      UNBAISED ESTIMATION OF THE COMMON MEAN OF TWO NORMAL DISTRIBUTIONS BASED ON SMALL SAMPLES OF EQUAL JASA 66
                CLASSIFICATION INTO TWO MULTIVARIATE NORMAL DISTRIBUTIONS WITH DIFFERENT COVARIANCE MATRIC
                                                                                                              AMS 62
                                                                                                                        420
TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE NORMAL DISTRIBUTIONS. /OF POWER FUNCTIONS OF SOME READ 'PROBABILITY CONTENT OF REGIONS UNDER SPHERICAL NORMAL DISTRIBUTIONS, II. THE DISTRIBUTION OF THE RAN
                                                                                                               AMS 69
                                                                                                                        697
                                                                                                               AMS 61
                                                                                                                        620
      PROBABILITY CONTENT OF REGIONS UNDER SPHERICAL NORMAL DISTRIBUTIONS, III. THE BIVARIATE NORMAL INTEG AMS 61
                                                                                                                       171
```

NOR - NOR TITLE WORD INDEX

```
PROBABILITY CONTENT OF REGIONS UNDER SPERICAL NORMAL DISTRIBUTIONS, IV, THE DISTRIBUTION OF HOMOGEN AMS 62
EOU/
                                                                                                                     542
     ERRATA, 'TABLES OF TOLERANCE-LIMIT FACTORS FOR NORMAL DISTRIBUTIONS'
                                                                                                            TECH 61
                                                                                                                     576
ERRATA, 'CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL DISTRIBUTIONS'
                                                                                                            TECH 66
                                                                                                                     570
USSION OF 'ESTIMATION OF PARAMETERS FOR A MIXTURE OF NORMAL DISTRIBUTIONS' BY VICTOR HASSELBLAD
                                                                                                      DISC TECH 66
                                                                                                                     445
                       ON A FACTOR AUTOMORPHISM OF A NORMAL DYNAMICAL SYSTEM
                                                                                                             AMS 66 1528
        DIMENSIONAL CHAINS INVOLVINC RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS
                                                                                                            TECH 63
                                                                                                                    404
   ON THE ASYMPTOTIC EFFICIENCY OF AN ASYMPTOTICALLY NORMAL ESTIMATOR SEQUENCE (CORR. 67 196)
                                                                                                    A NOTE JRSSB63
                                                                                                                     195
                                       THE BIVARIATE NORMAL INTEGRAL
                                                                                                            BIOKA51
                                                                                                                     475
        A NOTE ON THE EVALUATION OF THE MULTIVARIATE NORMAL INTEGRAL
                                                                                                            BIOKA53
                                                                                                                     458
                                   ON BOUNDS FOR THE NORMAL INTEGRAL
                                                                                                            BIOKA55
                                                                                                                     263
  AN APPROXIMATION FOR THE SYMMETRIC, QUADRIVARIATE NORMAL INTEGRAL
                                                                                                            BTOKA56
                                                                                                                     206
               TWO EXPANSIONS FOR THE QUADRIVARIATE NORMAL INTEGRAL
                                                                                                            BIOKA60
                                                                                                                     325
                         A NOTE ON THE QUADRIVARIATE NORMAL INTEGRAL
                                                                                                            BTOKA61
                                                                                                                     201
QUALITIES FOR THE INCOMPLETE GAMMA FUNCTIONS AND THE NORMAL INTEGRAL
                                                                                            A SYSTEM OF INE
                                                                                                            AMS 65
                                                                                                                     139
                               INEQUALITIES FOR THE NORMAL INTEGRAL INCLUDING A NEW CONTINUED FRACTION
                                                                                                            BIOKA54
                                                                                                                     177
                       REDUCTION OF THE MULTIVARIATE NORMAL INTEGRAL TO CHARACTERISTIC FORM
                                                                                                                     293
                                                                                                            BIOKA67
   THE NUMERICAL EVALUATION OF CERTAIN MULTIVARIATE NORMAL INTEGRALS
                                                                                                             AMS 62
                                                                                                                     571
                    BIBLIOGRAPHY ON THE MULTIVARIATE NORMAL INTECRALS AND RELATED TOPICS
                                                                                                             AMS 63
                                                                                                                     B29
  OF RANDOM VARIABLES WHICH ARE NOT ATTRACTED TO THE NORMAL LAW
                                                                      ON LARGE DEVIATION PROBLEMS FOR SUMS
                                                                                                            AMS 67 1575
                            A MULTI-STAGE TEST FOR A NORMAL MEAN
                                                                                                            JRSSB6B
                                                                                                                    461
                    ESTIMATION OF THE LARGEST OF TWO NORMAL MEANS
                                                                                                            JASA 6B
                                                                                                                     861
                             A REDUCTION FORMULA FOR NORMAL MULTIVARIATE INTEGRALS
                                                                                                            BTOKA54
                                                                                                                     351
  E FOR TESTS OF SIGNIFICANCE THE DIMENSIONALITY OF NORMAL MULTIVARIATE SYSTEMS
                                                                                   /F THE COMPUTING ROUTIN JRSSB56
                                                                                                                      70
                  ON THE LIKELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING PROBLEM II
                                                                                                            AMS 65 1061
                   ON THE LIKELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING PROBLEM, CORR. 64 1388
                                                                                                             AMS 64
                                                                                                                    181
                                QUERY, PSEUDO RANDOM NORMAL NUMBERS
                                                                                                            TECH 6B
                                                                                                                     401
ENTIAL PROBABILITY RATIO TESTS BASED ON MULTIVARIATE NORMAL OBSERVATIONS
                                                                           /BABILITY ONE OF INVARIANT SEQU AMS 67
                                                                                                                      В
                   THE SAMPLE MEAN AMONG THE EXTREME NORMAL ORDER STATISTICS
                                                                                                             AMS 63
                                                                                                                      3.3
EXPECTED VALUES OF NORMAL ORDER STATISTICS
THE DAVID-JOHNSON SERIES FOR THE EXPECTED VALUES OF NORMAL ORDER STATISTICS
                                                                                                            BIOKA61
                                                                                                                    151
                                                                               /AFTER A NUMBER OF TERMS OF BIOKAGO
                                                                                                                      79
                     CORRIGENDA, 'EXPECTED VALUES OF NORMAL ORDER STATISTICS'
                                                                                                            BIOKA61
                                                                                                                     476
                      APPROXIMATIONS TO MULTIVARIATE NORMAL ORTHANT PROBABILITIES
                                                                                                             AMS 63
                                                                                                                     191
            POSTERIOR DISTRIBUTIONS FOR MULTIVARIATE NORMAL PARAMETERS
                                                                                                            JRSSB63
                                                                                                                     368
      TABLES FOR UNBIASED TESTS ON THE VARIANCE OF A NORMAL POPULATION
                                                                                                             AMS 61
                                                                                                                     84
MOMENTS OF SAMPLE MOMENTS OF CENSORED SAMPLES FROM A NORMAL POPULATION
                                                                                                            BIOKA58
                                                                                                                    211
                  MOMENTS OF ORDER STATISTICS FROM A NORMAL POPULATION
                                                                                                            BTOKA59
                                                                                                                     433
                    CONTROL CHARTS FOR THE MEAN OF A NORMAL POPULATION
                                                                                                            JRSSB54 131
USUAL CONFIDENCE SETS FOR THE MEAN OF A MULTIVARIATE NORMAL POPULATION
                                                                                    INADMISSIBILITY OF THE
                                                                                                             AMS 67 1868
DENCE SETS FOR THE MEAN OF A UNIVARIATE OR BIVARIATE NORMAL POPULATION
                                                                          ADMISSIBILITY OF THE USUAL CONFI AMS 69 1042
MEAN RANGE
            TABLES FOR TOLERANCE LIMITS FOR A NORMAL POPULATION BASED ON SAMPLE MEAN AND RANCE OR
                                                                                                            JASA 57
  ESTIMATION OF THE MEAN AND STANDARD DEVIATION OF A NORMAL POPULATION FROM A CENSORED SAMPLE
                                                                                                            BIOKA52
                                                                                                                     260
          ESTIMATION OF PARAMETERS OF A MULTIVARIATE NORMAL POPULATION FROM TRUNCATED AND CENSORED SAMPLES JRSSB60
                                                                                                                     307
                       ON SELECTING THE LARCEST OF K NORMAL POPULATION MEANS (WITH DISCUSSION)
                                                                                                            JRSSB60
ENTS OF VARIATION
                          A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS ASSUMING HOMOCENEOUS COEFFICI AMS 69 1374
SAMPLE
                                   ESTIMATION OF THE NORMAL POPULATION PARAMETERS GIVEN A SINGLY CENSORED
                                                                                                            BIOKA59
                                                                                                                    150
SAMPLE
                                   ESTIMATION OF THE NORMAL POPULATION PARAMETERS GIVEN A TYPE I CENSORED
                                                                                                            BTOKA61
                                                                                                                     367
DEVIATION/
              A TEST PROCEDURE WITH A SAMPLE FROM A NORMAL POPULATION WHEN AN UPPER BOUND TO THE STANDARD JASA 60
                                                                                                                     94
              ESTIMATING THE MEAN OF A MULTIVARIATE NORMAL POPULATION WITH GENERAL QUADRATIC LOSS FUNCTIO AMS 66 1B19
                                                                                                            AMS 67 1365
 THREE HYPOTHESIS TEST FOR DETERMINING THE MEAN OF A NORMAL POPULATION WITH KNOWN VARIANCE A SEQUENTIAL
  SEQUENTIAL CONFIDENCE INTERVALS FOR THE MEAN OF A NORMAL POPULATION WITH UNKNOWN VARIANCE
                                                                                                            JRSSB57
MOMENTS OF SAMPLE MOMENTS OF CENSORED SAMPLES FROM A NORMAL POPULATION'
                                                                                            CORRIGENDA TO ' BIOKA5B
                        THE RANKING OF VARIANCES IN NORMAL POPULATIONS
                                                                                                            JASA 56
                                                                                                                     621
           JOINT ESTIMATION OF THE PARAMETERS OF TWO NORMAL POPULATIONS
                                                                                                            JASA 62
                                                                                                                     446
ON MOMENTS OF ORDER STATISTICS AND QUASI-RANGES FROM NORMAL POPULATIONS
                                                                                                             AMS 63
                                                                                                                     633
                ELLIPTICAL AND RADIAL TRUNCATION IN NORMAL POPULATIONS
                                                                                                             AMS 63
                                                                                                                     940
 THE EFFECT OF TRUNCATION ON TESTS OF HYPOTHESES FOR NORMAL POPULATIONS
                                                                                                             AMS 65 1504
 AN APPROXIMATION TO TWO-SIDED TOLERANCE LIMITS FOR NORMAL POPULATIONS
                                                                                                            TECH 66
                                                                                                                    115
    SEQUENTIAL INTERVAL ESTIMATION FCR THE MEANS OF NORMAL POPULATIONS
                                                                                                             AMS 69
                                                                                                                     509
  ON THE MOMENTS OF ORDER STATISTICS IN SAMPLES FROM NORMAL POPULATIONS
                                                                                                            BIOKA54
                                                                                                                     200
                                 PLANE TRUNCATION IN NORMAL POPULATIONS
                                                                                                            JRSSB65
                                                                                                                     301
  NOTES. SAMPLE SIZE FOR THE ESTIMATION OF MEANS OF NORMAL POPULATIONS
                                                                                                            BIOCS67
                                                                                                                     846
      OF SOMERVILLE'S PROCEDURE FOR RANKING MEANS OF NORMAL POPULATIONS
                                                                                           SOME EXTENSIONS BIOKAGB
                                                                                                                     411
CEDURES FOR RANKING MULTIPLY-CLASSIFIED VARIANCES OF NORMAL POPULATIONS
                                                                                           SINGLE-STAGE PRO TECH 68
                                                                                                                     693
ATION RULES FOR CLASSIFICATION INTO TWO MULTIVARIATE NORMAL POPULATIONS
                                                                                          OPTIMUM CLASSIFIC AMS 65 1174
 WITH A CONTROL FOR MULTIPLY-CLASSIFIED VARIANCES OF NORMAL POPULATIONS
                                                                                      MULTIPLE COMPARISONS TECH 68 715
PLING DISTRIBUTIONS OF THE MEAN FOR SAMPLES FROM NON-NORMAL POPULATIONS
                                                                                  ON APPROXIMATIONS TO SAM AMS 63 1308
ELECTING THE POPULATION WITH THE LARGEST MEAN FROM K NORMAL POPULATIONS
                                                                               A SEQUENTIAL PROCEDURE FOR S
                                                                                                             AMS 64
                                                                                                                    174
   EQUATIONS FOR TRUNCATED AND CENSORED SAMPLES FROM NORMAL POPULATIONS
                                                                              ON THE SOLUTION OF ESTIMATING BIOKA57
                                                                            /SMALLEST CHARACTERISTIC ROOT U AMS 64 1807
NDER NULL HYPOTHESIS CONCERNING COMPLEX MULTIVARIATE NORMAL POPULATIONS
 THE DISTRIBUTION OF THE RANGE IN SMALL SAMPLES FROM NORMAL POPULATIONS
                                                                          /ARISON OF TWO APPROXIMATIONS TO BIOKA52
 OBSERVATIONS IN THE ESTIMATION OF THE PARAMETERS OF NORMAL POPULATIONS
                                                                           /BY TRUNCATED SAMPLES OF GROUPED BIOKA63
                                                                                                                     207
INT EFFICIENCY OF THE ESTIMATES OF THE PARAMETERS OF NORMAL POPULATIONS
                                                                        BASED ON SINGLY AND DOUBLY TRUNCAT JASA 62
                                                                                                                     46
THE EFFICIENCY OF BAN ESTIMATES OF THE PARAMETERS OF NORMAL POPULATIONS BASED ON SINGLY CENSORED SAMPLES BIOKAG2
                                                                                                                    570
                            ON PARTITIONING A SET OF NORMAL POPULATIONS
                                                                        BY THEIR LOCATIONS WITH RESPECT TO AMS 69 1300
 A CONTROL
                             ESTIMATION OF MEANS OF NORMAL POPULATIONS FROM OBSERVED MINIMA
                                                                                                            BIOKA57
E MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF NORMAL POPULATIONS
                                                                        FROM SINGLY AND DOUBLY CENSORED SA BIOKA66
                                                                                                                     205
SIGNIFICANCE OF THE DIFFERENCE BETWEEN MEANS IN TWO NORMAL POPULATIONS HAVING UNEQUAL VARIANCES /OR THE BIOKA51
PLE MULTIPLE DECISION PROCEDURE FOR RANKING MEANS OF NORMAL POPULATIONS WITH A COMMON UNKNOWN VARIANCE
                                                                                                         / BIOKA54
        INTERVAL ESTIMATION OF THE LARGEST MEAN OF K NORMAL POPULATIONS WITH KNOWN VARIANCES
             ON THE CHOICE OF THE BEST AMONGST THREE NORMAL POPULATIONS WITH KNOWN VARIANCES
                                                                                                            BIOKA58
                      DETECTION OF BEST AND OUTLYING NORMAL POPULATIONS WITH KNOWN VARIANCES
                                                                                                            BTOKA61
                                RANKING MEANS OF TWO NORMAL POPULATIONS WITH UNKNOWN VARIANCES
                                                                                                            BIOKA5B
 FOR TESTING THE DIFFERENCE BETWEEN THE MEANS OF TWO NORMAL POPULATIONS WITH UNKNOWN VARIANCES
                                                                                                 /TATISTIC JRSSB61
                      TWO-SIDED TOLERANCE LIMITS FOR NORMAL POPULATIONS, SOME IMPROVEMENTS
                                                                                                            JASA 69
 'ON THE MOMENTS OF ORDER STATISTICS IN SAMPLES FROM NORMAL POPULATIONS'
                                                                                               CORRIGENDA,
                                                                                                           BIOKA54
                                                                                                                     56B
 LARGE BATCHES OF ITEMS WHERE THE MEAN QUALITY HAS A NORMAL PRIOR DISTRIBUTION /G ACCEPTANCE SCHEMES FOR BIOKA68
                                                                                                                     393
```

TITLE WORD INDEX NOR - NOR

```
ON MULTIVARIATE NORMAL PROBABILITIES OF RECTANCLES
                                                                                                            AMS 68 1425
ORDINATE RATIOS AND OF THEIR RECIPROCALS
                                               THE NORMAL PROBABILITY FUNCTION, TABLES OF CERTAIN AREA- BIOKA55 217
                  A NEW ASYMPTOTIC EXPANSION FOR THE NORMAL PROBABILITY INTECRAL AND MILL'S RATIO
                                                                                                           JRSSB62
HER FULLY INVARIANT TESTS FOR CLASSICAL MULTIVARIATE NORMAL PROBLEMS /TER OF T-SQUARED, R-SQUARED AND OT AMS 65
                                                                                            THE MOMENTS OF
 THE NUMBER OF CROSSINCS OF A LEVEL BY A STATIONARY NORMAL PROCESS
                                                                                                            AMS 65 1656
THE MEAN NUMBER OF CURVE CROSSINCS BY NON-STATIONARY NORMAL PROCESSES
                                                                                                            AMS 65 509
TIAL SCHEMES FOR ESTIMATING THE MEAN OF A CUMULATIVE NORMAL QUANTAL RESPONSE CURVE
                                                                                    SOME OPTIMAL SEQUEN JRSSB62
                                                                                                                    393
             THE DISTRIBUTION OF A QUADRATIC FORM OF NORMAL RANDOM VARIABLES
                                                                                                            AMS 67 1700
           ON LINEAR FUNCTIONS OF ORDERED CORRELATED NORMAL RANDOM VARIABLES
                                                                                                           BIOKA65
                                                                                                                    367
                     ON THE RATIO OF TWO CORRELATED NORMAL RANDOM VARIABLES
                                                                                                           BIOKA69 NO.3
AND RATIOS OF LINEAR FUNCTIONS OF ORDERED CORRELATED NORMAL RANDOM VARIABLES WITH EMPHASIS ON RANGE
                                                                                                           BIOKA64
                                                                                                      /NS
                                                                                                                    143
ECISION PROBLEMS WITH LINEAR LOSSES FOR BINOMIAL AND NORMAL RANDOM VARIABLES. SEQUENTIAL SAMPLING, TWO D BIOKA65
                                                                                                                    507
                               ON THE GENERATION OF NORMAL RANDOM VECTORS
                                                                                                           TECH 62
                                                                                                                    278
    INTERPOLATIONS AND APPROXIMATIONS RELATED TO THE NORMAL BANCE
                                                                                                           BIOKA55
                                                                                                                    480
     THE EFFICIENCIES OF TESTS OF RANDOMNESS AGAINST NORMAL REGRESSION
                                                                                                           JASA 56
                                                                                                                    2B5
     THE EFFICIENCY OF THE RECORDS TEST FOR TREND IN NORMAL RECRESSION
                                                                                                           JRSSB57
                                                                                                                    149
                                        CONDITIONAL-NORMAL RECRESSION MODELS
                                                                                                           JASA 66
                                                                                                                    477
ISTRIBUTION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL RESIDUALS /ODNESS OF FIT TEST FOR SPECTRAL D BIOKA56
                                                                                                                    257
THE RATIO OF RANGE TO STANDARD DEVIATION IN THE SAME NORMAL SAMPLE
                                                                                                                    4R4
                                                                                                           BIOKA64
                                                                                                CONFIDENCE JASA 65
 INTERVALS BASED ON THE MEAN ABSOLUTE DEVIATION OF A NORMAL SAMPLE
                                                                                                                     257
    THE MEAN AND STANDARD DEVIATION FROM A CENSORED NORMAL SAMPLE
                                                                                                ESTIMATING BIOKA67
                                                                                                                    155
CATION AND SCALE PARAMETERS GIVEN A TYPE II CENSORED NORMAL SAMPLE
                                                                     /XIMUM LIKELIHOOD ESTIMATES OF THE LO BIOKA61
          THE DISTRIBUTION OF THE RATIO, IN A SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION
                                                                                                           BIOKA54
                                                                                                                    482
   MOMENT CONSTANTS FOR THE DISTRIBUTION OF RANGE IN NORMAL SAMPLES
                                                                                                           BIOKA51
                  THE VARIANCE OF SPEARMAN'S RHO IN NORMAL SAMPLES
                                                                                                           BIOKA61
                                                                                                                     19
                THE THIRD MOMENT OF KENDALL'S TAU IN NORMAL SAMPLES
                                                                                                            BIOKA62
  A NOTE ON THE CORRELATION OF RANGES IN CORRELATED NORMAL SAMPLES
                                                                                                           BIOKA68
    OF MATRIX VARIATES AND LATENT ROOTS DERIVED FROM NORMAL SAMPLES
                                                                                             DISTRIBUTIONS
                                                                                                            AMS 64
  AND PRODUCT MOMENTS OF EXTREME ORDER STATISTICS IN NORMAL SAMPLES
                                                                               ON THE MOMENTS OF THE RANGE BIOKA56
                                                                                                                    458
                       THE DISTRIBUTION OF RANGE IN NORMAL SAMPLES WITH N=200
                                                                                                           BIOKA57
                                                                                                                    257
  TABLES OF PERCENTAGE POINTS OF ROOT'B1' AND B2 IN NORMAL SAMPLES, A ROUNDING OFF
                                                                                                           BTOKA65
                                                                                                                    282
                                           TWO-STAGE NORMAL SAMPLING IN TWO-ACTION PROBLEMS WITH LINEAR
ECONOMICS
                                                                                                           JASA 69 NO.4
              ASYMPTOTIC EFFICIENCY OF MULTIVARIATE NORMAL SCORE TEST
                                                                                                            AMS 67 1753
                           ON THE SUM OF SQUARES OF NORMAL SCORES
                                                                                                           BTOKA56
                                                                                                                    456
VALUES OF ORDERED VARIATES AND THE SUM OF SQUARES OF NORMAL SCORES
                                                                          THE CURVE THROUGH THE EXPECTED BIOKAGE
                                                                                                                    252
             DISTRIBUTION AND POWER OF THE ABSOLUTE NORMAL SCORES TEST
                                                                                                           JASA 67
                                                                                                                    966
EMENT AND EXACT BAHADUR EFFICIENCY OF THE TWO-SAMPLE NORMAL SCORES TEST
                                                                         /IES FOR SAMPLING WITHOUT REPLAC BIOKA6B
                                                                                                                    371
                           ON THE EFFICIENCY OF THE NORMAL SCORES TEST RELATIVE TO THE F-TEST
                                                                                                            AMS 65 1306
POWER AND EFFICIENCY FOR THE ONE SAMPLE WILCOXON AND NORMAL SCORES TESTS
                                                                                             SMALL SAMPLE
                                                                                                            AMS 63 624
                                             ON THE NORMAL SCORES TWO-SAMPLE RANK TEST
                                                                                                                    652
                                                                                                           JASA 64
              CORRIGENDA, 'ON THE SUM OF SQUARES OF NORMAL SCORES'
                                                                                                           BIOKA65
                                                                                                                    669
      POWER FOR THE ONE SAMPLE WILCOXON TEST FOR NON-NORMAL SHIFT ALTERNATIVES
                                                                                             SMALL SAMPLE AMS 65 1767
                                             ON THE NORMAL STATIONARY PROCESS, AREAS OUTSIDE GIVEN LEVELS JRSSB63
                                                                                                                    189
  ON THE LINEAR CONTROL OF A LINEAR SYSTEM HAVING A NORMAL STATIONARY STOCHASTIC INPUT
                                                                                                           JRSSB68
                                                                                                                    381
DINATE TRANSFORMATIONS TO NORMALITY AND THE POWER OF NORMAL TESTS FOR INDEPENDENCE
                                                                                                     CO-OR BIOKA69
                                                                                                                    139
RDERED ALTERNATIVES IN MODEL I ANALYSIS OF VARIANCE, NORMAL THEORY AND NONPARAMETRIC
                                                                                        TESTING AGAINST 0 AMS 67 1740
           THE MULTIVARIATE DISTRIBUTION OF COMPLEX NORMAL VARIABLES
                                                                                                           BIOKA56 212
    COMPUTING THE DISTRIBUTION OF QUADRATIC FORMS IN NORMAL VARIABLES
                                                                                                           BTOKA61
                                                                                                                    419
          TRACES AND CUMULANTS OF QUADRATIC FORMS IN NORMAL VARIABLES
                                                                                                           JRSSB54
                                                                                                                    247
 TRANSFORMATION TO A SET OF STOCHASTICALLY DEPENDENT NORMAL VARIABLES
                                                                                                    LINEAR JASA 57
                                                                                                                    247
 FUNCTIONS OF QUADRATIC FORMS IN SERIALLY CORRELATED NORMAL VARIABLES
                                                                                        MOMENT GENERATING BIOKA5B
                                                                                                                    19B
   FUNCTION OF HERMITIAN QUADRATIC FORMS IN COMPLEX NORMAL VARIABLES
                                                                                       THE CHARACTERISTIC BIOKAGO
                                                                                                                    1 99
                                                                                                     JASA 65 193
                                          RATIOS OF NORMAL VARIABLES AND RATIOS OF SUMS OF UNIFORM
               CONDITIONAL MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINGULAR COVARIANCE MATRIX
                                                                                                           JASA 64 1203
N DIFFERENTIAL FOR POSITIVE DIRECTIONAL SELECTION ON NORMAL VARIABLES WITHIN SETS OF FINITE SUBPOPULATIONS BIOCS67
                                                                                                                    842
PRESENTATIONS OF DISTRIBUTIONS OF QUADRATIC FORMS IN NORMAL VARIABLES, I, CENTRAL CASE
                                                                                              SERIES RE AMS 67
                                                                                                                    B23
PRESENTATIONS OF DISTRIBUTIONS OF QUADRATIC FORMS IN NORMAL VARIABLES, II, NON-CENTRAL CASE
                                                                                                 SERIES RE AMS 67
                                                                                                                    838
   'COMPUTING THE DISTRIBUTION OF QUADRATIC FORMS IN NORMAL VARIABLES'
                                                                                               CORRIGENDA, BIOKA62
                                                                                                                    284
EAN ABSOLUTE DEVIATION IN CONFIDENCE INTERVALS FOR A NORMAL VARIATE
                                                                          THE CORRECT USE OF THE SAMPLE M TECH 66
                                                                                                                    663
                ON DETECTING CHANGES IN THE MEAN OF NORMAL VARIATES
                                                                                                            AMS 69
                                                                                                                    116
   ON THE DISTRIBUTION OF CERTAIN QUADRATIC FORMS IN NORMAL VARIATES
                                                                                                           JRSSB62
                                                                                                                    148
  INEQUALITY FOR THE RATIO OF TWO QUADRATIC FORMS IN NORMAL VARIATES
                                                                                                        AN AMS 68 1762
   OF PARTIAL SUMS OF A FINITE NUMBER OF INDEPENDENT NORMAL VARIATES
                                                                                              ON THE RANCE BIOKA53
                                                                                                                     35
   OF PARTIAL SUMS OF A FINITE NUMBER OF INDEPENDENT NORMAL VARIATES
                                                                            THE VARIANCE OF THE MAXIMUM BIOKA55
ON THE MOMENTS OF THE MAXIMUM BIOKA56
                                                                                                                     96
   OF PARTIAL SUMS OF A FINITE NUMBER OF INDEPENDENT NORMAL VARIATES
                                                                                                                     79
ISTRIBUTION OF SUMS OF SQUARES AND CROSS PRODUCTS OF NORMAL VARIATES IN THE PRESENCE OF INTRA-CLASS CORREL AMS 62 1461
                            ON CERTAIN FUNCTIONS OF NORMAL VARIATES WHICH ARE UNCORRELATED OF A HICHER BIOKAGO
                                                                                                                    175
 THE STATISTICAL INDEPENDENCE OF QUADRATIC FORMS IN NORMA! VARIATES.
                                                                                         CORRIGENDA, 'ON BIOKA59
                                                                                                                    279
IBUTION OF A DEFINITE QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. 63 673
                                                                                                    DISTR AMS 61
                                                                                                                    8R3
    AND INDEPENDENCE OF SECOND DEGREE POLYNOMIALS IN NORMAL VECTOR
                                                                               CONDITIONS FOR WISHARTNESS
                                                                                                            AMS 62 1002
                                                                          ON CERTAIN DISTRIBUTION PROBLEMS AMS 66 468
   BASED ON POSITIVE DEFINITE QUADRATIC FUNCTIONS IN NORMAL VECTORS
                                                                                                            AMS 67 1924
                              A CHARACTERIZATION OF NORMALITY
            A COMPARATIVE STUDY OF VARIOUS TESTS FOR NORMALITY
                                                                                                           JASA 68 1343
                    A COMPARISON OF CERTAIN TESTS OF NORMALITY
                                                                                                           SASJ 69 NO.2
       BETA DISTRIBUTION AND A TEST FOR MULTIVARIATE NORMALITY
                                                                                              MULTIVARIATE JRSSB68 511
  VARIABLES ACCEPTANCE SAMPLING WITH EMPHASIS ON NON-NORMALITY
                                                                                 SUMMARY OF RECENT WORK ON TECH 69 NO.4
                   AN ANALYSIS OF VARIANCE TEST FOR NORMALITY (COMPLETE SAMPLES)
                                                                                                          BIOKA65 591
TORS FOR FAMILIES OF LINEAR REGRESSIONS ASYMPTOTIC NORMALITY AND CONSISTENCY OF THE LEAST SQUARES ESTIMA AMS 63
                      CO-ORDINATE TRANSFORMATIONS TO NORMALITY AND THE POWER OF NORMAL TESTS FOR INDEPENDE BIOKA69
 OF ERROR SPACES AND THEIR USE FOR INVESTIGATING THE NORMALITY AND VARIANCES OF RESIDUALS /ONORMAL BASES JASA 67 1022
     MULTIVARIATE REGRESSION OF DUMMY VARIATES UNDER NORMALITY ASSUMPTIONS
                                                                                                           JASA 63 1054
 VARIANCES FOR DUMMY VARIATE REGRESSION UNDER NORMALITY ASSUMPTIONS
ON ANOTHER LINEAR STATISTIC CHARACTERIZATIONS OF NORMALITY BY CONSTANT
                                                                                                ASYMPTOTIC JASA 67 1305
                               CHARACTERIZATIONS OF NORMALITY BY CONSTANT RECRESSION OF LINEAR STATISTICS AMS 67 1894
  EXAMPLE OF ERRORS INCURRED BY ERRONEOUSLY ASSUMING NORMALITY FOR CUSUM SCHEMES
                                                                                                       AN TECH 67 457
                                         ASYMPTOTIC NORMALITY IN NONPARAMETRIC METHODS
                                                                                                            AMS 68 905
                                      ON ASYMPTOTIC NORMALITY IN STOCHASTIC APPROXIMATION
                                                                                                            AMS 68 1327
```

NOR - OBS TITLE WORD INDEX

```
ASYMPTOTIC NORMALITY OF BISPECTRAL ESTIMATES
                                                                                                             AMS 66 1257
                                          ASYMPTOTIC NORMALITY OF CERTAIN TEST STATISTICS OF EXPONENTIALIT BIOKA64 253
                                          ASYMPTOTIC NORMALITY OF LINEAR COMBINATIONS OF FUNCTIONS OF
                                                                                                           AMS 69 NO.6
ORDER STATISTICS
                   AN ELEMENTARY PROOF OF ASYMPTOTIC NORMALITY OF LINEAR FUNCTIONS OF ORDER STATISTICS
                                                                                                             AMS 68 263
                                ON THE ASYMPTOTIC NORMALITY OF ONE-SIDED STOPPING RULES
                                                                                                            AMS 68 1493
                                          ASYMPTOTIC NORMALITY OF SAMPLE QUANTILES FOR M-DEPENDENT
PROCESSES
                                                                                                             AMS 6B 1724
                             THE JOINT ASSESSMENT OF NORMALITY OF SEVERAL INDEPENDENT SAMPLES
                                                                                                            TECH 68 825
                                          ASYMPTOTIC NORMALITY OF SIMPLE LINEAR RANK STATISTICS UNDER
ALTERNATIVES.
                                                                                                            AMS 6B 325
                                          ASYMPTOTIC NORMALITY OF SIMPLE LINEAR RANK STATISTICS UNDER
ALTERNATIVES. IT
                                                                                                             AMS 69 NO 6
                            A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC
                                                                                                            JASA 61 687
                                                                                                            AMS 63 1513
TWO-SAMPLE PROBLEM
                                      THE ASYMPTOTIC NORMALITY OF TWO TEST STATISTICS ASSOCIATED WITH THE
                                       EFFECT OF NON-NORMALITY ON STEIN'S TWO SAMPLE TEST
                                                                                                             AMS 65 651
                                  TRANSFORMATIONS TO NORMALITY USING FRACTIONAL POWERS OF THE VARIABLE
                                                                                                            JASA 57
                                                                                                                     237
                  ON THE KOLMOGOROV-SMIRNOV TEST FOR NORMALITY WITH MEAN AND VARIANCE UNKNOWN
                                                                                                            JASA 67
                                                                                                                     399
 THE NULL DISTRIBUTION OF THE W-STATISTIC +(TEST FOR NORMALITY)
                                                                                        APPROXIMATIONS FOR TECH 6B
                        ON CONVERGENCE IN R-MEAN OF NORMALIZED PARTIAL SUMS
                                                                                                             AMS 6B
             TEST FOR MONOTONE FAILURE RATE BASED ON NORMALIZED SPACING
                                                                                                             AMS 69 1216
TO DOSE-RESPONSE CURVES
                                                 ON NORMALIZING THE INCOMPLETE BETA-FUNCTION FOR FITTING BIOKAGO 173
     CONFIDENCE INTERVALS FOR THE MEANS OF DEPENDENT NORMALLY DISTRIBUTED VARIABLES
                                                                                                            JASA 59
                                                                                                                     613
                        ON MOMENTS OF THE MAXIMUM OF NORMED PARTIAL SUMS
                                                                                                                     527
                                                                                                             AMS 69
          A CHARACTERIZATION OF CERTAIN SEQUENCES OF NORMING CONSTANTS
                                                                                                             AMS 68 391
SE IN ESTIMATING THE NORMAL DISTRIBUTION FUNCTION BY NORMIT ANALYSIS. PART I. DESCRIPTION AND USE OF TABLE BIOKAS7
                                                                                                                     411
ATION OF INCIDENCE OF RED SPIDER MITE ON TEA CROP IN NORTH-EAST INDIA SAMPLING TECHNIQUES FOR ESTIM BIOCS66
                                                                                                                     385
                                              TENSOR NOTATION AND THE SAMPLING CUMULANTS OF K-STATISTICS BIOKA52
                                                                                                                     319
T CHI-SQUARE ESTIMATE TO A PROBLEM OF CRIZZLE WITH A NOTATION ON THE PROBLEM OF NO INTERACTION /MUM LOGI BIOCS68
                                    THE LIMIT OF THE NTH POWER OF A DENSITY
                                                                                                             AMS 65 1B7B
                 INTERFERENCE IN THE MANUFACTURE OF NUCLEPORE FILTERS
                                                                                                            TECH 67 319
HODGES BIVARIATE SIGN TEST
                                                     NULL DISTRIBUTION AND BAHADUR EFFICIENCY OF THE
                                                                                                            AMS 62
                                              ON THE NULL DISTRIBUTION OF A NON-PARAMETRIC TEST FOR THE
BIVARIATE TWO-SAMPLE PROBLEM
                                                                                                            JRSSB69
COMPONENTS ANALYSIS
                                             THE NON-NULL DISTRIBUTION OF A STATISTIC IN PRINCIPAL
                                                                                                            BIOKA66
                                                                                                                     590
COEFFICIENT
                                                THE NULL DISTRIBUTION OF THE FIRST SERIAL CORRELATION
                                                                                                            BIOKA66
                                                                                                                     623
                 EXTREME TAIL PROBABILITIES FOR THE NULL DISTRIBUTION OF THE TWO-SAMPLE WILCOXON STATISTI BIOKA67
                                                                                                                     629
                             APPROXIMATIONS FOR THE NULL DISTRIBUTION OF THE W-STATISTIC +(TEST FOR
NORMALITY)
                                                                                                            TECH 6B
                                                                                                                     B61
 HYPOTHESES IN THE LINEAR AUTO-REGRESSIVE MODEL. II. NULL DISTRIBUTIONS FOR HICHER ORDER SCHEMES, NON-NULL BIOKA56
                                                                                                                     186
                          THE WILCOXON TEST AND NON-NULL HYPOTHESES
                                                                                                           JRSSR60
                                                                                                                     402
                A SEQUENTIAL PROCEDURE FOR TESTING A NULL HYPOTHESIS ACAINST A TWO SIDED ALTERNATIVE HYPOT JRSSB69 NO.2
HE LARCEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL HYPOTHESIS CONCERNING COMPLEX MULTIVARIATE NORMA AMS 64 1B07
BALANCED INCOMPLETE BLOCK DESIGN UNDER THE/ ON THE NULL-DISTRIBUTION OF THE F-STATISTIC IN A RANDOMIZED
                                                                                                            AMS 63 1558
                                                THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST
                                                                                                            JASA 63
EPTANCE SAMPLING PLANS
                                 THE AVERAGE SAMPLE NUMBER FOR TRUNCATED SINCLE AND DOUBLE ATTRIBUTES ACC TECH 68
                              SAMPLES WITH THE SAME NUMBER IN EACH STRATUM
                                                                                                            BIOKA52
A NOTE ON THE VARIANCE OF THE DISTRIBUTION OF SAMPLE NUMBER IN SEQUENTIAL PROBABILITY RATIO TESTS
                                                                                                            TECH 66
                         MAJORANTS OF THE CHROMATIC NUMBER OF A RANDOM CRAPH
                                                                                                            JRSSB69 NO.2
         PROBABILITY MODELS FOR THE VARIATION IN THE NUMBER OF BIRTHS PER COUPLE
                                                                                                            JASA 63 721
         A CHANCE MECHANISM OF THE VARIATION IN THE NUMBER OF BIRTHS PER COUPLE
                                                                                                            JASA 68 209
         A NOTE ON INCOMPLETE BLOCK DESIGNS WITH THE NUMBER OF BLOCKS EQUAL TO THE NUMBER OF TREATMENTS
                                                                                                            AMS 65 1B77
                            THE DISTRIBUTION OF THE NUMBER OF CIRCULAR TRIADS IN PAIRED COMPARISONS
                                                                                                            BIOKA62 265
SSICAL OCCUPANCY PROBLEM, UNBIASED ESTIMATION OF THE NUMBER OF CLASSES STATISTICAL INFERENCE IN THE CLA JASA 6B
                                                                                                                     B37
 CERTAIN PARTIALLY BALANCED INCOMP/ BOUNDS FOR THE NUMBER OF COMMON TREATMENTS BETWEEN ANY TWO BLOCKS OF AMS 65
                                                                                                                     337
 PARTIALLY BALANC/ COMPARISON OF THE BOUNDS OF THE NUMBER OF COMMON TREATMENTS BETWEEN BLOCKS OF CERTAIN AMS 66
                                                                                                                     739
GULAR CROUP DIVISIBLE DESIGNS ON THE BOUNDS OF THE NUMBER OF COMMON TREATMENTS BETWEEN BLOCKS OF SEMI-RE JASA 64
                                                                                                                     B67
DURING VIRAL INFECTION OF BACT/ ESTIMATION OF THE NUMBER OF CRITICAL SITES IN LIMITED GENOME EXPRESSION BIOCS69 537
PROCESS THE MOMENTS OF THE NUMBER OF CROSSINGS OF A LEVEL BY A STATIONARY NORMAL AMS 65 1656
                                         ON THE MEAN NUMBER OF CURVE CROSSINGS BY NON-STATIONARY NORMAL
PROCESSES
                                                                                                             AMS 65
ED INCOMPLETE BLOCK DESIGNS AN UPPER BOUND FOR THE NUMBER OF DISJOINT BLOCKS IN CERTAIN PARTIALLY BALANC
PHS (CORR. 69 151/ A CENTRAL LIMIT THEOREM FOR THE NUMBER OF EDGES IN THE RANDOM INTERSECTION OF TWO GRA AMS 69
                                                                                                                    144
ALYSIS OF THE GENERAL NON-ORTHOCONAL LAYOUT WITH ANY NUMBER OF FACTORS
                                                                                           MAIN-EFFECT AN AMS 65
                                                                                                                     BB
                             HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS
                                                                                                             AMS 67 1278
           ON THE RANGE OF PARTIAL SUMS OF A FINITE NUMBER OF INDEPENDENT NORMAL VARIATES
                                                                                                            BTOKA53
                                                                                                                    35
VARIANCE OF THE MAXIMUM OF PARTIAL SUMS OF A FINITE NUMBER OF INDEPENDENT NORMAL VARIATES
                                                                                                       THE BIOKA55
                                                                                                                      96
 MOMENTS OF THE MAXIMUM OF PARTIAL SUMS OF A FINITE NUMBER OF INDEPENDENT NORMAL VARIATES
                                                                                                                      79
                                                                                                    ON THE BIOKA56
     ON LIMITING DISTRIBUTIONS FOR SUMS OF A RANDOM NUMBER OF INDEPENDENT RANDOM VECTORS
                                                                                                             AMS 69 935
              THE ENUMERATION OF ELECTION RETURNS BY NUMBER OF LEAD POSITIONS
                                                                                                             AMS 64
                                                                                                                    369
COVERAGE, WHEN A SAMPLE IS INCREASED THE NUMBER OF NEW SPECIES, AND THE INCREASE IN POPULATION BIOKAS6
 SPACINGS DETERMINED BY/ TESTS OF FIT BASED ON THE NUMBER OF OBSERVATIONS FALLING IN THE SHORTEST SAMPLE AMS 61
                                                                                                                    ВЗВ
                 ON THE SIZE OF AN EPIDEMIC AND THE NUMBER OF PEOPLE HEARING A RUMOUR
                                                                                                            JRSSB66 4B7
                       STATISTICAL PROPERTIES OF THE NUMBER OF POSITIVE SUMS
                                                                                                             AMS 66 1295
               A STATISTICAL TEST INVOLVING A RANDOM NUMBER OF RANDOM VARIABLES
                                                                                                             AMS 66 1305
                                              ON THE NUMBER OF RENEWALS IN A RANDOM INTERVAL
                                                                                                            BIOKA60
                               PROBABILITY TABLE FOR NUMBER OF RUNS OF SIGNS OF FIRST DIFFERENCES IN ORDER JASA 61
ED SERIES
                     LOWER BOUNDS FOR AVERAGE SAMPLE NUMBER OF SEQUENTIAL MULTIHYPOTHESIS TESTS
                                                                                                             AMS 67 1343
THE OPERATING CHARACTERISTIC AND THE AVERAGE SAMPLE NUMBER OF SOME SEQUENTIAL TESTS /AE FOR CALCULATING JRSSB58
                                THE DISPERSION OF A NUMBER OF SPECIES
                                                                                                           JRSSB59
                                                                                                                    190
                                                                                      SOME ASYMPTOTIC DIST BIOKA56
RIBUTION THEORY FOR MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES
                                                                                                                    2B5
                          THE DISTRIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS BIORASS 454
ON THE DISTRIBUTION OF THE NUMBER OF SUCCESSES IN INDEPENDENT TRIALS AMS 64 1317
                                              ON THE NUMBER OF SUCCESSES IN INDEPENDENT TRIALS
                                                                                                             AMS 65 1272
XPECTED VALUES OF NOR/ A NOTE ON THE ERROR AFTER A NUMBER OF TERMS OF THE DAVID-JOHNSON SERIES FOR THE E BIOKAGO
                                       THE EXPECTED NUMBER OF ZEROS OF A STATIONARY CAUSSIAN PROCESS
                                                                                                            AMS 65 1043
       STATISTICAL ESTIMATION OF THE CASOLINE OCTANE NUMBER REQUIREMENT OF NEW MODEL AUTOMOBILES
                                                                                                           TECH 60
                                                                                                                    5
UNBIASED ESTIMATION AND CERTAIN PROBLEMS OF ADDITIVE NUMBER THEORY
                                                                                         MINIMUM VARIANCE AMS 63 1050
                  A COMBINATORIAL LEMMA FOR COMPLEX NUMBERS
                                                                                                             AMS 61 901
                              BIAS IN PSEUDO-RANDOM NUMBERS
                                                                                                           JASA 61
                                                                                                                    610
                          A MARKOV PROCESS ON BINARY NUMBERS
                                                                                                            AMS 63 416
                     A NOTE ON THE WEAK LAW OF LARGE NUMBERS
                                                                                                            AMS 68 1348
                         QUERY, PSEUDO RANDOM NORMAL NUMBERS
                                                                                                           TECH 6B 401
```

ON THE RATE OF CONVERCENCE FOR THE LAW OF LARCE	NUMBERS	AMS 69	NO.6
A PROBLEM IN THE SICNIFICANCE OF SMALL	NUMBERS	BIOKA55	266
THE POLYKAYS OF THE NATURAL	NUMBERS	BIOKA60	53
SOME EXPERIMENTS ON THE PREDICTION OF SUNSPOT	NUMBERS	JRSSB54	112 552
CONVERCENCE OF MARTINCALES AND THE LAW OF LARCE BETWEEN SUCCESSIVE MAXIMA IN A SERIES OF RANDOM	NUMBERS THE DISTRIBUTION OF INTERVALS	RIOKAS7	524
BLOCKS, BY WEIGHTED MEANS, OF A FINITE SET OF REAL	NUMBERS THE COMPLETE AMALGAMATION INTO	BIOKA59	317
RANSFORMED PERCENTACE SIB DATA WITH UNEQUAL SUBCLASS		BIOCS65	1001
FUNCTIONS AND CONVERCENCE RATES IN THE LAW OF LARCE	NUMBERS SOME RESULTS RELATING MOMENT GENERATING	AMS 67	742
APTURE-RECAPTURE METHOD. II. THE ESTIMATION OF TOTAL	NUMBERS / EIERS FROM DATA OBTAINED BY MEANS OF THE C	BIOKASZ	363
	NUMBERS · /IES IN THE HISTORY OF PROBABILITY AND STAT NUMBERS BY THE PLATINC METHOD NOTES. ON		
	NUMBERS FOR DISCRETE MARKOV PROCESSES	AMS 61	
	NUMBERS FOR FACTORIAL EFFECTS AND THEIR CONNECTION WI		497
	NUMBERS FOR LINEAR COMBINATIONS OF INDEPENDENT RANDOM		559
	NUMBERS FOR LINEAR COMBINATIONS OF MARKOV PROCESSES	AMS 66	711
L/ AN EXPONENTIAL BOUND ON THE STRONC LAW OF LARGE ON THE STRONG LAW OF LARCE	NUMBERS FOR LINEAR STOCHASTIC PROCESSES WITH ABSOLUTE	AMS 61	5B3 610
SOME THEOREMS CONCERNING THE STRONG LAW OF LARGE		AMS 64	566
	NUMBERS FOR THE LINEAR COMBINATIONS OF EXCHANGEABLE A		
		AMS 62	93
CHI-SQUARE PROBABILITIES FOR LARGE		BIOKA56	92
ANALYSIS OF MULTIFACTOR CLASSIFICATIONS WITH UNEQUAL	NUMBERS OF OBSERVATIONS IN THE SUBCLASSES FOR THE TWO		525
	NUMBERS OF OBSERVATIONS ON THE EFFECTS FOR THE UNBALA		
MPLING ERRORS IN AN ORCHARD SURVEY INVOLVING UNEQUAL		BIOCS65	55
BALANCED DESIGNS WITH UNEQUAL	NUMBERS OF REPLICATES	AMS 64	897
			102
	NUMBERS, (AGKNOWLEDGEMENT OF PRIORITY 63 1111) NUMBERS, COMPONENT ESTIMATION IN CORRELATION STUDIES	AMS 63	219 49
	NUMBERS, COMPONENT ESTIMATION IN CORRELATION STUDIES NUMBERATOR AND DENOMINATOR OF THE F-RATIO /-TEST TO		49 660
	NUMERICAL ANALYSIS OF ARCHAEOLOCICAL DATA	BIOKA66	311
RECRESSION ANALYSIS A	NUMERICAL ANALYSIS PROBLEM IN CONSTRAINED QUADRATIC	TECH 62	426
	NUMERICAL ASPECTS OF THE USE OF TRANSFORMS IN	JASA 63	879
THE BINOMIAL DISTRIBUTION SOME A GENERAL RECURRENCE FORMULA	NUMERICAL COMPARISONS OF SEVERAL APPROXIMATIONS TO NUMERICAL CONSTRUCTION OF ORTHOGONAL POLYNOMIALS FROM	JASA 69	NU.4 695
	NUMERICAL CREDIT EVALUATION SYSTEMS	JASA 63	799
	NUMERICAL EVALUATION OF CERTAIN MULTIVARIATE NORMAL	AMS 62	571
	-NUMERICAL INFORMATION IN QUANTITATIVE ANALYSIS. GENER		
	NUMERICAL INTEGRATION TECHNIQUES TO STATISTICAL	TECH 67	
	NUMERICAL INVESTIGATION OF LEAST SQUARES REGRESSION NUMERICAL INVESTIGATION OF SEVERAL ONE-DIMENSIONAL SE	JRSSB55	105 265
	NUMERICAL METHODS A STOGHASTIG MODEL FOR STUD		16
	NUMERICAL OPTIMIZATION IN THE PRESENCE OF RANDOM	BIOKA69	65
	NUMERICAL PROCEDURE TO GENERATE A SAMPLE COVARIANCE	JASA 66	199
BODE'S LAW AND AN 'OBJECTIVE' TEST FOR APPROXIMATE F BODE'S LAW AND AN 'OBJECTIVE' TEST FOR APPROXIMATE	NUMERICAL RATIONALITY A SUBJECTIVE EVALUATION OF NUMERICAL RATIONALITY' / A SUBJECTIVE EVALUATION O		23 50
	NUMERICAL REPRESENTATION OF QUALITATIVE CONDITION	AMS 68	481
CENETIC DESCESS	NUMERIGAL RESULTS AND DIFFUSION APPROXIMATIONS IN A	BIOKA63	241
	NUMERIGAL RESULTS FOR WAITING TIMES IN THE QUEUE E-	BIOKA60	202
	NUMERICAL RESULTS FOR WAITING TIMES IN THE QUEUE E- NUMERICAL SOLUTION OF SOME NON-LINEAR EQUATIONS, USEF	BIOKA60	484 466
BINOMIAL PARAMETER	NUMERICAL STUDIES IN THE SEQUENTIAL ESTIMATION OF A	BIOKA58	1
	NUTRITIVE MEDIA FOR MICRO-ORGANISMS	BIOKA6B	43
SAMPLING IN A		JASA 57	
	N1=12, N2=15 AND P2(1,1)=4 /CTION OF PARTIALLY BAL		
SOME FURTHER DESIGNS OF TYPE	N2=15 AND P2(1,1)=4 /GTION OF PARTIALLY BALANCED I	AMS 66	
COME CONTINUE DESIGNATION OF THE	OBITUARY, ADOLPHE FRANCESCHETTI	BIOCS6B	
	OBITUARY, C. G. FRAGA, JR.	BIOCS66	634
		BIOCS66	
	OBITUARY, GORDON M. L. HASKELL OBITUARY, O. HEINISCH	BIOCS67 BIOCS66	
	OBITUARY, SULLY LEDERMANN	BIOCS67	
HIERARCHICAL GROUPING TO OPTIMIZE AN	OBJECTIVE FUNCTION	JASA 63	236
	'OBJECTIVE' TEST FOR APPROXIMATE NUMERICAL RATIONALITY		
ON OF 'A SUBJECTIVE EVALUATION OF BODE'S LAW AND AN RANDOM HYDRODYNAMIC FORCES ON	'OBJECTIVE' TEST FOR APPROXIMATE NUMERICAL RATIONALITY	JASA 69 AMS 67	
	OBJECTS STATISTICAL TESTING OF DIFFERENCES IN CASUA		
RESULTS BASED ON A FEW HETEROGENEOUS LOGNORMAL	OBSERVATIONS LIFE-TESTING	JASA 67	45
QUERY, DISTRIBUTION OF A RANKED		TECH 64	
RANKING PROCEDURES FOR ARBITRARILY RESTRICTED		BIOCS67	
RIABLE SUBJECT BOTH TO DISTURBANCES AND TO ERRORS OF	OBSERVATION QUERY, CONFIDENCE OBSERVATION PREDICTION OF AN AUTOREGRESSIVE VA	JASA 65	164
THE USE OF THE CONCEPT OF A FUTURE			
DISTRIBUTION OF TOTAL SERVICE TIME FOR A FIXED	OBSERVATION INTERVAL	JASA 62	
ESTIMATION OF A MEAN WHEN ONE NOTES. CORRECTED CORRELATION COEFFICIENTS WHEN		TECH 69	
ROBUST PROCEDURES FOR SOME LINEAR MODELS WITH ONE		BIOCS66 AMS 67	
NPARAMETRIC INFERENCE IN SOME LINEAR MODELS WITH ONE	OBSERVATION PER CELL ASYMPTOTICALLY NO		
ESTIMATION OF THE PROBABILITY THAT AN	OBSERVATION WILL FALL IN A SPECIFIED CLASS	JASA 64	225
ADJUSTMENT BY SUBCLASSIFICATION IN REMOVING BIAS IN	OBSERVATIONAL STUDIES THE EFFECTIVENESS OF	BIOCS68	295
NONPARAMETRIC ESTIMATION FROM INCOMPLETE SOME REMARKS ON WILD		JASA 58 TECH 60	
SPECTRAL ANALYSIS WITH REGULARLY MISSED		AMS 62	
ON BAYES PROCEDURES FOR A PROBLEM WITH CHOICE OF		AMS 64	

OBS - ONE TITLE WORD INDEX

```
ON THE RISK OF SOME STRATEGIES FOR OUTLYING OBSERVATIONS
                                                                                                             AMS 64 1524
                    SEQUENTIAL ANALYSIS WITH DELAYED OBSERVATIONS
                                                                                                            JASA 64 1006
              ASSESSING THE ACCURACY OF MULTIVARIATE OBSERVATIONS
                                                                                                            JASA 66
                                                                                                                    403
           QUERY, JOINT CONFIDENCE LIMITS FOR RANKED OBSERVATIONS
                                                                                                            TECH 66
                                                                                                                     36B
            SHORTER CONFIDENCE INTERVALS USING PRIOR OBSERVATIONS
                                                                                                            JASA 69
                                                                                                                     378
        EXPERIMENTAL DESIGNS FOR SERIALLY CORRELATED OBSERVATIONS
                                                                                                            BTOK A52
                                                                                                                     151
A NOTE ON THE LOSS OF INFORMATION DUE TO GROUPING OF OBSERVATIONS
                                                                                                            BIOKA64
                                                                                                                     495
              EXPONENTIAL REGRESSION WITH CORRELATED OBSERVATIONS
                                                                                                            BIOKA68
                                                                                                                     149
                                 NOTE ON DISCORDANT OBSERVATIONS
                                                                                                            JRSSB6B
                                                                                                                     545
   REMARKS ON EXPONENTIAL REGRESSION WITH CORRELATED OBSERVATIONS
                                                                                                    FURTHER BIOKA68
                                                                                                                     575
 MULTIFACTOR CLASSIFICATIONS WITH UNEQUAL NUMBERS OF OBSERVATIONS
                                                                                                ANALYSIS OF BIOCS66
                                                                                                                     525
                                                                                                CHI-SQUARE BIOKA63
STATISTIC BASED ON THE POOLED FREQUENCIES OF SEVERAL OBSERVATIONS
 OF SEQUENTIAL DECISION PROBLEM FOR MARKOV DEPENDENT OBSERVATIONS
                                                                                             BAYES SOLUTION AMS 64
   FREE TEST OF INDEPENDENCE WITH A SAMPLE OF PAIRED OBSERVATIONS
                                                                                            A DISTRIBUTION- JASA 62
TO THE MEAN AND STANDARD DEVIATION OF RECIPROCALS OF OBSERVATIONS
                                                                                            APPROXIMATIONS TECH 63
     IN THE FITTING OF POLYNOMIALS TO EQUALLY SPACED OBSERVATIONS
                                                                                           GROUPING METHODS BIOKA54
                                                                                                                     62
   IN THE FITTING OF POLYNOMIALS TO UNEQUALLY SPACED OBSERVATIONS
                                                                                          GROUPING METHODS BIOKA56
                                                                                                                     149
   FOR EXPERIMENTAL DESIGNS WITH SERIALLY CORRELATED OBSERVATIONS
                                                                                       TREATMENT VARIANCES BIOKA56
                                                                                                                     20B
PULATION MEAN WHICH REDUCES THE EFFECT OF LARGE TRUE OBSERVATIONS
                                                                                      AN ESTIMATOR FOR A PO JASA 66 1200
       OF-FIT TEST FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS
                                                                                  THE CHI-SQUARE GOODNESS- BIOKA64 250
FOR LARGEST AND FOR SMALLEST OF A SET OF INDEPENDENT OBSERVATIONS
                                                                                  APPROXIMATE DISTRIBUTION SASJ 69 NO.2
IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS
                                                                                 ESTIMATION OF PARAMETERS
                                                                                                            JASA 68
VALS FOR SAMPLE MEAN AND COVARIANCE BASED ON PARTIAL OBSERVATIONS
                                                                          ON MULTIVARIATE PREDICTION INTER JASA 67
PROBABILITY RATIO TESTS BASED ON MULTIVARIATE NORMAL OBSERVATIONS
                                                                     /BABILITY ONE OF INVARIANT SEQUENTIAL
                                                                                                             AMS 67
                                                                                                                      8
                                                                    /FOR FRACTIONS OF A COMPLETE FACTORIAL
 EXPERIMENT AS ORTHOGONAL LINEAR COMBINATIONS OF THE OBSERVATIONS
FFERENCES, FOR SERIAL CORRELATION BETWEEN SUCCESSIVE OBSERVATIONS
                                                                     /RITERIA, BASED ON FIRST AND SECOND DI AMS 62
                                                                                                                     186
                                ON THE PROPORTION OF OBSERVATIONS
                                                                  ABOVE SAMPLE MEANS IN A BIVARIATE NORMAL AMS 68 1350
 DISTRIBUTION
                    MULTIPLE REGRESSION WITH MISSING OBSERVATIONS
                                                                  AMONG THE INDEPENDENT VARIABLES
                                                                                                                     122
                                                                                                            JASA 56
             LINEAR REGRESSION ANALYSIS WITH MISSING OBSERVATIONS AMONG THE INDEPENDENT VARIABLES
                                                                                                            JASA 59
                                                                                                                     834
                                                                  ARE ESTIMATES OF BINOMIAL PARAMETERS
                       TABLES FOR THE SIGN TEST WHEN OBSERVATIONS
                                                                                                            JASA 59
                                                                                                                     784
L SAMPLE SIZE IN TWO-ACTION PROBLEMS WHEN THE SAMPLE OBSERVATIONS ARE LOGNORMAL AND THE PRECISION H IS KNO JASA 68
                                                                                                                     653
TES FOR A MULTIVARIATE NORMAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING
                                                                                 MAXIMUM LIKELIHOOD ESTIMA JASA 57
                                                                                                                     200
                                                                  ARE MISSING FROM A RANDOMISED BLOCK EXPE BIOCS66
RIMEN/
         NOTES. ERRORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS
                                                                                                                     632
DESIGNS
                                 THE USE OF CONTROL OBSERVATIONS AS AN ALTERNATIVE TO INCOMPLETE BLOCK
                                                                                                            JRSSB62
                                                                                                                     464
  7R5
                                                                                                            AMS 68
DETERMINED BY/ TESTS OF FIT BASED ON THE NUMBER OF OBSERVATIONS FALLING IN THE SHORTEST SAMPLE SPACINGS
                                                                                                             AMS 61
TING GENERALIZED VARIANCE OF A SAMPLE OF CONSECUTIVE OBSERVATIONS FROM A MOVING-AVERAGE PROCESS /HE LIMI BIOKA61
TING GENERALIZED VARIANCE OF A SAMPLE OF CONSECUTIVE OBSERVATIONS FROM A MOVING-AVERAGE PROCESS' /E LIMI BIOKA61
                                                                                                                     197
                  THE COMPARISON OF MEANS OF SETS OF OBSERVATIONS FROM SECTIONS OF INDEPENDENT STOCHASTIC
                                                                                                           JRSSB55
                                    TABLES OF RANDOM OBSERVATIONS FROM STANDARD DISTRIBUTIONS
                                                                                                            BTOK A59
                          LONGEST RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED ATTRIBUTE
                                                                                                            BIOKA61
                                                                                                                     461
     A NOTE ON PREDICTION INTERVALS BASED ON PARTIAL OBSERVATIONS IN CERTAIN LIFE TEST EXPERIMENTS
                                                                                                            TECH 68
                                                                                                                     850
                    ON THE USE OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE SUPPORT FOR A COMPLETE
ORDER
                                                                                                            JASA 61
                                                                                                                     299
OF A FIRST ORDER METHOD
                                             MISSING OBSERVATIONS IN MULTIVARIATE REGRESSION, EFFICIENCY
                                                                                                            JASA 69
                                                                                                                    NO.4
IMATION IN SIMPLE LINEAR REGRESSION
                                             MISSING OBSERVATIONS IN MULTIVARIATE STATISTICS II. POINT EST JASA 67
                                                                                                                     1.0
                                             MISSING OBSERVATIONS IN MULTIVARIATE STATISTICS, III
                                                                                                            JASA 69
                                                                                                                     337
                                             MISSING OBSERVATIONS IN MULTIVARIATE STATISTICS, IV
                                                                                                            JASA 69
                                                                                                                     359
IANCE OF THE FIT/ THE UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYNOMIAL REGRESSION FOR MINIMAX VAR
                                                                                                            AMS 62
                                                                                                                     B10
                                            CENSORED OBSERVATIONS IN RANDOMIZED BLOCK EXPERIMENTS
                                                                                                            JRSSB59
                   PROCEDURES FOR DETECTING OUTLYING OBSERVATIONS IN SAMPLES
              THE ESTIMATION OF MISSING AND MIXED-UP OBSERVATIONS IN SEVERAL EXPERIMENTAL DESIGNS
                                                                                                            BIOKA59
                              ESTIMATION OF MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PL BIOKA61
                                                                                                                     468
OTS ARE MISSING OR MIXED UP
 INFORMATION SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS IN THE ESTIMATION OF STATISTICAL PARAMET BIOKA62
                                                                                                                     245
INFORMATION SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS IN THE ESTIMATION OF THE PARAMETERS OF N BIOKA63
                                                                                                                     207
DEPENDENCE BETWEEN SUBCLASS MEANS AND THE NUMBERS OF OBSERVATIONS IN THE SUBCLASSES FOR THE TWO-WAY COMPLE JASA 68 1484
                                                SOME OBSERVATIONS ON CHANGE-OVER TRIALS
                                                                                                            BTOCS69
                                                                                                                     413
              ANALYSIS OF DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE CHARACTERS
                                                                                                            JRSSB56
                                                                                                                    259
                                                SOME OBSERVATIONS ON ROBUST ESTIMATION
                                                                                                            JASA 67 1179
DEPENDENCE BETWEEN RANDOM EFFECTS AND THE NUMBERS OF OBSERVATIONS ON THE EFFECTS FOR THE UNBALANCED ONE-WA JASA 67
DESTGNS
                                                SOME OBSERVATIONS ON THE PRACTICAL ASPECTS OF WEIGHTING
                                                                                                            BIOKA51
                                                                                                                     248
                                                SOME OBSERVATIONS ON THE TEACHING OF STATISTICAL
CONSULTING
                                                                                                            BIOCS68
                                                                                                                     789
                       SMOKING AND LUNG CANCER, SOME OBSERVATIONS ON TWO RECENT REPORTS
                                                                                                            JASA 5B
                                           USING THE OBSERVATIONS TO ESTIMATE THE PRIOR DISTRIBUTION
                                                                                                            JRSSB65
CES ARE UNKNO/ THE COMPARISON OF SEVERAL GROUPS OF OBSERVATIONS WHEN THE RATIOS OF THE POPULATION VARIAN BIOKA51
  APPLICATIONS OF THE JIRINA SEQUENTIAL PROCEDURE TO OBSERVATIONS WITH TREND
                                                                                                      SOME AMS 63
                                                                                                                     B57
 THE TWO-WAY CLASSIFICATION FIXED EFFECTS MODEL WITH OBSERVATIONS WITHIN A ROW SERIALLY CORRELATED
                                                                                                       /FOR BIOKA69 NO.3
   FITTING A POLYNOMIAL TO CORRELATED EQUALLY SPACED OBSERVATIONS
                                                                                                            BTOKA65
                                                                                                                    275
                    SEQUENTIAL ANALYSIS OF DEPENDENT OBSERVATIONS.
                                                                                                            BIOKA65
                                                                                                                    157
                  ON LEAST SQUARES WITH INSUFFICIENT OBSERVATIONS, CORR. 65 1249
                                                                                                            JASA 64 107B
              SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS, THE BINOMIAL CASE
                                                                                                             AMS 65
                                                                                                                    971
AGAINST A GIVEN/
                   A CHART FOR SEQUENTIALLY TESTING OBSERVED ARITHMETIC MEANS FROM LOGNORMAL POPULATIONS
                                                                                                           TECH 68
                                                                                                                     605
                          QUERY, COMBINING VALUES OF OBSERVED CHI-SQUARE'S
                                                                                                            TECH 66
                                                                                                                     709
                          THEORETICAL EXPLANATION OF OBSERVED DECREASE FAILURE RATE
                                                                                                            TECH 63
                                                                                                                     375
      ESTIMATION OF MEANS OF NORMAL POPULATIONS FROM OBSERVED MINIMA
                                                                                                            BIOKA57
                                                                                                                     2B2
                      PRICING POLICIES CONTINGENT ON OBSERVED PRODUCT QUALITY
                                                                                                            TECH 66
                                                                                                                    123
   ESTIMATION OF PARTICLE SIZE DISTRIBUTION BASED ON OBSERVED WEIGHTS OF GROUPS OF PARTICLES
                                                                                                            TECH 65
                                                                                                                     505
   THE ESTIMATION OF POPULATION PARAMETERS FROM DATA OBTAINED BY MEANS OF THE CAPTURE-RECAPTURE METHOD. I.
   THE ESTIMATION OF POPULATION PARAMETERS FROM DATA OBTAINED BY MEANS OF THE CAPTURE-RECAPTURE METHOD. II BIOKA53
      THE GOODNESS OF FIT OF FREQUENCY DISTRIBUTIONS OBTAINED FROM STOCHASTIC PROCESSES
                                                                                                           BTOK A54
'COEFFICIENTS OF VARIATION OF HERITABILITY ESTIMATES OBTAINED FROM VARIANCE ANALYSES'
                                                                                                           BIOCS65
                                                                                            CORRECTION TO
                                                                                                                     265
                       COMPARISON OF TWO METHODS OF OBTAINING APPROXIMATE CONFIDENCE INTERVALS FOR SYSTEM TECH 68
                                                                                                                     37
 RELIABILITY
                                                                                                           BIOCS69
EXPONENTIAL CURVE FITTING
                                        A METHOD OF OBTAINING INITIAL ESTIMATES OF THE PARAMETERS IN
                                                                                                                    580
                             AN ELEMENTARY METHOD OF OBTAINING LOWER BOUNDS ON THE ASYMPTOTIC POWER OF
                                                                                                            AMS 68 2128
RANK TESTS
                                     PROBABILITY OF OBTAINING NEGATIVE ESTIMATES OF HERITABILITY
                                                                                                           BTOCS68
                                                                                                                    517
METERS OF THE WEIBULL DISTRIBUTION
                                        TABLES FOR OBTAINING THE BEST LINEAR INVARIANT ESTIMATES OF PARA TECH 67
                                                                                                                    629
                                    AN ALGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MA JASA 67
TRIX IN MULTIVARIATE ANALYSIS
```

TITLE WORD INDEX OBS - ONE

```
THE PROBABILITY THAT A RANDOM TRIANGLE IS OBTUSE
                                                                                                          BIOKA69 NO.3
           ROTATION DESIGNS FOR SAMPLING ON REPEATED OCCASIONS
                                                                                                          JASA 64 492
                                                                                                          JASA 65 784
   DOUBLE SAMPLING FOR STRATIFICATION ON SUCCESSIVE OCCASIONS
                               ON SAMPLING OVER TWO OCCASIONS WITH PROBABILITY PROPORTIONATE TO SIZE
                                                                                                                  327
                                                                                                           AMS 65
                                         SEQUENTIAL OCCUPANCY
                                                                                                          BTOKA59 218
                                         CONTAGIOUS OCCUPANCY
                                                                                                          JRSSR59
                                                    OCCUPANCY PROBABILITY DISTRIBUTION CRITICAL POINTS
                                                                                                          BIOKA61 175
          ESTIMATION OF A PARAMETER IN THE CLASSICAL OCCUPANCY PROBLEM
                                                                                                                   1.80
                                                                                                          BIOKA60
                             A NOTE ON A SEQUENTIAL OCCUPANCY PROBLEM
                                                                                                                  591
                                                                                                          BIOKA68
                   AN ASYMPTOTIC DISTRIBUTION FOR AN OCCUPANCY PROBLEM WITH STATISTICAL APPLICATIONS
                                                                                                          TECH 61
            STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY PROBLEM, UNBIASED ESTIMATION OF THE NUMBER
                                                                                                                   837
                                                                                                          JASA 68
                                         SEQUENTIAL OCCUPANCY WITH CLASSIFICATION
                                                                                                          BIOKA68
                                                                                                                   229
PLANE BROWNIAN MOTION
                                                 AN OCCUPATION TIME THEOREM FOR THE ANGULAR COMPONENT OF
                                                                                                                    25
 INCOME
                                                    OCCUPATIONAL COMPONENTS OF EDUCATIONAL DIFFERENCES IN JASA 61
                                                                                                                   783
E PROBABILITY THAT TWO SPECIFIED SAMPLING UNITS WILL OCCUR IN A SAMPLE DRAWN WITH UNEQUAL PROBABILITIES AN JASA 66
UTION SHAPE PARAMETER WHEN NO MORE THAN TWO FAILURES OCCUR PER LOT
                                                                           ESTIMATION OF WEIBULL DISTRIB TECH 64
                                                                                                                   415
                   A RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN TIME
                                                                                                          BIOKA59
                                                                                                                    30
                               A MODEL FOR RAINFALL OCCURRENCE
                                                                                                          JRSSB64
                                                                                                                   345
                      A MODIFIED MODEL FOR RAINFALL OCCURRENCE
                                                                                                          JRSSB67
                                                                                                                   151
RELATION BETWEEN THE DICTIONARY DISTRIBUTION AND THE OCCURRENCE DISTRIBUTION OF WORD LENGTH AND ITS IMPORT BIOKA58
                                                                                                                   222
THE EQUIVALENCE OF TWO TESTS OF EQUALITY OF RATE OF OCCURRENCE IN TWO SERIES OF EVENTS OCCURRING RANDOMLY BIOKAS8
                                                                                                                   267
RIMENTS TO ESTIMATE PARAMETERS IN NON-LINEAR/ THE OCCURRENCE OF REPLICATIONS IN OPTIMAL DESIGNS OF EXPE JRSSB68
                                                                                                                   290
TERISTICS OF A RATIO USED TO ESTIMATE FAILURE RATES, OCCURRENCES PER PERSON YEAR OF EXPOSURE
                                                                                                   CHARAC BIOCS66
                                                                                                                   310
                 A TEST FOR A CHANGE IN A PARAMETER OCCURRING AT AN UNKNOWN POINT
                                                                                                          BIOKA55
                                                                                                                   523
                                                                                                          BIOKA56
                                                                                                                    64
          A SEQUENTIAL TEST OF RANDOMNESS FOR EVENTS OCCURRING IN TIME OR SPACE
UALITY OF RATE OF OCCURRENCE IN TWO SERIES OF EVENTS OCCURRING RANDOMLY IN TIME /ENCE OF TWO TESTS OF EQ BIOKA58
                                                                                                                   267
       ON PROBLEMS IN WHICH A CHANGE IN A PARAMETER OCCURS AT AN UNKNOWN POINT
                                                                                                          BIOKA57
                                                                                                                   248
             STATISTICAL ESTIMATION OF THE GASOLINE OCTANE NUMBER REQUIREMENT OF NEW MODEL AUTOMOBILES
                                                                                                                    5
                         WEIGHING DESIGNS WHEN N IS ODD
                                                                                                           AMS 66 1371
                    THE STATISTICAL SIGNIFICANCE OF ODD BITS OF INFORMATION
                                                                                                          BIOKA52
                                                                                                                  228
        OF THE BIVARIATE NORMAL DISTRIBUTION OVER AN OFFSET CIRCLE
                                                                                                 INTEGRAL JASA 62
                                                                                                                   758
                        SOME EFFECTS OF FLUCTUATING OFFSPRING DISTRIBUTIONS ON THE SURVIVAL OF A GENE
                                                                                                                  391
                                                                                                         BIOKA66
NTEGRAL OF THE BIVARIATE NORMAL DISTRIBUTION OVER AN OFFSET CIRCLE
                                                                                         A TABLE OF THE I JRSSB60
                                                AN OLD APPROACH TO FINITE POPULATION SAMPLING THEORY
                                                                                                          JASA 68 1269
              PERMUTATION WITHOUT RISING OR FALLING OMEGA-SEQUENCES
                                                                                                           AMS 67 1245
    EXTENSION OF COCHRAN'S FORMULAE FOR ADDITION OR OMISSION OF A VARIATE IN MULTIPLE REGRESSION ANALYSIS JASA 63 527
CAL HYPOTHESES
                              CONFIDENCE CURVES, AN OMNIBUS TECHNIQUE FOR ESTIMATION AND TESTING STATISTI JASA 61 246
   LIMIT THEOREMS FOR QUEUES WITH TRAFFIC INTENSITY ONE
                                                                                                           AMS 65 1437
 GALTON-WATSON BRANCHING PROCESS WITH MEAN LESS THAN ONE
                                                                                                  ON THE AMS 67 264
         PROPERTIES OF CONVERGENCE WITH PROBABILITY ONE
                                                                                              CONVERGENCE
                                                                                                           AMS 66 1800
                  RANK SUM MULTIPLE COMPARISIONS IN ONE AND TWO-WAY CLASSIFICATIONS
                                                                                                          BIOKA67 487
DER STATISTICS IN SAMPLES FROM THE CHI-DISTRIBUTION, ONE DEGREE OF FREEDOM EXACT LOWER MOMENTS OF OR AMS 62 1292
                              CHI-SQUARE TESTS WITH ONE DEGREE OF FREEDOM, EXTENSIONS OF THE MANTEL-HAENS JASA 63
                                                                                                                   690
ZEL PROCEDURE
                            PARTITIONS IN MORE THAN ONE DIMENSION
                                                                                                          JRSSB56
                                                                                                                   104
                              ON THE SUPERCRITICAL ONE DIMENSIONAL AGE DEPENDENT BRANCHING PROCESSES
                                                                                                           AMS 69
                                                                                                                   743
                                                    ONE DIMENSIONAL RANDOM WALK WITH A PARTIALLY
REFLECTING BARRIER
                                                                                                           AMS 63
                                                                                                                   405
  LATIN SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE DIRECTION
                                                                                          THE ANALYSIS OF JRSSB58
                                                                                                                  193
    A GENERAL CLASS OF COEFFICIENTS OF DIVERGENCE OF ONE DISTRIBUTION FROM ANOTHER
                                                                                                          JRSSB66
                                                                                                                   131
                               ON TESTING MORE THAN ONE HYPOTHESIS
                                                                                                           AMS 63
                                                                                                                   555
OF CORRELATION BETWEEN TWO CONTINUOUS VARIABLES WHEN ONE IS DICHOTOMIZED
                                                                                             THE THEORY BIOKA55
                                                                                                                   2.05
                          ESTIMATION OF A MEAN WHEN ONE OBSERVATION MAY BE SPURIOUS
                                                                                                          TECH 69
                                                                                                                  331
      ROBUST PROCEDURES FOR SOME LINEAR MODELS WITH ONE OBSERVATION PER CELL
                                                                                                           AMS 67
                                                                                                                   878
 NONPARAMETRIC INFERENCE IN SOME LINEAR MODELS WITH ONE OBSERVATION PER CELL.
                                                                                           ASYMPTOTICALLY
                                                                                                          AMS 64
                                                                                                                   726
     GENERAL PROOF OF TERMINATION WITH PROBABILITY ONE OF INVARIANT SEQUENTIAL PROBABILITY RATIO TESTS B AMS 67
                                                                                                                     В
ASE/
      A CLASS OF SEQUENTIAL PROCEDURES FOR CHOOSING ONE OF K HYPOTHESES CONCERNING THE UNKNOWN DRIFT PARA AMS 67 1376
MET/
    SEQUENTIAL PROCEDURES FOR SELECTION OF THE BEST ONE OF SEVERAL BINOMIAL POPULATIONS
                                                                                                           AMS 67
                                                                                                                   117
      OF DISPERSION WITH INCOMPLETE OBSERVATIONS ON ONE OF THE CHARACTERS
                                                                                                 ANALYSIS JRSSB56
                                                                                                                   259
EST INVARIANT TEST WHEN THE MOMENT IS INFINITE UNDER ONE OF THE HYPOTHESES
                                                                                INADMISSIBILITY OF THE B AMS 69 14B3
RODUCTION FROM A GROUP OF MACHINES UNDER THE CARE OF ONE OPERATIVE
                                                                             A TABLE FOR PREDICTING THE P JRSSB54
                                                                                                                   285
ICIENCY OF N MACHINES UNI-DIRECTIONALLY PATROLLED BY ONE OPERATOR WHEN WALKING TIME AND REPAIR TIMES ARE C JRSSB57
ICIENCY OF N MACHINES UNI-DIRECTIONALLY PATROLLED BY ONE OPERATOR WHEN WALKING TIME IS CONSTANT AND REPAIR JRSSB57
                                                                                                                   173
 THE MOMENT-PROBLEM FOR UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE KNOWN
                                                                                                NOTE ON BIOKA56
IMPLE STOCHASTIC EPIDEMIC FOR SMALL POPULATIONS WITH ONE OR MORE INITIAL INFECTIVES
                                                                                                   THE S BIOKA69
CONCERNING A POPULATION CORRELATION COEFFICIENT FROM ONE OR POSSIBLY TWO SAMPLES SUBSEQUENT TO A PRELIMINA JRSSB67
BIASEDNESS OF SOME TEXT CRITERIA FOR THE EQUALITY OF ONE OR TWO COVARIANCE MATRICES
                                                                                                       UN AMS 68 1686
                    A TWO-STAGE MODEL FOR SELECTING ONE OR TWO TREATMENTS
                                                                                                          BIOCS65 169
     CHOICE OF LEVELS OF POLYNOMIAL REGRESSION WITH ONE OR TWO VARIABLES
                                                                                                                  325
                                                                                                          TECH 65
TER NE/ ERRATA, 'EXACT CONFIDENCE BOUNDS, BASED ON ONE ORDER STATISTIC FOR THE PARAMETER OF A ONE-PARAME TECH 64 4B3
                  EXACT CONFIDENCE BOUNDS, BASED ON ONE ORDER STATISTIC FOR THE PARAMETER OF AN EXPONENTI TECH 64
AL POPULATION
                                                                                                                  301
      MEAN SQUARES IN GENETIC EXPERIMENTS WHEN ONLY ONE PARENT IS IDENTIFIED
                                                                                            THE EXPECTED BIOCS65
                                                                                                                   436
                                                    ONE SAMPLE LIMITS OF SOME TWO-SAMPLE RANK TESTS
                                                                                                         JASA 64 645
   ALTERNATIVE ESTIMATES FOR SHIFT IN THE P-VARIATE ONE SAMPLE PROBLEM
                                                                                                 ON SOME AMS 64 1079
OF RANK ORDER TESTS FOR LOCATION IN THE MULTIVARIATE ONE SAMPLE PROBLEM
                                                                                           ON THE THEORY
                                                                                                          AMS 67 1216
          SMALL SAMPLE POWER AND EFFICIENCY FOR THE ONE SAMPLE WILCOXON AND NORMAL SCORES TESTS
                                                                                                           AMS 63
                                                                                                                   624
TIVES
                         SMALL SAMPLE POWER FOR THE ONE SAMPLE WILCOXON TEST FOR NON-NORMAL SHIFT ALTERNA
                                                                                                          AMS 65 1767
OR POISSON INPUT, GENERAL SERVICE TIME DISTRIBUTION, ONE SERVER
                                                                        ON THE QUEUEING PROCESS, MARKOV
                                                                                                           AMS 61
                                                                                                                   770
UT/ THE OUTPUT PROCESS OF THE QUEUEING SYSTEM WITH ONE SERVER AND WHICH INTERARRIVAL AND SERVING DISTRIB JRSSB59
                                                                                                                  375
 SOME NUMERICAL RESULTS FOR THE QUEUEING SYSTEM WITH ONE SERVER, WHILE THE INTERARRIVAL AND SERVING DISTRI JRSSB63
                                                                                                                   477
STRUCTURE OF THE DEPARTURE PROCESS OF THE QUEUE WITH ONE SERVER, WHILE THE INTERARRIVAL AND SERVING DISTRI JRSSB66
                                                                                                                  336
                                                                                                          JRSSB57
  SOME EXPERIMENTAL DESIGNS OF USE IN CHANGING FROM ONE SET OF TREATMENTS TO ANOTHER, PART 1
                                                                                                                   154
   SOME EXPERIMENTAL DESIGNS OF USE IN CHANGING FROM ONE SET OF TREATMENTS TO ANOTHER, PART 2, EXISTENCE O JRSSB57
                                                                                                                  163
                                                    ONE SIDED PROBLEMS IN MULTIVARIATE ANALYSIS
                                                                                                                   549
                                                                                                           AMS 69
       OPTIMAL SEQUENTIAL PROCEDURES WHEN MORE THAN ONE STOP IS REQUIRED
                                                                                                           AMS 67 1618
                           VARIANCE ESTIMATION WITH ONE UNIT PER STRATUM
                                                                                                          JASA 69
                                                                                                                  841
                                                                                                                  306
     APPROXIMATE CONFIDENCE INTERVALS. II. MORE THAN ONE UNKNOWN PARAMETER
                                                                                                          BIOKA53
RAMETERS FOR A MULTIVARIATE NORMAL DISTRIBUTION WHEN ONE VARIABLE IS DICHOTOMISED. ESTIMATION OF THE PA BIOKA65
                                                                                                                  664
```

ONE - OPT TITLE WORD INDEX

```
RRECTED CORRELATION COEFFICIENTS WHEN OBSERVATION ON ONE VARIABLE IS RESTRICTED
                                                                                                 NOTES. CO BIOCS66
A RANDOMIZED SYMMETRICAL DESIGN FOR THE PROBLEM OF A ONE WAY CLASSIFICATION ON THE ADMISSIBILITY OF AMS 69
 DISTRIBUTION WITH COVARIANCE MATRIX A+B IN TERMS OF ONE WITH COVARIANCE MATRIX A EXPRESSING THE NORMAL BIOKA63
               A NUMERICAL INVESTIGATION OF SEVERAL ONE-DIMENSIONAL SEARCH PROCEDURES IN NONLINEAR RECRES TECH 69
               SMOOTH EMPIRICAL BAYES ESTIMATION FOR ONE-PARAMETER DISCRETE DISTRIBUTIONS
                                                                                                            BTOKA66
                                                                                                                     417
TRANSFORMATION GROUPS
                                                     ONE-PARAMETER EXPONENTIAL FAMILIES GENERATED BY
                                                                                                            AMS 65
                                                                                                                     261
                                    ESTIMATION FOR A ONE-PARAMETER EXPONENTIAL MODEL
                                                                                                            JASA 65
                                                                                                                    560
 BASED ON ONE ORDER STATISTIC FOR THE PARAMETER OF A ONE-PARAMETER NEGATIVE EXPONENTIAL POPULATION'
                                                                                                       /DS, TECH 64
                                                                                                                    4B3
   A LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE-QUADRANT ORIENTED-ATOM PERCOLATION PROCESS
                                                                                                            JRSSB63
                                                                                                                    401
R EFFICIENCIES FOR THE KOLMOGOROV-SMIRNOV AND KUIPER ONE-SAMPLE AND TWO-SAMPLE STATISTICS EXACT BAHADU
                                                                                                            AMS 67 1475
                                         BIAS OF THE ONE-SAMPLE CRAMER-VON MISES TEST
                                                                                                            JASA 66
                                                                                                                    246
                                           'OPTIMAL' ONE-SAMPLE DISTRIBUTION-FREE TESTS AND THEIR TWO-
SAMPLE EXTENSIONS
                                                                                                             AMS 66
                                                                                                                    120
                      ON THE ASYMPTOTIC POWER OF THE ONE-SAMPLE KOLMOGOROV-SMIRNOV TESTS
                                                                                                             AMS 65 1000
                      MULTI-SAMPLE ANALOCUES OF SOME ONE-SAMPLE TESTS
                                                                                                             AMS 67
                                                                                                                    523
E EQUALITY OF TWO NORMAL DISPERSION MATRICES ACAINST ONE-SIDED ALTERNATIVES /A PROPERTY OF A TEST FOR TH AMS 62 1463
INDICES OF A COMPLEX ITEM
                                                     ONE-SIDED CONFIDENCE INTERVALS FOR THE QUALITY
                                                                                                            TECH 63
                                                                                                                    400
                              SOME EXACT RESULTS FOR ONE-SIDED DISTRIBUTION TESTS OF THE KOLMOGOROV-SMIRNO
                                                                                                            AMS 61
         CORRECTION. 'A COMPARATIVE STUDY OF SEVERAL ONE-SIDED GOODNESS-OF-FIT TESTS'
                                                                                                             AMS 65 1583
ALTERNATIONS
                         ON THE PITMAN EFFICIENCY OF ONE-SIDED KOLMOGOROV AND SMIRNOV TESTS FOR NORMAL
ENDENT, BOUNDED RANDOM VARIABLES
                                                   A ONE-SIDED PROBABILITY INEQUALITY FOR THE SUM OF INDEP BIOKA6B
                                                                                                                    565
                              ON THE MOMENTS OF SOME ONE-SIDED STOPPING RULES
                                                                                                             AMS 66
                                                                                                                    382
                                                SOME ONE-SIDED STOPPING RULES
                                                                                                             AMS 67 1641
                      ON THE ASYMPTOTIC NORMALITY OF ONE-SIDED STOPPING RULES
                                                                                                             AMS 68 1493
                      THE VARIANCE OF THE ONE-SIDED STOPPING RULES A MULTIVARIATE ANALOGUE OF THE ONE-SIDED TEST
                                                                                                             AMS 69 1074
                                                                                                            BIOKA63
                                                                                                                    403
                                                                                                            TECH 69
                              A SHORT-CUT RULE FOR A ONE-SIDED TEST OF HYPOTHESIS FOR QUALITATIVE DATA
                                                                                                                    197
                                                                                                            AMS 64
         BEHAVIOR OF EXPECTED SAMPLE SIZE IN CERTAIN ONE-SIDED TESTS
                                                                                                ASYMPTOTIC
                                                                                                                     36
                                                                                                             AMS 67 1726
                         A K-SAMPLE EXTENSION OF THE ONE-SIDED TWO-SAMPLE SMIRNOV TESTS STATISTIC
          A MULTIPLE COMPARISON RANK PROCEDURE FOR A ONE-WAY ANALYSIS OF VARIANCE
                                                                                                            SASJ 69
        UNEQUAL GROUP VARIANCES IN THE FIXED-EFFECTS ONE-WAY ANALYSIS OF VARIANCE, A BAYESIAN SIDELIGHT
                                                                                                            BIOKA66
      THE ROBUSTNESS OF THE COVARIANCE ANALYSIS OF A ONE-WAY CLASSIFICATION
                                                                                                            BIOKA64
                                                                                                                    365
   UNBIASED ESTIMATION OF VARIANCE COMPONENTS OF THE ONE-WAY CLASSIFICATION
                                                                                                  QUADRATIG BIOKA69
                                                                                                                    313
         THE CONSTRUCTION OF OPTIMAL DESIGNS FOR THE ONE-WAY CLASSIFICATION ANALYSIS OF VARIANCE
                                                                                                            JRSSB61
                                                                                                                    352
                  A NOTE ON OPTIMUM ALLOCATION FOR A ONE-WAY LAYOUT
                                                                                                            BTOKA62
                                                                                                                    563
 MULTIVARIATE COVARIANCE COMPONENTS FOR THE BALANCED ONE-WAY LAYOUT
                                                                          MAXIMUM LIKELTHOOD ESTIMATION OF
                                                                                                            AMS 69 1100
          INFERENCE ABOUT VARIANCE COMPONENTS IN THE ONE-WAY MODEL
                                                                                                            JASA 65
                                                                                                                    B06
RS OF OBSERVATIONS ON THE EFFECTS FOR THE UNBALANCED ONE-WAY RANDOM CLASSIFICATION /FFECTS AND THE NUMBE JASA 67 1375
                                                     ONE-WAY VARIANCES IN A TWO-WAY GLASSIFIGATION
                                                                                                            BIOKA58
                                                                                                                    111
ASED MULTIPLE RECRESSION COEFFICIENTS ESTIMATED FROM ONE-WAY-CLASSIFICATION TABLES WHEN THE GROSS CLASSIFI JASA 66
                                                                                                                    720
  TRUNCATED POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING
                                                                                         ESTIMATION IN THE JASA 60
  WITH THE LARGEST MEAN WHEN COMPARISONS CAN BE MADE ONLY IN PAIRS
                                                                               SELECTION OF THE POPULATION BIOKA58
   EXPECTED MEAN SQUARES IN GENETIC EXPERIMENTS WHEN ONLY ONE PARENT IS IDENTIFIED
                                                                                                       THE BIOCS65
                                                                                                                     436
STIMATING PARAMETERS IN HUMAN GENETICS IF THE AGE OF ONSET IS RANDOM
                                                                                  TESTINC HYPOTHESES AND E BIOKA63
             AN EXAMPLE OF THE ESTIMATION OF LINEAR OPEN LOOP TRANSFER FUNCTION
                                                                                                            TECH 63
                                                                                                                    227
                 ON CERTAIN REDUNDANT SYSTEMS WHICH OPERATE AT DISCRETE TIMES
                                                                                                                     69
SIONS WHICH CAN BE USED FOR THE DETERMINATION OF THE OPERATING CHARACTERISTIC AND AVERAGE SAMPLE NUMBER OF JRSSB67
                                                                                                                    248
R OF SOME SEQUENTIAL/ FORMULAE FOR CALCULATING THE OPERATING CHARACTERISTIC AND THE AVERAGE SAMPLE NUMBE JRSSB5B
                                                                                                                    379
G BY VARIABLES WHEN THE PRODUCER'S AND CONSUM/ THE OPERATINC CHARACTERISTIC CURVE FOR SEQUENTIAL SAMPLIN JASA 56
                                                                                                                    1.08
L PROBABILITY RATIO TEST OPTIMALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIA JASA 64
                                                                                                                    464
HARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECTS ANA JASA 57
                                                                                                                    345
                                                                                                             AMS 62 1403
LIFE TESTS IN THE EXPONENTIAL CASE
                                              EXACT OPERATING CHARACTERISTIC FOR TRUNCATED SEQUENTIAL
                                                                                                             AMS 68 1176
                                                     OPERATING CHARACTERISTICS OF SOME SEQUENTIAL DESIGN
                    LIKELIHOOD RATIO COMPUTATIONS OF OPERATING COMPUTATIONS
                                                                                                             AMS 66 1704
OF SIMPLEX DESIGNS IN OPTIMISATION AND EVOLUTIONARY OPERATION
                                                                                    SEQUENTIAL APPLICATION TECH 62
                                                                                                                    441
                                          DESIGN AND OPERATION OF A DOUBLE-LIMIT VARIABLES SAMPLING PLAN
                                                                                                           JASA 58
                                                                                                                    543
             CONDENSED CALCULATIONS FOR EVOLUTIONARY OPERATION PROCRAMS
                                                                                                            TECH 59
                     A SIMPLE SYSTEM OF EVOLUTIONARY OPERATION SUBJECT TO EMPIRICAL FEEDBACK
                                                                                                            TECH 66
                                                                                                                     19
                                        EVOLUTIONARY OPERATION. A REVIEW
                                                                                                           TECH 66
                                                                                                                    389
            THE THEORY OF EXPERIMENT, OPERATIONAL DEFINITION OF THE PROBABILITY SPACE STATISTICAL EVALUATION OF CLOUD SEEDING OPERATIONS
                                                                                                             AMS 67
                                                                                                                    401
                                                                                                           JASA 60
                                                                                                                    446
CTION FROM A CROUP OF MACHINES UNDER THE CARE OF ONE OPERATIVE
                                                                          A TABLE FOR PREDICTING THE PRODU JRSSB54
                                                                                                                    285
     COEFFICIENTS BY THE USE OF THE LAPLACE-BELTRAMI OPERATOR
                                                                           CALCULATION OF ZONAL POLYNOMIAL AMS 68
                                                                                                                   1711
                                          A UNIFORM OPERATOR ERGODIC THEOREM
                                                                                                             AMS 69 1126
                                                                                                             AMS 65 1B64
                                               ON AN OPERATOR LIMIT THEOREM OF ROTA
NCY OF N MACHINES UNI-DIRECTIONALLY PATROLLED BY ONE OPERATOR WHEN WALKING TIME AND REPAIR TIMES ARE CONST JRSSB57
                                                                                                                    166
NCY OF N MACHINES UNI-DIRECTIONALLY PATROLLED BY ONE OPERATOR WHEN WALKING TIME IS CONSTANT AND REPAIR TIM JRSSB57
                                                                                                                    173
                             GONDITIONAL PROBABILITY OPERATORS
                                                SOME OPERATORS FOR ANALYSIS OF VARIANCE CALCULATIONS
                                                                                                            TECH 69
                         THE INVERSION OF CUMULANT OPERATORS FOR POWER-SERIES DISTRIBUTIONS, AND THE APP JASA 6B
ROXIMATE STABILIZATION/
                                                                                                            AMS 65
                       SOME APPLICATIONS OF MONOTONE OPERATORS IN MARKOV PROCESSES
                                                 THE OPINION POOL
                                                                                                            AMS 61 1339
                                          MERGING OF OPINIONS WITH INCREASING INFORMATION
                                                                                                                    882
                                                                                                            AMS 62
                                                     OPSOMMING VAN LESINGS (SUMMARY OF PAPERS)
                                                                                                           SASJ 68
                                                                                                                     55
                                       TIMID PLAY IS OPTIMAL
                                                                                                            AMS 67 1281
                                                     OPTIMAL ACCELERATED LIFE DESIGNS FOR ESTIMATION
                                                                                                           TECH 62 3B1
OLATION IN S-/ A NOTE ON THE CAIN IN PRECISION FOR OPTIMAL ALLOCATION IN REGRESSION AS APPLIED TO EXTRAP TECH 69
                                                                                                                    389
SAMPLES USING PRIOR INFORMATION
                                                     OPTIMAL ALLOCATION IN STRATIFIED AND MULTISTACE
                                                                                                           JASA 6B
                                                                                                                    964
                                                     OPTIMAL AND EFFICIENT DESIGNS OF EXPERIMENTS
                                                                                                            AMS 69 1570
HYPOTHESES
                                                  ON OPTIMAL ASYMPTOTIC TESTS OF COMPOSITE STATISTICAL
                                                                                                            AMS 67 1B45
                                                                                                             AMS 68 422
ESTIMATION
                                      ASYMPTOTICALLY OPTIMAL BAYES AND MINIMAX PROCEDURES IN SEQUENTIAL
                               A SIMPLE SOLUTION FOR OPTIMAL CHEBYSHEV REGRESSION EXTRAPOLATION
                                                                                                             AMS 66
                                                                                                                    720
NORMAL DISTRIBUTION
                                                     OPTIMAL CONFIDENCE INTERVALS FOR THE VARIANCE OF A
                                                                                                           JASA 59
                                                                                                                    674
                                 THE CONSTRUCTION OF OPTIMAL DESICNS FOR THE ONE-WAY CLASSIFICATION ANALYS JRSSB61
IS OF VARIANCE
                                                                                                                    352
                                                     OPTIMAL DESIGNS IN REGRESSION PROBLEMS WITH A CENERAL BIOKA68
CONVEX LOSS FUNCTION
 IN NON-LINEAR/ THE OCCURRENCE OF REPLICATIONS IN OPTIMAL DESIGNS OF EXPERIMENTS TO ESTIMATE PARAMETERS JRSSB68
                                                     OPTIMAL DESIGNS ON TCHEBYSCHEFF POINTS
                                                                                                            AMS 68 1435
```

	ODTIMAL DDIC CODEENING DLANC	BIOKA63 31
	OPTIMAL DRUC SCREENINC PLANS OPTIMAL EXPERIMENTAL DESIGNS	BIOKA63 31 AMS 66 783
INDEPENDENT VARIABLE IN RECRESSION	OPTIMAL EXPERIMENTAL DESIGNS FOR ESTIMATING THE	TECH 68 811
ERAL EXPERIMENTAL CATECORIES WI/ AN ASYMPTOTICALLY	OPTIMAL FIXED SAMPLE SIZE PROCEDURE FOR COMPARINC SEV	
ON THE EDDICATION OF	OPTIMAL INVARIANT RANK TESTS FOR THE K-SAMPLE PROBLEM OPTIMAL NONPARAMETRIC PROCEDURES IN THE TWO	AMS 65 1207 AMS 63 22
	OPTIMAL POLICIES IN DISCRETE DYNAMIC PROCRAMMING WITH	
	OPTIMAL PREDICTION IN SIMPLE LINEAR RECRESSION	
DISCUSSION)		JRSSB61 282
FORECASTS, CORR. 62 919	OPTIMAL PROPERTIES OF EXPONENTIALLY WEICHTED OPTIMAL PROPERTY OF PRINCIPAL COMPONENTS	JASA 60 299 AMS 65 1579
AN		BIOKA64 1
COMPUTATION AND STRUCTURE OF		JASA 67 1462
NS TO LINEAR ESTIMATORS OF LOCATION	OPTIMAL ROBUSTNESS. A GENERAL METHOD, WITH APPLICATIO OPTIMAL SAMPLE DESIGN WITH NONRESPONSE	
AMPLE OBSERVATIONS ARE LOGNORMAL AND THE PRECISIO/	OPTIMAL SAMPLE DESIGN WITH NONRESPONSE OPTIMAL SAMPLE SIZE IN TWO-ACTION PROBLEMS WHEN THE S	
		BIOKA57 518
A SECOND-ORDER APPROXIMATION TO		AMS 69 313
	OPTIMAL SEQUENCE OF INTERRELATED SAMPLING PLANS OPTIMAL SEQUENTIAL ACCELERATED LIFE TEST.	JASA 64 96 TECH 62 367
	OPTIMAL SEQUENTIAL DESIGN FOR COMPARING SEVERAL EXPER	
IS REQUIRED	OPTIMAL SEQUENTIAL PROCEDURES WHEN MORE THAN ONE STOP	
	OPTIMAL SEQUENTIAL SCHEMES FOR ESTIMATING THE MEAN OF OPTIMAL SPACINC AND WEIGHTING IN POLYNOMIAL	JRSSB62 393 AMS 64 1553
PREDICTION FAILURE RATE AVERAGE ASYMPTOTICALLY	OPTIMAL STATISTICS IN SOME MODELS WITH INCREASING	AMS 67 1731
ON	OPTIMAL STOPPING	AMS 66 30
EXPLICIT SOLUTIONS TO SOME PROBLEMS OF		AMS 69 993 JRSSB68 108
Some Troblems of	OPTIMAL STOPPING AND EXPERIMENTAL DESIGN	AMS 66 7
	OPTIMAL STOPPING FOR FUNCTIONS OF MARKOV CHAINS	AMS 68 1905
COME DEODY BAC TH GUE GUEGEV OF	OPTIMAL STOPPING IN A MARKOV PROCESS	AMS 68 1333
SOME PROBLEMS IN THE THEORY OF N-OVER-N EXISTENCE OF	OPTIMAL STOPPING RULES FOR REWARDS RELATED TO S-SUB-	AMS 67 1627 AMS 68 1228
	OPTIMAL STOPPING THEOREM	AMS 69 677
	OPTIMAL STOPPING WHEN THE FUTURE IS DISCOUNTED	AMS 67 601 AMS 63 780
APPROXIMATELY	OPTIMAL STRATEGIES IN FACTORIAL EXPERIMENTS OPTIMAL STRATIFICATION	AMS 63 780 JASA 68 129B
	OPTIMAL TESTS FOR MULTIVARIATE NORMAL DISTRIBUTIONS	AMS 67 1B29
EXPERIMENTS WITH NONCONTROLLED PRE/ ASYMPTOTICALLY	OPTIMAL TESTS OF COMPOSITE HYPOTHESES FOR RANDOMIZED OPTIMAL TWO-STAGE STRATIFIED SAMPLING	JASA 65 699 AMS 69 575
TIMID PLAY IS		AMS 67 1284
TWO-SAMPLE EXTENSIONS	'OPTIMAL' ONE-SAMPLE DISTRIBUTION-FREE TESTS AND THEIR	
THE WALD SEQUENTIAL PROBABILITY RATIO TEST THEORY CONDITIONS FOR	OPTIMALITY AND THE OPERATING CHARACTERISTIC CURVE FOR OPTIMALITY AND VALIDITY AND SIMPLE LEAST SQUARES	JASA 64 464 AMS 69 1617
	OPTIMALITY CONDITION FOR DISCRETE DYNAMIC PROGRAMMING	
DISCRETE DYNAMIC PROGRAMMING WITH SENSITIVE DISCOUNT		AMS 69 1635
TWO MORE CRITERIA EQUIVALENT TO D	-OPTIMALITY OF DESIGNS OPTIMALITY OF EMPIRICAL BAYES ESTIMATORS	AMS 62 792 BIOKA69 220
MINIMIZATION OF EICENVALUES OF A MATRIX AND		AMS 68 859
	OPTIMALITY OF SEQUENTIAL PROBABILITY RATIO TESTS	AMS 63 18
SEQUENTIAL APPLICATION OF SIMPLEX DESIGNS IN	OPTIMALITY OF TESTS IN SIMPLE RANDOM SAMPLING OPTIMISATION AND EVOLUTIONARY OPERATION	AMS 69 308 TECH 62 441
A STATISTICAL BASIS FOR APPROXIMATION AND		AMS 66 59
REGULATION AND		JRSSB69 160
	OPTIMIZATION AND CONTROL (WITH DISCUSSION) OPTIMIZATION IN THE PRESENCE OF RANDOM VARIABILITY.	JRSSB62 297 BIOKA69 65
	OPTIMIZATION OF A HOT ROLLING MILL	JRSSB67 300
LABORATORY	OPTIMIZATION OF QUALITY CONTROL IN THE CHEMICAL	TECH 66 519
	OPTIMIZE AN OBJECTIVE FUNCTION OPTIMUM ACCEPTANCE TESTS	JASA 63 236 JASA 56 243
MULTIPLE ISOTOPE DILUTION A PROBLEM OF	OPTIMUM ALLOCATION ARISING IN CHEMICAL ANALYSES BY	TECH 61 509
A NOTE ON ANALYTICAL SOLUTION	OPTIMUM ALLOCATION FOR A ONE-WAY LAYOUT	BIOKA62 563
THERE ARE R RESPONSES OF INTEREST	OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS, AN OPTIMUM ALLOCATION OF SAMPLING UNITS TO STRATA WHEN	JRSSB67 115 JASA 65 225
. THE	OPTIMUM ALLOCATION OF SPARE COMPONENTS IN SYSTEMS	TECH 61 399
TEST REMARK ON THE	OPTIMUM CHARACTER OF THE SEQUENTIAL PROBABILITY RATIO OPTIMUM CHOICE OF CLASSES FOR CONTINGENCY TABLES	
TWO MULTIVARIATE NORMAL POPULATIONS	OPTIMUM CLASSIFICATION RULES FOR CLASSIFICATION INTO	AMS 65 1174
		JASA 61 36
EQUATIONS SOME PARAMETER	OPTIMUM CONFIDENCE BOUNDS FOR ROOTS OF DETERMINANTAL OPTIMUM DECISION PROCEDURES FOR A POISSON PROCESS	AMS 65 468 AMS 62 13B4
-	OPTIMUM DESIGNS FOR POLYNOMIAL EXTRAPOLATION	AMS 65 14B3
AND SCALE PARAMETERS		AMS 61 298
	OPTIMUM ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION OPTIMUM ESTIMATORS FOR SAMPLING FINITE POPULATIONS	
	OPTIMUM ESTIMATORS OF THE PARAMETERS OF NEGATIVE EXPO	AMS 63 117
Y ESTIMATES NOTES.	OPTIMUM EXPERIMENTAL DESIGNS (WITH DISCUSSION) OPTIMUM EXPERIMENTAL DESIGNS FOR REALIZED HERITABILIT	JRSSB59 272 BIOCS67 361
SELECTION FOR AN	OPTIMUM GROWTH CURVE	BIOCS68 169
DISCUSSION) EFFICIENT ESTIMATES AND COMPONENTS MODELS	OPTIMUM INFERENCE PROCEDURES IN LARGE SAMPLES (WITH	
	OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE OPTIMUM LINKAGE OF RECORDS	AMS 67 422 JASA 6B 1321
ON SOME	OPTIMUM NONPARAMETRIC PROCEDURES IN TWO-WAY LAYOUTS	JASA 67 1214
	OPTIMUM ORDER STATISTICS FOR ESTIMATING THE PARAMETER OPTIMUM ORDER STATISTICS IN CENSORED SAMPLES /F THE	
	OPTIMUM ORDER STATISTICS IN CENSORED SAMPLES /F THE	

```
TESTS
                                                      OPTIMUM PROPERTIES AND ADMISSIBILITY OF SEQUENTIAL
                                           ASYMPTOTIC OPTIMUM PROPERTIES OF CERTAIN SEQUENTIAL TESTS
                                                                                                              AMS 68 1244
                                                 SOME OPTIMUM PROPERTIES OF RANKING PROCEDURES
                                                                                                              AMS 67
                                                                                                                      124
                    PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES OF THE ROW SUM PROCEDURE
 1208
                 ACKNOWLEDCEMENT OF PRIORITY FOR 'AN OPTIMUM PROPERTY OF MAXIMUM LIKELIHOOD ESTIMATION' 60
                                                                                                              AMS 61 1343
                                                   AN OPTIMUM PROPERTY OF THE HORVITZ-THOMSON ESTIMATE
                                                                                                             JASA 67 1013
S OF THE NECATIVE EXPONENTIAL DISTRIBU/
                                          ASYMPTOTIC OPTIMUM QUANTILES FOR THE ESTIMATION OF THE PARAMETER
                                                                                                             AMS 66
                                                                                                              AMS 69 NO.6
                                               ON THE OPTIMUM RATE OF TRANSMITTING INFORMATION
                                     SOME PROBLEMS OF OPTIMUM SAMPLING
                                                                                                             BIOKA54
                                                      OPTIMUM SAMPLINC IN BINOMIAL POPULATIONS
                                                                                                             JASA 57
                                                                                                                      494
                                                                                                             JRSSB54
                            A SIMPLE PRESENTATION OF OPTIMUM SAMPLING RESULTS
                                                                                                                      239
                                       ASYMPTOTICALLY OPTIMUM SEQUENTIAL INFERENCE AND DESIGN
                                                                                                              AMS 63
                                                                                                                      705
                                                 THE OPTIMUM STRATEGY IN BLACKJACK, CORR. 59 810
                                                                                                             JASA 56
                                                                                                                      429
                                                      OPTIMUM STRATIFICATION WITH TWO CHARACTERS
                                                                                                              AMS 63
                                                                                                                      866
                                                      OPTIMUM STRATIFIED SAMPLINC USING PRIOR INFORMATION
                                                                                                             JASA 65
                                                                                                                      750
                                       ASYMPTOTICALLY OPTIMUM TESTS FOR MULTINOMIAL DISTRIBUTIONS
                                                                                                              AMS 65
 SAMPLING OF TWO UNITS FROM A STRATUM (ADDENDUM 6/ OPTIMUM UTILIZATION OF AUXILIARY INFORMATION. (PI)PS
                                                                                                             JRSSB67
                                                                                                                      374
                              VARIANCE ESTIMATES IN 'OPTIMUM' SAMPLE DESIGNS
OF DISTINCT TYPE
                               SAMPLING ERRORS IN AN ORCHARD SURVEY INVOLVING UNEQUAL NUMBERS OF ORCHARDS
                                                                                                             BIOCS65
       INCOMPLETE BLOCK DESIGNS FOR DIRECTIONAL SEED ORCHARDS
                                                                                 THE USE OF CYCLIC BALANCED BIOCS67
   INCOMPLETE BLOCK DESIGNS FOR NON-DIRECTIONAL SEED ORCHARDS
                                                                                  THE USE OF CYCLIC BALANCED BIOCS69
                      MULTI-FACTOR DESIGNS OF FIRST ORDER
                                                                                                             BIOKA52
          PROPERTIES OF SPECTRAL ESTIMATES OF SECOND ORDER
                                                                                                  ASYMPTOTIC BIOKA69
  NORMAL VARIATES WHICH ARE UNCORRELATED OF A HIGHER ORDER
                                                                                    ON CERTAIN FUNCTIONS OF BIOKAGO
  INDEPENDENCE OF INTERMEDIATE STATES AND RESTRICTED ORDER
                                                                           TESTING A MARKOV HYPOTHESIS WITH BIOKA67
TIVE ANALYSIS. GENERAL THEORY AND THE CASE OF SIMPLE ORDER
                                                              /ION OF NON-NUMERICAL INFORMATION IN QUANTITA AMS 63 1347
                                 MOMENTS OF NECATIVE ORDER AND RATIO-STATISTICS
                                              ON THE ORDER AND THE TYPE OF ENTIRE CHARACTERISTIC FUNCTIONS AMS 62
   IN MULTIVARIATE RECRESSION, EFFICIENCY OF A FIRST ORDER METHOD
                                                                                       MISSING OBSERVATIONS JASA 69
                              EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF COVARIANC BIOKA69 NO.3
  ON THE INVERSE OF THE COVARIANCE MATRIX OF A FIRST ORDER MOVING AVERAGE
                                                                                                             BIOKA69 NO.3
 MEMBERS OF A SERIES OF RANDOM VARIABLES ARRANGED IN ORDER OF SIZE
                                                                        THE DIFFERENCE BETWEEN CONSECUTIVE BIOKA57
  TWO SERVERS WITH LIMITED WAITING ROOMS AND CERTAIN ORDER OF VISITS
                                                                                                 A SYSTEM OF BIOKA68
IMATION OF A REGRESSION PARAMETER FOR CERTAIN SECOND ORDER PROCESSES
                                                                                               EFFICIENT EST
                                                                                                             AMS 61 1299
            A METHOD OF SYSTEMATIC SAMPLING BASED ON ORDER PROPERTIES
                                                                                                             BIOKA53
                                         ON INFERRING ORDER RELATIONS IN ANALYSIS OF VARIANCE
                                                                                                             BIOCS65
                               THE CHOICE OF A SECOND ORDER ROTATABLE DESIGN
                                                                                                             BIOKA63
                 CORRICENDA, 'THE CHOICE OF A SECOND ORDER ROTATABLE DESIGN'
                                                                                                                      305
                                                                                                             BIOKA65
                                       FURTHER SECOND ORDER ROTATABLE DESIGNS
                                                                                                              AMS 68
                                           TWO THIRD ORDER ROTATABLE DESIGNS IN FOUR DIMENSIONS
                                                                                                              AMS 64
             A METHOD FOR THE CONSTRUCTION OF SECOND ORDER ROTATABLE DESIGNS IN K DIMENSIONS
                                                                                                              AMS 67
SPECIFIC DESIGNS
                                                THIRD ORDER ROTATABLE DESIGNS IN THREE DIMENSIONS, SOME
                                                                                                              AMS 61
                                                                                                                      910
                                                THIRD ORDER ROTATABLE DESIGNS IN THREE FACTORS. ANALYSIS
                                                                                                             TECH 62
-RECRESSIVE MODEL. II. NULL DISTRIBUTIONS FOR HIGHER ORDER SCHEMES, NON-NULL DISTRIBUTIONS /LINEAR AUTO BIOKA56
                                                                                                                      1B6
R A WEIBULL MODEL WITH PROGRESSIVE C/ EXACT THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON RELIABLE LIFE FO JASA 69
                                                                                                                       306
       THE EXPECTED COVERACE TO THE LEFT OF THE 1'TH ORDER STATISTIC FOR ARBITRARY DISTRIBUTIONS
                                                                                                              AMS 69
                                                                                                                      644
NE/
      ERRATA, 'EXACT CONFIDENCE BOUNDS, BASED ON ONE ORDER STATISTIC FOR THE PARAMETER OF A ONE-PARAMETER TECH 64
OPULATION
               EXACT CONFIDENCE BOUNDS, BASED ON ONE ORDER STATISTIC FOR THE PARAMETER OF AN EXPONENTIAL P TECH 64
                                                                                                                      301
                  THE SAMPLE MEAN AMONG THE MODERATE ORDER STATISTICS
                                                                                                              AMS 62 1160
                                                                                                              AMS 63
                   ON THE LIMIT BEHAVIOUR OF EXTREME ORDER STATISTICS
                                                                                                                     992
            THE SAMPLE MEAN AMONG THE EXTREME NORMAL ORDER STATISTICS
                                                                                                              AMS 63
                                                                                                                       33
                                            LOGISTIC ORDER STATISTICS
                                                                                                              AMS 63
                 ON UNCORRELATED LINEAR FUNCTIONS OF ORDER STATISTICS
                                                                                                             JASA 63
                                                                                                                      245
               AN APPLICATION OF A BALLOT THEOREM IN ORDER STATISTICS
                                                                                                              AMS 64 1356
                                           ON EXTREME ORDER STATISTICS
                                                                                                              AMS 64 1726
                  SOME BOUNDS FOR EXPECTED VALUES OF ORDER STATISTICS
                                                                                                              AMS 65 1055
                                 A K-SAMPLE MODEL IN ORDER STATISTICS
                                                                                                              AMS 65
                          SIMPLE RANDOM WALK AND RANK ORDER STATISTICS
                                                                                                              AMS 67 1042
                          A NOTE ON MOMENTS OF GAMMA ORDER STATISTICS
                                                                                                             TECH 67
                                                                                                                      315
                                 LINEAR FUNCTIONS OF ORDER STATISTICS
                                                                                                              AMS 69
        BOUNDS AND APPROXIMATIONS FOR THE MOMENTS OF ORDER STATISTICS
                                                                                                             JASA 69 NO.4
                          THE MOMENTS OF LOG-WEIBULL ORDER STATISTICS
                                                                                                             TECH 69
                                                                                                                     373
                           EXPECTED VALUES OF NORMAL ORDER STATISTICS
                                                                                                             BIOKA61
            ON THE ASYMPTOTIC SUFFICIENCY OF CERTAIN ORDER STATISTICS
                                                                                                             JRSSB62
  APPLICATIONS OF A BALLOT THEOREM IN PHYSICS AND IN ORDER STATISTICS
                                                                                                             JRSSB65
                                                                                                             AMS 69
DISTRIBUTION OF THE MAXIMUM AND MINIMUM OF RATIOS OF ORDER STATISTICS
                                                                                                     ON THE
                                                                                                                      918
    NORMALITY OF LINEAR COMBINATIONS OF FUNCTIONS OF ORDER STATISTICS
                                                                                                  ASYMPTOTIC
                                                                                                              AMS 69 NO.6
       OF PARAMETERS OF THE CAMMA DISTRIBUTION USING ORDER STATISTICS
                                                                                                  ESTIMATION BIOKA62
                                                                                                                       B8
   ESTIMATION OF LOCATION AND SCALE PARAMETERS USING ORDER STATISTICS
                                                                                               LEAST SQUARES BIOKA52
PROOF OF ASYMPTOTIC NORMALITY OF LINEAR FUNCTIONS OF ORDER STATISTICS
                                                                                              AN ELEMENTARY
                                                                                                              AMS 68
                                                                                                                      263
   RELATIONS BETWEEN EXPECTED VALUES OF FUNCTIONS OF ORDER STATISTICS
                                                                                        A NOTE ON RECURRENCE
                                                                                                              AMS 66
                                                                                                                      733
AND CENERALIZED TRUNCATED NORMAL DISTRIBUTIONS USING ORDER STATISTICS
                                                                                CHARACTERIZATION OF NORMAL
                                                                                                              AMS 66 1011
OF THE PARAMETERS OF THE LOGISTIC DISTRIBUTION USING ORDER STATISTICS
                                                                           BEST LINEAR UNBIASED ESTIMATORS
                                                                                                             TECH 67
                                                                                                                       43
                                                                           ESTIMATION OF THE PARAMETERS OF T BIOKA69
HE EXTREME VALUE DISTRIBUTION BY USE OF TWO OR THREE ORDER STATISTICS
                                                                                                                       429
                                                                          AFTER A NUMBER OF TERMS OF THE DA BIOKAGO
VID-JOHNSON SERIES FOR THE EXPECTED VALUES OF NORMAL ORDER STATISTICS
                                                                          /ONE OF TWO PARAMETERS OF THE EXPO
NENTIAL DISTRIBUTION ON THE BASIS OF SUITABLY CHOSEN ORDER STATISTICS
                                                                                                              AMS 63 1419
                                                                          /UM ESTIMATORS OF THE PARAMETERS O
F NEGATIVE EXPONENTIAL DISTRIBUTIONS FROM ONE OR TWO ORDER STATISTICS
                                                                                                              AMS 63
                                                                                                                      117
                                                                          /UM-LIKELIHOOD ESTIMATION OF SCALE BIOKA63
 OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION USING ORDER STATISTICS
                                                                                                                      217
HE PARAMETERS OF THE BETA DISTRIBUTION FROM SMALLEST ORDER STATISTICS
                                                                          MAXIMUM LIKELIHOOD ESTIMATION OF T TECH 67
                                                                                                                      607
ORDER STATISTIC OF TH/ CONDITIONAL DISTRIBUTION OF ORDER STATISTICS AND DISTRIBUTION OF THE REDUCED ITH SAMP/ CORRECTION TO 'TABLES OF EXPECTED VALUES OF ORDER STATISTICS AND PRODUCTS OF ORDER STATISTICS FOR
                                                                                                              AMS 63
                                                                                                                     652
                                                                                                              AMS 61 1345
                                        ON MOMENTS OF ORDER STATISTICS AND QUASI-RANGES FROM NORMAL
                                                                                                              AMS 63 633
                                                      ORDER STATISTICS AND STATISTICS OF STRUCTURE
                                                                                                              AMS 65 897
         EXACT MOMENTS AND PERCENTAGE POINTS OF THE ORDER STATISTICS AND THE DISTRIBUTION OF THE RANGE FR AMS 65 907
CAUCHY DISTRIBUTION
                                                      ORDER STATISTICS ESTIMATORS OF THE LOCATION OF THE
                                                                                                           JASA 66 1205
                                                      ORDER STATISTICS FOR DISCRETE POPULATIONS AND FOR
GROUPED SAMPLES
                                                                                                             JASA 68 1390
```

TITLE WORD INDEX OPT - ORD

```
DETERMINATION OF THE EXACT OPTIMUM ORDER STATISTICS FOR ESTIMATING THE PARAMETERS OF EXP TECH 67 279
ONENTIAL DISTR/
            RECURRENCE RELATIONS BETWEEN MOMENTS OF ORDER STATISTICS FOR EXCHANGEABLE VARIATES

ORDER STATISTICS FROM A CLASS OF NON-NORMAL
                                                                                                           AMS 68 272
DISTRIBUTIONS
                                                                                                           BIOKA69 415
                         ON THE BIVARIATE MOMENTS OF ORDER STATISTICS FROM A LOGISTIC DISTRIBUTION
                                                                                                           AMS 66 1002
                                         MOMENTS OF ORDER STATISTICS FROM A NORMAL POPULATION
                                                                                                          BTOKA59
                                                                                                                   433
                                LINEAR FORMS IN THE ORDER STATISTICS FROM AN EXPONENTIAL DISTRIBUTION
                                                                                                           AMS 64
                                                                                                                   270
 A RECURRENCE RELATION FOR DISTRIBUTION FUNCTIONS OF ORDER STATISTICS FROM BIVARIATE DISTRIBUTIONS
                                                                                                           JASA 69
                                                                                                                   600
       ASYMPTOTIC DISTRIBUTION OF DISTANCES BETWEEN ORDER STATISTICS FROM BIVARIATE POPULATIONS
                                                                                                           AMS 64
                                                                                                                   748
           INEQUALITIES FOR LINEAR COMBINATIONS OF ORDER STATISTICS FROM RESTRICTED FAMILIES
                                                                                                            AMS 66 1574
 427 'ESTIMATION OF LOCATION AND SCALE PARAMETERS BY ORDER STATISTICS FROM SINGLY AND DOUBLY CENSORED SAMP AMS 39
                                                                                                                   325
 NORMAL DISTRIBUTION
                                         MOMENTS OF ORDER STATISTICS FROM THE EQUICORRELATED MULTIVARIATE AMS 62 1286
                                                    ORDER STATISTICS FROM THE GAMMA DISTRIBUTION
                                                                                                           TECH 60 243
                                            ERRATA, 'ORDER STATISTICS FROM THE GAMMA DISTRIBUTION'
                                                                                                          TECH 60
                                                                                                                   523
                     PERCENTAGE POINTS AND MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTION
                                                                                                            AMS 61
                                                                                                                    B8B
           EXACT MOMENTS AND PRODUCT MOMENTS OF THE ORDER STATISTICS FROM THE TRUNCATED LOGISTIC DISTRIBU JASA 66 514
ERS OF THE EXPONENTIAL DISTRIBUTION BASED ON OPTIMUM ORDER STATISTICS IN CENSORED SAMPLES /F THE PARAMET AMS 66 1717
 MOMENTS OF THE RANGE AND PRODUCT MOMENTS OF EXTREME ORDER STATISTICS IN NORMAL SAMPLES
                                                                                                   ON THE BIOKA56 45B
                      ON THE MOMENTS OF ORDER STATISTICS IN SAMPLES FROM NORMAL POPULATIONS BIOKA54 CORRIGENDA, 'ON THE MOMENTS OF ORDER STATISTICS IN SAMPLES FROM NORMAL POPULATIONS' BIOKA54
                                                                                                                    200
                                                                                                                    568
 ONE DEGREE OF FREEDOM
                             EXACT LOWER MOMENTS OF ORDER STATISTICS IN SAMPLES FROM THE CHI-DISTRIBUTION AMS 62 1292
                          RELATIONS AMONG MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO RELATED POPULATI TECH 63 514
ONS
              SOME RELATIONS BETWEEN EXPECTATIONS OF ORDER STATISTICS IN SAMPLES OF DIFFERENT SIZES
                                                                                                          BTOKA64
                                                                                                                   259
CTION OF A CONTINUOUS UNIVARIATE POPULATION FROM THE ORDER STATISTICS OF A SAMPLE /ERSE DISTRIBUTION FUN BIOKAG9 NO.3
LIGA/ RECURRENCE RELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES, AND SOME APP BIOKA67
                                                                                                                    283
EIR RELATION TO INVERSE SAMP/ EXACT MOMENTS OF THE ORDER STATISTICS OF THE GEOMETRIC DISTRIBUTION AND TH JASA 67
                                                                                                                    915
                                SOME RESULTS ON THE ORDER STATISTICS OF THE MULTIVARIATE NORMAL AND PARET AMS 64 1815
O TYPE 1 POPULATIONS
IAL DISTRIBUT/ TABLES FOR BEST LINEAR ESTIMATES BY ORDER STATISTICS OF THE PARAMETERS OF SINGLE EXPONENT JASA 57
                                                                                                                   58
                SCALE PARAMETER ESTIMATION FROM THE ORDER STATISTICS OF UNEQUAL GAMMA COMPONENTS
                                                                                                            AMS 66
152
                                                                                                            AMS 67
                                                                                                                    52
MATION OF PARAMETERS OF THE GAMMA DISTRIBUTION USING ORDER STATISTICS.
                                                                                         CORRIGENDA, 'ESTI BIOKA63
LATIONS BETWEEN THE PROBABILITY DENSITY FUNCTIONS OF ORDER STATISTICS, AND SOME APPLICATIONS /URRENCE RE AMS 62
                                                                                                                    169
OF NEGATIVE EXPONENTIAL POPULATIONS FROM ONE OR TWO ORDER STATISTICS, CORR. TO THIS PAPER PRINTED IN 63 1 AMS 61 107B
POPUL/ POINT AND INTERVAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE SCALE PARAMETER OF A WEIBUL TECH 65 405
L POPUL/
              CORRIGENDA, 'EXPECTED VALUES OF NORMAL ORDER STATISTICS'
                                                                                                          BIOKA61
                                                                                                                    476
                      A NOTE ON 'A K-SAMPLE MODEL IN ORDER STATISTICS' BY W. J. CONOVER
                                                                                                            AMS 66
                                                                                                                   287
                                             ON THE ORDER STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS
                                                                                                           AMS 62
                                                                                                                   596
                                    A CLASS OF RANK ORDER TESTS FOR A GENERAL LINEAR HYPOTHESIS
                                                                                                            AMS 69 1325
                  ASYMPTOTICALLY MOST POWERFUL RANK ORDER TESTS FOR GROUPED DATA
                                                                                                            AMS 67 1229
                              ON THE THEORY OF RANK ORDER TESTS FOR LOCATION IN THE MULTIVARIATE ONE
SAMPLE PROBLEM
                                                                                                            AMS 67 1216
                                               RANK ORDER TESTS FOR MULTIVARIATE PAIRED COMPARTSONS
                                                                                                            AMS 69 NO.6
                                  ON A CLASS OF RANK ORDER TESTS FOR THE PARALLELISM OF SEVERAL REGRESSION AMS 69 1668
LINES
                         ON A CLASS OF ALIGNED RANK ORDER TESTS IN TWO-WAY LAYOUTS
                                                                                                            AMS 6B 1115
                                               RANK ORDER TESTS OF LINEAR HYPOTHESES
                                                                                                           JRSSR6B 4B3
IN MARKOV-CHAIN FREQUENCIES, AND THE BINARY CHAIN OF ORDER 2
                                                                                              QUADRATICS JRSSB63
                                                                                                                   383
                                                                                                            AMS 63
                        TESTING HOMOGENEITY AGAINST ORDERED ALTERNATIVES
                                                                                                                   945
           A DISTRIBUTION-FREE K-SAMPLE TEST AGAINST ORDERED ALTERNATIVES
                                                                                                           BIOKA54
                                                                                                                   133
                          A TEST OF HOMOGENEITY FOR ORDERED ALTERNATIVES
                                                                                                           BIOKA59
                                                                                                                    36
 NORMAL THEORY AND NONPARAMETRIC TESTING AGAINST ORDERED ALTERNATIVES IN MODEL I ANALYSIS OF VARIANCE. AMS 67 1740
                       ON CHERNOFF-SAVAGE TESTS FOR ORDERED ALTERNATIVES IN RANDOMIZED BLOCKS
                                                                                                            AMS 68
                                                                                                                   967
                          A TEST OF HOMOGENEITY FOR ORDERED ALTERNATIVES. II
                                                                                                           BIOKA59
LATION AND REGRESSION. WITH APPLICATION TO MANIFOLD, ORDERED CONTINGENCY TABLES /CT-MOMENT PARTIAL CORRE BIOKA59
                                                                                                                    241
         ESTIMATION OF ERROR VARIANCE FROM SMALLEST ORDERED CONTRASTS
                                                                                                           JASA 63
                                                                                                                    152
                             ON LINEAR FUNCTIONS OF ORDERED CORRELATED NORMAL RANDOM VARIABLES
                                                                                                           BIOKA65
F LINEAR FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED CORRELATED NORMAL RANDOM VARIABLES WITH EMPHA BIOKA64
                                                                                                                   143
 FURTHER REMARKS ON TOPOLOGY AND CONVERGENCE IN SOME ORDERED FAMILIES OF DISTRIBUTION
                                                                                                           AMS 69
                                                                                                                    51
               ON THE TOPOLOGICAL STRUCTURE OF SOME ORDERED FAMILIES OF DISTRIBUTIONS
                                                                                                            AMS 64 1216
                                                    ORDERED HYPOTHESES FOR MULTIPLE TREATMENTS, A SIGNIFI JASA 63 216
CANCE TEST FOR LINEAR RANKS
                                          A NOTE ON ORDERED LEAST-SQUARES ESTIMATION
                                                                                                           BTOKA53
                                                                                                                   457
                            ON THE USE OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE SUPPORT FOR A
COMPLETE ORDER
                                                                                                          JASA 61
                                                                                                                    299
                                 NOTE ON ESTIMATING ORDERED PARAMETERS
                                                                                                            AMS 65
                                                                                                                   698
                                         ESTIMATING ORDERED PROBABILITIES
                                                                                                            AMS 63
                                                                                                                    967
                                      SOME NOTES ON ORDERED RANDOM INTERVALS
                                                                                                           JRSSB56
                                                                                                                    79
STIMATION OF THE DISTRIBUTIONS OF TWO STOCHASTICALLY ORDERED RANDOM VARIABLES
                                                                                   MAXIMUM LIKELIHOOD E JASA 66 1067
                   SOME APPLICATIONS OF EXPONENTIAL ORDERED SCORES
                                                                                                          JRSSB64
 FOR NUMBER OF RUNS OF SIGNS OF FIRST DIFFERENCES IN ORDERED SERIES
                                                                                         PROBABILITY TABLE JASA 61
                      ANTE-DEPENDENCE ANALYSIS OF AN ORDERED SET OF VARIABLES
                                                                                                            AMS 62
                                                                                                                    201
  DISTRIBUTIONS OF KENDALL'S TAU BASED ON PARTIALLY ORDERED SYSTEMS
                                                                                                           BIOKA55
                                                                                                                   417
                                                    ORDERED TESTS IN THE ANALYSIS OF VARIANCE
                                                                                                           BIOKA61
                                                                                                                   325
                                  ESTIMATION OF TWO ORDERED TRANSLATION PARAMETERS
                                                                                                           AMS 68
                                                                                                                   517
                    SOME TESTS OF SIGNIFICANCE WITH ORDERED VARIABLES
                                                                                                           JRSSB56
    OF THE MEAN OF A CENSORED NORMAL DISTRIBUTION BY ORDERED VARIABLES
                                                                                           THE ESTIMATION BIOKASE
                                                                                                                   482
                          A TEST OF HOMOGENEITY FOR ORDERED VARIANCES
                                                                                                          JRSSR61
                                                                                                                   195
            THE CURVE THROUGH THE EXPECTED VALUES OF ORDERED VARIATES AND THE SUM OF SQUARES OF NORMAL SCO BIOKAGE
                                                                                                                    252
    BLOCKS WHEN THE ALTERNATIVES HAVE AN 'A PRIORI' ORDERING
                                                                           RANK TESTS FOR RANDOMIZED AMS 67
                                                                                                                    R67
                        A RENEWAL PROBLEM WITH BULK ORDERING OF COMPONENTS
                                                                                                           JRSSB59
                                                                                                                   180
SAMPLE CASE
                              FINE STRUCTURE OF THE ORDERING OF PROBABILITIES OF RANK ORDERS IN THE TWO
                                                                                                            AMS 66
                                                                                                                    98
                                  THE NONPARAMETRIC ORDERING, 1001 TO 0110
                                                                                                            AMS 61
                                                                                                                   101
            SIGNIFICANCE PROBABILITY BOUNDS FOR RANK ORDERINGS
                                                                                                            AMS 64
                                                                                                                    B91
                        STATISTICAL REPRODUCTION OF ORDERINGS AND TRANSLATION SUBFAMILIES
                                   A THEOREM ON RANK ORDERS FOR TWO CENSORED SAMPLES
                                                                                                           AMS 65
                                                                                                                   316
                      ON EXACT PROBABILITIES OF RANK ORDERS FOR TWO WIDELY SEPARATED NORMAL DISTRIBUTIONS
                                                                                                           AMS 67 1491
                                                    ORDINAL MEASURES OF ASSOCIATION
                                                                                                          JASA 58
                                                                                                                   814
                              ON THE CONVERGENCE OF ORDINARY INTEGRALS TO STOCHASTIC INTEGRALS
                                                                                                           AMS 65 1560
                  THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST SQUARES AND TWO-STAGE LEAST SQUARES ES JASA 69 923
ASED
           A NECESSARY AND SUFFICIENT CONDITION THAT ORDINARY LEAST-SQUARES ESTIMATORS BE BEST LINEAR UNBI JASA 67 1302
 NORMAL PROBABILITY FUNCTION, TABLES OF CERTAIN AREA-ORDINATE RATIOS AND OF THEIR RECIPROCALS
                                                                                                      THE BIOKASS 217
```

ORE - PAR TITLE WORD INDEX

```
TAIL SICMA-FIELD OF A MARKOV CHAIN AND A THEOREM OF OREY
                                                                                                        THE AMS 64 129T
 SYSTEM OF MODELS FOR THE LIFE CYCLE OF A BIOLOGICAL ORGANISM
                                                                                                         A BIOKA68 2I1
                                 THE DISTRIBUTION OF ORGANISMS
                                                                                                           BIOCS65
                                  EXPERIMENTING WITH ORCANISMS AS BLOCKS
                                                                                                            BIOKA57 14I
                   THE STUDY OF POPULATION CROWTH IN ORCANISMS CROUPED BY STACES
                                                                                                            BIOCS65
ION WITH SPECIAL CONSIDERATION OF THE CASE OF MARKET ORIENTATION OF PRODUCTION /ASURINC SPATIAL ASSOCIAT JASA 56
                                         CRAPHICALLY ORIENTED TESTS FOR HOST VARIABILITY IN DILUTION
                                                                                                           BIOCS67
                                                                                                                     269
UND FOR THE CRITICAL PROBABILITY IN THE ONE-QUADRANT ORIENTED-ATOM PERCOLATION PROCESS
                                                                                                A LOWER BO JRSSB63
                                        THE RATIONAL ORIGIN FOR MEASURING SUBJECTIVE VALUES
                                                                                                                    458
                                                                                                           JASA 57
    AFRICAN STATISTICAL ASSOCIATION, A SKETCH OF ITS ORIGINS AND GROWTH
                                                                                                 THE SOUTH SASJ 67
                                                                                                                      1
NITE-TIME MAXIMA AND MINIMA OF A STATIONARY GAUSSIAN ORNSTEIN-UHLENBECK PROCESS BY MONTE CARLO SIMULATION JASA 6B 1517
            EXISTENCE OF AN INVARIANT MEASURE AND AN ORNSTEIN'S ERGODIC THEOREM
                                                                                                             AMS 69
              AMS 63
APPROXIMATIONS TO MULTIVARIATE NORMAL ORTHANT PROBABILITIES

AMS 63
ORTHANT PROBABILITIES FOR THE EQUICORRELATED MULTIVAR BIOKA62
                                                                                                             AMS 63 19T
TATE NORMAL DISTRIBUTION
                                                                                                                   433
                                                     ORTHANT PROBABILITIES FOR THE QUADRIVARIATE NORMAL
                                                                                                             AMS 64 1685
DISTRIBUTION
                                                 THE ORTHANT PROBABILITIES OF FOUR GAUSSIAN VARIATES
                                                                                                             AMS 69
ARIATE REGRESSION WHEN THE INDEPENDENT VARIABLES ARE ORTHOGONAL /DETERMINATION OF SIGNIFICANCE IN MULTIV JRSSB67 154
                                                  ON ORTHOGONAL ARRAYS
                                                                                                            AMS 66 1355
                          SOME MAIN-EFFECT PLANS AND ORTHOGONAL ARRAYS OF STRENCTH TWO
                                                                                                             AMS 6I 1167
 ITERATIVE ESTIMATION OF VARIANCE COMPONENTS FOR NON-ORTHOGONAL DATA
                                                                                                           BIOCS69 NO.4
  GROUP THEORY TO THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN SQUARES
                                                                                    ON THE APPLICATION OF BIOKA69 NO.3
         ON METHODS OF CONSTRUCTING SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES USING A COMPUTER
                                                                                                            TECH 60 507
         ON METHODS OF CONSTRUCTING SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES USING A COMPUTER. II
                                                                                                           TECH 6I
                                                                                                                    IlI
             MAIN-EFFECT ANALYSIS OF THE GENERAL NON-ORTHOGONAL LAYOUT WITH ANY NUMBER OF FAGTORS
                                                                                                             AMS 65
                                                                                                                     88
 FOR FRACTIONS OF A COMPLETE FACTORIAL EXPERIMENT AS ORTHOGONAL LINEAR COMBINATIONS OF THE OBSERVATIONS
                                                                                                             AMS 63 I068
                                     A NOTE ON SMALL ORTHOGONAL MAIN EFFECT PLANS FOR FACTORIAL EXPERIMENT TECH 64 220
FACTORIAL EXPERIMENTS
                                                     ORTHOGONAL MAIN-EFFECT PLANS FOR ASYMMETRICAL
                                                                                                           TECH 62
AL EXPERIMENTS'
                                            ERRATA, 'ORTHOGONAL MAIN-EFFECT PLANS FOR ASYMMETRICAL FACTORI TECH 62
 ALL TWO-FACTOR INTERACTIONS FOR THE 2-TO-THE-N T/
                                                     ORTHOGONAL MAIN-EFFECT PLANS PERMITTING ESTIMATION OF TECH 69 NO.4
DESIGNS AND TWO-FACTOR INTERACTION ALIASING
                                                     ORTHOGONAL MAIN-EFFECT 2-TO-THE-N-TIMES-3-TO-THE-M TECH 68 559
                                            SOME NON-ORTHOGONAL PARTITIONS OF 4X4, 5X5, AND 6X6 LATIN
                                                                                                             AMS 66
                                                    ORTHOGONAL POLYNOMIAL FITTING
                                                                                                           BTOKA53 36T
                    A CONGISE DERIVATION OF GENERAL ORTHOCONAL POLYNOMIALS
                                                                                                           JRSSB58
                                                                                                                     406
                          NUMERICAL CONSTRUCTION OF ORTHOGONAL POLYNOMIALS FROM A GENERAL RECURRENCE
                                                                                                           BIOCS68
 TRIALS WITH DAIRY COWS
                                       THE VALUE OF ORTHOGONAL POLYNOMIALS IN THE ANALYSIS OF CHANGE-OVER BIOCS67
                                                                                                                     297
IAL FREQUENCY FUNCTIONS I/ CORRICENDA, 'THE USE OF ORTHOGONAL POLYNOMIALS OF POSITIVE AND NECATIVE BINOM BIOKAGL
                                                                                                                     476
DISTRIBUTIONS AND THEIR USES
                                                 THE ORTHOGONAL POLYNOMIALS OF POWER SERIES PROBABILITY
                                                                                                           BIOKA66 121
                                                 THE ORTHOGONAL POLYNOMIALS OF THE FACTORIAL POWER SERIES SASJ 67
PROBABILITY DISTRIBUTIONS
                                                                                                                     49
INOMIAL FREQUENCY FUNCTIONS IN CURVE F/ THE USE OF ORTHOGONAL POLYNOMIALS OF THE POSITIVE AND NEGATIVE B BIOKAGI
                                                                                                                    T15
            COMPLETE SET OF LEADING COEFFICIENTS FOR ORTHOGONAL POLYNOMIALS UP TO N = 26
                                                                                                           TECH 65
                                                                                                                     644
             ESTIMATION OF PROBABILITY DENSITY BY AN ORTHOGONAL SERIES
                                                                                                            AMS 67 I26I
                               DENSITY ESTIMATION OF ORTHOGONAL SERIES
                                                                                                             AMS 69 I496
                  ASYMMETRICAL ROTATABLE DESIGNS AND ORTHOGONAL TRANSFORMATIONS
                                                                                                           TECH 68 313
                                                     ORTHOGONALITY IN ANALYSIS OF VARIANCE
                                                                                                            AMS 64
                                                 THE ORTHOGONALIZATION OF UNDESIGNED EXPERIMENTS
                                                                                                           TECH 66
                                        ERRATA, 'THE ORTHOGONALIZATION OF UNDESIGNED EXPERIMENTS'
                                                                                                           TECH 66
                                                                                                                    731
NVESTIGATING THE NORMALITY AND VARIANCES OF RESID/ ORTHONORMAL BASES OF ERROR SPACES AND THEIR USE FOR I JASA 67 1022
                                                 AN OSCILLATING SEMIGROUP
                                                                                                            AMS 67
                                                                                                                     924
                       A REVISED TEST FOR SYSTEMATIC OSCILLATION
                                                                                                            JRSSB54
                                                                                                                     292
AN ANALYSIS OF THE DATA FOR SOME EXPERIMENTS CARRIED OUT BY CAUSE WITH POPULATIONS OF THE PROTOZOA PARAMEC BIOKAS7
                                                                                                                    314
REGIONS
                                                 THE OUTER NEEDLE OF SOME BAYES SEQUENTIAL CONTINUATION
                                                                                                         BTOKA66
                                                                                                                     455
           PERCENTAGE POINTS FOR THE DISTRIBUTION OF OUTGOING QUALITY
                                                                                                           JASA 59
                                                                                                                     689
ON THE DISTRIBUTION AND POWER OF A TEST FOR A SINGLE OUTLIER
                                                                                                           SASJ 69
                                                                                                                     9
                        A BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS
                                                                                                           BIOKA68 119
                                        REJECTION OF OUTLIERS
                                                                                                           TECH 60
                                                                                                                     123
                                      SOME TESTS FOR OUTLIERS
                                                                                                           BIOKAGI 379
                     ON AN EXTREME RANK SUM TEST FOR OUTLIERS
                                                                                                           BIOKA63
                THE PERFORMANCE OF SEVERAL TESTS FOR OUTLIERS
                                                                                                           BIOKA65
S RELATING TO THE EXPONENTIAL DISTRIBUTION WHEN SOME OUTLIERS ARE PRESENT, CORR. 65 1249 /S OF HYPOTHESE JASA 65
                                                                                                                     548
                                           LOCATING OUTLIERS IN FACTORIAL EXPERIMENTS
                                                                                                           TECH 60
                                                                                                                    149
APPRAISAL.
                                                    OUTLIERS IN PATTERNED EXPERIMENTS. A STRATEGIC
                                                                                                           TECH 61
                                                                                                                     91
N. 2 EST/
           INVESTIGATION OF RULES FOR DEALING WITH OUTLIERS IN SMALL SAMPLES FROM THE NORMAL DISTRIBUTIO TECH 69
                                                                                                                    527
                                         ANALYSIS OF OUTLIERS WITH ADJUSTED RESIDUALS
                                                                                                           TECH 67
                                                                                                                    54 T
                 AN OUTLINE OF LINEAR PROGRAMMING AN OUTLINE OF LINEAR PROGRAMMING (WITH DISCUSSION)
                                                                                                           JRSSB55
                                                                                                                    165
                                                                                                                   165
PROGRAMMING (WITH DISCUSSION)
                                                 AN OUTLINE OF LINEAR PROGRAMMING AN OUTLINE OF LINEAR
                                                                                                           JRSSB55
                                        THE BAYESIAN OUTLOOK AND ITS APPLICATIONS (WITH DISCUSSION)
                                                                                                           BIOCS69 NO.4
                                                 AN OUTLOOK REPORT
                                                                                                           JASA 58
                              DETECTION OF BEST AND OUTLYING NORMAL POPULATIONS WITH KNOWN VARIANCES
                                                                                                           BIOKA61
                  ON THE RISK OF SOME STRATEGIES FOR OUTLYING OBSERVATIONS
                                                                                                            AMS 64 I524
                           PROCEDURES FOR DETECTING OUTLYING OBSERVATIONS IN SAMPLES
                                                                                                           TECH 69
                                QUERY, REJECTION OF OUTLYING VALUES
                                                                                                           TECH 64
                                                                                                                    22B
             WAGE, PRICE, AND TAX ELASTICITIES OF OUTPUT AND DISTRIBUTIVE SHARES GRADING WITH A GAUGE SUBJECT TO RANDOM OUTPUT FLUCTUATIONS
                                                                                                           JASA 62
                                                                                                                    607
                                                                                                           JRSSB54
                                                                                                                    1 T B
                              APPROACHES TO NATIONAL OUTPUT MEASUREMENT
                                                                                                           JASA 58
                                                                                                                    948
                                                                                                           AMS 68 1144
                                                THE OUTPUT PROCESS OF A STATIONARY M/M/S QUEUEING SYSTEM
                    THE CORRELATION STRUCTURE OF THE OUTPUT PROCESS OF SOME SINGLE SERVER SYSTEMS
                                                                                                            AMS 6B 1007
AND WHICH INTERARRIVAL AND SERVING DISTRIBUT/ THE OUTPUT PROCESS OF THE QUEUEING SYSTEM WITH ONE SERVER JRSSB59
                                                                                                                    375
ABILITY GENERATING FUNCTIONALS TO THE STUDY OF INPUT-OUTPUT STREAMS
                                                                             SOME APPLICATIONS OF PROB JRSSB6B
                                                                                                                    321
ONCENTRATION OF DOMESTIC MANUFACTURING ESTABLISHMENT OUTPUT 1939-1958
                                                                                              CHANGES IN C JASA 62
                                                                                                                    797
              RECTIFYING INSPECTION OF A CONTINUOUS OUTPUT, CORR. 59 B10
                                                                                                           JASA 58
                                NOTES. A MEASURE OF 'OVERALL VARIABILITY' IN POPULATIONS
                                                                                                           BIOCS68
                                                                                                                    1B9
  AN A POSTERIORI PROBABILITY METHOD FOR SOLVING AN OVERDETERMINED SYSTEM OF EQUATIONS
                                                                                                           TECH 66
                                                                                                                    675
                                                    OVERFLOW AT A TRAFFIC LICHT
                                                                                                           BIOKA59
                                                                                                                    420
                                       THE EFFECT OF OVERLAPPING IN BACTERIAL COUNTS OF INCUBATED COLONIES BIOKA53
                                                                                                                    220
                   A SIMPLIFIED MODEL FOR DELAYS IN OVERTAKING ON A TWO-LANE ROAD
                                                                                                           JRSSR58
                                                                                                                    408
VARIATION, COMMENT ON A CRITICISM MADE BY KOOPMANS, OWEN AND ROSENBLATT. /IBUTION OF THE COEFFICIENT OF BIOKAG5
                                                                                                                    303
```

TITLE WORD INDEX ORE - PAR

OMIAL DISTRIBUTION AND THE POSTERIOR DISTRIBUTION OF			
		JASA 64	
AND COME ADDITION / DECUMPRING DEL ARTONIC DESCRIPTION SUID			359
AND SOME APPLICA/ RECURRENCE RELATIONS BETWEEN THE	P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES,	BIOKA67	283
EXPERIMENTS WITH	P-COMPONENT MIXTURES	JRSSB68	137
STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A	P-DEPENDENT TIME SERIES (CORR. 69 457) /OF COX AND	BIOKA68	381
BOUNDED LENCTH CONFIDENCE INTERVALS FOR THE		AMS 66	581
BOUNDED LENCTH CONFIDENCE INTERVALS FOR THE		AMS 66	5B6
FREE VERSION OF THE SMIRNOV TWO SAMPLE TEST IN THE			1
ON COME ALTERNATIVE ECTINATES FOR SHIFT IN THE	D VARIATE ONE CAMBLE DEODLEM	AMS 64	
FROM A RANDOM POINT TO THE NEAREST POINT OF A COSELY	PACKED LATTICE. THE DISTANCE		261
	PAIR OF MITTER DANKINGS		
THE PIDIKIDOTION OF REMPRESE & COURS & FOR IN	111111 01 1122 11111111110		151
EXTENDED TABLES OF THE WILCOXON MATCHED		JASA 65	864
PAIRED COMPARISONS FOR		AMS 68	200
REDUCED GROUP DIVISIBLE	PAIRED COMPARISON DESIGNS	AMS 67	
BETWEEN JUDGES			113
AN ANALYSIS OF	PAIRED COMPARISON DESIGNS WITH INCOMPLETE REPETITIONS	BIOKA57	97
	PAIRED COMPARISON MODELS WITH TESTS FOR INTERACTION	BIOCS65	651
MAXIMUM LIKELIHOOD	PAIRED COMPARISON RANKING BY LINEAR PROGRAMMING	BIOKA69	NO.3
MAXIMUM-LIKELIHOOD	PAIRED COMPARISON RANKINGS	BIOKA66	143
MATHEMATICAL MODELS FOR RANKING FROM	PAIRED COMPARISONS	JASA 60	503
RANKINGS FROM	PAIRED COMPARISONS	AMS 64	739
SOME EQUIVALENCE CLASSES IN	PAIRED COMPARISONS	AMS 66	488
A TABLE FOR RANK SUM MULTIPLE		TECH 67	
A TREATMENT OF TIES IN		AMS 68	
RANK ORDER TESTS FOR MULTIVARIATE		AMS 69	
ON A CORRECTION TERM IN THE METHOD OF		BIOKA52	211
			139
INCONSISTENCIES IN A SCHEDULE OF		BIOKA61	303
THE DISTRIBUTION OF THE NUMBER OF CIRCULAR TRIADS IN		BIOKA61	265
EXACT PROBABILITY DISTRIBUTION OVER SAMPLE SPACES OF		BIOCS65	986
ATIONSHIP BETWEEN TWO REPRESENTATIONS OF A MODEL FOR			597
XPERIMENTATION IN SCHEFFE'S ANALYSIS OF VARIANCE FOR			529
OCK DESIGNS. II. ADDITIONAL TABLES FOR THE METHOD OF			
			450
MPLE RESULTS ON ESTIMATION AND POWER FOR A METHOD OF	PAIRED COMPARISONS FOR PAIRED CHARACTERISTICS	AMS 6B	
OF INCOMPLETE BLOCK DESIGNS. I. THE METHOD OF			200
			324
	PAIRED COMPARISONS. THE EXTENSION OF A UNIVARIATE MOD		81
	PAIRED COMPARISONS.' /ANK ANALYSIS OF INCOMPLETE BL		288
TRIBUTION-FREE TEST OF INDEPENDENCE WITH A SAMPLE OF		JASA 62	116
SELECTION OF THE BEST TREATMENT IN A		AMS 63	75
DAVID ENTITLED 'SELECTION OF THE BEST TREATMENT IN A		AMS 63	92
		BIOKA61	95
	PAIRED-COMPARISON EXPERIMENTS INVOLVING SEVERAL	AMS 64	122
	PAIRED-COMPARISON EXPERIMENTS. A GENERALIZATION OF TH		194
CORRICENDA, 'SIGNIFICANT TESTS FOR		BIOKA61	475
LARGEST MEAN WHEN COMPARISONS CAN BE MADE ONLY IN			5B1
		BIOKA67	330
		BIOCS68	339
ON THE EFFICIENCY OF MATCHED		BIOKA68	365
		BIOKA65	289
		JASA 67	
A RANK SUM TEST FOR COMPARING ALL		TECH 60	197
	PAIRS OF TREATMENTS		
A MULTIPLE COMPARISONS SICN TEST, ALL		BIOCS67	539
A MULTIPLE COMPARISONS SICN TEST, ALL ON COMPARING THE CORRELATIONS WITHIN TWO	PAIRS OF VARIABLES	BIOCS6B	987
ON COMPARING THE CORRELATIONS WITHIN TWO	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS	BIOCS6B AMS 63	987 501
	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES	BIOCS6B AMS 63 AMS 63	987 501 511
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES	BIOCS6B AMS 63 AMS 63 AMS 62	987 501 511 290
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES	BIOCS6B AMS 63 AMS 63 AMS 62 BIOCS69	987 501 511 290 129
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES	BIOCS6B AMS 63 AMS 63 AMS 62 BIOCS69 AMS 65	987 501 511 290 129 1313
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES	BIOCS6B AMS 63 AMS 63 AMS 62 BIOCS69 AMS 65 BIOCS69	987 501 511 290 129 1313
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES	BIOCS6B AMS 63 AMS 62 BIOCS69 AMS 65 BIOCS69 JASA 59	987 501 511 290 129 1313 1 52
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES	BIOCS6B AMS 63 AMS 62 BIOCS69 AMS 65 BIOCS69 JASA 59 BIOCS69	987 501 511 290 129 1313 1 52 295
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES	BIOCS6B AMS 63 AMS 62 BIOCS69 AMS 65 BIOCS69 JASA 59 BIOCS69 BIOCS65	987 501 511 290 129 1313 1 52 295 140
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES	BIOCS6B AMS 63 AMS 62 BIOCS69 AMS 65 BIOCS69 JASA 59 BIOCS69 BIOCS65 JASA 64	987 501 511 290 129 1313 1 52 295 140 564
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE SIMULTANEOUS A MULTIVARIATE NDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO STATIONARY POINT LEAST SQUARES ESTIMATES AND RECURRENT GAMES AND THE PETERSBURG	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES PAIRWISE LINEAR STRUCTURAL RELATIONSHIPS PAIRWISE STATISTICAL INDEPENDENCE PALEONTOLOGICAL CROWTH PROBLEM PANEL MORTALITY AND PANEL BIAS PAR INDEX SUR PLUSIEURS CARACTERES PO PARABOLAS A SIMPLE PARABOLIC REGRESSION WITH RESTRICTED LOCATION FOR THE PARADOX	BIOCS6B AMS 63 AMS 62 BIOCS69 AMS 65 BIOCS69 JASA 59 BIOCS69 BIOCS65 JASA 64 AMS 61	987 501 511 290 129 1313 1 52 295 140 564 187
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE SIMULTANEOUS A MULTIVARIATE NDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO STATIONARY POINT LEAST SQUARES ESTIMATES AND RECURRENT GAMES AND THE PETERSBURG PROBABILITIES IN THE VOTINC	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES PAIRWISE LINEAR STRUCTURAL RELATIONSHIPS PAIRWISE STATISTICAL INDEPENDENCE PALEONTOLOGICAL CROWTH PROBLEM PANEL MORTALITY AND PANEL BIAS PAR INDEX SUR PLUSIEURS CARACTERES PO PARABOLAS A SIMPLE PARABOLIC REGRESSION WITH RESTRICTED LOCATION FOR THE PARADOX PARADOX	BIOCS6B AMS 63 AMS 63 AMS 62 BIOCS69 AMS 65 BIOCS69 JASA 59 BIOCS69 BIOCS65 JASA 64 AMS 61 AMS 64	987 501 511 290 129 1313 1 52 295 140 564 187 857
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE SIMULTANEOUS A MULTIVARIATE NDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO STATIONARY POINT LEAST SQUARES ESTIMATES AND RECURRENT GAMES AND THE PETERSBURG PROBABILITIES IN THE VOTINC A STATISTICAL	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES PAIRWISE LINEAR STRUCTURAL RELATIONSHIPS PAIRWISE STATISTICAL INDEPENDENCE PALEONTOLOGICAL CROWTH PROBLEM PANEL MORTALITY AND PANEL BIAS PAR INDEX SUR PLUSIBURS CARACTERES PARABOLAS A SIMPLE PARABOLIC REGRESSION WITH RESTRICTED LOCATION FOR THE PARADOX PARADOX PARADOX	BIOCS6B AMS 63 AMS 63 AMS 62 BIOCS69 AMS 65 BIOCS69 JASA 59 BIOCS69 BIOCS65 JASA 64 AMS 61 AMS 64 BIOKA57	987 501 511 290 129 1313 1 52 295 140 564 187 857 1B7
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE SIMULTANEOUS A MULTIVARIATE NDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO STATIONARY POINT LEAST SQUARES ESTIMATES AND RECURRENT GAMES AND THE PETERSBURG PROBABILITIES IN THE VOTINC A STATISTICAL A COMMENT ON D.V. LINDLEY'S STATISTICAL	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES PAIRWISE LINEAR STRUCTURAL RELATIONSHIPS PAIRWISE STATISTICAL INDEPENDENCE PALEONTOLOGICAL CROWTH PROBLEM PANEL MORTALITY AND PANEL BIAS PAR INDEX SUR PLUSIEURS CARACTERES PARABOLAS PARABOLAS A SIMPLE PARABOLIC REGRESSION WITH RESTRICTED LOCATION FOR THE PARADOX PARADOX PARADOX PARADOX	BIOCS6B AMS 63 AMS 63 AMS 62 BIOCS69 AMS 65 BIOCS69 JASA 59 BIOCS65 BIOCS65 JASA 64 AMS 61 AMS 64 BIOKA57 BIOKA57	987 501 511 290 129 1313 1 52 295 140 564 187 857 1B7 533
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE SIMULTANEOUS A MULTIVARIATE NDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO STATIONARY POINT LEAST SQUARES ESTIMATES AND RECURRENT GAMES AND THE PETERSBURG PROBABILITIES IN THE VOTINC A STATISTICAL A COMMENT ON D.V. LINDLEY'S STATISTICAL MATRIX	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES PAIRWISE LINEAR STRUCTURAL RELATIONSHIPS PAIRWISE STATISTICAL INDEPENDENCE PALEONTOLOGICAL CROWTH PROBLEM PANEL MORTALITY AND PANEL BIAS PAR INDEX SUR PLUSIEURS CARACTERES PO PARABOLAS PARABOLIC REGRESSION WITH RESTRICTED LOCATION FOR THE PARABOX PARADOX CONCERNING INFERENCE ABOUT A COVARIANCE	BIOCS6B AMS 63 AMS 63 AMS 65 BIOCS69 AMS 65 BIOCS69 BIOCS69 BIOCS65 JASA 64 AMS 61 AMS 64 BIOKA57 AMS 63	987 501 511 290 129 1313 1 52 295 140 564 187 857 1B7 533 1414
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE SIMULTANEOUS A MULTIVARIATE NDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO STATIONARY POINT LEAST SQUARES ESTIMATES AND RECURRENT GAMES AND THE PETERSBURG PROBABILITIES IN THE VOTINC A STATISTICAL A COMMENT ON D.V. LINDLEY'S STATISTICAL MATRIX ON A RAO'S	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES PAIRWISE STATISTICAL INDEPENDENCE PALEONTOLOGICAL CROWTH PROBLEM PANEL MORTALITY AND PANEL BIAS PAR INDEX SUR PLUSIEURS CARACTERES POPARABOLAS A SIMPLE PARABOLIC REGRESSION WITH RESTRICTED LOCATION FOR THE PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX CONCERNING INFERENCE ABOUT A COVARIANCE PARADOX CONCERNING MULTIVARIATE TESTS OF SIGNIFICANCE	BIOCS6B AMS 63 AMS 62 BIOCS69 AMS 65 BIOCS69 JASA 59 BIOCS65 JASA 64 AMS 61 AMS 64 BIOKA57 BIOKA57 BIOKA57 BIOKA57 BIOKA56 BIOCS69	987 501 511 290 129 1313 1 52 295 140 564 187 857 187 533 1414 411
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE SIMULTANEOUS A MULTIVARIATE NDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO STATIONARY POINT LEAST SQUARES ESTIMATES AND RECURRENT GAMES AND THE PETERSBURG PROBABILITIES IN THE VOTINC A STATISTICAL A COMMENT ON D.V. LINDLEY'S STATISTICAL MATRIX ON A RAO'S	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES PAIRWISE STATISTICAL INDEPENDENCE PALEONTOLOGICAL CROWTH PROBLEM PANEL MORTALITY AND PANEL BIAS PAR INDEX SUR PLUSIEURS CARACTERES POPARABOLAS A SIMPLE PARABOLIC REGRESSION WITH RESTRICTED LOCATION FOR THE PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX CONCERNING INFERENCE ABOUT A COVARIANCE PARADOX CONCERNING MULTIVARIATE TESTS OF SIGNIFICANCE	BIOCS6B AMS 63 AMS 62 BIOCS69 AMS 65 BIOCS69 JASA 59 BIOCS65 JASA 64 AMS 61 AMS 64 BIOKA57 BIOKA57 BIOKA57 BIOKA57 BIOKA56 BIOCS69	987 501 511 290 129 1313 1 52 295 140 564 187 857 187 533 1414 411
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE SIMULTANEOUS A MULTIVARIATE NDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO STATIONARY POINT LEAST SQUARES ESTIMATES AND RECURRENT GAMES AND THE PETERSBURG PROBABILITIES IN THE VOTINC A STATISTICAL A COMMENT ON D.V. LINDLEY'S STATISTICAL MATRIX ON A RAO'S ITIES FOR WISHART'S AND RELATED DISTRIBUTIONS, AND A	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES PAIRWISE INDEAR STRUCTURAL RELATIONSHIPS PAIRWISE STATISTICAL INDEPENDENCE PALEONTOLOGICAL CROWTH PROBLEM PANEL MORTALITY AND PANEL BIAS PAR INDEX SUR PLUSIEURS CARACTERES PO PARABOLAS PARABOLIC REGRESSION WITH RESTRICTED LOCATION FOR THE PARABOX PARADOX PARADOX PARADOX PARADOX PARADOX CONCERNING INFERENCE ABOUT A COVARIANCE PARADOX CONCERNING MULTIVARIATE TESTS OF SIGNIFICANCE PARADOX IN FIDUCIAL THEORY PARADOX IN STATISTICAL ESTIMATION	BIOCS6B AMS 63 AMS 63 AMS 62 BIOCS69 AMS 65 BIOCS69 JASA 59 BIOCS69 JASA 64 AMS 61 AMS 61 AMS 64 BIOKA57 BIOKA57 AMS 63 BIOCS69 JRSSB55	987 501 511 290 1313 1 52 295 140 564 187 857 187 533 1414 411 79 527
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE SIMULTANEOUS A MULTIVARIATE NDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO STATIONARY POINT LEAST SQUARES ESTIMATES AND RECURRENT GAMES AND THE PETERSBURG PROBABILITIES IN THE VOTINC A STATISTICAL A COMMENT ON D.V. LINDLEY'S STATISTICAL MATRIX ON A RAO'S ITIES FOR WISHART'S AND RELATED DISTRIBUTIONS, AND A A	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES PAIRWISE LINEAR STRUCTURAL RELATIONSHIPS PAIRWISE STATISTICAL INDEPENDENCE PALEONTOLOGICAL CROWTH PROBLEM PANEL MORTALITY AND PANEL BIAS PAR INDEX SUR PLUSIEURS CARACTERES POPARABOLAS A SIMPLE PARABOLIC REGRESSION WITH RESTRICTED LOCATION FOR THE PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX CONCERNING INFERENCE ABOUT A COVARIANCE PARADOX CONCERNING MULTIVARIATE TESTS OF SIGNIFICANCE PARADOX IN FIDUCIAL THEORY PIVOTAL QUANT PARADOX IN STATISTICAL ESTIMATION PARADOX IN STATISTICAL ESTIMATION	BIOCS6B AMS 63 AMS 63 AMS 62 BIOCS69 AMS 65 BIOCS69 JASA 59 BIOCS65 JASA 64 AMS 61 AMS 64 BIOKA57 BIOKA57 BIOKA57 AMS 63 BIOCS69 JRSSB55 BIOCS69	987 501 511 290 129 1313 1 522 295 140 564 187 857 187 533 1414 411 79 527 623
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE SIMULTANEOUS A MULTIVARIATE NDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO STATIONARY POINT LEAST SQUARES ESTIMATES AND RECURRENT GAMES AND THE PETERSBURG PROBABILITIES IN THE VOTINC A STATISTICAL A COMMENT ON D.V. LINDLEY'S STATISTICAL MATRIX ON A RAO'S ITIES FOR WISHART'S AND RELATED DISTRIBUTIONS, AND A A FIRST EMPTINESS OF TWO DAMS IN	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES PAIRWISE STATISTICAL INDEPENDENCE PALEONTOLOGICAL CROWTH PROBLEM PANEL MORTALITY AND PANEL BIAS PAR INDEX SUR PLUSIEURS CARACTERES POPARABOLAS A SIMPLE PARABOLIC REGRESSION WITH RESTRICTED LOCATION FOR THE PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX CONCERNING INFERENCE ABOUT A COVARIANCE PARADOX IN FIDUCIAL THEORY PARADOX IN FIDUCIAL THEORY PARADOX IN STATISTICAL ESTIMATION PARADOX INVOLVINC QUASI PRIOR DISTRIBUTIONS PARALLEL	BIOCSGB AMS 63 AMS 63 AMS 62 BIOCSG9 AMS 65 BIOCSG9 JASA 59 BIOCSG5 JASA 64 AMS 61 AMS 64 BIOKA57 BIOKA57 AMS 63 BIOCSG9 JRSSB55 BIOKA56 JRSSB55 BIOKA56 AMS 64 AMS 64 BIOKA57	987 501 511 290 1313 1 52 295 140 564 187 857 187 533 1414 411 79 527 623 219
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE SIMULTANEOUS A MULTIVARIATE NDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO STATIONARY POINT LEAST SQUARES ESTIMATES AND RECURRENT GAMES AND THE PETERSBURG PROBABILITIES IN THE VOTINC A STATISTICAL A COMMENT ON D.V. LINDLEY'S STATISTICAL MATRIX ON A RAO'S ITIES FOR WISHART'S AND RELATED DISTRIBUTIONS, AND A FIRST EMPTINESS OF TWO DAMS IN TWO SIMILAR QUEUES IN	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES PAIRWISE INDEAR STRUCTURAL RELATIONSHIPS PAIRWISE STATISTICAL INDEPENDENCE PALEONTOLOGICAL CROWTH PROBLEM PANEL MORTALITY AND PANEL BIAS PAR INDEX SUR PLUSIEURS CARACTERES PO PARABOLAS PARABOLIC REGRESSION WITH RESTRICTED LOCATION FOR THE PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX CONCERNING INFERENCE ABOUT A COVARIANCE PARADOX CONCERNING MULTIVARIATE TESTS OF SIGNIFICANCE PARADOX IN FIDUCIAL THEORY PARADOX IN STATISTICAL ESTIMATION PARADOX INVOLVINC QUASI PRIOR DISTRIBUTIONS PARALLEL PARALLEL	BIOCSGB AMS 63 AMS 63 AMS 62 BIOCSG9 AMS 65 BIOCSG9 JASA 59 BIOCSG5 JASA 64 AMS 61 AMS 64 BIOKA57 BIOKA57 BIOKA57 BIOKA57 AMS 63 BIOKS69 JRSSB55 BIOKA55 BIOKA55 BIOKA56 BIOKA56 AMS 61 AMS 64	987 501 511 290 129 1313 1 52 295 140 564 187 857 187 533 1414 411 79 527 623 219
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE SIMULTANEOUS A MULTIVARIATE NDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO STATIONARY POINT LEAST SQUARES ESTIMATES AND RECURRENT GAMES AND THE PETERSBURG PROBABILITIES IN THE VOTINC A STATISTICAL A COMMENT ON D.V. LINDLEY'S STATISTICAL MATRIX ON A RAO'S ITIES FOR WISHART'S AND RELATED DISTRIBUTIONS, AND A A FIRST EMPTINESS OF TWO DAMS IN TWO SIMILAR QUEUES IN TWO QUEUES IN	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES PAIRWISE LIMEAR STRUCTURAL RELATIONSHIPS PAIRWISE STATISTICAL INDEPENDENCE PALEONTOLOGICAL CROWTH PROBLEM PANEL MORTALITY AND PANEL BIAS PAR INDEX SUR PLUSIEURS CARACTERES PO PARABOLAS A SIMPLE PARABOLIC REGRESSION WITH RESTRICTED LOCATION FOR THE PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX CONCERNING INFERENCE ABOUT A COVARIANCE PARADOX CONCERNING MULTIVARIATE TESTS OF SIGNIFICANCE PARADOX IN FIDUCIAL THEORY PIVOTAL QUANT PARADOX IN STATISTICAL ESTIMATION PARADOX INVOLVINC QUASI PRIOR DISTRIBUTIONS PARALLEL PARALLEL	BIOCS6B AMS 63 AMS 63 AMS 62 BIOCS69 AMS 65 BIOCS69 JASA 59 BIOCS65 JASA 64 AMS 61 AMS 63 AMS 63 JASA 64 BIOKA57 BIOKA57 BIOKA57 BIOKA57 BIOKA57 BIOKA57 BIOKA57 AMS 64 BIOKS65 BIOKA65 BIOKA65 BIOKA66	987 501 511 290 129 1313 1 52 295 140 564 187 857 1B7 533 1414 411 79 527 623 219 1314 401
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE SIMULTANEOUS A MULTIVARIATE NDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO STATIONARY POINT LEAST SQUARES ESTIMATES AND RECURRENT GAMES AND THE PETERSBURG PROBABILITIES IN THE VOTINC A STATISTICAL A COMMENT ON D.V. LINDLEY'S STATISTICAL MATRIX ON A RAO'S ITIES FOR WISHART'S AND RELATED DISTRIBUTIONS, AND A FIRST EMPTINESS OF TWO DAMS IN TWO SIMILAR QUEUES IN TWO QUEUES IN ON TWO QUEUES IN	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES PAIRWISE STATISTICAL INDEPENDENCE PALEONTOLOGICAL CROWTH PROBLEM PANEL MORTALITY AND PANEL BIAS PAR INDEX SUR PLUSIEURS CARACTERES POPARABOLAS A SIMPLE PARABOLIC REGRESSION WITH RESTRICTED LOCATION FOR THE PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX CONCERNING INFERENCE ABOUT A COVARIANCE PARADOX IN FIDUCIAL THEORY PARADOX IN FIDUCIAL THEORY PARADOX IN STATISTICAL ESTIMATION PARADOX INVOLVINC QUASI PRIOR DISTRIBUTIONS PARALLEL PARALLEL PARALLEL	BIOCS6B AMS 63 AMS 63 AMS 62 BIOCS69 AMS 65 BIOCS69 JASA 59 BIOCS65 JASA 64 BIOCS65 JASA 64 BIOCS69 JASA 64 BIOCS69 JASA 64 BIOCS69 BIOCS65 JASA 64 BIOCS65 JASA 64 BIOCS65 JASA 63 BIOCS69 JASA 63 BIOCS69 JASS 63 BIOCS69 JASS 63 BIOCS69 JASS 63 BIOCS69 JASS 63 BIOCS69 BIOCS65 AMS 61 BIOCS65 AMS 61 BIOCS65 AMS 61 BIOCS65 AMS 61	987 501 511 290 129 1313 1 52 295 140 564 187 857 187 533 1414 411 79 527 623 219 1314 401 198
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE SIMULTANEOUS A MULTIVARIATE NDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO STATIONARY POINT LEAST SQUARES ESTIMATES AND RECURRENT GAMES AND THE PETERSBURG PROBABILITIES IN THE VOTINC A STATISTICAL A COMMENT ON D.V. LINDLEY'S STATISTICAL MATRIX ON A RAO'S ITIES FOR WISHART'S AND RELATED DISTRIBUTIONS, AND A FIRST EMPTINESS OF TWO DAMS IN TWO QUEUES IN TWO QUEUES IN ON TWO QUEUES IN F RELIABILITY FUNCTIONS FOR SYSTEMS IN SERIES AND IN	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES PAIRWISE INDEAR STRUCTURAL RELATIONSHIPS PAIRWISE STATISTICAL INDEPENDENCE PALEONTOLOGICAL CROWTH PROBLEM PANEL MORTALITY AND PANEL BIAS PAR INDEX SUR PLUSIEURS CARACTERES PO PARABOLAS PARABOLIC REGRESSION WITH RESTRICTED LOCATION FOR THE PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX CONCERNING INFERENCE ABOUT A COVARIANCE PARADOX CONCERNING MULTIVARIATE TESTS OF SIGNIFICANCE PARADOX IN FIDUCIAL THEORY PARADOX IN STATISTICAL ESTIMATION PARADOX INVOLVINC QUASI PRIOR DISTRIBUTIONS PARALLEL	BIOCS6B AMS 63 AMS 63 AMS 62 BIOCS69 AMS 65 BIOCS69 JASA 59 BIOCS65 JASA 64 AMS 61 AMS 64 BIOKA57 BIOKA57 BIOKA57 BIOKA56 JRSSB55 BIOKA56 AMS 61 AMS 61 AMS 61 AMS 61 AMS 61 AMS 61 AMS 61	987 501 511 290 129 1313 1 52 295 140 564 187 857 187 533 1414 411 79 527 623 219 1314 401 198 198 198 198 198 198 198 19
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE SIMULTANEOUS A MULTIVARIATE NDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO STATIONARY POINT LEAST SQUARES ESTIMATES AND RECURRENT GAMES AND THE PETERSBURG PROBABILITIES IN THE VOTINC A STATISTICAL A COMMENT ON D.V. LINDLEY'S STATISTICAL MATRIX ON A RAO'S ITIES FOR WISHART'S AND RELATED DISTRIBUTIONS, AND A FIRST EMPTINESS OF TWO DAMS IN TWO STATISTICAL ON TWO QUEUES IN ON TWO QUEUES IN ON TWO QUEUES IN F RELIABILITY FUNCTIONS FOR SYSTEMS IN SERIES AND IN	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES PAIRWISE STATISTICAL INDEPENDENCE PALEONTOLOGICAL CROWTH PROBLEM PANEL MORTALITY AND PANEL BIAS PAR INDEX SUR PLUSIEURS CARACTERES POPARABOLAS A SIMPLE PARABOLIC REGRESSION WITH RESTRICTED LOCATION FOR THE PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX CONCERNING INFERENCE ABOUT A COVARIANCE PARADOX CONCERNING INFERENCE ABOUT A COVARIANCE PARADOX IN FIDUCIAL THEORY PARADOX IN STATISTICAL ESTIMATION PARADOX IN STATISTICAL ESTIMATION PARALLEL PARALEL PA	BIOCS6B AMS 63 AMS 63 AMS 62 BIOCS69 AMS 65 BIOCS69 BIOCS69 JASA 59 BIOCS69 JASA 64 AMS 61 AMS 61 AMS 64 BIOKA57 BIOKA57 BIOKA57 BIOKA57 BIOKA57 BIOKA56 BIOKA66 AMS 61 BIOKA66 BIOKA66 BIOKA66 JASA 58	987 501 511 290 129 1313 1 52 295 140 1564 4187 857 533 1414 411 79 527 623 219 527 623 219 527 623 219 527 623 799
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE SIMULTANEOUS A MULTIVARIATE NDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO STATIONARY POINT LEAST SQUARES ESTIMATES AND RECURRENT GAMES AND THE PETERSBURG PROBABILITIES IN THE VOTINC A STATISTICAL A COMMENT ON D.V. LINDLEY'S STATISTICAL MATRIX ON A RAO'S ITIES FOR WISHART'S AND RELATED DISTRIBUTIONS, AND A A FIRST EMPTINESS OF TWO DAMS IN TWO SIMILAR QUEUES IN ON TWO QUEUES IN ON TWO QUEUES IN F RELIABILITY FUNCTIONS FOR SYSTEMS IN SERIES AND IN SIGNIFICANCE TESTS IN	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES PAIRWISE STATISTICAL INDEPENDENCE PALEONTOLOGICAL CROWTH PROBLEM PANEL MORTALITY AND PANEL BIAS PAR INDEX SUR PLUSIEURS CARACTERES POPARABOLAS A SIMPLE PARABOLIC REGRESSION WITH RESTRICTED LOCATION FOR THE PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX CONCERNING INFERENCE ABOUT A COVARIANCE PARADOX IN FIDUCIAL THEORY PARADOX IN STATISTICAL ESTIMATION PARADOX IN STATISTICAL ESTIMATION PARALLEL PARA	BIOCS6B AMS 63 AMS 63 AMS 62 BIOCS69 AMS 65 BIOCS69 JASA 59 BIOCS69 JASA 64 AMS 61 AMS 63 AMS 61 AMS 66 BIOCS69 JASA 64 BIOCS69 JASA 64 BIOCKA57 BIOCKA57 AMS 63 BIOCS69 JRSSB55 BIOCKA56 AMS 61 AMS 61 AMS 64 JASA 66 JASA 66 JASA 66 JASA 66	987 5011 290 1299 1313 1 52 295 140 564 187 533 1414 79 522 295 187 533 1414 401 198 1052 799 263
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE SIMULTANEOUS A MULTIVARIATE NDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO STATIONARY POINT LEAST SQUARES ESTIMATES AND RECURRENT GAMES AND THE PETERSBURG PROBABILITIES IN THE VOTINC A STATISTICAL A COMMENT ON D.V. LINDLEY'S STATISTICAL MATRIX ON A RAO'S ITIES FOR WISHART'S AND RELATED DISTRIBUTIONS, AND A A FIRST EMPTINESS OF TWO DAMS IN TWO SIMILAR QUEUES IN ON TWO QUEUES IN ON TWO QUEUES IN ON TWO QUEUES IN SIGNIFICANCE TESTS IN USE OF PRIOR INFORMATION TO DESIGN A ROUTINE	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES PAIRWISE LINEAR STRUCTURAL RELATIONSHIPS PAIRWISE STATISTICAL INDEPENDENCE PALEONTOLOGICAL CROWTH PROBLEM PANEL MORTALITY AND PANEL BIAS PAR INDEX SUR PLUSIEURS CARACTERES PO PARABOLAS PARABOLIC REGRESSION WITH RESTRICTED LOCATION FOR THE PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX CONCERNING INFERENCE ABOUT A COVARIANCE PARADOX CONCERNING MULTIVARIATE TESTS OF SIGNIFICANCE PARADOX IN FIDUCIAL THEORY PARADOX IN STATISTICAL ESTIMATION PARADOX INVOLVINC QUASI PRIOR DISTRIBUTIONS PARALLEL PARA	BIOCS6B AMS 63 AMS 63 AMS 62 BIOCS69 AMS 65 BIOCS69 BIOCS69 BIOCS69 BIOCS65 JASA 64 AMS 61 AMS 61 AMS 63 BIOCS69 JASA 64 BIOKA57 BIOKA57 BIOKA57 BIOKA57 BIOKA56 BIOKA65 BIOKA65 AMS 61 BIOKA65 AMS 61 BIOKA58 BIOKA66 JASA 68 BIOKA66 JASA 58 BIOKA66 JASA 58 BIOKA66 JASA 58 BIOKA66 JASA 58	987 5011 290 129 1313 1 522 140 564 485 187 623 219 623 219 623 219 1314 401 198 401 198 263 279 263 279 263 279 263 279 279 279 279 279 279 279 279 279 279
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE SIMULTANEOUS A MULTIVARIATE NDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO STATIONARY POINT LEAST SQUARES ESTIMATES AND RECURRENT GAMES AND THE PETERSBURG PROBABILITIES IN THE VOTINC A STATISTICAL A COMMENT ON D.V. LINDLEY'S STATISTICAL MATRIX ON A RAO'S ITIES FOR WISHART'S AND RELATED DISTRIBUTIONS, AND A A FIRST EMPTINESS OF TWO DAMS IN TWO QUEUES IN ON TWO QUEUES IN ON TWO QUEUES IN F RELIABILITY FUNCTIONS FOR SYSTEMS IN SERIES AND IN SIGNIFICANCE TESTS IN USE OF PRIOR INFORMATION TO DESICN A ROUTINE THE SAMPLE DISTRIBUTION FUNCTION LIES BETWEEN TWO	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES PAIRWISE LIMEAR STRUCTURAL RELATIONSHIPS PAIRWISE STATISTICAL INDEPENDENCE PALEONTOLOGICAL CROWTH PROBLEM PANEL MORTALITY AND PANEL BIAS PAR INDEX SUR PLUSIEURS CARACTERES PO PARABOLAS A SIMPLE PARABOLIC REGRESSION WITH RESTRICTED LOCATION FOR THE PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX CONCERNING INFERENCE ABOUT A COVARIANCE PARADOX CONCERNING MULTIVARIATE TESTS OF SIGNIFICANCE PARADOX IN FIDUCIAL THEORY PIVOTAL QUANT PARADOX IN STATISTICAL ESTIMATION PARADOX IN STATISTICAL ESTIMATION PARADOX INVOLVINC QUASI PRIOR DISTRIBUTIONS PARALLEL PARALLEL PARALLEL PARALLEL PARALLEL PARALLEL PARALLEL /IASED AND MAXIMUM LIKELIHOOD ESTIMATORS O PARALLEL AND IN SERIES PARALLEL FRACTIONAL REPLICATES PARALLEL FRACTIONAL REPLICATES PARALLEL STRAIGHT LINES THE PROBABILITY THAT	BIOCS6B AMS 63 AMS 63 AMS 62 BIOCS69 AMS 65 BIOCS69 BIOCS69 JASA 59 BIOCS65 JASA 64 AMS 61 AMS 61 AMS 64 BIOKA57 BIOKA57 BIOKA57 BIOKA57 BIOKA57 BIOKA56 BIOKA65 BIOKA66 AMS 61 BIOKA66 AMS 61 BIOKA66 BIOKA66 BIOKA66 AMS 61 BIOKA66 BIOKA66 AMS 61 BIOKA66 AMS 61 BIOKA66 AMS 61 BIOKA66 AMS 61 BIOKA66 AMS 66	987 5011 290 1299 1313 1 52 295 140 564 187 187 527 623 219 527 623 219 1314 401 198 205 205 205 205 205 205 205 205 205 205
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE SIMULTANEOUS A MULTIVARIATE NDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO STATIONARY POINT LEAST SQUARES ESTIMATES AND RECURRENT GAMES AND THE PETERSBURG PROBABILITIES IN THE VOTINC A STATISTICAL A COMMENT ON D.V. LINDLEY'S STATISTICAL ON A RAO'S ITIES FOR WISHART'S AND RELATED DISTRIBUTIONS, AND A A FIRST EMPTINESS OF TWO DAMS IN TWO SIMILAR QUEUES IN ON TWO QUEUES IN ON TWO QUEUES IN F RELIABILITY FUNCTIONS FOR SYSTEMS IN SERIES AND IN SIGNIFICANCE TESTS IN USE OF PRIOR INFORMATION TO DESICN A ROUTINE THE SAMPLE DISTRIBUTION FUNCTION LIES BETWEEN TWO CONFIDENCE LIMITS FOR THE RELIABILITY OF SERIES AND	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES PAIRWISE LINEAR STRUCTURAL RELATIONSHIPS PAIRWISE STATISTICAL INDEPENDENCE PALEONTOLOGICAL CROWTH PROBLEM PANEL MORTALITY AND PANEL BIAS PAR INDEX SUR PLUSIEURS CARACTERES POPARABOLAS A SIMPLE PARABOLAS A SIMPLE PARABOLY PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX ONCERNING INFERENCE ABOUT A COVARIANCE PARADOX IN STATISTICAL ESTIMATION PARADOX IN STATISTICAL ESTIMATION PARALLEL	BIOCS6B AMS 63 AMS 63 AMS 62 BIOCS69 AMS 65 BIOCS69 JASA 59 BIOCS65 JASA 64 AMS 61 AMS 63 AMS 61 AMS 64 BIOCK65 BIOCS69 JASA 64 BIOKA57 BIOKA57 AMS 63 BIOCS69 JRSSB55 BIOKA66 AMS 61 BIOKA58 BIOKA66 BIOKA56 BIOKA66	987 5011 290 1299 1313 1 522 295 404 187 7533 219 1314 441 79 623 219 1314 401 198 1052 257 263 257
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE SIMULTANEOUS A MULTIVARIATE NDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO STATIONARY POINT LEAST SQUARES ESTIMATES AND RECURRENT GAMES AND THE PETERSBURG PROBABILITIES IN THE VOTINC A STATISTICAL A COMMENT ON D.V. LINDLEY'S STATISTICAL MATRIX ON A RAO'S ITIES FOR WISHART'S AND RELATED DISTRIBUTIONS, AND A FIRST EMPTINESS OF TWO DAMS IN TWO SIMILAR QUEUES IN ON TWO QUEUES IN F RELIABILITY FUNCTIONS FOR SYSTEMS IN SERIES AND IN SIGNIFICANCE TESTS IN USE OF PRIOR INFORMATION TO DESICN A ROUTINE THE SAMPLE DISTRIBUTION FUNCTION LIES BETWEEN TWO CONFIDENCE LIMITS FOR THE RELIABILITY OF SERIES AND ON A CLASS OF RANK ORDER TESTS FOR THE	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES PAIRWISE STATISTICAL INDEPENDENCE PALEONTOLOGICAL CROWTH PROBLEM PANEL MORTALITY AND PANEL BIAS PAR INDEX SUR PLUSIEURS CARACTERES POPARABOLAS A SIMPLE PARABOLIC REGRESSION WITH RESTRICTED LOCATION FOR THE PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX PARADOX CONCERNING INFERENCE ABOUT A COVARIANCE PARADOX IN FIDUCIAL THEORY PIVOTAL QUANT PARADOX IN STATISTICAL ESTIMATION PARADOX INVOLVINC QUASI PRIOR DISTRIBUTIONS PARALLEL PARALLEL PARALLEL PARALLEL PARALLEL PARALLEL PARALLEL PARALLEL PARALLEL AND IN SERIES PARALLEL STRAIGHT LINES THE PROBABILITY THAT PARALLEL SYSTEMS APPROXIMATE PARALLEL SYSTEMS APPROXIMATE PARALLEL SYSTEMS APPROXIMATE	BIOCS6B AMS 63 AMS 63 AMS 62 BIOCS69 AMS 65 BIOCS69 JASA 59 BIOCS69 JASA 64 AMS 61 AMS 66 JASA 64 BIOKA57 BIOKA57 AMS 63 BIOCKA57 AMS 63 BIOCKA56 AMS 61 AMS 64 AMS 64 BIOKA57 AMS 63 BIOKA56 AMS 64 BIOKA56 AMS 61 AMS 61 AMS 61 AMS 66 BIOCS67 AMS 68 TECH 65 AMS 68 TECH 65 AMS 68	987 5011 290 1299 1313 52 295 140 564 187 533 1414 411 79 522 523 219 1314 401 1052 799 263 263 257 398 495 1668
ON COMPARING THE CORRELATIONS WITHIN TWO OF THE ROW SUM PROCEDURE SIMULTANEOUS A MULTIVARIATE NDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO STATIONARY POINT LEAST SQUARES ESTIMATES AND RECURRENT GAMES AND THE PETERSBURG PROBABILITIES IN THE VOTINC A STATISTICAL A COMMENT ON D.V. LINDLEY'S STATISTICAL MATRIX ON A RAO'S ITIES FOR WISHART'S AND RELATED DISTRIBUTIONS, AND A FIRST EMPTINESS OF TWO DAMS IN TWO SIMILAR QUEUES IN ON TWO QUEUES IN F RELIABILITY FUNCTIONS FOR SYSTEMS IN SERIES AND IN SIGNIFICANCE TESTS IN USE OF PRIOR INFORMATION TO DESICN A ROUTINE THE SAMPLE DISTRIBUTION FUNCTION LIES BETWEEN TWO CONFIDENCE LIMITS FOR THE RELIABILITY OF SERIES AND ON A CLASS OF RANK ORDER TESTS FOR THE	PAIRS OF VARIABLES PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES PAIRWISE LINEAR STRUCTURAL RELATIONSHIPS PAIRWISE STATISTICAL INDEPENDENCE PALEONTOLOGICAL CROWTH PROBLEM PANEL MORTALITY AND PANEL BIAS PAR INDEX SUR PLUSIEURS CARACTERES PO PARABOLAS PARADOLAS PARADOX CONCERNING INFERENCE ABOUT A COVARIANCE PARADOX IN FIDUCIAL THEORY PIVOTAL QUANT PARADOX IN STATISTICAL ESTIMATION PARADOX INVOLVINC QUASI PRIOR DISTRIBUTIONS PARALLEL PAR	BIOCS6B AMS 63 AMS 63 AMS 62 BIOCS69 AMS 65 BIOCS69 JASA 59 BIOCS69 JASA 64 AMS 61 AMS 66 JASA 64 BIOKA57 BIOKA57 AMS 63 BIOCKA57 AMS 63 BIOCKA56 AMS 61 AMS 64 AMS 64 BIOKA57 AMS 63 BIOKA56 AMS 64 BIOKA56 AMS 61 AMS 61 AMS 61 AMS 66 BIOCS67 AMS 68 TECH 65 AMS 68 TECH 65 AMS 68	987 501 1290 1299 1313 1 522 295 1400 564 4411 79 263 2199 263 314 4401 198 263 398 495 6668 314

```
NONPARAMETRIC CONFIDENCE INTERVALS FOR A SHIFT PARAMETER
                                                                                                                 AMS 63 1507
         ROBUST ESTIMATION OF A LOCATION PARAMETER
INVARIANT INTERVAL ESTIMATION OF A LOCATION PARAMETER
                                                                                                                 AMS 64
                                                                                                                         73
                                                                                                                 AMS 68
                                                                                                                        193
                ESTIMATION OF THE LARGER TRANSLATION PARAMETER
                                                                                                                 AMS 68
                                                                                                                        502
      A CLASS OF SEQUENTIAL TESTS FOR AN EXPONENTIAL PARAMETER
                                                                                                                JASA 69 NO.4
          LINEAR ESTIMATES OF A POPULATION SCALE PARAMETER CLOSED SEQUENTIAL TESTS FOR AN EXPONENTIAL PARAMETER
                                                                                                               BIOKA67 551
                                                                                                               BIOKA6B
                                                                                                                         3B7
 STUDIES IN THE SEQUENTIAL ESTIMATION OF A BINOMIAL PARAMETER
                                                                                                     NUMERICAL BIOKA58
        LINEARITY OF A RANK STATISTIC IN REGRESSION PARAMETER
                                                                                                    ASYMPTOTIC AMS 69 NO.6
LIFE FOR THE EXPONENTIAL DISTRIBUTION WITH CHANCING PARAMETER
                                                                                                    SEQUENTIAL TECH 66
                                                                                                                        217
     CONFIDENCE INTERVALS. II. MORE THAN ONE UNKNOWN PARAMETER
                                                                                                   APPROXIMATE BIOKA53
                                                                                                                         306
          OF QUANTILE ESTIMATES OF A SINGLE LOCATION PARAMETER
                                                                                                 ADMISSIBILITY AMS 64 1019
    PROCEDURES FOR UNBIASED ESTIMATION OF A BINOMIAL PARAMETER
                                                                                            SEQUENTIAL OPTIMUM TECH 64
                                                                                                                        259
DIRECT AND FIDUCIAL ARGUMENTS IN THE ESTIMATION OF A PARAMETER
                                                                                          A COMPARISON OF THE JRSSB63
CONFIDENCE POINT PROCEDURES IN THE CASE OF A SINGLE PARAMETER
                                                                                        ON COMPARISONS BETWEEN JRSSB65
                                                                                                                           1
                                                                                                                         3B1
      UNBIASED CONFIDENCE INTERVALS FOR THE BINOMIAL PARAMETER
                                                                                     TABLE OF NEYMAN-SHORTEST BIOKA60
                                                                                    TABLES OF NEYMAN-SHORTEST BIOKA61
       UNBIASED CONFIDENCE INTERVALS FOR THE POISSON PARAMETER
                                                                                                                         191
   GENERALIZE DE FINETTI'S THEOREM. CONTINUOUS TIMES PARAMETER
                                                                                INVARIANTS UNDER MIXING WHICH AMS 63 1194
    PARAMETER IN THE PRESENCE OF AN INCIDENTAL SCALE PARAMETER
                                                                          CONSISTENT ESTIMATION OF A LOCATION
                                                                                                                 AMS 69
                                                                                                                        1353
  BAYES CONFIDENCE INTERVALS FOR THE HYPERGEOMETRIC PARAMETER
                                                                          THE RELATIONSHIP BETWEEN NEYMAN AND TECH 68
                                                                                                                         199
 OF ANY CONTINUOUS FORM AND KNOWN APART FROM A SCALE PARAMETER
                                                                     THE JOINT DISTRIBUTION OF THE ERRORS IS BIOKAG1
                                                                                                                         125
                                                                    /ASED ON M ORDER STATISTICS, FOR THE SCAL TECH 65
E PARAMETER OF A WEIBULL POPULATION WITH KNOWN SHAPE PARAMETER
                                                                                                                         405
A SUFFICIENT STATISTIC WHEN THE RANGE DEPENDS ON THE PARAMETER
                                                                    /E PARAMETER OF A DISTRIBUTION ADMITTING JRSSB55
                                                                                                                          B6
                                                                    /FOR THE SOBOLEV IMBEDDING THEOREMS TO CR AMS 69
ITERIA FOR THE CONTINUITY OF PROCESSES WITH A VECTOR PARAMETER
                                                                                                                         517
DENT GENERALIZED GAMMA VARIABLES WITH THE SAME SHAPE PARAMETER
                                                                    /T DISTRIBUTION OF THE PRODUCT OF INDEPEN
                                                                                                                 AMS 68 1751
                                                                    /T VARIABLES AND INCOMPLETE SURVIVAL INFO BIOCS66
RMATION IN THE ESTIMATION OF AN EXPONENTIAL SURVIVAL PARAMETER
                                                                                                                         665
THE GAMMA DISTRIBUTION FOR SMALL VALUES OF THE SHAPE PARAMETER
                                                                    /XTMATION TO THE PROBABILITY INTEGRAL OF BIOKA62
                                                                                                                         276
ACTERIZATIONS OF THE LINEAR EXPONENTIAL FAMILTY IN A PARAMETER BY RECURRENCE RELATIONS FOR FUNCTIONS OF CU AMS 69 1721
           SMOOTH EMPIRICAL BAYES ESTIMATION FOR ONE-PARAMETER DISCRETE DISTRIBUTIONS
                                                                                                               BIOKA66
                                                                                                                         417
                                                       PARAMETER ESTIMATES AND AUTONOMOUS GROWTH, CORR. 59
                                                                                                                JASA 59
                                                                                                                         389
                       THE DESIGN OF EXPERIMENTS FOR PARAMETER ESTIMATION
                                                                                                                TECH 68
                                                                                                                         271
    FOR THE DUAL PROBLEM OF MODEL DISCRIMINATION AND PARAMETER ESTIMATION
                                                                                      A JOINT DESIGN CRITERION TECH 68
                                                                                                                         145
DISTRIBUTION
                                                       PARAMETER ESTIMATION FOR A CENERALIZED GAMMA
                                                                                                                TECH 65
                                                                                                                         349
DISTRIBUTION
                                                       PARAMETER ESTIMATION FOR A MULTIVARIATE EXPONENTIAL
                                                                                                                JASA 68
                                                                                                                         848
                                            ON GROWTH PARAMETER ESTIMATION FOR EARLY LIFE STAGES
                                                                                                                BIOCS66
                                                                                                                         162
LINEQUAL CAMMA COMPONENTS
                                                SCALE PARAMETER ESTIMATION FROM THE ORDER STATISTICS OF
                                                                                                                 AMS 66
                                                                                                                         152
                            DESIGN OF EXPERIMENTS FOR PARAMETER ESTIMATION IN MULTIRESPONSE SITUATIONS
                                                                                                                BTOKA66
                                                                                                                         525
PRIOR DISTRIBUTIONS IN THE DESIGN OF EXPERIMENTS FOR PARAMETER ESTIMATION IN NON-LINEAR SITUATIONS
                                                                                                           /OF BIOKA67
                                                                                                                         147
PRIOR DISTRIBUTIONS IN THE DESIGN OF EXPERIMENTS FOR PARAMETER ESTIMATION IN NON-LINEAR SITUATIONS MULTIRE BIOKA67
                                                                                                                         662
LIFE TESTING AND RELIABILITY ESTIMATION FOR THE TWO PARAMETER EXPONENTIAL DISTRIBUTION
                                                                                                                JASA 69
                                                                                                                         621
PLES
                 ESTIMATION OF THE PARAMETERS OF TWO PARAMETER EXPONENTIAL DISTRIBUTIONS FROM CENSORED SAM
                                                                                                               TECH 60
                                                                                                                         403
                                 ESTIMATION FOR A ONE-PARAMETER EXPONENTIAL MODEL
                                                                                                                JASA 65
                                                                                                                         560
                                                 A TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS
                                                                                                                JASA 64
                                                                                                                         133
                EFFICIENT ESTIMATION OF A REGRESSION PARAMETER FOR CERTAIN SECOND ORDER PROCESSES
                                                                                                                 AMS 61 1299
                       THE ESTIMATION OF THE POISSON PARAMETER FROM A TRUNCATED DISTRIBUTION
                                                                                                                BIOKA52
                                                                                                                         247
                      EFFICIENT ESTIMATION OF A SHIFT PARAMETER FROM GROUPED DATA
                                                                                                                 AMS 67 1770
ON OF KARBER'S METHOD FOR ESTIMATING THE EXPONENTIAL PARAMETER FROM QUANTAL DATA, AND ITS RELATIONSHIP TO
                                                                                                               BIOCS67
                                                                                                                         739
                               ESTIMATING THE POISSON PARAMETER FROM SAMPLES THAT ARE TRUNCATED ON THE
RIGHT
                                                                                                                TECH 61
                                                                                                                         433
M-LIKELTHOOD ESTIMATION OF THE PARAMETERS OF A FOUR- PARAMETER GENERALIZED GAMMA POPULATION FROM COMPLETE
                                                                                                                TECH 67
                                                                                                                         159
S FOR THE MAXIMUM-LIKELIHOOD ESTIMATOR OF AN UNKNOWN PARAMETER IN A SIMPLE MARKOV CHAIN / IENCY CONDITION BIOKASS
S FOR THE MAXIMUM-LIKELIHOOD ESTIMATOR OF AN UNKNOWN PARAMETER IN A SIMPLE MARKOV CHAIN / ENCY CONDITION BIOKASS
                                                                                                                         342
                                                                                                                         497
         THE ESTIMATION OF A FUNDAMENTAL INTERACTION PARAMETER IN AN EMIGRATION-IMMIGRATION PROCESS
                                                                                                                 AMS 63
                                                                                                                         238
                             ESTIMATORS OF A LOCATION PARAMETER IN THE ABSOLUTELY CONTINUOUS CASE
                                                                                                                 AMS 64
                                                                                                                         949
                                      ESTIMATION OF A PARAMETER IN THE CLASSICAL OCCUPANCY PROBLEM
                                                                                                                BIOKA60
                                                                                                                         180
METER
                 CONSISTENT ESTIMATION OF A LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL SCALE PARA AMS 69
T TO BACTERIA
                ESTIMATION OF THE PARAMETER IN THE STOCHASTIC MODEL FOR PHAGE ATTACHMEN AMS 68 SAMPLE SIZE REQUIRED TO ESTIMATE THE PARAMETER IN THE UNIFORM DENSITY WITHIN D UNITS OF TH JASA 64
                                                                                                                         183
E TRUE VALUE
                                                                                                                         550
HE LOC LIKELIHOOD RATIO TEST STATISTIC WHEN THE TRUE PARAMETER IS 'NEAR' THE BOUNDARIES OF THE HYPOTHESIS
                                                                                                                 AMS 68 2044
S OF A POINT-SOURCE EPIDEMIC
                                            THE THREE-PARAMETER LOGNORMAL DISTRIBUTION AND BAYESIAN ANALYSI JASA 63
                    A NOTE ON SEQUENCES OF CONTINUOUS PARAMETER MARKOV CHAINS
                                                                                                                 AMS 69
                                                                                                                        1078
                                                 A TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED
CANCER PATIENTS
                                                                                                                JASA 65
                                    ESTIMATION OF THE PARAMETER N IN THE BINOMIAL DISTRIBUTION
                                                                                                                JASA 68
                             A TEST FOR A GHANGE IN A PARAMETER OCCURRING AT AN UNKNOWN POINT
                                                                                                                BIOKA55
                                                                                                                         523
                   ON PROBLEMS IN WHICH A CHANCE IN A PARAMETER OCCURS AT AN UNKNOWN POINT
                                                                                                                BIOKA57
                                                                                                                         248
                          INTERVAL ESTIMATION FOR THE PARAMETER OF A BINOMIAL DISTRIBUTION
                                                                                                                         275
ATISTIC WHEN THE RAN/
                         CONFIDENCE INTERVALS FOR THE PARAMETER OF A DISTRIBUTION ADMITTING A SUFFICIENT ST JRSSB55
                                    ON ESTIMATING THE PARAMETER OF A DOUBLY TRUNCATED BINOMIAL DISTRIBUTION JASA 66
SEPARATE REGIMES
                                THE ESTIMATION OF THE PARAMETER OF A LINEAR REGRESSION SYSTEM OBEYING TWO
                                                                                                                JASA 58
                                                                                                                         873
   MAXIMUM LIKELIHOOD ESTIMATE OF THE NON-CENTRALITY PARAMETER OF A NONCENTRAL CHI-SQUARE VARIATE
                                                                                                           THE JASA 67 1258
FIDENCE BOUNDS. BASED ON ONE ORDER STATISTIG FOR THE PARAMETER OF A ONE-PARAMETER NEGATIVE EXPONENTIAL POP TECH 64
                                                                                                                         483
TIMATORS, BASED ON M ORDER STATISTICS, FOR THE SCALE PARAMETER OF A WEIBULL POPULATION WITH KNOWN SHAPE PA TECH 65
                                                                                                                         405
                  A NOTE ON THE TEST FOR THE LOCATION PARAMETER OF AN EXPONENTIAL DISTRIBUTION
                                                                                                                 AMS 69
                                                                                                                        1838
                                    ESTIMATION OF THE PARAMETER OF AN EXPONENTIAL DISTRIBUTION
                                                                                                                JRSSB67
                                                                                                                         525
FIDENCE BOUNDS, BASED ON ONE ORDER STATISTIC FOR THE PARAMETER OF AN EXPONENTIAL POPULATION
                                                                                                     EXACT CON TECH 64
                                                                                                                         301
                            SHORTER INTERVALS FOR THE PARAMETER OF THE BINOMIAL AND POISSON DISTRIBUTIONS
                                                                                                               BIOKA57
                                                                                                                         436
             A NOTE ON THE ESTIMATION OF THE LOCATION PARAMETER OF THE GAUCHY DISTRIBUTION
                                                                                                                JASA 66
                                                                                                                         852
        EFFECT OF TRUNCATION ON A TEST FOR THE SCALE PARAMETER OF THE EXPONENTIAL DISTRIBUTION
                                                                                                                 AMS 64
                                                                                                                         209
      ON SOME PERMISSIBLE ESTIMATORS OF THE LOCATION PARAMETER OF THE WEIBULL AND GERTAIN OTHER DISTRIBUTI TECH 67
                                                                                                                         293
                                                                                         /OCEDURES FOR CHOOS AMS 67 1376
ING ONE OF K HYPOTHESES CONCERNING THE UNKNOWN DRIFT PARAMETER OF THE WIENER PROCESS
HEBYSHEV INEQUALITIES WITH- EXTENSIONS TO CONTINUOUS PARAMETER PROCESSES
                                                                                           SOME MULTIVARIATE C
                                                                                                                 AMS 61
                                                                                                                         687
             ESTIMATION OF WEIBULL DISTRIBUTION SHAPE PARAMETER WHEN NO MORE THAN TWO FAILURES OCCUR PER
                                                                                                                TECH 64
                                                                                                                         415
THE EXPONENTIAL CASE
                                                       PARAMETER-FREE AND NON-PARAMETRIG TOLERANCE LIMITS,
                                                                                                                TECH 62
                                                                                                                          75
CONFIDENCE INTERVALS FOR THE PRODUCT OF TWO BINOMIAL PARAMETERS
                                                                                                                JASA 57
                                                                                                                         482
                     ON ESTIMATING SGALE AND LOGATION PARAMETERS
                                                                                                                JASA 63
                                                                                                                         658
                           NOTE ON ESTIMATING ORDERED PARAMETERS
                                                                                                                 AMS 65
                                                                                                                         698
                        GAUSSIAN PROCESSES ON SEVERAL PARAMETERS
                                                                                                                 AMS 65
                                                                                                                         771
```

```
UNBIASED ESTIMATION OF LOCATION AND SCALE PARAMETERS
                                                                                                                 AMS 66 1671
              SOME PERCENTILE ESTIMATORS FOR WEIBULL PARAMETERS
                                                                                                                TECH 67 119
                                                                                                                 AMS 6B
                ESTIMATION OF TWO ORDERED TRANSLATION PARAMETERS
                               ON ESTIMATING MONOTONE PARAMETERS
                                                                                                                 AMS 68 1030
                   USING FACTOR ANALYSIS TO ESTIMATE PARAMETERS
                                                                                                                JASA 69
                                                                                                                         B08
       DISTRIBUTIONS OF RANDOM VARIABLES WITH RANDOM PARAMETERS
                                                                                                                SASJ 69
                                                                                                                            1
           FIDUCIAL INFERENCE FOR LOCATION AND SCALE PARAMETERS
                                                                                                                BIOKA64
     POSTERIOR DISTRIBUTIONS FOR MULTIVARIATE NORMAL PARAMETERS
                                                                                                                JRSSB63
                                                                                                                         368
                               ESTIMATION BY RANKING PARAMETERS
                                                                                                                JRSSB66
                                                                                                                          32
     MAXIMUM LIKELTHOOD ESTIMATION OF SURVIVAL CURVE PARAMETERS
                                                                                                                BIOCS68
                                                                                                                         595
    SIZE CONFIDENCE ELLIPSOIDS FOR LINEAR REGRESSION PARAMETERS
                                                                                                          FIXED AMS 66 1602
   SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE PARAMETERS
                                                                                                         QUERY, TECH 64
                                                                                                                         471
 FOR REGRESSION PROBLEMS WITH CORRELATED ERRORS MANY PARAMETERS
                                                                                                        DESIGNS AMS 68
                                                                                                                          49
      LOSS INTERVAL ESTIMATION OF LOCATION AND SCALE PARAMETERS
                                                                                                        LINEAR- BIOKAGB
                                                                                                                          141
     CONFIDENCE LIMITS FOR THE PRODUCT OF N BINOMIAL PARAMETERS
                                                                                                       BAYESIAN BIOKA66
                                                                                                                          611
STIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND SCALE PARAMETERS
                                                                                                      OPTIMUM E AMS 69 NO.6
                                                                                                      QUADRATIC JASA 65
        REGRESSION WITH INEQUALITY RESTRAINTS ON THE PARAMETERS
                                                                                                                         914
         PROPERTIES OF SEVERAL ESTIMATORS OF WEIBULL PARAMETERS
                                                                                                     ASYMPTOTIC TECH 65
                                                                                                                          423
         SHAPES FOR SEQUENTIAL TESTING OF TRUNCATION
                                                       PARAMETERS
                                                                                                     ASYMPTOTIC AMS 6B 203B
NEARLY EFFICIENT ESTIMATORS OF MULTIVARIATE LOCATION PARAMETERS
                                                                                               ASYMPTOTICALLY
                                                                                                                 AMS 69
                                                                                                                         1809
        OF FIELLER'S THEOREM TO THE RATIO OF COMPLEX PARAMETERS
                                                                                               A GENERALIZATION JRSSB67
                                                                                                                         126
QUENCIES OF SPECIES AND THE ESTIMATION OF POPULATION
                                                       PARAMETERS
                                                                                            THE POPULATION FRE BIOKA53
                                                                                                                          237
                                                                                           TABLES FOR THE SIGN JASA 59
    TEST WHEN OBSERVATIONS ARE ESTIMATES OF BINOMIAL PARAMETERS
                                                                                                                          7B4
                                                                                          ON THE ADMISSIBILITY
     OF INVARIANT ESTIMATORS OF ONE OR MORE LOCATION PARAMETERS
                                                                                                                AMS 66
                                                                                                                         10B7
   OF A CLASS OF NON-PARAMETRIC TESTS FOR REGRESSION PARAMETERS
                                                                                         ASYMPTOTIC EFFICIENCY
                                                                                                                 AMS 67
  BAYESIAN PROBABILITY POINTS IN THE CASE OF SEVERAL PARAMETERS
                                                                                      ON CONFIDENCE POINTS AND JRSSB65
       I. VARIANCE BOUNDS FOR ESTIMATORS OF LOCATION PARAMETERS
                                                                                    ON NON-REGULAR ESTIMATION, JASA 69
E SEQUENTIAL CONFIDENCE BOUNDS FOR LINEAR REGRESSION PARAMETERS
                                                                        ON THE ASYMPTOTIC THEORY OF FIXED-SIZ
                                                                                                                AMS 65
                                                                                                                          463
                                                                       AN ELEMENTARY METHOD OF SOLUTION OF TH JRSSB56
E QUEUEING PROBLEM WITH A SINGLE SERVER AND CONSTANT PARAMETERS
                                                                                                                          125
                                                                       NON-EQUIVALENT COMPARISONS OF EXPERIME
NTS AND THEIR USE FOR EXPERIMENTS INVOLVING LOCATION
                                                       PARAMETERS
                                                                                                                          326
                                                                     /ATION SUPPLIED BY CENSORED SAMPLES OF G BIOKA62
ROUPED OBSERVATIONS IN THE ESTIMATION OF STATISTICAL PARAMETERS
                                                                                                                          245
                                                                     /DESIGN OF FRACTIONAL FACTORIAL EXPERIME
NTS FOR THE ESTIMATION OF A SUBGROUP OF PRE-ASSIGNED PARAMETERS
                                                                                                                AMS 6B
                                                                                                                          973
RAMETERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCALE PARAMETERS
                                                                     /ITY OF THE USUAL ESTIMATORS OF SCALE PA
ENCE OF RANDOM PROCESSES WITH MULTI-DIMENSIONAL TIME
                                                       PARAMETERS
                                                                     /S WITH APPLICATIONS TO THE WEAK CONVERG
                                                                                                                 AMS 69
                                                                                                                          681
INCOMPLETE BLOCK DESIGNS
                                                ON THE PARAMETERS AND INTERSECTION OF BLOCKS OF BALANCED
                                                                                                                 AMS 62
     ON FIXED-WIDTH CONFIDENCE BOUNDS FOR REGRESSION PARAMETERS AND MEAN VECTOR
                                                                                                                 JRSSB67
                                                                                                                         132
ANALYSIS OF/ THE THEORY OF LEAST SQUARES WHEN THE PARAMETERS ARE STOCHASTIC AND ITS APPLICATION TO THE BIOKAG5
                              ESTIMATES OF REGRESSION PARAMETERS BASED ON RANK TESTS
                                                                                                                 AMS 67
                                                                                                                          B94
TION TO AMS 56 427 'ESTIMATION OF LOCATION AND SCALE PARAMETERS BY ORDER STATISTICS FROM SINGLY AND DOUBLY
                                                                                                                 AMS 39
                                                                                                                          325
VICTOR HASSELBLAD
                        DISCUSSION OF 'ESTIMATION OF PARAMETERS FOR A MIXTURE OF NORMAL DISTRIBUTIONS' BY
                                                                                                                TECH 66
                                                                                                                          445
                                                                                                                TECH 66
                                        ESTIMATION OF PARAMETERS FOR A MIXTURE OR NORMAL DISTRIBUTIONS
                                                                                                                          431
N ONE VARIABLE IS DICHOTOMISED.
                                    ESTIMATION OF THE PARAMETERS FOR A MULTIVARIATE NORMAL DISTRIBUTION WHE BIOKAG5
                                                                                                                          664
                      NOTES. ESTIMATION OF NON-LINEAR PARAMETERS FOR A NON-ASYMPTOTIC FUNCTION
                                                                                                                BTOCS6B
                                                                                                                          439
AVERAGE RESIDUALS
                           LARGE-SAMPLE ESTIMATION OF PARAMETERS FOR AUTOREGRESSIVE PROCESSES WITH MOVING-
                                                                                                                BIOKA62
                                                                                                                          117
                           LARGE-SAMPLE ESTIMATION OF PARAMETERS FOR MOVING-AVERAGE MODELS
                                                                                                                BIOKA61
                                                                                                                          343
                     ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE RECTANGULAR POPULATION FROM CENSOR JRSSB59
ED SAMPLES
                                                                                                                          356
-RECAPTURE METHOD. I/
                         THE ESTIMATION OF POPULATION PARAMETERS FROM DATA OBTAINED BY MEANS OF THE CAPTURE BIOKA51
THE ESTIMATION OF POPULATION PARAMETERS FROM DATA OBTAINED BY MEANS OF THE CAPTURE BIOKA52
                                                                                                                          269
-RECAPTURE METHOD. I/
                                                                                                                          363
                         THE ESTIMATION OF POPULATION PARAMETERS FROM DATA OBTAINED BY MEANS OF THE CAPTURE BIOKA53
-RECAPTURE METHOD I/
                                                                                                                          137
ANSFORMATIONS OF SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM DAUGHTER-DAM REGRESSION
                                                                                                        SOME TR BIOCS67
                                                                                                                          B23
                THE ESTIMATION OF LOCATION AND SCALE PARAMETERS FROM GROUPED DATA
                                                                                                                BIOKA54
                                                                                                                          296
                               ON ESTIMATING EPIDEMIC PARAMETERS FROM HOUSEHOLD DATA
                                                                                                                BTOKA64
                                                                                                                          511
                                        ESTIMATION OF PARAMETERS FROM INCOMPLETE MULTIVARIATE SAMPLES
                                                                                                                JASA 57
                                                                                                                          523
                      ON THE ESTIMATION OF POPULATION PARAMETERS FROM MARKED MEMBERS
                                                                                                                BTOKA55
                                                                                                                          269
NORMAL DISTRIBUTION. TWO METHODS OF ESTIMATING PARAMETERS FROM MOMENTS

THE FOLDED TECH 61
TH AND DILUTION-DETERMINI/ ESTIMATES OF POPULATION PARAMETERS FROM MULTIPLE RECAPTURE DATA WITH BOTH DEA BIOKA63
                                                                                                                          551
                                                                                                                          113
                   THE BAYESIAN ESTIMATION OF COMMON PARAMETERS FROM SEVERAL RESPONSES
                                                                                                                RIOKA65
                                                                                                                          355
                                    THE ESTIMATION OF PARAMETERS FROM THE SPREAD OF A DISEASE BY CONSIDERIN BIOKA65
G HOUSEHOLDS OF TWO.
                                                                                                                          271
                  ESTIMATION OF THE NORMAL POPULATION PARAMETERS GIVEN A SINGLY CENSORED SAMPLE
                                                                                                                BIOKA59
                                                                                                                          150
                  ESTIMATION OF THE NORMAL POPULATION PARAMETERS GIVEN A TYPE I CENSORED SAMPLE
                                                                                                                BIOKA61
                                                                                                                         367
XIMUM LIKELIHOOD ESTIMATES OF THE LOCATION AND SCALE PARAMETERS GIVEN A TYPE II CENSORED NORMAL SAMPLE
                                                                                                              / BIOKA61
                                                                                                                          44B
RELIABILITY GROWTH MODEL
                                        ESTIMATION OF PARAMETERS IN A TRANSIENT MARKOV CHAIN ARISING IN A
                                                                                                                 AMS 69 1542
                     ESTIMATION OF LOCATION AND SCALE PARAMETERS IN A TRUNCATED GROUPED SECH SQUARE DISTRIB JASA 61
                                                                                                                          692
 OF DESIGNS AND ESTIMATION PROCEDURES FOR ESTIMATING PARAMETERS IN A TWO-STAGE NESTED PROCESS /MPARISONS TECH 67
                                                                                                                          499
CONSISTENCY AND LIMIT DISTRIBUTIONS OF ESTIMATORS OF PARAMETERS IN EXPLOSIVE STOCHASTIC DIFFERENCE EQUATIO
                                                                                                                 AMS 61
                                                                                                                          195
      A METHOD OF OBTAINING INITIAL ESTIMATES OF THE PARAMETERS IN EXPONENTIAL CURVE FITTING
                                                                                                                BIOCS69
                                                                                                                          5B0
      63 1603
                                   LOCATION AND SCALE PARAMETERS IN EXPONENTIAL FAMILIES OF DISTRIBUTIONS,
                                                                                                                 AMS 62
                                                                                                                          986
                    TESTING HYPOTHESES AND ESTIMATING PARAMETERS IN HUMAN GENETICS IF THE AGE OF ONSET IS
RANDOM
                                                                                                                BIOKA63
                                                                                                                          265
                           ON TESTING THE EQUALITY OF PARAMETERS IN K RECTANGULAR POPULATIONS
                                                                                                                 JASA 60
                                                                                                                          144
             A GRAPHICAL ESTIMATION OF MIXED WEIBULL PARAMETERS IN LIFE TESTING ELECTRON TUBES
                                                                                                                TECH 59
                                                                                                                          3B9
   COMPARATIVE EFFICIENCIES OF METHODS OF ESTIMATING PARAMETERS IN LINEAR AUTOREGRESSIVE SCHEMES
                                                                                                                BIOKA61
                                                                                                                          427
DISCUSSION)
                             CONFIDENCE INTERVALS FOR PARAMETERS IN MARKOV AUTOREGRESSIVE SCHEMES (WITH
                                                                                                                 JRSSB54
                                                                                                                          195
                              EFFICIENT ESTIMATION OF PARAMETERS IN MOVING-AVERAGE MODELS
                                                                                                                BIOKA59
                                                                                                                          306
ATIONS IN OPTIMAL DESIGNS OF EXPERIMENTS TO ESTIMATE PARAMETERS IN NON-LINEAR MODELS /CURRENCE OF REPLIC JRSSB6B
                                                                                                                          290
                    EXACT CONFIDENCE REGIONS FOR THE PARAMETERS IN NON-LINEAR REGRESSION LAWS
                                                                                                                BIOKA64
                                                                                                                          347
    INADMISSIBILITY OF THE USUAL ESTIMATORS OF SCALE PARAMETERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCAL
                                                                                                                 AMS 68
                                                                                                                          29
NERALIZED LEAST-SQUARES ESTIMATION OF A SUBVECTOR OF PARAMETERS IN RANDOMIZED FRACTIONAL FACTORIAL EXPERIM
                                                                                                                 AMS 69 1344
                                    THE ESTIMATION OF THE PARAMETERS IN SHORT MARKOV SEQUENCES
THE ESTIMATION OF PARAMETERS IN SYSTEMS OF STOCHASTIC DIFFERENTIAL
                                                                                                                JRSSR63
                                                                                                                         206
                                                                                                                BIOKA59
                                                                                                                           67
MATORS WITH PRESCRIBED BOUND ON THE VARIANCE FOR THE PARAMETERS IN THE BINOMIAL AND POISSON DISTRIBUTIONS WILCOXON CONFIDENCE INTERVALS FOR LOCATION PARAMETERS IN THE DISCRETE CASE
                                                                                                                          220
                                                                                                                JASA 66
                                                                                                                JASA 67
                                                                                                                          184
                                  LINEAR ESTIMATES OF PARAMETERS IN THE EXTREME VALUE DISTRIBUTION
                                                                                                                TECH 66
                                                                                                                            .3
                                     DETERMINATION OF PARAMETERS IN THE JOHNSON SYSTEM OF PROBABILITY
                                                                                                                BIOKA59
                                                                                                                          229
             ESTIMATES OF LINEAR COMBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A MULTIVARIATE DISTR
                                                                                                                           78
                                                                                                                AMS 65
WITH MISSING OBSERVATIONS
                                        ESTIMATION OF PARAMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                                JASA 6B
                                                                                                                          159
                                         ESTIMATION OF PARAMETERS IN THE WEIBULL DISTRIBUTION
                                                                                                                TECH 67
                                                                                                                          621
```

```
ESTIMATION OF PARAMETERS IN TIME-SERIES REGRESSION MODELS
                                                                                                           JRSSB60 139
NS WITHOUT RESORT TO HIGHER MOMENTS
                                          ESTIMATING PARAMETERS IN TRUNCATED PEARSON FREQUENCY DISTRIBUTIO BIOKA53
                                                                                                                     50
                ADMISSIBLE AND MINIMAX ESTIMATES OF PARAMETERS IN TRUNCATED SPACES
                                                                                                                    136
                                                                                                            AMS 61
                                      ESTIMATING THE PARAMETERS OF A CONVOLUTION
                                                                                                           JRSSR69
                                                                                                                    1B1
ST LINEAR ESTIMATES UNDER SYMMETRIC CENSORING OF THE PARAMETERS OF A DOUBLE EXPONENTIAL POPULATION
                                                                                                        BE JASA 66
                                                                                                                    248
                                       ESTIMATION OF PARAMETERS OF A FINITE MIXTURE OF DISTRIBUTIONS
                                                                                                           JRSS868
                                                                                                                    472
ULATION FROM/
               MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF A FOUR- PARAMETER GENERALIZED GAMMA POP TECH 67
                                                                                                                    159
                                  ESTIMATION OF THE PARAMETERS OF A LINEAR FUNCTIONAL RELATION
                                                                                                           JRSSB61
                                                                                                                    160
                         CONSISTENT ESTIMATES OF THE PARAMETERS OF A LINEAR SYSTEM
                                                                                                            AMS 69 NO.6
LIKELIHOOD ESTIMATION, FROM CENSORED SAMPLES, OF THE PARAMETERS OF A LOGISTIC DISTRIBUTION
                                                                                                  MAXIMUM- JASA 67
                                                                                                                    675
    THE USE OF FRACTIONAL MOMENTS FOR ESTIMATING THE PARAMETERS OF A MIXED EXPONENTIAL DISTRIBUTION
                                                                                                           TECH 6B
                                                                                                                    161
                          MOMENT ESTIMATORS FOR THE PARAMETERS OF A MIXTURE OF TWO BINOMIAL DISTRIBUTIONS
                                                                                                           AMS 62
                                                                                                                    444
                                                                                                           JASA 60
                                      ESTIMATING THE PARAMETERS OF A MODIFIED POISSON DISTRIBUTION
                                                                                                                    139
                              BAYESIAN ESTIMATION OF PARAMETERS OF A MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                           JRSSB65
                                                                                                                    279
                                       ESTIMATION OF PARAMETERS OF A MULTIVARIATE NORMAL POPULATION FROM
TRUNCATED AND CENSORED SAMPLES
                                                                                                           JRSS860
                                                                                                                    307
                                       ESTIMATION OF PARAMETERS OF A TRUNCATED BIVARIATE NORMAL DISTRIBUTI
                                                                                                           JASA 63
                                                                                                                    519
                                       ESTIMATION OF PARAMETERS OF A TRUNCATED POISSONIAN BINOMIAL
                                                                                                           BIOCS68
                                                                                                                    377
                      SOME METHODS OF ESTIMATING THE PARAMETERS OF DISCRETE HETEROGENEOUS POPULATIONS
                                                                                                           JRSSB56
                                                                                                                    222
                                                                                                           BIOCS68
         A COMPARISON OF CONTINUOUS DISTRIBUTIONS OF PARAMETERS OF EXPONENTIAL DECAY CURVES
                                                                                                                    117
HE EXACT OPTIMUM ORDER STATISTICS FOR ESTIMATING THE PARAMETERS OF EXPONENTIAL DISTRIBUTION IN CENSORED SA TECH 67
LETE AND FRO/ MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF GAMMA AND WEIBULL POPULATIONS FROM COMP TECH 65
      ERRATA, 'MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF GAMMA AND WEIBULL POPULATIONS FROM COMP TECH 67
                                                                                                                    195
                                     ESTIMATING THE PARAMETERS OF LOG-NORMAL DISTRIBUTION FROM CENSORED JASA 68
 TIME DISTRIBUTIONS FROM CENSORED L/
                                       ESTIMATION OF PARAMETERS OF MIXED EXPONENTIALLY DISTRIBUTED FAILURE BIOKA58
                                      ESTIMATING THE PARAMETERS OF MIXTURES OF BINOMIAL DISTRIBUTIONS
                                                                                                          JASA 64
                                                                                                                    510
                          OPTIMUM ESTIMATORS OF THE PARAMETERS OF NECATIVE EXPONENTIAL DISTRIBUTIONS FROM AMS 63
 ONE OR TWO ORDER STATI/
                                                                                                                    117
NE OR TWO ORDER STATISTICS, CORR./
                                     ESTIMATING THE PARAMETERS OF NEGATIVE EXPONENTIAL POPULATIONS FROM O
                                                                                                            AMS 61 1078
LES OF GROUPED OBSERVATIONS IN THE ESTIMATION OF THE PARAMETERS OF NORMAL POPULATIONS /BY TRUNCATED SAMP BIOKAG3
                                                                                                                    207
    ON THE JOINT EFFICIENCY OF THE ESTIMATES OF THE PARAMETERS OF NORMAL POPULATIONS BASED ON SINGLY AND JASA 62
                                                                                                                     46
          ON THE EFFICIENCY OF BAN ESTIMATES OF THE PARAMETERS OF NORMAL POPULATIONS BASED ON SINGLY CENS BIOKA62
     ITERATIVE MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF NORMAL POPULATIONS FROM SINCLY AND DOUB BIOKAGE
                                       A NOTE ON THE PARAMETERS OF PARTIALLY BALANCED INCOMPLETE BLOCK
ASSOCIATION SCHEMES
                                                                                                            AMS 65
                                                                                                                    331
                                         ON RANKING PARAMETERS OF SCALE IN TYPE III POPULATIONS
FOR BEST LINEAR ESTIMATES BY ORDER STATISTICS OF THE PARAMETERS OF SINGLE EXPONENTIAL DISTRIBUTIONS FROM S JASA 57
                                                                                                                     58
                SIMPLIFIED TECHNIQUES FOR ESTIMATING PARAMETERS OF SOME GENERALIZED POISSON DISTRIBUTIONS BIOKA67
             TEST PROCEDURES FOR POSSIBLE CHANGES IN PARAMETERS OF STATISTICAL DISTRIBUTIONS OCCURING AT U
                                                                                                           AMS 66 1196
ER STATISTICS
               MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF THE BETA DISTRIBUTION FROM SMALLEST ORD TECH 67
PTIMUM ORDER STATISTICS IN CENS/
                                  ESTIMATION OF THE PARAMETERS OF THE EXPONENTIAL DISTRIBUTION BASED ON O
                                                                                                           AMS 66 1717
IS OF SUITABLY CHOSEN OR/ ESTIMATION OF ONE OF TWO PARAMETERS OF THE EXPONENTIAL DISTRIBUTION ON THE BAS
                                                                                                            AMS 63 1419
F TWO OR THREE ORDER STATISTICS ESTIMATION OF THE PARAMETERS OF THE EXTREME VALUE DISTRIBUTION BY USE O BIOKA69
                                                                                                                    429
OOD ESTIMATION, FROM DOUBLY CENSORED SAMPLES, OF THE PARAMETERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EX JASA 68
                MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF THE GAMMA DISTRIBUTION AND THEIR BIAS
                                                                                                           TECH 69 NO.4
                                   ESTIMATION OF THE PARAMETERS OF THE GAMMA DISTRIBUTION BY SAMPLE
QUANTILES
                                                                                                           TECH 64
                                                                                                                    405
STATISTICS
                                       ESTIMATION OF PARAMETERS OF THE GAMMA DISTRIBUTION USING ORDER
                                                                                                           BTOKA62
                                                                                                                    525
RATE MAXIMUM-LIKELIHOOD ESTIMATION OF SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION USING ORDER STAT BIOKA63
                                                                                                                    217
                          CORRIGENDA, 'ESTIMATION OF PARAMETERS OF THE GAMMA DISTRIBUTION USING ORDER STAT BIOKA63
ISTICS
                                                                                                                    546
                                   ON ESTIMATING THE PARAMETERS OF THE LOGARITHMIC SERIES AND NEGATIVE
BINOMIAL DISTRIBUTIONS
                                                                                                           BTOKA69
                                                                                                                    411
                                   ESTIMATION OF THE PARAMETERS OF THE LOGISTIC DISTRIBUTION
                                                                                                           BTOK466
                                                                                                                    565
                                   ESTIMATION OF THE PARAMETERS OF THE LOGISTIC DISTRIBUTION BY SAMPLE
QUANTILES
                                                                                                           BTOKA69 NO 3
              BEST LINEAR UNBIASED ESTIMATORS OF THE PARAMETERS OF THE LOGISTIC DISTRIBUTION USING ORDER S TECH 67
TATISTICS
                                                                                                                     43
                      TESTS OF HYPOTHESES ABOUT THE PARAMETERS OF THE LOGISTIC FUNCTION
                                                                                                           RTOKA66
                                                                                                                    535
M LOGIT CHI-SQUAR/
                    A NOTE ON THE ESTIMATION OF THE PARAMETERS OF THE LOGISTIC FUNCTION, USING THE MINIMU BIOKA62
                                                                                                                    250
YMPTOTIC OPTIMUM QUANTILES FOR THE ESTIMATION OF THE PARAMETERS OF THE NEGATIVE EXPONENTIAL DISTRIBUTION
                                                                                                            AMS 66
                                                                                                                    143
                         ON GUPTA'S ESTIMATES OF THE PARAMETERS OF THE NORMAL DISTRIBUTION
                                                                                                           BTOKA64
                                                                                                                    498
OTIC VARIANCES OF METHOD OF MOMENTS ESTIMATES OF THE PARAMETERS OF THE TRUNCATED BINOMIAL AND NECATIVE BIN JASA 61
                                                                                                                    990
                   ESTIMATION OF THE SHAPE AND SCALE PARAMETERS OF THE WEIBULL DISTRIBUTION
                                                                                                           TECH 63
                                                                                                                    175
                                  INFERENCES ON THE PARAMETERS OF THE WEIBULL DISTRIBUTION
                                                                                                           TECH 69
                                                                                                                    445
FOR OBTAINING THE BEST LINEAR INVARIANT ESTIMATES OF PARAMETERS OF THE WEIBULL DISTRIBUTION
                                                                                                   TABLES TECH 67
                                                                                                                    629
ROM CO/ LOCAL-MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF THREE-PARAMETER LOCNORMAL POPULATIONS F JASA 66
                                                                                                                    842
                    A NOTE ON 'THE ESTIMATION OF THE PARAMETERS OF TOLERANCE DISTRIBUTIONS'
                                                                                                           BTOKA52
                                                                                                                    439
                            JOINT ESTIMATION OF THE PARAMETERS OF TWO NORMAL POPULATIONS
                                                                                                           JASA 62
                                                                                                                    446
                                   ESTIMATION OF THE PARAMETERS OF TWO PARAMETER EXPONENTIAL DISTRIBUTIONS TECH 60
 FROM CENSORED SAMPLES
                                                                                                                    403
TIMATION, FROM SINGLY CENSORED SAMPLES, OF THE SCALE PARAMETERS OF TYPE II EXTREME-VALUE DISTRIBUTIONS
                                                                                                        / TECH 68
                                                                                                                    349
LIKELIHOOD ESTIMATORS, FROM CENSORED SAMPLES, OF THE PARAMETERS OF WEIBULL AND GAMMA POPULATIONS /XIMUM-
                                                                                                           AMS 67
                                                                                                                    557
      LEAST SQUARES ESTIMATION OF LOCATION AND SCALE PARAMETERS USING ORDER STATISTICS
                                                                                                          BTOKA52
                                                                                                                     88
                                                                                                    /CTION AMS 66 1783
 OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH PARAMETERS V=28, N1=12, N2=15 AND P2(1.1)=4
                           INFERENCE PROBLEMS ABOUT PARAMETERS WHICH ARE SUBJECTED TO CHANGES OVER TIME
                                                                                                            AMS 68
                                                                                                                    840
PROBLEM.
                         SOME INFERENCES ABOUT GAMMA PARAMETERS WITH AN APPLICATION TO A RELIABILITY
                                                                                                           JASA 63
                                                                                                                    670
SQUARES AND MINIMUM VARIANCE ESTIMATES OF RECRESSION PARAMETERS, (ACKNOWLEDGEMENT OF PRIORITY 63 352)
                                                                                                           AMS 62
                                                                                                                    462
       THE ESTIMATION OF REGRESSION AND ERROR-SCALE PARAMETERS. WHEN THE JOINT DISTRIBUTION OF THE ERRORS BIOKAG1
                                                                                                                    125
OF MOOD'S AND MASSEY'S TWO SAMPLE TESTS AGAINST SOME PARAMETRIC ALTERNATIVES /TOTIC RELATIVE EFFICIENCY
                                                                                                           AMS 62 1375
                          BIVARIATE SYMMETRY TESTS. PARAMETRIC AND NONPARAMETRIC
                                                                                                            AMS 69
                                                                                                                    259
ARISON OF ANALYSIS OF VARIANCE POWER FUNCTION IN THE PARAMETRIC AND RANDOM MODELS
                                                                                                      COMP BIOKA52
                                                                                                                    427
HICH CERTAIN SIMPLE LEAST SQUARES AND ANALYSIS OF/ PARAMETRIC AUGMENTATIONS AND ERROR STRUCTURES UNDER W JASA 69 NO.4
                                                  A PARAMETRIC ESTIMATE OF THE STANDARD ERROR OF THE
SURVIVAL RATE, CORR. 63 1161
                                                                                                           JASA 61
                                                                                                                   111
                   INTERVAL ESTIMATION OF NON-LINEAR PARAMETRIC FUNCTIONS
                                                                                                           JASA 63
                                                                                                                    611
                   INTERVAL ESTIMATION OF NON-LINEAR PARAMETRIC FUNCTIONS, II
                                                                                                           JASA 64
                                                                                                                   168
                   INTERVAL ESTIMATION OF NON-LINEAR PARAMETRIC FUNCTIONS, 111
                                                                                                           JASA 65 1191
IBUTIONS TO SAMPLE SPACINGS THEORY, II. TESTS OF THE PARAMETRIC GOODNESS OF FIT AND TWO-SAMPLE PROBLEMS
                                                                                                            AMS 66
                                                                                                                   925
  EMPIRICAL BAYES APPROACH TO THE TESTING OF CERTAIN PARAMETRIC HYPOTHESES
                                                                                                        ΔN
                                                                                                           AMS 63 1370
 PROBLEM.
                                               A NON-PARAMETRIC TEST FOR THE BIVARIATE TWO-SAMPLE LOCATION JRSSB67
                                                                                                                    320
     EXACT AND APPROXIMATE POWER FUNCTION OF THE NON-PARAMETRIC TEST OF TENDENCY
                                                                                                            AMS 62
                                                                                                                    471
                             LARGE-SAMPLE RESTRICTED PARAMETRIC TESTS
                                                                                                           JRSSB62
                                                                                                                    234
             ASYMPTOTIC EFFICIENCY OF A CLASS OF NON-PARAMETRIC TESTS FOR REGRESSION PARAMETERS
                                                                                                           AMS 67
                                                                                                                    884
                                                 NON-PARAMETRIC TESTS FOR SCALE
                                                                                                            AMS 62
                                                                                                                    498
                     TESTING AND ESTIMATING OF SCALE PARAMETERS
                                                                                                           JASA 69
                                                                                                                    999
```

TITLE WORD INDEX PAR - PAR

MEAN SQUARES IN CENETIC EXPERIMENTS WHEN ONLY ONE			436
	PARENTS ARE RETAINED /ON OF RESPONSE TO SELECTION I		553
	PARETO DISTRIBUTIONS, CORR. 63 1603	AMS 62	
THE ORDER STATISTICS OF THE MULTIVARIATE NORMAL AND			
	PARTIAL 'A PRIORI' INFORMATION IN STATISTICAL	AMS 67	
SMALL SAMPLE BIAS DUE TO MISSPECIFICATION IN THE	'PARTIAL ADJUSTMENT' AND 'ADAPTIVE EXPECTATIONS' MODEL		
	PARTIAL AND MULTIPLE RANK CORRELATION	BIOKA51	26
THE DETECTION OF	PARTIAL ASSOCIATION, 1, THE 2 BY 2 CASE PARTIAL ASSOCIATION, 2. THE GENERAL CASE PARTIAL COEFFICIENT FOR GOODMAN AND KRUSKAL'S GAMMA	JRSSB64	313
THE DETECTION OF	PARTIAL ASSOCIATION, 2. THE GENERAL CASE	JRSSB65	111
A	PARTIAL COEFFICIENT FOR GOODMAN AND KRUSKAL'S GAMMA	JASA 67	
		TECH 61	353
A MODIFIED DOOLITTLE APPROACH FOR MULTIPLE AND		JASA 58	133
	PARTIAL CORRELATION AND REGRESSION, WITH APPLICATION		241
	PARTIAL CORRELATION COEFFICIENTS A NOTE		480
A NOMOGRAPH FOR COMPUTING		JASA 61	995
		JASA 61	363
		BIOCS68	903
TWO CLASSES OF GROUP DIVISIBLE		BIOKA63	281
	PARTIAL DIALLEL TEST CROSSING 2. AN EVALUATION OF TWO		325
ON A	PARTIAL DIFFERENTIAL EQUATION OF EPIDEMIC THEORY. I.		617
		TECH 59	63
		TECH 60	185
	PARTIAL INTERPRETATION OF THE LATTER /ARITY BETWEEN		804
	PARTIAL ISOLATION (DISTANCE), MIGRATION, AND DIFFEREN		453
	PARTIAL OBSERVATIONS ON MULTIVARIATE PREDICTION		634
	PARTIAL OBSERVATIONS IN CERTAIN LIFE TEST EXPERIMENTS		850
SIMULATED DISTRIBUTIONS FOR SMALL N OF KENDALL'S		BIOKA63	520
LIMIT THEOREMS FOR RANDOMLY SELECTED		AMS 62	B5
COMBINATORIAL THEOREM FOR		AMS 63	
ON CONVERGENCE IN R-MEAN OF NORMALIZED		AMS 68	379
ON MOMENTS OF THE MAXIMUM OF NORMED		AMS 69	
	PARTIAL SUMS OF A FINITE NUMBER OF INDEPENDENT NORMAL PARTIAL SUMS OF A FINITE NUMBER OF INDEPENDENT NORMAL		35 96
	PARTIAL SUMS OF A FINITE NUMBER OF INDEPENDENT NORMAL		79
DIRECTION OF THE PROPERTY OF T	DIRECTION OF THE PROPERTY OF T	BIOKA59	
VA MOTENATER SINGWAT HIMTS		JASA 68	
ON SOME METHODS OF CONSTRUCTION OF	PARTIALLY BALANCED APPAYS	AMS 61	
ON OBTAINING BALANCED INCOMPLETE BLOCK DESIGNS FROM		AMS 67	61B
	PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE		229
	PARTIALLY BALANCED DESIGNS WITH TWO ASSOCIATE CLASSES		
SCHEMES A NOTE ON THE PARAMETERS OF	PARTIALLY BALANCED INCOMPLETE BLOCK ASSOCIATION	AMS 65	331
LATIONSHIP ALGEBRA AND THE ANALYSIS OF VARIANCE OF A	PARTIALLY BALANCED INCOMPLETE BLOCK DESIGN THE RE	AMS 65	1815
		AMS 64	681
		AMS 65	
			999
		BIOCS65	865
ICATION OF THE GEOMETRY OF QUADRICS FOR CONSTRUCTING		AMS 62	
UMBER OF COMMON TREATMENTS BETWEEN BLOCKS OF CERTAIN		AMS 66	739
COMMON TREATMENTS BETWEEN ANY TWO BLOCKS OF CERTAIN THE INTRABLOCK ANALYSIS OF A CLASS OF TWO ASSOCIATE		JASA 65	337
R BOUND FOR THE NUMBER OF DISJOINT BLOCKS IN CERTAIN			2B5 398
	PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS AND BALAN		348
	PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS AND BALAN	AMS 66	
	PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH MORE		800
	PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH PARA		
	PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH SOME		571
	PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH TWO-		175
	PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS, CORR. 67		
		JASA 68	542
		BIOKA61	218
QUERY. ANALYSIS OF FACTORIAL EXPERIMENT		TECH 67	
QUERY, ANALYSIS OF FACTORIAL EXPERIMENT		TECH 67	490
		TECH 63	71
	PARTIALLY LINKED BLOCK DESIGNS	AMS 66	
RT FOR A COMPLETE ORDER ON THE USE OF	PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE SUPPO		
DISTRIBUTIONS OF KENDALL'S TAU BASED ON	PARTIALLY ORDERED SYSTEMS	BIOKA55	
ONE DIMENSIONAL RANDOM WALK WITH A		AMS 63	
		AMS 63 AMS 61	
ON A COINCIDENCE PROBLEM CONCERNING OF GROUPS OF PARTICLES ESTIMATION OF	PARTICLE COUNTERS PARTICLE SIZE DISTRIBUTION BASED ON OBSERVED WEIGHTS		
		TECH 69	
SAMPLING MIXTURES OF		TECH 67	
DISTRIBUTION BASED ON OBSERVED WEIGHTS OF GROUPS OF			
	PARTICLES, AN APPLICATION OF RENEWAL THEORY		
STICS INCLUDING A TABLE OF SIGNIFICANCE POINTS FOR A	PARTICULAR CASE /S OF KOLMOGOROV-SMIRNOV TYPE STATI	AMS 68	233
THE STATISTICS OF A	PARTICULAR NON-HOMOCENEOUS POISSON PROCESS	BIOKA64	399
OF RANDOM NUMBERS WILL BE USABLE IN SELECTING A	PARTICULAR SAMPLE HOW MANY OF A GROUP	JASA 59	102
THE LIMITING PREQUENCIES OF INTEGERS WITH A GIVEN	PARTITIONAL CHARACTERISTIC	JK2282A	134
	PARTITIONED MATRICES IN THE ANALYSIS OF NON-ORTHOGONA		
	PARTITIONING A SET OF NORMAL POPULATIONS BY THEIR		
DIFFERENT MORTALITY RISKS	PARTITIONING OF A PATIENT POPULATION WITH RESPECT TO		
ON A CLASS OF ADMISSIBLE		AMS 66	
COME NON ORMUCCONAL		JRSSB56	
	PARTITIONS OF 4X4, 5X5, AND 6X6 LATIN SQUARES PARTLY DEPENDENT VARIABLES	AMS 66 AMS 61	
STATISTICIAN AND POLICY MAKER, A		JASA 56	
DIMITOTIOIAN AND TODIOT WANDEN, A	A SECTION AND ASSESSMENT OF THE PARTY OF THE	-110A UU	46

```
FORMATION EVALUATION IN DECISIONS UNDER UNCERTAINTY, PARTS I, II, AND III
                                                                                          ON CASH EQUIVALENTS AND IN JASA 6B
                         TABLES OF SYMMETRIC FUNCTIONS PARTS II AND III.
                                                                                                                         BIOKA51
                          A MINIMUM COST MODEL OF SPARE PARTS INVENTORY CONTROL
                                                                                                                         TECH 67
                                                                                                                                    661
         SOME PROPERTIES OF PASCAL DISTRIBUTION FOR FINITE POPULATION, CORR. 62
A STUDY OF THE VARIABILITY DUE TO COINCIDENT PASSACE IN AN ELECTRONIC BLOOD CELL COUNTER
                                                                                                                         JASA 62
                                                                                                                                   172
                                                                                                                          BIOCS67
                                                                                                                                   671
                                                     FIRST-PASSACE PERCOLATION
                                                                                                                          JRSSB66
                                                                                                                                   491
   SOME RENEWAL THEOREMS WITH APPLICATION TO A FIRST PASSAGE PROBLEM
                                                                                                                          AMS 66
                                                                                                                                   699
  THE MEAN DURATION OF A BALL AND CELL GAME, A FIRST PASSAGE PROBLEM
A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS.
                                                                                                                      ON AMS 66
                                                                                                                                   517
                                                                                                                           AMS 67 1912
                                                SOME FIRST PASSAGE PROBLEMS FOR S-SUB-N-OVER-ROOT-N
                                                                                                                           AMS 69
                                                                                                                                   648
                                                 THE FIRST PASSAGE TIME DENSITY FOR HOMOGENEOUS SKIP-FREE WALKS
ON THE CONTINUUM
                                                                                                                         AMS 63 1003
                         A TECHNIQUE FOR DISCUSSING THE PASSAGE TIME DISTRIBUTION FOR STABLE SYSTEMS
                                                                                                                         JRSSB66
                                                                                                                                   477
                                                    FIRST PASSAGE TIME FOR A PARTICULAR CAUSSIAN PROCESS
                                                                                                                          AMS 61
                                                                                                                                   610
    PROPERTIES OF GAUSSIAN PROCESSES AND THEIR FIRST PASSACE TIMES
                                                                                                                CERTAIN JRSSB65
                                                                                                                                   505
                                     A LIMIT THEOREM FOR PASSAGE TIMES IN ERGODIC REGENERATIVE PROCESSES
                                                                                                                         AMS 66
                                                                                                                                   866
                                                    FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK, CORR. AND AMS 61
 ACKNOWLEDGEMENT OF PRIORITY 61 1345
                                                                                                                                   235
                                     FISHER, WRIGHT, AND PATH COEFFICIENTS
                                                                                                                         BIOCS6B
                                                                                                                                    471
SAMPLE PATH VARIATIONS OF HOMOGENEOUS PROCESSES AMS 69
NS WITH AN APPLICATION IN STUDYING THE DENTAL C/ A PATH-FACRABILITY APPROACH TO IRREVERSIBLE MARKOV CHAI BIOCS66
                                                                                                                                   399
                                                                                                                                    791
NOTE ON THE ABSENCE OF TANGENCIES IN GAUSSIAN SAMPLE PATHS
                                                                                                                     A AMS 68
TECH 66
                                                                                                                                   261
                                                           PATHS AND CHAINS OF RANDOM STRAIGHT-LINE SECMENTS
                                                                                                                                    303
                                       PARTITIONING OF A PATIENT POPULATION WITH RESPECT TO DIFFERENT MORTALIT JASA 63
Y RISKS
                                                                                                                                    701
                                                                                                       A TWO-PARAMETER JASA 65
      MODEL FOR THE SURVIVAL CURVE OF TREATED CANCER PATIENTS
                                                                                                                                    16
      TICANCE TESTS ON THE USE OF PATHALK TYPE CHI APPROXIMATIONS TO THE RANGE IN BIOKAG6
THE EFFICIENCY OF N MACHINES UNI-DIRECTIONALLY PATROLLED BY ONE OPERATOR WHEN WALKING TIME AND REPAI JRSSB57
SIGNIFICANCE TESTS
                                                                                                                                   24B
                                                                                                                                    166
       THE EFFICIENCY OF N MACHINES UNI-DIRECTIONALLY PATROLLED BY ONE OPERATOR WHEN WALKING TIME IS CONSTA JRSSB57
                                                                                                                                    173
          OF AUTOMATIC WINDING MACHINES WITH CONSTANT PATROLLING TIME
                                                                                                        THE EFFICIENCY JRSSB59
                                                                                                                                   3B1
           STUDIES IN STATISTIGAL ECOLOGY. I. SPATIAL PATTERN
FOUR-LETTER WORDS. THE DISTRIBUTION OF PATTERN FREQUENCIES IN RING PERMUTATIONS
                                                                                                                         BIOKA52
                                                                                                                                   346
                                                                                                                         JRSSB67
                                                                                                                                   550
                 A MATHEMATICAL THEORY OF PATTERN RECOGNITION
THE ESTIMATION OF A CHANCING SEASONAL PATTERN, CORR. 66 1247
                                                                                                                           AMS 63
                                                                                                                                   2B4
                                                                                                                          JASA 64 1063
                                              OUTLIERS IN PATTERNED EXPERIMENTS. A STRATEGIC APPRAISAL
                                                                                                                          TECH 61
                                                                                                                                    91
                                 ON INVERTING A CLASS OF PATTERNED MATRICES
                                                                                                                          BTOKA56
                                                                                                                                    227
RACTERISTIC EQUATIONS AND THEIR ROOTS FOR A CLASS OF PATTERNED MATRICES
                                                                                  EVALUATION OF DETERMINANTS, CHA JRSSB60
                                                                                                                                   34B
                FOURIER METHODS FOR EVOLVING SEASONAL PATTERNS
                                                                                                                          JASA 65
                                                                                                                                    492
   POINTS IN A CIRCLE AND THE ANALYSIS OF CHROMOSOME PATTERNS
                                                                                                                  RANDOM BIOKA63
                                                                                                                                     23
  PROCESS MODEL FOR THE ANALYSIS OF COMPUTER FAILURE PATTERNS (WITH DISCUSSION)
                                                                                                 A BRANCHING POISSON JRSSB64
                                           RECONSTRUCTING PATTERNS FROM SAMPLE DATA
                                                                                                                           AMS 67
                                                                                                                                    13B
                                                 MORTALITY PATTERNS IN EICHT STRAINS OF FLOUR BEETLE
                                                                                                                          BIOCS65
                                                                                                                                    99
ADEQUACY IN RADIONUCLIDE ASSAY
                                                            PATTERNS IN RESIDUALS, A TEST FOR RECRESSION MODEL
                                                                                                                          TECH 65
                                                                                                                                   603
                                                        ACE PATTERNS OF MORTALITY OF AMERICAN NEGROES, 1900-02 TO JASA 69
                                                                                                                                    433
                       THE CONCEPT OF RANDOMNESS IN THE PATTERNS OF MOSAICS
                                                                                                                          BIOCS65
                                                                                                                                    90B
                                         AN EXTENSION OF PAULSON'S SELECTION PROCEDURE
                                                                                                                           AMS 6B 2067
  MOMENTS OF THE RANDOMIZATION TEST IN TWO ASSOCIATE PBIB DESIGNS
                                                                                                      FIRST AND SECOND JASA 69 NO.4
                           THE IDENTIFICATION OF ANNUAL PEAK PERIODS FOR A DISEASE
                                                                                                                         BIOCS65 645
                 SOME STATISTICAL CHARACTERISTICS OF A PEAK TO AVERAGE RATIO
                                                                                                                          TECH 65
                                                                                                                                   379
                                                            PEAKEDNESS OF DISTRIBUTIONS OF CONVEX COMBINATIONS
                                                                                                                          AMS 65 1703
                               THE CONTRIBUTIONS OF KARL PEARSON
                                                                                                                          JASA 5B
                                                                                                                                    11
TIME INTERVALS BETWEEN ACCIDENTS, A NOTE ON MAGUIRE, PEARSON AND WYNN'S PAPER
                                                                                                                          BIOKA53
TS WITH RESPECT TO VALIDITY,/
                                    A COMPARISON OF THE PEARSON CHI-SQUARE AND KOLMOGOROV GOODNESS-OF-FIT TES JASA 65
   TABLES OF THE 5 PERCENT AND 0.5 PERCENT POINTS OF PEARSON CURVES (WITH ARCUMENT BETA-1 AND BETA-2) EXPR BIOKA51
RESSED IN STANDARD/ TABLE OF PERCENTACE POINTS OF PEARSON CURVES, FOR GIVEN ROOT(BETA-1) AND BETA-2 EXP BIOKA63 PRESSE/ CORRIGENDA, 'TABLE OF PERCENTAGE POINTS OF PEARSON CURVES, FOR GIVEN ROOT(BETA-1) AND BETA-2, EX BIOKA65
OSE LEFT TERMINAL AND FIRST THREE MOME/ USE OF THE PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WH BIOKA68
HER MOMENTS ESTIMATING PARAMETERS IN TRUNCATED PEARSON FREQUENCY DISTRIBUTIONS WITHOUT RESORT TO HIG BIOKA53
                                                                                                                                     50
A PROPERTY OF THE MEAN DEVIATION FOR THE PEARSON TYPE DISTRIBUTIONS PRIORITY), 'A PROPERTY OF THE MEAN DEVIATION FOR THE PEARSON TYPE DISTRIBUTIONS'
                                                                                                                          BTOKA66
                                                                                                                                    2B7
                                                                                                 (ACKNOWLEDGEMENT OF
                                                                                                                          BIOKA67
                                                                                                                                    333
               A NEW TABLE OF PERCENTAGE POINTS OF THE PEARSON TYPE III DISTRIBUTION
                                                                                                                          TECH 69
 DEVIATION, WITH SPECIAL REFERENCE TO SAMPLES FROM A PEARSON TYPE III POPULATION
                                                                                                               THE MEAN BIOKA58
  THE MILLS RATIO AND THE PROBABILITY INTEGRAL FOR A PEARSON TYPE IV DISTRIBUTION
                                                                                                                          BIOKA65
                                                                                                                                    119
                                    A NEW PROOF OF THE PEARSON-FISHER THEOREM, (ACKNOWLEDGEMENT OF PRIORITY,
                                                                                                                           AMS 64
                                                                                                                                    817
 65 344)
NORMAL DISTRIBUTIONS
                                         NOTES TABLES OF PEARSON-LEE-FISHER FUNCTIONS OF SINGLY TRUNCATED
                                                                                                                          BIOCS65
                                                                                                                                    219
                                                      KARL PEARSON, AN APPRECIATION ON THE HUNDREDTH ANNIVERSARY JASA 5B
 OF HIS BIRTH
                                                                                                                                    23
SPONDENCE BETWEEN W.S. COSSETT, R.A. FISHER AND KARL PEARSON, WITH NOTES AND COMMENTS //SOME EARLY CORRE BIOKAGE
                                                                                                                                    445
CENTENARY LECTURE, KARL PEARSON, 1857-1957
ON A TEST OF SIGNIFICANCE IN PEARSON'S BIOMETRIKA TABLES (NO. 11)
RONALD FISHER'S PAPER, 'ON A TEST OF SIGNIFICANCE IN PEARSON'S BIOMETRIKA TABLES (NO. 11)'
ON SLIPPACE TESTS I. A GENERALIZATION OF NEYMAN PEARSON'S LEMMA
                                                                                                                          BIOKA57
                                                                                                                                   303
                                                                                                                          JRSSB56
                                                                                                                                    56
                                                                                                         /MENT ON SIR JRSSB56
                                                                                                                                   295
                                                                                                                           AMS 6B 1693
SOME FURTHER RESULTS IN THE THEORY OF PEDESTRIANS AND ROAD TRAFFIC CORRIGENDA TO 'SOME FURTHER RESULTS IN THE THEORY OF PEDESTRIANS AND ROAD TRAFFIC'
                                                                                                                          BTOKA54
                                                                                                                                   375
                                                                                                                          BIOKA5B
                                                                                                                                   291
                                             THE DELAY TO PEDESTRIANS CROSSING A ROAD
                                                                                                                          BIOKA51
                                                                                                                                    3B3
            NOTE ON THE CONFIDENCE-PRIOR OF WELCH AND PEERS
                                                                                                                          JRSSB66
                                                                                                                                    55
                   THE NON-ABSOLUTE CONVERGENCE OF GIL-PELAEZ' INVERSION INTECRAL
                                                                                                                           AMS 61
                                                                                                                                    33B
         ON THE SIZE OF AN EPIDEMIC AND THE NUMBER OF PEOPLE HEARING A RUMOUR
                                                                                                                          JRSSB66
             LABOR FORCE ENTRY AND ATTACHMENT OF YOUNG PEOPLE, CORR. 66 124B
                                                                                                                          JASA 66
                                                                                                                                   117
                                                      99.9 PERCENT AND 0.1 PERCENT POINTS OF THE CHI-SQUARE
                                                                                                                          BIOKA53
TERISTIC CURVES FOR FIXED EFFECT/ CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE OPERATING CHARAC JASA 57
TRAL CHI-SQUARE
                         APPROXIMATIONS TO THE UPPER 5 PERCENT POINTS OF FISHER'S B DISTRIBUTION AND NON-CEN BIOKA57
1 AND BETA-2) EXP/
                       TABLES OF THE 5 PERCENT AND 0.5 PERCENT POINTS OF PEARSON CURVES (WITH ARGUMENT BETA- BIOKA51
                                   TABLE OF THE UPPER 10 PERCENT POINTS OF THE 'STUDENTIZED' RANCE
                                                                                                                                    461
                                    99.9 PERCENT AND 0.1 PERCENT POINTS OF THE CHI-SQUARE DISTRIBUTION
                                                                                                                         BIOKA53
                                                                                                                                    421
                                            UPPER 5 AND 1 PERCENT POINTS OF THE MAXIMUM F-RATIO
                                                                                                                         BIOKA52
                              TABLES OF INVERSE GAUSSIAN PERCENTAGE POINTS
                                                                                                                          TECH 69
                                                                                                                                   591
        COEFFICIENTS FOR INTERPOLATION BETWEEN TABLED PERCENTACE POINTS
                                                                                                            LAGRANGIAN BIOKA68
                                                                                                                                    19
 STATISTICS CONNECTED WITH THE UNIFORM DISTRIBUTION, PERCENTACE POINTS AND APPLICATION TO TESTING FOR RAND BIOKAG6
                                                                                                                                    235
THE NORMAL DISTRIBUTION
                                                            PERCENTAGE POINTS AND MODES OF ORDER STATISTICS FROM AMS 61
```

TITLE WORD INDEX PAR - PER

```
NON-CENTRAL CHI-SQU/ APPROXIMATE FORMULAE FOR THE PERCENTACE POINTS AND THE PROBABILITY INTEGRAL OF THE BIOKA54 538
T'S CRITERION FOR TESTINC/ LARCE SAMPLE TABLES OF PERCENTACE POINTS FOR HARTLEY'S CORRECTION TO BARTLET BIOKA62
                                                           PERCENTACE POINTS FOR THE DISTRIBUTION OF OUTCOING
                                                                                                                                  689
                                              ADDITIONAL PERCENTACE POINTS FOR THE INCOMPLETE BETA DISTRIBUTIO BIOKA63
                                                                                                                                  449
                                                 FURTHER PERCENTACE POINTS FOR W-SQUARE-SUB-N + (CRAMER-VON
MISES GOODNESS-OF-FIT STATISTIC)
                                                                                                                     BIOKA68
                                                                                                                                  428
PROXIMATIONS TO THE PROBABILITY INTECRAL AND CERTAIN PERCENTACE POINTS OF A MULTIVARIATE ANALOGUE OF STUDE BIOKA55
                                                                                                                                  258
                                                    UPPER PERCENTACE POINTS OF A SUBSTITUTE F-RATIO USING
                                                                                                                       BIOKA61
                                                                                                                                  195
                                                           PERCENTACE POINTS OF A TEST FOR CLUSTERS
                                                                                                                        JASA 69 NO 4
             ON THE COMPUTATION AND USE OF A TABLE OF PERCENTACE POINTS OF BARTLETT'S M
                                                                                                                        BIOKA69
                                             TABLE OF 0.1 PERCENTACE POINTS OF BEHRENS'S D
                                                                                                                        BIOKA66
                                                                                                                                  267
S AND STANDARD DEVIATIONS BASED ON DISTANCES BETWEEN PERCENTACE POINTS OF FREQUENCY CURVES. /XIMATE MEAN BIOKA65
                                                                                                                                  533
                                                 TABLE OF PERCENTAGE POINTS OF KOLMOGOROV STATISTICS
                                                                                                                        JASA 56
                                                                                                                                   111
TABLE OF PERCENTAGE POINTS OF NON-CENTRAL CHI BIOKA69

ETA-1' AND BETA-2 EXPRESSED IN STANDARD/ TABLE OF PERCENTAGE POINTS OF PEARSON CURVES, FOR GIVEN ROOT'B BIOKA63

ETA-1' AND BETA-2, EXPRESSE/ CORRIGENDA, 'TABLE OF PERCENTAGE POINTS OF PEARSON CURVES, FOR GIVEN ROOT'B BIOKA65
                                                                                                                                   255
                                        USE OF TABLES OF PERCENTAGE POINTS OF RANCE AND STUDENTIZED RANGE TECH 61
                                 TABLES OF PERCENTAGE POINTS OF ROOT'B1' AND B2 IN NORMAL SAMPLE BIOKAG5
EXTENDED TABLES OF THE PERCENTAGE POINTS OF STUDENT'S T-DISTRIBUTION JASA 59
E FROM THE SAMPLE MEAN
                                                TABLES OF PERCENTAGE POINTS OF THE 'STUDENTIZED' EXTREME DEVIAT BIOKA52
           EXTENDED AND CORRECTED TABLES OF THE UPPER PERCENTAGE POINTS OF THE 'STUDENTIZED' RANCE
                                 CORRIGENDA, 'TABLES OF PERCENTAGE POINTS OF THE 'STUDENTIZED' RANCE'
 BAYESIAN ANALYSIS OF BERNOULLI PROCESSES
                                                          PERCENTAGE POINTS OF THE BETA DISTRIBUTION FOR USE IN TECH 66
                            CORRICENDA, 'A NEW TABLE OF PERCENTAGE POINTS OF THE CHI-SQUARE DISTRIBUTION BIOKA64

PERCENTAGE POINTS OF THE CHI-SQUARE DISTRIBUTIONS' BIOKA65
                                                           PERCENTACE POINTS OF THE EXTREME ROOTS OF A WISHART
FROM THE SAMPLE MEAN
                                           REVISED UPPER PERCENTAGE POINTS OF THE EXTREME STUDENTIZED DEVIATE
FROM THE SAMPLE MEAN
                                                    UPPER PERCENTAGE POINTS OF THE EXTREME STUDENTIZED DEVIATE
N. I
                                                    UPPER PERCENTACE POINTS OF THE GENERALIZED BETA DISTRIBUTIO BIOKA57
N. TI
                                                    UPPER PERCENTAGE POINTS OF THE GENERALIZED BETA DISTRIBUTIO BIOKA57
                                                    UPPER PERCENTAGE POINTS OF THE GENERALIZED BETA DISTRIBUTIO BIOKA58
MULTIVARIATE ANALYSIS
                                                    UPPER PERCENTAGE POINTS OF THE LARGEST ROOT OF A MATRIX IN BIOKA67
ARE-MAX-OVER-S-SQUARE-SUB-O EXTENSION OF TABLES OF PERCENTAGE POINTS OF THE LARGEST VARIANCE RATIO S-SQU BIOKA67
              TABLES TO FACILITATE THE COMPUTATION OF PERCENTAGE POINTS OF THE NON-CENTRAL T-DISTRIBUTION
                                                                                                                         AMS 62
                                                     SOME PERCENTAGE POINTS OF THE NON-CENTRAL T-DISTRIBUTION,
CORR. 63 1163 SOME PERCENTAGE POINTS OF THE NON-CENTRAL T-DISTRIBUTION, JASA 63 TRIBUTION OF THE RANGE FROM THE/ EXACT MOMENTS AND PERCENTAGE POINTS OF THE ORDER STATISTICS AND THE DIS AMS 65
                                         A NEW TABLE OF PERCENTAGE POINTS OF THE PEARSON TYPE III DISTRIBUTIO TECH 69
                                                                                                                                   177
MULTINOMIAL DISTRIBUTION
                                                           PERCENTACE POINTS OF THE RANGE FROM A SYMMETRIC
                                                                                                                        BIOKA68
POWER OF THE ASSOCIATED TEST
                                                           PERCENTAGE POINTS OF THE RATIO OF TWO RANGES AND
                                                                                                                        BIOKA63
                                                                                                                                   1B7
VARIATION
                                                   ON THE PERCENTAGE POINTS OF THE SAMPLE COEFFICIENT OF
                                                                                                                        BTOKA68
                                                                                                                                   580
          ESTIMATES OF HERITABILITY FROM TRANSFORMED PERCENTAGE SIB DATA WITH UNEQUAL SUBCLASS NUMBERS
                                                                                                                        BIOCS65 1001
  PROGRAMMING FISHER'S EXACT METHOD OF COMPARING TWO PERCENTAGES
                                                                                                                        TECH 60
                                                                                                                                  103
                                     CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL DISTRIBUTION TECH 64
ERRATA, 'CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL DISTRIBUTIONS TECH 66
                                                                                                                                  377
                                                                                                                                   570
                                                      SOME PERCENTILE ESTIMATORS FOR WEIBULL PARAMETERS
                                                                                                                        TECH 67
                                                                                                                                  119
                                                           PERCENTILE MODIFICATIONS OF TWO-SAMPLE RANK TESTS
                                                                                                                        JASA 65 1127
                                                       THE PERCENTILE POINTS OF DISTRIBUTIONS HAVING KNOWN
CLIMITE ANTS
                                                                                                                        TECH 60
                                                                                                                                  209
                                            ERRATA, 'THE PERCENTILE POINTS OF DISTRIBUTIONS HAVING KNOWN
CUMULANTS!
                                                                                                                        TECH 60
                                                                                                                                   523
    EXTREME-VALUE DISTRIBUTION IN ESTIMATING EXTREME PERCENTILES ON THE USE OF THE GENERALIZED BIOCS67

DISCRIMINATION INTERVALS FOR PERCENTILES IN REGRESSION JASA 69
                                                                                                                                   79
DISCRIMINATION INTERVALS FOR PERCENTILES IN REGRESSION

JASA 69
FFICIENCIES OF A NONPARAMETRIC LIFE TEST FOR SMALLER PERCENTILES OF A GAMMA DISTRIBUTION

ASYMPTOTIC E JASA 56
                                                                                                                        JASA 69 1031
                                                                                                                                  467
                              POSTERIOR DISTRIBUTION OF PERCENTILES. BAYES' THEOREM FOR SAMPLING FROM A POPUL JASA 6B
                                                                                                                                   677
                                           FIRST-PASSAGE PERCOLATION
FIRST-PASSAGE PERCOLATION
ITICAL PROBABILITY IN THE ONE-QUADRANT ORIENTED-ATOM PERCOLATION PROCESS
                                                                                                                        JRSSB66
                                                                                                                                  491
                                                        OM PERCOLATION PROCESS A LOWER BOUND FOR THE CR
A PERFECT MEASURABLE SPACE THAT IS NOT A LUSIN SPACE
PERFECT PROBABILITY MEASURES AND REGULAR CONDITIONAL
                                                                                                                        JRSSB63
                                                                                                                                   401
                                                                                                                         AMS 67 1918
PROBABILITIES
                                                                                                                         AMS 66 1273
                                                       THE PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED-
WIDTH INTERVAL ESTIMATION OF THE MEAN
                                                                                                                         AMS 66
                                                                                                                                   36
                                                      THE PERFORMANCE OF SEVERAL TESTS FOR OUTLIERS
                                                                                                                        BIOKA65
                                                                                                                                   429
GENERAL BIVARIATE DISTRIBUTION
                                                       THE PERFORMANCE OF SOME CORRELATION COEFFICIENTS FOR A
                                                                                                                        BTOKA60
                                                                                                                                  307
RANKING PROBLEM
                                                      THE PERFORMANCE OF SOME SEQUENTIAL PROCEDURES FOR A
                                                                                                                         AMS 68 1040
ENCY-TYPE BIVARIATE DISTRIBUTIONS
                                                      THE PERFORMANCE OF SOME TESTS OF INDEPENDENCE FOR CONTING BIOKA69
THE PERFORMANCE OF SOME TWO-SAMPLE TESTS IN SMALL SAMPLES BIOKA69
                                                                                                                                   449
 WITH AND WITHOUT CENSORING
                                                                                                                                  127
                                                   ON THE PERFORMANCE OF THE LINEAR DISCRIMINANT FUNCTION
                                                                                                                        TECH 64
                                                                                                                                   179
                                                   ON THE PERFORMANCE OF THE TRUNCATED SEQUENTIAL PROBABILITY
RATIO TEST, CORR. 66 1247
                                                                                                                        JASA 65
                                                                                                                                   979
                                                    A TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS
                                                                                                                        BIOCS68
                                                                                                                                   61
                                                 THE BUSY PERIOD IN RELATION TO THE QUEUEING PROCESS GI-M-1
                                                                                                                        BTOKA59
                                                                                                                                   246
                                                 THE BUSY PERIOD IN RELATION TO THE SINGLE-SERVER QUEUEINC SYST JRSSB60
EM WITH GENERAL INDEPENDENT ARRIVALS AND/
                                                                                                                                   В9
                                              ON THE BUSY PERIOD OF A FACILITY WHICH SERVES CUSTOMERS OF
                                                                                                                        JRSSB65
                                                                                                                                   361
                   STATISTICAL PROPERTIES OF A CERTAIN PERIODIC BINARY PROCESS
                                                                                                                        TECH 66
                                                                                                                                   247
               MULTIVARIATE STOCHASTIC PROCESSES WITH PERIODIC COEFFICIENTS
                                                                                                                        JRSSB69
                                                                                                                                   171
                 THE SUPERPOSITION OF SEVERAL STRICTLY PERIODIC SEQUENCES OF EVENTS
                                                                                                                        BTOKA53
                                        TIME SERIES WITH PERIODIC STRUCTURE
                                                                                                                        BIOKA67
                                                   ALMOST PERIODIC VARIANCES
                                                                                                                         AMS 63 1549
                                                           PERIODOGRAM ANALYSIS AND VARIANCE FLUCTUATIONS
                                                                                                                         JRSSB63
                                    A REAPPRAISAL OF THE PERIODOGRAM IN SPECTRAL ANALYSIS
                                                                                                                        TECH 65
                                             ON THE CROSS PERIODOGRAM OF A STATIONARY GAUSSIAN VECTOR PROCESS
                                                                                                                         AMS 67
RIAL CORRELATION IN REGRESSION ANALYSIS BASED ON THE PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SE
                                                                                                                        BIOKA69
                                           A NOTE ON THE PERIODOGRAM OF THE BEVERIDGE WHEAT PRICE INDEX
                                                                                                                        JRSSB55
                                                CURVE AND PERIODOGRAM SMOOTHING (WITH DISCUSSION)
                                                                                                                         JRSSB57
                                                                                                                                   38
        ON THE EFFICIENCY OF PROCEDURES FOR SMOOTHING PERIODOGRAMS FROM TIME SERIES WITH CONTINUOUS SPECTRA BIOKA55
                                                                                                                                  143
                    THE IDENTIFICATION OF ANNUAL PEAK PERIODS FOR A DISEASE
                                                                                                                        BIOCS65
                                                                                                                                   645
              ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF MEASLES, I. FAMILIES WITH TWO SUSCEPTIBLES BIOKA56
 ONL.Y
                                                                                                                                   15
USCEPTIBL./
              ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF MEASLES, II. FAMILIES WITH THREE OR MORE S BIOKA56
                                                                                                                                   322
    A STOCHASTIC MODEL OF ACHE TRANSPORTATION IN THE PERIPHERAL NERVE TRUNKS
                                                                                                                        BTOKA62
                                                                                                                                   447
HE WEIBULL AND CERTAIN OTHER DISTRIBUTIONS ON SOME PERMISSIBLE ESTIMATORS OF THE LOCATION PARAMETER OF T TECH 67 293
FOR THE 2-TO-THE-N T/ ORTHOGONAL MAIN-EFFECT PLANS PERMITTING ESTIMATION OF ALL TWO-FACTOR INTERACTIONS TECH 69 NO.4
                                    PROCESSES GENERATING PERMUTATION EXPANSIONS
                                                                                                                        BTOKA62 139
```

```
IRICAL STUDY INTO FACTORS AFFECTING THE F-TEST UNDER PERMUTATION FOR THE RANDOMIZED BLOCK DESIGN
                                                                                                      AN EMP JASA 68 902
    SOME EMPIRICAL RESULTS ON VARIANCE RATIOS UNDER PERMUTATION IN THE COMPLETELY RANDOMIZED DESICN JASA 66
MONTE CARLO RESULTS ON THE POWER OF THE F-TEST UNDER PERMUTATION IN THE SIMPLE RANDOMIZED BLOCK DESIGN
                                                                                                            / BIOKA66
                                                                                                                       199
                          ERCODIC PROPERTIES OF SOME PERMUTATION PROCESSES
                                                                                                              BIOKA62
                                                                                                                       151
                                                      PERMUTATION SUPPORT FOR MULTIVARIATE TECHNIQUES
                                                                                                              BIOKA64
                                                                                                                        65
                                 ON SOME MULTISAMPLE PERMUTATION TESTS BASED ON A CLASS OF U-STATISTICS
                                                                                                              JASA 67 1201
IA AND THE STUDY OF DEPARTURES FROM ASSUMPTION (W/
                                                     PERMUTATION THEORY IN THE DERIVATION OF ROBUST CRITER JRSSB55
                                                      PERMUTATION WITHOUT RISING OR FALLING OMEGA-SEQUENCES AMS 67
                                               RANDOM PERMUTATIONS
                                                                                                              JRSSB68
                                                                                                                       517
     THE DISTRIBUTION OF PATTERN FREQUENCIES IN RING PERMUTATIONS
                                                                                          FOUR-LETTER WORDS. JRSSB67
                                                                                                                       550
                                    A RECURRENCE FOR PERMUTATIONS WITHOUT RISING OR FALLING SUCCESSIONS
                                                                                                               AMS 65
                                                                                                                       708
                                      THE ANALYSIS OF PERSISTENCE IN A CHAIN OF MULTIPLE EVENTS
PERSISTENCE IN A CHAIN OF MULTIPLE EVENTS WHEN THERE
                                                                                                              BIOKA64
                                                                                                                       405
IS SIMPLE DEPENDENCE
                                                                                                              BIOKA62
                                                                                                                       351
                                                    A PERSISTENCE PROBLEM IN RENEWAL THEORY, ROBERT THE
BRUCE'S SPIDER
                                                                                                              BIOKA66
                                                                                                                       255
ATIO USED TO ESTIMATE FAILURE RATES, OCCURRENCES PER PERSON YEAR OF EXPOSURE
                                                                                  CHARACTERISTICS OF A R BIOCS66
                                                                                                                       310
ENTS, OF SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SAVING /SS NATIONAL PRODUCT AND ITS COMPON JASA 58
                                                                                                                        54
                  A REPRODUCIBLE METHOD OF COUNTING PERSONS OF SPANISH SURNAME
THE MIGRATION OF EMPLOYED PERSONS TO AND FROM METROPOLITAN AREAS OF THE UNITED
                                                                                                              JASA 61
                                                                                                                        88
STATES
                                                                                                              JASA 67 1418
                           ON THE EFFECT OF REMOVING PERSONS WITH N OR MORE ACCIDENTS FROM AN ACCIDENT PRO BIOKAG5
NE POPULATION.
                                                                                                                       298
                                                    A PERTURBATION APPROXIMATION OF THE SIMPLE STOCHASTIC
EPIDEMIC IN A LARGE POPULATION
                                                                                                              BIOKA68
                                                                                                                       199
                              RECURRENT GAMES AND THE PETERSSURC PARADOX
                                                                                                               AMS 61
                                                                                                                       1B7
                          A REMARK ON THE KOLMOCOROFF-PETROVSKII CRITERION
                                                                                                               AMS 69 10B6
STOCHASTIC PHAGE ATTACHMENT TO BACTERIA IMATION OF THE PARAMETER IN THE STOCHASTIC MODEL FOR PHAGE ATTACHMENT TO BACTERIA
                                                                                                              BIOCS65
                                                                                                          EST AMS 68
                                                                                                                       183
             THE EXTINCTION OF A BACTERIAL COLONY BY PHAGES, A BRANCHING PROCESS WITH DETERMINISTIC REMOVA BIOKA62
                                                      PHASE FREE ESTIMATION OF COHERENCE
 BIRTH-AND-DEATH PROCESSES THAT ARE ACE-DEPENDENT OR PHASE-DEPENDENT THE PROBABILITIES OF EXTINCTION FOR BIOKAG7
                      RANDOM QUEUEINC PROCESSES WITH PHASE-TYPE SERVICE
                    A TEST FOR RANDOM MINGLING OF THE PHASES OF A MOSAIC
       BACTERIAL EXTINCTION TIME AS AN EXTREME VALUE PHENOMENON
      ESTIMATION OF THE INBREEDING COEFFICIENT FROM PHENOTYPE FREQUENCIES BY A METHOD OF MAXIMUM LIKELIHO BIOCS68
PROBLEM IN THE DOCTRINE OF CHANCES. (REPRODUCED FROM PHIL. TRANS. ROY. SOC. 1763, 53, 370-41B.) /VINC A BIOKA58
SURVEY OF HOUSEHOLDS
                                                      PHILIPPINE STATISTICAL PROCRAM DEVELOPMENT AND THE
                                                                                                              JASA 5B
                  STATISTICAL THEORY OF A HIGH-SPEED PHOTOELECTRIC PLANIMETER
   AN APPLICATION OF MULTIVARIATE QUALITY CONTROL TO PHOTOGRAPHIC PROCESSINC
                                                                                                              JASA 57
                                                                                                                       186
           A METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND CHEMICAL DATA
                                                                                                              TECH 69
                                                                                                                       411
                                SYSTEMATIC ERRORS IN PHYSICAL CONSTANTS
                                                                                                              TECH 62
                                                                                                                       111
   MATHEMATICAL REPRESENTATION OF THE BIOLOGICAL AND PHYSICAL DECAY OF CHAMBER AEROSOLS
                                                                                                              BIOCS65
                           THE EXPERIMENTAL STUDY OF PHYSICAL MECHANISMS
                                                                                                              TECH 65
                 APPLICATIONS OF A BALLOT THEOREM IN PHYSICS AND IN ORDER STATISTICS
 6/ OPTIMUM UTILIZATION OF AUXILIARY INFORMATION. (PI)PS SAMPLING OF TWO UNITS FROM A STRATUM (ADDENDUM JRSSB67
OF HANURAV
                                            AN EXACT (PI)PS SAMPLING SCHEME, A GENERALIZATION OF A METHOD JRSSB68
                ON THE MOMENT GENERATING FUNCTION OF PILLAI'S V-SUPER-S CRITERION
                                                                                                               AMS 68
                                       SOME NOTES ON PISTIMETRIC INFERENCE
                                                                                                              JRSSB60
  ON PREDICTION FROM AN AUTOREGRESSIVE PROCESS USING PISTIMETRIC PROBABILITY
                                                                                                      A NOTE JRSSB60
                                                                                                                        97
                          NOTE ON A PAPER BY RAY AND PITMAN +(FISHER-BEHRENS-STATISTIC)
                                                                                                              JRSSB62
                                                                                                                       537
 TESTS FOR NORMAL ALTERNATIONS
                                       ON THE PITMAN EFFICIENCY OF ONE-SIDED KOLMOGOROV AND SMIRNOV
                                                                                                               AMS 66
                                                                                                                       940
                                THE RELATION BETWEEN PITMAN'S ASYMPTOTIC RELATIVE EFFICIENCY OF TWO TESTS
AND THE CORRELATION COEFFICI/
                                                                                                               AMS 63 1442
TIONS, AND A PARADOX IN FIDUCIAL THEORY PIVOTAL QUANTITIES FOR WISHART'S AND RELATE CORRIGENDA. 'THE USE OF RANCE IN PLACE OF STANDARD DEVIATION IN THE T-TEST.'
                                                     PIVOTAL QUANTITIES FOR WISHART'S AND RELATED DISTRIBU JRSSB55
                                                                                                                       79
                                                                                                              BIOKA52
                                                                                                                       442
                                 A REMARK ON HITTING PLACES FOR TRANSIENT STABLE PROCESS
                                                                                                              AMS 6B
                                                                                                                       365
                                                   ON PLACKETT'S TEST FOR CONTINGENCY TABLE INTERACTIONS
                                                                                                              JRSSB63
                                                                                                                       179
          A PRODUCTION MODEL AND CONTINUOUS SAMPLING PLAN
                                                                                                              JASA 59
                                                                                                                       231
DESIGN AND EVALUATION OF A REPETITIVE GROUP SAMPLING PLAN
                                                                                                              TECH 65
                                                                                                                        1.1
         ON ADDELMAN'S 2-TO-THE-(17-9) RESOLUTION V PLAN
                                                                                                                       705
                                                                                                              TECH 66
                             A RECTIFYING INSPECTION PLAN
                                                                                                              JRSSB55
                                                                                                                       124
 AND OPERATION OF A DOUBLE-LIMIT VARIABLES SAMPLINC PLAN
                                                                                                       DESICN JASA 58
                                                                                                                       543
         ASPECTS OF THE LOT PLOT SAMPLING INSPECTION PLAN
                                                                                            SOME THEORETICAL JASA 56
                                                                                                                        84
                                    A SINCLE SAMPLING PLAN FOR CORRELATED VARIABLES WITH A SINGLE-SIDED
SPECIFICATION LIMIT
                                                                                                              JASA 59
                                                                                                                      248
      CONSTRUCTION OF A 2-TO-THE-(17-9) RESOLUTION V PLAN IN EICHT BLOCKS OF 32
                                                                                                              TECH 65
                                                                                                                       439
                                                                                                               AMS 65
                               RENEWAL THEORY IN THE PLANE
                                                                                                                       946
                      ON STATIONARY PROCESSES IN THE PLANE
                                                                                                              BIOKA54
                                                                                                                      434
                                   THE CONVEX HULL OF PLANE BROWNIAN MOTION
                                                                                                              AMS 63
                                                                                                                      327
OCCUPATION TIME THEOREM FOR THE ANGULAR COMPONENT OF PLANE BROWNIAN MOTION
                                                                                                               AMS 67
                                                                                                                        25
                                                      PLANE TRUNCATION IN NORMAL POPULATIONS
                                                                                                              JRSSB65
                                                                                                                      301
                          A RANDOM SET PROCESS IN THE PLANE WITH A MARKOVIAN PROPERTY
                                                                                                               AMS 65 1859
         CORRICENDA, 'ON STATIONARY PROCESSES IN THE PLANE'
                                                                                                              BIOKA55
    STATISTICAL THEORY OF A HIGH-SPEED PHOTOELECTRIC PLANIMETER
                                                                                                              BTOKA6B
                                                                                                                       419
                                                       PLANNING A QUANTAL ASSAY OF POTENCY
                                                                                                              BIOCS66
                                                                                                                       322
                                        PRODUCT TEST PLANNING FOR REPAIRABLE SYSTEMS
                                                                                                              TECH 65
                                                                                                                       485
                                                       PLANNING SOME TWO-FACTOR COMPARATIVE SURVEYS
                                                                                                              JASA 69
                                                                                                                       560
                  A NOTE ON SIMPLE BINOMIAL SAMPLING PLANS
                                                                                                               AMS 61
                                                                                                                       906
   SYMMETRICAL AND ASYMMETRICAL FRACTIONAL FACTORIAL PLANS
                                                                                                              TECH 62
                                                                                                                       47
    TECHNIQUES FOR CONSTRUCTING FRACTIONAL REPLICATE PLANS
                                                                                                              JASA 63
                                                                                                                        45
      NEW CRITERIA FOR SELECTING CONTINUOUS SAMPLING PLANS
                                                                                                              TECH 64
                                                                                                                      161
                DISTRIBUTION-FREE LIFE TEST SAMPLING PLANS
                                                                                                              TECH 66
                                                                                                                       591
          MISCLASSIFIED DATA FROM CURTAILED SAMPLING PLANS
                                                                                                              TECH 68
                                                                                                                       489
     RELATIVE COSTS OF COMPUTERIZED ERROR INSPECTION PLANS
                                                                                                              JASA 69 NO.4
         SEQUENCES OF TWO-LEVEL FRACTIONAL FACTORIAL PLANS
                                                                                                              TECH 69
                                                                                                                      477
                              OPTIMAL DRUG SCREENINC PLANS
                                                                                                              BIOKA63
                                                                                                                        31
     BOUNDARIES FOR CLOSED (WEDGE) SEQUENTIAL T TEST PLANS
                                                                                                              BIOKA66
     OF AN OPTIMAL SEQUENCE OF INTERRELATED SAMPLING PLANS
                                                                                                       DESICN JASA 64
                                                                                                                        96
NTATIONS FOR SOME RESOLUTION VI FRACTIONAL FACTORIAL PLANS
                                                                                         NEAR-CYCLIC REPRESE AMS 69 1840
 FOR THE DODGE-ROMIG LTPD SINCLE SAMPLING INSPECTION PLANS
                                                                                         SOME LIMIT THEOREMS TECH 62
                                                                                                                      497
  FOR EVALUATING DEPENDENT MIXED ACCEPTANCE SAMPLING PLANS
                                                                                       PROCEDURES AND TABLES TECH 69
                                                                                                                       341
    SINGLE AND DOUBLE ATTRIBUTES ACCEPTANCE SAMPLING PLANS
                                                                    THE AVERACE SAMPLE NUMBER FOR TRUNCATED TECH 68
                                                                                                                       685
```

TITLE WORD INDEX PER - POI

```
MARKOVIAN DECISION MODELS FOR THE EVALUATIO AMS 65 1408
N OF A LARCE CLASS OF CONTINUOUS SAMPLING INSPECTION PLANS
OF BINOMIAL AND INVERSE BINOMIAL ACCEPTANCE SAMPLINC PLANS AND AN ACKNOWLEDCEMENT ON THE EQUIVALENCE TECH 63 119

SOME MAIN-EFFECT PLANS AND ORTHOCONAL ARRAYS OF STRENCTH TWO AMS 61 1167
TRIBUTION AND A SYSTEM OF SINCLE SAMPLINC INSPECTION PLANS BASED ON PRIOR DISTRIBUTIONS AND COSTS
                                                                                                            /C DIS TECH 60
                                                                                                                             275
                                     VARIABLES SAMPLINC PLANS BASED ON THE NORMAL DISTRIBUTION
                                                                                                                    TECH 67
                                                                                                                              417
                              SOME ACCEPTANCE SAMPLING PLANS BASED ON THE THEORY OF RUNS
                                                                                                                    TECH 62
                                                                                                                              177
              CENSORED SAMPLING IN CURTAILED SAMPLING PLANS BY ATTRIBUTES
                                                                                                                    TECH 6B
                                                                                                                              854
         OF FRACTION DEFECTIVE IN CURTAILED SAMPLING PLANS BY ATTRIBUTES
                                                                                                        ESTIMATION TECH 67
                                                                                                                              219
CHNIQUES AND DIGITAL COMP/ DEVELOPMENT OF SAMPLING PLANS BY USINC SEQUENTIAL, ITEM BY ITEM, SELECTION TE JASA 62
                                                                                                                              387
                                ORTHOGONAL MAIN-EFFECT PLANS FOR ASYMMETRICAL FACTORIAL EXPERIMENTS
                                                                                                                    TECH 62
                                                                                                                               21
                      ERRATA, 'ORTHOCONAL MAIN-EFFECT PLANS FOR ASYMMETRICAL FACTORIAL EXPERIMENTS'
                   BAYESIAN SINGLE SAMPLING ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS
                                                                                                                    TECH 68
                                                                                                                              667
                                   SAMPLING INSPECTION PLANS FOR DISCRIMINATING BETWEEN TWO WEIBULL PROCESSE TECH 65
               A NOTE ON SMALL ORTHOCONAL MAIN EFFECT PLANS FOR FACTORIAL EXPERIMENTS
                                                                                                                    TECH 64
                                                                                                                              220
                          CONSTRUCTION OF CONFOUNDING PLANS FOR MIXED FACTORIAL DESIGNS
                                                                                                                     AMS 65 1256
                                    LIFE TEST SAMPLINC PLANS FOR NORMAL AND LOCNORMAL DISTRIBUTIONS
                                                                                                                    TECH 62
                                                                                                                              151
RUCTING A USEFUL CLASS OF NON-ORTHOCONAL MAIN EFFECT PLANS IN K TO THE N FACTORIALS /APPROACH FOR CONST JRSSB68
                                                                                                                              371
NNECTION WITH A SPECIAL KIND OF IRREGULAR FRACTIONAL PLANS OF FACTORIAL EXPERIMENTS
                                                                                              /FFECTS AND THEIR CO JASA 63
                                                                                                                              497
TIONS FOR THE 2-TO-THE-N T/ ORTHOGONAL MAIN-EFFECT PLANS PERMITTING ESTIMATION OF ALL TWO-FACTOR INTERAC TECH 69 NO.4
                              FACTORIAL 2-TO-THE-(P-Q) PLANS ROBUST AGAINST LINEAR AND QUADRATIC TRENDS
                                                                                                                    TECH 66
                                   CONTINUOUS SAMPLING PLANS UNDER DESTRUCTIVE TESTING
                                                                                                                    JASA 64
                                                                                                                              376
         THE EVALUATION OF H 106 CONTINUOUS SAMPLING PLANS UNDER THE ASSUMPTION OF WORST CONDITIONS
                                                                                                                     JASA 66
                                                                                                                              B33
                                       DOUBLE SAMPLING PLANS WHERE THE ACCEPTANCE CRITERION IS THE VARIANCE TECH 68
                                                                                                                               99
EXPECTED SAMPLE SIZE
                                               SAMPLINC PLANS WHICH APPROXIMATELY MINIMIZE THE MAXIMUM
                                                                                                                     JASA 64
                                                                                                                               67
      THE DETERMINATION OF SINGLE SAMPLING ATTRIBUTE PLANS WITH CIVEN PRODUCER'S AND CONSUMER'S RISK
                                                                                                                    TECH 67
                                                                                                                              401
                             SOME TWO-LEVEL FACTORIAL PLANS WITH SPLIT PLOT CONFOUNDING
                                                                                                                    TECH 64
                                                                                                                              253
               ADDITIVE COMBINING ABILITIES FITTED TO PLANT BREEDING DATA
                                                                                                                    BIOCS67
                                                                                                                               45
                                            ANALYSIS OF PLANT COMPETITION EXPERIMENTS FOR DIFFERENT RATIOS OF BIOKA67
SPECIES
                                                                                                                              471
                                                         PLANT COMPETITION, THREE SPECIES PER POT
                                                                                                                    JRSSB68
                                                                                                                               93
                         SOME TESTS FOR RANDOMNESS IN PLANT POPULATIONS
                                                                                                                              102
                                                                                                                    BIOKA51
CROPS
                        A MATHEMATICAL MODEL RELATING PLANT YIELD WITH ARRANCEMENT FOR RECULARLY SPACED
                                                                                                                    BIOCS67
                                                                                                                              505
                  SPREAD OF DISEASES IN A RECTANGULAR PLANTATION WITH VACANCIES
                                                                                                                    BIOKA53
                                                                                                                              2B7
       PROGRAMME FOR MATERIAL FLOW IN BATCH CHEMICAL PLANTS
                                                                                             A GENERAL SIMULATION TECH 61
                                                                                                                              497
                                                                   /E STATISTICAL ANALYSIS OF A RADIO-ACTIVE TR BIOCS68
ACER EXPERIMENT TO DETERMINE ROOT ACTIVITY IN POTATO PLANTS
                                                                                                                              717
 OF EVALUATING THE RELIABILITY OF SAFETY SYSTEMS FOR PLANTS MANUFACTURING HAZARDOUS PRODUCTS /ICAL MODEL TECH 59
RORS INVOLVED IN ESTIMATING BACTERIAL NUMBERS BY THE PLATING METHOD
                                                                                      NOTES. ON THE DILUTION ER BIOCS67
A DISCRIMINATORY PROBLEM CONNECTED WITH THE WORKS OF PLATO
                                                                                                                ON
HE EARLY SOLUTIONS OF THE PROBLEM OF THE DURATION OF PLAY
                                                                /F PROBABILITY AND STATISTICS. VI. A NOTE ON T BIOKA57
DISTRIBUTIONS
                                             REPETITIVE PLAY IN FINITE STATISTICAL GAMES WITH UNKNOWN
                                                                                                                     AMS 66
                                                                                                                              976
                                                  TIMID PLAY IS OPTIMAL
TIMID PLAY IS OPTIMAL, II
                                                                                                                      AMS 67 12B1
                                                                                                                      AMS 67
                                                                                                                             1284
                                                         PLAY THE WINNER RULE AND THE CONTROLLED CLINICAL
TRIAL
                                                                                                                    JASA 69
                                                                                                                             131
  HISTORY OF PROBABILITY AND STATISTICS. V.A NOTE ON PLAYING CARDS
                                                                                                   STUDIES IN THE BIOKA57
                                                                                                                              260
            SOME TWO-LEVEL FACTORIAL PLANS WITH SPLIT PLOT CONFOUNDING
                                                                                                                     TECH 64
                                                                                                                              253
                                       INCOMPLETE SPLIT PLOT DESIGNS
                                                                                                                    BIOCS67
                                                                                                                              793
   MULTIPLE REGRESSION COMBININC WITHIN- AND BETWEEN-PLOT INFORMATION NOTE ON THE MISSING PLOT PROCEDURE IN A RANDOMIZED BLOCK DESIGN
                                                                                                                    RIOCS66
                                                                                                                               26
                                                                                                                    JASA 61
                                                                                                                              933
                  SOME THEORETICAL ASPECTS OF THE LOT PLOT SAMPLING INSPECTION PLAN
                                                                                                                     JASA 56
                                                                                                                               84
              ON THE VARIATION OF YIELD VARIANCE WITH PLOT SIZE
                                                                                                                    BIOKA56
                                                                                                                              337
  SOME ASPECTS OF THE STATISTICAL ANALYSIS OF 'SPLIT PLOT' EXPERIMENTS IN COMPLETELY RANDOMIZED LAYOUTS
                                                                                                                     JASA 69
                                                                                                                              485
  VARIANCE OF SOME NON-ORTHOGONAL DESIGNS WITH SPLIT PLOTS
                                                                                                  THE ANALYSIS OF BIOKAGO
                                                                                                                               43
                                            PROBABILITY PLOTS FOR THE GAMMA DISTRIBUTION
                                                                                                                     TECH 62
                                                                                                                                1
                                     USE OF HALF-NORMAL PLOTS IN INTERPRETING FACTORIAL TWO LEVEL EXPERIMENTS TECH 59
                                                                                                                              311
                                            PROBABILITY PLOTTING METHODS FOR THE ANALYSIS OF DATA
                                                                                                                    BIOKA68
                                                                                                                                1
                                       ON THE CHOICE OF PLOTTINC POSITIONS ON PROBABILITY PAPER
                                                                                                                     JASA 60
VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX SUR PLUSIEURS CARACTERES
                                                                                                  PONDERATION DES BIOCS69
                                                                                                                              295
D DIFFERENT FITNESS REQUIREMENTS AMONG ENVIRONMENTAL POCKETS UPON STEADY STATE CENE FREQUENCIES /ION, AN BIOCS66
                                                                                                                              453
       NONPARAMETRIC TESTS FOR SHIFT AT UNKNOWN TIME POINT
                                                                                                                      AMS 68 1731
                            ESTIMATION OF A TRUNCATION POINT
                                                                                                                     BTOKA64
                                                                                                                              33
 FOR A CHANGE IN A PARAMETER OCCURRING AT AN UNKNOWN POINT
                                                                                                             A TEST BIOKASS
                                                                                                                              523
  WHICH A CHANGE IN A PARAMETER OCCURS AT AN UNKNOWN POINT
                                                                                                    ON PROBLEMS IN BIOKA57
                                                                                                                              248
GRESSION WITH RESTRICTED LOCATION FOR THE STATIONARY POINT
                                                                     LEAST SQUARES ESTIMATES AND PARABOLIC RE JASA 64
       A SURVEY OF COVERACE PROBLEMS ASSOCIATED WITH POINT AND AREA TARGETS
PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS
STICS, FOR THE SCALE PARAMETER OF A WEIBULL POPUL/
POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TWO- TECH 68
POINT AND INTERVAL ESTIMATORS, BASED ON M ORDER STATI TECH 65
                                                                                                                              231
                                                                                                                              405
                                  ON APPROXIMATING THE POINT BINOMIAL, CORR. 56 651
                                                                                                                     JASA 56
                                                                                                                              293
                     UNIFORM APPROXIMATION OF MINIMAX POINT ESTIMATES
                                                                                                                     AMS 64 1031
          EXAMPLES OF LIKELIHOODS AND COMPARISON WITH POINT ESTIMATES AND LARGE SAMPLE APPROXIMATIONS
                                                                                                                     JASA 69
                                                                                                                             468
SOME EMPIRICAL BAYES TECHNIQUES IN POINT ESTIMATION
MISSING OBSERVATIONS IN MULTIVARIATE STATISTICS II. POINT ESTIMATION IN SIMPLE LINEAR RECRESSION
                                                                                                                    BTOKA69 133
                                                                                                                     JASA 67
                                                                                                                               10
 OF K ELEMENTS FROM THE SAME EXPONENTIAL DISTRIBU/ POINT ESTIMATION OF RELIABILITY OF A SYSTEM COMPRISED JASA 66 1029

A ROBUST POINT ESTIMATOR IN A GENERALIZED REGRESSION MODEL AMS 69 1784
                               THE MULTIVARIATE SADDLE POINT METHOD AND CHI-SQUARED FOR THE MULTINOMIAL CORRECTIONS TO 'SADDLE POINT METHODS FOR THE MULTINOMIAL DISTRIBUTIONS' 57
DISTRIBUTION
                                                                                                                      AMS 61
                                                                                                                              535
861
                                                                                                                     AMS 61
                                                                                                                              619
       BOUNDED LENGTH CONFIDENCE INTERVALS FOR THE P-POINT OF A DISTRIBUTION FUNCTION, II BOUNDED LENGTH CONFIDENCE INTERVALS FOR THE P-POINT OF A DISTRIBUTION FUNCTION. III
                                                                                                                      AMS 66
                                                                                                                              581
                                                                                                                      AMS 66
                                                                                                                              586
QUARES PROCRAMS FOR THE ELECTRONIC COMPUTER FROM THE POINT OF VIEW OF THE USER AN APPRAISAL OF LEAST S JASA 67
TRANSITION MATRICES ON THE FIXED POINT PROBABILITY VECTOR OF RECULAR OR ERGODIC JASA 67
                                                                                                                              819
                                                                                                                              600
                    ON COMPARISONS BETWEEN CONFIDENCE POINT PROCEDURES IN THE CASE OF A SINGLE PARAMETER
                                                                                                                    JRSSB65
                                                                                                                                1
              HIGHER-ORDER PROPERTIES OF A STATIONARY POINT PROCESS
                                                                                                                    JRSSB63
                                                                                                                              413
 PROPERTIES OF COUNTS OF EVENTS FOR CERTAIN TYPES OF POINT PROCESS
                                                                                                               SOME JRSSB64
                                                                                                                              325
ESTIMATION OF THE INTENSITY FUNCTION OF A STATIONARY POINT PROCESS
                                                                                                          ON THE JRSSB65
                                                                                                                              332
          ON THE LENGTHS OF INTERVALS IN A STATIONARY POINT PROCESS (CORR. 63 500)
                                                                                                                    JRSSB62
                                                                                                                              364
             THE SPECTRAL ANALYSIS OF TWO-DIMENSIONAL POINT PROCESSES
                                                                                                                     BIOKA64
                                                                                                                              299
                               ON THE SUPERPOSITION OF POINT PROCESSES
                                                                                                                    JRSSB68
                                                                                                                              576
                              THE SPECTRAL ANALYSIS OF POINT PROCESSES (WITH DISCUSSION)
                                                                                                                    JRSSB63
                                                                                                                              264
```

```
STOCHASTIC POINT PROCESSES, LIMIT THEOREMS
                                                                                                              AMS 67
                                             SPATIAL POINT PROCESSES, WITH APPLICATIONS TO ECOLOGY
                                                                                                             BIOKA55
                                                                                                                     102
ORRIGENDA, 'THE SPECTRAL ANALYSIS OF TWO-DIMENSIONAL POINT PROCESSES'
                                                                                                           C BIOKA65
                                                                                                                      305
                          THE DISTANCE FROM A RANDOM POINT TO THE NEAREST POINT OF A COSELY PACKED LATTICE BIOKAGS
                                                                                                                      261
                                            ADDING A POINT TO VECTOR DIAGRAMS IN MULTIVARIATE ANALYSIS
                                                                                                             BIOKA6B
                                                                                                                      582
   LOGNORMAL DISTRIBUTION AND BAYESIAN ANALYSIS OF A POINT-SOURCE EPIDEMIC
                                                                                       THE THREE-PARAMETER JASA 63
                                                                                                                       72
N-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED POINT, CORR. 60 755
                                                                              EXTENSION OF THE WILCOXON-MAN JASA 60
                                                                                                                      125
                    OPTIMAL DESIGNS ON TCHEBYSCHEFF POINTS
                                                                                                              AMS 6B 1435
               TABLES OF INVERSE GAUSSIAN PERCENTACE POINTS
                                                                                                             TECH 69
                                                                                                                      591
         OCCUPANCY PROBABILITY DISTRIBUTION CRITICAL POINTS
                                                                                                             BTOKA61 175
                  THE CONVEX HULL OF A RANDOM SET OF POINTS
                                                                                                             BIOKA65
                                                                                                                     331
     PROCEDURE FOR FITTING THE BEST LINE TO A SET OF POINTS
                                                                                                   GRAPHICAL TECH 60
                                                                                                                      477
FIT STATISTIC V-SUB-N, DISTRIBUTION AND SIGNIFICANCE POINTS
                                                                                            THE GOODNESS OF BIOKA65
                                                                                                                      309
         FOR INTERPOLATION BETWEEN TABLED PERCENTAGE POINTS
                                                                                    LAGRANCIAN COEFFICIENTS BIOKA6B
                                                                                                                       19
F STATISTICAL DISTRIBUTIONS OCCURING AT UNKNOWN TIME POINTS
                                                               /EDURES FOR POSSIBLE CHANCES IN PARAMETERS 0 AMS 66 1196
OD FOR FITTING THE BEST STRAIGHT LINE TO A SERIES OF POINTS ACCORDING TO THE CRITERION OF LEAST SQUARES
                                                                                                            JASA 57
                                                                                                                       1.3
 SEVERAL PARAMETERS
                                       ON CONFIDENCE POINTS AND BAYESIAN PROBABILITY POINTS IN THE CASE OF JRSSB65
                                                                                                                        9
                                          PERCENTAGE POINTS AND MODES OF ORDER STATISTICS FROM THE NORMAL AMS 61
DISTRIBUTION
                                                                                                                      BB8
OV TYPE STATISTICS INCLUDING A TABLE OF SIGNIFICANCE POINTS FOR A PARTICULAR CASE /S OF KOLMOGOROV-SMIRN AMS 6B
PERCENTACE POINTS FOR THE DISTRIBUTION OF OUTGOING QUALITY JASA 59
                                                                                                                      233
                                                                                                                      689
                                        SIGNIFICANCE POINTS FOR THE TWO-SAMPLE STATISTIC U-SQUARE-SUB-M. N BIOKAGS
                                                                                                                      661
                                  FURTHER PERCENTACE POINTS FOR W-SQUARE-SUB-N + (CRAMER-VON MISES GOODNESS BIOKA68
-OF-FIT STATISTIC)
                                                                                                                      428
                 FITTING SECMENTED CURVES WHOSE JOIN POINTS HAVE TO BE ESTIMATED
                                                                                                             JASA 66 1097
PATTERNS
                                              RANDOM POINTS IN A CIRCLE AND THE ANALYSIS OF CHROMOSOME
                                                                                                             BIOKA63
                                                                                                                       23
                        THE DISTANCES BETWEEN RANDOM POINTS IN TWO CONCENTRIC CIRCLES
                                                                                                             BIOKA64
                                                                                                                      275
                                CLUSTERING OF RANDOM POINTS IN TWO DIMENSIONS
                                                                                                             BIOKA65
                                                                                                                      263
                                           PERCENTAGE POINTS OF A TEST FOR CLUSTERS
                                                                                                             JASA 69 NO.4
 ON THE COMPUTATION AND USE OF A TABLE OF PERCENTACE POINTS OF BARTLETT'S M
                                                                                                                     273
                                                                                                             BIOKA69
                                      THE PERCENTILE POINTS OF DISTRIBUTIONS HAVING KNOWN CUMULANTS
                                                                                                             TECH 60
                                                                                                                      209
                             ERRATA, 'THE PERCENTILE POINTS OF DISTRIBUTIONS HAVING KNOWN CUMULANTS'
                                                                                                             TECH 60
                                                                                                                      523
                                    ESTIMATES FOR THE POINTS OF INTERSECTION OF TWO POLYNOMIAL REGRESSIONS
                                                                                                             JASA 64
                                                                                                                      214
                                  TABLE OF PERCENTAGE POINTS OF KOLMOCOROV STATISTICS
                                                                                                             JASA 56
                                                                                                                     111
                                  TABLE OF PERCENTACE POINTS OF NON-CENTRAL CHI
                                                                                                             BIOKA69
                                                                                                                      255
BETA-2, EXPRESSE/ CORRICENDA, 'TABLE OF PERCENTAGE POINTS OF PEARSON CURVES, FOR GIVEN ROOT(BETA-1) AND BIOKA65
                                                                                                                      669
                         USE OF TABLES OF PERCENTACE POINTS OF RANGE AND STUDENTIZED RANCE
                                                                                                             TECH 61
                                                                                                                      407
                   EXTENDED TABLES OF THE PERCENTACE POINTS OF STUDENT'S T-DISTRIBUTION
                                                                                                             JASA 59
                                                                                                                      683
                   CORRICENDA, 'TABLES OF PERCENTACE POINTS OF THE 'STUDENTIZED' RANGE'
                                                                                                             BIOKA53
                                                                                                                      236
ANALYSIS OF BERNOULLI PROCESSES
                                          PERCENTAGE POINTS OF THE BETA DISTRIBUTION FOR USE IN BAYESIAN
                                                                                                                      6B7
                                                                                                             TECH 66
             CORRIGENDA, 'A NEW TABLE OF PERCENTACE POINTS OF THE CHI-SQUARE DISTRIBUTIONS'
                                                                                                             BTOKA65
                                                                                                                      305
                                          PERCENTAGE POINTS OF THE EXTREME ROOTS OF A WISHART MATRIX
                                                                                                                      505
                                                                                                             BTOKA6B
                                   UPPER PERCENTAGE POINTS OF THE LARCEST ROOT OF A MATRIX IN MULTIVARIAT BIOKA67
                                                                                                                      189
R-S-SQUARE-SUB-O EXTENSION OF TABLES OF PERCENTAGE POINTS OF THE LARGEST VARIANCE RATIO S-SQUARE-MAX-OVE BIOKA67
  TABLES TO FACILITATE THE COMPUTATION OF PERCENTAGE POINTS OF THE NON-CENTRAL T-DISTRIBUTION
                                     SOME PERCENTAGE POINTS OF THE NON-CENTRAL T-DISTRIBUTION, CORR. 63
ED EFFECT/ CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE OPERATING CHARACTERISTIC CURVES FOR FIX JASA 57
F THE RANCE FROM THE/ EXACT MOMENTS AND PERCENTAGE POINTS OF THE ORDER STATISTICS AND THE DISTRIBUTION O
                                                                                                                      907
                           A NEW TABLE OF PERCENTAGE POINTS OF THE PEARSON TYPE III DISTRIBUTION
                                                                                                             TECH 69
                                          PERCENTAGE POINTS OF THE RANGE FROM A SYMMETRIC MULTINOMIAL
                                                                                                             BIOKA6B
                                                                                                                      377
                                   ON THE PERCENTAGE POINTS OF THE SAMPLE COEFFICIENT OF VARIATION
                                                                                                             BIOKA68
                                                                                                                      580
                 GEOMETRICAL PROBABILITY AND RANDOM POINTS ON A HYPERSPHERE
                                                                                                              AMS 67
                                                                                                                      213
      TO 'THE THEORY OF PROBABILITY DISTRIBUTIONS OF POINTS ON A LATTICE' 58 256
                                                                                                              AMS 61
                                                                                                 CORRECTIONS
              PROBABILITY DISTRIBUTIONS ARISING FROM POINTS ON A LINE
                                                                                                             BIOKA54
                             TESTS FOR RANDOMNESS OF POINTS ON A LINE
                                                                                                             BIOKA56
                                                                                                                      104
               COMPARISON OF TESTS FOR RANDOMNESS OF POINTS ON A LINE
                                                                                                             BIOKA63
                                                                                                                      315
  DISTRIBUTION OF THE SIZE OF THE MAXIMUM CLUSTER OF POINTS ON A LINE
                                                                                                         THE JASA 65
    A CENERALIZATION OF ITO'S THEOREM CONCERNING THE POINTWISE ERGODIC THEOREM
                                                                                                              AMS 68 2145
E ANALYSIS OF UN/ QUANTAL RESPONSES TO MIXTURES OF POISONS UNDER CONDITIONS OF SIMPLE SIMILAR ACTION. TH BIOKA5B
               A NOTE ON ESTIMATION IN THE TRUNCATED POISSON
                                                                                                             BIOKA65
                                                                                                                      279
     MAXIMUM LIKELIHOOD ESTIMATION FOR THE TRUNCATED POISSON
                                                                                                      NOTES. BIOCS66
                                                                                                                       620
                                                     POISSON AND BINOMIAL FREQUENCY SURFACES
                                                                                                             BIOKA66
                                                                                                                      617
 TRANSFORMATIONS OF THE BINOMIAL, NECATIVE BINOMIAL, POISSON AND CHI-SQUARE DISTRIBUTIONS
                                                                                                             BIOKA54
                                                                                                                      302
            ON AN EXTENSION OF THE CONNEXION BETWEEN POISSON AND CHI-SQUARE DISTRIBUTIONS
                                                                                                             BIOKA59
                                                                                                                      352
'TRANSFORMATIONS OF THE BINOMIAL, NEGATIVE BINOMIAL, POISSON AND CHI-SQUARE DISTRIBUTIONS' /RRICENDA TO
                                                                                                             BTOKA56
                                                                                                                      235
CATION TO BACTERIAL ENDOCARD/ A GENERAL USE OF THE POISSON APPROXIMATION FOR BINOMIAL EVENTS, WITH APPLI BIOCS66
                                                                                                                       74
                     SOME RESULTS FOR THE QUEUE WITH POISSON ARRIVALS
                                                                                                             JRSSB60
                                                                                                                      104
               ON A CENERALIZED QUEUEING SYSTEM WITH POISSON ARRIVALS
                                                                                                             JRSSB66 456
                                                      POISSON COUNTS FOR RANDOM SEQUENCES OF EVENTS
                                                                                                              AMS 63 1217
             ESTIMATING THE PARAMETERS OF A MODIFIED POISSON DISTRIBUTION
                                                                                                             JASA 60
                                                                                                                      139
            A NOTE ON RECRESSION IN THE MULTIVARIATE POISSON DISTRIBUTION
                                                                                                             1454 67
                                                                                                                      251
                           THE MEAN DEVIATION OF THE POISSON DISTRIBUTION
                                                                                                             BIOKA58 556
                         ESTIMATION FOR THE BIVARIATE POISSON DISTRIBUTION
                                                                                                             BIOK464 241
                    TESTING FOR HOMOGENEITY. II. THE POISSON DISTRIBUTION
                                                                                                             BTOKA66
                                                                                                                      183
                  EMPIRICAL BAYES ESTIMATION FOR THE POISSON DISTRIBUTION
                                                                                                             BIOKA69
                                                                                                                      349
                                A RAPID TEST FOR THE POISSON DISTRIBUTION USING THE RANGE
                                                                                                             BIOCS67
                                                                                                                      685
                         ESTIMATION IN THE TRUNCATED POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE
MISSING
                                                                                                             JASA 60
                                                                                                                      342
                                                                                                             JASA 67
                                        THE DISPLACED POISSON DISTRIBUTION-RECION B
                                                                                                                      643
                     A TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS
                                                                                                             JASA 64
                                                                                                                      1.33
THE GENERALIZED MEAN DIFFERENCES OF THE BINOMIAL AND POISSON DISTRIBUTIONS INTERVALS FOR THE PARAMETER OF THE BINOMIAL AND POISSON DISTRIBUTIONS
                                                                                                             BIOKA59
                                                                                                                      223
                                                                                                     SHORTER BIOKA57
                                                                                                                       436
ULTANEOUS CONFIDENCE LIMITS FOR THE BINOMIAL AND AND POISSON DISTRIBUTIONS
                                                                                               TABLES OF SIM BIOKA69
                                                                                                                      452
  FREEMAN-TUKEY TRANSFORMATIONS FOR THE BINOMIAL AND POISSON DISTRIBUTIONS
                                                                                               TABLES OF THE BIOKA61
                                                                                                                      433
NIQUES FOR ESTIMATING PARAMETERS OF SOME GENERALIZED POISSON DISTRIBUTIONS
                                                                                             SIMPLIFIED TECH BIOKA67
                                                                                                                      555
 THE VARIANCE FOR THE PARAMETERS IN THE BINOMIAL AND POISSON DISTRIBUTIONS BASED ON TWO-STAGE SAMPLING
                                                                                                             JASA 66
                                                                                                                      220
                             NEAREST NEIGHBOURS IN A POISSON ENSEMBLE
A TWO-DIMENSIONAL POISSON GROWTH PROCESS
                                                                                                             BIOKA69
                                                                                                             JRSSB65
                                                                                                                      497
                                          NOTE ON THE POISSON INDEX OF DISPERSION
                                                                                                             BIOKA53
                                                                                                                      225
```

TITLE WORD INDEX POI - POL

THE POWER OF THE A GENERAL CLASS OF BULK QUEUES WITH		BIOKA57 AMS 67	286
THE ALMOST FULL DAM WITH	POISSON INPUT	IRSSREE	329
THE TIME DEPENDENCE OF A SINCLE-SERVER QUEUE WITH	POISSON INPUT AND CENERAL SERVICE TIMES POISSON INPUT, FURTHER RESULTS	AMS 62	1340
THE ALMOST FULL DAM WITH	POISSON INPUT, FURTHER RESULTS	JRSSB66	448
	POISSON INPUT, CENERAL SERVICE TIME DISTRIBUTION, ONE POISSON LIMITING FORMS AND DERIVED METHODS OF APPROXI		770 73
marion marion brown by	POISSON LIMITS OF MULTIVARIATE RUN DISTRIBUTIONS		
SHORTEST UNBIASED CONFIDENCE INTERVALS FOR THE			191
		BIOKA52	
	POISSON PARAMETER FROM SAMPLES THAT ARE TRUNCATED ON POISSON POWER MOMENTS	BIOKA56	
MINIMUM VARIANCE UNBIASED ESTIMATORS FOR		TECH 62	
MULTIPLE REGRESSION ANALYSIS OF A		JASA 61	235
THE STATISTICS OF A PARTICULAR NON-HOMOGENEOUS		BIOKA64	399
OPTIMUM DECISION PROCEDURES FOR A	POISSON PROCESS MODEL FOR THE ANALYSIS OF COMPUTER FA	JKSSB64 AMS 62	398
A MODIFIED COMPOUND	POISSON PROCESS WITH NORMAL COMPOUNDING	JASA 68	637
NON-HOMOGENEOUS BRANCHING	POISSON PROCESSES	JRSSB67	343
SOME PROCEDURES FOR COMPARING	POISSON PROCESS PARAMETER POISSON PROCESS WITH NORMAL COMPOUNDING POISSON PROCESSES POISSON PROCESSES OR POPULATIONS POISSON PROCESSES WITH RANDOM ARRIVAL RATE POISSON PROCESSES	BIUKA53	924
SOME RESULTS ON TESTS FOR	POISSON PROCESSES.	BIOKA65	67
THE ANALYSIS OF	POISSON REGRESSION WITH AN APPLICATION IN VIROLOGI	BIOKA64	OT /
RIAL DERIVATION OF THE DISTRIBUTION OF THE TRUNCATED	POISSON SUFFICIENT STATISTIC A COMBINATO		
A NOTE ON THE	POISSON TENDENCY IN TRAFFIC DISTRIBUTION POISSON TENDENCY IN TRAFFIC DISTRIBUTION	AMS 63 AMS 64	
AND TESTING TREND IN A STOCHASTIC PROCESS OF			
CONFIDENCE INTERVALS FOR THE EXPECTATION OF A	POISSON VARIABLE	BIOKA59	441
RANDOMIZED SIMILAR TEST FOR THE INDEPENDENCE OF TWO A NOTE ON THE NEGATIVE MOMENTS OF A TRUNCATED	POISSON VARIABLES /A LOCALLY MOST POWERFUL BOUNDARY	AMS 61 JASA 64	
OF THE SAMPLE MEAN AND SAMPLE VARIANCE OF A			
SOME SIMPLE APPROXIMATE TESTS FOR	POISSON VARIATES	BIOKA53	354
ON EXPECTATIONS OF SOME FUNCTIONS OF		BIOCS6B	97
CARIABLES ON FINITE PRODUCTS OF	POISSON-MARKOFF MODEL FOR DENSITY FLUGTUATIONS POISSON-TYPE CHARACTERISTIC FUNCTIONS OF SEVERAL	BIUKAS7	434
	POISSON, AND EXPONENTIAL DISTRIBUTIONS /QUENTIAL ES		
ESTIMATION OF PARAMETERS OF A TRUNCATED		BIOCS68	
COMPUTATION AND STRUCTURE OF OPTIMAL RESET YSIS OF SYSTEMS UNDER VARIOUS PREVENTIVE MAINTENANCE		JASA 67	
PRICING	POLIGIES CONTINGENT ON OBSERVED PRODUCT QUALITY	TECH 66	137 123
DISCOUNTING ON FINDING OPTIMAL	POLICIES IN DISCRETE DYNAMIC PROGRAMMING WITH NO	AMS 66	1284
COMPARISON OF REPLACEMENT	POLICIES, AND RENEWAL THEORY IMPLICATIONS	AMS 64	
MANUFACTURERS' INVENTORY CYCLES AND MONETARY	POLICY	JASA 58	89 680
A COMMUNICATIONS SATELLITE REPLENISHMENT	POLICY	TECH 66	399
STATISTICIAN AND	POLICY POLICY MAKER, A PARTNERSHIP IN THE MAKING POLICY, AN EMPIRICAL ANALYSIS	JASA 56 JASA 68	12
ISTRIBUTION AND CORRELATIONS AMONG INVERSELY SAMPLED	POLLEN COUNTS /THE COMPOUND NEGATIVE MULTINOMIAL D	BIOKA63	47
INCREASING PROPERTIES OF	POLYA FREQUENCY FUNCTIONS	AMS 65	272
SOME RESULTS ON MODELS FOR COMPLEX GONTINGENCY TABLES AND	POLYA TYPE 2 DISTRIBUTIONS POLYCHOTOMOUS DOSAGE RESPONSE CURVES	AMS 68	1759
SOME RESULTS ON MODELS FOR COMPLEX GONTINGENCY TABLES AND	POLYA TYPE 2 DISTRIBUTIONS POLYCHOTOMOUS DOSAGE RESPONSE CURVES POLYCHOTOMY SAMPLING		
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX	POLYCHOTOMOUS DOSAGE RESPONSE CURVES POLYCHOTOMY SAMPLING POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO	AMS 68 BIOCS66 AMS 66 JRSSB66	1759 83 657 366
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX	POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO	AMS 68 BIOCS66 AMS 66 JRSSB66 AMS 69	1759 83 657 366 1297
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX SOME MULTIPLE PRODUCTS OF PROPERTIES OF THE	POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO POLYKAYS POLYKAYS OF DEVIATES POLYKAYS OF THE NATURAL NUMBERS	AMS 68 BIOCS66 AMS 66 JRSSB66 AMS 69 AMS 64 BIOKA60	1759 83 657 366 1297 1167 53
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX SOME MULTIPLE PRODUCTS OF PROPERTIES OF THE	POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE SECOND DEGREE AND SICMA'S, CORR. 65	AMS 68 BIOCS66 AMS 66 JRSSB66 AMS 69 AMS 64 BIOKA60 AMS 64	1759 83 657 366 1297 1167 53 1663
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX SOME MULTIPLE PRODUCTS OF PROPERTIES OF THE ON THE EQUIVALENCE OF TON APPLICATIONS OF MULTIVARIATE	POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO POLYKAYS OF DEVIATES POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE SECOND DEGREE AND SICMA'S, CORR. 65 POLYKAYS TO THE THEORY OF UNRIASED RATIO-TYPE ESTIMAT	AMS 68 BIOCS66 AMS 66 JRSSB66 AMS 69 AMS 64 BIOKA60 AMS 64	1759 83 657 366 1297 1167 53 1663
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX SOME MULTIPLE PRODUCTS OF PROPERTIES OF CONVEX OF THE LOGGED ON THE EQUIVALENCE OF ION APPLICATIONS OF MULTIVARIATE FINITE POPULATIONS RELATIONSHIP OF GENERALIZED A COMBINATORIAL METHOD FOR PRODUCTS OF TWO	POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO POLYKAYS OF DEVIATES POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE SECOND DEGREE AND SICMA'S, CORR. 65 POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMAT POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE POLYKAYS WITH SOME GENERAL FORMULAE	AMS 68 BIOCS66 AMS 66 JRSSB66 AMS 69 AMS 64 BIOKA60 AMS 64 JASA 57 AMS 68 AMS 64	1759 83 657 366 1297 1167 53 1663 511 643
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX SOME MULTIPLE PRODUCTS OF PROPERTIES OF THE 1069 ON THE EQUIVALENCE OF ION APPLICATIONS OF MULTIVARIATE FINITE POPULATIONS RELATIONSHIP OF GENERALIZED A COMBINATORIAL METHOD FOR PRODUCTS OF TWO AYS, GORR. 66 746 GENERALIZED	POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO POLYKAYS OF DEVIATES POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE SECOND DEGREE AND SICMA'S, CORR. 65 POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMAT POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE POLYKAYS WITH SOME GENERAL FORMULAE POLYKAYS, AN EXTENTION OF SIMPLE POLYKAYS AND BIPOLYK	AMS 68 BIOCS66 AMS 66 JRSSB66 AMS 69 AMS 64 BIOKA60 AMS 64 JASA 57 AMS 68 AMS 64 AMS 66	1759 83 657 366 1297 1167 53 1663 511 643 1174 226
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX SOME MULTIPLE PRODUCTS OF PROPERTIES OF THE PROPERTIES	POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO POLYKAYS OF DEVIATES POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE SECOND DEGREE AND SICMA'S, CORR. 65 POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMAT POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE POLYKAYS WITH SOME GENERAL FORMULAE POLYKAYS, AN EXTENTION OF SIMPLE POLYKAYS AND BIPOLYK POLYNOMIAL	AMS 68 BIOCS66 AMS 66 JRSSB66 AMS 69 AMS 64 BIOKA60 AMS 64 JASA 57 AMS 68 AMS 66 TECH 68	1759 83 657 366 1297 1167 53 1663 511 643 1174 226 757
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX SOME MULTIPLE PRODUCTS OF PROPERTIES OF THE 1069 ON THE EQUIVALENCE OF ION APPLICATIONS OF MULTIVARIATE FINITE POPULATIONS RELATIONSHIP OF GENERALIZED A COMBINATORIAL METHOD FOR PRODUCTS OF TWO AYS, GORR. 66 746 GENERALIZED ON TESTING FOR THE DEGREE OF A CHEBYSHEV NEW CHEBYSHEV	POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO POLYKAYS OF DEVIATES POLYKAYS OF DEVIATES POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE SECOND DEGREE AND SICMA'S, CORR. 65 POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMAT POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE POLYKAYS WITH SOME GENERAL FORMULAE POLYKAYS, AN EXTENTION OF SIMPLE POLYKAYS AND BIPOLYK POLYNOMIAL POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO MILLS' POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO	AMS 68 BIOCS66 AMS 66 JRSSB66 AMS 69 AMS 64 BIOKA60 AMS 64 JASA 57 AMS 68 AMS 64 AMS 66	1759 83 657 366 1297 1167 53 1663 511 643 1174 226 757 892
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX SOME MULTIPLE PRODUCTS OF PROPERTIES OF THE PROPERTIES	POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO POLYKAYS POLYKAYS OF DEVIATES POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE SECOND DEGREE AND SICMA'S, CORR. 65 POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMAT POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE POLYKAYS WITH SOME GENERAL FORMULAE POLYKAYS, AN EXTENTION OF SIMPLE POLYKAYS AND BIPOLYK POLYNOMIAL POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO MILLS' POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO POLYNOMIAL COEFTCIENTS	AMS 68 BIOCS66 AMS 66 JRSSB66 AMS 69 AMS 64 BIOKA66 AMS 64 JASA 57 AMS 68 AMS 66 TECH 68 AMS 63 JASA 69 BIOKA66	1759 83 657 366 1297 1167 53 1663 511 643 1174 226 757 892 647 129
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX SOME MULTIPLE PRODUCTS OF PROPERTIES OF THE 1069 ON THE EQUIVALENCE OF 10N APPLICATIONS OF MULTIVARIATE FINITE POPULATIONS RELATIONSHIP OF GENERALIZED A COMBINATORIAL METHOD FOR PRODUCTS OF TWO AYS, GORR. 66 746 GENERALIZED ON TESTING FOR THE DEGREE OF A CHEBYSHEV NEW CHEBYSHEV NEW CHEBYSHEV LINEAR ESTIMATES WITH BELTRAMI OPERATOR CALCULATION OF ZONAL	POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO POLYKAYS POLYKAYS OF DEVIATES POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE SECOND DEGREE AND SICMA'S, CORR. 65 POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMAT POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE POLYKAYS WITH SOME GENERAL FORMULAE POLYKAYS, AN EXTENTION OF SIMPLE POLYKAYS AND BIPOLYK POLYNOMIAL POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO MILLS' POLYNOMIAL COEFFICIENTS POLYNOMIAL COEFFICIENTS BY THE USE OF THE LAPLACE-	AMS 68 BIOCS66 AMS 66 JRSSB66 AMS 64 BIOKA60 AMS 64 JASA 57 AMS 68 AMS 64 AMS 66	1759 83 657 366 1297 1167 53 1663 511 643 1174 226 757 892 647 129 1711
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX SOME MULTIPLE PRODUCTS OF PROPERTIES OF THE PROPERTIES OF THE 1069 ON THE EQUIVALENCE OF TON APPLICATIONS OF MULTIVARIATE FINITE POPULATIONS RELATIONSHIP OF GENERALIZED A COMBINATORIAL METHOD FOR PRODUCTS OF TWO AYS, GORR. 66 746 GENERALIZED ON TESTING FOR THE DEGREE OF A CHEBYSHEV NEW CHEBYSHEV NEW CHEBYSHEV LINEAR ESTIMATES WITH BELTRAMI OPERATOR CALCULATION OF ZONAL	POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO POLYKAYS POLYKAYS OF DEVIATES POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE SECOND DEGREE AND SICMA'S, CORR. 65 POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMAT POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE POLYKAYS WITH SOME GENERAL FORMULAE POLYKAYS, AN EXTENTION OF SIMPLE POLYKAYS AND BIPOLYK POLYNOMIAL POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO MILLS' POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO POLYNOMIAL COEFFICIENTS POLYNOMIAL COEFFICIENTS BY THE USE OF THE LAPLACE- POLYNOMIAL CONSTRAINED TO BE EITHER NON-NEGATIVE, NON	AMS 68 BIOCS66 AMS 66 JRSSB66 AMS 64 BIOKA60 AMS 64 JASA 57 AMS 68 AMS 64 AMS 66	1759 83 657 366 1297 1167 53 1663 511 643 1174 226 757 892 647 129 1711 113
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX SOME MULTIPLE PRODUCTS OF PROPERTIES OF THE ON THE EQUIVALENCE OF ION APPLICATIONS OF MULTIVARIATE FINITE POPULATIONS RELATIONSHIP OF GENERALIZED A COMBINATORIAL METHOD FOR PRODUCTS OF TWO AYS, GORR. 66 746 ON TESTING FOR THE DEGREE OF A CHEBYSHEV NEW CHEBYSHEV LINEAR ESTIMATES WITH BELTRAMI OPERATOR -DECREASING OR CONVEX LEAST-SQUARES FITTING OF A ASYMPTOTIC EFFICIENCY IN	POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO POLYKAYS POLYKAYS OF DEVIATES POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE SECOND DEGREE AND SICMA'S, CORR. 65 POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMAT POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE POLYKAYS WITH SOME GENERAL FORMULAE POLYKAYS, AN EXTENTION OF SIMPLE POLYKAYS AND BIPOLYK POLYNOMIAL POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO MILLS' POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO POLYNOMIAL COEFFICIENTS POLYNOMIAL COEFFICIENTS POLYNOMIAL COSTRAINED TO BE EITHER NON-NEGATIVE, NON POLYNOMIAL ESTIMATION POLYNOMIAL ESTIMATION POLYNOMIAL ESTEMATIONS OF BIVARIATE DISTRIBUTIONS	AMS 68 BIOCS66 JRSSB66 AMS 69 AMS 64 BIOKA60 AMS 64 JASA 57 AMS 66 TECH 68 AMS 66 TECH 66 AMS 63 JASA 69 BIOKA66 AMS 63 JASA 69 BIOKA66 AMS 68 AMS 68	1759 83 657 366 1297 1167 53 1663 511 643 1174 226 757 892 647 129 1711 113 1042 120B
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX SOME MULTIPLE PRODUCTS OF PROPERTIES OF THE 1069 10N APPLICATIONS OF MULTIVARIATE FINITE POPULATIONS RELATIONSHIP OF GENERALIZED A COMBINATORIAL METHOD FOR PRODUCTS OF TWO AYS, GORR. 66 746 ON TESTING FOR THE DEGREE OF A CHEBYSHEV NEW CHEBYSHEV NEW CHEBYSHEV LINEAR ESTIMATES WITH BELTRAMI OPERATOR -DECREASING OR CONVEX LEAST-SQUARES FITTING OF A ASYMPTOTIC EFFICIENCY IN OPTIMUM DESIGNS FOR	POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO POLYKAYS POLYKAYS OF DEVIATES POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE SECOND DEGREE AND SICMA'S, CORR. 65 POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMAT POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE POLYKAYS WITH SOME GENERAL FORMULAE POLYKAYS, AN EXTENTION OF SIMPLE POLYKAYS AND BIPOLYK POLYNOMIAL POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO MILLS' POLYNOMIAL COEFFICIENTS TO MILLS' RATIO POLYNOMIAL COEFFICIENTS BY THE USE OF THE LAPLACE- POLYNOMIAL CONSTRAINED TO BE EITHER NON-NEGATIVE, NON POLYNOMIAL ESTIMATION POLYNOMIAL ESTIMATION POLYNOMIAL ESTIMATION POLYNOMIAL EXTRAPOLATION	AMS 68 BIOCS66 AMS 66 JRSSB66 AMS 69 AMS 64 BIOKA60 AMS 64 JASA 67 AMS 68 AMS 64 AMS 66 TECH 68 AMS 63 JASA 69 BIOKA60 AMS 63 JASA 69 BIOKA66 AMS 63 JASA 69 AMS 64 AMS 61 AMS 61 AMS 61	1759 83 657 366 1297 1167 53 1663 511 643 1174 226 757 892 647 129 1711 113 1042 1208 1483
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX SOME MULTIPLE PRODUCTS OF PROPERTIES OF THE PROPERTIES	POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO POLYKAYS POLYKAYS OF DEVIATES POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE SECOND DEGREE AND SICMA'S, CORR. 65 POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMAT POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE POLYKAYS WITH SOME GENERAL FORMULAE POLYKAYS, AN EXTENTION OF SIMPLE POLYKAYS AND BIPOLYK POLYNOMIAL POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO MILLS' POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO POLYNOMIAL COEFFICIENTS POLYNOMIAL COEFFICIENTS BY THE USE OF THE LAPLACE- POLYNOMIAL CONSTRAINED TO BE EITHER NON-NEGATIVE, NON POLYNOMIAL ESTIMATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION	AMS 68 BIOCS66 AMS 69 AMS 64 BIOKA60 AMS 64 JASA 57 AMS 66 TECH 66 TECH 66 AMS 63 JASA 69 BIOKA60 AMS 66 AMS 66 AMS 66 AMS 66 AMS 66 AMS 68 AMS 66 AMS 66 AMS 66 AMS 66 AMS 66 BIOKA63	1759 83 657 366 1297 1167 53 1663 511 643 1174 226 647 129 1711 113 1042 120B 14B3 B9B 361
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX SOME MULTIPLE PRODUCTS OF PROPERTIES OF THE 1069 10N APPLICATIONS OF MULTIVARIATE FINITE POPULATIONS RELATIONSHIP OF GENERALIZED A COMBINATORIAL METHOD FOR PRODUCTS OF TWO AYS, GORR. 66 746 ON TESTING FOR THE DEGREE OF A CHEBYSHEV NEW CHEBYSHEV LINEAR ESTIMATES WITH BELTRAMI OPERATOR -DECREASING OR CONVEX LEAST-SQUARES FITTING OF A ASYMPTOTIC EFFICIENCY IN OPTIMUM DESIGNS FOR A PROBLEM IN MINIMAX VARIANCE ORTHOGONAL THE CHOICE OF THE DECREE OF A	POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO POLYKAYS POLYKAYS OF DEVIATES POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE SECOND DEGREE AND SICMA'S, CORR. 65 POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMAT POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMAT POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE POLYKAYS WITH SOME GENERAL FORMULAE POLYKAYS, AN EXTENTION OF SIMPLE POLYKAYS AND BIPOLYK POLYNOMIAL POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO MILLS' POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO POLYNOMIAL COEFFICIENTS POLYNOMIAL COEFFICIENTS BY THE USE OF THE LAPLACE- POLYNOMIAL ESTIMATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL FITTING POLYNOMIAL FITTING POLYNOMIAL HODEL	AMS 68 BIOCS66 AMS 69 AMS 64 BIOKA60 AMS 64 JASA 57 AMS 64 JASA 66 AMS 64 AMS 66 AMS 63 JASA 69 BIOKA66 AMS 63 JASA 69 AMS 64 AMS 66 AMS 66 AMS 67 AMS 68 AMS 63 JASA 69 AMS 61 AMS 66 AMS 63 JASS869	1759 83 657 366 1297 1167 53 1663 511 643 1174 226 757 892 647 129 1711 113 1042 1208 1483 898 1483 898 361 469
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX SOME MULTIPLE PRODUCTS OF PROPERTIES OF THE PROPERTIES OF THE PROPERTIES OF THE ON THE EQUIVALENCE OF TON APPLICATIONS OF MULTIVARIATE FINITE POPULATIONS RELATIONSHIP OF GENERALIZED AYS, GORR. 66 746 CENERALIZED ON TESTING FOR THE DEGREE OF A COMBINATORIAL METHOD FOR THE DEGREE OF A CHEBYSHEV NEW CHEBYSHEV NEW CHEBYSHEV LINEAR ESTIMATES WITH CALCULATION OF ZONAL LEAST—SQUARES FITTING OF A ASYMPTOTIC EFFICIENCY IN OPTIMUM DESIGNS FOR A PROBLEM IN MINIMAX VARIANCE ORTHOGONAL THE CHOICE OF THE DECREE OF A OPTIMAL SPACING AND WEIGHTING IN	POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO POLYKAYS POLYKAYS OF DEVIATES POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE SECOND DEGREE AND SICMA'S, CORR. 65 POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMAT POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE POLYKAYS WITH SOME GENERAL FORMULAE POLYKAYS, AN EXTENTION OF SIMPLE POLYKAYS AND BIPOLYK POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO MILLS' POLYNOMIAL COEFFICIENTS POLYNOMIAL COEFFICIENTS BY THE USE OF THE LAPLACE- POLYNOMIAL CONSTRAINED TO BE EITHER NON-NEGATIVE, NON POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL MODEL POLYNOMIAL PREDICTION	AMS 68 BIOCS66 AMS 66 JRSSB66 AMS 69 AMS 64 BIOTA60 AMS 64 JASA 57 AMS 68 AMS 64 AMS 66 TECH 68 AMS 63 JASA 69 BIOKA66 AMS 61 AMS 65 AMS 65 AMS 65 AMS 65 AMS 66	1759 83 657 366 1297 1167 53 1663 511 643 1174 226 757 129 1711 113 1042 1208 1483 1483 1483 149 1553
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX SOME MULTIPLE PRODUCTS OF PROPERTIES OF THE ON THE EQUIVALENCE OF ION APPLICATIONS OF MULTIVARIATE FINITE POPULATIONS RELATIONSHIP OF GENERALIZED A COMBINATORIAL METHOD FOR PRODUCTS OF TWO AYS, GORR. 66 746 CHEBYSHEV ON TESTING FOR THE DEGREE OF A CHEBYSHEV LINEAR ESTIMATES WITH BELTRAMI OPERATOR CALCULATION OF ZONAL -DECREASING OR CONVEX LEAST-SQUARES FITTING OF A ASYMPTOTIC EFFICIENCY IN OPTIMUM DESIGNS FOR A PROBLEM IN MINIMAX VARIANCE ORTHOGONAL THE CHOICE OF THE DECREE OF A OPTIMAL SPACING AND WEIGHTING IN TORS OR CONTROLLERS IN NON-STATIONARY TIME SERIES PROTECTION AGAINST ASSUMING THE WRONG DEGREE IN	POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO POLYKAYS POLYKAYS OF DEVIATES POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE SECOND DEGREE AND SICMA'S, CORR. 65 POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMAT POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMAT POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE POLYKAYS WITH SOME GENERAL FORMULAE POLYKAYS, AN EXTENTION OF SIMPLE POLYKAYS AND BIPOLYK POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO MILLS' POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO POLYNOMIAL COEFFICIENTS POLYNOMIAL COEFFICIENTS BY THE USE OF THE LAPLACE-POLYNOMIAL ESTIMATION TO BE EITHER NON-NEGATIVE, NON POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL FITTING POLYNOMIAL FITTING POLYNOMIAL PROJECTION PROPERTIES OF MULTI-TERM PREDIC POLYNOMIAL PREDICTION POLYNOMIAL PREDICTION POLYNOMIAL PREDICTION POLYNOMIAL PROJECTING PROPERTIES OF MULTI-TERM PREDIC POLYNOMIAL PROJEC	AMS 68 BIOCS66 AMS 66 JRSSB66 AMS 69 AMS 64 BIOTA60 AMS 64 JASA 57 AMS 68 AMS 64 AMS 66 TECH 68 AMS 63 JASA 69 BIOKA66 AMS 61 AMS 65 AMS 65 AMS 65 AMS 65 AMS 66	1759 83 657 366 1297 1167 53 1663 511 4226 757 129 1711 113 1042 1208 361 448 389 361 449 361 449
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX SOME MULTIPLE PRODUCTS OF PROPERTIES OF THE PROPERTIES OF THE PROPERTIES OF THE ON THE EQUIVALENCE OF TON APPLICATIONS OF MULTIVARIATE FINITE POPULATIONS RELATIONSHIP OF GENERALIZED AYS, GORR. 66 746 CENERALIZED ON TESTING FOR THE DEGREE OF A CEMBYSHEV NEW CHEBYSHEV NEW CHEBYSHEV LINEAR ESTIMATES WITH CALCULATION OF ZONAL LEAST—SQUARES FITTING OF A ASYMPTOTIC EFFICIENCY IN OPTIMUM DESIGNS FOR A PROBLEM IN MINIMAX VARIANCE ORTHOGONAL THE CHOICE OF THE DECREE OF A OPTIMAL SPACING AND WEIGHTING IN AN APPROXIMATE TEST FOR SERIAL GORRELATION IN	POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO POLYKAYS POLYKAYS OF DEVIATES POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE SECOND DEGREE AND SICMA'S, CORR. 65 POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMAT POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE POLYKAYS WITH SOME GENERAL FORMULAE POLYKAYS, AN EXTENTION OF SIMPLE POLYKAYS AND BIPOLYK POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO MILLS' POLYNOMIAL COEFFICIENTS POLYNOMIAL COEFFICIENTS BY THE USE OF THE LAPLACE-POLYNOMIAL CONSTRAINED TO BE EITHER NON-NEGATIVE, NON POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL MODEL POLYNOMIAL PREDICTION POLYNOMIAL PREDICTION POLYNOMIAL PREDICTION POLYNOMIAL PREDICTION POLYNOMIAL PREDICTION POLYNOMIAL REGRESSION POLYNOMIAL REGRESSION	AMS 68 BIOCS66 AMS 69 AMS 69 AMS 69 AMS 64 BIOKA60 AMS 64 JASA 57 AMS 68 AMS 64 JASA 69 BIOKA60 JASA 69 BIOKA60 AMS 66 BIOKA60 AMS 66 BIOKA68 AMS 61 AMS 65 AMS 61 AMS 66 BIOKA68 AMS 66 BIOKA68 AMS 66 BIOKA68 AMS 66 BIOKA68	1759 83 667 366 1297 1167 53 1663 511 226 643 1174 226 647 129 1042 113 1042 1483 1898 369 1553 144 111
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX SOME MULTIPLE PRODUCTS OF PROPERTIES OF THE ON THE EQUIVALENCE OF ION APPLICATIONS OF MULTIVARIATE FINITE POPULATIONS RELATIONSHIP OF GENERALIZED A COMBINATORIAL METHOD FOR PRODUCTS OF TWO AYS, GORR. 66 746 CENERALIZED ON TESTING FOR THE DEGREE OF A CHEBYSHEV LINEAR ESTIMATES WITH BELTRAMI OPERATOR CALCULATION OF ZONAL -DECREASING OR CONVEX LEAST-SQUARES FITTING OF A ASYMPTOTIC EFFICIENCY IN OPTIMUM DESIGNS FOR A PROBLEM IN MINIMAX VARIANCE ORTHOGONAL THE CHOICE OF THE DECREE OF A OPTIMAL SPACING AND WEIGHTING IN TORS OR CONTROLLERS IN NON-STATIONARY TIME SERIES PROTECTION AGAINST ASSUMING THE WRONG DEGREE IN AN APPROXIMATE TEST FOR SERIAL GORRELATION IN ADJOINT MATRICES FOR	POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO POLYKAYS POLYKAYS OF DEVIATES POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE SECOND DEGREE AND SICMA'S, CORR. 65 POLYKAYS TO THE THEORY OF UNBIASED RATIO—TYPE ESTIMAT POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE POLYKAYS WITH SOME GENERAL FORMULAE POLYKAYS WITH SOME GENERAL FORMULAE POLYKAYS, AN EXTENTION OF SIMPLE POLYKAYS AND BIPOLYK POLYNOMIAL POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO MILLS' POLYNOMIAL COEFFICIENTS POLYNOMIAL COEFFICIENTS BY THE USE OF THE LAPLACE— POLYNOMIAL COSTRAINED TO BE EITHER NON-NEGATIVE, NON POLYNOMIAL ESTIMATION POLYNOMIAL EXPANSIONS OF BIVARIATE DISTRIBUTIONS POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL FITTING POLYNOMIAL PREDICTION POLYNOMIAL PROJECTING PROPERTIES OF MULTI—TERM PREDIC POLYNOMIAL REGRESSION POLYNOMIAL REGRESSION (CORRECTIONS 68 1025)	AMS 68 BIOCS66 AMS 69 AMS 64 BIOKA60 AMS 64 JASA 57 AMS 68 AMS 66 TECH 68 AMS 63 JASA 69 BIOKA60 AMS 66 BIOKA63 JRSS866 BIOKA63 JRSS868 AMS 66 BIOKA63	1759 83 657 366 1297 1167 53 1663 511 643 1174 226 226 1751 1032 1208 1483 361 449 111 4401
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX SOME MULTIPLE PRODUCTS OF PROPERTIES OF THE ON THE EQUIVALENCE OF ION APPLICATIONS OF MULTIVARIATE FINITE POPULATIONS RELATIONSHIP OF GENERALIZED A COMBINATORIAL METHOD FOR PRODUCTS OF TWO AYS, GORR. 66 746 GENERALIZED ON TESTING FOR THE DEGREE OF A CHEBYSHEV NEW CHEBYSHEV LINEAR ESTIMATES WITH BELTRAMI OPERATOR -DECREASING OR CONVEX LEAST—SQUARES FITTING OF A ASYMPTOTIC EFFICIENCY IN OPTIMUM DESIGNS FOR A PROBLEM IN MINIMAX VARIANCE ORTHOGONAL THE CHOICE OF THE DECREE OF A OPTIMAL SPACING AND WEIGHTING IN TORS OR CONTROLLERS IN NON—STATIONARY TIME SERIES PROTECTION AGAINST ASSUMING THE WRONG DEGREE IN AN APPROXIMATE TEST FOR SERIAL GORRELATION IN ADJOINT MATRICES FOR THE CHOICE OF THE DEGREE OF A CN A POINT ARISING IN	POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO POLYKAYS POLYKAYS OF DEVIATES POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE SECOND DEGREE AND SICMA'S, CORR. 65 POLYKAYS TO THE THEORY OF UNBIASED RATIO—TYPE ESTIMAT POLYKAYS TO THE THEORY OF UNBIASED RATIO—TYPE ESTIMAT POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE POLYKAYS WITH SOME GENERAL FORMULAE POLYKAYS, AN EXTENTION OF SIMPLE POLYKAYS AND BIPOLYK POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO MILLS' RATIO POLYNOMIAL COEFFICIENTS OF MILLS' RATIO POLYNOMIAL COEFFICIENTS BY THE USE OF THE LAPLACE—POLYNOMIAL CONSTRAINED TO BE EITHER NON-NEGATIVE, NON POLYNOMIAL EXTMATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL FITTING POLYNOMIAL FORDER POLYNOMIAL PREDICTION POLYNOMIAL PREDICTION POLYNOMIAL PREDICTION POLYNOMIAL PROJECTING PROPERTIES OF MULTI—TERM PREDIC POLYNOMIAL REGRESSION (CORRECTIONS 68 1025) POLYNOMIAL REGRESSION (CORRECTIONS 68 1025) POLYNOMIAL RECRESSION (CORRECTIONS 68 1025)	AMS 68 BIOCS66 AMS 66 JRSSB66 AMS 69 AMS 68 BIOKA60 AMS 68 AMS 64 JASA 57 AMS 68 AMS 64 JASA 69 BIOKA60 AMS 66 BIOKA60 AMS 66 BIOKA60 AMS 66 BIOKA60 AMS 66 BIOKA60 BIOKA60 BIOKA60 BIOKA60 BIOKA60 BIOKA60 BIOKA60	1759 83 667 366 1297 1167 53 1663 511 226 643 1174 226 647 129 11711 113 1042 1483 1898 369 1553 144 401 401 401 401 401 401 401 401 401
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX SOME MULTIPLE PRODUCTS OF PROPERTIES OF THE ON THE EQUIVALENCE OF ION APPLICATIONS OF MULTIVARIATE FINITE POPULATIONS RELATIONSHIP OF GENERALIZED A COMBINATORIAL METHOD FOR PRODUCTS OF TWO AYS, GORR. 66 746 GENERALIZED ON TESTING FOR THE DEGREE OF A CHEBYSHEV LINEAR ESTIMATES WITH BELTRAMI OPERATOR CALCULATION OF ZONAL -DECREASING OR CONVEX LEAST-SQUARES FITTING OF A ASYMPTOTIC EFFICIENCY IN OPTIMUM DESIGNS FOR A PROBLEM IN MINIMAX VARIANCE ORTHOGONAL THE CHOICE OF THE DECREE OF A OPTIMAL SPACING AND WEIGHTING IN AN APPROXIMATE TEST FOR SERIAL GORRELATION IN ADJOINT MATRICES FOR THE CHOICE OF THE DEGREE OF A CN A POINT ARISING IN THE UNIQUENESS OF THE SPACING OF OBSERVATIONS IN	POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO POLYKAYS POLYKAYS OF DEVIATES POLYKAYS OF DEVIATES POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE SECOND DEGREE AND SICMA'S, CORR. 65 POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMAT POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE POLYKAYS WITH SOME GENERAL FORMULAE POLYKAYS WITH SOME GENERAL FORMULAE POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO MILLS' POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO MILLS' POLYNOMIAL COEFFICIENTS POLYNOMIAL COEFFICIENTS BY THE USE OF THE LAPLACE- POLYNOMIAL CONSTRAINED TO BE EITHER NON-NEGATIVE, NON POLYNOMIAL EXPANSIONS OF BIVARIATE DISTRIBUTIONS POLYNOMIAL EXPANSIONS OF BIVARIATE DISTRIBUTIONS POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL FITTING POLYNOMIAL PREDICTION POLYNOMIAL PROJECTING PROPERTIES OF MULTI-TERM PREDIC POLYNOMIAL PREDICTION POLYNOMIAL REGRESSION POLYNOMIAL REGRESSION (CORRECTIONS 68 1025) POLYNOMIAL REGRESSION AS A MULTIPLE DECISION PROBLEM POLYNOMIAL REGRESSION FITTING POLYNOMIAL REGRESSION FITTING POLYNOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FIT	AMS 68 BIOCS66 AMS 69 AMS 64 AMS 64 JASA 57 AMS 68 AMS 66 AMS 66 TECH 68 AMS 63 JASA 67 AS 66 AMS 66 BIOKA66 BIOKA63 JRSSB68 AMS 66 BIOKA63 AMS 66 BIOKA63 AMS 66 BIOKA63 AMS 68 BIOKA64 AMS 66 BIOKA63 AMS 68	1759 83 657 366 1297 1167 53 1663 511 643 1174 226 757 892 1711 113 1453 361 4469 1553 144 NO. 4 111 255 501 810
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX SOME MULTIPLE PRODUCTS OF PROPERTIES OF THE EVALUATION OF MULTIVARIATE FINITE POPULATIONS RELATIONSHIP OF GENERALIZED A COMBINATORIAL METHOD FOR PRODUCTS OF TWO AYS, GORR. 66 746 GENERALIZED ON TESTING FOR THE DEGREE OF A CHEBYSHEV LINEAR ESTIMATES WITH BELTRAMI OPERATOR CALCULATION OF ZONAL LEAST—SQUARES FITTING OF A ASYMPTOTIC EFFICIENCY IN OPTIMUM DESIGNS FOR A PROBLEM IN MINIMAX VARIANCE ORTHOGONAL THE CHOICE OF THE DEGREE OF A OPTIMAL SPACING AND WEIGHTING IN AN APPROXIMATE TEST FOR SERIAL GORRELATION IN ADJOINT MATRICES FOR THE CHOICE OF THE DEGREE OF A CNA POINT ARRISING IN THE UNIQUENESS OF THE SPACING OF OBSERVATIONS IN	POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO POLYKAYS POLYKAYS OF DEVIATES POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE SECOND DEGREE AND SICMA'S, CORR. 65 POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMAT POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE POLYKAYS WITH SOME GENERAL FORMULAE POLYKAYS, AN EXTENTION OF SIMPLE POLYKAYS AND BIPOLYK POLYNOMIAL POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO MILLS' POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO POLYNOMIAL COEFFICIENTS POLYNOMIAL COFFICIENTS BY THE USE OF THE LAPLACE- POLYNOMIAL CONSTRAINED TO BE EITHER NON-NEGATIVE, NON POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL FITTING POLYNOMIAL PREDICTION POLYNOMIAL PREDICTION POLYNOMIAL PREDICTION POLYNOMIAL PROJECTING PROPERTIES OF MULTI-TERM PREDIC POLYNOMIAL PROJECTING PROPERTIES OF MULTI-TERM PREDIC POLYNOMIAL REGRESSION POLYNOMIAL REGRESSION (CORRECTIONS 68 1025) POLYNOMIAL RECRESSION FOR MINIMAX VARIANCE OF THE FIT POLYNOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FIT POLYNOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FIT POLYNOMIAL RECRESSION FOR MINIMAX VARIANCE OF THE FIT	AMS 68 BIOCS66 AMS 66 JRSSB66 AMS 69 AMS 68 BIOKA60 AMS 68 AMS 64 JASA 57 AMS 68 AMS 64 JASA 69 BIOKA60 AMS 66 BIOKA60 AMS 66 BIOKA60 AMS 66 BIOKA60 AMS 66 BIOKA60 BIOKA60 BIOKA60 BIOKA60 BIOKA60 BIOKA60 BIOKA60	1759 83 667 366 1297 1167 53 1663 511 643 1174 226 647 129 1711 113 120B 1483 B9B 1483 B9B 1553 361 449 1255 501 325
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX SOME MULTIPLE PRODUCTS OF PROPERTIES OF THE EVALUATION OF THE EVALUATION OF THE EVALUATION OF THE EVALUATION OF MULTIVARIATE FINITE POPULATIONS RELATIONSHIP OF GENERALIZED A COMBINATORIAL METHOD FOR PRODUCTS OF TWO AYS, GORR. 66 746 CENERALIZED ON TESTING FOR THE DEGREE OF A CHEBYSHEV LINEAR ESTIMATES WITH BELTRAMI OPERATOR CALCULATION OF ZONAL LEAST—SQUARES FITTING OF A ASYMPTOTIC EFFICIENCY IN OPTIMUM DESIGNS FOR A PROBLEM IN MINIMAX VARIANCE ORTHOGONAL THE CHOICE OF THE DECREE OF A OPTIMAL SPACING AND WEIGHTING IN AN APPROXIMATE TEST FOR SERIAL GORRELATION IN ADJOINT MATRICES FOR THE CHOICE OF THE DEGREE OF A CON A POINT ARISING IN CHOICE OF THE DEGREE OF A CON A POINT ARISING IN CHOICE OF THE DEGREE OF A CON A POINT ARISING IN CHOICE OF LEVELS OF THE UNIQUENESS OF THE SPACING OF OBSERVATIONS IN CHOICE OF LEVELS OF THE POINTS OF INTERSECTION OF TWO ADMISSIBLE DESIGNS FOR	POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO POLYKAYS POLYKAYS OF DEVIATES POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE SECOND DEGREE AND SICMA'S, CORR. 65 POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMAT POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE POLYKAYS WITH SOME GENERAL FORMULAE POLYKAYS, AN EXTENTION OF SIMPLE POLYKAYS AND BIPOLYK POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO MILLS' POLYNOMIAL ADD OTHER NEW APPROXIMATIONS TO MILLS' POLYNOMIAL COEFFICIENTS BY THE USE OF THE LAPLACE-POLYNOMIAL COEFFICIENTS BY THE USE OF THE LAPLACE-POLYNOMIAL ESTIMATION POLYNOMIAL ESTIMATION POLYNOMIAL EXPANSIONS OF BIVARIATE DISTRIBUTIONS POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL PREDICTION POLYNOMIAL PREDICTION POLYNOMIAL PREDICTION POLYNOMIAL PREDICTION POLYNOMIAL PRESSION POLYNOMIAL REGRESSION (CORRECTIONS 68 1025) POLYNOMIAL RECRESSION AS A MULTIPLE DECISION PROBLEM POLYNOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FIT POLYNOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FIT POLYNOMIAL REGRESSION WITH ONE OR TWO VARIABLES POLYNOMIAL REGRESSION WITH ONE OR TWO VARIABLES	AMS 68 BIOCS66 AMS 69 AMS 64 AMS 64 JASA 67 AMS 66 BIOKA66 AMS 66 BIOKA66 AMS 66 BIOKA63 JRSSB68 AMS 66 BIOKA63 JRSSB68 AMS 66	1759 83 657 366 1297 1167 53 1663 511 643 1174 226 757 892 1711 113 1208 1483 361 449 1002 555 501 810 3255 810 3255 714 1557
NS ON THE EVALUATION OF PROBABILITIES OF CONVEX SOME MULTIPLE PRODUCTS OF PROPERTIES OF THE EVALUATION OF MULTIVARIATE FINITE POPULATIONS RELATIONSHIP OF GENERALIZED A COMBINATORIAL METHOD FOR PRODUCTS OF TWO AYS, GORR. 66 746 CENERALIZED ON TESTING FOR THE DEGREE OF A CHEBYSHEV LINEAR ESTIMATES WITH BELTRAMI OPERATOR CALCULATION OF ZONAL LEAST—SQUARES FITTING OF A ASYMPTOTIC EFFICIENCY IN OPTIMUM DESIGNS FOR A PROBLEM IN MINIMAX VARIANCE ORTHOGONAL THE CHOICE OF THE DECREE OF A OPTIMAL SPACING AND WEIGHTING IN AN APPROXIMATE TEST FOR SERIAL GORRELATION IN ADJOINT MATRICES FOR THE CHOICE OF THE DEGREE OF A CON A POINT ARISING IN CHOICE OF THE DEGREE OF A CON A POINT ARISING IN CHOICE OF THE DEGREE OF A CON A POINT ARISING IN CHOICE OF LEVELS OF THE UNIQUENESS OF THE SPACING OF OBSERVATIONS IN CHOICE OF LEVELS OF INTERSECTION OF TWO ADMISSIBLE DESIGNS FOR	POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIO POLYKAYS OF DEVIATES POLYKAYS OF DEVIATES POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE NATURAL NUMBERS POLYKAYS OF THE SECOND DEGREE AND SICMA'S, CORR. 65 POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMAT POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE POLYKAYS WITH SOME GENERAL FORMULAE POLYKAYS, AN EXTENTION OF SIMPLE POLYKAYS AND BIPOLYK POLYNOMIAL POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO MILLS' POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO POLYNOMIAL COEFFICIENTS BY THE USE OF THE LAPLACE-POLYNOMIAL COEFFICIENTS BY THE USE OF THE LAPLACE-POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL EXTRAPOLATION POLYNOMIAL FITTING POLYNOMIAL PROJECTING PROPERTIES OF MULTI-TERM PREDIC POLYNOMIAL PROJECTING PROPERTIES OF MULTI-TERM PREDIC POLYNOMIAL REGRESSION (CORRECTIONS 68 1025) POLYNOMIAL REGRESSION AS A MULTIPLE DECISION PROBLEM POLYNOMIAL REGRESSION FITTING POLYNOMIAL REGRESSION FITTING POLYNOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FIT POLYNOMIAL REGRESSION WITH ONE OR TWO VARIABLES POLYNOMIAL REGRESSION WITH ONE OR TWO VARIABLES POLYNOMIAL REGRESSION WITH ONE OR TWO VARIABLES POLYNOMIAL SPLINE REGRESSION FOR MINIMAX VARIANCE OF THE FIT POLYNOMIAL PROFESSION FOR MINIMAX VARIANCE OF THE FIT POLYNOMIAL REGRESSION WITH ONE OR TWO VARIABLES POLYNOMIAL SPLINE REGRESSION FOLYNOMIAL SPLINE REGRESSION POLYNOMIAL SPLINE REGRESSION POLYNOMIAL SPLINE REGRESSION POLYNOMIAL TO CORRELATED EQUALLY SPACED OBSERVATIONS.	AMS 68 BIOCS66 AMS 69 AMS 64 AMS 64 JASA 67 AMS 66 BIOKA66 AMS 66 BIOKA66 AMS 66 BIOKA63 JRSSB68 AMS 66 BIOKA63 JRSSB68 AMS 66	1759 83 667 366 1297 1167 53 1663 511 6643 1174 226 647 129 1711 113 169 1483 898 1484 89 1553 44 401 255 501 810 325 214 1557 275

```
REGRESSION, QUANTAL RESPONSE DATA, AND INVERSE POLYNOMIALS
                                                                                                      WEIGHTED BIOCS68 979
               NOTES ORTHOGONAL POLYNOMIALS FOR UNEQUALLY WEIGHED MEANS
NUMERICAL CONSTRUCTION OF ORTHOGONAL POLYNOMIALS FROM A GENERAL RECURRENCE FORMULA
                                                                                                               BTOCS65
                                                                                                                        226
                                                                                                               BTOCS68
                                                                                                                        695
   FOR WISHARTNESS AND INDEPENDENCE OF SECOND DECREE POLYNOMIALS IN NORMAL VECTOR
                                                                                                   CONDITIONS AMS 62 1002
                             THE VALUE OF ORTHOGONAL POLYNOMIALS IN THE ANALYSIS OF CHANGE-OVER TRIALS
                                                                                                                       297
WITH DATRY COWS
                                                                                                               BIOCS67
                  CORRIGENDA, THE USE OF ORTHOGONAL POLYNOMIALS OF POSITIVE AND NECATIVE BINOMIAL FREQUEN BIOKA61
CY FUNCTIONS I/
                                                                                                                         476
                                       THE ORTHOGONAL POLYNOMIALS OF POWER SERIES PROBABILITY DISTRIBUTIONS BIOKAGE
 AND THEIR USES
                                       THE ORTHOGONAL POLYNOMIALS OF THE FACTORIAL POWER SERIES PROBABILITY SASJ 67
 DISTRIBUTIONS
                                                                                                                         49
QUENCY FUNCTIONS IN CURVE F/ THE USE OF ORTHOGONAL POLYNOMIALS OF THE POSITIVE AND NEGATIVE BINOMIAL FRE BIOKAG1
                  GROUPING METHODS IN THE FITTING OF POLYNOMIALS TO EQUALLY SPACED OBSERVATIONS
                                                                                                               BIOKA54
                                                                                                                         62
                                       THE FITTING OF POLYNOMIALS TO EQUIDISTANT DATA WITH MISSINC VALUES
                                                                                                               BIOKA51
                  CROUPING METHODS IN THE FITTING OF POLYNOMIALS TO UNEQUALLY SPACED OBSERVATIONS
                                                                                                               BIOKA56
             THE DOOLITTLE METHOD AND THE FITTING OF POLYNOMIALS TO WEIGHTED DATA
                                                                                                               BIOKA53
                                                                                                                         229
 COMPLETE SET OF LEADING COEFFICIENTS FOR ORTHOGONAL POLYNOMIALS UP TO N = 26
                                                                                                               TECH 65
                                                                                                                         644
                                               INVERSE POLYNOMIALS, A USEFUL GROUP OF MULTI-FACTOR RESPONSE BIOCS66
                                                                                                                        12B
                                   AN INTRODUCTION TO POLYSPECTRA
                                                                                                                AMS 65 1351
N PAR INDEX SUR PLUSIEURS CARACTERES
                                                       PONDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTIO BIOCS69 295
                                          THE OPINION POOL
                                                                                                                AMS 61 1339
                   CHI-SQUARE STATISTIC BASED ON THE POOLED FREQUENCIES OF SEVERAL OBSERVATIONS
                                                                                                               BIOKA63 524
                                                CHAIN-POOLING ANALYSIS OF VARIANCE FOR TWO-LEVEL FACTORIAL
REPLICATION-FREE EXPERIMENTS
                                                                                                               TECH 69 NO.4
                      A NOTE ON THE ADMISSIBILITY OF POOLING IN THE ANALYSIS OF VARIANCE
ON POOLING MEANS WHEN VARIANCE IS UNKNOWN
                                                                                                                AMS 68 1744
                                                                                                               JASA 68 1333
                                                     A POOR MAN'S MONTE CARLO (WITH DISCUSSION)
                                                                                                               JRSSB54
                                                                                                                         23
                 MISCLASSIFIED DATA FROM A BINOMINAL POPULATION
                                                                                                               TECH 60
                                                                                                                         109
                           SAMPLINC FROM A TRIANGULAR POPULATION
                                                                                                               JASA 63
                                                                                                                        509
              ERRORS OF CLASSIFICATION IN A BINOMIAL POPULATION
                                                                                                                JASA 65
                                                                                                                         217
           PRODUCER AND CONSUMER RISKS IN NON-NORMAL POPULATION
                                                                                                               TECH 66 335
       CONFIDENCE INTERVALS FOR THE MEAN OF A FINITE POPULATION
                                                                                                                AMS 67 1180
                        FINDING THE SIZE OF A FINITE POPULATION
                                                                                                                AMS 67 1392
                ON MEASURING THE EXTREME AGED IN THE POPULATION
                                                                                                                JASA 68
                                                                                                                         29
          MOMENT-STATISTICS IN SAMPLES FROM A FINITE POPULATION
                                                                                                               BIOKA52
                                                                                                                         14
           MOMENTS OF ORDER STATISTICS FROM A NORMAL POPULATION
                                                                                                                BIOKA59
                                                                                                                         433
                                                                                                                BIOKA64
            USE OF DOUBLE SAMPLING FOR SELECTING BEST POPULATION
                                                                                                                         49
             CONTROL CHARTS FOR THE MEAN OF A NORMAL POPULATION
                                                                                                                JRSSB54
                                                                                                                         131
    FITTING A STRAIGHT LINE TO DATA FROM A TRUNCATED POPULATION
                                                                                                                BIOCS65
                                                                                                                         715
THE SPREAD OF AN EPIDEMIC TO FIXED CROUPS WITHIN THE POPULATION
                                                                                                                BIOCS6B 1007
MULTIPLE-RECAPTURE CENSUS. I. ESTIMATION OF A CLOSED POPULATION
                                                                                                          THE BIOKA5B
                                                                                                                        343
      FOR UNBIASED TESTS ON THE VARIANCE OF A NORMAL POPULATION
                                                                                                        TABLES AMS 61
                                                                                                                          84
 OF SAMPLE MOMENTS OF CENSORED SAMPLES FROM A NORMAL POPULATION
                                                                                                       MOMENTS BIOKA5B
                                                                                                                         211
 OF SEQUENTIAL RULES FOR ESTIMATION OF THE SIZE OF A POPULATION
                                                                                                    COMPARISON BIOCS69
                                                                                                                         517
      MAXIMUM LIKELIHOOD ESTIMATION OF THE SIZE OF A POPULATION
                                                                                                    SEQUENTIAL AMS 68 1057
                                                                                              AN ANALYSIS OF TECH 61
ADMISSIBILITY OF AMS 68
SOME RELAY FAILURE DATA FROM A COMPOSITE EXPONENTIAL POPULATION
                                                                                                                         423
 THE SAMPLE MEAN AS ESTIMATE OF THE MEAN OF A FINITE POPULATION
        OF THE K-STATISTICS IN SAMPLES FROM A FINITE POPULATION
                                                                                           MOMENT COEFFICIENTS BIOKA52
       AND EXPOSURE RESIDENCES FOR THE UNITED STATES POPULATION
                                                                                          RESIDENCE HISTORIES JASA 61
IMATION OF THE SIMPLE STOCHASTIC EPIDEMIC IN A LARGE POPULATION
                                                                                         A PERTURBATION APPROX BIOKA68
                                                                                                                         199
  OF PERCENTILES. BAYES' THEOREM FOR SAMPLING FROM A POPULATION
                                                                                       POSTERIOR DISTRIBUTION JASA 68
 REGRESSION COEFFICIENT IN SAMPLES FROM A NON-NORMAL POPULATION
                                                                                       THE DISTRIBUTION OF THE BIOKA54
      OF THE SMALLER OF TWO DRAWINGS FROM A BINOMIAL POPULATION
                                                                                     ON THE MEAN AND VARIANCE BIOKA62
SPECIAL REFERENCE TO SAMPLES FROM A PEARSON TYPE III POPULATION
                                                                                    THE MEAN DEVIATION, WITH BIOKA5B
NFERENCES BASED ON A SAMPLE FROM A FINITE UNIVARIATE POPULATION
                                                                                UPPER AND LOWER PROBABILITY I BIOKA67
                                                                                                                         515
                                                                               ASYMPTOTIC THEORY OF REJECTIVE AMS 64 1491
INADMISSIBILITY OF THE USUAL C AMS 67 1B68
   SAMPLING WITH VARYING PROBABILITIES FROM A FINITE POPULATION
ONFIDENCE SETS FOR THE MEAN OF A MULTIVARIATE NORMAL POPULATION
                                                                               INADMISSIBILITY OF THE USUAL C
 CENSORING OF THE PARAMETERS OF A DOUBLE EXPONENTIAL POPULATION
                                                                        BEST LINEAR ESTIMATES UNDER SYMMETRIC JASA 66
                                                                                                                         248
 ORDER STATISTIC FOR THE PARAMETER OF AN EXPONENTIAL POPULATION
                                                                        EXACT CONFIDENCE BOUNDS, BASED ON ONE TECH 64
                                                                                                                         301
T OF MAXIMUM VALUES IN SAMPLES FROM A POWER-FUNCTION POPULATION
                                                                       DISTRIBUTION OF PRODUCT AND OF QUOTIEN JASA 64
                                                                       INTERRELATIONS BETWEEN CERTAIN LINEAR BIOKA51
                                                                                                                         377
SYSTEMATIC STATISTICS OF SAMPLES FROM ANY CONTINUOUS POPULATION
ETS FOR THE MEAN OF A UNIVARIATE OR BIVARIATE NORMAL POPULATION
                                                                      ADMISSIBILITY OF THE USUAL CONFIDENCE S AMS 69 1042
E BOUNDS FOR THE STANDARD DEVIATION OF A RECTANGULAR POPULATION
                                                                     /AMPLE RANGES IN SETTING EXACT CONFIDENC JASA 61
IN SAMPLING WITH VARYING PROBABILITIES FROM A FINITE POPULATION
                                                                     /FOR THE ERROR-VARIANCE OF AN ESTIMATOR JASA 6B
                                                                                                                          91
AMPLING MOMENTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION (ATY'S FORMULAE AND MADOW'S CENTRAL LIMIT) BIOKAG1
                                                                                                                         199
                    MATRIX AND MULTIPLE DECREMENT IN POPULATION ANALYSIS
                                                                                                               BT0CS67
                                                                                                                         485
ITHMIC SERIES DISTRIBUTION AS A PROBABILITY MODEL IN POPULATION AND COMMUNITY ECOLOGY AND SOME OF ITS STAT JASA 67
                                                                                                                         655
     BIAS IN ESTIMATES OF THE UNITED STATES NONWHITE POPULATION AS INDICATED BY TRENDS IN DEATH RATES
                                                                                                               JASA 61
                                                                                                                          44
            TABLES FOR TOLERANCE LIMITS FOR A NORMAL POPULATION BASED ON SAMPLE MEAN AND RANGE OR MEAN RAN JASA 57
                                                                                                                          В8
CONSTRUCTION OF ATTRITION LIFE TABLES FOR THE SINGLE POPULATION BASED ON TWO SUCCESSIVE CENSUSES (CORR. 68 JASA 67 1433
RIES OF ZERO, ERRORS IN RECORDING CHILDLESS CASES IN POPULATION CENSUSES /URE OF ENUMERATORS TO MAKE ENT JASA 61
                                                                                                                         909
LY TWO SAMPLES SUBSEQUENT/ INFERENCES CONCERNING A POPULATION CORRELATION COEFFICIENT FROM ONE OR POSSIB JRSSB67
                                                                                                                         2B2
      THE NUMBER OF NEW SPECIES, AND THE INCREASE IN POPULATION COVERACE, WHEN A SAMPLE IS INCREASED
                                                                                                               RTOKA56
                                                                                                                         45
           LINE TRANSECT METHOD OF ESTIMATING GROUSE POPULATION DENSITIES
                                                                                                                BTOCS68
                                                                                                                         1.35
ING TO SIMPLE BIRTH AND DEATH PROCESSES
                                                       POPULATION DIFFERENCES BETWEEN SPECIES GROWING ACCORD BIOKA53
                                                                                                                         370
    SOME STOCHASTIC VERSIONS OF THE MATRIX MODEL FOR POPULATION DYNAMICS
                                                                                                                JASA 69
                                                                                                                         111
                                                      POPULATION ESTIMATION BASED ON CHANCE OF COMPOSITION BIOKA55
CAUSED BY A SELECTIVE REMOVAL
                                                                                                                         279
ATION OF THE MEAN AND STANDARD DEVIATION OF A NORMAL POPULATION FROM A CENSORED SAMPLE
                                                                                                         ESTIM BIOKA52
                                                                                                                         260
                                                                                                   ESTIMATION JRSSB59
OF LOCATION AND SCALE PARAMETERS FOR THE RECTANGULAR POPULATION FROM CENSORED SAMPLES
                                                                                                                         356
HE PARAMETERS OF A FOUR- PARAMETER GENERALIZED GAMMA POPULATION FROM COMPLETE AND CENSORED SAMPLES /OF T TECH 67
                                                                                                                         159
                           ESTIMATES OF MORALITY AND POPULATION FROM SURVEY-REMOVAL RECORDS
                                                                                                               BTOCS65
                                                                                                                         921
RSE DISTRIBUTION FUNCTION OF A CONTINUOUS UNIVARIATE POPULATION FROM TRUNCATED AND CENSORED SAMPLES

ESTIMATION OF PARAMETERS OF A MULTIVARIATE NORMAL POPULATION FROM TRUNCATED AND CENSORED SAMPLES

JRSSB60 307
                                                                                                         SOME JRSSB6B
APPLICATIONS OF MULTIPLE-TYPE BRANCHING PROCESSES IN POPULATION GENETICS
                                                                                                                         164
LUTIONS TO CERTAIN NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS
                                                                                              STABILITY OF SO BIOCS69
                                                                                                                         27
                     DISCRETE STOCHASTIC PROCESSES IN POPULATION GENETICS (WITH DISCUSSION)
                                                                                                               JRSSB60
                                                                                                                         218
     SOME THEORETICAL ASPECTS OF DIFFUSION THEORY IN POPULATION GENETICS, CORR. 63 352
                                                                                                                AMS 62
                                                                                                                         939
                            THE STUDY OF POPULATION GROWTH IN ORGANISMS GROUPED BY STAGES STOCHASTIC MODELS FOR THE POPULATION GROWTH OF THE SEXES
                                                                                                               BIOCS65
                                                                                                                           1
                                                                                                                         469
                                                                                                               BIOKA68
                                      THE ANALYSIS OF POPULATION GROWTH WHEN THE BIRTH AND DEATH RATES DEPE BIOCS69 NO.4
ND UPON SEVERAL FACTORS
```

TITLE WORD INDEX POP

```
PROBABILITY GENERATING FUNCTIONAL FOR THE CUMULATIVE POPULATION IN A SIMPLE BIRTH-AND-DEATH PROCESS
   THE EXPECTED FREQUENCIES IN A SAMPLE OF AN ANIMAL POPULATION IN WHICH THE ABUNDANCES OF SPECIES ARE LOG BIOKA51
                    A NOTE ON THE POSTERIOR MEAN OF A POPULATION MEAN
                         A PROCEDURE TO ESTIMATE THE POPULATION MEAN IN RANDOM EFFECTS MODELS
                                                                                                                  TECH 67
        DIFFICULTIES INVOLVED IN THE ESTIMATION OF A POPULATION MEAN USING TRANSFORMED SAMPLE DATA
                                                                                                                   TECH 66
                                                                                                                            535
                                   AN ESTIMATOR FOR A POPULATION MEAN WHICH REDUCES THE EFFECT OF LARGE
                                                                                                                  JASA 66 1200
TRUE OBSERVATIONS
            ON MULTIPLE DECISION METHODS FOR RANKING POPULATION MEANS
                                                                                                                    AMS 62
                                                                                                                            248
                ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS (WITH DISCUSSION)
                                                                                                                   JRSSB60
                     A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF
     THE MIDRANGE OF A SAMPLE AS AN ESTIMATOR OF THE POPULATION MIDRANGE

JASA 57

THE MIDRANGE OF A SAMPLE AS AN ESTIMATOR OF THE POPULATION MODELS

A COMPARISON OF T BICKAGO
                                                                                                                   AMS 69
                                                                                                                            537
HEORETICAL AND EMPIRICAL RESULTS FOR SOME STOCHASTIC POPULATION MODELS
IRECT MATRIX PRODUCT IN ANALYSING CERTAIN STOCHASTIC POPULATION MODELS
                                                                                            ON THE USE OF THE D BIOKAG6
              A METHOD OF ESTIMATING THE INTERCENSAL POPULATION OF COUNTIES
                                                                                                                   JASA 56
                                                                                                                             5B7
                                   ON SAMPLING FROM A POPULATION OF RANKERS
                                                                                                                   BIOKA52
                                                                                                                             B2
ULATION FREQUENCIES OF SPECIES AND THE ESTIMATION OF POPULATION PARAMETERS
                                                                                                          THE POP BIOKA53
                                                                                                                             237
THE CAPTURE—RECAPTURE METHOD. I/ THE ESTIMATION OF POPULATION PARAMETERS FROM DATA OBTAINED BY MEANS OF BIOKA51
THE CAPTURE—RECAPTURE METHOD. I/ THE ESTIMATION OF POPULATION PARAMETERS FROM DATA OBTAINED BY MEANS OF BIOKA52
THE CAPTURE—RECAPTURE METHOD. I/ THE ESTIMATION OF POPULATION PARAMETERS FROM DATA OBTAINED BY MEANS OF BIOKA53
                                                                                                                             269
                                                                                                                             363
                                                                                                                            137
                                  ON THE ESTIMATION OF POPULATION PARAMETERS FROM MARKED MEMBERS
                                                                                                                   BIOKA55
                                                                                                                             269
TH BOTH DEATH AND DILUTION-DETERMINI/ ESTIMATES OF POPULATION PARAMETERS FROM MULTIPLE RECAPTURE DATA WI BIOKA63
                                                                                                                             113
                              ESTIMATION OF THE NORMAL POPULATION PARAMETERS GIVEN A SINGLY CENSORED SAMPLE BIOKA59
                                                                                                                             150
                              ESTIMATION OF THE NORMAL POPULATION PARAMETERS GIVEN A TYPE I CENSORED SAMPLE BIOKA61
                                                                                                                             367
                                                                                                                    AMS 64
                     A BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS
                                                                                                                             825
                                                                                /ITIES OF EXTINCTION IN A GALT AMS 68 1700
ON-WATSON PROCESS AND IN SOME RELATED MULTIPLICATIVE POPULATION PROCESSES
REPEATED MIGRATION, AND ANALYSIS BASED ON THE DANISH POPULATION REGISTER
                                                                                                  THE EXTENT OF JASA 64 1121
                            AN OLD APPROACH TO FINITE POPULATION SAMPLING THEORY
                                                                                                                   JASA 68 1269
                                 LINEAR ESTIMATES OF A POPULATION SCALE PARAMETER
                                                                                                                   BIOKA67
                                                                                                                            551
     INFORMATIVE STOPPING RULES AND INFERENCES ABOUT POPULATION SIZE
                                                                                                                             763
                                                                                                                   JASA 67
QUASI-RANGES IN SETTING CONFIDENCE INTERVALS FOR THE POPULATION STANDARD DEVIATION THE USE OF SAMPLE JASA 61
                                                                                                                             260
                                   ON DISCRETE STABLE POPULATION THEORY
                                                                                                                   BIOCS69
                                                                                                                             285
                                CONVERGENCE OF A HUMAN POPULATION TO A STABLE FORM
                                                                                                                   JASA 68
                                                                                                                             395
                                           SOME FINITE POPULATION UNBAISED RATIO AND REGRESSION ESTIMATORS, JASA 59
CORR. 60 755
EVERAL GROUPS OF OBSERVATIONS WHEN THE RATIOS OF THE POPULATION VARIANCES ARE UNKNOWN /E COMPARISON OF S BIOKA51
ATE AND MULTIVARIATE ANALYSIS WHEN THE RATIOS OF THE POPULATION VARIANCES ARE UNKNOWN /THESES IN UNIVARI BIOKA54
                                                                                                                             324
                                                                                              /THESES IN UNIVARI BIOKA54
                                                                                                                             19
      A TEST PROCEDURE WITH A SAMPLE FROM A NORMAL POPULATION WHEN AN UPPER BOUND TO THE STANDARD DEVIAT JASA 60
LL'S TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPULATION WITH CORRELATION RHO /TRIBUTION OF KENDA BIOKAG3
                                                                                                                            538
        ESTIMATING THE MEAN OF A MULTIVARIATE NORMAL POPULATION WITH GENERAL QUADRATIC LOSS FUNCTION
                                                                                                                    AMS 66 1819
DER STATISTICS, FOR THE SCALE PARAMETER OF A WEIBULL POPULATION WITH KNOWN SHAPE PARAMETER /ASED ON M OR TECH 65 405
HYPOTHESIS TEST FOR DETERMINING THE MEAN OF A NORMAL POPULATION WITH KNOWN VARIANCE A SEQUENTIAL THREE
                                                                                                                    AMS 67 1365
                            PARTITIONING OF A PATIENT POPULATION WITH RESPECT TO DIFFERENT MORTALITY RISKS JASA 63 701
                                                                                                                    AMS 67 1804
        NONPARAMETRIC PROCEDURES FOR SELECTING THE T POPULATION WITH THE LARGEST ALPHA-QUANTILE
                                                                                                                    AMS 67 17B8
RIC PROCEDURES FOR SELECTING A SUBSET CONTAINING THE POPULATION WITH THE LARGEST ALPHA-QUANTILE
           A SEQUENTIAL PROCEDURE FOR SELECTING THE POPULATION WITH THE LARGEST MEAN FROM K NORMAL POPULA
                                                                                                                    AMS 64
                                                                                                                            174
TIONS
 BE MADE ONLY IN PAIRS
                N PAIRS SELECTION OF THE POPULATION WITH THE LARGEST MEAN WHEN COMPARISONS CAN BIOKA5B ON SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SMALLEST VARIANCE BIOKA62
                                                                                                                            581
                                                                                                                             495
X PROCEDURES FOR ESTIMATING THE ARITHMETIC MEAN OF A POPULATION WITH TWO-STAGE SAMPLING BAYES AND MINIMA
                                                                                                                   AMS 66 11B6
ENTIAL CONFIDENCE INTERVALS FOR THE MEAN OF A NORMAL POPULATION WITH UNKNOWN VARIANCE
                                                                                                             SEOU JRSSB57
                                                                                                                             1.33
                                                                                  ON THE EFFECT OF REMOVING PER BIOKA65
SONS WITH N OR MORE ACCIDENTS FROM AN ACCIDENT PRONE POPULATION.
                                                                                                                             29B
   SOME PROPERTIES OF PASCAL DISTRIBUTION FOR FINITE POPULATION. CORR. 62 919
                                                                                                                   JASA 62
                                                                                                                             172
         RESEARCH ON METROPOLITAN POPULATION, EVALUATION OF DATA ERRATA, 'MISCLASSIFIED DATA FROM A BINOMIAL POPULATION'
                                                                                                                   JASA 56
                                                                                                                             591
                                                                                                                   TECH 66
                                                                                                                             215
 OF SAMPLE MOMENTS OF CENSORED SAMPLES FROM A NORMAL POPULATION'
                                                                                          CORRIGENDA TO 'MOMENTS BIOKA58
                                                                                                                             5B7
XACT SAMPLING DISTRIBUTION OF RANGES FROM A DISCRETE POPULATION'
                                                                                  CORRECTION, 'CALCULATION OF E AMS 67
                                                                                                                             280
                                                                       /DS, BASED ON ONE ORDER STATISTIC FOR T TECH 64
HE PARAMETER OF A ONE-PARAMETER NEGATIVE EXPONENTIAL POPULATION'
                                                                                                                             4B3
                   THE RANKING OF VARIANCES IN NORMAL POPULATIONS
                                                                                                                   JASA 56
                                                                                                                             621
                         OPTIMUM SAMPLING IN BINOMIAL POPULATIONS
                                                                                                                   JASA 57
                                                                                                                             494
          ON RANKING PARAMETERS OF SCALE IN TYPE III POPULATIONS
                                                                                                                   JASA 58
                                                                                                                             164
  SAMPLING MOMENTS OF MEANS FROM FINITE MULTIVARIATE POPULATIONS
                                                                                                                    AMS 61
                                                                                                                             406
    JOINT ESTIMATION OF THE PARAMETERS OF TWO NORMAL POPULATIONS
                                                                                                                   JASA 62
                                                                                                                             446
           ELLIPTICAL AND RADIAL TRUNCATION IN NORMAL POPULATIONS
                                                                                                                    AMS 63
                                                                                                                             940
                   SOME TESTS FOR RANDOMNESS IN PLANT POPULATIONS
                                                                                                                   BIOKA51
                                                                                                                             102
                      RANDOM DISPERSAL IN THEORETICAL POPULATIONS
                                                                                                                   BTOKA51
                                                                                                                             196
  SOME PROCEDURES FOR COMPARING POISSON PROCESSES OR POPULATIONS
                                                                                                                   BIOKA53
                                                                                                                             447
       SEQUENTIAL TESTS FOR BINOMIAL AND EXPONENTIAL POPULATIONS
                                                                                                                   BIOKA54
                                                                                                                             252
     THE DISTRIBUTION OF RANGE IN CERTAIN NON-NORMAL POPULATIONS
                                                                                                                   BIOKA54
                                                                                                                             463
             MULTIVARIATE RATIO ESTIMATION FOR FINITE POPULATIONS
                                                                                                                   BTOKA58
                                                                                                                             154
          ON THREE PROCEDURES OF SAMPLING FROM FINITE POPULATIONS
                                                                                                                   BIOKA68
                                                                                                                             438
                   DISTRIBUTIONS ASSOCIATED WITH CELL POPULATIONS
                                                                                                                   BIOKA69
                                                                                                                             391
             A UNIFIED THEORY OF SAMPLING FROM FINITE POPULATIONS
                                                                                                                   TRSSR55
                                                                                                                             269
A DIFFERENT LOSS FUNCTION FOR THE CHOICE BETWEEN TWO POPULATIONS
                                                                                                                   JRSSB59
                                                                                                                             203
                            PLANE TRUNCATION IN NORMAL POPULATIONS
                                                                                                                   IRSSR65
                                                                                                                             301
    DISTRIBUTION-FREE SUFFICIENCY IN SAMPLING FINITE POPULATIONS
                                                                                                                   JRSSB68
                                                                                                                             551
        NOTES. A MEASURE OF 'OVERALL VARIABILITY' IN POPULATIONS
                                                                                                                   BTOCS68
                                                                                                                             189
   SURVIVAL PROBABILITIES OF NEW INVERSIONS IN LARGE POPULATIONS
                                                                                                                   BTOCS68
                                                                                                                             501
 TESTING THE EQUALITY OF PARAMETERS IN K RECTANGULAR POPULATIONS
                                                                                                                ON JASA 60
                                                                                                                             144
 ON A THREE-DECISION TEST FOR COMPARING TWO BINOMIAL POPULATIONS
                                                                                                              NOTE BIOKA59
                                                                                                                             106
PROXIMATION TO TWO-SIDED TOLERANCE LIMITS FOR NORMAL POPULATIONS
                                                                                                             AN AP TECH 66
                                                                                                                             115
SEQUENTIAL DESIGNS OF FIXED SIZE SAMPLES FROM FINITE POPULATIONS
                                                                                                           BAYES JASA 69 NO.4
NOTES, BIOCS67 846
   SAMPLE SIZE FOR THE ESTIMATION OF MEANS OF NORMAL POPULATIONS
   MOMENTS OF ORDER STATISTICS IN SAMPLES FROM NORMAL POPULATIONS
                                                                                                            ON THE BIOKA54
                                                                                                                             200
 EXTREME VALUES AND RANGE OF SAMPLES FROM NON-NORMAL POPULATIONS
                                                                                                            ON THE BIOKA67
                                                                                                                             541
OF NONPARAMETRIC TESTS FOR INDEPENDENCE IN BIVARIATE POPULATIONS
                                                                                                                    AMS 64
                                                                                                          A CLASS
                                                                                                                             138
 OF THE MEDIAN OF SMALL SAMPLES FROM SEVERAL SPECIAL POPULATIONS
                                                                                                         VARIANCE JASA 60
                                                                                                                             148
                                                                                                       HYPER-ADMI AMS 68
SSIBILITY AND OPTIMUM ESTIMATORS FOR SAMPLING FINITE POPULATIONS
                                                                                                                             621
     OF ORDER STATISTICS AND QUASI-RANGES FROM NORMAL POPULATIONS
                                                                                                       ON MOMENTS AMS 63
                                                                                                                             633
          INTERVAL ESTIMATION FOR THE MEANS OF NORMAL POPULATIONS
                                                                                                       SEQUENTIAL AMS 69
                                                                                                                             509
```

```
OF TRUNCATION ON TESTS OF HYPOTHESES FOR NORMAL POPULATIONS
                                                                                                 THE EFFECT AMS 65 1504
       MULTIVARIATE ESTIMATOR FOR THE MEAN OF FINITE POPULATIONS
                                                                                                 GENERALIZED JASA 67 1009
  PROCEDURE FOR THE SELECTION OF THE BEST OF SEVERAL POPULATIONS
                                                                                               A MULTI-STAGE JASA 62 785
 FREE TOLERANCE INTERVALS FOR CONTINUOUS SYMMETRICAL POPULATIONS
                                                                                              DISTRIBUTION- AMS 62 1167
CONFIDENCE INTERVALS FOR CONTRASTS AMONG MULTINOMIAL POPULATIONS
                                                                                              SIMULTANEOUS
                                                                                                              AMS 64
                                                                                                                      716
       APPROXIMATION FOR USE IN SAMPLING FROM FINITE POPULATIONS
                                                                                                                      718
                                                                                              A NEW BINOMIAL JASA 60
 ESTIMATING THE PARAMETERS OF DISCRETE HETEROGENEOUS POPULATIONS OF A METHOD OF ESTIMATING THE SIZE OF MOBILE ANIMAL POPULATIONS
                                                                                             SOME METHODS OF JRSSB56
                                                                                                                      222
                                                                                             SOME PROPERTIES BIOKA69
                                                                                                                      407
ERPRETATION OF THE VARIETY CROSS DIALLEL AND RELATED POPULATIONS
                                                                                            ANALYSIS AND INT BIOCS66
                                                                                                                      439
   AND THE CHOICE OF ESTIMATOR IN TWO-WAY STRATIFIED POPULATIONS
                                                                                            SAMPLE SELECTION JASA 64
                                                                                                                     1054
       OF TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS
                                                                                           ON THE EFFICIENCY AMS 63
                                                                                                                      612
  SOMERVILLE'S PROCEDURE FOR RANKING MEANS OF NORMAL POPULATIONS
                                                                                         SOME EXTENSIONS OF BIOKAGE
                                                                                                                      411
   THE ARITHMETIC MEANS OF LOGNORMALLY-DISTRIBUTED POPULATIONS
FOR SELECTION OF THE BEST ONE OF SEVERAL BINOMIAL POPULATIONS
                                                                                         NOTES ON ESTIMATING BIOGS65
                                                                                                                      235
                                                                                       SEQUENTIAL PROCEDURES AMS 67
                                                                                                                      117
      REGARDING ADMISSIBLE ESTIMATES FOR EXPONENTIAL POPULATIONS
                                                                                      ON A THEOREM OF KARLIN AMS 69
                                                                                                                      216
     OF ORDER STATISTICS IN SAMPLES FROM TWO RELATED POPULATIONS
                                                                                    RELATIONS AMONG MOMENTS TECH 63
                                                                                                                      514
 FOR RANKING MULTIPLY-CLASSIFIED VARIANCES OF NORMAL POPULATIONS
                                                                                     SINGLE-STAGE PROCEDURES TECH 6B
                                                                                                                      693
   AND MIGRATION PROCESSES FOR SPATIALLY DISTRIBUTED POPULATIONS
                                                                                     STOCHASTIC BIRTH, DEATH BIOKAGB
                                                                                                                      1B9
OF DISTANCES BETWEEN ORDER STATISTICS FROM BIVARIATE POPULATIONS
                                                                                    ASYMPTOTIG DISTRIBUTION
                                                                                                             AMS 64
                                                                                                                      74B
STICS IN SAMPLES FROM EXPONENTIAL AND POWER-FUNCTION POPULATIONS
                                                                                 DISTRIBUTION OF SOME STATI JASA 67
                                                                                                                      259
                                                                                 MULTIPLE COMPARISONS WITH A TECH 68
 CONTROL FOR MULTIPLY-CLASSIFIED VARIANCES OF NORMAL POPULATIONS
                                                                                                                      715
 VARIATION OF RANGE IN SMALL SAMPLES FROM NON-NORMAL POPULATIONS
                                                                                 THE MEAN AND COEFFICIENT OF BIOKA54
                                                                                                                      469
     FOR CLASSIFICATION INTO TWO MULTIVARIATE NORMAL POPULATIONS
                                                                               OPTIMUM CLASSIFICATION RULES AMS 65 1174
TISTICS OF THE MULTIVARIATE NORMAL AND PARETO TYPE 1 POPULATIONS
                                                                               SOME RESULTS ON THE ORDER STA
                                                                                                              AMS 64
                                                                                                                     1B15
ISTRIBUTIONS OF THE MEAN FOR SAMPLES FROM NON-NORMAL POPULATIONS
                                                                            ON APPROXIMATIONS TO SAMPLING D AMS 63 1308
    ADMISSIBILITY OF LINEAR ESTIMATES IN EXPONENTIAL POPULATIONS
                                                                            ON A THEOREM OF KARLIN REGARDING AMS 66
                                                                                                                     1B09
TIONS FOR TRUNCATED AND CENSORED SAMPLES FROM NORMAL POPULATIONS
                                                                         ON THE SOLUTION OF ESTIMATING EQUA BIOKA57
                                                                                                                      225
   TO UNRESTRICTED SUMS FOR BALANCED COMPLETE FINITE POPULATIONS
                                                                        RELATIONSHIP OF GENERALIZED POLYKAYS AMS 68
                                                                       SOME GENERALIZATIONS OF THE DISTRIBU JASA 64
TIONS OF PRODUCT STATISTICS ARISING FROM RECTANGULAR POPULATIONS
 LIKELIHOOD ESTIMATORS WHEN SAMPLING FROM ASSOCIATED POPULATIONS
                                                                        THE ASYMPTOTIC PROPERTIES OF MAXIMUM BIOKA62
                                                                                                                      205
LL HYPOTHESIS CONCERNING COMPLEX MULTIVARIATE NORMAL POPULATIONS
                                                                      /SMALLEST CHARACTERISTIC ROOT UNDER NU AMS 64
STRIBUTION OF THE RANGE IN SMALL SAMPLES FROM NORMAL POPULATIONS
                                                                     /ARISON OF TWO APPROXIMATIONS TO THE DI BIOKA52
                                                                                                                      130
ATIONS IN THE ESTIMATION OF THE PARAMETERS OF NORMAL POPULATIONS
                                                                     BY TRUNCATED SAMPLES OF GROUPED OBSERV BIOKA63
                                                                                                                      207
D BAYESIAN ANALYSIS OF CATERGORICAL DATA FROM FINITE POPULATIONS
                                                                     /E COMPOUND MULTINOMIAL DISTRIBUTION AN JASA 69
                                                                                                                      216
E LOSS OF FOUR METHODS OF REPRODUCING FINITE DIPLOID POPULATIONS
                                                                     /INBREEDING COEFFICIENT AND RATE OF GEN BIOCS65
BUTION OF THE F-RATIO IN SAMPLES FROM TWO NON-NORMAL POPULATIONS
                                                                     /MPIRICAL INVESTIGATION INTO THE DISTRI BIOKA58
                                                                                                                      260
ORED SAMPLES, OF THE PARAMETERS OF WEIBULL AND GAMMA POPULATIONS
                                                                     /XIMUM-LIKELIHOOD ESTIMATORS, FROM CENS AMS 67
                                                                                                                      557
 BETWEEN TWO BINARY CHARACTERISTICS IN TWO DIFFERENT POPULATIONS
                                                                    ON COMPARING INTENSITIES OF ASSOCIATION JASA 61
                                                                                                                      889
       SUBJECTIVE BAYESIAN MODELS IN SAMPLING FINITE POPULATIONS
                                                                  (WITH DISCUSSION)
                                                                                                             JRSSB69
LLY TESTING OBSERVED ARITHMETIC MEANS FROM LOGNORMAL POPULATIONS
                                                                  AGAINST A GIVEN STANDARD
                                                                                             /FOR SEQUENTIA TECH 68
                                                                                                                      605
STRIBUTION OF THE RANGE FROM DISCRETE UNIFORM FINITE POPULATIONS AND A RANGE TEST FOR HOMOGENEITY /NG DI JASA 69 NO.4
                       ORDER STATISTICS FOR DISCRETE POPULATIONS
                                                                  AND FOR GROUPED SAMPLES
                                                                                                             JASA 6B 1390
ICIENCY OF THE ESTIMATES OF THE PARAMETERS OF NORMAL POPULATIONS BASED ON SINGLY AND DOUBLY TRUNCATED SAMP JASA 62
                                                                                                                       46
ICIENCY OF BAN ESTIMATES OF THE PARAMETERS OF NORMAL POPULATIONS BASED ON SINGLY CENSORED SAMPLES /E EFF BIOKA62
                     ON PARTITIONING A SET OF NORMAL POPULATIONS BY THEIR LOCATIONS WITH RESPECT TO A CONT AMS 69
                                                                                                                     1300
  EMPIRIC INVESTIGATION OF A TEST OF HOMOGENEITY FOR POPULATIONS COMPOSED OF NORMAL DISTRIBUTIONS
                                                                                                             JASA 58
                                                                                                                      551
                          ON SELECTING A SUBSET OF K POPULATIONS CONTAINING THE BEST
                                                                                                              AMS 67 1072
                                           REFERENCE POPULATIONS FOR DIALLEL EXPERIMENTS
                                                                                                             BIOCS68
                                                                                                                      881
  ON THE PROBLEM OF TESTING LOCATION IN MULTIVARIATE POPULATIONS FOR RESTRICTED ALTERNATIVES
                                                                                                              AMS 66
                                                                                                                      113
ATION OF THE PARAMETERS OF THREE-PARAMETER LOGNORMAL POPULATIONS FROM COMPLETE AND CENSORED SAMPLES, (CORR JASA 66
OD ESTIMATION OF THE PARAMETERS OF GAMMA AND WEIBULL POPULATIONS FROM COMPLETE AND FROM CENSORED SAMPLES
                                                                                                             TECH 65
OD ESTIMATION OF THE PARAMETERS OF GAMMA AND WEIBULL POPULATIONS FROM COMPLETE AND FROM CENSORED SAMPLES
                                                                                                             TECH 67
                                                                                                                      195
                       ESTIMATION OF MEANS OF NORMAL POPULATIONS FROM OBSERVED MINIMA
                                                                                                             BIOKA57
                                                                                                                      282
   ESTIMATING THE PARAMETERS OF NEGATIVE EXPONENTIAL POPULATIONS FROM ONE OR TWO ORDER STATISTICS, CORR. T
                                                                                                              AMS 61 1078
                    ON ESTIMATING THE SIZE OF MOBILE POPULATIONS FROM RECAPTURE DATA
                                                                                                             BIOKA51
UM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF NORMAL POPULATIONS FROM SINGLY AND DOUBLY CENSORED SAMPLES ( BIOKAG6
                                                                                                                      205
ICANCE OF THE DIFFERENCE BETWEEN MEANS IN TWO NORMAL POPULATIONS HAVING UNEQUAL VARIANCES /OR THE SIGNIF BIOKAS1
                                                                                                                      252
                ON A METHOD OF ESTIMATING BIOLOGICAL POPULATIONS IN THE FIELD
                                                                                                             BIOKA53
                                                                                                                      216
AL ANALYSIS FOR GENETIC CLINES IN BODY DIMENSIONS IN POPULATIONS OF 'DROSOPHILA SUBOBSCURA' COLL. AND A C BIOCS66
                                                                                                                      469
ON THE UTILIZATION OF MARKED SPECIMENS IN ESTIMATING POPULATIONS OF FLYING INSECTS
                                                                                                             BTOKA53
                                                                                                                      170
      THE SIMPLE STOCHASTIC EPIDEMIC CURVE FOR LARGE POPULATIONS OF SUSCEPTIBLES
                                                                                                             BIOKA65
                                                                                                                      571
 DATA FOR SOME EXPERIMENTS CARRIED OUT BY GAUSE WITH POPULATIONS OF THE PROTOZOA PARAMECIUM AURELIA AND PA BIOKA57
                                                                                                                      314
          ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULATIONS OF UNKNOWN SIZE, CORR. 64 1297
                                                                                                             JASA 62
                                                                                                                       61
                                    DISTANCE BETWEEN POPULATIONS ON THE BASIS OF ATTRIBUTE DATA
                                                                                                             BTOCS68
                                                                                                                      859
        A MINIMAX PROCEDURE FOR GHOOSING BETWEEN TWO POPULATIONS USING SEQUENTIAL SAMPLING
                                                                                                             JRSSB57
                                                                                                                      255
 A MINIMAX-REGRET PROCEDURE FOR GHOOSING BETWEEN TWO POPULATIONS USING SEQUENTIAL SAMPLING
                                                                                                             JRSSB63
                                                                                                                      297
TIPLE DECISION PROCEDURE FOR RANKING MEANS OF NORMAL POPULATIONS WITH A COMMON UNKNOWN VARIANGE
                                                                                                   /PLE MUL BIOKA54
                                                                                                                      170
GE SUBSAMPLING PROCEDURE FOR RANKING MEANS OF FINITE POPULATIONS WITH AN APPLIGATION TO BULK SAMPLING PROB TECH 67
                                                                                                                      355
                            DISCRIMINATION BETWEEN K POPULATIONS WITH GONSTRAINTS ON THE PROBABILITIES OF JRSSB69
MISCLASSIFIGATION
                                                                                                                      123
 INTERVAL ESTIMATION OF THE LARGEST MEAN OF K NORMAL POPULATIONS WITH KNOWN VARIANCES
                                                                                                             JASA 69
                                                                                                                      296
      ON THE CHOIGE OF THE BEST AMONGST THREE NORMAL POPULATIONS WITH KNOWN VARIANGES
                                                                                                             BTOKA58
                                                                                                                      436
               DETECTION OF BEST AND OUTLYING NORMAL POPULATIONS WITH KNOWN VARIANGES
                                                                                                             BTOKA61
                                                                                                                      457
            THE SIMPLE STOGHASTIC EPIDEMIC FOR SMALL POPULATIONS WITH ONE OR MORE INITIAL INFEGTIVES
                                                                                                             RIOKA69
                                                                                                                      183
                                                                                                 APPLICATION BIOGS69
     OF FINITE ABSORBENT MARKOV GHAINS TO SIB MATING POPULATIONS WITH SELECTION
                                                                                                                       17
  AN EMPIRICAL COMPARISON OF DISTANGE STATISTICS FOR POPULATIONS WITH UNEQUAL GOVARIANGE MATRICES
                                                                                                             RIOGS68
                                                                                                                      6B3
                         RANKING MEANS OF TWO NORMAL POPULATIONS WITH UNKNOWN VARIANGES
                                                                                                             BIOKA58
                                                                                                                      250
STING THE DIFFERENCE BETWEEN THE MEANS OF TWO NORMAL POPULATIONS WITH UNKNOWN VARIANGES
                                                                                            /TATISTIG FOR TE JRSSB61
                                                                                                                      377
DIALLEL MATING D/ SPATIAL RELATIONSHIP AMONG EIGHT POPULATIONS ZEA MAYS L. UTILIZING INFORMATION FROM A BIOGS68
                                                                                                                      867
              A NEW APPROACH TO SAMPLING FROM FINITE POPULATIONS. I
                                                                                                             JRSSB66
                                                                                                                      310
ON GOEFFICIENTS IN SAMPLES FROM BIVARIATE NON-NORMAL POPULATIONS. I. THEORETIGAL INVESTIGATION
                                                                                                  /REGRESSI BIOKA60
                                                                                                                       61
              A NEW APPROACH TO SAMPLING FROM FINITE POPULATIONS. II
                                                                                                             JRSSB66
                                                                                                                      320
DMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE POPULATIONS, I
                                                                                                             AMS 65 1707
DMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE POPULATIONS, II
                                                                                                           A AMS 65 1723
DMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE POPULATIONS, III
                                                                                                           A AMS 65 1730
DMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE POPULATIONS, IV
                                                                                                              AMS 66 1658
               TWO-SIDED TOLERANGE LIMITS FOR NORMAL POPULATIONS, SOME IMPROVEMENTS
                                                                                                             JASA 69 610
```

TITLE WORD INDEX POP - POW

	POPULATIONS, THE PROBLEM OF MINIMUM DISTANCES	AMS 67	550
DMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE		AMS 69	672
'THE DISTRIBUTION OF RANCE IN CERTAIN NON-NORMAL	POPULATIONS' CORRIGENDA.	BIOKA55	277
MOMENTS OF ORDER STATISTICS IN SAMPLES FROM NORMAL		BIOKA54	568
VARIATION OF RANCE IN SMALL SAMPLES FROM NON-NORMAL		BIOKA55	277
ENUMERATION OF ELECTION RETURNS BY NUMBER OF LEAD	POSITIONS	AMS 64	369
ON THE CHOICE OF PLOTTING	POSITIONS ON PROBABILITY PAPER	JASA 60	546
CURVE F/ THE USE OF ORTHOGONAL POLYNOMIALS OF THE	POSITIVE AND NEGATIVE BINOMIAL FREQUENCY FUNCTIONS IN		115
	POSITIVE AND NEGATIVE BINOMIAL FREQUENCY FUNCTIONS IN		476
	POSITIVE AND NEGATIVE CONTROLS IN SCREENING EXPERIMEN		285
AN APPROXIMATION OF THE NEGATIVE MOMENTS OF THE		TECH 60	227
RECURRENCE RELATIONS FOR THE INVERSE MOMENTS OF THE		JASA 63	46B
			425
ONDER WHICH GRAM-CHARLIER AND EDGEWORTH CORVES ARE	POSITIVE DEFINITE AND UNIMODAL THE CONDITIONS POSITIVE DEFINITE FUNCTIONS	AMS 66	
			504 46B
	POSITIVE DEFINITE QUADRATIC FUNCTIONS IN NORMAL VECTO		
	POSITIVE DIRECTIONAL SELECTION ON NORMAL VARIABLES WI		B42
	POSITIVE DYNAMIC PROGRAMMING	AMS 69	316
	POSITIVE MATRICES AND DOUBLY STOCHASTIC MATRICES	AMS 64	876
	POSITIVE RANDOM VARIABLE A NOTE ON		
STATISTICAL PROPERTIES OF THE NUMBER OF		AMS 66	
	POSITIVITY IN THE ABBREVIATED EDGEWORTH AND GRAM-CHAR		253
	POSNER, 'THE APPLICATION OF EXTREME VALUE THEORY TO E		363
		JASA 56	637
THREE SOURCES OF DATA ON COMMUTING, PROBLEMS AND		JASA 60	В
MINIMIZING RESPONSE ERRORS IN FINANCIAL DATA. THE		JASA 68	217
	POSSIBILITY OF IMPROVING THE MEAN USEFUL LIFE OF ITEM		2B1
	POSSIBLE CHANGES IN PARAMETERS OF STATISTICAL DISTRIB		
	POSSIBLE EFFECTS ON INFERENCES DRAWN FROM TESTS OF SI		30
AND A CHARACTERISTIC PROPERTY A BEST	POSSIBLE KOLMOGOROFF-TYPE INEQUALITY FOR MARTINGALES		764
EFFICIENT CALCULATION OF ALL	POSSIBLE KOLMOGOROFF-TYPE INEQUALITY FOR MARTINGALES POSSIBLE REGRESSIONS POST CLUSTER SAMPLINC POST DATA IN INVENTORY INVESTMENT POST STRATA POST-STRATIFIED WEIGHTING	TECH 6B	769
	POST CLUSTER SAMPLINC	AMS 63	5B7
EX ANTE AND EX	POST DATA IN INVENTORY INVESTMENT	JASA 61	51B
ESTIMATION EMPLOYING	POST STRATA	JASA 66	
		JASA 62	622
COMMENTS ON A	POSTERIOR DISTRIBUTION OF GEISSER AND CORNFIELD	JRSSB64	274
	POSTERIOR DISTRIBUTION OF P FOR A CONTINUOUS PRIOR DI	JRSSB68	359
FOR SAMPLING FROM A POPULATION	POSTERIOR DISTRIBUTION OF PERCENTILES. BAYES' THEOREM	JASA 68	677
RANDOM-EFFECT MODELS IN THE ANALYSIS OF VARIANCE. I.		BIOKA65	37
AN ASYMPTOTIC EXPANSION FOR	POSTERIOR DISTRIBUTIONS	AMS 67	1899
ON THE ASYMPTOTIC BEHAVIOUR OF	POSTERIOR DISTRIBUTIONS	JRSSB69	80
HAAR MEASURE FOR CONVERGENCE IN PROBABILITY TO QUASI	POSTERIOR DISTRIBUTIONS RIGHT	AMS 65	440
NEW METHODS FOR REASONING TOWARDS	POSTERIOR DISTRIBUTIONS BASED ON SAMPLE DATA	AMS 66	355
PARAMETERS	POSTERIOR DISTRIBUTIONS FOR MULTIVARIATE NORMAL	JRSSB63	368
CORR. 66 745 LIMITING BEHAVIOR OF	POSTERIOR DISTRIBUTIONS WHEN THE MODEL IS INCORRECT,	AMS 66	51
A NOTE ON THE	POSTERIOR MEAN OF A POPULATION MEAN	JRSSB69	NO.2
	POSTERIOR ODDS FOR MULTIVARIATE NORMAL CLASSIFICATION	JRSSB64	69
THE EMPIRICAL BAYES APPROACH ESTIMATING	POSTERIOR QUANTILES	BIOKA67	672
THE	POSTERIOR T DISTRIBUTION	AMS 63	56B
NECESSARY RESTRICTIONS FOR DISTRIBUTIONS A	POSTERIORI	JRSSB60	312
BETWEEN LIKELIHOODS AND ASSOCIATED DISTRIBUTIONS A	POSTERIORI SIMILARITIES	JRSSB61	460
RMINED SYSTEM OF EQUATIONS AN A	POSTERIORI PROBABILITY METHOD FOR SOLVING AN OVERDETE	TECH 66	675
PLANT COMPETITION, THREE SPECIES PER	POT	JRSSB68	93
TIVE TRACER EXPERIMENT TO DETERMINE ROOT ACTIVITY IN	POTATO PLANTS /E STATISTICAL ANALYSIS OF A RADIO-AC	BIOCS68	717
MEASUREMENT OF THE	POTENCIES OF DRUG MIXTURES	BIOCS69	477
PLANNING A QUANTAL ASSAY OF	POTENCY	BIOCS66	322
A SIMPLE METHOD OF ESTIMATING RELATIVE		BIOCS65	140
	POTENCY IN DILUTION (-DIRECT) ASSAYS /FOR USING DIS		610
			585
A	POTENTIAL THEORY FOR SUPERMARTIGALES	AMS 6B	B02
ON MARKOV CHAIN		AMS 61	709
	POWER AND EFFICIENCY FOR THE ONE SAMPLE WILCOXON AND	AMS 63	624
TYPE LOCAL ASYMPTOTIC	POWER AND EFFICIENCY OF TESTS OF KOLMOGOROV-SMIRNOV	AMS 67	1705
ANCE MATRICES BASED ON FOUR CRITERIA	POWER COMPARISIONS OF TESTS OF EQUALITY OF TWO COVARI	BIOKA68	335
	POWER COMPARISON OF TWO TESTS OF NON-RANDOM	TECH 66	
ESES BASED ON FOUR CRITERIA	POWER COMPARISONS OF TESTS OF TWO MULTIVARIATE HYPOTH	BIOKA67	195
SMALL SAMPLE	POWER CURVES FOR THE TWO SAMPLE LOCATION PROBLEM	TECH 69	299
	POWER FOR A METHOD OF PAIRED COMPARISONS /OCK DESIG		
	POWER FOR THE ONE SAMPLE WILCOXON TEST FOR NON-NORMAL		
	POWER FUNCTION FOR ANALYSIS OF VARIANCE TESTS, DERIVE		
		BIOKA52	
		BIOKA53	
NOTE ON MR SRIVASTAVA'S PAPER ON THE		BIOKA58	
EFFECT OF NON-NORMALITY ON THE		BIOKA5B	
		BIOKA60	
	POWER FUNCTION OF THE EXACT TEST FOR THE 2-BY-2 CONTI		
	POWER FUNCTION OF THE F-TEST IN THE ANALYSIS OF VARIA		
	POWER FUNCTION OF THE NON-PARAMETRIC TEST OF TENDENCY		
	POWER FUNCTION OF THE SIGN TEST	JASA 64	
	POWER FUNCTION OF THE TEST FOR THE DIFFERENCE BETWEEN		
TREND	POWER FUNCTIONS FOR COX'S TEST OF RANDOMNESS AGAINST		
	POWER FUNCTIONS FOR THE TEST OF INDEPENDENCE IN 2X2	AMS 64	
	POWER PURICULOUS FOR TWO PROBLEMS IN MULTIVARIATE STAT	AMS 65	
ATRICES OF MULTIVAPIATE NORMAL DIST/		AMC CO	
ATRICES OF MULTIVARIATE NORMAL DIST/ PROPERTIES OF	POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION M		
ATRICES OF MULTIVARIATE NORMAL DIST/ PROPERTIES OF TWO SETS OF VARIATES MONOTONICITY OF THE	POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION M POWER FUNCTIONS OF SOME TESTS OF INDEPENDENCE BETWEEN	AMS 64	206
ATRICES OF MULTIVARIATE NORMAL DIST/ PROPERTIES OF TWO SETS OF VARIATES MONOTONICITY OF THE	POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION M	AMS 64	206

```
LINEAR HYPOTHESIS
                                  MONOTONICITY OF THE POWER FUNCTIONS OF SOME TESTS OF THE MULTIVARIATE
                                                                                                                   AMS 64 200
                   ON THE MONOTONIC CHARACTER OF THE POWER FUNCTIONS OF TWO MULTIVARIATE TESTS
                                                                                                                   AMS 61 1145
                              GENERAL THEORY OF PRIME-POWER LATTICE OESIGNS
                                                                                                                  JASA 65
                                                                                                                          B91
                                     TABLES OF POISSON POWER MOMENTS
                                                                                                                  BTOKA56
                                                                                                                           4B9
VING AN IRREGULAR FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL EXPERIMENT ON A SPECIAL SUBSET GI JRSSB67
                                                                                                                           292
K ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL EXPERIMENT AS CALCULATED BY YATES'S BIOCS67
                                                                                                                           571
                                  THE LIMIT OF THE NTH POWER OF A DENSITY
                                                                                                                   AMS 65 1878
      ASYMPTOTIC EXPANSIONS ASSOCIATED WITH THE N'TH POWER OF A DENSITY
                                                                                                                   AMS 67 1266
SAMPLE LOCATION PROBLEM IN THE NORMA/ SMALL SAMPLE POWER OF A NON-PARAMETRIC TEST FOR THE BIVARIATE TWO- JRSSB6B
                                                                                                                            83
                              ON THE DISTRIBUTION AND POWER OF A TEST FOR A SINGLE OUTLIER
THE POWER OF A TEST IN COVARIANCE ANALYSIS
                                                                                                                  SASJ 69
                                                                                                                             9
                                                                                                                  BIOCS69 NO.4
TO NORMAL ANALYSIS OF VARIANCE
                                         THE LIMITING POWER OF CATEGORICAL DATA CHI-SQUARE TESTS ANALOGOUS
                                                                                                                  AMS 63 1432
COND DIFFERENCES, FOR SERIAL CORRELATI/ ASYMPTOTIC POWER OF CERTAIN TEST CRITERIA, BASED ON FIRST AND SE AMS 62
                                                                                                                           1B6
                                                   THE POWER OF CHI SQUARE TESTS FOR CONTINGENCY TABLES
                                                                                                                  JASA 66
                                                                                                                           965
                                            ASYMPTOTIC POWER OF CHI SQUARE TESTS FOR LINEAR TRENDS IN
PROPORTIONS
                                                                                                                  BIOCS68
                                                                                                                          315
TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE
                                                                                                  APPROXIMATING 810KA53
                                                                                                                           336
RECTANGULAR ALTERNATIVES
                                                 EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND
                                                                                                                  AMS 66
                                                                                                                          945
    CO-ORDINATE TRANSFORMATIONS TO NORMALITY AND THE POWER OF NORMAL TESTS FOR INDEPENDENCE
                                                                                                                  BIOKA69
                                                                                                                          139
                                              2 TO THE POWER OF P FACTORIAL EXPERIMENTS WITH THE FACTORS
APPLIED SEQUENTIALLY
                                                                                                                  JASA 64 1205
                                                ON THE POWER OF PRECEDENCE LIFE TESTS
                                                                                                                  TECH 67
                                                                                                                           154
                  STARSHAPED TRANSFORMATIONS AND THE POWER OF RANK TESTS
                                                                                                                   AMS 69 1167
 METHOD OF OBTAINING LOWER BOUNDS ON THE ASYMPTOTIC POWER OF RANK TESTS
                                                                                                  AN ELEMENTARY
                                                                                                                  AMS 6B 2128
                                                        POWER OF SOME TWO-SAMPLE NON-PARAMETRIC TESTS
                                                                                                                  BIOKA60 355
                                                   THE POWER OF STUDENT'S T-TEST, CORR. 65 1251
                                                                                                                  JASA 65
                                                                                                                           320
 THE RELATION BETWEEN ESTIMATING EFFICIENCY AND THE POWER OF TESTS
                                                                                                               ON BIOKA54 542
AN SQ/ A MONTE CARLO INVESTIGATION OF THE SIZE AND POWER OF TESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC ME BIOKA68
                                                                                                                           431
AND LOGIT TRANSFORMATIONS, CORR. 64 12/ ASYMPTOTIC POWER OF TESTS OF LINEAR HYPOTHESES USING THE PROBIT
DISTRIBUTION AND POWER OF THE ABSOLUTE NORMAL SCORES TEST
EFFECT OF NON-NORMALITY ON THE POWER OF THE ANALYSIS OF VARIANCE TEST
JASA 67
BIOKA59
                                                                                                                           877
                                                                                                                           966
                                                                                                                           114
    PERCENTAGE POINTS OF THE RATIO OF TWO RANGES AND POWER OF THE ASSOCIATED TEST
                                                                                                                  BIOKA63
                                                                                                                           187
                                          SMALL SAMPLE POWER OF THE BIVARIATE SIGN TEST OF BLUMEN AND HODGES AMS 64 1576
ON THE POWER OF THE BLUS PROCEDURE

JASA 68 1227
 BETWEEN THE POWER OF THE DURBIN-WATSON TEST AND THE POWER OF THE BLUS TEST
                                                                                                    A COMPARISON JASA 69
                                                                                                                           938
LL BUT EQUAL/ ACCURACY OF AN APPROXIMATION TO THE POWER OF THE CHI-SQUARE GOODNESS OF FIT TEST WITH SMA JASA 68
                                                                                                                           912
                             A COMPARISON BETWEEN THE POWER OF THE DURBIN-WATSON TEST AND THE POWER OF THE JASA 69
                                                                                                                           93B
                                         TABLES OF THE POWER OF THE F-TEST (CORR. 6B 1551)
                                                                                                                  JASA 67
                                                                                                                           525
ANDOMIZED BLOCK D/ SOME MONTE CARLO RESULTS ON THE POWER OF THE F-TEST UNDER PERMUTATION IN THE SIMPLE R BIOKAGE
                                                                                                                           199
                                            THE POWER OF THE LIKELIHOOD RATIO TEST
                                                                                                                  AMS 67
                                                                                                                           802
                                                        POWER OF THE LIKELIHOOD-RATIO TEST OF THE GENERAL LIN BIOKA64 467
EAR HYPOTHESIS IN MULTIVARIATE ANALYSIS
                                     ON THE ASYMPTOTIC POWER OF THE ONE-SAMPLE KOLMOGOROV-SMIRNOV TESTS
                                                                                                                  AMS 65 1000
                                   THE POWER OF THE POISSON INDEX OF DISPERSION A COMPACT TABLE FOR POWER OF THE T-TEST
                                                                                                                  BIOKA57
                                                                                                                           286
                                                                                                                   AMS 68 1629
                ON THE RANDOMIZATION DISTRIBUTION AND POWER OF THE VARIANCE RATIO TEST
                                                                                                                  JRSSB63 334
                                                ON THE POWER OF TWO-SAMPLE RANK TESTS ON THE EQUALITY OF TWO JRSSB64
 DISTRIBUTION FUNCTIONS
                                                                                                                           293
      MAXIMUM LIKELIHOOD ESTIMATION FOR GENERALIZED POWER SERIES DISTRIBUTIONS AND ITS APPLICATION TO A T BIOKA62
                                                                                                                           227
         THE ORTHOGONAL POLYNOMIALS OF THE FACTORIAL POWER SERIES PROBABILITY DISTRIBUTIONS
                                                                                                                  SASJ 67
                                                                                                                            49
                        THE ORTHOGONAL POLYNOMIALS OF POWER SERIES PROBABILITY DISTRIBUTIONS AND THEIR USES BIOKA66
                                                                                                                           121
                                         ESTIMATION OF POWER SPECTRA BY A WAVE ANALYZER
                                                                                                                  TECH 65
                                                                                                                           553
AND OF QUOTIENT OF MAXIMUM VALUES IN SAMPLES FROM A POWER-FUNCTION POPULATION
OF SOME STATISTICS IN SAMPLES FROM EXPONENTIAL AND POWER-FUNCTION POPULATIONS

DISTRIBUTION OF PRODUCT JASA 64

OF SOME STATISTICS IN SAMPLES FROM EXPONENTIAL AND POWER-FUNCTION POPULATIONS

DISTRIBUTION JASA 67
                                                                                                                           877
  OF SOME STATISTICS IN SAMPLES FROM EXPONENTIAL AND POWER-FUNCTION POPULATIONS
                                                                                                                           259
                             TOPOGRAPHIC CORRELATION, POWER-LAW COVARIANCE FUNCTIONS, AND DIFFUSION
                                                                                                                  BIOKA62
                                                                                                                          305
                                            TABLES FOR POWER-LAW TRANSFORMATIONS
                                                                                                                  BIOKA62
                                                                                                                           557
                             ON CERTAIN PROPERTIES OF POWER-SERIES DISTRIBUTIONS
                                                                                                                           486
                                                                                                                  BIOKA59
           THE INVERSION OF CUMULANT OPERATORS FOR POWER-SERIES DISTRIBUTIONS, AND THE APPROXIMATE STABI JASA 6B
                                                                                                                           321
RR/ WEIGHT OF EVIDENCE, CORROBORATION, EXPLANATORY POWER, INFORMATION AND THE UTILITY OF EXPERIMENTS (CO JRSSB60 319
                       BALANCED L-RESTRICTIONAL PRIME POWERED LATTICE DESIGNS
                                                                                                                   AMS 67 1127
EPENDENCE OF TWO POISSON VARIAB/ ON A LOCALLY MOST POWERFUL BOUNDARY RANDOMIZED SIMILAR TEST FOR THE IND
EXISTENCE AND UNIQUENESS OF A UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR THE BINOMIAL
                                                                                                                  AMS 61
                                                                                                                          809
                                                                                                                 BIOKA56
                                                                                                                           465
                                                                                                                   AMS 67 1229
                                   ASYMPTOTICALLY MOST POWERFUL RANK ORDER TESTS FOR GROUPED DATA
       ASYMPTOTIC EFFICIENCY OF CERTAIN LOCALLY MOST POWERFUL RANK TESTS
                                                                                                                   AMS 61
                                                                                                                          88
CENSORED DATA
                                   ASYMPTOTICALLY MOST POWERFUL RANK TESTS FOR THE TWO-SAMPLE PROBLEM WITH
                                                                                                                   AMS 65 1243
                                   ASYMPTOTICALLY MOST POWERFUL RANK-ORDER TESTS
                                                                                                                   AMS 62 1124
                                                                                                                   AMS 68 531
MOST STRINGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFUL TEST FOR CERTAIN PROBLEMS WITH RESTRICTED AL
MBER OF LINEAR INEQ/ MOST STRINGENT SOMEWHERE MOST POWERFUL TESTS AGAINST ALTERNATIVE RESTRICTED BY A NU
                                                                                                                   AMS 66 1161
                                                   MOST POWERFUL TESTS FOR SOME NON-EXPONENTIAL FAMILIES
                                                                                                                   AMS 68 772
                                   ASYMPTOTICALLY MOST POWERFUL TESTS IN MARKOV PROCESSES
                                                                                                                   AMS 69 1207
                                                  QUICK POWERFUL TESTS WITH GROUPED DATA
                                                                                                                  BIOKA6B 264
             A REMARK ON SOLVING EQUATIONS IN SUMS OF POWERS
                                                                                                                  JRSSB6B
                                                                                                                           567
    AN ASYMPTOTIC FORMULA FOR THE DIFFERENCES OF THE POWERS AT ZERO
                                                                                                                   AMS 61
                                                                                                                          249
                                         ON FRACTIONAL POWERS OF A MATRIX
                                                                                                                  JASA 67 1018
                                        THE ASYMPTOTIC POWERS OF CERTAIN TESTS BASED ON MULTIPLE CORRELATION JRSSB56 227
SERIES
                                        THE ASYMPTOTIC POWERS OF CERTAIN TESTS OF GOODNESS OF FIT FOR TIME
                                                                                                                 JRSSB58
                                        THE ASYMPTOTIC POWERS OF MULTIVARIATE TESTS WITH GROUPED DATA
                                                                                                                          338
                                                                                                                  JRSSB68
                             AN UNBIASED ESTIMATOR FOR POWERS OF THE ARITHMETIC MEAN
                                                                                                                  JRSSB61
                                                                                                                            154
                         A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS TESTS FOR TREND IN A TIME
                                                                                                                  JRSSB55
                                                                                                                           115
       TRANSFORMATIONS TO NORMALITY USING FRACTIONAL POWERS OF THE VARIABLE
                                                                                                                  JASA 57
                                  A COMPARISON OF THE POWERS OF TWO MULTIVARIATE ANALYSIS OF VARIANCE TESTS BIOKA62
                                                                                                                           455
                     CORRIGENDA,
                                  'A COMPARISON OF THE POWERS OF TWO MULTIVARIATE ANALYSIS OF VARIANCE TESTS BIOKA63
 THE CAPTURE-RECAPTURE METHOD. III.AN EXAMPLE OF THE PRACTICAL APPLICATIONS OF THE METHOD /D BY MEANS OF BIOKA53
                                                                                                                           137
                              SOME OBSERVATIONS ON THE PRACTICAL ASPECTS OF WEIGHTING DESIGNS
                                                                                                                  BIOKA51
                                                                                                                           24B
                        THE INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALYSIS
                                                                                                                  JRSSB5B
                                                                                                                            74
                                     STRATIFICATION, A PRACTICAL INVESTIGATION
                                                                                                                  JASA 66
                                                        PRACTICAL VALUE OF INTERNATIONAL EDUCATIONAL
                                                                                                                  JASA 56 605
       PAPER, PRINCIPLES OF PROFESSIONAL STATISTICAL PRACTICE
                                                                                                        SPECIAL AMS 65 1883
RIAL EXPERIMENTS FOR THE ESTIMATION OF A SUBGROUP OF PRE-ASSIGNED PARAMETERS / DESIGN OF FRACTIONAL FACTO AMS 6B
                                                                                                                          973
                                                     ON PRE-EMPTIVE RESUME PRIORITY QUEUES
                                                                                                                   AMS 64
                                                                                                                           600
```

TITLE WORD INDEX POW - PRI

	SSIGNED LENGTH FOR THE BEHRENS-FISHER PROBLEM	AMS 67	
TABLES FOR A PRECE		TECH 63	
		TECH 65	359
ON THE POWER OF PRECE		TECH 67	154
THE USE OF LAMBDA AS AN INDEX OF PRECI	SISION SISION ESTIMATION IN TIME SERIES	BIOCS69 AMS 69	174
LIED TO EXTRAPOLATION IN S-/ A NOTE ON THE GAIN IN PRECI			
S WHEN THE SAMPLE OBSERVATIONS ARE LOGNORMAL AND THE PRECI			653
INDEPENDENT MULTINORMAL PROCESS, NEITHER MEAN NOR PRECI			347
		BIOKA67	321
		JASA 63	474
	ISION OF UNBIASED RATIO-TYPE ESTIMATORS, CORR. 63		491
THE PROPERTIES OF A STOCHASTIC MODEL FOR THE PREDA ON THEORETICAL MODELS FOR COMPETITIVE AND PREDA	NATOR-PREY TYPE OF INTERACTION BETWEEN TWO SPECIES		219 27
AITKEN ESTIMATORS AS A TOOL IN ALLOCATING PREDE		BIOKA57 JASA 69	913
UNDER THE CARE OF ONE OPERATIVE A TABLE FOR PREDI		JRSS854	
OPTIMAL SPACING AND WEIGHTING IN POLYNOMIAL PREDI		AMS 64	
PROBABILISTIC PREDI	DICTION	JASA 65	50
QUASI-LINEARLY INVARIANT PREDI		AMS 66	
FIDUCIAL THEORY AND INVARIANT PREDI		AMS 67	
SOME PROBLEMS OF STATISTICAL PREDI		BIOKA65	469
	DICTION AND DECISION PROBLEMS IN REGRESSION MODELS DICTION BY EXPONENTIALLY WEIGHTED MOVING AVERAGES		608
		JRSSB64	
			391
		JRSSB69	
		JRSSB60	97
		TECH 67	
SEQUENTIAL MODEL BUILDING FOR PREDI		AMS 63	
	DICTION IN SIMPLE LINEAR REGRESSION DICTION IN THE GENERALIZED LINEAR REGRESSION MODEL	JASA 65	205 369
BEST LINEAR UNBIASED PREDI SIMULTANEOUS PREDI		TECH 68	369
	DICTION INTERVALS BASED ON PARTIAL OBSERVATIONS IN		850
		JASA 67	634
	DICTION INTERVALS FOR SAMPLES FROM A NORMAL DISTRI		87B
	DICTION OF AN AUTOREGRESSIVE VARIABLE SUBJECT BOTH		164
		JRSSB67	
AMMES WHEN ALL DAUGHTERS OF SELECTED PARENTS/ THE PREDI		JRSSB54	553
		AMS 68	
		TECH 61	21
MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDI		AMS 63	424
ON A PROSLEM IN NON-LINEAR PREDI		AMS 65	
		JASA 61	
E NORMAL DISTRIBUTION CONFIDENCE, PREDI ETWEEN FAILURE DENSITY FUNCTIONS USED IN RELIABILITY PREDI	DICTION, AND TOLERANCE REGIONS FOR THE MULTIVARIAT DICTIONS A METHOD FOR DISCRIMINATING B		605 1
TIONSHIPS BETWEEN BAYESIAN AND CONFIDENCE LIMITS FOR PREDI		JRSSB64	176
		TECH 61	21
	DICTIVE ABILITY OF CONSUMER ATTITUDES, STOCK PRICE		
		BIOKA68	
A NOTE ON A MODIFIED EXPONENTIALLY WEIGHTED PREDI		JRSSB68	
THESES FOR RANDOMIZED EXPERIMENTS WITH NONCONTROLLED PREDI REGRESSION PROBLEMS WHEN THE PREDI		JRSSB69	699 107
SQUARES ESTIMATOR IN REGRESSION ANALYSIS WHEN THE 'PREDI			
TEST FOR THE DIFFERENCE IN EFFICIENCY BETWEEN TWO PREDI			266
	DICTORS OF NON-STATIONARY PROCESSES	JRSSB65	
ES POLYNOMIAL PROJECTING PROPERTIES OF MULTI-TERM PREDI			144
		BIOKA61	57
		TECH 68	
THE USE OF CORRELATED VARIABLES FOR PRELI	FERENCE-BASED DEFINITIONS OF SUBJECTIVE	AMS 67 BIOCS67	
TESTING EQUALITY OF MEANS AFTER A PRELI		BIOKA62	
ENT FROM ONE OR POSSIBLY TWO SAMPLES SUBSEQUENT TO A PRELI			
		BIOCS65	
N THE 81NOMIAL AND POISSON DISTRI/ ESTIMATORS WITH PRESC SEQUENTIAL NONPARAMETRIC TWO-WAY CLASSIFICATION WITH PRESC			
JOINT DISTRIBUTIONS WITH PRESC		AMS 69 AMS 65	
OR OF THE MEAN OF A LOG-NORMAL DISTRIBUTION HAVING A PRESC			
ON OF THE MEAN OF A LOG-NORMAL DISTRIBUTION HAVING A PRESO	SCRIBED PROPORTIONAL CLOSENESS /UENTIAL ESTIMATI		
CONSISTENT ESTIMATION OF A LOCATION PARAMETER IN THE PRESE	SENCE OF AN INCIDENTAL SCALE PARAMETER	AMS 69	1353
COMPUTATION OF INDIRECT-ADJUSTED RATES IN THE PRESE		BIOCS68	
TESTING EQUALITY OF MEANS IN THE PRESE ESTIMATION OF THE SPECTRAL DENSITY FUNCTION IN THE PRESE		BIOKA69 JRSSB64	
A NOTE ON FOLLOW-UP FOR SURVIVAL IN THE PRESE		JASA 61	
		BIOKA69	
SPECTRAL ANALYSIS IN THE PRESE	SENCE OF VARIANCE FLUCTUATIONS	JRSSB64	
SPECTRAL ANALYSIS OF GAUSSIAN VECTOR PROCESS IN THE PRESE		AMS 68	1507
TISTICS. III. A NOTE ON THE HISTORY OF THE GRAPHICAL PRESE			
		JRSSB54 AMS 67	
	SERVATION OF WEAK CONVERGENCE UNDER MAPPINGS SIDENT'S ECONOMIC REPORT	JASA 57	
THE ECONOMICS OF THE PRES		JASA 56	
PRES:	SIDENTIAL ADDRESS	JASA 66	1
OR THE RELIABILITY ANALYSIS OF SYSTEMS UNDER VARIOUS PREVI			
PRODUCT A PRICE	CE AND PRODUCTIVITY INDEX FOR A NONHOMOGENEOUS	JASA 64	469

```
THE MEASUREMENT OF PRICE CHANCES IN CONSTRUCTION
                                                                                                               JASA 69
                                                                                                                        771
                             INCENTIVE CONTRACTS AND PRICE DIFFERENTIAL ACCEPTANCE TESTS
                                                                                                               JASA 64
                                                                                                                        149
                   SOME QUANTITATIVE TESTS FOR STOCK PRICE GENERATING MODELS AND TRADING FOLKLORE
                                                                                                               JASA 67
                                                                                                                        321
         SOME ASPECTS OF SEASONALITY IN THE CONSUMER PRICE INDEX
                                                                                                               JASA 61
                                                                                                                         27
            CONSTANTS AND COMPROMISE IN THE CONSUMER PRICE INDEX
                                                                                                               JASA 62
                                                                                                                        B13
    SAMPLING ERROR IN THE CONSUMER PRICE INDEX
A NOTE ON THE PERIODOCRAM OF THE BEVERIDCE WHEAT PRICE INDEX
                                                                                                               JASA 67
                                                                                                                        899
                                                                                                               JRSSR55
                                                                                                                        228
      IN APPLYING LINEAR PROCRAMMING TO THE CONSUMER PRICE INDEX
                                                                                                   POTENTIALS JASA 66
                                                                                                                        982
                  USE OF VARYING SEASONAL WEICHTS IN PRICE INDEX CONSTRUCTION
                                                                                                               JASA 58
                                                                                                                         66
                 A RECRESSION METHOD FOR REAL ESTATE PRICE INDEX CONSTRUCTION
                                                                                                               JASA 63
                                                                                                                        933
                                                WAGE, PRICE, AND TAX ELASTICITIES OF OUTPUT AND DISTRIBUTIV JASA 62
E SHARES
                                                                                                                        607
THE PREDICTIVE ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLES
QUALITY PRICING POLICIES CONTINGENT ON OBSERVED PRODUCT
                                                                                                               JASA 64
                                                                                                                        987
                                                                                                               TECH 66
                                                                                                                        123
                            BALANCED L-RESTRICTIONAL PRIME POWERED LATTICE DESIGNS
                                                                                                                AMS 67 1127
                                    GENERAL THEORY OF PRIME-POWER LATTICE DESIGNS
                                                                                                               JASA 65
                                                                                                                        891
IONS FOR OBTAINING A BALANCED SET OF L-RESTRICTIONAL PRIME-POWERED LATTICE DESIGNS
                                                                                        /OF CYCLIC COLLINEAT AMS 67 1293
    OF-FIT OF A SINGLE (NON-ISOTROPIC) HYPOTHETICAL PRINCIPAL COMPONENT
                                                                                                THE GOODNESS- BIOKA61
                                                                                                                        397
 LATENT ROOT AND THE CORRESPONDING LATENT VECTOR FOR PRINCIPAL COMPONENT ANALYSIS
                                                                                      /IBUTION OF THE LARGEST
                                                                                                               AMS 66
                                                                                                                        995
                               ASYMPTOTIC THEORY FOR PRINCIPAL COMPONENT ANALYSIS
                                                                                                                AMS 63 122
                               AN OPTIMAL PROPERTY OF PRINCIPAL COMPONENTS
                                                                                                                AMS 65 1579
        OF EICENVALUES OF A MATRIX AND OPTIMALITY OF PRINCIPAL COMPONENTS
                                                                                                 MINIMIZATION AMS 68 859
       ON THE DISTRIBUTION OF THE LATENT VECTORS FOR PRINCIPAL COMPONENTS ANALYSIS
                                                                                                                AMS 65 1B75
         THE NON-NULL DISTRIBUTION OF A STATISTIC IN PRINCIPAL COMPONENTS ANALYSIS
                                                                                                               BIOKA66
                                                                                                                        590
STATISTICAL RESEARCH
                                                       PRINCIPAL COMPONENTS REGRESSION IN EXPLORATORY
                                                                                                               JASA 65
                                                                                                                        234
               ESTIMATION OF GENETIC CONTRIBUTION OF PRINCIPAL COMPONENTS TO INDIVIDUAL VARIATES CONCERNED BIOCS69
                                                                                                                          9
ORTS AVEC L'ANALYSE DISC/ L'ANALYSE EN COMPOSANTES PRINCIPALES, SON UTILISATION EN GENETIQUE ET SES RAPP BIOCS66
SONS ENTRE LES ESPECES ET LES VARIABLES ECOLOGIQUES, PRINCIPES FONDAMENTAUX /NALYSE STATISTIQUE DES LIAI BIOCS65
                                                                                                                       345
      RATE OF CONVERCENCE RESULTS FOR THE INVARIANCE PRINCIPLE
                                                                                                  ON EXTENDED
                                                                                                                AMS 69 NO.6
                                       THE INVARIANCE PRINCIPLE FOR A LATTICE OF RANDOM VARIABLES
                                                                                                                AMS 68
                                        AN INVARIANCE PRINCIPLE IN RENEWAL THEORY
                                                                                                                AMS 62
                                                                                                                        685
 THE HISTORY OF PROBABILITY AND STATISTICS. VII. THE PRINCIPLE OF THE ARITHMETIC MEAN
                                                                                                   STUDIES IN BIOKA58
                   ON THE SUFFICIENCY AND LIKELIHOOD PRINCIPLES
                                                                                                               JASA 63
                                                                                                                        641
                        THE LIKELIHOOD AND INVARIANCE PRINCIPLES
                                                                                                               JRSSB67
                                                                                                                        533
                                      SOME INVARIANCE PRINCIPLES FOR FUNCTIONALS OF A MARKOV CHAIN
                                                                                                                AMS 67
                                       SPECIAL PAPER, PRINCIPLES OF PROFESSIONAL STATISTICAL PRACTICE
                                                                                                                AMS 65 18B3
 MEMORIAL MEETING FOR WILLIAM N HURWITZ. SOME BASIC PRINCIPLES OF STATISTICAL SURVEYS /TISTICAL SOCIETY JASA 69 NO.4
                         THE ASYMPTOTICALLY UNBIASED PRIOR DISTRIBUTION
                                                                                                                AMS 65 1137
        THE EMPIRICAL BAYES APPROACH, ESTIMATING THE PRIOR DISTRIBUTION
                                                                                                               BIOKA67
                                                                                                                        326
              USING THE OBSERVATIONS TO ESTIMATE THE PRIOR DISTRIBUTION
                                                                                                               JRSSB65
BATCHES OF ITEMS WHERE THE MEAN QUALITY HAS A NORMAL PRIOR DISTRIBUTION
                                                                             /G ACCEPTANCE SCHEMES FOR LARGE
                                                                                                               BIOKA68
                                                                                                                        393
AND THE POSTERIOR DISTRIBUTION OF P FOR A CONTINUOUS PRIOR DISTRIBUTION
                                                                            THE MIXED BINOMIAL DISTRIBUTION
                                                                                                               JRSSB68
                                            INVARIANT PRIOR DISTRIBUTIONS
                                                                                                                AMS 64
                                                                                                                        836
                            A PARADOX INVOLVING QUASI PRIOR DISTRIBUTIONS
                                                                                                               BIOKA65
                                                                                                                        623
      SINGLE SAMPLING ATTRIBUTE PLANS FOR CONTINUOUS PRIOR DISTRIBUTIONS
                                                                                                     BAYESIAN TECH 6B
                                                                                                                        667
                        SAMPLING PROCEDURES BASED ON PRIOR DISTRIBUTIONS AND COSTS
                                                                                                               TECH 63
             MULTISTAGE SAMPLING PROCEDURES BASED ON PRIOR DISTRIBUTIONS AND COSTS
                                                                                                                AMS 67
                                                                                                                        464
 SYSTEM OF SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTRIBUTIONS AND COSTS
                                                                                        /C DISTRIBUTION AND A TECH 60
                                                                                                                        275
                                    THE ASSESSMENT OF PRIOR DISTRIBUTIONS IN BAYESIAN ANALYSIS
                                                                                                               JASA 67
                                                                                                                        776
            THE USE OF INCOMPLETE BETA FUNCTIONS FOR PRIOR DISTRIBUTIONS IN BINOMIAL SAMPLING
                                                                                                               TECH 65
                                                                                                                        335
PARAMETER ESTIMATION IN NON-LINEAR SIT/
                                           THE USE OF PRIOR DISTRIBUTIONS IN THE DESIGN OF EXPERIMENTS FOR
                                                                                                              BIOKA67
                                                                                                                        147
                                           THE USE OF PRIOR DISTRIBUTIONS IN THE DESIGN OF EXPERIMENTS FOR
PARAMETER ESTIMATION IN NON-LINEAR SIT/
                                                                                                               BIOKA67
                                                                                                                        662
ANNOT BE ASSOCIATED WI/
                          FUDUCIAL DISTRIBUTIONS AND PRIOR DISTRIBUTIONS, AN EXAMPLE IN WHICH THE FORMER C JRSSB56
                                                                                                                        217
OPTIMUM STRATIFIED SAMPLING USING PRIOR INFORMATION LLOCATION IN STRATIFIED AND MULTISTAGE SAMPLES USING PRIOR INFORMATION
                                                                                                               JASA 65
                                                                                                                        750
                                                                                                    OPTIMAL A JASA 6B
                                                                                                                        964
BILITY OF SOME STANDARD ESTIMATES IN THE PRESENCE OF PRIOR INFORMATION
                                                                                             ON THE INADMISSI AMS 63
                                                                                                                        539
                   REGRESSION ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT SUPPLEMENTARY VARIABLES
                                                                                                               JRSSB60
                                                                                                                        172
                             ON THE USE OF INCOMPLETE PRIOR INFORMATION IN REGRESSION ANALYSIS
                                                                                                               JASA 63
                                                                                                                        401
ASSAY
                                               USE OF PRIOR INFORMATION TO DESIGN A ROUTINE PARALLEL LINE
                                                                                                               BIOCS67
                                                                                                                        257
                       BAYES'S THEOREM AND THE USE OF PRIOR KNOWLEDGE IN REGRESSION ANALYSIS
                                                                                                               BIOKA64
                                                                                                                        219
                  SHORTER CONFIDENCE INTERVALS USING PRIOR OBSERVATIONS
                                                                                                               JASA 69
                                                                                                                        37B
                               NOTE ON THE CONFIDENCE-PRIOR OF WELCH AND PEERS
                                                                                                               JRSSB66
                                                                                                                         55
                  A HISTORY OF DISTRIBUTION SAMPLING PRIOR TO THE ERA OF THE COMPUTER AND ITS RELEVANCE TO JASA 65
                                                                                                                         27
OF THE EXPERIMENTAL DETERMINATION OF PROBABILITIES A PRIORI
                                                                             SOME EXAMPLES OF BAYES' METHOD
                                                                                                               JRSSB62
                                                                                                                        118
                                             ON THE A PRIORI DISTRIBUTION OF THE COVARIANCE MATRIX
                                                                                                                AMS 69 109B
  ON PARTIAL 'A PRIORI' INFORMATION IN STATISTICAL INFERENCE RANDOMIZED BLOCKS WHEN THE ALTERNATIVES HAVE AN 'A PRIORI' ORDERING

RANK'
                                                                                                                AMS 67 1671
                                                                                                                       867
                                                                                               RANK TESTS FOR AMS 67
     THE ERGODICITY OF SERIES OF QUEUES WITH GENERAL PRIORITIES
                                                                                                                AMS 65 1664
                                                                                                                        73
   WAITING LINE WITH INTERRUPTED SERVICE, INCLUDING PRIORITIES
                                                                                                               JRSSB62
  COMPETITIVE QUEUEING, IDLENESS PROBABILITIES UNDER PRIORITY DISCIPLINES
                                                                                                               JRSSB63
                                                                                                                        489
   TIME-DEPENDENT SOLUTION OF THE 'HEAD-OF-THE-LINE' PRIORITY QUEUE
                                                                                                               JRSSB62
                                                                                                                         91
                                           PREEMPTIVE PRIORITY QUEUEING
                                                                                                               BIOKA61
                                                                                                                         57
                                ON PRE-EMPTIVE RESUME PRIORITY QUEUES
                                                                                                                AMS 64
                                                                                                                        600
                      A NOTE ON MUTUAL SINGULARITY OF PRIORS
                                                                                                                AMS 66
                                                                                                                        375
OF HISTOCOMPATIBILITY TESTING, BIOLOCICAL BACKGROUND PROBABILISTIC AND STATISTICAL MODELS AND PROBLEMS (IN BIOCS69
                                                                                                                        207
                                                       PROBABILISTIC COMPLETION OF A KNOCKOUT TOURNAMENT
                                                                                                                AMS 66
                                                                                                                        495
                                  A DERIVATION OF THE PROBABILISTIC EXPLICATION OF INFORMATION
                                                                                                               JRSSB66
                                                                                                                        57B
              ADMISSIBILITY AND DISTRIBUTION OF SOME PROBABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARK AMS 6B 1646
OV CHAINS
                            STATISTICAL INFERENCE FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS
                                                                                                                AMS 66 1554
                                                       PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS
                                                                                                                AMS 69
                                                                                                                        97
CONTINGENCY, CORR, 5B 1030
                                                       PROBABILISTIC INTERPRETATIONS FOR THE MEAN SQUARE
                                                                                                               JASA 58 102
                                                       PROBABILISTIC PREDICTION
                                                                                                               JASA 65
                                                                                                                        50
RENEWAL THEOREM
                                             A SIMPLE PROBABILISTIC PROOF OF THE DISCRETE GENERALIZED
                                                                                                                AMS 65 1294
                                                       PROBABILISTIC SOLUTION OF THE SIMPLE BIRTH PROCESS
                                                                                                               BIOKA64
                                                                                                                        258
                                        MAPS BASED ON PROBABILITIES
                                                                                                               JASA 59
                                                                                                                        385
                                       CIRCULAR ERROR PROBABILITIES
                                                                                                               JASA 60
                                                                                                                        723
    MINIMUM VARIANCE UNBIASED ESTIMATORS FOR POISSON PROBABILITIES
                                                                                                               TECH 62
```

```
APPROXIMATIONS TO MULTIVARIATE NORMAL ORTHANT PROBABILITIES
                                                                                                                   AMS 63
                                                                                                                           191
      CONVERGENCE THEOREMS FOR MULTIPLE CHANNEL LOSS PROBABILITIES
                                                                                                                   AMS 63
                                                                                                                           260
                                    ESTIMATING ORDERED PROBABILITIES
                                                                                                                   AMS 63
                                                                                                                           967
                   LIMITING DISTRIBUTIONS OF RESPONSE PROBABILITIES
                                                                                                                   AMS 65
                                                                                                                           706
          ON THE LOCAL BEHAVIOR OF MARKOV TRANSITION PROBABILITIES
                                                                                                                   AMS 6B 2123
             REPRESENTING FINITELY ADDITIVE INVARIANT PROBABILITIES
                                                                                                                   AMS 68 2131
              SMOOTHED ESTIMATES FOR MULTINOMIAL CELL PROBABILITIES
                                                                                                                   AMS 68
                                                                                                                           561
                      UNBIASED ESTIMATION OF A SET OF PROBABILITIES
                                                                                                                  BIOKA61
                                                                                                                           227
                     ON INVERSE SAMPLING WITH UNEQUAL PROBABILITIES
                                                                                                                  BTOKA64
                                                                                                                           185
 A MENDELIAN MARKOV PROCESS WITH BINOMIAL TRANSITION PROBABILITIES
                                                                                                                  BIOKA66
                                                                                                                            37
                 CLOSED SEQUENTIAL TESTS FOR BINOMIAL PROBABILITIES
                                                                                                                  RTOKA66
                                                                                                                            7.3
                  AN INEQUALITY INVOLVING MULTINOMIAL PROBABILITIES
                                                                                                                  BIOKA68
                                                                                                                            422
           THE ASYMPTOTIC VALUES OF CERTAIN COVERAGE PROBABILITIES
                                                                                                                  BIOKA69 NO 3
                                            ON DIRECT PROBABILITIES
                                                                                                                  JRSSB63
                            QUERY. THE COMBINATION OF PROBABILITIES
                                                                                                                  BIOCS67
                                                                                                                           840
RIBUTION ESTIMATORS FROM THE RECURRENCE EQUATION FOR PROBABILITIES
                                                                                                   DISCRETE DIST JASA 69
                                                                                                                           602
  TYPE GALTON-WATSON PROCESSES WITH RANDOM BRANCHING PROBABILITIES
                                                                                                A NOTE ON MULTI- BIOKAGE
                                                                                                                           5B9
TO THE BAYES CHOICE CRITERION, THE METHOD OF EXTREME PROBABILITIES
                                                                                              A SIMPLE APPROACH JASA 64 1227
BRIUM THEORY OF SIMPLE QUEUES BY MEANS OF CUMULATIVE PROBABILITIES
                                                                                   TREATMENT OF THE NON-EQUILI JRSSB63
                                                                                                                           457
  BAYES' METHOD OF THE EXPERIMENTAL DETERMINATION OF PROBABILITIES A PRIORI
                                                                                               SOME EXAMPLES OF JRSSB62
                                                                                                                           11B
                     MONOTONE CONVERGENCE OF BINOMIAL PROBABILITIES AND A GENERALIZATION OF RAMANUJAN'S
                                                                                                                   AMS 68 1191
                       A GENERAL THEORY OF SUBJECTIVE PROBABILITIES AND EXPECTED UTILITIES
                                                                                                                   AMS 69 1419
                                  INFERENCE CONCERNING PROBABILITIES AND QUANTILES
                                                                                                                  JRSSB69 NO.2
       TWO CONFIDENCE INTERVALS FOR THE RATIO OF TWO PROBABILITIES AND SOME MEASURES OF EFFECTIVENESS
                                                                                                                  JASA 57
                                                                                                                            36
                                           MULTINOMIAL PROBABILITIES AND THE CHI-SQUARE AND X-SQUARE
DISTRIBUTIONS
                                                                                                                  BTOKA63
                                                                                                                           145
                             CORRIGENDA, 'MULTINOMIAL PROBABILITIES AND THE CHI-SQUARE AND X-SQUARE DISTRIB BIOKA63
                                                                                                                           546
                                SAMPLING WITH UNEQUAL PROBABILITIES AND WITHOUT REPLACEMENT
                                                                                                                   AMS 62
                                                                                                                           350
NS OF SAMPLING DESIGN THROUGH REPLICATION WITH EQUAL PROBABILITIES AND WITHOUT STAGES ON SIMPLIFICATIO JASA 56
                                                                                                                            24
LOPMENT OF RANDOMIZED LOAD SEQUENCES WITH TRANSITION PROBABILITIES BASED ON A MARKOV PROCESS
                                                                                                           DEVE TECH 66
                                               OUTCOME PROBABILITIES FOR A RECORD MATCHING PROCESS WITH
COMPLETE INVARIANT INFORMATION
                                                                                                                 JASA 67
                                                                                                                           454
                                                                                                                   AMS 66 B37
                                             INVARIANT PROBABILITIES FOR CERTAIN MARKOV PROCESSES
                                         ZERO CROSSING PROBABILITIES FOR GAUSSIAN STATIONARY PROCESSES
                                                                                                                   AMS 62 1306
                                            CHI-SQUARE PROBABILITIES FOR LARGE NUMBERS OF DEGREES OF FREEDOM BIOKA56
                                                                                                                            92
ACT BAHADUR EFFICIENCY OF THE TWO-SA/
                                          EXTREME TAIL PROBABILITIES FOR SAMPLING WITHOUT REPLACEMENT AND EX BIOKA68
NORMAL DISTRIBUTION
                                                ORTHANT PROBABILITIES FOR THE EQUICORRELATED MULTIVARIATE
                                                                                                                  BTOKA62
                                                                                                                           433
SAMPLE WILCOXON STATISTIC
                                          EXTREME TAIL PROBABILITIES FOR THE NULL DISTRIBUTION OF THE TWO-
                                                                                                                  BIOKA67
                                                                                                                           629
DISTRIBUTION
                                               ORTHANT PROBABILITIES FOR THE QUADRIVARIATE NORMAL
                                                                                                                   AMS 64 1685
                    NOTES. RAPID CALCULATION OF EXACT PROBABILITIES FOR 2-BY-3 CONTINGENCY TABLES
                                                                                                                  BTOCS68
                                                                                                                           714
ASYMPTOTIC THEORY OF REJECTIVE SAMPLING WITH VARYING PROBABILITIES FROM A FINITE POPULATION
                                                                                                                   AMS 64 1491
OR-VARIANCE OF AN ESTIMATOR IN SAMPLING WITH VARYING PROBABILITIES FROM A FINITE POPULATION
                                                                                                   /FOR THE ERR JASA 6B
                                                                                                                            91
                                                                                                                  BIOCS66
                                        NOTES. F-RATIO PROBABILITIES FROM BINOMIAL TABLES
                                                                                                                           404
                                       UPPER AND LOWER PROBABILITIES GENERATED BY A RANDOM CLOSED INTERVAL
                                                                                                                   AMS 68
                                                                                                                            957
                 A SEQUENTIAL TEST OF THE EQUALITY OF PROBABILITIES IN A MULTINOMIAL DISTRIBUTION
                                                                                                                  JASA 62
                                                                                                                           769
                                                        PROBABILITIES IN THE VOTING PARADOX
                                                                                                                   AMS 64
                                                                                                                           857
                                       UPPER AND LOWER PROBABILITIES INDUCED 8Y A MULTIVALUED MAPPING
                                                                                                                   AMS 67
                                                                                                                           325
IABLE GENERATING FUNCTION FOR COMPUTING THE SAMPLING PROBABILITIES OF A CLASS OF WIDELY USED STATISTICS
                                                                                                                  JASA 64
                                                                                                                            487
 INEQUALITIES FOR FIRST EMPTINESS PROBABILITIES OF A DAM WITH ORDERED INPUTS JRSSB62

NOTES. ON ESTIMATING THE EQUILIBRIUM AND TRANSITION PROBABILITIES OF A FINITE-STATE MARKOV CHAIN FROM THE BIOCSGB
                                                                                                                            102
                                                                                                                            1 B 5
NORMAL AND T-DISTRIBUTIONS ON THE EVALUATION OF PROBABILITIES OF CONVEX POLYHEDRA UNDER MULTIVARIATE JRSSB66
                                                                                                                            366
                                                        PROBABILITIES OF CORRECT CLASSIFICATION IN DISCRIMINA BIOCS66
NT ANALYSIS
                                                                                                                            908
SESE THAT ARE AGE-DEPENDENT OR PHASE-DEPENDENT

THE PROBABILITIES OF EXTINCTION FOR BIRTH-AND-DEATH PROCE BIOKAGE

S AND IN SOME REL/

HOW TO MINIMIZE OR MAXIMIZE THE PROBABILITIES OF EXTINCTION IN A GALTON-WATSON PROCES

AMS 68
                                                                                                                           579
                                                                                                                           1700
                                           THE ORTHANT PROBABILITIES OF FOUR GAUSSIAN VARIATES
                                                                                                                   AMS 69
                                                                                                                           152
NATION BETWEEN K POPULATIONS WITH CONSTRAINTS ON THE PROBABILITIES OF MISCLASSIFICATION
                                                                                                        DISCRIMI JRSSR69
                                                                                                                           123
ALYSIS, NECESSARY SAMPLE SIZE, AND A/ ON EXPECTED PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT AN BIOCS68
                                                                                                                           823
                                 CONVERGENCE RATES FOR PROBABILITIES OF MODERATE DEVIATIONS
                                                                                                                   AMS 68 2016
                                              SURVIVAL PROBABILITIES OF NEW INVERSIONS IN LARGE POPULATIONS BIOCS68
                                                                                                                           501
 NORMAL DISTRIBUTIONS
                                              ON EXACT PROBABILITIES OF RANK ORDERS FOR TWO WIDELY SEPARATED AMS 67 1491
                    FINE STRUCTURE OF THE ORDERING OF PROBABILITIES OF RANK ORDERS IN THE TWO SAMPLE CASE
                                                                                                                   AMS 66
                                                                                                                            98
                               ON MULTIVARIATE NORMAL PROBABILITIES OF RECTANGLES
                                                                                                                   AMS 6B 1425
        ON SAMPLING WITHOUT REPLACEMENT WITH UNEQUAL PROBABILITIES OF SELECTION
                                                                                                                  BIOKA67
                                                                                                                           499
                                                   THE PROBABILITIES OF SOME EPIDEMIC MODELS
                                                                                                                  BIOKA69
                                                                                                                           197
                        INTEGRAL EXPRESSIONS FOR TAIL PROBABILITIES OF THE MULTINOMIAL AND NEGATIVE MULTINO BIOKA65 167
MIAL DISTRIBUTIONS
VERAL METHODS OF RE-DESIGNING AREA SAMPLES UTILIZING PROBABILITIES PROPORTIONAL TO SIZE WHEN THE SIZES CHA JASA 6B 12B0
     A NOTE ON THE APPLICATION OF THE COMBINATION OF PROBABILITIES TEST TO A SET OF 2-BY-2 TABLES
                                                                                                                  BTOKA55
                                                                                                                           404
                       COMPETITIVE QUEUEING, IDLENESS PROBABILITIES UNDER PRIORITY DISCIPLINES
                                                                                                                  JRSSB63
                                                                                                                           4B9
                     MONOTONE CONVERGENCE OF BINOMIAL PROBABILITIES WITH AN APPLICATION TO MAXIMUM LIKELIHO AMS 67 15B3
OD ESTIMATION
                   ESTIMATION OF EXPONENTIAL SURVIVAL PROBABILITIES WITH CONCOMITANT INFORMATION
                                                                                                                  BIOCS65
                                                                                                                           B26
 SOME ESTIMATORS IN SAMPLING WITH VARYING PROBABILITIES WITHOUT REPLACEMENT CLASS OF LINEAR ESTIMATORS IN SAMPLING WITH VARYING PROBABILITIES WITHOUT REPLACEMENT
                                                                                                                  JASA 56
                                                                                                                           269
                                                                                                            ON A JASA 65
                                                                                                                           637
ROTATING SAMPLES
                                SAMPLING WITH VARYING PROBABILITIES WITHOUT REPLACEMENT, ROTATING AND NON- JASA 63 183
    LIKELIHOOD AND BAYESIAN ESTIMATION OF TRANSITION PROBABILITIES.
                                                                                                         MAXIMUM JASA 68 1162
                               CONSENSUS OF SUBJECTIVE PROBABILITIES, A CONVERGENCE THEOREM
                                                                                                                   AMS 67
                                                                                                                           221
CONVERGENT EXPANSION FOR CUMULATIVE HYPERGEOMETRIC PROBABILITIES, DIRECT AND INVERSE
Y CONVERGENT EXPANSION FOR CUMULATIVE HYPERGEOMETRIC PROBABILITIES, DIRECT AND INVERSE
                                                                                                      A QUICKLY BIOKA54
                                                                                                                           317
                                                                                               /ENDA, 'A QUICKL BIOKA55
                                                                                                                           277
E OF LARGEST CLUSTERS AND SMALLEST INTERVALS SOME PROBABILITIES, EXPECTATIONS AND VARIANCES FOR THE SIZ JASA 66 1191
   BINOMIAL, F, BETA, AND OTHER COMMON, RELATED TAIL PROBABILITIES, I
BINOMIAL, F, BETA, AND OTHER COMMON, RELATED TAIL PROBABILITIES, II
                                                                                   A NORMAL APPROXIMATION FOR JASA 68 1416
A NORMAL APPROXIMATION FOR JASA 68 1457
                      KHINCHIN'S WORK IN MATHEMATICAL PROBABILITY
                                                                                                                   AMS 62 1227
                           A DEFINITION OF SUBJECTIVE PROBABILITY
                                                                                                                   AMS 63 199
                        SOME SMIRNOV TYPE THEOREMS OF PROBABILITY
                                                                                                                   AMS 65 1113
           PREFERENCE-BASED DEFINITIONS OF SUBJECTIVE PROBABILITY
                                                                                                                   AMS 67 1605
               SOME INTEGRAL EQUATIONS IN GEOMETRICAL PROBABILITY
                                                                                                                  BTOKA66
                                                                                                                           365
                      A NEW SIMILARITY INDEX BASED ON PROBABILITY
                                                                                                                  BIOCS66
                                                                                                                           8B2
NOTE ON THE MAXIMIZATION OF A NON-CENTRAL CHI-SQUARE PROBABILITY
                                                                                                                   AMS 64
                                                                                                               Α
                                                                                                                           441
   NUMERICAL REPRESENTATION OF QUALITATIVE CONDITION PROBABILITY
                                                                                                           ON THE AMS 6B
                                                                                                                           4B1
```

```
PPLICATION TO STATISTICS OF AN ELEMENTARY THEOREM IN PROBABILITY
                                                                                                       ON THE A BIOKA56
     PROBLEM AND SOME APPROXIMATIONS TO THE REQUIRED PROBABILITY
                                                                                                      THE HAUSA BIOKA63
    FROM AN AUTORECRESSIVE PROCESS USING PISTIMETRIC PROBABILITY
                                                                                          A NOTE ON PREDICTION JRSSB60
                                                                                                                           97
SSIFICATION WITH PRESCRIBED MAXIMUM ASYMPTOTIC ERROR PROBABILITY
                                                                         SEQUENTIAL NONPARAMETRIC TWO-WAY CLA AMS 69
                                                                                                                          445
AC TODHUNTER'S HISTORY OF THE MATHEMATICAL THEORY OF PROBABILITY
                                                                        /PROBABILITY AND STATISTICS. XIII. ISA BIOKA63
                                                                                                                          204
                                            STRUCTURAL PROBABILITY AND A GENERALIZATION
                                                                                                                 BIOKA66
                                                       PROBABILITY AND CRIMINALISTICS
                                                                                                                 JASA 63
                                                                                                                          628
                                            STRUCTURAL PROBABILITY AND PREDICTION FOR THE MULTIVARIATE MODEL JRSSB69 NO.2
                                           CEOMETRICAL PROBABILITY AND RANDOM POINTS ON A HYPERSPHERE
                                                                                                                  AMS 67
                                                                                                                          213
                            STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS XVI. RANDOM RANDOM MECHANI 810KA67
SMS IN TALMUDIC LITERAT/
                            STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. XIX. FRANCIS YSIDRO EDGEW BIOKA68
ORTH (1B45-1926)
PMENT OF THE GAUSS LINE/
                            STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. XV. THE HISTORICAL DEVELO BIOKAG7
CONTINUITY IN THE DEVEL/
                            STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. XVII. SOME REFLEXIONS ON BIOKA67
                            STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. XVIII. THOMAS YOUNG ON
COINCIDENCES
                                                                                                                 BIOKA68
                            STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. XXII. PROBABILITY IN THE
TALMUD
                                                                                                                 BIOKA69
                                                                                                                          437
          ON THE DISTINCTION BETWEEN THE CONDITIONAL PROBABILITY AND THE JOINT PROBABILITY APPROACHES IN T BIOKA64
HE SPE/
                                                                                                                          4B1
                    SYSTEMATIC SAMPLING WITH UNEQUAL PROBABILITY AND WITHOUT REPLACEMENT
                                                                                                                          739
                                                                                                                 JASA 66
TH AN APPLICATION IN STUDYING THE DENTAL C/ A PATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS WI BIOCS66
                                                                                                                          791
                  SCORING RULES AND THE EVALUATION OF PROBABILITY ASSESSORS
                                                                                                                         1073
                                                                                                                 JASA 69
                                                       PROBABILITY BOUNDS FOR A UNION OF HYPERSPHERICAL
                                                                                                                 JRSSB65
                                                                                                                           57
                                          SIGNIFICANCE PROBABILITY BOUNDS FOR RANK ORDERINGS
                                                                                                                  AMS 64
                                                                                                                          891
PROBABILITY AND STATISTICS. II. THE BEGINNINGS OF A PROBABILITY CALCULUS
                                                                                     STUDIES IN THE HISTORY OF BIOKA56
        A SAMPLING TEST OF THE CHI-SQUARE THEORY FOR PROBABILITY CHAINS
                                                                                                                 BIOKA52
                                                                                                                          118
DISTRIBUTIONS, IV, THE DISTRIBUTION OF HOMOGENEOU/
PROBABILITY CONTENT OF REGIONS UNDER SPHERICAL NORMAL
DISTRIBUTIONS/
CORRECTION. THE TITLE SHOULD READ 'PROBABILITY CONTENT OF RECIONS UNDER SPHERICAL NORMAL
                                                                                                                  AMS 62
                                                                                                                          542
                                                                                                                  AMS 61
                                                                                                                          171
                                                                                                                  AMS 61
                                                                                                                          620
            UNBIASED ESTIMATION OF SOME MULTIVARIATE PROBABILITY DENSITIES
                                                                                                                  AMS 69 1261
                                     THE ESTIMATION OF PROBABILITY DENSITIES AND CUMULATIVES BY FOURIER
SERIES METHODS
                                                                                                                 JASA 68
                                                                                                                         925
                                                        PROBABILITY DENSITIES WITH GIVEN MARGINALS
                                                                                                                  AMS 68 1236
                                         ESTIMATION OF PROBABILITY DENSITY
                                                                                                                  AMS 65 1027
    CUBICAL AND SPHERICAL ESTIMATION OF MULTIVARIATE PROBABILITY DENSITY
                                                                                                                 JASA 68 1495
                              NOTE ON A DISCONTINUOUS PROBABILITY DENSITY
                                                                                                                 BIOKA58 270
                                         ESTIMATION OF PROBABILITY DENSITY BY AN ORTHOGONAL SERIES
                                                                                                                  AMS 67 1261
                            EFFICIENT ESTIMATION OF A PROBABILITY DENSITY FUNCTION
                                                                                                                  AMS 69
                                                                                                                         854
   CONDITION FOR THE MIXTURE OF EXPONENTIALS TO BE A PROBABILITY DENSITY FUNCTION
                                                                                                     SUFFICIENT
                                                                                                                 AMS 69 NO.6
                                      ESTIMATION OF A PROBABILITY DENSITY FUNCTION AND ITS DERIVATIVES
                                                                                                                  AMS 69 1187
                                  ON ESTIMATION OF A PROBABILITY DENSITY FUNCTION AND MODE ON THE SMOOTHING OF PROBABILITY DENSITY FUNCTIONS
                                                                                                                  AMS 62 1065
                                                                                                                 JRSSR5B
                                                                                                                         334
D SOME APPLICATI/ RECURRENCE RELATIONS BETWEEN THE PROBABILITY DENSITY FUNCTIONS OF ORDER STATISTICS, AN
                                                                                                                 AMS 62
                                                                                                                          169
                             ON THE ESTIMATION OF THE PROBABILITY DENSITY, I
                                                                                                                  AMS 63
                                                                                                                           480
                                             OCCUPANCY PROBABILITY DISTRIBUTION CRITICAL POINTS
                                                                                                                 BTOKA61
                                                                                                                          175
                                                ON THE PROBABILITY DISTRIBUTION OF A FILTERED RANDOM
TELEGRAPH SIGNAL
                                                                                                                  AMS 68
                                                                                                                           890
 COMPARTSONS
                                              AN EXACT PROBABILITY DISTRIBUTION OVER SAMPLE SPACES OF PAIRED BIOCS65
                                                                                                                          986
  LIKELIHOOD RATIO TESTS FOR RESTRICTED FAMILITES OF PROBABILITY DISTRIBUTIONS
                                                                                                                  AMS 6B
                                                                                                                          547
                                CONSTRUCTION OF JOINT PROBABILITY DISTRIBUTIONS
                                                                                                                  AMS 6B 1354
     SELECTION PROCEDURES FOR RESTRICTED FAMILIES OF PROBABILITY DISTRIBUTIONS
                                                                                                                  AMS 69
                                                                                                                          905
DETERMINATION OF PARAMETERS IN THE JOHNSON SYSTEM OF PROBABILITY DISTRIBUTIONS
                                                                                                                 BIOKA59
                                                                                                                          229
                    DISTRIBUTION FREE TESTS FOR MIXED PROBABILITY DISTRIBUTIONS
                                                                                                                 BIOKA69 NO.3
       CHARACTERIZATION THEOREMS FOR SOME UNIVARIATE PROBABILITY DISTRIBUTIONS
                                                                                                                 JRSSB64 286
       CHARACTERIZATION THEOREMS FOR SOME UNIVARIATE PROBABILITY DISTRIBUTIONS
                                                                                                                 JRSSB66
                                                                                                                          143
ORTHOGONAL POLYNOMIALS OF THE FACTORIAL POWER SERIES PROBABILITY DISTRIBUTIONS
     OF SPECIAL FUNCTIONS IN THE CHARACTERIZATION OF PROBABILITY DISTRIBUTIONS
                                                                                                    APPLICATION
                                                                                                                 SASJ 69
                                                                                                                            27
          THE ORTHOGONAL POLYNOMIALS OF POWER SERIES PROBABILITY DISTRIBUTIONS AND THEIR USES
                                                                                                                 8I0KA66
                                                        PROBABILITY DISTRIBUTIONS ARISING FROM POINTS ON A
                                                                                                                 BIOKA54
LINE
                        CORRECTIONS TO 'THE THEORY OF PROBABILITY DISTRIBUTIONS OF POINTS ON A LATTICE' 58
                                                                                                                  AMS 61
256
            SOME PROBLEMS ARISING IN APPROXIMATING TO PROBABILITY DISTRIBUTIONS USING MOMENTS
                                                                                                                 BIOKA63
                                                                                                                            95
                                         PROPERTIES OF PROBABILITY DISTRIBUTIONS WITH MONOTONE HAZARD RATE
                                                                                                                           375
                                                                                                                  AMS 63
                            A METHOD OF SAMPLING WITH PROBABILITY EXACTLY PROPORTIONAL TO SIZE
                                                                                                                 JRSSB54
                                                ESCAPE PROBABILITY FOR A HALF LINE
 RATIOS AND OF THEIR RECIPROCALS
                                            THE NORMAL PROBABILITY FUNCTION, TABLES OF CERTAIN AREA-ORDINATE BIOKA55
                                                                                                                          217
   APPROXIMATION TO THE CHI-SQUARE AND NON-CENTRAL F PROBABILITY FUNCTIONS
                                                                                                         NORMAL BIOKA60
                                                                                                                           411
                                                ON THE PROBABILITY GENERATING FUNCTIONAL FOR THE CUMULATIVE BIOKA64
POPULATION IN A SIMPLE BIRTH-AND-DEATH PRO/
                                                                                                                           245
                                 SOME APPLICATIONS OF PROBABILITY GENERATING FUNCTIONALS TO THE STUDY OF
                                                                                                                 JRSSB68
                                                                                                                           321
INPUT-OUTPUT STREAMS
               USE OF DOMAIN ESTIMATORS WITH UNEQUAL PROBABILITY IN SAMPLE SURVEYS
                                                                                                                 JASA 68
                                                                                                                           984
                                          MATHEMATICAL PROBABILITY IN THE NATURAL SCIENCES
                                                                                                                 TECH 59
                                                                                                                           21
                       A LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE-QUADRANT ORIENTED-ATOM PERCOLA JRSSB63
                                                                                                                           401
TION PROCESS
                                                    THE PROBABILITY IN THE TAIL OF A DISTRIBUTION
                                                                                                                  AMS 63
                                                                                                                           312
 IN THE HISTORY OF PROBABILITY AND STATISTICS. XXII. PROBABILITY IN THE TALMUD
                                                                                                         STUDIES BIOKA69
                                                                                                                           437
ARGINAL/ A SIMPLE METHOD OF CALCULATING THE EXACT PROBABILITY IN 2-BY-2 CONTINGENCY TABLES WITH SMALL M BIOKA55
                                                                                                                           522
                                                        PROBABILITY INEQUALITIES FOR SUMS OF BOUNDED RANDOM
VARIABLES
                                                                                                                 JASA 63
                                                                                                                            13
                                                        PROBABILITY INEQUALITIES FOR THE SUM OF INDEPENDENT
                                                                                                                 JASA 62
                                                                                                                            33
RANDOM VARIABLES
                     UPPER BOUNDS ON THE MOMENTS AND PROBABILITY INEQUALITIES FOR THE SUM OF INDEPENDENT,
                                                                                                                 BIOKA65
                                                                                                                           559
BOUNDED RANDOM VA/
BOUNDED RANDOM VARIABLES
                                         A ONE-SIDED PROBABILITY INEQUALITY FOR THE SUM OF INDEPENDENT,
                                                                                                                           565
                                                                                                                 BIOKA68
                                       UPPER AND LOWER PROBABILITY INFERENCES BASED ON A SAMPLE FROM A FINIT
                                                                                                                 BIOKA67
                                                                                                                           515
E UNIVARIATE POPULATION
                                      UPPER AND LOWER PROBABILITY INFERENCES FOR FAMILIES OF HYPOTHESES WIT
                                                                                                                 AMS 69
                                                                                                                           953
H MONOTONE DENSITY RATIOS
 A MULTIVARIATE ANALOGUE OF/ APPROXIMATIONS TO THE PROBABILITY INTEGRAL AND CERTAIN PERCENTAGE POINTS OF BIOKA55
                                                                                                                           258
                                                                                                                           177
           A NEW ASYMPTOTIC EXPANSION FOR THE NORMAL PROBABILITY INTEGRAL AND MILL'S RATIO
                                                                                                                 JRSSB62
                               THE MILLS RATIO AND THE PROBABILITY INTEGRAL FOR A PEARSON TYPE IV DISTRIBUTI BIOKA65
                                                                                                                           119
                                         A NOTE ON THE PROBABILITY INTEGRAL OF THE CORRELATION COEFFICIENT
                                                                                                                           278
                                                                                                                 BTOKA54
                               APPROXIMATIONS TO THE PROBABILITY INTEGRAL OF THE DISTRIBUTION OF RANGE BIOKA52
AN APPROXIMATION TO THE PROBABILITY INTEGRAL OF THE GAMMA DISTRIBUTION FOR SM BIOKA62
                                                                                                                           417
ALL VALUES OF THE SHAPE P/
                                                                                                                           276
                              ON THE EVALUATION OF THE PROBABILITY INTEGRAL OF THE MULTIVARIATE T DISTRIBUTI BIOKA61
                                                                                                                           409
PROXIMATE FORMULAE FOR THE PERCENTAGE POINTS AND THE PROBABILITY INTEGRAL OF THE NON-CENTRAL CHI-SQUARE DI BIOKA54
                                                                                                                           538
                                                ON THE PROBABILITY INTEGRAL TRANSFORMATION
                                                                                                                 BIOKA59
                                                                                                                           481
                           TABLE OF THE BOUNDS OF THE PROBABILITY INTEGRAL WHEN THE FIRST FOUR MOMENTS ARE BIOKAGO
                                                                                                                           399
GIVEN
                                                        PROBABILITY INTEGRALS OF MULTIVARIATE NORMAL AND
                                                                                                                  AMS 63
                                                                                                                           792
MULTIVARIATE T
```

TITLE WORD INDEX (PRO - PRO

VE DISTRIBUTION FOR SAMPL/ COMPACT TABLE OF TWELVE	PROBABILITY	LEVELS OF THE SYMMETRIC BINOMIAL CUMULATI	JASA 59	164
1549) SMALL SAMPLE	PROBABILITY	LIMITS FOR THE RANGE CHART (CORR. 68	JASA 67	1488
CONDITIONS FOR THE EXISTENCE OF A FINITELY ADDITIVE			AMS 67	780
DISTINGUISHABILITY OF	PROBABILITY	MEASURES	AMS 69	381
DISTANCES OF	PROBABILITY	MEASURES AND RANDOM VARIABLES	AMS 6B	1563
			AMS 66	
SOME STRUCTURE THEOREMS FOR STATIONARY	PROBABILITY		AMS 64	550
			SASJ 67	3
		MEASURES WITH GIVEN MARGINALS	AMS 65	423
			TECH 66	675
MULTIVARIATE LOGARITHMIC SERIES DISTRIBUTION AS A				655
BIRTHS PER COUPLE		MODELS FOR THE VARIATION IN THE NUMBER OF		721
			JASA 69	175
		OF A UNION OF EVENTS, WITH APPLICATIONS	AMS 68	
			BIOKA67	167
		OF DEFECTIVE FAILURE FROM DESTRUCTIVE	BIOKA65 TECH 63	323 459
		OF ERROR FOR A DISCRETE MEMORYLESS CHANNE		577
		OF LARGE DEVIATIONS AND EXACT SLOPES	AMS 69	
		OF LARGE DEVIATIONS FROM THE EXPECTATION		52B
			AMS 64	
AL EMPIRICAL CUMULATIVE DISTRIBUTION FUNCT/ ON THE			AMS 67	360
M VARIABLES IN AN INTERVAL OF LENGTH ONE ON THE			AMS 65	2B0
SED METHOD OF OBTAINING CONFIDENCE INTERVALS FOR THE			BIOCS67	639
TED RANDOMLY EXCEPT FOR 'EXOGAM/ A FORMULA FOR THE				226
HERITABILITY	PROBABILITY	OF OBTAINING NEGATIVE ESTIMATES OF	BIOCS68	517
		OF REVERSAL ASSOCIATED WITH A TEST PROCED		125
		OF THE UNOBSERVED OUTCOMES OF AN EXPERIME		256
			JASA 63	
			JASA 67	272
WEAK QUALITATIVE			AMS 69	
		ON SIGMA-COMPLETE BOOLEAN ALGEBRAS	AMS 69	970
CONVERGENCE PROPERTIES OF CONVERGENCE WITH				
TIO TESTS BASE/ GENERAL PROOF OF TERMINATION WITH				8
ON THE CHOICE OF PLOTTING POSITIONS ON	PROBABILITY		AMS 62 JASA 60	634 546
ON THE CHOICE OF PROTITING POSITIONS ON		PLOTS FOR THE GAMMA DISTRIBUTION	TECH 62	1
		PLOTTING METHODS FOR THE ANALYSIS OF DATA		1
ON CONFIDENCE POINTS AND BAYESIAN		POINTS IN THE CASE OF SEVERAL PARAMETERS		9
SAMPLING WITHOUT REPLACEMENT WITH			JRSSB58	393
ELLEGI'S METHOD OF SAMPLING WITHOUT REPLACEMENT WITH				79
A NOTE ON A BIASED ESTIMATOR IN SAMPLING WITH			AMS 66	1045
ON SAMPLING OVER TWO OCCASIONS WITH			AMS 65	327
ESTIMATION IN RANDOMIZED SYSTEMATIC SAMPLING WITH			JASA 65	278
SURVEY THE USE OF SYSTEMATIC SAMPLING WITH	PROBABILITY	PROPORTIONATE TO SIZE IN A LARGE SCALE	JASA 64	251
ESTIMATION ON DOUBLE SAMPLING FOR	PROBABILITY	PROPORTIONATE TO SOME MEASURE OF SIZE	AMS 64	900
SOME ASPECTS OF THE USE OF THE SEQUENTIAL			JASA 58	1B7
A ROBUST VERSION OF THE			AMS 65	
REMARK ON THE OPTIMUM CHARACTER OF THE SEQUENTIAL			AMS 66	726
THE MOST ECONOMICAL BINOMIAL SEQUENTIAL			BIOKA60	103
BOUNDS FOR THE EXPECTED SAMPLE SIZE IN A SEQUENTIAL			JRSSB60	360
LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL		RATIO TEST A NOTE ON THE	JASA 60	660
ERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL 67 1309 STOPPING TIME OF A RANK-ORDER SEQUENTIAL		RATIO TEST OPTIMALITY AND THE OP RATIO TEST ON LEHMANN ALTERNATIVES, CORR.		464
ON THE PERFORMANCE OF THE TRUNCATED SEQUENTIAL			JASA 65	
EXISTENCE, UNIQUENESS AND MONOTONICITY OF SEQUENTIAL			AMS 63	
ON THE OPTIMALITY OF SEQUENTIAL			AMS 63	18
SIZE AND SIMPLIFICATION OF A CLASS OF SEQUENTIAL				425
COMPLETENESS OF THE CLASS OF GENERALIZED SEQUENTIAL				602
OF THE DISTRIBUTION OF SAMPLE NUMBER IN SEQUENTIAL	PROBABILITY	RATIO TESTS A NOTE ON THE VARIANCE		700
IZE DISTRIBUTION FOR A CLASS OF INVARIANT SEQUENTIAL				
IES OF ESTIMATORS AND VARIANCE ESTIMATORS IN UNEQUAL				
AN SUPER PRACERUPA CO. W. C.	PROBABILITY	SAMPLING WITH QUOTAS	JASA 66	
ON A CAMPULE PROCEDURES OF UNEQUAL	PROBABILITY	SAMPLING WITHOUT REPLACEMENT SAMPLING WITHOUT REPLACEMENT	JASA 63	
ON A SIMPLE PROCEDURE OF UNEQUAL	LUNDABILITA	SAMPLING WITHOUT REPLACEMENT SIGMA-ALGEBRAS	JRSSB62 AMS 64	
THEORY OF EXPERIMENT, OPERATIONAL DEFINITION OF THE			AMS 67	
			BIOCS67	
FIRST DIFFERENCES IN ORDERED SERIES			JASA 61	
			AMS 67	
NEOUS INFERENCE PROBLEMS THE EQUAL		TEST AND ITS APPLICATIONS TO SOME SIMULTA		
THE	PROBABILITY	THAT A RANDOM GAME IS UNFAIR	AMS 66	
THE	PROBABILITY	THAT A RANDOM TRIANGLE IS OBTUSE	BIOKA69	
		THAT AN OBSERVATION WILL FALL IN A SPECIF		
S BETWEEN TWO PARALLEL STRAIGHT LINES THE				
CUR IN A SAMPLE DRAWN WI/ AN EXACT FORMULA FOR THE				
ER CONFIDENCE BOUNDS, AND CONFIDENCE LIMITS, FOR THE				
APPLICATIONS OF		THEORY IN CRIMINALISTICS	JASA 65	
		THEODY IN COINTNALICATION IT		
APPLICATIONS OF	PROBABILITY		JASA 65	
APPLICATIONS OF PROBLEMS IN THE	PROBABILITY PROBABILITY	THEORY OF STORAGE SYSTEMS (WITH DISCUSSIO	JRSSB57	181
APPLICATIONS OF PROBLEMS IN THE RIGHT HAAR MEASURE FOR CONVERGENCE IN	PROBABILITY PROBABILITY PROBABILITY	THEORY OF STORAGE SYSTEMS (WITH DISCUSSIO TO QUASI POSTERIOR DISTRIBUTIONS	JRSSB57 AMS 65	181 440
N) APPLICATIONS OF PROBLEMS IN THE RIGHT HAAR MEASURE FOR CONVERGENCE IN MATRICES ON THE FIXED POINT	PROBABILITY PROBABILITY PROBABILITY PROBABILITY	THEORY OF STORAGE SYSTEMS (WITH DISCUSSIO TO QUASI POSTERIOR DISTRIBUTIONS VECTOR OF REGULAR OR ERGODIC TRANSITION	JRSSB57 AMS 65 JASA 67	181 440 600
N) APPLICATIONS OF PROBLEMS IN THE RIGHT HAAR MEASURE FOR CONVERGENCE IN MATRICES ON THE FIXED POINT	PROBABILITY PROBABILITY PROBABILITY PROBABILITY PROBABILITY PROBABILITY	THEORY OF STORAGE SYSTEMS (WITH DISCUSSIO TO QUASI POSTERIOR DISTRIBUTIONS VECTOR OF REGULAR OR ERGODIC TRANSITION WHOSE FIRST N MOMENTS ARE KNOWN	JRSSB57 AMS 65	181 440 600 492
N) APPLICATIONS OF PROBLEMS IN THE PROBLEMS IN THE RESEARCH FOR CONVERGENCE IT MATRICES ON THE FIXED POINT MINIMAX ESTIMATION OF A RANDOM EXAMPLES BEARING ON THE DEFINITION OF FIDUCIAL TICS. I. DICING AND GAMING (A NOTE ON THE HISTORY OF	PROBABILITY PROBABILITY PROBABILITY PROBABILITY PROBABILITY PROBABILITY PROBABILITY PROBABILITY	THEORY OF STORAGE SYSTEMS (WITH DISCUSSIO TO QUASI POSTERIOR DISTRIBUTIONS VECTOR OF REGULAR OR ERGODIC TRANSITION WHOSE FIRST N MOMENTS ARE KNOWN WITH A BIBLIOGRAPHY	JRSSB57 AMS 65 JASA 67 AMS 68 AMS 62 BIOKA55	181 440 600 492 1349

```
EFFECTS OF BIAS ON ESTIMATES OF THE CIRCULAR PROBABLE ERROR
                                                                                                            JASA 60
                                                                                                                     732
                     SOME MORE ESTIMATES OF CIRCULAR PROBABLE ERROR
                                                                                                            JASA 62
                                                                                                                     191
                 COMPARISON OF ESTIMATES OF CIRCULAR PROBABLE ERROR,
                                                                                                            JASA 59
                                                                                                                      794
  OF MAXIMUM LIKELIHOOD AND THE METHOD OF MOMENTS IN PROBIT ANALYSIS
                                                                                         NOTES. EQUIVALENCE BIOCS67
                                                                                                                      154
RELIABILITY OF A SIMPLE SYSTEM
                                                     PROBIT ANALYSIS AS A TECHNIQUE FOR ESTIMATING THE
                                                                                                            TECH 67
                                                                                                                     197
                               THE CENERALIZATION OF PROBIT ANALYSIS TO THE CASE OF MULTIPLE RESPONSES
                                                                                                            BIOKA57
                                                                                                                      131
PTOTIC POWER OF TESTS OF LINEAR HYPOTHESES USING THE PROBIT AND LOCIT TRANSFORMATIONS, CORR. 64 1297
                                                                                                        /YM JASA 62
CONTROLS
                                            WEICHTED PROBITS ALLOWING FOR A NON-ZERO RESPONSE IN THE
                                                                                                            BIOKA56
                                                                                                                     207
  RANDOMIZATION TESTS FOR A MULTIVARIATE TWO-SAMPLE PROBLEM
                                                                                                            JASA 58
                                                                                                                     729
                           A RANDOM INTERVAL FILLING PROBLEM
                                                                                                             AMS 62
             CONTRIBUTIONS TO THE 'TWO-ARMED BANDIT' PROBLEM
                                                                                                             AMS 62
                                                                                                                      847
                NOTE ON A SEQUENTIAL CLASSIFICATION PROBLEM
                                                                                                             AMS 63 1095
                          INFERENCE IN AN AUTHORSHIP PROBLEM
                                                                                                             JASA 63
                                                                                                                    275
       OPTIMAL INVARIANT RANK TESTS FOR THE K-SAMPLE PROBLEM
                                                                                                             AMS 65 1207
 ASYMPTOTIC DISTRIBUTORS FOR THE COUPON COLLECTOR'S PROBLEM
                                                                                                             AMS 65 1B35
            ON ANALYSIS OF VARIANCE FOR THE K-SAMPLE
                                                                                                             AMS 66 1747
                     AN INVESTICATION OF THE BURN-IN PROBLEM
                                                                                                            TECH 66
                                                                                                                      61
         A SEQUENTIAL ANALOQUE OF THE BEHRENS-FISHER PROBLEM
                                                                                                             AMS 67 13B4
                             ON A QUICKEST DETECTION PROBLEM
                                                                                                             AMS 67
                                                                                                                     711
       THE CENERALIZED VARIANCE, TESTING AND RANKING PROBLEM
                                                                                                             AMS 67
                                                                                                                     941
                                 THE AGE REPLACEMENT PROBLEM
                                                                                                            TECH 67
                                                                                                                      8.3
                                     A TREE COUNTING
                                                     PROBLEM
                                                                                                             AMS 68
                                                                                                                     242
                    ON AN EXTENDED COMPOUND DECISION
                                                     PROBLEM
                                                                                                             AMS 69 1536
 A BAYES RULE FOR THE SYMMETRIC MULTIPLE COMPARISONS PROBLEM
                                                                                                            JASA 69 NO.4
                                A NOTE ON THE DESIGN PROBLEM
                                                                                                            BTOKA52 189
           FURTHER CRITICAL VALUES FOR THE TWO-MEANS
                                                     PROBLEM
                                                                                                            BTOKA56
                                                                                                                     203
ESTIMATION OF A PARAMETER IN THE GLASSICAL OCCUPANCY
                                                     PROBLEM.
                                                                                                            BTOKA60
                                                                                                                     1 BO
                      MULTIVARIATE T AND THE RANKING
                                                     PROBLEM
                                                                                                            BIOKA67
                                                                                                                     305
                    A NOTE ON A SEQUENTIAL OCCUPANCY PROBLEM
                                                                                                            BIOKA68
                                                                                                                      591
                         A THREE-DIMENSIONAL CLUSTER PROBLEM
                                                                                                            BIOKA6B
                                                                                                                     25B
       A FIXED SUBSET-SIZE APPROACH TO THE SELECTION PROBLEM
                                                                                                            BIOKA6B
                                                                                                                      401
                               NOTE ON A CALIBRATION PROBLEM
                                                                                                            BIOKA69 NO.3
                            THE LINDISFARNE SCRIBES' PROBLEM
                                                                                                                      93
                                                                                                            JRSSB5B
                               THE TWO-PACK MATCHING PROBLEM
                                                                                                             JRSSB60
                                                                                                                     114
           ON SIMPLE RULES FOR THE COMPOUND DECISION PROBLEM
                                                                                                            JRSSB65
                                                                                                                      23B
                             A NOTE ON AN ALLOCATION PROBLEM
                                                                                                            JRSSB69
                                                                                                                     119
               A MULTIVARIATE PALEONTOLOGICAL CROWTH PROBLEM
                                                                                                            BIOCS69
REMARKS ON SCHEFFE'S SOLUTION TO THE BEHRENS-FISHER PROBLEM
                                                                                                       SOME JASA 69 NO.4
     SAMPLE POWER CURVES FOR THE TWO SAMPLE LOCATION PROBLEM
                                                                                                      SMALL TECH 69
                                                                                                                     299
RENEWAL THEOREMS WITH APPLICATION TO A FIRST PASSAGE PROBLEM
                                                                                                      SOME
                                                                                                             AMS 66
                                                                                                                     699
 AND ASYMPTOTICALLY MINIMAX TESTS OF A MULTIVARIATE PROBLEM
                                                                                                    LOCALLY
                                                                                                             AMS 68 171
HODGES AND LEHMANN SHIFT ESTIMATOR IN THE TWO SAMPLE PROBLEM
                                                                                                    ON THE
                                                                                                             AMS 66 1814
       SOLUTIONS OF THE SEQUENTIAL COMPOUND DECISION PROBLEM
                                                                                                 ASYMPTOTIC
                                                                                                             AMS 63 1079
     DISTRIBUTION FOR A GENERALIZED BANACH MATCH BOX PROBLEM
                                                                                                 ASYMPTOTIC JASA 67 1252
      OF SOME PROCEDURES FOR THE TWO-SAMPLE LOCATION PROBLEM
                                                                                                 ROBUSTNESS JASA 64 665
 WILCOXON STATISTIC FOR A GENERALIZED BEHRENS-FISHER PROBLEM
                                                                                                 USE OF THE AMS 63 1596
       STATISTICAL AND TIME AVERAGES IN A REGULATION PROBLEM
                                                                                                CONSIDERING JRSSB67
                                                                                                                     475
  DURATION OF A BALL AND CELL GAME, A FIRST PASSAGE PROBLEM
                                                                                                ON THE MEAN AMS 66 517
 RECIONAL FORECASTS FOR THE OUTCOME OF AN ESTIMATION PROBLEM
                                                                                                PRELIMINARY JASA 63 1104
 SOLUTION OF A TWO-DIMENSIONAL UNSTRUCTURED CLUSTER PROBLEM
                                                                                              A MONTE CARLO BIOKA67 625
         OF SOME SEQUENTIAL PROCEDURES FOR A RANKING PROBLEM
                                                                                            THE PERFORMANCE
                                                                                                            AMS 68 1040
          TEST FOR THE BIVARIATE TWO-SAMPLE LOCATION PROBLEM
                                                                                           A NON-PARAMETRIC JRSSB67
 OF BOOK USE AND ITS APPLICATION TO THE BOOK STORAGE
                                                                                        A STATISTICAL MODEL JASA 69
        OF PREASSICNED LENGTH FOR THE BEHRENS-FISHER PROBLEM
                                                                                        CONFIDENCE INTERVAL AMS 67 1175
     ESTIMATES FOR SHIFT IN THE P-VARIATE ONE SAMPLE
                                                                                        ON SOME ALTERNATIVE
                                                                                                             AMS 64 1079
   OF A POLYNOMIAL RECRESSION AS A MULTIPLE DECISION PROBLEM
                                                                                   THE CHOICE OF THE DEGREE
 FREEDOM SOLUTION TO THE MULTIVARIATE BEHRENS-FISHER
                                                     PROBLEM
                                                                                  AN APPROXIMATE DEGREES OF BIOKA65
                                                                                                                     139
 A NON-PARAMETRIC TEST FOR THE BIVARIATE TWO-SAMPLE
                                                     PROBLEM
                                                                                ON THE NULL DISTRIBUTION OF JRSSB69
     PARAMETERS WITH AN APPLICATION TO A RELIABILITY
                                                     PROBLEM.
                                                                                SOME INFERENCES ABOUT CAMMA JASA 63
  TWO TEST STATISTICS ASSOCIATED WITH THE TWO-SAMPLE
                                                                                THE ASYMPTOTIC NORMALITY OF
                                                     PROBLEM
                                                                                                            AMS 63 1513
 TWO TEST PROCEDURES PROPOSED FOR THE BEHRENS-FISHER
                                                                        A CONFIDENCE INTERVAL COMPARISON OF JASA 66
                                                     PROBLEM
                                                                                                                     454
 DECISION RULES FOR THE SEQUENTIAL COMPOUND DECISION
                                                                       CONVERGENCE OF THE LOSSES OF CERTAIN
                                                     PROBLEM
                                                                                                            AMS 64 1606
ESTS AND THEIR APPLICATION TO AN ACCEPTANCE SAMPLING
                                                                       SEQUENTIAL CHI-SQUARE AND T-SQUARE T
                                                                                                            TECH 61
                                                      PROBLEM
                                                                                                                     519
  TO TESTING OF HYPOTHESES AND THE COMPOUND DECISION
                                                     PROBLEM
                                                                     ON THE SMOOTH EMPIRICAL BAYES APPROACH BIOKA68
AMPLE SIZES OF TWO SEQUENTIAL PROCEDURES FOR RANKING
                                                     PROBLEM
                                                                  A COMPARISON OF THE ASYMPTOTIC EXPECTED S
                                                                                                             AMS 69 NO.6
                 THE GENERAL BULK QUEUE AS A HILBERT
                                                     PROBLEM
                                                              (CORR. 64 4B7)
                                                                                                             JRSSB62
                                                                                                                     344
         A CONTRIBUTION TO THE 'TRAVELLING-SALESMAN'
                                                     PROBLEM
                                                              (WITH DISCUSSION)
                                                                                                            JRSSB55
                                                                                                                     185
                                       THE TWO MEANS PROBLEM A SECONDARILY BAYES APPROACH
                                                                                                            BIOKA67
                                                                                                                      B5
                      A CENERALIZATION OF THE BALLOT PROBLEM AND ITS APPLICATION IN THE THEORY OF QUEUES
                                                                                                            JASA 62
                                                                                                                     327
                                                                                                             AMS 61
       BAYES RULES FOR A COMMON MULTIPLE COMPARISONS PROBLEM AND RELATED STUDENT-T PROBLEMS
                                                                                                                    1013
PROBABILITY
                                           THE HAUSA PROBLEM AND SOME APPROXIMATIONS TO THE REQUIRED
                                                                                                            BIOKA63
                                                   A PROBLEM CONCERNED WITH WEIGHTING OF DISTRIBUTIONS
                                                                                                            JASA 61
                                    ON A COINCIDENCE PROBLEM CONCERNING PARTICLE COUNTERS
                                                                                                             AMS 61
                                                ON A PROBLEM CONNECTED WITH QUADRATIC REGRESSION
                                                                                                            BTOKA60
                                                                                                                     335
                                 ON A DISCRIMINATORY PROBLEM CONNECTED WITH THE WORKS OF PLATO
                                                                                                            JRSSB59
               BAYES SOLUTION OF SEQUENTIAL DECISION PROBLEM FOR MARKOV DEPENDENT OBSERVATIONS
                                                                                                             AMS 64 1656
                                     A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS
                                                                                                             AMS 67
                                                                                                                    1912
       RATES OF CONVERCENCE IN THE COMPOUND DECISION PROBLEM FOR TWO COMPLETELY SPECIFIED DISTRIBUTIONS
                                                                                                             AMS 65 1743
         RATIO TEST OF A NORMAL MULTIVARIATE TESTING PROBLEM II
                                                                                          ON THE LIKELIHOOD
                                                                                                             AMS 65 1061
                                A NUMERICAL ANALYSIS PROBLEM IN CONSTRAINED QUADRATIC REGRESSION ANALYSIS
                                                                                                            TECH 62
                                                                                                                     426
                    A NOTE ON A SERIES SOLUTION OF A PROBLEM IN ESTIMATION
                                                                                                            BIOKA58
                                                                                                                     565
                                         A NOTE ON A PROBLEM IN ESTIMATION
                                                                                                            BIOKA62
                                                                                                                     553
                                                   A PROBLEM IN LIFE TESTING
                                                                                                            JASA 57
                                                                                                                     350
                                                   A PROBLEM IN MINIMAX VARIANCE POLYNOMIAL EXTRAPOLATION
                                                                                                             AMS 66
                                                                                                                     898
                                                                                                            BIOKA54
                                                                                                                     338
                                       AN ESTIMATION PROBLEM IN QUANTITATIVE ASSAY
                                                                                                       NOTE TECH 65
 ON AN APPLICATION OF FOUR MOMENT INEQUALITIES TO A PROBLEM IN QUEUES
                                                                                                                      435
```

TITLE WORD INDEX PRO - PRO

VARIATE NORMAL DISTRIBUTION TO A STRESS VS. STRENCTH	PROBLEM	IN RELIABILITY ANALYSIS /ICATIONS OF THE BI	TECH 64	325
		IN RENEWAL THEORY, ROBERT THE BRUCE'S SPIDER		255
			BIOCS69	39
		IN SURVIVAL	AMS 61	
			BIOKA58	331
CRAPHICAL NOTE FOR T. BAYES' ESSAY TOWARDS SOLVING A	PROBLEM	IN THE DOCTRINE OF CHANCES. /STICS. IX. BIO	BIOKA58	293
PHIL, TRANS. ROY. SOC. 17/ ESSAY TOWARDS SOLVING A	PROBLEM	IN THE DOCTRINE OF CHANCES. (REPRODUCED FROM	BIOKA58	296
ARAMETRIC TEST FOR THE BIVARIATE TWO-SAMPLE LOCATION	PROBLEM	IN THE NORMAL CASE /SAMPLE POWER OF A NON-P	JRSSB68	83
			BIOKA55	266
				213
BUTIONS IS BASED ON SAMPLES A CLASSIFICATION				
			JRSSB60	10B
SSIBILITY OF A RANDOMIZED SYMMETRICAL DESIGN FOR THE				356
		OF COLLECTIVE RISK THEORY	AMS 61	757
A	PROBLEM	OF DELAYED SERVICE, 1	JRSSB60	245
A	PROBLEM	OF DELAYED SERVICE, 2	JRSSB60	270
P THE MAXIMUM LIKELIHOOD SOLUTION TO THE	PROBLEM	OF ESTIMATING A LINEAR FUNCTIONAL RELATIONSHI	JRSSB69	NO.2
		OF ESTIMATION	BIOKA59	231
		OF ESTIMATION FOR THE BIVARIATE LOGNORMAL	BIOKA64	
SIMULATION EXPERIMENTS WITH ECONOMIC SYSTEMS. THE				
PPLICATION OF MINIMUM LOGIT CHI-SQUARE ESTIMATE TO A				75
			BIOKA53	58
A SOLUTION TO THE	PROBLEM	OF LINKING MULTIVARIATE DOCUMENTS	JASA 69	163
ON THE	PROBLEM	OF MATCHINC LISTS BY SAMPLES	JASA 59	403
ION A JOINT DESIGN CRITERION FOR THE DUAL	PROBLEM	OF MODEL DISCRIMINATION AND PARAMETER ESTIMAT	TECH 68	145
THE	PROBLEM	OF NEGATIVE ESTIMATES OF VARIANCE COMPONENTS	AMS 62	273
		OF OPTIMUM ALLOCATION ARISING IN CHEMICAL	TECH 61	
			SASJ 67	43
		OF REGRESSION		
			BIOCS66	
A NONPARAMETRIC TEST FOR THE			AMS 61	
		OF THE AMALGAMATION OF WEICHTED MEANS	JRSSB61	423
STATISTICS. VI. A NOTE ON THE EARLY SOLUTIONS OF THE			BIOKA57	515
		ON THE EXPONENTIAL FAMILY	AMS 65	
		RELATED TO STATISTICAL DISTRIBUTIONS IN TWO	BIOKA57	384
ECESSARY AND SUFFICIENT CONDITIONS FOR A STATISTICAL				492
		WHEN LOCATIONS ARE UNKNOWN	AMS 65	
AN ELEMENTARY METHOD OF SOLUTION OF THE QUEUEING				125
A RENEWAL	PROBLEM	WITH BULK ORDERING OF COMPONENTS	JRSSB59	180
OTICALLY MOST POWERFUL RANK TESTS FOR THE TWO-SAMPLE	PROBLEM	WITH CENSORED DATA ASYMPT	AMS 65	1243
ON BAYES PROCEDURES FOR A	PROBLEM	WITH CHOICE OF OBSERVATIONS	AMS 64	1128
THE GAMBLER'S RUIN	PROBLEM	WITH CORRELATION	BTOKA55	486
THE PORRING ISRRII TWO ARMED RANDIT	PROBLEM	WITH FINITE MEMORY	AMS 65	1375
THE RODDING-ISDEED INC-ARMED-DANDII	DDODLEM	WITH M DV M DINITE LOSS MATRIX	AMS 66	410
THE COMPOUND DECISION	PROBLEM	WITH W-DI-N FINITE LUSS WAIKIN	AWA CO	412
AN ASYMPTOTIC DISTRIBUTION FOR AN OCCUPANCY	PROBLEM			
		WITH BIRITARIAN ATTENDATIONS	I EON OI	79
A BULK-SERVICE QUEUEING	PROBLEM	WITH VARIABLE CAPACITY	JRSSB61	143
A BULK-SERVICE QUEUEING THE GENERAL MOMENT	PROBLEM PROBLEM,	WITH VARIABLE CAPACITY A CEOMETRIC APPROACH	JRSSB61 AMS 68	143 93
A BULK-SERVICE QUEUEING THE GENERAL MOMENT ON THE TWO SAMPLE	PROBLEM PROBLEM, PROBLEM,	WITH BULK ORDERING OF COMPONENTS WITH CENSORED DATA ASYMPT WITH CHOICE OF OBSERVATIONS WITH CORRELATION WITH FINITE MEMORY WITH M-BY-N FINITE LOSS MATRIX WITH STATISTICAL APPLICATIONS WITH VARIABLE CAPACITY A CEOMETRIC APPROACH A HEURISTIC METHOD FOR CONSTRUCTINC TESTS	JRSSB61 AMS 68 AMS 61	143 93 1091
A BULK-SERVICE QUEUEING THE GENERAL MOMENT ON THE TWO SAMPLE CONTRIBUTIONS TO THE K-SAMPLE	LUDDERM,	A SYMMETRIC STATISTIC	AMS 69	1091
ON THE TWO SAMPLE	PROBLEM,	A SYMMETRIC STATISTIC	AMS 69	1091
CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING	PROBLEM, PROBLEM,	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI	AMS 69 AMS 64	NO.6
CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY	PROBLEM, PROBLEM, PROBLEM,	A SYMMETRIC STATISTIC CORR. 64 1388 UNBIASED ESTIMATION OF THE NUMBER OF CLASSES	AMS 69 AMS 64 JASA 6B	NO . 6 181 837
CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX	PROBLEM, PROBLEM, PROBLEM, PROBLEMS	A SYMMETRIC STATISTIC CORR. 64 1388 UNBIASED ESTIMATION OF THE NUMBER OF CLASSES	AMS 69 AMS 64 JASA 6B TECH 60	NO . 6 181 837 387
CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION	PROBLEM, PROBLEM, PROBLEM, PROBLEMS	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES	AMS 69 AMS 64 JASA 6B TECH 60 AMS 62	NO . 6 181 837 387 B57
CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION	PROBLEM, PROBLEM, PROBLEM, PROBLEMS PROBLEMS	A SYMMETRIC STATISTIC CORR. 64 1388 UNBIASED ESTIMATION OF THE NUMBER OF CLASSES	AMS 69 AMS 64 JASA 6B TECH 60 AMS 62 AMS 63	NO . 6 181 837 387 B57 751
CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY	PROBLEM, PROBLEM, PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS	A SYMMETRIC STATISTIC CORR. 64 1388 UNBIASED ESTIMATION OF THE NUMBER OF CLASSES CORT. 64 1388 ON THE LI	AMS 69 AMS 64 JASA 6B TECH 60 AMS 62 AMS 63 TECH 63	NO .6 181 837 387 857 751 211
CONTRIBUTIONS TO THE K-SAMPLE CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION	PROBLEM, PROBLEM, PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES	AMS 69 AMS 64 JASA 6B TECH 60 AMS 62 AMS 63 TECH 63 AMS 64	NO . 6 181 837 387 B57 751 211
CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE	PROBLEM, PROBLEM, PROBLEMS, PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES	AMS 69 AMS 64 JASA 6B TECH 60 AMS 62 AMS 63 TECH 63 AMS 64 AMS 64	NO . 6 181 837 387 857 751 211 1
CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION	PROBLEM, PROBLEM, PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS	A SYMMETRIC STATISTIC CORR. 64 1388 UNBIASED ESTIMATION OF THE NUMBER OF CLASSES	AMS 69 AMS 64 JASA 6B TECH 60 AMS 62 AMS 63 TECH 63 AMS 64 AMS 64	NO . 6 181 837 387 857 751 211 1 232 825
CONTRIBUTIONS TO THE K-SAMPLE CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY	PROBLEM, PROBLEM, PROBLEMS, PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBLASED ESTIMATION OF THE NUMBER OF CLASSES	AMS 69 AMS 64 JASA 6B TECH 60 AMS 62 AMS 63 TECH 63 AMS 64 AMS 64 AMS 64 AMS 64	NO .6 181 837 387 857 751 211 1 232 825 565
CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION	PROBLEM, PROBLEM, PROBLEMS, PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBLASED ESTIMATION OF THE NUMBER OF CLASSES	AMS 69 AMS 64 JASA 6B TECH 60 AMS 62 AMS 63 TECH 63 AMS 64 AMS 64	NO . 6 181 837 387 857 751 211 1 232 825
CONTRIBUTIONS TO THE K-SAMPLE CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY	PROBLEM, PROBLEM, PROBLEMS, PROBLEMS	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES	AMS 69 AMS 64 JASA 6B TECH 60 AMS 62 AMS 63 TECH 63 AMS 64 AMS 64 AMS 64 AMS 64	NO . 6 181 837 387 B57 751 211 1 232 825 565 308
CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING	PROBLEM, PROBLEM, PROBLEMS, PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES	AMS 69 AMS 64 JASA 6B TECH 60 AMS 63 TECH 63 AMS 64 AMS 64 AMS 64 AMS 65 JASA 65	NO.6 181 837 387 857 751 211 1 232 825 565 308 1255
CONTRIBUTIONS TO THE K-SAMPLE CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION	PROBLEM, PROBLEM, PROBLEMS, PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBLASED ESTIMATION OF THE NUMBER OF CLASSES	AMS 69 AMS 64 JASA 6B TECH 60 AMS 62 AMS 63 TECH 63 AMS 64 AMS 64 AMS 64 AMS 65 JASA 65 AMS 67	NO .6 181 837 387 857 751 211 1 232 825 565 308 1255 447
CONTRIBUTIONS TO THE K-SAMPLE CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERACE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION	PROBLEM, PROBLEM, PROBLEMS, PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES	AMS 69 AMS 64 JASA 6B TECH 60 AMS 62 AMS 63 TECH 63 AMS 64 AMS 64 AMS 65 JASA 65 AMS 67 AMS 67	NO .6 181 837 387 B57 751 211 1 232 825 565 308 1255 447 2149
CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE	PROBLEM, PROBLEM, PROBLEMS, PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES	AMS 69 AMS 64 JASA 6B TECH 60 AMS 62 AMS 63 TECH 63 AMS 64 AMS 64 AMS 64 AMS 65 JASA 65 AMS 67 AMS 67	NO .6 181 837 387 B57 751 211 1 232 825 565 308 1255 447 2149 57B
CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIGNS FOR MIXTURE	PROBLEM, PROBLEM, PROBLEM, PROBLEMS	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES	AMS 69 AMS 64 JASA 6B TECH 60 AMS 62 AMS 63 TECH 63 AMS 64 AMS 64 AMS 65 JASA 65 AMS 67 AMS 67 AMS 68 TECH 68	NO .6 181 837 387 857 751 211 1 232 825 565 308 1255 447 2149 57B 739
CONTRIBUTIONS TO THE K-SAMPLE CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIGNS FOR MIXTURE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION	PROBLEM, PROBLEM, PROBLEM, PROBLEMS,	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES	AMS 69 AMS 64 JASA 68 TECH 63 TECH 63 TECH 63 AMS 64 AMS 64 AMS 65 JASA 65 JASA 65 AMS 67 AMS 67 AMS 68 TECH 68 TECH 68 TECH 68	No.6 181 837 387 751 211 1 232 825 565 308 1255 447 2149 57B 739 492
CONTRIBUTIONS TO THE K-SAMPLE CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERACE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIGNS FOR MIXTURE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN	PROBLEM, PROBLEM, PROBLEM, PROBLEMS,	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES	AMS 69 AMS 64 JASA 68 TECH 66 AMS 62 AMS 63 TECH 68 AMS 64 AMS 64 AMS 65 JASA 65 JASA 65 TECH 68 TECH 68 TECH 68 AMS 69 AMS 65	No.6 181 837 387 751 211 1 232 825 565 308 1257 2149 578 739 492 889
CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIGNS FOR MIXTURE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN SOME CIRCULAR COVERAGE	PROBLEM, PROBLEM, PROBLEM, PROBLEMS	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES	AMS 69 AMS 64 JASA 6B TECH 60 AMS 62 AMS 63 TECH 68 AMS 64 AMS 64 AMS 65 JASA 67 AMS 67 AMS 67 AMS 67 AMS 68 TECH 68 TECH 68 TECH 68 AMS 69 BIOKA61	No.6 181 837 387 751 211 1 232 825 565 308 1255 447 2149 57B 739 492 889 313
CONTRIBUTIONS TO THE K-SAMPLE CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIGNS FOR MIXTURE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN SOME CIRCULAR COVERAGE A BAYESIAN APPROACH TO SOME OUTLIER	PROBLEM, PROBLEM, PROBLEM, PROBLEMS,	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES	AMS 69 AMS 64 JASA 66 TECH 60 AMS 62 AMS 63 TECH 63 AMS 64 AMS 64 AMS 65 JASA 65 AMS 67 AMS 68 TECH 68 TECH 68 TECH 68 AMS 64 AMS 64 AMS 64 AMS 64 AMS 66 AMS 67 AMS 68 AMS 68 AMS 69 JASA 69 BIOKA61 BIOKA61 BIOKA61	No.6 181 837 387 857 751 211 1 232 825 565 565 308 1255 447 2149 578 739 492 889 313 119
CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIGNS FOR MIXTURE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN SOME CIRCULAR COVERAGE	PROBLEM, PROBLEM, PROBLEM, PROBLEMS,	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES	AMS 69 AMS 64 JASA 6B TECH 60 AMS 62 AMS 63 TECH 68 AMS 64 AMS 64 AMS 65 JASA 67 AMS 67 AMS 67 AMS 67 AMS 68 TECH 68 TECH 68 TECH 68 AMS 69 BIOKA61	No.6 181 837 387 857 751 211 1 232 825 565 565 308 1255 447 2149 578 739 492 889 313 119
CONTRIBUTIONS TO THE K-SAMPLE CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIGNS FOR MIXTURE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN SOME CIRCULAR COVERAGE A BAYESIAN APPROACH TO SOME OUTLIER	PROBLEM, PROBLEM, PROBLEM, PROBLEMS,	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES	AMS 69 AMS 64 JASA 66 TECH 60 AMS 62 AMS 63 TECH 63 AMS 64 AMS 64 AMS 65 JASA 65 AMS 67 AMS 68 TECH 68 TECH 68 TECH 68 AMS 64 AMS 64 AMS 64 AMS 64 AMS 66 AMS 67 AMS 68 AMS 68 AMS 69 JASA 69 BIOKA61 BIOKA61 BIOKA61	No.6 181 837 387 857 751 211 1 232 825 565 308 1255 447 2149 578 739 492 889 313 119 268
CONTRIBUTIONS TO THE K-SAMPLE CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIGNS FOR MIXTURE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN SOME CIRCULAR COVERAGE A BAYESIAN APPROACH TO SOME OUTLIER ELIMINATION OF VARIATES IN LINEAR DISCRIMINATION	PROBLEM, PROBLEM, PROBLEM, PROBLEMS,	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES	AMS 69 AMS 64 JASA 68 TECH 60 AMS 62 AMS 63 TECH 68 AMS 64 AMS 65 JASA 65 JASA 65 TECH 68 TECH 68 TECH 68 TECH 68 TECH 68 DIOKA61 BIOKA61 BIOKA63 BIOKA65 JASA 58	NO .6 181 837 387 751 211 232 825 565 308 1255 447 2149 57B 739 492 889 313 119 268 161
CONTRIBUTIONS TO THE K-SAMPLE CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIONS FOR MIXTURE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN SOME CIRCULAR COVERAGE A BAYESIAN APPROACH TO SOME OUTLIER ELIMINATION OF VARIATES IN LINEAR PISCRIMINATION THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION	PROBLEM, PROBLEM, PROBLEM, PROBLEMS,	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBLASED ESTIMATION OF THE NUMBER OF CLASSES 66 67 68 68 68 68 68 68 68 68 68 68 68 68 68	AMS 69 AMS 64 JASA 68 TECH 63 TECH 63 AMS 64 AMS 64 AMS 64 AMS 65 JASA 65 AMS 67 AMS 68 TECH 68 TECH 68 TECH 68 TECH 68 TECH 68 TECH 68 BIOKAGB BIOKAGB BIOKAGB BIOKAGB BIOKAGB	NO .6 181 837 857 751 211 1 232 825 565 308 1255 447 2149 578 492 889 492 889 313 119 266 11756
CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIGNS FOR MIXTURE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN SOME CIRCULAR COVERAGE A BAYESIAN APPROACH TO SOME OUTLIER ELIMINATION OF VARIATES IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION FUNCTION BETWEEN COMPOSITE HYPOTHESES AND RELATED	PROBLEM, PROBLEM, PROBLEM, PROBLEMS,	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	AMS 69 AMS 64 JASA 68 TECH 63 TECH 63 AMS 64 AMS 64 AMS 65 JASA 65 JASA 65 JASA 65 JASA 69 BIOKA61 BIOKS68 BIOKS68 BIOKS68 BIOKS66	NO .6 181 837 857 751 211 232 825 565 308 1255 447 2149 578 739 492 889 313 119 268 161 1756 339
CONTRIBUTIONS TO THE K-SAMPLE CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIGNS FOR MIXTURE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN SOME CIRCULAR COVERAGE A BAYESIAN APPROACH TO SOME OUTLIER ELIMINATION OF VARIATES IN LINEAR DISCRIMINATION THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION FUNCTION BETWEEN COMPOSITE HYPOTHESES AND RELATED CONFIDENCE REGIONS FOR SOME MULTIVARIATE LOCATION	PROBLEM, PROBLEM, PROBLEM, PROBLEMS,	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES	AMS 69 AMS 64 JASA 66 TECH 66 AMS 62 AMS 63 TECH 68 AMS 64 AMS 65 JASA 65 JASA 65 TECH 68 TECH 68 TECH 68 TECH 68 TECH 68 DIOKAG1 BIOKAG1 BIOKAG6 JASA 58 AMS 65 JASA 69 JASA 69 JASA 69	NO .6 181 837 387 751 211 232 825 565 308 1255 447 2149 57B 739 492 889 313 119 268 161 1756 339 1373
CONTRIBUTIONS TO THE K-SAMPLE CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIGNS FOR MIXTURE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN SOME CIRCULAR COVERAGE A BAYESIAN APPROACH TO SOME OUTLIER ELIMINATION OF VARIATES IN LINEAR DISCRIMINATION THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION FUNCTION BETWEEN COMPOSITE HYPOTHESES AND RELATED CONFIDENCE REGIONS FOR SOME MULTIVARIATE LOCATION TYPE TESTS FOR SOME BEHRENS-FISHER-TYPE REGRESSION	PROBLEM, PROBLEM, PROBLEM, PROBLEMS,	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES ON THE LI ON THE LI ON THE NUMBER OF CLASSES ON THE LI ON THE NUMBER OF CLASSES ON THE NUMBER OF CLAS	AMS 69 AMS 64 JASA 68 TECH 63 TECH 63 AMS 64 AMS 64 AMS 64 AMS 65 JASA 65 AMS 67 AMS 68 TECH 68 TECH 68 TECH 68 TECH 68 TECH 68 AMS 69 JASA 69 BIOKA6B	NO .6 181 837 857 751 211 1 232 825 565 308 1255 447 2149 578 739 492 889 313 119 268 313 119 266 338 119
CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIGNS FOR MIXTURE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN SOME CIRCULAR COVERAGE A BAYESIAN APPROACH TO SOME OUTLIER ELIMINATION OF VARIATES IN LINEAR PROCRAMMING THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION FUNCTION BETWEEN COMPOSITE HYPOTHESES AND RELATED CONFIDENCE REGIONS FOR SOME MULTIVARIATE LOCATION TYPE TESTS FOR SOME BEHRENS-FISHER-TYPE REGRESSION	PROBLEM, PROBLEM, PROBLEM, PROBLEMS,	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES ON THE LI ON THE LI ON THE LI ON THE LI ON THE NUMBER OF CLASSES THE USE OF THE	AMS 69 AMS 64 JASA 68 TECH 63 TECH 63 AMS 64 AMS 64 AMS 65 JASA 65 JASA 65 JASA 65 JASA 69 BIOKA6B BIOKS6B	No.6 181 837 857 751 211 1 232 825 565 308 1255 447 2149 578 739 492 889 313 119 268 161 339 1756 339 1373 1163 83
CONTRIBUTIONS TO THE K-SAMPLE CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIGNS FOR MIXTURE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN SOME CIRCULAR COVERAGE A BAYESIAN APPROACH TO SOME OUTLIER ELIMINATION OF VARIATES IN LINEAR PISCRIMINATION THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION FUNCTION BETWEEN COMPOSITE HYPOTHESES AND RELATED CONFIDENCE REGIONS FOR SOME MULTIVARIATE LOCATION TYPE TESTS FOR SOME BEHRENS-FISHER-TYPE REGRESSION CONCEPT OF A FUTURE OBSERVATION IN GOODNESS-OF-FIT FICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESSION	PROBLEMS PRO	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES ON ANCILLARY DISCRIMINANT NONPARAMETRIC SOME SCHEFFE- THE USE OF THE APPLICATION OF A MODI	AMS 69 AMS 64 JASA 66 TECH 63 TECH 63 TECH 63 TECH 63 AMS 64 AMS 65 JASA 65 JASA 65 JASA 69 JASA 69 JASA 69 JASA 69 JASA 68 BIOKA6B BIOKA6B JASA 66 JASA 66 JASA 66 JASA 67 TECH 68	NO .6 181 837 387 751 211 232 825 565 308 1255 447 2149 578 739 492 889 313 119 268 161 1756 339 1373 1163 83 843
CONTRIBUTIONS TO THE K-SAMPLE CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIGNS FOR MIXTURE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN SOME CIRCULAR COVERAGE A BAYESIAN APPROACH TO SOME OUTLIER ELIMINATION OF VARIATES IN LINEAR DISCRIMINATION THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION FUNCTION BETWEEN COMPOSITE HYPOTHESES AND RELATED CONFIDENCE REGIONS FOR SOME MULTIVARIATE LOCATION TYPE TESTS FOR SOME BEHRENS-FISHER-TYPE REGRESSION CONCEPT OF A FUTURE OBSERVATION IN GOODNESS-OP-FIT FICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESSION COVCARIANCE MATRICES IN TIME SERIES REGRESSION	PROBLEM, PROBLEM, PROBLEM, PROBLEMS,	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES ON THE LI ON THE NUMBER OF CLASSES ON THE NUMBER OF THE USE OF THE LISE OF THE LI	AMS 69 AMS 64 JASA 60 AMS 62 AMS 63 TECH 63 AMS 64 AMS 64 AMS 65 JASA 65 AMS 67 AMS 68 TECH 68 TECH 68 TECH 68 TECH 68 AMS 69 JASA 69 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 JASA 65 AMS 67 TECH 68 TECH 68 TECH 68 TECH 68 TECH 68 TECH 68 TECH 68 TECH 68 AMS 69 JASA 65 JASA 65 AMS 69 JASA 65 TECH 68 AMS 69 JASA 65 TECH 68 AMS 69 TECH 68 AMS 68 TECH 68 AMS 69 TECH 68 AMS 69 TECH 68 AMS 66 BIOKA66 BIOKA66 JASA 65 JASA 65 JASA 65 AMS 68 AMS 68 BIOKA66 JASA 65 AMS 68	NO .6 181 837 857 751 211 1 232 825 565 308 1255 447 2149 578 739 492 889 313 119 268 313 119 266 338 119 268 338 361 361 361 361 361 361 361 361 361 361
CONTRIBUTIONS TO THE K-SAMPLE CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NOMPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIONS FOR MIXTURE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN SOME CIRCULAR COVERAGE A BAYESIAN APPROACH TO SOME OUTLIER ELIMINATION OF VARIATES IN LINEAR DISCRIMINATION THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION FUNCTION BETWEEN COMPOSITE HYPOTHESES AND RELATED CONFIDENCE RECIONS FOR SOME MULTIVARIATE LOCATION TYPE TESTS FOR SOME BEHRENS-FISHER-TYPE REGRESSION CONCEPT OF A FUTURE OBSERVATION IN GOODNESS-OF-FIT FICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESSION CONCEPT OF A FUTURE OBSERVATION IN GOODNESS-OF-FIT FICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESSION COVARIANCE MATRICES IN TIME SERIES REGRESSION REGULAR GENERALIZED SUBMARTINGALES IN STOPPING	PROBLEM, PROBLEM, PROBLEM, PROBLEMS,	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES ON THE LI ON THE LI ON THE NUMBER OF CLASSES ON THE NUMBER OF THE NUMBER OF CLASSES ON THE NUMBER OF THE NUMBER OF THE USE OF THE LOWER BOUNDS FOR MINIMUM A NOTE ON RISK AND MAXIMAL	AMS 69 AMS 64 JASA 66 TECH 63 TECH 63 AMS 64 AMS 64 AMS 65 JASA 65 JASA 65 JASA 65 JASA 69 BIOKA61 BIOKA61 BIOKS66 JASA 68 BIOKS66 JASA 68 BIOKS66 JASA 68 BIOKS66 JASA 68 BIOKS66 JASA 68 BIOKS66 JASA 68 BIOKS66 JASA 68 BIOKS66 JASA 68 BIOKS66 AMS 67 TECH 68 BIOKS66 AMS 67 TECH 68 BIOKS66 JASA 68 BIOKS66 JASA 68 BIOKS66 AMS 67	NO .6 181 837 857 751 211 1 232 825 565 308 1255 447 2149 578 739 492 889 313 119 268 161 339 1756 339 1756 339 163 83 843 362 606
CONTRIBUTIONS TO THE K-SAMPLE CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIGNS FOR MIXTURE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN SOME CIRCULAR COVERAGE A BAYESIAN APPROACH TO SOME OUTLIER ELIMINATION OF VARIATES IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION THE DISTRIBUTION OF SOME MULTIVARIATE LOCATION TYPE TESTS FOR SOME BEHEREN-FISHER-TYPE REGRESSION CONCEPT OF A FUTURE OBSERVATION IN GOODNESS-OP-FIT FICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESSION COVERTIONS TO SOME SIMULTANEOUS INFERENCE	PROBLEM, PROBLEM, PROBLEM, PROBLEMS,	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES ON ANCILLARY DISCRIMINANT NONPARAMETRIC SOME SCHEFFE THE USE OF THE APPLICATION OF A MODI LOWER BOUNDS FOR MINIMUM A NOTE ON RISK AND MAXIMAL THE EQUAL PROBABILITY TEST	AMS 69 AMS 64 JASA 68 TECH 60 AMS 62 AMS 63 TECH 63 AMS 64 AMS 64 AMS 65 JASA 65 JASA 65 JASA 66 JASA 69 JASA 69 JASA 69 JASA 68 JASA 66 JASA 68 JASA 66 JASA 68 JASA 66 JASA 66 JASA 66 JASA 66 JASA 66 JASA 66 JASA 67	NO .6 181 837 857 751 211 232 825 565 308 1255 447 2149 578 739 492 889 313 119 268 161 1756 339 1373 1163 83 843 362 606 986
CONTRIBUTIONS TO THE K-SAMPLE CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NOMPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIGNS FOR MIXTURE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN SOME CIRCULAR COVERAGE A BAYESIAN APPROACH TO SOME OUTLIER ELIMINATION OF VARIATES IN LINEAR DISCRIMINATION THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION FUNCTION BETWEEN COMPOSITE HYPOTHESES AND RELATED CONFIDENCE RECIONS FOR SOME MULTIVARIATE LOCATION TYPE TESTS FOR SOME BEHRENS-FISHER-TYPE REGRESSION CONCEPT OF A FUTURE OBSERVATION IN GOODNESS-OF-FIT FICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESSION COVARIANCE MATRICES IN TIME SERIES REGRESSION REGULAR GENERALIZED SUBMARTINGALES IN STOPPING	PROBLEM, PROBLEM, PROBLEM, PROBLEMS,	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES ON ANCILLARY DISCRIMINANT NONPARAMETRIC SOME SCHEFFE THE USE OF THE APPLICATION OF A MODI LOWER BOUNDS FOR MINIMUM A NOTE ON RISK AND MAXIMAL THE EQUAL PROBABILITY TEST	AMS 69 AMS 64 JASA 68 TECH 60 AMS 62 AMS 63 TECH 63 AMS 64 AMS 64 AMS 65 JASA 65 JASA 65 JASA 66 JASA 69 JASA 69 JASA 69 JASA 68 JASA 66 JASA 68 JASA 66 JASA 68 JASA 66 JASA 66 JASA 66 JASA 66 JASA 66 JASA 66 JASA 67	NO .6 181 837 857 751 211 232 825 565 308 1255 447 2149 578 739 492 889 313 119 268 161 1756 339 1373 1163 83 843 362 606 986
CONTRIBUTIONS TO THE K-SAMPLE CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIGNS FOR MIXTURE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN SOME CIRCULAR COVERAGE A BAYESIAN APPROACH TO SOME OUTLIER ELIMINATION OF VARIATES IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION THE DISTRIBUTION OF SOME MULTIVARIATE LOCATION TYPE TESTS FOR SOME BEHEREN-FISHER-TYPE REGRESSION CONCEPT OF A FUTURE OBSERVATION IN GOODNESS-OP-FIT FICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESSION COVERTIONS TO SOME SIMULTANEOUS INFERENCE	PROBLEM, PROBLEM, PROBLEM, PROBLEMS,	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES UNBIASED ESTIMATION OF THE NUMBER OF CLASSES ANCILLARY DISCRIMINANT NONPARAMETRIC SOME SCHEFFE— THE USE OF THE APPLICATION OF A MODIL LOWER BOUNDS FOR MINIMUM A NOTE ON RISK AND MAXIMAL THE EQUAL PROBABILITY TEST A CONSERVATURE TEST FOR THE	AMS 69 AMS 64 JASA 6B TECH 63 AMS 62 AMS 63 TECH 63 AMS 64 AMS 64 AMS 64 AMS 65 JASA 65 AMS 67 AMS 68 TECH 68 AMS 69 BIOKA6B BIOKA6B BIOKA6B JASA 65 JASA 65 AMS 68 AMS 68 BIOKA66 BIOKA66 AMS 68 AMS 68 BIOKA66 BIOKA66 BIOKA66	NO .6 181 837 887 751 211 1 232 825 565 308 1255 447 2149 578 739 492 889 313 119 268 313 119 268 338 43 362 606 986 986
CONTRIBUTIONS TO THE K-SAMPLE CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIONS FOR MIXTURE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN SOME CIRCULAR COVERAGE A BAYESIAN APPROACH TO SOME OUTLIER ELIMINATION OF VARIATES IN LINEAR DISCRIMINATION THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION FUNCTION BETWEEN COMPOSITE HYPOTHESES AND RELATED CONFIDENCE REGIONS FOR SOME MULTIVARIATE LOCATION TYPE TESTS FOR SOME BEHRENS-FISHER-TYPE REGRESSION CONCEPT OF A FUTURE OBSERVATION IN GOODNESS-OF-FIT FICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESSION CONCEPT OF A FUTURE OBSERVATION IN GOODNESS-OF-FIT FICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESSION REGULAR GENERALIZED SUBMARTINGALES IN STOPPING AND ITS APPLICATIONS TO SOME SIMULTIVARIATE RECRESSION REGULAR GENERALIZED SUBMARTINGALES IN STOPPING AND ITS APPLICATIONS TO SOME SIMULTIVARIATE RECRESSION STEIN'S TYPE FOR A CLASS OF MULTIVARIATE RECRESSION	PROBLEM, PROBLEM, PROBLEM, PROBLEMS,	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES ON THE LI ANCILLARY DISCRIMINANT NONPARAMETRIC SOME SCHEFFE— THE USE OF THE APPLICATION OF A MODI LOWER BOUNDS FOR MINIMUM A NOTE ON RISK AND MAXIMAL THE EQUAL PROBABILITY TEST A CONSERVATIVE TEST FOR THE SEQUENTIAL INFERENCE PROCEDURES OF	AMS 69 AMS 64 JASA 66 TECH 63 AMS 62 AMS 63 TECH 63 AMS 64 AMS 64 AMS 64 AMS 65 JASA 65 AMS 67 AMS 68 TECH 68 AMS 69 JASA 69 BIOKA66 JASA 69 BIOKA66 JASA 66 JASA 66 BIOKA66 JASA 66 AMS 67 JASA 66 BIOKA66 AMS 67 JASA 66 BIOKA66 AMS 67 JASA 66 BIOKA66 AMS 67 JASA 66 AMS 67 JASA 66	NO .6 181 837 857 751 211 1 232 825 565 308 1255 447 2149 578 739 492 889 313 119 268 161 1756 339 1373 1163 83 843 362 606 986 986 986 986 986 986 986 986 986 98
CONTRIBUTIONS TO THE K-SAMPLE CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIGNS FOR MIXTURE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN SOME CIRCULAR COVERAGE A BAYESIAN APPROACH TO SOME OUTLIER ELIMINATION OF VARIATES IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION TYPE TESTS FOR SOME BEHRENS-FISHER-TYPE REGRESSION CONCEPT OF A FUTURE OBSERVATION IN GOODNESS-OP-FIT FICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESSION COVARIANCE MATRICES IN TIME SERIES REGRESSION REGULAR GENERALIZED SUBMARTINGALES IN STOPPING AND ITS APPLICATIONS TO SOME SIMULTANEOUS INFERENCE CONCURRENCE OF SEVERAL REGRESSION LINES AND RELATED STEIN'S TYPE FOR A CLASS OF MULTIVARIATE RECRESSION VARIANCE MODEL USEFULL ESPECIALLY FOR GROWTH CURVE	PROBLEM, PROBLEM, PROBLEM, PROBLEM, PROBLEMS,	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES ON ANCILLARY DISCRIMINANT NOMPARAMETRIC SOME SCHEFFE- THE USE OF THE APPLICATION OF A MODI LOWER BOUNDS FOR MINIMUM A NOTE ON RISK AND MAXIMAL THE EQUAL PROBABILITY TEST A CONSERVATIVE TEST FOR THE SEQUENTIAL INFERENCE PROCEDURES OF A CENERALIZED MULTIVARIATE ANALYSIS OF	AMS 69 AMS 64 JASA 68 TECH 63 AMS 63 TECH 63 AMS 64 AMS 64 AMS 64 AMS 65 JASA 65 JASA 65 JASA 66 JASA 69 BIOKA61 JASA 68 BIOCS66 JASA 68 BIOCS66 JASA 68 BIOKA66 AMS 67 TECH 68 BIOCS66 JASA 68 BIOKA66 AMS 67 TECH 68 BIOKA66	NO .6 181 837 857 751 211 232 825 565 308 1255 447 2149 578 739 492 889 313 119 268 161 339 1373 1163 83 843 362 696 986 272 1039 313
CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALGGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIGNS FOR MILTISAMPLE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN SOME CIRCULAR COVERAGE A BAYESIAN APPROACH TO SOME OUTLIER ELIMINATION OF VARIATES IN LINEAR DISCRIMINATION THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION FUNCTION BETWEEN COMPOSITE HYPOTHESES AND RELATED CONPIDENCE REGIONS FOR SOME MULTIVARIATE LOCATION TYPE TESTS FOR SOME BEHRENS-FISHER-TYPE REGRESSION CONCEPT OF A FUTURE OBSERVATION IN GOODNESS-OP-FIT FICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESSION COVARIANCE MATRICES IN TIME SERIES REGRESSION COVARIANCE MATRICES IN TIME SERIES REGRESSION COVARIANCE MATRICES IN TIME SERIES REGRESSION REGULAR GENERALIZED SUBMARTINGALES IN STOPPING CONCURRENCE OF SEVERAL REGRESSION LINES AND RELATED STEIN'S TYPE FOR A CLASS OF MULTIVARIATE RECRESSION VARIANCE MODEL USEPULL ESPECIALLY FOR GROWTH CURVE MPIRICAL BAYES APPROACH TO SOME STATISTICAL DECISION	PROBLEM, PROBLEM, PROBLEM, PROBLEMS,	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES UNBIASED ESTIMATION OF THE NUMBER OF CLASSES ANCILLARY DISCRIMINANT NONPARAMETRIC SOME SCHEFFE— THE USE OF THE APPLICATION OF A MODI LOWER BOUNDS FOR MINIMUM A NOTE ON RISK AND MAXIMAL THE EQUAL PROBABILITY TEST A CONSERVATIVE TEST FOR THE SEQUENTIAL INFERENCE PROCEDURES OF A CENERALIZED MULTIVARIATE ANALYSIS OF A SUPPLEMENTARY SAMPLE NON-PARAMETRIC E	AMS 69 AMS 64 JASA 6B JASA 6B TECH 63 AMS 62 AMS 63 TECH 63 AMS 64 AMS 65 AMS 65 AMS 67 AMS 67 AMS 68 TECH 68 AMS 69 JASA 69 BIOKA6B BIOKA6B AMS 68 AMS 68 TECH 68 AMS 69 JASA 69 BIOKA66 AMS 68 AMS 68 AMS 68 BIOKA66 AMS 68	No.6 181 837 887 751 211 1 232 825 565 308 1255 447 2149 578 739 492 889 313 119 268 8161 1756 338 161 1756 338 163 843 362 606 986 272 1039 313 451
CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIONS FOR MIXTURE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN SOME CIRCULAR COVERAGE A BAYESIAN APPROACH TO SOME OUTLIER ELIMINATION OF VARIATES IN LINEAR DISCRIMINATION THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION FUNCTION BETWEEN COMPOSITE HYPOTHESES AND RELATED CONFIDENCE REGIONS FOR SOME MULTIVARIATE LOCATION TYPE TESTS FOR SOME BEHRENS-FISHER-TYPE REGRESSION CONCEPT OF A FUTURE OBSERVATION IN GOODNESS-OF-FIT FICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESSION CONCEPT OF A FUTURE OBSERVATION IN GOODNESS-OF-FIT FICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESSION REGULAR GENERALIZED SUBMARTINGALES IN STOPPING AND ITS APPLICATIONS TO SOME SIMULTIVARIATE RECRESSION REGULAR GENERALIZED SUBMARTINGALES IN STOPPING AND ITS APPLICATIONS TO SOME SIMULTIVARIATE RECRESSION VARIANCE MODEL USEFULL ESPECIALLY FOR GROWTH CURVE STEIN'S TYPE FOR A CLASS OF MULTIVARIATE RECRESSION VARIANCE MODEL USEFULL ESPECIALLY FOR GROWTH CURVE WIFICAL BAYES APPROACH TO SOME STATISTICAL DECISION STS OF THE PARAMETRIC GOODNESS OF FIT AND TWO-SAMPLE	PROBLEM, PROBLEM, PROBLEM, PROBLEMS,	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES UNBIASED ESTIMATION OF THE NUMBER OF CLASSES ANCILLARY DISCRIMINANT NONPARAMETRIC SOME SCHEFFE— THE USE OF THE APPLICATION OF A MODI LOWER BOUNDS FOR MINIMUM A NOTE ON RISK AND MAXIMAL THE EQUAL PROBABILITY TEST A CONSERVATIVE TEST FOR THE SEQUENTIAL INFERENCE PROCEDURES OF A CEMERALIZED MULTIVARIATE ANALYSIS OF A SUPPLEMENTARY SAMPLE NON-PARAMETRIC E SEQUENTIAN INFERENCE PROCEDURES OF A SUPPLEMENTARY SAMPLE NON-PARAMETRIC E SEQUENTIAN TO SAMPLE SPACINGS THEORY, II. TE	AMS 69 AMS 64 JASA 66 TECH 63 AMS 62 AMS 63 TECH 63 AMS 64 AMS 64 AMS 64 AMS 65 JASA 65 AMS 67 AMS 68 TECH 68 TECH 68 TECH 68 TECH 68 TECH 68 JASA 69 JASA 69 BIOKA6B BIOKS6B JASA 68 BIOKA6B AMS 67 AMS 67 AMS 68	NO .6 181 837 857 751 211 1 232 825 565 308 1255 447 2149 578 292 889 313 119 268 161 1756 339 1373 1163 83 843 845 161 1756 339 1373 1163 11756 339 1373 1163 1163 11756 1175
CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIGNS FOR MIXTURE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN SOME CIRCULAR COVERAGE A BAYESIAN APPROACH TO SOME OUTLIER ELIMINATION OF VARIATES IN LINEAR DISCRIMINATION THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION FUNCTION BETWEEN COMPOSITE HYPOTHESES AND RELATED CONFIDENCE REGIONS FOR SOME MULTIVARIATE LOCATION TYPE TESTS FOR SOME BEHRENS-FISHER-TYPE REGRESSION CONCEPT OF A FUTURE OBSERVATION IN GOODNESS-OP-FIT FICATION OF DAVIDON'S METHOD TO NONLINEAR RECRESSION COVARIANCE MATRICES IN TIME SERIES REGRESSION COVARIANCE MATRICES IN TIME SERIES REGRESSION REGULAR GENERALIZED SUBMARTINGALES IN STOPPING AND ITS APPLICATIONS TO SOME SIMULTIVARIATE RECRESSION VARIANCE MODEL USEFULL ESPECIALLY FOR GROWTH CURVE MPIRICAL BAYES APPROACH TO SOME STATISTICAL DECISION VARIANCE MODEL USEFULL ESPECIALLY FOR GROWTH CURVE MPIRICAL BAYES APPROACH TO SOME STATISTICAL DECISION VARIANCE MODEL USEFULL ESPECIALLY FOR GROWTH CURVE MPIRICAL BAYES APPROACH TO SOME STATISTICAL DECISION VARIANCE MODEL USEFULL ESPECIALLY FOR GROWTH CURVE MPIRICAL BAYES APPROACH TO SOME STATISTICAL DECISION VARIANCE MODEL USEFULL ESPECIALLY FOR GROWTH CURVE MPIRICAL BAYES APPROACH TO SOME STATISTICAL DECISION VARIANCE MODEL USEFULL ESPECIALLY FOR GROWTH CURVE MPIRICAL BAYES APPROACH	PROBLEM: PRO	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES ON ANCILLARY DISCRIMINANT NONPARAMETRIC SOME SCHEFFE— THE USE OF THE APPLICATION OF A MODI LOWER BOUNDS FOR MINIMUM A NOTE ON RISK AND MAXIMAL THE EQUAL PROBABILITY TEST A CONSERVATIVE TEST FOR THE SEQUENTIAL INFERENCE PROCEDURES OF A CENERALIZED MULTIVARIATE ANALYSIS OF A SUPPLEMENTARY SAMPLE NON-PARAMETRIC E SEQUENTIAL INFERENCE PROCEDURES OF A CENERALIZED MULTIVARIATE ANALYSIS OF A SUPPLEMENTARY SAMPLE NON-PARAMETRIC E SEQUENTIAL INFERENCE PROCEDURES OF A CENERALIZED MULTIVARIATE ANALYSIS OF A SUPPLEMENTARY SAMPLE NON-PARAMETRIC E SEQUENTIAL INFERENCE PROCEDURES OF A SUPPLEMENTARY SAMPLE NON-PARAMETRIC E SEQUENTIAL INFERENCE PROCEDURES OF A SUPPLEMENTARY SAMPLE NON-PARAMETRIC E SEQUENTIAL INFERENCE PROCEDURES OF A SUPPLEMENTARY SAMPLE NON-PARAMETRIC E SEQUENTIAL INFERENCE PROCEDURES OF A SUPPLEMENTARY SAMPLE NON-PARAMETRIC E SEQUENTIAL INFERENCE PROCEDURES OF A SUPPLEMENTARY SAMPLE NON-PARAMETRIC E SEQUENTIAL INFERENCE PROCEDURES OF A SUPPLEMENTARY SAMPLE NON-PARAMETRIC E SEQUENTIAL INFERENCE PROCEDURES OF A CENERALIZED MULTIVARIATE ANALYSIS OF A SUPPLEMENTARY SAMPLE NON-PARAMETRIC E SEQUENTIAL INFERENCE PROCEDURES OF A CENERALIZED MULTIVARIATE ANALYSIS OF A SUPPLEMENTARY SAMPLE NON-PARAMETRIC E SEQUENTIAL INFERENCE PROCEDURES OF A CENERALIZED MULTIVARIATE ANALYSIS OF A SUPPLEMENTARY SAMPLE NON-PARAMETRIC E SEQUENTIAL INFERENCE PROCEDURES OF A CENERALIZED MULTIVARIATE ANALYSIS OF A SUPPLEMENTARY SAMPLE NON-PARAMETRIC E SEQUENTARY SAMP	AMS 69 AMS 64 JASA 68 TECH 63 AMS 64 AMS 63 TECH 63 AMS 64 AMS 64 AMS 65 JASA 65 JASA 65 JASA 65 JASA 65 JASA 66 JASA 68 BIOKA61 JASA 68 BIOKA66 JASA 68 JASA	NO .6 181 837 857 751 211 232 825 565 308 1255 447 2149 578 739 492 889 313 119 268 161 339 1373 1163 83 843 362 606 986 272 1039 986 272 1039 1039 1039 1039 1039 1039 1039 1039
CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALGGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIGNS FOR MILTISAMPLE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN SOME CIRCULAR COVERAGE A BAYESIAN APPROACH TO SOME OUTLIER ELIMINATION OF VARIATES IN LINEAR DISCRIMINATION THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION FUNCTION BETWEEN COMPOSITE HYPOTHESES AND RELATED CONFIDENCE REGIONS FOR SOME MULTIVARIATE LOCATION TYPE TESTS FOR SOME BEHRENS-FISHER-TYPE REGRESSION CONCEPT OF A FUTURE OBSERVATION IN GOODNESS-OP-FIT FICATION OF DAVIDON'S METHOD TO NONLINEAR REGRESSION COVARIANCE MATRICES IN TIME SERIES REGRESSION COVARIANCE MATRICES IN TIME SERIES REGRESSION REGULAR GENERALIZED SUBMARTINGALES IN STOPPING CONCURRENCE OF SEVERAL REGRESSION LINES AND RELATED STEIN'S TYPE FOR A CLASS OF MULTIVARIATE RECRESSION VARIANCE MODEL USEPULL ESPECIALLY FOR GROWTH CURVE MPIRICAL BAYES APPROACH TO SOME STATISTICAL DECISION STS OF THE PARAMETRIC GOODNESS OF FIT AND TWO-SAMPLE ITE POPULATIONS WITH AN APPLICATION TO BULK SAMPLING LY INVARIANT TESTS FOR CLASSICAL MULTIVARIATE NORMAL LY INVARIANT TESTS FOR CLASSICAL MULTIVARIATE NORMAL	PROBLEM, PROBLEM, PROBLEM, PROBLEMS,	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES UNBIASED ESTIMATION OF THE NUMBER OF CLASSES ANCILLARY DISCRIMINANT SOME SCHEFFE— THE USE OF THE SOME SCHEFFE— THE USE OF THE LOWER BOUNDS FOR MINIMUM A NOTE ON RISK AND MAXIMAL THE EQUAL PROBABILITY TEST A CONSERVATIVE TEST FOR THE SEQUENTIAL INFERENCE PROCEDURES OF A CENERALIZED MULTIVARIATE ANALYSIS OF A SUPPLEMENTARY SAMPLE NON-PARAMETRIC E SEMENTALY SAMPLE SPACINGS THEORY, II. TE SEMENTARY SAMPLE NON-PARAMETRIC E	AMS 69 AMS 64 JASA 6B JECH 68 AMS 62 AMS 63 TECH 63 AMS 64 AMS 64 AMS 65 AMS 67 AMS 67 AMS 67 AMS 68 TECH 68 AMS 69 JASA 69 BIOKA6B BIOKA6B BIOKA6B BIOKA6B JASA 65 JASA 65 AMS 68 TECH 68 AMS 68 TECH 68 AMS 69 BIOKA6B BIOKA6B BIOKA6B BIOKA6B BIOKA6B BIOKA6B BIOKA6B BIOKA6B AMS 68 TECH 68 AMS 68 TECH 68 AMS 68 TECH 68 AMS 68 TECH 68 AMS 66 TECH 68 AMS 66 TECH 68 AMS 66	NO .6 181 837 1857 751 211 1 232 825 565 308 1255 447 2149 578 739 492 889 313 119 268 313 119 268 313 1163 83 362 606 986 272 1039 313 451 925 355 55 57 47
CONTRIBUTIONS TO THE K-SAMPLE KELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX TEAM DECISION GENERALIZED BAYES SOLUTIONS IN ESTIMATION RANDOM HAZARD IN RELIABILITY THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE A BAYESIAN APPROACH TO SOME BEST POPULATION BOUNDS ON INTECRALS WITH APPLICATIONS TO RELIABILITY AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION MODELS FOR CATALOGUING STRINGENT SOLUTIONS TO STATISTICAL DECISION WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION SOME NONPARAMETRIC TESTS FOR MULTISAMPLE RESPONSE SURFACE DESIGNS FOR MIXTURE AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION ON THE CLASSICAL RUIN SOME CIRCULAR COVERAGE A BAYESIAN APPROACH TO SOME OUTLIER ELIMINATION OF VARIATES IN LINEAR DISCRIMINATION THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROCRAMMING STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION FUNCTION BETWEEN COMPOSITE HYPOTHESES AND RELATED CONFIDENCE REGIONS FOR SOME MULTIVARIATE LOCATION TYPE TESTS FOR SOME BEHRENS-FISHER-TYPE REGRESSION CONCEPT OF A FUTURE OBSERVATION IN GOODNESS-OP-FIT FICATION OF DAVIDON'S METHOD TO NONLINEAR RECRESSION COVARIANCE MATRICES IN TIME SERIES REGRESSION COVARIANCE MATRICES IN TIME SERIES REGRESSION REGULAR GENERALIZED SUBMARTINGALES IN STOPPING AND ITS APPLICATIONS TO SOME SIMULTIVARIATE RECRESSION VARIANCE MODEL USEFULL ESPECIALLY FOR GROWTH CURVE MPIRICAL BAYES APPROACH TO SOME STATISTICAL DECISION VARIANCE MODEL USEFULL ESPECIALLY FOR GROWTH CURVE MPIRICAL BAYES APPROACH TO SOME STATISTICAL DECISION VARIANCE MODEL USEFULL ESPECIALLY FOR GROWTH CURVE MPIRICAL BAYES APPROACH TO SOME STATISTICAL DECISION VARIANCE MODEL USEFULL ESPECIALLY FOR GROWTH CURVE MPIRICAL BAYES APPROACH TO SOME STATISTICAL DECISION VARIANCE MODEL USEFULL ESPECIALLY FOR GROWTH CURVE MPIRICAL BAYES APPROACH TO SOME STATISTICAL DECISION VARIANCE MODEL USEFULL ESPECIALLY FOR GROWTH CURVE MPIRICAL BAYES APPROACH	PROBLEM, PROBLEM, PROBLEM, PROBLEMS,	A SYMMETRIC STATISTIC CORR. 64 1388 ON THE LI UNBIASED ESTIMATION OF THE NUMBER OF CLASSES UNBIASED ESTIMATION OF THE NUMBER OF CLASSES ANCILLARY DISCRIMINANT SOME SCHEFFE— THE USE OF THE SOME SCHEFFE— THE USE OF THE LOWER BOUNDS FOR MINIMUM A NOTE ON RISK AND MAXIMAL THE EQUAL PROBABILITY TEST A CONSERVATIVE TEST FOR THE SEQUENTIAL INFERENCE PROCEDURES OF A CENERALIZED MULTIVARIATE ANALYSIS OF A SUPPLEMENTARY SAMPLE NON-PARAMETRIC E SEMENTALY SAMPLE SPACINGS THEORY, II. TE SEMENTARY SAMPLE NON-PARAMETRIC E	AMS 69 AMS 64 JASA 6B JECH 68 AMS 62 AMS 63 TECH 63 AMS 64 AMS 64 AMS 65 AMS 67 AMS 67 AMS 67 AMS 68 TECH 68 AMS 69 JASA 69 BIOKA6B BIOKA6B BIOKA6B BIOKA6B JASA 65 JASA 65 AMS 68 TECH 68 AMS 68 TECH 68 AMS 69 BIOKA6B BIOKA6B BIOKA6B BIOKA6B BIOKA6B BIOKA6B BIOKA6B BIOKA6B AMS 68 TECH 68 AMS 68 TECH 68 AMS 68 TECH 68 AMS 68 TECH 68 AMS 66 TECH 68 AMS 66 TECH 68 AMS 66	NO .6 181 837 1857 751 211 1 232 825 565 308 1255 447 2149 578 739 492 889 313 119 268 313 119 268 313 1163 83 362 606 986 272 1039 313 451 925 355 55 57 47

```
FARM LEVEL. SOME EMPIRICAL MEASUREMENTS AND RELATED PROBLEMS DEMAND FOR FARM PRODUCTS AT RETAIL AND THE JASA 5B 656
 BACKCROUND PROBABILISTIC AND STATISTICAL MODELS AND PROBLEMS (INVITED PAPER) /ILITY TESTING, BIOLOGICAL BIOCS69
                                                                                                                     207
                           SOME RESULTS ON INVENTORY PROBLEMS (WITH DISCUSSION)
                                                                                                           JRSSR62
       APPROACH TO SOME SCREENING AND CLASSIFICATION PROBLEMS (WITH DISCUSSION)
                                                                                                  A CENERAL JRSSB68
                                                                                                                     407
CHANCES OVER TIME
                                           INFERENCE PROBLEMS ABOUT PARAMETERS WHICH ARE SUBJECTED TO
                                                                                                            AMS 68
                                                                                                                     R40
                                      BULK SAMPLING. PROBLEMS AND LINES OF ATTACK
                                                                                                            TECH 62
                                                                                                                     319
                 THREE SOURCES OF DATA ON COMMUTING.
                                                     PROBLEMS AND POSSIBILITIES
                                                                                                            JASA 60
                                                                                                                       R
UAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQUARES PROBLEMS AND THE ROBUSTNESS OF THE F-TEST
                                                                                                 /OF RESID BIOKA62
                                                                                                                      B3
DISTRIBUTIONS USING MOMENTS
                                                SOME PROBLEMS ARISING IN APPROXIMATING TO PROBABILITY
                                                                                                                      95
                                                                                                            BTOKA63
                                A SURVEY OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA TARCETS
                                                                                                            TECH 69
                                                                                                                     561
NS IN NORMAL VECTORS
                             ON CERTAIN DISTRIBUTION PROBLEMS BASED ON POSITIVE DEFINITE QUADRATIC FUNCTIO
                                                                                                            AMS 66
                                                                                                                     468
           MINIMAX SOLUTION OF STATISTICAL DECISION PROBLEMS BY ITERATION
                                                                                                             AMS 66 1643
DISCUSSION)
                                    SOME STATISTICAL PROBLEMS CONNECTED WITH CRYSTAL LATTICES (WITH
                                                                                                            JRSSB64
                                                                                                                     367
HE PRODUCT OF A WISHART VARIATE/
                                   SOME DISTRIBUTION PROBLEMS CONNECTED WITH THE CHARACTERISTIC ROOTS OF T
                                                                                                            AMS 67
                                                                                                                     944
                                  SOME FIRST PASSAGE PROBLEMS FOR S-SUB-N-OVER-ROOT-N
                                                                                                             AMS 69
                                                                                                                     648
                                      MULTIPARAMETER PROBLEMS FROM A BAYESIAN POINT OF VIEW
                                                                                                             AMS 65 1468
TIPLE DECISION PROCEDURES BASED ON RANKS FOR CERTAIN PROBLEMS IN ANALYSIS OF VARIANCES
                                                                                                        MUL AMS 69
                                                                                                                     619
                            SOME EXPERIMENTAL DESIGN PROBLEMS IN ATTRIBUTE LIFE TESTING, CORR. 63 1161
                                                                                                            JASA 62
                                                                                                                     668
EXPENDITURES
                                                     PROBLEMS IN ESTIMATING FEDERAL COVERNMENT
                                                                                                                     717
                                                                                                            JASA 59
                                    SOME STATISTICAL PROBLEMS IN EXPERIMENTAL PSYCHOLOCY (WITH DISCUSSION)
                                                                                                           JRSSB56
                                                                                                                     177
                                                SOME PROBLEMS IN INTERVAL ESTIMATION (WITH DISCUSSION)
                                                                                                            JRSSR54
                                                                                                                     175
                                                                                              A NOTE ON A
CENERALIZED INVERSE OF A MATRIX WITH APPLICATIONS TO PROBLEMS IN MATHEMATICAL STATISTICS
                                                                                                            JRSSB62
                                                                                                                     152
                                                     PROBLEMS IN MEASURING LONG TERM GROWTH IN INCOME AND
WEALTH
                                                                                                           JASA 57
                                                                                                                     450
                                                     PROBLEMS IN MENTAL TEST THEORY ARISING FROM ERRORS OF JASA 59
 MEASUREMENT
                                                                                                                     472
                       SOME NON-CENTRAL DISTRIBUTION PROBLEMS IN MULTIVARIATE ANALYSIS
                                                                                                             AMS 63 1270
                                           ONE SIDED PROBLEMS IN MULTIVARIATE ANALYSIS
                                                                                                             AMS 69
                                                                                                                     549
 OF VIEW (CORR. 68 1551)
                             PREDICTION AND DECISION PROBLEMS IN REGRESSION MODELS FROM THE BAYESIAN POINT JASA 65
                                                                                                                     608
                                         STATISTICAL PROBLEMS IN SCIENCE. THE SYMMETRIC TEST OF A COMPLETE JASA 69 NO.4
 HYPOTHESIS
                                                 TWO PROBLEMS IN SETS OF MEASUREMENTS
                                                                                                            BIOKA54
                                                                                                                     560
  APPLICATIONS OF MEIJER-C FUNCTIONS TO DISTRIBUTION PROBLEMS IN STATISTICS
                                                                                                       SOME BIOKA58
                                                                                                                     578
PROPOSAL
                                                     PROBLEMS IN THE ANALYSIS OF SURVEY DATA, AND A
                                                                                                            JASA 63
                                                                                                                     415
INTER-INDUSTRY TABLES, CORR. 64 1299
                                                     PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF
                                                                                                            JASA 64
                                                                                                                     256
 (WITH DISCUSSION)
                                                     PROBLEMS IN THE PROBABILITY THEORY OF STORACE SYSTEMS JRSSB57
                                                                                                                     181
 (WITH DISCUSSION)
                                                SOME PROBLEMS IN THE STATISTICAL ANALYSIS OF EPIDEMIC DATA JRSSB55
                                                                                                                     35
                                                SOME PROBLEMS IN THE THEORY OF DAMS (WITH DISCUSSION)
                                                                                                            JRSSB57
                                                                                                                     207
                                                SOME PROBLEMS IN THE THEORY OF OPTIMAL STOPPING RULES
                                                                                                             AMS 67 1627
                                                     PROBLEMS IN THE THEORY OF PROVISIONING AND OF DAMS
                                                SOME
                                                                                                            BIOK455
                                                                                                                     179
AN UNKNOWN POINT
                                                  ON PROBLEMS IN WHICH A CHANGE IN A PARAMETER OCCURS AT
                                                                                                            BIOKA57
                                                SOME PROBLEMS INVOLVING LINEAR HYPOTHESES IN MULTIVARIATE
ANALYSIS
                                                                                                            BIOKA59
    MINIMUM VARIANCE UNBIASED ESTIMATION AND CERTAIN PROBLEMS OF ADDITIVE NUMBER THEORY
                                                                                                             AMS 63 1050
                             STATISTICAL APPROAGH TO PROBLEMS OF COSMOLOGY (WITH DISCUSSION)
                                                                                                            JRSSB58
                                             ON SOME PROBLEMS OF MACHINE INTERFERENCE
                                                                                                            JRSSB59
N. 'THE NON-CENTRAL WISHART DISTRIBUTION AND CERTAIN PROBLEMS OF MULTIVARIATE STATISTICS', 46 409
                                                                                                     /ECTIO
                                                                                                             AMS 64
                                                                                                                     923
                          EXPLICIT SOLUTIONS TO SOME PROBLEMS OF OPTIMAL STOPPING
                                                                                                             AMS 69
                                                                                                                     993
                                                SOME PROBLEMS OF OPTIMAL STOPPING
                                                                                                            JRSSB68
                                                                                                                     108
                                                SOME PROBLEMS OF OPTIMUM SAMPLING
                                                                                                            BIOKA54
ACRICULTURAL SURVEY
                                                      PROBLEMS OF SAMPLE ALLOCATION AND ESTIMATION IN AN
                                                                                                            JRSSB54
                                                                                                                     223
                                        SOME MODEL I
                                                     PROBLEMS OF SELECTION
                                                                                                             AMS 61
                                                                                                                     990
                                                     PROBLEMS OF SELECTION WITH RESTRICTIONS
                                                                                                            JRSSB62
                                                                                                                     401
 TREATMENT OF CONTINCENCY, GOODNESS OF FIT AND OTHER PROBLEMS OF SIGNIFICANCE
                                                                                          NOTE ON AN EXACT BIOKA51
                                                SOME PROBLEMS OF STATISTICAL INFERENCE IN ABSORBING MARKOV BIOKA65
                                                                                                                     127
IAL REFERENCE TO THE CIGARETTE SMOKINC AND LUNC C/
                                                     PROBLEMS OF STATISTICAL INFERENCE IN HEALTH WITH SPEC JASA 69
                                                                                                                     739
                                                SOME PROBLEMS OF STATISTICAL PREDICTION
                                                                                                            BIOKA65
                                                                                                                     469
                                                SOME PROBLEMS OF THE HOUSEHOLD INTERVIEW DESIGN FOR THE
NATIONAL HEALTH SURVEY
                                                                                                            JASA 59
                                                                                                                      69
 MINIMAX RISK AND UNBIASEDNESS FOR MULTIPLE DECISION PROBLEMS OF TYPE I
                                                                                                             AMS 69 1684
                ON LINEAR ESTIMATION FOR REGRESSION PROBLEMS ON TIME SERIES
                                                                                                             AMS 62 1077
L' 53 239
                        CORRECTION TO 'ON A CLASS OF PROBLEMS RELATED TO THE RANDOM DIVISION OF AN INTERVA
                                                                                                             AMS 62
                                                                                                                     812
             DECISION PROCEDURES FOR FINITE DECISION PROBLEMS UNDER COMPLETE ICNORANCE
                                                                                                             AMS 64 1644
     NOTE ON DECISION PROCEDURES FOR FINITE DECISION PROBLEMS UNDER GOMPLETE ICNORANCE
                                                                                                             AMS 65
                                                                                                                     691
PRESENT IN THE SAMPLE
                                          ESTIMATION PROBLEMS WHEN A SIMPLE TYPE OF HETEROGENEITY IS
                                                                                                            BTOKA51
                                          REGRESSION PROBLEMS WHEN THE PREDICTOR VARIABLES ARE PROPORTIONS JRSSB69
                                                                                                                     107
ND THE PRECISIO/ OPTIMAL SAMPLE SIZE IN TWO-ACTION PROBLEMS WHEN THE SAMPLE OBSERVATIONS ARE LOGNORMAL A JASA 68
                                                                                                                     653
                       OPTIMAL DESIGNS IN REGRESSION PROBLEMS WITH A GENERAL CONVEX LOSS FUNCTION
                                                                                                            BTOKA6B
                                                                                                                      5.3
                              DESIGNS FOR RECRESSION PROBLEMS WITH CORRELATED ERRORS
                                                                                                             AMS 66
                                                                                                                      66
                              DESIGNS FOR REGRESSION PROBLEMS WITH CORRELATED ERRORS MANY PARAMETERS
                                                                                                             AMS 68
                                                                                                                     49
        ON THE CHOICE OF VARIABLES IN CLASSIFICATION PROBLEMS WITH DICHOTOMOUS VARIABLES
                                                                                                            BIOKA67
                                                                                                                     668
             TWO-STACE NORMAL SAMPLINC IN TWO-ACTION PROBLEMS WITH LINEAR ECONOMICS
                                                                                                            JASA 69 NO 4
                   SEQUENTIAL SAMPLING, TWO DECISION PROBLEMS WITH LINEAR LOSSES FOR BINOMIAL AND NORMAL R BICKA65
                                                                                                                    507
                    THE SEQUENTIAL COMPOUND DECISION PROBLEMS WITH M-BY-N FINITE LOSS MATRIX
                                                                                                                     954
                                                                                                             AMS 66
T STRINGENT SOMEWHERE MOST POWERFUL TEST FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE /T AND THE MOS
                                                                                                             AMS 68
                                                                                                                     531
ILITY OF THE USUAL ESTIMATORS OF SCALE PARAMETERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCALE PARAMETERS
                                                                                                             AMS 68
                                                                                                                     29
D THE TRANSLATION METHOD, DESCRIPTION AND ESTIMATION PROBLEMS, CORR. 63 1163 /LOCNORMAL DISTRIBUTION AN
                                                                                                                     231
                                                                                                           JASA 63
                       OPTIMUM DESIGNS IN REGRESSION PROBLEMS, II
                                                                                                                     298
                                                                                                             AMS 61
                             A BAYESIAN INDIFFERENCE PROCEDURE
                                                                                                            JASA 65 1104
ON CONVERGENCE OF THE KIEFER-WOLFOWITZ APPROXIMATION PROCEDURE
                                                                                                             AMS 67 1031
                   AN EXTENSION OF THE ROBBINS-MONRO PROCEDURE
                                                                                                             AMS 67
                                                                                                                    181
                                 A SEQUENTIAL SEARCH PROCEDURE
                                                                                                             AMS 67
                                                                                                                     494
                 AN EXTENSION OF PAULSON'S SELECTION PROCEDURE
                                                                                                             AMS 68 2067
                            ON THE POWER OF THE BLUS PROCEDURE
                                                                                                            JASA 68 1227
                  BOUNDS IN A MINIMAX CLASSIFICATION PROCEDURE
                                                                                                            BTOKA65
                                                                                                                    653
                              A SIMPLE RANDOMIZATION PROCEDURE
                                                                                                            JRSSB62
                                                                                                                     472
          A SIMPLIFIED MONTE CARLO SICNIFICANCE TEST PROCEDURE
                                                                                                            JRSSB68
                                                                                                                     582
         NOTES. A DEFICIENCY IN THE SUMMATION OF CHI PROCEDURE
                                                                                                            BIOCS66
                                                                                                                     407
    ON THE MAXIMUM SAMPLE SIZE OF A BAYES SEQUENTIAL PROCEDURE
                                                                                                     BOUNDS AMS 65
                                                                                                                     859
  SAMPLE SIZE AND COVERAGE FOR THE JIRINA SEQUENTIAL PROCEDURE
                                                                                                    ON THE AMS 63
                                                                                                                     847
       ON ZEROS AND TIES IN THE WILCOXON SIGNED RANK PROCEDURE
                                                                                                    REMARKS JASA 59
                                                                                                                     655
```

TITLE WORD INOEX PRO - PRO

RANK TESTS I. MONTE CARLO STUDIES OF THE TWO-SAMPLE	PROCEDURE	SEQUENTIAL THE UTILIZATION OF PAIRWISE COMPARISON CHI-SQUARE TESTS WITH ONE	TECH 65	463
A KNOWN COEFFICIENT OF VARIATION IN THE ESTIMATION	PROCEDURE	THE UTILIZATION OF	JASA 64	1225
AND RANKINC, OPTIMUM PROPERTIES OF THE ROW SUM	PROCEDURE	PAIRWISE COMPARISON	AMS 63	511
DEGREE OF FREEDOM, EXTENSIONS OF THE MANTEL-HAENSZEL	PROCEOURE	CHI-SQUARE TESTS WITH ONE	JASA 63	690
A MULTIPLE COMPARISON RANK	PROCEOURE F	FOR A ONE-WAY ANALYSIS OF VARIANCE	SASJ 69	35
A SIMPLIFICATION OF THE BLUS	PROCEDURE B	FOR ANALYZINC RECRESSION DISTURBANCES	JASA 68	242
A	PROCEDURE F		JASA 67	341
			JRSSB57	255
SEQUENTIAL SAMPLING A MINIMAX-RECRET	PROCEDURE I	FOR CHOOSING BETWEEN TWO POPULATIONS USINC FOR CHOOSINC BETWEEN TWO POPULATIONS USING	JRSSB63	297
THE UNKNOWN MEAN OF A NORM/ A SEQUENTIAL DECISION				549
ES WITH A STANDARD OR CONTROL A SEQUENTIAL				438
ES WI/ AN ASYMPTOTICALLY OPTIMAL FIXED SAMPLE SIZE	PROCEDURE E	FOR COMPARING SEVERAL EXPERIMENTAL CATECORI	AMS 64	1571
CORR. 59 811	PROCEDURE F	FOR COMPUTING REGRESSION COEFFICIENTS,	JASA 58	144
A	PROCEOURE E	FOR CONSTRUCTINC INCOMPLETE BLOCK DESIGNS	TECH 64	3B9
THE AVERACE SAMPLE RUN LENCTH OF A CUMUL/ A SIMPLE	PROCEDURE B	FOR DETERMINING UPPER AND LOWER LIMITS FOR	JRSSB67	263
OMPONENTS IN MIXED MODEL SITUATIONS AN ITERATIVE	PROCEDURE F	FOR ESTIMATING FIXED EFFECTS AND VARIANCE C	BIOCS68	13
ON THE ASYMPTOTIC EFFICIENCY OF A SEQUENTIAL	PROCEDURE I	FOR ESTIMATING THE MEAN	AMS 66	1173
POINTS GRAPHICAL	PROCEDURE 1		TECH 60	477
A SEQUENTIAL SEARCH	PROCEDURE B		TECH 62	610
A SAMPLING	PROCEDURE I	FOR MAILED QUESTIONNAIRES	JASA 56	209
AN ESTIMATION	PROCEDURE I	FOR MIXTURES OF DISTRIBUTIONS	JRSSB68	444
A CONTINUOUS KIEFER-WOLFOWITZ	PROCEDURE 1	FOR RANDOM PROCESSES, CORR. 66 745	AMS 64	590
			JASA 65	308
		FOR RANKING MEANS OF FINITE POPULATIONS WIT		355
			810K468	411
H A COMMON UNKNOWN/ A TWO-SAMPLE MULTIPLE DECISION				170
			JASA 60	429
		FOR SELECTINC THE LARGEST OF K MEANS	AMS 68	88
		FOR SELECTING THE POPULATION WITH THE LARGE		174
AN ADAPTIVE	PROCEDURE 1	FOR SEQUENTIAL CLINICAL TRIALS	JASA 69	759
SIDED ALTERNATIVE HYPOTHESIS A SEQUENTIAL				
AN EMPIRICAL EVALUATION OF MULTIVARIATE SEQUENTIAL			AMS 62	
		FOR TESTING THE EQUALITY OF SEVERAL EXPONEN		435
		FOR THE FIXED-WIDTH INTERVAL ESTIMATION OF	AMS 66	36
		FOR THE SELECTION OF THE BEST OF SEVERAL	JASA 62	785
		IN A RANDOMIZED BLOCK DESIGN	JASA 61	933
CLASS OF SITUATIONS IN WHICH A SEQUENTIAL ESTIMATION			BIOKA67	229
ON RANDOMIZED RANK SCORE			AMS 66	391
			JASA 66 JRSSB62	482
			TECH 67	
			JASA 66	199
SOME APPLICATIONS OF THE JIRINA SEQUENTIAL				100
	PRUCEDURE	TO OBSERVATIONS WITH TREND	AMS 63	857
			AMS 63 JASA 60	857 94
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST	PROCEDURE	WITH A SAMPLE FROM A NORMAL POPULATION WHEN		
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST	PROCEDURE PROCEDURE,	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE	JASA 60	94
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST	PROCEDURE PROCEDURE, PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE	JASA 60 JASA 61	94 125 435
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST	PROCEDURE PROCEDURE, PROCEDURES PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62	94 125 435 846 140
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION	PROCEDURE PROCEDURES PROCEDURES PROCEDURES PROCEDURES PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62	94 125 435 846 140 257
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT	PROCEDURE (PROCEDURE) PROCEDURES PROCEDURES PROCEDURES PROCEDURES PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63	94 125 435 846 140 257 474
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SULULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION	PROCEDURE (PROCEDURE) PROCEDURES PROCEDURES PROCEDURES PROCEDURES PROCEDURES PROCEDURES PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63	94 125 435 846 140 257 474 480
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL	PROCEDURE NO PROCEDURES PROCEDURES PROCEDURES PROCEDURES PROCEDURES PROCEDURES PROCEDURES PROCEDURES PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63 AMS 64	94 125 435 846 140 257 474 480 755
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION	PROCEDURE IN PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63 AMS 64 AMS 64	94 125 435 846 140 257 474 480 755 1048
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE	PROCEDURE IN PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63 AMS 64 AMS 64 AMS 66	94 125 435 846 140 257 474 480 755 1048 619
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION	PROCEDURE I PROCEDURES PROCEDURES PROCEDURES PROCEDURES PROCEDURES PROCEDURES PROCEDURES PROCEDURES PROCEDURES PROCEDURES PROCEDURES PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 JASA 63 JASA 63 AMS 64 AMS 64 AMS 66 JASA 66	94 125 435 846 140 257 474 480 755 1048 619 640
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST	PROCEDURE 1 PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63 AMS 64 AMS 64 AMS 66 JASA 66	94 125 435 846 140 257 474 480 755 1048 619 640 929
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHART	PROCEDURE 1 PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63 AMS 64 AMS 64 AMS 64 JASA 66 JASA 66 TECH 66	94 125 435 846 140 257 474 480 755 1048 619 640 929 411
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHART SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE	PROCEDURE 1 PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 JASA 63 JASA 63 AMS 64 AMS 64 AMS 66 JASA 66 JASA 66 TECH 66	94 125 435 846 140 257 474 480 755 1048 619 640 929 411 615
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHART SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING	PROCEDURE 1 PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63 AMS 64 AMS 64 AMS 66 JASA 66 TECH 66 AMS 67	94 125 435 846 140 257 474 480 755 1048 619 640 929 411 615 124
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHART SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING STEP-WISE CLUSTERING	PROCEDURE 1 PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 JASA 63 JASA 63 AMS 64 AMS 66 JASA 66 JASA 66 JASA 66 JASA 66 JASA 66 JASA 67 TECH 66 JASA 67	94 125 435 846 140 257 474 480 755 1048 619 640 929 411 615
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHART SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING	PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63 AMS 64 AMS 64 AMS 66 JASA 66 TECH 66 AMS 67	94 125 435 846 140 257 474 480 755 1048 619 640 929 411 615 124 86 41
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHART SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING STEP-WISE CLUSTERING RECENT RESEARCH IN REINTERVIEW	PROCEDURE 1 PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63 JASA 66 JASA 66 JASA 66 TECH 66 TECH 66 AMS 67 JASA 67 JASA 67	94 125 435 846 140 257 474 480 755 1048 619 640 929 411 615 124 86 41 653
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENN ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ON ROBUST AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHART SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING STEP-WISE CLUSTERING RECENT RESEARCH IN REINTERVIEW A NOTE ON SEQUENTIAL MULTIPLE DECISION	PROCEDURE 1 PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63 JASA 64 AMS 64 AMS 66 JASA 66 TECH 66 TECH 66 AMS 67 JASA 67 JASA 68 AMS 69	94 125 435 846 140 257 474 480 755 1048 619 640 929 411 615 124 86 41 653
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHARA SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING STEP-WISE CLUSTERING RECENT RESEARCH IN REINTERVIEW A NOTE ON SEQUENTIAL MULTIPLE DECISION SOME DISTRIBUTION-FREE MULTIVARIATE COMPARISON	PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63 JASA 66 JASA 66 JASA 66 TECH 66 TECH 66 AMS 67 JASA 67	94 125 435 846 140 257 474 480 755 1048 619 640 929 411 615 124 86 41 653 1486 9
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHARM SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING RECENT RESEARCH IN REINTERVIEW A NOTE ON SEQUENTIAL MULTIPLE DECISION SOME DISTRIBUTION-FREE MULTIVARIATE COMPARISON RESTRICTED SEQUENTIAL SOME PROPERTIES OF RUNS IN QUALITY CONTROL THE PROBABILITY OF WINNING WITH DIFFERENT TOURNAMENT	PROCEDURE 1 PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63 AMS 64 AMS 66 JASA 66 JASA 66 JASA 66 JASA 67 JASA 68 AMS 69 AMS 69 AMS 69 AMS 69 AMS 69	94 125 435 846 140 257 474 480 755 1048 619 640 929 411 615 124 86 41 653 1486 9
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHART SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING RECENT RESEARCH IN REINTERVIEW A NOTE ON SEQUENTIAL MULTIPLE DECISION SOME DISTRIBUTION-FREE MULTIVARIATE COMPARISON RESTRICTED SEQUENTIAL SOME PROPERTIES OF RUNS IN QUALITY CONTROL THE PROBABILITY OF WINNING WITH DIFFERENT TOURNAMENT OF BLS AND CENSUS REVISED SEASONAL ADJUSTMENT	PROCEDURE 1 PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE ON SPECTRAL EVALUATION	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 JASA 63 JASA 63 JASA 63 JASA 66 TECH 66 TECH 66 TECH 66 TECH 66 AMS 64 AMS 64 AMS 64 AMS 66 TECH 66 AMS 67 JASA 68 AMS 69 BIOKAS7 BIOKAS6 JASA 63 JASA 63	94 125 435 846 140 257 474 480 755 1048 619 640 929 411 615 124 86 41 653 1486 9 89 89 1064 472
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHART SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING RECENT RESEARCH IN REINTERVIEW A NOTE ON SEQUENTIAL MULTIPLE DECISION SOME DISTRIBUTION-FREE MULTIVARIATE COMPARISON RESTRICTED SEQUENTIAL SOME PROPERTIES OF RUNS IN QUALITY CONTROL THE PROBABILITY OF WINNING WITH DIFFERENT TOURNAMENT OF BLS AND CENSUS REVISED SEASONAL ADJUSTMENT UNIVARIATE MODEL AND ASSOCIATED ESTIMATION AND TEST	PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE ON SPECTRAL EVALUATION /PAIRED COMPARISONS. THE EXTENSION OF A	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63 JASA 66 JASA 66 TECH 66 TECH 66 TECH 66 AMS 67 JASA 67 JASA 69 BIOKA57 BIOKA58 BIOKA69	94 125 435 846 140 257 474 480 755 1048 619 640 929 411 615 124 86 41 653 1486 9 89 1064 472 81
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHART SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING RECENT RESEARCH IN REINTERVIEW A NOTE ON SEQUENTIAL MULTIPLE DECISION SOME DISTRIBUTION-FREE MULTIVARIATE COMPARISON RESTRICTED SEQUENTIAL SOME PROPERTIES OF RUNS IN QUALITY CONTROL THE PROBABILITY OF WINNING WITH DIFFERENT TOURNAMENT OF BLS AND CENSUS REVISED SEASONAL ADJUSTMENT UNIVARIATE MODEL AND ASSOCIATED ESTIMATION AND TEST	PROCEDURE 1 PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE ON SPECTRAL EVALUATION /PAIRED COMPARISONS. THE EXTENSION OF A	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63 AMS 64 AMS 66 JASA 66 JASA 66 JASA 66 JASA 67 JASA 68 BJOKA57 JASA 68 BJOKA57 BJOKA57 BJOKA56 BJOKA69 BJOKA62	94 125 435 846 140 257 474 480 619 640 929 411 615 124 86 41 653 1486 9 1064 472 81 41
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHART SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING RECENT RESEARCH IN REINTERVIEW A NOTE ON SEQUENTIAL MULTIPLE DECISION ON ROBUST SOME DISTRIBUTION-FREE MULTIVARIATE COMPARISON RESTRICTED SEQUENTIAL SOME PROPERTIES OF RUNS IN QUALITY CONTROL THE PROBABILITY OF WINNING WITH DIFFERENT TOURNAMENT OF BLS AND CENSUS REVISED SEASONAL ADJUSTMENT UNIVARIATE MODEL AND ASSOCIATED ESTIMATION AND TEST A FAMILY OF CLOSED SEQUENTIAL MULTIPARAMETER BAYESIAN INDIFFERENCE	PROCEDURE 1 PROCEDURES	ON SPECTRAL EVALUATION OF A (CORR. 69 457) (WITH DISCUSSION)	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63 JASA 66 AMS 64 AMS 66 TECH 66 TECH 66 TECH 66 TECH 66 AMS 67 JASA 68 AMS 69 AMS 69 AMS 69 BIOKA57 BIOKA58 JASA 68 BIOKA65 JASA 68 BIOKA62 JRSSB69	94 125 435 846 140 257 474 480 755 1048 619 640 929 411 615 124 86 41 653 1486 9 80 1064 472 81 41 29
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHART SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING RECENT RESEARCH IN REINTERVIEW A NOTE ON SEQUENTIAL MULTIPLE DECISION SOME DISTRIBUTION-FREE MULTIVARIATE COMPARISON RESTRICTED SEQUENTIAL SOME PROPERTIES OF RUNS IN QUALITY CONTROL THE PROBABILITY OF WINNING WITH DIFFERENT TOURNAMENT OF BLS AND CENSUS REVISED SEASONAL ADJUSTMENT UNIVARIATE MODEL AND ASSOCIATED ESTIMATION AND TEST A FAMILY OF CLOSED SEQUENTIAL MULTIPARAMETER BAYESIAN INDIFFERENT MAXIMUM-LIKELIHOOD ESTIMATION	PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE ON SPECTRAL EVALUATION /PAIRED COMPARISONS. THE EXTENSION OF A (CORR. 69 457) (WITH DISCUSSION) AND ASSOCIATED TESTS OF SIGNIFICANCE	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63 JASA 63 JASA 66 JASA 66 TECH 66 TECH 66 TECH 66 TECH 66 AMS 67 JASA 67 JASA 69 BIOKA57 BIOKA58 BIOKA69 BIOKA69 JISSB69 JRSSB69 JRSSB69	94 125 435 846 140 257 474 480 755 1048 619 640 929 411 615 124 86 41 653 1486 9 89 1064 472 81 41 41 29 154
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHARM SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING RECENT RESEARCH IN REINTERVIEW A NOTE ON SEQUENTIAL MULTIPLE DECISION ON ROBUST SOME DISTRIBUTION-FREE MULTIVARIATE COMPARISON RESTRICTED SEQUENTIAL SOME PROPERTIES OF RUNS IN QUALITY CONTROL THE PROBABILITY OF WINNING WITH DIFFERENT TOURNAMENT OF BLS AND CENSUS REVISED SEASONAL ADJUSTMENT UNIVARIATE MODEL AND ASSOCIATED ESTIMATION AND TEST A FAMILY OF CLOSED SEQUENTIAL MULTIPARAMETER BAYESIAN INDIFFERENCE MAXIMUM-LIKELIHOOD ESTIMATION CCCEPTANCE SAMPLINC PLANS	PROCEDURE 1 PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE ON SPECTRAL EVALUATION /PAIRED COMPARISONS. THE EXTENSION OF A (CORR. 69 457) (WITH DISCUSSION) AND ASSOCIATED TESTS OF SIGNIFICANCE AND TABLES FOR EVALUATING DEPENDENT MIXED	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 66 JASA 67 JASA 67 JASA 68 AMS 69 AMS 69 BIOKAS7 BIOKAS5 JASA 68 JASA 68 JASA 66	94 125 435 846 140 257 474 480 619 640 929 411 615 124 86 41 653 1486 9 1064 472 81 41 29 154 341
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHART SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING RECENT RESEARCH IN REINTERVIEW A NOTE ON SEQUENTIAL MULTIPLE DECISION ON ROBUST SOME DISTRIBUTION-FREE MULTIVARIATE COMPARISON RESTRICTED SEQUENTIAL SOME PROPERTIES OF RUNS IN QUALITY CONTROL THE PROBABILITY OF WINNING WITH DIFFERENT TOURNAMENT OF BLS AND CENSUS REVISED SEASONAL ADJUSTMENT UNIVARIATE MODEL AND ASSOCIATED ESTIMATION AND TEST A FAMILY OF CLOSED SEQUENTIAL MULTIPARAMETER BAYESIAN INDIFFERENCE MAXIMUM-LIKELIHOOD ESTIMATION CCCCEPTANCE SAMPLINC PLANS ERTAIN SIMPLE LEAST SQUARES AND ANALYSIS OF VARIANCE	PROCEDURE 1 PROCEDURES	ON SPECTRAL EVALUATION OF A (CORR. 69 457) (WITH DISCUSSION) AND ASSOCIATED TESTS OF SIGNIFICANCE AND TABLES FOR EVALUATIOR DEPENDENT MIXED ARE ALSO BEST /STRUCTURES UNDER WHICH C	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63 JASA 66 AMS 64 AMS 66 TECH 66 TECH 66 TECH 66 TECH 66 AMS 67 JASA 68 AMS 69 AMS 69 JASA 68 BIOKA57 BIOKA57 BIOKA58 BIOKA62 JRSSB60 JRSSB60 JRSSB60 JRSSB60 JRSSB60 JASA 69	94 125 435 846 140 257 474 480 755 1048 619 640 929 411 615 124 86 41 653 1486 9 89 1064 472 81 41 29 154 341 NO.4
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHART SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING RECENT RESEARCH IN REINTERVIEW A NOTE ON SEQUENTIAL MULTIPLE DECISION SOME DISTRIBUTION-FREE MULTIVARIATE COMPARISON RESTRICTED SEQUENTIAL SOME PROPERTIES OF RUNS IN QUALITY CONTROL THE PROBABILITY OF WINNING WITH DIFFERENT TOURNAMENT OF BLS AND CENSUS REVISED SEASONAL ADJUSTMENT UNIVARIATE MODEL AND ASSOCIATED ESTIMATION AND TEST A FAMILY OF CLOSED SEQUENTIAL MULTIPARAMETER BAYESIAN INDIFFERENCE MAXIMUM-LIKELIHOOD ESTIMATION CCCCEPTANCE SAMPLING PLANS ERTAIN SIMPLE LEAST SQUARES AND ANALYSIS OF VARIANCE SAMPLING SA	PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE ON SPECTRAL EVALUATION (PAIRED COMPARISONS. THE EXTENSION OF A (CORR. 69 457) (WITH DISCUSSION) AND ASSOCIATED TESTS OF SIGNIFICANCE AND TABLES FOR EVALUATING DEPENDENT MIXED ARE ALSO BEST /STRUCTURES UNDER WHICH C BASED ON PRIOR DISTRIBUTIONS AND COSTS	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63 JASA 66 JASA 66 TECH 66 TECH 66 TECH 66 AMS 67 JASA 68 JASA 68 AMS 69 BIOKA57 BIOKA5B BIOKA69 BIOKA69 JIOKA69 J	94 125 435 846 140 257 474 480 755 1048 619 640 929 411 615 124 86 41 653 1486 9 89 1064 472 81 41 29 154 3341 NO.4 47
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHART SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING STEP-WISE CLUSTERING RECENT RESEARCH IN REINTERVIEW A NOTE ON SEQUENTIAL MULTIPLE DECISION SOME DISTRIBUTION-FREE MULTIVARIATE COMPARISON RESTRICTED SEQUENTIAL SOME PROPERTIES OF RUNS IN QUALITY CONTROL THE PROBABILITY OF WINNING WITH DIFFERENT TOURNAMENT OF BLS AND CENSUS REVISED SEASONAL ADJUSTMENTS UNIVARIATE MODEL AND ASSOCIATED ESTIMATION AND TEST A FAMILY OF CLOSED SEQUENTIAL MULTIPARAMETER BAYESIAN INDIFFERENCE MAXIMUM-LIKELIHOOD ESTIMATION CCCEPTANCE SAMPLING MAXIMUM-LIKELIHOOD ESTIMATION SAMPLING SAMPLING SAMPLING MULTISTAGE SAMPLING MULTISTAGE SAMPLING MULTISTAGE SAMPLING MULTISTAGE SAMPLING	PROCEDURE 1 PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE ON SPECTRAL EVALUATION /PAIRED COMPARISONS. THE EXTENSION OF A (CORR. 69 457) (WITH DISCUSSION) AND ASSOCIATED TESTS OF SIGNIFICANCE AND TABLES FOR EVALUATING DEPENDENT MIXED ARE ALSO BEST /STRUCTURES UNDER WHICH C BASED ON PRIOR DISTRIBUTIONS AND COSTS SASED ON PRIOR DISTRIBUTIONS AND COSTS	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63 JASA 66 AMS 64 AMS 66 TECH 66 TECH 66 TECH 66 TECH 66 AMS 67 JASA 68 AMS 69 AMS 69 JASA 68 BIOKA57 BIOKA57 BIOKA58 BIOKA62 JRSSB60 JRSSB60 JRSSB60 JRSSB60 JRSSB60 JASA 69	94 125 435 846 140 257 474 480 619 640 929 411 615 124 86 41 653 1486 9 1064 472 81 41 29 154 341 NO .4 47 464
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHART SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING RECENT RESEARCH IN REINTERVIEW A NOTE ON SEQUENTIAL MULTIPLE DECISION OF SOME DISTRIBUTION-FREE MULTIVARIATE COMPARISON RESTRICTED SEQUENTIAL SOME PROPERTIES OF RUNS IN QUALITY CONTROL THE PROBABILITY OF WINNING WITH DIFFERENT TOURNAMENT OF BLS AND CENSUS REVISED SEASONAL ADJUSTMENT UNIVARIATE MODEL AND ASSOCIATED ESTIMATION AND TEST A FAMILY OF CLOSED SEQUENTIAL MULTIPARAMETER BAYESIAN INDIFFERENCE MAXIMUM—LIKELIHOOD ESTIMATION CCCEPTANCE SAMPLING PLANS ERTAIN SIMPLE LEAST SQUARES AND ANALYSIS OF VARIANCE SAMPLING MULTISTAGE SAMPLING ANALYSIS OF VARIANCES MULTIPLE DECISION MULTIPLE DECISION MULTIPLE DECISION	PROCEDURE 1 PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE ON SPECTRAL EVALUATION (PAIRED COMPARISONS. THE EXTENSION OF A (CORR. 69 457) (WITH DISCUSSION) AND ASSOCIATED TESTS OF SIGNIFICANCE AND TABLES FOR EVALUATING DEPENDENT MIXED ARE ALSO BEST /STRUCTURES UNDER WHICH C BASED ON PRIOR DISTRIBUTIONS AND COSTS BASED ON RANKS FOR CERTAIN PROBLEMS IN	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63 AMS 64 AMS 66 JASA 66 TECH 66 TECH 66 TECH 66 TECH 66 AMS 67 JASA 68 AMS 69 BIOKA57 BIOKA57 BIOKA58 BIOKA69 JASA 68 BIOKA69 JASA 68 AMS 69 TECH 66 AMS 67 AMS 67 AMS 68	94 125 435 846 140 257 474 480 755 1048 619 640 929 411 615 124 86 41 653 1486 9 89 1064 472 81 41 29 154 341 NO.4 47 46619
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHART SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING RECENT RESEARCH IN REINTERVIEW A NOTE ON SEQUENTIAL MULTIPLE DECISION SOME DISTRIBUTION-FREE MULTIVARIATE COMPARISON RESTRICTED SEQUENTIAL SOME PROPERTIES OF RUNS IN QUALITY CONTROL THE PROBABILITY OF WINNING WITH DIFFERENT TOURNAMENT OF BLS AND CENSUS REVISED SEASONAL ADJUSTMENT UNIVARIATE MODEL AND ASSOCIATED ESTIMATION AND TEST A FAMILY OF CLOSED SEQUENTIAL MULTIPARAMETER BAYESIAN INDIFFERENCE MAXIMUM-LIKELIHOOD ESTIMATION CCCEPTANCE SAMPLINC PLANS ERTAIN SIMPLE LEAST SQUARES AND ANALYSIS OF VARIANCE SAMPLING MULTISTAGE SAMPLING ANALYSIS OF VARIANCES MULTIPLE DECISION THE ROBUSTNESS OF LIFE TESTING THE ROBUSTNESS	PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE ON SPECTRAL EVALUATION /PAIRED COMPARISONS. THE EXTENSION OF A (CORR. 69 457) (WITH DISCUSSION) AND ASSOCIATED TESTS OF SIGNIFICANCE AND TABLES FOR EVALUATING DEPENDENT MIXED ARE ALSO BEST /STRUCTURES UNDER WHICH C BASED ON PRIOR DISTRIBUTIONS AND COSTS SASED ON PRIOR DISTRIBUTIONS AND COSTS	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63 AMS 64 AMS 66 JASA 66 TECH 66 TECH 66 TECH 66 TECH 66 AMS 67 JASA 68 AMS 69 BIOKA57 BIOKA57 BIOKA58 BIOKA69 JASA 68 BIOKA69 JASA 68 AMS 69 TECH 66 AMS 67 AMS 67 AMS 68	94 125 435 846 140 257 474 480 755 1048 619 640 929 411 615 124 86 41 653 1486 9 89 1064 472 81 41 29 154 341 NO .4 47 464 619 29
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHARM SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING STEP-WISE CLUSTERING RECENT RESEARCH IN REINTERVIEW A NOTE ON SEQUENTIAL MULTIPLE DECISION SOME DISTRIBUTION-FREE MULTIVARIATE COMPARISON RESTRICTED SEQUENTIAL SOME PROPERTIES OF RUNS IN QUALITY CONTROL THE PROBABILITY OF WINNING WITH DIFFERENT TOURNAMENT OF BLS AND CENSUS REVISED SEASONAL ADJUSTMENTS UNIVARIATE MODEL AND ASSOCIATED ESTIMATION AND TEST A FAMILY OF CLOSED SEQUENTIAL MULTIPRARMETER BAYESIAN INDIFFERENCE MAXIMUM-LIKELIHOOD ESTIMATION CCCEPTANCE SAMPLING MULTIPRARMETER BAYESIAN INDIFFERENCE SAMPLING CCCEPTANCE SAMPLING PLANS ERTAIN SIMPLE LEAST SQUARES AND ANALYSIS OF VARIANCE SAMPLING MULTISTAGE SAMPLING ANALYSIS OF VARIANCES MULTIPLE DECISION OPTIMUM DECISION	PROCEDURE 1 PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE ON SPECTRAL EVALUATION /PAIRED COMPARISONS. THE EXTENSION OF A (CORR. 69 457) (WITH DISCUSSION) AND ASSOCIATED TESTS OF SIGNIFICANCE AND TABLES FOR EVALUATING DEPENDENT MIXED ARE ALSO BEST /STRUCTURES UNDER WHICH C BASED ON PRIOR DISTRIBUTIONS AND COSTS BASED ON PRIOR DISTRIBUTIONS AND COSTS BASED ON PRIOR DISTRIBUTIONS AND COSTS BASED ON RANKS FOR CERTAIN PROBLEMS IN DERIVED FROM THE EXPONENTIAL DISTRIBUTION FOR A POISSON PROCESS PARAMETER	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63 JASA 66 JASA 66 TECH 66 TECH 66 TECH 66 AMS 67 JASA 68 BIOKA57 BIOKA58 JASA 63 JASA 66 BIOKA69 BIOKA69 JIOKA69	94 125 435 846 140 257 474 480 619 640 929 411 615 124 86 41 653 1486 9 1064 472 81 141 29 1384
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHART SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING RECENT RESEARCH IN REINTERVIEW A NOTE ON SEQUENTIAL MULTIPLE DECISION SOME DISTRIBUTION-FREE MULTIVARIATE COMPARISON RESTRICTED SEQUENTIAL SOME PROPERTIES OF RUNS IN QUALITY CONTROL THE PROBABILITY OF WINNING WITH DIFFERENT TOURNAMENT OF BLS AND CENSUS REVISED SEASONAL ADJUSTMENT UNIVARIATE MODEL AND ASSOCIATED ESTIMATION AND TEST A FAMILY OF CLOSED SEQUENTIAL MULTIPARAMETER BAYESIAN INDIFFERENCE MAXIMUM-LIKELIHOOD ESTIMATION CCCEPTANCE SAMPLING PLANS ERTAIN SIMPLE LEAST SQUARES AND ANALYSIS OF VARIANCE SAMPLING MULTISTAGE SAMPLING ANALYSIS OF VARIANCES MULTIPLE DECISION ON BAYES: THE ROBUSTNESS OF LIFE TESTING OPTIMUM DECISION ON BAYES: THE PERFORMANCE OF SOME SEQUENTIAL ON BAYES:	PROCEDURES	ON SPECTRAL EVALUATION AND ASSOCIATED TESTS OF SIGNIFICANCE AND TABLES FOR EVALUATION ENERGY WITH DISCUSSION) AND ASSOCIATED TESTS OF SIGNIFICANCE AND TABLES FOR EVALUATING DEPENDENT MIXED ARE ALSO BEST /STRUCTURES UNDER WHICH C BASED ON PRIOR DISTRIBUTIONS AND COSTS BASED ON PRIOR DISTRIBUTIONS AND COSTS BASED ON RANKS FOR CERTAIN PROBLEMS IN DERIVED FROM THE EXPONENTIAL DISTRIBUTION FOR A PROSSON PROCESS PARAMETER FOR A PROBLEM WITH CHOICE OF OBSERVATIONS FOR A RANKING PROBLEM	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 JASA 63 AMS 64 AMS 66 JASA 66 AMS 69 AMS 69 AMS 69 AMS 69 AMS 69 AMS 68 JASA 68 JASA 68 TECH 66 TECH 66 AMS 67 AMS 67 AMS 68 TECH 69 JASA 68 TECH 69 JASA 69 TECH 69 JASA 69 TECH 69 JASA 69 TECH 69 AMS 67 AMS 67	94 125 435 846 140 257 474 480 755 1048 619 640 929 411 615 124 86 41 653 1486 99 1064 472 81 41 29 154 341 NO.4 47 464 619 29 1384 1128
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHART SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING STEP-WISE CLUSTERING RECENT RESEARCH IN REINTERVIEW A NOTE ON SEQUENTIAL MULTIPLE DECISION SOME DISTRIBUTION-FREE MULTIVARIATE COMPARISON RESTRICTED SEQUENTIAL SOME PROPERTIES OF RUNS IN QUALITY CONTROL THE PROBABILITY OF WINNING WITH DIFFERENT TOURNAMENT OF BLS AND CENSUS REVISED SEASONAL ADJUSTMENT) UNIVARIATE MODEL AND ASSOCIATED ESTIMATION AND TESS A FAMILY OF CLOSED SEQUENTIAL MULTIPARAMETER BAYESIAN INDIFFERENCE MAXIMUM-LIKELIHOOD ESTIMATION CCCEPTANCE SAMPLING ANALYSIS OF VARIANCES MULTISTAGE SAMPLING ANALYSIS OF VARIANCES MULTIPLE DECISION OPTIMUM D	PROCEDURE 1 PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE ON SPECTRAL EVALUATION /PAIRED COMPARISONS. THE EXTENSION OF A (CORR. 69 457) (WITH DISCUSSION) AND ASSOCIATED TESTS OF SIGNIFICANCE AND TABLES FOR EVALUATING DEPENDENT MIXED ARE ALSO BEST /STRUCTURES UNDER WHICH C BASED ON PRIOR DISTRIBUTIONS AND COSTS BASED ON PROBLEM WITH CHOICE OF OBSERVATION FOR A POISSON PROCESS PARAMETER FOR A RANKING PROBLEM FOR ARBITRARILY RESTRICTED OBSERVATION	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 JASA 63 AMS 64 AMS 66 JASA 67 JASA 67 JASA 68 JASA 66 AMS 69 BIOKAS7 JASA 68 JASA 68 BIOKA62 JRSSB69 JRSSB69 JRSSB69 JRSSB69 TECH 69 JASA 69 TECH 69 AMS 69 TECH 63 AMS 67 AMS 68	94 125 435 846 140 257 474 480 619 640 929 411 615 124 86 41 653 1486 9 1064 472 81 141 29 1384 1128 1040 65
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHARA SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING RECENT RESEARCH IN REINTERVIEW A NOTE ON SEQUENTIAL MULTIPLE DECISION SOME DISTRIBUTION-FREE MULTIVARIATE COMPARISON RESTRICTED SEQUENTIAL SOME PROPERTIES OF RUNS IN QUALITY CONTROL THE PROBABILITY OF WINNING WITH DIFFERENT TOURNAMENT OF BLS AND CENSUS REVISED SEASONAL ADJUSTMENT UNIVARIATE MODEL AND ASSOCIATED ESTIMATION AND TEST A FAMILY OF CLOSED SEQUENTIAL MULTIPARAMETER BAYESIAN INDIFFERENCE MAXIMUM—LIKELIHOOD ESTIMATION CCCEPTANCE SAMPLING PLANS ERTAIN SIMPLE LEAST SQUARES AND ANALYSIS OF VARIANCE SAMPLING ANALYSIS OF VARIANCES MULTISTAGE SAMPLING ANALYSIS OF VARIANCES THE ROBUSTNESS OF LIFE TESTING ON BAYES THE PERFORMANCE OF SOME SEQUENTIAL RANKING G THE UNKNOWN DRIFT PARAMET/ A CLASS OF SEQUENTIAL G THE UNKNOWN DRIFT PARAMET/ A CLASS OF SEQUENTIAL	PROCEDURES	WITH A SAMPLE FROM A NORMAL POPULATION WHEN WHEN DATA ARE INCOMPLETE ON SPECTRAL EVALUATION /PAIRED COMPARISONS. THE EXTENSION OF A (CORR. 69 457) (WITH DISCUSSION) AND ASSOCIATED TESTS OF SIGNIFICANCE AND TABLES FOR EVALUATING DEPENDENT MIXED ARE ALSO BEST /STRUCTURES UNDER WHICH C BASED ON PRIOR DISTRIBUTIONS AND COSTS BASED ON PROPER PROPERTIAL DISTRIBUTION FOR A POISSON PROCESS PARAMETER FOR A PROBLEM WITH CHOICE OF OBSERVATION FOR A PROBLEM WITH CHOICE OF OBSERVATION FOR ARBITRARILY RESTRICTED OBSERVATION FOR ARBITRARILY RESTRICTED OBSERVATION FOR CHOOSINC ONE OF K HYPOTHESES CONCERNIN	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63 AMS 64 AMS 66 JASA 66 JASA 66 JASA 66 JASA 67 JASA 67 JASA 68 AMS 69 TECH 66 JASA 68 TECH 66 JASA 68 TECH 66 JASA 68 TECH 66	94 125 435 846 140 257 474 480 755 1048 619 640 929 411 615 124 86 41 653 1486 99 1064 472 81 41 29 154 341 NO.4 47 4619 29 1384 1128 1040 65 1376
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHART SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING RECENT RESEARCH IN REINTERVIEW A NOTE ON SEQUENTIAL MULTIPLE DECISION OF BUSTRIBUTION-FREE MULTIVARIATE COMPARISON RESTRICTED SEQUENTIAL SOME PROPERTIES OF RUNS IN QUALITY CONTROL THE PROBABILITY OF WINNING WITH DIFFERENT TOURNAMENT OF BLS AND CENSUS REVISED SEASONAL ADJUSTMENT UNIVARIATE MODEL AND ASSOCIATED ESTIMATION AND TEST A FAMILY OF CLOSED SEQUENTIAL MULTIPARAMETER BAYESIAN INDIFFERENCE MAXIMUM-LIKELIHOOD ESTIMATION CCCEPTANCE SAMPLING PLANS ERTAIN SIMPLE LEAST SQUARES AND ANALYSIS OF VARIANCE SAMPLING ANALYSIS OF VARIANCES MULTIPLE DECISION THE ROBUSTNESS OF LIFE TESTING OPTIMUM DECISION ON BAYES THE PERFORMANCE OF SOME SEQUENTIAL RANKING G THE UNKNOWN DRIFT PARAMET/ A CLASS OF SEQUENTIAL POPULATIONS	PROCEDURES	ON SPECTRAL EVALUATION WITH DISCUSSION) AND ASSOCIATED TESTS OF SIGNIFICANCE AND TABLES FOR EVALUATION EXPEDIENCE WHICH COSTS BASED ON PRIOR DISTRIBUTIONS AND COSTS BASED ON PRIOR DISTRIBUTION FOR A POSSION PROCESS PARAMETER FOR A PROBLEM WITH CHOICE OF OBSERVATION FOR CHOOSINC ONE OF K HYPOTHESES CONCERNIN FOR COMPARINC POISSON PROCESSES OR	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 JASA 63 JASA 63 JASA 66 JECH 66 JASA 66 TECH 66 TECH 66 TECH 66 TECH 66 AMS 67 JASA 68 AMS 69 AMS 69 AMS 69 JASA 68 BIOKA57 BIOKA58 JASA 68 JASA 68 BIOKA59 BIOKA69 BIOKA69 BIOKA69 TECH 61 AMS 67 AMS 67 AMS 67 AMS 67 TECH 61 AMS 67 TECH 61 AMS 66 TECH 61 AMS 67 TECH 61 TE	94 125 435 846 140 257 474 480 755 1048 619 640 929 411 615 124 86 41 653 1486 9 89 89 1064 472 81 41 29 1544 341 N0.4 47 4649 29 13B4 1128 1040 65 1376 447
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHART SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING STEP-WISE CLUSTERING RECENT RESEARCH IN REINTERVIEW A NOTE ON SEQUENTIAL MULTIPLE DECISION SOME DISTRIBUTION-FREE MULTIVARIATE COMPARISON RESTRICTED SEQUENTIAL SOME PROPERTIES OF RUNS IN QUALITY CONTROL THE PROBABILITY OF WINNING WITH DIFFERENT TOURNAMENT OF BLS AND CENSUS REVISED SEASONAL ADJUSTMENT) UNIVARIATE MODEL AND ASSOCIATED ESTIMATION AND TEST A FAMILY OF CLOSED SEQUENTIAL MULTIPARAMETER BAYESIAN INDIFFERENCE MAXIMUM-LIKELIHOOD ESTIMATION CCCEPTANCE SAMPLING MULTISTAGE SAMPLING ANALYSIS OF VARIANCES MULTIPLE DECISION ON BAYES THE PERFORMANCE OF SOME SEQUENTIAL RANKING G THE UNKNOWN DRIFT PARAMET/ A CLASS OF SEQUENTIAL NONPARAMETRIC RANKING NONPARAMETRIC RANKING	PROCEDURES	ON SPECTRAL EVALUATION /PAIRED COMPARISONS. THE EXTENSION OF A (CORR. 69 457) (WITH DISCUSSION) AND ASSOCIATED TESTS OF SIGNIFICANCE AND TABLES FOR EVALUATING DEPENDENT MIXED ARE ALSO BEST /STRUCTURES UNDER WHICH C BASED ON PRIOR DISTRIBUTIONS AND COSTS BASED ON RANKS FOR CERTAIN PROBLEMS IN DERIVED FROM THE EXPONENTIAL DISTRIBUTION FOR A POISSON PROCESS PARAMETER FOR A RANKING PROBLEM FOR ARBITRARILY RESTRICTED OBSERVATIONS FOR A RANKING PROBLEM FOR CHOOSINC ONE OF K HYPOTHESES CONCERNIN FOR COMPARISON WITH A CONTROL	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 JASA 63 JASA 66 JASA 66 TECH 66 TECH 66 TECH 66 AMS 67 JASA 68 JASA 68 BIOKA57 BIOKA58 JASA 68 BIOKA69 BIOKA69 BIOKA69 BIOKA69 BIOKA69 BIOKA69 JRSSB60	94 125 435 846 140 257 474 480 755 1048 619 640 929 411 615 124 86 41 653 1486 9 89 1064 472 81 41 29 154 3341 NO 44 47 464 619 29 1384 1128 1040 65 1376 1375
AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST STATISTICAL LIFE TEST ACCEPTANCE SOME NONPARAMETRIC MEDIAN COMPARATIVE COST OF TWO LIFE TEST THE EFFICIENCY OF STATISTICAL SIMULATION PRECISION OF SIMULTANEOUS MEASUREMENT ROBUSTNESS OF NON-IDEAL DECISION A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE AN INTRODUCTION TO RANKING AND SELECTION ON ROBUST A COMPARISON OF SOME CONTROL CHARM SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE SOME OPTIMUM PROPERTIES OF RANKING RECENT RESEARCH IN REINTERVIEW A NOTE ON SEQUENTIAL MULTIPLE DECISION RESTRICTED SEQUENTIAL SOME DISTRIBUTION-FREE MULTIVARIATE COMPARISON RESTRICTED SEQUENTIAL SOME PROPERTIES OF RUNS IN QUALITY CONTROL THE PROBABILITY OF WINNING WITH DIFFERENT TOURNAMENT OF BLS AND CENSUS REVISED SEASONAL ADJUSTMENT UNIVARIATE MODEL AND ASSOCIATED ESTIMATION AND TEST A FAMILY OF CLOSED SEQUENTIAL MULTIPARAMETER BAYESIAN INDIFFERENCE MAXIMUM-LIKELIHOOD ESTIMATION CCCEPTANCE SAMPLING PLANS ERTAIN SIMPLE LEAST SQUARES AND ANALYSIS OF VARIANCE MULTISTAGE SAMPLING ANALYSIS OF VARIANCES MULTIPLE DECISION THE ROBUSTNESS OF LIFE TESTING ON BAYES THE PERFORMANCE OF SOME SEQUENTIAL RANKING G THE UNKNOWN DRIFT PARAMET/ A CLASS OF SEQUENTIAL POPULATIONS SOME NONPARAMETRIC RANKING SAMPLES	PROCEDURE 1 PROCEDURES	ON SPECTRAL EVALUATION /PAIRED COMPARISONS. THE EXTENSION OF A (CORR. 69 457) (WITH DISCUSSION) AND ASSOCIATED TESTS OF SIGNIFICANCE AND TABLES FOR EVALUATING DEPENDENT MIXED ARE ALSO BEST /STRUCTURES UNDER WHICH C BASED ON PRIOR DISTRIBUTIONS AND COSTS BASED ON RANKS FOR CERTAIN PROBLEMS IN DERIVED FROM THE EXPONENTIAL DISTRIBUTION FOR A POISSON PROCESS PARAMETER FOR A RANKING PROBLEM FOR ARBITRARILY RESTRICTED OBSERVATIONS FOR A RANKING PROBLEM FOR CHOOSINC ONE OF K HYPOTHESES CONCERNIN FOR COMPARISON WITH A CONTROL	JASA 60 JASA 61 TECH 60 AMS 61 TECH 62 TECH 62 JASA 63 AMS 64 AMS 66 JASA 66 JASA 66 JASA 66 JASA 66 JASA 67 JASA 67 JASA 68 JASA 68 JASA 69 AMS 69 TECH 66 JASA 68 TECH 66 AMS 67 JASA 68 TECH 66 TECH 61	94 125 435 846 140 257 474 480 755 1048 619 640 929 411 615 124 86 41 653 1486 9 1064 472 81 41 29 154 341 NO.4 47 464 619 284 1128 1040 65 1376 447 2075 1

```
PULATION WITH TWO-STAGE SAMPLING BAYES AND MINIMAX PROCEDURES FOR ESTIMATING THE ARITHMETIC MEAN OF A PO AMS 66 1186
                                            TWO-STACE PROCEDURES FOR ESTIMATING THE DIFFERENCE BETWEEN
                                                                                                              BIOKA54 146
                     A COMPARISON OF THREE DIFFERENT PROCEDURES FOR ESTIMATING VARIANCE COMPONENTS
                                                                                                              TECH 63
                                                                                                                        421
COMPLETE IGNORANCE
                                             DECISION PROCEDURES FOR FINITE DECISION PROBLEMS UNDER
                                                                                                               AMS 64 1644
                                     NOTE ON DECISION PROCEDURES FOR FINITE DECISION PROBLEMS UNDER COMPLET
E TONORANCE
                                                                                                               AMS 65
                                                                                                                       691
                   MULTIVARIATE ACCEPTANCE SAMPLINC PROCEDURES FOR CENERAL SPECIFICATION ELLIPSOIDS JASA 65 905
                                   SIMULTANEOUS TEST PROCEDURES FOR MULTIPLE COMPARISONS ON CATECORICAL
                                                                                                              JASA 66 1081
ISTICAL DISTRIBUTIONS OCCURING AT UNKNOWN TI/ TEST PROCEDURES FOR POSSIBLE CHANGES IN PARAMETERS OF STAT AMS 66 1196
OF NORMAL POPULATIONS
                                        SINCLE-STAGE PROCEDURES FOR RANKING MULTIPLY-CLASSIFIED VARIANCES TECH 68
                                                                                                                        693
E ASYMPTOTIC EXPECTED SAMPLE SIZES OF TWO SEQUENTIAL PROCEDURES FOR RANKING PROBLEM A GOMPARISON OF TH AMS 69 NO.6
DISTRIBUTIONS
                                           SELECTION PROCEDURES FOR RESTRICTED FAMILIES OF PROBABILITY
                                                                                                               AMS 69
                                                                                                                       905
LATION WITH THE LARCEST ALPHA-QUANT/ NONPARAMETRIC PROCEDURES FOR SELECTING A SUBSET CONTAINING THE POPU
                                                                                                               AMS 67 1788
LARGEST ALPHA-QUANTILE
                                        NONPARAMETRIC PROCEDURES FOR SELECTING THE T POPULATION WITH THE
                                                                                                               AMS 67
BINOMIAL POPULATIONS
                                          SEQUENTIAL PROCEDURES FOR SELECTION OF THE BEST ONE OF SEVERAL
                                                                                                               AMS 67
                               ON THE EFFICIENCY OF PROCEDURES FOR SMOOTHING PERIODOGRAMS FROM TIME SERIE BIOKA55
S WITH CONTINUOUS SPECTRA
N PER CELL
                                               ROBUST PROCEDURES FOR SOME LINEAR MODELS WITH ONE OBSERVATIO AMS 67
                             STATISTICAL ESTIMATION PROCEDURES FOR THE 'BURN-IN' PROCESS
                                                                                                               TECH 68
VALUE DISTRIBUTIONS
                      POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TWO-PARAMETER WEIBULL AND EXTREME- TEGH 68
                                   ROBUSTNESS OF SOME PROCEDURES FOR THE TWO-SAMPLE LOCATION PROBLEM
                                                                                                              JASA 64
PARAMETER
                                   SEQUENTIAL OPTIMUM PROCEDURES FOR UNBIASED ESTIMATION OF A BINOMIAL
                                                                                                                        259
                       SOME STOCHASTIC APPROXIMATION PROCEDURES FOR USE IN PROCESS CONTROL
                                                                                                               AMS 64 1136
 ESTIMATION OF RELATIVE POTENCY IN DILU/ GRAPHICAL PROCEDURES FOR USING DISTRIBUTION-FREE METHODS IN THE BIOCS66 610
           EFFICIENT ESTIMATES AND OPTIMUM INFERENCE PROCEDURES IN LARGE SAMPLES (WITH DISCUSSION)
                                                                                                              JRSSB62
                                                                                                                         46
                   ROBUSTNESS OF SOME NONPARAMETRIC PROCEDURES IN LINEAR MODELS
                                                                                                               AMS 68 1913
                                    SIMULTANIOUS TEST PROCEDURES IN MULTIVARIATE ANALYSIS OF VARIANCE
                                                                                                              BIOKA68
                                                                                                                       489
ICAL INVESTIGATION OF SEVERAL ONE-DIMENSIONAL SEARCH PROCEDURES IN NONLINEAR REGRESSION PROBLEMS A NUMBER TECH 69
                                                                                                                        265
            ASYMPTOTICALLY OPTIMAL BAYES AND MINIMAX PROCEDURES IN SEQUENTIAL ESTIMATION
                                                                                                               AMS 6B
                                                                                                                        422
          ON THE EFFICIENCY OF OPTIMAL NONPARAMETRIC PROCEDURES IN THE TWO
                                                                                                                AMS 63
                                                                                                                        22
                       ON SOME OPTIMUM NONPARAMETRIC PROCEDURES IN TWO-WAY LAYOUTS
                                                                                                               JASA 67 1214
                                             ON THREE PROCEDURES OF SAMPLING FROM FINITE POPULATIONS
                                                                                                              BTOKA68
                                                                                                                       438
                                SEQUENTIAL INFERENCE PROCEDURES OF STEIN'S TYPE FOR A CLASS OF MULTIVARIAT AMS 62 1039
ON THREE PROCEDURES OF UNEQUAL PROBABILITY SAMPLING WITHOUT JASA 63 202
E RECRESSION PROBLEMS
REPLACEMENT
        A CONFIDENCE INTERVAL COMPARISON OF TWO TEST PROCEDURES PROPOSED FOR THE BEHRENS-FISHER PROBLEM
                                                                                                               JASA 66 454
                                  OPTIMAL SEQUENTIAL PROCEDURES WHEN MORE THAN ONE STOP IS REQUIRED
                                                                                                               AMS 67 161B
RATE EXPONENTIAL LIFE TEST PROCEDURES WHEN THE DISTRIBUTION HAS MONOTONE FAILURE JASA 67
BUTION OF TWO RANDOM MATRICES USED IN CLASSIFICATION PROCEDURES, CORR. 64 924 SOME RESULTS ON THE DISTRI
AMS 66
SIMULTANEOUS TEST PROCEDURES. SOME THEORY OF MULTIPLE COMPARISONS AMS 69
                                                                                                                       548
                                                                                                                        181
                                                                                                                AMS 69 224
         'SOME PROPERTIES OF RUNS IN QUALITY CONTROL PROCEDURES'
                                                                                                  CORRIGENDA, BIOKA59
                                                                                                                        279
                                        THE MEASURING PROCESS
                                                                                                               TECH 59
                                                                                                                       251
        FIRST PASSAGE TIME FOR A PARTICULAR GAUSSIAN PROCESS
                                                                                                               AMS 61
                                                                                                                        610
           MULTIPLE RECRESSION ANALYSIS OF A POISSON PROCESS
                                                                                                               JASA 61
                                                                                                                        235
                     GAMES ASSOCIATED WITH A RENEWAL PROCESS
                                                                                                                AMS 62
                                                                                                                        697
 SOME ASPECTS OF THE EMIGRATION-IMMIGRATION PROCESS LIMITING DISTRIBUTION OF THE MAXIMUM OF A DIFFUSION PROCESS
                                                                                                                AMS 62
                                                                                                                       119
                                                                                                                AMS 64
                                                                                                                       319
       LIMIT DISTRIBUTIONS OF A BRANCHING STOCHASTIC PROCESS
                                                                                                                AMS 64 557
                           PRESENT VALUE OF A RENEWAL PROCESS
                                                                                                                AMS 64 1326
                ON RANDOM SAMPLING FROM A STOCHASTIC PROCESS
                                                                                                                AMS 64 1713
 ASYMPTOTIC PROPERTIES OF AN AGE DEPENDENT BRANCHING PROCESS
                                                                                                                AMS 65 1565
                      A THEOREM ON THE GALTON-WATSON PROCESS
                                                                                                                AMS 66 695
 STATISTICAL PROPERTIES OF A CERTAIN PERIODIC BINARY PROCESS
                                                                                                               TECH 66 247
              A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS
                                                                                                               AMS 67 1912
                   STATISTICAL GONTROL OF A GAUSSIAN PROGESS
                                                                                                               TECH 67
                                                                                                                        29
     A REMARK ON HITTING PLACES FOR TRANSIENT STABLE PROCESS
                                                                                                               AMS 68 365
   A MULTI-DIMENSIONAL LINEAR GROWTH BIRTH AND DEATH PROCESS
                                                                                                                AMS 6B
                                                                                                                        727
    THE DISTRIBUTION OF THE MAXIMUM OF A SEMI-MARKOV PROCESS
                                                                                                                AMS 6B 947
                        OPTIMAL STOPPING IN A MARKOV PROCESS
                                                                                                                AMS 6B 1333
 STATISTICAL ESTIMATION PROCEDURES FOR THE 'BURN-IN' PROCESS
                                                                                                               TECH 68
                                                                                                                       51
                     AN AGE-DEPENDENT BIRTH AND DEATH PROCESS
                                                                                                               BIOKA55
                                                                                                                        291
                     ESTIMATION FROM A LINEAR MARKOV PROCESS
                                                                                                               BIOKA60
          PROBABILISTIC SOLUTION OF THE SIMPLE BIRTH PROCESS
                                                                                                               BIOKA64
                                                                                                                        258
 THE DISTRIBUTION OF RESPONSE TIMES IN A BIRTH-DEATH PROCESS
                                                                                                               BIOKA65
                                                                                                                       581
                        A NOTE ON THE WEIBULL RENEWAL PROCESS
                                                                                                               BIOKA66
                                                                                                                        375
            THE VARIANCE OF THE MEAN OF A STATIONARY PROCESS
                                                                                                               JRSSB57
                                                                                                                        282
                          THE INSPECTION OF A MARKOV PROCESS
                                                                                                               JRSSB58
                                                                                                                        111
                               A MULTI-STAGE RENEWAL PROCESS
                                                                                                               JRSSB63
                                                                                                                       150
                    A TWO-DIMENSIONAL POISSON GROWTH PROCESS
                                                                                                               JRSSB65
   EXPECTED NUMBER OF ZEROS OF A STATIONARY GAUSSIAN PROCESS
                                                                                                          THE AMS 65 1043
  STATISTICS OF A PARTICULAR NON-HOMOGENEOUS POISSON PROCESS
                                                                                                          THE BIOKA64
                                                                                                                       399
   CROSS PERIODOGRAM OF A STATIONARY GAUSSIAN VECTOR PROCESS
                                                                                                       ON THE AMS 67
                                                                                                                        593
THEOREM FOR RANDOM INTERVAL SAMPLING OF A STOCHASTIC PROCESS
                                                                                                               AMS 64
                                                                                                      A LIMIT
                                                                                                                        866
   RESULTS AND DIFFUSION APPROXIMATIONS IN A GENETIC PROCESS
                                                                                                    NUMERICAL BIOKA63
                                                                                                                       241
 THEOREMS CONCERNING THE SUPERCRITICAL GALTON-WATSON PROCESS
                                                                                                    ON RECENT AMS 68 2098
        OF AN ESTIMATOR FOR A SIMPLE BIRTH AND DEATH PROCESS
                                                                                                THE BEHAVIOUR BIOKA56
                                                                                                                       23
      OF COUNTS OF EVENTS FOR CERTAIN TYPES OF POINT PROCESS
                                                                                              SOME PROPERTIES JRSSB64
                                                                                                                       325
  DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS
                                                                                            ON THE ASYMPTOTIC AMS 69 1409
     OF THE INTENSITY FUNCTION OF A STATIONARY POINT PROCESS
                                                                                            ON THE ESTIMATION JRSSB65
                                                                                                                       332
  INANIMATE MARKS OVER A NON-HOMOGENEOUS BIRTH-DEATH PROCESS
                                                                                          THE DISTRIBUTION OF BIOKA69
                                                                                                                        225
OF MEAN CHARTS USED TO MAINTAIN CURRENT CONTROL OF A PROCESS
                                                                                         THE ECONOMIC DESIGN JASA 56
                                                                                                                        228
    OF HIGH LEVEL CROSSINGS OF A STATIONARY GAUSSIAN PROCESS
                                                                                      ON A LIMIT DISTRIBUTION AMS 6B 210B
                                                                                     NONPARAMETRIC ESTIMATION AMS 69 1386
 OF THE TRANSITION DISTRIBUTION FUNCTION OF A MARKOV PROCESS
     OF CROSSINGS OF A LEVEL BY A STATIONARY NORMAL PROCESS
                                                                                    THE MOMENTS OF THE NUMBER AMS 65 1656
  COMPOUNDS BY COUNTERCURRENT DIALYSIS, A STOCHASTIC PROCESS
                                                                                  THE SEPARATION OF MOLECULAR BIOKAGO
                                                                                                                        69
 GENERATOR OF A CONTINUOUS TIME, FINITE STATE MARKOV PROCESS
                                                                                 ESTIMATING THE INFINITESIMAL AMS 62
                                                                                 PROPERTIES OF THE STATIONARY AMS 67
                                                                                                                        977
       MEASURE OF THE CRITICAL CASE SIMPLE BRANCHING PROCESS
  INTERACTION PARAMETER IN AN EMIGRATION-IMMIGRATION PROCESS
                                                                            THE ESTIMATION OF A FUNDAMENTAL AMS 63 238
   RESIDUALS FOLLOW A FIRST-ORDER STATIONARY MARKOFF PROCESS
                                                                          EFFICIENCY OF THE SAMPLE MEAN WHEN JASA 68 1237
```

```
PROGRAMMING ON A FINITE SPACE DISCRETE TIME MARKOV PROCESS
                                                                           ON THE ITERATIVE METHOD OF DYNAMIC
                                                                                                                AMS 65 1279
NCES WITH TRANSITION PROBABILITIES BASED ON A MARKOV PROCESS
                                                                        DEVELOPMENT OF RANDOMIZED LOAD SEQUE TECH 66 107
                                                                     ON THE ASYMPTOTIC DISTRIBUTION OF THE A AMS 64 1296
UTOCORRELATIONS OF A SAMPLE FROM A LINEAR STOCHASTIC PROCESS
LE OF CONSECUTIVE OBSERVATIONS FROM A MOVING-AVERAGE PROCESS
                                                                 /HE LIMITING GENERALIZED VARIANCE OF A SAMP BIOKAG1 197
HE CUMULATIVE POPULATION IN A SIMPLE BIRTH-AND-DEATH PROCESS
                                                                 /HE PROBABILITY GENERATING FUNCTIONAL FOR T BIOKA64
NS WITH AN APPLICATION IN STUDYING THE DENTAL CARIES PROCESS
                                                                 /ILITY APPROACH TO IRREVERSIBLE MARKOV CHAI BIOCS66
URES FOR ESTIMATING PARAMETERS IN A TWO-STAGE NESTED PROCESS
                                                                 /MPARISONS OF DESIGNS AND ESTIMATION PROCED TECH 67
CONCERNING THE UNKNOWN DRIFT PARAMETER OF THE WIENER PROCESS
                                                                 /OCEDURES FOR CHOOSING ONE OF K HYPOTHESES AMS 67 1376
   ON THE LENGTHS OF INTERVALS IN A STATIONARY POINT PROCESS (CORR. 63 500)
                                                                                                                JRSSB62
                                                                                                                        364
MATING THE SPECTRAL DENSITY FUNCTION OF A STOCHASTIC PROCESS (WITH DISCUSSION)
                                                                                                       ON ESTI JRSSB57
                                                                                                                          13
                                          A BRANCHING PROCESS ALLOWING IMMIGRATION
                                                                                                                JRSSB65
 CASE THE STATIONARY DISTRIBUTION OF A BRANCHING PROCESS ALLOWING IMMIGRATION, A REMARK ON THE CRITICA JRSSB68
CORRECTIONS AND COMMENTS ON THE PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION' JRSSB66
                                                                                                                JRSSB66
                                                                                                                         213
          WEAK CONVERGENCE OF A TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO CHERNOFF-SAVAGE THEOREM AMS 68 755
      A MULTIVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND APPLICATIONS TO LUNAR CRATERS
                                                                                                                BIOKA67
                                                                                                                         251
E THE PROBABILITIES OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME RELATED MULTIPLICATIVE POPULATION AMS 6B 1700
                  ON THE HOMOGENEOUS BIRTH-AND-DEATH PROCESS AND ITS INTEGRAL
                                                                                                                BIOKA66
                                                                                                                          61
D MINIMA OF A STATIONARY GAUSSIAN ORNSTEIN-UHLENBECK PROCESS BY MONTE CARLO SIMULATION /E-TIME MAXIMA AN JASA 6B 1517
SOME STOCHASTIC APPROXIMATION PROCEDURES FOR USE IN PROCESS CONTROL
                                                                                                                 AMS 64 1136
          APPLICATION OF STOCHASTIC APPROXIMATION TO PROCESS CONTROL
                                                                                                                JRSSB65 321
         PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL
                                                                                                   STATISTICAL TECH 65
                                                                                                                         2B3
                                         STATISTICAL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS TECH 65 2B3
                                                   THE PROCESS CURVE AND THE EQUIVALENT MIXED BINOMIAL WITH
TWO COMPONENTS
                                                                                                                JRSSB59
                                                                                                                          63
                        THE SPECTRUM OF A CONTINUOUS PROCESS DERIVED FROM A DISCRETE PROCESS
                                                                                                                         517
                                                                                                                BIOKA63
                              MULTIPLE REGRESSION IN PROCESS DEVELOPMENT
                                                                                                                TECH 68 257
           SOME EQUILIBRIUM RESULTS FOR THE QUEUEING PROCESS E-SUB-K-M-1
                                                                                                                JRSSB56 275
   CROSS-SPECTRUM OF A STATIONARY BIVARIATE GAUSSIAN PROCESS FROM ITS ZEROS
                                                                                  ESTIMATION OF THE JRSSB68
                                                                                                                         145
         THE BUSY PERIOD IN RELATION TO THE QUEUEING PROCESS GI-M-1
                                                                                                                BTOKA59
                                                                                                                         246
                         THE MULTI-TYPE GALTON-WATSON PROCESS IN A GENETICAL CONTEXT
                                                                                                                BIOCS6B
                                                                                                                         147
                                         A RANDOM SET PROCESS IN THE PLANE WITH A MARKOVIAN PROPERTY
                                                                                                                AMS 65 1859
          CROSS SPECTRAL ANALYSIS OF GAUSSIAN VECTOR PROCESS IN THE PRESENCE OF VARIANCE FLUCTUATIONS
                                                                                                                 AMS 68 1507
                                          A BRANCHING PROCESS IN WHICH INDIVIDUALS HAVE VARIABLE LIFETIMES BIOKA64 262
           SPLITTING A SINGLE STATE OF A STATIONARY PROCESS INTO MARKOVIAN STATES
TTERNS (WITH DISCUSSION) A BRANCHING POISSON PROCESS MODEL FOR THE ANALYSIS OF COMPUTER FAILURE PA JRSSB64 398
                                           THE OUTPUT PROCESS OF A STATIONARY M/M/S QUEUEING SYSTEM
                                                                                                                 AMS 68 1144
        ESTIMATING AND TESTING TREND IN A STOCHASTIC PROCESS OF POISSON TYPE
                                                                                                                 AMS 66 1564
             THE CORRELATION STRUCTURE OF THE OUTPUT PROCESS OF SOME SINGLE SERVER SYSTEMS
                                                                                                                 AMS 68 1007
ARR/ ON THE CORRELATION STRUCTURE OF THE DEPARTURE PROCESS OF THE QUEUE WITH ONE SERVER, WHILE THE INTER JRSSB66 336

ICH INTERARRIVAL AND SERVING DISTRIBUT/ THE OUTPUT PROCESS OF THE QUEUEING SYSTEM WITH ONE SERVER AND WH JRSSB59 375

EXPECTED ARC LENGTH OF A GAUSSIAN PROCESS ON A FINITE INTERVAL JRSSB66 257
                                             A MARKOV PROCESS ON BINARY NUMBERS
                                                                                                                 AMS 63
                                                                                                                         416
          OPTIMUM DECISION PROCEDURES FOR A POISSON PROCESS PARAMETER
                                                                                                                 AMS 62 1384
          APPLICATIONS OF TRUNCATED DISTRIBUTIONS IN PROCESS START-UPS AND INVENTORY CONTROL
                                                                                                                TECH 61
                                                                                                                        429
              SUFFICIENT CONDITIONS FOR A STATIONARY PROCESS TO BE A FUNCTION OF A FINITE MARKOV CHAIN
                                                                                                                 AMS 63 1033
                                             ISN'T MY PROCESS TOO VARIABLE FOR EVOP.
                                                                                                                TECH 68
                                                                                                                        439
         A NOTE ON PREDICTION FROM AN AUTOREGRESSIVE PROCESS USING PISTIMETRIC PROBABILITY
                                                                                                                JRSSB60
                                                                                                                          97
  ESTIMATION OF STOCHASTIC SYSTEMS, ARBITRARY SYSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS ERROR
                                                                                                                 AMS 6B
                                                                                                                         7B5
                                  A MENDELIAN MARKOV PROCESS WITH BINOMIAL TRANSITION PROBABILITIES
                                                                                                                          37
         OUTCOME PROBABILITIES FOR A RECORD MATCHING PROCESS WITH COMPLETE INVARIANT INFORMATION
                                                                                                                JASA 67
INCTION OF A BACTERIAL COLONY BY PHAGES, A BRANCHING PROCESS WITH DETERMINISTIC REMOVALS
                                                                                                      THE EXT BIOKA62 272
                      ON THE GALTON-WATSON BRANCHING PROCESS WITH MEAN LESS THAN ONE
                                                                                                                 AMS 67
                                                                                                                         264
                          A MODIFIED COMPOUND POISSON PROCESS WITH NORMAL COMPOUNDING
                                                                                                                JASA 68
                                                                                                                         637
  CONDITIONS FOR ALMOST SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVIRONMENT
                                                                                                     NECESSARY AMS 6B 2136
  THE TRANSIENT BEHAVIOR OF A SINGLE SERVER QUEUING PROCESS WITH RECURRENT INPUT AND GAMMA SERVICE TIME
                                                                                                                 AMS 61 12B6
                       MODELS FOR A BACTERIAL GROWTH PROCESS WITH REMOVALS
                                                                                                                JRSSB63
                                                                                                                         140
                                         A BRANCHING PROCESS WITHOUT REBRANCHING
                                                                                                                 AMS 69 1850
EN THE MEAN AND VARIANCE OF A STATIONARY BIRTH-DEATH PROCESS, AND ITS ECONOMIC APPLICATION /ONSHIP BETWE BIOKA62 253
ON THE NORMAL STATIONARY PROCESS, AREAS OUTSIDE GIVEN LEVELS

ON THE QUEUEING PROCESS, MARKOV OR POISSON INPUT, GENERAL SERVICE TIM AMS 61
    BAYESIAN ANALYSIS OF THE INDEPENDENT MULTINORMAL PROCESS, NEITHER MEAN NOR PRECISION KNOWN
APPLICATIONS

THE LOGISTIC PROCESS, TABLES OF THE STOCHASTIC EPIDEMIC CURVE AND JRSSB60

LE OF CONSECUTIVE OBSERVATIONS FROM A MOVING-AVERAGE PROCESS' /E LIMITING GENERALIZED VARIANCE OF A SAMP BIOKAGI
                                                                                                                         476
             REMARK CONCERNING TWO-STATE SEMI-MARKOV PROCESSES
                                                                                                                 AMS 61
                                                                                                                 AMS 61
                      MAXIMAL INDEPENDENT STOCHASTIC PROCESSES
                                                                                                                         704
    A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCHASTIC PROCESSES
                                                                                                                 AMS 62
                                                                                                                          98
                                                                                                                 AMS 62 114
                                   MIXTURES OF MARKOV PROCESSES
 ZERO CROSSING PROBABILITIES FOR GAUSSIAN STATIONARY PROCESSES
                                                                                                                 AMS 62 1306
                                                                                                                 AMS 63 206
                             ON A CLASS OF STOCHASTIC PROCESSES
                                   DYNAMIC STOCHASTIC PROCESSES
                                                                                                                 AMS 63
                                                                                                                         274
                                ON SEQUENTIAL CONTROL PROCESSES
                                                                                                                 AMS 64 341
                                                                                                                 AMS 64 350
                             MULTIVARIATE COMPETITION PROCESSES
             GENERATING FUNCTIONS FOR MARKOV RENEWAL PROCESSES
                                                                                                                 AMS 64 431
                     ON ADDING INDEPENDENT STOCHASTIC PROCESSES
                                                                                                                 AMS 64 872
                                             EXTREMAL PROCESSES
                                                                                                                 AMS 64 1718
                   LIMIT THEOREMS FOR MARKOV RENEWAL PROCESSES
                                                                                                                 AMS 64 1746
                                                                                                                TECH 64 57
              THE DISCRIMINATION BETWEEN TWO WEIBULL PROCESSES
           MODEL BUILDING WITH THE AID OF STOCHASTIC PROCESSES
                                                                                                                TECH 64 133
   SOME APPLICATIONS OF MONOTONE OPERATORS IN MARKOV PROCESSES
                                                                                                                 AMS 65 1421
     AN INTEGRAL EQUATION IN AGE DEPENDENT BRANCHING PROCESSES
                                                                                                                 AMS 65 1569
                    MARKOVIAN SEQUENTIAL REPLACEMENT PROCESSES
                                                                                                                 AMS 65 1677
                       ON LIMIT THEOREMS FOR GAUSSIAN PROCESSES
                                                                                                                 AMS 65 304
                       ASYMPTOTIC INFERENCE IN MARKOV PROCESSES
                                                                                                                 AMS 65 978
          INVARIANT PROBABILITIES FOR CERTAIN MARKOV PROCESSES
                                                                                                                 AMS 66
                                                                                                                         837
  A LIMIT THEOREM FOR MULTIDIMENSIONAL GALTON-WATSON PROCESSES
                                                                                                                 AMS 66 1211
SAMPLING RATES AND APPEARANCE OF STATIONARY GAUSSIAN PROCESSES
                                                                                                                TECH 66
                                                                                                                        91
                                 ON STATIONARY MARKOV PROCESSES
                                                                                                                 AMS 67 588
```

```
SLOWLY BRANCHING PROCESSES
                                                                                                              AMS 67 919
                       EPSILON ENTROPY OF STOCHASTIC PROCESSES
                                                                                                              AMS 67 1000
                               ON HITTING FOR STABLE PROCESSES
                                                                                                              AMS 67 1021
A RANDOM TIME CHANGE RELATING SEMI-MARKOV AND MARKOV PROCESSES
                                                                                                                     358
                                                                                                              AMS 68
                            TRANSFORMS OF STOCHASTIC PROCESSES
                                                                                                              AMS 68
                                                                                                                     372
                   ON RECURRENT DENUMBEABLE DECISION PROCESSES
                                                                                                              AMS 68
                                                                                                                      424
                  AN EXAMPLE IN DUNUMERABLE DECISION PROCESSES
                                                                                                              AMS 68
                                                                                                                     674
                  ARBITRARY STATE MARKOVIAN DECISION PROCESSES
                                                                                                              AMS 68 2118
THE WILCOXON TWO-SAMPLE STATISTIC ON STRONGLY MIXING PROCESSES
                                                                                                              AMS 68 1202
ON THE ERGODICITY FOR NON-STATIONARY MULTIPLE MARKOV PROCESSES
                                                                                                              AMS 68 1448
                  EQUIVALENCE OF GAUSSIAN STATIONARY PROCESSES
                                                                                                                     197
                                                                                                              AMS 69
               SAMPLE PATH VARIATIONS OF HOMOGENEOUS PROCESSES
                                                                                                              AMS 69
                                                                                                                     399
   ON THE MATRIX RENEWAL FUNCTION FOR MARKOV RENEWAL PROCESSES
                                                                                                              AMS 69 NO.6
        ASYMPTOTICALLY MOST POWERFUL TESTS IN MARKOV PROCESSES
                                                                                                              AMS 69 1207
                         EPSILON ENTROPY OF GAUSSIAN PROCESSES
                                                                                                              AMS 69 1272
                      ON THE SUPERPOSITON OF RENEWAL PROCESSES
                                                                                                             BIOKA54
                                                                                                                       91
   MODELS FOR TWO-DIMENSIONAL STATIONARY STOCHASTIC PROCESSES
                                                                                                             BIOKA55
                                                                                                                     170
                                  CONDITIONED MARKOV PROCESSES
                                                                                                             BIOKA58
                         ON THE CUMULANTS OF RENEWAL PROCESSES
                                                                                                             BIOKA59
              ERGODIC PROPERTIES OF SOME PERMUTATION PROCESSES
                                                                                                             BIOKA62
      THE SPECTRAL ANALYSIS OF TWO-DIMENSIONAL POINT PROCESSES
                                                                                                             BIOKA64
                                                                                                                      299
                              INTEGRALS OF BRANCHING PROCESSES
                                                                                                             BIOKA67
                                                                                                                      263
                                TRANSPOSED BRANCHING PROCESSES
                                                                                                             JRSSB54
                                                                                                                       76
                       SOME APPLICATIONS OF ZERO-ONE PROCESSES
                                                                                                             JRSSB55
           SOME SIMPLE DURATION-DEPENDENT STOCHASTIC PROCESSES
                                                                                                             JRSSB59
                  SOME SIMPLE WEAR-DEPENDENT RENEWAL PROCESSES
                                                                                                             JRSSB61
RECURSIVE RELATIONS FOR PREDICTORS OF NON-STATIONARY PROCESSES
                                                                                                             JRSSB65
          AN EXPERIMENTAL STUDY OF CERTAIN SCREENING PROCESSES
                                                                                                             JRSSB66
                DESIGN RELATIONS FOR NON-STATIONARY PROCESSES
                                                                                                             JRSSB66
                   NON-HOMOGENEOUS BRANCHING POISSON PROCESSES
                                                                                                             JRSSB67
                                                                                                                      343
                 ON THE PREDICTION OF NON-STATIONARY PROCESSES
                                                                                                             JRSSB67
ON A DISTRIBUTION ASSOCIATED WITH CERTAIN STOCHASTIC PROCESSES
                                                                                                             JRSSB68
                                                                                                                      160
        THE ERGODIC THEORY OF SUBADDITIVE STOCHASTIC PROCESSES
                                                                                                             JRSSB68
                                                                                                                      499
                       ON THE SUPERPOSITION OF POINT PROCESSES
                                                                                                             JRSSB68
                                                                                                                      576
THE SOLUTION OF THE LIKELIHOOD EQUATION BY ITERATION PROCESSES
                                                                                                             BIOKA61
                                                                                                                      452
 LAW OF THE ITERATED LOGARITHM FOR MIXING STOCHASTIC PROCESSES
                                                                                                         THE
                                                                                                             AMS 69 NO.6
 STRONG RATIO LIMIT PROPERTY FOR SOME GENERAL MARKOV PROCESSES
                                                                                                         THE
                                                                                                              AMS 69
                                                                                                                     986
  ON EXTREME VALUES. COMPETING RISKS AND SEMI-MARKOV PROCESSES
                                                                                                              AMS 63 1104
                                                                                                        NOTE
    FOR THE LAW OF LARGE NUMBERS FOR DISCRETE MARKOV PROCESSES
                                                                                                              AMS 61 336
                                                                                                     A BOUND
     SAMPLE TEST FOR THE INDEPENDENCE OF TWO RENEWAL PROCESSES
                                                                                                     A LARGE
                                                                                                              AMS 67 1037
   THEOREM FOR PASSAGE TIMES IN ERGODIC REGENERATIVE PROCESSES
                                                                                                     A LIMIT
                                                                                                              AMS 66
                                                                                                                     866
   VALUES IN UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES SAMPLES AND MOVING SUMS IN STATIONARY STOCHASTIC PROCESSES
                                                                                                              AMS 65
                                                                                                     EXTREME
                                                                                                                      993
                                                                                                    DISCRETE JASA 67
                                                                                                                      484
   CONVERGENCE OF MOMENTS IN AGE DEPENDENT BRANCHING PROCESSES
                                                                                                    MONOTONE
                                                                                                              AMS 66 1806
ULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCHASTIC PROCESSES
                                                                                                    ON THE M
                                                                                                              AMS 64 1765
UPERCRITICAL ONE DIMENSIONAL AGE DEPENDENT BRANCHING PROCESSES
                                                                                                    ON THE S
                                                                                                              AMS 69
                                                                                                                      743
 MEMORYLESS RULES FOR CONTROLLING SEQUENTIAL CONTROL PROCESSES
                                                                                                   A NOTE ON
                                                                                                              AMS 66
                                                                                                                      276
        OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES
                                                                                                   FUNCTIONS
                                                                                                              AMS 68 1020
       NORMALITY OF SAMPLE QUANTILES FOR M-DEPENDENT PROCESSES
                                                                                                  ASYMPTOTIC
                                                                                                              AMS 68 1724
   VALUES OF THE FIRST TWO MOMENTS IN MARKOV RENEWAL PROCESSES
                                                                                                  ASYMPTOTIC BIOKA67
                                                                                                                      597
     OF SPECTRA AFTER HARD CLIPPING OF GAUSSIAN TIME PROCESSES
                                                                                                  ESTIMATION TECH 67
                                                                                                                      391
 SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE STOCHASTIC PROCESSES
                                                                                                 APPROXIMATE JRSSB60
                                                                                                                      376
     UNBIASED ESTIMATION FOR MULTIVARIATE STATIONARY PROCESSES
                                                                                                 BEST LINEAR TECH 68
                                                                                                                      523
  NUMBER OF CURVE CROSSINGS BY NON-STATIONARY NORMAL PROCESSES
                                                                                                 ON THE MEAN AMS 65
                                                                                                                     509
   THEOREM FOR STATIONARY MEASURES OF ERGODIC MARKOV PROCESSES
                                                                                                A UNIQUENESS
                                                                                                              AMS 64 1781
  OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES
                                                                                                ON CROSSINGS
                                                                                                              AMS 66
                                                                                                                      260
       ON MULTITYPE CONTINUOUS TIME MARKOV BRANCHING PROCESSES
                                                                                                SOME RESULTS
                                                                                                             AMS 68
                                                                                                                      347
     OF QUEUEING AND INVENTORY MODELS BY SEMI-MARKOV PROCESSES
                                                                                                THE SOLUTION JRSSB61
                                                                                                                      113
  OF A FUNCTIONAL ON INFINITELY DIVISIBLE STOCHASTIC PROCESSES
                                                                                               AN EVALUATION AMS 64
                                                                                                                      336
  IN THE CENTRAL LIMIT THEOREM FOR MIXING STOCHASTIC PROCESSES
                                                                                               THE REMAINDER
                                                                                                             AMS 69
                                                                                                                      601
 OF BIORTHONORMAL EXPANSIONS IN THEORY OF STOCHASTIC PROCESSES
                                                                                              AN APPLICATION JRSSB68
                                                                                                                      334
        OF AN ALGEBRAIC REPRESENTATION OF STOCHASTIC PROCESSES
                                                                                             SOME PROPERTIES AMS 68
                                                                                                                      164
                                                                                                                      268
 NORMAL APPROXIMATION IN THE TREATMENT OF STOCHASTIC PROCESSES
                                                                                           ON THE USE OF THE JRSSB57
       OF COHERENCE FOR WEAKLY STATIONARY STOCHASTIC PROCESSES
                                                                                          ON THE COEFFICIENT AMS 64
                                                                                                                      532
UNIQUENESS OF STATIONARY MEASURES FOR MARKOV RENEWAL PROCESSES
                                                                                          THE EXISTENCE AND
                                                                                                              AMS 66 1439
        PLANS FOR DISCRIMINATING BETWEEN TWO WEIBULL PROCESSES
                                                                                         SAMPLING INSPECTION TECH 65
                                                                                                                      589
 OF FREQUENCY DISTRIBUTIONS OBTAINED FROM STOCHASTIC PROCESSES
                                                                                         THE GOODNESS OF FIT BIOKA54
                                                                                                                      450
  OF A REGRESSION PARAMETER FOR CERTAIN SECOND ORDER PROCESSES
                                                                                        EFFICIENT ESTIMATION AMS 61 1299
       SAMPLE EXCURSIONS OF STOCHASTIC APPROXIMATION PROCESSES
                                                                                       A NOTE ON THE MAXIMUM
                                                                                                              AMS 66
                                                                                                                     513
     TESTS FOR THE R-DEPENDENT MARGINALLY STATIONARY PROCESSES
                                                                                       SEQUENTIAL HYPOTHESIS
                                                                                                              AMS 66
                                                                                                                       90
                                                                                                              AMS 67
  SYSTEM OF EQUALITIES ARISING IN MARKOVIAN DECISION PROCESSES
                                                                                   A SOLUTION TO A COUNTABLE
                                                                                                                      582
   FOR INDECOMPOSABLE MULTIDIMENSIONAL GALTON-WATSON PROCESSES
                                                                                   ADDITIONAL LIMIT THEOREMS
                                                                                                              AMS 66 1463
  OF LARGE NUMBERS FOR LINEAR COMBINATIONS OF MARKOV PROCESSES
                                                                               CONVERGENCE RATES FOR THE LAW
                                                                                                              AMS 66
                                                                                                                      711
NEQUALITIES WITH- EXTENSIONS TO CONTINUOUS PARAMETER PROCESSES
                                                                               SOME MULTIVARIATE CHEBYSHEV I
                                                                                                              AMS 61
 SPECIES GROWING ACCORDING TO SIMPLE BIRTH AND DEATH PROCESSES
                                                                             POPULATION DIFFERENCES BETWEEN BIOKA53
STRIBUTION FOR USE IN BAYESIAN ANALYSIS OF BERNOULLI PROCESSES
                                                                           PERCENTAGE POINTS OF THE BETA DI TECH 66
                                                                                                                      687
TO THE EQUIVALENCE CONDITIONS FOR CERTAIN STATIONARY PROCESSES
                                                                   /ENCE CONDITIONS FOR THE BROWNIAN MOTION
                                                                                                              AMS 69 NO.6
 AND ITS RELATIONSHIP TO BIRTH, DEATH, AND BRANCHING PROCESSES
                                                                  /EXPONENTIAL PARAMETER FROM QUANTAL DATA,
                                                                                                             BIOCS67
                                                                                                                      739
ROCESS AND IN SOME RELATED MULTIPLICATIVE POPULATION PROCESSES
                                                                   /ITIES OF EXTINCTION IN A GALTON-WATSON P
                                                                                                              AMS 68 1700
R COMBINATIONS OF EXCHANGEABLE AND MIXING STOCHASTIC PROCESSES
                                                                   /R THE LAW OF LARGE NUMBERS FOR THE LINEA
                                                                                                              AMS 65 1840
 OF THE ITERATED LOGARITHM FOR NON-DECREASING STABLE PROCESSES
                                                                (ADDENDUM, 69 1855)
                                                                                             A DELICATE LAW
                                                                                                              AMS 68 1818
                       CONTROL CHARTS AND STOCHASTIC PROCESSES
                                                                (WITH DISCUSSION)
                                                                                                             JRSSB59 239
                      THE SPECTRAL ANALYSIS OF POINT PROCESSES
                                                                 (WITH DISCUSSION)
                                                                                                             JRSSB63
                                                                                                                     264
            EVOLUTIONARY SPECTRAL AND NON-STATIONARY PROCESSES
                                                                (WITH DISCUSSION)
                                                                                                             JRSSB65
                                                                                                                     204
                  AN APPROACH TO THE STUDY OF MARKOV PROCESSES
                                                                (WITH DISCUSSION)
                                                                                                             JRSSB66
                                                                                                                      417
   ON THE CONCEPT OF THE SPECTRUM FOR NON-STATIONARY PROCESSES (WITH DISCUSSION)
                                                                                                             JRSSB68
```

```
MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDICTION THEORY
                                                                                                              AMS 63
                                                                                                                      424
OF URN SCHEMES INTO CONTINUOUS TIME MARKOV BRANCHINC PROCESSES AND RELATED LIMIT THEOREMS
                                                                                                              AMS 68 1801
                                                                                                  EMBEDDING
                      CERTAIN PROPERTIES OF GAUSSIAN PROCESSES AND THEIR FIRST PASSAGE TIMES
                                                                                                             JRSSB65
                                                                                                                      505
                                       ON STOCHASTIC PROCESSES DERIVED FROM MARKOV CHAINS
                                                                                                              AMS 65 1286
               STOCHASTIC BIRTH, DEATH AND MIGRATION PROCESSES FOR SPATIALLY DISTRIBUTED POPULATIONS
                                                                                                             BIOKA68
                                                                                                                      189
                              ON A CLASS OF GAUSSIAN PROCESSES FOR WHICH THE MEAN RATE OF CROSSINGS IS
                                                                                                             JRSSR67
INFINITE
                                                                                                                       489
                                                      PROCESSES GENERATING PERMUTATION EXPANSIONS
                                                                                                             BIOKA62
                                                                                                                       139
                       NON-SINGULAR RECURRENT MARKOV PROCESSES HAVE STATIONARY MEASURES
                                                                                                              AMS 64
                                                                                                                      B69
        SOME APPLICATIONS OF MULTIPLE-TYPE BRANCHING PROCESSES IN POPULATION GENETICS
                                                                                                             JRSSB6B
                                                                                                                       164
                                 DISCRETE STOCHASTIC PROCESSES IN POPULATION GENETICS (WITH DISCUSSION)
                                                                                                             JRSSB60
                                                                                                                      21B
                                        ON BRANCHINC PROCESSES IN RANDOM ENVIRONMENTS
                                                                                                              AMS 69
                                                                                                                      B14
                                       ON STATIONARY PROCESSES IN THE PLANE
                                                                                                             BTOKA54
                                                                                                                       434
                          CORRIGENDA, 'ON STATIONARY PROCESSES IN THE PLANE'
                                                                                                             BIOKA55
                                                                                                                      277
              STATIONARITY CONDITIONS FOR STOCHASTIC PROCESSES OF THE AUTOREGRESSIVE AND MOVING-AVERAGE
TYPE
                                                                                                             BIOKA56
                                                                                                                      215
                                           STOCHASTIC PROCESSES ON A SPHERE
                                                                                                              AMS 63
                                                                                                                      213
  CONCERNING CERTAIN EQUIVALENCE CLASSES OF GAUSSIAN PROCESSES ON AN INTERVAL
                                                                                             A CLARIFICATION
                                                                                                              AMS 68 107B
                                            GAUSSIAN PROCESSES ON SEVERAL PARAMETERS
                                                                                                              AMS 65
                                                                                                                      771
                               THE ASYMMETRIC CAUCHY PROCESSES ON THE LINE
                                                                                                              AMS 69
                                                                                                                      137
               SOME PROCEDURES FOR COMPARINC POISSON PROCESSES OR POPULATIONS
                                                                                                             BIOKA53
                                                                                                                      447
                                                                                                              AMS 65
     THE BEHAVIOR OF LIKELIHOOD RATIOS OF STOCHASTIC PROCESSES RELATED BY CROUPS OF TRANSFORMATIONS
                                                                                                                       529
 THE PROBABILITIES OF EXTINCTION FOR SIRTH-AND-DEATH PROCESSES THAT ARE ACE-DEPENDENT OR PHASE-DEPENDENT
                                                                                                             BTOKA67
                                                                                                                      579
M OF EVERETT, ULAM AND HARRIS ON MULTITYPE BRANCHING PROCESSES TO A BRANCHING PROCESS WITH COUNTABLY MANY
                                                                                                              AMS 67
                                                                                                                      992
             THE LOOSE SUBORDINATION OF DIFFERENTIAL PROCESSES TO BROWNIAN MOTION
                                                                                                              AMS 69 1603
                             AGE-DEPENDENT BRANCHING PROCESSES UNDER A CONDITION OF ULTIMATE EXTINCTION
                                                                                                             BIOKA6B
                                                                                                                      291
                                        EXCHANGEABLE PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV
CHAINS
                                                                                                              AMS 64
                                                                                                                       429
                          ON THE SAMPLE FUNCTIONS OF PROCESSES WHICH CAN BE ADDED TO A CAUSSIAN PROCESS
                                                                                                              AMS 63
                                                                                                                      329
IMBEDDING THEOREMS TO CRITERIA FOR THE CONTINUITY OF PROCESSES WITH A VECTOR PARAMETER /FOR THE SOBOLEV
                                                                                                              AMS 69
                                                                                                                      517
HE STRONG LAW OF LARGE NUMBERS FOR LINEAR STOCHASTIC PROCESSES WITH ABSOLUTELY CONVERGENT COEFFICIENTS
                                                                                                              AMS 61
                                                                                                                      583
                                                                                                                      319
                                     SOME STOCHASTIC PROCESSES WITH ABSORBING BARRIERS
                                                                                                              JRSSB61
                                         ON QUEUEING PROCESSES WITH BULK SERVICE
                                                                                                              JRSSB54
                                                                                                                       80
                                                                                                              AMS 69
TRIBUTION OF THE SUPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CONTINUOUS STATE SPACES
                                                                                                  ON THE DIS
                                                                                                                      B44
          THE ANALYSIS OF TWO-DIMENSIONAL STATIONARY PROCESSES WITH DISCONTINUOUS SPECTRA
                                                                                                             BIOKA64
                                                                                                                      195
           ON A CHARACTERIZATION OF SYMMETRIC STABLE PROCESSES WITH FINITE MEAN
                                                                                                              AMS 68 1498
                                      MARKOV RENEWAL PROCESSES WITH FINITELY MANY STATES
                                                                                                              AMS 61 1243
                        ON A FLUCTUATION THEOREM FOR PROCESSES WITH INDEPENDENT INCREMENTS, II
                                                                                                              AMS 69
                                                                                                                       688
                                         FUNCTIONS OF PROCESSES WITH MARKOVIAN STATES
                                                                                                              AMS 68
                                                                                                                       93B
                                        FUNCTIONS OF PROCESSES WITH MARKOVIAN STATES, II
                                                                                                              AMS 69
                                                                                                                       865
                          THE ANALYSIS OF STATIONARY PROCESSES WITH MIXED SPECTRA, 1
                                                                                                              JRSS862
                                                                                                                       215
                              ANALYSIS OF STATIONARY PROCESSES WITH MIXED SPECTRA, 2
                                                                                                              JRSSB62
                                                                                                                       511
  SAMPLE ESTIMATION OF PARAMETERS FOR AUTOREGRESSIVE PROCESSES WITH MOVING-AVERAGE RESIDUALS
                                                                                                      LARCE- BIOKA62
                                                                                                                       117
 WITH APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCESSES WITH MULTI-DIMENSIONAL TIME PARAMETERS /S
                                                                                                              AMS 69
                   SAMPLING INSPECTION OF CONTINUOUS PROCESSES WITH NO AUTOCORRELATION BETWEEN SUCCESSIVE
                                                                                                             BIOKA60
                                                                                                                       363
                             MULTIVARIATE STOCHASTIC PROCESSES WITH PERIODIC COEFFICIENTS
                                                                                                              JRSSB69
                                                                                                                       171
                                     RANDOM QUEUEING PROCESSES WITH PHASE-TYPE SERVICE
                                                                                                              JRSSB56
                                                                                                                       129
  THE ESTIMATION OF AMPLITUDE SPECTRA FOR STOCHASTIC PROCESSES WITH QUASI-LINEAR RESIDUALS
                                                                                                   A NOTE ON JASA 66
                                                                                                                       397
                                             POISSON PROCESSES WITH RANDOM ARRIVAL RATE
                                                                                                              AMS 62
                                                                                                                       924
                  A NOTE ON MULTI-TYPE GALTON-WATSON PROCESSES WITH RANDOM BRANCHING PROBABILITIES
                                                                                                             BIOKA68
                                                                                                                      589
                              A NOTE ON EXCHANGEABLE PROCESSES WITH STATES OF FINITE RANK
                                                                                                              AMS 69 NO.6
                                 A LEARNING MODEL FOR PROCESSES WITH TOOL WEAR
                                                                                                             TECH 6B
                                                                                                                      379
                  COUNTING DISTRIBUTIONS FOR RENEWAL PROCESSES.
                                                                                                             BIOKA65
                                                                                                                      395
                   SOME RESULTS ON TESTS FOR POISSON PROCESSES.
                                                                                                             BIOKA65
                                                                                                                       67
                        HIERARCHICAL BIRTH AND DEATH PROCESSES. I. THEORY
                                                                                                             BIOKA60
                                                                                                                       235
            HIERARCHICAL BIRTH AND DEATH PROCESSES. II. APPLICATIONS CORRICENDA, 'ON THE CUMULANTS OF RENEWAL PROCESSES.'
                                                                                                             BTOKA60
                                                                                                                       245
                                                                                                             BIOKA59
                                                                                                                       502
                    CORRIGENDA, 'CONDITIONED MARKOFF PROCESSES.'
                                                                                                                      279
                                                                                                             BIOKA59
                                     BIRTH-AND-DEATH PROCESSES, AND THE THEORY OF CARCINOGENESIS
                                                                                                             BIOKA60
                                                                                                                       1.3
                DENUMERABLE STATE MARKOVIAN DECISION PROCESSES, AVERAGE COST CRITERION
                                                                                                              AMS 66 1545
  A CONTINUOUS KIEFER-WOLFOWITZ PROCEDURE FOR RANDOM PROCESSES, CORR. 66 745
                                                                                                              AMS 64
                                                                                                                      590
                                      MARKOV RENEWAL PROCESSES, DEFINITIONS AND PRELIMINARY PROPERTIES
                                                                                                              AMS 61 1231
                                     STOCHASTIC POINT PROCESSES, LIMIT THEOREMS
                                                                                                               AMS 67
                                                                                                                      771
     SPATIAL POINT PROCESSES, WITH APPLICATIONS TO ECOLOGY ERRATA, 'THE DISCRIMINATION 8ETWEEN TWO WEIBULL PROCESSES'
                                                                                                             BIOKA55
                                                                                                                       102
                                                                                                             TECH 64
                                                                                                                       240
     'THE SPECTRAL ANALYSIS OF TWO-DIMENSIONAL POINT PROCESSES'
                                                                                                 CORRICENDA,
                                                                                                             BIOKA65
                                                                                                                       305
THE SOLUTION OF THE LIKELIHOOD EQUATION BY ITERATION PROCESSES'
                                                                                            CORRICENDA, 'ON BIOKA62
                                                                                                                       284
     OF QUEUEINC AND INVENTORY MODELS BY SEMI-MARKOV PROCESSES'
                                                                              A CORRECTION TO 'THE SOLUTION JRSSB63
                                                                                                                       455
             INSPECTION AND CORRECTION ERROR IN DATA PROCESSING
                                                                                                             JASA 69 NO.4
     OF MULTIVARIATE QUALITY CONTROL TO PHOTOGRAPHIC PROCESSING
                                                                                              AN APPLICATION JASA 57
                                                                                                                      1B6
 AREA
                                                      PROCESSING UNDERDEVELOPED DATA FROM AN UNDERDEVELOPED JASA 60
                                                                                                                       23
AND SPECIFICATION LIMITS
                                                      PRODUCER AND CONSUMER RISKS FOR ASYMMETRICAL TESTS
                                                                                                             JASA 66
                                                                                                                       505
                                                      PRODUCER AND CONSUMER RISKS IN NON-NORMAL POPULATION
                                                                                                             TECH 66
                                                                                                                       335
NATION OF SINGLE SAMPLING ATTRIBUTE PLANS WITH GIVEN PRODUCER'S AND CONSUMER'S RISK
                                                                                                 THE DETERMI TECH 67
                                                                                                                       401
 CURVE FOR SEQUENTIAL SAMPLING BY VARIABLES WHEN THE PRODUCER'S AND CONSUMER'S RISKS ARE EQUAL
                                                                                                   /TERISTIC JASA 56
                                                                                                                       10B
 A PRICE AND PRODUCTIVITY INDEX FOR A NONHOMOCENEOUS PRODUCT
                                                                                                              JASA 64
                                                                                                                       469
               ESTIMATING THE FRACTION OF ACCEPTABLE PRODUCT
                                                                                                              TECH 65
                                                                                                                        43
                                         GROSS STATE PRODUCT AND AN ECONOMETRIC MODEL OF A STATE
                                                                                                                       7B7
 ANALYSIS OF PROVISIONAL ESTIMATES OF GROSS NATIONAL PRODUCT AND ITS COMPONENTS, OF SELECTED NATIONAL INCO JASA 58
                                                                                                                       54
FROM A POWER-FUNCTION POPULATION
                                     DISTRIBUTION OF PRODUCT AND OF QUOTIENT OF MAXIMUM VALUES IN SAMPLES
                                                                                                                      B77
                                                                                                            JASA 64
                                    DISTRIBUTION OF A PRODUCT AND THE STRUCTURAL SETUP OF DENSITIES
                                                                                                              AMS 69 1439
          MARKET CROWTH, COMPANY DIVERSIFICATION AND PRODUCT CONCENTRATION 1947-1954
                                                                                                              JASA 60
                                                                                                                      640
CULUS OF FACTORIAL ARRANCEMENTS, I. BLOCK AND DIRECT PRODUCT DESIGN
                                                                                     APPLICATIONS OF THE CAL BIOKA63
                                                                                                                        63
COMMENT
                                                      PRODUCT DIVERSIFICATION AND LIVING COSTS, A FURTHER
                                                                                                             JASA 66
 64 1296
                                                      PRODUCT DIVERSIFICATION AND THE COST OF LIVING, CORR.
                                                                                                             JASA 63
                                                                                                                       807
                                                      PRODUCT ENTROPY TO CAUSSIAN DISTRIBUTIONS
                                                                                                              AMS 69
                                                                                                                      870
                           ON MULTIVARIATE RATIO AND PRODUCT ESTIMATORS
                                                                                                             BIOKA69 NO.3
      ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION
                                                                                                             BIOKA65 2B9
MODELS
                     ON THE USE OF THE DIRECT MATRIX PRODUCT IN ANALYSING CERTAIN STOCHASTIC POPULATION
                                                                                                             BIOKA66
```

```
WHICH PRODUCT IS BETTER
                                                                                                              TECH 69 309
                      IDENTIFIABILITY OF MIXTURES OF PRODUCT MEASURES
                                                                                                               AMS 67 1300
      LIMITING SETS AND CONVEX HULLS OF SAMPLES FROM PRODUCT MEASURES
                                                                                                               AMS 69 1824
                                                  ON PRODUCT MOMENTS FROM A FINITE UNIVERSE
                                                                                                              JASA 68 535
                                      MORE RESULTS ON PRODUCT MOMENTS FROM A FINITE UNIVERSE
                                                                                                              JASA 69
                                                                                                                       864
                     ON THE MOMENTS OF THE RANCE AND PRODUCT MOMENTS OF EXTREME ORDER STATISTICS IN NORMAL BIOKAS6
                                                                                                                       458
                                   EXACT MOMENTS AND PRODUCT MOMENTS OF THE ORDER STATISTICS FROM THE TRUN JASA 66
CATED LOCISTIC DISTRIBUTION
                                                                                                                       514
BLEMS CONNECTED WITH THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOT
                                                                                                              AMS 67
                                                                                                                       944
                                  ESTIMATORS FOR THE PRODUCT OF ARITHMETIC MEANS
                                                                                                              JRSSB62
                                                                                                                       180
              ASSOCIATION MATRICES AND THE KRONECKER PRODUCT OF DESIGNS
                                                                                                               AMS 6B
                                                                                                                       676
TH THE SAME SHAPE PARAM/ EXACT DISTRIBUTION OF THE PRODUCT OF INDEPENDENT GENERALIZED GAMMA VARIABLES WI AMS 68 1751
THE VARIANCE OF THE PRODUCT OF K RANDOM VARIABLES JASA 62 54
                  BAYESIAN CONFIDENCE LIMITS FOR THE PRODUCT OF N BINOMIAL PARAMETERS
                                                                                                              BIOKA66
                                                                                                                       611
                        CONFIDENCE INTERVALS FOR THE PRODUCT OF TWO BINOMIAL PARAMETERS
                                                                                                              JASA 57
                                                                                                                       4B2
                             THE DISTRIBUTION OF THE PRODUCT OF TWO CENTRAL OR NON-CENTRAL CHI-SQUARE
VARIATES
                                                                                                              AMS 62 1016
             PRICINC POLICIES CONTINCENT ON OBSERVED PRODUCT QUALITY
                                                                                                              TECH 66
                                                                                                                      123
                                                                          /SEQUENTIAL BATCHING FOR ACCEPTANC TECH 60
E, REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRODUCT QUALITY CE-REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRODUCT QUALITY'
                                                                                                                       19
                                                                          /SEQUENTIAL BATCHING FOR ACCEPTAN TECH 61
                                                                                                                       131
                             PROBABILITY MEASURES ON PRODUCT SPACES
                                                                                                             SASJ 67
                                                                                                                         3
        SOME CENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATISTICS ARISING FROM RECTANGULAR POPULATIO JASA 64
                                                                                                                       557
                                                      PRODUCT TEST PLANNING FOR REPAIRABLE SYSTEMS
                                                                                                              TECH 65
                                                                                                                       485
                     EQUIVALENCE OF TWO ESTIMATES OF PRODUCT VARIANCE
                                                                                                                       451
                                                                                                              JASA 56
LES OF ANY SIZE/ THE FREQUENCY DISTRIBUTION OF THE PRODUCT-MOMENT CORRELATION COEFFICIENT IN RANDOM SAMP BIOKA51
                                                                                                                       219
TH APPLICATION TO MANIFOLD,/ THE RANK ANALOGUE OF PRODUCT-MOMENT PARTIAL CORRELATION AND REGRESSION, WI BIOKA59
                                                                                                                       241
                          THE CONDITION FOR LOT SIZE PRODUCTION
                                                                                                              JASA 56
                                                                                                                       627
                               FORECASTING INDUSTRIAL PRODUCTION
                                                                                                              JASA 61
                                                                                                                       B69
    OF SEASONAL VARIATION WITH AN APPLICATION TO HOG PRODUCTION
                                                                                           HARMONIC ANALYSIS JASA 62
                                                                                                                       655
L CONSIDERATION OF THE CASE OF MARKET ORIENTATION OF PRODUCTION
                                                                   /ASURING SPATIAL ASSOCIATION WITH SPECIA JASA 56
                                                                                                                       597
                                                                                                                        73
DEVELOPMENTS
                     THE PRESENT STATUS OF AUTOMATIC PRODUCTION AND CONTROL DEVICES AND EXPECTED FUTURE
                                                                                                              TECH 66
 ONE OPERATIVE
                           A TABLE FOR PREDICTING THE PRODUCTION FROM A GROUP OF MACHINES UNDER THE CARE OF JRSS854
                                                                                                                       285
                           AN INDEX OF MANUFACTURING PRODUCTION IN NEW ENGLAND
                          A TEST OF THE ACCURACY OF A PRODUCTION INDEX
                                                                                                              JASA 56
                                                                                                                        17
                A DYNAMIC PROCRAMMING APPLICATION IN PRODUCTION LINE INSPECTION
                                                                                                              TECH 67
                                                                                                                        73
                                                    A PRODUCTION MODEL AND CONTINUOUS SAMPLING PLAN
                                                                                                              JASA 59
                                                                                                                       231
                      THE FACTORIAL ANALYSIS OF CROP PRODUCTIVITY
                                                                                                              JRSSB54
                                                                                                                       100
                                         A PRICE AND PRODUCTIVITY INDEX FOR A NONHOMOGENEOUS PRODUCT
                                                                                                              JASA 64
                                                                                                                       469
METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND PRODUCTS
                                                                                                  NOTE ON A
                                                                                                             TECH 62
                                                                                                                       419
ENTIATION WITH SPECIAL REFERENCE TO KRONECKER MATRIX PRODUCTS
                                                                             SOME THEOREMS ON MATRIX DIFFER JASA 69
                                                                                                                       953
OF SAFETY SYSTEMS FOR PLANTS MANUFACTURING HAZARDOUS PRODUCTS
                                                                 /ICAL MODEL OF EVALUATING THE RELIABILITY
                                                                                                             TECH 59
                                                                                                                       293
       DEMAND FOR MANUFACTURERS' SERVICES FOR BAKERY PRODUCTS AND FRUITS AND VECETABLES
                                                                                                              JASA 65
                                                                                                                       740
                          LOCNORMAL APPROXIMATION TO PRODUCTS AND QUOTIENTS
                                                                                                              BIOKA56
                                                                                                                       404
 MEASUREMENTS AND RELATED PROBLEMS
                                     DEMAND FOR FARM PRODUCTS AT RETAIL AND THE FARM LEVEL. SOME EMPIRICAL JASA 58
                                                                                                                       656
              SOME MULTIVARIATE DENSITY FUNCTIONS OF PRODUCTS OF GAUSSIAN VARIATES.
                                                                                                              BTOKA65
                                                                                                                       645
  SOME RULES FOR A COMBINATORIAL METHOD FOR MULTIPLE PRODUCTS OF CENERALIZED K-STATISTICS
                                                                                                                       9B3
                                                                                                               AMS 6B
                                   GAMMA-DISTRIBUTED PRODUCTS OF INDEPENDENT RANDOM VARIABLES
                                                                                                              BIOKA62
                                                                                                                       564
                                     DISTRIBUTIONS OF PRODUCTS OF INDEPENDENT VARIABLES
                                                                                                                       277
                                                                                                              TECH 62
   ON THE DISTRIBUTION OF SUMS OF SQUARES AND CROSS PRODUCTS OF NORMAL VARIATES IN THE PRESENCE OF INTRA-
                                                                                                              AMS 62 1461
O 'TABLES OF EXPECTED VALUES OF ORDER STATISTICS AND PRODUCTS OF ORDER STATISTICS FOR SAMPLES OF SIZE TWEN
                                                                                                              AMS 61 1345
                                           ON FINITE PRODUCTS OF POISSON-TYPE CHARACTERISTIC FUNCTIONS OF
SEVERAL CARTABLES
                                                                                                               AMS 69
                                                                                                                      434
                          SOME MULTIPLE PRODUCTS OF POLYKAYS
ON THE EXACT COVARIANCE OF PRODUCTS OF RANDOM VARIABLES
                                                                                                               AMS 69 1297
                                                                                                              JASA 69 NO. 4
                              ON THE DISTRIBUTION OF PRODUCTS OF RANDOM VARIABLES
                                                                                                              JRSSB67
                                                                                                                      513
     DISTRIBUTIONS AND INDEPENDENT GAMMA-DISTRIBUTED PRODUCTS OF RANDOM VARIABLES
                                                                                                     INVERSE BIOKA63 505
                                          ON SUMS AND PRODUCTS OF RECTANGULAR VARIATES
                                                                                                              BIOKA66 615
                           A COMBINATORIAL METHOD FOR PRODUCTS OF TWO POLYKAYS WITH SOME GENERAL FORMULAE
                                                                                                              AMS 64 1174
                            ON THE EXACT VARIANCE OF PRODUCTS, CORR. 61 917
                                                                                                              JASA 60
                                                                                                                      70R
                        SPECIAL PAPER, PRINCIPLES OF PROFESSIONAL STATISTICAL PRACTICE
                                                                                                               AMS 65 18B3
CAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. PROFESSOR WILLIAM N. HURWITZ
                                                                                        WASHINGTON STATISTI JASA 69 NO.4
                                   THE VARIABILITY OF PROFITIBILATY WITH SIZE OF FIRM, 1947-1958
                                                                                                              JASA 64 11B3
                                                                                                                      53
     RELIABILITY GROWTH DURING A DEVELOPMENT TESTING PROCRAM
                                                                                                              TECH 66
                               PHILIPPINE STATISTICAL PROCRAM DEVELOPMENT AND THE SURVEY OF HOUSEHOLDS
                                                                                                              JASA 58
                                                                                                                        78
                                          A COMPUTER PROCRAM FOR FITTING THE RICHARDS FUNCTION
                                                                                                              BIOCS69
                                                                                                                      401
                                                   A PROGRAM TO ESTIMATE MEASUREMENT ERROR IN NONDESTRUCTI TECH 64
VE EVALUATION OF REACTOR FUEL ELEMENT QUALITY
                                                                                                                       293
                                 A CENERAL SIMULATION PROGRAMME FOR MATERIAL FLOW IN BATCH CHEMICAL PLANTS TECH 61
                                                                                                                       497
                                   A CENERAL COMPUTER PROGRAMME FOR THE ANALYSIS OF FACTORIAL EXPERIMENTS
                                                                                                              BIOCS66
                                                                                                                       503
                                             OPTIMAL PROGRAMMERS FOR VARIETAL SELECTION (WITH DISCUSSION)
                                                                                                                       2B2
ATISTICS IN THE FORMULATION AND EVALUATION OF SOCIAL PROGRAMMES
                                                                                               THE USE OF ST JASA 60
 THE PREDICTION OF RESPONSE TO SELECTION IN BREEDING PROCRAMMES WHEN ALL DAUGHTERS OF SELECTED PARENTS ARE BIOCS69
                                     DISCRETE DYNAMIC PROCRAMMING
                                                                                                               AMS 62
                                                                                                                       719
       MEMORYLESS STRATEGIES IN FINITE-STAGE DYNAMIC PROCRAMMING
                                                                                                               AMS 64
                                                                                                                       863
                                   DISCOUNTED DYNAMIC PROCRAMMING
                                                                                                               AMS 65
                                                                                                                       226
                                     NECATIVE DYNAMIC PROCRAMMING
                                                                                                               AMS 66
                                                                                                                       871
                      A NOTE ON UNDISCOUNTED DYNAMIC PROCRAMMING
                                                                                                               AMS 66 1042
                          A NOTE ON POSITIVE DYNAMIC PROCRAMMING
                                                                                                               AMS 69
                                                                                                                      316
                  A DEFORMATION METHOD FOR QUADRATIC PROGRAMMING
                                                                                                              JRSSB64
                                                                                                                       141
                                                                                                     MAXIMUM BIOKA69 NO.3
      LIKELTHOOD PATRED COMPARISON RANKING BY LINEAR PROGRAMMING
       LEAST SQUARES REGRESSION AND CONVEX QUADRATIC PROGRAMMING
                                                                                                  RESTRICTED TECH 69 NO.4
  OUTLINE OF LINEAR PROGRAMMING AN OUTLINE OF LINEAR PROGRAMMING (WITH DISCUSSION)
                                                                                                          AN JRSSB55 165
                                AN OUTLINE OF LINEAR PROGRAMMING AN OUTLINE OF LINEAR PROGRAMMING (WITH
                                                                                                              JRSSB55
                                                                                                                      165
DISCUSSION)
                                              INTEGER PROGRAMMING AND THE THEORY OF GROUPING
                                                                                                              JASA 69
                                                                                                                       506
                                                                                                                       73
                                            A DYNAMIC PROGRAMMING APPLICATION IN PRODUCTION LINE INSPECTION TECH 67
PERCENTAGES
                                                      PROGRAMMING FISHER'S EXACT METHOD OF COMPARING TWO
                                                                                                             TECH 60
                                                                                                                       103
                                            AUTOMATIC PROGRAMMING FOR AUTOMATIC COMPUTERS
                                                                                                              JASA 59
                                                                                                                      744
                ABOUT SENSITIVITY ANALYSIS IN LINEAR PROGRAMMING MODELS
                                                                                                             SASJ 67
                                                                                                                        33
                  ON THE ITERATIVE METHOD OF DYNAMIC PROGRAMMING ON A FINITE SPACE DISCRETE TIME MARKOV
                                                                                                              AMS 65 1279
PROCESS
          ON THE DISTRIBUTION OF SOLUTIONS IN LINEAR PROGRAMMING PROBLEMS
                                                                                                              JASA 58
                                                                                                                      161
```

TITLE WORD INDEX PRO - PRO

```
LINEAR PROGRAMMING TECHNIQUES FOR RECRESSION ANALYSIS
                                                                                                                    JASA 59
                         POTENTIALS IN APPLYING LINEAR PROCRAMMING TO THE CONSUMER PRICE INDEX
                                                                                                                    JASA 66
                                                         PROCRAMMING UNIVARIATE AND MULTIVARIATE ANALYSIS OF
VARIANCE
                                                                                                                    TECH 63
                                                                                                                              95
                                      DISCRETE DYNAMIC PROCRAMMING WITH A SMALL INTEREST RATE
                                                                                                                     AMS 69
     ON FINDING OPTIMAL POLICIES IN DISCRETE DYNAMIC PROCRAMMING WITH NO DISCOUNTING
                                                                                                                     AMS 66 1284
       AN OPTIMALITY CONDITION FOR DISCRETE DYNAMIC PROCRAMMING WITH NO DISCOUNTING
                                                                                                                     AMS 68 1220
CRITERIA
                                      DISCRETE DYNAMIC PROGRAMMING WITH SENSITIVE DISGOUNT OPTIMALITY
                                                                                                                     AMS 69 1635
  ON CURVE FITTING WITH MINIMUM DEVIATIONS BY LINEAR PROGRAMMING, CORR. 62 917
SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC PROGRAMMING'
                                                                                                           A NOTE JASA 61 359
                                                                                                                    JRSSB65
   GONDENSED CALGULATIONS FOR EVOLUTIONARY OPERATION PROCRAMS
                                                                                                                    TECH 59
                                                                                                                              77
                                           SURVEILLANCE PROGRAMS FOR LOTS IN STORAGE
                                                                                                                    TECH 62
F VIEW OF THE USER . AN APPRAISAL OF LEAST SQUARES PROCRAMS FOR THE ELECTRONIC COMPUTER FROM THE POINT O JASA 67
                                                    THE PROGRESS OF THE SCORE DURING A BASEBALL GAME
                                                                                                                    JASA 61
NCE BOUNDS ON RELIABLE LIFE FOR A WEIBULL MODEL WITH PROCRESSIVE CENSORING /REE, ORDER STATISTIC CONFIDE JASA 69
                                         PREDICTION BY PROCRESSIVE CORRECTION
                                                                                                                    JRSSB64
                                                                                                                              113
                                                         PROGRESSIVELY CENSORED SAMPLES FROM LOG-NORMAL AND
LOCISTIC DISTRIBUTIONS
                                                                                                                    TECH 69 NO.4
                                                         PROGRESSIVELY CENSORED SAMPLES IN LIFE TESTING
                                                                                                                    TECH 63
                                                                                                                             327
TROLLERS IN NON-STATIONARY TIME SERIES POLYNOMIAL PROJECTING PROPERTIES OF MULTI-TERM PREDICTORS OR CON JRSSB65
                                                                                                                              144
 EXAMPLE OF THE DIFFERENCE BETWEEN THE LEVY AND LEVY-PROKHOROV METRICS
                                                                                                                 AN
                                                                                                                     AMS 69
                                                                                                                              322
   PERSONS WITH N OR MORE ACGIDENTS FROM AN ACCIDENT PRONE POPULATION.
                                                                                       ON THE EFFECT OF REMOVING BIOKAGS
                                                                                                                              298
    UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT PRONENESS
                                                                                                                    BIOKA57
                                                                                                                              530
                                  A RESULT ON ACCIDENT PRONENESS
                                                                                                                              324
                                                                                                                    BIOKA67
    WITH SPECIAL REFERENCE TO THE THEORY OF ACCIDENT PRONENESS
                                                                                      ON A DISCRETE DISTRIBUTION JASA 65 1060
   'INTRINSIC CORRELATION' IN THE THEORY OF ACCIDENT PRONENESS (ACKNOWLEDGEMENT 66 5B5)

A TEST FOR JRSSB66
                                                                                                                              180
   NOTE ON A UNIQUENESS RELATION IN CERTAIN ACCIDENT PRONENESS MODELS
                                                                                                                    JASA 67
                                                                                                                              288
 RANDOM VARIABLES WITH INFINITE EXPECTATI/ A SHORT PROOF OF A KNOWN LIMIT THEOREM FOR SUM OF INDEPENDENT
A POTENTIAL THEORETIC PROOF OF A THEOREM OF DERMAN AND VEINOTT
                                                                                                                    AMS 69 1114
                                                                                                                     AMS 67
                                                                                                                              5B5
                                          AN ELEMENTARY PROOF OF ASYMPTOTIC NORMALITY OF LINEAR FUNCTIONS OF
                                                                                                                     AMS 6B
ORDER STATISTICS
                                                                                                                              263
T SEQUENTIAL PROBABILITY RATIO TESTS BASE/

A SIMPLER PROOF OF SMITH'S ROULETTE THEOREM

GENERAL PROOF OF TRAINING TRAINING TO THE THEOREM
COEFFICIENT
                                                  SHORT PROOF OF DR HARLEY'S THEOREM ON THE CORRELATION
                                                                                                                    BIOKA5B
                                                                                                                              571
                                                                                                                     AMS 6B
                                                                                                                              390
                                               GENERAL PROOF OF TERMINATION WITH PROBABILITY ONE OF INVARIAN
                                                                                                                     AMS 67
                                                                                                                                В
                                A SIMPLE PROBABILISTIC PROOF OF THE DISCRETE GENERALIZED RENEWAL THEOREM
                                                                                                                     AMS 65 1294
                                                   A NEW PROOF OF THE PEARSON-FISHER THEOREM, (ACKNOWLEDGEMENT
 OF PRIORITY, 65 344)
                                                                                                                     AMS 64
                                                                                                                              817
                                       GORRECTION TO 'A PROOF OF WALD'S THEOREM ON CUMULATIVE SUMS' 59 1245
                                                                                                                     AMS 61 1344
                                            ALTERNATIVE PROOFS FOR CERTAIN UPCROSSING INEQUALITIES
                                                                                                                     AMS 67
                                                                                                                              735
                                             CONSUMERS' PROPENSITIES TO HOLD LIQUID ASSETS
                                                                                                                    JASA 60
                                                                                                                              469
                                              INVARIANT PROPER BAYES TESTS FOR EXPONENTIAL FAMILIES
                                                                                                                     AMS 69
                                                                                                                              270
                          NON-EXISTENCE OF EVERYWHERE PROPER CONDITIONAL DISTRIBUTIONS
                                                                                                                     AMS 63
                                                                                                                              223
      A METHOD OF SYSTEMATIC SAMPLING BASED ON ORDER PROPERTIES
                                                                                                                    BIOKA53
                                                                                                                              452
 PROPOSED TWO-SAMPLE RANK TEST, THE PSI TEST AND ITS PROPERTIES
                                                                                                                  A JRSSB64
                                                                                                                              305
      RENEWAL PROCESSES, DEFINITIONS AND PRELIMINARY PROPERTIES
                                                                                                            MARKOV
                                                                                                                    AMS 61 1231
   SMIRNOV TESTS OF APPROXIMATE HYPOTHESES AND THEIR PROPERTIES
                                                                                       SOME MODIFIED KOLMOGOROV-
                                                                                                                     AMS 62
                                                                                                                              513
COMPLETE BLOCK DESIGNS WITH SOME LATIN SQUARE DESIGN PROPERTIES
                                                                     A NEW FAMILY OF PARTIALLI DALAMORE ... /TION AS A PROBABILITY MODEL IN POPULATI JASA 67
                                                                          A NEW FAMILY OF PARTIALLY BALANCED IN AMS 67
                                                                                                                              571
ON AND COMMUNITY EGOLOGY AND SOME OF ITS STATISTICAL PROPERTIES
                                                                                                                              655
                                                OPTIMUM PROPERTIES AND ADMISSIBILITY OF SEQUENTIAL TESTS
                                                                                                                     AMS 63
IN TESTING CORRELATION
                                                   SOME PROPERTIES AND AN APPLICATION OF A STATISTIC ARISING
                                                                                                                     AMS 69 1736
 APPROXIMATION TO THE MULTINOMIAL DISTRIBUTION, SOME PROPERTIES AND APPLICATIONS
                                                                                                                AN BIOKAGO
                                                                                                                              9.3
                                            A SURVEY OF PROPERTIES AND APPLICATIONS OF THE NONCENTRAL T-
DISTRIBUTION
                                                                                                                    TECH 6B
                                                                                                                              445
                                            STATISTICAL PROPERTIES OF A CERTAIN PERIODIC BINARY PROCESS
SOME PROPERTIES OF A DISTRIBUTION SPECIFIED BY ITS
                                                                                                                    TECH 66
                                                                                                                              247
CUMULANTS.
                                                                                                                    TECH 63
                                                                                                                              63
                                   ERRATA, 'SOME PROPERTIES OF A DISTRIBUTION SPECIFIED BY ITS
ON THE LARGE SAMPLE PROPERTIES OF A GENERALIZED WILCOXON-MANN-WHITNEY
CHMIII ANTS!
                                                                                                                    TECH 63
                                                                                                                              417
STATISTIC
                                                                                                                     AMS 67
                                                                                                                              905
                                       SOME STATISTICAL PROPERTIES OF A CENETIC SELECTION INDEX
                                                                                                                    BIOKA62
                                                                                                                              325
                                            CONVERGENCE PROPERTIES OF A LEARNING ALCORITHM
                                                                                                                    AMS 64 1819
MOBILE ANIMAL POPULATIONS
                                                   SOME PROPERTIES OF A METHOD OF ESTIMATING THE SIZE OF
                                                                                                                    BIOKA69
                                                                                                                              407
                                            DIMENSIONAL PROPERTIES OF A RANDOM DISTRIBUTION FUNCTION ON THE
SOHARE
                                                                                                                    AMS 66
                                                                                                                              R49
SUBSAMPLE MEANS
                                     INVESTIGATING THE PROPERTIES OF A SAMPLE MEAN BY EMPLOYING RANDOM
                                                                                                                    JASA 56
                                                                                                                              54
                                          HIGHER-ORDER PROPERTIES OF A STATIONARY POINT PROCESS
                                                                                                                    JRSSR63
                                                                                                                              413
                                                    THE PROPERTIES OF A STOCHASTIC MODEL FOR THE PREDATOR-PRE BIOKAGO
THE PROPERTIES OF A STOCHASTIC MODEL FOR TWO COMPETING BIOKAGO
Y TYPE OF INTERACTION BETWEEN TWO SPECIES
                                                                                                                              219
SPECIES
                                                                                                                              316
                                      CORRIGENDA, 'THE PROPERTIES OF A STOCHASTIC MODEL FOR TWO COMPETING
SPECIES.'
                                                                                                                    BIOKA59
                                                                                                                              279
              AN INVESTIGATION INTO THE SMALL SAMPLE PROPERTIES OF A TWO SAMPLE TEST OF LEHMANN'S
                                                                                                                    JASA 6B
                                                                                                                              345
                            GRAPHIG METHODS BASED UPON PROPERTIES OF ADVANCING CENTROIDS
                                                                                                                              668
                                                                                                                    JASA 59
                                           SMALL SAMPLE PROPERTIES OF ALTERNATIVE ESTIMATORS OF SEEMINGLY
UNRELATED REGRESSIONS
                                                                                                                    JASA 6B 1180
                                             ASYMPTOTIC PROPERTIES OF AN AGE DEPENDENT BRANCHING PROCESS
                                                                                                                    AMS 65 1565
STOCHASTIC PROCESSES
                                                   SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF
                                                                                                                     AMS 6B
                                                                                                                             164
CORRELATION CORRECTENT
                                                    SOME PROPERTIES OF AN ANGULAR TRANSFORMATION FOR THE
                                                                                                                    BIOKA56
                                                                                                                              219
                                                FURTHER PROPERTIES OF AN ANGULAR TRANSFORMATION OF THE
CORRELATION COEFFICIENT
                                                                                                                    BIOKA57
                                                                                                                              273
                                             CONFIDENCE PROPERTIES OF BAYESIAN INTERVAL ESTIMATES
                                                                                                                    JRSSB68
                                                                                                                              535
                                          SOME STRIKING PROPERTIES OF BINOMIAL AND BETA MOMENTS
                                                                                                                     AMS 69 1753
                                       SOME ANALYTICAL PROPERTIES OF BIVARIATE EXTREMAL DISTRIBUTIONS
                                                                                                                    JASA 67
                                                                                                                              569
                  A STOCHASTIC MODEL FOR STUDYING THE PROPERTIES OF CERTAIN BIOLOCICAL SYSTEMS BY NUMERICAL BIOKA58
                                                                                                                              16
ASYMPTOTIC OPTIMUM PROPERTIES OF CERTAIN SEQUENTIAL TESTS AMS 68
ESTIGATION OF THE EFFECT OF MISCLASSIFICATION ON THE PROPERTIES OF CHI-SQUARE-TESTS IN THE ANALYSIS OF CAT BIOKAGS
                                                                                                                     AMS 68 1244
                                                                                                                              95
                                            CONVERGENCE PROPERTIES OF CONVERGENCE WITH PROBABILITY ONE
                                                                                                                     AMS 66 1800
                                                   SOME PROPERTIES OF COUNTS OF EVENTS FOR CERTAIN TYPES OF
                                                                                                                    JRSSR64
                                                                                                                              325
MPLE TRANSFORMATIONS OF THE NORMAL DISTRIBUTION PROPERTIES OF DISTRIBUTIONS RESULTING FROM CERTAIN SI BIOKA52
MPLE TRANSFORMATIONS OF THE NORMAL D/ CORRIGENDA, 'PROPERTIES OF DISTRIBUTIONS RESULTING FROM CERTAIN SI BIOKA53
                                                                                                                              290
                                                                                                                              236
 62 919
                                                OPTIMAL PROPERTIES OF EXPONENTIALLY WEIGHTED FORECASTS, CORR. JASA 60
                                                                                                                              299
                                                CERTAIN PROPERTIES OF GAUSSIAN PROCESSES AND THEIR FIRST
PASSAGE TIMES
                                                                                                                    JRSSB65
                                                                                                                              505
                                                         PROPERTIES OF GENERALIZED RAYLEIGH DISTRIBUTIONS
                                                                                                                    AMS 63
                                                                                                                              903
                                          ON CONTINUITY PROPERTIES OF INFINITELY DIVISIBLE DISTRIBUTION
FUNCTIONS
                                                                                                                     AMS 68
                                                                                                                              936
MULTIVARIATE ANALYSIS
                                         SOME DISTANCE PROPERTIES OF LATENT ROOT AND VECTOR METHODS USED IN BIOKAGG
                                                                                                                              325
STOCHASTIC SERIES
                                               SAMPLING PROPERTIES OF LOCAL STATISTICS IN STATIONARY
                                                                                                                    BIOKA55
                                                                                                                              160
LING FROM ASSOCIATED POPULATIONS THE ASYMPTOTIC PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATORS WHEN SAMP BIOKAG2
                                                                                                                              205
 NON-STATIONARY TIME SERIES POLYNOMIAL PROJECTING PROPERTIES OF MULTI-TERM PREDICTORS OR CONTROLLERS IN JRSSB65
                                                                                                                             144
```

```
LOCAL AND ASYMPTOTIC MINIMAX PROPERTIES OF MULTIVARIATE TESTS
                                                                                                              AMS 64
                                                                                                                       21
                                          ASYMPTOTIC PROPERTIES OF NON-LINEAR LEAST SQUARES ESTIMATORS
                                                                                                              AMS 69
                                                                                                                      633
                                            SPECTRAL PROPERTIES OF NON-STATIONARY SYSTEMS OF LINEAR STOCHA JASA 69
STIC DIFFERENCE EQUATIONS
                                                                                                                      581
                                                 SOME PROPERTIES OF PASCAL DISTRIBUTION FOR FINITE POPULATI JASA 62
ON. CORR. 62 919
                                                                                                                       172
                                           INCREASING PROPERTIES OF POLYA FREQUENCY FUNCTIONS
                                                                                                              AMS 65
                                                                                                                       272
                                                      PROPERTIES OF POLYKAYS OF DEVIATES
                                                                                                              AMS 64 1167
C DISPERSION MATRICES OF MULTIVARIATE NORMAL DIST/
                                                      PROPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNIN
                                                                                                              AMS 69
                                                                                                                      697
                                          ON CERTAIN PROPERTIES OF POWER-SERIES DISTRIBUTIONS
                                                                                                             BTOKA59
                                                                                                                       486
                                                      PROPERTIES OF PROBABILITY DISTRIBUTIONS WITH MONOTONE
                                                                                                             AMS 63
                                                                                                                       375
                                         SOME OPTIMUM PROPERTIES OF RANKING PROCEDURES
                                                                                                              AMS 67
                                                                                                                       124
                                                 SOME PROPERTIES OF RECULAR MARKOV CHAINS
                                                                                                              AMS 61
                                                                                                                       59
                                                 SOME PROPERTIES OF RUNS IN QUALITY CONTROL PROCEDURES
                                                                                                             BTOKA5B
                                                                                                                       В9
                                   CORRIGENDA. 'SOME PROPERTIES OF RUNS IN QUALITY CONTROL PROCEDURES'
                                                                                                             BIOKA59
                                                                                                                       279
                                                 SOME PROPERTIES OF RUNS IN SMOOTHED RANDOM SERIES
                                                                                                             BIOKA52
                                                                                                                       19B
     AN IMPROVEMENT TO WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIAL TESTS
                                                                                                              JRSSB54
                                                                                                                       136
  FORMULAE TO IMPROVE WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIAL TESTS
                                                                                                              JRSSB65
                                                                                                                       74
                                          ASYMPTOTIC PROPERTIES OF SEVERAL ESTIMATORS OF WEIBULL
PARAMETERS
                                                                                                             TECH 65
                                                                                                                       423
THE CONTEXT OF AUTOCORRELATED ERRORS
                                        SMALL-SAMPLE PROPERTIES OF SEVERAL TWO-STAGE RECRESSION METHODS IN JASA 69
                                                                                                                       253
                    STATISTICAL ANALYSIS USING LOCAL PROPERTIES OF SMOOTHLY HETEROMORPHIC STOCHASTIC SERIE BIOKA57
                                                                                                                       454
CIRCULAR ERROR
                                           ASYMPTOTIC PROPERTIES OF SOME ESTIMATORS OF QUANTILES OF
                                                                                                             JASA 66
                                                                                                                      618
                                           DIVERCENCE PROPERTIES OF SOME MARTINCALE TRANSFORMS
                                                                                                              AMS 69
                                                                                                                      1852
                                              ERGODIC PROPERTIES OF SOME PERMUTATION PROCESSES
                                                                                                             BIOKA62
                                                                                                                      151
                                           ASYMPTOTIC PROPERTIES OF SPECTRAL ESTIMATES OF SECOND ORDER
                                                                                                             BIOKA69
                                                                                                                       375
                                                 SOME PROPERTIES OF STATISTICAL RELIABILITY FUNCTIONS
                                                                                                              AMS 66
                                                                                                                       826
                                                 SOME PROPERTIES OF SYMMETRIC STABLE DISTRIBUTIONS
                                                                                                              JASA 6B
                                                                                                                       B17
AUTOREGRESSIVE SCHEMES
                                             SAMPLING PROPERTIES OF TESTS OF GOODNESS-OF-FIT FOR LINEAR
                                                                                                              JRSSB62
                                                                                                                       492
                                                 SOME PROPERTIES OF THE 'HERMITE' DISTRIBUTION
                                                                                                             BIOKA65
                                                                                                                       3B1
QUANTILES AND MID-RANCES
                                              ON SOME PROPERTIES OF THE ASYMPTOTIC VARIANCE OF THE SAMPLE
                                                                                                              JRSSB61
                                                                                                                       453
DERED IN THE FORM OF A CONTINCENCY TABLE
                                                 SOME PROPERTIES OF THE BIVARIATE NORMAL DISTRIBUTION CONSI BIOKA57
                                                                                                                       289
                                           ASYMPTOTIC PROPERTIES OF THE BLOCK UP-AND-DOWN METHOD IN BIO-
ASSAY
                                                                                                              AMS 67
                                                                                                                      1B22
NON-CENTRAL F
                                                 SOME PROPERTIES OF THE DISTRIBUTION OF THE LOCARITHM OF
                                                                                                              BTOKA60
                                                                                                                      417
                                           ON CERTAIN PROPERTIES OF THE EXPONENTIAL-TYPE FAMILIES
                                                                                                             JRSSB65
                                                                                                                       94
                                                      PROPERTIES OF THE EXTENDED HYPERCEOMETRIC
DISTRIBUTION
                                                                                                              AMS 65
                                                                                                                       938
                                           SOME BASIC PROPERTIES OF THE INCOMPLETE GAMMA FUNCTION RATIO.
CORR. 65 1584
                                                                                                              AMS 65
                                                                                                                      926
ON ANALYSIS WHEN THE 'PREDICTOR' VARIABLES A/ SOME PROPERTIES OF THE LEAST SQUARES ESTIMATOR IN REGRESSI
                                                                                                              AMS 62 1365
                          A NOTE ON SOME ASYMPTOTIC PROPERTIES OF THE LOCARITHMIC SERIES DISTRIBUTION
                                                                                                             BTOKA61
                                                                                                                      212
LOCISTIC VARIATES
                                                      PROPERTIES OF THE MEDIAN AND OTHER STATISTICS OF
                                                                                                              AMS 65
                                                                                                                      1779
                                          STATISTICAL PROPERTIES OF THE NUMBER OF POSITIVE SUMS
                                                                                                              AMS 66 1295
           PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES OF THE ROW SUM PROCEDURE
                                                                                                              AMS 63
                                                                                                                      511
                                                SOME PROPERTIES OF THE SPEARMAN ESTIMATOR IN BIOASSAY
                                                                                                             BIOKA61
                                                                                                                       293
                                                      PROPERTIES OF THE STATIONARY MEASURE OF THE CRITICAL
CASE SIMPLE BRANCHING PROCESS
                                                                                                              AMS 67
                                                                                                                       977
 MULTIVARIATE BETA DISTRIBUTIONS AND INDEPENDENCE PROPERTIES OF THE WISHART DISTRIBUTIONS, CORR. 66 297
A RANDOM SET PROCESS IN THE PLANE WITH A MARKOVIAN PROPERTY
                                                                                                              AMS 64
                                                                                                                       261
                                                                                                               AMS 65 1859
                INDEPENDENT SEQUENCES WITH THE STEIN PROPERTY
                                                                                                               AMS 68 1282
TYPE INEQUALITY FOR MARTINGALES AND A CHARACTERISTIC PROPERTY
                                                                               A BEST POSSIBLE KOLMOGOROFF-
                                                                                                              AMS 69
                                                                                                                      764
                              THE STRONG RATIO LIMIT PROPERTY FOR SOME CENERAL MARKOV PROCESSES
                                                                                                              AMS 69
                                                                                                                       986
                                         A CONVEXITY PROPERTY IN THE THEORY OF RANDOM VARIABLES DEFINED ON
A FINITE MARKOV CHAIN
                                                                                                              AMS 61 1260
                                         AN EXTENSION PROPERTY OF A CLASS OF BALANCED INCOMPLETE BLOCK
DESTGNS
                                                                                                             BIOKA57
                                                                                                                      27B
PERSION MATRICES AGAINST ONE-SIDED ALTERNATI/
                                                ON A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DIS ON A PROPERTY OF BALANCED DESIGNS
                                                                                                              AMS 62 1463
                                                                                                             BIOKA61 215
                       CORRECTION TO 'A CONSERVATIVE PROPERTY OF BINOMIAL TESTS' 60 1205
                                                                                                              AMS 61 1343
                                                ON A PROPERTY OF INCOMPLETE BLOCKS
                                                                                                              JRSSB59
                                                                                                                      172
         A SAMPLE FUNCTION PROPERTY OF MARTINGALES
ACKNOWLEDCEMENT OF PRIORITY FOR 'AN OPTIMUM PROPERTY OF MAXIMUM LIKELIHOOD ESTIMATION' 60 1208
                                                                                                              AMS 66 1396
                                                                                                               AMS 61 1343
                                           AN OPTIMAL PROPERTY OF PRINCIPAL COMPONENTS
                                                                                                              AMS 65 1579
PROCEDURES
                                                   A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL
                                                                                                              AMS 64
                                                                                                                      755
                               NOTE ON A CONDITIONAL PROPERTY OF STUDENT'S T
                                                                                                              AMS 63 1098
                              ANOTHER CHARACTERISTIC PROPERTY OF THE CAUCHY DISTRIBUTION
                                                                                                              AMS 66
                                                                                                                      2B9
                                          AN EXTREMAL PROPERTY OF THE CONDITIONAL EXPECTATION
                                                                                                             BIOKA66
                                                                                                                      594
                                           AN OPTIMUM PROPERTY OF THE HORVITZ-THOMSON ESTIMATE
                                                                                                              JASA 67 1013
                                                 ON A PROPERTY OF THE LOGNORMAL DISTRIBUTION
                                                                                                              JRSSB63 392
CONTINUOUS DISTRIBUTIONS
                                                    A PROPERTY OF THE MEAN DEVIATION FOR A CLASS OF
                                                                                                             BIOKA65
                                                                                                                       28B
E DISTRIBUTIONS
                     A CENERALIZATION OF JOHNSON'S PROPERTY OF THE MEAN DEVIATION FOR A CLASS OF DISCRET BIOKA66
                                                                                                                       2B5
                                                    A PROPERTY OF THE MEAN DEVIATION FOR THE PEARSON TYPE
                                                                                                                       2B7
DISTRIBUTIONS
                                                                                                             BIOKA66
                                                   'A PROPERTY OF THE MEAN DEVIATION FOR THE PEARSON TYPE D BIOKA67
                                                                                                                       333
                   (ACKNOWLEDCEMENT OF PRIORITY).
                                                    A PROPERTY OF THE METHOD OF STEEPEST ASCENT
                                                                                                              AMS 64
                                                                                                                       435
DETERMINATION OF APPROPRIATE SCORES
                                                    A PROPERTY OF THE MULTINOMIAL DISTRIBUTION AND THE
                                                                                                             BIOKA64
                                                                                                                       265
                                    A CHARACTERISTIC PROPERTY OF THE MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                              AMS 66 1B29
                                                    A PROPERTY OF THE MULTIVARIATE T DISTRIBUTION
                                                                                                              AMS 65
                                                                                                                      712
EQUALITY OF TWO COVARIANCE MATRICES,/ MONOTONICITY PROPERTY OF THE POWER FUNCTIONS OF SOME TESTS OF THE
                                                                                                              AMS 64
                                                                                                                      1059
                                                 ON A PROPERTY OF THE RANDOM WALKS DESCRIBING SIMPLE QUEUES JRSSB65
AND DAMS
                                                                                                                      125
                             ON A FURTHER ROBUSTNESS PROPERTY OF THE TEST AND ESTIMATOR BASED ON WILCOXON'
                                                                                                              AMS 68
S SIGNED RANK STATISTIC
                                                                                                                       2B2
                                                                                                              AMS 65
                                      ON THE LIFTING PROPERTY, V
                                                                                                                      B19
                                               ON THE PROPERTY, W, OF THE CLASS OF STATISTICAL DECISION
                                                                                                              AMS 66 1631
                          CONFIDENCE INTERVALS FOR A PROPORTION
                                                                                                             BIOKA56
                                                                                                                      423
                                      CONTROLLING THE PROPORTION DEFECTIVE FROM CLASSIFICATION DATA
                                                                                                             TECH 64
                                                                                                                       99
              BINOMIAL CROUP-TESTING WITH AN UNKNOWN PROPORTION OF DEFECTIVES
                                                                                                             TECH 66
                                                                                                                      631
BIVARIATE NORMAL DISTRIBUTION
                                               ON THE PROPORTION OF OBSERVATIONS ABOVE SAMPLE MEANS IN A
                                                                                                              AMS 6B 1350
           CORRICENDA TO 'CONFIDENCE INTERVALS FOR A PROPORTION'
                                                                                                             BIOKA58
                                                                                                                      291
 DISCRIMINANT FUNCTION WHEN COVARIANCE MATRICES ARE PROPORTIONAL
                                                                                             DISTRIBUTION OF
                                                                                                              AMS 69
                                                                                                                       979
                                                                               /D SAMPLE ESTIMATOR OF THE M
EAN OF A LOC-NORMAL DISTRIBUTION HAVING A PRESCRIBED PROPORTIONAL CLOSENESS
                                                                                                              AMS 67
                                                                                                                      949
EAN OF A LOC-NORMAL DISTRIBUTION HAVING A PRESCRIBED PROPORTIONAL CLOSENESS
                                                                                /UENTIAL ESTIMATION OF THE M
                                                                                                              AMS 66 1688
                                           EQUAL AND PROPORTIONAL FREQUENCY SQUARES
                                                                                                             JASA 67
                                                                                                                      226
                                                      PROPORTIONAL SAMPLING IN LIFE LENGTH STUDIES
                                                                                                             TECH 67
                                                                                                                      205
  USE OF A STRATIFICATION VARIABLE IN ESTIMATION BY PROPORTIONAL STRATIFIED SAMPLING
                                                                                                         THE JASA 6B 1310
       A METHOD OF SAMPLING WITH PROBABILITY EXACTLY PROPORTIONAL TO SIZE
                                                                                                             JRSSB54 236
```

TITLE WORD INDEX PRO - QUA

		-
SAMPLING WITHOUT REPLACEMENT WITH PROBABILITY PROPORTIONAL TO SIZE	JRSSB58	393
HOD OF SAMPLING WITHOUT REPLACEMENT WITH PROBABILITY PROPORTIONAL TO SIZE A NOTE ON FELLECI'S MET	JASA 67	79
OF RE-DESIGNING AREA SAMPLES UTILIZING PROBABILITIES PROPORTIONAL TO SIZE WHEN THE SIZES CHANCE SICNIFICAN		
ON A BIASED ESTIMATOR IN SAMPLING WITH PROBABILITY PROPORTIONAL TO SIZE WITH REPLACEMENT A NOTE		
CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS	JASA 66	182
ON SAMPLING OVER TWO OCCASIONS WITH PROBABILITY PROPORTIONATE TO SIZE IN RANDOMIZED SYSTEMATIC SAMPLINC WITH PROBABILITY PROPORTIONATE TO SIZE VARIANCE ESTIMATION	AMS 65	327 278
IN RANDOMIZED SYSTEMATIC SAMPLINC WITH PROBABILITY PROPORTIONATE TO SIZE VARIANCE ESTIMATION THE USE OF SYSTEMATIC SAMPLINC WITH PROBABILITY PROPORTIONATE TO SIZE IN A LARGE SCALE SURVEY	JASA 63	251
	TECH 65	247
REGRESSION PROBLEMS WHEN THE PREDICTOR VARIABLES ARE PROPORTIONS	JRSSB69	107
LINEAR REGRESSION ON PROPORTIONS	BIOCS69	585
POWER OF CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS ASYMPTOTIC	BIOCS68	315
SIMULTANEOUS CONFIDENCE INTERVALS FOR MULTINOMIAL PROPORTIONS LARGE SAMPLE		
LTIVARIATE BETA-DISTRIBUTION, AND CORRELATIONS AMONG PROPORTIONS /FOUND MULTINOMIAL DISTRIBUTION, THE MU		65
NDUM 67/ THE CHI-SQUARE TEST FOR HETEROGENEITY OF PROPORTIONS AFTER ADJUSTMENT FOR STRATIFICATION (ADDE		150
FUNCTION OF THE TEST FOR THE DIFFERENCE BETWEEN TWO PROPORTIONS IN A 2-BY-2 TABLE.' /ICENDA, 'THE POWER AN EXACT TEST FOR COMPARING MATCHED PROPORTIONS IN CROSSOVER DESIGNS	BIOKA69	502 75
TRIBUTIONS INFORMATION FOR ESTIMATING THE PROPORTIONS IN MIXTURES OF EXPONENTIAL AND NORMAL DIS		918
DISTRIBUTION CONCEPTS OF INDEPENDENCE FOR PROPORTIONS WITH A A GENERALIZATION OF THE DIRICHLET		194
ANALYSIS OF VARIANCE OF PROPORTIONS WITH UNEQUAL FREQUENCIES	JASA 63	1133
PROBLEMS IN THE ANALYSIS OF SURVEY DATA, AND A PROPOSAL	JASA 63	415
FOR A CALIBRATION LINE, CONSIDERATION OF A RECENT PROPOSAL ESTIMATION OF A LINEAR FUNCTION		
	JRSSB64	305
POLYNOMIAL REGRESSION PROTECTION AGAINST ASSUMING THE WRONG DEGREE IN RIMENTS CARRIED OUT BY GAUSE WITH POPULATIONS OF THE PROTOZOA PARAMECIUM AURELIA AND PARAMECIUM CAUDATUM	TECH 69	NU.4 314
S TO LEAST SQUARES TYPE QUADRA/ A USEFUL LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH APPLICATION		969
TS COMPONENTS, OF SELEC/ A STATISTICAL ANALYSIS OF PROVISIONAL ESTIMATES OF GROSS NATIONAL PRODUCT AND I		54
SOME PROBLEMS IN THE THEORY OF PROVISIONING AND OF DAMS	BIOKA55	179
OPTIMUM UTILIZATION OF AUXILIARY INFORMATION, (PI)PS SAMPLING OF TWO UNITS FROM A STRATUM (ADDENDUM 69		374
HANURAV AN EXACT (PI)PS SAMPLING SCHEME, A GENERALIZATION OF A METHOD OF	JRSSB68	556
QUERY, PSEUDO RANDOM NORMAL NUMBERS THE DIFFUSION EQUATION AND A PSEUDO-DISTRIBUTION IN GENETICS	TECH 68	401
THE DIFFUSION EQUATION AND A PSEUDO-DISTRIBUTION IN GENETICS ON PSEUDO-GAMES	JRSSB63 AMS 68	405
PSEUDO-INVERSES IN THE ANALYSIS OF VARIANCE	AMS 64	895
BIAS IN PSEUDO-RANDOM NUMBERS	JASA 61	610
APPLICATIONS OF THE PSEUDOINVERSE TO MODELING	TECH 66	351
A PROPOSED TWO-SAMPLE RANK TEST, THE PSI TEST AND ITS PROPERTIES	JRSSB64	305
NS AND MAR/ ON THE ASYMPTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' GOODNESS OF FIT CRITERIA FOR MARKOV CHAI		49
SOME STATISTICAL PROBLEMS IN EXPERIMENTAL PSYCHOLOGY (WITH DISCUSSION)	JRSSB56	177
COMMENT PUBLICATION DECISIONS AND TESTS OF SIGNIFICANCE, A NFERENCES DRAWN FROM TESTS OF SIGNIFICANCE, OR VI/ PUBLICATION DECISIONS AND THEIR POSSIBLE EFFECTS ON I	JASA 59	593 30
	BIOCS67	1
PUBLICATIONS OF S. S. WILKS	AMS 65	24
CORRIGENDA TO 'CORRELATED RANDOM NORMAL DEVIATES' PUBLISHED IN TRACTS FOR COMPUTERS, NO. 26.	BIOKA56	496
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA	BIOKA56 TECH 62	496 565
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 TABULAR	BIOKA56 TECH 62 JASA 56	496 565 149
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 TABULAR A STOCHASTIC MODEL CANNIBALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN EXPERIMENT AND	BIOKA56 TECH 62 JASA 56 BIOCS68	496 565 149 247
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 TABULAR A STOCHASTIC MODEL CANNIBALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN EXPERIMENT AND CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66	496 565 149 247 658
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 TABULAR A STOCHASTIC MODEL CANNIBALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN EXPERIMENT AND	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66	496 565 149 247 658 575
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 A STOCHASTIC MODEL CANNIBALISM OF THE PUPAL STACE BY ADDULT FLOUR BEETLES, AN EXPERIMENT AND CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN ELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS FACTOR	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 59 JASA 62 BIOCS65	496 565 149 247 658 575
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 A STOCHASTIC MODEL CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN ELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 59 JASA 62 BIOCS65 AMS 62	496 565 149 247 658 575 633 190 525
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 TABULAR A STOCHASTIC MODEL CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN ELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES OF GOODS AND SERVICES A NOTE ON THE R A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PUPPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH PARAMETERS V=28. N1=12, N2=15 AND P2(1,1)=4 /CTION OF PARTIALLY BALANCED INCOMPLETE	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 59 JASA 62 BIOCS65 AMS 62 AMS 66	496 565 149 247 658 575 633 190 525 1783
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 A STOCHASTIC MODEL CANNIBALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN EXPERIMENT AND CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN ELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES A NOTE ON THE R A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH PARAMETERS V=28, N1=12, N2=15 AND P2(1,1)=4 NOTES.A NOTE ON COCHRAN'S Q TEST	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 69 JASA 69 JASA 62 BIOCS65 AMS 62 AMS 66 BIOCS65	496 565 149 247 658 575 633 190 525 1783 1008
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 A STOCHASTIC MODEL CANNIBALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN EXPERIMENT AND CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN ELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES A NOTE ON THE R A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH PARAMETERS V=28. N1=12, N2=15 AND P2(1,1)=4 NOTES.A NOTE ON COCHRAN'S Q TEST A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 59 JASA 62 BIOCS65 AMS 62 AMS 66 BIOCS65 BIOKA66	496 565 149 247 658 575 633 190 525 1783 1008 588
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 A STOCHASTIC MODEL CANNIBALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN EXPERIMENT AND CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN ELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES A NOTE ON THE R A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH PARAMETERS V=28, N1=12, N2=15 AND P2(1,1)=4 NOTES.A NOTE ON COCHRAN'S Q TEST	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 59 JASA 62 BIOCS65 AMS 62 AMS 66 BIOCS65 BIOKA66 AMS 64	496 565 149 247 658 575 633 190 525 1783 1008
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 A STOCHASTIC MODEL CANNIBALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN EXPERIMENT AND CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN ELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH PARAMETERS V=28. N1=12, N2=15 AND P2(1,1)=4 NOTES.A NOTE ON COCHRAN'S Q TEST AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE-QUADRANT ORIENTED-ATOM PERCOLATION PROCESS A UNBALANCED DESIGNS ON QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 59 JASA 62 BIOCS65 AMS 66 BIOCS65 BIOKA66 AMS 64 JRSSB63 JRSSB63	496 565 149 247 658 575 633 190 525 1783 1008 588 315 401 493
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 A STOCHASTIC MODEL CANNIBALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN EXPERIMENT AND CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN ELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH PARAMETERS V=28. N1=12, N2=15 AND P2(1,1)=4 NOTES.A NOTE ON COCHRAN'S Q TEST AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE-QUADRANT ORIENTED-ATOM PERCOLATION PROCESS A UNBALANCED DESIGNS ON QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 59 JASA 62 BIOCS65 AMS 66 BIOCS65 BIOKA66 AMS 64 JRSSB63 JRSSB63	496 565 149 247 658 575 633 190 525 1783 1008 588 315 401 493
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 TABULAR A STOCHASTIC MODEL CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN ELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES OF GOODS AND SERVICES A PORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH PARAMETERS V=28. N1=12, N2=15 AND P2(1,1)=4 /CTION OF PARTIALLY BALANCED INCOMPLETE NOTES A NOTE ON COCHRAN'S Q TEST A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE-QUADRANT ORIENTED-ATOM PERCOLATION PROCESS A UNBALANCED DESIGNS ON THE INDEPENDENCE OF QUADRATIC EXTRAPOLATION AND A RELATED TEST OF	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 69 JASA 69 BIOCS65 AMS 62 AMS 66 BIOCS65 AMS 64 JRSS663 JRSSB61 JRSSB63 JRSSB63 JRSSB63	496 565 149 247 658 575 633 190 525 1783 1008 588 315 401 493 377 644
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 A STOCHASTIC MODEL CANNIBALISM OF THE PUPAL STAGE BY ADDULT FLOUR BEETLES, AN EXPERIMENT AND CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN ELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES OF GOODS AND SERVICES A NOTE ON THE R A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH PARAMETERS V=28. N1=12, N2=15 AND P2(1,1)=4 NOTES.A NOTE ON COCHRAN'S Q TEST A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE-QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR UNBALANCED DESIGNS ON QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR ON THE INDEPENDENCE OF QUADRATIC EXTRAPOLATION AND A RELATED TEST OF 4 Q-DECHNIQUE FOR THE CALCULATION PROCESS A UNBALANCED DESIGNS ON QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR UNBALANCED DESIGNS ON THE INDEPENDENCE OF QUADRATIC EXTRAPOLATION AND A RELATED TEST OF 4 Q-DECHNIQUE FOR THE CALCULATION PROCESS A 4 Q-DECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES 4 Q-DECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES AND PROVIDED OF THE CRITICAL PROBABILITY IN THE ONE-QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR UNBALANCED DESIGNS ON QUADRATIC EXTRAPOLATION AND A RELATED TEST OF 4 Q-DECHNIQUE FOR THE CALCULATION AND A RELATED TEST OF 4 Q-DECHNIQUE FOR THE CALCULATION OF THE ONE-QUADRATIC EXTRAPOLATION AND A RELATED TEST OF	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 59 BIOCS65 AMS 62 AMS 66 BIOCS65 BIOKA66 AMS 63 JRSSB63 JRSSB63 JRSSB63 JRSSB63 JRSSB63 JASA 66 AMS 61	496 565 149 247 658 575 633 190 525 1783 1008 588 315 401 493 377 644 883
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 A STOCHASTIC MODEL CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN ELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES A NOTE ON THE R A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH PARAMETERS V=28. N1=12, N2=15 AND P2(1,1)=4 NOTES.A NOTE ON COCHRAN'S Q TEST A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES AN APPROXIMATION TO THE DISTRIBUTION OF Q. A VARIATE RELATED TO THE NON-CENTRAL T LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE-QUADRANT ORIENTED-ATOM PERCOLATION PROCESS AN UNBALANCED DESIGNS ON THE INDEPENDENCE OF QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR UNBALANCED DESIGNS ON THE INDEPENDENCE OF QUADRATIC EXTRAPOLATION AND A RELATED TEST OF GARDATIC EXTRAPOLATION AND A RELATED TEST OF GUADRATIC FORM OF NON-CENTRAL NORMAL VARIABLES THE DISTRIBUTION OF A DEFINITE QUADRATIC FORM OF NON-CENTRAL NORMAL VARIABLES AND THE DISTRIBUTION OF A QUADRATIC FORM OF NORMAL RANDOM VARIABLES	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 66 JASA 59 BIOCS65 AMS 62 AMS 66 BIOCS65 BIOKA66 AMS 64 JRSSB63 JRSSB63 JRSSB63 JRSSB63 JASA 56 AMS 61 AMS 61 AMS 67	496 565 149 247 658 575 633 190 525 1783 1008 588 315 401 493 377 644 883 1700
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 A STOCHASTIC MODEL CANNIBALISM OF THE PUPAL STAGE BY ADDULT FLOUR BEETLES, AN EXPERIMENT AND CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN ELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES OF GOODS AND SERVICES A NOTE ON THE R A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH PARAMETERS V=28. N1=12, N2=15 AND P2(1,1)=4 NOTES.A NOTE ON COCHRAN'S Q TEST A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE-QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR UNBALANCED DESIGNS ON QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR ON THE INDEPENDENCE OF QUADRATIC EXTRAPOLATION AND A RELATED TEST OF 4 Q-DECHNIQUE FOR THE CALCULATION PROCESS A UNBALANCED DESIGNS ON QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR UNBALANCED DESIGNS ON THE INDEPENDENCE OF QUADRATIC EXTRAPOLATION AND A RELATED TEST OF 4 Q-DECHNIQUE FOR THE CALCULATION PROCESS A 4 Q-DECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES 4 Q-DECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES AND PROVIDED OF THE CRITICAL PROBABILITY IN THE ONE-QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR UNBALANCED DESIGNS ON QUADRATIC EXTRAPOLATION AND A RELATED TEST OF 4 Q-DECHNIQUE FOR THE CALCULATION AND A RELATED TEST OF 4 Q-DECHNIQUE FOR THE CALCULATION OF THE ONE-QUADRATIC EXTRAPOLATION AND A RELATED TEST OF	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 59 BIOCS65 AMS 62 AMS 66 BIOCS65 BIOKA66 AMS 63 JRSSB63 JRSSB63 JRSSB63 JRSSB63 JRSSB63 JASA 66 AMS 61	496 565 149 247 658 575 633 190 525 1783 1008 588 315 401 493 377 644 883 1700 215
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 A STOCHASTIC MODEL CONSUMER BUYING INTENTIONS AND CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN ELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH PARAMETERS V=28. N1=12, N2=15 AND P2(1,1)=4 NOTES. A NOTE ON COCHRAN'S Q TEST AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE-QUADRANT ORIENTED-ATOM PERCOLATION PROCESS AN APPROXIMATION TO THE DISTRIBUTION OF Q QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR UNBALANCED DESIGNS ON THE INDEPENDENCE OF QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR HYPOTHESES 63 673 DISTRIBUTION OF A DEFINITE QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR THE DISTRIBUTION OF A QUADRATIC FORM OF NON-CENTRAL NORMAL VARIATES, CORR. THE DISTRIBUTION OF A QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. A NEW RESULT ON THE DISTRIBUTION OF QUADRATIC FORM TO HAVE A CHI-SQUARED DISTRIBUTION A NEW RESULT ON THE DISTRIBUTION OF QUADRATIC FORM OF NORMAL RANDOM VARIABLES APPROXIMATIONS TO THE DISTRIBUTION OF QUADRATIC FORMS	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 69 JASA 69 JASA 69 JASA 69 BIOCS65 AMS 66 BIOCS65 BIOKA66 JICS65 BIOKA64 JRSSB63 JRSSB63 JRSSB63 JRSSB63 JASA 56 AMS 61 AMS 67 BIOKA69	496 565 149 247 658 575 633 190 525 1783 1008 315 401 493 377 644 883 1700 215 1582
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 A STOCHASTIC MODEL CANNIBALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN EXPERIMENT AND CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN ELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES AND EXPERIMENT IN SURVEY DESIGN A FORECASTING MODEL OF FEDERAL PURCHASES AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH PARAMETERS V=28. N1=12, N2=15 AND P2(1,1)=4 /CTION OF PARTIALLY BALANCED INCOMPLETE NOTES.A NOTE ON COCKHAN'S Q TEST AN APPROXIMATION TO THE DISTRIBUTION OF Q., A VARIATE RELATED TO THE NON-CENTRAL T LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE—QUADRANT ORIENTED—ATOM PERCOLATION PROCESS A UNBALANCED DESIGNS ON THE INDEPENDENCE OF QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR ON QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR ON ADDITIONAL PROCESS ADDITIONAL PROCESS ON QUADRATIC EXTRAPOLATION AND A RELATED TEST OF GRAPH OF NON-CENTRAL NORMAL VARIATES, CORR. THE DISTRIBUTION OF A DEFINITE QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. THE DISTRIBUTION OF A QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. THE DISTRIBUTION OF QUADRATIC FORM OF NORMAL RANDOM VARIABLES CONDITIONS FOR A QUADRATIC FORM TO HAVE A CHI—SQUARED DISTRIBUTION A NEW RESULT ON THE DISTRIBUTION OF QUADRATIC FORMS STATISTICAL CLASSIFICATION WITH QUADRATIC FORMS	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 69 JASA 69 JASA 69 JASA 69 JASA 69 JASA 69 JASA 62 AMS 66 BIOCS65 BIOKA66 AMS 64 JRSSB63 JRSSB63 JRSSB63 JRSSB63 JASA 56 AMS 67 BIOKA69 AMS 63 AMS 65 BIOKA69	496 565 149 247 658 575 633 190 525 1783 1008 588 315 401 493 377 644 493 1700 215 1582 677 439
LINEAR ESTIMATION AND THE ANALYSIS OF CAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 A STOCHASTIC MODEL CONSUMER BUYING INTENTIONS AND PURCHASES PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN CONSUMER BUYING INTENTIONS AND PURCHASES PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN ELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES A NOTE ON THE R A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH PARAMETERS V=28, N1=12, N2=15 AND P2(1,1)=4 NOTES. A NOTE ON COCHRAN'S Q TEST NOTES. A NOTE ON COCHRAN'S Q TEST A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE—QUADRANT ORIENTED—ATOM PERCOLATION PROCESS A UNBALANCED DESIGNS ON THE INDEPENDENCE OF QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR HYPOTHESES ON THE DISTRIBUTION OF A QUADRATIC EXTRAPOLATION AND A RELATED TEST OF QUADRATIC EXTRAPOLATION AND A RELATED TEST OF A NEW RESULT ON THE DISTRIBUTION OF QUADRATIC FORM OF NON-CENTRAL NORMAL VARIATES, CORR. THE DISTRIBUTION OF A QUADRATIC FORM OF NORMAL RANDOM VARIABLES CONDITIONS FOR A QUADRATIC FORM OF HOWAL A CHI-SQUARED DISTRIBUTION A NEW RESULT ON THE DISTRIBUTION OF QUADRATIC FORMS SATATISTICAL CLASSIFICATION WITH QUADRATIC FORMS SOME REMARKS CONCERNING KHATRI'S RESULT ON QUADRATIC FORMS SOME REMARKS CONCERNING KHATRI'S RESULT ON QUADRATIC FORMS	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 69 JASA 62 BIOCS65 AMS 62 AMS 66 BIOKS65 BIOKA66 JRSSB61 JRSSB63 JRSSB61 JRSSB63 JRSSB61 JRSSB63 JRSSB61 AMS 61 AMS 67 BIOKA66 AMS 63 AMS 63 BIOKA68	496 565 149 247 658 575 633 190 525 1783 1008 588 315 401 493 377 644 883 1700 215 1582 677 439 593
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 A STOCHASTIC MODEL CONSUMER BUYING INTENTIONS AND PURCHASES OF ADULT FLOUR BEETLES, AN EXPERIMENT AND CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN ELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES OF GOODS AND SERVICES A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH PARAMETERS V=28, N1=12, N2=15 AND P2(1,1)=4 NOTES. A NOTE ON COCHRAN'S Q TEST AN APPROXIMATION TO THE DISTRIBUTION OF Q. A VARIATE RELATED TO THE NON-CENTRAL T LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE-QUADRATIC CETIMATES OF THE INTERCLASS VARIANCE FOR UNBALANCED DESIGNS ON THE INDEPENDENCE OF QUADRATIC EXTRAPOLATION AND A RELATED TEST OF HYPOTHESES 63 673 DISTRIBUTION OF A DEFINITE QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. THE DISTRIBUTION OF A QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. APPROXIMATIONS TO THE DISTRIBUTION OF QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. APPROXIMATIONS TO THE DISTRIBUTION OF QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. APPROXIMATIONS TO THE DISTRIBUTION OF QUADRATIC FORMS SOME REMARKS CONCERNING KHATRI'S RESULT ON QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS SOME REMARKS CONCERNING KHATRI'S RESULT ON QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 59 JASA 62 BIOCS65 AMS 62 AMS 66 BIOCS65 BIOKA66 AMS 63 JRSSB63 JRSSB63 JRSSB63 JRSSB63 JRSSB63 JASA 56 BIOKA66 AMS 67 BIOKA66 AMS 67 BIOKA66 AMS 65 BIOKA68 JRSSB663 JRSSB68	496 565 149 247 658 575 633 190 525 1783 1008 588 315 401 493 377 644 883 1700 215 1582 677 439 593 593
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 A STOCHASTIC MODEL CANDIBALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN EXPERIMENT AND CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN ELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES A NOTE ON THE R A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH PARAMETERS V=28. N1=12, N2=15 AND P2(1,1)=4 /CTION OF PARTIALLY BALANCED INCOMPLETE NOTES. A NOTE ON COCHRAN'S Q TEST AN APPROXIMATION TO THE DISTRIBUTION OF Q. A VARIATE RELATED TO THE NON-CENTRAL T LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE-QUADRANT ORIENTED-ATOM PERCOLATION PROCESS A UNBALANCED DESIGNS ON THE INDEPENDENCE OF QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR HYPOTHESES ON THE DISTRIBUTION OF A DEFINITE QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR THE DISTRIBUTION OF A DEFINITE QUADRATIC FORM OF NON-CENTRAL TORMAL VARIATES, CORR. THE DISTRIBUTION OF A DEFINITE QUADRATIC FORM OF NON-CENTRAL DORMAL VARIATES, CORR. THE DISTRIBUTION OF QUADRATIC FORM OF NORMAL RANDOM VARIABLES CONDITIONS FOR A QUADRATIC FORM OF NORMAL RANDOM VARIABLES CONDITIONS FOR A QUADRATIC FORM OF NORMAL RANDOM VARIABLES STATISTICAL CLASSIFICATION WITH QUADRATIC FORMS SOME REMARKS CONCERNING KHATRI'S RESULT ON QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 69 JASA 69 JASA 69 JASA 69 JASA 69 AMS 66 BIOCS65 BIOKA66 AMS 64 JRSSB63 JRSSB63 JRSSB63 JRSSB61 JRSSB63 JRSSB66 AMS 65 BIOKA66 BIOKA66 BIOKA666 BIOKA666 AMS 65 BIOKA688 BIOKA688	496 565 149 247 658 575 633 190 525 1783 1008 588 315 401 493 377 644 883 1700 215 1582 677 439 593 583 683
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 A STOCHASTIC MODEL CONSUMER BUYING INTENTIONS AND PURCHASES OF ADULT FLOUR BEETLES, AN EXPERIMENT AND CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN ELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES OF GOODS AND SERVICES A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH PARAMETERS V=28, N1=12, N2=15 AND P2(1,1)=4 NOTES. A NOTE ON COCHRAN'S Q TEST AN APPROXIMATION TO THE DISTRIBUTION OF Q. A VARIATE RELATED TO THE NON-CENTRAL T LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE-QUADRATIC CETIMATES OF THE INTERCLASS VARIANCE FOR UNBALANCED DESIGNS ON THE INDEPENDENCE OF QUADRATIC EXTRAPOLATION AND A RELATED TEST OF HYPOTHESES 63 673 DISTRIBUTION OF A DEFINITE QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. THE DISTRIBUTION OF A QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. APPROXIMATIONS TO THE DISTRIBUTION OF QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. APPROXIMATIONS TO THE DISTRIBUTION OF QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. APPROXIMATIONS TO THE DISTRIBUTION OF QUADRATIC FORMS SOME REMARKS CONCERNING KHATRI'S RESULT ON QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS SOME REMARKS CONCERNING KHATRI'S RESULT ON QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 69 JASA 69 JASA 69 JASA 69 JASA 69 AMS 66 BIOCS65 BIOKA66 AMS 64 JRSSB63 JRSSB63 JRSSB63 JRSSB61 JRSSB63 JRSSB66 AMS 65 BIOKA66 BIOKA66 BIOKA666 BIOKA666 AMS 65 BIOKA688 BIOKA688	496 565 149 247 658 575 633 190 525 1783 1008 588 315 401 493 377 644 883 1700 215 1582 677 439 593 582 683 699
LINEAR ESTIMATION AND THE ANALYSIS OF CAMMA RAY PULSE—HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 TABULAR A STOCHASTIC MODEL CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN ELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH PARAMETERS V=28. N1=12, N2=15 AND P2(1,1)=4 NOTES.A NOTE ON COCHRAN'S Q TEST A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES AN APPROXIMATION TO THE DISTRIBUTION OF Q. A VARIATE RELATED TO THE NON-CENTRAL T LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE-QUADRANT ORIENTED-ATOM PERCOLATION PROCESS A UNBALANCED DESIGNS ON THE INDEPENDENCE OF QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR UNBALANCED DESIGNS ON THE INDEPENDENCE OF QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. THE DISTRIBUTION OF A DEFINITE QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. A NEW RESULT ON THE DISTRIBUTION OF QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. A PPROXIMATIONS TO THE DISTRIBUTION OF QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. SOME REMARKS CONCERNING KHATRI'S RESULT ON QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS SOME REMARKS CONCERNING KHATRI'S RESULT ON QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS APPROXIMATIONS TO THE DISTRIBUTION OF QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS APPROXIMATION OF DEFINITE AND OF INDEFINITE QUADRATIC	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 66 JASA 59 JASA 66 BIOCS65 AMS 62 AMS 66 BIOCS65 BIOKA66 AMS 64 AMS 64 JRSSB63 JRSSB63 JRSSB61 JRSSB63 JRSSB66 AMS 67 BIOKA69 BIOKA68 BIOKA68 BIOKA68 AMS 65 BIOKA63 JRSSB66 AMS 65 AMS 66	496 565 149 247 658 575 633 190 525 1783 1008 588 315 401 493 377 644 883 1700 215 1582 677 4393 582 683 983 1430
LINEAR ESTIMATION AND THE ANALYSIS OF CAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 TABULAR A STOCHASTIC MODEL CANNIBALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN EXPERIMENT AND CONSUMER BUYING INTENTIONS AND PURCHASES PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN ELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH PARAMETERS V=28, N1=12, N2=15 AND P2(1,1)=4 NOTES.A NOTE ON COCHRAN'S Q TEST A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE-QUADRANT ORIENTED-ATOM PERCOLATION PROCESS A UNBALANCED DESIGNS ON THE INDEPENDENCE OF QUADRATIC EXPRESSIONS (CORR. 66 584) HYPOTHESES ON THE DISTRIBUTION OF A DEFINITE QUADRATIC EXPRESSIONS (CORR. 66 584) HYPOTHESES OLISTRIBUTION OF A DEFINITE OURDARDITE FORM OF NORMAL VARIABLES CONDITIONS FOR A QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. THE DISTRIBUTION OF A DEFINITE OURDARDITE FORMS APPROXIMATIONS TO THE DISTRIBUTION OF QUADRATIC FORM S SOME REMARKS CONCENNING KHATRI'S RESULT ON QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS MPOSITION OF SYMMETRIC MATRICES AND DISTRIBUTIONS OF QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS ON THE OURDARD CONTROL OF PROVING THE EQUALITY OF QUADRATIC FORMS ON THE OURDARD CONTROL OF PROVING THE EQUALITY OF QUADRATIC FORMS AND IDEMPOTENT MATRICES WITH RANDOM THE CHARACTE	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 69 JASA 62 BIOCS65 AMS 66 BIOCS65 BIOKA66 AMS 64 JRSSB61 JRSSB63 JRSSB61 JRSSB63 JRSSB61 JRSSB63 JRSSB66 AMS 65 AMS 65 BIOKA69 AMS 65 BIOKA69 AMS 65 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA69 AMS 63 AMS 65 AMS 65 AMS 65 BIOKA68 BIOKA68 BIOKA68	496 565 149 247 658 575 633 190 525 1783 1008 588 315 401 493 377 644 883 1700 215 1582 677 439 593 582 683 969 1430 186 199
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 TABULAR A STOCHASTIC MODEL CONSUMER BUYING INTENTIONS AND PURCHASE BY ADULT FLOUR BEETLES, AN EXPERIMENT AND CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN ELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH PARAMETERS V=28, N1=12, N2=15 AND P2(1,1)=4 /CTION OF PARTIALLY BALANCED INCOMPLETE NOTES. A NOTE ON COCHRAN'S Q TEST A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES AN APPROXIMATION TO THE DISTRIBUTION OF Q. A VARIATE RELATED TO THE NON-CENTRAL T LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE-QUADRANT ORIENTED-ATOM PERCOLATION PROCESS A UNBALANCED DESIGNS ON THE INDEPENDENCE OF QUADRATIC EXTRAPOLATION AND A RELATED TEST OF ON THE INDEPENDENCE OF QUADRATIC EXTRAPOLATION AND A RELATED TEST OF THE DISTRIBUTION OF A DEFINITE QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. THE DISTRIBUTION OF A QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. A NEW RESULT ON THE DISTRIBUTION OF QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. STATISTICAL CLASSIFICATION WITH QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS SOME REMARKS CONCERNING KHARTI'S RESULT ON QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS ON THE OUTPON OF SYMMETRIC MATRICES AND DISTRIBUTIONS OF QUADRATIC FORMS AND IDEMPOTENT MATRICES WITH RANDOM MPOSITION OF SYMMETRIC MATRICES AND DISTRIBUTIONS OF QUADRATIC FORMS AND IDEMPOTENT MATRICES WITH RANDOM THE	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 59 JASA 66 BIOCS65 AMS 62 AMS 66 BIOCS65 BIOKA66 AMS 64 JRSSB63 JRSSB61 JRSSB63 JRSSB61 AMS 67 BIOKA66 AMS 64 AMS 64 AMS 65 BIOKA66 AMS 66	496 565 149 247 658 575 633 190 525 1783 1008 588 315 401 493 3777 644 883 1700 215 1582 677 439 588 689 1430 186 199 567
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE—HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 TABULAR A STOCHASTIC MODEL CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYRE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION AND PYRE'S MODIFIED EMPIRICAL DISTRIBUTION PUNCTION AND PYRE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION AND PYRE'S MODIFIED EMPIRICAL DISTRIBUTION OF PARTIALLY BALANCED INCOMPLETE NOTES A NOTE ON COCHRAN'S Q TEST A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE-QUADRANT ORIENTED-ATOM PERCOLATION PROCESS A UNBALANCED DESIGNS ON THE INDEPENDENCE OF QUADRATIC EXTRAPOLATION AND A RELATED TEST OF HYPOTHESES ON THE DISTRIBUTION OF A DEFINITE QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. THE DISTRIBUTION OF A QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. THE DISTRIBUTION OF QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. A PERFORMANTIONS TO THE DISTRIBUTION OF QUADRATIC FORM S STATISTICAL CLASSIFICATION WITH QUADRATIC FORMS SOME REMARKS CONCERNING KHATRI'S RESULT ON QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS MPOSITION OF SYMMETRIC MATRICES AND DISTRIBUTIONS OF QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS AND IDEMPOTENT MATRICES WITH RANDOM THE CHARACTERISTIC FUNCTION OF INDEFINITE QUADRATIC FORMS IN COMPLEX NORMAL VARIABLES CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT RANDOM VARIABLES ALMOST SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT RANDOM VARIABLES ALMOST SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT RANDOM VARIABLES	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 69 JASA 62 BIOCS65 AMS 62 AMS 66 BIOCS65 BIOKA66 AMS 63 JRSSB63 AMS 67 BIOKA68 JRSSB66 AMS 65 BIOKA68 JRSSB66 AMS 65 JASA 69 AMS 65 JASA 69 AMS 63 BIOKA66 AMS 63 BIOKA66 AMS 63	496 565 149 247 658 575 633 190 525 1008 588 315 401 493 377 644 883 1700 215 677 439 593 582 683 969 1430 186 199 1967
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE—HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, COR. 56 50 TABULAR A STOCHASTIC MODEL CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN CONSUMER BUYING INTENTIONS AND PURCHASES PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN A FORECASTING MODEL OF FEDERAL ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS ANALYSIS, AN INTRODUCTION TO DESENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS ANALYSIS, AN INTRODUCTION TO DESENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS ANALYSIS, AN INTRODUCTION TO DESENTALS. 1. THE PURPOSE AND UNDERLYING MODELS ANALYSIS, AN INTRODUCTION TO DESENTALS. 1. THE PURPOSE AND DIMBERLYING MODELS ANALYSIS, AN INTRODUCTION TO DESENTALS. 1. THE PURPOSE AND DIMBERLYING MODELS ANALYSIS, AN INTRODUCTION TO DESENTALS. 1. THE PURPOSE AND DISTRIBUTION OF FORCED TO THE CALCULATION OF CANONICAL VARIATES ANALYSIS, AN INTRODUCTION TO THE DISTRIBUTION OF Q. A VARIATE RELATED TO THE NON-CENTRAL TO THE ONE-QUADRANT OF THE CALCULATION OF CANONICAL VARIATES ANALYSIS, AN INTRODUCTION TO THE DISTRIBUTION OF QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR ON THE INDEPENDENCE OF QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR QUADRATIC FORM OF NON-CENTRAL NORMAL VARIATES, CORR. THE DISTRIBUTION OF A DEFINITE QUADRATIC FORM OF NORMAL RANDOM VARIABLES A NEW RESULT ON THE DISTRIBUTION OF QUADRATIC FORMS STATISTICAL CLASSIFICATION WITH QUADRATIC FORMS STATISTICAL CLASSIFICATION WITH QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS A PROVINCE MATRICES WITH ANDOM ANAL VARIABLES OUTCOMERGENCE OF QUADRATIC FORMS IN LOMPLEX NORMAL VARIABLES CONVERGENCE OF QUADRATIC FORMS IN LOMPLEX NORMAL	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 69 JASA 69 JASA 69 JASA 69 JASA 69 BIOCS65 AMS 66 BIOCS65 BIOKA66 AMS 64 JRSSB63 JASSB61 JASA 56 AMS 61 AMS 67 BIOKA69 AMS 63 AMS 65 JASA 69 AMS 63 AMS 65 JASA 69 AMS 63 AMS 65 JASA 69 AMS 63 AMS 66 AMS 68 BIOKA68 BIOKA68	496 565 149 247 658 575 633 190 525 1783 1008 588 315 401 493 377 644 883 1700 215 1582 677 439 593 582 683 969 1430 186 199 567 1502 419
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE—HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 TABULAR A STOCHASTIC MODEL CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYRE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION AND PYRE'S MODIFIED EMPIRICAL DISTRIBUTION PUNCTION AND PYRE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION AND PYRE'S MODIFIED EMPIRICAL DISTRIBUTION OF PARTIALLY BALANCED INCOMPLETE NOTES A NOTE ON COCHRAN'S Q TEST A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE-QUADRANT ORIENTED-ATOM PERCOLATION PROCESS A UNBALANCED DESIGNS ON THE INDEPENDENCE OF QUADRATIC EXTRAPOLATION AND A RELATED TEST OF HYPOTHESES ON THE DISTRIBUTION OF A DEFINITE QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. THE DISTRIBUTION OF A QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. THE DISTRIBUTION OF QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. A PERFORMANTIONS TO THE DISTRIBUTION OF QUADRATIC FORM S STATISTICAL CLASSIFICATION WITH QUADRATIC FORMS SOME REMARKS CONCERNING KHATRI'S RESULT ON QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS MPOSITION OF SYMMETRIC MATRICES AND DISTRIBUTIONS OF QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS AND IDEMPOTENT MATRICES WITH RANDOM THE CHARACTERISTIC FUNCTION OF INDEFINITE QUADRATIC FORMS IN COMPLEX NORMAL VARIABLES CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT RANDOM VARIABLES ALMOST SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT RANDOM VARIABLES ALMOST SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT RANDOM VARIABLES	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 69 JASA 62 BIOCS65 AMS 62 AMS 66 BIOCS65 BIOKA66 AMS 63 JRSSB63 AMS 67 BIOKA68 JRSSB66 AMS 65 BIOKA68 JRSSB66 AMS 65 JASA 69 AMS 65 JASA 69 AMS 63 BIOKA66 AMS 63 BIOKA66 AMS 63	496 565 149 247 658 575 633 190 525 1783 1008 588 315 401 493 377 644 883 1700 215 1582 677 439 593 582 683 3969 1430 186 199 567 1502 447
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 50 TABULAR A STOCHASTIC MODEL CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT AND CONSUMER BUYING INTENTIONS AND PURCHASES PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES A NOTE ON THE R A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYRE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH PARAMETERS V=28, N1=12, N2=15 AND P2(1,1)=4 CONTES. A NOTE ON COCHEAN'S Q TEST NOTES. A NOTE ON COCHEAN'S Q TEST A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES AN APPROXIMATION TO THE DISTRIBUTION OF QUADRANT ORIENTED-ATOM PERCOLATION PROCESS AN APPROXIMATION TO THE DISTRIBUTION OF QUADRANT ORIENTED-ATOM PERCOLATION PROCESS ON THE INDEPENDENCE OF QUADRATIC EXTRAPOLATION AND A RELATED TEST OF HYPOTHESES OISTRIBUTION OF A DEFINITE QUADRATIC FORM TO HAVE A CHI-SQUARED DISTRIBUTION A NEW RESULT ON THE DISTRIBUTION OF QUADRATIC FORM TO HAVE A CHI-SQUARED DISTRIBUTION A NEW RESULT ON THE DISTRIBUTION OF QUADRATIC FORM TO HAVE A CHI-SQUARED DISTRIBUTION A NEW RESULT ON THE DISTRIBUTION OF QUADRATIC FORM TO HAVE A CHI-SQUARED DISTRIBUTION A NEW RESULT ON THE DISTRIBUTION OF QUADRATIC FORMS SOME REMARKS CONCERNING KHATRI'S RESULT ON QUADRATIC FORMS SOME REMARKS CONCERNING KHATRI'S RESULT ON QUADRATIC FORMS SOME REMARKS CONCERNING KHATRI'S RESULT ON QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS OF PROVING THE EQUALITY OF THE CHARACTERISTIC FUNCTION OF DISTRIBUTIONS OF QUADRATIC FORMS OF PROME AND IDEMPOTENT MATRICES WITH RANDOM VARIABLES CONVENGENCE OF QUADRATIC FORMS IN INDEPENDENT RANDOM VARIABLES THE CHARACTERIST OF DISTRIBUTION OF QUADRATIC FORMS IN NORMAL VARIABLES THE	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 69 JASA 69 JASA 69 JASA 69 JASA 69 BIOCS65 AMS 66 BIOCS65 BIOKA66 AMS 64 JRSSB63 JASSB61 JASA 56 AMS 65 BIOKA68 BIOKA68 BIOKA68 JRSSB65 JASA 69 AMS 63 AMS 65 JASA 69 AMS 63 AMS 65 JASA 69 AMS 68 AMS 68 BIOKA60 AMS 68 BIOKA60 AMS 68 AMS 66 AMS 68 BIOKA61 JRSSB54 AMS 66 AMS 66 AMS 68 BIOKA61 JRSSB54 AMS 67	496 565 149 247 658 575 633 190 525 1783 1008 588 315 401 493 377 644 883 1700 215 1582 677 439 593 582 683 969 1430 186 199 567 1502 419 247 823 838
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 TABULAR A STOCHASTIC MODEL CANNIBALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN EXPERIMENT AND CONSUMER BUYING INTENTIONS AND PURCHASES PROBABILITY. AN EXPERIMENT IN SURVEY DESIGN A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES A NOTE ON THE R A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH FARAMETERS V=28, N1=12, N2=15 AND P2(1,1)=4 /CTION OF PARTIALLY BALANCED INCOMPLETE NOTES. A NOTE ON COCHRAN'S Q TEST NOTES. A NOTE ON COCHRAN'S Q TEST AN APPROXIMATION TO THE DISTRIBUTION OF Q. A VARIATE RELATED TO THE NON-CENTRAL T LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE-QUADRANT ORIENTED-ATOM PERCOLATION PROCESS A UNBALANCED DESIGNS ON THE INDEFENDENCE OF QUADRANT ORIENTED-ATOM PERCOLATION PROCESS A HYPOTHESES ON THE INDEFENDENCE OF QUADRATIC ESTMAPTIC STIMAL NORMAL VARIABLES CONDITIONS FOR A QUADRATIC FORM OF NORMAL RANDOM VARIABLES CONDITIONS FOR A QUADRATIC FORM OF NON-CENTRAL NORMAL VARIATES, CORR. A NEW RESULT ON THE DISTRIBUTION OF QUADRATIC FORMS SOME REMARKS CONCERNING KHATRI'S RESULT ON QUADRATIC FORMS SOME REMARKS CONCERNING KHATRI'S RESULT ON QUADRATIC FORMS MPOSITION OF SYMMETRIC MARRIESS AND DISTRIBUTIONS OF QUADRATIC FORMS MPOSITION OF SYMMETRIC MARRIESS AND DISTRIBUTIONS OF QUADRATIC FORMS MPOSITION OF DEFINITE AND OF INDEFINITE QUADRATIC FORMS ON THE INDEPENDENCE OF QUADRATIC FORMS ONN-CENTRAL NORMAL VARIABLES CONVERGENCE OF QUADRATIC FORMS IN NORMAL VARIABLES CONFERENCE OF QUADRATIC FORMS IN NORMAL VARIABLES, I, CENTRAL CASE SERIES REPRESENTATIO	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 69 JASA 69 JASA 69 BIOCS65 AMS 66 BIOCS65 BIOKA66 AMS 64 JRSSB61 JRSSB63 JRSSB61 JRSSB63 JRSSB61 JRSSB63 JRSSB61 JRSSB63 JRSSB61 JRSSB66 AMS 67 BIOKA68 JRSSB66 AMS 65 BIOKA68 JRSSB66 AMS 66 AMS 66 AMS 66 JRSSB66 AMS 66 AMS 66 JRSSB66 AMS 66	496 565 149 247 658 575 633 190 525 1783 1008 588 315 401 493 377 644 883 1700 215 1582 677 439 593 582 683 969 1430 186 199 567 1502 417 823 838 838 284
LINEAR ESTIMATION AND THE ANALYSIS OF CAMMA RAY PULSE—HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 TABULAR A STOCHASTIC MODEL CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN ELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES SO SEVICES A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH PARAMETERS V=28, N1=12, N2=15 AND P2(1,1)=4 NOTES. A NOTE ON COCHERN'S Q TEST NOTES. A VARIATE SETIMATED TO THE NON-CENTRAL T LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE-QUADRATIC CEST MATES OF THE INTERCLASS VARIANCE FOR UNBALANCED DESIGNS ON THE INDEPENDENCE OF QUADRATIC EXPRESSIONS (CORR. 66 584) WORDSTORM THE DISTRIBUTION OF A QUADRATIC FORM FOR ON-CENTRAL NORMAL VARIABLES NOTE OF QUADRATIC FORM TO HAVE A CHI-SQUARED DISTRIBUTION OF QUADRATIC FORM TO HAVE A CHI-SQUARED DISTRIBUTION OF QUADRATIC FORMS NOTE OF QUADRATIC FORMS NOTE OF QUADRATIC FORMS NOTE OF THE INTERCLED	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 66 JASA 59 JASA 66 BIOCS65 AMS 62 AMS 66 BIOCS65 BIOKA66 AMS 64 JRSSB63 JRSSB61 JRSSB63 JRSSB61 JRSSB63 JRSSB68 AMS 67 BIOKA68 AMS 65 BIOKA68 AMS 65 BIOKA68 JRSSB66 AMS 66 AMS 66 AMS 68 JRSSB66 AMS 66 AMS 67 BIOKA63 JRSSB66 AMS 66 AMS 67 BIOKA63 BIOKA64 AMS 66 AMS 67 AMS 66 AMS 68 BIOKA61 JRSSB64 AMS 66 AMS 68 BIOKA61 JRSSB64 AMS 66 AMS 68 BIOKA61 JRSSB64 AMS 66 AMS 68	496 565 149 247 658 575 633 190 525 1783 1008 588 315 401 493 377 644 883 1700 1582 677 4393 582 683 969 1430 186 199 567 1502 419 247 823 838 4384 1762
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE—HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650 TABULAR A STOCHASTIC MODEL CANNIBALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN EXPERIMENT AND CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES A NOTE ON THE R A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH FARAMETERS V=28. N.1=12, N2=15 AND P2(1,1)=4 NOTES. A NOTE ON COCHRAN'S Q TEST NOTES. A NOTE ON COCHRAN'S Q TEST AN APPROXIMATION TO THE DISTRIBUTION FOR Q. A VARIATE RELATED TO THE NON-CENTRAL T LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE—QUADRANT ORIENTED—ATOM PERCOLATION PROCESS A UNBALANCED DESIGNS ON THE INDEFENDENCE OF QUADRANT ORIENTED—ATOM PERCOLATION PROCESS A HYPOTHESES ON THE DISTRIBUTION OF A DEFINITE QUADRATIC ESTMAPLIC STIMAL NORMAL VARIATES, CORR. THE DISTRIBUTION OF A DEFINITE QUADRATIC FORM OF NORMAL RANDOM VARIABLES CONDITIONS FOR A QUADRATIC FORM TO HAVE A CHI—SQUARED DISTRIBUTION A NEW RESULT ON THE DISTRIBUTION OF QUADRATIC FORMS SOME REMARKS CONCERNING KHATRI'S RESULT ON QUADRATIC FORMS SOME REMARKS CONCERNING KHATRI'S RESULT ON QUADRATIC FORMS MPOSITION OF SYMMETRIC MATRICES AND DISTRIBUTIONS OF QUADRATIC FORMS (LEMMA FOR PROVING THE EQUALITY OF ELEMENTS N DISTRIBUTION OF LEAST SQUARES TYPE QUADRATIC FORMS IN NORMAL VARIABLES CONFERENCE OF QUADRATIC FORMS IN NORMAL VARIABLES ALMOST SURE CONVERGENCE OF QUADRATIC FORMS IN NORMAL VARIABLES CONFERENCE OF QUADRATIC FORMS IN NORMAL VARIABLES CONFERENCE O	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 69 JASA 69 JASA 69 JASA 69 JASA 69 JASA 69 BIOCS65 BIOKA66 AMS 66 AMS 66 AMS 64 JRSSB63 JRSSB61 JASA 56 AMS 67 BIOKA69 AMS 63 AMS 65 JASA 69 AMS 63 AMS 65 JRSSB66 JRSSB66 JRSSB66 JRSSB66 JRSSB66 JRSSB66 JRSSB66 JRSSB66 JRSSB66 AMS 69 AMS 63 BIOKA63 BIOKA63 BIOKA64 BIOKA64 BIOKA64 AMS 67 BIOKA64 AMS 67 BIOKA64 AMS 67 BIOKA64	496 565 149 247 658 575 633 190 525 1783 1008 588 315 401 493 377 644 883 170 644 883 180 215 1582 677 439 593 582 683 969 1430 186 199 567 1502 419 247 823 838 284 1762 148
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARROS, CORR. 56 650 TABULAR A STOCHASTIC MODEL CANNIBALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN EXPERIMENT AND CONSUMER BUYING INTENTIONS AND PURCHASES ELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR PURCHASES A NOTE ON THE R A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS FACTOR RENCE BETWEEN HYPOTHETICAL DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION /FE BLOCK DESIGNS WITH PARAMETERS V=28, N1=12, N2=15 AND P2(1,1)=4 NOTES A NOTE ON COCHRAN'S Q TEST AN APPROXIMATION TO THE DISTRIBUTION OF Q. A VARIATE RELATED TO THE NON-CENTRAL T LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE-QUARRANT ORIENTED-ATOM PERCOLATION PROCESS ON THE INDEPENDENCE OF QUARRANT CENTRESOLATION AND A RELATED TEST OF HYPOTHESES ON THE INDEPENDENCE OF QUARRANT CENTRESOLATION AND A RELATED TEST OF QUARRATIC EXPRESSIONS (CORR. 66 584) QUARRATIC EXPRESSIONS (CORR. 66 584) QUARRATIC EXTRACTION AND A RELATED TEST OF QUARRATIC EXTRACTION AND A RELATED TEST OF QUARRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. THE DISTRIBUTION OF A QUARRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. THE DISTRIBUTION OF A QUARRATIC FORM TO HAVE A CHI-SQUARED DISTRIBUTION A NEW RESULT ON THE DISTRIBUTION OF QUARRATIC FORM TO HAVE A CHI-SQUARED DISTRIBUTION A PPROXIMATIONS TO THE DISTRIBUTION OF QUARRATIC FORM TO HAVE A CHI-SQUARED DISTRIBUTION A PROXIMATION TO THE DISTRIBUTION OF QUARRATIC FORMS ON THE INDEPENDENCE OF QUARRATIC FORMS ON THE INDEPENDENCE OF QUARRATIC FORMS IN COMPLEX NORMAL VARIABLES COMPUTING THE STRIBUTION OF QUARRATIC FORMS IN LIMPREDENT RANDOM VARIABLES COMPUTING THE DISTRIBUTION OF QUARRATIC FORMS IN NORMAL VARIABLES TRACES AND CUMULANTS OF QUARRATIC FORMS IN NORMAL VARIABLES COMPUTING THE DISTRIBUTION OF QUARRATIC FORMS IN NORMAL VARIABLES ON THE DISTRIBUTION OF DISTRIBUTION	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 69 JASA 66 BIOCS65 AMS 62 AMS 66 BIOCS65 AMS 64 JRSSB61 JRSSB63 JRSSB61 JRSSB63 JRSSB61 JRSSB63 JRSSB66 AMS 67 BIOKA68 AMS 65 BIOKA68 JRSSB66 AMS 66 AMS 65 JASA 69 AMS 63 BIOKA68 JRSSB66 AMS 66 JRSSB66 AMS 67 BIOKA68 JRSSB66 AMS 67 BIOKA68 JRSSB66 AMS 66 JRSSB66 AMS 67 AMS 67 AMS 67 AMS 67 AMS 68 JRSSB64 AMS 67 BIOKA62 AMS 66	496 565 149 247 658 575 633 190 525 1783 1008 588 315 401 493 377 644 883 1700 215 1582 677 439 593 582 683 969 1430 186 199 567 1502 417 823 838 284 1762 148 279
LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA ANALYSIS OF PACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARRS, CORR, 56 650 CONSUMER BUYING INTENTIONS AND PURCHASE STORE BUYING INTENTIONS AND PURCHASES STORE	BIOKA56 TECH 62 JASA 56 BIOCS68 JASA 66 JASA 69 JASA 66 BIOCS65 AMS 62 AMS 66 BIOCS65 AMS 64 JRSSB61 JRSSB63 JRSSB61 JRSSB63 JRSSB61 JRSSB63 JRSSB66 AMS 67 BIOKA68 AMS 65 BIOKA68 JRSSB66 AMS 66 AMS 65 JASA 69 AMS 63 BIOKA68 JRSSB66 AMS 66 JRSSB66 AMS 67 BIOKA68 JRSSB66 AMS 67 BIOKA68 JRSSB66 AMS 66 JRSSB66 AMS 67 AMS 67 AMS 67 AMS 67 AMS 68 JRSSB64 AMS 67 BIOKA62 AMS 66	496 565 149 247 658 575 633 190 525 1783 1008 588 315 401 493 377 644 883 1700 215 1582 677 4393 582 683 969 1430 186 199 567 1502 419 247 823 838 828 14762 148 279 198

```
CORRICENDA, 'EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO STATISTICS'
                                                                                                             BIOKA61
                                                                                                                       474
      TO 'DISTRIBUTION OF DEFINITE AND OF INDEFINITE QUADRATIC FORMS' 55 122
                                                                                                CORRECTION AMS 62
                                                                                                                      B13
AIN DISTRIBUTION PROBLEMS BASED ON POSITIVE DEFINITE QUADRATIC FUNCTIONS IN NORMAL VECTORS
                                                                                                               AMS 66
                                                                                                     ON CERT
                                                                                                                       468
 THE DISTRIBUTION OF HOMOGENEOUS AND NON-HOMOGENEOUS QUADRATIC FUNCTIONS OF NORMAL VARIABLES /TIONS, IV,
                                                                                                               AMS 62
                                                                                                                       542
     ON AN A.P.O. RULE IN SEQUENTIAL ESTIMATION WITH QUADRATIC LOSS
                                                                                                               AMS 69
                                                                                                                      417
    OF A MULTIVARIATE NORMAL POPULATION WITH GENERAL QUADRATIC LOSS FUNCTION
                                                                                         ESTIMATING THE MEAN
                                                                                                              AMS 66 1819
                               SELECTION INDICES FOR QUADRATIC MODELS OF TOTAL MERIT
                                                                                                              BTOCS6B
                                                                                                                      937
      RESTRICTED LEAST SQUARES REGRESSION AND CONVEX QUADRATIC PROGRAMMING
                                                                                                              TECH 69 NO.4
                            A DEFORMATION METHOD FOR QUADRATIC PROGRAMMING
                                                                                                              JRSSB64 141
              SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC PROGRAMMING'
                                                                                                              JRSSB65
                                                                                                                       166
                         ON A PROBLEM CONNECTED WITH QUADRATIC REGRESSION
                                                                                                              BIOKA60
                                                                                                                       335
         A NUMERICAL ANALYSIS PROBLEM IN CONSTRAINED QUADRATIC REGRESSION ANALYSIS
                                                                                                              TECH 62
                                                                                                                       426
THE PARAMETERS
                                                      QUADRATIC REGRESSION WITH INEQUALITY RESTRAINTS ON
                                                                                                              JASA 65
          THE ESTIMATION OF 'TRANSFER FUNCTIONS' OF QUADRATIC SYSTEMS
                                                                                                              TECH 61
                                                                                                                       563
2-TO-THE-(P-Q) PLANS ROBUST AGAINST LINEAR AND QUADRATIC TRENDS FACTORIAL TECH 66
OF THE ONE-WAY CLASSIFICATION FACTORIAL TECH 66
QUADRATIC UNBIASED ESTIMATION OF VARIANCE COMPONENTS BIOKA69
                                                                                                                       259
                                                                                                                       313
 ROBUSTNES/ THE ESTIMATION OF RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQUARES PROBLEMS AND THE BIOKA62
                                                                                                                       83
BINARY CHAIN OF ORDER 2
                                                      QUADRATICS IN MARKOV-CHAIN FREQUENCIES, AND THE
                                                                                                                       383
                                                                                                             JRSSB63
                                            VARIATION QUADRATIQUE DES MARTINGALES CONTINUES A DROITE
                                                                                                               AMS 69
                                                                                                                      284
                      APPLICATION OF THE GEOMETRY OF QUADRICS FOR CONSTRUCTING PARTIALLY BALANCED INCOMPLE AMS 62 1175
TE BLOCK DESIGNS
                       ORTHANT PROBABILITIES FOR THE QUADRIVARIATE NORMAL DISTRIBUTION
                                                                                                               AMS 64 16B5
                 AN APPROXIMATION FOR THE SYMMETRIC, QUADRIVARIATE NORMAL INTEGRAL
                                                                                                              BIOKA56
                                                                                                                      206
                              TWO EXPANSIONS FOR THE QUADRIVARIATE NORMAL INTEGRAL
                                                                                                              BIOKA60
                                                                                                                       325
                                        A NOTE ON THE QUADRIVARIATE NORMAL INTEGRAL
                                                                                                              BIOKA61
                                                                                                                       201
                  ON THE NUMERICAL REPRESENTATION OF QUALITATIVE CONDITION PROBABILITY
                                                                                                               AMS 68
                                                                                                                       481
     CUT RULE FOR A ONE-SIDED TEST OF HYPOTHESIS FOR QUALITATIVE DATA
                                                                                                    A SHORT- TECH 69
                                                                                                                      197
                                                WEAK QUALITATIVE PROBABILITY ON FINITE SETS
                                                                                                              AMS 69 NO.6
                                                   ON QUALITATIVE PROBABILITY SICMA-ALGEBRAS
                                                                                                               AMS 64 1787
                             ON DISCRIMINATION USING QUALITATIVE VARIABLES
                                                                                                              JASA 6B 1399
  PERCENTAGE POINTS FOR THE DISTRIBUTION OF OUTCOINC QUALITY
                                                                                                              JASA 59
                                                                                                                       6R9
     PRICING POLICIES CONTINCENT ON OBSERVED PRODUCT QUALITY
                                                                                                              TECH 66
                                                                                                                      123
IN NONDESTRUCTIVE EVALUATION OF REACTOR FUEL ELEMENT QUALITY
                                                                   A PROCRAM TO ESTIMATE MEASUREMENT ERROR
                                                                                                             TECH 64
                                                                                                                       293
TION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRODUCT QUALITY
                                                                 /SEQUENTIAL BATCHING FOR ACCEPTANCE, REJEC TECH 60
                                                                                                                       19
                                                      QUALITY AND QUANTITY IN HIGHER EDUCATION
                                                                                                              JASA 65
                                                                                                                         1
                                      ON AN INDEX OF QUALITY CHANGE
                                                                                                              JASA 61
                                                                                                                       535
                          SERIAL DESIGNS FOR ROUTINE QUALITY CONTROL AND EXPERIMENTATION
                                                                                                              TECH 64
                                                                                                                       77
                                      OPTIMIZATION OF QUALITY CONTROL IN THE CHEMICAL LABORATORY
                                                                                                              TECH 66
                                                                                                                       519
                                                      QUALITY CONTROL METHODS FOR SEVERAL RELATED VARIABLES TECH 59
                                                                                                                       359
                          SOME PROPERTIES OF RUNS IN QUALITY CONTROL PROCEDURES
                                                                                                              BTOKA5B
                                                                                                                       B9
             CORRIGENDA, 'SOME PROPERTIES OF RUNS IN QUALITY CONTROL PROCEDURES'
                                                                                                              BIOKA59
                                                                                                                       279
             AVERACE RUN LENCTHS IN CUMULATIVE CHART QUALITY CONTROL SCHEMES
                                                                                                              TECH 61
                                                                                                                        11
MEASURED VARIABLES
                                                      QUALITY CONTROL SYSTEMS BASED ON INACCURATELY
                                                                                                              BIOKA51
                      AN APPLICATION OF MULTIVARIATE QUALITY CONTROL TO PHOTOGRAPHIC PROCESSING
                                                                                                              JASA 57
                                                                                                                       1B6
CE SCHEMES FOR LARCE BATCHES OF ITEMS WHERE THE MEAN QUALITY HAS A NORMAL PRIOR DISTRIBUTION //G ACCEPTAN BIOKAGE
                                                                                                                       393
              ONE-SIDED CONFIDENCE INTERVALS FOR THE QUALITY INDICES OF A COMPLEX ITEM
                                                                                                              TECH 63
                                                                                                                       400
                                          CONTROL OF QUALITY OF CODING IN THE 1960 CENSUSES
                                                                                                              JASA 64
                                                                                                                       120
                                          THE VARYING QUALITY OF INVESTMENT TRUST MANAGEMENT
                                                                                                              JASA 63 1011
INFERENCE IN A RAPIDLY CHANCING WORLD
                                                 THE QUALITY OF STATISTICAL INFORMATION AND STATISTICAL
                                                                                                              JASA 67
TION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRODUCT QUALITY'
                                                                  /SEQUENTIAL BATCHING FOR ACCEPTANCE-REJEC TECH 61
                                                                                                                       131
                                         MULTIVARIATE QUANTAL ANALYSIS
                                                                                                              JRSSB58
                                                                                                                       39B
                A SICNIFICANCE TEST FOR SIMULTANEOUS QUANTAL AND QUANTITATIVE RESPONSES
                                                                                                              TECH 64
                                                                                                                       273
                                           PLANNING A QUANTAL ASSAY OF POTENCY
                                                                                                              BIOCS66
                                                                                                                       322
RS OF THE LOCIT AND ITS VARIANCE WITH APPLICATION TO QUANTAL BIOASSAY
                                                                            ON THE BIAS OF VARIOUS ESTIMATO BIOKA67
                                                                                                                       1B1
          A SIMPLE EXAMPLE OF A COMPARISON INVOLVINC QUANTAL DATA
                                                                                                              BIOKA66
                                                                                                                       215
METHOD FOR ESTIMATING THE EXPONENTIAL PARAMETER FROM QUANTAL DATA. AND ITS RELATIONSHIP TO BIRTH, DEATH, A BIOCS67
                                                                                                                       739
FORMATIONS AND MAXIMUM LIKELIHOOD IN THE ANALYSIS OF QUANTAL EXPERIMENTS INVOLVING TWO TREATMENTS /TRANS BIOKA55
                                                                                                                       3B2
ASSAYS ON THE SAME SUBJECTS
                                                  THE QUANTAL RESPONSE ANALYSIS OF A SERIES OF BIOLOGICAL
                                                                                                             BIOKA60
                                                                                                                       23
                                          ANALYSIS OF QUANTAL RESPONSE ASSAYS WITH DOSACE ERRORS
                                                                                                             BTOCS67
                                                                                                                       747
                            SEQUENTIAL ESTIMATION OF QUANTAL RESPONSE CURVES (WITH DISCUSSION)
                                                                                                              JRSSB63
                            SEQUENTIAL ESTIMATION OF QUANTAL RESPONSE CURVES, A NEW METHOD OF ESTIMATION
                                                                                                             BTOKA66
                                                                                                                       439
                             A NOTE ON ESTIMATION FOR QUANTAL RESPONSE DATA
                                                                                                              RTOKA68
                                                                                                                       578
   REGRESSION METHODS FOR ANALYSING SENSITIVITY AND QUANTAL RESPONSE DATA
                                                                                       THE USE OF NON-LINEAR BIOCS67
                                                                                                                       563
                                      AN ANALYSIS OF QUANTAL RESPONSE DATA IN WHICH THE MEASUREMENT OF RES BIOCS65
PONSE IS SUBJECT TO ERROR
                                                                                                                       811
                                WEIGHTED RECRESSION, QUANTAL RESPONSE DATA, AND INVERSE POLYNOMIALS CENERAL MODELS FOR QUANTAL RESPONSE TO THE JOINT ACTION OF A MIXTURE OF
                                                                                                             BIOCS6B
                                                                                                                       979
                                                                                                             BTOKA64
                                                                                                                       413
                     THE WITHIN-ANIMAL BIOASSAY WITH QUANTAL RESPONSES
                                                                                                              JRSSB56
                                                                                                                       133
                                                                                               A COMPARISON BIOCS67
 OF TWO APPROACHES TO THE CONSTRUCTION OF MODELS FOR QUANTAL RESPONSES TO MIXTURES OF DRUGS
                                                                                                                       27
EM FOR THE CLASSIFICATION OF MATHEMATICAL MODELS FOR QUANTAL RESPONSES TO MIXTURES OF DRUCS IN BIOLOCICAL BIOCS65
                                                                                                                       181
IONS OF SIMPLE SIMILAR ACTION, THE ANALYSIS OF UN/ QUANTAL RESPONSES TO MIXTURES OF POISONS UNDER CONDIT BIOKA5B
                                                                                                                       74
                                                  THE QUANTIFICATION OF JUDCMENT. SOME METHODOLOGICAL
SUCCESTIONS
                                                                                                             JASA 67 1105
   SELECTING THE T POPULATION WITH THE LARGEST ALPHA-QUANTILE
                                                                               NONPARAMETRIC PROCEDURES FOR AMS 67 1804
                                                                 /PARAMETRIC PROCEDURES FOR SELECTING A SUB AMS 67 1788
SET CONTAINING THE POPULATION WITH THE LARGEST ALPHA-QUANTILE
                                     ADMISSIBILITY OF QUANTILE ESTIMATES OF A SINGLE LOCATION PARAMETER
                                                                                                              AMS 64 1019
                            ESTIMATION OF NON-UNIQUE QUANTILES
                                                                                                               AMS 66 451
               ON BAHADUR'S REPRESENTATION OF SAMPLE QUANTILES
                                                                                                              AMS 67 1323
         AN INEQUALITY FOR EXPECTED VALUES OF SAMPLE QUANTILES
                                                                                                               AMS 67 1817
   THE EMPIRICAL BAYES APPROACH ESTIMATING POSTERIOR QUANTILES
                                                                                                             BIOKA67
                                                                                                                      672
                   SOME ASPECTS OF THE ESTIMATION OF QUANTILES
                                                                                                              JRSSB66
                                                                                                                      497
     A NOTE ON THE ASYMPTOTIC DISTRIBUTION OF SAMPLE QUANTILES
                                                                                                              JRSSB68 570
              INFERENCE CONCERNINC PROBABILITIES AND QUANTILES
                                                                                                              JRSSB69 NO.2
  THE PARAMETERS OF THE GAMMA DISTRIBUTION BY SAMPLE QUANTILES
                                                                                               ESTIMATION OF TECH 64 405
   PARAMETERS OF THE LOGISTIC DISTRIBUTION BY SAMPLE QUANTILES
                                                                                           ESTIMATION OF THE BIOKA69 NO.3
   STANDARD DEVIATION OF A NORMAL DISTRIBUTION USING QUANTILES
                                                                                        TESTING THE MEAN AND TECH 68 7B1
                                                      QUANTILES AND MEDIANS
                                                                                                              AMS 65
                                                                                                                      921
 PROPERTIES OF THE ASYMPTOTIC VARIANCE OF THE SAMPLE QUANTILES AND MID-RANGES
                                                                                                     ON SOME JRSSB61 453
                      ASYMPTOTIC NORMALITY OF SAMPLE QUANTILES FOR M-DEPENDENT PROCESSES
                                                                                                              AMS 68 1724
```

TITLE WORD INDEX QUA - QUE

NECATIVE EXPONENTIAL DISTRIBU/ ASYMPTOTIC OPTIMUM	QUANTILES FOR THE ESTIMATION OF THE PARAMETERS OF THE	AMS 66	143
ANALYSIS OF EXTREME-VALUE DATA BY SAMPLE	QUANTILES FOR THE ESTIMATION OF THE FARAMETERS OF THE QUANTILES FOR VERY LARCE SAMPLES QUANTILES IN DESTRUCTIVE TESTING QUANTILES IN LARCE SAMPLES QUANTILES OF CIRCULAR ERROR QUANTILES OF MORTALITY DISTRIBUTIONS QUANTILES OF SMALL SAMPLES	JASA 6B	B77
ESTIMATION FROM	QUANTILES IN DESTRUCTIVE TESTING	JRSSB61	434
A NOTE ON	QUANTILES IN LARCE SAMPLES	AMS 66	577
ASYMPTOTIC PROPERTIES OF SOME ESTIMATORS OF	QUANTILES OF CIRCULAR ERROR	JASA 66	61B 176
TUR DISTRIBUTION OF	OUTWILL DO UE CHAIL CAMPIES	BIOCSOS	207
SSIBILITY OF THE REST INVARIATE ESTIMATOR OF EXTREME	QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQUARED ER	AMS 69	1801
	QUANTITATIFS ET RECHERCHE DE 'CENES MAJEURS' /, INT		277
	QUANTITATIVE ANALYSIS. CENERAL THEORY AND THE CASE OF		
AN ESTIMATION PROBLEM IN		BIOKA54	33B
NC AS A DEFENCE ACAINST BLADDER INFECTION A	QUANTITATIVE DISCUSSION OF THE EFFECTIVENESS OF VOIDI	BIOCS66	53
	QUANTITATIVE LINCUISTICS /HE OCCURRENCE DISTRIBUTIO	BIOKA58	222
ON THE ANALYSIS OF CONTINCENCY TABLES WITH A		BIOCS6B	329
A SICNIFICANCE TEST FOR SIMULTANEOUS QUANTAL AND		TECH 64	
AND TRADING FOLKLORE SOME	QUANTITATIVE TESTS FOR STOCK PRICE CENERATING MODELS	JASA 67	321 455
SOME NEW THREE LEVEL DESIGNS FOR THE STUDY OF	QUANTITATIVE VARIABLES QUANTITATIVE VARIABLES' ERRATA.	TECH 61	576
	QUANTITIES FOR WISHART'S AND RELATED DISTRIBUTIONS,		79
	QUANTITY IN HICHER EDUCATION	JASA 65	1
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		BIOKA55	45
EXAMINATION OF A	QUANTUM HYPOTHESIS BASED ON A SINCLE SET OF DATA	BIOKA56	32
		JASA 61	379
RIGHT HAAR MEASURE FOR CONVERGENCE IN PROBABILITY TO		AMS 65	
	QUASI PRIOR DISTRIBUTIONS	BIOKA65	623
	QUASI-F TEST FOR AN UNNESTED FIXED FACTOR IN AN UNBAL QUASI-INDEPENDENCE, AND INTERACTIONS IN CONTINCENCY T		937
	QUASI-INDEPENDENCE, AND INTERACTIONS IN CONTINCENCY T QUASI-LINEAR RESIDUALS A NOTE ON THE ESTIMATION		397
DOLLARITON OF		AMS 66	
ON MEDIANS AND	QUASI-MEDIANS	JASA 67	926
A	QUASI-MULTINOMIAL TYPE OF CONTINGENCY TABLE QUASI-RANGES FROM NORMAL POPULATIONS	SASJ 67	59
	Contract the contract to the c	1111110	633
RANDOM WALK	QUASI-RANGES IN SETTING CONFIDENCE INTERVALS FOR THE QUASI-STATIONARY BEHAVIOUR OF A LEFT-CONTINUOUS	AMS 69	260 53
GENETICS (WITH DISCUSSION)	QUASI-STATIONARY DISTRIBUTIONS AND TIME-REVERSION IN		253
	QUENOUILLE'S COMMENTS ABOUT MY PAPER ON MIXTURES	JRSSB61	171
	QUENOUILLE'S EDGEWORTH TYPE A TRANSFORMATION	BIOKA59	203
	QUENOUILLE'S METHOD OF BIAS REDUCTION TO THE ESTIMATI		477
A NOTE ON ESTIMATION OF RATIOS BY		BIOKA65	647
	QUENOUILLE'S TEST FOR THE COMPATIBILITY OF CORRELATIO QUERY +(ON FORMULA FOR DETERMINING THE INCIDENCE OF	BIOCS65	180 750
MUTANT GENES) CONFOUNDED 2-CUBE) CONFOUNDED 2-CUBE) SOIL CONTENT) THE RANGE DISTRIBUTION SAMPLING MEDIAN FROM A SINGLE OBSERVATION	QUERY, ANALYSIS OF FACTORIAL EXPERIMENT (PARTIALLY	TECH 67	170
CONFOUNDED 2-CUBE)	QUERY, ANALYSIS OF FACTORIAL EXPERIMENT (PARTIALLY	TECH 67	490
SOIL CONTENT)	QUERY, BAULE'S EQUATION + (LEAST SQUARES ESTIMATE OF	BIOCS69	159
	QUERY, BIVARIATE SAMPLES WITH MISSINC VALUES	TECH 67	679
TUD DAVOD		TECH 6B	B67
THE RANGE DISTRIBUTION		TECH 65 TECH 65	73 449
DISTRIBUTION		TECH 66	709
SAMPLING	QUERY, COMPARISON OF SAMPLE SIZES IN INVERSE BINOMIAL		337
MEDIAN		TECH 67	682
FROM A SINGLE OBSERVATION		TECH 66	367
		TECH 65	
	QUERY, DEGREES OF FREEDOM OF CHI-SQUARE	TECH 67	489
	QUERY, DISTRIBUTION OF A RANKED OBSERVATION QUERY, ERROR RATE BASES	TECH 64 TECH 65	329 260
	QUERY, INADMISSIBLE RANDOM ASSIGNMENTS	TECH 64	103
OBSERVATIONS	QUERY, INADMISSIBLE RANDOM ASSIGNMENTS QUERY, JOINT CONFIDENCE LIMITS FOR RANKED QUERY, LIFE TESTING AND EARLY FAILURE	TECH 65 TECH 64 TECH 66 TECH 66	368
	QUERY, LIFE TESTING AND EARLY FAILURE	TECH 66	539
CORRELATION MODEL		TECH 69	
	QUERY, MISSING VALUES IN FACTORIAL EXPERIMENTS	TECH 65 TECH 65	649 75
	QUERY, NEGATIVE VARIANCE ESTIMATES QUERY, PREFERENCE SCORES (REVISITED)	TECH 65	
	QUERY, PSEUDO RANDOM NORMAL NUMBERS	TECH 6B	401
	QUERY, RECRESSION ANALYSIS OF CUMULATIVE DATA	TECH 64	225
	QUERY, REJECTION OF OUTLYING VALUES	TECH 64	22B
SCALE PARAMETERS	QUERY, RESIDUAL ANALYSIS	TECH 67	339
SCALE PARAMETERS	QUERY, SAVINGS IN TEST TIME WHEN COMPARING WEIBULL QUERY, SMALL TRIMMED SAMPLES	TECH 64 TECH 66	471 193
	QUERY, TESTING TWO CORRELATED VARIANCES	TECH 65	447
	QUERY, THE COMBINATION OF PROBABILITIES	BIOCS67	B40
	QUERY, THE MEAN OF THE TAIL OF A DISTRIBUTION	TECH 64	331
D NORMAL DISTRIBUTION (CONTD)	QUERY, THE SUM OF VALUES FROM A NORMAL AND A TRUNCATE		469
D NORMAL DISTRIBUTION	QUERY, THE SUM OF VALUES FROM A NORMAL AND A TRUNCATE QUERY, TOLERANCE INTERVAL IN REGRESSION		104
	QUERY, TOLERANCE INTERVAL IN REGRESSION QUERY, TOLERANCE LIMITS FOR A BINOMIAL DISTRIBUTION	TECH 68	207 201
ON THE	QUESTION OF WHETHER A DISEASE IS FAMILIAL	JASA 67	409
	QUESTION RANDOMIZED RESPONSE MODEL, THEORETICAL	JASA 69	520
A SAMPLING PROCEDURE FOR MAILED	QUESTIONNAIRES	JASA 56	209
THE SCORING OF MULTIPLE CHOICE		AMS 62	
	QUESTIONS OF DISTRIBUTION IN THE THEORY OF RANK	BIOKA51	131
DISCONTINUOUS DISTRIBUTIONS.' CORRIGENDA, 'ON ON THE TRAFFIC LIGHT	QUESTIONS RAISED BY THE COMBINATION OF TESTS BASED ON OUTLIE	BIOKA51 AMS 64	265 380
ON THE TRANSIENT BEHAVIOUR OF A SIMPLE		JRSSB60	277
DIFFERENCE EQUATION TECHNIQUE APPLIED TO THE SIMPLE		JRSSB5B	
	·		

```
TITLE WORD INDEX
  EFFECT OF THE SIZE OF THE WAITING ROOM ON A SIMPLE QUEUE
                                                                                                        THE JRSSB5B 1B2
   RESULTS IN THE NON-EQUILIBRIUM THEORY OF A SIMPLE QUEUE
                                                                                               SOME FURTHER JRSSB57 326
         SOLUTION OF THE 'HEAD-OF-THE-LINE' PRIORITY QUEUE
                                                                                             TIME-DEPENDENT JRSSB62
                                                                                                                      91
   WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE QUEUE
                                                                             A NOTE ON EQUALISING THE MEAN JRSSB55
                                                                                                                     262
                                    THE CENERAL BULK QUEUE AS A HILBERT PROBLEM (CORR. 64 4B7)
                                                                                                             JRSSB62
                                                                                                                      344
     SOME NUMERICAL RESULTS FOR WAITING TIMES IN THE QUEUE E-SUB-K-M-1
                                                                                                            BTOKA60
                                                                                                                     202
    'SOME NUMERICAL RESULTS FOR WAITING TIMES IN THE QUEUE E-SUB-K-M-1.'
                                                                                                CORRICENDA, BIOKA60
                                                                                                                     484
                          SOME INEQUALITIES FOR THE QUEUE GI/G1
                                                                                                            BIOKA62 3155
FINITE CAPACITY

THE ERCODIC QUEUE LENGTH DISTRIBUTION FOR QUEUEINC SYSTEMS WITH
A CONTINUOUS TIME TREATMENT OF A SIMPLE QUEUE
USING GENERATING FUNCTIONS

TIME SOLUTION OF THE EQUATIONS OF THE SINGLE CHANNEL QUEUE WITH A CENERAL CLASS OF SERVICE-TIME DISTRIBUTI JRSSB58
                                                                                                             JRSSB66 190
                                                                                                                      288
                                                                                                                      176
                      ON THE CENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER
                                                                                                             AMS 62
                                                                                                                      767
DIFFERENCE EQUATION TECHNIQUE APPLIED TO THE SIMPLE QUEUE WITH ARBITRARY ARRIVAL INTERVAL DISTRIBUTION
                                                                                                             JRSSB58
                                                                                                                      168
                         A CENERALIZED SINCLE-SERVER QUEUE WITH ERLANC INPUT
                                                                                                             BIOKA62
                                                                                                                      242
                           A TRANSIENT DISCRETE TIME QUEUE WITH FINITE STORACE
                                                                                                             AMS 62
ORRELATION STRUCTURE OF THE DEPARTURE PROCESS OF THE QUEUE WITH ONE SERVER, WHILE THE INTERARRIVAL AND SER JRSSB66
                                                                                                                      336
                                SOME RESULTS FOR THE QUEUE WITH POISSON ARRIVALS
             THE TIME DEPENDENCE OF A SINCLE-SERVER QUEUE WITH POISSON INPUT AND CENERAL SERVICE TIMES
                                                   A QUEUE WITH RANDOM ARRIVALS AND SCHEDULED BULK
                                 PREEMPTIVE PRIORITY QUEUEINC
                                                                                                             BIOKA61
                                                                                                                       57
PROCESSES
                                    THE SOLUTION OF QUEUEING AND INVENTORY MODELS BY SEMI-MARKOV
                                                                                                            JRSSB61
                                                                                                                     113
                   A CORRECTION TO 'THE SOLUTION OF QUEUEINC AND INVENTORY MODELS BY SEMI-MARKOV PROCESSE JRSSB63
                                                                                                                      455
                                                      QUEUEINC AT A SINGLE SERVINC POINT WITH GROUP ARRIVAL JRSSB60
                                                     QUEUEINC FOR CAPS IN TRAFFIC.
                                                                                                            BIOKA65
                                                                                                                       79
                                                   A QUEUEINC MODEL FOR ROAD TRAFFIC FLOW (WITH
DISCUSSIONA
                                                                                                             JRSSB61
                                                                                                                       64
CUSTOMERS ARE SCHEDULED
                                                    A QUEUEING PROBLEM IN WHICH THE ARRIVAL TIMES OF THE
                                                                                                             JRSSB60
                                                                                                                     108
           AN ELEMENTARY METHOD OF SOLUTION OF THE QUEUEINC PROBLEM WITH A SINGLE SERVER AND CONSTANT PA JRSSB56
RAMETERS
                                                                                                                      125
                                     A BULK-SERVIGE QUEUEING PROBLEM WITH VARIABLE CAPACITY
                                                                                                             JRSSB61
                                                                                                                      143
                    SOME EQUILIBRIUM RESULTS FOR THE QUEUEING PROCESS E-SUB-K-M-1
                                                                                                             JRSSR56
                                                                                                                      275
                  THE BUSY PERIOD IN RELATION TO THE QUEUEING PROCESS GI-M-1
                                                                                                            BIOKA59
                                                                                                                      246
                                        ON THE QUEUEING PROCESS, MARKOV OR POISSON INPUT, GENERAL
SERVICE TIME DISTRIBUTION. ONE SERVER
                                                                                                             AMS 61
                                                                                                                      770
                                                  ON QUEUEING PROCESSES WITH BULK SERVICE
                                                                                                             JRSSB54
                                                                                                                      80
                                              RANDOM QUEUEING PROCESSES WITH PHASE-TYPE SERVICE
                                                                                                            JRSSB56
                                                                                                                      129
            THE OUTPUT PROCESS OF A STATIONARY M/M/S QUEUEING SYSTEM
                                                                                                             AMS 6B 1144
            DETERMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEINC SYSTEM GI-M-1
                                                                                                             BIOKA60
                                                                                                                      45
            DETERMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-1, A CORRECTION
                                                                                                             BIOKA61
                                       A NOTE ON THE QUEUEING SYSTEM M-M-1 WITH BALKING.
                                                                                                             BIOKA65
                     ON THE TRANSIENT BEHAVIOR OF A QUEUEINC SYSTEM WITH BULK SERVICE AND FINITE CAPACITY AMS 62
                                                                                                                      973
   THE BUSY PERIOD IN RELATION TO THE SINGLE-SERVER QUEUEING SYSTEM WITH GENERAL INDEPENDENT ARRIVALS AND JRSSB60
L AND SERVINC DISTRIBUT/ THE OUTPUT PROCESS OF THE QUEUEING SYSTEM WITH ONE SERVER AND WHICH INTERARRIVA JRSSB59
AL AND SERVING DIS/ SOME NUMERICAL RESULTS FOR THE QUEUEING SYSTEM WITH ONE SERVER, WHILE THE INTERARRIV JRSSB63
                                   ON A GENERALIZED QUEUEING SYSTEM WITH POISSON ARRIVALS
                                                                                                           JRSSB66
DISTRIBUTIONS
                                           A NOTE ON QUEUEINC SYSTEMS WITH ERLANCIAN SERVICE TIME
                                                                                                             AMS 65 1574
INTERFERENCE MODEL
                                              CLOSED QUEUEINC SYSTEMS, A CENERALIZATION OF THE MACHINE
                                                                                                             JRSSB61
                                                      QUEUEINC WITH BALKINC
                                                                                                             BIOKA57
                                                      QUEUEINC WITH BALKING. II.
DISCIPLINES
                                         COMPETITIVE QUEUEINC, IDLENESS PROBABILITIES UNDER PRIORITY
                                                                                                             JRSSB63
                     ON PRE-EMPTIVE RESUME PRIORITY QUEUES
                                                                                                             AMS 64 600
                  THE DEPENDENCE OF DELAYS IN TANDEM QUEUES
                                                                                                              AMS 64 874
               A PROBLEM OF INTERFERENCE BETWEEN TWO QUEUES
                                                                                                             BIOKA53
                                                                                                                     5B
                     A BIBLIOGRAPHY ON THE THEORY OF QUEUES
                                                                                                             BIOKA57
                                                                                                                      490
                       WAITING TIME IN BULK SERVICE QUEUES
                                                                                                             JRSSB55
                                                                                                                     256
  ON LIMITING DISTRIBUTIONS ARISING IN BULK SERVICE QUEUES
                                                                                                             JRSSB56
                                                                                                                      265
               A CONTRIBUTION TO THE THEORY OF BULK QUEUES
                                                                                                             JRSSR59
                                                                                                                     320
                                                                                                             JRSSB63 464
                      ON THE ASYMPTOTIC BEHAVIOUR OF QUEUES
                                                                                                 STATIONARY AMS 62 1323
        WAITING-TIME DISTRIBUTIONS FOR SINGLE-SERVER QUEUES
ONTINUOUS TIME) AND ITS APPLICATION TO THE THEORY OF QUEUES
                                                                                      THE RANDOM WALK (IN C BIOKA59
                                                                                                                     400
        OF FOUR MOMENT INEQUALITIES TO A PROBLEM IN QUEUES
                                                                                     NOTE ON AN APPLICATION TECH 65
                                                                                                                      435
 BALLOT PROBLEM AND ITS APPLICATION IN THE THEORY OF QUEUES
                                                                                    A GENERALIZATION OF THE JASA 62 327
            GEOMETRIC DISTRIBUTIONS IN THE THEORY OF QUEUES (WITH DISCUSSION)
                                                                                                             JRSSB59
 ON A PROPERTY OF THE RANDOM WALKS DESCRIBING SIMPLE QUEUES AND DAMS
                                                                                                             JRSSB65
                                                                                                                     125
   TREATMENT OF THE NON-EQUILIBRIUM THEORY OF SIMPLE QUEUES BY MEANS OF CUMULATIVE PROBABILITIES
                                                                                                             JRSSB63
                                                                                                                     457
                                                  ON QUEUES IN HEAVY TRAFFIC
                                                                                                             JRSSB62 3B3
                                         TWO SIMILAR QUEUES IN PARALLEL
                                                                                                             AMS 61 1314
                                                 TWO QUEUES IN PARALLEL
                                                                                                             BIOKA5B 401
                                               ON TWO QUEUES IN PARALLEL
                                                                                                             BIOKA60
                                                                                                                     198
                                                      QUEUES IN SERIES
                                                                                                             JRSSB62 359
                ON THE WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES
                                                                                                             JRSSB65 491
                                                  ON QUEUES IN TANDEM
                                                                                                              AMS 63 300
                                             NOTES ON QUEUES IN TANDEM
                                                                                                              AMS 63
                                                                                                                     338
                                EXPECTED UTILITY FOR QUEUES SERVICING MESSACES WITH EXPONENTIALLY DECAYING
 UTILITY
                                                                                                             AMS 61 5B7
                                                      QUEUES SUBJECT TO SERVICE INTERRUPTION
                                                                                                              AMS 62 1314
                                                      QUEUES WITH BATCH DEPARTURES I
                                                                                                             AMS 61 1324
                                                      QUEUES WITH BATCH DEPARTURES II
                                                                                                              AMS 64 1147
                                              CYCLIC QUEUES WITH FEEDBACK
                                                                                                             JRSSB59 153
                                                                                                             AMS 65 1664
                         THE ERGODICITY OF SERIES OF QUEUES WITH GENERAL PRIORITIES
                             A GENERAL CLASS OF BULK QUEUES WITH POISSON INPUT
                                                                                                              AMS 67 759
                                  LIMIT THEOREMS FOR QUEUES WITH TRAFFIC INTENSITY ONE
                                                                                                             AMS 65 1437
          THE TRANSIENT BEHAVIOR OF A SINGLE SERVER QUEUING PROCESS WITH RECURRENT INPUT AND GAMMA SERVIC
                                                                                                             AMS 61 1286
                                                      QUICK ANALYSIS METHODS FOR RANDOM BALANCE SCREENING
EXPERIMENTS
                                                                                                            TECH 59 195
                                                    A QUICK COMPACT TWO SAMPLE TEST TO DUCKWORTH'S
SPECIFICATIONS
                                                                                                             TECH 59
                                                                                                                     31
                                                    A QUICK ESTIMATE OF THE REGRESSION GOEFFICIENT
                                                                                                             BIOKA58 431
                                                    A QUICK METHOD FOR CHOOSING A TRANSFORMATION
                                                                                                            TECH 63 317
                                                    A QUICK METHOD OF ESTIMATING THE STANDARD DEVIATION
                                                                                                            BIOKA66 559
                                                      QUICK POWERFUL TESTS WITH CROUPED DATA
                                                                                                            BIOKA6B
                                                                                                                     264
```

SOME QUICK SICN TESTS FOR TREND IN LOCATION AND DISPERSION BIOKA55

```
A QUICK TEST FOR SERIAL CORRELATION SUITABLE FOR USE
WITH NONSTATIONARY TIME SERIES
                                                                                                                JASA 63
                                                                                                                          72B
                             A DEVELOPMENT OF TUKEY'S QUICK TEST OF LOCATION
                                                                                                                JASA 66 949
                              A NOTE ON THE THEORY OF QUICK TESTS
                                                                                                                BIOKA56
                                                                                                                          478
                                                 ON A QUICKEST DETECTION PROBLEM
                                                                                                                 AMS 67
                                                                                                                          711
                   WEAK CONVERCENCE OF A SEQUENCE OF QUICKEST DETECTION PROBLEMS
                                                                                                                 AMS 6B 2149
ETRIC PROBABILITIES, DIRECT AND INVERSE A QUICKLY CONVERCENT EXPANSION FOR CUMULATIVE HYPERCEOM BIOKA54 317
ETRIC PROBABILITIES, DIRECT AND IN/ CORRICENDA, 'A QUICKLY CONVERCENT EXPANSION FOR CUMULATIVE HYPERGEOM BIOKA55 277
                                 OPTIMAL SAMPLING FOR QUOTA FULFILMENT
                                                                                                                BIOKA57
                                                                                                                          518
                                                       QUOTA FULFILMENT USINC UNRESTRICTED RANDOM SAMPLINC
                                                                                                                BIOKA61
                                                                                                                          333
                            PROBABILITY SAMPLINC WITH QUOTAS
                                                                                                                JASA 66
                                                                                                                          749
                 PROBABILITY TABLES FOR THE EXTREMAL QUOTIENT
                                                                                                                 AMS 67 1541
                                                   THE QUOTIENT OF A RECTANCULAR OR TRIANCULAR AND A CENERAL BIOKA54
                                                                                                                          330
                   DISTRIBUTION OF PRODUCT AND OF QUOTIENT OF MAXIMUM VALUES IN SAMPLES FROM A POWER-FU JASA 64
NCTION POPULATION
                                                                                                                          B77
             ON BIVARIATE RANDOM VARIABLES WHERE THE QUOTIENT OF THEIR COORDINATES FOLLOWS SOME KNOWN DIST
                                                                                                                 AMS 64 1673
                              CONCENTRATION OF RANDOM QUOTIENTS
                                                                                                                  AMS 6B 466
             LOCNORMAL APPROXIMATION TO PRODUCTS AND QUOTIENTS
                                                                                                                BIOKA56
                                                                                                                          404
                                    THE CEOMETRY OF A R-BY-C CONTINCENCY TABLE
                                                                                                                 AMS 68 11B6
             SYMMETRY AND MARCINAL HOMOCENEITY OF AN R-BY-R CONTINCENCY TABLE
                                                                                                                 JASA 69 NO.4
                               ON RANDOM ROTATIONS IN R-CUBE.
                                                                                                                 BIOKA65
                 SEQUENTIAL HYPOTHESIS TESTS FOR THE R-DEPENDENT MARCINALLY STATIONARY PROCESSES
                                                                                                                  AMS 66
                                                                                                                           90
                                    ON CONVERCENCE IN R-MEAN OF NORMALIZED PARTIAL SUMS
            ADMISSIBLE BAYES CHARACTER OF T-SQUARED, R-SQUARED AND OTHER FULLY INVARIANT TESTS FOR CLASSIC
                                                                                                                 AMS 65
                                                                                                                          747
           ON THE COMPLEX ANALOCUES OF T-SQUARED AND R-SQUARED TESTS
                            MINIMAX CHARACTER OF THE R-SQUARED-TEST IN THE SIMPLEST CASE
                                                                                                                  AMS 64 1475
 ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION VARIANCES OF MOMENT BIOCS68
                                                                                                                          527
                                       MOMENTS OF THE RADIAL ERROR, CORR. 65 1251
                                                                                                                JASA 62
                                                                                                                          1B7
                                       ELLIPTICAL AND RADIAL TRUNCATION IN NORMAL POPULATIONS
                                                                                                                          940
                                      DISTRIBUTION OF RADICAL ERROR IN THE BIVARIATE ELLIPTICAL NORMAL
DISTRIBUTION
                                                                                                                TECH 62
                                                                                                                          138
VITY IN POTA/ NOTES. THE STATISTICAL ANALYSIS OF A RADIO-ACTIVE TRACER EXPERIMENT TO DETERMINE ROOT ACTI BIOCS6B
                                                                                                                          717
 RESIDUALS, A TEST FOR REGRESSION MODEL ADEQUACY IN RADIONUCLIDE ASSAY
                                                                                                  PATTERNS IN TECH 65
                                                                                                                          603
IVALENT CAUSSIAN MEASURES WITH A PARTICULARLY SIMPLE RADON-NIKODYM DERIVATIVE
                                                                                                           EQU AMS 67 1027
ION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 533)
                                                                                                       ASSOCIAT JRSSB65
                                                                                                                          100
RTHER RESULT ON THE RELEVANCE OF THE DISPERSION OF A RADON-NIKODYM DERIVATIVE TO THE PROBLEM OF MEASURING JRSSB65
                                                                                                                          108
                                                       RADON-NIKODYM DERIVATIVES OF GAUSSIAN MEASURES
                                                                                                                 AMS 66
                                                                                                                          321
                                                       RADON-NIKODYM DERIVATIVES OF STATIONARY GAUSSIAN
                                                                                                                  AMS 64
                                                                                                                          517
                                          A MODEL FOR RAINFALL OCCURRENCE
                                                                                                                JRSSB64
                                                                                                                          345
                                 A MODIFIED MODEL FOR RAINFALL OCCURRENCE
                                                                                                                JRSSB67
                                                                                                                          151
 DISTRIBUTION OF STATISTICS SUITABLE FOR EVALUATING RAINFALL STIMULATION EXPERIMENTS
                                                                                                        ON THE TECH 69
                                                                                                                          149
UOUS DISTRIBUTIONS.' CORRIGENDA, 'ON QUESTIONS RAISED BY THE COMBINATION OF TESTS BASED ON DISCONTIN BIOKA51
                                                                                                                          265
                              RENEWAL THEORY AND ITS RAMIFICATIONS (WITH DISCUSSION)

RENEWAL THEORY AND ITS RAMIFICATIONS (WITH DISCUSSION)
   OF BINOMIAL PROBABILITIES AND A GENERALIZATION OF RAMANUJAN'S EQUATION
PARAMETERS IN HUMAN GENETICS IF THE AGE OF ONSET IS RANDOM TESTING HYPOTHESES AND ESTIMATING SIMPLE RANDOM ALLOCATION RANDOM ALLOCATION TESTING HYPOTHESES AND ESTIMATING RANDOM ALLOCATION DESIGNS II, APPROXIMATE THEORY FOR
SIMPLE RANDOM ALLOCATION
                                                                                                                 AMS 61
                                                                                                                          3B7
                                           THE USE OF RANDOM ALLOCATION FOR THE CONTROL OF SELECTION BIAS
                                                                                                                BIOKA69 NO.3
               SEQUENTIAL ANALYSIS OF VARIANCE UNDER RANDOM AND MIXED MODELS
                                                                                                                JASA 67 1401
                               POISSON PROCESSES WITH RANDOM ARRIVAL RATE
A QUEUE WITH RANDOM ARRIVALS AND SCHEDULED BULK DEPARTURES
                                                                                                                 AMS 62
                                                                                                                          924
                                                                                                                 JRSSR6R
                                                                                                                          185
                                         EXTREMES IN A RANDOM ASSEMBLY
                                                                                                                BIOKA67
                                                                                                                          273
                                   QUERY, INADMISSIBLE RANDOM ASSIGNMENTS
                                                                                                                 TECH 64
                                                                                                                          103
                                   THE APPLICATION OF RANDOM BALANCE DESIGNS
                                                                                                                 TECH 59
                                                                                                                          139
                          ERRATA, 'THE APPLICATION OF RANDOM BALANCE DESIGNS'
                                                                                                                 TECH 59
                                                                                                                          419
                                                       RANDOM BALANCE EXPERIMENTATION
                                                                                                                 TECH 59
                                                                                                                          111
                           QUICK ANALYSIS METHODS FOR RANDOM BALANCE SCREENING EXPERIMENTS
                                                                                                                 TECH 59
                                                                                                                          195
   A NOTE ON MULTI-TYPE CALTON-WATSON PROCESSES WITH RANDOM BRANCHING PROBABILITIES
                                                                                                                 BTOKA6B
                                                                                                                          589
                                     INTERSECTIONS OF RANDOM CHORDS OF A CIRCLE
                                                                                                                 BTOKA64
                                                                                                                          373
                                                       RANDOM CIRCLES ON A SPHERE
                                                                                                                 BIOKA62
                                                                                                                          389
SERVATIONS ON THE EFFECTS FOR THE UNBALANCED ONE-WAY RANDOM CLASSIFICATION /FFECTS AND THE NUMBERS OF OB JASA 67 1375
UPPER AND LOWER PROBABILITIES CENERATED BY A RANDOM CLOSED INTERVAL
AMS 68 957
             SOME ESTIMATORS FOR A LINEAR MODEL WITH RANDOM COEFFICIENTS
                                                                                                                 JASA 6B
                                                                                                                          584
        BAYESIAN ANALYSIS OF LINEAR MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERENCE TO THE BALAN BICKAGB
CED I/
                                                                                                                          101
WEEN REGULAR EVENTS DISPLACED IN TIME BY INDEPENDENT RANDOM DEVIATIONS OF LARGE DISPERSION /NTERVALS BET JRSSB61
                                                                                                                          476
      SECOND PAPER ON STATISTICS ASSOCIATED WITH THE RANDOM DISOREINTATION OF CUBES
                                                                                                                 BIOKA5B
                                                                                                                          229
                 SOME STATISTICS ASSOCIATED WITH THE RANDOM DISORIENTATION OF CUBES
                                                                                                                 BIOKA57
                                                                                                                          205
                                                       RANDOM DISPERSAL IN THEORETICAL POPULATIONS
                                                                                                                 BIOKA51
                                                                                                                          196
                          DIMENSIONAL PROPERTIES OF A RANDOM DISTRIBUTION FUNCTION ON THE SQUARE
                                                                                                                  AMS 66
                                                                                                                          849
CORRECTION TO 'ON A CLASS OF PROBLEMS RELATED TO THE RANDOM DIVISION OF AN INTERVAL' 53 239
                                                                                                                  AMS 62
                                                                                                                          812
                 A LARGE-SAMPLE BIOASSAY DESIGN WITH RANDOM DOSES AND UNCERTAIN CONCENTRATION
                                                                                                                 BIOKA55
                                                                                                                          307
                BAYESIAN ESTIMATION OF MEANS FOR THE RANDOM EFFECT MODEL
                                                                                                                 JASA 68
                                                                                                                         174
 EFFECTS FOR THE U/ STATISTICAL DEPENDENCE BETWEEN RANDOM EFFECTS AND THE NUMBERS OF OBSERVATIONS ON THE JASA 67 1375
         NOTE ON TESTING HYPOTHESES IN AN UNBALANCED RANDOM EFFECTS MODEL
                                                                                                                 BIOKA67
      A PROCEDURE TO ESTIMATE THE POPULATION MEAN IN RANDOM EFFECTS MODELS
                                                                                                                 TECH 67
                                                                                                                          577
        QUADRATIC FORMS AND IDEMPOTENT MATRICES WITH RANDOM ELEMENTS
                                                                                                                 AMS 69 1430
FOR ALMOST SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVIRONMENT
                                                                                        NECESSARY CONDITIONS
                                                                                                                  AMS 68 2136
                            ON BRANCHING PROCESSES IN RANDOM ENVIRONMENTS
                                                                                                                  AMS 69 814
                                      REGRESSION ON A RANDOM FIELD
                                                                                                                 JASA 69 NO.4
           THE CENTRAL LIMIT THEOREM FOR GENERALIZED RANDOM FIELDS
                                                                                                                  AMS 69 203
                             HOMOGENEOUS GAUSS-MARKOV RANDOM FIELDS
                                                                                                                  AMS 69 1625
                         INTERPOLATION OF HOMOGENEOUS RANDOM FIELDS ON DISCRETE GROUPS
                                                                                                                  AMS 69
                                                                                                                         251
                               THE PROBABILITY THAT A RANDOM GAME IS UNFAIR
                                                                                                                  AMS 66 1796
               MAJORANTS OF THE CHROMATIC NUMBER OF A RANDOM GRAPH
                                                                                                                 JRSSB69 NO. 2
                                                       RANDOM HAZARD IN RELIABILITY PROBLEMS
                                                                                                                 TECH 63
                                                                                                                          211
VERY IRRECULAR
                         SAMPLE FUNCTIONS OF GAUSSIAN RANDOM HOMOGENEOUS FIELDS ARE EITHER CONTINUOUS OR
                                                                                                                  AMS 67 1579
(CORR. 69 NO.6)
                                SAMPLING ENTROPY FOR RANDOM HOMOGENEOUS SYSTEMS WITH COMPLETE CONNECTIONS
                                                                                                                  AMS 65 1433
                                                       RANDOM HYDRODYNAMIC FORCES ON OBJECTS
                                                                                                                  AMS 67
                                                                                                                          37
CENTRAL LIMIT THEOREM FOR THE NUMBER OF EDCES IN THE RANDOM INTERSECTION OF TWO GRAPHS (CORR. 69 1510)
                                                                                                                  AMS 69
                       ON THE NUMBER OF RENEWALS IN A RANDOM INTERVAL
                                                                                                                 BIOKA60
```

```
A RANDOM INTERVAL FILLING PROBLEM
                                                                                                                AMS 62 702
                                  A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A STOCHASTIC PROCESS
                                                                                                                 AMS 64
                                SOME NOTES ON ORDERED RANDOM INTERVALS
                                                                                                                JRSSB56
            A MULTIVARIATE CENTRAL LIMIT THEOREM FOR RANDOM LINEAR VECTOR FORMS
            SOME RESULTS ON THE DISTRIBUTION OF TWO RANDOM MATRICES USED IN CLASSIFICATION PROCEDURES, CO
                                                                                                                 AMS 63
                                                                                                                         181
 THE BIAS OF FUNCTIONS OF CHARACTERISTIC ROOTS OF A RANDOM MATRIX
                                                                                                            ON BIOKA65
                                                                                                                          87
THE DISTRIBUTION OF THE LATENT ROOTS OF A SYMMETRIC RANDOM MATRIX UNDER CENERAL CONDITIONS /ERISTICS OF AMS 61
HE HISTORY OF PROBABILITY AND STATISTICS XVI. RANDOM RANDOM MECHANISMS IN TALMUDIC LITERATURE /DIES IN T BIOKA67
A TEST FOR RANDOM MINGLING OF THE PHASES OF A MOSAIC BIOCS67
                                                                                                                         B64
                                                                                                                         316
                                                                                                                         657
                                                       RANDOM MINIMAL TREES
                                                                                                                BTOKA6B
                                                                                                                         255
                             CORRELATED ERRORS IN THE RANDOM MODEL
                                                                                                                JASA 67 13B7
           CONFIDENCE RECIONS FOR VARIANCE RATIOS OF RANDOM MODELS
                                                                                                                JASA 69 660
   OF VARIANCE POWER FUNCTION IN THE PARAMETRIC AND RANDOM MODELS
                                                                                       COMPARISON OF ANALYSIS BLOKASS
                                                                                                                         427
                            CORRIGENDA TO 'CORRELATED RANDOM NORMAL DEVIATES' PUBLISHED IN TRACTS FOR COMPU BIOKA56
TERS. NO. 26.
                                                                                                                         496
                                        QUERY, PSEUDO RANDOM NORMAL NUMBERS
                                                                                                                TECH 68
                                                                                                                         401
             ON LIMITING DISTRIBUTIONS FOR SUMS OF A RANDOM NUMBER OF INDEPENDENT RANDOM VECTORS
                                                                                                                 AMS 69
                                                                                                                         935
                      A STATISTICAL TEST INVOLVING A RANDOM NUMBER OF RANDOM VARIABLES
                                                                                                                 AMS 66 1305
                                       BIAS IN PSEUDO-RANDOM NUMBERS
                                                                                                                JASA 61
                                                                                                                         610
 INTERVALS BETWEEN SUCCESSIVE MAXIMA IN A SERIES OF RANDOM NUMBERS
                                                                                          THE DISTRIBUTION OF BIOKAS7
                             HOW MANY OF A CROUP OF RANDOM NUMBERS WILL BE USABLE IN SELECTING A PARTICUL JASA 59
AR SAMPLE
                                                                                                                         102
                                            TABLES OF RANDOM OBSERVATIONS FROM STANDARD DISTRIBUTIONS
                                                                                                               BIOKA59
                     CRADING WITH A GAUGE SUBJECT TO RANDOM OUTPUT FLUCTUATIONS
                                                                                                                JRSSB54
              DISTRIBUTIONS OF RANDOM VARIABLES WITH RANDOM PARAMETERS
                                                       RANDOM PERMUTATIONS
                                                                                                                JRSSB68
LATTICE.
                                  THE DISTANCE FROM A RANDOM POINT TO THE NEAREST POINT OF A CLOSELY PACKED
                                                                                                                BIOKA65
                                                                                                                         261
CHROMOSOME PATTERNS
                                                       RANDOM POINTS IN A CIRCLE AND THE ANALYSIS OF
                                                                                                                BIOKA63
                                                                                                                          2.3
                               THE DISTANCES BETWEEN RANDOM POINTS IN TWO CONCENTRIC CIRCLES
                                                                                                                BIOKA64
                                                                                                                         275
                                        CLUSTERING OF RANDOM POINTS IN TWO DIMENSIONS.
                                                                                                                BIOKA65
                                                                                                                         263
                          GEOMETRICAL PROBABILITY AND RANDOM POINTS ON A HYPERSPHERE
                                                                                                                AMS 67
                                                                                                                         213
                              MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN
                                                                                                                 AMS 6B
                                                                                                                         492
ALITIES WITH APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCESSES WITH MULTI-DIMENSIONAL TIME PARAMETE AMS 69
                                                                                                                         681
         A CONTINUOUS KIEFER-WOLFOWITZ PROCEDURE FOR RANDOM PROCESSES, CORR. 66 745
                                                                                                                 AMS 64
                                                                                                                         590
                                                      RANDOM QUEUEINC PROCESSES WITH PHASE-TYPE SERVICE
                                                                                                                JRSSB56
                                                                                                                         129
                                     CONCENTRATION OF RANDOM QUOTIENTS
                                                                                                                 AMS 6B
                                                                                                                         466
ES IN THE HISTORY OF PROBABILITY AND STATISTICS XVI. RANDOM RANDOM MECHANISMS IN TALMUDIC LITERATURE
                                                                                                           /DI BIOKA67
                                                                                                                         316
                                                    ON RANDOM ROTATIONS IN R-CUBE.
                                                                                                                BTOKA65
                                                                                                                         636
 WEAK CONVERCENCE AND A CHERNOFF-SAVAGE THEOREM FOR RANDOM SAMPLE SIZES
                                                                                                                AMS 6B 1675
                                           REDUCING A RANDOM SAMPLE TO A SMALLER SET, WITH APPLICATIONS
                                                                                                                         510
                                                                                                                JASA 67
                                        GENERATION OF RANDOM SAMPLES FROM THE BETA AND F DISTRIBUTIONS
                                                                                                                TECH 63
                                                                                                                         269
ION OF THE PRODUCT-MOMENT CORRELATION COEFFICIENT IN RANDOM SAMPLES OF ANY SIZE DRAWN FROM NON-NORMAL UNIV BIOKAS1
                                                                                                                 AMS 69
            DOMAINS OF OPTIMALITY OF TESTS IN SIMPLE RANDOM SAMPLING
                                                                                                                         30B
                 QUOTA FULFILMENT USING UNRESTRICTED RANDOM SAMPLING
                                                                                                                BIOKA61 333
                                                    ON RANDOM SAMPLING FROM A STOCHASTIC PROCESS
                                                                                                                 AMS 64 1713
                                  SOME ASPECTS OF THE RANDOM SEQUENCE
                                                                                                                 AMS 65 236
                             CONSTRUCTING AN UNBIASED RANDOM SEQUENCE
                                                                                                                JASA 6B 1526
TRIBUTION OF ASCENDINC PAIRS AND ASCENDING RUNS IN A RANDOM SEQUENCE
                                                                                                THE JOINT DIS BIOKA67 330
                                     THE CAP TEST FOR RANDOM SEQUENCES
                                                                                                                 AMS 61
                                   POISSON COUNTS FOR RANDOM SEQUENCES OF EVENTS
                                                                                                                 AMS 63 1217
                                 THE SUPERPOSITION OF RANDOM SEQUENCES OF EVENTS
                                                                                                                BIOKA66
                  SOME PROPERTIES OF RUNS IN SMOOTHED RANDOM SERIES
                                                                                                                BIOKA52
              STATIONARY AMPLITUDE FLUCTUATIONS IN A RANDOM SERIES
                                                                                                                JRSSB64
                                 THE CONVEX HULL OF A RANDOM SET OF POINTS
                                                                                                                         331
PROPERTY
                                                     A RANDOM SET PROCESS IN THE PLANE WITH A MARKOVIAN
                                                                                                                AMS 65 1B59
                                  PATHS AND CHAINS OF RANDOM STRAIGHT-LINE SECMENTS
                                                                                                                TECH 66 303
                                                       RANDOM SUBDIVISIONS OF SPACE INTO CRYSTALS
                                                                                                                 AMS 62
                                                                                                                         958
IGATING THE PROPERTIES OF A SAMPLE MEAN BY EMPLOYING RANDOM SUBSAMPLE MEANS
                                                                                                        INVEST JASA 56
                                                                                                                          54
                                                   ON RANDOM SUMS OF RANDOM VECTORS
                                                                                                                 AMS 65 1450
                                    LATENT VECTORS OF RANDOM SYMMETRIC MATRICES
                                                                                                                BIOKA61 133
       ON THE PROBABILITY DISTRIBUTION OF A FILTERED RANDOM TELEGRAPH SIGNAL
                                                                                                                AMS 6B
                                                                                                                         B90
PROCESSES
                                                    A RANDOM TIME CHANCE RELATING SEMI-MARKOV AND MARKOV
                                                                                                                AMS 68
                                                                                                                         358
           THE PROBABILITY THAT A RANDOM TRIANGLE IS OBTUSE
NUMERICAL OPTIMIZATION IN THE PRESENCE OF RANDOM VARIABILITY. THE SINCLE FACTOR CASE
                                                                                                                BIOKA69 NO.3
                                                                                                                        65
                                                                                                               BTOKA69
                                                                                            A NOTE ON THE REC AMS 65 1302
IPROCAL OF THE CONDITIONAL EXPECTATION OF A POSITIVE RANDOM VARIABLE OTHESIS TESTING WHEN THE SAMPLE SIZE IS TREATED AS A RANDOM VARIABLE (WITH DISCUSSION)
                                                                                                 HYP JRSSB67
                                                                                                                         5.3
    ON THE CENERALIZED MELLIN TRANSFORM OF A COMPLEX RANDOM VARIABLE AND ITS APPLICATIONS
                                                                                                                AMS 65 1459
                                        EXPRESSING A RANDOM VARIABLE IN TERMS OF UNIFORM RANDOM VARIABLES
                                                                                                                 AMS 61 B94
CESSARY AND SUFFICIENT CONDITION FOR THE SQUARE OF A RANDOM VARIABLE TO BE GAMMA
                                                                                                         A NE BIOKA66
                                                                                                                         275
                               GENERATING EXPONENTIAL RANDOM VARIABLES
                                                                                                                 AMS 61
                                                                                                                         899
                    A FLUCTUATION THEOREM FOR CYCLIC RANDOM VARIABLES
                                                                                                                 AMS 62 1450
 PROBABILITY INEQUALITIES FOR THE SUM OF INDEPENDENT RANDOM VARIABLES
                                                                                                                JASA 62
                                                                                                                         33
                    THE VARIANCE OF THE PRODUCT OF K RANDOM VARIABLES
                                                                                                                         54
                                                                                                                JASA 62
 CENTRAL LIMIT THEOREMS FOR FAMILIES OF SEQUENCES OF RANDOM VARIABLES
                                                                                                                 AMS 63
                                                                                                                         439
              CORRELATION AND COMPLETE DEPENDENCE OF RANDOM VARIABLES
                                                                                                                 AMS 63 1315
        PROBABILITY INEQUALITIES FOR SUMS OF BOUNDED RANDOM VARIABLES
                                                                                                                JASA 63
                                                                                                                         1.3
                 ASYMPTOTIC EXTREMES FOR M-DEPENDENT RANDOM VARIABLES
                                                                                                                AMS 64 1322
    SUFFICIENT STATISTICS IN THE CASE OF INDEPENDENT RANDOM VARIABLES
                                                                                                                 AMS 64 1456
           SOME CONVERGENCE THEOREMS FOR INDEPENDENT RANDOM VARIABLES
                                                                                                                 AMS 66 1482
       CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT RANDOM VARIABLES
                                                                                                                 AMS 66 567
             INFINITE DIVISIVILITY OF INTEGER-VALUED RANDOM VARIABLES
                                                                                                                AMS 67 1306
      THE DISTRIBUTION OF A QUADRATIC FORM OF NORMAL RANDOM VARIABLES
                                                                                                                 AMS 67 1700
           THE INVARIANCE PRINCIPLE FOR A LATTICE OF RANDOM VARIABLES
                                                                                                                AMS 68 382
                                                                                                                AMS 68 1080
                        AN INEQUALITY IN CONSTRAINED RANDOM VARIABLES
               DISTANCES OF PROBABILITY MEASURES AND RANDOM VARIABLES
                                                                                                                AMS 68 1563
                                                                                                                AMS 69 1506
                         BOUNDS ON MOMENTS OF SUMS OF RANDOM VARIABLES
       THE MARKOV INEQUALITY FOR SUMS OF INDEPENDENT RANDOM VARIABLES
                                                                                                                AMS 69 NO 6
              ON THE EXACT COVARIANCE OF PRODUCTS OF RANDOM VARIABLES
                                                                                                               JASA 69 NO.4
```

TITLE WORD INDEX RAN - RAN

```
THE Z-TEST AND SYMMETRICALLY DISTRIBUTED RANDOM VARIABLES
                                                                                                                                              BTOKA59
                                                                                                                                                          123
              GAMMA-DISTRIBUTED PRODUCTS OF INDEPENDENT RANDOM VARIABLES
                                                                                                                                              BIOKA62
                                                                                                                                                          564
     ON LINEAR FUNCTIONS OF ORDERED CORRELATED NORMAL RANDOM VARIABLES
                                                                                                                                              BIOKA65
                                                                                                                                                          367
                      ON BAYES SEQUENTIAL DESIGN WITH TWO RANDOM VARIABLES
                                                                                                                                              BIOKA66
                                                                                                                                                          469
        SOME KOLMOCOROFF-TYPE INEQUALITIES FOR BOUNDED RANDOM VARIABLES
                                                                                                                                              BIOKA67
                                                                                                                                                          641
                    ON THE RATIO OF TWO CORRELATED NORMAL RANDOM VARIABLES
                                                                                                                                              BIOKA69 NO.3
    ON AN IDENTITY FOR THE VARIANCE OF A RATIO OF TWO RANDOM VARIABLES
                                                                                                                                              JRSSB64
                                                                                                                                                         484
ASYMPTOTIC SEQUENTIAL DESIGN OF EXPERIMENTS WITH TWO RANDOM VARIABLES
                                                                                                                                               JRSSB66
                                                                                                                                                           73
                      ON THE DISTRIBUTION OF PRODUCTS OF RANDOM VARIABLES
                                                                                                                                              JRSSB67
 NOTE ON MAXIMUM-LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES
                                                                                                                                            A JRSSB61
                                                                                                                                                          444
 A CHEBYSHEV-TYPE INEQUALITY FOR SUMS OF INDEPENDENT RANDOM VARIABLES
                                                                                                                                          ON AMS 66
                                                                                                                                                          248
  SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT RANDOM VARIABLES
                                                                                                                                     ALMOST
                                                                                                                                               AMS 68 1502
    OF ROSEN'S THEOREM TO NON-IDENTICALLY DISTRIBUTED RANDOM VARIABLES
                                                                                                                             AN EXTENSION
                                                                                                                                               AMS 6B
                                                                                                                                                          897
UTIONS AND INDEPENDENT GAMMA-DISTRIBUTED PRODUCTS OF RANDOM VARIABLES
                                                                                                                         INVERSE DISTRIB BIOKA63
                                                                                                                                                          505
BUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES
                                                                                                                         LIMITING DISTRI AMS 62
                                                                                                                                                          894
                                                                                                                         ON INFINITELY D AMS 68
IVISIBLE LAWS AND A RENEWAL THEOREM FOR NON-NEGATIVE RANDOM VARIABLES
                                                                                                                                                          139
RITERION AND THE UNIFORM DISTRIBUTION OF INDEPENDENT RANDOM VARIABLES
                                                                                                                       NOTE ON WEYL'S C AMS 69
                                                                                                                                                         1124
OF MOMENTS ON THE ASYMPTOTIC DISTRIBUTION OF SUMS OF RANDOM VARIABLES
                                                                                                                      ON THE INFLUENCE
                                                                                                                                               AMS 63 1042
        INEQUALITY FOR THE SUM OF INDEPENDENT, BOUNDED RANDOM VARIABLES
                                                                                                              A ONE-SIDED PROBABILITY BIOKA68
                                                                                                                                                         565
  OF THE DISTRIBUTIONS OF TWO STOCHASTICALLY ORDERED RANDOM VARIABLES
                                                                                                     MAXIMUM LIKELIHOOD ESTIMATION JASA 66 1067
OF THE DISTRIBUTIONS OF TWO STOCHASTICABLE CAMBRIANT AND A VARIABLES ROM THE EXPECTATION FOR SUMS OF BOUNDED. INDEPENDENT RANDOM VARIABLES
                                                                                              /E CONVERGENCE RATE OF THE LAW OF AMS 65
                                                                                                                                                         559
ROM THE EXPECTATION FOR SUMS OF BOUNDED. INDEPENDENT RANDOM VARIABLES /PROBABILITY OF LARGE DEVIATIONS F BIOKA63
ONVERCENCE OF LINEAR COMBINATIONS OF INDEPENDENT AND RANDOM VARIABLES AND MARTINGALE DIFFERENCES /SURE C AMS 68
                                                                                                                                                          528
ONVERGENCE OF LIBERAR COMBINATIONS OF INDEFENDENT AND RANDOM VARIABLES AND THE DISPERSION OF A RADON-NIKODY JRSSB65

IFFERENCE BETWEEN CONSECUTIVE MEMBERS OF A SERIES OF RANDOM VARIABLES ARRANGED IN ORDER OF SIZE

THE D BIOKAST
                                                                                                                                                          211
                    A MOVING AVERACE REPRESENTATION FOR RANDOM VARIABLES COVARIANCE STATIONARY ON A FINITE TI BIOKA65
ME INTERVAL
                                                                                                                                                          295
                   A CONVEXITY PROPERTY IN THE THEORY OF RANDOM VARIABLES DEFINED ON A FINITE MARKOV CHAIN
                                                                                                                                               AMS 61 1260
 DISTINGUISHING A SEQUENCE OF RANDOM VARIABLES FROM A TRANSLATE ITSELF AMS 65
THE PROBABILITY OF LARGE DEVIATIONS OF THE MEAN FOR RANDOM VARIABLES IN AN INTERVAL OF LENGTH ONE ON AMS 65
                                                                                                                                               AMS 65 1107
                                                                                                                                                         280
TES FOLLOWS SOME KNOWN DISTRIBUTION ON BIVARIATE RANDOM VARIABLES WHERE THE QUOTIENT OF THEIR COORDINA AMS 64 1673

LY DISTRIBUTED A RENEWAL THEOREM FOR RANDOM VARIABLES WHICH ARE DEPENDENT OR NON-IDENTICAL AMS 63 390

L LAW ON LARGE DEVIATION PROBLEMS FOR SUMS OF RANDOM VARIABLES WHICH ARE NOT ATTRACTED TO THE NORMA AMS 67 1575
DISTRIBUTION. ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA BIOKA65
                                                                                                                                                         289
TOS OF LINEAR FUNCTIONS OF ORDERED CORRELATED NORMAL RANDOM VARIABLES WITH EMPHASIS ON RANGE /NS AND RAT BICKAGE 143
ROOF OF A KNOWN LIMIT THEOREM FOR SUM OF INDEPENDENT RANDOM VARIABLES WITH INFINITE EXPECTATIONS /HORT P AMS 69 1114
                              A NOTE ON SUMS OF INDEPENDENT RANDOM VARIABLES WITH INFINITE FIRST MOMENT
                                                                                                                                               AMS 67
                                                                                                                                                          751
                                            DISTRIBUTIONS OF RANDOM VARIABLES WITH RANDOM PARAMETERS
                                                                                                                                              SASJ 69
                                 CONDITIONAL EXPECTATIONS OF RANDOM VARIABLES WITHOUT EXPECTATIONS
                                                                                                                                               AMS 65 1556
AMS 65

ITY INEQUALITIES FOR THE SUM OF INDEPENDENT, BOUNDED RANDOM VARIABLES. /UNDS ON THE MOMENTS AND PROBABLE BIOKA65

PROBLEMS WITH LINEAR LOSSES FOR BINOMIAL AND NORMAL RANDOM VARIABLES. SEQUENTIAL SAMPLING, TWO DECISION BIOKA65

SUM OF INDEPENDENT IDENTICALLY DISTRIBUTED DISCRETE RANDOM VARIABLES, CORR. 66 1246 /ISTRIBUTION OF THE JASA 65
                                                                                                                                                          559
                                                                                                                                                          507
                                                                                                                                                          837
                                                     ASSOCIATION RANDOM VARIABLES, WITH APPLICATIONS
                                                                                                                                                AMS 67 1466
 INEQUALITIES OF THE RTH ABSOLUTE MOMENT OF A SUM OF RANDOM VARIABLES. 1 LESS THAN OR EQUAL TO R. R LESS T
                                                                                                                                               AMS 65
                                                                                                                                                         299
                                 ON THE GENERATION OF NORMAL RANDOM VECTORS
                                                                                                                                              TECH 62
                                                                                                                                                          278
RIBUTIONS FOR SUMS OF A RANDOM NUMBER OF INDEPENDENT RANDOM VECTORS
                                                                                                                        ON LIMITING DIST
                                                                                                                                               AMS 69
                                                                                                                                                          935
                                    THE GROWTH OF A RECURRENT RANDOM WALK
                                                                                                                                                AMS 66 1040
       QUASI-STATIONARY BEHAVIOUR OF A LEFT-CONTINUOUS RANDOM WALK
                                                                                                                                                AMS 69
                                                                                                                                                         532
                                                 THE GROWTH OF A RANDOM WALK
                                                                                                                                                AMS 69 NO 6
                                 THE CORRELATED UNRESTRICTED RANDOM WALK
                                                                                                                                               JRSSB63 394
TO THE THEORY OF QUEUES
                                                                THE RANDOM WALK (IN CONTINUOUS TIME) AND ITS APPLICATION BIOKA59
                                                                                                                                                         400
                                                             SIMPLE RANDOM WALK AND RANK ORDER STATISTICS
                                                                                                                                               AMS 67 1042
                              DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RECURRENT EVENTS (WITH DISCUSSION)
                                                                                                                                              JRSSB57
                                                                                                                                                          64
                                                                 THE RANDOM WALK BETWEEN A REFLECTING AND AN ABSORBING
BARRIER
                                                                                                                                               AMS 61
                                                                                                                                                          765
                                                                      RANDOM WALK DESIGN IN BIO-ASSAY
                                                                                                                                              JASA 67
                                                                                                                                                          B42
                                                                    A RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN TIME BIOKA59
                                                                                                                                                          30
                                                                      RANDOM WALK ON A CIRCLE
                                                                                                                                              BIOKA63
                                                                                                                                                          385
                                                 ONE DIMENSIONAL RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER
                                                                                                                                               AMS 63
                                                                                                                                                          405
                 A WIENER-HOPF TYPE METHOD FOR A CENERAL RANDOM WALK WITH A TWO-SIDED BOUNDARY
                                                                                                                                                AMS 63 1168
                     FIRST PASSAGE TIMES OF A CENERALIZED RANDOM WALK, CORR. AND ACKNOWLEDGEMENT OF PRIORITY 61 AMS 61
 1345
                                                                                                                                                         235
                                  ON A CLASS OF SIMPLE RANDOM WALKS
LIMIT THEOREMS FOR STOPPED RANDOM WALKS
                                                                                                                                                AMS 63
                                                                                                                                                         413
                                                                                                                                                AMS 64 1332
          A LOCAL LIMIT THEOREM FOR A CERTAIN CLASS OF RANDOM WALKS
                                                                                                                                                AMS 66
                                                                                                                                                          855
                                    THE ERGODIC BEHAVIOUR OF RANDOM WALKS
                                                                                                                                              BIOKA61
                                                                                                                                                          391
NERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS TO RANDOM WALKS
                                                                                                                                       A CE AMS 61
                                                                                                                                                          549
      CONDITIONS IN REGULAR MARKOV CHAINS AND CERTAIN RANDOM WALKS
                                                                                                                              SUFFICIENCY BIOKAS6
                                                                                                                                                          276
                           LIMITING DISTRIBUTIONS FOR SOME RANDOM WALKS ARISING IN LEARNING MODELS
                                                                                                                                               AMS 66
                                                                                                                                                          393
                                          ON A PROPERTY OF THE RANDOM WALKS DESCRIBING SIMPLE QUEUES AND DAMS
                                                                                                                                              JRSSB65
                                                                                                                                                          125
                                  A MIXTURE OF TWO RECURRENT RANDOM WALKS NEED NOT BE RECURRENT LIMIT THEOREMS FOR STOPPED RANDOM WALKS, II
                                                                                                                                               AMS 6B 1753
                                                                                                                                               AMS 66
                                                                                                                                                         B60
                                  LIMIT THEOREMS FOR STOPPED RANDOM WALKS, III
THE USE OF RANDOM WORK SAMPLING FOR COST ANALYSIS AND CONTROL,
                                                                                                                                               AMS 66 1510
                                                                                                                                                          3B2
CORR. 58 1031
                                                                                                                                              TASA 58
POSTERIOR DISTRIBUTION OF VA/
EFFECT OF AUTOCORRELATED ER/
BAYESIAN ANALYSIS OF RANDOM-EFFECT MODELS IN THE ANALYSIS OF VARIANCE. I.

BAYESIAN ANALYSIS OF RANDOM-EFFECT MODELS IN THE ANALYSIS OF VARIANCE. II.
                                                                                                                                              BTOKA65
                                                                                                                                                           37
                                                                                                                                              BTOKA66
                                                                                                                                                          477
THE INCLUSION OF VARIABLES IN LINEAR REGRESSION BY A RANDOMISATION TECHNIQUE (ERRATA, 69 627) /TINC FOR TECH 66
ENT COMPARISONS WHEN OBSERVATIONS ARE MISSING FROM A RANDOMISED BLOCK EXPERIMENT WITH ADDITIONAL REPLICATI BIOCS66
                                                                                                                                                          695
                                                                                                                                                          632
                                                 SOME ASPECTS OF RANDOMIZATION
                                                                                                                                              JRSSB66
                                                                                                                                                          543
         OF SOME SIGNIFICANCE TESTS UNDER EXPERIMENTAL RANDOMIZATION
                                                                                                                            THE BEHAVIOUR BIOKA69
                                                                                                                                                          231
BLOCK DESIGN
                                              THE RANDOMIZATION ANALYSIS OF A GENERALIZED RANDOMIZED CORRICENDA, 'THE RANDOMIZATION ANALYSIS OF A GENERALIZED RANDOMIZED
                                                                                                                                          BIOKA55
                                                                                                                                                           70
                                                                                                                                                          235
BLOCK DESTON
                                                                                                                                              BIOKA56
CORRIGENDA, 'THE RANDOMIZATION ANALYSIS OF A GENERALIZED RANDOMIZED BIOKAGE 235

RANDOMIZATION AND FACTORIZAL EXPERIMENTS AMS 61 270

N OF WEIGHTED MEANS THE RANDOMIZATION BASES OF THE PROBLEM OF THE AMALGAMATIO JRSSB61 423

RATIO TEST ON THE RANDOMIZATION DISTRIBUTION AND POWER OF THE VARIANCE JRSSB63 334

PLOT DESIGN, AN EMPIRICAL INVESTIGATION THE RANDOMIZATION DISTRIBUTION OF F-RATIOS FOR THE SPLIT-BIOKAGS 431

L CONSIDERATIONS REGARDING H. R. B. HACK'S SYSTEM OF RANDOMIZATION FOR CROSS-CLASSIFICATIONS THEORETICA BIOKAGS 265

OMPLETE BLOCK DESICN SOME CONSEQUENCES OF RANDOMIZATION IN A CENERALIZATION OF THE BALANCED INC AMS 63 1569

AND TWO BAYESIANS THE ROLE OF EXPERIMENTAL RANDOMIZATION IN BAYESIAN STATISTICS, FINITE SAMPLING BIOKAGE NO. 3
```

```
RAN - RAN
                                               USE OF RANDOMIZATION IN THE INVESTIGATION OF UNKNOWN
                                                                                                                JASA 58 176
FUNCTIONS
                                              A SIMPLE RANDOMIZATION PROCEDURE
                                                                                                                JRSSB62 472
                     FIRST AND SECOND MOMENTS OF THE RANDOMIZATION TEST IN TWO ASSOCIATE PBIB DESIGNS
                                                                                                                JASA 69 NO 4
                                                       RANDOMIZATION TESTS FOR A MULTIVARIATE TWO-SAMPLE
PROBLEM.
                                                                                                                JASA 58 729
ON THE NULL-DISTRIBUTION OF THE F-STATISTIC IN A RANDOMIZED BALANCED INCOMPLETE BLOCK DESIGN UNDER THE AMS 63 1558

NOTE ON THE MISSING PLOT PROCEDURE IN A RANDOMIZED BLOCK DESIGN

JASA 68 1258

RANDOMIZED BALANCED INCOMPLETE BLOCK DESIGN UNDER THE AMS 63 1558

NOTE ON THE MISSING PLOT PROCEDURE IN A RANDOMIZED BLOCK DESIGN

JASA 61 933
         THE RANDOMIZATION ANALYSIS OF A GENERALIZED RANDOMIZED BLOCK DESIGN
                                                                                                                BTOKA55
                                                                                                                          70
               HETEROGENEITY OF ERROR VARIANCES IN A RANDOMIZED BLOCK DESIGN
                                                                                                                BIOKA57
                                                                                                                         275
CTORS AFFECTING THE F-TEST UNDER PERMUTATION FOR THE RANDOMIZED BLOCK DESIGN
                                                                                   AN EMPIRICAL STUDY INTO FA JASA 68
                                                                                                                         902
 POWER OF THE F-TEST UNDER PERMUTATION IN THE SIMPLE RANDOMIZED BLOCK DESIGN
                                                                                  /MONTE CARLO RESULTS ON THE BIOKA66
                                                                                                                         199
IGENDA, 'THE RANDOMIZATION ANALYSIS OF A GENERALIZED RANDOMIZED BLOCK DESIGN'
                                                                                                          CORR BIOKASS
                                                                                                                         235
                            CENSORED OBSERVATIONS IN RANDOMIZED BLOCK EXPERIMENTS
                                                                                                                JRSSB59
                                                                                                                         214
 EFFICIENCY OF THE WILCOXON TWO-SAMPLE STATISTIC FOR RANDOMIZED BLOCKS
                                                                                                                JASA 63
                                                                                                                         894
ON CHERNOFF-SAVAGE TESTS FOR ORDERED ALTERNATIVES IN RANDOMIZED BLOCKS
                                                                                                                 AMS 68
                                                                                                                         967
                                       RANK TESTS FOR RANDOMIZED BLOCKS WHEN THE ALTERNATIVES HAVE AN 'A
PRIORT! ORDERING
                                                                                                                 AMS 67
                                                                                                                         867
 VARIANCE RATIOS UNDER PERMUTATION IN THE COMPLETELY RANDOMIZED DESIGN
                                                                                    SOME EMPIRICAL RESULTS ON JASA 66
                                                                                                                         813
  THE ADMISSIBILITY AT INFINITY, WITHIN THE CLASS OF RANDOMIZED DESIGNS, OF BALANCED DESIGNS
                                                                                                            ON AMS 68 1978
PTOTICALLY OPTIMAL TESTS OF COMPOSITE HYPOTHESES FOR RANDOMIZED EXPERIMENTS WITH NONCONTROLLED PREDICTOR V JASA 65
                                                                                                                         699
  A COMPLETE CLASS OF LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL EXPERIMENT
                                                                                                            ON AMS 63
                                                                                                                         769
                                TESTING HYPOTHESES IN RANDOMIZED FACTORIAL EXPERIMENTS
                                                                                                                 AMS 67
                                                                                                                        1494
T-SQUARES ESTIMATION OF A SUBVECTOR OF PARAMETERS IN RANDOMIZED FRACTIONAL FACTORIAL EXPERIMENTS /D LEAS
                                                                                                                AMS 69 1344
            GENERALIZED LEAST SQUARES ESTIMATORS FOR RANDOMIZED FRACTIONAL REPLICATION DESIGNS
                                                                                                                 AMS 64
                                                       RANDOMIZED FRACTIONAL WEIGHING DESIGNS
                                                                                                                 AMS 66 1382
                                                ON NON-RANDOMIZED FRACTIONAL WEIGHING DESIGNS
                                                                                                                 AMS 66 1836
L ANALYSIS OF 'SPLIT PLOT' EXPERIMENTS IN COMPLETELY RANDOMIZED LAYOUTS SOME ASPECTS OF THE STATISTICA JASA 69
ES BASED ON A MARKOV PROCESS
                                    DEVELOPMENT OF RANDOMIZED LOAD SEQUENCES WITH TRANSITION PROBABILITI TECH 66
                                                                                                                         107
                                                    ON RANDOMIZED RANK SCORE PROCEDURE OF BELL AND DOKSUM
                                                                                                                AMS 66 1697
                                  A MULTI-PROPORTIONS RANDOMIZED RESPONSE MODEL
                                                                                                                JASA 67
                                                                                                                         990
                               THE UNRELATED QUESTION RANDOMIZED RESPONSE MODEL, THEORETICAL FRAMEWORK
                                                                                                                JASA 69
                                                                                                                         520
                                                       RANDOMIZED RESPONSE, A SURVEY TECHNIQUE FOR ELIMINATI JASA 65
NG EVASIVE ANSWER BIAS
                                                                                                                          63
                                                       RANDOMIZED ROUNDED-OFF MULTIPLIERS IN SAMPLING THEORY JASA 61
                                                                                                                         328
                                                       RANDOMIZED RULES FOR THE TWO-ARMED BANDIT WITH FINITE
                                                                                                                 AMS 68 2103
 MEMORY
OISSON VARIAB/ ON A LOCALLY MOST POWERFUL BOUNDARY RANDOMIZED SIMILAR TEST FOR THE INDEPENDENCE OF TWO P
                                                                                                                 AMS 61
E WAY CLASSIFICATION ON THE ADMISSIBILITY OF A RANDOMIZED SYMMETRICAL DESIGN FOR THE PROBLEM OF A ON
                                                                                                                AMS 69
                                                                                                                         356
                              VARIANCE ESTIMATION IN RANDOMIZED SYSTEMATIC SAMPLING WITH PROBABILITY PROPO JASA 65
RTIONATE TO SIZE
                                                                                                                         278
XISTENCE AND UNIQUENESS OF A UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR THE BINOMIAL
                                                                                                              E BIOKA56
                                                                                                                         465
ABILITY OF OBTAINING A TREE FROM A GRAPH CONSTRUCTED RANDOMLY EXCEPT FOR 'EXOGAMOUS BIAST /FOR THE PROB AMS 67
                                                                                                                         226
              A RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN TIME
                                                                                                                BIOKA59
                                                                                                                          30
RATE OF OCCURRENCE IN TWO SERIES OF EVENTS OCCURRING RANDOMLY IN TIME
                                                                           /ENCE OF TWO TESTS OF EQUALITY OF
                                                                                                                BIOKA58
                                                                                                                         267
                               SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS, THE BINOMIAL CASE
                                                                                                                         971
                                                                                                                 AMS 65
 ESTIMATION OF AN UNKNOWN DISCRETE WAVEFORM WHICH IS RANDOMLY REPEATING IN GAUSSIAN NOISE
                                                                                                  LARGE SAMPLE
                                                                                                                AMS 65
                                                                                                                         489
                                   LIMIT THEOREMS FOR RANDOMLY SELECTED PARTIAL SUMS
                                                                                                                 AMS 62
                                                                                                                          85
                                           MOMENTS OF RANDOMLY STOPPED SUMS
                                                                                                                         789
                                                                                                                 AMS 65
                     THE TESTING OF UNIT VECTORS FOR RANDOMNESS

A SEQUENTIAL TEST FOR RANDOMNESS
                                                                                                                JASA 64
                                                                                                                         160
                                                                                                                BIOKA53
                                                                                                                         111
 NOTE ON THE USE OF SHERMAN'S STATISTIC AS A TEST OF RANDOMNESS
                                                                                                                BTOKA54
                                                                                                                         556
                         THE EFFICIENCIES OF TESTS OF RANDOMNESS AGAINST NORMAL REGRESSION
                                                                                                                JASA 56
                                                                                                                         285
                    POWER FUNCTIONS FOR COX'S TEST OF RANDOMNESS AGAINST TREND
                                                                                                                TECH 62
                                                                                                                         430
                      ON THE INDEPENDENCE OF TESTS OF RANDOMNESS AND OTHER HYPOTHESES
                                                                                                                JASA 57
                                                                                                                          53
                                              TESTS OF RANDOMNESS BASED ON DISTANCE METHODS.
                                                                                                                BIOKA65
                                                                                                                         345
                                  A SEQUENTIAL TEST OF RANDOMNESS FOR EVENTS OCCURRING IN TIME OR SPACE
                                                                                                                BIOKA56
                                                                                                                          64
                                            TESTS FOR RANDOMNESS IN A SERIES OF EVENTS WHEN THE ALTERNATIVE JRSSB56
                                                                                                                         234
 IS A TREND
                                         THE DEGREE OF RANDOMNESS IN A STATIONARY TIME SERIES
                                                                                                                 AMS 63 1253
                                        SOME TESTS FOR RANDOMNESS IN PLANT POPULATIONS
                                                                                                                BIOKA51
                                                                                                                         102
                                                                                                                BIOCS65
                                        THE CONCEPT OF RANDOMNESS IN THE PATTERNS OF MOS)ICS
                                                                                                                         908
ON, PERCENTAGE POINTS AND APPLICATION TO TESTING FOR RANDOMNESS OF DIRECTIONS /TH THE UNIFORM DISTRIBUTI BIOKAG6
                                                                                                                         235
ALTERNATIVES
                                             TESTS FOR RANDOMNESS OF DIRECTIONS AGAINST TWO CIRCULAR
                                                                                                                JASA 69
                                                                                                                         280
                                A SEQUENTIAL TEST FOR RANDOMNESS OF INTERVALS
                                                                                                                JRSSB56
                                                                                                                          95
                                             TESTS FOR RANDOMNESS OF POINTS ON A LINE
                                                                                                                BIOKA56
                                                                                                                         104
                              COMPARISON OF TESTS FOR RANDOMNESS OF POINTS ON A LINE
                                                                                                                BIOKA63
                                                                                                                         315
                 ON THE DISTRIBUTION OF THE BIVARIATE RANGE
                                                                                                                TECH 67
                                                                                                                          476
                 ON THE DISTRIBUTION OF 'STUDENTIZED' RANGE
                                                                                                                BIOKA52
                                                                                                                         194
            THE POWER FUNCTION OF SOME TESTS BASED ON RANGE
                                                                                                                BIOKA53
                                                                                                                         347
                A REJECTION CRITERION BASED UPON THE RANGE
                                                                                                                BIOKA56
                       THE TWO-SAMPLE T-TEST BASED ON RANGE
                                                                                                                BIOKA57
  ON SEQUENTIAL TESTS OF RATIO OF VARIANCES BASED ON RANGE
                                                                                                                BIOKA63
                           SOME SEQUENTIAL TEST USING RANGE
                                                                                                                JRSSB61
 A RAPID TEST FOR THE POISSON DISTRIBUTION USING THE RANGE
                                                                                                                BIOCS67
  A GENERAL SYSTEM OF DISTRIBUTIONS, III. THE SAMPLE RANGE
                                                                                                             ON JASA 68
                                                                                                                         636
ANALOGUE OF TCHEBYCHEFF'S INEQUALITY IN TERMS OF THE RANGE
                                                                                                            AN TECH 62
                                                                                                                         133
 OF THE UPPER 10 PERCENT POINTS OF THE 'STUDENTIZED' RANGE
                                                                                                          TABLE BIOKA59
                                                                                                                         461
     CALCULATION OF THE SAMPLING DISTRIBUTION OF THE RANGE
                                                                                                         QUERY, TECH 65
                                                                                                                          73
TABLES OF PERCENTAGE POINTS OF RANGE AND STUDENTIZED RANGE
                                                                                                       USE OF
                                                                                                               TECH 61
                                                                                                                         407
                                                                                                    A NOTE ON JASA 68 1028
CONFIDENCE BANDS FOR A REGRESSION LINE OVER A FINITE RANGE
  TO THE PROBABILITY INTEGRAL OF THE DISTRIBUTION OF RANGE
                                                                                                APPROXIMATIONS BIOKA52
                                                                                                                         417
            AND APPROXIMATIONS RELATED TO THE NORMAL RANGE
                                                                                                INTERPOLATIONS BIOKA55
                                                                                                                         480
 OF THE UPPER PERCENTAGE POINTS OF THE 'STUDENTIZED' RANGE FOR SMALL SAMPLE SIZES FOR CHI APPROXIMATION TO THE RANGE
                                                                                EXTENDED AND CORRECTED TABLES BIOKA52
                                                                                                                         192
                                                                         SCALE FACTORS AND DEGREES OF FREEDOM BIOKA53
                                                                                                                         449
                                                                /NS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED BIOKA64
 CORRELATED NORMAL RANDOM VARIABLES WITH EMPHASIS ON RANGE
                                                                                                                         143
                         ON THE DISTRIBUTIONS OF THE RANGE AND MEAN RANGE FOR SAMPLES FROM A NORMAL DISTRI BIOKAGE
                                                                                                                         245
BUTTON
                                ON THE MOMENTS OF THE RANGE AND PRODUCT MOMENTS OF EXTREME ORDER STATISTICS BIOKA56
                                                                                                                         458
 IN NORMAL SAMPLES
               USE OF TABLES OF PERCENTAGE POINTS OF RANGE AND STUDENTIZED RANGE
                                                                                                                TECH 61
                                                                                                                         407
              SMALL SAMPLE PROBABILITY LIMITS FOR THE RANGE CHART (CORR. 68 1549)
                                                                                                                JASA 67 1488
                          AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION PROBLEMS
                                                                                                                JASA 65
                                                                                                                        308
STRIBUTION ADMITTING A SUFFICIENT STATISTIC WHEN THE RANGE DEPENDS ON THE PARAMETER /E PARAMETER OF A DI JRSSB55
```

PERCENTAGE POINTS OF THE RANGE FROM A SYMMETRIC MULTINOMIAL DISTRIBUTION

86

377

BTOKA68

	RANCE FROM DISCRETE UNIFORM FINITE POPULATIONS AND A		
	RANCE FROM THE LOCISTIC DISTRIBUTION /ENTACE POINTS		
		BIOKA54 463	
MOMENT CONSTANTS FOR THE DISTRIBUTION OF		BIOKA55 277 BIOKA51 463	
		BIOKA57 257	
	RANCE IN NORMAL SAMPLES' 60 1113 /ONS UNDER SPHERIC		
	RANCE IN PLACE OF STANDARD DEVIATION IN THE T-TEST.'		
	RANCE IN PLACE OF THE STANDARD DEVIATION IN STEIN'S	AMS 63 346	
ON THE USE OF PATNAIK TYPE CHI APPROXIMATIONS TO THE		BIOKA66 248	
	RANCE IN SMALL SAMPLES FROM NON-NORMAL POPULATIONS	BIOKA54 469	
ORRICENDA, 'THE MEAN AND COEFFICIENT OF VARIATION OF		BIOKA55 277	
	RANCE IN SMALL SAMPLES FROM NORMAL POPULATIONS /ARI	BIOKA52 130	
USE OF	RANGE IN TESTING HETEROGENEITY OF VARIANCE	BIOKA66 221	
NT NORMAL VARIATES ON THE	RANGE OF PARTIAL SUMS OF A FINITE NUMBER OF INDEPENDE	BIOKA53 35	
ON THE EXTREME VALUES AND	RANCE OF SAMPLES FROM NON-NORMAL POPULATIONS	BIOKA67 541	
FOR ESTIMATING THE CORRELATION COEFFICIENT FROM THE	RANCE OF THE DEVIATIONS ABOUT THE REDUCED MAJOR AXIS	BIOKA53 21B	
	RANGE OF THE DIFFERENCE BETWEEN HYPOTHETICAL DISTRIBU		
ITS FOR A NORMAL POPULATION BASED ON SAMPLE MEAN AND	RANGE OR MEAN RANGE TABLES FOR TOLERANCE LIM RANCE TEST NOTES. APPROXIMATIONS	JASA 57 88	
TO THE CRITICAL VALUES FOR DUNCAN'S MULTIPLE	RANCE TEST NOTES. APPROXIMATIONS	BIOCS66 179	
	RANCE TEST FOR HOMOCENEITY /NC DISTRIBUTION OF THE		
SEQUENTIAL	RANCE TESTS FOR COMPONENTS OF VARIANCE, CORR. 65 1249		
BOUNDS FOR THE RATIO OF	RANGE TO STANDARD DEVIATION RANCE TO STANDARD DEVIATION THE DIST	BIOKA55 268	
	RANCE TO STANDARD DEVIATION IN THE SAME NORMAL SAMPLE RANCE TO THE ANALYSIS OF VARIANCE	BIOKA64 4B4 BIOKA51 393	
'TABLES OF PERCENTAGE POINTS OF THE 'STUDENTIZED'			
CORRELATION BETWEEN SAMPLE MEANS AND SAMPLE		JASA 59 465	
A NOTE ON MOVING		BIOKA55 512	
PERCENTACE POINTS OF A SUBSTITUTE F-RATIO USING		BIOKASS 512 BIOKA61 195	
PERCENTACE POINTS OF THE RATIO OF TWO	RANCES AND POWER OF THE ASSOCIATED TEST	BIOKA63 1B7	
TION. 'CALCULATION OF EXACT SAMPLING DISTRIBUTION OF	RANGES FROM A DISCRETE POPULATION' CORREC		
TION, 'CALCULATION OF EXACT SAMPLING DISTRIBUTION OF ON MOMENTS OF ORDER STATISTICS AND QUASI- A NOTE ON THE CORRELATION OF	-RANCES FROM NORMAL POPULATIONS	AMS 63 633	
A NOTE ON THE CORRELATION OF	RANCES IN CORRELATED NORMAL SAMPLES	BIOKA6B 595	
	-RANGES IN SETTING CONFIDENCE INTERVALS FOR THE POPULA	JASA 61 260	
NDARD DEVIATION OF A RECTANCULA/ THE USE OF SAMPLE	RANCES IN SETTING EXACT CONFIDENCE BOUNDS FOR THE STA	JASA 61 601	
CORRELATION OF	RANGES OF CORRELATED DEVIATES	BIOKA66 191	
CORRFLATION OF THE	RANGES OF CORRELATED SAMPLES	BIOKA67 529	
NOTE ON EXCHANCEABLE PROCESSES WITH STATES OF FINITE		AMS 69 NO.6	
INVERSES IN THE LINEAR HYPOTHESIS NOT OF FULL			
ND REGRESSION, WITH APPLICATION TO MANIFOLD,/ THE	RANK ANALOGUE OF PRODUCT-MOMENT PARTIAL CORRELATION A	BIOKA59 241	
	RANK ANALYSIS OF COVARIANCE RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. I. THE RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. II. ADDITI	JASA 67 1187	
METHOD OF PAIRED COMPARISONS.	RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. I. THE	BIOKA52 324	
ONAL TABLES FOR THE METHOD OF PAIRED COMPARISONS	RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. II. ADDITI	BIOKA54 502	
	RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. II. ADDITI		
	RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. III. SOME	DIOWAET OF	
PARTIAL AND MULTIPLE SOME QUESTIONS OF DISTRIBUTION IN THE THEORY OF		BIOKA51 26 BIOKA51 131	
SINCLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION. II.	RANK CORRELATION CORRELATION IN A	BIOKA65 639	
	RANK CORRELATION COEFFICIENT	BIOKA5B 273	
DISTRIBUTIONS FOR SMALL N OF KENDALL'S PARTIAL	RANK CORRELATION COEFFICIENT SIMULATED	BIOKA63 520	
	RANK CORRELATION COEFFICIENT FOR TIES IN RANKINGS	JASA 64 B72	
	RANK CORRELATION COEFFICIENT TAU IN THE GENERAL CASE		
RIATE NORMAL DISTRIBUTION IV. EMPIRICAL VARIANCES OF			
TESTS FOR	RANK CORRELATION COEFFICIENTS. I	BIOKA57 470	
		BIOKA62 1B5	
TESTS FOR	RANK CORRELATION COEFFICIENTS.II	BIOKA61 29	
	RANK CORRELATION FOR TESTING THE HYPOTHESIS OF INDEPE		
	RANK CORRELATION METHODS AND TO THE DISTRIBUTION OF T		
BOUNDS FOR THE VARIANCE OF KENDALL'S	KANK CORRELATION STATISTIC	BIOKA56 474	
THE EFFECT OF TIES ON THE MOMENTS OF	DANK ORTHERTA	DIOMAER TOO	
		BIOKA57 526	
	RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMEN	AMS 62 4B2	
SIMPLE RANDOM WALK AND	RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMEN RANK ORDER STATISTICS	AMS 62 4B2 AMS 67 1042	
SIMPLE RANDOM WALK AND A CLASS OF ASYMPTOTICALLY MOST POWERFUL	RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMEN RANK ORDER STATISTICS RANK ORDER TESTS FOR A CENERAL LINEAR HYPOTHESIS RANK ORDER TESTS FOR GROUPED DATA	AMS 62 4B2 AMS 67 1042 AMS 69 1325 AMS 67 1229	
SIMPLE RANDOM WALK AND A CLASS OF ASYMPTOTICALLY MOST POWERFUL	RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMEN RANK ORDER STATISTICS RANK ORDER TESTS FOR A CENERAL LINEAR HYPOTHESIS RANK ORDER TESTS FOR GROUPED DATA	AMS 62 4B2 AMS 67 1042 AMS 69 1325 AMS 67 1229	
SIMPLE RANDOM WALK AND A CLASS OF ASYMPTOTICALLY MOST POWERFUL	RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMEN RANK ORDER STATISTICS RANK ORDER TESTS FOR A CENERAL LINEAR HYPOTHESIS	AMS 62 4B2 AMS 67 1042 AMS 69 1325 AMS 67 1229 AMS 67 1216	
SIMPLE RANDOM WALK AND A CLASS OF ASYMPTOTICALLY MOST POWERFUL SAMPLE PROBLEM ON THE THEORY OF REGRESSION LINES ON A CLASS OF	RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMEN RANK ORDER TESTS FOR A CENERAL LINEAR HYPOTHESIS RANK ORDER TESTS FOR GROUPED DATA RANK ORDER TESTS FOR LOCATION IN THE MULTIVARIATE ONE RANK ORDER TESTS FOR MULTIVARIATE PAIRED COMPARISONS RANK ORDER TESTS FOR THE PARALLELISM OF SEVERAL	AMS 62 4B2 AMS 67 1042 AMS 69 1325 AMS 67 1229 AMS 67 1216 AMS 69 NO.6	
SIMPLE RANDOM WALK AND A CLASS OF ALICNED SAMPLE PROBLEM REGRESSION LINES ON A CLASS OF ON A CLASS OF ALICNED	RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMEN RANK ORDER STATISTICS RANK ORDER TESTS FOR A CENERAL LINEAR HYPOTHESIS RANK ORDER TESTS FOR GROUPED DATA RANK ORDER TESTS FOR LOCATION IN THE MULTIVARIATE ONE RANK ORDER TESTS FOR MULTIVARIATE PAIRED COMPARISONS RANK ORDER TESTS FOR THE PARALLELISM OF SEVERAL RANK ORDER TESTS IN TWO-WAY LAYOUTS	AMS 62 4B2 AMS 67 1042 AMS 69 1325 AMS 67 1229 AMS 67 1016 AMS 69 NO.6 AMS 69 166B AMS 68 1115	
SIMPLE RANDOM WALK AND A CLASS OF ASYMPTOTICALLY MOST POWERFUL ON THE THEORY OF REGRESSION LINES ON A CLASS OF ON A CLASS OF ALICNED	RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMEN RANK ORDER STATISTICS RANK ORDER TESTS FOR A CENERAL LINEAR HYPOTHESIS RANK ORDER TESTS FOR GROUPED DATA RANK ORDER TESTS FOR LOCATION IN THE MULTIVARIATE ONE RANK ORDER TESTS FOR MULTIVARIATE PAIRED COMPARISONS RANK ORDER TESTS FOR THE PARALLELISM OF SEVERAL RANK ORDER TESTS IN TWO-WAY LAYOUTS RANK ORDER TESTS OF LINEAR HYPOTHESES	AMS 62 4B2 AMS 67 1042 AMS 69 1325 AMS 67 1229 AMS 67 1216 AMS 69 NO.6 AMS 69 166B AMS 68 1115 JRSSB68 4B3	
SIMPLE RANDOM WALK AND A CLASS OF ASYMPTOTICALLY MOST POWERFUL SAMPLE PROBLEM ON THE THEORY OF REGRESSION LINES ON A CLASS OF ALICNED SIGNIFICANCE PROBABILITY BOUNDS FOR	RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMEN RANK ORDER STATISTICS RANK ORDER TESTS FOR A CENERAL LINEAR HYPOTHESIS RANK ORDER TESTS FOR GROUPED DATA RANK ORDER TESTS FOR LOCATION IN THE MULTIVARIATE ONE RANK ORDER TESTS FOR MULTIVARIATE PAIRED COMPARISONS RANK ORDER TESTS FOR THE PARALLELISM OF SEVERAL RANK ORDER TESTS OF LINEAR HYPOTHESES RANK ORDER TESTS OF LINEAR HYPOTHESES RANK ORDERINGS	AMS 62 4B2 AMS 67 1042 AMS 69 1325 AMS 67 1229 AMS 67 1216 AMS 69 NO.6 AMS 69 166B AMS 68 1115 JRSSB68 4B3 AMS 64 B91	
SIMPLE RANDOM WALK AND A CLASS OF ASYMPTOTICALLY MOST POWERFUL SAMPLE PROBLEM ON THE THEORY OF REGRESSION LINES ON A CLASS OF ON A CLASS OF ALICNED SIGNIFICANCE PROBABILITY BOUNDS FOR A THEOREM ON	RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMEN RANK ORDER STATISTICS RANK ORDER TESTS FOR A CENERAL LINEAR HYPOTHESIS RANK ORDER TESTS FOR GROUPED DATA RANK ORDER TESTS FOR LOCATION IN THE MULTIVARIATE ONE RANK ORDER TESTS FOR MULTIVARIATE PARED COMPARISONS RANK ORDER TESTS FOR THE PARALLELISM OF SEVERAL RANK ORDER TESTS OF THE PAPALLELISM OF SEVERAL RANK ORDER TESTS OF LINEAR HYPOTHESES RANK ORDERINCS RANK ORDERS FOR TWO CENSORED SAMPLES	AMS 62 4B2 AMS 67 1042 AMS 69 1325 AMS 67 1229 AMS 67 1216 AMS 69 10.66 AMS 69 16.6 AMS 68 1115 JRSSB68 4B3 AMS 64 B91 AMS 65 316	
SIMPLE RANDOM WALK AND A CLASS OF ASYMPTOTICALLY MOST POWERFUL ON THE THEORY OF ON A CLASS OF ON A CLASS OF ALICNED SIGNIFICANCE PROBABILITY BOUNDS FOR A THEOREM ON IONS ON EXACT PROBABILITIES OF	RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMEN RANK ORDER STATISTICS RANK ORDER TESTS FOR A CENERAL LINEAR HYPOTHESIS RANK ORDER TESTS FOR GROUPED DATA RANK ORDER TESTS FOR LOCATION IN THE MULTIVARIATE ONE RANK ORDER TESTS FOR MULTIVARIATE PATRED COMPARISONS RANK ORDER TESTS FOR THE PARALLELISM OF SEVERAL RANK ORDER TESTS IN TWO-WAY LAYOUTS RANK ORDER TESTS OF LINEAR HYPOTHESES RANK ORDERS FOR TWO CENSORED SAMPLES RANK ORDERS FOR TWO CENSORED SAMPLES	AMS 62 4B2 AMS 67 1042 AMS 69 1325 AMS 67 1229 AMS 67 1216 AMS 69 NO.6 AMS 69 166B AMS 68 1115 JRSSB68 4B3 AMS 64 B91 AMS 65 316 AMS 67 1491	
SIMPLE RANDOM WALK AND A CLASS OF ASYMPTOTICALLY MOST POWERFUL SAMPLE PROBLEM REGRESSION LINES ON A CLASS OF ON A CLASS OF ALICNED SIGNIFICANCE PROBABILITY BOUNDS FOR A THEOREM ON IONS ON EXACT PROBABILITIES OF FINE STRUCTURE OF THE ORDERING OF PROBABILITIES OF	RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMEN RANK ORDER TESTS FOR A CENERAL LINEAR HYPOTHESIS RANK ORDER TESTS FOR GROUPED DATA RANK ORDER TESTS FOR LOCATION IN THE MULTIVARIATE ONE RANK ORDER TESTS FOR MULTIVARIATE PAIRED COMPARISONS RANK ORDER TESTS FOR THE PARALLELISM OF SEVERAL RANK ORDER TESTS OF LINEAR HYPOTHESES RANK ORDER TESTS OF LINEAR HYPOTHESES RANK ORDERS FOR TWO CENSORED SAMPLES RANK ORDERS FOR TWO WIDELY SEPARATED NORMAL DISTRIBUT RANK ORDERS IN THE TWO SAMPLE CASE	AMS 62 4B2 AMS 67 1042 AMS 69 1325 AMS 67 1229 AMS 67 1216 AMS 69 166B AMS 68 1115 JRSSB68 4B3 AMS 64 B91 AMS 65 316 AMS 67 1491	
SIMPLE RANDOM WALK AND A CLASS OF ASYMPTOTICALLY MOST POWERFUL SAMPLE PROBLEM ON THE THEORY OF REGRESSION LINES ON A CLASS OF ALICNED SIGNIFICANCE PROBABILITY BOUNDS FOR A THEOREM ON ON EXACT PROBABILITIES OF FINE STRUCTURE OF THE ORDERING OF PROBABILITIES OF REMARKS ON ZEROS AND TIES IN THE WILCOXON SIGNED	RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMEN RANK ORDER TESTS FOR A CENERAL LINEAR HYPOTHESIS RANK ORDER TESTS FOR GROUPED DATA RANK ORDER TESTS FOR LOCATION IN THE MULTIVARIATE ONE RANK ORDER TESTS FOR MULTIVARIATE PAIRED COMPARISONS RANK ORDER TESTS FOR THE PARALLELISM OF SEVERAL RANK ORDER TESTS OF LINEAR HYPOTHESES RANK ORDER TESTS OF LINEAR HYPOTHESES RANK ORDERS FOR TWO CENSORED SAMPLES RANK ORDERS FOR TWO WIDELY SEPARATED NORMAL DISTRIBUT RANK ORDERS IN THE TWO SAMPLE CASE	AMS 62 4B2 AMS 67 1042 AMS 69 1325 AMS 67 1229 AMS 67 1216 AMS 69 166B AMS 68 1115 JRSSB68 4B3 AMS 64 B91 AMS 65 316 AMS 67 1491	
SIMPLE RANDOM WALK AND A CLASS OF ASYMPTOTICALLY MOST POWERFUL SAMPLE PROBLEM ON THE THEORY OF REGRESSION LINES ON A CLASS OF ON A CLASS OF ALICNED SIGNIFICANCE PROBABILITY BOUNDS FOR A THEOREM ON THE ORDER ON EXACT PROBABILITIES OF FINE STRUCTURE OF THE ORDERING OF PROBABILITIES OF REMARKS ON ZEROS AND TIES IN THE WILCOXON SIGNED A MULTIPLE COMPARISON	RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMEN RANK ORDER STATISTICS RANK ORDER TESTS FOR A CENERAL LINEAR HYPOTHESIS RANK ORDER TESTS FOR GROUPED DATA RANK ORDER TESTS FOR LOCATION IN THE MULTIVARIATE ONE RANK ORDER TESTS FOR MULTIVARIATE PAIRED COMPARISONS RANK ORDER TESTS FOR THE PARALLELISM OF SEVERAL RANK ORDER TESTS OF THE PARALLELISM OF SEVERAL RANK ORDER TESTS OF LINEAR HYPOTHESES RANK ORDERSINCS RANK ORDERS FOR TWO CENSORED SAMPLES RANK ORDERS FOR TWO WIDELY SEPARATED NORMAL DISTRIBUT RANK ORDERS IN THE TWO SAMPLE CASE RANK PROCEDURE RANK PROCEDURE	AMS 62 482 AMS 67 1042 AMS 69 1325 AMS 67 1229 AMS 69 NO.6 AMS 69 166B AMS 68 1115 JRSSB68 4B3 AMS 64 4B91 AMS 65 316 AMS 67 1491 AMS 66 985 SASJ 69 35	
SIMPLE RANDOM WALK AND A CLASS OF ASYMPTOTICALLY MOST POWERFUL SAMPLE PROBLEM ON THE THEORY OF REGRESSION LINES ON A CLASS OF ON A CLASS OF ALICNED SIGNIFICANCE PROBABILITY BOUNDS FOR A THEOREM ON THE ORDER ON EXACT PROBABILITIES OF FINE STRUCTURE OF THE ORDERING OF PROBABILITIES OF REMARKS ON ZEROS AND TIES IN THE WILCOXON SIGNED A MULTIPLE COMPARISON	RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMEN RANK ORDER STATISTICS RANK ORDER TESTS FOR A CENERAL LINEAR HYPOTHESIS RANK ORDER TESTS FOR GROUPED DATA RANK ORDER TESTS FOR MULTIVARIATE PATRED COMPARISONS RANK ORDER TESTS FOR MULTIVARIATE PATRED COMPARISONS RANK ORDER TESTS FOR THE PARALLELISM OF SEVERAL RANK ORDER TESTS IN TWO-WAY LAYOUTS RANK ORDER TESTS OF LINEAR HYPOTHESES RANK ORDERSTOS RANK ORDERS FOR TWO CENSORED SAMPLES RANK ORDERS FOR TWO WIDELY SEPARATED NORMAL DISTRIBUT RANK ORDERS FOR TWO WIDELY SEPARATED NORMAL DISTRIBUT RANK ORDERS FOR TWO SAMPLE CASE RANK PROCEDURE RANK PROCEDURE RANK PROCEDURE RANK SCORE PROCEDURE OF BELL AND DOKSUM	AMS 62 4B2 AMS 67 1042 AMS 69 1325 AMS 67 1229 AMS 67 1216 AMS 69 NO.6 AMS 69 166B AMS 68 1115 JRSSB68 4B3 AMS 64 B91 AMS 65 316 AMS 65 316 AMS 66 98 JASA 59 655 AMS 66 1697	
SIMPLE RANDOM WALK AND A CLASS OF ASYMPTOTICALLY MOST POWERFUL SAMPLE PROBLEM ON THE THEORY OF REGRESSION LINES ON A CLASS OF ALICNED SIGNIFICANCE PROBABILITY BOUNDS FOR A THEOREM ON IONS ON EXACT PROBABILITIES OF FINE STRUCTURE OF THE ORDERING OF PROBABILITIES OF REMARKS ON ZEROS AND TIES IN THE WILCOXON SIGNED A MULTIPLE COMPARISON ON RANDOMIZED ON RANDOMIZED	RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMEN RANK ORDER TESTS FOR A CENERAL LINEAR HYPOTHESIS RANK ORDER TESTS FOR GROUPED DATA RANK ORDER TESTS FOR LOCATION IN THE MULTIVARIATE ONE RANK ORDER TESTS FOR MULTIVARIATE PAIRED COMPARISONS RANK ORDER TESTS FOR THE PARALLELISM OF SEVERAL RANK ORDER TESTS OF THE PARALLELISM OF SEVERAL RANK ORDER TESTS OF LINEAR HYPOTHESES RANK ORDER TESTS OF LINEAR HYPOTHESES RANK ORDERS FOR TWO WIDELY SEPARATED NORMAL DISTRIBUT RANK ORDERS FOR TWO WIDELY SEPARATED NORMAL DISTRIBUT RANK ORDERS IN THE TWO SAMPLE CASE RANK PROCEDURE RANK PROCEDURE RANK PROCEDURE FOR A ONE-WAY ANALYSIS OF VARIANCE RANK SCORE PROCEDURE OF BELL AND DOKSUM RANK SCORES	AMS 62 482 AMS 67 1042 AMS 69 1325 AMS 67 1229 AMS 69 NO.6 AMS 69 166B AMS 68 1115 JRSSB68 4B3 AMS 64 4B91 AMS 65 316 AMS 67 1491 AMS 66 985 SASJ 69 35	
SIMPLE RANDOM WALK AND A CLASS OF ASYMPTOTICALLY MOST POWERFUL SAMPLE PROBLEM ON THE THEORY OF REGRESSION LINES ON A CLASS OF ALICNED SIGNIFICANCE PROBABILITY BOUNDS FOR A THEOREM ON IONS ON EXACT PROBABILITIES OF FINE STRUCTURE OF THE ORDERING OF PROBABILITIES OF REMARKS ON ZEROS AND TIES IN THE WILCOXON SIGNED A MULTIPLE COMPARISON ON RANDOMIZED ANALYSIS OF COVARIANCE BASED ON CENERAL EXTENDED TABLES OF THE WILCOXON MATCHED PAIR SICNED	RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMEN RANK ORDER TESTS FOR A CENERAL LINEAR HYPOTHESIS RANK ORDER TESTS FOR GROUPED DATA RANK ORDER TESTS FOR LOCATION IN THE MULTIVARIATE ONE RANK ORDER TESTS FOR MULTIVARIATE PAIRED COMPARISONS RANK ORDER TESTS FOR THE PARALLELISM OF SEVERAL RANK ORDER TESTS OF THE PARALLELISM OF SEVERAL RANK ORDER TESTS OF LINEAR HYPOTHESES RANK ORDER TESTS OF LINEAR HYPOTHESES RANK ORDERS FOR TWO WIDELY SEPARATED NORMAL DISTRIBUT RANK ORDERS FOR TWO WIDELY SEPARATED NORMAL DISTRIBUT RANK ORDERS IN THE TWO SAMPLE CASE RANK PROCEDURE RANK PROCEDURE RANK PROCEDURE FOR A ONE-WAY ANALYSIS OF VARIANCE RANK SCORE PROCEDURE OF BELL AND DOKSUM RANK SCORES	AMS 62 4B2 AMS 67 1042 AMS 69 1325 AMS 67 1229 AMS 69 10-6 AMS 69 10-6 AMS 69 10-6 AMS 68 1115 JRSSB68 4B3 AMS 65 316 AMS 67 1491 AMS 67 1491 AMS 66 98 JASA 59 655 SASJ 69 655 SASJ 69 610 JASA 69 610 JASA 69 610	
SIMPLE RANDOM WALK AND A CLASS OF ASYMPTOTICALLY MOST POWERFUL SAMPLE PROBLEM ON THE THEORY OF ON A CLASS OF ALICNED ON A CLASS OF ALICNED ON A CLASS OF ALICNED A THEOREM ON A THEOREM ON A THEOREM ON IONS ON EXACT PROBABILITIES OF FINE STRUCTURE OF THE ORDERING OF PROBABILITIES OF REMARKS ON ZEROS AND TIES IN THE WILCOXON SIGNED A MULTIPLE COMPARISON ON RANDOMIZED ANALYSIS OF COVARIANCE BASED ON CENERAL EXTENDED TABLES OF THE WILCOXON MATCHED PAIR SICNED OF THE TEST AND ESTIMATOR BASED ON WILCOXON'S SIGNED	RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMEN RANK ORDER STATISTICS RANK ORDER TESTS FOR A CENERAL LINEAR HYPOTHESIS RANK ORDER TESTS FOR GROUPED DATA RANK ORDER TESTS FOR LOCATION IN THE MULTIVARIATE ONE RANK ORDER TESTS FOR MULTIVARIATE PAIRED COMPARISONS RANK ORDER TESTS FOR THE PARALLELISM OF SEVERAL RANK ORDER TESTS OF THE PARALLELISM OF SEVERAL RANK ORDER TESTS OF LINEAR HYPOTHESES RANK ORDERINCS RANK ORDERS FOR TWO CENSORED SAMPLES RANK ORDERS FOR TWO WIDELY SEPARATED NORMAL DISTRIBUT RANK ORDERS IN THE TWO SAMPLE CASE RANK PROCEDURE RANK PROCEDURE RANK PROCEDURE FOR A ONE-WAY ANALYSIS OF VARIANCE RANK SCORE PROCEDURE OF BELL AND DOKSUM RANK SCORES RANK STATISTIC	AMS 62 482 AMS 67 1042 AMS 67 1229 AMS 67 1216 AMS 69 NO.6 AMS 69 1668 AMS 68 1115 JRSSB68 483 AMS 64 B91 AMS 65 316 AMS 67 1491 AMS 66 985 JASA 59 655 JASA 59 655 AMS 66 1697 AMS 66 1697 AMS 66 1697 AMS 68 282	
SIMPLE RANDOM WALK AND A CLASS OF ACLASS OF ASYMPTOTICALLY MOST POWERFUL ON THE THEORY OF ON A CLASS OF ALICNED REGRESSION LINES ON A CLASS OF ALICNED SIGNIFICANCE PROBABILITY BOUNDS FOR A THEOREM ON A THEOREM ON A THEOREM ON EXACT PROBABILITIES OF FINE STRUCTURE OF THE ORDERING OF PROBABILITIES OF REMARKS ON ZEROS AND TIES IN THE WILCOXON SIGNED A MULTIPLE COMPARISON ON RANDOMIZED ON RANDOMIZED ANALYSIS OF COVARIANCE BASED ON CENERAL EXTENDED TABLES OF THE WILCOXON MATCHED PAIR SICNED OF THE TEST AND ESTIMATOR BASED ON WILCOXON'S SIGNED ASYMPTOTIC LINEARITY OF A ASYMPTOTIC LINEARITY OF A SYMPTOTIC LINEARITY OF A SYMPTOTIC LINEARITY OF SIMPLE LINEAR	RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMEN RANK ORDER STATISTICS RANK ORDER TESTS FOR A CENERAL LINEAR HYPOTHESIS RANK ORDER TESTS FOR GROUPED DATA RANK ORDER TESTS FOR LOCATION IN THE MULTIVARIATE ONE RANK ORDER TESTS FOR MULTIVARIATE PAIRED COMPARISONS RANK ORDER TESTS FOR THE PARALLELISM OF SEVERAL RANK ORDER TESTS OF THE PARALLELISM OF SEVERAL RANK ORDER TESTS OF LINEAR HYPOTHESES RANK ORDERS FOR TWO CENSORED SAMPLES RANK ORDERS FOR TWO WIDELY SEPARATED NORMAL DISTRIBUT RANK ORDERS IN THE TWO SAMPLE CASE RANK PROCEDURE RANK PROCEDURE RANK PROCEDURE OF BELL AND DOKSUM RANK SCORES RANK SCORES RANK STATISTIC RANK STATISTIC ON A FURTHER ROBUSTNESS PROPERTY RANK STATISTIC IN RECRESSION PARAMETER	AMS 62 482 AMS 67 1042 AMS 69 1325 AMS 67 1229 AMS 69 10.6 AMS 69 166 AMS 68 1115 JRSSB68 4B3 AMS 64 1911 AMS 65 316 AMS 67 1491 AMS 66 98 AMS 66 1697 AMS 66 1697 AMS 66 1697 AMS 66 1697 AMS 67 1491 AMS 68 169 AMS 68 1697 AMS 69 1610 AMS 68 1697 AMS 69 80 AMS 68 8282 AMS 68 NO.6	
SIMPLE RANDOM WALK AND A CLASS OF ACLASS OF ASYMPTOTICALLY MOST POWERFUL ON THE THEORY OF ON A CLASS OF ALICNED REGRESSION LINES ON A CLASS OF ALICNED SIGNIFICANCE PROBABILITY BOUNDS FOR A THEOREM ON A THEOREM ON A THEOREM ON EXACT PROBABILITIES OF FINE STRUCTURE OF THE ORDERING OF PROBABILITIES OF REMARKS ON ZEROS AND TIES IN THE WILCOXON SIGNED A MULTIPLE COMPARISON ON RANDOMIZED ON RANDOMIZED ANALYSIS OF COVARIANCE BASED ON CENERAL EXTENDED TABLES OF THE WILCOXON MATCHED PAIR SICNED OF THE TEST AND ESTIMATOR BASED ON WILCOXON'S SIGNED ASYMPTOTIC LINEARITY OF A ASYMPTOTIC LINEARITY OF A SYMPTOTIC LINEARITY OF A SYMPTOTIC LINEARITY OF SIMPLE LINEAR	RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMEN RANK ORDER STATISTICS RANK ORDER TESTS FOR A CENERAL LINEAR HYPOTHESIS RANK ORDER TESTS FOR GROUPED DATA RANK ORDER TESTS FOR LOCATION IN THE MULTIVARIATE ONE RANK ORDER TESTS FOR MULTIVARIATE PAIRED COMPARISONS RANK ORDER TESTS FOR THE PARALLELISM OF SEVERAL RANK ORDER TESTS OF THE PARALLELISM OF SEVERAL RANK ORDER TESTS OF LINEAR HYPOTHESES RANK ORDERS FOR TWO CENSORED SAMPLES RANK ORDERS FOR TWO WIDELY SEPARATED NORMAL DISTRIBUT RANK ORDERS IN THE TWO SAMPLE CASE RANK PROCEDURE RANK PROCEDURE RANK PROCEDURE OF BELL AND DOKSUM RANK SCORES RANK SCORES RANK STATISTIC RANK STATISTIC ON A FURTHER ROBUSTNESS PROPERTY RANK STATISTIC IN RECRESSION PARAMETER	AMS 62 482 AMS 67 1042 AMS 69 1325 AMS 67 1229 AMS 69 10.6 AMS 69 166 AMS 68 1115 JRSSB68 4B3 AMS 64 1911 AMS 65 316 AMS 67 1491 AMS 66 98 AMS 66 1697 AMS 66 1697 AMS 66 1697 AMS 66 1697 AMS 67 1491 AMS 68 169 AMS 68 1697 AMS 69 1610 AMS 68 1697 AMS 69 80 AMS 68 8282 AMS 68 NO.6	
SIMPLE RANDOM WALK AND A CLASS OF ASYMPTOTICALLY MOST POWERFUL SAMPLE PROBLEM ON THE THEORY OF ON A CLASS OF ON A CLASS OF ALICNED ON A CLASS OF ALICNED ON A CLASS OF ALICNED A THEOREM ON A CLASS OF ALICNED ON A CLASS OF ALICNED ON A CLASS OF ALICNED ON EXACT PROBABILITIES OF FINE STRUCTURE OF THE ORDERING OF PROBABILITIES OF REMARKS ON ZEROS AND TIES IN THE WILCOXON SIGNED A MULTIPLE COMPARISON ON RANDOMIZED A MULTIPLE COMPARISON ON RANDOMIZED ANALYSIS OF COVARIANCE BASED ON CENERAL EXTENDED TABLES OF THE WILCOXON MATCHED PAIR SICNED OF THE TEST AND ESTIMATOR BASED ON WILCOXON'S SIGNED ASYMPTOTIC LINEARITY OF A ASYMPTOTIC NORMALITY OF SIMPLE LINEAR ASYMPTOTIC NORMALITY OF SIMPLE LINEAR CLASSIFICATIONS	RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMEN RANK ORDER TESTS FOR A CENERAL LINEAR HYPOTHESIS RANK ORDER TESTS FOR A CENERAL LINEAR HYPOTHESIS RANK ORDER TESTS FOR GROUPED DATA RANK ORDER TESTS FOR LOCATION IN THE MULTIVARIATE ONE RANK ORDER TESTS FOR MULTIVARIATE PAIRED COMPARISONS RANK ORDER TESTS FOR THE PARALLELISM OF SEVERAL RANK ORDER TESTS IN TWO-WAY LAYOUTS RANK ORDER TESTS OF LINEAR HYPOTHESES RANK ORDERS FOR TWO CENSORED SAMPLES RANK ORDERS FOR TWO WIDELY SEPARATED NORMAL DISTRIBUT RANK ORDERS IN THE TWO SAMPLE CASE RANK PROCEDURE FOR A ONE-WAY ANALYSIS OF VARIANCE RANK SCORES RANK ORDERS FOR TWO WIDELY SEPARATED NORMAL DISTRIBUT RANK SCORES RANK STATISTIC ON A FURTHER ROBUSTNESS PROPERTY RANK STATISTIC IN RECRESSION PARAMETER RANK STATISTICS UNDER ALTERNATIVES, II RANK STATISTICS UNDER ALTERNATIVES, II RANK STAM STATISTICS UNDER ALTERNATIVES, II RANK STAM UNDER ALTERNATIVES, II RANK STAM UNDER ALTERNATIVES, II RANK STAM UNDER ALTERNATIVES, II RANK SUM MULTIPLE COMPARISTONS IN ONE AND TWO-WAY	AMS 62 4B2 AMS 67 1042 AMS 69 1325 AMS 67 1216 AMS 69 N0.6 AMS 69 166B AMS 68 1115 JRSSB68 4B3 AMS 65 316 AMS 67 149 AMS 66 99 JASA 59 655 SASJ 69 055 SASJ 69 056 AMS 69 1610 JASA 65 864 AMS 68 1282 AMS 69 N0.6 AMS 68 N0.6 BIOKAG7 487	
SIMPLE RANDOM WALK AND A CLASS OF ASYMPTOTICALLY MOST POWERFUL SAMPLE PROBLEM ON THE THEORY OF REGRESSION LINES ON A CLASS OF ALICNED SIGNIFICANCE PROBABILITY BOUNDS FOR A THEOREM ON ON EXACT PROBABILITIES OF FINE STRUCTURE OF THE ORDERING OF PROBABILITIES OF REMARKS ON ZEROS AND TIES IN THE WILCOXON SIGNED A MULTIPLE COMPARISON ON RANDOMIZED ANALYSIS OF COVARIANCE BASED ON CENDERAL EXTENDED TABLES OF THE WILCOXON MATCHED PAIR SICNED OF THE TEST AND ESTIMATOR BASED ON WILCOXON'S SIGNED ASYMPTOTIC NORMALITY OF SIMPLE LINEAR ASYMPTOTIC NORMALITY OF SIMPLE LINEAR CLASSIFICATIONS A TABLE FOR	RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERIMEN RANK ORDER TESTS FOR A CENERAL LINEAR HYPOTHESIS RANK ORDER TESTS FOR A CENERAL LINEAR HYPOTHESIS RANK ORDER TESTS FOR GROUPED DATA RANK ORDER TESTS FOR LOCATION IN THE MULTIVARIATE ONE RANK ORDER TESTS FOR MULTIVARIATE PAIRED COMPARISONS RANK ORDER TESTS FOR THE PARALLELISM OF SEVERAL RANK ORDER TESTS IN TWO-WAY LAYOUTS RANK ORDER TESTS OF LINEAR HYPOTHESES RANK ORDERS FOR TWO CENSORED SAMPLES RANK ORDERS FOR TWO WIDELY SEPARATED NORMAL DISTRIBUT RANK ORDERS IN THE TWO SAMPLE CASE RANK PROCEDURE FOR A ONE-WAY ANALYSIS OF VARIANCE RANK SCORES RANK ORDERS FOR TWO WIDELY SEPARATED NORMAL DISTRIBUT RANK SCORES RANK STATISTIC ON A FURTHER ROBUSTNESS PROPERTY RANK STATISTIC IN RECRESSION PARAMETER RANK STATISTICS UNDER ALTERNATIVES, II RANK STATISTICS UNDER ALTERNATIVES, II RANK STAM STATISTICS UNDER ALTERNATIVES, II RANK STAM UNDER ALTERNATIVES, II RANK STAM UNDER ALTERNATIVES, II RANK STAM UNDER ALTERNATIVES, II RANK SUM MULTIPLE COMPARISTONS IN ONE AND TWO-WAY	AMS 62 482 AMS 67 1042 AMS 69 1325 AMS 69 1226 AMS 69 10.6 AMS 69 166B AMS 68 1115 JRSSB68 4B3 AMS 65 1491 AMS 67 1491 AMS 67 1491 AMS 67 1491 AMS 67 1491 JASA 67 1697 AMS 69 610 JASA 65 864 AMS 68 1282 AMS 69 NO.6 AMS 68 325 AMS 68 NO.6	

```
ON AN EXTREME RANK SUM TEST FOR OUTLIERS
                                                                                                           BIOKA63
                                       ON AN EXTREME RANK SUM TEST WITH EARLY DECISION
                                                                                                           JASA 65
                                                                                                                    859
                        MULTIPLE COMPARISIONS USING RANK SUMS
                                                                                                            TECH 64
                A NOTE ON MULTIPLE COMPARISONS USING RANK SUMS
                                                                                                           TECH 65
                                                                                                                    255
                     ON THE NORMAL SCORES TWO-SAMPLE RANK TEST
                                                                                                            JASA 64
                                                                                                                    652
                                 A BIVARIATE SICNED RANK TEST
                                                                                                           JRSSB64
                                                                                                                    457
          LIMITS FOR A RATIO USING WILCOXON'S SIGNED RANK TEST
                                                                                          NOTES.CONFIDENCE BIOCS65
                                                                                                                    231
                               A PROPOSED TWO-SAMPLE RANK TEST,
                                                                THE PSI TEST AND ITS PROPERTIES
                                                                                                           JRSSB64
                                                                                                                    305
                      ESTIMATES OF LOCATION BASED ON RANK TESTS
                                                                                                            AMS 63
                                                                                                                    598
                       ON A MODIFICATION OF CERTAIN RANK TESTS
                                                                                                            AMS 63 1101
                ONE SAMPLE LIMITS OF SOME TWO-SAMPLE RANK TESTS
                                                                                                           JASA 64 645
                 ALTERNATIVE EFFICIENCIES FOR SICNED RANK TESTS
                                                                                                            AMS 65 1759
              PERCENTILE MODIFICATIONS OF TWO-SAMPLE RANK TESTS
                                                                                                            JASA 65 1127
                       QUERY, CONFIDENCE LIMITS FROM RANK TESTS
                                                                                                           TECH 65
                                                                                                                    257
         ESTIMATES OF REGRESSION PARAMETERS BASED ON BANK TESTS
                                                                                                             AMS 67
                                                                                                                   B94
                       EFFICIENCY ROBUST TWO-SAMPLE RANK TESTS
                                                                                                            JASA 67 1241
         STARSHAPED TRANSFORMATIONS AND THE POWER OF RANK TESTS
                                                                                                            AMS 69 1167
                                                                                                            AMS 69 1449
                    THE SMIRNOV TWO SAMPLE TESTS AS RANK TESTS
         EFFICIENCY OF CERTAIN LOCALLY MOST POWERFUL RANK TESTS
                                                                                                ASYMPTOTIC AMS 61 88
OF OBTAINING LOWER BOUNDS ON THE ASYMPTOTIC POWER OF RANK TESTS
                                                                                     AN ELEMENTARY METHOD
                                                                                                             AMS 68 2128
                                    ON TWO K-SAMPLE RANK TESTS FOR CENSORED DATA
                                                                                                             AMS 67 1520
                    ASYMPTOTIC EFFICIENCY OF CERTAIN RANK TESTS FOR COMPARATIVE EXPERIMENT
                                                                                                             AMS 67
                                                                                                                    90
G SEVERAL TREATMENTS
                                                     RANK TESTS FOR PAIRED-COMPARISON EXPERIMENTS INVOLVIN AMS 64
S HAVE AN 'A PRIORI' ORDERING
                                                     RANK TESTS FOR RANDOMIZED BLOCKS WHEN THE ALTERNATIVE
                                                                                                            AMS 67
                                                                                                                    867
                                  OPTIMAL INVARIANT RANK TESTS FOR THE K-SAMPLE PROBLEM
                                                                                                            AMS 65 1207
                       ASYMPTOTICALLY MOST POWERFUL RANK TESTS FOR THE TWO-SAMPLE PROBLEM WITH CENSORED
                                                                                                            AMS 65 1243
PROCEDURE
                                          SEQUENTIAL RANK TESTS I. MONTE CARLO STUDIES OF THE TWO-SAMPLE
                                                                                                           TECH 65 463
                                          SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE PROCEDURES
                                                                                                           TECH 66
                                                                                                                    615
                                                     RANK TESTS OF DISPERSION
                                                                                                            AMS 63
                                                                                                                    973
                          ON THE POWER OF TWO-SAMPLE RANK TESTS ON THE EQUALITY OF TWO DISTRIBUTION FUNCTI JRSSB64
ONS
                                                                                                                    293
                               NOTE ON SOME SQUARED RANK TESTS WITH EXISTING TIES
                                                                                                           TECH 67
                                                                                                                    312
                   COMMENTS ON 'THE SIMPLEST SIGNED-RANK TESTS'
                                                                                                           JASA 59 213
     OF SOME NON-LINEAR FUNCTIONS OF THE TWO-SAMPLE RANK VECTOR
                                                                               THE ASYMPTOTIC DISTRIBUTION AMS 69 1011
                              THE INFORMATION IN A RANK-ORDER AND THE STOPPING TIME OF SOME ASSOCIATED
SPRTIC
                                                                                                             AMS 6B 1661
NN ALTERNATIVES, CORR. 67 1309
                                STOPPING TIME OF A RANK-ORDER SEQUENTIAL PROBABILITY RATIO TEST ON LEHMA
                                                                                                             AMS 66 1154
                                                                                                           BIOKA55 261
                                            CALTON'S RANK-ORDER TEST
                        ASYMPTOTICALLY MOST POWERFUL RANK-ORDER TESTS
                                                                                                            AMS 62 1124
                            QUERY, DISTRIBUTION OF A RANKED OBSERVATION
                                                                                                           TECH 64 329
                  QUERY, JOINT CONFIDENCE LIMITS FOR RANKED OBSERVATIONS
                                                                                                            TECH 66
                    ON SAMPLING FROM A POPULATION OF RANKERS
                                                                                                           BIOKA52
AMPLINC DISTRIBUTION OF AVERAGE TAU WITH A CRITERION RANKING
                                                               /LCULATING TAU AND AVERAGE TAU AND ON THE S JASA 62
                                                                                                                    567
                                   SOME FIXED-SAMPLE RANKING AND SELECTION PROBLEMS
                                                                                                            AMS 67 1079
                                  AN INTRODUCTION TO RANKING AND SELECTION PROCEDURES
                                                                                                            JASA 66
                                                                                                                    640
    ASYMPTOTICALLY EXTINCT SEQUENTIAL PROCEDURES FOR RANKING AND SLIPPAGE PROBLEMS
                                                                                                      SOME JRSSB66
                                                                                                                    370
               MAXIMUM LIKELTHOOD PAIRED COMPARISON RANKING BY LINEAR PROGRAMMING
                                                                                                           BIOKA69 NO.3
           AN APPLICATION OF THE DISTRIBUTION OF THE RANKING CONCORDANCE COEFFICIENT
                                                                                                           BTOKA51
                                                                                                                     33
                             MATHEMATICAL MODELS FOR RANKING FROM PAIRED COMPARISONS
                                                                                                           JASA 60
                                                                                                                    503
                             PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS
                                                                                                             AMS 63
                                                                                                                    501
              A TWO-STAGE SUBSAMPLING PROCEDURE FOR RANKING MEANS OF FINITE POPULATIONS WITH AN APPLICATI TECH 67
ON TO BULK/
                                                                                                                    355
      SOME EXTENSIONS OF SOMERVILLE'S PROCEDURE FOR RANKING MEANS OF NORMAL POPULATIONS
                                                                                                           BIOKA68
                                                                                                                    411
NOWN/ A TWO-SAMPLE MULTIPLE DECISION PROCEDURE FOR RANKING MEANS OF NORMAL POPULATIONS WITH A COMMON UNK BIOKA54
                                                                                                                    170
VARIANCES
                                                     RANKING MEANS OF TWO NORMAL POPULATIONS WITH UNKNOWN BIOKA58
                                                                                                                    250
                                                     RANKING METHODS AND THE MEASUREMENT OF ATTITUDES
                                                                                                                    720
                                                                                                           JASA 5B
                                          A NON-NULL RANKING MODEL FOR A SEQUENCE OF M ALTERNATIVES
                                                                                                           BIOKA61
                                                                                                                     441
                                            NON-NULL RANKINC MODELS. I
                                                                                                            BIOKA57
ATTONS
                         SINCLE-STACE PROCEDURES FOR RANKINC MULTIPLY-CLASSIFIED VARIANCES OF NORMAL POPUL TECH 6B
                                                                                                                     693
                                                 THE RANKING OF VARIANCES IN NORMAL POPULATIONS
                                       ESTIMATION BY RANKING PARAMETERS
                                                                                                            JRSSB66
                                                                                                                     32
                                                  ON RANKING PARAMETERS OF SCALE IN TYPE III POPULATIONS
                                                                                                           JASA 5B
                    ON MULTIPLE DECISION METHODS FOR RANKING POPULATION MEANS
                                                                                                            AMS 62
                                                                                                                    24B
                                                                                                            AMS 67
               THE GENERALIZED VARIANCE, TESTING AND RANKING PROBLEM
                                                                                                                    941
                                                                                                            AMS 68 1040
 THE PERFORMANCE OF SOME SEQUENTIAL PROCEDURES FOR A RANKING PROBLEM
                             MULTIVARIATE T AND THE RANKING PROBLEM
                                                                                                           BIOKA67 305
PECTED SAMPLE SIZES OF TWO SEQUENTIAL PROCEDURES FOR RANKING PROBLEM
                                                                         A COMPARISON OF THE ASYMPTOTIC EX AMS 69 NO.6
                                                                                                             AMS 67 124
                          SOME OPTIMUM PROPERTIES OF RANKING PROCEDURES
                                                     RANKING PROCEDURES FOR ARBITRARILY RESTRICTED
                                                                                                           BIOCS67
                                                                                                                     65
OBSERVATION
                                       NONPARAMETRIG RANKING PROCEDURES FOR COMPARISON WITH A CONTROL
                                                                                                            AMS 6B 2075
            ON SOME MULTIPLE DECISION (SELECTION AND RANKING) RULES
                                                                                                           TECH 65
                                                                                                                    225
                             PAIRWISE COMPARISON AND RANKINC, OPTIMUM PROPERTIES OF THE ROW SUM PROCEDURE
                                                                                                            AMS 63
                                                                                                                    ราา
                             APPROXIMATE TESTS FOR M RANKINGS
                                                                                                           BTOKA60
                                                                                                                    476
                MAXIMUM-LIKELIHOOD PAIRED COMPARISON RANKINGS
                                                                                                           BTOKA66
                                                                                                                    143
   ASYMPTOTICALLY EFFICIENT TESTS BY THE METHOD OF N RANKINGS
                                                                                                            JRSSB6B
                                                                                                                    312
DISTRIBUTION OF KENDALL'S SCORE S FOR A PAIR OF TIED RANKINGS
                                                                                                      THE
                                                                                                           BIOKA60
                                                                                                                    151
KENDALL'S TAU FOR THE CASE OF ARBITRARY TIES IN BOTH RANKINGS
                                                                                        A MODIFICATION OF
                                                                                                           JASA 57
                                                                                                                     33
                                                     RANKINGS FROM PAIRED COMPARISONS
                                                                                                             AMS 64
                                                                                                                    739
             THE DISTRIBUTION OF THE MAXIMUM SUM OF RANKS
                                                                                                           TECH 67
                                                                                                                    271
 MULTIPLE TREATMENTS. A SIGNIFICANCE TEST FOR LINEAR RANKS
                                                                                    ORDERED HYPOTHESES FOR JASA 63
                                                                                                                    216
                                                     RANKS AND MEASURES
                                                                                                           BIOKA62
                                                                                                                    133
ARIATE NORMAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE-VALUES
                                                                               /IN A SINGLY TRUNCATED BIV BIOKA66
                                                                                                                    278
               MULTIPLE DECISION PROCEDURES BASED ON RANKS FOR CERTAIN PROBLEMS IN ANALYSIS OF VARIANCES
                                                                                                            AMS 69
          THE CORRELATION BETWEEN VARIATE-VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL DISTRIBUTION
                                                                                                           BIOKA66
                                                                                                                    2B1
                             A NONPARAMETRIC SUM OF RANKS PROCEDURE FOR RELATIVE SPREAD IN UNPAIRED SAMPL JASA 60
                                                                                                                    429
ES. CORR. 61 1005
                        ROBUSTNESS OF SUM OF SQUARED RANKS TEST
                                                                                                           JASA 68
                                                                                                                    33B
                                                     RAO'S PARADOX CONCERNING MULTIVARIATE TESTS OF
                                                                                                           BIOCS69
SIGNIFICANCE
                                                     RAPID ANALYSIS OF 2X2 TABLES
                                                                                                            JASA 57
                                                                                                                     18
                                                 THE RAPID CALCULATION OF CHI-SQUARE AS A TEST OF HOMOGENE BIOKA55
ITY FROM A 2-BY-N TABLE
```

TITLE WORD INDEX RAN - RAT

```
NOTES. RAPID CALCULATION OF EXACT PROBABILITIES FOR 2-BY-3
                                                                                                             BIOCS68 714
NT FROM THE RANCE OF THE DEVIATIONS ABOUT THE R/ A RAPID METHOD FOR ESTIMATING THE CORRELATION COEFFICIE BIOKASS 218
                                                     RAPID METHODS FOR ESTIMATING CORRELATION COEFFICIENTS BIOKA51
                                                    A RAPID TEST FOR THE POISSON DISTRIBUTION USING THE
                                                                                                             BIOCS67
                                                                                                                       685
ATISTICAL INFORMATION AND STATISTICAL INFERENCE IN A RAPIDLY CHANCING WORLD THE QUALITY OF ST JASA 67
                                                                                                                        1
TES PRINCIPALES, SON UTILISATION EN CENETIQUE ET SES RAPPORTS AVEC L'ANALYSE DISCRIMINATOIRE /N COMPOSAN BIOCS66
                                                                                                              AMS 62 924
               POISSON PROCESSES WITH RANDOM ARRIVAL RATE
THEORETICAL EXPLANATION OF OBSERVED DECREASE FAILURE RATE
                                                                                                             TECH 63
                                                                                                                      375
         ESTIMATION OF JUMPS, RELIABILITY AND HAZARD RATE
                                                                                                               AMS 65 1032
 DISCRETE DYNAMIC PROCRAMMING WITH A SMALL INTEREST RATE
                                                                                                               AMS 69
                                                                                                                      366
   OF BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE
                                                                                                      TABLES JASA 65
                                                                                                                       872
   OF PROBABILITY DISTRIBUTIONS WITH MONOTONE HAZARD RATE
                                                                                                  PROPERTIES AMS 63
                                                                                                                       375
  ESTIMATION FOR DISTRIBUTIONS WITH MONOTONE FAILURE RATE
                                                                                          MAXIMUM LIKELIHOOD AMS 65
   THE CLASS OF DISTRIBUTIONS WITH INCREASING HAZARD RATE
                                                                                        TOLERANCE LIMITS FOR
                                                                                                               AMS 64
ROGEDURES WHEN THE DISTRIBUTION HAS MONOTONE FAILURE RATE
                                                                                     EXPONENTIAL LIFE TEST P JASA 67
  FOR CLASSES OF DISTRIBUTIONS CLASSIFIED BY FAILURE RATE
                                                                     ON THE DETERMINATION OF A SAFE LIFE TECH 68
                 RELATIONSHIP BETWEEN SYSTEM FAILURE RATE AND COMPONENT FAILURE RATES
                                                                                                              TECH 63
                                      CHANGES IN THE RATE AND COMPONENTS OF HOUSEHOLD FORMATION
                                                                                                             JASA 60
  STATISTICS IN SOME MODELS WITH INCREASING FAILURE RATE AVERAGE
                                                                                     ASYMPTOTICALLY OPTIMAL AMS 67 1731
                A NOTE ON TESTS FOR MONOTONE FAILURE RATE BASED ON INCOMPLETE DATA
                                                                                                               AMS 69
                           TEST FOR MONOTONE FAILURE RATE BASED ON NORMALIZED SPACING
                                                                                                               AMS 69 1216
                                         QUERY, ERROR RATE BASES
                                                                                                              TECH 65
                                                                                                                      260
                                               ON THE RATE OF CONVERCENCE FOR THE LAW OF LARCE NUMBERS
                                                                                                               AMS 69 NO.6
                                       A NOTE ON THE RATE OF CONVERGENCE OF A MEAN
                                                                                                              BIOKA62
                                                                                                                      574
                                         ON EXTENDED RATE OF CONVERGENCE RESULTS FOR THE INVARIANCE
                                                                                                              AMS 69 NO 6
PRINCIPLE
ON A GLASS OF GAUSSIAN PROCESSES FOR WHICH THE MEAN RATE OF CROSSINGS IS INFINITE
                                                                                                              JRSSB67
                                                                                                                       489
        THE CORRELATION BETWEEN FEED EFFICIENCY AND RATE OF GAIN, A RATIO AND ITS DENOMINATOR
                                                                                                              BIOCS65
                                                                                                                      7.39
 EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR METHODS OF REPRODUCING FINI BIOCS65
                                                                                                                       447
RA/ ON THE EQUIVALENCE OF TWO TESTS OF EQUALITY OF RATE OF OCCURRENCE IN TWO SERIES OF EVENTS OCCURRING BIOKASS
                                                                                                                       267
ONS OF INDEPENDENT RANDOM VARI/ ON THE CONVERGENCE RATE OF THE LAW OF LARGE NUMBERS FOR LINEAR COMBINATI AMS 65
ON THE OPTIMUM RATE OF TRANSMITTING INFORMATION AMS 69
                                                                                                                       559
                                                                                                               AMS 69 NO 6
                                                                                                A PARAMETRIC JASA 61 111
      ESTIMATE OF THE STANDARD ERROR OF THE SURVIVAL RATE, CORR. 63 1161
                                                                                  TOLERANCE AND CONFIDENCE
                                                                                                              AMS 66 1593
LIMITS FOR CLASSES OF DISTRIBUTIONS BASED ON FAILURE RATE, CORR. 67 950
                                                                                                               AMS 64 1234
       BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE, I
       BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE, II
                                                                                                               AMS 64 1258
                          TESTS FOR MONOTONE FAILURE RATE, II
                                                                                                               AMS 69 1250
                  ANALYTICAL GRADUATION OF FERTILITY RATES
                                                                                                              JASA 56 461
                                AVERAGE RENEWAL LOSS RATES
                                                                                                               AMS 63
                                                                                                                       396
   BETWEEN SYSTEM FAILURE RATE AND COMPONENT FAILURE RATES
                                                                                                RELATIONSHIP TECH 63
                                                                                                                       183
   MODEL FOR ESTIMATING AGE-ORDER SPECIFIC FERTILITY RATES
                                                                                               A DEMOGRAPHIC JASA 63 774
 THE UPPER AND LOWER CLASSES IN TERMS OF CONVERGENCE RATES
                                                                                       A CHARACTERIZATION OF
                                                                                                              AMS 69 1120
 NONWHITE POPULATION AS INDICATED BY TRENDS IN DEATH RATES
                                                                    BIAS IN ESTIMATES OF THE UNITED STATES JASA 61
                    ALLOCATION RULES AND THEIR ERROR RATES (WITH DISGUSSION)
                                                                                                              JRSSB66
                                                                                                                         1
                                            SAMPLING RATES AND APPEARANCE OF STATIONARY GAUSSIAN PROCESSES TECH 66
                                                                                                                       91
ALYSIS OF POPULATION GROWTH WHEN THE BIRTH AND DEATH RATES DEPEND UPON SEVERAL FACTORS
                                                                                                      THE AN BIOCS69 NO.4
                                          CONVERGENCE RATES FOR PROBABILITIES OF MODERATE DEVIATIONS
                                                                                                               AMS 68 2016
                                          CONVERGENCE RATES FOR THE LAW OF LARGE NUMBERS FOR LINEAR COMBINA
                                                                                                               AMS 66
TIONS OF MARKOV PROGESSES
BINATIONS OF EXCHANGEABLE AND MIXING/
                                          CONVERGENCE RATES FOR THE LAW OF LARGE NUMBERS FOR THE LINEAR COM AMS 65 1840
                                         CONVERGENCE RATES FOR THE LAW OF THE ITERATED LOGARITHM
                                                                                                               AMS 68 1479
                                 ESTIMATION OF ERROR RATES IN DISCRIMINANT ANALYSIS
                                                                                                              TECH 68
                  COMMENTARY ON 'ESTIMATION OF ERROR RATES IN DISCRIMINANT ANALYSIS'
                                                                                                              TECH 68
                       EVALUATION OF CENSUS SURVIVAL RATES IN ESTIMATING INTERCENSAL STATE NET MICRATION
                                                                                                              JASA 62
                                       ON GONVERGENCE RATES IN THE CENTRAL LIMIT THEOREM
                                                                                                               AMS 69
RELATING MOMENT GENERATING FUNCTIONS AND CONVERGENCE RATES IN THE LAW OF LARCE NUMBERS
                                                                                                               AMS 67
                    COMPUTATION OF INDIRECT-ADJUSTED RATES IN THE PRESENCE OF CONFOUNDING
                                                                                                              BTOCS68
FOR TWO COMPLETELY SPECIFIED DISTRIBUTIONS
                                                      RATES OF CONVERCENCE IN THE COMPOUND DECISION PROBLEM
                                                                                                              AMS 65 1743
                                                      RATES OF CONVERGENCE OF ESTIMATES AND TEST STATISTICS
                                                                                                              AMS 67
                                                                                                                       30.3
      DISTRIBUTIONS POSSESSING A MONOTONE LIKELIHOOD RATIO
                                                                                                              JASA 56
                                                                                                                       637
          A CONFIDENCE INTERVAL FOR THE AVAILABILITY RATIO
                                                                                                              TECH 67
                                                                                                                       465
   NEW CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO
                                                                                                              JASA 69
                                                                                                                       647
        IRRATIONAL FRACTION APPROXIMATIONS TO MILLS' RATIO
                                                                                                              BIOKA64
                                                                                                                       339
    STATISTICAL CHARACTERISTICS OF A PEAK TO AVERAGE RATIO
                                                                                                         SOME TECH 65
                                                                                                                       379
                                                                                                    CHEBYSHEV
                                                                                                              AMS 63
   POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO MILLS' RATIO
                                                                                                                       892
                                                                                  A NEW ASYMPTOTIC EXPANSION JRSSB62
      FOR THE NORMAL PROBABILITY INTEGRAL AND MILL'S RATIO
                                                                                                                       177
                                           LIKELIHOOD RATIO AND CONFIDENCE-RECION TESTS
                                                                                                              JRSSB65
                                                                                                                       245
                                      ON MULTIVARIATE RATIO AND PRODUCT ESTIMATORS
                                                                                                              BTOKA69 NO 3
                     SOME FINITE POPULATION UNBAISED RATIO AND REGRESSION ESTIMATORS, CORR. 60 755
                                                                                                              JASA 59
                                                                                                                       594
 TV DISTRIBUTION
                                           THE MILLS RATIO AND THE PROBABILITY INTEGRAL FOR A PEARSON TYPE BIOKA65
                                                                                                                       119
                                                  THE RATIO BIAS IN SURVEYS
                                                                                                              JASA 62
                                                                                                                      863
OXON TEST THEORY IN ESTIMATING THE DISTRIBUTION OF A RATIO BY MONTE CARLO METHODS

USE OF WILC
                                                                                                              AMS 62 1194
                                          LIKELIHOOD RATIO COMPUTATIONS OF OPERATING COMPUTATIONS
                                                                                                               AMS 66 1704
FOR APPROXIMATING TO THE DISTRIBUTION OF LIKELIHOOD RATIO CRITERIA A GENERAL METHOD EXPANSIONS OF THE DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR COVARIANCE MATRIX ASYMPTOTIC IONS OF THE NON-NULL DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR HYPOTHESIS AND
                                                                                           A GENERAL METHOD BIOKA56
                                                                                                                      295
                                                                                                  ASYMPTOTIC
                                                                                                              AMS 69 NO.6
                                                                                                               AMS 69 942
RIATES U/
            ON THE EXACT DISTRIBUTIONS OF LIKELIHOOD RATIO CRITERIA FOR TESTING INDEPENDENCE OF SETS OF VA
                                                                                                               AMS 67 1160
       ON THE EXACT DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR TESTING LINEAR HYPOTHESES ABOUT RE
                                                                                                               AMS 66 1319
GRES/
           EXACT DISTRIBUTIONS OF WILKS'S LIKELIHOOD RATIO CRITERION
                                                                                                              BTOKA66 347
                       A NOTE ON THE VARIANCE OF THE RATIO ESTIMATE
                                                                                                              JASA 64
                                                                                                                       895
                                         MULTIVARIATE RATIO ESTIMATION FOR FINITE POPULATIONS
                                                                                                              BTOKA58
                                                                                                                       154
                               UNBIASED COMPONENTWISE RATIO ESTIMATION, CORR. 63 1163
                                                                                                              JASA 61
                                                                                                                       350
                  THE PRECISION OF MICHEY'S UNBIASED RATIO ESTIMATOR
                                                                                                              BTOKA67
                                                                                                                       321
                                       THE HALF-TABLE RATIO ESTIMATOR FOR A SIMPLE EXPONENTIAL MODEL
                                                                                                              BIOCS69
                                                                                                                       420
              ON SAMPLING SCHEMES PROVIDING UNBIASED RATIO ESTIMATORS
                                                                                                               AMS 64
                                                                                                                       222
                                  COMPARISON OF SOME RATIO ESTIMATORS .
                                                                                                              JASA 65
                                                                                                                       294
                                             UNBIASED RATIO ESTIMATORS IN STATIFIED SAMPLING, CORR. 64 1298 JASA 61
                                                                                                                        70
           A TECHNICAL LEMMA FOR MONOTONE LIKELIHOOD RATIO FAMILIES
                                                                                                               AMS 67
                                                                                                                       611
```

RAT - REC TITLE WORD INDEX

```
DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTING MULTIVARIATE LINEAR HYPOTHESES
                                                                                                                 AMS 61 333
                           DISTRIBUTION OF LIKELIHOOD RATIO IN TESTING AGAINST TREND
                                                                                                                  AMS 69 371
PROCESSES
                                           THE STRONG RATIO LIMIT PROPERTY FOR SOME GENERAL MARKOV
                                                                                                                  AMS 69
                                                                                                                          986
                        A NOTE ON THE CENSUS SURVIVAL RATIO METHOD OF ESTIMATING NET MIGRATION
                                                                                                                 JASA 62
                   ON THE CHOICE OF A STRATEGY FOR A RATIO METHOD OF ESTIMATION
                                                                                                                 JRSSB67
        A GENERALIZATION OF FIELLER'S THEOREM TO THE RATIO OF COMPLEX PARAMETERS
                                                                                                                JRSSB67
                                        THE LIMIT OF A RATIO OF CONVOLUTIONS
                                                                                                                 AMS 63
                          ON COMBINING ESTIMATES OF A RATIO OF MEANS
                                                                                                                 JRSSB63
                                        LIMITS FOR THE RATIO OF MEANS (WITH DISCUSSION)
                                                                                                                 JRSSB54
       A NOTE ON COMBINING CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS
                                        BOUNDS FOR THE RATIO OF RANGE TO STANDARD DEVIATION
                                                                                                                 BIOKA55
                                                                                                                          26B
NORMAL SAMPLE
                                                   THE RATIO OF RANGE TO STANDARD DEVIATION IN THE SAME
                                                                                                                BIOKA64
                                                                                                                          4B4
                                                ON THE RATIO OF TWO CORRELATED NORMAL RANDOM VARIABLES
                                                                                                                 BIOKA69 NO.3
                    TWO CONFIDENCE INTERVALS FOR THE RATIO OF TWO PROBABILITIES AND SOME MEASURES OF EFFEC JASA 57
TIVENESS
                                AN INEQUALITY FOR THE RATIO OF TWO QUADRATIC FORMS IN NORMAL VARIATES
                                                                                                                  AMS 68 1762
                ON AN IDENTITY FOR THE VARIANCE OF A RATIO OF TWO RANDOM VARIABLES
                                                                                                                 JRSSB64
                                                                                                                         484
                             PERCENTAGE POINTS OF THE RATIO OF TWO RANGES AND POWER OF THE ASSOCIATED TEST
                                                                                                                 BIOKA63
                                                                                                                          187
                               ON SEQUENTIAL TESTS OF RATIO OF VARIANCES BASED ON RANGE
                                                                                                                 BIOKA63
                                                                                                                         419
         ESTIMATES OF BOUNDED RELATIVE ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTIONS
                                                                                                                 JASA 56
                                                                                                                          481
                SAMPLE SIZE REQUIRED TO ESTIMATE THE RATIO OF VARIANCES WITH BOUNDED RELATIVE ERROR
                                                                                                                 JASA 63 1044
 TABLES OF PERCENTAGE POINTS OF THE LARGEST VARIANCE RATIO S-SQUARE-MAX-OVER-S-SQUARE-SUB-O EXTENSION OF BIOKAG7
                                                                                                                          225
                  A ROBUST VERSION OF THE PROBABILITY RATIO TEST
                                                                                                                 AMS 65 1753
                          THE POWER OF THE LIKELIHOOD RATIO TEST
                                                                                                                  AMS 67
                                                                                                                          802
 THE MOST ECONOMICAL BINOMIAL SEQUENTIAL PROBABILITY RATIO TEST
                                                                                                                 BIOKA60
                                                                                                                          103
    ASPECTS OF THE USE OF THE SEQUENTIAL PROBABILITY RATIO TEST
                                                                                                           SOME JASA 5B
                                                                                                                          1B7
    ON THE RISKS OF ERROR INVOLVED IN THE SEQUENTIAL RATIO TEST
                                                                                                         A NOTE BIOKA56
                                                                                                                          231
RANDOMIZATION DISTRIBUTION AND POWER OF THE VARIANCE RATIO TEST
                                                                                                        ON THE JRSSB63
 THE OPTIMUM CHARACTER OF THE SEQUENTIAL PROBABILITY RATIO TEST
                                                                                                      REMARK ON AMS 66
                                                                                                                          726
THE EXPECTED SAMPLE SIZE IN A SEQUENTIAL PROBABILITY RATIO TEST
                                                                                                    BOUNDS FOR JRSSB60
LATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST
                                                                                     A NOTE ON THE LIMITING RE JASA 60
                                                                                                                          660
ACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST
                                                                           OPTIMALITY AND THE OPERATING CHAR JASA 64
                                        THE LIKELIHOOD RATIO TEST FOR MARKOFF CHAINS
                                                                                                                BIOKA55
                                                                                                                          531
                        CORRIGENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOFF CHAINS'
                                                                                                                 BIOKA57
                                    ON THE LIKELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING PROBLEM
                                                                                                                 AMS 65 1061
II
                                     ON THE LIKELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING PROBLEM,
                                                                                                                  AMS 64 181
STOPPING TIME OF A RANK-ORDER SEQUENTIAL PROBABILITY RATIO TEST ON LEHMANN ALTERNATIVES, CORR. 67 1309
                                                                                                                  AMS 66 1154
         ON THE DISTRIBUTION OF THE LOG LIKELIHOOD RATIO TEST STATISTIC WHEN THE TRUE PARAMETER IS 'NEAR
                                                                                                                 AMS 6B 2044
 PERFORMANCE OF THE TRUNCATED SEQUENTIAL PROBABILITY RATIO TEST, CORR. 66 1247
                                                                                                         ON THE JASA 65 979
         ON THE OPTIMALITY OF SEQUENTIAL PROBABILITY RATIO TESTS
                                                                                                                  AMS 63
                                                                                                                          1B
NIQUENESS AND MONOTONICITY OF SEQUENTIAL PROBABILITY RATIO TESTS
                                                                                                   EXISTENCE, U
                                                                                                                  AMS 63 1541
 SIMPLIFICATION OF A CLASS OF SEQUENTIAL PROBABILITY RATIO TESTS
                                                                                        ON THE SAMPLE SIZE AND
                                                                                                                  AMS 66
                                                                                                                         425
  OF THE CLASS OF GENERALIZED SEQUENTIAL PROBABILITY RATIO TESTS
                                                                                   THE ESSENTIAL COMPLETENESS
                                                                                                                  AMS 61
                                                                                                                          602
TRIBUTION OF SAMPLE NUMBER IN SEQUENTIAL PROBABILITY RATIO TESTS
                                                                            A NOTE ON THE VARIANCE OF THE DIS TECH 66
                                                                                                                          700
TION FOR A CLASS OF INVARIANT SEQUENTIAL PROBABILITY RATIO TESTS

BOUNDS ON THE SAMPLE SIZE DISTRIBU PROBABILITY ONE OF INVARIANT SEQUENTIAL PROBABILITY RATIO TESTS BASED ON MULTIVARIATE NORMAL OBSERVATIONS
                                                                           BOUNDS ON THE SAMPLE SIZE DISTRIBU
                                                                                                                 AMS 68 1048
                                                                                                                 AMS 67
                                                                                                                            8
                SIMPLIFIED RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS
                                                                                                                 BIOKA5B
                                                                                                                         181
                                                                                                                  AMS 68
DISTRIBUTIONS
                                           LIKELIHOOD RATIO TESTS FOR RESTRICTED FAMILITES OF PROBABILITY
                                                                                                                          547
           ON THE MEAN SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARE
                                                                                                                 BIOKA53
                                                                                                                          116
IGENDA TO 'ON THE MEAN SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARE'
                                                                                                           CORR BIOKA58
                                                                                                                          587
 PERSON YEAR OF EXPOSURE
                            CHARACTERISTICS OF A RATIO USED TO ESTIMATE FAILURE RATES, OCCURRENCES PER BIOCS66
                       NOTES CONFIDENCE LIMITS FOR A RATIO USING WILCOXON'S SIGNED RANK TEST
                                                                                                                 BTOCS65
                                                                                                                          231
      TAIL AREAS OF THE T-DISTRIBUTION FROM A MILLS' RATIO-LIKE EXPANSION
                                                                                                                  AMS 63
                        MOMENTS OF NEGATIVE ORDER AND RATIO-STATISTICS
                                                                                                                 JRSSB55
                                   COMPARISON OF FOUR RATIO-TYPE ESTIMATES UNDER A MODEL
  OF MULTIVARIATE POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMATION
                                                                                                   APPLICATIONS JASA 57
                                                                                                                          511
                                                  SOME RATIO-TYPE ESTIMATORS IN TWO-PHASE SAMPLING
                            THE PRECISION OF UNBIASED RATIO-TYPE ESTIMATORS, CORR. 63 1162
                                                                                                                JASA 58
                                                                                                                          491
   BASIC PROPERTIES OF THE INCOMPLETE GAMMA FUNCTION RATIO, CORR. 65 15B4 SOME AMS 65
DEVIATION THE DISTRIBUTION OF THE RATIO, IN A SINGLE NORMAL SAMPLE, OF RANGE TO STANDAR BIOKA54
                                                                                                                          926
                                                                                                                          4B2
                                                   THE RATIONAL ORIGIN FOR MEASURING SUBJECTIVE VALUES
                                                                                                                JASA 57
                                                                                                                          45B
   AND AN 'OBJECTIVE' TEST FOR APPROXIMATE NUMERICAL RATIONALITY A SUBJECTIVE EVALUATION OF BODE'S LAW JASA 69
AND AN 'OBJECTIVE' TEST FOR APPROXIMATE NUMERICAL RATIONALITY' /'A SUBJECTIVE EVALUATION OF BODE'S L JASA 69
                                                                                                                           23
AW AND AN 'OBJECTIVE' TEST FOR APPROXIMATE NUMERICAL RATIONALITY'
                                                                                                                           50
               ON THE ACCURACY OF WEIGHTED MEANS AND RATIOS
                                                                                                                 BIOKA56
                                                                                                                          304
                  CONFIDENCE LIMITS FOR MULTIVARIATE RATIOS
                                                                                                                 JRSSB61
                                                                                                                          108
TWO METHODS OF BIAS REDUCTION IN THE ESTIMATION OF RATIOS ILLE'S METHOD OF BIAS REDUCTION TO THE ESTIMATION OF RATIOS
                                                                                                             ON BIOKAGE
                                                                                                                          571
                                                                          A NOTE ON THE APPLICATION OF QUENOU BIOKA59
                                                                                                                          477
                                                                       UPPER AND LOWER PROBABILITY INFERENCES
    FOR FAMILIES OF HYPOTHESES WITH MONOTONE DENSITY RATIOS
                                                                                                                AMS 69
                                                                                                                          953
ROBABILITY FUNCTION, TABLES OF CERTAIN AREA-ORDINATE RATIOS AND OF THEIR RECIPROCALS
                                                                                                  THE NORMAL P BIOKA55
                                                                                                                          217
                                      ON VARIANCES OF RATIOS AND THEIR DIFFERENCES IN MULTI-STAGE SAMPLES,
CORR. 63 1162
                                                                                                                JASA 59
                                                                                                                          416
                              A NOTE ON ESTIMATION OF RATIOS BY QUENOUILLE'S METHOD.
                                                                                                                RIOKA65
                                                                                                                          647
    SIMULTANEOUS CONFIDENCE LIMITS FOR CROSS-PRODUCT RATIOS IN CONTINGENCY TABLES
                                                                                                                 JRSSB64
                                                                                                                           B6
AL RA/ ON THE DISTRIBUTION OF LINEAR FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED CORRELATED NORM BIOKA64
                                                                                                                          143
                                                                                                                JASA 65
UNIFORM VARIABLES
                                                       RATIOS OF NORMAL VARIABLES AND RATIOS OF SUMS OF
                                                                                                                          193
                                                                                                                  AMS 69
   ON THE DISTRIBUTION OF THE MAXIMUM AND MINIMUM OF RATIOS OF ORDER STATISTICS
                                                                                                                          918
  CONFIDENCE REGIONS FOR VARIANCE RATIOS OF RANDOM MODELS
SPACINGS THEORY, I. LIMIT DISTRIBUTIONS OF SUMS OF RATIOS OF SPACINGS
                                                                                                                JASA 69
                                                                                                                          660
                                                                                      CONTRIBUTIONS TO SAMPLE AMS 66
                                                                                                                          904
      OF PLANT COMPETITION EXPERIMENTS FOR DIFFERENT RATIOS OF SPECIES
                                                                                                       ANALYSIS BIOKA67
                                                                                                                          471
TRANSFORMATIONS
                                                                                                                 AMS 65
                          THE BEHAVIOR OF LIKELIHOOD RATIOS OF STOCHASTIC PROCESSES RELATED BY GROUPS OF
                                                                                                                          529
OMPARISON OF SEVERAL GROUPS OF OBSERVATIONS WHEN THE RATIOS OF THE POPULATION VARIANCES ARE UNKNOWN /E C BIOKA51
SES IN UNIVARIATE AND MULTIVARIATE ANALYSIS WHEN THE RATIOS OF THE POPULATION VARIANCES ARE UNKNOWN
                                                                                                           /THE BIOKA54
                                                                                                                          19
 CRITERION FOR TESTS/ ON THE DISTRIBUTIONS OF THE RATIOS OF THE ROOTS OF A COVARIANCE MATRIX AND WILKS' AMS 69 NO.6
                  SOME EMPIRICAL RESULTS ON VARIANCE RATIOS UNDER PERMUTATION IN THE COMPLETELY RANDOMIZED JASA 66
                                                                                                                         B13
                                   NOTE ON A PAPER BY RAY AND PITMAN + (FISHER-BEHRENS-STATISTIC)
                                                                                                                JRSSB62
                                                                                                                          537
         LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA
                                                                                   SOME EXPERIMENTAL SAMPL BIOCS67
                                                                                                                TECH 62
                                                                                                                          565
ING RESULTS FOR REGRESSION ANALYSIS APPLIED TO GAMMA RAY SPECTROMETER DATA, 1
                                                                                                                          11
LING RESULTS FOR REGRESSION ANALYSIS APPLIED TO GAMMA RAY SPECTROMETER DATA, 2
                                                                                       SOME EXPERIMENTAL SAMP BIOCS68
```

TITLE WORD INDEX RAT - REC

PROPERTIES OF GENERALIZED		AMS 63	903
	RE-DESIGNING AREA SAMPLES UTILIZING PROBABILITIES PRO		
	RE-USE OF SAMPLES	AMS 63	341
	REACTOR FUEL ELEMENT QUALITY A PROCRAM TO ESTIMA		293
A NOTE ON MEASUREMENT ERRORS AND DETECTING		JASA 61	314
	REAL ESTATE PRICE INDEX CONSTRUCTION REAL NUMBERS THE COMPLETE AMALGAMATION	JASA 63	933
		JRSSB61	
ON FINDING LOCAL MAXIMA OF FUNCTIONS OF A		BIOKA67	310
STATISTICAL CONCEPTS IN THEIR RELATION TO		JRSSB55	204
		AMS 65	115
	REALIZATION OF A NON-HOMOCENEOUS FINITE-STATE MARKOV		277
	REALIZATION OF STOCHASTIC SYSTEMS	AMS 67	
NOTE ON THE COMPARISON OF SEVERAL		BIOKA59	412
	REAPPRAISAL OF THE PERIODOGRAM IN SPECTRAL ANALYSIS		531
		AMS 66	355
A BRANCHING PROCESS WITHOUT	REBRANCHING	AMS 69	1B50
THE MULTI-SAMPLE SINGLE	RECAPTURE CENSUS	BIOKA62	33
TION OR DEATH THE MULTIPLE-	RECAPTURE CENSUS II. ESTIMATION WHEN THERE IS IMMIGRA	BIOKA59	336
A NOTE ON THE MULTIPLE-		BIOKA65	249
ON ESTIMATING THE SIZE OF MOBILE POPULATIONS FROM		BIOKA51	293
	RECAPTURE DATA WITH BOTH DEATH AND DILUTION-DETERMINI		113
	RECENT ADVANCES IN SAMPLING THEORY	JASA 63	737
FUNCTION FOR A CALIBRATION LINE, CONSIDERATION OF A			
	RECENT RESEARCH IN REINTERVIEW PROCEDURES		41
INFINITELY DIVISIBLE DISTRIBUTIONS,		AMS 62	6B
WATSON PROCESS ON TOWN THE SUMMARY OF THE STANDARD OF THE STAN	RECENT THEOREMS CONCERNING THE SUPERCRITICAL GALTON-		
EMPHASIS ON NON-NORMALITY SUMMARY OF I	RECENT WORK ON VARIABLES ACCEPTANCE SAMPLING WITH	JASA 5B	NO.4 259
MEASUNING I	RECESSIVE FREQUENCIES FROM TRUNCATED SAMPLES	BIUGGES	
ETERMINISME CENETIONE DES CARACTERES CHANTITATIES ET	RECHERCHE DE 'GENES MAJEURS' /, INTERPRETATION DU D	BIOCSER	277
BIORTHOGONAL AND DUAL CONFIGURATIONS AND THE		AMS 69	
	RECIPROCAL OF A VARIABLE FROM A DECAPITATED NEGATIVE		
	RECIPROCAL OF THE CONDITIONAL EXPECTATION OF A POSITI		
	RECIPROCAL OF THE DECAPITATED NECATIVE BINOMIAL		
ON A SIMPLE ESTIMATE OF THE	RECIPROCAL OF THE DENSITY FUNCTION	AMS 6B	10B3
TABLES OF CERTAIN AREA-ORDINATE RATIOS AND OF THEIR	RECIPROCALS THE NORMAL PROBABILITY FUNCTION,	BIOKA55	
APPROXIMATIONS TO THE MEAN AND STANDARD DEVIATION OF		TECH 63	
A MATHEMATICAL THEORY OF PATTERN		AMS 63	284
	RECONSTRUCTING PATTERNS FROM SAMPLE DATA	AMS 67	
OF CONSUMER ATTITUDE SURVEYS, THEIR FORECASTING			B99
	RECORD LINKACE	JASA 69	
	RECORD MATCHING PROCESS WITH COMPLETE INVARIANT INFOR RECORDING CHILDLESS CASES IN POPULATION CENSUSES /U		
A MODEL FOR OPTIMUM LINKAGE OF	RECORDS	JASA 6B	1321
A MODEL FOR OPTIMUM LINKAGE OF	RECORDS	JASA 6B	1321 921
A MODEL FOR OPTIMUM LINKAGE OF	RECORDS	JASA 6B	1321 921 627
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF	RECORDS RECORDS RECORDS THE LOG (-LOG) RECORDS (WITH DISCUSSION) DISTRIBUTION—	JASA 6B	1321 921 627 1
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE	RECORDS RECORDS ESTIMATES RECORDS THE LOG (-LOG) RECORDS (WITH DISCUSSION) DISTRIBUTION- RECORDS TEST FOR TREND IN NORMAL REGRESSION	JASA 6B BIOCS65 BIOCS6B JRSSB54	1321 921 627 1 149
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE	RECORDS REST FOR TREND IN NORMAL RECRESSION RECORDS REST FOR TREND IN A TIME SERIES	JASA 6B BIOCS65 BIOCS6B JRSSB54 JRSSB57 JRSSB55	1321 921 627 1 149
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE A SAMPLING EXPERIMENT ON THE POWERS OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF	RECORDS REST FOR TREND IN NORMAL RECRESSION RECORDS REST FOR TREND IN A TIME SERIES	JASA 6B BIOCS65 BIOCS6B JRSSB54 JRSSB57 JRSSB55 JASA 59	1321 921 627 1 149 115
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL ITRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE A SAMPLING EXPERIMENT ON THE POWERS OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING	RECORDS RECORDS RECORDS THE LOG (-LOG) RECORDS (WITH DISCUSSION) RECORDS TEST FOR TREND IN NORMAL REGRESSION RECORDS TESTS FOR TREND IN A TIME SERIES RECREATION RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECRUITS FROM A MARK-RECAPTURE EXPERIMENT	JASA 6B BIOCS65 BIOCS6B JRSSB54 JRSSB57 JRSSB55 JASA 59	1321 921 627 1 149 115 281 529
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE A SAMPLING EXPERIMENT ON THE POWERS OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND	RECORDS RECORDS RECORDS THE LOG (-LOG) RECORDS (WITH DISCUSSION) RECORDS TEST FOR TREND IN NORMAL REGRESSION RECORDS TESTS FOR TREND IN A TIME SERIES RECREATION RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECRUITS FROM A MARK-RECAPTURE EXPERIMENT	JASA 6B BIOCS65 BIOCS6B JRSSB54 JRSSB57 JRSSB55 JASA 59 BIOCS65 BIOCS65 AMS 68	1321 921 627 1 149 115 281 529 936 1425
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE. A SAMPLING EXPERIMENT ON THE POWERS OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYINC YOUDEN	RECORDS RECORDS RECORDS RECORDS THE LOG (-LOG) RECORDS (WITH DISCUSSION) RECORDS TEST FOR TREND IN NORMAL REGRESSION RECORDS TESTS FOR TREND IN A TIME SERIES RECREATION STATISTICAL DATA RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECTANGLES RECTANGLES RECTANGLES RECTANGLES	JASA 6B BIOCS65 BIOCS6B JRSSB54 JRSSB57 JRSSB55 JASA 59 BIOCS65 BIOCS65 AMS 68 JRSSB66	1321 921 627 1 149 115 281 529 936 1425 118
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE. A SAMPLING EXPERIMENT ON THE POWERS OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYINC YOUDEN	RECORDS RECORDS RECORDS RECORDS THE LOG (-LOG) RECORDS (WITH DISCUSSION) RECORDS TEST FOR TREND IN NORMAL REGRESSION RECORDS TESTS FOR TREND IN A TIME SERIES RECREATION STATISTICAL DATA RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECTANGLES RECTANGLES RECTANGLES RECTANGLES	JASA 6B BIOCS65 BIOCS6B JRSSB54 JRSSB57 JRSSB55 JASA 59 BIOCS65 BIOCS65 AMS 68 JRSSB66 AMS 66	1321 921 627 1 149 115 281 529 936 1425 118 945
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYING YOUDEN EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND DIMENSIONAL CHAINS INVOLVING	RECORDS RECORDS RECORDS RECORDS THE LOG (-LOG) RECORDS (WITH DISCUSSION) RECORDS TEST FOR TREND IN NORMAL REGRESSION RECORDS TESTS FOR TREND IN A TIME SERIES RECREATION STATISTICAL DATA RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECRUITS FROM A MARK-RECAPTURE EXPERIMENT RECTANGLES RECTANGLES RECTANGULAR ALTERNATIVES RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS	JASA 6B BIOCS65 BIOCS65 BIOCS65 JRSSB57 JRSSB57 JASA 59 BIOCS65 BIOCS65 AMS 68 JRSSB66 AMS 66 TECH 63	1321 921 627 1 149 115 281 529 936 1425 118 945 404
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE. A SAMPLING EXPERIMENT ON THE POWERS OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYINC YOUDEN EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS	RECORDS RECORDS RECORDS RECORDS THE LOG (-LOG) RECORDS (WITH DISCUSSION) RECORDS TEST FOR TREND IN NORMAL REGRESSION RECORDS TESTS FOR TREND IN A TIME SERIES RECREATION STATISTICAL DATA RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECRUITS FROM A MARK-RECAPTURE EXPERIMENT RECTANGLES RECTANGLES RECTANGULAR ALTERNATIVES RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS RECTANGULAR CONFIDENCE RECIONS FOR THE MEANS OF	JASA 6B BIOCS65 BIOCS6B BIOCS65 JRSSB54 JRSSB57 JRSSB55 JASA 59 BIOCS65 AMS 68 JRSSB66 AMS 68 JRSSB66 AMS 67	1321 921 627 1 149 115 281 529 936 1425 118 945 404 626
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE. A SAMPLING EXPERIMENT ON THE POWERS OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYING YOUDEN EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT	RECORDS RECORDS RECORDS RECORDS THE LOG (-LOG) RECORDS (WITH DISCUSSION) RECORDS TEST FOR TREND IN NORMAL REGRESSION RECORDS TESTS FOR TREND IN A TIME SERIES RECREATION STATISTICAL DATA RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECRUITS FROM A MARK-RECAPTURE EXPERIMENT RECTANGLES RECTANGLES RECTANGULAR ALTERNATIVES RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR DISTRIBUTION /OF THE SAMPLE MEAN WHERE	JASA 6B BIOCS65 BIOCS6B BIOCS65 JRSSB57 JRSSB55 JASA 59 BIOCS65 AMS 68 JRSSB66 AMS 66 JRSSB66 AMS 66 JRSSB66 AMS 66 JRSSB66 AMS 67 BIOKA63	1321 921 627 1 149 115 281 529 936 1425 118 945 404 626 508
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE A SAMPLING EXPERIMENT ON THE POWERS OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYING YOUDEN EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FITTING THE	RECORDS RECORDS RECORDS RECORDS THE LOG (-LOG) RECORDS (WITH DISCUSSION) RECORDS TEST FOR TREND IN NORMAL REGRESSION RECORDS TESTS FOR TREND IN A TIME SERIES RECREATION RECORDS TESTS FOR TREND IN A TIME SERIES RECREATION RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECRUITMENT FROM A MARK-RECAPTURE EXPERIMENT RECTANGLES RECTANGLES RECTANGLEAR ALTERNATIVES RECTANGULAR ALTERNATIVES RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR DISTRIBUTION /OF THE SAMPLE MEAN WHERE RECTANGULAR HYPERBOLA	JASA 6B BIOCS65 BIOCS6B JRSSB54 JRSSB57 JRSSB55 JASA 59 BIOCS65 BIOCS65 AMS 68 TECH 63 JASA 67 BIOKA63 BIOCS66	1321 921 627 1 149 115 281 529 936 1425 118 945 404 626 508 573
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE. A SAMPLING EXPERIMENT ON THE POWERS OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYINC YOUDEN EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FITTING THE FACTORIAL TREATMENTS IN	RECORDS RECORDS RECORDS RECORDS THE LOG (-LOG) RECORDS (WITH DISCUSSION) RECORDS TEST FOR TREND IN NORMAL REGRESSION RECORDS TESTS FOR TREND IN A TIME SERIES RECREATION STATISTICAL DATA RECRUITMENT FROM A SINGLE TACGING EXPERIMENT RECTANGLES RECTANGLES RECTANGLES RECTANGULAR ALTERNATIVES RECTANGULAR ALTERNATIVES RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR DISTRIBUTION /OF THE SAMPLE MEAN WHERE RECTANGULAR HYPERBOLA RECTANGULAR LATTICE DESIGNS	JASA 6B BIOCS65 BIOCS6B BIOCS65 JRSSB57 JRSSB55 JASA 59 BIOCS65 AMS 68 JRSSB66 AMS 66 JRSSB66 AMS 66 JRSSB66 AMS 66 JRSSB66 AMS 67 BIOKA63	1321 921 627 1 149 115 281 529 936 1425 118 945 404 626 508 573 368
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYINC YOUDEN EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FITTING THE FACTORIAL TREATMENTS IN THE QUOTIENT OF A	RECORDS RECORDS RECORDS RECORDS THE LOG (-LOG) RECORDS (WITH DISCUSSION) RECORDS TEST FOR TREND IN NORMAL REGRESSION RECORDS TESTS FOR TREND IN A TIME SERIES RECREATION STATISTICAL DATA RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECTURITS FROM A MARK-RECAPTURE EXPERIMENT RECTANGLES RECTANGLES RECTANGULAR ALTERNATIVES RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR DISTRIBUTION /OF THE SAMPLE MEAN WHERE RECTANGULAR HYPERBOLA RECTANGULAR LATTICE DESIGNS	JASA 6B BIOCS65 BIOCS65 JASS554 JRSSB57 JASA 59 BIOCS65 BIOCS65 AMS 68 JRSSB66 TECH 63 JASA 67 BIOKA63 JASA 67	1321 921 627 1 149 115 281 529 936 1425 118 945 404 626 508 373 368 330
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE A SAMPLING EXPERIMENT ON THE POWERS OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYINC YOUDEN EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FITTING THE FACTORIAL TREATMENTS IN THE QUOTIENT OF A SPREAD OF DISEASES IN A	RECORDS RECORDS RECORDS RECORDS THE LOG (-LOG) RECORDS (WITH DISCUSSION) RECORDS TEST FOR TREND IN NORMAL REGRESSION RECORDS TEST FOR TREND IN A TIME SERIES RECREATION STATISTICAL DATA RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECRUITS FROM A MARK-RECAPTURE EXPERIMENT RECTANGLES RECTANGLES RECTANGULAR ALTERNATIVES RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS RECTANGULAR ON FIDENCE REGIONS FOR THE MEANS OF RECTANGULAR DISTRIBUTION /OF THE SAMPLE MEAN WHERE RECTANGULAR LATTICE DESIGNS RECTANGULAR LATTICE DESIGNS RECTANGULAR ON TRIANGULAR AND A GENERAL VARIATE	JASA 6B B10CS65 B10CS6B JRSSB54 JRSSB57 JRSSB55 B10CS65 B10CS65 AMS 68 JRSSB66 AMS 66 TECH 63 JASA 67 B10CS66 B10CS66 JASA 61 B10CS66 B10CS66 B10CS66 B10CS66 B10CS66 B10CS66 B10CS66 B10CS66 B10CS66 B10CS66 B10CS66 B10CS66	1321 921 627 1 149 115 281 529 936 1425 118 945 404 626 508 573 368 330 287
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYINC YOUDEN EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FACTORIAL TREATMENTS IN THE QUOTIENT OF A SPREAD OF DISEASES IN A CT CONFIDENCE BOUNDS FOR THE STANDARD DEVIATION OF A ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE	RECORDS REST FOR TREND IN NORMAL REGRESSION RECORDS TEST FOR TREND IN A TIME SERIES RECREATION STATISTICAL DATA RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECTANCLES RECTANGLES RECTANGULAR RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR DISTRIBUTION /OF THE SAMPLE MEAN WHERE RECTANGULAR LATTICE DESIGNS RECTANGULAR LATTICE DESIGNS RECTANGULAR POPULATION WITH VACANCIES RECTANGULAR POPULATION /AMPLE RANGES IN SETTING EXA RECTANGULAR POPULATION /ROM CENSORED SAMPLES	JASA 6B B10CS65 B10CS6B JRSSB54 JRSSB57 JRSSB55 B10CS65 B10CS65 AMS 68 JRSSB66 AMS 66 TECH 63 JASA 67 B10CS66 B10CS66 JASA 61 B10CS66 B10CS66 B10CS66 B10CS66 B10CS66 B10CS66 B10CS66 B10CS66 B10CS66 B10CS66 B10CS66 B10CS66	1321 921 627 1 149 115 281 529 936 1425 118 945 404 626 508 573 368 330 2B7 601
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYINC YOUDEN EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FITTING THE FACTORIAL TREATMENTS IN THE QUOTIENT OF A SPREAD OF DISEASES IN A CT CONFIDENCE BOUNDS FOR THE STANDARD DEVIATION OF A ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE ON TESTING THE EQUALITY OF PARAMETERS IN K	RECORDS RECORDS RECORDS RECORDS RECORDS THE LOG (-LOG) RECORDS (WITH DISCUSSION) RECORDS TEST FOR TREND IN NORMAL REGRESSION RECORDS TEST FOR TREND IN A TIME SERIES RECREATION STATISTICAL DATA RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECRUITS FROM A MARK-RECAPTURE EXPERIMENT RECTANGLES RECTANGULAR ALTERNATIVES RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR LATTICE DESIGNS RECTANGULAR CONFIDENCE REGIONS FOR THE MEAN WHERE RECTANGULAR LATTICE DESIGNS RECTANGULAR OR TRIANGULAR AND A GENERAL VARIATE RECTANGULAR POPULATION /AMPLE RANGES IN SETTING EXA RECTANGULAR POPULATION FROM CENSORED SAMPLES RECTANGULAR POPULATIONS	JASA 6B B100S65 B100S65 JRSSB57 JRSSB57 JASA 55 B100S65 B100S65 AMS 668 TECH 63 JASA 67 B100KA63 B100KA63 B100KA64 B10KA63 JASA 61 JASA 61 JASA 63 JASA 61 JASA 65 JASA 61 JASSA 69 JASSA 60	1321 921 627 1 149 115 281 529 936 1425 118 945 404 626 508 573 368 330 2B7 601 356 144
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYINC YOUDEN EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FITTING THE FACTORIAL TREATMENTS IN THE QUOTIENT OF A SPREAD OF DISEASES IN A CT CONFIDENCE BOUNDS FOR THE STANDARD DEVIATION OF A ESTIMATION OF LOCATION AND SCALE PARAMETERS OR THE ON TESTING THE EQUALITY OF PARAMETERS IN KITHE DISTRIBUTIONS OF PRODUCT STATISTICS ARISING FROM	RECORDS RECORDS RECORDS RECORDS RECORDS RECORDS (WITH DISCUSSION) RECORDS (WITH DISCUSSION) RECORDS TEST FOR TREND IN NORMAL REGRESSION RECORDS TESTS FOR TREND IN A TIME SERIES RECREATION RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECRUITS FROM A MARK-RECAPTURE EXPERIMENT RECTANGLES RECTANGLES RECTANGULAR ALTERNATIVES RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR LATTICE DESIGNS RECTANGULAR HYPERBOLA RECTANGULAR LATTICE DESIGNS RECTANGULAR PLANTATION WITH VACANCIES RECTANGULAR PLANTATION WITH VACANCIES RECTANGULAR POPULATION / AMPLE RANGES IN SETTING EXA RECTANGULAR POPULATION FROM CENSORED SAMPLES RECTANGULAR POPULATIONS RECTANGULAR P	JASA 6B B10CS65 B10CS65 JRSSB54 JRSSB55 JASA 59 B10CS65 B10CS65 B10CS65 B10CS66 TECH 63 JASA 67 B10KA63 B10KA63 JASA 61 B10KA63 JASA 61 JRSSB59 JRSSB59 JASA 61 JRSSB59 JASA 61 JASA 60 JASA 61	1321 921 627 1 149 115 281 529 936 1425 404 626 508 573 368 330 2B7 601 356 144 557
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE. A SAMPLING EXPERIMENT ON THE POWERS OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYING YOUDEN EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FITTING THE FACTORIAL TREATMENTS IN THE QUOTIENT OF A SPREAD OF DISEASES IN A CT CONFIDENCE BOUNDS FOR THE STANDARD DEVIATION OF A ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE ON TESTING THE EQUALITY OF PARAMETERS IN K THE DISTRIBUTIONS OF PRODUCT STATISTICS ARISING FROM ON SUMS AND PRODUCTS OF	RECORDS REST FOR TREND IN NORMAL REGRESSION RECORDS TEST FOR TREND IN A TIME SERIES RECREATION STATISTICAL DATA RECRUITMENT FROM A SINGLE TACGING EXPERIMENT RECTANGLES RECTANGLES RECTANGLES RECTANGULAR RECTANGULAR AND NORMAL ERROR—DISTRIBUTIONS RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR CONFIDENCE REGIONS FOR THE MEAN WHERE RECTANGULAR LATTICE DESIGNS RECTANGULAR LATTICE DESIGNS RECTANGULAR POPULATION WITH VACANCIES RECTANGULAR POPULATION FROM CENSORED SAMPLES RECTANGULAR POPULATIONS RECTANGULAR VARIATES	JASA 6B B10CS65 B10CS65 JRSSB54 JRSSB55 JASA 55 B10CS65 B10CS65 B10CS65 B10CS65 AMS 66 TECH 63 JASA 67 B10KA63 B10KA63 B10KA64 JASA 61 JASA 61 JASA 61 JASA 61 JASA 60 JASA 60 JASA 60 JASA 60 JASA 60 JASA 60 JASA 60	1321 921 627 1 149 115 281 529 936 1425 118 945 404 626 508 573 368 330 2B7 601 356 144 557 615
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYINC YOUDEN EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FITTING THE FACTORIAL TREATMENTS IN THE QUOTIENT OF A SPREAD OF DISEASES IN A CT CONFIDENCE BOUNDS FOR THE STANDARD DEVIATION OF A ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE ON TESTING THE EQUALITY OF PARAMETERS IN K THE DISTRIBUTIONS OF PRODUCT STATISTICS ARISING FROM ON SUMS AND PRODUCTS OF 159 810	RECORDS RECORDS RECORDS RECORDS RECORDS THE LOG (-LOG) RECORDS (WITH DISCUSSION) RECORDS TEST FOR TREND IN NORMAL REGRESSION RECORDS TEST FOR TREND IN A TIME SERIES RECREATION STATISTICAL DATA RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECRUITS FROM A MARK-RECAPTURE EXPERIMENT RECTANGLES RECTANGLES RECTANGLES RECTANGULAR ALTERNATIVES RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS RECTANGULAR DISTRIBUTION /OF THE MEANS OF RECTANGULAR LATTICE DESIGNS RECTANGULAR LATTICE DESIGNS RECTANGULAR CONTIDENCE REGIONS FOR THE MEAN WHERE RECTANGULAR CONTIDENCE REGIONS FOR THE MEAN WHERE RECTANGULAR DISTRIBUTION /OF THE SAMPLE MEAN WHERE RECTANGULAR CONTIDENCE REGIONS FOR THE MEAN WHERE RECTANGULAR POPULATION /OF THE SAMPLE MEAN WHERE RECTANGULAR POPULATION WITH VACANCIES RECTANGULAR POPULATION FROM CENSORED SAMPLES RECTANGULAR POPULATION FROM CENSORED SAMPLES RECTANGULAR POPULATIONS RECTANGULAR P	JASA 6B B10CS65 B10CS68 JRSSB54 JRSSB55 JJSSB55 JASA 59 B10CS65 B10CS65 AMS 68 JRSSB66 AMS 66 TECH 63 B10CS66 JASA 61 B10CK64 B10KA54 B10KA54 B10KA54 B10KA54 B10KA54 B10KA54 B10KA54 B10KA54 B10KA54 B10KA54 B10KA54 B10KA54 B10KA54 B10KA54 B10KA54 B10KA55 JASA 61 JRSSB59 JASA 64 B10KA56 JASA 64 B10KA56 JASA 64 B10KA56 JASA 64 B10KA56 JASA 64 B10KA56 JASA 64 B10KA56 JASA 64	1321 921 627 1 149 115 281 529 936 1425 118 945 404 626 508 573 330 2B7 601 44 557 615 702
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE. A SAMPLING EXPERIMENT ON THE POWERS OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYING YOUDEN EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FITTING THE FACTORIAL TREATMENTS IN THE QUOTIENT OF A SPREAD OF DISEASES IN A CT CONFIDENCE BOUNDS FOR THE STANDARD DEVIATION OF A ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE ON TESTING THE EQUALITY OF PARAMETERS IN K THE DISTRIBUTIONS OF PRODUCT STATISTICS ARISING FROM ON SUMS AND PRODUCTS OF 159 810	RECORDS RECORD	JASA 6B B10CS65 B10CS65 JRSSB54 JRSSB55 JASA 59 B10CS65 B10CS65 B10CS65 B10CS66 AMS 66 AMS 66 AMS 66 JASA 67 B10KA63 JASA 61 B10KA54 B10KA54 JASA 60 JASA 61 JASA 61 JASA 61 JASA 61 JASA 61 JASA 61 JASA 64 JASA 65 JASA 61	1321 921 627 1 149 936 115 281 529 936 1425 118 945 404 626 508 330 287 601 356 144 557 615 702 807
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE. A SAMPLING EXPERIMENT ON THE POWERS OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYING YOUDEN EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FITTING THE FACTORIAL TREATMENTS IN THE QUOTTENT OF A SPREAD OF DISEASES IN A CT CONFIDENCE BOUNDS FOR THE STANDARD DEVIATION OF A ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE ON TESTING THE EQUALITY OF PARAMETERS IN K THE DISTRIBUTIONS OF PRODUCT STATISTICS ARISING FROM ON SUMS AND PRODUCTS OF 159 810	RECORDS REST FOR TREND IN NORMAL REGRESSION RECORDS TEST FOR TREND IN A TIME SERIES RECREATION RECRETION RECORD TESTS FOR TREND IN A TIME SERIES RECREATION RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECTANGLES RECTANGLES RECTANGLES RECTANGLEAR AND NORMAL ERROR-DISTRIBUTIONS RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR HYPERBOLA RECTANGULAR LATTICE DESIGNS RECTANGULAR LATTICE DESIGNS RECTANGULAR PANTATION WITH VACANCIES RECTANGULAR POPULATION /AMPLE RANGES IN SETTING EXA RECTANGULAR POPULATIONS RECTANG	JASA 6B B10CS65 B10CS65 JRSSB54 JRSSB55 JASA 59 B10CS65 B10CS65 B10CS65 B10CS66 JASA 67 B10KA63 JASA 67 B10KA63 JASA 61 B10KA54 JASA 61 JASA 61 JASA 64 JASA 64 JASA 64 JASA 64 JASA 64 JASA 64 JASA 64 JASA 65 JASA 5B JASA 5B JASA 5B	1321 921 927 1 149 115 281 529 936 1425 118 945 404 626 508 330 2B7 601 356 144 557 601 557 602 B07
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABLILITIES OF CLASSIFYINC YOUDEN EXACT FOWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FACTORIAL TREATMENTS IN THE QUOTIENT OF A SPREAD OF DISEASES IN A SPREAD OF DISEASES IN A ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE ON TESTING THE EQUALITY OF PARAMETERS IN KENTER OF THE STATISTICS ARISING FROM ON SUMS AND PRODUCTS OF THE STATISTICS ARISING FROM ON SUMS AND PRODUCTS OF THE STATISTICS ARISING FROM A DISCRETE DISTRIBUTION ESTIMATORS FROM THE	RECORDS RECORDS RECORDS RECORDS RECORDS THE LOG (-LOG) RECORDS (WITH DISCUSSION) RECORDS TEST FOR TREND IN NORMAL REGRESSION RECORDS TEST FOR TREND IN A TIME SERIES RECREATION STATISTICAL DATA RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECTANCLES RECTANGLES RECTANGLES RECTANGULAR ALTERNATIVES RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS RECTANGULAR OF TRIBUTION /OF THE MEANS OF RECTANGULAR DISTRIBUTION /OF THE SAMPLE MEAN WHERE RECTANGULAR LATTICE DESIGNS RECTANGULAR OR TRIANGULAR AND A GENERAL VARIATE RECTANGULAR POPULATION WITH VACANCIES RECTANGULAR POPULATION FROM CENSORED SAMPLES RECTANGULAR POPULATION FROM CENSORED SAMPLES RECTANGULAR POPULATIONS RECTANGULAR VARIATES RECTIFYING INSPECTION OF A CONTINUOUS OUTPUT, CORR. RECTIFYING INSPECTION OF LOTS RECTIFYING INSPECTION OF LOTS RECTIFYING INSPECTION PLAN RECURRENCE EQUATION FOR PROBABILITIES	JASA 6B B10CS65 B10CS65 JRSSB54 JRSSB55 JASA 59 B10CS65 B10CS65 AMS 68 JRSSB66 AMS 66 TECH 63 JASA 67 B10KA63 B10CS66 B10KA64 B10KA64 B10KA64 B10KA64 B10KA64 B10KA64 B10KA64 B10KA66	1321 921 627 1 149 115 281 529 936 1425 118 945 404 626 508 573 368 330 2B7 601 356 144 557 702 B07 124 602
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYING YOUDEN EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FITTING THE FACTORIAL TREATMENTS IN THE QUOTIENT OF A SPREAD OF DISEASES IN A CT CONFIDENCE BOUNDS FOR THE STANDARD DEVIATION OF A ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE ON TESTING THE EQUALITY OF PARAMETERS IN K THE DISTRIBUTIONS OF PRODUCT STATISTICS ARISING FROM ON SUMS AND PRODUCTS OF SO SID	RECORDS RECORDS RECORDS RECORDS RECORDS THE LOG (-LOG) RECORDS (WITH DISCUSSION) RECORDS TEST FOR TREND IN NORMAL REGRESSION RECORDS TEST FOR TREND IN A TIME SERIES RECREATION STATISTICAL DATA RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECRUITS FROM A MARK-RECAPTURE EXPERIMENT RECTANGLES RECTANGULAR ALTERNATIVES RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS WHERE RECTANGULAR LATTICE DESIGNS RECTANGULAR CONFIDENCE REGIONS FOR THE MEAN WHERE RECTANGULAR CONFIDENCE REGIONS FOR THE MEAN WHERE RECTANGULAR POPELATION /OF THE SAMPLE MEAN WHERE RECTANGULAR OR TRIANGULAR AND A GENERAL VARIATE RECTANGULAR POPULATION WITH VACANCIES RECTANGULAR POPULATION /AMPLE RANGES IN SETTING EXA RECTANGULAR POPULATION FROM CENSORED SAMPLES RECTANGULAR POPULATIONS RECTANGULAR VARIATES RECTIFYING INSPECTION OF A CONTINUOUS OUTPUT, CORR. RECTIFYING INSPECTION PLAN RECURRENCE FOR PERMUTATIONS WITHOUT RISING OR FALLING	JASA 6B B10CS65 B10CS65 B10CS65 JRSSB57 JRSSB55 JASA 59 B10CS65 B10CS65 B10CS65 AMS 66 AMS 66 AMS 66 JASA 67 B10KA63 B10CS65 JASA 61 JASA 61 JASA 60 JASA 61 JASA 61 JASA 64 JASA 65 JASA 66 JASA 64 B10KA64 B10KA64 B10KA64 B10KA64 B10KA66 JASA 64 B10KA66 JASA 64 B10KA66 JASA 64 B10KA66 JASA 65 JASA 61	1321 921 627 1 149 936 115 281 529 936 1425 118 945 404 626 508 330 287 601 356 144 557 615 702 807 124 602 708
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE. A SAMPLING EXPERIMENT ON THE POWERS OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYING YOUDEN EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FITTING THE FACTORIAL TREATMENTS IN THE QUOTIENT OF A SPREAD OF DISEASES IN A CT CONFIDENCE BOUNDS FOR THE STANDARD DEVIATION OF A ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE ON TESTING THE EQUALITY OF PARAMETERS IN THE DISTRIBUTIONS OF PRODUCT STATISTICS ARISING FROM ON SUMS AND PRODUCTS OF SOME OF THE SUCCESSIONS DISCRETE DISTRIBUTION ESTIMATORS FROM THE SUCCESSIONS ONSTRUCTION OF ORTHOGONAL POLYNOMIALS FROM A GENERAL	RECORDS RECORDS RECORDS RECORDS RECORDS THE LOG (-LOG) RECORDS (WITH DISCUSSION) RECORDS TEST FOR TREND IN NORMAL REGRESSION RECORDS TEST FOR TREND IN A TIME SERIES RECREATION STATISTICAL DATA RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECRUITS FROM A MARK-RECAPTURE EXPERIMENT RECTANGLES RECTANGULAR ALTERNATIVES RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS WHERE RECTANGULAR LATTICE DESIGNS RECTANGULAR CONFIDENCE REGIONS FOR THE MEAN WHERE RECTANGULAR CONFIDENCE REGIONS FOR THE MEAN WHERE RECTANGULAR POPELATION /OF THE SAMPLE MEAN WHERE RECTANGULAR OR TRIANGULAR AND A GENERAL VARIATE RECTANGULAR POPULATION WITH VACANCIES RECTANGULAR POPULATION /AMPLE RANGES IN SETTING EXA RECTANGULAR POPULATION FROM CENSORED SAMPLES RECTANGULAR POPULATIONS RECTANGULAR VARIATES RECTIFYING INSPECTION OF A CONTINUOUS OUTPUT, CORR. RECTIFYING INSPECTION PLAN RECURRENCE FOR PERMUTATIONS WITHOUT RISING OR FALLING	JASA 6B B10CS65 B10CS65 JRSSB54 JRSSB55 JASA 59 B10CS65 B10CS65 B10CS66 AMS 66 TECH 63 JASA 67 B10KA63 JASA 61 B10KA63 JASA 61 JASA 64 JASA 64 JASA 64 JASA 61 JASA 61 JASA 61 JASA 61 JASA 61 JASA 61 JASA 64 B10KA66 JASA 66 JASA 66	1321 921 927 1 149 115 281 529 936 1425 118 945 404 626 508 330 2B7 601 356 144 557 601 557 615 702 702 802 708
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYINC YOUDEN DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FACTORIAL TREATMENTS IN THE QUOTIENT OF A SPREAD OF DISEASES IN A SPREAD OF DISEASES IN A CT CONFIDENCE BOUNDS FOR THE STANDARD DEVIATION OF A ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE ON TESTING THE EQUALITY OF PARAMETERS IN K THE DISTRIBUTIONS OF PRODUCT STATISTICS ARISING FROM ON SUMS AND PRODUCTS OF SO SONSTRUCTION OF ORTHOGONAL POLYNOMIALS FROM A GENERAL ER STATISTICS FROM BIVARIATE DISTRIBUTIONS	RECORDS RECORDS RECORDS RECORDS RECORDS RECORDS THE LOG (-LOG) RECORDS (WITH DISCUSSION) RECORDS TEST FOR TREND IN NORMAL REGRESSION RECORDS TESTS FOR TREND IN A TIME SERIES RECREATION STATISTICAL DATA RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECTURESTS FROM A MARK-RECAPTURE EXPERIMENT RECTANGLES RECTANGLES RECTANGULAR ALTERNATIVES RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR HYPERBOLA RECTANGULAR LATTICE DESIGNS RECTANGULAR LATTICE DESIGNS RECTANGULAR PANTATION WITH VACANCIES RECTANGULAR POPULATION /AMPLE RANGES IN SETTING EXA RECTANGULAR POPULATION FROM CENSORED SAMPLES RECTANGULAR POPULATIONS SOME CENERALIZATIONS OF RECTANGULAR POPULATIONS RECTANGULAR POPULATIONS RECTANGULAR POPULATIONS RECTANGULAR VARIATES RECTIFYING INSPECTION OF A CONTINUOUS OUTPUT, CORR. RECTIFYING INSPECTION OF LOTS RECTIFYING INSPECTION PLAN RECURRENCE FOR PERMULAI NUMERICAL C NUMERICAL C	JASA 6B B10CS65 B10CS65 JRSSB54 JRSSB55 JASA 55 B10CS65 B10CS65 AMS 68 JRSSB66 AMS 66 TECH 63 JASA 67 B10KA63 B10CS66 B10KA64 B10KA64 B10KA64 B10KA64 B10KA64 B10KA65 JASA 61 JRSSB59 JASA 60 JASA 61 JRSSB59 JASA 64 B10KA66 JASA 5B JASA 61 JRSSB55 JASA 66 JASA 68 JASA 68	1321 921 627 1 149 115 281 529 936 1425 118 945 404 626 508 573 368 330 2B7 601 356 144 557 702 B07 702 B07 124 602 708 695 600
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYINC YOUDEN EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FITTING THE FACTORIAL TREATMENTS IN THE QUOTIENT OF A ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE ON TESTING THE EQUALITY OF PARAMETERS IN A ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE ON TESTING THE EQUALITY OF PARAMETERS IN K THE DISTRIBUTIONS OF PRODUCT STATISTICS ARISING FROM ON SUMS AND PRODUCTS OF SOME ON SUMS AND PRODUCTS OF SOME ON SUMS AND PRODUCTS OF SUCCESSIONS A DISCRETE DISTRIBUTION ESTIMATORS FROM THE SUCCESSIONS ONSTRUCTION OF ORTHOGONAL POLYNOMIALS FROM A GENERAL ER STATISTICS FROM BIVARIATE DISTRIBUTIONS A NOTE ON	RECORDS RECORDS RECORDS RECORDS RECORDS THE LOG (-LOG) RECORDS (WITH DISCUSSION) RECORDS TEST FOR TREND IN NORMAL REGRESSION RECORDS TEST FOR TREND IN A TIME SERIES RECREATION STATISTICAL DATA RECRUITMENT FROM A SINGLE TACGING EXPERIMENT RECRUITMENT FROM A SINGLE TACGING EXPERIMENT RECTANGLES RECTANGLES RECTANGLES RECTANGULAR ALTERNATIVES RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR DISTRIBUTION /OF THE SAMPLE MEAN WHERE RECTANGULAR LATTICE DESIGNS RECTANGULAR PAINTED DESIGNS RECTANGULAR POPULATION WITH VACANCIES RECTANGULAR POPULATION FROM CENSORED SAMPLES RECTANGULAR POPULATION FROM CENSORED SAMPLES RECTANGULAR POPULATIONS RECTANGULAR POPULATIONS RECTANGULAR POPULATIONS RECTANGULAR POPULATIONS RECTANGULAR POPULATION FROM CENSORED SAMPLES RECTANGULAR VARIATES RECTIFYING INSPECTION OF A CONTINUOUS OUTPUT, CORR. RECTIFYING INSPECTION OF A CONTINUOUS OUTPUT, CORR. RECTIFYING INSPECTION PLAN RECURRENCE EQUATION FOR PROBABILITIES RECURRENCE EQUATION FOR PROBABILITIES RECURRENCE FORMULA RECURRENCE FORMULA ROUMERICAL C RECURRENCE	JASA 6B BIOCS6B BIOCS6B JRSSB54 JRSSB55 JJSSB55 JASA 59 BIOCS66 BIOCS66 AMS 68 JRSSB66 AMS 66 TECH 63 BIOKA63 BIOCS66 JASA 61 BIOKA54 BIOKA54 BIOKA54 BIOKA54 BIOKA54 BIOKA54 BIOKA54 BIOKA54 BIOKA55 JASA 61 JASA 61 JASA 66 AMS 66	1321 921 927 1 149 115 281 529 936 1425 118 945 404 626 508 573 330 2B7 601 44 557 615 702 B07 124 602 708 695 600 733
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE. A SAMPLING EXPERIMENT ON THE POWERS OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYING YOUDEN EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FACTORIAL TREATMENTS IN THE QUOTIENT OF A SPREAD OF DISEASES IN A SPREAD OF DISEASES IN A CT CONFIDENCE BOUNDS FOR THE STANDARD DEVIATION OF A ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE ON TESTING THE EQUALITY OF PARAMETERS IN K THE DISTRIBUTIONS OF PRODUCT STATISTICS ARISING FROM ON SUMS AND PRODUCTS OF 59 810 DISCRETE DISTRIBUTION ESTIMATORS FROM THE SUCCESSIONS ONSTRUCTION OF ORTHOGONAL POLYNOMIALS FROM A GENERAL ER STATISTICS FROM BIVARIATE DISTRIBUTIONS A IONS OF ORDER STATISTICS A NOTE ON ICS FOR EXCHANGEABLE VARIABLES, AND SOME APPLICA/	RECORDS REST FOR TREND IN NORMAL REGRESSION RECORDS TEST FOR TREND IN A TIME SERIES RECREATION STATISTICAL DATA RECRUITMENT FROM A SINGLE TACGING EXPERIMENT RECTANGLES RECTANGLES RECTANGLES RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS RECTANGULAR AND TISTIBUTION /OF THE SAMPLE MEAN WHERE RECTANGULAR HYPERBOLA RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR POPULATION /OF THE SAMPLE MEAN WHERE RECTANGULAR POPULATION WITH VACANCIES RECTANGULAR POPULATION WITH VACANCIES RECTANGULAR POPULATION FROM CENSORED SAMPLES RECTANGULAR POPULATIONS RECTANGULAR POPULATIONS RECTANGULAR POPULATIONS RECTANGULAR POPULATIONS RECTANGULAR POPULATIONS RECTANGULAR POPULATIONS RECTANGULAR VARIATES RECTIFYING INSPECTION OF A CONTINUOUS OUTPUT, CORR. RECTIFYING INSPECTION OF A CONTINUOUS OUTPUT, CORR. RECTIFYING INSPECTION OF LOTS RECTIFYING INSPECTION OF LOTS RECTIFYING INSPECTION FOR PROBABILITIES RECURRENCE FOR PERMULA RECURRENCE FOR PERMULA NUMERICAL C RECURRENCE FOR PERMULA NUMERICAL C RECURRENCE RELATIONS BETWEEN EXPECTED VALUES OF FUNCT RECURRENCE RELATIONS BETWEEN EXPECTED VALUES OF FORCE RECURRENCE RELATIONS BETWEEN THE P.D.F.'S OF ORDER STATIST RECURRENCE RELATIONS BETWEEN THE P.D.F.'S OF ORDER STATIST	JASA 6B B10CS65 B10CS65 JRSSB54 JRSSB55 JASA 59 B10CS65 B10CS65 B10CS65 B10CS65 AMS 66 TECH 63 JASA 67 B10KA63 B10KA63 B10KA64 B10KA64 B10KA54 B10KA54 JASA 61 JASA 61 JASA 61 JASA 65 JASA 68 JASA 68 B10KA66 JASA 68 B10KA66	1321 921 921 149 115 281 529 936 1425 118 945 404 626 508 573 368 330 287 601 356 144 557 702 807 124 602 708 600 733 272 283
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYINC YOUDEN EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FACTORIAL TREATMENTS IN THE QUOTIENT OF A ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE ON TESTING THE EQUALITY OF PARAMETERS IN A ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE ON TESTING THE EQUALITY OF PARAMETERS IN K THE DISTRIBUTIONS OF PRODUCT STATISTICS ARISING FROM ON SUMS AND PRODUCTS OF SOME STATISTICS FROM BIVARIATE DISTRIBUTIONS A CONSTRUCTION OF ORTHOGONAL POLYNOMIALS FROM A GENERAL ER STATISTICS FROM BIVARIATE DISTRIBUTIONS A IONS OF ORDER STATISTICS AND SOME APPLICAL/FUNCTIONS OF ORDER STATISTICS, AND SOME APPLICAL/FUNCTIONS OF ORDER STATISTICS.	RECORDS REST FOR TREND IN NORMAL REGRESSION RECORDS TEST FOR TREND IN A TIME SERIES RECREATION STATISTICAL DATA RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECTANGLES RECTANGLES RECTANGLES RECTANGULAR ALTERNATIVES RECTANGULAR AND NORMAL ERROR—DISTRIBUTIONS RECTANGULAR AND NORMAL ERROR—DISTRIBUTIONS RECTANGULAR DISTRIBUTION /OF THE MEANS OF RECTANGULAR LATTICE DESIGNS RECTANGULAR OR TRIANGULAR AND A GENERAL VARIATE RECTANGULAR POPULATION WITH VACANCIES RECTANGULAR POPULATION FROM CENSORED SAMPLES RECTANGULAR POPULATION FROM CENSORED SAMPLES RECTANGULAR POPULATIONS RECTANGULAR POPUL	JASA 6B B10CS65 B10CS65 JRSSB54 JRSSB55 JJRSSB55 JASA 59 B10CS65 B10CS65 AMS 68 JRSSB66 AMS 66 TECH 63 JASA 67 B10KA63 JASA 61 B10KA54 B10KA54 B10KA54 B10KA54 B10KA55 JASA 61 JRSSB59 JASA 60 JASA 64 B10KA65 JASA 65 JASA 66 JASA 5B JASA 66 JASA 5B JASA 61 JASA 66 JASA 5B JASA 66 JASA 66 JASA 5B JASA 66	1321 921 627 1 149 115 281 529 936 1425 118 945 404 626 508 573 368 330 2B7 601 5702 B07 124 602 708 695 600 733 272 283 169
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE. A SAMPLING EXPERIMENT ON THE POWERS OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYING YOUDEN EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FITTING THE FACTORIAL TREATMENTS IN THE QUOTIENT OF A SPREAD OF DISEASES IN A CT CONFIDENCE BOUNDS FOR THE STANDARD DEVIATION OF A ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE ON TESTING THE EQUALITY OF PARAMETERS IN K THE DISTRIBUTIONS OF PRODUCT STATISTICS ARISING FROM ON SUMS AND PRODUCTS OF SHOOTH OF ORTHOGONAL POLYNOMIALS FROM A GENERAL ER STATISTICS FROM BIVARIATE DISTRIBUTIONS A ONSTRUCTION OF ORTHOGONAL POLYNOMIALS FROM A GENERAL ER STATISTICS FROM BIVARIATED STATISTICS A NOTE ON ICS FOR EXCHANGEABLE VARIATES AT ISTICS OF DEPENDENT VARIABLES, AND SOME APPLICATI/OF THE LINEAR EXPONENTIAL FAMILTY IN A PARAMETER BY	RECORDS REST FOR TREND IN NORMAL REGRESSION RECORDS TESTS FOR TREND IN A TIME SERIES RECREATION RECORDS TESTS FOR TREND IN A TIME SERIES RECREATION RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECRUITS FROM A MARK-RECAPTURE EXPERIMENT RECTANGLES RECTANGLES RECTANGULAR ALTERNATIVES RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR LATTICE DESIGNS RECTANGULAR LATTICE DESIGNS RECTANGULAR LATTICE DESIGNS RECTANGULAR POPULATION WITH VACANCIES RECTANGULAR POPULATION FORM CENSORED SAMPLES RECTANGULAR POPULATIONS RECTIFYING INSPECTION OF A CONTINUOUS OUTPUT, CORR. RECTIFYING INSPECTION OF A CONTINUOUS OUTPUT, CORR. RECTIFYING INSPECTION OF A CONTINUOUS OUTPUT, CORR. RECURRENCE EQUATION FOR PROBABILITIES RECURRENCE FORMULA RECURRENCE FORMULA RECURRENCE FORMULA RECURRENCE RELATIONS BETWEEN PRECOURED PROBER STATIST RECURRENCE RELATIONS BETWEEN MOMENTS OF ORDER STATIST RECURRENCE RELATIONS BETWEEN THE P.D.F.'S OF ORDER ST RECURRENCE RELATIONS BETWEEN THE P.D.F.'S OF ORDER ST RECURRENCE RELATIONS BETWEEN THE P.D.F.'S OF ORDER ST RECURRENCE RELATIONS BETWEEN THE PROBABILITY DENSITY RECURRENCE RELATIONS BETWEEN THE PROBABILITY DENSITY	JASA 6B B10CS65 B10CS65 JRSSB54 JRSSB57 JRSSB55 JASA 59 B10CS65 B10CS65 B10CS66 AMS 66 JRSSB66 AMS 66 JRSSB66 JASA 61 B10KA63 JASA 61 JRSSB55 JASA 61 JRSSB59 JASA 61 JRSSB59 JASA 64 B10KA64 B10KA65 B10KA66 JASA 65 B10KA66 JASA 68 AMS 68 B10KA66 AMS 68 B10KA67 AMS 65 B10CS68 JASA 69 AMS 66 AMS 68 B10KA67 AMS 66	1321 921 921 149 115 281 529 936 1425 118 945 404 626 508 330 287 601 356 144 557 615 702 807 124 602 708 695 600 733 272 283 121
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE. A SAMPLING EXPERIMENT ON THE POWERS OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYINC YOUDEN EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FITTING THE FACTORIAL TREATMENTS IN THE QUOTIENT OF A SPREAD OF DISEASES IN A SPREAD OF DISEASES IN A CT CONFIDENCE BOUNDS FOR THE STANDARD DEVIATION OF A ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE ON TESTING THE EQUALITY OF PARAMETERS IN K THE DISTRIBUTIONS OF PRODUCT STATISTICS ARISING FROM ON SUMS AND PRODUCTS OF SOME STATISTICS FROM BIVARIATE DISTRIBUTIONS A GONSTRUCTION OF ORTHOGONAL POLYNOMIALS FROM A GENERAL ER STATISTICS FROM BIVARIATE DISTRIBUTIONS A GONSTRUCTION OF ORTHOGONAL POLYNOMIALS FROM A GENERAL ER STATISTICS FROM BIVARIATE DISTRIBUTIONS A IONS OF ORDER STATISTICS, AND SOME APPLICA/FUNCTIONS OF ORDER STATISTICS, AND SOME APPLICATI/OF THE LINEAR EXPONENTIAL FAMILITY IN A PARAMETER BY POSITIVE BINOMIAL VARIABLE	RECORDS REST FOR TREND IN NORMAL REGRESSION RECORDS TESTS FOR TREND IN A TIME SERIES RECREATION RECRETION RECRETION RECRETION RECRETION RECRETION RECORDS RECTANGLES RECTANGLES RECTANGLES RECTANGLES RECTANGLEA RECTANGLEA RECTANGLEA RECTANGULAR ALTERNATIVES RECTANGULAR RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR CONFIDENCE REGIONS FOR THE MEAN WHERE RECTANGULAR LATTICE DESIGNS RECTANGULAR LATTICE DESIGNS RECTANGULAR LATTICE DESIGNS RECTANGULAR POPULATION WITH VACANCIES RECTANGULAR POPULATION FROM CENSORED SAMPLES RECTANGULAR POPULATIONS RECTANGULAR POPULATIONS RECTANGULAR POPULATIONS RECTANGULAR POPULATIONS RECTANGULAR POPULATIONS RECTANGULAR VARIATES RECTIFYING INSPECTION OF A CONTINUOUS OUTPUT, CORR. RECTIFYING INSPECTION OF LOTS RECTIFYING INSPECTION OF LOTS RECTIFYING INSPECTION OF LOTS RECTIFYING INSPECTION OF A CONTINUOUS OUTPUT, CORR. RECURRENCE FOR PERMUTATIONS WITHOUT RISING OR FALLING RECURRENCE FOR PERMUTATIONS WITHOUT RISING OR FALLING RECURRENCE RELATIONS BETWEEN THOUTONS OF ORDER STATIST RECURRENCE RELATIONS BETWEEN MOMENTS OF ORDER STATIST RECURRENCE RELATIONS BETWEEN THE P.D.F.'S OF ORDER ST RECURRENCE RELATIONS BETWEEN THE PROBABILITY DENSITY RECURRENCE RELATIONS BETWEEN THE PROBABILITY DENSITY RECURRENCE RELATIONS FOR FUNCTIONS OF CUMULANTS //NS RECURRENCE RELATIONS FOR THE INVERSE MOMENTS OF THE	JASA 6B B10CS65 B10CS65 JRSSB54 JRSSB55 JASA 59 B10CS65 B10CS65 B10CS65 B10CS65 B10CS66 AMS 66 TECH 63 JASA 67 B10KA63 B10KA63 B10KA64 B10KA54 B10KA66 JASA 6B JASA 6B JASA 6B B10KA66 JASA 6B B10KA66 JASA 6B B10KA66 JASA 6B B10KA67 AMS 68 B10KA67 AMS 62 AMS 69 JASA 63	1321 921 921 149 115 281 529 936 1425 118 945 404 626 508 573 368 330 2B7 601 356 144 602 702 807 124 602 708 695 600 733 272 283 1691 468
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYINC YOUDEN DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FOR CULTING THE FACTORIAL TREATMENTS IN THE QUOTIENT OF A SPREAD OF DISEASES IN A SPREAD OF DISEASES IN A CONSTRUCTION OF LOCATION AND SCALE PARAMETERS FOR THE ON TESTING THE EQUALITY OF PARAMETERS IN K THE DISTRIBUTIONS OF PRODUCT STATISTICS ARISING FROM ON SUMS AND PRODUCTS OF SPREAD OF ORDER STATISTICS AND SOME APPLICAL FROM THE STATISTICS FROM BIVARIATE DISTRIBUTIONS A ONSTRUCTION OF ORTHOGONAL POLYNOMIALS FROM A GENERAL ER STATISTICS FROM BIVARIATE DISTRIBUTIONS A IONS OF ORDER STATISTICS, AND SOME APPLICAL FUNCTIONS OF ORDER STATISTICS, AND SOME APPLICAL OF THE LINEAR EXPONENTIAL FAMILTY IN A PARAMETER BY POSSITIVE BINOMIAL VARIABLE A MIXTURE OF TWO RECURRENT RANDOM WALKS NEED NOT BE	RECORDS RECORDS RECORDS RECORDS RECORDS THE LOG (-LOG) RECORDS (WITH DISCUSSION) RECORDS TEST FOR TREND IN NORMAL REGRESSION RECORDS TEST FOR TREND IN A TIME SERIES RECREATION STATISTICAL DATA RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECTANGLES RECTANGLES RECTANGLES RECTANGULAR ALTERNATIVES RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR DISTRIBUTION /OF THE SAMPLE MEAN WHERE RECTANGULAR HYPERBOLA RECTANGULAR PLANTATION WITH VACANCIES RECTANGULAR POPULATION AMPLE RANGES IN SETTING EXA RECTANGULAR POPULATION FROM CENSORED SAMPLES RECTANGULAR POPULATION FROM CENSORED SAMPLES RECTANGULAR POPULATIONS RECTANGULAR POPULATIONS RECTANGULAR POPULATION OF A CONTINUOUS OUTPUT, CORR. RECTIFYING INSPECTION OF A CONTINUOUS OUTPUT, CORR. RECTIFYING INSPECTION OF A CONTINUOUS OUTPUT, CORR. RECTIFYING INSPECTION FOR PROBABILITIES RECURRENCE EQUATION FOR PROBABILITIES RECURRENCE EQUATION FOR PROBABILITIES RECURRENCE FORMULA RECURRENCE FORMULA RECURRENCE RELATIONS BETWEEN EXPECTED VALUES OF FUNCT RECURRENCE RELATIONS BETWEEN EXPECTED VALUES OF FUNCT RECURRENCE RELATIONS BETWEEN THE P.D.F.'S OF ORDER ST RECURRENCE RELATIONS BETWEEN THE PROBABILITY DENSITY RECURRENCE RELATIONS FOR FUNCTIONS OF CUMULANTS /NS RECURRENCE RELATIONS FOR FUNCTIONS OF CUMULANTS OF THE	JASA 6B BIOCS65 BIOCS65 JRSSB54 JRSSB55 JASA 59 BIOCS65 BIOCS65 AMS 68 JRSSB66 AMS 68 JRSSB66 AMS 68 JRSSB66 AMS 68 JRSSB66 AMS 68 BIOCS65 JASA 61 JASA 61 JASA 61 JASA 64 BIOKA63 JASA 66 JASA 68 JASA 66 JASA 66 JASA 66 JASA 66 AMS 66 AMS 65 BIOCS66 AMS 66	1321 921 627 1 149 115 281 529 936 1425 118 945 404 626 508 573 368 330 2B7 601 356 144 557 702 B07 124 602 708 695 600 733 272 283 169 1721 468 1753
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYINC YOUDEN DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FITTING THE FACTORIAL TREATMENTS IN THE QUOTIENT OF A SPREAD OF DISEASES IN A CT CONFIDENCE BOUNDS FOR THE STANDARD DEVIATION OF A ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE ON TESTING THE EQUALITY OF PARAMETERS IN K THE DISTRIBUTIONS OF PRODUCT STATISTICS ARISING FROM ON SUMS AND PRODUCTS OF SPREAD OF DISEASES IN A CT CONSTRUCTION OF ORTHOGONAL POLYNOMIALS FROM A GENERAL ER STATISTICS FROM BUVARIATE DISTRIBUTIONS A A DISCRETE DISTRIBUTION ESTIMATORS FROM THE SUCCESSIONS A DONSTRUCTION OF ORTHOGONAL POLYNOMIALS FROM A GENERAL ER STATISTICS FROM BUVARIATE DISTRIBUTIONS A A CIONS OF ORDER STATISTICS A NOTE ON ICS FOR EXCHANGEABLE VARIATES ATISTICS OF DEPENDENT VARIABLES, AND SOME APPLICA/ FUNCTIONS OF ORDER STATISTICS, AND SOME APPLICA/ FUNCTIONS OF ORDER STATISTICS, AND SOME APPLICA/ FUNCTIONS OF ORDER STATISTICS, AND SOME APPLICATI/ OF THE LINEAR EXPONENTIAL FAMILTY IN A PARAMETER BY POSTTIVE BINOMIAL VARIABLE A MIXTURE OF TWO RECURRENT RANDOM WALKS NEED NOT BE	RECORDS REST FOR TREND IN NORMAL REGRESSION RECORDS TESTS FOR TREND IN A TIME SERIES RECREATION RECORDS TESTS FOR TREND IN A TIME SERIES RECREATION RECRUITMENT FROM A SINGLE TACCING EXPERIMENT RECRUITS FROM A MARK-RECAPTURE EXPERIMENT RECTANGLES RECTANGLES RECTANGULAR RECTANGULAR ALTERNATIVES RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR DISTRIBUTION /OF THE SAMPLE MEAN WHERE RECTANGULAR LATTICE DESIGNS RECTANGULAR LATTICE DESIGNS RECTANGULAR PLANTATION WITH VACANCIES RECTANGULAR POPULATION /AMPLE RANGES IN SETTING EXA RECTANGULAR POPULATION FROM CENSORED SAMPLES RECTANGULAR POPULATIONS RECTIFYING INSPECTION OF A CONTINUOUS OUTPUT, CORR. RECTIFYING INSPECTION PLAN RECURRENCE EQUATION FOR PROBABILITIES RECURRENCE EQUATION FOR PROBABILITIES RECURRENCE FOR PERMUTATIONS WITHOUT RISING OR FALLING RECURRENCE FOR PERMUTATIONS WITHOUT RISING OR FALLING RECURRENCE RELATIONS BETWEEN EXPECTED VALUES OF FUNCT RECURRENCE RELATIONS BETWEEN EXPECTED VALUES OF FUNCT RECURRENCE RELATIONS BETWEEN THE P.D.F.'S OF ORDER ST RECURRENCE RELATIONS BETWEEN THE POBABILITY DENSITY RECURRENCE RELATIONS FOR FUNCTIONS OF CUMULANTS /NS RECURRENCE RELATIONS FOR FUNCTIONS OF CUMULANTS /NS RECURRENCE RELATIONS FOR FUNCTIONS OF CUMULANTS /NS RECURRENCE RELATIONS FOR THE INVERSE MOMENTS OF THE RECURRENCE RELATIONS FOR THE INVERSE MOMENTS OF THE RECURRENCE RELATIONS FOR THE INVERSE MOMENTS OF THE	JASA 6B B10CS65 B10CS65 JRSSB54 JRSSB57 JRSSB55 JASA 59 B10CS65 B10CS65 B10CS65 B10CS66 AMS 68 AMS 68 AMS 68 JRSSB66 AMS 68 JRSSB66 AMS 68 JRSSB66 JASA 61 B10KA63 JASA 61 JRSSB55 JASA 61 JRSSB59 JASA 61 JRSSB55 JASA 61 JRSSB55 B10KA66 AMS 68 B10KA66 AMS 68 B10KA67 AMS 62 AMS 68	1321 921 921 149 115 281 529 936 1425 118 945 404 626 508 330 2B7 601 356 144 557 615 702 807 124 602 607 124 609 609 609 609 609 609 609 609 609 609
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE. A SAMPLING EXPERIMENT ON THE POWERS OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYING YOUDEN EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FITTING THE FACTORIAL TREATMENTS IN THE QUOTIENT OF A SPREAD OF DISEASES IN A CT CONFIDENCE BOUNDS FOR THE STANDARD DEVIATION OF A ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE ON TESTING THE EQUALITY OF PARAMETERS IN THE DISTRIBUTIONS OF PRODUCT STATISTICS ARISING FROM ON SUMS AND PRODUCTS OF SOME ON SUMS OF ORDER STATISTICS A NOTE ON SUMS AND SOME APPLICA/FUNCTIONS OF ORDER STATISTICS, AND SOME APPLICA/FUNCTIONS OF ORDER STATISTICS.	RECORDS REST FOR TREND IN NORMAL REGRESSION RECORDS TEST FOR TREND IN A TIME SERIES RECREATION RECORDT RECORDS	JASA 6B B10CS65 B10CS65 JRSSB54 JRSSB55 JASA 59 B10CS65 B10CS65 B10CS66 AMS 66 AMS 66 JASA 67 B10KA63 JASA 67 B10KA63 JASA 61 JRSSB59 JASA 69 AMS 68 AMS 68 B10KA67 AMS 69 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68	1321 921 921 149 115 281 529 936 1425 118 945 404 626 508 330 2B7 601 356 144 557 615 702 708 695 600 733 272 283 169 1721 468 1753 424 1201
A MODEL FOR OPTIMUM LINKAGE OF OF MORALITY AND POPULATION FROM SURVEY-REMOVAL TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF THE EFFICIENCY OF THE AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF THE ESTIMATION OF MORTALITY AND A NONPARAMETRIC STATISTICAL METHOD FOR CULLING ON MULTIVARIATE NORMAL PROBABILITIES OF CLASSIFYINC YOUDEN DIMENSIONAL CHAINS INVOLVING MULTIVARIATE NORMAL DISTRIBUTIONS EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT FITTING THE FACTORIAL TREATMENTS IN THE QUOTIENT OF A SPREAD OF DISEASES IN A CT CONFIDENCE BOUNDS FOR THE STANDARD DEVIATION OF A ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE ON TESTING THE EQUALITY OF PARAMETERS IN K THE DISTRIBUTIONS OF PRODUCT STATISTICS ARISING FROM ON SUMS AND PRODUCTS OF SOME STATISTICS ARISING FROM THE SUCCESSIONS ON SUMS AND PRODUCTS OF THE STATISTICS ARISING FROM THE SUCCESSIONS ON SUMS AND PRODUCTS OF THE STATISTICS ARISING FROM THE SUCCESSIONS ON SUMS AND PRODUCTS OF THE STATISTICS ARISING FROM THE SUCCESSIONS ON SUMS AND PRODUCTS OF THE STATISTICS ARISING FROM THE SUCCESSIONS ON SUMS OF ORDER STATISTICS A NOTE ON ICS FOR EXCHANGEABLE VARIATES ATISTICS OF ORDER STATISTICS A NOTE ON ICS FOR EXCHANGEABLE VARIATES ATISTICS OF DEPENDENT VARIABLES, AND SOME APPLICATION OF THE LINEAR EXPONENTIAL FAMILTY IN A PARAMETER BY POSTTIVE BINOMIAL VARIABLE A MIXTURE OF TWO RECURRENT RANDOM WALKS NEED NOT BE	RECORDS RECORDS RECORDS RECORDS RECORDS THE LOG (-LOG) RECORDS (WITH DISCUSSION) RECORDS TEST FOR TREND IN NORMAL REGRESSION RECORDS TEST FOR TREND IN A TIME SERIES RECREATION STATISTICAL DATA RECRUITMENT FROM A SINGLE TACGING EXPERIMENT RECRUITMENT FROM A MARK-RECAPTURE EXPERIMENT RECTANGLES RECTANGLES RECTANGLEAR ALTERNATIVES RECTANGULAR ALTERNATIVES RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF RECTANGULAR DISTRIBUTION /OF THE SAMPLE MEAN WHERE RECTANGULAR HYPERBOLA RECTANGULAR POPULATION / MAPLE RANGES IN SETTING EXA RECTANGULAR POPULATION WITH VACANCIES RECTANGULAR POPULATION FROM CENSORED SAMPLES RECTANGULAR POPULATION FROM CENSORED SAMPLES RECTANGULAR POPULATIONS RECTANGULAR POPULATIONS RECTANGULAR POPULATIONS RECTANGULAR POPULATION OF A CONTINUOUS OUTPUT, CORR. RECTANGULAR VARIATES RECTIFYING INSPECTION OF A CONTINUOUS OUTPUT, CORR. RECTIFYING INSPECTION OF A CONTINUOUS OUTPUT, CORR. RECTIFYING INSPECTION FOR PROBABILITIES RECURRENCE EQUATION FOR PROBABILITIES RECURRENCE FOR PERMUTATIONS WITHOUT RISING OR FALLING RECURRENCE RELATIONS BETWEEN EXPECTED VALUES OF FUNCT RECURRENCE RELATIONS BETWEEN THE P.D.F.'S OF ORDER STATIST RECURRENCE RELATIONS BETWEEN THE PROBABILITY DENSITY RECURRENCE RELATIONS FOR THE INVERSE MOMENTS OF THE RECURRENT EVENTS RECURRENT EVENTS	JASA 6B B10CS65 B10CS65 JRSSB54 JRSSB57 JRSSB55 JASA 59 B10CS65 B10CS65 B10CS65 B10CS66 AMS 68 AMS 68 AMS 68 JRSSB66 AMS 68 JRSSB66 AMS 68 JRSSB66 JASA 61 B10KA63 JASA 61 JRSSB55 JASA 61 JRSSB59 JASA 61 JRSSB55 JASA 61 JRSSB55 B10KA66 AMS 68 B10KA66 AMS 68 B10KA67 AMS 62 AMS 68	1321 921 921 149 115 281 529 936 1425 118 945 404 626 508 330 2B7 601 356 144 557 615 702 807 124 602 607 124 609 609 609 609 609 609 609 609 609 609

REC - REC TITLE WORD INDEX

```
RECURRENT CAMES AND THE PETERSBURC PARADOX
                                                                                                             AMS 61 187
ENT BEHAVIOR OF A SINCLE SERVER QUEUING PROCESS WITH RECURRENT INPUT AND CAMMA SERVICE TIME
                                                                                                THE TRANST
                                                                                                             AMS 61 1286
                                        NON-SINCULAR RECURRENT MARKOV PROCESSES HAVE STATIONARY MEASURES
                                                                                                              AMS 64 869
                                      THE CROWTH OF A RECURRENT RANDOM WALK
                                                                                                              AMS 66 1040
                                    A MIXTURE OF TWO RECURRENT RANDOM WALKS NEED NOT BE RECURRENT
                                                                                                              AMS 68 1753
                                                      RECURRENT SETS
                                                                                                             AMS 65 535
                                 ERCODIC THEORY WITH RECURRENT WEICHTS
                                                                                                             AMS 68 1107
NON-PARAMETRIC TEST STATISTICS UNDER CENSORING
                                                      RECURSIVE GENERATION OF THE DISTRIBUTION OF SEVERAL
                                                                                                             JASA 6B
                                                                                                                     353
WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES
                                                      RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-
                                                                                                             AMS 66
                                                                                                                      2B4
PROCESSES
                                                      RECURSIVE RELATIONS FOR PREDICTORS OF NON-STATIONARY
                                                                                                            JRSSR65
                                                                                                                      523
  SAMPLING TECHNIQUES FOR ESTIMATION OF INCIDENCE OF RED SPIDER MITE ON TEA CROP IN NORTH-EAST INDIA
                                                                                                                      3B5
                                                                                                             RIOCSEE
                              GINI'S MEAN DIFFERENCE REDISCOVERED
                                                                                                             BIOKA68
                                                                                                                      573
                                                      REDUCED DESIGNS OF RESOLUTION FIVE
                                                                                                             TECH 61
                                                                                                                     459
                                                      REDUCED GROUP DIVISIBLE PAIRED COMPARISON DESIGNS
                                                                                                             AMS 67 1BB7
RIBUTION OF ORDER STATISTICS AND DISTRIBUTION OF THE REDUCED ITH ORDER STATISTIC OF THE EXPONENTIAL MODEL
                                                                                                              AMS 63
EFFICIENT FROM THE RANGE OF THE DEVIATIONS ABOUT THE REDUCED MAJOR AXIS /R ESTIMATING THE CORRELATION CO BIOKA53
                                                                                                                      21B
                                                      REDUCING A RANDOM SAMPLE TO A SMALLER SET, WITH
APPLICATIONS
                                                                                                             JASA 67
                                                    A REDUCTION FORMULA FOR NORMAL MULTIVARIATE INTEGRALS
                                                                                                             BIOKA54
CHARACTERISTIC FORM
                                                      REDUCTION OF THE MULTIVARIATE NORMAL INTEGRAL TO
                                                                                                             BIOKA67
   ON THE APPLICATION OF QUENOUILLE'S METHOD OF BIAS REDUCTION TO THE ESTIMATION OF RATIOS
                                                                                                     A NOTE BIOKA59
HEIR RELATION TO INVERSE SAMPLING AND RELIABILITY OF REDUNDANT SYSTEMS /THE GEOMETRIC DISTRIBUTION AND T JASA 67
                                                                                                                      915
      BAYESIAN CONFIDENCE LIMITS FOR RELIABILITY OF REDUNDANT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST
                                                                                                             TECH 68
                                                                                                                      29
                                          ON CERTAIN REDUNDANT SYSTEMS WHICH OPERATE AT DISCRETE TIMES
                                                                                                             TECH 62
                                                                                                                       69
                 SOME WAITING TIME DISTRIBUTIONS FOR REDUNDANT SYSTEMS WITH REPAIR
                                                                                                             TECH 64
                                                                                                                       27
                           THE RANDOM WALK BETWEEN A REFLECTING AND AN ABSORBING BARRIER
                                                                                                             AMS 61
                                                                                                                     765
ONE DIMENSIONAL RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER

AMS 63
HE HISTORY OF PROBABILITY AND STATISTICS. XVII. SOME REFLEXIONS ON CONTINUITY IN THE DEVELOPMENT OF MATHEM BIOKA67
                                                                                                                      405
                                                                                                                      341
                              ON A THEOREM OF KARLIN REGARDING ADMISSIBLE ESTIMATES FOR EXPONENTIAL POPULA AMS 69
TIONS
                                                                                                                      216
THE ECONOMIC CHOICE OF EXPERIMENT SIZES FOR DECISION RECARDING CERTAIN LINEAR COMBINATIONS
                                                                                                        ON JRSSB67
                                                                                                                      50.3
 CROSS-CLASSIFICATIONS THEORETICAL CONSIDERATIONS REGARDING H. R. B. HACK'S SYSTEM OF RANDOMIZATION FOR BIOKASB
                                                                                                                      265
        A LIMIT THEOREM FOR PASSAGE TIMES IN ERGODIC RECENERATIVE PROCESSES
                                                                                                              AMS 66
                                                                                                                      R66
  THAT A LINEAR RECRESSION SYSTEM OBEYS TWO SEPARATE REGIMES
                                                                                    TESTS OF THE HYPOTHESIS JASA 60
                                                                                                                      324
  OF A LINEAR RECRESSION SYSTEM OBEYING TWO SEPARATE REGIMES
                                                                            THE ESTIMATION OF THE PARAMETER JASA 5B
                                                                                                                      873
                   MAXIMIZING A FUNCTION IN A CONVEX RECION
                                                                                                             JRSSB59
                                                                                                                      33B
                                          CONFIDENCE REGION FOR A LINEAR RELATION
                                                                                                             AMS 64
                                                                                                                      7B0
                                        A CONFIDENCE REGION FOR THE LOG-NORMAL HAZARD FUNCTION
                                                                                                             TECH 69
                                                                                                                      387
                                 A CENTRAL TOLERANCE REGION FOR THE MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                             JRSSB68
                                                                                                                      599
TIONS WITH AN APPLICATION TO EXPERIM/ A CONFIDENCE REGION FOR THE SOLUTION OF A SET OF SIMULTANEOUS EQUA BIOKA54
UNITED STATES, 1914-1953, CORR. 60 755
                                                      REGIONAL CYCLES OF MANUFACTURING EMPLOYMENT IN THE
                                                                                                             JASA 60
                                                                                                                      151
                                                      REGIONAL DISPARITIES IN HOUSEHOLD COMSUMPTION IN
                                                                                                             JASA 67
                                                                                                                      143
PROBLEM
                                          PRELIMINARY REGIONAL FORECASTS FOR THE OUTCOME OF AN ESTIMATION
                                                                                                             JASA 63 1104
                                                                                                             AMS 62
       ASYMPTOTIC SHAPES OF BAYES SEQUENTIAL TESTING REGIONS
                                                                                                                     224
        NONPARAMETRIC DISCRIMINATION USING TOLERANCE RECIONS
                                                                                                              AMS 68
                                                                                                                      664
    A SECOND-ORDER APPROXIMATION TO OPTIMAL SAMPLING REGIONS
                                                                                                              AMS 69
                                                                                                                      313
  OUTER NEEDLE OF SOME BAYES SEQUENTIAL CONTINUATION REGIONS
                                                                                                        THE BIOKAGG
                                                                                                                      455
      'SPHERICAL' AND 'CUBOIDAL' DESIGNS IN THE WRONG REGIONS
                                                                                    THE USE OF SECOND-ORDER BIOKAG6
                                                                                                                      596
PARAMETER IS 'NEAR' THE BOUNDARIES OF THE HYPOTHESIS RECIONS
                                                                /LIHOOD RATIO TEST STATISTIC WHEN THE TRUE
                                                                                                             AMS 68 2044
                                  BAYESIAN TOLERANCE REGIONS (WITH DISCUSSION)
                                                                                                             JRSSB64
                                                                                                                     161
                      SUFFICIENT STATISTICS, SIMILAR REGIONS AND DISTRIBUTION-FREE TESTS
                                                                                                             JRSSB57
                                                                                                                      262
REGRESSION LINE
                                           PREDICTION REGIONS FOR SEVERAL PREDICTIONS FROM A SINGLE
                                                                                                             TECH 61
                                                                                                                      21
                            NONPARAMETRIC CONFIDENCE REGIONS FOR SOME MULTIVARIATE LOCATION PROBLEMS
                                                                                                             JASA 68 1373
                                             CRITICAL REGIONS FOR TESTS OF INTERVAL HYPOTHESES ABOUT THE
VARIANCE
                                                                                                             JASA 66
                                                                                                                     204
                                            A NOTE ON RECIONS FOR TESTS OF KURTOSIS
                                                                                                             BIOKA53
                                                                                                                      465
                   A NOTE ON CONSERVATIVE CONFIDENCE REGIONS FOR THE MEAN OF A MULTIVARIATE NORMAL
                                                                                                             AMS 67
                                                                                                                      27R
TIONS
                              RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF MULTIVARIATE NORMAL DISTRIBU JASA 67
                                                                                                                      626
               CONFIDENCE, PREDICTION, AND TOLERANCE REGIONS FOR THE MULTIVARIATE NORMAL DISTRIBUTION
                                                                                                             JASA 66
                                                                                                                      605
LAWS
                                    EXACT CONFIDENCE RECIONS FOR THE PARAMETERS IN NON-LINEAR REGRESSION
                                                                                                             BIOKA64
                                                                                                                      347
                                          CONFIDENCE REGIONS FOR VARIANCE RATIOS OF RANDOM MODELS
                                                                                                             JASA 69
                                                                                                                      660
                  SINGLE AND MULTIPLE DISCRIMINATION REGIONS IN MULTIPLE LINEAR RECRESSION
                                                                                                             SASJ 68
                                                                                                                      67
     ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE RECIONS IN MULTIPLE LINEAR RECRESSION
                                                                                                             AMS 69 NO.6
                                          CONFIDENCE REGIONS IN NON-LINEAR ESTIMATION (WITH DISCUSSION)
                                                                                                             JRSSB60
                                                                                                                     41
 DESIGNS WHICH MINIMIZE MODEL INADEQUACIES. CUBOIDAL REGIONS OF INTEREST
                                                                                                             BIOKA65
                                                                                                                      111
                            STRAIGHT LINE CONFIDENCE REGIONS OF LINEAR MODELS
                                                                                                             JASA 67 1365
TED EDCEWORTH AND CRAM-CHARLIER SERIES
                                                  THE RECIONS OF UNIMODALITY AND POSITIVITY IN THE ABBREVIA
                                                                                                             JASA 57
PORTANT/ A SIMPLE METHOD OF DERIVING BEST CRITICAL RECIONS SIMILAR TO THE SAMPLE SPACE IN TESTS OF AN IM BIOKA53
                                                                                                                      231
DISTRIBUTION OF HOMOGENEOU/
                             PROBABILITY CONTENT OF REGIONS UNDER SPERICAL NORMAL DISTRIBUTIONS, IV, THE
                                                                                                             AMS 62
CTION. THE TITLE SHOULD READ 'PROBABILITY CONTENT OF REGIONS UNDER SPHERICAL NORMAL DISTRIBUTIONS, IV, THE
E BIVARIATE NORMAL INTEGRAL PROBABILITY CONTENT OF REGIONS UNDER SPHERICAL NORMAL DISTRIBUTIONS, III. TH
                                                                                                             AMS 61
                                                                                                                      171
GRATION, AND ANALYSIS BASED ON THE DANISH POPULATION REGISTER
                                                                                  THE EXTENT OF REPEATED MI JASA 64 1121
                        STEPWISE MULTIVARIATE LINEAR REGRESSION
                                                                                                             JASA 63
                                                                                                                     770
                           CONVERCENCE IN NON-LINEAR REGRESSION
                                                                                                             TECH 63
                                                                                                                     513
                   CONFIDENCE BANDS IN STRAIGHT LINE RECRESSION
                                                                                                             JASA 64
                                                                                                                      182
                  MINIMAX DESIGNS IN TWO DIMENSIONAL REGRESSION
                                                                                                             AMS 65 1097
      DESIGN FOR OPTIMAL PREDICTION IN SIMPLE LINEAR RECRESSION
                                                                                                             JASA 65
                                                                                                                      205
                                                                                                             TECH 66
                                                                                                                      625
                                    USE AND ABUSE OF REGRESSION
  AN APPROACH TO SIMULTANEOUS TOLERANCE INTERVALS IN REGRESSION
                                                                                                             AMS 67 1536
                                                                                                             AMS 67 1679
                                LINEAR LEAST SQUARES REGRESSION
                  SHORTER CONFIDENCE BANDS IN LINEAR REGRESSION
                                                                                                             JASA 67 1050
   A THEOREM ON LEAST SQUARES IN MULTIVARIATE LINEAR RECRESSION
                                                                                                             JASA 67 1494
                                     ON A PROBLEM OF REGRESSION
                                                                                                             SASJ 67
                                                                                                                      43
                    ERRORS OF PREDICTION IN MULTIPLE RECRESSION
                                                                                                             TECH 67
                                                                                                                     309
      IMPROVED ESTIMATORS FOR COEFFICIENTS IN LINEAR REGRESSION
                                                                                                             JASA 6B
                                                                                                                     596
                                A NOTE ON LOG-LINEAR REGRESSION
                                                                                                             JASA 6B 1034
                                                                                                                      73
                AUGMENTING EXISTING DATA IN MULTIPLE REGRESSION
                                                                                                             TECH 6B
                                                                                                            TECH 6B 207
                        QUERY, TOLERANCE INTERVAL IN REGRESSION
            ADMISSIBLE DESIGNS FOR POLYNOMIAL SPLINE REGRESSION
                                                                                                             AMS 69 1557
```

TITLE WORD INDEX REC - REC

```
DISCRIMINATION INTERVALS FOR PERCENTILES IN RECRESSION
                                                                                                              JASA 69 1031
     TESTING FOR SERIAL CORRELATION IN LEAST SQUARES RECRESSION
                                                                                                              BIOKA57
                                                                                                                        57
      TWO FURTHER APPLICATIONS OF A MODEL FOR BINARY RECRESSION
                                                                                                              BIOKA58
                                                                                                                       562
               ON A PROBLEM CONNECTED WITH QUADRATIC RECRESSION
                                                                                                              BIOKA60
                                                                                                                       335
                 SIMULTANEOUS TOLERANCE INTERVALS IN RECRESSION
                                                                                                              BIOKA63
                                                                                                                       155
   UNLIMITED SIMUTANEOUS DISCRIMINATION INTERVALS IN RECRESSION
                                                                                                              BIOKA67
                                                                                                                       133
       INFERENCE ABOUT THE INTERSECTION IN TWO-PHASE RECRESSION
                                                                                                              BIOKA69 NO.3
        CONFIDENCE INTERVAL ESTIMATION IN NON-LINEAR REGRESSION
                                                                                                              JRSSB63 330
          ON THE BAYESIAN ESTIMATION OF MULTIVARIATE RECRESSION
                                                                                                              JRSSB64
                                                                                                                       277
  EFFICIENCIES OF TESTS OF RANDOMNESS AGAINST NORMAL REGRESSION
                                                                                                          THE JASA 56
                                                                                                                       2R5
  EFFICIENCY OF THE RECORDS TEST FOR TREND IN NORMAL REGRESSION
                                                                                                          THE JRSSB57
                                                                                                                       149
                                                                                                    EFFICIENT
      DIFFERENCE EQUATION ESTIMATORS IN EXPONENTIAL RECRESSION
                                                                                                               AMS 68 1638
     AGAINST ASSUMING THE WRONG DECREE IN POLYNOMIAL REGRESSION
                                                                                                   PROTECTION TECH 69 No.4
  MULTIPLE DISCRIMINATION REGIONS IN MULTIPLE LINEAR REGRESSION
                                                                                                   SINCLE AND SASJ 68
                                                                                                                        67
OF VARIABLES IN THE DESIGN OF EXPERIMENTS FOR LINEAR REGRESSION
                                                                                                  THE CHOICE BIOKA69
                                                                                                                        55
           TEST FOR SERIAL CORRELATION IN POLYNOMIAL REGRESSION
                                                                                               AN APPROXIMATE BIOKAGO
                                                                                                                       111
   SQUARE ERROR CRITERION FOR RESTRICTIONS IN LINEAR RECRESSION
                                                                                           A TEST OF THE MEAN JASA 68
                                                                                                                       558
  SQUARE ERROR TEST FOR EXACT LINEAR RESTRICTIONS IN REGRESSION
                                                                                         TABLES FOR THE MEAN JASA 69 NO.4
  APPROACH FOR MULTIPLE AND PARTIAL CORRELATION AND REGRESSION
DESIGNS FOR ESTIMATING THE INDEPENDENT VARIABLE IN REGRESSION
                                                                                        A MODIFIED DOOLITTLE JASA 58
                                                                                                                       133
                                                                                        OPTIMAL EXPERIMENTAL TECH 68
                                                                                                                       811
 WILCOXON TYPE CONFIDENCE REGIONS IN MULTIPLE LINEAR RECRESSION
                                                                                                               AMS 69 NO.6
                                                                                      ASYMPTOTIC BEHAVIOR OF
       AND VECTOR CORRELATION IN MULTIVARIATE LINEAR RECRESSION
                                                                                  A THEOREM ON LEAST SQUARES JASA 66
                                                                                                                       413
ATE STATISTICS II, POINT ESTIMATION IN SIMPLE LINEAR REGRESSION
                                                                           MISSING OBSERVATIONS IN MULTIVARY JASA 67
                                                                                                                        10
  ESTIMATION OF GENETIC PARAMETERS FROM DAUGHTER-DAM REGRESSION
                                                                       SOME TRANSFORMATIONS OF SCALE AND THE BIOCS67
                                                                                                                       823
                     ADJOINT MATRICES FOR POLYNOMIAL REGRESSION (CORRECTIONS 68 1025)
                                                                                                              RTOCS68
                                                                                                                       401
                 THE CHOICE OF VARIABLES IN MULTIPLE REGRESSION (WITH DISCUSSION)
                                                                                                              JRSSB68
                                                                                                                        31
                   LINEAR PROGRAMMING TECHNIQUES FOR REGRESSION ANALYSIS
                                                                                                              JASA 59
                                                                                                                       206
                                     ON AN ANALOC OF REGRESSION ANALYSIS
                                                                                                               AMS 63 1459
       ON THE USE OF INCOMPLETE PRIOR INFORMATION IN REGRESSION ANALYSIS
                                                                                                              JASA 63
                                                                                                                      401
                     THE ANALYSIS OF DISTURBANCES IN REGRESSION ANALYSIS
                                                                                                              JASA 65 1067
                          INEQUALITY RESTRICTIONS IN REGRESSION ANALYSIS
                                                                                                              JASA 66
                                                                                                                      166
      SOME FURTHER NOTES ON DISTURBANCE ESTIMATES IN REGRESSION ANALYSIS
                                                                                                               JASA 67
                                                                                                                        169
                     SELECTION OF THE BEST SUBSET IN REGRESSION ANALYSIS
                                                                                                              TECH 67
                                                                                                                       531
   BAYES'S THEOREM AND THE USE OF PRIOR KNOWLEDGE IN REGRESSION ANALYSIS
                                                                                                              BIOKA64
                                                                                                                       219
                        MODELS OF THE SECOND KIND IN REGRESSION ANALYSIS
                                                                                                              JRSSB67
                                     MISSING DATA IN REGRESSION ANALYSIS
                                                                                                              JRSSB68
 NUMERICAL ANALYSIS PROBLEM IN CONSTRAINED QUADRATIC REGRESSION ANALYSIS
     ADJUSTMENT OF ECONOMIC TIME SERIES AND MULTIPLE REGRESSION ANALYSIS
                                                                                                     SEASONAL JASA 63
                                                                                                                        993
ECIFICATION ERRORS IN CLASSICAL LINEAR LEAST-SQUARES REGRESSION ANALYSIS
                                                                                                TESTS FOR SP JRSSB69 NO.2
ARISON OF MEANS OF A MIXED MODEL WITH APPLICATION TO REGRESSION ANALYSIS
                                                                                                BAYESIAN COMP BIOKA66
AE FOR ADDITION OR OMISSION OF A VARIATE IN MULTIPLE REGRESSION ANALYSIS
                                                                               EXTENSION OF COCHRAN'S FORMUL JASA 63
ATIVE EFFICIENCY OF STATISTICAL TESTS IN TIME SERIES REGRESSION ANALYSIS
                                                                             /VALUE METHOD FOR ADJUDGING REL BIOKA66
              SOME EXPERIMENTAL SAMPLING RESULTS FOR REGRESSION ANALYSIS APPLIED TO GAMMA RAY SPECTROMETER BIOCS68
DATA, 2
 DATA, 1
              SOME EXPERIMENTAL SAMPLING RESULTS FOR REGRESSION ANALYSIS APPLIED TO CAMMA RAY SPECTROMETER BIOCS67
                                                                                                                        11
-SQUARES RESIDUALS TESTS FOR SERIAL CORRELATION IN REGRESSION ANALYSIS BASED ON THE PERIODOGRAM OF LEAST BIOKA69
                                        LEAST SQUARES REGRESSION ANALYSIS FOR TREND-REDUCED TIME SERIES
                                                                                                              JRSSB55
                                                      RECRESSION ANALYSIS IN SAMPLE SURVEYS, CORR. 63 1162
                                             MULTIPLE REGRESSION ANALYSIS OF A POISSON PROCESS
                                                                                                              JASA 61
ION) (CORR. 59 238)
                                                  THE REGRESSION ANALYSIS OF BINARY SEQUENCES (WITH DISCUSS JRSSB58
                                                                                                                       215
                                               QUERY, REGRESSION ANALYSIS OF CUMULATIVE DATA
                                                                                                              TECH 64
AUTOCORRELATED TIME SERIES
                                                      REGRESSION ANALYSIS OF RELATIONSHIPS BETWEEN
                                                                                                              JRSSB56
                                                                                                                       240
                                                      REGRESSION ANALYSIS OF SEASONAL DATA
                                                                                                              JASA 64
                                                                                                                        402
   SOME PROPERTIES OF THE LEAST SQUARES ESTIMATOR IN REGRESSION ANALYSIS WHEN THE 'PREDICTOR' VARIABLES AR AMS 62 1365
ABOUT SUPPLEMENTARY VARIABLES
                                                      RECRESSION ANALYSIS WHEN THERE IS PRIOR INFORMATION
                                                                                                              JRSSB60
                                                                                                                       172
                                      MULTIPLE LINEAR RECRESSION ANALYSIS WITH ADJUSTMENT FOR CLASS
                                                      REGRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED
                                                                                                              BIOCS65
THE INDEPENDENT VARIABLES
                                               LINEAR REGRESSION ANALYSIS WITH MISSING OBSERVATIONS AMONG
                                                                                                              JASA 59
                               SERIAL CORRELATION IN RECRESSION ANALYSIS. I
                                                                                                              BIOKA55
                                                                                                                       327
                               SERIAL CORRELATION IN RECRESSION ANALYSIS. II
                                                                                                              BIOKA56
                                                                                                                        436
                                                                                                               AMS 63
         SEQUENTIAL MODEL BUILDING FOR PREDICTION IN REGRESSION ANALYSIS, I
                                                                                                                       462
           ESTIMATION OF WEIGHTING FACTORS IN LINEAR REGRESSION AND ANALYSIS OF VARIANCE
                                                                                                              TECH 64
                                                                                                                         1
                            RESTRICTED LEAST SQUARES RECRESSION AND CONVEX QUADRATIC PROGRAMMING
                                                                                                              TECH 69 NO.4
                                 EFFICIENT GROUPING, REGRESSION AND CORRELATION IN ENGEL CURVE ANALYSIS
                                                                                                              JASA 64
                          ON THE THEORY OF CLASSICAL REGRESSION AND DOUBLE SAMPLING ESTIMATION
                                                                                                              JRSSB60
                                                                                                                       131
                                 THE ESTIMATION OF REGRESSION AND ERROR-SCALE PARAMETERS, WHEN THE JOINT BIOKA61
 DISTRIBUTION OF THE ERRORS IS/
 JORDAN'S PROCEDURE FOR MATRIX INVERSION IN MULTIPLE REGRESSION AND MULTIVARIATE DISTANCE ANALYSIS /S OF JRSSB63
                                                                                                                       352
COVARIABLE IS UNCONTROLLED
                                        A STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS WHEN THE
                                                                                                              JASA 67
                                                                                                                      1037
            THE CHOICE OF THE DEGREE OF A POLYNOMIAL RECRESSION AS A MULTIPLE DECISION PROBLEM
                                                                                                               AMS 62
                                                                                                                       255
E ON THE GAIN IN PRECISION FOR OPTIMAL ALLOCATION IN REGRESSION AS APPLIED TO EXTRAPOLATION IN S-N FATIGUE TECH 69
                                                                                                                       3B9
   TESTING FOR THE INCLUSION OF VARIABLES IN LINEAR REGRESSION BY A RANDOMISATION TECHNIQUE (ERRATA, 69 6 TECH 66
                                                                                                                       695
                             A QUICK ESTIMATE OF THE REGRESSION COEFFICIENT
ESTIMATES OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S TAU
THE DISTRIBUTION OF THE REGRESSION COEFFICIENT IN SAMPLES FROM A NON-NORMAL
                                                                                                              BTOKA58
                                                                                                                       431
                                                                                                              JASA 6B 1379
POPULATION
                                                                                                              RTOKA54
                                                                                                                       548
           THE JOINT DISTRIBUTION OF THE STUDENTIZED REGRESSION COEFFICIENTS
                                                                                                              BTOKA68
                                                                                                                       424
IANCE OF MINIMUM VARIANCE AND WEIGHTED LEAST SQUARES REGRESSION COEFFICIENTS
                                                                                       COMPARISON OF THE VAR AMS 63
                                                                                                                       9R4
                                                                                 /RIBUTIONS OF THE LIKELIHOO
D RATIO CRITERIA FOR TESTING LINEAR HYPOTHESES ABOUT REGRESSION COEFFICIENTS
                                                                                                              AMS 66 1319
FICATION TABLES WHEN THE CROSS/ UNBIASED MULTIPLE REGRESSION COEFFICIENTS ESTIMATED FROM ONE-WAY-CLASSI JASA 66
                                                                                                                       720
                   MAXIMUM LIKELIHOOD ESTIMATORS OF REGRESSION COEFFICIENTS FOR THE CASE OF AUTOCORRELATE TECH 65
D RESTRIALS
                                                                                                                        51
-NORMAL POPULATIONS. I. THEOR/ THE DISTRIBUTION OF REGRESSION COEFFICIENTS IN SAMPLES FROM BIVARIATE NON BIOKAGO
                                                                                                                        61
                           A PROCEDURE FOR COMPUTING REGRESSION COEFFICIENTS, CORR. 59 B11
                                                                                                              JASA 5B
                                                                                                                       144
INFORMATION
                                             MULTIPLE REGRESSION COMBINING WITHIN- AND BETWEEN-PLOT
                                                                                                              BIOCS66
                                                                                                                        26
                             PARTIAL CORRELATIONS IN REGRESSION COMPUTATIONS
                                                                                                              JASA 61
                                                                                                                       363
    A TEST OF LINEARITY VERSUS CONVEXITY OF A MEDIAN REGRESSION CURVE
                                                                                                               AMS 62 1096
                                                                                                              TECH 65
                             A METHOD OF FITTING THE REGRESSION CURVE E(Y) = A + DX + BC - TO + X
                                                                                                                        59
   THE DERIVATION OF METHODS FOR FITTING EXPONENTIAL REGRESSION CURVES
                                                                                                              BIOKA64
                                                                                                                       504
                                       THE FITTING OF REGRESSION CURVES WITH AUTOCORRELATED DATA
                                                                                                              BIOKA56
                                                                                                                       46B
```

EC - REL TITLE WORD INDEX

```
TESTING THE INDEPENDENCE OF RECRESSION DISTURBANCES
                                                                                                            JASA 61 793
A SIMPLIFICATION OF THE BLUS PROCEDURE FOR ANALYZING RECRESSION DISTURBANCES
                                                                                                            JASA 68
                                                                                                                     242
CIENCIES OF ALTERNATIVE ESTIMATORS FOR AN ASYMPTOTIC RECRESSION EQUATION
                                                                                                  THE EFFI BIOKA58
                                                                                                                     370
                           USE OF DUMMY VARIABLES IN RECRESSION EQUATIONS
                                                                                                            JASA 57
                                                                                                                     548
             ITERATIVE ESTIMATION OF A SET OF LINEAR RECRESSION EQUATIONS
                                                                                                            JASA 64
                                                                                                                     B45
   FOR SERIAL CORRELATION IN SYSTEMS OF SIMULTANEOUS REGRESSION EQUATIONS
                                                                                                    TESTING BIOKA57
   THE UNBIASEDNESS OF ZELLNER'S SEEMINCLY UNRELATED RECRESSION EQUATIONS ESTIMATORS
                                                                                                            JASA 67
                                        SIMULTANEOUS REGRESSION EQUATIONS IN EXPERIMENTATION
                                                                                                            BIOKA5B
                 EFFICIENT ESTIMATION OF A SYSTEM OF RECRESSION EQUATIONS WHEN DISTURBANCES ARE BOTH SERIA JASA 67
                  ESTIMATORS FOR SEEMINCLY UNRELATED RECRESSION EQUATIONS, SOME EXACT FINITE SAMPLE RESULT JASA 63
                                    ON THEIL'S MIXED REGRESSION ESTIMATOR
                                                                                                            JASA 69
                            THE VARIANCE OF WEIGHTED RECRESSION ESTIMATORS
                                                                                                            JASA 67 1290
NDENT AND HETEROSCEDASTIC
                                VARIANCE OF WEIGHTED REGRESSION ESTIMATORS WHEN SAMPLING ERRORS ARE INDEPE JASA 69 NO.4
          SOME FINITE POPULATION UNBAISED RATIO AND RECRESSION ESTIMATORS, CORR. 60 755
                                                                                                            JASA 59
                                                                                                                     594
             A SIMPLE SOLUTION FOR OPTIMAL CHEBYSHEV RECRESSION EXTRAPOLATION
                                                                                                             AMS 66
                                                                                                                     720
                    ON A POINT ARISINC IN POLYNOMIAL REGRESSION FITTING
                                                                                                            BIOKA64
                                                                                                                     501
                             BIASES IN PREDICTION BY REGRESSION FOR CERTAIN INCOMPLETELY SPECIFIED MODELS
                                                                                                            BIOKA63
                                                                                                                     391
QUENESS OF THE SPACINC OF OBSERVATIONS IN POLYNOMIAL RECRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES
                                                                                                            AMS 62
                                                                                                                     810
                          THE EFFICIENCY OF INTERNAL REGRESSION FOR THE FITTING OF THE EXPONENTIAL RECRESS BIOKA59
                                                                                                                     293
                                                     REGRESSION FOR TIME SERIES WITH ERRORS OF MEASUREMENT BIOKA63
                                                                                                                     293
      LENGTH CONFIDENCE INTERVALS FOR THE ZERO OF A REGRESSION FUNCTION
                                                                                                   BOUNDED AMS 62
                                                                                                                     237
                                         ESTIMATED REGRESSION FUNCTION OF THE Q-SUB-1 TO Q-SUB-N BY M-SU JRSSB69 NO.2
B-1 TO M-SUB-N MULTIPLE-LATTICE DESIGN
ED CAUSS-NEWTON METHOD FOR THE FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST SQUARES
                                                                                                THE MODIFI TECH 61
                                                                                                                     269
                                PRINCIPAL COMPONENTS RECRESSION IN EXPLORATORY STATISTICAL RESEARCH
                                                                                                            JASA 65
                                                                                                                     234
                         ON THE ANALYSIS OF MULTIPLE RECRESSION IN K CATECORIES
                                                                                                            BIOKA57
                                                                                                                      67
                                            MULTIPLE RECRESSION IN PROCESS DEVELOPMENT
                                                                                                            TECH 6B
                                                                                                                     257
                                           A NOTE ON REGRESSION IN THE MULTIVARIATE POISSON DISTRIBUTION
                                                                                                            JASA 67
                                                                                                                     251
                                    A NOTE ON LINEAR RECRESSION IN TRIVARIATE DISTRIBUTIONS
                                                                                                            JASA 6B 1042
          A NUMERICAL INVESTICATION OF LEAST SQUARES RECRESSION INVOLVINC TREND-REDUCED MARKOFF SERIES
                                                                                                            JRSSB55 105
 CONFIDENCE REGIONS FOR THE PARAMETERS IN NON-LINEAR RECRESSION LAWS
                                                                                                     EXACT BIOKA64
       RECIONS FOR SEVERAL PREDICTIONS FROM A SINGLE RECRESSION LINE
                                                                                                 PREDICTION TECH 61
                    A NOTE ON CONFIDENCE BANDS FOR A RECRESSION LINE OVER A FINITE RANCE
                                                                                                            JASA 6B 102B
                      ON COMPARING TWO SIMPLE LINEAR REGRESSION LINES
                                                                                                            SASJ 6B
                                                                                                                     33
                TESTS OF SIGNIFICANCE FOR CONCURRENT RECRESSION LINES
                                                                                                            BIOKA53
                                                                                                                     297
  OF RANK ORDER TESTS FOR THE PARALLELISM OF SEVERAL RECRESSION LINES
                                                                                                ON A CLASS
                                                                                                            AMS 69 1668
  A CONSERVATIVE TEST FOR THE CONCURRENCE OF SEVERAL RECRESSION LINES AND RELATED PROBLEMS
                                                                                                            BIOKA66
                      ON THE CONCURRENCE OF A SET OF REGRESSION LINES
                                                                                                            BTOKA52
                                                                                                                     109
                                                   A REGRESSION METHOD FOR REAL ESTATE PRICE INDEX
CONSTRUCTION
                                                                                                            JASA 63
                                                                                                                     933
                               THE USE OF NON-LINEAR REGRESSION METHODS FOR ANALYSING SENSITIVITY AND QUAN BIOCS67
TAL RESPONSE DATA
                                                                                                                     563
                                           A NOTE ON REGRESSION METHODS IN CALIBRATION
                                                                                                            TECH 69
                                                                                                                     189
      SMALL-SAMPLE PROPERTIES OF SEVERAL TWO-STAGE REGRESSION METHODS IN THE CONTEXT OF AUTOCORRELATED E JASA 69
                                                                                                                     253
                               CLASSICAL AND INVERSE RECRESSION METHODS OF CALIBRATION
                                                                                                            TECH 67
                                                                                                                     425
                               CLASSICAL AND INVERSE REGRESSION METHODS OF CALIBRATION IN EXTRAPOLATION
                                                                                                            TECH 69
                                                                                                                     605
                     ESTIMATION IN A HETEROSCEDASTIC REGRESSION MODEL
                                                                                                            JASA 6B
                                                                                                                     552
           A ROBUST POINT ESTIMATOR IN A CENERALIZED REGRESSION MODEL
                                                                                                             AMS 69 17B4
   THE USE OF EMPIRICAL BAYES ESTIMATORS IN A LINEAR REGRESSION MODEL
                                                                                                            BIOKA6B
                                                                                                                     525
    EMPIRICAL BAYES ESTIMATORS IN A MULTIPLE LINEAR REGRESSION MODEL
                                                                                                            BIOKA69
                                                                                                                     367
LINEAR UNBIASED PREDICTION IN THE CENERALIZED LINEAR REGRESSION MODEL
                                                                                                            JASA 62
                                                                                                                     369
                   PATTERNS IN RESIDUALS, A TEST FOR RECRESSION MODEL ADEQUACY IN RADIONUCLIDE ASSAY
                                                                                                            TECH 65
                                                                                                                     603
                            BAYESIAN ANALYSIS OF THE REGRESSION MODEL WITH AUTO-CORRELATED ERRORS
                                                                                                            JASA 64
                                                                                                                     763
                                  CONDITIONAL-NORMAL RECRESSION MODELS
                                                                                                            JASA 66
                                                                                                                     477
             ESTIMATION OF PARAMETERS IN TIME-SERIES RECRESSION MODELS
                                                                                                            JRSSB60
                                                                                                                     139
                 PREDICTION AND DECISION PROBLEMS IN REGRESSION MODELS FROM THE BAYESIAN POINT OF VIEW (CO JASA 65
                                        MULTIVARIATE RECRESSION OF DUMMY VARIATES UNDER NORMALITY
ASSUMPTIONS
                                                                                                            JASA 63 1054
          CHARACTERIZATIONS OF NORMALITY BY CONSTANT REGRESSION OF LINEAR STATISTICS ON ANOTHER LINEAR STA
                                                                                                            AMS 67 1894
                                                 THE REGRESSION OF TRUE VALUE ON ESTIMATED VALUE
                                                                                                            BIOKA60
                                                                                                                     457
                                                     REGRESSION ON A RANDOM FIELD
                                                                                                            JASA 69 NO.4
                                              LINEAR REGRESSION ON PROPORTIONS
                                                                                                            BIOCS69 5B5
         ASYMPTOTIC LINEARITY OF A RANK STATISTIC IN RECRESSION PARAMETER
                                                                                                             AMS 69 NO.6
                           EFFICIENT ESTIMATION OF A REGRESSION PARAMETER FOR CERTAIN SECOND ORDER PROCESS
                                                                                                            AMS 61 1299
                                                                                                             AMS 66 1602
         FIXED SIZE CONFIDENCE ELLIPSOIDS FOR LINEAR REGRESSION PARAMETERS
   EFFICIENCY OF A CLASS OF NON-PARAMETRIC TESTS FOR REGRESSION PARAMETERS
                                                                                                 ASYMPTOTIC
                                                                                                            AMS 67
                                                                                                                    BB4
F FIXED-SIZE SEQUENTIAL CONFIDENCE BOUNDS FOR LINEAR RECRESSION PARAMETERS
                                                                                ON THE ASYMPTOTIC THEORY O
                                                                                                            AMS 65
                                                                                                                     463
                ON FIXED-WIDTH CONFIDENCE BOUNDS FOR REGRESSION PARAMETERS AND MEAN VECTOR
                                                                                                            JRSSB67
                                                                                                                     132
                                        ESTIMATES OF RECRESSION PARAMETERS BASED ON RANK TESTS
                                                                                                            AMS 67
                                                                                                                     894
N OF LEAST SQUARES AND MINIMUM VARIANCE ESTIMATES OF RECRESSION PARAMETERS, (ACKNOWLEDCEMENT OF PRIORITY 6 AMS 62
                                                                                                                     462
SOME SCHEFFE-TYPE TESTS FOR SOME BEHRENS-FISHER-TYPE RECRESSION PROBLEMS
                                                                                                            JASA 65 1163
  OF A MODIFICATION OF DAVIDON'S METHOD TO NONLINEAR RECRESSION PROBLEMS
                                                                                                APPLICATION TECH 6B
                                                                                                                    R43
      FOR MINIMUM COVARIANCE MATRICES IN TIME SERIES RECRESSION PROBLEMS
                                                                                              LOWER BOUNDS
                                                                                                            AMS 64 362
OCEDURES OF STEIN'S TYPE FOR A CLASS OF MULTIVARIATE RECRESSION PROBLEMS
                                                                                   SEQUENTIAL INFERENCE PR
                                                                                                             AMS 62 1039
VERAL ONE-DIMENSIONAL SEARCH PROCEDURES IN NONLINEAR RECRESSION PROBLEMS
                                                                           A NUMERICAL INVESTIGATION OF SE TECH 69
                                                                                                                    265
                            ON LINEAR ESTIMATION FOR RECRESSION PROBLEMS ON TIME SERIES
                                                                                                             AMS 62 1077
                                                                                                                    107
                                                     REGRESSION PROBLEMS WHEN THE PREDICTOR VARIABLES ARE
                                                                                                           JRSSB69
PROPORTIONS
                                  OPTIMAL DESIGNS IN REGRESSION PROBLEMS WITH A GENERAL CONVEX LOSS
FUNCTION
                                                                                                           BIOKA6B
                                                                                                                     53
                                         DESIGNS FOR REGRESSION PROBLEMS WITH CORRELATED ERRORS
                                                                                                            AMS 66
                                                                                                                      66
PARAMETERS
                                         DESIGNS FOR REGRESSION PROBLEMS WITH CORRELATED ERRORS MANY
                                                                                                            AMS 68
                                                                                                                      49
                                  OPTIMUM DESIGNS IN RECRESSION PROBLEMS, II
                                                                                                             AMS 61
                                                                                                                    298
                          THE ESTIMATION OF A LAGCED REGRESSION RELATION
                                                                                                            BIOKA67
                                                                                                                     409
         THE ESTIMATION OF THE PARAMETER OF A LINEAR RECRESSION SYSTEM OBEYING TWO SEPARATE REGIMES
                                                                                                                    873
                                                                                                           JASA 5B
                                                                                                            JASA 60
               TESTS OF THE HYPOTHESIS THAT A LINEAR RECRESSION SYSTEM OBEYS TWO SEPARATE REGIMES
                                                                                                                    324
                                                  A RECRESSION TECHNIQUE FOR ANGULAR VARIATES
                                                                                                            BIOCS69 NO.4
E MONTHLY NATIONAL ESTIMATES OF RETAIL T/ USE OF A RECRESSION TECHNIQUE TO PRODUCE AREA BREAKDOWNS OF TH JASA 66
                                                                                                                    496
                        ANALYSIS OF SURVIVAL DATA BY RECRESSION TECHNIQUES
                                                                                                            TECH 63
                                                                                                                    161
                                                     RECRESSION TECHNIQUES APPLIED TO SEASONAL CORRECTIONS JASA 56
 AND ADJUSTMENTS FOR CALENDAR SHIFTS
                                                                                                                    615
                      ROBUSTNESS TO NON-NORMALITY OF RECRESSION TESTS
                                                                                                            BIOKA62
                                                                                                                     93
                                                                                                                    669
         CORRICENDA, 'ROBUSTNESS TO NON-NORMALITY OF REGRESSION TESTS
                                                                                                            BTOKA65
```

TITLE WORD INDEX REG - REL

		TECH 6B	63
	REGRESSION TRANSFORMATION FOR SMALLER ROUNDOFF ERROR		
		JASA 67 JRSSB59	
	REGRESSION WHEN BOTH VARIABLES ARE SUBJECT TO ERROR		
		JRSSB64	267
	REGRESSION WHEN THE INDEPENDENT VARIABLES ARE ORTHOGO		154
	REGRESSION WITH AN APPLICATION IN VIROLOGY	BIOKA64	
	REGRESSION WITH CONSTRAINTS ON THE INDEPENDENT VARIAB REGRESSION WITH CORRELATED OBSERVATIONS		
	REGRESSION WITH CORRELATED OBSERVATIONS	BIOKA68	575
PARAMETERS QUADRATIC	REGRESSION WITH INEQUALITY RESTRAINTS ON THE	BIOKA68 JASA 65	914
		JASA 62	
	REGRESSION WITH MISSING OBSERVATIONS AMONG THE REGRESSION WITH NON-CONSTANT, UNKNOWN ERROR VARIANCES	JASA 56	122 607
	REGRESSION WITH NON-CONSTANT, UNKNOWN ERROR VARIANCES		325
	REGRESSION WITH RESTRICTED LOCATION FOR THE STATIONAR	JASA 64	
	REGRESSION WITH STATIONARY ERRORS	JASA 66	
TESTING FOR SERIAL CORRELATION IN LEAST SQUARES	REGRESSION WITH SYSTEMATIC NOISE	JASA 64 BIOKA51	
MISSING OBSERVATIONS IN MULTIVARIATE	REGRESSION, EFFICIENCY OF A FIRST ORDER METHOD	JASA 69	
POLYNOMIALS WEIGHTED	REGRESSION, QUANTAL RESPONSE DATA, AND INVERSE	BIOCS6B	
	REGRESSION, STRUCTURE AND FUNCTIONAL RELATIONSHIP	BIOKA51	11
	REGRESSION. STRUCTURE AND FUNCTIONAL RELATIONSHIPS.II REGRESSION, WITH APPLICATION TO MANIFOLD, ORDERED CON		96
EFFICIENCIES FOR STEPWISE		JASA 64	
PRESCRIPTION OF ALL PROCESSES	BERBERGTANG	TECH 6B	769
A MIXED MODEL OF	REGRESSIONS REGRESSIONS REGRESSIONS REGRESSIONS REGRESSIONS SMALL SAMPLE PROPERTIES	BIOKA69	327
OF ALTERNATIVE ESTIMATORS OF SPEMINGLY LINDER ATED	REGRESSIONS CMAIL CAMPLE PRODERTIES	JASA 64	1180
THE LEAST SQUARES ESTIMATORS FOR FAMILIES OF LINEAR	REGRESSIONS ASYMPTOTIC NORMALITY AND CONSISTENCY OF	AMS 63	447
	REGRESSIONS AND TESTS FOR AGGREGATION BIAS AN		
	REGULAR CONDITIONAL PROBABILITIES	AMS 66	
	REGULAR ESTIMATION, I. VARIANCE BOUNDS FOR ESTIMATORS REGULAR EVENTS DISPLACED IN TIME BY INDEPENDENT RANDO		1056 476
	REGULAR GENERALIZED SUBMARTINGALES IN STOPPING PROBLE		
	REGULAR MARKOV CHAINS	AMS 61	59
A NOTE ON SUFFICIENCY IN	REGULAR MARKOV CHAINS	BIOKA60 BIOKA56	452 276
ON THE FIXED POINT PROBABILITY VECTOR OF	REGULAR MARKOV CHAINS AND CERTAIN RANDOM WALKS REGULAR OR ERGODIC TRANSITION MATRICES REGULARLY MISSED OBSERVATIONS	JASA 67	600
SPECTRAL ANALYSIS WITH	REGULARLY MISSED OBSERVATIONS REGULARLY SPACED CROPS A MATHEMATICAL	AMS 62	455
MODEL RELATING PLANT YIELD WITH ARRANGEMENT FOR	REGULARLY SPACED CROPS A MATHEMATICAL	BIOCS67	505
CONCIDENTIAL CHARICATORS AND TIME AVERAGES IN A	REGULATION AND OFFICE	JRSSB69	160 475
CONSIDERING STATISTICAL AND TIME AVERAGES IN A		JRSSB67	475
RECENT RESEARCH IN	REINTERVIEW PROCEDURES	JASA 6B	41
SUFFICIENCY CONDITIONS IN ON THE FIXED POINT PROBABILITY VECTOR OF SPECTRAL ANALYSIS WITH MODEL RELATING PLANT YIELD WITH ARRANGEMENT FOR CONSIDERING STATISTICAL AND TIME AVERAGES IN A RECENT RESEARCH IN A	REJECTION CRITERION BASED UPON THE RANGE	JASA 6B BIOKA56	41 418
A	REJECTION CRITERION BASED UPON THE RANGE REJECTION OF OUTLIERS	JASA 6B BIOKA56 TECH 60	41 418 123
QUERY, THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE,	REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO	JASA 6B BIOKA56 TECH 60 TECH 64 TECH 60	41 418 123 228 19
QUERY, THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE, FINITE POPULATION ASYMPTOTIC THEORY OF	REJECTION CRITERION BASED UPON THE RANGE REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO REJECTIVE SAMPLING WITH VARYING PROBABILITIES FROM A	JASA 6B BIOKA56 TECH 60 TECH 64 TECH 60 AMS 64	41 418 123 228 19 1491
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE. FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH	REJECTION CHITEKION BASED UPON THE RANGE REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO REJECTIVE SAMPLING WITH VARYING PROBABILITIES FROM A RELATED DAMS	JASA 6B BIOKA56 TECH 60 TECH 64 TECH 60 AMS 64 BIOCS69	41 418 123 228 19 1491 NO.4
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE. FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND	REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO REJECTIVE SAMPLING WITH VARYING PROBABILITIES FROM A RELATED DAMS RELATED DESIGNS SOME NEW FAMILIES OF PAR RELATED DISTRIBUTIONS	JASA 6B BIOKA56 TECH 60 TECH 64 TECH 60 AMS 64 BIOCS69 TECH 67 JASA 66	41 418 123 228 19 1491 NO.4
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE. FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND RY PIVOTAL QUANTITIES FOR WISHART'S AND	REJECTION OF OUTLIERS REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO REJECTIVE SAMPLING WITH VARYING PROBABILITIES FROM A RELATED DAMS RELATED DESIGNS SOME NEW FAMILIES OF PAR RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO	JASA 6B BIOKA56 TECH 60 TECH 64 TECH 60 AMS 64 BIOCS69 TECH 67 JASA 66 JRSSB55	41 418 123 228 19 1491 NO.4 229 856 79
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE. FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND FIVOTAL QUANTITIES FOR WISHART'S AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND	REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO REJECTIVE SAMPLING WITH VARYING PROBABILITIES FROM A RELATED DAMS RELATED DESIGNS RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED LIMIT THEOREMS EMBEDDING OF URN SCHEMES	JASA 6B BIOKA56 TECH 60 TECH 64 TECH 60 AMS 64 BIOCS69 TECH 67 JASA 66 JRSSB55 AMS 6B	41 418 123 228 19 1491 NO.4 229 856 79 1801
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE. FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND RY PIVOTAL QUANTITIES FOR WISHART'S AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND BY EXPONENTIALLY WEIGHTED MOVING AVERAGES AND	REJECTION OF OUTLIERS REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO REJECTIVE SAMPLING WITH VARYING PROBABILITIES FROM A RELATED DAMS RELATED DESIGNS SOME NEW FAMILIES OF PAR RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED LIMIT THEOREMS RELATED METHODS REJECTION THE RANGE REJECTION TOTAL PRO REJECTION THE RANGE R	JASA 6B BIOKA56 TECH 60 TECH 64 TECH 60 AMS 64 BIOCS69 TECH 67 JASA 66 JRSSB55 AMS 6B	41 418 123 228 19 1491 NO.4 229 856 79 1801 414
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE. FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND RY PIVOTAL QUANTITIES FOR WISHART'S AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND BY EXPONENTIALLY WEIGHTED MOVING AVERAGES AND OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO	REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO REJECTIVE SAMPLING WITH VARYING PROBABILITIES FROM A RELATED DAMS RELATED DESIGNS RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED LIMIT THEOREMS RELATED METHODS RELATED METHODS RELATED METHODS RELATED MULTIPLICATIVE POPULATION PROCESSES //ITES RELATED POPULATIONS RELATED POPULATIONS RELATED MONG	JASA 6B BIOKA56 TECH 60 TECH 60 AMS 64 BIOCS69 TECH 67 JASA 66 JRSSB55 AMS 6B JRSSB61 AMS 6B JRSSB61	41 418 123 228 19 1491 NO.4 229 856 79 1801 414 1700 514
QUERY, THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE. FINITE POPULATION ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND RY PIVOTAL QUANTITIES FOR WISHART'S AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND BY EXPONENTIALLY WEIGHTED MOVING AVERAGES AND OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO THE INTERPOLATION OF TIME SERIES BY	REJECTION OF OUTLIERS REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO REJECTIVE SAMPLING WITH VARYING PROBABILITIES FROM A RELATED DAMS RELATED DESIGNS SOME NEW FAMILIES OF PAR RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED LIMIT THEOREMS RELATED LIMIT THEOREMS RELATED METHODS RELATED MULTIPLICATIVE POPULATION PROCESSES /ITIES RELATED POPULATIONS RELATED SERIES RELATIONS AMONG RELATED SERIES	JASA 6B BIOKA56 TECH 60 TECH 64 TECH 60 AMS 64 BIOCS69 TECH 67 JASA 66 JRSSB61 AMS 6B JRSSB61 AMS 6B JRSSB61 AMS 6B	41 418 123 228 19 1491 NO.4 229 856 79 1801 414 1700 514 729
QUERY, THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE, FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND RY PIVOTAL QUANTITIES FOR WISHART'S AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND BY EXPONENTIALLY WEIGHTED MOVING AVERAGES AND OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO THE INTERPOLATION OF TIME SERIES BY ATISTICS OF RELIGIOUS AFFILIATION WITH REFERENCES TO	REJECTION OF OUTLIERS REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO REJECTIVE SAMPLING WITH VARYING PROBABILITIES FROM A RELATED DAMS RELATED DESIGNS SOME NEW FAMILIES OF PAR RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED LIMIT THEOREMS RELATED METHODS RELATED METHODS RELATED METHODS RELATED MULTIPLICATIVE POPULATION PROCESSES /ITIES RELATED SOCIAL STUDIES, CORR. 59 B11 /ERATURE ON ST	JASA 6B BIOKA56 TECH 60 TECH 60 AMS 64 BIOCS69 TECH 67 JASA 66 JRSSB55 AMS 6B JRSSB61 AMS 6B TECH 63 JASA 62 JASA 62 JASA 59	41 418 123 228 19 1491 NO.4 229 856 79 1801 414 1700 514 729 335
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE. FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND FIVOTAL QUANTITIES FOR WISHART'S AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND BY EXPONENTIALLY WEIGHTED MOVING AVERAGES AND OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO THE INTERPOLATION OF TIME SERIES BY ATISTICS OF RELIGIOUS AFFILIATION WITH REFERENCES TO PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON,	REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO RELATED DAMS RELATED DAMS RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED DISTRIBUTIONS, AND A PARADOX OF URN SCHEMES RELATED METHODS RELATED METHODS RELATED POPULATIONS RELATED POPULATIONS RELATED POPULATIONS RELATED SERIES RELATED SCIAL STUDIES, CORR. 59 B11 RELATED TAIL PROBABILITIES, I RELATED TAIL PROBABILITIES, II A NORMAL AP	JASA 6B BIOKA56 TECH 60 TECH 60 TECH 64 TECH 67 JASA 66 JRSSB61 AMS 6B JRSSB61 AMS 6B TECH 63 JASA 62 JASA 59 JASA 59 JASA 68 JASA 68	41 418 123 228 19 1491 NO.4 229 856 79 1801 414 1700 514 729 335 1416 1457
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE. FINITE POPULATION ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND RY PIVOTAL QUANTITIES FOR WISHART'S AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND BY EXPONENTIALLY WEIGHTED MOVING AVERAGES AND OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO THE INTERPOLATION OF TIME SERIES BY ATISTICS OF RELIGIOUS AFFILIATION WITH REFERENCES TO PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, QUADRATIC EXTRAPOLATION AND A	REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO REJECTIVE SAMPLING WITH VARYING PROBABILITIES FROM A RELATED DAMS RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED LIMIT THEOREMS EMBEDDING OF URN SCHEMES RELATED METHODS RELATED MULTIPLICATIVE POPULATION PROCESSES / ITIES RELATED SERIES RELATED SERIES RELATED SERIES RELATED SOCIAL STUDIES, CORR. 59 B11 / ERATURE ON ST RELATED TAIL PROBABILITIES, I A NORMAL AP RELATED TAIL PROBABILITIES, II A NORMAL AP RELATED TEST OF HYPOTHESES	JASA 6B BIOKA56 TECH 60 TECH 60 TECH 60 AMS 64 BIOCS69 TECH 67 JASA 66 JRSSB55 AMS 6B JRSSB51 AMS 6B JRSSB61 AMS 6B JRSA 69 JASA 69 JASA 68 JASA 68 JASA 68	41 418 123 228 19 1491 NO.4 229 856 79 8801 414 1700 514 729 335 1416 1457 644
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE. FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND RY PIVOTAL QUANTITIES FOR WISHART'S AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND BY EXPONENTIALLY WEIGHTED MOVING AVERAGES AND OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO THE INTERPOLATION OF TIME SERIES BY ATISTICS OF RELIGIOUS AFFILIATION WITH REFERENCES TO PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, THE ESTIMATION OF SECOND—ORDER TENSORS, WITH	REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO REJECTIVE SAMPLING WITH VARYING PROBABILITIES FROM A RELATED DAMS RELATED DESIGNS SOME NEW FAMILIES OF PAR RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED LIMIT THEOREMS RELATED MULTIPLICATIVE POPULATION PROCESSES / ITIES RELATED MULTIPLICATIVE POPULATION PROCESSES / ITIES RELATED SOCIAL STUDIES, CORR. 59 B11 / FRATURE ON ST RELATED TAIL PROBABILITIES, I A NORMAL AP RELATED TAIL PROBABILITIES, II A NORMAL AP RELATED TEST OF HYPOTHESES RELATED TESTS AND DESIGNS	JASA 6B BIOKA56 TECH 60 TECH 60 TECH 64 TECH 60 JASA 66 JASA 66 JASA 66 JASSB61 AMS 6B JASA 68 JASA 69 JASA 69 JASA 69 JASA 68 JASA 68 JASA 68 JASA 68 JASA 68 JASA 68 JASA 68	41 418 123 228 19 1491 NO.4 229 856 79 1801 414 1700 514 729 335 1416 1457 644 353
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE. FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND RY PIVOTAL QUANTITIES FOR WISHART'S AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND BY EXPONENTIALLY WEIGHTED MOVING AVERAGES AND OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO THE INTERPOLATION OF TIME SERIES BY ATISTICS OF RELIGIOUS AFFILIATION WITH REFERENCES TO PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, QUADRATIC EXTRAPOLATION AND A THE ESTIMATION OF SECOND-ORDER TENSORS, WITH EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS	REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO REJECTIVE SAMPLING WITH VARYING PROBABILITIES FROM A RELATED DAMS RELATED DESIGNS SOME NEW FAMILIES OF PAR RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED LIMIT THEOREMS RELATED MULTIPLICATIVE POPULATION PROCESSES / ITIES RELATED MULTIPLICATIVE POPULATION PROCESSES / ITIES RELATED SOCIAL STUDIES, CORR. 59 B11 / FRATURE ON ST RELATED TAIL PROBABILITIES, I A NORMAL AP RELATED TAIL PROBABILITIES, II A NORMAL AP RELATED TEST OF HYPOTHESES RELATED TESTS AND DESIGNS	JASA 6B BIOKA56 TECH 60 TECH 60 TECH 67 TECH 67 JASA 66 JRSSB61 AMS 6B TECH 63 JASA 6B JASA 6B JASA 6B JASA 6B JASA 6B JASA 65 JASA 65 JASA 65 JASA 68	41 418 123 228 19 1491 NO.4 229 856 79 1801 414 1700 514 729 335 1416 1457 644 353 1228
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE. FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND RY PIVOTAL QUANTITIES FOR WISHART'S AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND BY EXPONENTIALLY WEIGHTED MOVING AVERAGES AND OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO THE INTERPOLATION OF TIME SERIES BY ATISTICS OF RELIGIOUS AFFILIATION WITH REFERENCES TO PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, OUADRATIC EXTRAPOLATION AND A THE ESTIMATION OF SECOND-ORDER TENSORS, WITH EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS S MAXIMUM-MINIMUM PROBLEM SOME INVARIANT LAWS	REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO REJECTIVE SAMPLING WITH VARYING PROBABILITIES FROM A RELATED DAMS RELATED DESIGNS SOME NEW FAMILIES OF PAR RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED LIMIT THEOREMS EMBEDDING OF URN SCHEMES RELATED MULTIPLICATIVE POPULATION PROCESSES /ITIES RELATED MULTIPLICATIVE POPULATION PROCESSES /ITIES RELATED SOCIAL STUDIES, CORR. 59 B11 /ERATURE ON ST RELATED SOCIAL STUDIES, CORR. 59 B11 /ERATURE ON ST RELATED TAIL PROBABILITIES, I A NORMAL AP RELATED TAIL PROBABILITIES, II A NORMAL AP RELATED TEST OF HYPOTHESES RELATED TESTS AND DESIGNS RELATED TO S-SUB-N-OVER-N RELATED TO STATISTICAL DISTRIBUTIONS IN TWO DIMENSION RELATED TO THE ARC SINE LAW	JASA 6B BIOKA56 TECH 60 TECH 60 TECH 64 TECH 60 AMS 64 BIOCS69 TECH 67 JASA 66 JRSSB55 AMS 6B JASA 56 TECH 63 JASA 59 JASA 69 JASA 68 JASA 68 JASA 66 BIOKA63 AMS 6B	41 418 123 228 19 1491 NO.4 229 856 79 1801 414 1700 514 4729 335 1416 1457 644 353 1228 384 25B
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE, FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND RY PIVOTAL QUANTITIES FOR WISHART'S AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND BY EXPONENTIALLY WEIGHTED MOVING AVERAGES AND OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO THE INTERPOLATION OF TIME SERIES BY ATISTICS OF RELIGIOUS AFFILIATION WITH REFERENCES TO PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, THE ESTIMATION OF SECOND-ORDER TENSORS, WITH EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS S MAXIMUM-MINIMUM PROBLEM SOME INVARIANT LAWS MOMENTS OF A STOPPING RULE	REJECTION OF OUTLIERS REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO RELATED DAMS RELATED DESIONS RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED LIMIT THEOREMS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED METHODS RELATED MULTIPLICATIVE POPULATION PROCESSES / ITIES RELATED POPULATIONS RELATED SERIES RELATED SERIES RELATED TAIL PROBABILITIES, I A NORMAL AP RELATED TAIL PROBABILITIES, II A NORMAL AP RELATED TEST OF HYPOTHESES RELATED TEST OF HYPOTHESES RELATED TO STATISTICAL DISTRIBUTIONS IN TWO DIMENSION RELATED TO THE ARC SINE LAW RELATED TO THE ARC SINE LAW RELATED TO THE ARC SINE LAW RELATED TO THE CENTRAL LIMIT THEOREM	JASA 6B BIOKA56 TECH 60 TECH 60 TECH 66 AMS 64 BIOCS69 TECH 67 JASA 66 JRSSB61 AMS 6B TECH 63 JASA 69 JASA 69 JASA 69 JASA 68 JASA 68 JASA 68 BIOKA63 AMS 6B BIOKA63 AMS 6B	41 418 123 228 19 1491 NO.4 229 856 79 1801 414 1700 514 729 335 1416 1457 644 353 1228 384 25B 1236
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE. FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND FIVOTAL QUANTITIES FOR WISHART'S AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND BY EXPONENTIALLY WEIGHTED MOVING AVERAGES AND OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO THE INTERPOLATION OF TIME SERIES BY ATISTICS OF RELIGIOUS AFFILIATION WITH REFERENCES TO PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, QUADRATIC EXTRAPOLATION AND A THE ESTIMATION OF SECOND-ORDER TENSORS, WITH EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS A MAXIMUM-MINIMUM PROBLEM SOME INVARIANT LAWS MOMENTS OF A STOPPING RULE INTERPOLATIONS AND APPROXIMATIONS	REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO RELATED DAMS RELATED DAMS RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED LIMIT THEOREMS EMBEDDING OF URN SCHEMES RELATED METHODS PREDICTION RELATED POPULATIONS RELATIONS AMONG RELATED POPULATIONS RELATIONS AMONG RELATED SERIES RELATED SOCIAL STUDIES, CORR. 59 B11 / ERATURE ON ST RELATED TAIL PROBABILITIES, II A NORMAL AP RELATED TAIL PROBABILITIES, II A NORMAL AP RELATED TO S-SUB-N-OVER-N RELATED TO STATISTICAL DISTRIBUTIONS IN TWO DIMENSION RELATED TO THE ARC SINE LAW RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE NORMAL RANGE	JASA 6B BIOKA56 TECH 60 TECH 60 TECH 64 TECH 60 AMS 64 BIOCS69 TECH 67 JASA 66 JRSSB55 AMS 6B JASA 56 TECH 63 JASA 59 JASA 69 JASA 68 JASA 68 JASA 66 BIOKA63 AMS 6B	41 418 123 228 19 190.4 229 856 79 1801 414 1700 514 729 335 1416 1457 644 353 1228 384 258 1236 4B0
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE, FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND RY PIVOTAL QUANTITIES FOR WISHART'S AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND BY EXPONENTIALLY WEIGHTED MOVING AVERAGES AND OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO THE INTERPOLATION OF TIME SERIES BY ATISTICS OF RELIGIOUS AFFILIATION WITH REFERENCES TO PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, THE ESTIMATION OF SECOND-ORDER TENSORS, WITH EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS S MAXIMUM-MINIMUM PROBLEM SOME INVARIANT LAWS MOMENTS OF A STOPPING RULE	REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO REJECTIVE SAMPLING WITH VARYING PROBABILITIES FROM A RELATED DAMS RELATED DESIGNS SOME NEW FAMILIES OF PAR RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED LIMIT THEOREMS EMBEDDING OF URN SCHEMES RELATED MULTIPLICATIVE POPULATION PROCESSES /ITIES RELATED MULTIPLICATIVE POPULATION PROCESSES /ITIES RELATED SOCIAL STUDIES, CORR. 59 B11 /ERATURE ON ST RELATED SOCIAL STUDIES, CORR. 59 B11 /ERATURE ON ST RELATED TAIL PROBABILITIES, II A NORMAL AP RELATED TAIL PROBABILITIES, II A NORMAL AP RELATED TEST OF HYPOTHESES RELATED TO SSUB-N-OVER-N RELATED TO STATISTICAL DISTRIBUTIONS IN TWO DIMENSION RELATED TO STATISTICAL DISTRIBUTIONS IN TWO DIMENSION RELATED TO THE ARC SINE LAW RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE NORMAL RANGE RELATED TO THE NORMAL RANGE	JASA 6B BIOKA56 TECH 60 TECH 60 TECH 67 TECH 67 JASA 66 JASSA 66 JRSSB61 AMS 6B TECH 63 JASA 69 JASA 59 JASA 69 JASA 68 BIOKA63 AMS 6B BIOKA63 AMS 6B	41 418 123 228 19 1491 NO.4 229 856 79 1801 414 729 335 1416 1457 644 353 1228 258 1236 4B0 521
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE. FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND RY PIVOTAL QUANTITIES FOR WISHART'S AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND BY EXPONENTIALLY WEIGHTED MOVING AVERAGES AND OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO THE INTERPOLATION OF TIME SERIES BY ATISTICS OF RELIGIOUS AFFILIATION WITH REFERENCES TO PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, QUADRATIC EXTRAPOLATION AND A THE ESTIMATION OF SECOND-ORDER TENSORS, WITH EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS S MOMENTS OF A STOPPING RULE INTERPOLATIONS AND APPROXIMATIONS A BIBLIOGRAPHY ON LIFE TESTING AND QUALITY CONTROL METHODS FOR SEVERAL TESTS OF	REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO RELATED DAMS RELATED DAMS RELATED DESIGNS RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED METHODS RELATED METHODS RELATED METHODS RELATED POPULATIONS RELATED POPULATIONS RELATED SERIES RELATED SOCIAL STUDIES, CORR. 59 B11 RELATED TAIL PROBABILITIES, I RELATED TAIL PROBABILITIES, I RELATED TEST OF HYPOTHESES RELATED TO S-SUB-N-OVER-N RELATED TO S-SUB-N-OVER-N RELATED TO THE ARC SINE LAW RELATED TO THE ARC SINE LAW RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE ORDAL RANGE RELATED TO THE NORMAL RANGE RELATED VARIABLES RELATEDNESS	JASA 6B BIOKA56 TECH 60 TECH 60 TECH 67 TECH 67 JASA 66 JIRSSB55 AMS 6B JIRSSB55 AMS 6B JIRSSB61 AMS 6B JIRSSB61 AMS 6B JIRSSB61 AMS 6B JIRSSB61 AMS 6B JIRSSB61 AMS 6B JIRSSB61 AMS 6B BIOKA63 AMS 6B BIOKA63 AMS 6B BIOKA57 AMS 6B BIOKA57 AMS 6B BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA56 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA55	41 418 123 228 199 190.4 229 856 79 1801 414 1700 514 729 335 4146 1457 644 258 384 258 384 258 480 521 359 459
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE. FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND BY EXPONENTIALLY WEIGHTED MOVING AVERAGES AND OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO THE INTERPOLATION OF TIME SERIES BY ATISTICS OF RELIGIOUS AFFILIATION WITH REFERENCES TO PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, QUADRATIC EXTRAPOLATION AND A THE ESTIMATION OF SECOND-ORDER TENSORS, WITH EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS SOME INVARIANT LAWS MOMENTS OF A STOPPING RULE INTERPOLATIONS AND APPROXIMATIONS A BIBLIOGRAPHY ON LIFE TESTING AND QUALITY CONTROL METHODS FOR SEVERAL TESTS OF A RANDOM TIME CHANGE	REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO RELATED DAMS RELATED DESIGNS RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED LIMIT THEOREMS RELATED METHODS RELATED MULTIPLICATIVE POPULATION PROCESSES / ITIES RELATED SCRIAL STUDIES, CORR. 59 B11 / FRATURE ON ST RELATED TAIL PROBABILITIES, I A NORMAL AP RELATED TAIL PROBABILITIES, II A NORMAL AP RELATED TAIL PROBABILITIES, II A NORMAL AP RELATED TO S-SUB-N-OVER-N RELATED TO STATISTICAL DISTRIBUTIONS IN TWO DIMENSION RELATED TO THE ARC SINE LAW RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE NORMAL RANGE RELATED VARIABLES RELATED VARIABLES RELATING SEMI-MARKOV AND MARKOV PROCESSES	JASA 6B BIOKA56 TECH 60 TECH 60 TECH 67 JECH 67 JASA 66 JIRSSB51 AMS 6B JRSSB51 AMS 6B JRSA 59 JASA 69 JASA 69 JASA 68 JASA 66 BIOKA63 AMS 6B BIOKA63 AMS 6B BIOKA65 BIOKA57 AMS 6B BIOKA57 AMS 6B BIOKA57 AMS 6B	41 418 123 228 19 1491 No. 4 229 856 79 1801 414 729 335 1416 1457 644 258 1236 288 1236 521 359 459 459 358
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE. FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND BY EXPONENTIALLY WEIGHTED MOVING AVERAGES AND OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO THE INTERPOLATION OF TIME SERIES BY ATISTICS OF RELIGIOUS AFFILIATION WITH REFERENCES TO PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, QUADRATIC EXTRAPOLATION AND A THE ESTIMATION OF SECOND-ORDER TENSORS, WITH EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS SOME INVARIANT LAWS MOMENTS OF A STOPPING RULE INTERPOLATIONS AND APPROXIMATIONS A BIBLIOGRAPHY ON LIFE TESTING AND QUALITY CONTROL METHODS FOR SEVERAL TESTS OF A RANDOM TIME CHANGE	REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO REJECTIVE SAMPLING WITH VARYING PROBABILITIES FROM A RELATED DAMS RELATED DESIONS RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED LIMIT THEOREMS RELATED MULTIPLICATIVE POPULATION PROCESSES RELATED MULTIPLICATIVE POPULATION PROCESSES RELATED SERIES RELATED SOCIAL STUDIES, CORR. 59 B11 / FRATURE ON ST RELATED TAIL PROBABILITIES, I A NORMAL AP RELATED TAIL PROBABILITIES, II A NORMAL AP RELATED TESTS AND DESIGNS RELATED TO STATISTICAL DISTRIBUTIONS IN TWO DIMENSION RELATED TO STATISTICAL DISTRIBUTIONS IN TWO DIMENSION RELATED TO THE ARC SINE LAW RELATED TO THE ARC SINE LAW RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE ORDMAL RANGE RELATED TO THE SET OF SELLAW RELATED TO THE SOURCE AND RELATED TO THE RORMAL RANGE RELATED TO THE RORMAL RANGE RELATED TO THE SENTENCE AND RELATED TO THE RORMAL RANGE RELATED TO THE SET OF SELLAW RELATED TO THE SENTENCE AND RELATED TO THE RORMAL RANGE RELATED TO THE SET OF SELLAW RELATED TO THE SENTENCE AND RANGE RELATED TO THE SENTENCE AND RELATED TO THE RORMAL RANGE RELATED TO THE SENTENCE AND RANGE RELATED TO	JASA 6B BIOKA56 TECH 60 TECH 60 TECH 67 TECH 67 JASA 66 JIRSSB55 AMS 6B JIRSSB55 AMS 6B JIRSSB61 AMS 6B JIRSSB61 AMS 6B JIRSSB61 AMS 6B JIRSSB61 AMS 6B JIRSSB61 AMS 6B JIRSSB61 AMS 6B BIOKA63 AMS 6B BIOKA63 AMS 6B BIOKA57 AMS 6B BIOKA57 AMS 6B BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA56 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA55 BIOKA55	41 418 123 228 19 1491 NO.4 229 856 79 1801 414 729 335 1416 1457 644 353 1228 384 25B 1236 4B0 521 359 459 358 262
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE. FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND FIVOTAL QUANTITIES FOR WISHART'S AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND BY EXPONENTIALLY WEIGHTED MOVING AVERAGES AND OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO THE INTERPOLATION OF TIME SERIES BY ATISTICS OF RELIGIOUS AFFILIATION WITH REFERENCES TO PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, QUADRATIC EXTRAPOLATION AND A THE ESTIMATION OF SECOND-ORDER TENSORS, WITH EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS A MAXIMUM-MINIMUM PROBLEM SOME INVARIANT LAWS MOMENTS OF A STOPPING RULE INTERPOLATIONS AND APPROXIMATIONS A BIBLIOGRAPHY ON LIFE TESTING AND QUALITY CONTROL METHODS FOR SEVERAL TESTS OF A RANDOM TIME CHANGE FUNCTION AN INEQUALITY CONFIDENCE REGION FOR A LINEAR BIVARIATE STRUCTURAL	REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO REJECTIVE SAMPLING WITH VARYING PROBABILITIES FROM A RELATED DAMS RELATED DESIGNS SOME NEW FAMILIES OF PAR RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED LIMIT THEOREMS EMBEDDING OF URN SCHEMES RELATED METHODS RELATED POPULATIONS RELATED POPULATIONS RELATED POPULATIONS RELATED SCIAL STUDIES, CORR. 59 B11 /ERATURE ON ST RELATED TAIL PROBABILITIES, II A NORMAL AP RELATED TAIL PROBABILITIES, II A NORMAL AP RELATED TESTS AND DESIGNS RELATED TO S-SUB-N-OVER-N RELATED TO STATISTICAL DISTRIBUTIONS IN TWO DIMENSION RELATED TO THE ARC SINE LAW RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE NORMAL RANGE RELATED TO THE NORMAL RANGE RELATED TO THE NORMAL RANGE RELATED TO THE SOMMAL RANGE RELATED TO THE NORMAL RANGE RELATED TO THE SOMMAL RANGE RELATING SEMI-MARKOV AND MARKOV PROCESSES RELATING THE SPECTRAL DENSITY AND AUTOCORRELATION RELATION	JASA 6B BIOKA56 TECH 60 TECH 60 TECH 67 TECH 67 JASA 66 JIRSSB55 AMS 6B JRSSB55 AMS 6B JRSSB61 AMS 6B JASA 62 JASA 69 JASA 69 JASA 69 JASA 69 JASA 69 JASA 69 BIOKA57 AMS 6B BIOKA57 AMS 6B BIOKA57 AMS 6B BIOKA58 BIO	41 418 123 228 19 1491 NO. 4 229 856 79 1801 414 729 335 514 1700 644 335 1228 384 25B 1236 480 521 358 262 780 84
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE. FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND RY PIVOTAL QUANTITIES FOR WISHART'S AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO THE INTERPOLATION OF TIME SERIES BY ATISTICS OF RELIGIOUS AFFILIATION WITH REFERENCES TO PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, OUADRATIC EXTRAPOLATION AND A THE ESTIMATION OF SECOND-ORDER TENSORS, WITH EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS S A MAXIMUM-MINIMUM PROBLEM SOME INVARIANT LAWS MOMENTS OF A STOPPING RULE INTERPOLATIONS AND APPROXIMATIONS A BIBLIOGRAPHY ON LIFE TESTING AND QUALITY CONTROL METHODS FOR SEVERAL TESTS OF A RANDOM TIME CHANGE FUNCTION A RANDOM TIME CHANGE FUNCTION AN INEQUALITY CONTROL METHODS FOR SEVERAL TESTS OF A RANDOM TIME CHANGE FUNCTION AN INEQUALITY CONFIDENCE REGION FOR A LINEAR BIVARIATE STRUCTURAL THE ESTIMATION OF A LAGGED REGRESSION	REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO REJECTIVE SAMPLING WITH VARYING PROBABILITIES FROM A RELATED DAMS RELATED DESIGNS SOME NEW FAMILIES OF PAR RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED LIMIT THEOREMS RELATED MULTIPLICATIVE POPULATION PROCESSES / ITIES RELATED MULTIPLICATIVE POPULATION PROCESSES RELATED SOCIAL STUDIES, CORR. 59 B11 / FRATURE ON ST RELATED SOCIAL STUDIES, CORR. 59 B11 / FRATURE ON ST RELATED TAIL PROBABILITIES, I A NORMAL AP RELATED TAIL PROBABILITIES, II A NORMAL AP RELATED TESTS AND DESIGNS RELATED TO S-SUB-N-OVER-N RELATED TO STATISTICAL DISTRIBUTIONS IN TWO DIMENSION RELATED TO THE ARC SINE LAW RELATED TO THE ARC SINE LAW RELATED TO THE ONTHAL LIMIT THEOREM RELATED TO THE ONTHAL LIMIT THEOREM RELATED TO THE SOURCE AND MARKOV PROCESSES RELATION SEMI-MARKOV AND MARKOV PROCESSES RELATION RELATION RELATION RELATION RELATION RELATION RELATION	JASA 6B BIOKA56 TECH 60 TECH 60 TECH 60 TECH 67 JASA 66 JRSSB55 AMS 6B JASA 66 JASS 61 JASA 69 JASA 69 JASA 69 JASA 68 BIOKA57 AMS 6B BIOKA57 ECH 63 AMS 6B BIOKA57 AMS 6B BIOKA57 AMS 68 BIOKA57 AMS 68 BIOKA57 AMS 68 BIOKA57	41 418 228 19 1801 414 1700 514 729 1801 414 644 335 1416 1457 453 1228 480 480 490 459 459 459 459 469 469 469 469 469 469 469 469 469 46
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE. FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND RY PIVOTAL QUANTITIES FOR WISHART'S AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND BY EXPONENTIALLY WEIGHTED MOVING AVERAGES AND OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO THE INTERPOLATION OF TIME SERIES BY ATISTICS OF RELIGIOUS AFFILIATION WITH REFERENCES TO PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, OUADRATIC EXTRAPOLATION AND A THE ESTIMATION OF SECOND-ORDER TENSORS, WITH EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS S A MAXIMUM-MINIMUM PROBLEM MOMENTS OF A STOPPING RULE INTERPOLATIONS AND APPROXIMATIONS A BIBLIOGRAPHY ON LIFE TESTING AND QUALITY CONTROL METHODS FOR SEVERAL TESTS OF A RANDOM TIME CHANGE FUNCTION AN INEQUALITY CONFIDENCE REGION FOR A LINEAR BIVARIATE STRUCTURAL THE ESTIMATION OF A LAGGED RECRESSION A TEST OF SIGNIFICANCE FOR AN UNIDENTIFIABLE	REJECTION OF OUTLIERS REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTIVE SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO RELACED DAMS RELATED DAMS RELATED DESIGNS RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED LIMIT THEOREMS RELATED METHODS RELATED MULTIPLICATIVE POPULATION PROCESSES RELATED SERIES RELATED SOCIAL STUDIES, CORR. 59 B11 / FRATURE ON ST RELATED TAIL PROBABILITIES, I A NORMAL AP RELATED TAIL PROBABILITIES, II A NORMAL AP RELATED TEST OF HYPOTHESES RELATED TO STATISTICAL DISTRIBUTIONS IN TWO DIMENSION RELATED TO THE ARC SINE LAW RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE SERVICES RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE SERVICES RELATED TO THE RAC SINE LAW RELATED TO THE SERVICES RELATED TO THE RAC SINE LAW RELATED TO THE SERVICES RELATED TOPICS RELATED SEMI-MARKOV AND MARKOV PROCESSES RELATION SEMI-MARKOV AND MARKOV PROCESSES RELATION	JASA 6B BIOKA56 TECH 60 TECH 60 TECH 67 TECH 67 JASA 66 JIRSSB55 AMS 6B JRSSB55 AMS 6B JRSSB61 AMS 6B JASA 62 JASA 69 JASA 69 JASA 69 JASA 69 JASA 69 JASA 69 BIOKA57 AMS 6B BIOKA57 AMS 6B BIOKA57 AMS 6B BIOKA58 BIO	41 418 123 228 19 NO. 4 229 856 79 1801 414 1700 514 729 1416 1457 644 353 324 480 521 358 459 459 459 459 459 469 469 460 661
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE. FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND RY PIVOTAL QUANTITIES FOR WISHART'S AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND BY EXPONENTIALLY WEIGHTED MOVING AVERAGES AND OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO THE INTERPOLATION OF TIME SERIES BY ATISTICS OF RELIGIOUS AFFILIATION WITH REFERENCES TO PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, OUADRATIC EXTRAPOLATION AND A THE ESTIMATION OF SECOND-ORDER TENSORS, WITH EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS S A MAXIMUM-MINIMUM PROBLEM SOME INVARIANT LAWS MOMENTS OF A STOPPING RULE INTERPOLATIONS AND APPROXIMATIONS A BIBLIOGRAPHY ON LIFE TESTING AND QUALITY CONTROL METHODS FOR SEVERAL TESTS OF A RANDOM TIME CHANGE FUNCTION A TEST OF SIGNIFICANCE FOR AN UNIDENTIFIABLE ESTIMATION OF THE PARAMETERS OF A LINEAR FUNCTIONAL OF TESTS ON THE	REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO REJECTIVE SAMPLING WITH VARYING PROBABILITIES FROM A RELATED DAMS RELATED DESIGNS SOME NEW FAMILIES OF PAR RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED LIMIT THEOREMS RELATED MULTIPLICATIVE POPULATION PROCESSES / ITIES RELATED MULTIPLICATIVE POPULATION PROCESSES / ITIES RELATED SOCIAL STUDIES, CORR. 59 B11 / FRATURE ON ST RELATED SOCIAL STUDIES, CORR. 59 B11 / FRATURE ON ST RELATED TAIL PROBABILITIES, I A NORMAL AP RELATED TAIL PROBABILITIES, II A NORMAL AP RELATED TEST OF HYPOTHESES RELATED TO S-SUB-N-OVER-N RELATED TO STATISTICAL DISTRIBUTIONS IN TWO DIMENSION RELATED TO THE ARC SINE LAW RELATED TO THE ARC SINE LAW RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE SOCIAL STUDIES RELATED TO THE SOCIAL STUDIES RELATED TO THE SOCIAL STUDIES RELATED TO THE SOCIAL DISTRIBUTIONS IN TWO DIMENSION RELATED TO THE SOCIAL STUDIES RELATED TO THE ARC SINE LAW RELATED TO THE SOCIAL DISTRIBUTIONS IN TWO DIMENSION RELATED TO THE SOCIAL STUDIES RELATED TO THE SOCIAL DISTRIBUTIONS IN TWO DIMENSION RELATION	JASA 6B BIOKA56 TECH 60 TECH 60 TECH 60 TECH 60 TECH 67 JASA 66 JRSSB55 AMS 6B JRSSB61 AMS 6B JASA 69 JASA 66 JASA 66 JASA 68 TECH 63 JASA 68 BIOKA63 AMS 6B BIOKA67 AMS 6B BIOKA57 BIOKA67 BIOKA67 JRSSB56	41 418 228 19 856 79 1801 414 1700 514 729 335 1416 1457 644 353 1228 480 459 459 459 459 469 461 6160 642
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE, FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND RY PIVOTAL QUANTITIES FOR WISHART'S AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND BY EXPONENTIALLY WEIGHTED MOVING AVERAGES AND OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO THE INTERPOLATION OF TIME SERIES BY ATISTICS OF RELIGIOUS AFFILIATION WITH REFERENCES TO PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, OUADRATIC EXTRAPOLATION AND A THE ESTIMATION OF SECOND-ORDER TENSORS, WITH EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS S A MAXIMUM-MINIMUM PROBLEM SOME INVARIANT LAWS MOMENTS OF A STOPPING RULE INTERPOLATIONS AND APPROXIMATIONS A BIBLIOGRAPHY ON LIFE TESTING AND QUALITY CONTROL METHODS FOR SEVERAL TESTS OF A RANDOM TIME CHANGE FUNCTION A BINDAM AND APPROXIMATIONS AND APPROXIMATIONS A BIBLIOGRAPHY ON LIFE TESTING AND QUALITY CONTROL METHODS FOR SEVERAL TESTS OF A RANDOM TIME CHANGE FUNCTION A RANDOM TIME CHANGE FUNCTION A RANDOM TIME CHANGE FUNCTION A THE ESTIMATION OF A LAGGED RECRESSION A TEST OF SIGNIFICANCE FOR AN UNIDENTIFIABLE ESTIMATION OF THE PARAMETERS OF A LINEAR FUNCTIONAL OF TESTS ON THE	REJECTION OF OUTLYING VALUES REJECTION OF OUTLYING VALUES REJECTION OF OUTLYING VALUES REJECTIVE SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO RELATED DAMS RELATED DESIONS RELATED DESIONS RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED LIMIT THEOREMS RELATED METHODS RELATED MULTIPLICATIVE POPULATION PROCESSES / ITIES RELATED SERIES RELATED SOCIAL STUDIES, CORR. 59 B11 / FRATURE ON ST RELATED TAIL PROBABILITIES, II A NORMAL AP RELATED TAIL PROBABILITIES, II A NORMAL AP RELATED TEST OF HYPOTHESES RELATED TEST OF HYPOTHESES RELATED TO STATISTICAL DISTRIBUTIONS IN TWO DIMENSION RELATED TO THE ARC SINE LAW RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE ARC SINE LAW RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE RAC SINE LAW RELATED TO THE SENSENS RELATED TO THE RAC SINE LAW RELATED TO THE SENSENS RELATION SEMI-MARKOV AND MARKOV PROCESSES RELATING THE SPECTRAL DENSITY AND AUTOCORRELATION RELATION BETWEEN ESTIMATING EFFICIENCY AND THE POWER RELATION BETWEEN EXTREME VALUES AND TENSILE STRENTH	JASA 6B BIOKA56 TECH 60 TECH 60 TECH 60 AMS 64 BIOCS69 TECH 67 JASA 66 JRSSB61 AMS 6B TECH 63 JASA 69 JASA 69 JASA 68 JASA 68 JASA 68 BIOKA56 BIOKA57 AMS 6B BIOKA57 AMS 6B BIOKA56 BIOKA57 AMS 6B BIOKA57 BIOKA58 BIOKA57 BIOKA58 BIOKA57 BIOKA58 BIOKA57 BIOKA58 BIOKA58 BIOKA57 BIOKA57 BIOKA58	41 418 123 228 19 NO. 4 229 856 79 1801 414 1700 514 729 335 1416 1457 644 353 1228 364 480 459 459 459 459 459 469 461 160 61 160 61 160 61 160 61 61 61 61 61 61 61 61 61 61 61 61 61
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE. FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND RY PIVOTAL QUANTITIES FOR WISHART'S AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND BY EXPONENTIALLY WEIGHTED MOVING AVERAGES AND OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO THE INTERPOLATION OF TIME SERIES BY ATISTICS OF RELIGIOUS AFFILIATION WITH REFERENCES TO PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, QUADRATIC EXTRAPOLATION AND A THE ESTIMATION OF SECOND—ORDER TENSORS, WITH EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS S A MAXIMUM—MINIMUM PROBLEM MOMENTS OF A STOPPING RULE INTERPOLATIONS AND APPROXIMATIONS A BIBLIOGRAPHY ON LIFE TESTING AND QUALITY CONTROL METHODS FOR SEVERAL TESTS OF A RANDOM TIME CHANGE FUNCTION A BIBLIOGRAPHY ON LIFE TESTING AND CONFIDENCE REGION FOR A LINEAR BIVARIATE STRUCTURAL THE ESTIMATION OF A LAGGED REGRESSION A TEST OF SIGNIFICANCE FOR AN UNIDENTIFIABLE ESTIMATION OF THE PARAMETERS OF A LINEAR FUNCTIONAL OF TESTS TWO EARLY PAPERS ON THE RSITY AND YULE'S CHARACTERISTIC THE MATHEMATICAL	REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION OF OUTLYING VALUES REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO REJECTIVE SAMPLING WITH VARYING PROBABILITIES FROM A RELATED DAMS RELATED DESIGNS RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED METHODS RELATED METHODS RELATED METHODS RELATED POPULATIONS RELATED POPULATIONS RELATED SERIES RELATED SERIES RELATED TAIL PROBABILITIES, I RELATED TAIL PROBABILITIES, I RELATED TAIL PROBABILITIES, II RELATED TO STATISTICAL DISTRIBUTIONS IN TWO DIMENSION RELATED TO THE ARC SINE LAW RELATED TO THE ARC SINE LAW RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE SPECTRAL DENSITY AND AUTOCORRELATION RELATION RE	JASA 6B BIOKA56 TECH 60 TECH 60 TECH 60 TECH 67 JASA 66 JRSSB61 AMS 6B JRSSB61 JASA 62 JASA 62 JASA 68 JASA 68 JASA 69 BIOKA57 AMS 6B BIOKA57 AMS 6B BIOKA57 AMS 6B BIOKA55 BIOKA56 JRSSB61 BIOKA54 BIOKA54 BIOKA54 BIOKA54 BIOKA54	41 418 123 228 1491 NO.4 229 856 79 1801 414 1700 514 729 335 345 1416 1457 644 258 384 459 358 262 780 84 409 1160 542 559 268
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE. FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND RY PIVOTAL QUANTITIES FOR WISHART'S AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND EYEXPONENTIALLY WEIGHTED MOVING AVERAGES AND OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO THE INTERPOLATION OF TIME SERIES BY ATISTICS OF RELIGIOUS AFFILIATION WITH REFERENCES TO PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, OUADRATIC EXTRAPOLATION AND A THE ESTIMATION OF SECOND-ORDER TENSORS, WITH EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS S A MAXIMUM-MINIMUM PROBLEM SOME INVARIANT LAWS MOMENTS OF A STOPPING RULE INTERPOLATIONS AND APPROXIMATIONS A BIBLIOGRAPHY ON LIFE TESTING AND QUALITY CONTROL METHODS FOR SEVERAL INTERPOLATION METHODS FOR SEVERAL THE ESTIMATION OF A LAGGED REGRESSION A RANDOM TIME CHANGE FUNCTION A TEST OF SIGNIFICANCE FOR AN UNIDENTIFIABLE ESTIMATION OF THE PARAMETERS OF A LINEAR FUNCTIONAL OF TESTS ON THE RISITY AND YULE'S CHARACTERISTIC THE MATHEMATICAL NCY OF TWO TESTS AND THE CORRELATION COEFFICI, THE	REJECTION OF OUTLYING VALUES REJECTION OF OUTLYING VALUES REJECTION OF OUTLYING VALUES REJECTIVE SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRO RELATED DAMS RELATED DESIONS RELATED DESIONS RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED LIMIT THEOREMS RELATED METHODS RELATED MULTIPLICATIVE POPULATION PROCESSES / ITIES RELATED SERIES RELATED SOCIAL STUDIES, CORR. 59 B11 / FRATURE ON ST RELATED TAIL PROBABILITIES, II A NORMAL AP RELATED TAIL PROBABILITIES, II A NORMAL AP RELATED TEST OF HYPOTHESES RELATED TEST OF HYPOTHESES RELATED TO STATISTICAL DISTRIBUTIONS IN TWO DIMENSION RELATED TO THE ARC SINE LAW RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE ARC SINE LAW RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE RAC SINE LAW RELATED TO THE SENSENS RELATED TO THE RAC SINE LAW RELATED TO THE SENSENS RELATION SEMI-MARKOV AND MARKOV PROCESSES RELATING THE SPECTRAL DENSITY AND AUTOCORRELATION RELATION BETWEEN ESTIMATING EFFICIENCY AND THE POWER RELATION BETWEEN EXTREME VALUES AND TENSILE STRENTH	JASA 6B BIOKA56 TECH 60 TECH 60 TECH 60 TECH 67 JASA 66 JRSSB55 AMS 6B JRSSB55 AMS 6B JASA 66 JASA 66 JASA 66 JASA 66 BIOKA63 AMS 6B BIOKA63 AMS 6B BIOKA65 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA67 AMS 6B BIOKA57 BIOKA67 JRSSB56 JRSSB56 BIOKA62 AMS 6B BIOKA667 BIOKA58 BIOKA67 BIOKA58 BIOKA67 BIOKA58 BIOKA67 BIOKA58 BIOKA67 BIOKA58 BIOKA67 BIOKA58 BIOKA54 BIOKA54 BIOKA54 BIOKA54 BIOKA54 BIOKA54 BIOKA54 BIOKA54 BIOKA55	41 418 123 228 19 1491 NO.4 229 856 79 1801 414 729 335 1416 1457 644 353 1228 358 459 459 459 459 459 459 459 459 459 459
THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE. FINITE POPULATION ASYMPTOTIC THEORY OF ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH TIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND ON TESTING THE EQUALITY OF UNIFORM AND RY PIVOTAL QUANTITIES FOR WISHART'S AND INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND BY EXPONENTIALLY WEIGHTED MOVING AVERAGES AND OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO THE INTERPOLATION OF TIME SERIES BY ATISTICS OF RELIGIOUS AFFILIATION WITH REFERENCES TO PROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, QUADRATIC EXTRAPOLATION AND A THE ESTIMATION OF SECOND-ORDER TENSORS, WITH EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS S A MAXIMUM-MINIMUM PROBLEM SOME INVARIANT LAWS MOMENTS OF A STOPPING RULE INTERPOLATIONS AND APPROXIMATIONS A BIBLIOGRAPHY ON LIFE TESTING AND QUALITY CONTROL METHODS FOR SEVERAL TESTS OF A RANDOM TIME CHANGE FUNCTION AN INEQUALITY CONFIDENCE REGION FOR A LINEAR BIVARIATE STRUCTURAL THE ESTIMATION OF A LAGGED REGRESSION A TEST OF SIGNIFICANCE FOR AN UNIDENTIFIABLE ESTIMATION OF THE PARAMETERS OF A LINEAR FUNCTIONAL OF TESTS ON THE RSITY AND YULE'S CHARACTERISTIC THE MATHEMATICAL NCY OF TWO TESTS AND THE CORRELATION COEFFICI/ THE ACCUURRENCE DISTRIBUTION OF WORD LENGTH AND IT/ THE	REJECTION OF OUTLIERS REJECTION OF OUTLIERS REJECTION OF OUTLYING VALUES REJECTION OF OUTLYING VALUES REJECTION OF OUTLYING VALUES REJECTION SAMPLING WITH VARYING PROBABILITIES FROM A RELATED DAMS RELATED DESIGNS SOME NEW FAMILIES OF PAR RELATED DISTRIBUTIONS RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO RELATED LIMIT THEOREMS EMBEDDING OF URN SCHEMES RELATED MULTIPLICATIVE POPULATION PROCESSES /ITIES RELATED MULTIPLICATIVE POPULATION PROCESSES /ITIES RELATED SOCIAL STUDIES, CORR. 59 B11 /ERATURE ON ST RELATED SOCIAL STUDIES, CORR. 59 B11 /ERATURE ON ST RELATED TAIL PROBABILITIES, I A NORMAL AP RELATED TAIL PROBABILITIES, II A NORMAL AP RELATED TO TAIL PROBABILITIES, II A NORMAL AP RELATED TO SSUB—NOVER—N RELATED TO STATISTICAL DISTRIBUTIONS IN TWO DIMENSION RELATED TO THE ARC SINE LAW RELATED TO THE ARC SINE LAW RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE CENTRAL LIMIT THEOREM RELATED TO THE OFFICE AND MARKOV PROCESSES RELATION THE SPECTRAL DENSITY AND AUTOCORRELATION RELATION BETWEEN ESTIMATING EFFICIENCY AND THE POWER RELATION BETWEEN EXTREME VALUES AND TENSILE STRENGTH RELATION BETWEEN EXTREME VALUES AND TENSILE STRENGTH	JASA 6B BIOKA56 TECH 60 TECH 60 TECH 60 TECH 60 AMS 64 BIOCS69 TECH 67 JASA 66 JRSSB61 AMS 6B JRSSB61 JASA 62 JASA 69 JASA 68 JASA 68 JASA 68 BIOKA57 AMS 6B BIOKA67 AMS 6B BIOKA65 BIOKA55 BIOKA56 BIOKA56 BIOKA57 AMS 6B BIOKA67 AMS 6B BIOKA68 BIOKA68 BIOKA68 BIOKA65 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68 BIOKA68	41 418 123 228 19 190 1801 414 1700 514 729 353 1416 1457 644 258 258 258 258 258 258 258 258 258 258

REL - REN TITLE WORD INDEX

```
SMIRNOV TYPE
                                   RESULTS FROM THE RELATION BETWEEN TWO STATISTICS OF THE KOLOMOGOROV-
                                                                                                               AMS 69 1B33
CS FROM 8IVARIATE DISTRIBUTIONS
                                       A RECURRENCE RELATION FOR DISTRIBUTION FUNCTIONS OF ORDER STATISTI JASA 69
                                NOTE ON A UNIQUENESS RELATION IN CERTAIN ACCIDENT PRONENESS MODELS
AN MOTION TO THE EQUIVALENCE CONDITIONS FOR C/ THE RELATION OF THE EQUIVALENCE CONDITIONS FOR THE BROWNI AMS 69 NO.6
R STATISTICS OF THE CEOMETRIC DISTRIBUTION AND THEIR RELATION TO INVERSE SAMPLING AND RELIABILITY OF REDUN JASA 67
                                                                                                                      915
                       STATISTICAL CONCEPTS IN THEIR RELATION TO REALITY
                                                                                                             JRSSB55
                                                                                                                       204
                                  THE BUSY PERIOD IN RELATION TO THE QUEUEING PROCESS GI-M-1
                                                                                                             BIOKA59
                                                                                                                       246
                                       INHALATION IN RELATION TO TYPE AND AMOUNT OF SMOKINC
                                                                                                             JASA 59
                                                                                                                       35
DISCRIMINANT ANALYSIS, NECESSARY SAMPLE SIZE, AND A RELATION WITH THE MULTIPLE CORRELATION COEFFICIENT
                                                                                                             BIOCS68
                                                                                                                      B23
       ON THE LEAST SQUARES ESTIMATION OF NON-LINEAR RELATIONS
                                                                                                              AMS 69
                                                                                                                      462
                     ON ESTIMATING BINOMIAL RESPONSE RELATIONS
                                                                                                             BIOKA56
                                                                                                                       461
                      MULTIVARIATE LINEAR STRUCTURAL RELATIONS
                                                                                                             BTOKA58
                                                                                                                       1.36
                        ON A TEST FOR SEVERAL LINEAR RELATIONS
                                                                                                             JRSSB69
                                                                                                                       65
S FROM TWO RELATED POPULATIONS
                                                     RELATIONS AMONG MOMENTS OF ORDER STATISTICS IN SAMPLE TECH 63
                                                                                                                       514
                                                SOME RELATIONS BETWEEN EXPECTATIONS OF ORDER STATISTICS IN BIOKA64
SAMPLES OF DIFFERENT SIZES
                                                                                                                       259
                                A NOTE ON RECURRENCE RELATIONS BETWEEN EXPECTED VALUES OF FUNCTIONS OF
ORDER STATISTICS
                                                                                                               AMS 66
                                                                                                                       733
                                  ON TWO EQUIVALENCE RELATIONS BETWEEN MEASURES
                                                                                                               AMS 66
                                                                                                                       6B6
EXCHANGEABLE VARIATES
                                          RECURRENCE RELATIONS BETWEEN MOMENTS OF ORDER STATISTICS FOR
                                                                                                               AMS 6B
                                                                                                                       272
DEPENDENT VARIABLES, AND SOME APPLICA/
                                          RECURRENCE RELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF BIOKA67
                                                                                                                       2B.3
F ORDER STATISTICS, AND SOME APPLICATI/
                                          RECURRENCE RELATIONS BETWEEN THE PROBABILITY DENSITY FUNCTIONS 0 AMS 62
                                                                                                                       169
MEASURES WITH APPLICATIONS
                                                     RELATIONS BETWEEN WEAK AND UNIFORM CONVERGENCE OF
                                                                                                               AMS 62
DISCUSSION) TOPICS IN THE INVESTIGATION OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST SQUARES (WITH JRSSB67
 AR EXPONENTIAL FAMILTY IN A PARAMETER BY RECURRENCE RELATIONS FOR FUNCTIONS OF CUMULANTS /NS OF THE LIN AMS 69 1721
                                           RECURSIVE RELATIONS FOR PREDICTORS OF NON-STATIONARY PROCESSES
                                                                                                             JRSSB65
                                          RECURRENCE RELATIONS FOR THE INVERSE MOMENTS OF THE POSITIVE
BINOMIAL VARIABLE
                                  ON INFERRING ORDER RELATIONS IN ANALYSIS OF VARIANCE
                                                                                                             BTOCS65
                                                                                                                       337
OF INSTRUMENTAL VARIABLE ESTIMATION OF STRAIGHT-LINE RELATIONS WHEN BOTH VARIABLES ARE SUBJECT TO ERROR
                                                                                                             TECH 69
                                                                                                                      255
MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR FUNCTIONAL RELATIONSHIP
                                                                                                              AMS 61 1048
                RECRESSION, STRUCTURE AND FUNCTIONAL RELATIONSHIP
                                                                                                             BIOKA51
                                                                                                                       11
                          ESTIMATION OF A FUNCTIONAL RELATIONSHIP
                                                                                                             BTOKA53
                                                                                                                       47
      THE BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL RELATIONSHIP
                                                                                                             JRSSB68
                                                                                                                      190
   LIMITS FOR THE GRADIENT IN THE LINEAR FUNCTIONAL RELATIONSHIP
                                                                                                  CONFIDENCE JRSSB56
                                                                                                                       65
MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR STRUCTURAL RELATIONSHIP
                                                                                              A NOTE ON THE JASA 64 1175
   TO THE PROBLEM OF ESTIMATING A LINEAR FUNCTIONAL RELATIONSHIP
                                                                            THE MAXIMUM LIKELIHOOD SOLUTION JRSSB69 NO.2
A PARTIALLY BALANCED INCOMPLETE BLOCK DESIGN THE RELATIONSHIP ALCEBRA AND THE ANALYSIS OF VARIANCE OF
                                                                                                              AMS 65 1815
IZING INFORMATION FROM A DIALLEL MATING D/ SPATIAL RELATIONSHIP AMONG EIGHT POPULATIONS ZEA MAYS L. UTIL BIOCS68
                                                                                                                      867
                               A SIMPLE MATHEMATICAL RELATIONSHIP AMONC K-CLASS ESTIMATORS
                                                                                                             JASA 66
                                                                                                                       36B
DOUBLY STOCHASTIC MATRICES
                                                    A RELATIONSHIP BETWEEN ARBITRARY POSITIVE MATRICES AND
                                                                                                             AMS 64
PURCHASES
                                        A NOTE ON THE RELATIONSHIP BETWEEN EARNING EXPECTATIONS AND NEW CAR JASA 59
                                                                                                                       575
A NON-PARAMETRIC LEST OF DANIEL/ CORRECTIONS TO 'A RELATIONSHIP BETWEEN HODGES' BIVARIATE SIGN TEST AND
                                                                                                              AMS 61
RVALS FOR THE HYPERGEOMETRIC PARAMETER
                                                  THE RELATIONSHIP BETWEEN NEYMAN AND BAYES CONFIDENCE INTE TECH 6B
                                                                                                                       199
APPLICATIONS IN SEQUENTIAL ANALYSIS
                                                  THE RELATIONSHIP BETWEEN SUFFICIENCY AND INVARIANCE WITH
                                                      RELATIONSHIP BETWEEN SYSTEM FAILURE RATE AND
COMPONENT FAILURE RATES
                                                                                                             TECH 63
ONARY BIRTH-DEATH PROCESS, AND ITS ECONOMIC A/
                                                THE RELATIONSHIP BETWEEN THE MEAN AND VARIANCE OF A STATI BIOKA62
                                                ON A RELATIONSHIP BETWEEN TWO REPRESENTATIONS OF A MODEL
FOR PAIRED COMPARISONS
SUMS FOR BALANCED COMPLETE FINITE POPULATIONS
                                                     RELATIONSHIP OF GENERALIZED POLYKAYS TO UNRESTRICTED
                                                                                                              AMS 68
OKING AND A STOCHASTIC MODEL FOR THE MO/ EMPERICAL RELATIONSHIP (
SOME ANALYSES OF INCOME-FOOD RELATIONSHIPS
                                           EMPERICAL RELATIONSHIP OF LUNG CANCER INCIDENCE TO CIGARETTE SM BIOCS65
                                                                                                                      B39
                                                                                                             JASA 5B
                                                                                                                      905
                              ON CIRCULAR FUNCTIONAL RELATIONSHIPS
                                                                                                              JRSSB65
                                                                                                                       45
             SIMULTANEOUS PAIRWISE LINEAR STRUCTURAL RELATIONSHIPS
                                                                                                             BIOCS69
NOTE ON TESTS OF SIGNIFICANCE FOR LINEAR FUNCTIONAL RELATIONSHIPS
                                                                                                           A BIOKA57
                                                                                                                       26B
                                                                                         SIGNIFICANCE TESTS BIOKA55
   FOR DISCRIMINANT FUNCTIONS AND LINEAR FUNCTIONAL RELATIONSHIPS
                                                                                                                       360
ERALIZED LEAST-SQUARES APPROACH TO LINEAR FUNCTIONAL RELATIONSHIPS (WITH DISCUSSION)
                                                                                                       A GEN JRSSB66
                                                                                                                       278
                                                SOME RELATIONSHIPS AMONG THE VON MISES DISTRIBUTIONS OF
DIFFERENT DIMENSIONS
                                                                                                             BIOKA66
                                                                                                                       269
                              RECRESSION ANALYSIS OF RELATIONSHIPS BETWEEN AUTOCORRELATED TIME SERIES
                                                                                                             JRSSB56
                                                                                                                       240
FOR PREDICTIONS (WITH DISCUSSION)
                                                     RELATIONSHIPS BETWEEN BAYESIAN AND CONFIDENCE LIMITS
                                                                                                             JRSSB64
                                                                                                                      176
DISTRIBUTIONS
                                                SOME RELATIONSHIPS BETWEEN THE NORMAL AND VON MISES
                                                                                                             BIOKA67
                                                                                                                      684
                                               LINEAR RELATIONSHIPS BETWEEN VARIABLES AFFECTED BY ERRORS
                                                                                                             BIOCS66
                                                                                                                      252
HAVING WORDS OF EQUAL LENGTHS
                                         ON IDENTITY RELATIONSHIPS FOR TWO TO THE POWER OF N-R DESIGNS
                                                                                                              AMS 66 1B42
                                              LINEAR RELATIONSHIPS IN GROWTH AND SIZE STUDIES
                                                                                                             BIOCS6B
                                                                                                                     639
          A NOTE ON THE MEASUREMENT OF COST-QUANTITY RELATIONSHIPS IN THE AIRCRAFT INDUSTRY
                                                                                                             JASA 6B 1247
                               CURRENT WEICHT-HEIGHT RELATIONSHIPS OF YOUTHS OF MILITARY AGE
                                                                                                             JASA 62
                                                                                                                      R95
                         A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES ARE KNOWN
                                                                                                             BIOKA67
E OF INSTRUMENTAL VARIABLES
                                   THE ESTIMATION OF RELATIONSHIPS WITH AUTOCORRELATED RESIDUALS BY THE US
                                                                                                             JRSSB59
                RECRESSION, STRUCTURE AND FUNCTIONAL RELATIONSHIPS.II.
                                               ON THE RELATIVE ACCURACY OF SOME SAMPLING TECHNIQUES
                                                                                                             JASA 58
                                                                                                                       98
                                                      RELATIVE COSTS OF COMPUTERIZED ERROR INSPECTION PLANS JASA 69 NO.4
                                                  THE RELATIVE EFFICACY OF INVESTMENT ANTICIPATIONS
                                                                                                             JASA 66
ESTING TREND IN DISPERSI/ A NOTE ON THE ASYMPTOTIC RELATIVE EFFICIENCIES OF COX AND STUART'S TESTS FOR T
                                                                                                             BTOKA6B
SCALAR ALTERNATIVES
                                      THE ASYMPTOTIC RELATIVE EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST
                                                                                                            JASA 65
 TESTS AGAINST SOME PARAMETRIC ALTERNA/ ASYMPTOTIC RELATIVE EFFICIENCY OF MOOD'S AND MASSEY'S TWO SAMPLE
                                                                                                             AMS 62 1375
SCHEMES
                                                 THE RELATIVE EFFICIENCY OF SOME TWO-PHASE SAMPLING
                                                                                                               AMS 67
E/ THE AVERAGE CRITICAL VALUE METHOD FOR ADJUDGING RELATIVE EFFICIENCY OF STATISTICAL TESTS IN TIME SERI BIOKA66
                                                                                                                      109
THE AVERACE CRITICAL VALUE METHOD AND THE ASYMPTOTIC RELATIVE EFFICIENCY OF TESTS
                                                                                                             BIOKA67
                                                                                                                       308
                              A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILIT JASA 60
Y RATIO TEST
                                                                                                                      660
COEFFICI/ THE RELATION BETWEEN PITMAN'S ASYMPTOTIC RELATIVE EFFICIENCY OF TWO TESTS AND THE CORRELATION
                                                                                                              AMS 63 1442
     TO ESTIMATE THE RATIO OF VARIANCES WITH BOUNDED RELATIVE ERROR
                                                                                       SAMPLE SIZE REQUIRED
                                                                                                             JASA 63 1044
                                ESTIMATES OF BOUNDED RELATIVE ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL ESTIMATES OF BOUNDED RELATIVE ERROR FOR THE RATIO OF VARIANCES OF NORMAL
DISTRIBUTION
                                                                                                             TECH 61
                                                                                                                     107
DISTRIBUTIONS
                                                                                                             JASA 56
                                                                                                                       4B1
A SIMPLE METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO PARABOLAS
USING DISTRIBUTION-FREE METHODS IN THE ESTIMATION OF RELATIVE POTENCY IN DILUTION (-DIRECT) ASSAYS
                                                                                                             BTOCS65
                                                                                                                      140
                                                                                                             BIOCS66
                                                                                                                      610
               APPROXIMATE CONFIDENCE LIMITS FOR THE RELATIVE RISK (CORR. 63 234)
                                                                                                             JRSSB62
                                                                                                                      454
DIFFERENT K-CLASS ESTIMATORS
                                                  THE RELATIVE SENSITIVITY TO SPECIFICATION ERROR OF
                                                                                                             JASA 66
                                                                                                                      345
          A NONPARAMETRIC SUM OF RANKS PROCEDURE FOR RELATIVE SPREAD IN UNPAIRED SAMPLES, CORR. 61 1005
                                                                                                             JASA 60
                                                                                                                      429
MULTIPLE CORRELATION COEFFICIENT
                                                    A RELATIVELY SIMPLE FORM OF THE DISTRIBUTION OF THE
                                                                                                             JRSSB6B
                                                                                                                      276
HREN ZUR ERZEUGUNG VON SYMBOLFOLGEN MIT VORGECEBENER RELATIVER DYADENKONTEXTREDUNDANZ /N EINFACHES VERFA BIOCS68
                                                                                                                     703
```

TITLE WORD INDEX REL - REN

WORDS DISTRICT ON A WOLLD			
	RELATIVES OF GENOTYPES FOR TWINNING	BIOCS6B	179
		TECH 61	
	RELEASE AND CONTROL OF CAPSULES, TABLETS, AND STERILE		161
	RELEVANCE OF THE DISPERSION OF A RADON-NIKODYM DERIVA		108
SYSTEM EFFICIENCY AND		TECH 60	43
MULTI-COMPONENT SYSTEMS AND STRUCTURES AND THEIR		TECH 61	55
ON MINIMUM VARIANCE UNBIASED ESTIMATION OF	RELIABILITY RELIABILITY RELIABILITY A MARKOVIAN MODEL FOR THE A RELIABILITY COMPARISON OF TWO METHODS OF O	AMS 69	710
NALYSIS OF THE EFFECTS OF MARGINAL TESTING ON SYSTEM	RELIABILITY A MARKOVIAN MODEL FOR THE A	AMS 62	754
BTAINING APPROXIMATE CONFIDENCE INTERVALS FOR SYSTEM	RELIABILITY COMPARISON OF TWO METHODS OF O	TECH 6B	37
	RELIABILITY ANALYSIS /ICATIONS OF THE BIVARIATE NOR		
	RELIABILITY ANALYSIS OF SYSTEMS UNDER VARIOUS PREVENT		
	RELIABILITY AND HAZARD RATE	AMS 65	
	RELIABILITY ASSURANCE IN FINITE LOTS	TECH 69	61
BAYESIAN APPROACH TO LIFE TESTING AND		JASA 67	4B
	RELIABILITY ESTIMATION FOR THE TWO PARAMETER EXPONENT		621
MODEL	RELIABILITY ESTIMATION OF THE TRUNCATED EXPONENTIAL	TECH 67	332
	RELIABILITY FOR SOME DISTRIBUTIONS USEFUL IN LIFE	TECH 64	
	RELIABILITY FOR THE TRUNCATED EXPONENTIAL DISTRIBUTIO		
SOME PROPERTIES OF STATISTICAL		AMS 66	
E MAXIMUM LIKELIHOOD AND BEST UNBIASED ESTIMATORS OF	· · · · · · · · · · · · · · · · · · ·		
	RELIABILITY FUNCTIONS FOR SYSTEMS IN SERIES AND IN PA		
PROGRAM	RELIABILITY GROWTH DURING A DEVELOPMENT TESTING	TECH 66	53
PARAMETERS IN A TRANSIENT MARKOV CHAIN ARISING IN A			
	RELIABILITY IN THE CASE OF THE WEIBULL DISTRIBUTION	TECH 66	
PROBIT ANALYSIS AS A TECHNIQUE FOR ESTIMATING THE		TECH 67	
	RELIABILITY OF A SYSTEM COMPRISED OF K ELEMENTS FROM		
	RELIABILITY OF COMPONENTS EXHIBITING CUMULATIVE	TECH 61	
	RELIABILITY OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS	JASA 65 JRSSB66	
TRIBUTION AND THEIR RELATION TO INVERSE SAMPLING AND	RELIABILITY OF MULTIPLEX SYSTEMS WITH REPAIR RELIABILITY OF REDUNDANT SYSTEMS /THE GEOMETRIC DIS		
	RELIABILITY OF REDUNDANT SYSTEMS THE GEOMETRIC DIS		915
	RELIABILITY OF SAFETY SYSTEMS FOR PLANTS MANUFACTURIN		
		TECH 65	495
	RELIABILITY OF SERIES SYSTEMS	JASA 67	
ON CONFIDENCE LIMITS FOR THE		AMS 68	
	RELIABILITY OF TELEMETRY SYSTEMS REPORTS	JASA 62	
	RELIABILITY PREDICTIONS A METHOD FOR DISC		1
ABOUT GAMMA PARAMETERS WITH AN APPLICATION TO A			670
RANDOM HAZARD IN	RELIABILITY PROBLEMS	TECH 63	211
BOUNDS ON INTEGRALS WITH APPLICATIONS TO	RELIABILITY PROBLEMS	AMS 65	565
	RELIABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE CE		306
	RELIGIOUS AFFILIATION WITH REFERENCES TO RELATED SOCI		335
A COMPARISON OF MAJOR UNITED STATES		JASA 61	56B
	REMAINDER IN THE CENTRAL LIMIT THEOREM FOR MIXING	AMS 69	
	REMARK ON HITTING PLACES FOR TRANSIENT STABLE PROCESS		
		TECH 65 JRSSB6B	
	· ·	BIOKA5B	567 273
	REMARK ON THE COIN TOSSING GAME	AMS 64	
UTION OF A BRANCHING PROCESS ALLOWING IMMIGRATION, A			176
	REMARK ON THE KOLMOGOROFF-PETROVSKII CRITERION	AMS 69	
	REMARKS CONCERNING 'A GENERAL APPROACH TO THE ESTIMAT		
	REMARKS CONCERNING KHATRI'S RESULT ON QUADRATIC FORMS		
MPLE DISTRIBUTION FUNCTIONS OF GENERALIZED CLASSI/	REMARKS CONCERNING THE APPLICATION OF EXACT FINITE SA		
REPLACEMENT SOME	REMARKS ON A SIMPLE PROCEDURE OF SAMPLING WITHOUT	JASA 66	
SOME	REMARKS ON CONFIDENCE OF FIDUCIAL LIMITS	BIOKA54	275
SOME GENERAL	REMARKS ON CONSULTING IN STATISTICS	TECH 69	241
		BIOKA65	5B7
	REMARKS ON EXPONENTIAL REGRESSION WITH CORRELATED	BIOKA6B	
DISTRIBUTIONS	REMARKS ON LARGE SAMPLE ESTIMATORS FOR SOME DISCRETE		
	REMARKS ON SCHEFFE'S SOLUTION TO THE BEHRENS-FISHER	JASA 69	
SOME		BIOKA67	
		TECH 60	
CAMIFIED OF DISTRIBUTION FURTHER		AMS 69 TECH 60	
A STATISTICAL THEORY OF		JRSSB59	
THE ESTIMATION OF THE SPECTRAL DENSITY AFTER TREND	PENGUA	1000000	707
BASED ON CHANGE OF COMPOSITION CAUSED BY A SELECTIVE		BIOKA55	279
MODELS FOR A BACTERIAL GROWTH PROCESS WITH	REMOVALS	JRSSB63	140
BY PHAGES, A BRANCHING PROCESS WITH DETERMINISTIC	REMOVALS REMOVALS THE EXTINCTION OF A BACTERIAL COLONY	BIOKA62	272
	REMOVED BUT NOT REPLACED THE COMPUTATION		
EFFECTIVENESS OF ADJUSTMENT BY SUBCLASSIFICATION IN	REMOVING BIAS IN OBSERVATIONAL STUDIES THE	BIOCS68	295
	REMOVING PERSONS WITH N OR MORE ACCIDENTS FROM AN ACC		
	RENEWAL DISTRIBUTIONS	AMS 69	
ON THE ERROR IN THE LINEAR APPROXIMATION TO THE			
	RENEWAL FUNCTION FOR MARKOV RENEWAL PROCESSES		
	RENEWAL FUNCTION FOR THE WEIBULL DISTRIBUTION		
	RENEWAL FUNCTION WHEN THE MEAN RENEWAL LIFETIME IS RENEWAL LOSS RATES	AMS 63	
ON SERIES EXPANSIONS FOR THE		BIOKA63	
		JRSSB59	
GAMES ASSOCIATED WITH A		AMS 62	
PRESENT VALUE OF A		AMS 64	
A NOTE ON THE WEIBULI			
	RENEWAL PROCESS	BIOKA66	313
	RENEWAL PROCESS RENEWAL PROCESS	JRSSB63	
	RENEWAL PROCESS		150

REN - RES TITLE WORD INDEX

```
GENERATING FUNCTIONS FOR MARKOV RENEWAL PROCESSES
                                                                                                            AMS 64 431
    A LARGE SAMPLE TEST FOR THE INDEPENDENCE OF TWO RENEWAL PROCESSES
                                                                                                            AMS 67 1037
           ON THE MATRIX RENEWAL FUNCTION FOR MARKOV RENEWAL PROCESSES
                                                                                                            AMS 69 NO.6
                              ON THE SUPERPOSITON OF RENEWAL PROCESSES
                                                                                                           BIOKA54
                                                                                                                     91
                                 ON THE CUMULANTS OF RENEWAL PROCESSES
                                                                                                           BIOKA59
                                                                                                                      1
ASYMPTOTIC VALUES OF THE FIRST TWO MOMENTS IN MARKOV RENEWAL PROCESSES
                                                                                                            BIOKA67
                                                                                                                     597
                          SOME SIMPLE WEAR-DEPENDENT RENEWAL PROCESSES
                                                                                                           JRSSB61
                                                                                                                    368
    AND UNIQUENESS OF STATIONARY MEASURES FOR MARKOV RENEWAL PROCESSES
                                                                                             THE EXISTENCE
                                                                                                           AMS 66 1439
                                             MARKOV RENEWAL PROCESSES WITH FINITELY MANY STATES
                                                                                                            AMS 61 1243
                          COUNTING DISTRIBUTIONS FOR RENEWAL PROCESSES.
                                                                                                            BIOKA65
                                                                                                                     395
                    CORRIGENDA, 'ON THE CUMULANTS OF RENEWAL PROCESSES.'
                                                                                                            BTOKA59
                                                                                                                     502
                                             MARKOV RENEWAL PROCESSES, DEFINITIONS AND PRELIMINARY
PROPERTIES
                                                                                                             AMS 61 1231
                                                                                                            AMS 65 1294
    PROBABILISTIC PROOF OF THE DISCRETE GENERALIZED RENEWAL THEOREM
                                                                                                  A SIMPLE
                 ON INFINITELY DIVISIBLE LAWS AND A RENEWAL THEOREM FOR NON-NEGATIVE RANDOM VARIABLES
                                                                                                             AMS 68
ENT OR NON-IDENTICALLY DISTRIBUTED
                                                   A RENEWAL THEOREM FOR RANDOM VARIABLES WHICH ARE DEPEND
                                                                                                             AMS 63
                                                                                                                    390
                                     VARIATIONS ON A RENEWAL THEOREM OF SMITH
                                                                                                             AMS 68
                                                                                                                    155
                                                     RENEWAL THEOREMS WHEN THE FIRST OR THE SECOND MOMENT
                                                                                                             AMS 68 1210
                                                SOME RENEWAL THEOREMS WITH APPLICATION TO A FIRST PASSAGE
                                                                                                             AMS 66
                                                                                                                     699
                          AN INVARIANCE PRINCIPLE IN RENEWAL THEORY
                                                                                                             AMS 62
                 ON MOMENT GENERATING FUNCTIONS AND RENEWAL THEORY
                                                                                                             AMS 65 1298
            ON ABSOLUTELY CONTINUOUS COMPONENTS AND RENEWAL THEORY
                                                                                                             AMS 66 271
 AN APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION OF RENEWAL THEORY
                                                                                                            JRSSB63
                                                                                                                     432
MIXTURES OF MULTI-SIZED PARTICLES, AN APPLICATION OF RENEWAL THEORY
                                                                                                 SAMPLING.
                                                                                                           TECH 69
DISCUSSION)
                                                     RENEWAL THEORY AND ITS RAMIFICATIONS (WITH
                                                                                                            JRSSB58
                                                                                                                     243
             COMPARISON OF REPLACEMENT POLICIES, AND RENEWAL THEORY IMPLICATIONS
                                                                                                            AMS 64
                                                     RENEWAL THEORY IN THE PLANE
                                                                                                            AMS 65
                                                                                                                     946
                            A PERSISTENCE PROBLEM IN RENEWAL THEORY, ROBERT THE BRUCE'S SPIDER
                                                                                                           BTOKA66
                                                                                                                     255
                                                  A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCHASTIC
PROCESSES
                                                                                                            AMS 62
                                                                                                                     9B
                                    ON THE NUMBER OF RENEWALS IN A RANDOM INTERVAL
                                                                                                           BTOKA60
                                                                                                                     449
                                        INCREASE IN RENT OF DWELLING UNITS FROM 1940 TO 1950
                                                                                                            JASA 59
                                                                                                                     358
                                     ON A THEOREM OF RENYI CONCERNING MIXING SEQUENCES OF SETS
                                                                                                            AMS 61
                                                                                                                     257
                  5 1069 SOME RENYI TYPE LIMIT THEOREMS FOR EMPIRICAL DISTRIBUTION
TABLES OF CRITICAL VALUES OF SOME RENYI TYPE STATISTICS FOR FINITE SAMPLE SIZES
FUNCTIONS, CORR, 65 1069
                                                                                                            AMS 65
                                                                                                                     322
                                                                                                            JASA 69
                                                                                                                     870
                       KOLMOGOROV-SMIRNOV TESTS AND RENYI'S MODIFICATION
                                                                                                           BIOCS68 1019
      TIME DISTRIBUTIONS FOR REDUNDANT SYSTEMS WITH REPAIR
                                                                                               SOME WAITING TECH 64
                                                                                                                     27
     APPROXIMATION TO MACHINE INTERFERENCE WITH MANY REPAIR MEN
                                                                                                    NORMAL JRSSB57
                                                                                                                     334
ALLY PATROLLED BY ONE OPERATOR WHEN WALKING TIME AND REPAIR TIMES ARE CONSTANTS /MACHINES UNI-DIRECTION JRSSB57
                                                                                                                     166
ED BY ONE OPERATOR WHEN WALKING TIME IS CONSTANT AND REPAIR TIMES ARE VARIABLE /NI-DIRECTIONALLY PATROLL JRSSB57
                                                                                                                     173
                   PRODUCT TEST PLANNING FOR REPAIRABLE SYSTEMS
                                                                                                            TECH 65
                                                                                                                     485
                                 GENERALIZATION AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER NONLINEAR BIOCS65
 FUNCTIONS
                                                                                                                     708
GENETIC TRENDS
                                   EXAMINATION OF A REPEAT MATING DESIGN FOR ESTIMATING ENVIRONMENTAL AND BIOCS65
                                                                                                                      63
 APPLICATION OF MULTIVARIATE ANALYSIS OF VARIANCE TO REPEATED MEASUREMENTS EXPERIMENTS
                                                                                                           BIOCS66
                                                                                                                     810
                                      THE EXTENT OF REPEATED MIGRATION, AND ANALYSIS BASED ON THE DANISH
POPULATION REGISTER
                                                                                                           JASA 64 1121
                   ROTATION DESIGNS FOR SAMPLING ON REPEATED OCCASIONS
                                                                                                            JASA 64 492
TICAL MODEL WITH APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMONG CHILDREN
                                                                                                  A MATHEMA JASA 65 1046
                                                                                                                     489
ON OF AN UNKNOWN DISCRETE WAVEFORM WHICH IS RANDOMLY REPEATING IN GAUSSIAN NOISE
                                                                                     LARGE SAMPLE ESTIMATI AMS 65
        OF PAIRED COMPARISON DESIGNS WITH INCOMPLETE REPETITIONS
                                                                                               AN ANALYSIS BIOKA57
                                                                                                                      97
                         DESIGN AND EVALUATION OF A REPETITIVE GROUP SAMPLING PLAN
                                                                                                            TECH 65
                                                                                                                     11
UNKNOWN DISTRIBUTIONS
                                                     REPETITIVE PLAY IN FINITE STATISTICAL GAMES WITH
                                                                                                            AMS 66
                                                                                                                     976
CTED AOQL WHEN DEFECTIVE MATERIAL IS REMOVED BUT NOT REPLACED
                                                                           THE COMPUTATION OF THE UNRESTRI JASA 69
                                                                                                                     665
     SAMPLING WITH UNEQUAL PROBABILITIES AND WITHOUT REPLACEMENT
                                                                                                            AMS 62
                                                                                                                     350
   REMARKS ON A SIMPLE PROCEDURE OF SAMPLING WITHOUT REPLACEMENT
                                                                                                       SOME JASA 66
                                                                                                                     391
  PROCEDURES OF UNEQUAL PROBABILITY SAMPLING WITHOUT REPLACEMENT
                                                                                                  ON THREE JASA 63
                                                                                                                     202
       SAMPLING WITH UNEQUAL PROBABILITY AND WITHOUT REPLACEMENT
                                                                                                 SYSTEMATIC JASA 66
                                                                                                                     739
   PROCEDURE OF UNEQUAL PROBABILITY SAMPLING WITHOUT REPLACEMENT
                                                                                                ON A SIMPLE JRSSB62
                                                                                                                     4B2
     IN SAMPLING WITH VARYING PROBABILITIES WITHOUT REPLACEMENT
                                                                                            SOME ESTIMATORS JASA 56
ATORS IN SAMPLING WITH VARYING PROBABILITIES WITHOUT REPLACEMENT
                                                                                ON A CLASS OF LINEAR ESTIM JASA 65
                                                                                                                     637
 SAMPLING WITH PROBABILITY PROPORTIONAL TO SIZE WITH REPLACEMENT
                                                                           A NOTE ON A BIASED ESTIMATOR IN AMS 66 1045
                                                                    /ECIFIED SAMPLING UNITS WILL OCCUR IN A JASA 66
 SAMPLE DRAWN WITH UNEQUAL PROBABILITIES AND WITHOUT REPLACEMENT
    EXTREME TAIL PROBABILITIES FOR SAMPLING WITHOUT REPLACEMENT AND EXACT BAHADUR EFFICIENCY OF THE TWO-S BIOKA68
        METHODS OF CLUSTER SAMPLING WITH AND WITHOUT REPLACEMENT FOR CLUSTERS OF UNEQUAL SIZES
                                                                                                           BIOKA62
                                       COMPARISON OF REPLACEMENT POLICIES, AND RENEWAL THEORY IMPLICATIONS AMS 64
                                             THE AGE REPLACEMENT PROBLEM
                                                                                                           TECH 67
                                MARKOVIAN SEQUENTIAL REPLACEMENT PROCESSES
                                                                                                            AMS 65 1677
      A NOTE ON FELLEGI'S METHOD OF SAMPLING WITHOUT REPLACEMENT WITH PROBABILITY PROPORTIONAL TO SIZE
                                                                                                            JASA 67
                                    SAMPLING WITHOUT REPLACEMENT WITH PROBABILITY PROPORTIONAL TO SIZE
                                                                                                            JRSSB58
                                 ON SAMPLING WITHOUT REPLACEMENT WITH UNEQUAL PROBABILITIES OF SELECTION
                                                                                                            BIOKA67
         SAMPLING WITH VARYING PROBABILITIES WITHOUT REPLACEMENT, ROTATING AND NON-ROTATING SAMPLES
                                                                                                            JASA 63
                          A COMMUNICATIONS SATELLITE REPLENISHMENT POLICY
                                                                                                            TECH 66
  ON A SPECIAL SUBSET GIVING AN IRREGULAR FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL EXPERIMENT
                                                                                                           JRSSB67
              TECHNIQUES FOR CONSTRUCTING FRACTIONAL REPLICATE PLANS
                                                                                                            JASA 63
                                                                                                                      45
                                 ROUTINE ANALYSIS OF REPLICATED EXPERIMENTS ON AN ELECTRONIC COMPUTER
                                                                                                            JRSSB57
                                                     REPLICATED, OR INTERPENETRATING, SAMPLES OF UNEQUAL
                                                                                                             AMS 67 1142
                                 PARALLEL FRACTIONAL REPLICATES
                                                                                                            TECH 60
            BALANCED DESIGNS WITH UNEQUAL NUMBERS OF REPLICATES
                                                                                                             AMS 64
                                                                                                                     897
                ESTIMATES OF EFFECTS FOR FRACTIONAL REPLICATES
                                                                                                             AMS 64
                                                                                                                     711
ON THE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL REPLICATES
                                                                                                             AMS 68
                                                                                                                     657
                             SEQUENCES OF FRACTIONAL REPLICATES IN THE 2-TO-THE-(P-Q) SERIES, CORR. 62 919 JASA 62
                                                                                                                     403
                       ON CONSTRUCTING THE FACTORIAL REPLICATES OF THE TWO TO THE POWER OF M DESIGNS WITH
                                                                                                            AMS 62 1440
    ON THE ANALYSIS OF FACTORIAL EXPERIMENTS WITHOUT REPLICATION
                                                                                                            TECH 59 343
                   PARTIAL CONFOUNDING IN FRACTIONAL REPLICATION
                                                                                                            TECH 61
                                                                                                                     353
        ON ESTIMATION AND CONSTRUCTION IN FRACTIONAL REPLICATION
                                                                                                            AMS 66 1033
  LEAST SQUARES ESTIMATORS FOR RANDOMIZED FRACTIONAL REPLICATION DESIGNS
                                                                                               GENERALIZED AMS 64 696
                                             OPTIMAL REPLICATION IN SEQUENTIAL DRUG SCREENING
                                                                                                           BIOKA64
G FROM A RANDOMISED BLOCK EXPERIMENT WITH ADDITIONAL REPLICATION OF A CONTROL TREATMENT /IONS ARE MISSIN BIOCS66
THE FACTORS APPLIED SEQUENTIALLY
                                         FRACTIONAL REPLICATION OF 2-TO-THE-P FACTORIAL EXPERIMENTS WITH JASA 68 644
```

ES ON SIMPLIFICATIONS OF SAMPLING DESIGN THROUGH	DEDITION SITEL BOLLS DOOD ADTITUTES AND STUDIES COAS	TACA EC	0.4
BOOLING ANALYSIS OF VARIANCE FOR THOUSE EACTORIAL	REPLICATION WITH EQUAL PROBABILITIES AND WITHOUT STAG REPLICATION-FREE EXPERIMENTS CHAIN- REPLICATIONS BALANCED INCOMPLETE	TECH 69	24
RIOCK DESIGNS WITH DOUBLE CROUPING OF BL VS INTO	REPLICATIONS BALAMORD INCOMPLETE	PINCSEE	36B
IMATE PARAMETERS IN NON-LINEAR/ THE OCCURRENCE OF	REPLICATIONS IN OPTIMAL DESIGNS OF EXPERIMENTS TO EST	DIUCSOO	290
· · · · · · · · · · · · · · · · · · ·	REPLY TO ANSCOMBE'S COMMENTS	TECH 65	169
THE PRESIDENT'S ECONOMIC		JASA 57	257
AN OU/LOOK		JASA 57	1
	REPORT OF THE ADVISORY COMMITTEE ON WEATHER CONTROL'	JASA 61	580
	REPORTED BY A SAMPLE OF FAMILIES WHO RECEIVED WELFARE		680
	REPORTING FOR CORPORATE INCOME TAX	JASA 56	304
		JASA 63	4B7
SELECTED ECONOMIC DATA, ACCURACY VS.		JASA 68	436
THE ECONOMICS OF THE PRESIDENT'S ECONOMIC		JASA 56	454
AND LUNG CANCER. SOME OBSERVATIONS ON TWO RECENT			28
TO DETERMINE THE RELIABILITY OF TELEMETRY SYSTEMS			686
RESPONSE ERROR IN SURVEY	REPORTS OF EARNINGS INFORMATION	JASA 66	729
SIGMA-LATTICES A	REPRESENTATION FOR CONDITIONAL EXPECTATIONS GIVEN	AMS 66	
	REPRESENTATION FOR RANDOM VARIABLES COVARIANCE STATIO		295
	REPRESENTATION OF QUALITATIVE CONDITION PROBABILITY	AMS 68	481
011 THE TOWNER TOWN		JASA 67	
SOME PROPERTIES OF AN ALGEBRAIC	REPRESENTATION OF STOCHASTIC PROCESSES	AMS 68	164
		BIOCS65	551
		AMS 62	
	REPRESENTATIONS FOR SOME RESOLUTION VI FRACTIONAL	AMS 69	
	REPRESENTATIONS OF A MODEL FOR PAIRED COMPARISONS	BIOCS69	597
	REPRESENTATIONS OF DISTRIBUTIONS OF QUADRATIC FORMS		823
	REPRESENTATIONS OF DISTRIBUTIONS OF QUADRATIC FORMS I		838
DISTRIBUTIONS		BIOKA64	451
DISTRIBUTION A NOTE ON	REPRESENTATIONS OF THE DOUBLY NON-CENTRAL T	JASA 68	1013
DISTRIBUTION SERIES		JASA 68	
GNS SOME GENERALIZATIONS OF DISTINCT	REPRESENTATIVES WITH APPLICATIONS TO STATISTICAL DESI		525
PROBABILITIES	REPRESENTING FINITELY ADDITIVE INVARIANT	AMS 68	2131
	REPRODUCIBLE METHOD OF COUNTING PERSONS OF SPANISH	JASA 61	B8
	REPRODUCING FINITE DIPLOID POPULATIONS /INBREEDING		447
	REPRODUCTION OF ORDERINGS AND TRANSLATION SUBFAMILIES		196
	REPRODUCTIVE DATA FITTED TO A MATHEMATICAL MODEL	BIOCS69	529
STATISTICAL ESTIMATION OF THE GASOLINE OCTANE NUMBER		TECH 60	5
	REQUIREMENT THAT CUMULATIVE FUNCTIONS BE CONTINUOUS	TECH 63	518
	REQUIREMENTS AMONG ENVIRONMENTAL POCKETS UPON STEADY		453
	REQUIREMENTS FOR ACCEPTANCE TESTING OF COMPLEX REQUIREMENTS ON MEANS	JASA 59	447 527
N OF FACTORIAL EXPERIMENTS, A SURVEY OF SOME SCHEMES		JASA 57 BIOKA59	251
COMPONENTS REGRESSION IN EXPLORATORY STATISTICAL			234
TO ESSENTIALS. 2. THE ROLE OF FACTOR ANALYSIS IN		BIOCS65	405
	RESEARCH IN REINTERVIEW PROCEDURES	JASA 6B	41
	RESEARCH ON CERTAIN TYPES OF RECREATION	JASA 59	2B1
DATA	RESEARCH ON METROPOLITAN POPULATION, EVALUATION OF	JASA 56	591
THE EPOCHS OF EMPTINESS OF A SEMI-INFINITE DISCRETE	RESERVOIR	JRSSB63	131
	RESERVOIRS WITH SERIALLY CORRELATED INPUTS	TECH 63	85
DIMENSION IN CENTERLESS-GRINDING WITH AUTOMATIC	RESET DEVICE CONTROLLING	TECH 69	115
COMPUTATION AND STRUCTURE OF OPTIMAL		JASA 67	
MACHINING ERRORS IN SET-UPS WITH AUTOMATIC			423
UNITED STATES POPULATION	RESIDENCE HISTORIES AND EXPOSURE RESIDENCES FOR THE	JASA 61	824
	RESIDUAL ANALYSIS	JASA 63	
QUERY,	RESIDUAL ANALYSIS	TECH 67 JASA 61	339 998
SIEFWISE LEAST SQUARES,	RESIDUAL ANALYSIS AND SPECIFICATION ERROR RESIDUAL ANALYSIS, CORR. 61 1005	JASA 61	998
SEQUENCES BALANCED FOR PAIRS OF	RESIDUAL EFFECTS		205
DESIGNS BALANCED FOR THE LINEAR COMPONENT OF FIRST		BIOKA68	297
CHANGEOVER DESIGNS WITH COMPLETE BALANCE FOR FIRST	RESIDUAL EFFECTS THE ANALYSIS OF	BIOCS67	57B
		D10000.	69
DISTRIBUTION OF THE	RESIDUAL SUM OF SQUARES IN FITTING INEQUALITIES	BIOKA67	
	RESIDUAL SUM OF SQUARES IN FITTING INEQUALITIES RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQU		83
	RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQU		83
ARES PROBLEMS AND THE ROBUSTNES/ THE ESTIMATION OF	RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQU RESIDUAL VARIANCES ARE KNOWN	BIOKA62	83 670
ARES PROBLEMS AND THE ROBUSTNES/ THE ESTIMATION OF A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH THE EXAMINATION AND ANALYSIS OF ANALYSIS OF OUTLIERS WITH ADJUSTED	RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQU RESIDUAL VARIANCES ARE KNOWN RESIDUALS RESIDUALS	BIOKA62 BIOKA67 TECH 63 TECH 67	83 670 141 541
ARES PROBLEMS AND THE ROBUSTNES/ THE ESTIMATION OF A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH THE EXAMINATION AND ANALYSIS OF ANALYSIS OF OUTLIERS WITH ADJUSTED ON COX AND SNELL'S DEFINITION OF	RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQU RESIDUAL VARIANCES ARE KNOWN RESIDUALS RESIDUALS	BIOKA62 BIOKA67 TECH 63 TECH 67 JRSSB69	83 670 141 541 103
ARES PROBLEMS AND THE ROBUSTNES/ THE ESTIMATION OF A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH THE EXAMINATION AND ANALYSIS OF ANALYSIS OF OUTLIERS WITH ADJUSTED ON COX AND SNELL'S DEFINITION OF	RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQU RESIDUAL VARIANCES ARE KNOWN RESIDUALS RESIDUALS	BIOKA62 BIOKA67 TECH 63 TECH 67 JRSSB69	83 670 141 541 103
ARES PROBLEMS AND THE ROBUSTNES/ THE ESTIMATION OF A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH THE EXAMINATION AND ANALYSIS OF ANALYSIS OF OUTLIERS WITH ADJUSTED ON COX AND SNELL'S DEFINITION OF	RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQU RESIDUAL VARIANCES ARE KNOWN RESIDUALS RESIDUALS	BIOKA62 BIOKA67 TECH 63 TECH 67 JRSSB69	83 670 141 541 103
ARES PROBLEMS AND THE ROBUSTNES/ THE ESTIMATION OF A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH THE EXAMINATION AND ANALYSIS OF ANALYSIS OF OUTLIERS WITH ADJUSTED ON COX AND SNELL'S DEFINITION OF ERS FOR AUTOREGRESSIVE PROCESSES WITH MOVING-AVERAGE GRESSION COEFFICIENTS FOR THE CASE OF AUTOCORRELATED SPECTRA FOR STOCHASTIC PROCESSES WITH QUASI-LINEAR	RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQU RESIDUALS RESIDUALS RESIDUALS RESIDUALS RESIDUALS LARGE-SAMPLE ESTIMATION OF PARAMET RESIDUALS MAXIMUM LIKELIHOOD ESTIMATORS OF RE RESIDUALS A NOTE ON THE ESTIMATION OF AMPLITUDE	BIOKA62 BIOKA67 TECH 63 TECH 67 JRSSB69 BIOKA62 TECH 65 JASA 66	83 670 141 541 103 117 51 397
ARES PROBLEMS AND THE ROBUSTNES/ THE ESTIMATION OF A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH THE EXAMINATION AND ANALYSIS OF ANALYSIS OF OUTLIERS WITH ADJUSTED ON COX AND SNELL'S DEFINITION OF ERS FOR AUTOREGRESSIVE PROCESSES WITH MOVING-AVERAGE GRESSION COEFFICIENTS FOR THE CASE OF AUTOCORELATED SPECTRA FOR STOCHASTIC PROCESSES WITH QUASI-LINEAR TION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL	RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQU RESIDUALS ANOTE ON THE ESTIMATION OF AMPLITUDE RESIDUALS /ODNESS OF FIT TEST FOR SPECTRAL DISTRIBU	BIOKA62 BIOKA67 TECH 63 TECH 67 JRSSB69 BIOKA62 TECH 65 JASA 66 BIOKA56	83 670 141 541 103 117 51 397 257
ARES PROBLEMS AND THE ROBUSTNES/ THE ESTIMATION OF A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH THE EXAMINATION AND ANALYSIS OF ANALYSIS OF OUTLIERS WITH ADJUSTED ON COX AND SNELL'S DEFINITION OF ERS FOR AUTOREGRESSIVE PROCESSES WITH MOVING-AVERAGE GRESSION COEFFICIENTS FOR THE CASE OF AUTOCORRELATED SPECTRA FOR STOCHASTIC PROCESSES WITH QUASI-LINEAR TION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL USE FOR INVESTIGATING THE NORMALITY AND VARIANCES OF	RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQU RESIDUAL S RESIDUALS A NOTE ON THE ESTIMATION OF AMPLITUDE RESIDUALS RESIDUALS A NOTE ON THE STIMATION OF AMPLITUDE RESIDUALS A NOTE ON THE STIMATION OF AMPLITUDE RESIDUALS /ONDESS OF FIT TEST FOR SPECTRAL DISTRIBU RESIDUALS /ONEMAL BASES OF ERROR SPACES AND THEIR	BIOKA62 BIOKA67 TECH 63 TECH 67 JRSSB69 BIOKA62 TECH 65 JASA 66 BIOKA56 JASA 67	83 670 141 541 103 117 51 397 257 1022
ARES PROBLEMS AND THE ROBUSTNES/ THE ESTIMATION OF A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH THE EXAMINATION AND ANALYSIS OF ANALYSIS OF OUTLIERS WITH ADJUSTED ON COX AND SNELL'S DEFINITION OF ERS FOR AUTOREGRESSIVE PROCESSES WITH MOVING-AVERAGE GRESSION COEFFICIENTS FOR THE CASE OF AUTOCORRELATED SPECTRA FOR STOCHASTIC PROCESSES WITH QUASI-LINEAR TION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL USE FOR INVESTIGATING THE NORMALITY AND VARIANCES OF N ANALYSIS BASED ON THE PERIODOGRAM OF LEAST-SQUARES	RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQU RESIDUALS RE	BIOKA62 BIOKA67 TECH 63 TECH 67 JRSSB69 BIOKA62 TECH 65 JASA 66 BIOKA56 JASA 67 BIOKA69	83 670 141 541 103 117 51 397 257 1022
ARES PROBLEMS AND THE ROBUSTNES/ THE ESTIMATION OF A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH THE EXAMINATION AND ANALYSIS OF ANALYSIS OF OUTLIERS WITH ADJUSTED ON COX AND SNELL'S DEFINITION OF ERS FOR AUTOREGRESSIVE PROCESSES WITH MOVING-AVERAGE GRESSION COEFFICIENTS FOR THE CASE OF AUTOCORRELATED SPECTRA FOR STOCHASTIC PROCESSES WITH QUASI-LINEAR TION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL USE FOR INVESTIGATING THE NORMALITY AND VARIANCES OF N ANALYSIS BASED ON THE PERIODOGRAM OF LEAST-SQUARES A GENERAL DEFINITION OF	RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQU RESIDUALS RE	BIOKA62 BIOKA67 TECH 63 TECH 67 JRSSB69 BIOKA62 TECH 65 JASA 66 BIOKA56 JASA 67 BIOKA69 JRSSB68	83 670 141 541 103 117 51 397 257 1022 1 248
ARES PROBLEMS AND THE ROBUSTNES/ THE ESTIMATION OF A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH THE EXAMINATION AND ANALYSIS OF ANALYSIS OF OUTLIERS WITH ADJUSTED ON COX AND SNELL'S DEFINITION OF ERS FOR AUTOREGRESSIVE PROCESSES WITH MOVING-AVERAGE GRESSION COEFFICIENTS FOR THE CASE OF AUTOCORRELATED SPECTRA FOR STOCHASTIC PROCESSES WITH QUASI-LINEAR TION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL USE FOR INVESTIGATING THE NORMALITY AND VARIANCES OF N ANALYSIS BASED ON THE PERIODOGRAM OF LEAST-SQUARES A GENERAL DEFINITION OF	RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQU RESIDUALS ANOTE ON THE ESTIMATION OF AMPLITUDE RESIDUALS RESID	BIOKA62 BIOKA67 TECH 63 TECH 67 JRSSB69 BIOKA62 TECH 65 JASA 66 BIOKA56 JASA 67 BIOKA69	83 670 141 541 103 117 51 397 257 1022 1 248 33
ARES PROBLEMS AND THE ROBUSTNES/ THE ESTIMATION OF A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH THE EXAMINATION AND ANALYSIS OF ANALYSIS OF OUTLIERS WITH ADJUSTED ON COX AND SNELL'S DEFINITION OF ERS FOR AUTOREGRESSIVE PROCESSES WITH MOVING-AVERAGE GRESSION COEFFICIENTS FOR THE CASE OF AUTOCORRELATED SPECTRA FOR STOCHASTIC PROCESSES WITH QUASI-LINEAR TION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL USE FOR INVESTIGATING THE NORMALITY AND VARIANCES OF N ANALYSIS BASED ON THE PERIODOGRAM OF LEAST-SQUARES A GENERAL DEFINITION OF THE USE OF THE USE OF THE ESTIMATION OF RELATIONSHIPS WITH AUTOCORRELATED	RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQU RESIDUALS ANOTE ON THE ESTIMATION OF AMPLITUDE RESIDUALS RESID	BIOKA62 BIOKA67 TECH 63 TECH 67 JRSSB69 BIOKA62 TECH 65 JASA 66 BIOKA56 JASA 67 BIOKA69 JRSSB68 BIOKA69 JRSSB69	83 670 141 541 103 117 51 397 257 1022 1 248 33 91
ARES PROBLEMS AND THE ROBUSTNES/ THE ESTIMATION OF A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH THE EXAMINATION AND ANALYSIS OF ANALYSIS OF OUTLIERS WITH ADJUSTED ON COX AND SNELL'S DEFINITION OF ERS FOR AUTOREGRESSIVE PROCESSES WITH MOVING-AVERAGE GRESSION COEFFICIENTS FOR THE CASE OF AUTOCORRELATED SPECTRA FOR STOCHASTIC PROCESSES WITH QUASI-LINEAR TION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL USE FOR INVESTIGATING THE NORMALITY AND VARIANCES OF N ANALYSIS BASED ON THE PERIODOGRAM OF LEAST-SQUARES A GENERAL DEFINITION OF THE USE OF THE ESTIMATION OF RELATIONSHIPS WITH AUTOCORRELATED CESS EFFICIENCY OF THE SAMPLE MEAN WHEN	RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQU RESIDUALS RE	BIOKA62 BIOKA67 TECH 63 TECH 67 JRSSB69 BIOKA62 TECH 65 JASA 66 BIOKA56 JASA 67 BIOKA69 JRSSB68 BIOKA69 JRSSB69	83 670 141 541 103 117 51 397 257 1022 1 248 33 91 1237
ARES PROBLEMS AND THE ROBUSTNES/ THE ESTIMATION OF A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH THE EXAMINATION AND ANALYSIS OF ANALYSIS OF OUTLIERS WITH ADJUSTED ON COX AND SNELL'S DEFINITION OF ERS FOR AUTOREGRESSIVE PROCESSES WITH MOVING-AVERAGE GRESSION COEFFICIENTS FOR THE CASE OF AUTOCORRELATED SPECTRA FOR STOCHASTIC PROCESSES WITH QUASI-LINEAR TION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL USE FOR INVESTIGATING THE NORMALITY AND VARIANCES OF N ANALYSIS BASED ON THE PERIODOGRAM OF LEAST-SQUARES A GENERAL DEFINITION OF THE USE OF THE SAMPLE MEAN WHEN A TEST FOR VARIANCE HETEROGENEITY IN THE RADIONUCLIDE ASSAY	RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQU RESIDUALS ANOTE ON THE ESTIMATION OF AMPLITUDE RESIDUALS ANOTE ON THE STIMATION OF AMPLITUDE RESIDUALS ANOTE ON THE STIMATION OF AMPLITUDE RESIDUALS RES	BIOKA62 BIOKA67 TECH 63 TECH 67 JRSSB69 BIOKA62 TECH 65 JASA 66 BIOKA66 BIOKA69 JRSSB68 BIOKA69 JRSSB69 JRSSB69 JRSSB69 JRSSB69 JRSSB69 JRSSB69 JRSSB69	83 670 141 541 103 117 51 397 257 1022 1 248 33 91 1237 451 603
ARES PROBLEMS AND THE ROBUSTNES/ THE ESTIMATION OF A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH THE EXAMINATION AND ANALYSIS OF ANALYSIS OF OUTLIERS WITH ADJUSTED ON COX AND SNELL'S DEFINITION OF ERS FOR AUTOREGRESSIVE PROCESSES WITH MOVING-AVERAGE GRESSION COEFFICIENTS FOR THE CASE OF AUTOCORRELATED SPECTRA FOR STOCHASTIC PROCESSES WITH QUASI-LINEAR TION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL USE FOR INVESTIGATING THE NORMALITY AND VARIANCES OF N ANALYSIS BASED ON THE PERIODOGRAM OF LEAST-SQUARES A GENERAL DEFINITION OF THE ESTIMATION OF RELATIONSHIPS WITH AUTOCORRELATED CESS EFFICIENCY OF THE SAMPLE MEAN WHEN A TEST FOR VARIANCE HETEROGENEITY IN THE RADIONUCLIDE ASSAY NON-ORTHOGONAL DESIGNS OF EVEN	RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQU RESIDUALS RESIDUALS RESIDUALS RESIDUALS RESIDUALS RESIDUALS RESIDUALS AND THE RESIDUALS (WITH DISCUSSION) RESIDUALS AS A CONCOMITANT VARIABLE RESIDUALS BY THE USE OF INSTRUMENTAL VARIABLES RESIDUALS FOLLOW A FIRST-ORDER STATIONARY MARKOFF PRO RESIDUALS, A TEST FOR REGRESSION MODEL ADEQUACY IN RESOLUTION	BIOKA62 BIOKA67 TECH 63 TECH 67 JRSSB69 BIOKA62 TECH 65 JASA 66 BIOKA66 JASS 86 BIOKA69 JRSSB68 BIOKA69 JRSSB69 JRSSB63 TECH 65 TECH 66	83 670 141 541 103 117 51 397 257 1022 1 248 33 91 91 1237 451 603 291
ARES PROBLEMS AND THE ROBUSTNES/ THE ESTIMATION OF A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH THE EXAMINATION AND ANALYSIS OF ANALYSIS OF OUTLIERS WITH ADJUSTED ON COX AND SNELL'S DEFINITION OF ERS FOR AUTOREGRESSIVE PROCESSES WITH MOVING-AVERAGE GRESSION COEFFICIENTS FOR THE CASE OF AUTOCORRELATED SPECTRA FOR STOCHASTIC PROCESSES WITH QUASI-LINEAR TION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL USE FOR INVESTIGATING THE NORMALITY AND VARIANCES OF N ANALYSIS BASED ON THE PERIODOGRAM OF LEAST-SQUARES A GENERAL DEFINITION OF THE USE OF THE ESTIMATION OF RELATIONSHIPS WITH AUTOCORRELATED CESS EFFICIENCY OF THE SAMPLE MEAN WHEN A TEST FOR VARIANCE HETEROGENEITY IN THE RADIONUCLIDE ASSAY PATTERNS IN NON-ORTHOGONAL DESIGNS OF EVEN REDUCED DESIGNS OF	RESIDUALS A NOTE ON THE ESTIMATION OF PARAMET RESIDUALS A NOTE ON THE ESTIMATION OF AMPLITUDE RESIDUALS A NOTE ON THE ESTIMATION OF AMPLITUDE RESIDUALS A NOTE ON THE ESTIMATION OF AMPLITUDE RESIDUALS (ONORMAL BASES OF ERROR SPACES AND THEIR RESIDUALS RESIDUALS RESIDUALS RESIDUALS RESIDUALS RESIDUALS RESIDUALS RESIDUALS BY THE USE OF INSTRUMENTAL VARIABLES RESIDUALS RESIDUAL	BIOKA62 BIOKA67 TECH 63 TECH 67 JRSSB69 BIOKA62 TECH 65 JASA 66 BIOKA69 JRSSB69 JRSSB69 JRSSB69 JRSSB69 JRSSB69 JRSSB63 TECH 65 TECH 66 TECH 61	83 670 141 541 103 117 51 397 257 1022 1 248 33 91 1237 451 603 291 459
ARES PROBLEMS AND THE ROBUSTNES/ THE ESTIMATION OF A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH THE EXAMINATION AND ANALYSIS OF ANALYSIS OF OUTLIERS WITH ADJUSTED ON COX AND SNELL'S DEFINITION OF ERS FOR AUTOREGRESSIVE PROCESSES WITH MOVING-AVERAGE GRESSION COEFFICIENTS FOR THE CASE OF AUTOCORRELATED SPECTRA FOR STOCHASTIC PROCESSES WITH QUASI-LINEAR TION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL USE FOR INVESTIGATING THE NORMALITY AND VARIANCES OF N ANALYSIS BASED ON THE PERIODOGRAM OF LEAST-SQUARES A GENERAL DEFINITION OF THE USE OF THE USE OF THE ESTIMATION OF RELATIONSHIPS WITH AUTOCORRELATED CESS EFFICIENCY OF THE SAMPLE MEAN WHEN A TEST FOR VARIANCE HETEROGENEITY IN THE RADIONUCLIDE ASSAY PATTERNS IN NON-ORTHOGONAL DESIGNS OF EVEM REDUCED DESIGNS OF EVEM CONSTRUCTION OF THE SET OF 256-RUN DESIGNS OF	RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQU RESIDUALS RE	BIOKA62 BIOKA67 TECH 63 TECH 67 JRSSB69 BIOKA62 TECH 65 JASA 66 BIOKA69 JRSSB68 BIOKA69 JRSSB68 BIOKA69 JRSSB63 TECH 65 TECH 66 TECH 68 TECH 68 TECH 61 AMS 68	83 670 141 541 103 117 51 397 1022 1 248 33 91 1237 451 603 291 459 246
ARES PROBLEMS AND THE ROBUSTNES/ THE ESTIMATION OF A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH THE EXAMINATION AND ANALYSIS OF ANALYSIS OF OUTLIERS WITH ADJUSTED ON COX AND SNELL'S DEFINITION OF ERS FOR AUTOREGRESSIVE PROCESSES WITH MOVING-AVERAGE GRESSION COEFFICIENTS FOR THE CASE OF AUTOCORRELATED SPECTRA FOR STOCHASTIC PROCESSES WITH QUASI-LINEAR TION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL USE FOR INVESTIGATING THE NORMALITY AND VARIANCES OF N ANALYSIS BASED ON THE PERIODOGRAM OF LEAST-SQUARES A GENERAL DEFINITION OF THE ESTIMATION OF RELATIONSHIPS WITH AUTOCORRELATED CESS EFFICIENCY OF THE SAMPLE MEAN WHEN A TEST FOR VARIANCE HETEROGENEITY IN THE RADIONUCLIDE ASSAY PATTERNS IN NON-ORTHOGONAL DESIGNS OF EVEN REDUCED DESIGNS OF EVEN COURSELVE OF THE SET OF 256-RUN DESIGNS OF OR EQUAL TO 5 AND THE SET OF EVEN 512-RUN DESIGNS OF	RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQU RESIDUALS ANOTE ON THE ESTIMATION OF PARAMET RESIDUALS ANOTE ON THE ESTIMATION OF AMPLITUDE RESIDUALS RESIDUALS RESIDUALS AS A CONCOMITANT VARIABLE RESIDUALS FOLLOW A FIRST-ORDER STATIONARY MARKOFF PRO RESIDUALS OF A GAUSSIAN MOVING AVERAGE RESIDUALS RESIDUALS A TEST FOR REGRESSION MODEL ADEQUACY IN RESOLUTION RESOLUTION GREATER THEN OR EQUAL TO 5 AND THE SET OF RESOLUTION GREATER THEN OR EQUAL TO 6 WITH SPECIAL RE	BIOKA62 BIOKA67 TECH 63 TECH 67 JRSSB69 BIOKA62 TECH 65 JASA 66 BIOKA69 JRSSB68 BIOKA69 JRSSB68 BIOKA69 JRSSB69 TECH 68 TECH 68 TECH 61 AMS 68	83 670 141 541 103 117 51 397 1022 1 248 33 91 1237 451 603 291 459 246 246
ARES PROBLEMS AND THE ROBUSTNES/ THE ESTIMATION OF A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH THE EXAMINATION AND ANALYSIS OF ANALYSIS OF OUTLIERS WITH ADJUSTED ON COX AND SNELL'S DEFINITION OF ERS FOR AUTOREGRESSIVE PROCESSES WITH MOVING-AVERAGE GRESSION COEFFICIENTS FOR THE CASE OF AUTOCORRELATED SPECTRA FOR STOCHASTIC PROCESSES WITH QUASI-LINEAR TION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL USE FOR INVESTIGATING THE NORMALITY AND VARIANCES OF N ANALYSIS BASED ON THE PERIODOGRAM OF LEAST-SQUARES A GENERAL DEFINITION OF THE USE OF THE ESTIMATION OF RELATIONSHIPS WITH AUTOCORRELATED CESS EFFICIENCY OF THE SAMPLE MEAN WHEN A TEST FOR VARIANCE HETEROGENEITY IN THE RADIONUCLIDE ASSAY PATTERNS IN NON-ORTHOGONAL DESIGNS OF EVEN REDUCED DESIGNS OF EVEN CONSTRUCTION OF THE SET OF 25G-RUN DESIGNS OF OR EQUAL TO 5 AND THE SET OF EVEN 512-RUN DESIGNS OF OR EQUAL TO 5 AND THE SET OF EVEN 512-RUN DESIGNS OF 3-TO-THE-M SERIES RESULTS ON FACTORIAL DESIGNS OF	RESIDUALS ANOTE ON THE ESTIMATION OF PARAMET RESIDUALS ANOTE ON THE ESTIMATION OF AMPLITUDE RESIDUALS RESIDUALS RESIDUALS BY THE USE OF INSTRUMENTAL VARIABLES RESIDUALS OF A GAUSSIAN MOVING AVERAGE RESIDUALS, A TEST FOR REGRESSION MODEL ADEQUACY IN RESOLUTION RESOLUTION GREATER THEN OR EQUAL TO 5 AND THE SET OF RESOLUTION GREATER THEN OR EQUAL TO 6 WITH SPECIAL RE RESOLUTION IV FOR THE 2-TO-THE-N AND 2-TO-THE-N TIMES	BIOKA62 BIOKA67 TECH 63 TECH 67 JRSSB69 BIOKA62 TECH 65 JASA 66 BIOKA69 JASA 67 BIOKA69 JRSSB63 JASA 68 JRSSB63 TECH 65 TECH 66 TECH 66 TECH 66 TECH 66	83 670 141 541 103 117 51 397 257 1022 1 248 33 91 1237 451 603 291 459 246 246 431
ARES PROBLEMS AND THE ROBUSTNES/ THE ESTIMATION OF A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH THE EXAMINATION AND ANALYSIS OF ANALYSIS OF OUTLIERS WITH ADJUSTED ON COX AND SNELL'S DEFINITION OF ERS FOR AUTOREGRESSIVE PROCESSES WITH MOUNG—AVERAGE GRESSION COEFFICIENTS FOR THE CASE OF AUTOCORRELATED SPECTRA FOR STOCHASTIC PROCESSES WITH MOUNG—LINEAR TION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL USE FOR INVESTIGATING THE NORMALITY AND VARIANCES OF N ANALYSIS BASED ON THE PERIODOGRAM OF LEAST-SQUARES A GENERAL DEFINITION OF THE USE OF THE STIMATION OF RELATIONSHIPS WITH AUTOCORRELATED CESS EFFICIENCY OF THE SAMPLE MEAN WHEN A TEST FOR VARIANCE HETEROGENEITY IN THE RADIONUCLIDE ASSAY PATTERNS IN NON-ORTHOGONAL DESIGNS OF EVEN SIGNS OF EVEN CONSTRUCTION OF THE SET OF 256-RUN DESIGNS OF EVE/ CONSTRUCTION OF THE SET OF 256-RUN DESIGNS OF GEQUAL TO 5 AND THE SET OF EVEN 512-RUN DESIGNS OF A SIMPLE METHOD OF	RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQU RESIDUALS ANOTE ON THE ESTIMATION OF PARAMET RESIDUALS RESIDUA	BIOKA62 BIOKA67 TECH 63 TECH 67 JRSSB69 BIOKA62 TECH 65 JASA 66 BIOKA69 JRSSB68 BIOKA69 JRSSB68 BIOKA69 JRSSB63 TECH 65 TECH 66 TECH 68 TECH 68 AMS 68 AMS 68 TECH 69 BIOCS67	83 670 141 541 103 117 51 397 257 1022 1 248 33 91 1237 451 603 291 459 246 246 246 431 115
ARES PROBLEMS AND THE ROBUSTNES/ THE ESTIMATION OF A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH THE EXAMINATION AND ANALYSIS OF ANALYSIS OF OUTLIERS WITH ADJUSTED ON COX AND SNELL'S DEFINITION OF ERS FOR AUTOREGRESSIVE PROCESSES WITH MOVING-AVERAGE GRESSION COEFFICIENTS FOR THE CASE OF AUTOCORRELATED SPECTRA FOR STOCHASTIC PROCESSES WITH QUASI-LINEAR TION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL USE FOR INVESTIGATING THE NORMALITY AND VARIANCES OF N ANALYSIS BASED ON THE PERIODOGRAM OF LEAST-SQUARES A GENERAL DEFINITION OF THE USE	RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQU RESIDUAL S RESIDUALS A NOTE ON THE ESTIMATION OF PARAMET RESIDUALS A NOTE ON THE ESTIMATION OF AMPLITUDE RESIDUALS A NOTE ON THE ESTIMATION OF AMPLITUDE RESIDUALS A NOTE ON THE STIMATION OF AMPLITUDE RESIDUALS A NOTE ON THE STIMATION OF AMPLITUDE RESIDUALS A TESTS FOR SERIAL CORRELATION IN REGRESSIO RESIDUALS RESIDUALS SA A CONCOMITANT VARIABLE RESIDUALS BY THE USE OF INSTRUMENTAL VARIABLES RESIDUALS OF A GAUSSIAN MOVING AVERAGE RESIDUALS, A TEST FOR REGRESSION MODEL ADEQUACY IN RESOLUTION RESOLUTION FIVE RESOLUTION GREATER THEN OR EQUAL TO 5 AND THE SET OF RESOLUTION GREATER THEN OR EQUAL TO 6 WITH SPECIAL RE RESOLUTION IV FOR THE 2-TO-THE-N AND 2-TO-THE-N TIMES RESOLUTION OF A DISTRIBUTION INTO GAUSSIAN COMPONENTS RESOLUTION OF STATISTICAL HYPOTHESES	BIOKA62 BIOKA67 TECH 63 TECH 67 JRSSB69 BIOKA62 JASA 66 BIOKA69 JRSSB68 BIOKA69 JRSSB68 JRSSB63 TECH 68 TECH 68 TECH 61 AMS 68 AMS 68 TECH 69 BIOCS67 JASA 61	83 670 141 103 117 51 397 257 1022 1 248 33 91 1237 451 603 291 459 246 246 431 115 978
ARES PROBLEMS AND THE ROBUSTNES/ THE ESTIMATION OF A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH THE EXAMINATION AND ANALYSIS OF ANALYSIS OF OUTLIERS WITH ADJUSTED ON COX AND SNELL'S DEFINITION OF ERS FOR AUTOREGRESSIVE PROCESSES WITH MOUNG—AVERAGE GRESSION COEFFICIENTS FOR THE CASE OF AUTOCORRELATED SPECTRA FOR STOCHASTIC PROCESSES WITH MOUNG—LINEAR TION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL USE FOR INVESTIGATING THE NORMALITY AND VARIANCES OF N ANALYSIS BASED ON THE PERIODOGRAM OF LEAST-SQUARES A GENERAL DEFINITION OF THE USE OF THE ESTIMATION OF RELATIONSHIPS WITH AUTOCORRELATED CESS EFFICIENCY OF THE SAMPLE MEAN WHEN A TEST FOR VARIANCE HETEROGENEITY IN THE RADIONUCLIDE ASSAY PATTERNS IN NON-ORTHOGONAL DESIGNS OF EVEN PROPROCED DESIGNS OF EVEN/CONSTRUCTION OF THE SET OF 256-RUN DESIGNS OF EVEK/CONSTRUCTION OF THE SET OF 256-RUN DESIGNS OF A SIMPLE MEATHOD OF A SIMPLE METHOD OF	RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQU RESIDUAL S RESIDUALS A NOTE ON THE ESTIMATION OF PARAMET RESIDUALS A NOTE ON THE ESTIMATION OF AMPLITUDE RESIDUALS A NOTE ON THE ESTIMATION OF AMPLITUDE RESIDUALS A NOTE ON THE STIMATION OF AMPLITUDE RESIDUALS A NOTE ON THE STIMATION OF AMPLITUDE RESIDUALS A TESTS FOR SERIAL CORRELATION IN REGRESSIO RESIDUALS RESIDUALS SA A CONCOMITANT VARIABLE RESIDUALS BY THE USE OF INSTRUMENTAL VARIABLES RESIDUALS OF A GAUSSIAN MOVING AVERAGE RESIDUALS, A TEST FOR REGRESSION MODEL ADEQUACY IN RESOLUTION RESOLUTION FIVE RESOLUTION GREATER THEN OR EQUAL TO 5 AND THE SET OF RESOLUTION GREATER THEN OR EQUAL TO 6 WITH SPECIAL RE RESOLUTION IV FOR THE 2-TO-THE-N AND 2-TO-THE-N TIMES RESOLUTION OF A DISTRIBUTION INTO GAUSSIAN COMPONENTS RESOLUTION OF STATISTICAL HYPOTHESES	BIOKA62 BIOKA67 TECH 63 TECH 67 JRSSB69 BIOKA62 TECH 65 JASA 66 BIOKA69 JRSSB68 BIOKA69 JRSSB68 BIOKA69 JRSSB63 TECH 65 TECH 66 TECH 68 TECH 68 AMS 68 AMS 68 TECH 69 BIOCS67	83 670 141 541 103 117 51 397 257 1022 1 248 33 91 1237 451 603 291 459 246 246 431 115 978

```
CONSTRUCTION OF A 2-TO-THE-(#7-9) RESOLUTION V PLAN IN EICHT BLOCKS OF 32
                                                                                                              TECH 65 439
                NEAR-CYCLIC REPRESENTATIONS FOR SOME RESOLUTION VI FRACTIONAL FACTORIAL PLANS
                                                                                                               AMS 69 1840
                                        BANDWIDTH AND RESOLVABILITY IN STATISTICAL SPECTRAL ANALYSIS
                                                                                                              JRSSB59 169
IN TRUNCATED PEARSON FREQUENCY DISTRIBUTIONS WITHOUT RESORT TO HICHER MOMENTS ESTIMATING PARAMETERS
                                                                                                              BIOKA53
                                                                                                                         50
A SET OF NORMAL POPULATIONS BY THEIR LOCATIONS WITH RESPECT TO A CONTROL
PARTITIONING OF A PATIENT POPULATION WITH RESPECT TO DIFFERENT MORTALITYRISKS
                                                                                              ON PARTITIONING AMS 69 1300
                                                                                                               JASA 63
                                                                                                                        701
 A STOCHASTIC MODEL FOR DISTRIBUTIONS OF BIOLOGICAL RESPONCE TIMES

THE EFFECT OF RESPONDENT ICNORANCE ON SURVEY RESULTS
                                                                                                               BIOCS65
                                                                                                                        562
                                                                                                               JASA 56
                                                                                                                        576
  ANALYSIS OF CONTINCENCY TABLES WITH A QUANTITATIVE RESPONSE
                                                                                                       ON THE BIOCS68
                                                                                                                        329
                                          THE QUANTAL RESPONSE ANALYSIS OF A SERIES OF BIOLOGICAL ASSAYS ON BIOKAGO
 THE SAME SUBJECTS
                                                                                                                        23
                                  ANALYSIS OF QUANTAL RESPONSE ASSAYS WITH DOSAGE ERRORS
                                                                                                                        7.47
                                                                                                              RIOCS67
                                                     RESPONSE CRITERIA FOR THE BIOASSAY DF VITAMIN K
                                                                                                              BIOCS69 NO.4
R ESTIMATING THE MBN OF A CUMULATIVE, NORMAL QUANTAL RESPONSE CURVE
                                                                          SOME OPTIMAL SEQUENTIAL SCHEMES FO JRSSB62
                                                                                                                        393
 SOME COMPARISONS OF METHODS OF FITTING THE DOSAGE RESPONSE CURVE F SMALL SAMPLES SOME STOCHASTIC MODELS RELATING TIME AND DOSAGE IN RESPONSE CURVES
                                                                                                               JASA 64
                                                                                                                        779
                                                                                                               BTOCS65
                                                                                                                        5R3
                         ANALYSIS OF GROWTH AND DDSE RESPONSE CURVES
                                                                                                               BIDCS69
                                                                                                                        357
 COMPLEX CONTINGENCY TABLES AND POLYCHOTOMOUS DOSAGE RESPONSE CURVES
                                                                                                   MODELS FOR BIOCS66
                                                                                                                         83
                    SEQUENTIAL ESTIMATION DF QUANTAL RESPONSE CURVES (WITH DISCUSSION)
                                                                                                               JRSSB63
                    SEQUENTIAL ESTIMATION OF QUANTAL RESPONSE CURVES, A NEW METHOD OF ESTIMATION
                                                                                                               BIOKA66
                    A NOTE ON ESTIMATION FOR QUANTAL RESPONSE DATA
                                                                                                               BTOKA68
                                                                                                                        578
ESSION METHODS FOR ANALYSING SENSITIVITY AND QUANTAL RESPONSE DATA
                                                                                  THE USE OF NON-LINEAR REGR BIOCS67
                                                                                                                        563
                              AN ANALYSIS OF QUANTAL RESPONSE DATA IN WHICH THE MEASUREMENT OF RESPONSE IS BIOCS65
 SUBJECT TO ERROR
                                                                                                                        811
                        WEIGHTED REGRESSION, QUANTAL RESPONSE DATA, AND INVERSE POLYNOMIALS
                                                                                                               BIOCS68
                                                                                                                        979
INFORMATION
                                                      RESPONSE ERROR IN SURVEY REPORTS OF EARNINGS
                                                                                                               JASA 66
                                                                                                                        729
    THE EFFECT OF MIS-MATCHING ON THE MEASUREMENT OF RESPONSE ERRORS
                                                                                                               JASA 65 1005
INTERVIEWS
                                           A STUDY OF RESPONSE ERRORS IN EXPENDITURES DATA FROM HOUSEHOLD
                                                                                                               JASA 64
                                                                                                                        18
                                           MINIMIZING RESPONSE ERRORS IN FINANCIAL DATA. THE POSSIBILITIES
                                                                                                               JASA 68
                                            FREQUENCY RESPONSEFROM STATIONARY NOISE, TWO CASE HISTORIES
                                                                                                               TECH 61
INVERSE POLYNOMIALS, A USEFUL GROUP OF MULTI-FACTOR RESPONSE FUNCTIONS
                                                                                                               BIOCS66
                       AN ANALYSIS OF CONSISTENCY OF RESPONSE IN HOUSEHOLD SURVEYS
                                                                                                               JASA 61
            WEIGHTED PROBITS ALLOWING FOR A NON-ZERO RESPONSE IN THE CONTROLS
                                                                                                               BIOKA56
                                                                                                                        207
                            ANALYSIS OF DATA WHEN THE RESPONSE IS A CURVE
                                                                                                               TECH 66
                                                                                                                        229
        A SEQUENTIAL SEARCH PROCEDURE FOR LOCATING A RESPONSE JUMP
                                                                                                               TECH 62
                                                                                                                        610
                      ESTIMATING A MIXED-EXPONENTIAL RESPONSE LAW
                                                                                                               JASA 61
                                                                                                                        493
                      A MULTI-PRDPORTIONS RANDOMIZED RESPONSE MODEL
                                                                                                               JASA 67
                                                                                                                        990
                   THE UNRELATED QUESTION RANDOMIZED RESPONSE MODEL. THEORETICAL FRAMEWORK
                                                                                                               JASA 69
                                                                                                                        520
           DISCRIMINATION BETWEEN ALTERNATIVE BINARY RESPONSE MODELS
                                                                                                               BIOKA67
                                                                                                                        573
                                       MODELS FOR THE RESPONSE OF A MIXTURE
                                                                                                               JRSSB68
                                                                                                                        349
                            LIMITING DISTRIBUTIONS OF RESPONSE PROBABILITIES
                                                                                                                AMS 65
                                                                                                                        706
                              ON ESTIMATING BINOMIAL RESPONSE RELATIONS
                                                                                                               BIOKA56
                                                                                                                        461
                      A BASIS FOR THE SELECTION DF A RESPONSE SURFACE DESIGN PARTIAL DUPLICATION OF RESPONSE SURFACE DESIGNS
                                                                                                               JASA 59
                                                                                                                        622
                                                                                                               TECH 60
                                                                                                                        185
                                    MISSINC VALUES IN RESPONSE SURFACE DESIGNS
                                                                                                               TECH 61
                                                                                                                        389
 LEVELS
                                                      RESPONSE SURFACE DESIGNS FOR FACTORS AT TWO AND THREE TECH 68
                                                                                                                        177
                                                      RESPONSE SURFACE DESIGNS FOR MIXTURE PROBLEMS
                                                                                                               TECH 6B
                                                                                                                        739
                                                      RESPONSE SURFACE DESIGNS FOR THREE FACTORS AT THREE
LEVELS
                                                                                                               TECH 59
                                          A REVIEW OF RESPONSE SURFACE METHODOLOGY. A LITERATURE SURVEY
                                                                                                               TECH 66
                                                                                                                        571
                THE USE OF LAGRANGE MULTIPLIERS WITH RESPONSE SURFACES
                                                                                                               TECH 59
                                                                                                                        289
                                  'RIDGE ANALYSIS' OF RESPONSE SURFACES
                                                                                                               TECH 63
                                                                                                                        469
 MINIMUM BIAS ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE SURFACES
                                                                                                               TECH 69
                                                                                                                        461
                                                A NEW RESPONSE TIME DISTRIBUTION
                                                                                                               BTOCS67
                                                                                                                        227
                                  THE DISTRIBUTION OF RESPONSE TIMES IN A BIRTH-DEATH PROCESS
                                                                                                                        581
                                                                                                               BIOKA65
                                   THE PREDICTION OF RESPONSE TO SELECTION IN BREEDING PROGRAMMES WHEN ALL BIOCS69
DAUGHTERS OF SELECTED PARENTS/
                                                                                                                        553
                          GENERAL MODELS FOR QUANTAL RESPONSE TO THE JOINT ACTION OF A MIXTURE OF DRUGS
                                                                                                               BIOKA64
                                                                                                                        413
                                                      RESPONSE VARIANCE AND ITS ESTIMATION
                                                                                                               JASA 64 1016
ANSWER BIAS
                                           RANDOMIZED RESPONSE, A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE
                                                                                                              JASA 65
                                                                                                                        63
A CDMBINATDRIAL TEST FOR INDEPENDENCE OF DICHOTOMOUS RESPONSES
                                                                                                               JASA 65
                                                                                                                        437
             THE WITHIN-ANIMAL BIOASSAY WITH QUANTAL RESPONSES
                                                                                                               JRSSB56
                                                                                                                        133
 THE MATCHED PAIRS DESIGN IN THE CASE OF ALL-OR-NONE RESPONSES
                                                                                                               BIOCS68
                                                                                                                        339
        ESTIMATION OF COMMON PARAMETERS FROM SEVERAL RESPONSES
                                                                                                 THE BAYESIAN BIOKA65
                                                                                                                        355
                                                                                                                        273
      TEST FOR SIMULTANEOUS QUANTAL AND QUANTITATIVE RESPONSES
                                                                                               A SIGNIFICANCE TECH 64
          OF PROBIT ANALYSIS TO THE CASE OF MULTIPLE RESPONSES
                                                                                           THE CENERALIZATION BIOKA57
                                                                                                                        131
   WITH MULTIPLE CONTROLS IN THE CASE OF ALL-OR-NONE RESPONSES
                                                                                          INDIVIDUAL MATCHING BIOCS69
                                                                                                                        339
    FUNCTION OF THE DIFFERENCE BETWEEN TWO ESTIMATED RESPONSES
                                                                               THE BEHAVIOUR OF THE VARIANCE JRSSB67
                                                                                                                        174
ON INTERVAL ESTIMATION IN NON-LINEAR REGRESSION WHEN RESPONSES ARE CORRELATED
                                                                                                        NOTE
                                                                                                               JRSSB64
                                                                                                                        267
 A SEQUENTIAL METHOD OF TESTING THE LINEAR TRENDS OF RESPONSES IN DOSE TRIALS
                                                                                                               BIOCS68
                                                                                                                        663
OCATION OF SAMPLING UNITS TO STRATA WHEN THERE ARE R RESPONSES OF INTEREST
                                                                                                  DETIMUM ALL JASA 65
                                                                                                                        225
APPROACHES TO THE CONSTRUCTION OF MODELS FOR QUANTAL RESPONSES TO MIXTURES OF DRUGS A COMPARISON OF TWO
                                                                                                               BIOCS67
HE CLASSIFICATION OF MATHEMATICAL MODELS FOR QUANTAL RESPONSES TO MIXTURES OF DRUGS IN BIOLOCICAL ASSAY
                                                                                                               BTOCS65
                                                                                                                        181
SIMPLE SIMILAR ACTION. THE ANALYSIS DF UN/ QUANTAL RESPONSES TO MIXTURES OF POISONS UNDER CONDITIONS OF
                                                                                                              BIOKA5B
                                                                                                                         74
                QUADRATIC REGRESSION WITH INEQUALITY RESTRAINTS ON THE PARAMETERS
                                                                                                               JASA 65
                                                                                                                        914
MEWHERE MOST POWERFUL TEST FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE /T AND THE MOST STRINGENT SO
                                                                                                               AMS 68
                                                                                                                        531
                       ON MODELS AND HYPOTHESES WITH RESTRICTED ALTERNATIVES
                                                                                                              JASA 65 1153
 OF TESTING LOCATION IN MULTIVARIATE POPULATIONS FOR RESTRICTED ALTERNATIVES
                                                                                               ON THE PROBLEM AMS 66
                                                                                                                       113
                A TEST OF HOMOGENEITY OF MEANS UNDER RESTRICTED ALTERNATIVES (WITH DISCUSSION)
                                                                                                              JRSSB61
                                                                                                                        239
NT SOMEWHERE MOST POWERFUL TESTS ACAINST ALTERNATIVE RESTRICTED BY A NUMBER OF LINEAR INEQUALITIES
                                                                                                               AMS 66 1161
                                                                                                 INEQUALITIES
    FOR LINEAR COMBINATIONS OF ORDER STATISTICS FROM RESTRICTED FAMILIES
                                                                                                               AMS 66 1574
                             SELECTION PROCEDURES FOR RESTRICTED FAMILIES OF PROBABILITY DISTRIBUTIONS
                                                                                                                AMS 69
                                                                                                                        905
                           LIKELIHOOD RATIO TESTS FOR RESTRICTED FAMILITES OF PROBABILITY DISTRIBUTIONS
                                                                                                                AMS 68
                                                                                                                        547
                                                 ON A RESTRICTED LEAST SQUARES ESTIMATOR
                                                                                                               JASA 69
                                                                                                                       964
                                                      RESTRICTED LEAST SQUARES REGRESSION AND CONVEX
QUADRATIC PROGRAMMING
                                                                                                               TECH 69 NO.4
EAST SQUARES ESTIMATES AND PARABOLIC RECRESSION WITH RESTRICTED LOCATION FOR THE STATIONARY POINT
                                                                                                            L JASA 64 564
                  RANKING PROCEDURES FOR ARBITRARILY RESTRICTED OBSERVATION
                                                                                                               BIOCS67
                                                                                                                         65
OTHESIS WITH INDEPENDENCE OF INTERMEDIATE STATES AND RESTRICTED ORDER
                                                                                         TESTING A MARKOV HYP BIOKA67
                                                                                                                        605
                                         LARGE-SAMPLE RESTRICTED PARAMETRIC TESTS
                                                                                                               JRSSB62
                                                                                                                       234
                                                       RESTRICTED SEQUENTIAL PROCEDURES
                                                                                                               BIOKA57
```

TITLE WORD INDEX RES - REV

```
THE MAXIMUM VARIANCE OF RESTRICTED UNIMODAL DISTRIBUTIONS
                                                                                                             AMS 69 1746
  ANALYZING A SET OF TIME SERIES SUBJECT TO A LINEAR RESTRICTION
                                                                                       SOME TECHNIQUES FOR JASA 63 513
                                          BALANCED L-RESTRICTIONAL PRIME POWERED LATTICE DESIGNS
                                                                                                             AMS 67 1127
                                                                                                     /OF CY
CLIC COLLINEATIONS FOR OBTAINING A BALANCED SET OF L-RESTRICTIONAL PRIME-POWERED LATTICE DESIGNS
                                                                                                             AMS 67 1293
                          PROBLEMS OF SELECTION WITH RESTRICTIONS
                                                                                                            JRSSB62 401
                                INDEX SELECTION WITH RESTRICTIONS
                                                                                                            BIOCS6B 1015
                                           NECESSARY RESTRICTIONS FOR DISTRIBUTIONS A POSTERIORI
                                                                                                            JRSSB60 312
       A TEST OF THE MEAN SQUARE ERROR CRITERION FOR RESTRICTIONS IN LINEAR RECRESSION
                                                                                                            JASA 6B 55B
    FOR THE MEAN SQUARE ERROR TEST FOR EXACT LINEAR RESTRICTIONS IN RECRESSION
                                                                                                    TABLES JASA 69 NO.4
                                          INEQUALITY RESTRICTIONS IN REGRESSION ANALYSIS
                                                                                                            JASA 66
                                     UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT PRONENESS
                                                                                                            BIOKA57 530
              BAYESIAN MODEL OF DECISION-MAKING AS A RESULT OF LEARNING FROM EXPERIENCE
                                                                                                             AMS 69 NO.6
                                                   A RESULT ON ACCIDENT PRONENESS
                    SOME REMARKS CONCERNING KHATRI'S RESULT ON QUADRATIC FORMS
NIKODYM DERIVATIVE TO THE PROBLEM OF ME/ A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION OF A RADON- JRSSB65
           CORRICENDA, 'PROPERTIES OF DISTRIBUTIONS RESULTING FROM CERTAIN SIMPLE TRANSFORMATIONS OF THE BIOKA53
        THE EFFECT OF RESPONDENT IGNORANCE ON SURVEY RESULTS
                                                                                                            JASA 56
                                                                                                                     576
         SOME BAYESIAN STRATIFIED TWO-PHASE SAMPLING RESULTS
                                                                                                            BTOKA6B
                                                                                                                     131
          A SIMPLE PRESENTATION OF OPTIMUM SAMPLING RESULTS
                                                                                                            JRSSB54
                                                                                                                     239
     THE ALMOST FULL DAM WITH POISSON INPUT, FURTHER RESULTS
                                                                                                            JRSSB66
                                                                                                                     448
        OF THE INTERVIEWER ON THE ACCURACY OF SURVEY RESULTS
                                                                                                  INFLUENCE JASA 5B
                                                                                                                     635
FOR HETEROCENEITY OF VARIANCE, SOME MONTE CARLO RESULTS RRELATION COEFFICIENTS FOR EQUALITY. SOME ASYMPTOTIC RESULTS
                                                                                         ALTERNATIVE TESTS BIOKAGG
                                                                                                                     229
                                                                                    ON TESTING A SET OF CO BIOKA68
                                                                                                                     513
LATED REGRESSION EQUATIONS, SOME EXACT FINITE SAMPLE RESULTS
                                                                             ESTIMATORS FOR SEEMINCLY UNRE JASA 63
                                                                        SAMPLING INSPECTION OF CONTINUOUS
PROCESSES WITH NO AUTOCORRELATION BETWEEN SUCCESSIVE RESULTS
                                                                                                            BIOKA60
                                                                                                                     363
BALANCED SINGLE AND DOUBLE CLASSIFICATIONS. PART 1. RESULTS SHORT-INFINITELY DIVISIBLE DISTRIBUTIONS, RECENT RESULTS AND APPLICATIONS
                                                                        SHORT-CUT MULTIPLE COMPARISONS FOR TECH 65
                                                                                                                      95
                                                                                                            AMS 62
                                                                                                                      6B
                                           NUMERICAL RESULTS AND DIFFUSION APPROXIMATIONS IN A CENETIC
                                                                                                            BIOKA63
                                                                                                                     241
PROCESS
                                        LIFE-TESTING RESULTS BASED ON A FEW HETEROGENEOUS LOGNORMAL
OBSERVAITONS
                                                                                                            JASA 67
                                                                                                                      45
                                          ADDITIONAL RESULTS CONCERNING ESTIMABLE FUNCTIONS AND CENERALIZE JRSSB65
D INVERSE MATRICES
                                                                                                                     486
RENEWAL THEORY
                                  ASYMPTOTIC RENEWAL RESULTS FOR A NATURAL GENERALIZATION OF CLASSICAL
                                                                                                            JRSSB67
                                                                                                                     141
                                                SOME RESULTS FOR FIXED-TIME TRAFFIC SIGNALS
                                                                                                            JRSSB64
                                                                                                                    133
                                             MINIMAX RESULTS FOR IFRA SCALE ALTERNATIVES
                                                                                                            AMS 69 177B
                                                                                                             AMS 61
KOLMOGOROV-SMIRNOV TYPE
                                          SOME EXACT RESULTS FOR ONE-SIDED DISTRIBUTION TESTS OF THE
                                                                                                                     499
SPECTROMETER DATA, 2
                         SOME EXPERIMENTAL SAMPLING RESULTS FOR REGRESSION ANALYSIS APPLIED TO GAMMA RAY
                                                                                                            BTOCS68
                                                                                                                     353
SPECTROMETER DATA, 1
                         SOME EXPERIMENTAL SAMPLING RESULTS FOR REGRESSION ANALYSIS APPLIED TO GAMMA RAY
                                                                                                            BTOCS67
                                                                                                                     11
           A COMPARISON OF THEORETICAL AND EMPIRICAL RESULTS FOR SOME STOCHASTIC POPULATION MODELS
                                                                                                            BTOKA60
                     ON EXTENDED RATE OF CONVERGENCE RESULTS FOR THE INVARIANCE PRINCIPLE
                                                                                                            AMS 69 NO.6
                                               SOME RESULTS FOR THE QUEUE WITH POISSON ARRIVALS
                                                                                                            JRSSB60
                                                                                                            JRSSB56
                                    SOME EQUILIBRIUM RESULTS FOR THE QUEUEING PROCESS E-SUB-K-M-1
                                                                                                                     275
E THE INTERARRIVAL AND SERVING DIS/
                                      SOME NUMERICAL RESULTS FOR THE QUEUEING SYSTEM WITH ONE SERVER, WHIL JRSSB63
                                                                                                                     477
                                      SOME NUMERICAL RESULTS FOR WAITING TIMES IN THE QUEUE E-SUB-K-M-1
                         CORRIGENDA,
                                     'SOME NUMERICAL RESULTS FOR WAITING TIMES IN THE QUEUE E-SUB-K-M-1.
                                                                                                            BIOKA60
                                    ON COMBINING THE RESULTS FROM CLINICAL TRIALS OF A VACCINE
                                                                                                            BIOCS65
                                      COMBINATION OF RESULTS FROM SEVERAL 2 BY 2 CONTINGENCY TABLES
                                                                                                            BIOCS65
                                                                                                                      В6
                                                     RESULTS FROM THE RELATION BETWEEN TWO STATISTICS OF
                                                                                                            AMS 69 1B33
THE KOLOMOGOROV-SMIRNOV TYPE
                                       COMBINATORIAL RESULTS IN FLUCTUATION THEORY
                                                                                                             AMS 63 1233
                                       COMBINATORIAL RESULTS IN MULTI-DIMENSIONAL FLUCTUATION THEORY,
                                                                                                             AMS 63 402
CORR. 64 924
                                        SOME GENERAL RESULTS IN SEQUENTIAL ANALYSIS
                                                                                                                     123
                                        SOME CENERAL RESULTS IN SEQUENTIAL DESIGN (WITH DISCUSSION)
QUEUE
                                        SOME FURTHER RESULTS IN THE NON-EQUILIBRIUM THEORY OF A SIMPLE
                                                                                                            JRSSB57
                                                SOME RESULTS IN THE THEORY OF INVENTORY
                                        SOME FURTHER RESULTS IN THE THEORY OF PEDESTRIANS AND ROAD TRAFFIC BIOKA54
                         CORRIGENDA TO 'SOME FURTHER RESULTS IN THE THEORY OF PEDESTRIANS AND ROAD TRAFFIC BIOKA58
NS FOR VARIATIONAL SERIES
                                             ON SOME RESULTS OF N. V. SMIRNOV CONCERNING LIMIT DISTRIBUTIO AMS 69
                                          VALIDATING RESULTS OF SAMPLING INSPECTION BY ATTRIBUTES
 OF INCOMPLETE BLOCK DESIGNS. III. SOME LARGE-SAMPLE RESULTS ON ESTIMATION AND POWER FOR A METHOD OF PAIRE BIOKA55
 2-TO-THE-N AND 2-TO-THE-N TIMES 3-TO-THE-M SERIES RESULTS ON FACTORIAL DESIGNS OF RESOLUTION IV FOR THE TECH 69
                                                                                                                     431
                                                SOME RESULTS ON INVENTORY PROBLEMS (WITH DISCUSSION)
                                                                                                            JRSSB62
                                                SOME RESULTS ON MULTITYPE CONTINUOUS TIME MARKOV BRANCHING
 PROCESSES
                                                SOME RESULTS ON POLYA TYPE 2 DISTRIBUTIONS
                                                                                                             AMS 6B 1759
                                                MORE RESULTS ON PRODUCT MOMENTS FROM A FINITE UNIVERSE
                                                                                                            JASA 69
                                                SOME RESULTS ON TESTS FOR POISSON PROCESSES.
                                                                                                            BIOKA65
                                                                                                                      67
                                                SOME RESULTS ON TESTS OF SEPARATE FAMILIES OF HYPOTHESES
                                                                                                            BTOKA6B
                                                                                                                     355
                                             FURTHER RESULTS ON TESTS OF SEPARATE FAMILIES OF HYPOTHESES
                                                                                                            JRSSB62
                                                                                                                     406
F LINEAR COMBINATIONS OF INDEPENDENT AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST SURE CONVERGENCE 0 AMS 6B 1549
                                      SOME NEW RESULTS ON THE DISTRIBUTION OF THE SAMPLE CORRELATION JRSSB66
 COEFFICIENT
                                                                                                                    513
                                              SOME RESULTS ON THE ORDER STATISTICS OF THE MULTIVARIATE
NORMAL AND PARETO TYPE 1 POPULATIONS
                                                                                                            AMS 64 1815
IN THE SIMPLE RANDOMIZED BLOCK D/ SOME MONTE CARLO RESULTS ON THE POWER OF THE F-TEST UNDER PERMUTATION
                                                                                                           BTOKA66
                                                                                                                    199
COMPLETELY RANDOMIZED DESIGN
                                    SOME EMPIRICAL RESULTS ON VARIANCE RATIOS UNDER PERMUTATION IN THE
                                                                                                            JASA 66
                                                                                                                     213
ERGENCE RATES IN THE LAW OF LARCE NUMBERS SOME RESULTS RELATING MOMENT GENERATING FUNCTIONS AND CONV AMS 67
                                                                                                                     742
              BAYESIAN STRATIFIED TWO-PHASE SAMPLING RESULTS, K CHARACTERISTICS
                                                                                                            BIOKA68
                                                                                                                     5B7
                                      ON PRE-EMPTIVE RESUME PRIORITY QUEUES
                                                                                                             AMS 64
                                                                                                                     600
S AND RELATED PROBLEMS DEMAND FOR FARM PRODUCTS AT RETAIL AND THE FARM LEVEL. SOME EMPIRICAL MEASUREMENT JASA 5B
                                                                                                                     656
  A STOCHASTIC ANALYSIS OF THE SPATIAL CLUSTERING OF RETAIL ESTABLISHMENTS
                                                                                                            JASA 65 1094
AREA BREAKDOWNS OF THE MONTHLY NATIONAL ESTIMATES OF RETAIL TRADE /OF A REGRESSION TECHNIQUE TO PRODUCE
                                                                                                            JASA 66
ROGRAMMES WHEN ALL DAUGHTERS OF SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SELECTION IN BREEDING P BIOCS69
                                                                                                                     553
  LOG (-LOG) TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION RECORDS
                                                                                                        THE BIOCS6B
                                            THE LAST RETURN TO EQUILIBRIUM IN A COIN TOSSING GAME
                         THE ENUMERATION OF ELECTION RETURNS BY NUMBER OF LEAD POSITIONS
                                                                                                             AMS 64 369
                                  THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST PROCEDURE, WHEN DATA
ARE INCOMPLETE
                                                                                                           JASA 61
                                                                                                                    125
                                   MARKET MAKING AND REVERSAL OF THE STOCK EXCHANGE
                                                                                                            JASA 66
                           EVOLUTIONARY OPERATION. A REVIEW
                                                                                                            TECH 66
                                                                                                                     3B9
                                                   A REVIEW OF 'SMOKING AND HEALTH'
                                                                                                            JASA 65
                                                                                                                     722
                                                   A REVIEW OF RESPONSE SURFACE METHODOLOGY, A LITERATURE TECH 66
       MISSING VALUES IN MULTIVARIATE STATISTICS, I. REVIEW OF THE LITERATURE
```

PROBLEMS A	REVIEW OF THE LITERATURE ON A CLASS OF COVERACE REVIEWS, 10 YEAR INDEX (1959-1968) REVISED SEASONAL ADJUSTMENT PROCEDURES REVISED TEST FOR SYSTEMATIC OSCILLATION REVISED UNITED STATES NATIONAL ACCOUNTS	AMS 64	232
CDECARDAL EMALHATION OF BLC AND CENCIC	REVIEWS, 10 YEAR INDEX (1909-1968) REVISED SEASONAL ADJUSTMENT PROCEDURES	JASA 68	223
A	REVISED TEST FOR SYSTEMATIC OSCILLATION	JRSSR54	292
ON THE STATISTICAL DISCREPANCY IN THE	REVISED UNITED STATES NATIONAL ACCOUNTS	JASA 66	1219
TIZED DEVIATE FROM THE SAMPLE MEAN	REVISED UPPER PERCENTAGE POINTS OF THE EXTREME STUDEN	BIOKA56	449
		JASA 67	470
TRANSFORMATIONS, SOME EXAMPLES QUERY, PREFERENCE SCORES		TECH 69 TECH 68	23
	REVOLUTION IN STATISTICS (THE FIRST FISHER MEMORIAL		612 233
EXISTENCE OF OPTIMAL STOPPING RULES FOR		AMS 6B	
	RHO /TRIBUTION OF KENDALL'S TAU FOR SAMPLES OF FOUR		
THE VARIANCE OF SPEARMAN'S		BIOKA61	19
OF A MAXIMUM-LIKELIHOOD ESTIMATION PROPOSED BY A COMPUTER PROCRAM FOR FITTING THE	RICHARDS FUNCTION	DK22R63	209 401
A COMPOSITION PROGRAM POWER FILL AND THE	'RIDGE ANALYSIS' OF RESPONSE SURFACES	TECH 63	469
STUDENT'S DISTRIBUTION AND	RIEMANN'S ELLIPTIC CEOMETRY	8I0KA57	264
PARAMETER FROM SAMPLES THAT ARE TRUNCATED ON THE			
CENERAL TZED	RICHT ANCULAR DESIGNS RICHT ANCULAR DESIGNS	AMS 63 AMS 65	
QUASI POSTERIOR DISTRIBUTIONS		AMS 65	
RUNS IN A	RING	BIOKA58	572
WORDS. THE DISTRIBUTION OF PATTERN FREQUENCIES IN			
NOTE ON TWO BINOMIAL COEFFICIENT SUMS FOUND BY		AMS 63 AMS 67	
A RECURRENCE FOR PERMUTATIONS WITHOUT	RISING OR FALLING OMEGA-SEQUENCES RISING OR FALLING SUCCESSIONS	AMS 65	
	RISK THE DETERMINATION OF SINGLE SAMPLING	TECH 67	401
APPROXIMATE CONFIDENCE LIMITS FOR THE RELATIVE		JRSSB62	
	RISK (WITH DISCUSSION) RISK AND MAXIMAL REGULAR GENERALIZED SUBMARTINGALES	JRSSB67 AMS 67	
	RISK AND UNBIASEDNESS FOR MULTIPLE DECISION PROBLEMS		
APPROXIMATION TO BAYES	RISK IN SEQUENCES OF NON-FINITE GAMES		
INTEGRATED		AMS 67	
ON THE EFFECT OF STRAGGLERS ON THE	RISK OF SOME MEAN ESTIMATORS IN SMALL SAMPLES	AMS 66 AMS 64	
ON THE	RISK OF SOME STRATEGIES FOR OUTLYING OBSERVATIONS	JASA 59	260
ON THE RUIN PROBLEM OF COLLECTIVE		AMS 61	757
POPULATION WITH RESPECT TO DIFFERENT MORTALITY		JASA 63	701
NOTE ON EXTREME VALUES, COMPETING		AMS 63	
	RISKS ARE EQUAL /TERISTIC CURVE FOR SEQUENTIAL SAMP RISKS FOR ASYMMETRICAL TESTS AND SPECIFICATION LIMITS		108 505
MODELS FOR THE ESTIMATION OF COMPETING		BIOCS69	
PRODUCER AND CONSUMER	RISKS IN NON-NORMAL POPULATION	TECH 66	
	RISKS OF ERROR INVOLVED IN THE SEQUENTIAL RATIO TEST		
ING AND LUNG CANCER, CORR./ COMPETING EXPONENTIAL DESIGNS FOR DISCRIMINATING BETWEEN TWO	RISKS, WITH PARTICULAR REFERENCE TO THE STUDY OF SMOK	JASA 60 TECH 65	
MULE DEL ALL MO DEDECEMENTANO CROCCINO A	PO A P	DIOMES	707
TRAFFIC DELAYS ON A TWO-LANE		BIOKA64	11
MODEL FOR DELAYS IN OVERTAKING ON A TWO-LANE	ROAD A SIMPLIFIED	JRSSB5B	40B
DELAYS ON A TWO-LANE FURTHER RESULTS IN THE THEORY OF PEDESTRIANS AND	ROAD (WITH DISCUSSION)	JRSSB61 BIOKA54	38 375
A QUEUEING MODEL FOR	ROAD TRAFFIC SOME ROAD TRAFFIC FLOW (WITH DISCUSSION)	JRSSB61	64
FURTHER RESULTS IN THE THEORY OF PEDESTRIANS AND	ROAD TRAFFIC' CORRIGENDA TO 'SOME	BIOKA5B	291
	ROBBINS ON SEQUENTIAL CONFIDENCE INTERVALS FOR THE		667
	ROBBINS-ISBELL TWO-ARMED-BANDIT PROBLEM WITH FINITE ROBBINS-MONRO METHOD FOR ESTIMATING THE MEDIAN LETHAL	AMS 65	1375 2B
	ROBBINS-MONRO PROCEDURE	AMS 67	1B1
A PERSISTENCE PROBLEM IN RENEWAL THEORY,		BIOKA66	
		TECH 6B	
NUTES, CYCLIC GENERATION OF FACTORIAL 2-TO-THE-'P-O' PLANS		BIOCS67 TECH 66	574 259
MPTION (W/ PERMUTATION THEORY IN THE DERIVATI N OF	ROBUST CRITERIA AND THE STUDY OF DEPARTURES FROM ASSU		1
ON SOME	ROBUST ESTIMATES OF LOCATION	AMS 65	
SOME OBSERVATIONS ON	ROBUST ESTIMATION ROBUST ESTIMATION IN ANALYSIS OF VARIANCE	JASA 67 AMS 63	
A NOTE ON	ROBUST ESTIMATION IN ANALYSIS OF VARIANCE	AMS 68	
A NOIE ON		AMS 66	
ON	ROBUST ESTIMATION IN INCOMPLETE BLOCK DESIGNS	AMS 67	
	ROBUST ESTIMATION OF A LOCATION PARAMETER	AMS 64	
A STIIDV OF	ROBUST ESTIMATION OF LOCATION ROBUST ESTIMATORS	JASA 67 TECH 67	
	ROBUST ESTIMATORS OF LOCATION	JASA 67	
	ROBUST LINEAR ESTIMATORS	AMS 69	
	ROBUST POINT ESTIMATOR IN A GENERALIZED REGRESSION ROBUST PROCEDURES	AMS 69	
OBSERVATION PER CELL	ROBUST PROCEDURES ROBUST PROCEDURES FOR SOME LINEAR MODELS WITH ONE	JASA 66 AMS 67	
	ROBUST TWO-SAMPLE RANK TESTS	JASA 67	1241
	ROBUST VERSION OF THE PROBABILITY RATIO TEST	AMS 65	
	ROBUSTA' STURT /ONS IN POPULATIONS OF 'DROSOPHILA	810CS66	
	ROBUSTNESS AND INFERENCE ROBUSTNESS ROBUSTNESS OF HOMOGENEITY TESTS IN 2 BY N TABLES	8IOKA64 BIOCS65	
	ROBUSTNESS OF HOTELLING'S T-SQUARE	JASA 67	
THE EXPONENTIAL DISTRIBUTION THE	ROBUSTNESS OF LIFE TESTING PROCEDURES DERIVED FROM	TECH 61	
DISTRIBUTION ON THE	ROBUSTNESS OF NON-IDEAL DECISION PROCEDURES ROBUSTNESS OF SOME CHARACTERIZATIONS OF THE NORMAL	JASA 63 AMS 68	
DISTRIBUTION ON THE MODELS	ROBUSTNESS OF SOME CHARACTERIZATIONS OF THE NORMAL ROBUSTNESS OF SOME NONPARAMETRIC PROCEDURES IN LINEAR		
	The state of the s		

TITLE WORD INDEX REV - ROT

LOCATION PROBLEM		JASA 64	
CLASSIFICATION THE		JASA 68 BIOKA64	
	ROBUSTNESS OF THE F-TEST /OF RESIDUAL VARIANCE IN Q		83
THE CORRELATION BETWEEN THE NUMERATOR AND DENOMIN/	ROBUSTNESS OF THE F-TEST TO ERRORS OF BOTH KINDS AND		660
The Contract Parties and Indiana.	ROBUSTNESS OF THE HODGES-LEHMANN ESTIMATES FOR SHIFT	AMS 65	
ANALYSIS OF VARIANCE WHEN VARIANCE-COVARI/ ON THE	ROBUSTNESS OF THE T-SQUARE-SUB-O TEST IN MULTIVARIATE	BIOKA64	71
AGAINST A CERTAIN DEPENDENCE	ROBUSTNESS OF THE WILCOXON ESTIMATE OF LOCATION	AMS 68	
		TECH 63	
N WILCOXON'S SIGNED RANK STATISTIC ON A FURTHER	ROBUSTNESS PROPERTY OF THE TEST AND ESTIMATOR BASED O		
COPRICENDA		BIOKA62 BIOKA65	93 669
		BIOKA62	
		BIOKA63	
LINEAR ESTIMATORS OF LOCATION OPTIMAL	ROBUSTNESS. A GENERAL METHOD, WITH APPLICATIONS TO	JASA 67	1230
EVALUATION OF CHEMICAL ANALYSES ON TWO		TECH 59	
	ROLE OF ASSETS, CREDIT AND INTENTIONS CONSUMER DU		
	ROLE OF EXPERIMENTAL RANDOMIZATION IN BAYESIAN STATIS ROLE OF FACTOR ANALYSIS IN RESEARCH FACTOR		
		BIOKA69	
	ROLE OF SUFFICIENCY AND OF ESTIMATION IN THERMODYNAMI		
OPTIMIZATION OF A HOT	ROLLING MILL	JRSSB67	300
THE EFFECT OF THE SIZE OF THE WAITING		JRSSB58	
CONSTRUCTION OF		AMS 6B	
A SYSTEM OF TWO SERVERS WITH LIMITED WAITING		BIOKA68	
	ROOT ACTIVITY IN POTATO PLANTS /E STATISTICAL ANALY ROOT AND THE CORRESPONDING LATENT VECTOR FOR PRINCIPAL		717 995
	ROOT AND THE SMALLEST LATENT ROOT OF THE GENERALIZED		
	ROOT AND VECTOR METHODS USED IN MULTIVARIATE ANALYSIS		
THE MEAN SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE	ROOT MEAN SQUARE' ON CORRIGENDA TO 'ON ROOT METHOD	BIOKA58	587
A NOTE ON MATRIX INVERSION BY THE SQUARE	ROOT METHOD	011011 00	200
MATRIX INVERSION WITH THE SQUARE	ROOT METHOD OF MATRIX INVESTIGAT	TECH 64 TECH 62	
FRRATA 'MODIFIED SQUARE	ROOT METHOD OF MATRIX INVERSION '	TECH 62	
ON THE DISTRIBUTION OF THE LARGEST	ROOT OF A MATRIX IN MULTIVARIATE ANALYSIS	AMS 67	616
ON THE DISTRIBUTION OF THE LARGEST OR THE SMALLEST	ROOT OF A MATRIX IN MULTIVARIATE ANALYSIS	BIOKA56 BIOKA67	122
A NOTE ON MATRIX INVERSION BY THE SQUARE MATRIX INVERSION WITH THE SQUARE MODIFIED SQUARE ERRATA, 'MODIFIED SQUARE ON THE DISTRIBUTION OF THE LARGEST ON THE DISTRIBUTION OF THE LARGEST OR THE SMALLEST UPPER PERCENTAGE POINTS OF THE LARGEST ON THE DISTRIBUTION OF THE LARGEST CHARACTERISTIC ON THE DISTRIBUTION OF THE LARGEST LATENT	ROOT OF A MATRIX IN MULTIVARIATE ANALYSIS		
ON THE DISTRIBUTION OF THE LARGEST CHARACTERISTIC	ROOT OF A MATRIX IN MULTIVARIATE ANALYSIS.	BIOKA65	405
	ROOT OF THE COVARIANCE MATRIX ROOT UNDER NULL HYPOTHESIS CONCERNING COMPLEX MULTIVA	AMS 67	
	ROOT(BETA-1) AND BETA-2 EXPRESSED IN STANDARD MEASURE		459
	ROOT(BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASUR		669
	ROOT'B1' AND B2 IN NORMAL SAMPLES, A ROUNDING OFF	BIOKA65	282
ESTIMATOR WHERE THE LIKELIHOOD EQUATION HAS MULTIPLE			151
	ROOTS AND VECTORS WITH SPECIAL REFERENCE TO THE BIVAR		97
DISTRIBUTIONS OF MATRIX VARIATES AND LATENT OF DETERMINANTS, CHARACTERISTIC EQUATIONS AND THEIR		AMS 64	475 348
	ROOTS OF A COVARIANCE MATRIX AND WILKS' CRITERION FOR		
	ROOTS OF A MATRIX ON THE NON-CENTRAL DISTRIBUTIO		
THE MOMENTS OF ELEMENTARY SYMMETRIC FUNCTIONS OF THE		AMS 61	1152
		BIOKA59	237
		BIOKA64 AMS 64	
ON THE BIAS OF FUNCTIONS OF CHARACTERISTIC	ROOTS OF A MULTIVARIATE MATRIX. DISTRIBUTIONS	BIOKA65	87
	ROOTS OF A SYMMETRIC RANDOM MATRIX UNDER GENERAL COND		
PERCENTAGE POINTS OF THE EXTREME		BIOKA6B	505
THE LATENT	ROOTS OF CERTAIN STOCHASTIC MATRICES	BIOKA62	
TESTS OF SIGNIFICANCE FOR THE LATENT		BIOKA56	128
SOME OPTIMUM CONFIDENCE BOUNDS FOR A NOTE ON THE CONSISTENCY AND MAXIMA OF THE		AMS 65 BIOKA54	468 56
SOME INEQUALITIES ON CHARACTERISTIC		BIOKA63	
CORRIGENDA, 'SOME INEQUALITIES ON CHARACTERISTIC		BIOKA65	
MPTOTIC EXPANSION FOR THE DISTRIBUTION OF THE LATENT		AMS 65	
	ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE IN		
THE MOMENTS OF ELEMENTARY SYMMETRIC FUNCTIONS OF THE	ROOTS OF TWO MATRICES ON ROOTS OF TWO MATRICES AND APPROXIMATIONS TO A DISTRIB	AMS 64	
	ROOTS OF TWO MATRICES AND APPROXIMATIONS TO A DISTRIB	BIOKA65	
	ROSEN'S THEOREM TO NON-IDENTICALLY DISTRIBUTED RANDOM		
N, COMMENT ON A CRITICISM MADE BY KOOPMANS, OWEN AND	ROSENBLATT. /IBUTION OF THE COEFFICIENT OF VARIATIO	BIOKA65	303
ON AN OPERATOR LIMIT THEOREM OF		AMS 65	
THE CHOICE OF A SECOND ORDER		BIOKA63	
CORRIGENDA, 'THE CHOICE OF A SECOND ORDER CYLINDRICALLY	ROTATABLE DESIGNS	BIOKA65 AMS 66	
FURTHER SECOND ORDER		AMS 6B	
ASYMMETRICAL	ROTATABLE DESIGNS AND ORTHOGONAL TRANSFORMATIONS	TECH 6B	
	ROTATABLE DESIGNS IN FOUR DIMENSIONS	AMS 64	
A METHOD FOR THE CONSTRUCTION OF SECOND ORDER		AMS 67	
	ROTATABLE DESIGNS IN THREE DIMENSIONS, SOME SPECIFIC ROTATABLE DESIGNS IN THREE FACTORS. ANALYSIS	AMS 61 TECH 62	
	ROTATABLE DESIGNS OF TYPES 1, 2, AND 3	AMS 67	
	ROTATABLE DESIGNS THROUGH BALANCED INCOMPLETE BLOCK	AMS 62	
WITH VARYING PROBABILITIES WITHOUT REPLACEMENT,	ROTATING AND NON-ROTATING SAMPLES SAMPLING		
SURVEYS THE USE OF	ROTATING SAMPLES IN THE CENSUS SUREAU'S MONTHLY	JASA 63	
THEODY OF CYCLE	ROTATION DESIGNS FOR SAMPLING ON REPEATED OCCASIONS ROTATION EXPERIMENTS (WITH DISCUSSION)	JASA 64 JRSS864	
INDURI OF CICLIC	MOTATION BALBNIMBATO (MITH DISCUSSION)	JN05004	1

```
ON RANDOM ROTATIONS IN R-CUBE
                                                                                                              BIOKA65
                           A SIMPLER PROOF OF SMITH'S ROULETTE THEOREM
                                                  THE ROUND ROBIN (ERRATA, 69 627)
                                                                                                               TECH 68
                                                      ROUND-ROBIN TOURNAMENT SCORES
                                                                                                              BIOKA69
                                                                                                                        295
                                           RANDOMIZED ROUNDED-OFF MULTIPLIERS IN SAMPLING THEORY
                                                                                                               JASA 61
                                                                                                                        32B
     A NOTE ON RECRESSION TRANSFORMATION FOR SMALLER ROUNDOFF ERROR
                                                                                                               TECH 68
                                                                                                                        393
ELECTRONIC COMPUTER (WITH DISCUSSION)
                                                      ROUTINE ANALYSIS OF REPLICATED EXPERIMENTS ON AN
                                                                                                               JRSSB57
                                                                                                                        234
TY OF NORMAL MU/ ALCEBRAIC THEORY OF THE COMPUTINC ROUTINE FOR TESTS OF SIGNIFICANCE ON THE DIMENSIONALI JRSSB56
                                                                                                                         70
                USE OF PRIOR INFORMATION TO DESIGN A ROUTINE PARALLEL LINE ASSAY
                                                                                                              BIOCS67
                                                                                                                        257
                                  SERIAL DESIGNS FOR ROUTINE QUALITY CONTROL AND EXPERIMENTATION
                                                                                                              TECH 64
                                                                                                                         77
                                                 SOME ROW AND COLUMN DESIGNS FOR TWO SETS OF TREATMENTS
                                                                                                              BTOCS66
                                                                                                                          1
ATION FIXED EFFECTS MODEL WITH OBSERVATIONS WITHIN A ROW SERIALLY CORRELATED
                                                                                 /FOR THE TWO-WAY CLASSIFIC BIOKA69
                                                                                                                       NO.3
  COMPARISON AND RANKING, OPTIMUM PROPERTIES OF THE ROW SUM PROCEDURE
                                                                                                     PAIRWISE AMS 63
  ANALYSIS OF LATIN SQUARES WITHIN A CERTAIN TYPE OF ROW-COLUMN INTERACTION
                                                                                                              TECH 59
                                                                                                                        379
                                        ON THE RUIN PROBLEM OF COLLECTIVE RISK THEORY THE GAMBLER'S RUIN PROBLEM WITH CORRELATION
                                                                                                               AMS 61
                                                                                                                        757
                                                                                                               BIOKA55
                                                                                                                        4B6
                                    ON THE CLASSICAL RUIN PROBLEMS
                                                                                                               JASA 69
                                                                                                                       BB9
                            A MODIFIED BAYES STOPPING RULE
                                                                                                                AMS 63 1404
                            THE TWENTY-SEVEN PER CENT RULE
                                                                                                                AMS 64
                                                                                                                       214
DEPENDENCE OF THE FIDUCIAL ARGUMENT ON THE SAMPLING RULE
                                                                                                               BIOKA57
                                                                                                                        464
                                        ON A STOPPING RULE AND THE CENTRAL LIMIT THEOREM
                                                                                                                AMS 67 1915
                                      PLAY THE WINNER RULE AND THE CONTROLLED CLINICAL TRIAL
                                                                                                               JASA 69
VE DATA
                                          A SHORT-CUT RULE FOR A ONE-SIDED TEST OF HYPOTHESIS FOR QUALITATI TECH 69
                                              A BAYES RULE FOR THE SYMMETRIC MULTIPLE COMPARISONS PROBLEM
                                                                                                              JASA 69 NO.4
                                         ON AN A.P.O. RULE IN SEQUENTIAL ESTIMATION WITH QUADRATIC LOSS
                                                                                                                AMS 69
                                                                                                                       417
                                MOMENTS OF A STOPPING RULE RELATED TO THE CENTRAL LIMIT THEOREM
                                                                                                                AMS 69 1236
   ON SOME MULTIPLE DECISION (SELECTION AND RANKINC) RULES
                                                                                                               TECH 65
                                                                                                                       225
           ON THE MOMENTS OF SOME ONE-SIDED STOPPING RULES
                                                                                                                AMS 66
                                                                                                                       382
                       ON SECOND MOMENTS OF STOPPING RULES
                                                                                                                AMS 66
                                                                                                                       3BB
     SOME PROBLEMS IN THE THEORY OF OPTIMAL STOPPING RULES
                                                                                                                AMS 67 1627
                             SOME ONE-SIDED STOPPING RULES
                                                                                                                AMS 67 1641
 OPERATING CHARACTERISTICS OF SOME SEQUENTIAL DESIGN RULES
                                                                                                                AMS 6B 1176
   ON THE ASYMPTOTIC NORMALITY OF ONE-SIDED STOPPING RULES
                                                                                                                AMS 6B 1493
              THE VARIANCE OF THE ONE-SIDED STOPPING RULES
                                                                                                                AMS 69 1074
        IN INFERENCES UNDER NON-INFORMATIVE STOPPING RULES
                                                                                 AN EXAMPLE OF DISCREPANCIES BIOKA67
                                                                                                                       329
                                INFORMATIVE STOPPING RULES AND INFERENCES ABOUT POPULATION SIZE
                                                                                                               JASA 67 763
                                                                                                               JASA 69 1073
                                              SCORING RULES AND THE EVALUATION OF PROBABILITY ASSESSORS
                                           ALLOCATION RULES AND THEIR ERROR RATES (WITH DISCUSSION)
                                                                                                               JRSSB66
S OF GENERALIZED K-STATISTICS
                                                 SOME RULES FOR A COMBINATORIAL METHOD FOR MULTIPLE PRODUCT
                                                                                                               AMS 68
                                                                                                                        9B3
RELATED STUDENT-T PROBLEMS
                                                 BAYES RULES FOR A COMMON MULTIPLE COMPARISONS PROBLEM AND
                                                                                                                AMS 61 1013
                               OPTIMUM CLASSIFICATION RULES FOR CLASSIFICATION INTO TWO MULTIVARIATE NORMAL
 POPULATIONS
                                                                                                               AMS 65 1174
                                A NOTE ON MEMORYLESS RULES FOR CONTROLLING SEQUENTIAL CONTROL PROCESSES AMS 66
T/ INVESTIGATION OF RULES FOR DEALING WITH OUTLIERS IN SMALL SAMPLES FROM TECH 69
 THE NORMAL DISTRIBUTION, 2. EST/
                             COMPARISON OF SEQUENTIAL RULES FOR ESTIMATION OF THE SIZE OF A POPULATION
                                                                                                              BIOCS69
                                                                                                                       517
                        EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS RELATED TO S-SUB-N-OVER-N
                                                                                                                AMS 68 1228
                                            ON SIMPLE RULES FOR THE COMPOUND DECISION PROBLEM
                                                                                                               JRSSB65
                                  SEQUENTIAL COMPOUND RULES FOR THE FINITE DECISION PROBLEM
                                                                                                               JRSSB66
                                                                                                                         63
       CONVERCENCE OF THE LOSSES OF CERTAIN DECISION RULES FOR THE SEQUENTIAL COMPOUND DECISION PROBLEM
                                                                                                               AMS 64 1606
                                           RANDOMIZED RULES FOR THE TWO-ARMED BANDIT WITH FINITE MEMORY
                                                                                                                AMS 68 2103
  OF AN EPIDEMIC AND THE NUMBER OF PEOPLE HEARING A RUMOUR
                                                                                                  ON THE SIZE JRSSB66
                                                                                                                       4B7
                      POISSON LIMITS OF MULTIVARIATE RUN DISTRIBUTIONS
                                                                                                                AMS 65
                                                                                                                        215
MININC UPPER AND LOWER LIMITS FOR THE AVERAGE SAMPLE RUN LENGTH OF A CUMULATIVE SUM SCHEME /RE FOR DETER IS USED THE AVERAGE RUN LENCTH OF THE CUMULATIVE SUM CHART WHEN A V-MASK
                                                                                               /RE FOR DETER JRSSB67
                                                                                                                        263
                                                                                                              JRSSB61
                                                                                                                        149
SCHEMES
                                              AVERACE RUN LENGTHS IN CUMULATIVE CHART QUALITY CONTROL
                                                                                                               TECH 61
                                                                                                                         11
ATTRIBUTE
                                              LONCEST RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED
                                                                                                              BIOKA61
                                                                                                                        461
                                             MULTIPLE RUNS
                                                                                                              BIOKA57
                                                                                                                        16B
    ACCEPTANCE SAMPLING PLANS BASED ON THE THEORY OF RUNS
                                                                                                          SOME TECH 62
                                                                                                                        177
                                A COMPOUNDED MULTIPLE RUNS DISTRIBUTION
                                                                                                               JASA 69 NO.4
                                                                                                                        330
 JOINT DISTRIBUTION OF ASCENDING PAIRS AND ASCENDING RUNS IN A RANDOM SEQUENCE
                                                                                                          THE BIOKA67
                                                      RUNS IN A RING
                                                                                                               BIOKA5B
                                                                                                                        572
                                   SOME PROPERTIES OF RUNS IN QUALITY CONTROL PROCEDURES
                                                                                                               BIOKA58
                                                                                                                         89
                     CORRICENDA, 'SOME PROPERTIES OF RUNS IN QUALITY CONTROL PROCEDURES'
                                                                                                               BIOKA59
                                                                                                                        279
                                   SOME PROPERTIES OF RUNS IN SMOOTHED RANDOM SERIES
                                                                                                               BIOKA52
                                                                                                                        198
                                     QUERY, COMPLETED RUNS OF LENGTH K ABOVE AND BELOW MEDIAN
                                                                                                               TECH 67
                                                                                                                        682
                     PROBABILITY TABLE FOR NUMBER OF RUNS OF SICNS OF FIRST DIFFERENCES IN ORDERED SERIES
                                                                                                              JASA 61
                                                                                                                        156
   RANDOMNESS IN A SEQUENCE OF TWO ALTERNATIVES. II. RUNS TEST
                                                                                                              BIOKA58
                                                                                                                        253
                                           SIMPLIFIED RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF
                                                                                                              BIOKA5B
                              CORRIGENDA TO 'MULTIPLE RUNS'
                                                                                                               BIOKA57
                 THE DISTRIBUTION OF KENDALL'S SCORE S FOR A PAIR OF TIED RANKINGS
OCATION IN REGRESSION AS APPLIED TO EXTRAPOLATION IN S-N FATIGUE TESTINC /N IN PRECISION FOR OPTIMAL ALL TECH 69
                                                                                                                        3B9
S OF PERCENTAGE POINTS OF THE LARGEST VARIANCE RATIO S-SQUARE-MAX-OVER-S-SQUARE-SUB-O EXTENSION OF TABLE BIOKA67
    OF OPTIMAL STOPPING RULES FOR REWARDS RELATED TO S-SUB-N-OVER-N
                                                                                                    EXISTENCE
                                                                                                               AMS 68
                     SOME FIRST PASSACE PROBLEMS FOR S-SUB-N-OVER-ROOT-N
                                                                                                                       64B
                        TABLES TO FACILITATE FITTING S-SUB-U FREQUENCY CURVES.
                                                                                                              BIOKA65
AL DISTRIBUTION
                                     THE MULTIVARIATE SADDLE POINT METHOD AND CHI-SQUARED FOR THE MULTINOMI AMS 61
                                                                                                                        535
S' 57 861
                                      CORRECTIONS TO 'SADDLE POINT METHODS FOR THE MULTINOMIAL DISTRIBUTION
                            ON THE DETERMINATION OF A SAFE LIFE FOR CLASSES OF DISTRIBUTIONS CLASSIFIED BY TECH 68
                                                                                                                       361
FAILURE RATE
A STATISTICAL MODEL OF EVALUATING THE RELIABILITY OF SAFETY SYSTEMS FOR PLANTS MANUFACTURING HAZARDOUS PRO TECH 59
                        A STOCHASTIC MODEL OF CREDIT SALES DEBT
                                                                                                              JASA 66 1010
                  A NOTE ON ESTIMATION FROM A CAUCHY SAMPLE
                                                                                                               JASA 64
                                                                                                                        460
                                                                                                              BIOKA63
                                                                                                                        195
        INDEX SELECTION AND ESTIMATION FROM A SINGLE SAMPLE
  OF RANGE TO STANDARD DEVIATION IN THE SAME NORMAL SAMPLE
                                                                                                    THE RATIO BIOKA64
                                                                                                                        484
                                                                                               ESTIMATING THE BIOKA67
                                                                                                                        155
  MEAN AND STANDARD DEVIATION FROM A CENSORED NORMAL SAMPLE
                                                                                           ESTIMATION OF THE BIOKA59
NORMAL POPULATION PARAMETERS GIVEN A SINGLY CENSORED SAMPLE
                                                                                                                        150
                                                                                           ESTIMATION OF THE BIOKA61
NORMAL POPULATION PARAMETERS CIVEN A TYPE I CENSORED SAMPLE
                                                                                                                        367
                                                                                         CONFIDENCE INTERVALS JASA 65
                                                                                                                        257
    BASED ON THE MEAN ABSOLUTE DEVIATION OF A NORMAL SAMPLE
```

TITLE WORD INDEX ROT - SAM

11112	E WOIND	INDEX	1/01	DAM
A SIMPLE TYPE OF HETEPOCENETTY IS PRESENT IN THE	CAMPLE	ESTIMATION PROBLEMS WHEN	BTOKA51	90
MIMPERS WILL DE MEADLE IN SELECTING A DARTICULAR	CAMDIE	MANY OF A CROID OF RANDOM	1454 59	102
A SIMPLE TYPE OF HETEROCENEITY IS PRESENT IN THE NUMBERS WILL BE USABLE IN SELECTING A PARTICULAR DEVIATION OF A NORMAL POPULATION FROM A CENSORED	SAMPLE	ESTIMATION OF THE MEAN AND STANDARD	BIUKVED	260
UNIVARIATE POPULATION FROM THE ORDER STATISTICS OF A	CAMDIE	ADDED DIGHTION OF THE MEAN AND STANDARD	BIONAGE	NO 3
BIVARIATE NORMAL DISTRIBUTION IN THE CASE OF A SMALL				
AND SCALE PARAMETERS CIVEN A TYPE II CENSORED NORMAL				
		ALLOCATION AND ESTIMATION IN AN ACRICULTURAL		223
IHOODS AND COMPARISON WITH POINT ESTIMATES AND LARCE				468
			JASA 57	
IAL BATCHING FOR ACCEPTANCE, REJECTION SAMPLING UPON				19
TIAL BATCHING FOR ACCEPTANCE-REJECTION SAMPLING UPON				
F EQUAL MEANS UNDER VARIANCE HETEROGENEITY SMALL				
F EQUAL MEANS UNDER VARIANCE H/ CORRIGENDA, 'SMALL				
DJUSTMENT' AND 'ADAPTIVE EXPECTATIONS' MODE/ SMALL	SAMPLE	BIAS DUE TO MISSPECIFICATION IN THE 'PARTIAL A	JASA 66	1130
ORDERING OF PROBABILITIES OF RANK ORDERS IN THE TWO				9B
ON THE PERCENTAGE POINTS OF THE			BIOKA68	
		COEFFICIENT OF VARIATION AND AN APPLICATION OF	TECH 65	67
			BIOCS67	349
SOME NEW RESULTS ON THE DISTRIBUTION OF THE	SAMPLE	CORRELATION COEFFICIENT	JRSSB66	513
IS FALLIBLE LARGE-	SAMPLE	COVARIANCE ANALYSIS WHEN THE CONTROL VARIABLE	JASA 60	307
A NUMERICAL PROCEDURE TO GENERATE A	SAMPLE	COVARIANCE MATRIX, CORR. 66 1248	JASA 66	199
ON THE DISTRIBUTION OF THE TWO	SAMPLE	COVARIANCE MATRIX, CORR. 66 1248 CRAMER-VON MISES CRITERION CRAMER-VON MISES TEST	AMS 62	1148
BIAS OF THE ONE-	SAMPLE	CRAMER-VON MISES TEST	JASA 66	246
RECONSTRUCTING PATTERNS FROM REASONING TOWARDS POSTERIOR DISTRIBUTIONS BASED ON ESTIMATION OF A POPULATION MEAN USING TRANSFORMED ON THE MAXIMUM DEVIATION OF THE	SAMPLE	DATA	AMS 67	138
REASONING TOWARDS POSTERIOR DISTRIBUTIONS BASED ON	SAMPLE	DATA NEW METHODS FOR	AMS 66	355
ESTIMATION OF A POPULATION MEAN USING TRANSFORMED	SAMPLE	DATA DIFFICULTIES INVOLVED IN THE	TECH 66	535
ON THE MAXIMUM DEVIATION OF THE	SAMPLE	DENSITY	AMS 67	475
OFTIMAL	DHMLPF	DESIGN WITH NUNNESFUNSE	UNDA OI	63
VARIANCE ESTIMATES IN 'OPTIMUM'			JASA 61	135
DISTRIBUTION FREE TESTS OF INDEPENDENCE BASED ON THE			AMS 61	485
A TEST FOR SYMMETRY USING THE			AMS 69	
DISTRIBUTION FREE TESTS BASED ON THE			BIOKA66	99
L STRAICHT LINES THE PROBABILITY THAT THE CORRECTION, 'DISTRIBUTION FREE TESTS BASED ON THE		DISTRIBUTION FUNCTION LIES BETWEEN TWO PARALLE	AMS 68 BIOKA67	398 333
REMARKS CONCERNING THE APPLICATION OF EXACT FINITE IDENTIFIABILITY TEST STATISTICS ON FINITE				943 650
ULA FOR THE CURVATURE OF THE LIKELIHOOD SURFACE OF A				203
ON NONCOVERAGE OF			JASA 58	509
CH IS RANDOMLY REPEATING IN GAUSSIAN NOISE LARGE				489
TION HAVING A PRE/ ON THE NON-EXISTENCE OF A FIXED				
			TECH 67	
ES A NOTE ON THE MAXIMUM	SAMPLE	EXCURSIONS OF STOCHASTIC APPROXIMATION PROCESS	AMS 66	513
TESTS STATISTIC A K-	SAMPLE	EXTENSION OF THE ONE-SIDED TWO-SAMPLE SMIRNOV	AMS 67	1726
MOMENT CONVERCENCE OF	SAMPLE	EXTREMES	AMS 6B	BB1
		FREQUENCY FUNCTIONS OF GENERALIZED CLASSICAL L		
		FREQUENCY FUNCTIONS OF GENERALIZED CLASSICAL L		161
		FROM A CIRCULAR NORMAL DISTRIBUTION		
UPPER AND LOWER PROBABILITY INFERENCES BASED ON A			BIOKA67	
ASYMPTOTIC DISTRIBUTION OF THE AUTOCORRELATIONS OF A				
O THE STANDARD DEVIATION/ A TEST PROCEDURE WITH A		FUNCTION PROPERTY OF MARTINGALES	AMS 66	94
		FUNCTIONS OF CAUSSIAN RANDOM HOMOGENEOUS FIELD		
		FUNCTIONS OF PROCESSES WHICH CAN BE ADDED TO A		
AN EMPIRICAL STUDY OF THE DISTRIBUTION OF THE			BIOCS69	63
ON UTILIZING INFORMATION FROM A SECOND			BIOKA69	
RIBUTION OF THE SAMPLE MEAN WHERE EACH MEMBER OF THE				
IES, AND THE INCREASE IN POPULATION COVERACE, WHEN A				45
ACT AND APPROXIMATE SAMPLING DISTRIBUTION OF THE TWO				
ACCUMPANTA PRETATENCY OF THE TWO	CAMPLE	VOLMOCOROU CHIRMOU MECH	JASA 67	
			JASA 64	645
SMALL SAMPLE POWER CURVES FOR THE TWO	SAMPLE	LOCATION PROBLEM	TECH 69	299
POINTS OF THE EXTREME STUDENTIZED DEVIATE FROM THE	SAMPLE		BIOKA59	473
OF THE EXTREME STUDENTIZED DEVIATE FROM THE	SAMPLE	MEAN ON THE DISTRIBUTION	BIOKA59	467
POINTS OF THE 'STUDENTIZED' EXTREME DEVIATE FROM THE	SAMPLE	MEAN TABLES OF PERCENTAGE	BIOKA52	189
POINTS OF THE EXTREME STUDENTIZED DEVIATE FROM THE	SAMPLE	MEAN REVISED UPPER PERCENTACE	BIOKA56	449
S FOR A NORMAL VARIATE THE CORRECT USE OF THE	DAMPLE	MEAN ABSOLUTE DEVIATION IN CONFIDENCE INTERVAL	IECH 00	000
		MEAN AMONG THE EXTREME NORMAL ORDER STATISTICS		
		MEAN AMONG THE MODERATE ORDER STATISTICS MEAN AND COVARIANCE BASED ON PARTIAL OBSERVATI	AMS 62	
ONS ON MULTIVARIATE PREDICTION INTERVALS FOR TOLERANCE LIMITS FOR A NORMAL POPULATION BASED ON				634 BB
		MEAN AND SAMPLE VARIANCE OF A POISSON VARIATE		
			AMS 6B	
			JASA 56	
		MEAN WHEN RESIDUALS FOLLOW A FIRST-ORDER STATI		
THE PROBABILITY OF LARGE DEVIATIONS OF FAMILIES OF			AMS 64	
			JASA 59	
		MEANS IN A BIVARIATE NORMAL DISTRIBUTION	AMS 68	
THE MEDIAN SIGNIFICANCE LEVEL AND OTHER SMALL		MEASURES OF TEST EFFICIENCY	JASA 69	
APPROXIMATIONS TO THE MOMENTS OF THE				157
	SAMPLE		AMS 62	
IBUTIONS, I. ITS CURVE-SHAPE CHARACTERISTICS II. THE	SAMPLE SAMPLE	MEDIAN ON A CENERAL SYSTEM OF DISTR	JASA 68	
IBUTIONS, I. ITS CURVE-SHAPE CHARACTERISTICS II. THE NS THE 'INEFFICIENCY' OF THE	SAMPLE SAMPLE SAMPLE	MEDIAN ON A CENERAL SYSTEM OF DISTR MEDIAN FOR MANY FAMILIAR SYMMETRIC DISTRIBUTIO	JASA 68 BIOKA55	520
IBUTIONS, I. ITS CURVE-SHAPE CHARACTERISTICS II. THE NS THE 'INEFFICIENCY' OF THE ON THE DISTRIBUTION OF THE FIRST	SAMPLE SAMPLE SAMPLE SAMPLE	MEDIAN ON A CENERAL SYSTEM OF DISTR MEDIAN FOR MANY FAMILIAR SYMMETRIC DISTRIBUTIO MOMENTS OF SHOT NOISE	JASA 68 BIOKA55 TECH 64	520 2B7
IBUTIONS, I. ITS CURVE-SHAPE CHARACTERISTICS II. THE NS THE 'INEFFICIENCY' OF THE ON THE DISTRIBUTION OF THE FIRST ILLUSTRATION FINITE	SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	MEDIAN ON A CENERAL SYSTEM OF DISTR MEDIAN FOR MANY FAMILIAR SYMMETRIC DISTRIBUTIO MOMENTS OF SHOT NOISE MONTE CARLO STUDIES. AND AUTOREGRESSIVE	JASA 68 BIOKA55 TECH 64 JASA 67	520 2B7 B01
IBUTIONS, I. ITS CURVE-SHAPE CHARACTERISTICS II. THE NS THE 'INEFFICIENCY' OF THE ON THE DISTRIBUTION OF THE FIRST ILLUSTRATION FINITE E STATISTICAL DECISION PROBLEMS A SUPPLEMENTARY	SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	MEDIAN ON A CENERAL SYSTEM OF DISTR MEDIAN FOR MANY FAMILIAR SYMMETRIC DISTRIBUTIO MOMENTS OF SHOT NOISE MONTE CARLO STUDIES. AND AUTOREGRESSIVE NON-PARAMETRIC EMPIRICAL BAYES APPROACH TO SOM	JASA 68 BIOKA55 TECH 64 JASA 67 BIOKA67	520 2B7 B01 451
IBUTIONS, I. ITS CURVE—SHAPE CHARACTERISTICS II. THE NS THE 'INEFFICIENCY' OF THE ON THE DISTRIBUTION OF THE FIRST ILLUSTRATION FINITE E STATISTICAL DECISION PROBLEMS A SUPPLEMENTARY TES ACCEPTANCE SAMPLING PLANS THE AVERAGE	SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE	MEDIAN ON A CENERAL SYSTEM OF DISTR MEDIAN FOR MANY FAMILIAR SYMMETRIC DISTRIBUTIO MOMENTS OF SHOT NOISE MONTE CARLO STUDIES. AND AUTOREGRESSIVE NON-PARAMETRIC EMPIRICAL BAYES APPROACH TO SOM	JASA 68 BIOKA55 TECH 64 JASA 67 BIOKA67 TECH 68	520 2B7 B01 451 685

SAM - SAM TITLE WORD INDEX

```
MINATION OF THE OPERATING CHARACTERISTIC AND AVERACE SAMPLE NUMBER OF A SIMPLE SEQUENTIAL TEST
                                                                                                    /HE DETER JRSSB67
                            LOWER BOUNDS FOR AVERACE SAMPLE NUMBER OF SEQUENTIAL MULTIHYPOTHESIS TESTS
                                                                                                               AMS 67 1343
ULATING THE OPERATING CHARACTERISTIC AND THE AVERAGE SAMPLE NUMBER OF SOME SEQUENTIAL TESTS /AE FOR CALC JRSSB58
 OPTIMAL SAMPLE SIZE IN TWO-ACTION PROBLEMS WHEN THE SAMPLE OBSERVATIONS ARE LOCNORMAL AND THE PRECISION H JASA 68
S OF SPECIES ARE LO/ THE EXPECTED FREQUENCIES IN A SAMPLE OF AN ANIMAL POPULATION IN WHICH THE ABUNDANCE BIOKAS1
S FORMULA FOR THE LIMITING CENERALIZED VARIANCE OF A SAMPLE OF CONSECUTIVE OBSERVATIONS FROM A MOVING-AVER BIOKA61
S FORMULA FOR THE LIMITING CENERALIZED VARIANCE OF A SAMPLE OF CONSECUTIVE OBSERVATIONS FROM A MOVINC-AVER BIOKA61
RING 1959 THE VALIDITY OF INCOME REPORTED BY A SAMPLE OF FAMILIES WHO RECEIVED WELFARE ASSISTANCE DU JASA 62
                                                                                                                        680
     A DISTRIBUTION-FREE TEST OF INDEPENDENCE WITH A SAMPLE OF PAIRED OBSERVATIONS
                                                                                                               JASA 62
                                                                                                                        116
                                                      SAMPLE PATH VARIATIONS OF HOMOGENEOUS PROCESSES
                                                                                                                AMS 69
                                                                                                                        399
     A NOTE ON THE ABSENCE OF TANGENCIES IN GAUSSIAN SAMPLE PATHS
                                                                                                                AMS 68
                                                                                                                        261
ON AND NORMAL SCORES TESTS
                                                SMALL SAMPLE POWER AND EFFICIENCY FOR THE ONE SAMPLE WILCOX AMS 63
                                                                                                                        624
PROBLEM
                                                 SMALL SAMPLE POWER CURVES FOR THE TWO SAMPLE LOCATION
                                                                                                               TECH 69
                                                                                                                        299
NON-NORMAL SHIFT ALTERNATIVES
                                                SMALL SAMPLE POWER FOR THE ONE SAMPLE WILCOXON TEST FOR
                                                                                                                AMS 65 1767
TE TWO-SAMPLE LOCATION PROBLEM IN THE NORMA/ SMALL SAMPLE POWER OF A NON-PARAMETRIC TEST FOR THE BIVARIA JRSSB6B
                                                                                                                        83
                                                SMALL SAMPLE POWER OF THE BIVARIATE SIGN TEST OF BLUMEN AND AMS 64 1576
                                                SMALL SAMPLE PROBABILITY LIMITS FOR THE RANGE CHART (CORR. JASA 67 1488
6B 1549)
ON THE HODCES AND LEHMANN SHIFT ESTIMATOR IN THE TWO SAMPLE PROBLEM
                                                                                                                AMS 66 1B14
ALTERNATIVE ESTIMATES FOR SHIFT IN THE P-VARIATE ONE SAMPLE PROBLEM
                                                                                                     ON SOME
                                                                                                                AMS 64 1079
      OF TWO TEST STATISTICS ASSOCIATED WITH THE TWO-SAMPLE PROBLEM
                                                                                    THE ASYMPTOTIC NORMALITY
                                                                                                               AMS 63 1513
TESTS
                                          ON THE TWO SAMPLE PROBLEM, A HEURISTIC METHOD FOR CONSTRUCTING
                                                                                                                AMS 61 1091
                                                                                                                AMS 67
WHITNEY STATISTIC
                                         ON THE LARGE SAMPLE PROPERTIES OF A GENERALIZED WILCOXON-MANN-
                                                                                                                       905
                     AN INVESTIGATION INTO THE SMALL SAMPLE PROPERTIES OF A TWO SAMPLE TEST OF LEHMANN'S
                                                                                                               JASA 6B 345
GLY UNRELATED REGRESSIONS
                                                 SMALL SAMPLE PROPERTIES OF ALTERNATIVE ESTIMATORS OF SEEMIN JASA 68 11B0
                      ON BAHADUR'S REPRESENTATION OF SAMPLE QUANTILES
                                                                                                                AMS 67 1323
                AN INEQUALITY FOR EXPECTED VALUES OF SAMPLE QUANTILES
                                                                                                                AMS 67 1817
            A NOTE ON THE ASYMPTOTIC DISTRIBUTION OF SAMPLE QUANTILES
                                                                                                               JRSSB6B 570
      OF THE PARAMETERS OF THE GAMMA DISTRIBUTION BY SAMPLE QUANTILES
                                                                                                   ESTIMATION TECH 64
                                                                                                                        405
   OF THE PARAMETERS OF THE LOCISTIC DISTRIBUTION BY SAMPLE QUANTILES
                                                                                                   ESTIMATION BIOKA69 NO.3
ON SOME PROPERTIES OF THE ASYMPTOTIC VARIANCE OF THE SAMPLE QUANTILES AND MID-RANGES
                                                                                                               JRSSB61 453
                             ASYMPTOTIC NORMALITY OF SAMPLE QUANTILES FOR M-DEPENDENT PROCESSES
                                                                                                                AMS 68 1724
                   ANALYSIS OF EXTREME-VALUE DATA BY SAMPLE QUANTILES FOR VERY LARCE SAMPLES
                                                                                                               JASA 6B 877
OR THE POPULATION STANDARD DEVIATION THE USE OF SAMPLE QUASI-RANGES IN SETTING CONFIDENCE INTERVALS F JASA 61
                                                                                                                        260
     ON A GENERAL SYSTEM OF DISTRIBUTIONS, III. THE SAMPLE RANGE
                                                                                                               JASA 68
                                                                                                                        636
THE STANDARD DEVIATION OF A RECTANGULA/ THE USE OF SAMPLE RANGES IN SETTING EXACT CONFIDENCE BOUNDS FOR
                                                                                                               JASA 61 601
                                             ON TWO K-SAMPLE RANK TESTS FOR CENSORED DATA
                                                                                                                AMS 67 1520
   UNRELATED REGRESSION EQUATIONS, SOME EXACT FINITE SAMPLE RESULTS
                                                                                    ESTIMATORS FOR SEEMINGLY JASA 63
                                                                                                                       977
R DETERMINING UPPER AND LOWER LIMITS FOR THE AVERAGE SAMPLE RUN LENGTH OF A CUMULATIVE SUM SCHEME /RE FO JRSSB67 263
WAY STRATIFIED POPULATIONS
                                                      SAMPLE SELECTION AND THE CHOICE OF ESTIMATOR IN TWO- JASA 64 1054
                                                       SAMPLE SEQUENCES OF MAXIMA
                                                                                                                AMS 67 1570
 FOR DISCRIMINATION BETWEEN TWO COMPOSITE/ A LARGE SAMPLE SEQUENTIAL TEST, USING CONCOMITANT INFORMATION JASA 66
                                                                                                                        357
                                                LARGE SAMPLE SIMULTANEOUS CONFIDENCE INTERVALS FOR MULTINOM TECH 64
                                        ESTIMATION OF SAMPLE SIZE
                                                                                                               TECH 62
                                                                                                                         59
                                SEQUENTIAL TESTING OF SAMPLE SIZE
                                                                                                               TECH 6B
                                                                                                                        331
SEQUENTIAL TESTS WHICH MINIMIZE THE MAXIMUM EXPECTED SAMPLE SIZE
                                                                                                               JASA 62
                                                                                                                        551
TIMATES FROM THE BEST LINEAR ESTIMATES FOR A SMALLER SAMPLE SIZE
                                                                     /ONSTRUCTION OF GOOD LINEAR UNBIASED ES TECH 65
                                                                                                                        543
                                               ON THE SAMPLE SIZE AND COVERAGE FOR THE JIRINA SEQUENTIAL
                                                                                                                AMS 63
                                                                                                                        B47
                                               ON THE SAMPLE SIZE AND SIMPLIFICATION OF A CLASS OF SEQUENTI
AL PROBABILITY RATIO TESTS
                                                                                                                        425
                                                       SAMPLE SIZE DETERMINATION FOR TOLERANCE LIMITS
                                                                                                              TECH 68
                                                                                                                        343
UENTIAL PROBABILITY RATIO TESTS
                                       BOUNDS ON THE SAMPLE SIZE DISTRIBUTION FOR A CLASS OF INVARIANT SEQ AMS 6B 1048
TE HYPOT/ APPROXIMATION TO THE DISTRIBUTION OF THE SAMPLE SIZE FOR SEQUENTIAL TEST. II. TESTS OF COMPOSI BIOKA60
HYPOTHESES APPROXIMATION TO THE DISTRIBUTION OF SAMPLE SIZE FOR SEQUENTIAL TESTS. I. TESTS FOR SIMPLE BIOKA59
                                                                                                                       190
HYPOTHESES
                                                                                                                        130
POPULATIONS.
                                               NOTES. SAMPLE SIZE FOR THE ESTIMATION OF MEANS OF NORMAL
                                                                                                               BIOCS67
                                                                                                                        846
                             BOUNDS FOR THE EXPECTED SAMPLE SIZE IN A SEQUENTIAL PROBABILITY RATIO TEST
                                                                                                               JRSSB60
                                                                                                                       360
                      MOMENTS OF THE DISTRIBUTION OF SAMPLE SIZE IN A SPRT
                                                                                                               JASA 69 NO.4
                     ASYMPTOTIC BEHAVIOR OF EXPECTED SAMPLE SIZE IN CERTAIN ONE-SIDED TESTS
                                                                                                                AMS 64
                                                                                                                        36
                             AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION PROBLEMS
                                                                                                                AMS 69
                                                                                                                        492
SERVATIONS ARE LOGNORMAL AND THE PRECISIO/ OPTIMAL SAMPLE SIZE IN TWO-ACTION PROBLEMS WHEN THE SAMPLE OB JASA 6B DISCUSSION) HYPOTHESIS TESTING WHEN THE SAMPLE SIZE IS TREATED AS A RANDOM VARIABLE (WITH JRSSB67
                                                                                                                        653
DISCUSSION)
                                                                                                                         53
                               BOUNDS ON THE MAXIMUM SAMPLE SIZE OF A BAYES SEQUENTIAL PROCEDURE
                                                                                                                AMS 65
                                                                                                                        B59
TAL CATEGORIES WI/ AN ASYMPTOTICALLY OPTIMAL FIXED SAMPLE SIZE PROCEDURE FOR COMPARINC SEVERAL EXPERIMEN
                                                                                                                AMS 64 1571
WITIN D UNITS OF THE TRUE VALUE
                                                       SAMPLE SIZE REQUIRED FOR ESTIMATING THE VARIANCE
                                                                                                                AMS 64
                                                                                                                       438
 UNIFORM DENSITY WITHIN D UNITS OF THE TRUE VALUE
                                                       SAMPLE SIZE REQUIRED TO ESTIMATE THE PARAMETER IN THE JASA 64 550
                                                       SAMPLE SIZE REQUIRED TO ESTIMATE THE RATIO OF VARIANC JASA 63 1044
ES WITH BOUNDED RELATIVE ERROR
ISCLASSIFICATION IN DISCRIMINANT ANALYSIS, NECESSARY SAMPLE SIZE, AND A RELATION WITH THE MULTIPLE CORRELA BIOCS68 823
CONVERGENCE AND A CHERNOFF-SAVACE THEOREM FOR RANDOM SAMPLE SIZES
                                                                                                         WEAK
                                                                                                               AMS 68 1675
     VALUES OF SOME RENYI TYPE STATISTICS FOR FINITE SAMPLE SIZES
                                                                                           TABLES OF CRITICAL JASA 69
                                                                                                                       B70
                                                                      /NS FOR WHICH THE MAXIMUM-LIKELIHOOD E BIOKA56
STIMATOR IS UNBIASED AND OF MINIMUM VARIANCE FOR ALL SAMPLE SIZES
                                                                                                                        200
      SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE SIZES FOR CHI APPROXIMATION TO THE RANGE
                                 QUERY, COMPARISON OF SAMPLE SIZES IN INVERSE BINOMIAL SAMPLING
                                                                                                                        337
             A COMPARISON OF THE ASYMPTOTIC EXPECTED SAMPLE SIZES OF TWO SEQUENTIAL PROCEDURES FOR RANKING AMS 69 NO.6
RIBUTION-FREE CONFIDENCE INTERVALS OF THE MEDIAN FOR SAMPLE SIZES TO 1,000 /BOTH THE SIGN TEST AND DIST JASA 64
F THE SYMMETRIC BINOMIAL CUMULATIVE DISTRIBUTION FOR SAMPLE SIZES TO 1,000, CORR. 59 811 /ILITY LEVELS 0 JASA 59
                                                                                                                        164
HOD OF DERIVING BEST CRITICAL REGIONS SIMILAR TO THE SAMPLE SPACE IN TESTS OF AN IMPORTANT CLASS OF COMPOS BIOKA53
                                                                                                                        231
              AN EXACT PROBABILITY DISTRIBUTION OVER SAMPLE SPACES OF PAIRED COMPARISONS
                                                                                                               BTOCS65
                                                                                                                        986
S OF RATIOS OF SPACINGS CONTRIBUTIONS TO SAMPLE SPACINGS THEORY, I. LIMIT DISTRIBUTIONS OF SUM
CONTRIBUTIONS TO SAMPLE SPACINGS THEORY, I. LIMIT DISTRIBUTIONS OF SUM
CONTRIBUTIONS TO SAMPLE SPACINGS THEORY.
N THE NUMBER OF OBSERVATIONS FALLING IN THE SHORTEST SAMPLE SPACINCS DETERMINED BY EARLIER OBSERVATIONS
                                                                                                                AMS 61
                                                                                                                        838
                                                                                                               AMS 66
                                                                                                                        904
                                    CONTRIBUTIONS TO SAMPLE SPACINGS THEORY, II. TESTS OF THE PARAMETRIC G AMS 66
                                                                                                                        925
                             THE MAXIMUM DEVIATION OF SAMPLE SPECTRAL DENSITIES
                                                                                                                AMS 67 1558
                              AN UPPER BOUND FOR THE SAMPLE STANDARD DEVIATION
                                                                                                               TECH 62
                                                                                                                        134
                    ERRATA, ' AN UPPER BOUND FOR THE SAMPLE STANDARD DEVIATION '
                                                                                                               TECH 62
                                                                                                                        440
                     ERRATA, 'AN UPPER BOUND FOR THE SAMPLE STANDARD DEVIATION'
                                                                                                               TECH 63
                                                                                                                        417
                                   RECENT ADVANCES IN SAMPLE SURVEY THEORY AND METHODS
                                                                                                                AMS 62
                                                                                                                        325
 ON A METHOD OF USING MULTI-AUXILIARY INFORMATION IN SAMPLE SURVEYS
                                                                                                               JASA 65
                                                                                                                        270
USE OF DOMAIN ESTIMATORS WITH UNEQUAL PROBABILITY IN SAMPLE SURVEYS
                                                                                                               JASA 68
                                                                                                                        984
                         A NEW ESTIMATION THEORY FOR SAMPLE SURVEYS
                                                                                                               8T0K468 547
```

TITLE WORD INDEX SAM - SAM

```
/ATISTICAL SOCIETY MEMORIAL MEETING JASA 69 NO.4
FOR WILLIAM N. HURWITZ. THE DEVELOPMENT OF HOUSEHOLD SAMPLE SURVEYS
                              REGRESSION ANALYSIS IN SAMPLE SURVEYS, CORR. 63 1162
                                                                                                               JASA 62 590
ECTION TO BARTLETT'S CRITERION FOR TESTINC/ LARCE SAMPLE TABLES OF PERCENTACE POINTS FOR HARTLEY'S CORR BIOKA62 487

EFFECT OF NON-NORMALITY ON STEIN S TWO SAMPLE TEST

AMS 65 651
                                  A NOTE ON A DOUBLE SAMPLE TEST
                                                                                                               JASA 69 NO.4
  OF TWO NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE TEST
                                                                                      ASYMPTOTIC EFFICIENCY JASA 67 939
                               A DISTRIBUTION-FREE K-SAMPLE TEST AGAINST ORDERED ALTERNATIVES
                                                                                                               BIOKA54 133
                              A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTI SASJ 69 NO.2
PROCESSES
                                             A LARCE SAMPLE TEST FOR THE INDEPENDENCE OF TWO RENEWAL
                                                                                                               AMS 67 1037
      A DISTRIBUTION FREE VERSION OF THE SMIRNOV TWO SAMPLE TEST IN THE P-VARIATE CASE
                                                                                                                AMS 69
ESTIGATION INTO THE SMALL SAMPLE PROPERTIES OF A TWO SAMPLE TEST OF LEHMANN'S
                                                                                                       AN INV JASA 68
                                                                                                                       345
                                 A QUICK COMPACT TWO SAMPLE TEST TO DUCKWORTH'S SPECIFICATIONS
                                                                                                              TECH 59
                                                                                                                         31
TOTIC RELATIVE EFFICIENCY OF MOOD'S AND MASSEY'S TWO SAMPLE TESTS AGAINST SOME PARAMETRIC ALTERNATIVES
                                                                                                             / AMS 62 1375
                                      THE SMIRNOV TWO SAMPLE TESTS AS RANK TESTS
                                                                                                               AMS 69 1449
                                                  TWO SAMPLE TESTS IN THE WEIBULL DISTRIBUTION
                                                                                                              TECH 69 NO.4
                                     MULTIVARIATE TWO SAMPLE TESTS WITH DICHOTOMOUS AND CONTINUOUS VARIABLE AMS 69 290
S I. THE LOCATION MODEL
                                  'STUDENT' AND SMALL SAMPLE THEORY
                                                                                                              JASA 5B
                                                                                                                       777
                     THE LINEAR HYPOTHESIS AND LARGE SAMPLE THEORY
                                                                                                               AMS 64
                                                                                                                       773
                                    REDUCING A RANDOM SAMPLE TO A SMALLER SET, WITH APPLICATIONS
                                                                                                               JASA 67
                                                                                                                       510
                                         THE MULTIPLE SAMPLE UP-AND-DOWN METHOD IN BIOASSAY
                                                                                                               JASA 69
                                                                                                                        147
                    FUNCTIONS OF THE SAMPLE MEAN AND SAMPLE VARIANCE OF A POISSON VARIATE
                                                                                                               BIOCS69
                                                                                                                        171
                           CORRELATION BETWEEN THE SAMPLE VARIANCES IN A SINGLY TRUNCATED BIVARIATE NORM BICKAGB
AL DISTRIBUTION
                                                                                                                        433
                                 DISTRIBUTION OF THE SAMPLE VERSION OF THE MEASURE OF ASSOCIATION, CAMMA
                                                                                                                        440
                                                                                                              JASA 66
       SMALL SAMPLE POWER AND EFFICIENCY FOR THE ONE SAMPLE WILCOXON AND NORMAL SCORES TESTS
                                                                                                               AMS 63
                                                                                                                        624
   THE DISTRIBUTION OF THE RATIO, IN A SINCLE NORMAL SAMPLE, OF RANCE TO STANDARD DEVIATION
                                                                                                               BIOKA54
                                                                                                                        482
NOMIAL DISTRIBUTION AND CORRELATIONS AMONG INVERSELY SAMPLED POLLEN COUNTS /THE COMPOUND NEGATIVE MULTI BIOKA63
                                                                                                                        47
                 ON THE PROBLEM OF MATCHINC LISTS BY SAMPLES
                                                                                                               JASA 59
                                                                                                                       40.3
     A NONPARAMETRIC TEST FOR THE PROBLEM OF SEVERAL SAMPLES
                                                                                                               AMS 61 1108
                  CONFIDENCE INTERVALS FROM CENSORED SAMPLES
                                                                                                               AMS 61 828
                                ON MATCHING LISTS BY SAMPLES
                                                                                                               JASA 61
                                                                                                                        151
                              A NOTE ON THE RE-USE OF SAMPLES
                                                                                                               AMS 63 341
                 TESTS OF HOMOGENEITY FOR CORRELATED SAMPLES
                                                                                                               JASA 63
                                                                                                                        97
           A THEOREM ON RANK ORDERS FOR TWO CENSORED SAMPLES
                                                                                                               AMS 65
                                                                                                                       316
                    THE UP-AND-DOWN METHOD FOR SMALL SAMPLES
                                                                                                               JASA 65
                                                                                                                       967
                       A NOTE ON QUANTILES IN LARGE SAMPLES
                                                                                                               AMS 66
                                                                                                                        577
                                 QUERY, SMALL TRIMMED SAMPLES
                                                                                                               TECH 66
                                                                                                                        193
            STANDARD ERRORS FOR INDEXES FROM COMPLEX SAMPLES
                                                                                                               JASA 6B 512
   PROCEDURES FOR DETECTING OUTLYING OBSERVATIONS IN SAMPLES
                                                                                                               TECH 69
              THE DISTRIBUTION OF QUANTILES OF SMALL SAMPLES
                                                                                                               BIOKA52
                                                                                                                        207
              THE VARIANCE OF THE MEAN OF SYSTEMATIC SAMPLES
                                                                                                               BIOKA56
                                                                                                                        137
           LIKELIHOOD FUNCTION FOR CAPTURE-RECAPTURE SAMPLES
                                                                                                               BIOKA56
            THE VARIANCE OF SPEARMAN'S RHO IN NORMAL SAMPLES
                                                                                                               BIOKA61
                                                                                                                         19
         THE THIRD MOMENT OF KENDALL'S TAU IN NORMAL SAMPLES
                                                                                                               BIOKA62
                                                                                                                       177
             CORRELATION OF THE RANGES OF CORRELATED SAMPLES
                                                                                                               BIOKA67
                                                                                                                        529
                NOTE ON CHI SQUARE TESTS FOR MATCHED SAMPLES
                                                                                                               JRSSB6B
                           THE EFFICIENCY OF MATCHED SAMPLES
                                                                                                               BIOCS65
                                                                                                                        623
JOINT ASSESSMENT OF NORMALITY OF SEVERAL INDEPENDENT SAMPLES
                                                                                                         THE TECH 6B
 STATISTICS FOR DISCRETE POPULATIONS AND FOR GROUPED SAMPLES
                                                                                                        ORDER JASA 68 1390
   ON THE CORRELATION OF RANGES IN CORRELATED NORMAL SAMPLES
                                                                                                        A NOTE BIOKAGB
   CONSTANTS FOR THE DISTRIBUTION OF RANGE IN NORMAL SAMPLES
                                                                                                       MOMENT BIOKA51
                                                                                                                        463
  ON ESTIMATING RECESSIVE FREQUENCIES FROM TRUNCATED SAMPLES
                                                                                                       NOTES. BIOCS67
                                                                                                                        356
          OF PARAMETERS FROM INCOMPLETE MULTIVARIATE SAMPLES
                                                                                                   ESTIMATION JASA 57
                                                                                                                        523
 PARAMETERS OF LOG-NORMAL DISTRIBUTION FROM CENSORED SAMPLES
                                                                                               ESTIMATING THE JASA 68
MATRIX VARIATES AND LATENT ROOTS DERIVED FROM NORMAL SAMPLES
                                                                                            DISTRIBUTIONS OF AMS 64
       VALUE DATA BY SAMPLE QUANTILES FOR VERY LARGE SAMPLES
                                                                                         ANALYSIS OF EXTREME- JASA 6B
AGCLERS ON THE RISK OF SOME MEAN ESTIMATORS IN SMALL SAMPLES
                                                                                         ON THE EFFECT OF STR AMS 66
  FOR ESTIMATING AND TESTING HYPOTHESES FROM GROUPED SAMPLES
                                                                                        CONSISTENT STATISTICS BIOKA66
      TEST FOR COMPARING ARBITRARILY SINGLY-CENSORED SAMPLES
                                                                                       A GENERALIZED WILCOXON BIOKA65
                                                                                                                        203
   SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL SAMPLES
                                                                                     DISTRIBUTION OF THE TWO- AMS 63
                                                                                                                         95
OMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE SAMPLES
                                                                                     ESTIMATION OF VARIANCE C TECH 67
                                                                                                                        373
      OF FITTING THE DOSAGE RESPONSE CURVE FOR SMALL SAMPLES
                                                                                 SOME COMPARISONS OF METHODS JASA 64
     ESTIMATES. SINGLY TRUNCATED AND SINCLY CENSORED SAMPLES
                                                                                TABLES FOR MAXIMUM LIKELIHOOD TECH 61
                                                                                                                        535
ITIES WITHOUT REPLACEMENT, ROTATING AND NON-ROTATING SAMPLES
                                                                               SAMPLING WITH VARYING PROBABIL JASA 63
                                                                                                                        1B3
RODUCT MOMENTS OF EXTREME ORDER STATISTICS IN NORMAL SAMPLES
                                                                           ON THE MOMENTS OF THE RANGE AND P BIOKA56
                                                                                                                        458
   PARAMETER EXPONENTIAL DISTRIBUTIONS FROM CENSORED SAMPLES
                                                                         ESTIMATION OF THE PARAMETERS OF TWO TECH 60
                                                                                                                        403
ARIATE NORMAL POPULATION FROM TRUNCATED AND CENSORED SAMPLES
                                                                        ESTIMATION OF PARAMETERS OF A MULTIV JRSSB60
                                                                                                                        307
ORMATION ABOUT ALTERNATIVE DISTRIBUTIONS IS BASED ON SAMPLES
                                                                       A CLASSIFICATION PROBLEM IN WHICH INF AMS 62
                                                                                                                        213
                                                                     MAXIMUM LIKELIHOOD ESTIMATION IN THE WE TECH 65
IBULL DISTRIBUTION BASED ON COMPLETE AND ON CENSORED SAMPLES
                                                                                                                        579
 WEIBULL POPULATIONS FROM COMPLETE AND FROM CENSORED SAMPLES
                                                                  /ESTIMATION OF THE PARAMETERS OF GAMMA AND TECH 65
                                                                                                                        639
                                                                  /OF THE ESTIMATES OF THE PARAMETERS OF NOR JASA 62
MAL POPULATIONS BASED ON SINGLY AND DOUBLY TRUNCATED SAMPLES
                                                                                                                         46
ENTIAL DISTRIBUTIONS FROM SINGLY AND DOUBLY CENSORED SAMPLES
                                                                 /ATISTICS OF THE PARAMETERS OF SINCLE EXPON JASA 57
                                                                                                                         58
                                                                 /E EFFICIENCY OF BAN ESTIMATES OF THE PARAM BIOKA62 570
/F THE PARAMETERS OF THE EXPONENTIAL DISTRI AMS 66 1717
ETERS OF NORMAL POPULATIONS BASED ON SINGLY CENSORED SAMPLES
BUTION BASED ON OPTIMUM ORDER STATISTICS IN CENSORED SAMPLES
                                                                 /OF THE PARAMETERS OF A FOUR- PARAMETER CEN TECH 67
ERALIZED GAMMA POPULATION FROM COMPLETE AND CENSORED SAMPLES
                                                                                                                        159
E PARAMETERS OF EXPONENTIAL DISTRIBUTION IN CENSORED SAMPLES
                                                                 /OPTIMUM ORDER STATISTICS FOR ESTIMATING TH TECH 67
                                                                                                                        279
              TESTS OF HYPOTHESES CONCERNING MATCHED SAMPLES (CORR. 69 194)
                                                                                                               JRSSB67
                                                                                                                        468
 F NORMAL POPULATIONS FROM SINGLY AND DOUBLY CENSORED SAMPLES (CORR. 69 229)
                                                                                /IMATION OF THE PARAMETERS O BIOKA66
                                                                                                                        205
 ESTIMATES AND OPTIMUM INFERENCE PROCEDURES IN LARGE SAMPLES (WITH DISCUSSION)
                                                                                                   EFFICIENT JRSSB62
                                                                                                                         46
                                         INADMISSIBLE SAMPLES AND CONFIDENCE LIMITS
                                                                                                               JASA 58
                                                                                                                        4B2
PROCESSES
                                             DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCHASTIC
                                                                                                               JASA 67
                                                                                                                        484
              DISCRIMINANT ANALYSIS WHEN THE INITIAL SAMPLES ARE MISCLASSIFIED
                                                                                                               TECH 66
                                                                                                                        657
MPLIFIED ESTIMATORS FOR THE NORMAL DISTRIBUTION WHEN SAMPLES ARE SINGLY CENSORED OR TRUNCATED
                                                                                                           SI TECH 59
                                                                                                                        217
OF AN ANCILLARY STATISTIC AND THE COMBINATION OF TWO SAMPLES BY BAYES' THEOREM
AN EXAMPLE AMS 61
EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED POINT, CORR. 60 75 JASA 60
                                                                                                                        125
                            VARIANCE OF THE MEDIAN OF SAMPLES FROM A CAUCHY DISTRIBUTION
                                                                                                               JASA 60
                                                                                                                        322
           MOMENT COEFFICIENTS OF THE K-STATISTICS IN SAMPLES FROM A FINITE POPULATION
                                                                                                               BIOKA52
```

```
MOMENT-STATISTICS IN SAMPLES FROM A FINITE POPULATION
MADOW/ THE CENTRAL SAMPLING MOMENTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION (ATY'S FORMULAE AND BIOKA61
   THE DISTRIBUTION OF THE REGRESSION COEFFICIENT IN SAMPLES FROM A NON-NORMAL POPULATION
ON THE DISTRIBUTIONS OF THE RANCE AND MEAN RANGE FOR SAMPLES FROM A NORMAL DISTRIBUTION
STRIBUTION OF EXTREMAL AND NEARLY EXTREMAL VALUES IN SAMPLES FROM A NORMAL DISTRIBUTION
                                                                                                      THE DI BIOKA63
                                                                                                                       B9
 FOR CALCULATING TWO-SIDED PREDICTION INTERVALS FOR SAMPLES FROM A NORMAL DISTRIBUTION
                                                                                                     FACTORS JASA 69
               MOMENTS OF SAMPLE MOMENTS OF CENSORED SAMPLES FROM A NORMAL POPULATION
                                                                                                              BIOKA5B
                                                                                                                      211
CORRIGENDA TO 'MOMENTS OF SAMPLE MOMENTS OF CENSORED SAMPLES FROM A NORMAL POPULATION'
                                                                                                             BIOKA5B
                                                                                                                      5B7
       THE MEAN DEVIATION, WITH SPECIAL REFERENCE TO SAMPLES FROM A PEARSON TYPE III POPULATION
                                                                                                             BIOKA5B
                                                                                                                       47B
TION OF PRODUCT AND OF QUOTIENT OF MAXIMUM VALUES IN SAMPLES FROM A POWER-FUNCTION POPULATION
                                                                                                    DISTRIBU JASA 64
                                                                                                                       B77
IONS BETWEEN CERTAIN LINEAR SYSTEMATIC STATISTICS OF SAMPLES FROM ANY CONTINUOUS POPULATION
                                                                                                  INTERRELAT BIOKA51
                                                                                                                       377
      THE DISTRIBUTION OF REGRESSION COEFFICIENTS IN SAMPLES FROM BIVARIATE NON-NORMAL POPULATIONS. I. THE BIOKAGO
OR /
                                                                                                                       61
                  DISTRIBUTION OF SOME STATISTICS IN SAMPLES FROM EXPONENTIAL AND POWER-FUNCTION POPULATIO JASA 67
                                                                                                                      259
              BAYES SEQUENTIAL DESIGNS OF FIXED SIZE SAMPLES FROM FINITE POPULATIONS
                                                                                                             JASA 69 NO.4
                              PROGRESSIVELY CENSORED SAMPLES FROM LOG-NORMAL AND LOGISTIC DISTRIBUTIONS
                                                                                                             TECH 69 NO.4
                  ON THE EXTREME VALUES AND RANCE OF SAMPLES FROM NON-NORMAL POPULATIONS
                                                                                                             BIOKA67 541
 MEAN AND COEFFICIENT OF VARIATION OF RANGE IN SMALL SAMPLES FROM NON-NORMAL POPULATIONS MEAN AND COEFFICIENT OF VARIATION OF RANGE IN SMALL SAMPLES FROM NON-NORMAL POPULATIONS'
                                                                                                         THE BIOKA54
                                                                                                                      469
                                                                                            /RIGENDA, 'THE BIOKA55
                                                                                                                       277
               ON THE MOMENTS OF ORDER STATISTICS IN SAMPLES FROM NORMAL POPULATIONS
                                                                                                             BIOKA54
                                                                                                                       200
                                                                                           ON THE SOLUTION BIOKA57
 OF ESTIMATING EQUATIONS FOR TRUNCATED AND CENSORED SAMPLES FROM NORMAL POPULATIONS
                                                                                                                       225
                                                                                        /ARISON OF TWO APPR BIOKA52
OXIMATIONS TO THE DISTRIBUTION OF THE RANGE IN SMALL SAMPLES FROM NORMAL POPULATIONS
                                                                                                                       130
  CORRICENDA, 'ON THE MOMENTS OF ORDER STATISTICS IN SAMPLES FROM NORMAL POPULATIONS'
                                                                                                              BIOKA54
                                                                                                                       568
                   LIMITING SETS AND CONVEX HULLS OF SAMPLES FROM PRODUCT MEASURES
                                                                                                              AMS 69 1824
                     VARIANCE OF THE MEDIAN OF SMALL SAMPLES FROM SEVERAL SPECIAL POPULATIONS
                                                                                                              JASA 60
                                CENERATION OF RANDOM SAMPLES FROM THE BETA AND F DISTRIBUTIONS
          EXACT LOWER MOMENTS OF ORDER STATISTICS IN SAMPLES FROM THE CHI-DISTRIBUTION. ONE DECREE OF FREE AMS 62 1292
TIGATION OF RULES FOR DEALING WITH OUTLIERS IN SMALL SAMPLES FROM THE NORMAL DISTRIBUTION, 2. ESTIMATION O TECH 69
                                                                                                                      527
                                             CENSORED SAMPLES FROM TRUNCATED NORMAL DISTRIBUTIONS
                                                                                                              BIOKA55
                                                                                                                       516
NVESTIGATION INTO THE DISTRIBUTION OF THE F-RATIO IN SAMPLES FROM TWO NON-NORMAL POPULATIONS /MPIRICAL I BIOKA58
                                                                                                                       260
      RELATIONS AMONG MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO RELATED POPULATIONS
                                                                                                              TECH 63
                                                                                                                       514
                              PROCRESSIVELY CENSORED SAMPLES IN LIFE TESTING
                                                                                                             TECH 63
                                                                                                                       327
                                 THE USE OF ROTATING SAMPLES IN THE CENSUS BUREAU'S MONTHLY SURVEYS
                                                                                                              JASA 63
                                                                                                                       454
THE PRODUCT-MOMENT CORRELATION COEFFICIENT IN RANDOM SAMPLES OF ANY SIZE DRAWN FROM NON-NORMAL UNIVERSES
                                                                                                             BIOKA51
                                                                                                                       219
ELATIONS BETWEEN EXPECTATIONS OF ORDER STATISTICS IN SAMPLES OF DIFFERENT SIZES
                                                                                                      SOME R BIOKA64
                                                                                                                       259
MMON MEAN OF TWO NORMAL DISTRIBUTIONS BASED ON SMALL SAMPLES OF EQUAL SIZE UNBAISED ESTIMATION OF THE CO JASA 66
                                                                                                                       467
THE DISTRIBUTION OF KENDALL'S TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPULATION WI BIOKA63
                                                                                                                       538
   ON THE AMOUNT OF INFORMATION SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS IN THE ESTIMATION OF BIOKA62
                                                                                                                       245
  ON THE AMOUNT OF INFORMATION SUPPLIED BY TRUNCATED SAMPLES OF CROUPED OBSERVATIONS IN THE ESTIMATION OF BIOKAG3
                                                                                                                       207
                    ON NAHORDNUNC AND FERNORDNUNG IN SAMPLES OF LITERARY TEXTS
                                                                                                             BIOKA54
                                                                                                                       116
RDER STATISTICS AND PRODUCTS OF ORDER STATISTICS FOR SAMPLES OF SIZE TWENTY AND LESS FROM THE NORMAL DISTR AMS 61 1345
SORED SAMPLES, PART I. THE NORMAL DISTRIBUTION UP TO SAMPLES OF SIZE 10' /ICS FROM SINGLY AND DOUBLY CEN
                                                                                                              AMS 39
STIMATORS OF RELIABILIT/ THE EFFICIENCIES IN SMALL SAMPLES OF THE MAXIMUM LIKELIHOOD AND BEST UNBIASED E JASA 66 1033
                    REPLICATED, OR INTERPENETRATING, SAMPLES OF UNEQUAL SIZES
                   A NON-PARAMETRIC COMPARISON OF TWO SAMPLES ONE OF WHICH IS CENSORED
                                                                                                              BIOKA66 599
ION CORRELATION COEFFICIENT FROM ONE OR POSSIBLY TWO SAMPLES SUBSEQUENT TO A PRELIMINARY TEST OF SIGNIFICA JRSSB67
                                                                                                                       2B2
               ESTIMATING THE POISSON PARAMETER FROM SAMPLES THAT ARE TRUNCATED ON THE RICHT
                                                                                                                       433
                                                                                                              TECH 61
     OPTIMAL ALLOCATION IN STRATIFIED AND MULTISTAGE SAMPLES USING PRIOR INFORMATION
                                                                                                              JASA 6B
                                                                                                                      964
WHEN THE SIZ/ SEVERAL METHODS OF RE-DESIGNING AREA SAMPLES UTILIZING PROBABILITIES PROPORTIONAL TO SIZE
                                                                                                             JASA 6B 12B0
   THE PERFORMANCE OF SOME TWO-SAMPLE TESTS IN SMALL SAMPLES WITH AND WITHOUT CENSORING
                                                                                                              BTOKA69
                                                                                                                      127
                                     QUERY, BIVARIATE SAMPLES WITH MISSINC VALUES
                                                                                                              TECH 67
                                                                                                                       679
                                     QUERY, BIVARIATE SAMPLES WITH MISSING VALUES, II
                                                                                                              TECH 68
                                                                                                                       B67
                 THE DISTRIBUTION OF RANGE IN NORMAL SAMPLES WITH N=200
                                                                                                                       257
                                                                                                              BIOKA57
                                                      SAMPLES WITH THE SAME NUMBER IN EACH STRATUM
                                                                                                             BIOKA52
                                                                                                                       414
TER LOGNORMAL POPULATIONS FROM COMPLETE AND CENSORED SAMPLES, (CORR. 66 1247, CORR. 6B 1549) /REE-PARAME JASA 66
                                                                                                                       842
SYMP/ NON-PARAMETRIC ANALYSIS OF VARIANCE IN SMALL SAMPLES, A MONTE CARLO STUDY OF THE ADEQUACY OF THE A BIOCS69
OF PERCENTAGE POINTS OF ROOT'B1' AND B2 IN NORMAL SAMPLES, A ROUNDING OFF TABLES BIOKA65
                                                                                                                       593
                                                                                                                       2B 2
                                                                                        A NONPARAMETRIC SUM JASA 60
  OF RANKS PROCEDURE FOR RELATIVE SPREAD IN UNPAIRED SAMPLES, CORR. 61 1005
                                                                                                                       429
      OF RATIOS AND THEIR DIFFERENCES IN MULTI-STAGE SAMPLES, CORR. 63 1162
                                                                                                ON VARIANCES JASA 59
                                                                                                                       416
                  CONFIDENCE INTERVALS FROM CENSORED SAMPLES, II
                                                                                                             TECH 66
                                                                                                                       291
        MAXIMUM-LIKELIHOOD ESTIMATION. FROM CENSORED SAMPLES, OF THE PARAMETERS OF A LOGISTIC DISTRIBUTION JASA 67
                                                                                                                       675
 MAXIMUM-LIKELIHOOD ESTIMATION, FROM DOUBLY CENSORED SAMPLES, OF THE PARAMETERS OF THE FIRST ASYMPTOTIC DI JASA 6B
                                                                                                                       889
NCES OF MAXIMUM-LIKELIHOOD ESTIMATORS, FROM CENSORED SAMPLES, OF THE PARAMETERS OF WEIBULL AND GAMMA POPUL
                                                                                                                       557
 MAXIMUM-LIKELIHOOD ESTIMATION, FROM SINGLY CENSORED SAMPLES, OF THE SCALE PARAMETERS OF TYPE II EXTREME-V TECH 6B
 BY ORDER STATISTICS FROM SINGLY AND DOUBLY CENSORED SAMPLES, PART I. THE NORMAL DISTRIBUTION UP TO SAMPLE
IBULL DISTRIBUTION BASED ON COMPLETE AND ON CENSORED SAMPLES'
                                                                /'MAXIMUM LIKELIHOOD ESTIMATION IN THE WE TECH 66
 WEIBULL POPULATIONS FROM COMPLETE AND FROM CENSORED SAMPLES'
                                                                 /ESTIMATION OF THE PARAMETERS OF GAMMA AND TECH 67
BUTIONS, II. THE DISTRIBUTION OF THE RANGE IN NORMAL SAMPLES'
                                                               60 1113 /ONS UNDER SPHERICAL NORMAL DISTRI AMS 61
                                                                                                                       620
                                                                                                              AMS 61
                                                                                                                      148
                                             SNOWBALL SAMPLING
             SOME RATIO-TYPE ESTIMATORS IN TWO-PHASE SAMPLING
                                                                                                              JASA 62
                                                                                                                      628
                                        POST CLUSTER SAMPLING
                                                                                                              AMS 63
                                                                                                                      5B7
                                                                                                              AMS 63 1322
                                           MULTIPLEX SAMPLING
                                                                                                              TECH 63
                                    APPLIED MULTIPLEX SAMPLING
                                                                                                                      341
                                         POLYCHOTOMY SAMPLING
                                                                                                              AMS 66
                                                                                                                      657
                NOTE ON A MINIMAX DESIGN FOR CLUSTER SAMPLING
                                                                                                               AMS 6B
                                                                                                                      27B
                        OPTIMAL TWO-STAGE STRATIFIED SAMPLING
                                                                                                              AMS 69
                                                                                                                      575
     DOMAINS OF OPTIMALITY OF TESTS IN SIMPLE RANDOM SAMPLING
                                                                                                              AMS 69
                                                                                                                      30B
         SOME METHODS OF PROBABILITY NON-REPLACEMENT SAMPLING
                                                                                                              JASA 69
                                                                                                                      175
                                ESTIMATION BY DOUBLE SAMPLING
                                                                                                              BIOKA52 217
                            SOME PROBLEMS OF OPTIMUM SAMPLING
                                                                                                              BIOKA54
                                                                                                                      420
          QUOTA FULFILMENT USING UNRESTRICTED RANDOM SAMPLING
                                                                                                              BIOKA61
                                                                                                                       333
                                                                                                                      2B1
                                          SYSTEMATIC SAMPLING
                                                                                                              BIOKA62
               A NOTE ON DIRECT AND INVERSE BINOMIAL SAMPLING
                                                                                                              BIOKA63
                                                                                                                      544
                              ON MODIFIED SYSTEMATIC SAMPLING
                                                                                                              BIOKA68
                                                                                                                      541
                               THE ERRORS OF LATTICE SAMPLING
                     ANALYTICAL SURVEYS WITH CLUSTER SAMPLING
                                                                                                              JRSSB65
                                                                                                                       264
      A FIDUCIAL ARGUMENT WITH APPLICATION TO SURVEY SAMPLING
                                                                                                              JRSSB69 NO.2
```

TITLE WORD INDEX SAM - SAM

111	DE MOID II	OEX	Onn	CIAIII
TESTINC FOR LINEAR CONTACION, INVERSE	SAMPLING		JRSSB69	NO 2
ON TESTS OF HOMOCENEITY APPLIED AFTER SEQUENTIAL		A NOTE	JRSSB60	368
COMPARISON OF SAMPLE SIZES IN INVERSE BINOMIAL		OHERY	TECH 67	337
OF DEATH-RATES FROM CAPTURE-MARK-RECAPTURE		A NOTE QUERY, THE ESTIMATION NECATIVE VARIANCE THE USE OF INCOMPLETE A MINIMAX PROCEDURE FOR THE USE OF A STRATIFICATION A MINIMAX-REGRET PROCEDURE FOR AN INEQUALITY FOR THE SAMPLE COEF	BIOKASS	1 R 1
ESTIMATES AND STATISTICAL DEPENDENCE IN NESTED		NECATIVE VARIANCE	IACA GO	1000
BETA FUNCTIONS FOR PRIOR DISTRIBUTIONS IN BINOMIAL		THE HEE OF THEOMELERS	TECH CE	775
		THE USE OF INCOMPLETE	IECH 65	333
CHOOSING BETWEEN TWO POPULATIONS USING SEQUENTIAL		A MINIMAX PROCEDURE FOR	JKSSB57	255
VARIABLE IN ESTIMATION BY PROPORTIONAL STRATIFIED		THE USE OF A STRATIFICATION	JASA 6B	1310
CHOOSING BETWEEN TWO POPULATIONS USING SEQUENTIAL		A MINIMAX-REGRET PROCEDURE FOR	JRSSB63	297
FICIENT OF VARIATION AND AN APPLICATION OF VARIABLES		AN INEQUALITY FOR THE SAMPLE COEF	TECH 65	67
NORMAL DISTRIBUTION WITH APPLICATIONS IN ACCEPTANCE		THE THEOREMS TON THE ENERGES ABOUT THE	UNDA OT	05
INOMIAL AND POISSON DISTRIBUTIONS BASED ON TWO-STAGE		/THE VARIANCE FOR THE PARAMETERS IN THE B		
G THE ARITHMETIC MEAN OF A POPULATION WITH TWO-STAGE				
			TECH 60	
S WHERE THE MEAN QUALITY HAS A NORMAL PRIO/ SERIAL				
OF VACCINES COMPARATIVE	SAMPLING	ACCEPTANCE SCHEMES IN TESTING ANTIGENICITY	BIOCS66	684
FOR A MEDIAN STRATIFIED	SAMPLING	AND DISTRIBUTION-FREE CONFIDENCE INTERVALS	JASA 65	772
GEOMETRIC DISTRIBUTION AND THEIR RELATION TO INVERSE	SAMPLING	AND RELIABILITY OF REDUNDANT SYSTEMS /THE	JASA 67	915
IMENTAL RANDOMIZATION IN BAYESIAN STATISTICS, FINITE	SAMPLING	AND TWO BAYESIANS THE ROLE OF EXPER	BIOKA69	NO.3
TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND	SAMPLING	ARE STRATIFIED THE	BIOKA61	241
			TECH 6B	667
			TECH 67	401
GAMMA DISTRIBUTION IN ACCEPTANCE			JASA 61	942
			BIOKA53	452
THE OPERATING CHARACTERISTIC CURVE FOR SEQUENTIAL				
			BIOKA52	
		DESIGN THROUGH REPLICATION WITH EQUAL PROBAB		24
BIVARIATE K-STATISTICS AND CUMULANTS OF THEIR JOINT			BIOKA51	
			BIOKA56	96
		DISTRIBUTION OF A MAXIMUM-LIKELIHOOD DISTRIBUTION OF AN ESTIMATE ARISING IN LIFE		
ECTION WITH THE TRUNCATED EXPONENTIAL DISTRIB/ THE				
A NOTE ON CALCULATING TAU AND AVERAGE TAU AND ON THE				
TWO-STAGE LEAST SQUARES ESTIMATORS THE EXACT				
		DISTRIBUTION OF RANGES FROM A DISCRETE POPUL		
			TECH 65	
ORM FINITE POPULATIONS AND A RANGE TEST FOR H/ THE				
IRNOV CRITERION D-SU/ ON THE EXACT AND APPROXIMATE				
		DISTRIBUTION WHEN ZERO DIFFERENCES ARE PRESE	JASA 67	106B
APPROXIMATING THE GENERAL NON-NORMAL VARIANCE-RATIO	SAMPLING	DISTRIBUTIONS	BIOKA64	83
S BY SOLVING DIFFERENTIAL EQ/ THE DETERMINATION OF	SAMPLING	DISTRIBUTIONS AND MOMENT GENERATING FUNCTION	JRSSB65	86
NON-NORMAL POPULATIONS ON APPROXIMATIONS TO	SAMPLING	DISTRIBUTIONS OF THE MEAN FOR SAMPLES FROM	AMS 63	130B
RICAL STUDIES OF BALANCED NESTED DESIGN	SAMPLING	DISTRIBUTIONS OF VARIANCE COMPONENTS I. EMPI	TECH 66	457
IRICAL STUDIES OF UNBALANCED NESTED DESIGNS	SAMPLING	DISTRIBUTIONS OF VARIANCE COMPONENTS II. EMP	TECH 6B	719
RICAL STUDIES OF BALANCED NESTED DESIGN IRICAL STUDIES OF UNBALANCED NESTED DESIGNS COMPLETE CONNECTIONS (CORR. 69 NO.6)	SAMPLING	ENTROPY FOR RANDOM HOMOGENEOUS SYSTEMS WITH	AMS 65	1433
	SAMPLING	ERROR IN THE CONSUMER PRICE INDEX	JASA 67	B99
VARIANCE OF WEIGHTED REGRESSION ESTIMATORS WHEN			JASA 69	NO.4
L NUMBERS OF ORCHARDS OF DISTINCT TYPE				
		ERRORS ON MEASURES OF ASSOCIATION IN 2-BY-2		
ON THE THEORY OF CLASSICAL REGRESSION AND DOUBLE			JRSSB60	
			JRSSB55	
THE APPLICATION OF AUTOMATIC COMPUTERS TO			JRSSB54	
GRESSION WITH NON-CONSTANT, UNKNOWN ERROR VARIANCES,				
HYPER-ADMISSIBILITY AND OPTIMUM ESTIMATORS FOR			AMS 6B	
DISTRIBUTION_FREE SUFFICIENCY IN	SAMPLENC.	ETNITE POPILIATIONS	JRSSB6B	
SUBJECTIVE BAVESTAN MODELS IN	SAMPI INC	FINITE POPULATIONS (WITH DISCUSSION)	JRSSB69	
ADMISSIBILITY AND BAYES ESTIMATION IN	SAMPI THE		AMS 65	
ADMISSIBILITY AND BAYES ESTIMATION IN	SAMPI THE	FINITE POPULATIONS IT	AMS 65	
ADMISSIBILITY AND BAYES ESTIMATION IN	CAMDITAG	PINITE POPULATIONS, II	AMS 65	
ADMISSIBILITY AND BAYES ESTIMATION IN	CAMPITMG	PINITE POPULATIONS, III	AMS 66	
ADMICCIDILITY AND DAVID DOMINITION IN	CAMPITMG	PINITE POPULATIONS, IV		
ADMISSIBILITY AND BAYES ESTIMATION IN	SAMPLING	FOR COMPTREMER	AMS 69	
	SAMPLING	FOR CONFIDENCE FOR COST ANALYSIS AND CONTROL, CORR. 5B 1031	JASA 67	
		FOR PROBABILITY PROPORTIONATE TO SOME MEASUR		
OPTIMAL	SAMPLING	FOR QUOTA FULFILMENT	BIOKA57	
USE OF DOUBLE	SAMPLING		BIOKA64	
		FOR STRATIFICATION ON SUCCESSIVE OCCASIONS		
SOME REMARKS ON DOUBLE			BIOKA65	
CURTAILED DISTRIBUTION OF PERCENTILES. BAYES' THEOREM FOR	SAMPLING		JASA 5B	
			BIOKA52	
			AMS 64	
The property of the second sec	SAMPLING	FROM A TRIANGULAR POPULATION	JASA 63	509
TIC PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATORS WHEN				
OF COMPOUND NORMAL DISTRIBUTIONS				
A NEW BINOMIAL APPROXIMATION FOR USE IN			JASA 60	
			BIOKA68	
			JRSSB55	
		FROM FINITE POPULATIONS, I	JRSSB66	
A NEW APPROACH TO	SAMPLING	FROM FINITE POPULATIONS. II	JRSSB66	320
INFORMATION AND	SAMPLING	FROM THE EXPONENTIAL DISTRIBUTION	TECH 69	41
			JASA 57	
OPTIMUM			JASA 57	
		IN CURTAILED SAMPLING PLANS BY ATTRIBUTES		
			TECH 67	
		IN TWO-ACTION PROBLEMS WITH LINEAR ECONOMICS		
A BAYES SEQUENTIAL			AMS 65	
2 20 20800111110			,	

MUD DEGICTOR MUEONY ADDROAGH MO	CAMPI THE	THORROWEN (WITHIN DECOMPOSED)		
THE DECISION THEORY APPROACH TO DISCUSSION)			JRSSB66 JRSSB54	381 151
		INSPECTION BY ATTRIBUTES	TECH 63	23
		INSPECTION OF CONTINUOUS PROCESSES WITH NO	BIOKA60	363
SOME THEORETICAL ASPECTS OF THE LOT PLOT			JASA 56	84
SOME LIMIT THEOREMS FOR THE DODGE-ROMIG LTPD SINGLE			TECH 62	497
LS FOR THE EVALUATION OF A LARGE CLASS OF CONTINUOUS				
D HYPERGEOMETRIC DISTRIBUTION AND A SYSTEM OF SINGLE TWO WEIBULL PROCESSES		INSPECTION PLANS FOR DISCRIMINATING BETWEEN		275 589
SOME REMARKS ON THE BAYESIAN SOLUTION OF THE SINGLE			TECH 60	341
SIMULATION STUDY OF ESTIMATORS FOR THE LINE TRANSECT			BIOCS69	317
COMPARISONS OF SOME TWO STAGE	SAMPLING	METHODS	AMS 66	B91
APPLICATION OF RENEWAL THEORY		MIXTURES OF MULTI-SIZED PARTICLES, AN	TECH 69	2B5
POPULATIONS		MIXTURES OF PARTICLES MOMENTS OF MEANS FROM FINITE MULTIVARIATE	TECH 67 AMS 61	365 406
POPULATIONS POPULATION (ATY'S FORMULAE AND MADOW/ THE CENTRAL				199
A LIMIT THEOREM FOR RANDOM INTERVAL			AMS 64	866
PTIMUM UTILIZATION OF AUXILIARY INFORMATION, (PI)PS			JRSSB67	374
ATORS AND VARIANCE ESTIMATORS IN UNEQUAL PROBABILITY				540
ROTATION DESIGNS FOR			JASA 64	492
PROPORTIONATE TO SIZE ON DESIGN AND OPERATION OF A DOUBLE-LIMIT VARIABLES		OVER TWO OCCASIONS WITH PROBABILITY	AMS 65 JASA 5B	327 543
A PRODUCTION MODEL AND CONTINUOUS			JASA 59	231
DESIGN AND EVALUATION OF A REPETITIVE GROUP			TECH 65	11
		PLAN FOR CORRELATED VARIABLES WITH A SINGLE-		248
A NOTE ON SIMPLE BINOMIAL			AMS 61	906
DESIGN OF AN OPTIMAL SEQUENCE OF INTERRELATED NEW CRITERIA FOR SELECTING CONTINUOUS			JASA 64 TECH 64	96 161
DISTRIBUTION-FREE LIFE TEST			TECH 66	591
MISCLASSIFIED DATA FROM CURTAILED			TECH 6B	489
AND TABLES FOR EVALUATING DEPENDENT MIXED ACCEPTANCE			TECH 69	341
TRUNCATED SINGLE AND DOUBLE ATTRIBUTES ACCEPTANCE				6B5
ASYMPTOTIC PROPERTIES OF BAYESIAN SINGLE			JRSSB67	162 119
IVALENCE OF BINOMIAL AND INVERSE BINOMIAL ACCEPTANCE		PLANS BASED ON THE NORMAL DISTRIBUTION	TECH 67	417
		PLANS BASED ON THE THEORY OF RUNS	TECH 62	177
ESTIMATION OF FRACTION DEFECTIVE IN CURTAILED	SAMPLING	PLANS BY ATTRIBUTES	TECH 67	219
CENSORED SAMPLING IN CURTAILED			TECH 68	854
ECTION TECHNIQUES AND DIGITAL COMP/ DEVELOPMENT OF				387 151
		PLANS FOR NORMAL AND LOGNORMAL DISTRIBUTIONS PLANS UNDER DESTRUCTIVE TESTING	JASA 64	376
		PLANS UNDER THE ASSUMPTION OF WORST CONDITIO		833
VARIANCE DOUBLE	SAMPLING	PLANS WHERE THE ACCEPTANCE CRITERION IS THE	TECH 68	99
MAXIMUM EXPECTED SAMPLE SIZE		PLANS WHICH APPROXIMATELY MINIMIZE THE	JASA 64	67
EVANCE TO SIMULATION, C/ A HISTORY OF DISTRIBUTION				27 487
A TWO-VARIABLE GENERATING FUNCTION FOR COMPUTING THE SQUARE TESTS AND THEIR APPLICATION TO AN ACCEPTANCE				519
NS OF FINITE POPULATIONS WITH AN APPLICATION TO BULK				355
		PROCEDURE FOR MAILED QUESTIONNAIRES	JASA 56	209
COSTS			TECH 63	47
		PROCEDURES BASED ON PRIOR DISTRIBUTIONS AND PROCEDURES FOR GENERAL SPECIFICATION ELLIPSO	AMS 67	464 905
		PROPERTIES OF LOCAL STATISTICS IN STATIONARY		160
LINEAR AUTOREGRESSIVE SCHEMES		PROPERTIES OF TESTS OF GOODNESS-OF-FIT FOR	JRSSB62	492
PROCESSES	SAMPLING	RATES AND APPEARANCE OF STATIONARY GAUSSIAN		91
A SECOND-ORDER APPROXIMATION TO OPTIMAL			AMS 69	313
SOME BAYESIAN STRATIFIED TWO-PHASE A SIMPLE PRESENTATION OF OPTIMUM			BIOKA68 JRSSB54	131 239
			BIOCS68	353
		RESULTS FOR REGRESSION ANALYSIS APPLIED TO G		11
BAYESIAN STRATIFIED TWO-PHASE	SAMPLING	RESULTS, K CHARACTERISTICS	BIOKA68	
DEPENDENCE OF THE FIDUCIAL ARGUMENT ON THE			BIOKA57	
			JASA 65 JRSSB59	
			JRSSB68	
THE RELATIVE EFFICIENCY OF SOME TWO-PHASE	SAMPLING	SCHEMES	AMS 67	937
			BIOKA57	
ON THE RELATIVE ACCURACY OF SOME			AMS 64 JASA 5B	222 9B
		TECHNIQUES FOR ESTIMATION OF INCIDENCE OF RE		
			BIOKA52	
RANDOMIZED ROUNDED-OFF MULTIPLIERS IN			JASA 61	
SOME RECENT ADVANCES IN			JASA 63 AMS 64	
SUFFICIENCY IN AN OLD APPROACH TO FINITE POPULATION			JASA 68	
OCIATION FOR CROSS CLASSIFICATIONS, 111. APPROXIMATE				
HALF-RECTIFIED TRUNCATED DISTRIBUTIONS,	SAMPLING	THEORY AND HYPOTHESIS TESTING	TECH 69	47
			JASA 68	B7
AN APPLICATION OF SEQUENTIAL			JASA 65	85
OF INTEREST OPTIMUM ALLOCATION OF EXACT FORMULA FOR THE PROBABILITY THAT TWO SPECIFIED				
ECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE, REJECTION	SAMPLING	UPON SAMPLE ASSURANCE OF TOTAL PRODUCT QUALI	TECH 60	19
FECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE-REJECTION	SAMPLING	UPON SAMPLE ASSURANCE OF TOTAL PRODUCT QUALI	TECH 61	
			JASA 68	99
			JASA 65 BIOKA58	
		THE PROPERTY OF THE PROPERTY O		

TITLE WORD INDEX SAM - SCH

		BIOCS66	1B7
EACH STRATUM ESTIMATES OF	SAMPLING VARIANCE WHERE TWO UNITS ARE SELECTED FROM		503
ANCE FROM A NON-ORTHOGONAL TWO-WAY CLASSIFICATION	SAMPLING VARIANCES OF ESTIMATES OF COMPONENTS OF VARI	BIOKA64	491
NENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFI/	SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPO	AMS 63	521
SOME THEORY OF	SAMPLING WHEN THE STRATIFICATION IS SUBJECT TO ERROR	TECH 67	1
UNEQUAL SIZES METHODS OF CLUSTER	SAMPLING WITH AND WITHOUT REPLACEMENT FOR CLUSTERS OF		27
		BIOKA54	
SUMMARY OF RECENT WORK ON VARIABLES ACCEPTANCE		TECH 69	
		JASA 68	
	SAMPLING WITH PROBABILITY EXACTLY PROPORTIONAL TO		
		AMS 66	
	SAMPLING WITH PROBABILITY PROPORTIONATE TO SIZE SAMPLING WITH PROBABILITY PROPORTIONATE TO SIZE IN A	JASA 65	27B
		JASA 64 JASA 66	251 749
		BIOKA64	1B5
REPLACEMENT		AMS 62	
		JASA 66	739
POPULATION ASYMPTOTIC THEORY OF REJECTIVE		AMS 64	
/ BOUNDS FOR THE ERROR-VARIANCE OF AN ESTIMATOR IN	SAMPLING WITH VARYING PROBABILITIES FROM A FINITE POP	JASA 68	91
	SAMPLING WITH VARYING PROBABILITIES WITHOUT REPLACEME	JASA 56	269
	SAMPLING WITH VARYING PROBABILITIES WITHOUT REPLACEME	JASA 65	637
ON THREE PROCEDURES OF UNEQUAL PROBABILITY		JASA 63	202
SOME REMARKS ON A SIMPLE PROCEDURE OF		JASA 66	
ON A SIMPLE PROCEDURE OF UNEQUAL PROBABILITY		JRSS862	4B2
	SAMPLING WITHOUT REPLACEMENT AND EXACT BAHADUR EFFICI		
PROPORTIONAL TO SIZE		JRSSB58	
	SAMPLING WITHOUT REPLACEMENT WITH PROBABILITY PROPORT		79
DIII I/	SAMPLING WITHOUT REPLACEMENT WITH UNEQUAL PROBABILITI SAMPLING. PROBLEMS AND LINES OF ATTACK	TECH 62	499
BULK		TECH 62	
UNBIASED RATIO ESTIMATORS IN STATIFIED	SAMPLING, CORR 64 129B	JASA 61	70
	SAMPLING, TWO DECISION PROBLEMS WITH LINEAR LOSSES FO		507
SOME DEVELOPEMENTS IN 'DISTANCE		BIOCS67	207
	SARHAN'S METHOD OF INVERSION OF PARTITIONED MATRICES		
A COMMUNICATIONS	SATELLITE REPLENISHMENT POLICY	TECH 66	399
DISCUSSION OF THE PAPERS OF MESSRS.		TECH 59	157
	SATTERTHWAITE'S SYNTHETIC MEAN SQUARES /TE CARLO IN		431
	SATTERTHWAITE'S FORMULA ESTIMATING THE DEGREES O		
	SATURATED DESIGNS /ESIGNS OF RESOLUTION GREATER THE		246
FACTORIAL DESIGNS		TECH 67	
MUE GOVERNMENT ON OR		TECH 6B	535
ON A CENERALIZED	SAVAGE STATISTIC WITH APPLICATIONS TO LIFE TESTING	AMS 67	
A NOTE ON CHERNOER.			
A NOTE ON CHERNOFF- THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE		AMS 69	
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE	SAVING	JASA 64	
	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF	JASA 64	737
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN PARAMETERS QUERY,	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE	JASA 64 JASA 5B JASA 69 TECH 64	737 54
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN PARAMETERS QUERY,	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE	JASA 64 JASA 5B JASA 69 TECH 64	737 54 90
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN PARAMETERS RELATIVE EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST NON-PARAMETRIC TESTS FOR	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALAR ALTERNATIVES THE ASYMPTOTIC SCALE	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 62	737 54 90 471 410 498
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN PARAMETERS QUERY, RELATIVE EFFICIENCY OF GOODNESS—OF—FIT TESTS AGAINST NON-PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALAR ALTERNATIVES SCALE SCALE SCALE	JASA 58 JASA 69 TECH 64 JASA 65 AMS 62 AMS 67	737 54 90 471 410 498 274
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN PARAMETERS QUERY, RELATIVE EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST NON-PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALAR ALTERNATIVES THE ASYMPTOTIC SCALE SCALE SCALE ALTERNATIVES	JASA 58 JASA 69 TECH 64 JASA 65 AMS 62 AMS 67 AMS 69	737 54 90 471 410 498 274 177B
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN PARAMETERS QUERY. RELATIVE EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST NON-PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATING	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALAR ALTERNATIVES THE ASYMPTOTIC SCALE SCALE SCALE ALTERNATIVES SCALE ALTERNATIVES SCALE AND LOCATION PARAMETERS	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 62 AMS 67 AMS 69 JASA 63	737 54 90 471 410 498 274 1778 658
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN PARAMETERS QUERY, RELATIVE EFFICIENCY OF GOODNESS—OF—FIT TESTS AGAINST NON-PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATING DAUGHTER—DAM REGRESSION SOME TRANSFORMATIONS OF	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALAR ALTERNATIVES SCALE SCALE SCALE SCALE ALTERNATIVES SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 62 AMS 67 AMS 69 JASA 63 BIOCS67	737 54 90 471 410 498 274 1778 658 823
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN PARAMETERS QUERY, RELATIVE EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST NON-PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATING DAUGHTER-DAM RECRESSION SOME TRANSFORMATIONS OF SIZES FOR CHI APPROXIMATION TO THE RANGE	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALAR ALTERNATIVES SCALE SCALE SCALE SCALE ALTERNATIVES SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 62 AMS 67 AMS 69 JASA 63 BIOCS67 BIOKA53	737 54 90 471 410 498 274 1778 658 823 449
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN PARAMETERS QUERY, RELATIVE EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST NON-PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATING DAUGHTER-DAM REGRESSION SOME TRANSFORMATIONS OF SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALEA ALTERNATIVES SCALE SCALE SCALE ALTERNATIVES SCALE ALTERNATIVES SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 67 AMS 67 AMS 69 JASA 63 JASA 63 JASA 58	737 54 90 471 410 498 274 1778 658 823 449 164
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN PARAMETERS QUERY, RELATIVE EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST NON-PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATING DAUGHTER-DAM REGRESSION SOME TRANSFORMATIONS OF SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALEAR ALTERNATIVES SCALE SCALE SCALE SCALE SCALE ALTERNATIVES SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 67 AMS 67 AMS 69 JASA 63 JASA 63 JASA 58	737 54 90 471 410 498 274 1778 658 823 449 164 217
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN PARAMETERS QUERY. RELATIVE EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST NON-PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATING DAUGHTER-DAM REGRESSION SOME TRANSFORMATIONS OF SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF SING OR/ SEPARATE MAXIMUM-LIKELIHOOD ESTIMATION OF	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALEAR ALTERNATIVES SCALE SCALE SCALE ALTERNATIVES SCALE ALTERNATIVES SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER	JASA 64 JASA 58 JASA 69 TECH 64 JASA 65 AMS 67 AMS 69 JASA 63 BIOCS67 BIOKA53 BIOKA63 BIOKA63	737 54 90 471 410 498 274 1778 658 823 449 164 217 551
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN PARAMETERS QUERY, RELATIVE EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST NON-PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATING DAUGHTER-DAM REGRESSION SOME TRANSFORMATIONS OF SIZES FOR CHI APPROXIMATION TO THE RANCE ON RANKING PARAMETERS OF SING OR/ SEPARATE MAXIMUM-LIKELIHOOD ESTIMATION OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALE SCALEA ALTERNATIVES SCALE SCALE ALTERNATIVES SCALE ALTERNATIVES SCALE ALTERNATIVES SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER SCALE PARAMETER CONSISTENT ESTIMATION OF A SCALE PARAMETER /THE JOINT DISTRIBUTION OF THE ERR	JASA 64 JASA 58 JASA 69 TECH 64 JASA 65 AMS 62 AMS 67 AMS 69 JASA 63 BIOCS67 BIOKA63 JASA 58 BIOKA63 BIOKA66 AMS 69 BIOKA61	737 54 90 471 410 498 274 1778 658 823 449 164 217 551 1353 125
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN QUERY, RELATIVE EFFICIENCY OF GOODNESS—OF—FIT TESTS AGAINST NON—PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATING DAUGHTER—DAM REGRESSION SOME TRANSFORMATIONS OF SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF SING OR/ SEPARATE MAXIMUM—LIKELIHHOD ESTIMATION OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A OF UNEQUAL GAMMA COMPONENTS	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALES THE ASYMPTOTIC SCALE SCALE SCALE ALTERNATIVES SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DECREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER SCALE PARAMETER SCALE PARAMETER SCALE PARAMETER CONSISTENT ESTIMATION OF A SCALE PARAMETER /THE JOINT DISTRIBUTION OF THE ERR SCALE PARAMETER STIMATION FROM THE ORDER STATISTICS	JASA 64 JASA 5B JASA 69 JASA 66 AMS 62 AMS 67 AMS 69 JASA 63 BIOCS67 BIOKA63 BIOKA63 BIOKA67 AMS 69	737 54 90 471 410 498 274 177B 658 823 449 164 217 551 1353 125 152
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN PARAMETERS RELATIVE EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST NON-PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATING DAUGHTER-DAM REGRESSION SOME TRANSFORMATIONS OF SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF SING OR/ SEPARATE MAXIMUM-LIKELIHOOD ESTIMATION OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A OF UNEQUAL GAMMA COMPONENTS VAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALE SCALE SCALE SCALE ALTERNATIVES SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER STIMATION FROM THE ORDER STATISTICS SCALE PARAMETER OF A WEIBULL POPULATION WITH KNOWN SH	JASA 64 JASA 5B JASA 69 JASA 69 JASA 69 AMS 67 AMS 67 AMS 69 JASA 63 BIOCK67 BIOKA53 JASA 58 BIOKA63 BIOKA64 AMS 69 BIOKA61 AMS 66 TECH 65	737 54 90 471 410 498 274 177B 658 823 449 164 217 551 1353 125 152 405
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN PARAMETERS QUERY, RELATIVE EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST NON-PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATING DAUGHTER-DAM REGRESSION SOME TRANSFORMATIONS OF SIZES FOR CHI APPROXIMATION TO THE RANCE ON RANKING PARAMETERS OF SING OR/ SEPARATE MAXIMUM—LIKELIHOOD ESTIMATION OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A OF UNEQUAL GAMMA COMPONENTS VAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE EFFECT OF TRUNCATION ON A TEST FOR THE	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVING SIN TEST TIME WHEN COMPARING WEIBULL SCALE SCALE SCALE SCALE SCALE SCALE ALTERNATIVES SCALE ALTERNATIVES SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS SCALE PARAMETER SCALE PARAMETER CONSISTENT ESTIMATION OF A SCALE PARAMETER CONSISTENT ESTIMATION OF THE ERR SCALE PARAMETER /THE JOINT DISTRIBUTION OF THE ERR SCALE PARAMETER OF A WEIBULL POPULATION WITH KNOWN SH SCALE PARAMETER OF THE EXPONENTIAL DISTRIBUTION	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 67 AMS 69 JASA 63 BIOCS67 BIOKA63 JASA 58 BIOKA63 JASA 66 BIOKA63 AMS 69 BIOKA61 AMS 66 TECH 65 AMS 64	737 54 90 471 410 498 274 1778 823 449 164 217 551 1353 125 152 405 209
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN QUERY, RELATIVE EFFICIENCY OF GOODNESS—OF—FIT TESTS AGAINST NON—PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATING DAUGHTER—DAM REGRESSION SOME TRANSFORMATIONS OF SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF SING OR/ SEPARATE MAXIMUM—LIKELIHHOD ESTIMATION OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A OF UNEQUAL GAMMA COMPONENTS VAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE EFFECT OF TRUNCATION ON A TEST FOR THE QUERY, SAVINGS IN TEST TIME WHEN COMPARING WEIBULL	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALEAR ALTERNATIVES SCALE SCALE SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DECREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER SCALE PARAMETER SCALE PARAMETER SCALE PARAMETER /THE JOINT DISTRIBUTION OF A SCALE PARAMETER STIMATION FROM THE ORDER STATISTICS SCALE PARAMETER OF A WEIBULL POPULATION WITH KNOWN SH SCALE PARAMETER OF THE EXPONENTIAL DISTRIBUTION	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 67 AMS 67 AMS 69 JASA 63 BIOCS67 BIOKA53 JASA 58 BIOKA67 AMS 69 BIOKA67 AMS 69 BIOKA67 AMS 64 AMS 64 TECH 65 AMS 64 TECH 64	737 54 90 471 410 498 274 177B 658 823 449 164 217 551 1353 125 152 405 209 471
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN PARAMETERS QUERY, RELATIVE EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST NON-PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATING DAUGHTER-DAM REGRESSION SOME TRANSFORMATIONS OF SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF SING OR/ SEPARATE MAXIMUM-LIKELIHOOD ESTIMATION OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A OF UNEQUAL GAMMA COMPONENTS VAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE EFFECT OF TRUNCATION ON A TEST FOR THE QUERY, SAVINGS IN TEST TIME WHEN COMPARING WEIBULL UNBLASED ESTIMATION OF LOCATION AND	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALEAR ALTERNATIVES SCALE SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE AND THE ESTIMATION OF FREEDOM FOR SMALL SAMPLE SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER SITMATION FROM THE ORDER STATISTICS SCALE PARAMETER OF A WEIBULL POPULATION WITH KNOWN SH SCALE PARAMETERS SCALE PARAMETERS SCALE PARAMETERS	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 67 AMS 67 AMS 69 JASA 63 BIOCS67 BIOKA53 JASA 58 BIOKA63 AMS 69 BIOKA66 AMS 66 TECH 65 AMS 64 TECH 64 AMS 64	737 54 90 471 410 498 274 177B 658 823 449 164 217 551 1353 125 152 405 209 471 1671
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN PARAMETERS QUERY, RELATIVE EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST NON-PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATING DAUGHTER-DAM REGRESSION SOME TRANSFORMATIONS OF SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF SING OR/ SEPARATE MAXIMUM-LIKELHHOOD ESTIMATION OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A OF UNEQUAL GAMMA COMPONENTS VAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE QUERY, SAVINGS IN TEST TIME WHEN COMPARING WEIBULL UNBIASED ESTIMATION OF LOCATION AND FIDUCIAL INFERENCE FOR LOCATION AND	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVING SIN TEST TIME WHEN COMPARING WEIBULL SCALE SCALES SCALE SCALE ALTERNATIVES SCALE ALTERNATIVES SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER SCALE PARAMETER SCALE PARAMETER SCALE PARAMETER SCALE PARAMETER CONSISTENT ESTIMATION OF A SCALE PARAMETER STIMATION FROM THE ORDER STATISTICS SCALE PARAMETER OF A WEIBULL POPULATION WITH KNOWN SH SCALE PARAMETERS SCALE PARAMETERS SCALE PARAMETERS SCALE PARAMETERS SCALE PARAMETERS SCALE PARAMETERS	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 TECH 67 AMS 67 AMS 69 JASA 63 BIOCS67 BIOKA63 JASA 58 BIOKA63 JASA 66 BIOKA61 AMS 66 TECH 65 AMS 64 TECH 64 AMS 66 BIOKA64	737 54 90 471 410 498 274 177B 658 823 449 164 217 551 1353 125 152 405 209 471 1671
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN PARAMETERS QUERY, RELATIVE EFFICIENCY OF GOODNESS—OF—FIT TESTS AGAINST NON-PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATING DAUGHTER—DAM REGRESSION SOME TRANSFORMATIONS OF SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF SING OR/ SEPARATE MAXIMUM—LIKELIHOOD ESTIMATION OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A OF UNEQUAL GAMMA COMPONENTS VAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE EFFECT OF TRUNCATION ON A TEST FOR THE QUERY, SAVINGS IN TEST TIME WHEN COMPARING WEIBULL UNBIASED ESTIMATION OF LOCATION AND FIDUCIAL INFERENCE FOR LOCATION AND LINEAR—LOSS INTERVAL ESTIMATION OF LOCATION AND	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVING SIN TEST TIME WHEN COMPARING WEIBULL SCALE SCALEAR ALTERNATIVES SCALE SCALE SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER SCALE PARAMETER CONSISTENT ESTIMATION OF A SCALE PARAMETER /THE JOINT DISTRIBUTION OF THE ERR SCALE PARAMETER OF A WEIBULL POPULATION WITH KNOWN SH SCALE PARAMETERS	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 67 AMS 67 AMS 69 JASA 63 BIOCS67 BIOKA53 JASA 58 BIOKA63 AMS 69 BIOKA66 AMS 66 TECH 65 AMS 64 TECH 64 AMS 64	737 54 90 471 410 498 274 177B 658 823 449 164 217 551 1353 125 152 405 209 471 1671 17
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN QUERY, RELATIVE EFFICIENCY OF GOODNESS—OF—FIT TESTS AGAINST NON—PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATING DAUGHTER—DAM REGRESSION SOME TRANSFORMATIONS OF SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF SING OR/ SEPARATE MAXIMUM—LIKELIHOOD ESTIMATION OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A OF UNEQUAL GAMMA COMPONENTS VAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE EFFECT OF TRUCATION ON A TEST FOR THE QUERY, SAVINGS IN TEST TIME WHEN COMPARING WEIBULL UNBIASED ESTIMATION OF LOCATION AND FIDUCIAL INFERENCE FOR LOCATION AND FIDUCIAL INFERENCE FOR LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVING SIN TEST TIME WHEN COMPARING WEIBULL SCALE SCALEAR ALTERNATIVES SCALE SCALE SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER SCALE PARAMETER CONSISTENT ESTIMATION OF A SCALE PARAMETER /THE JOINT DISTRIBUTION OF THE ERR SCALE PARAMETER OF A WEIBULL POPULATION WITH KNOWN SH SCALE PARAMETERS	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 67 AMS 67 AMS 69 JASA 63 BIOKA63 BIOKA63 BIOKA67 AMS 69 BIOKA61 AMS 66 TECH 65 AMS 64 TECH 65 AMS 64 AMS 66 BIOKA64 AMS 66 BIOKA64 AMS 66 BIOKA64 AMS 66 AMS 66 AMS 66 AMS 66	737 54 90 471 410 498 274 177B 658 823 449 164 217 551 1353 125 405 209 471 1671 17 117 117 117 117 117
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN QUERY, RELATIVE EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST NON-PARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATING ON ESTIMATING ON ESTIMATING ON ESTIMATING ON RANKING PARAMETERS OF SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A OF UNEQUAL GAMMA COMPONENTS VAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE EFFECT OF TRUNCATION ON A TEST FOR THE QUERY, SAVINGS IN TEST TIME WHEN COMPARING WEIBULL UNBIASED ESTIMATION OF LOCATION AND FIDUCIAL INFERENCE FOR LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND ALE PARAMETERS IN PROBLEMS WITH UNKNOWN LOCATION AND	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALE SCALE SCALE SCALE SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER SCALE PARAMETER SCALE PARAMETER SCALE PARAMETER SCALE PARAMETER STIMATION FOR THE EST SCALE PARAMETER STIMATION FROM THE ORDER STATISTICS SCALE PARAMETER SCALE PARAMETER SCALE PARAMETER SCALE PARAMETERS	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 67 AMS 67 AMS 69 JASA 63 BIOCK67 BIOKA63 JASA 58 BIOKA63 AMS 69 AMS 66 BIOKA61 AMS 66 BIOKA61 AMS 66 BIOKA61 AMS 64 BIOKA64 BIOKA64 AMS 64 BIOKA64 BIOKA64 AMS 66 BIOKA64 AMS 66	737 54 90 471 410 498 274 177B 658 823 449 164 217 551 1353 125 152 405 209 471 1671 17 141 NO.6 29
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN QUERY, RELATIVE EFFICIENCY OF GOODNESS—OF—FIT TESTS AGAINST NON—PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATIONS OF SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF SING OR/ SEPARATE MAXIMUM—LIKELHHOOD ESTIMATION OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A OF UNEQUAL GAMMA COMPONENTS VAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE EFFECT OF TRUNCATION ON A TEST FOR THE QUERY, SAVINGS IN TEST TIME WHEN COMPARING WEIBULL UNBIASED ESTIMATION OF LOCATION AND FIDUCIAL INFERENCE FOR LOCATION AND FIDUCIAL INFERENCE FOR LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND ALE PARAMETERS IN PROBLEMS WITH UNKNOWN LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND CONSORED SAMPLES	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALE SCALE SCALE SCALE SCALE ALTERNATIVES SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER SCALE PARAMETER SCALE PARAMETER SCALE PARAMETER CONSISTENT ESTIMATION OF A SCALE PARAMETER CONSISTENT ESTIMATION OF A SCALE PARAMETER STIMATION FROM THE ORDER STATISTICS SCALE PARAMETERS SCALE PARAM	JASA 64 JASA 5B JASA 69 JASA 69 JASA 69 JASA 67 AMS 67 AMS 69 JASA 63 BIOCK67 AMS 69 JASA 58 BIOKA63 JASA 58 BIOKA63 JASA 58 BIOKA61 AMS 66 BIOKA61 AMS 66 AMS 64 BIOKA64 BIOKA64 BIOKA68 AMS 68 AMS 69 AMS 69 AMS 69 AMS 69	737 54 90 471 410 498 658 823 449 164 217 157 153 125 152 405 209 471 1671 17 141 NO.6 29 325
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN PARAMETERS QUERY, RELATIVE EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST NON-PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATING DAUGHTER-DAM REGRESSION SOME TRANSFORMATIONS OF SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF SING OR/ SEPARATE MAXIMUM-LIKELIHOOD ESTIMATION OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A OF UNEQUAL GAMMA COMPONENTS VAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE EFFECT OF TRUNCATION ON A TEST FOR THE QUERY, SAVINGS IN TEST TIME WHEN COMPARING WEIBULL UNBLASED ESTIMATION OF LOCATION AND FIDUCIAL INFERENCE FOR LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALE SCALE SCALE SCALE SCALE ALTERNATIVES SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER SCALE PARAMETERS SCALE	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 67 AMS 67 BIOKA53 JASA 68 BIOCS67 BIOKA63 JASA 68 BIOKA63 AMS 69 BIOKA61 AMS 66 TECH 65 AMS 64 TECH 65 AMS 64 AMS 66 BIOKA64 AMS 66 AMS 66 AMS 66 AMS 66 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68	737 54 90 471 410 498 274 177B 658 823 449 164 217 551 1353 125 152 405 209 471 1671 17 141 NO.6 29 325 356 296
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN QUERY, RELATIVE EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST NON-PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATING ON ESTIMATING ON ESTIMATING ON ESTIMATING ON RANKING PARAMETERS OF SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF LINEAR ESTIMATES OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A OF UNEQUAL GAMMA COMPONENTS VAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE QUERY, SAVINGS IN TEST TIME WHEN COMPARING WEIBULD UNBIASED ESTIMATION OF LOCATION AND FIDUCIAL INFERENCE FOR LOCATION AND LINEAR-LOSS INTERVAL ESTIMATION OF LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND ALE PARAMETERS IN PROBLEMS WITH UNKNOWN LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND THE MAXIMUM LIKELIHOOD ESTIMATES OF THE LOCATION AND THE ESTIMATION OF LOCATION AND CONSORED SAMPLES	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVING SIN TEST TIME WHEN COMPARING WEIBULL SCALE SCALE SCALE SCALE SCALE SCALE SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER SCALE PARAMETER SCALE PARAMETER SCALE PARAMETER SCALE PARAMETER SCALE PARAMETER STIMATION FROM THE ORDER STATISTICS SCALE PARAMETERS SCALE PARA	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 TECH 67 AMS 67 AMS 69 JASA 63 BIOCK67 AMS 69 JASA 58 BIOKA63 JASA 58 BIOKA63 AMS 66 AMS 66 AMS 66 AMS 66 BIOKA61 AMS 66 BIOKA64 AMS 68 AMS 68 AMS 69 AMS 69 AMS 69 AMS 68 AMS 39 JRSSB59 BIOKA61	737 54 90 471 410 498 274 177B 658 823 449 164 217 551 1353 125 152 405 209 471 17 141 No.6 29 325 356 296 448
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN QUERY, RELATIVE EFFICIENCY OF GOODNESS—OF—FIT TESTS AGAINST NON—PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATION OF SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF SING OR/ SEPARATE MAXIMUM—LIKELHHOOD ESTIMATION OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A OF UNEQUAL GAMMA COMPONENTS VAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE EFFECT OF TRUNCATION ON A TEST FOR THE QUERY, SAVINGS IN TEST TIME WHEN COMPARING WEIBULL UNBIASED ESTIMATION OF LOCATION AND FIDUCIAL INFERENCE FOR LOCATION AND LINEAR—LOSS INTERVAL ESTIMATION OF LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND ALE PARAMETERS IN PROBLEMS WITH UNKNOWN LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND CENSORED SAMPLES ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND CENSORED SAMPLES ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND CENSORED SAMPLES ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND DISTRIBUTION ESTIMATED OF LOCATION AND DISTRIBUTION ESTIMATED OF LOCATION AND DISTRIBUTION ESTIMATED OF LOCATION AND DISTRIBUTION ESTIMATION OF LOCATION AND ESTIMATION OF LOCATION AND DISTRIBUTION ESTIMATION OF LOCATION AND DI	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVING SIN TEST TIME WHEN COMPARING WEIBULL SCALE SCALES SCALE ALTERNATIVES SCALE ALTERNATIVES SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DECREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS SCALE IN TYPE III POPULATIONS SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER SCALE PARAMETER SCALE PARAMETER SCALE PARAMETER (ONSISTENT ESTIMATION OF A SCALE PARAMETER OF A WEIBULL POPULATION WITH KNOWN SH SCALE PARAMETERS BY ORDER STATISTICS FROM SINCLY AND SCALE PARAMETERS FROM CROUPED DATA SCALE PARAMETERS FROM CROUPED DATA SCALE PARAMETERS SIN A TRUNCATED GROUPED SECH SQUARE	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 62 AMS 67 AMS 69 JASA 63 BIOCK67 BIOKA53 BIOKA67 AMS 69 BIOKA67 AMS 66 BIOKA67 AMS 66 BIOKA67 AMS 66 BIOKA67 AMS 66 AMS 66 AMS 66 BIOKA64 AMS 66 AMS 69 AMS 68 AMS 39 JRSSB59 BIOKA54 BIOKA61 JASA 61	737 54 90 471 410 498 274 177B 658 823 449 164 217 551 1353 125 405 209 471 1671 17 141 NO.6 29 325 356 296 448 692
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN QUERY, RELATIVE EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST NON-PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATING DAUGHTER-DAM REGRESSION SOME TRANSFORMATIONS OF SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF SING OR/ SEPARATE MAXIMUM—LIKELIHOOD ESTIMATION OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A OF UNEQUAL GAMMA COMPONENTS VAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE EFFECT OF TRUNCATION ON A TEST FOR THE QUERY, SAVINGS IN TEST TIME WHEN COMPARING WEIBULL UNBLASED ESTIMATION OF LOCATION AND FIDUCIAL INFERENCE FOR LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND CENSORED SAMPLES ESTIMATION OF LOCATION AND THE EMAXIMUM LIKELIHOOD ESTIMATES OF THE LOCATION AND THE ESTIMATION OF LOCATION AND CENSORED SAMPLES ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALE SCALE SCALE SCALE SCALE ALTERNATIVES SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER SCALE PARAMETERS BY ORDER STATISTICS FROM SINCLY AND SCALE PARAMETERS FOR THE RECTANGULAR POPULATION FROM SCALE PARAMETERS GIVEN A TYPE II CENSORED NORMAL SAMP SCALE PARAMETERS IN A TRUNCATED GROUPED SECH SQUARE SCALE PARAMETERS IN A TRUNCATED GROUPED SECH SQUARE SCALE PARAMETERS IN A TRUNCATED GROUPED SECH SQUARE	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 67 AMS 67 BIOKA53 JASA 68 BIOKA67 BIOKA67 BIOKA66 BIOKA66 TECH 65 AMS 64 TECH 65 AMS 66 BIOKA64 AMS 66 BIOKA64 AMS 66 BIOKA64 BIOKA64 AMS 66 BIOKA64	737 54 90 471 410 498 274 177B 658 823 449 164 217 551 1353 125 152 405 209 471 1671 17 11 10.6 29 325 296 44B 692 9B6
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN PARAMETERS QUERY, RELATIVE EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST NON-PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATING DAUGHTER-DAM REGRESSION SOME TRANSFORMATIONS OF SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF SING OR/ SEPARATE MAXIMUM-LIKELIHOOD ESTIMATION OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A OF UNEQUAL GAMMA COMPONENTS VAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE QUERY, SAVINGS IN TEST TIME WHEN COMPARING WEIBULL UNBLASED ESTIMATION OF LOCATION AND FIDUCIAL INFERENCE FOR LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND ALE PARAMETERS IN PROBLEMS WITH UNKNOWN LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND THE MAXIMUM LIKELIHOOD ESTIMATES OF THE LOCATION AND DISTRIBUTION ESTIMATION OF LOCATION AND THE MAXIMUM LIKELIHOOD ESTIMATES OF THE LOCATION AND DISTRIBUTION ESTIMATION OF LOCATION AND THE MAXIMUM LIKELIHOOD ESTIMATES OF THE LOCATION AND DISTRIBUTION CORRECTION AND THE STIMATION OF LOCATION AND	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALES SCALE SCALE SCALE SCALE ALTERNATIVES SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER ESTIMATION FROM THE ORDER STATISTICS SCALE PARAMETERS BY ORDER STATISTICS FROM SINGLY AND SCALE PARAMETERS FOR THE RECTANGULAR POPULATION FROM SCALE PARAMETERS GIVEN A TYPE II CENSORED NORMAL SAMP SCALE PARAMETERS IN A TRUNCATED GROUPED SECH SQUARE SCALE PARAMETERS IN A TRUNCATED GROUPED SECH SQUARE SCALE PARAMETERS IN A TRUNCATED GROUPED SECH SQUARE SCALE PARAMETERS IN EXPONENTIAL JAMILIES OF DISTRIBUT SCALE PARAMETERS IN EXPONENTIAL JAMILIES OF DISTRIBUT SCALE PARAMETERS IN PROBLEMS WITH UNKNOWN LOCATION AN	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 67 AMS 67 AMS 69 JASA 63 BIOKA63 JASA 58 BIOKA63 AMS 67 AMS 69 AMS 66 BIOKA61 AMS 66 BIOKA61 AMS 66 BIOKA61 AMS 64 TECH 65 AMS 64 BIOKA64 BIOKA66	737 54 9471 410 498 274 177B 658 823 449 164 217 551 1353 125 152 405 209 471 17 141 187 1671 17 141 187 187 187 187 187 187 187 187 187 18
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN QUERY, RELATIVE EFFICIENCY OF GOODNESS—OF—FIT TESTS AGAINST NON—PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATION OF SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF SING OR/ SEPARATE MAXIMUM—LIKELIHOOD ESTIMATION OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A OF UNEQUAL GAMMA COMPONENTS VAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE EFFECT OF TRUNCATION ON A TEST FOR THE QUERY, SAVINGS IN TEST TIME WHEN COMPARING WEIBULL UNBIASED ESTIMATION OF LOCATION AND FIDUCIAL INFERENCE FOR LOCATION AND LINEAR—LOSS INTERVAL ESTIMATION OF LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND ALE PARAMETERS IN PROBLEMS WITH UNKNOWN LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND CENSORED SAMPLES ESTIMATION OF LOCATION AND CENSORED SAMPLES ESTIMATION OF LOCATION AND DISTRIBUTION ESTIMATES OF THE LOCATION AND LOCATION AND DISTRIBUTION ESTIMATION OF LOCATION AND DISTRIBUTION ESTIMATOR OF THE SHAPE AND DESTIMATION OF THE SHAPE AND	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALE SCALE SCALE SCALE SCALE SCALE SCALE AND THE ESTIMATIVES SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DECREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER SCALE PARAMETER SCALE PARAMETER SCALE PARAMETER /THE JOINT DISTRIBUTION OF THE ERR SCALE PARAMETER OF A WEIBULL POPULATION WITH KNOWN SH SCALE PARAMETERS BY ORDER STATISTICS FROM SINGLY AND SCALE PARAMETERS FROM CROUPED DATA SCALE PARAMETERS GIVEN A TYPE II CENSORED NORMAL SAMP SCALE PARAMETERS IN A TRUNCATED GROUPED SECH SQUARE SCALE PARAMETERS IN A TRUNCATED GROUPED SECH SQUARE SCALE PARAMETERS IN EXPONENTIAL FAMILIES OF DISTRIBUT SCALE PARAMETERS IN PROBLEMS WITH UNKNOWN LOCATION AN SCALE PARAMETERS OF THE WEIBULL DISTRIBUTION	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 62 AMS 67 AMS 69 JASA 63 BIOCK67 BIOKA53 JASA 58 BIOKA67 AMS 69 BIOKA67 AMS 66 BIOKA67 AMS 66 BIOKA67 AMS 66 AMS 66 AMS 66 BIOKA64 AMS 66 BIOKA64 AMS 66 AMS 69 JRSSB59 BIOKA64 AMS 66 AMS 69 AMS 68 AMS 68 AMS 69 AMS 68 AMS 68 AMS 69 AMS 68 AMS 68 AMS 69 AMS 68	737 54 90 471 410 498 274 177B 658 823 449 164 217 551 1353 125 405 209 471 1671 17 141 NO.6 29 325 356 296 448 692 986 92 9175
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN QUERY, RELATIVE EFFICIENCY OF GOODNESS—OF—FIT TESTS AGAINST NON—PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATION FOR SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF SING OR/ SEPARATE MAXIMUM—LIKELIHOOD ESTIMATION OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A OF UNEQUAL GAMMA COMPONENTS VAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE EFFECT OF TRUCATION ON A TEST FOR THE QUERY, SAVINGS IN TEST TIME WHEN COMPARING WEIBULL UNBIASED ESTIMATION OF LOCATION AND FIDUCIAL INFERENCE FOR LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND LOSATION OF THE STAMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND LOSATION OF THE STAMATION OF THE SHAPE AND OOD ESTIMATION, FROM SINGLY CENSORED SAMPLES, OF THE	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALE SCALE SCALE SCALE SCALE SCALE ALTERNATIVES SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER SCALE PARAMETER SCALE PARAMETER SCALE PARAMETER CONSISTENT ESTIMATION OF A SCALE PARAMETER CONSISTENT ESTIMATION OF A SCALE PARAMETER STIMATION FROM THE ORDER STATISTICS SCALE PARAMETER OF A WEIBULL POPULATION WITH KNOWN SH SCALE PARAMETERS BY ORDER STATISTICS FROM SINGLY AND SCALE PARAMETERS FOR THE RECTANCULAR POPULATION FROM SCALE PARAMETERS SIN A TYPE II CENSORED NORMAL SAMP SCALE PARAMETERS IN A TRUNCATED GROUPED SECH SQUARE SCALE PARAMETERS OF THE WEIBULL DISTRIBUTION SCALE PARAMETERS OF THE WEIBULL DISTRIBUTION	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 62 AMS 67 AMS 69 JASA 63 BIOCK67 BIOKA53 JASA 58 BIOKA67 AMS 69 BIOKA67 AMS 66 BIOKA67 AMS 66 BIOKA67 AMS 66 AMS 66 AMS 66 BIOKA64 AMS 66 BIOKA64 AMS 66 AMS 69 JRSSB59 BIOKA64 AMS 66 AMS 69 AMS 68 AMS 68 AMS 69 AMS 68 AMS 68 AMS 69 AMS 68 AMS 68 AMS 69 AMS 68	737 54 90 471 410 498 274 177B 658 823 449 164 217 551 1353 125 405 209 471 1671 17 141 NO.6 29 325 356 296 448 692 986 29 175 349
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN QUERY, RELATIVE EFFICIENCY OF GOODNESS—OF—FIT TESTS AGAINST NON—PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATION FOR SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF SING OR/ SEPARATE MAXIMUM—LIKELIHOOD ESTIMATION OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A OF UNEQUAL GAMMA COMPONENTS VAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE EFFECT OF TRUCATION ON A TEST FOR THE QUERY, SAVINGS IN TEST TIME WHEN COMPARING WEIBULL UNBIASED ESTIMATION OF LOCATION AND FIDUCIAL INFERENCE FOR LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND LOSATION OF THE STAMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND LOSATION OF THE STAMATION OF THE SHAPE AND OOD ESTIMATION, FROM SINGLY CENSORED SAMPLES, OF THE	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVING BEHAVIOR SAVING SIN TEST TIME WHEN COMPARING WEIBULL SCALE SCALE SCALE SCALE SCALE SCALE SCALE ALTERNATIVES SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER OF A WEIBULL POPULATION WITH KNOWN SH SCALE PARAMETERS SCALE PAR	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 67 AMS 67 AMS 69 JASA 63 BIOCKA67 BIOKA53 BIOKA67 AMS 69 BIOKA66 AMS 66 AMS 66 TECH 65 AMS 66 TECH 65 AMS 66 BIOKA64 AMS 66 BIOKA64 AMS 66 BIOKA64 AMS 66	737 54 90 471 410 498 274 177B 658 823 449 164 217 551 1353 125 152 405 209 471 1671 17 141 10 16 29 325 325 326 44B 692 44B 692 986 29 175 348 349 349 349 349 349 349 349 349
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN PARAMETERS QUERY, RELATIVE EFFICIENCY OF GOODNESS—OF—FIT TESTS AGAINST NON—PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATIONS OF SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF SING OR/ SEPARATE MAXIMUM—LIKELIHOOD ESTIMATION OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A OF UNEQUAL GAMMA COMPONENTS VAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE EFFECT OF TRUNCATION ON A TEST FOR THE EFFECT OF TRUNCATION OF LOCATION AND FIDUCIAL INFERENCE FOR LOCATION AND FIDUCIAL INFERENCE FOR LOCATION AND LINEAR—LOSS INTERVAL ESTIMATION OF LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND ALE PARAMETERS IN PROBLEMS WITH UNKNOWN LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND THE MAXIMUM LIKELIHOOD ESTIMATION OF LOCATION AND THE MAXIMUM LIKELIHOOD ESTIMATION OF LOCATION AND DISTRIBUTION ESTIMATION OF LOCATION AND CONSCRED SAMPLES CESTIMATION OF THE SHAPE AND OOD ESTIMATION, FROM SINGLY CENSORED SAMPLES, OF THE LEAST SQUARES ESTIMATION OF LOCATION AND TESTIMATION OF LOCATION AND TESTIMATION OF LOCATION AND DISTRIBUTION, FROM SINGLY CENSORED SAMPLES, OF THE LEAST SQUARES ESTIMATION OF LOCATION AND TESTIMATION OF LOCATION AND TESTIMATION OF LOCATION AND TESTIMATION OF THE SHAPE AND OOD ESTIMATION, FROM SINGLY CENSORED SAMPLES, OF THE LEAST SQUARES ESTIMATION OF LOCATION AND TESTING AND ESTIMATION OF LOCATION AND TESTIMATION O	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVING BEHAVIOR SAVING SIN TEST TIME WHEN COMPARING WEIBULL SCALE SCALE SCALE SCALE SCALE SCALE SCALE ALTERNATIVES SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER OF A WEIBULL POPULATION WITH KNOWN SH SCALE PARAMETERS SCALE PAR	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 67 AMS 67 BIOKA53 JASA 68 BIOKA63 BIOKA63 BIOKA66 TECH 65 AMS 64 TECH 66 AMS 64 TECH 66 AMS 68 BIOKA68 BIOKA61 BIOKA68 BIOKA68	737 54 90 471 410 498 274 177B 658 823 449 164 217 551 1353 125 105 209 471 1671 17 141 NO.6 29 325 3356 296 448 692 986 692 986 692 986 888 888 888 888 888 888 888 888 888
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN QUERY, RELATIVE EFFICIENCY OF GOODNESS—OF—FIT TESTS AGAINST NON—PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATING FOR SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF SING OR/ SEPARATE MAXIMUM—LIKELIHOOD ESTIMATION OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A OF UNEQUAL GAMMA COMPONENTS VAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE EFFECT OF TRUNCATION ON A TEST FOR THE QUERY, SAVINGS IN TEST TIME WHEN COMPARING WEIBULL UNBIASED ESTIMATION OF LOCATION AND FIDUCIAL INFERENCE FOR LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND ESTIMATOR TO AMS 56 427 'ESTIMATION OF LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND CENSORED SAMPLES ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND CENSORED SAMPLES ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND CENSORED SAMPLES ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND CENSORED SAMPLES OF THE LEAST SQUARES ESTIMATION OF LOCATION AND ESTIMATION, FROM SINGLY CENSORED SAMPLES, OF THE LEAST SQUARES ESTIMATION OF LOCATION AND TESTING OF THE USUAL ESTIMATORS OF THE LEAST SQUARES ESTIMATION OF LOCATION AND TESTING OF THE USUAL ESTIMATORS OF THE LEAST SQUARES ESTIMATION OF LOCATION AND TESTING AND ESTIMATION OF LOCATION AND TESTING OF THE USUAL ESTIMATORS OF THE LEAST SQUARES ESTIMATION OF LOCATION AND TESTING AND ESTIMATION OF LOCATION AND TESTING AND ESTIMATION OF THE USUAL ESTIMATORS OF THE LEAST SQUARES ESTIMATION OF LOCATION AND TESTING TOR THE USUAL ESTIMATION OF THE USUAL ESTIMATORS OF THE LEAST	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALE SCALE SCALE SCALE SCALE ALTERNATIVES SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER SCALE PARAMETERS BY ORDER STATISTICS SCALE PARAMETERS OF THE RECTANGULAR POPULATION FROM SCALE PARAMETERS IN A TRUNCATED GROUPED SECH SQUARE SCALE PARAMETERS IN EXPONENTIAL FAMILIES OF DISTRIBUTIO SCALE PARAMETERS OF TYPE II EXTREME-VALUE DISTRIBUTIO SCALE PARAMETERS OF TYPE II EXTREME-VALUE DISTRIBUTIO SCALE PARAMETERS OF TYPE II EXTREME-VALUE DISTRIBUTIO SCALE PARAMETERS SCALE PARAMETERS OF TYPE II EXTREME-VALUE DISTRIBUTIO SCALE PARAMETERS OF TYPE II EXTREME-VALUE DISTRIBUTIO SCALE PARAMETERS SCALE PARAMETERS OF TYPE II EXTREME-VALUE DISTRIBUTIO SCALE PARAMETERS SCALE PARAMETERS OF TYPE II EXTREME-VALUE DISTRIBUTIO SCALE PARAMETERS OF TYPE II EXTREME-VALUE DISTRIBUTIO SCALE PARAMETERS SCALE PARAMETERS OF TYPE II EXTREME-VALUE DISTRIBUTIO SCALE PARAMETERS OF TYPE II EXTREME-VALUE DISTRIBUTIO SCALE PARAMETERS SCALE PARAMETERS OF TYPE II EXTREME-VALUE DISTRIBUTIO	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 67 AMS 67 BIOKA53 JASA 68 BIOKA67 BIOKA66 BIOKA67 AMS 69 BIOKA66 TECH 65 AMS 64 TECH 65 AMS 66 BIOKA64 AMS 66 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA64 BIOKA66 BIOKA64 BIOKA66 BIOKA64 BIOKA66	737 54 90 471 410 498 274 177B 658 823 449 164 217 551 1353 125 209 471 141 171 141 180 1671 171 141 180 1671 171 141 180 180 180 180 180 180 180 18
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN PARAMETERS QUERY, RELATIVE EFFICIENCY OF GOODNESS—OF—FIT TESTS AGAINST NON—PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATION OF SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF SING OR/ SEPARATE MAXIMUM—LIKELIHOOD ESTIMATION OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A OF UNEQUAL GAMMA COMPONENTS VAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE EFFECT OF TRUNCATION ON A TEST FOR THE QUERY, SAVINGS IN TEST TIME WHEN COMPARING WEIBULL UNBIASED ESTIMATION OF LOCATION AND FIDUCIAL INFERENCE FOR LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND ALE PARAMETERS IN PROBLEMS WITH UNKNOWN LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND THE MAXIMUM LIKELIHOOD ESTIMATES OF THE LOCATION AND THE MAXIMUM LIKELIHOOD ESTIMATION OF LOCATION AND CONSCRED SAMPLES ESTIMATION OF THE SHAPE AND DISTRIBUTION FROM SINGLY CENSORED SAMPLES, OF THE LEAST SQUARES ESTIMATION OF LOCATION AND DISTRIBUTION, FROM SINGLY CENSORED SAMPLES, OF THE LEAST SQUARES ESTIMATION OF LOCATION AND TESTING AND ESTIMATION OF LOCATION AND DISTRIBUTION, FROM SINGLY CENSORED SAMPLES, OF THE LEAST SQUARES ESTIMATION OF LOCATION AND TESTING AND ESTIMATION OF LOCATION AND TESTING AND ESTIMATION OF LOCATION AND TESTING AND ESTIMATION OF THE SHAPE AND OOD ESTIMATION, FROM SINGLY CENSORED SAMPLES, OF THE LEAST SQUARES ESTIMATION OF LOCATION AND TESTING AND ESTIMATION OF LOCATION AN	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALE SCALE SCALE SCALE SCALE SCALE AND THE ESTIMATIVES SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER SCALE PARAMETER CONSISTENT ESTIMATION OF A SCALE PARAMETER /THE JOINT DISTRIBUTION OF THE ERR SCALE PARAMETER OF A WEIBULL POPULATION WITH KNOWN SH SCALE PARAMETERS FOR THE RECTANCULAR POPULATION FROM SCALE PARAMETERS FROM GROUPED DATA SCALE PARAMETERS IN A TRUNCATED GROUPED SECH SQUARE SCALE PARAMETERS IN PROBLEMS WITH UNKNOWN LOCATION AN SCALE PARAMETERS OF THE WEIBULL DISTRIBUTION SCALE PARAMETERS USING ORDER STATISTICS SCALE PARAMETERS SCALE PARAMETERS SCALE PARAMETERS USING ORDER STATISTICS SCALE PARAMETERS USING ORDER STATISTICS SCALE PARAMETERS OF THE WEIBULL DISTRIBUTION SCALE PARAMETERS OF THE WEIBULL DISTRIBUTION SCALE PARAMETERS SCALE PARAMETERS SCALE PARA	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 67 AMS 63 JASA 69 JASA 69 JASA 63 JASA 63 JASA 63 BIOKA67 AMS 66 BIOKA67 AMS 66 TECH 65 AMS 66 AMS 66 BIOKA68 AMS 66 BIOKA68 AMS 69 AMS 60 AMS 60 AMS 66	737 54 90 471 410 498 274 177B 658 823 449 164 217 551 1353 125 105 209 471 1671 17 141 NO.6 29 29 46 48 692 986 692 986 692 986 692 986 175 349 175 349 175 349 175 356 356 356 356 356 356 356 35
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN PARAMETERS RELATIVE EFFICIENCY OF GOODNESS—OF—FIT TESTS AGAINST NON—PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATION OF SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF SING OR/ SEPARATE MAXIMUM—LIKELHHOOD ESTIMATION OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A OF UNEQUAL GAMMA COMPONENTS VAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE QUERY, SAVINGS IN TEST TIME WHEN COMPARING WEIBULL UNBIASED ESTIMATION OF LOCATION AND FIDUCIAL INFERENCE FOR LOCATION AND LINEAR—LOSS INTERVAL ESTIMATION OF LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND ALE PARAMETERS IN PROBLEMS WITH UNKNOWN LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND CENSORED SAMPLES ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND DISTRIBUTION ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND DISTRIBUTION ESTIMATION OF LOCATION AND THE ESTIMATION OF LOCATION AND DISTRIBUTION ESTIMATION OF LOCATION AND DISTRIBUTION ESTIMATION OF LOCATION AND DISTRIBUTION ESTIMATION OF THE SHAPE AND OOD ESTIMATION, FROM SINGLY CENSORED SAMPLES, OF THE LEAST SQUARES ESTIMATION OF LOCATION AND THE TWO—SAMPLE WITH PROBABILITY PROPORTIONATE TO SIZE IN A LARGE A NOTE ON WILKS' INTERNAL INCONSISTENCIES IN A	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALE SCALE SCALE SCALE SCALE SCALE SCALE AND THE ESTIMATIVES SCALE AND LOCATION PARAMETERS SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DECREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER SCALE PARAMETER CONSISTENT ESTIMATION OF A SCALE PARAMETER /THE JOINT DISTRIBUTION OF THE ERR SCALE PARAMETER OF A WEIBULL POPULATION WITH KNOWN SH SCALE PARAMETERS BY ORDER STATISTICS FROM SINCLY AND SCALE PARAMETERS FROM CROUPED DATA SCALE PARAMETERS IN A TRUNCATED GROUPED SECH SQUARE SCALE PARAMETERS IN A TRUNCATED GROUPED SECH SQUARE SCALE PARAMETERS IN A TRUNCATED GROUPED SECH SQUARE SCALE PARAMETERS IN EXPONENTIAL FAMILIES OF DISTRIBUT SCALE PARAMETERS IN EXPONENTIAL FAMILIES OF DISTRIBUT SCALE PARAMETERS IN EXPONENTIAL FAMILIES OF DISTRIBUT SCALE PARAMETERS IN PROBLEMS WITH UNKNOWN LOCATION AN SCALE PARAMETERS OF THE WEIBULL DISTRIBUTION SCALE PARAMETERS OF THE WEIBULL DISTRIBUTION SCALE PARAMETERS SCALE PA	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 67 AMS 67 AMS 69 JASA 63 BIOCKA67 BIOKA53 BIOKA67 AMS 68 BIOKA67 AMS 66 BIOKA67 AMS 66 BIOKA67 AMS 66 BIOKA64 AMS 66 BIOKA64 AMS 66 BIOKA64 AMS 66 AMS 68 AMS 69 JASA 64 AMS 66 AMS 69 AMS 68 AMS 69 JASA 64 AMS 65 BIOKA64 AMS 65 BIOKA64 AMS 65 BIOKA64	737 54 90 471 410 498 274 177B 658 823 449 164 217 551 1353 125 405 209 471 1671 17 141 NO.6 29 325 356 296 448 449 986 297 2986 2987 2087 2
THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SELECTED NATIONAL INCOME COMPONENTS; AND OF PERSONAL ECONOMETRIC EXPLORATION OF INDIAN PARAMETERS QUERY, RELATIVE EFFICIENCY OF GOODNESS—OF—FIT TESTS AGAINST NON—PARAMETRIC TESTS FOR A NOTE ON NONPARAMETRIC TESTS FOR MINIMAX RESULTS FOR IFRA ON ESTIMATION OF SIZES FOR CHI APPROXIMATION TO THE RANGE ON RANKING PARAMETERS OF SING OR/ SEPARATE MAXIMUM—LIKELIHOOD ESTIMATION OF LINEAR ESTIMATES OF A POPULATION LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL ORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A OF UNEQUAL GAMMA COMPONENTS VAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE EFFECT OF TRUNCATION ON A TEST FOR THE QUERY, SAVINGS IN TEST TIME WHEN COMPARING WEIBULL UNBIASED ESTIMATION OF LOCATION AND FIDUCIAL INFERENCE FOR LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND ALE PARAMETERS IN PROBLEMS WITH UNKNOWN LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND THE MAXIMUM LIKELIHOOD ESTIMATES OF THE LOCATION AND THE MAXIMUM LIKELIHOOD ESTIMATION OF LOCATION AND CONSCRED SAMPLES ESTIMATION OF THE SHAPE AND DISTRIBUTION FROM SINGLY CENSORED SAMPLES, OF THE LEAST SQUARES ESTIMATION OF LOCATION AND DISTRIBUTION, FROM SINGLY CENSORED SAMPLES, OF THE LEAST SQUARES ESTIMATION OF LOCATION AND TESTING AND ESTIMATION OF LOCATION AND DISTRIBUTION, FROM SINGLY CENSORED SAMPLES, OF THE LEAST SQUARES ESTIMATION OF LOCATION AND TESTING AND ESTIMATION OF LOCATION AND TESTING AND ESTIMATION OF LOCATION AND TESTING AND ESTIMATION OF THE SHAPE AND OOD ESTIMATION, FROM SINGLY CENSORED SAMPLES, OF THE LEAST SQUARES ESTIMATION OF LOCATION AND TESTING AND ESTIMATION OF LOCATION AN	SAVING SAVING /SS NATIONAL PRODUCT AND ITS COMPONENTS, OF SAVING BEHAVIOR SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE SCALE SCALE SCALE SCALE SCALE ALTERNATIVES SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE SCALE IN TYPE III POPULATIONS SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION U SCALE PARAMETER SCALE PARAMETER CONSISTENT ESTIMATION OF A SCALE PARAMETER /THE JOINT DISTRIBUTION OF THE ERR SCALE PARAMETER OF A WEIBULL POPULATION WITH KNOWN SH SCALE PARAMETERS IN OF THE RECTANGULAR POPULATION FROM SCALE PARAMETERS IN A TRUNCATED GROUPED SECH SQUARE SCALE PARAMETERS IN A TRUNCATED GROUPED SECH SQUARE SCALE PARAMETERS IN A TRUNCATED GROUPED SECH SQUARE SCALE PARAMETERS IN EXPONENTIAL FAMILIES OF DISTRIBUT SCALE PARAMETERS IN EXPONENTIAL FAMILIES OF DISTRIBUT SCALE PARAMETERS OF TYPE II EXTREME-VALUE DISTRIBUTIO SCALE PARAMETERS OF TYPE II EXTREME-VALUE DISTRIBUTIO SCALE PARAMETERS USING ORDER STATISTICS SCALE PARAMETERS SCALE PARAMETERS SCALE PARAMETERS OF TYPE II EXTREME-VALUE DISTRIBUTIO SCALE PARAMETERS SCALE PARAMETERS SCALE PARAMETERS OF TYPE II EXTREME-VALUE DISTRIBUTIO SCALE PARAMETERS SCALE PARAMET	JASA 64 JASA 5B JASA 69 TECH 64 JASA 65 AMS 67 AMS 67 AMS 69 JASA 63 BIOCKA67 BIOKA53 BIOKA67 AMS 68 BIOKA67 AMS 66 BIOKA67 AMS 66 BIOKA67 AMS 66 BIOKA64 AMS 66 BIOKA64 AMS 66 BIOKA64 AMS 66 AMS 68 AMS 69 JASA 64 AMS 66 AMS 69 AMS 68 AMS 69 JASA 64 AMS 65 BIOKA64 AMS 65 BIOKA64 AMS 65 BIOKA64	737 54 90 471 410 498 274 177B 658 823 449 164 217 551 1353 125 152 405 209 471 1671 17 11 11 11 11 11 11 11 11

SCH - SEL TITLE WORD INDEX

```
AN APPROACH TO THE SCHEDULING OF JOBS ON MACHINES
                                                                                                           JRSSB61 4B4
                                       ON SHARPENING SCHEFFE BOUNDS
                                                                                                           JRSSB67 110
RECRESSION PROBLEMS
                                               SOME SCHEFFE-TYPE TESTS FOR SOME BEHRENS-FISHER-TYPE
                                                                                                            JASA 65 1163
                       FACTORIAL EXPERIMENTATION IN SCHEFFE'S ANALYSIS OF VARIANCE FOR PAIRED COMPARISONS JASA 58 529
  TESTING THE HYPOTHESIS OF NO FIXED MAIN-EFFECTS IN SCHEFFE'S MIXED MODEL
                                                                                                            AMS 62 10B5
                                     SOME REMARKS ON SCHEFFE'S SOLUTION TO THE BEHRENS-FISHER PROBLEM
                                                                                                            JASA 69 NO.4
 BAYESIAN SOLUTION OF THE SINCLE SAMPLING INSPECTION SCHEME
                                                                                       SOME REMARKS ON THE TECH 60
                                                                                                                    341
OR THE AVERACE SAMPLE RUN LENCTH OF A CUMULATIVE SUM SCHEME
                                                              /RE FOR DETERMINING UPPER AND LOWER LIMITS F JRSSB67
                                                                                                                    263
                                   A DOUBLE SAMPLING SCHEME FOR ANALYTICAL SURVEYS
                                                                                                            JASA 65
                                                                                                                    985
          AN EXTENSION OF THE TRIANCULAR ASSOCIATION SCHEME TO THREE ASSOCIATE CLASSES
                                                                                                           JRSSB66
                                                                                                                    361
                           AN EXACT (PI)PS SAMPLING SCHEME, A GENERALIZATION OF A METHOD OF HANURAV
                                                                                                           JRSSB6B
                                                                                                                    556
  THE RELATIVE EFFICIENCY OF SOME TWO-PHASE SAMPLING SCHEMES
                                                                                                            AMS 67
                                                                                                                    937
                               CONTINUOUS INSPECTION SCHEMES
                                                                                                           BIOKA54
                                                                                                                    100
     RUN LENGTHS IN CUMULATIVE CHART QUALITY CONTROL SCHEMES
                                                                                                   AVERAGE TECH 61
                                                                                                                     11
                                                                                     AN EXAMPLE OF ERRORS TECH 67
INCURRED BY ERRONEOUSLY ASSUMING NORMALITY FOR CUSUM SCHEMES
                                                                                                                     457
  TESTS OF GOODNESS-OF-FIT FOR LINEAR AUTOREGRESSIVE SCHEMES
                                                                                    SAMPLINC PROPERTIES OF JRSSB62
                                                                                                                     492
  OF PARTIALLY BALANCED INCOMPLETE BLOCK ASSOCIATION SCHEMES
                                                                                  A NOTE ON THE PARAMETERS AMS 65
                                                                                                                     331
   BLOCK DESIGNS FROM PARTIALLY BALANCED ASSOCIATION SCHEMES
                                                                          ON OBTAINING BALANCED INCOMPLETE
                                                                                                            AMS 67
                                                                                                                     618
   OF ESTIMATING PARAMETERS IN LINEAR AUTORECRESSIVE SCHEMES
                                                                      COMPARATIVE EFFICIENCIES OF METHODS BIOKA61
                                                                                                                     427
   INTERVALS FOR PARAMETERS IN MARKOV AUTOREGRESSIVE SCHEMES (WITH DISCUSSION)
                                                                                                CONFIDENCE JRSSB54
                                                                                                                     195
                                   BINOMIAL SAMPLING SCHEMES AND THE CONCEPT OF INFORMATION
                                                                                                           BIOKA57
                                                                                                                    179
                          SERIAL SAMPLING ACCEPTANCE SCHEMES DERIVED FROM BAYES'S THEOREM
                                                                                                           TECH 60
L QUANTAL RESPONSE CURVE
                            SOME OPTIMAL SEQUENTIAL SCHEMES FOR ESTIMATING THE MEAN OF A CUMULATIVE NORMA JRSSB62
LITY HAS A NORMAL PRIO/
                         SERIAL SAMPLINC ACCEPTANCE SCHEMES FOR LARGE BATCHES OF ITEMS WHERE THE MEAN QUA BIOKA6B
                                                                                                                     393
                     COMPARATIVE SAMPLING ACCEPTANCE SCHEMES IN TESTING ANTICENICITY OF VACCINES
                                                                                                           BIOCS66
ES AND RELATED LIMIT THEOREMS
                                    EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV BRANCHING PROCESS
                                                                                                            AMS 68 1801
                                         ON SAMPLING SCHEMES PROVIDING UNBIASED RATIO ESTIMATORS
                                                                                                             AMS 64
HE DESIGN OF FACTORIAL EXPERIMENTS, A SURVEY OF SOME SCHEMES REQUIRING NOT MORE THAN 256 TREATMENT COMBINA BIOKA59
                                                                                                                    251
                                      CUMULATIVE SUM SCHEMES USING GAUGING
                                                                                                           TECH 62
                                                                                                                     97
SSIVE MODEL. II NULL DISTRIBUTIONS FOR HICHER ORDER SCHEMES, NON-NULL DISTRIBUTIONS
                                                                                        /LINEAR AUTO-REGRE BIOKA56
                                                                                                                    186
                              ILLUSTRATIVE TABLES OF SCHOOL LIFE, CORR. 64 1299
                                                                                                            JASA 63 1113
                                      STATISTICS AND SCIENCE
                                                                                                            JASA 57
                                                                                                                    322
                                    INDETERMINISM IN SCIENCE AND NEW DEMANDS ON STATISTICIANS
                                                                                                            JASA 60
                                                                                                                    625
                             STATISTICAL PROBLEMS IN SCIENCE. THE SYMMETRIC TEST OF A COMPLETE HYPOTHESIS
                                                                                                           JASA 69 NO.4
             MATHEMATICAL PROBABILITY IN THE NATURAL SCIENCES
                                                                                                            TECH 59
                                                                                                                    21
                             STATISTICAL METHODS AND SCIENTIFIC INDUCTION
                                                                                                            JRSSB55
                                                                                                                     69
                     THE STATISTICAL CONSULTANT IN A SCIENTIFIC LABORATORY
                                                                                                            TECH 69
                                                                                                                    247
CAPITAL THROUGH MICRATION
                                                     SCOOLING, EXPERIENCE, AND GAINS AND LOSSES IN HUMAN
                                                                                                            JASA 67
                                                                                                                    B75
                                 THE PROGRESS OF THE SCORE DURING A BASEBALL CAME
                                                                                                            JASA 61
                                                                                                                    703
                                  ON RANDOMIZED RANK SCORE PROCEDURE OF BELL AND DOKSUM
                                                                                                            AMS 66 1697
                      THE DISTRIBUTION OF KENDALL'S SCORE S FOR A PAIR OF TIED RANKINGS
                                                                                                           BIOKA60 151
        ASYMPTOTIC EFFICIENCY OF MULTIVARIATE NORMAL SCORE TEST
                                                                                                            AMS 67 1753
        ANALYSIS OF COVARIANCE BASED ON GENERAL RANK SCORES
                                                                                                            AMS 69
                                                                                                                    610
                     ON THE SUM OF SQUARES OF NORMAL SCORES
                                                                                                            BIOKA56
                             ROUND-ROBIN TOURNAMENT SCORES
                                                                                                            BIOKA69
            SOME APPLICATIONS OF EXPONENTIAL ORDERED SCORES
                                                                                                            JRSSB64
                                                                                                                    103
   DISTRIBUTION AND THE DETERMINATION OF APPROPRIATE SCORES
                                                                             A PROPERTY OF THE MULTINOMIAL BIOKA64
                                                                                                                     265
OF ORDERED VARIATES AND THE SUM OF SQUARES OF NORMAL SCORES
                                                                   THE CURVE THROUGH THE EXPECTED VALUES BIOKA66
                                                                                                                    252
                                   QUERY, PREFERENCE SCORES (REVISITED)
                                                                                                            TECH 6B
                                                                                                                     612
                                              USE OF SCORES FOR THE ANALYSIS OF ASSOCIATION IN CONTINGENCY BIOKA52
                                                                                                                    274
 TABLES
       DISTRIBUTION AND POWER OF THE ABSOLUTE NORMAL SCORES TEST
                                                                                                            JASA 67
                                                                                                                    966
ND EXACT BAHADUR EFFICIENCY OF THE TWO-SAMPLE NORMAL SCORES TEST
                                                                   /IES FOR SAMPLING WITHOUT REPLACEMENT A BIOKAGB
                                                                                                                    371
                    ON THE EFFICIENCY OF THE NORMAL SCORES TEST RELATIVE TO THE F-TEST
                                                                                                            AMS 65 1306
   EFFICIENCY FOR THE ONE SAMPLE WILCOXON AND NORMAL SCORES TESTS
                                                                                    SMALL SAMPLE POWER AND
                                                                                                            AMS 63
                                                                                                                    624
                                       ON THE NORMAL SCORES TWO-SAMPLE RANK TEST
                                                                                                            JASA 64
                                                                                                                    652
        CORRIGENDA, 'ON THE SUM OF SQUARES OF NORMAL SCORES'
                                                                                                            BIOKA65
                                                                                                                    669
NOTYPE FREQUENCIES BY A METHOD OF MAXIMUM LIKELIHOOD SCORING
                                                               /ION OF THE INBREEDING COEFFICIENT FROM PHE BIOCS68
                                                 THE SCORING OF MULTIPLE CHOICE QUESTIONNARES
                                                                                                            AMS 62
                                                     SCORINC RULES AND THE EVALUATION OF PROBABILITY
                                                                                                            JASA 69 1073
              OPTIMAL REPLICATION IN SEQUENTIAL DRUG SCREENING
                                                                                                            BIOKA64
                          A GENERAL APPROACH TO SOME SCREENING AND CLASSIFICATION PROBLEMS (WITH DISCUSSIO JRSSB6B
                          A COMPARISON OF SUCCESSIVE SCREENING AND DISCRIMINANT FUNCTION TECHNIQUES IN MED BIOCS69 NO.4
ICAL TAXONOMY
                     A NOTE ON 'A STUDY OF THE GROUP SCREENING EXPERIMENT'
                                                                                                            TECH 63 397
                             A SEQUENTIAL METHOD FOR SCREENING EXPERIMENTAL VARIABLES
                                                                                                            JASA 62
                                                                                                                     455
           QUICK ANALYSIS METHODS FOR RANDOM BALANCE SCREENING EXPERIMENTS
                                                                                                            TECH 59
                                                                                                                    195
       USE OF BOTH POSITIVE AND NEGATIVE CONTROLS IN SCREENING EXPERIMENTS
                                                                                             THE EFFECTIVE BIOCS67
                                                                                                                    285
                                   ON THE THEORY OF SCREENING FOR CHRONIC DISEASES
                                                                                                            BIOKA69 NO.3
                                A STUDY OF THE GROUP SCREENING METHOD
                                                                                                            TECH 61
                                                                                                                    371
 A NOTE ON C.S. WATSON'S PAPER 'A STUDY OF THE CROUP SCREENING METHOD'
                                                                                                            TECH 65
                                                                                                                    444
                                        OPTIMAL DRUG SCREENING PLANS
                                                                                                            BIOKA63
                                                                                                                     31
                    AN EXPERIMENTAL STUDY OF CERTAIN SCREENING PROCESSES
                                                                                                            JRSSB66
                                                                                                                     BB
                                                   A SCREENING SYSTEM FOR ANTI-CANCER ACENTS BASED ON THE
THERAPEUTIC INDEX
                                                                                                           BIOCS65
                                                                                                                    150
                                       THE DESIGN OF SCREENING TESTS
                                                                                                            TECH 63
                                                                                                                     4B1
                                               GROUP SCREENING UTILIZING BALANCED AND PARTIALLY BALANCED
INCOMPLETE BLOCK DESIGNS
                                                                                                            BIOCS65
                                                                                                                    B65
                                               CROUP SCREENING WITH MORE THAN TWO STAGES
                                                                                                            TECH 62
                                                                                                                    209
                                     THE LINDISFARNE SCRIBES' PROBLEM
                                                                                                            JRSSR5R
                                                                                                                     93
                                        A SEQUENTIAL SEARCH PROCEDURE
                                                                                                            AMS 67
                                                                                                                     494
                                        A SEQUENTIAL SEARCH PROCEDURE FOR LOCATING A RESPONSE JUMP
                                                                                                            TECH 62
                                                                                                                    610
A NUMERICAL INVESTIGATION OF SEVERAL ONE-DIMENSIONAL SEARCH PROCEDURES IN NONLINEAR REGRESSION PROBLEMS
                                                                                                           TECH 69
                                                                                                                    265
                      ALTERNATIVE AXIOMATIZATIONS OF SEASONAL ADJUSTMENT
                                                                                                            JASA 66
                                                                                                                    BOO
         LINEAR APPROXIMATIONS TO THE CENSUS AND BLS SEASONAL ADJUSTMENT METHODS
                                                                                                            JASA 68
                                                                                                                    445
                                                     SEASONAL ADJUSTMENT OF DATA FOR ECONOMETRIC ANALYSIS
                                                                                                           JASA 67
                                                                                                                    137
                                                     SEASONAL ADJUSTMENT OF ECONOMIC TIME SERIES AND
MULTIPLE REGRESSION ANALYSIS
                                                                                                            JASA 63
                                                                                                                    993
                  MINIMUM VARIANCE, LINEAR, UNBIASED SEASONAL ADJUSTMENT OF ECONOMIC TIME SERIES, CORR
                                                                                                           JASA 64
                                                                                                                    681
       SPECTRAL EVALUATION OF BLS AND CENSUS REVISED SEASONAL ADJUSTMENT PROCEDURES
                                                                                                            JASA 68
                                                                                                                    472
                                                     SEASONAL ADJUSTMENTS BY ELECTRONIC COMPUTER METHODS
                                                                                                           JASA 57
                                                                                                                    415
```

TITLE WORD INDEX SCH - SEL

SHIFTS				
			JASA 56	615
	RECRESSION ANALYSIS OF		JASA 64	402
		SEASONAL PATTERN, CORR. 66 1247	JASA 64	
	FOURIER METHODS FOR EVOLVING		JASA 65	492
	STIMATION OF QUASI-LINEAR TREND AND		JASA 63	
1162	THE ESTIMATION OF	SEASONAL VARIATION IN ECONOMIC TIME SERIES, CORR. 63		31
1951-1960			JASA 66	706
ION		SEASONAL VARIATION WITH AN APPLICATION TO HOC PRODUCT		655
THE USE OF AN .	TERATED MOVINC AVERACE IN MEASURING		JASA 62	149
			JASA 58	66
		SEASONALITY IN THE CONSUMER PRICE INDEX	JASA 61	27
1.00.MT-11ID.0011	CENERALIZED HYPERBOLIC		JASA 68	329
	E PARAMETERS IN A TRUNCATED GROUPED			
		SECOND DEGREE AND SIGMA'S, CORR. 65 1069 SECOND DEGREE POLYNOMIALS IN NORMAL VECTOR	AMS 64 AMS 62	
		SECOND DIFFERENCES, FOR SERIAL CORRELATION BETWEEN SU		186
			AMS 6B	B33
N MAINIA UN			JRSSB67	266
DES	EWAL THEOREMS WHEN THE FIRST OR THE		AMS 6B	
1/LI		SECOND MOMENTS OF STOPPING RULES	AMS 66	
ASSOCIATE PBIB DE			JASA 69	
	PROPERTIES OF SPECTRAL ESTIMATES OF			375
COVARIANCE			BIOKA69	
FSTIMATION OF	A RECRESSION PARAMETER FOR CERTAIN	SECOND ORDER PROCESSES FEETCHENT	AMS 61	1299
BOTTMATION OF	THE CHOICE OF A	SECOND ORDER ROTATABLE DESIGN	BIOKA63	335
	CORRIGENDA. THE CHOICE OF A	SECOND ORDER PROCESSES EFFICIENT SECOND ORDER ROTATABLE DESIGN SECOND ORDER ROTATABLE DESIGN' SECOND ORDER ROTATABLE DESIGN'	BIOKAGS	305
	FURTHER	SECOND ORDER ROTATABLE DESIGNS	NMS 6B	1995
		SECOND ORDER ROTATABLE DESIGNS IN K DIMENSIONS	AMS 67	
MEMORIAL LECTURE			BIOCS66	
			BIOKA69	
OF TWO ESTIMA	TES FOR STANDARD DEVIATION BASED ON			1
THE WRONG REGIONS			BIOKA66	
REGIONS		SECOND-ORDER APPROXIMATION TO OPTIMAL SAMPLING	AMS 69	
		SECOND-ORDER TENSORS, WITH RELATED TESTS AND DESIGNS		
		SECONDARILY BAYES APPROACH	BIOKA67	85
THE COMPARISON OF		SECTIONS OF INDEPENDENT STOCHASTIC SERIES	JRSSB55	20B
BALANCED INCOM	PLETE BLOCK DESIGNS FOR DIRECTIONAL	SEED ORCHARDS THE USE OF CYCLIC	BIOCS67	761
ALANCED INCOMPLET	E BLOGK DESIGNS FOR NON-DIRECTIONAL STATISTICAL EVALUATION OF CLOUD	SEED ORCHARDS THE USE OF CYCLIC BEED ORCHARDS THE USE OF CYCLIC B	BIOCS69	561
	STATISTICAL EVALUATION OF CLOUD	SEEDINC OPERATIONS	JASA 60	446
		SEEMINCLY UNRELATED REGRESSION EQUATIONS ESTIMATORS	JASA 67	141
FINITE SAMPLE RES	ULTS ESTIMATORS FOR	SEEMINGLY UNRELATED RECRESSION EQUATIONS, SOME EXACT	JASA 63	977
	ERTIES OF ALTERNATIVE ESTIMATORS OF		JASA 68	11B0
TION BIAS		SEEMINGLY UNRELATED REGRESSIONS AND TESTS FOR AGGREGA		34B
			JASA 67	
ESTIMATED			JASA 66	
D A TILL		SEGMENTED STRAIGHT LINES	JASA 69	
	AND CHAINS OF RANDOM STRAIGHT-LINE DISTRIBUTION OF JOINS BETWEEN LINE		TECH 66	30 3 555
MUMENIS OF IND	DISTRIBUTION OF JOINS DETWEEN CINE	SELECTED ECONOMIC DATA, ACCURACY VS. REPORTING SPEED		
			1151 60	
ESTIMATES OF S	MPLING VARIANCE WHERE TWO UNITS ARE			436
	MPLING VARIANCE WHERE TWO UNITS ARE	SELECTED FROM EACH STRATUM	JASA 57	436 503
TES OF GROSS NAT	ONAL PRODUCT AND ITS COMPONENTS, OF	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL	JASA 57 JASA 5B	436 503 54
TES OF GROSS NAT	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE	JASA 57 JASA 5B BIOGS69	436 503 54 553
TES OF GROSS NAT	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS	JASA 57 JASA 5B	436 503 54
TES OF GROSS NAT	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS	JASA 57 JASA 5B BIOGS69 AMS 62	436 503 54 553 85
TES OF GROSS NAT: LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QI	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN ANT/ NONPARAMETRIC PROCEDURES FOR	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE HOW SELECTING A SUBSET CONTAINING THE POPULATION WITH THE	JASA 57 JASA 5B BIOGS69 AMS 62 BIOKA69 JASA 59 AMS 67	436 503 54 553 85 207 102
TES OF GROSS NAT: LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QU SMALLEST VARIANU	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN (ANT/ NONPARAMETRIC PROCEDURES FOR ON	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE	JASA 57 JASA 5B BIOGS69 AMS 62 BIOKA69 JASA 59 AMS 67 BIOKA62	436 503 54 553 85 207 102 17BB 495
TES OF GROSS NAT: LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QU SMALLEST VARIANG BEST	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY COXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN IANT/ NONPARAMETRIC PROCEDURES FOR ON ON	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELEGTED SUBSET SELECTING A PARTICULAR SAMPLE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE	JASA 57 JASA 5B BIOGS69 AMS 62 BIOKA69 JASA 59 AMS 67 BIOKA62 AMS 67	436 503 54 553 85 207 102 17BB 495
TES OF GROSS NAT' LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QI SMALLEST VARIANG BEST	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN ANT/ NONPARAMETRIC PROCEDURES FOR E ON CHE USE OF A GONCOMITANT VARIABLE IN	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN	JASA 57 JASA 58 BIOGS69 AMS 62 BIOKA69 JASA 59 AMS 67 BIOKA62 AMS 67 BIOKA57	436 503 54 553 85 207 102 17BB 495 1072 150
TES OF GROSS NAT' LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QI SMALLEST VARIANG BEST	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN ANT/ NONPARAMETRIC PROCEDURES FOR E ON THE USE OF A GONCOMITANT VARIABLE IN THE USE OF A CONCOMITANT VARIABLE IN	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN'	JASA 57 JASA 5B BIOGS69 AMS 62 BIOKA69 JASA 59 AMS 67 BIOKA62 AMS 67 BIOKA57 BIOKA57	436 503 54 553 85 207 102 17BB 495 1072 150 534
TES OF GROSS NAT' LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QI SMALLEST VARIANG BEST	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN IANT/ NONPARAMETRIC PROCEDURES FOR ON THE USE OF A GONCOMITANT VARIABLE IN USE OF A CONCOMITANT VARIABLE IN USE OF DOUBLE SAMPLING FOR	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN SELECTING BEST POPULATION	JASA 57 JASA 5B BIOGS69 AMS 62 BIOKA69 JASA 59 AMS 67 BIOKA62 AMS 67 BIOKA57 BIOKA57 BIOKA57 BIOKA64	436 503 54 553 85 207 102 17BB 495 1072 150 534 49
TES OF GROSS NAT' LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QI SMALLEST VARIANG BEST	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN INTERPOLATION OF THE USABLE IN ON ON THE USE OF A GONCOMITANT VARIABLE IN THE USE OF A CONCOMITANT VARIABLE IN USE OF DOUBLE SAMPLING FOR NEW CRITERIA FOR	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN SELECTING BEST POPULATION SELECTING CONTINUOUS SAMPLING PLANS	JASA 57 JASA 58 BIOGS69 AMS 62 BIOKA69 JASA 59 AMS 67 BIOKA62 AMS 67 BIOKA57 BIOKA57 BIOKA64 TECH 64	436 503 54 553 85 207 102 17BB 495 1072 150 534 49 161
TES OF GROSS NAT' LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QI SMALLEST VARIANG BEST	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN ANT/ NONPARAMETRIC PROCEDURES FOR E ON COMPONENT OF A CONCOMITANT VARIABLE IN USE OF A CONCOMITANT VARIABLE IN USE OF DOUBLE SAMPLING FOR NEW CRITERIA FOR A MODEL FOR	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE HOW SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN SELECTING BEST POPULATION SELECTING CONTINUOUS SAMPLING PLANS SELECTING ONE OF TWO MEDICAL TREATMENTS	JASA 57 JASA 5B BIOGS69 AMS 69 JASA 59 AMS 67 BIOKA62 AMS 67 BIOKA57 BIOKA57 BIOKA64 BIOKA64 JASA 63	436 503 54 553 85 207 102 17BB 495 1072 150 534 49 161 3BB
TES OF GROSS NAT' LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QI SMALLEST VARIANG BEST	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN ANT/ NONPARAMETRIC PROCEDURES FOR ON THE USE OF A GONCOMITANT VARIABLE IN USE OF A CONCOMITANT VARIABLE IN USE OF DOUBLE SAMPLING FOR NEW CRITERIA FOR A MODEL FOR A TWO-STAGE MODEL FOR	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN' SELECTING BEST POPULATION SELECTING CONTINUOUS SAMPLING PLANS SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OF TWO TREATMENTS	JASA 57 JASA 5B BIOGS69 AMS 62 BIOKA69 JASA 59 AMS 67 BIOKA57 BIOKA57 BIOKA57 BIOKA64 TECH 64 JASA 63 BIOCS65	436 503 54 553 85 207 102 17BB 495 1072 150 534 49 161 3BB 169
TES OF GROSS NAT: LECTION IN BREED: ASYMPTOTIC APPL MANY OF A GROUP LARGEST ALPHA-QU SMALLEST VARIANG BEST CORRIGENDA TO	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY COXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN INTO A COMPONENT OF THE END ON ON THE USE OF A GONCOMITANT VARIABLE IN USE OF A CONCOMITANT VARIABLE IN USE OF DOUBLE SAMPLING FOR NEW CRITERIA FOR A MODEL FOR A TWO-STAGE MODEL FOR A SEQUENTIAL PROCEDURE FOR	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN SELECTING BEST POPULATION SELECTING CONTINUOUS SAMPLING PLANS SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OR TWO TREATMENTS SELECTING THE LARGEST OF K MEANS	JASA 57 JASA 58 BIOGS69 AMS 62 BIOKA69 JASA 59 BIOKA62 AMS 67 BIOKA57 BIOKA57 BIOKA57 BIOKA64 TECH 64 JASA 63 BIOCS65 AMS 68	436 503 54 553 85 207 102 17BB 495 1072 150 534 49 161 3BB 169 BB
TES OF GROSS NAT: LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QL SMALLEST VARIANU BEST CORRIGENDA TO ''	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN INT/ NONPARAMETRIC PROCEDURES FOR ON HE USE OF A GONCOMITANT VARIABLE IN USE OF A CONCOMITANT VARIABLE IN USE OF DOUBLE SAMPLING FOR NEW CRITERIA FOR A MODEL FOR A TWO-STAGE MODEL FOR A SEQUENTIAL PROCEDURE FOR ON	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE HOW SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN' SELECTING BEST POPULATION SELECTING CONTINUOUS SAMPLING PLANS SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OF TWO TREATMENTS SELECTING THE LARGEST OF K MEANS	JASA 57 JASA 58 BIOGS69 AMS 62 BIOKA69 JASA 59 AMS 67 BIOKA62 AMS 67 BIOKA57 BIOKA57 BIOKA57 BIOKA64 TECH 64 JASA 63 BIOCS65 AMS 68 JASS 63 BIOCS65	436 503 54 553 85 207 102 17BB 495 1072 150 534 49 161 3BB 169 BB
TES OF GROSS NAT: LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QL SMALLEST VARIANU BEST CORRIGENDA TO ''	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN ANT/ NONPARAMETRIC PROCEDURES FOR ON HE USE OF A GONCOMITANT VARIABLE IN USE OF A CONCOMITANT VARIABLE IN USE OF DOUBLE SAMPLING FOR NEW CRITERIA FOR A MODEL FOR A TWO-STAGE MODEL FOR A SEQUENTIAL PROCEDURE FOR ON NOT CANONICAL ANALYSIS, A METHOD FOR	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE HOW SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN SELECTING BEST POPULATION SELECTING CONTINUOUS SAMPLING PLANS SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OR TWO TREATMENTS SELECTING THE LARGEST OF K MEANS SELECTING THE MOST EFFECTIVE DISCRIMINATORS IN A MULT	JASA 57 JASA 58 BIOCSG9 AMS 62 BIOKA69 JASA 59 AMS 67 BIOKA62 AMS 67 BIOKA62 AMS 67 BIOKA64 TECH 64 JASA 63 BIOCSG5 AMS 68 BIOCSG6 BIOCSG6	436 503 54 553 85 207 102 17BB 495 1072 150 534 49 161 3BB 169 BB 1 B45
TES OF GROSS NAT: LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QU SMALLEST VARIANO BEST CORRIGENDA TO '' "WITH DISCUSSION IATE-COVARIANCE A	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN INT/ NONPARAMETRIC PROCEDURES FOR ON OXIMATION TO THE USE OF A GONCOMITANT VARIABLE IN USE OF A CONCOMITANT VARIABLE IN USE OF DOUBLE SAMPLING FOR NEW CRITERIA FOR A MODEL FOR A SEQUENTIAL PROCEDURE FOR ON OXIMATION OF THE USE OF A SEQUENTIAL PROCEDURE FOR OXIMATION OF THE USE OF A SEQUENTIAL PROCEDURE FOR OXIMATION OF THE USE OF TH	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN' SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OF TWO TREATMENTS SELECTING THE LARGEST OF K MEANS SELECTING THE LARGEST OF K MORMAL POPULATION MEANS SELECTING THE LARGEST OF K NORMAL POPULATION MEANS SELECTING THE DOST EFFECTIVE DISCRIMINATORS IN A MULT SELECTING THE POPULATION WITH THE LARGEST MEAN FROM K	JASA 57 JASA 58 BIOCSG9 AMS 62 BIOKA69 JASA 59 AMS 67 BIOKA62 AMS 67 BIOKA62 AMS 67 BIOKA64 TECH 64 JASA 63 BIOCSG5 AMS 68 BIOCSG6 BIOCSG6	436 503 54 553 85 207 102 17BB 495 1072 150 534 49 161 3BB 169 BB 1 BB 1 B45 174
TES OF GROSS NAT: LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QI SMALLEST VARIANG BEST CORRIGENDA TO ''' "WITH DISCUSSION IATE-COVARIANCE INORMAL POPULATION	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN INT/ NONPARAMETRIC PROCEDURES FOR ON OXIMATION TO THE USE OF A GONCOMITANT VARIABLE IN USE OF A CONCOMITANT VARIABLE IN USE OF DOUBLE SAMPLING FOR NEW CRITERIA FOR A MODEL FOR A SEQUENTIAL PROCEDURE FOR ON OXIMATION OF THE USE OF A SEQUENTIAL PROCEDURE FOR OXIMATION OF THE USE OF A SEQUENTIAL PROCEDURE FOR OXIMATION OF THE USE OF TH	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE ELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN SELECTING BEST POPULATION SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING THE LARGEST OF K MORMAL POPULATION MEANS SELECTING THE LARGEST OF K NORMAL POPULATION MEANS SELECTING THE LARGEST OF K NORMAL POPULATION MEANS SELECTING THE DOPULATION WITH THE LARGEST MEAN FROM K SELECTING THE POPULATION WITH THE LARGEST MEAN FROM K SELECTING THE POPULATION WITH THE LARGEST MEAN FROM K	JASA 57 JASA 58 BIOGS69 AMS 62 BIOKA69 JASA 59 AMS 67 BIOKA62 AMS 67 BIOKA67 BIOKA67 BIOKA64 TECH 64 JASA 63 BIOCS65 AMS 68 JRSSB60 BIOCS65 AMS 68	436 503 54 553 85 207 102 17BB 495 1072 150 534 49 161 3BB 169 BB 1 B45 174 1804
TES OF GROSS NAT: LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QL SMALLEST VARIAN BEST CORRIGENDA TO '' "WITH DISCUSSION IATE-COVARIANCE A NORMAL POPULATIC QUANTILE	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN ANT/ NONPARAMETRIC PROCEDURES FOR HE USE OF A GONCOMITANT VARIABLE IN USE OF A CONCOMITANT VARIABLE IN USE OF DOUBLE SAMPLING FOR A MODEL FOR A MODEL FOR A SEQUENTIAL PROCEDURE FOR ON NOT CANONICAL ANALYSIS, A METHOD FOR NOT A SEQUENTIAL PROCEDURE FOR NONPARAMETRIC PROCEDURES FOR	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN' SELECTING AN EXPERIMENTAL DESIGN' SELECTING ONE OR TWO TREATMENTS SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OF TWO TREATMENTS SELECTING THE LARGEST OF K NORMAL POPULATION MEANS SELECTING THE LARGEST OF K NORMAL POPULATION MEANS SELECTING THE MOST EFFECTIVE DISCRIMINATORS IN A MULT SELECTING THE MOST EFFECTIVE DISCRIMINATORS IN A MULT SELECTING THE POPULATION WITH THE LARGEST MEAN FROM K SELECTING THE T POPULATION WITH THE LARGEST ALPHA- SELECTION	JASA 57 JASA 58 BIOGS69 AMS 62 BIOKA69 JASA 59 AMS 67 BIOKA62 AMS 67 BIOKA67 BIOKA57 BIOKA64 JASA 63 BIOCS65 AMS 66 JRSSB60 BIOCS68 AMS 66	436 503 54 553 85 207 102 17BB 495 1072 150 534 49 161 3BB 169 BB 1 B45 174 1804 990
TES OF GROSS NAT: LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QI SMALLEST VARIANG BEST CORRIGENDA TO '' "WITH DISCUSSION IATE-COVARIANCE A NORMAL POPULATIO QUANTILE ON THE CO	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN ANT/ NONPARAMETRIC PROCEDURES FOR ON ON THE USE OF A GONCOMITANT VARIABLE IN USE OF A CONCOMITANT VARIABLE IN USE OF DOUBLE SAMPLING FOR A MODEL FOR A TWO-STAGE MODEL FOR A SEQUENTIAL PROCEDURE FOR NONPARAMETRIC PROCEDURE FOR NONPARAMETRIC PROCEDURES FOR SOME MODEL I PROBLEMS OF INSTRUCTION OF AN INDEX FOR INDIRECT SELECTION, 1. MASS	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE ELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN SELECTING BEST POPULATION SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING THE LARGEST OF K MORMAL POPULATION MEANS SELECTING THE LARGEST OF K NORMAL POPULATION MEANS SELECTING THE DOPULATION WITH THE LARGEST MEAN FROM K SELECTING THE POPULATION WITH THE LARGEST MEAN FROM K SELECTING THE TOPULATION WITH THE LARGEST ALPHA— SELECTION SELECTION SELECTION SELECTION	JASA 57 JASA 58 BIOCS69 AMS 62 BIOKA69 JASA 59 JASA 59 BIOKA62 AMS 67 BIOKA62 AMS 67 BIOKA57 BIOKA64 TECH 64 JASA 63 BIOCS65 AMS 66 BIOCS6B AMS 660 AMS 67 AMS 61	436 503 54 553 85 207 102 17BB 495 1072 150 534 49 161 3BB 169 BB 1 B45 174 1804 990 291
TES OF GROSS NAT: LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QL SMALLEST VARIAN BEST CORRIGENDA TO '' "WITH DISCUSSION IATE-COVARIANCE A NORMAL POPULATIC QUANTILE ON THE C THE 'THE E	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN ANT/ NONPARAMETRIC PROCEDURES FOR ON HE USE OF A GONCOMITANT VARIABLE IN USE OF DOUBLE SAMPLING FOR NEW CRITERIA FOR A TWO-STAGE MODEL FOR A SEQUENTIAL PROCEDURE FOR NONPARAMETRIC PROCEDURE FOR NONPARAMETRIC PROCEDURES FOR NONPARAMETRIC PROCEDURES FOR SOME MODEL I PROBLEMS OF NONPARAMETRIC PROCEDURES FOR SOME MODEL I PROBLEMS OF NONTRUCTION OF AN INDEX FOR INDIRECT SALEUR OF INDIRECT SELECTION, 1. MASS FECT OF FIELD BLOCKING ON GAIN FROM	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN SELECTING BEST POPULATION SELECTING CONTINUOUS SAMPLING PLANS SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OF TWO TREATMENTS SELECTING THE LARGEST OF K MEANS SELECTING THE LARGEST OF K MEANS SELECTING THE CARGEST OF K NORMAL POPULATION MEANS SELECTING THE MOST EFFECTIVE DISCRIMINATORS IN A MULT SELECTING THE POPULATION WITH THE LARGEST MEAN FROM K SELECTION SELECTION SELECTION SELECTION SELECTION SELECTION	JASA 57 JASA 58 BIOGS69 AMS 62 BIOKA69 JASA 59 BIOKA69 JASA 59 BIOKA62 AMS 67 BIOKA62 AMS 67 BIOKA57 BIOKA64 JASA 63 BIOCS65 AMS 68 BIOCS65 AMS 68 BIOCS66 AMS 64 AMS 67 AMS 61 BIOCS65 BIOCS65 BIOCS66	436 503 553 85 207 102 17BB 495 1072 150 534 49 161 3BB 169 BB 1 B45 174 1804 990 291 6B2 8B43
TES OF GROSS NAT: LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QU SMALLEST VARIANO BEST CORRIGENDA TO '' "WITH DISCUSSION IATE-COVARIANCE AND	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN ANT/ NONPARAMETRIC PROCEDURES FOR ON THE USE OF A CONCOMITANT VARIABLE IN USE OF A CONCOMITANT VARIABLE IN USE OF DOUBLE SAMPLING FOR A TWO-STAGE MODEL FOR A SEQUENTIAL PROCEDURE FOR NONPARAMETRIC PROCEDURE FOR NONPARAMETRIC PROCEDURE FOR NONPARAMETRIC PROCEDURE FOR SOME MODEL I PROBLEMS OF NONTRUCTION OF AN INDEX FOR INDIRECT SELECTION, 1. MASS FECT OF FIELD BLOCKING ON GAIN FROM CEMENT WITH UNEQUAL PROBABILITIES OF	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN SELECTING CONTINUOUS SAMPLING PLANS SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING THE LARGEST OF K MEANS SELECTING THE LARGEST OF K MEANS SELECTING THE MOST EFFECTIVE DISCRIMINATORS IN A MULT SELECTING THE MOST EFFECTIVE DISCRIMINATORS IN A MULT SELECTING THE POPULATION WITH THE LARGEST MEAN FROM K SELECTION SELECTION SELECTION SELECTION SELECTION SELECTION SELECTION SELECTION SELECTION ON SAMPLING	JASA 57 JASA 58 BIOCSG9 AMS 62 BIOKA69 JASA 59 AMS 67 BIOKA62 AMS 67 BIOKA67 BIOKA57 BIOKA57 BIOKA57 BIOKA54 BIOCSG5 AMS 63 BIOCSG5 AMS 64 AMS 64 AMS 67 AMS 61 BIOCSG5 BIOCSG5 BIOCSG5 BIOCSG5 BIOCSG5 BIOCSG5 BIOCSG5	436 503 54 553 85 207 102 17BB 495 1072 150 534 49 161 3BB 169 BB 1 B45 174 1804 990 291 6B2 8B3 499
TES OF GROSS NAT: LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QU SMALLEST VARIANO BEST CORRIGENDA TO '' "WITH DISCUSSION IATE-COVARIANCE AND	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN ANT/ NONPARAMETRIC PROCEDURES FOR ON THE USE OF A GONCOMITANT VARIABLE IN USE OF DOUBLE SAMPLING FOR NEW CRITERIA FOR A MODEL FOR A SEQUENTIAL PROCEDURE FOR ON A SEQUENTIAL PROCEDURE FOR NONPARAMETRIC PROCEDURES FOR NONPARAMETRIC PROCEDURES FOR NONPARAMETRIC PROCEDURES FOR SOME MODEL I PROBLEMS OF A SEQUENTIAL PROCEDURES FOR NONPARAMETRIC PROCEDURES FOR NONPARAMETRIC PROCEDURES FOR SOME MODEL I PROBLEMS OF INDIRECT SELECTION, 1. MASS FECT OF FIELD BLOCKING ON GAIN FROM EMEMON WITH UNEQUAL PROBABILITIES OF LAINS TO SIB MATING POPULATIONS WITH	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE HOW SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN' SELECTING BEST POPULATION SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING THE LARGEST OF K MEANS SELECTING THE LARGEST OF K NORMAL POPULATION MEANS SELECTING THE LARGEST OF K NORMAL POPULATION MEANS SELECTING THE DOPULATION WITH THE LARGEST MEAN FROM K SELECTING THE TOPULATION WITH THE LARGEST MEAN FROM K SELECTION SELECTION SELECTION SELECTION SELECTION ON SAMPLING	JASA 57 JASA 58 BIOGS69 AMS 62 BIOKA69 JASA 59 AMS 67 BIOKA62 AMS 67 BIOKA57 BIOKA57 BIOKA57 BIOKA64 JASA 63 BIOCS65 JAMS 67 AMS 67 AMS 67 AMS 665 BIOCS65 BIOCS65 BIOCS65 BIOCS66 BIOCS66	436 503 54 553 85 207 102 178B 495 150 534 49 161 38B 169 8B 174 1804 990 6B2 843 499 17
TES OF GROSS NAT: LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QU SMALLEST VARIANO BEST CORRIGENDA TO '' "WITH DISCUSSION IATE-COVARIANCE AND	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN ANT/ NONPARAMETRIC PROCEDURES FOR ON HE USE OF A GONCOMITANT VARIABLE IN USE OF DOUBLE SAMPLING FOR NEW CRITERIA FOR A TWO-STAGE MODEL FOR A SEQUENTIAL PROCEDURE FOR NONPARAMETRIC PROCEDURES FOR NONPARAMETRIC PROCEDURES FOR SOME MODEL I PROBLEMS OF NONPARAMETRIC PROCEDURES FOR SOME MODEL I PROBLEMS OF NONPARAMETRIC PROCEDURES FOR SOME MODEL I PROBLEMS OF NONFARAMETRIC PROCEDURES FOR SOME MODEL I PROBLEMS OF NONFROM THE MODEL OF AN INDEX FOR INDIRECT SELECTION, 1. MASS OFFICE OF FIELD BLOCKING ON GAIN FROM SEMENT WITH UNEQUAL PROBABILITIES OF IAINS TO SIB MATING POPULATIONS WITH	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARRIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE HOW SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN SELECTING BEST POPULATION SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING THE LARGEST OF K MEANS SELECTING THE LARGEST OF K MEANS SELECTING THE LARGEST OF K NORMAL POPULATION MEANS SELECTING THE DATE OF K NORMAL POPULATION MEANS SELECTING THE DATE OF K NORMAL POPULATION MEANS SELECTING THE POPULATION WITH THE LARGEST MEAN FROM K SELECTION SELECTION SELECTION SELECTION SELECTION SELECTION SELECTION ON SAMPLING SELECTION SELECTION SELECTION SELECTION SELECTION SELECTION SELECTION SELECTION ON SAMPLING SELECTION SELECTION SELECTION SELECTION ON SAMPLING SELECTION SELECTION SELECTION SELECTION SELECTION SELECTION SELECTION ON SAMPLING SELECTION SELECTION SELECTION SELECTION SELECTION SELECTION SELECTION SELECTION SELECTION ON SAMPLING	JASA 57 JASA 58 BIOGS69 AMS 62 BIOKA69 JASA 59 BIOKA69 JASA 59 BIOKA62 AMS 67 BIOKA62 AMS 67 BIOKA57 BIOKA64 JASA 63 BIOCS65 AMS 68 BIOCS65 AMS 64 AMS 61 BIOCS65 BIOKA64 BIOCS65 BIOCS65 BIOCS66 BIOCS66 BIOCS66 BIOCS66	436 503 54 553 85 207 102 17BB 495 150 534 49 161 3BB 169 BB 1 1845 174 1804 990 291 6B2 B43 499 17
TES OF GROSS NAT: LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QU SMALLEST VARIANO BEST CORRIGENDA TO '' "WITH DISCUSSION IATE-COVARIANCE AND	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN ANT/ NONPARAMETRIC PROCEDURES FOR ON THE USE OF A GONCOMITANT VARIABLE IN USE OF DOUBLE SAMPLING FOR NEW CRITERIA FOR A MODEL FOR A SEQUENTIAL PROCEDURE FOR ON A SEQUENTIAL PROCEDURE FOR NONPARAMETRIC PROCEDURES FOR SOME MODEL I PROBLEMS OF INDIRECT SELECTION, 1. MASS FECT OF FIELD BLOCKING ON GAIN FROM EMEMON WITH UNEQUAL PROBABILITIES OF LAINS TO SIB MATING POPULATIONS WITH	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING THE LARGEST OF K MEANS SELECTING THE LARGEST OF K MEANS SELECTING THE LARGEST OF K MEANS SELECTING THE MARGEST OF K MEANS SELECTING THE MARGEST OF K MEANS SELECTING THE DOPULATION WITH THE LARGEST MEAN FROM K SELECTING THE POPULATION WITH THE LARGEST MEAN FROM K SELECTION	JASA 57 JASA 58 BIOGS69 AMS 62 BIOKA69 JASA 59 BIOKA69 JASA 59 BIOKA62 AMS 67 BIOKA67 BIOKA67 BIOKA64 TECH 64 JASA 63 BIOCS65 AMS 68 JOCS66 BIOCS68 AMS 64 AS 61 BIOCS65 BIOCS66 BIOCS66 BIOCS66 BIOCS66 BIOCS66 BIOCS67 BIOCS67 BIOCS67 BIOCS67 BIOCS67 JRSSB61	436 503 54 553 85 207 102 17BB 495 1072 150 534 49 161 3BB 169 BB 1 1845 174 1804 990 291 6B2 499 17 397 282
TES OF GROSS NAT: LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QU SMALLEST VARIANO BEST CORRIGENDA TO '' "WITH DISCUSSION IATE-COVARIANCE AND	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OF AND	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN' SELECTING BEST POPULATION SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OR TWO TREATMENTS SELECTING THE LARGEST OF K MEANS SELECTING THE LARGEST OF K MORMAL POPULATION MEANS SELECTING THE MOST EFFECTIVE DISCRIMINATORS IN A MULT SELECTING THE MOST EFFECTIVE DISCRIMINATORS IN A MULT SELECTION	JASA 57 JASA 58 BIOCSG69 AMS 62 BIOKA69 JASA 59 AMS 67 BIOKA62 AMS 67 BIOKA67 BIOKA67 BIOKA67 BIOKA63 BIOKA64 AMS 63 BIOCSG6 AMS 64 AMS 661 BIOCSG6	436 503 54 553 85 207 102 178B 495 161 38B 161 38B 174 1804 990 6B2 843 499 17 397 282 49
TES OF GROSS NAT: LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QU SMALLEST VARIANO BEST CORRIGENDA TO '' "WITH DISCUSSION IATE-COVARIANCE AND	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN ANT/ NONPARAMETRIC PROCEDURES FOR ON ON THE USE OF A GONCOMITANT VARIABLE IN USE OF A CONCOMITANT VARIABLE IN USE OF DOUBLE SAMPLING FOR A MODEL FOR A MODEL FOR A SEQUENTIAL PROCEDURE FOR ON ON THE USE OF A CONCOMITANT VARIABLE IN USE OF DOUBLE SAMPLING FOR A SEQUENTIAL PROCEDURE FOR ON ON THE USE OF A SEQUENTIAL PROCEDURE FOR NONPARAMETRIC PROCEDURE FOR NONPARAMETRIC PROCEDURES FOR SOME MODEL I PROBLEMS OF ONSTRUCTION OF AN INDEX FOR INDIRECT VALUE OF INDIRECT SELECTION, 1. MASS FEET OF FIELD BLOCKING ON GAIN FROM EMEMORY WITH UNEQUAL PROBABILITIES OF INDIRECT SELECTION WITH UNEQUAL PROBABILITIES OF INDIRECT SELECTION WITH UNEQUAL PROBABILITIES OF INDIRECT SELECTION WITH UNEQUAL PROGRAMMERS FOR VARIETAL INDEX	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE HOW SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN SELECTING BEST POPULATION SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING THE LARGEST OF K MORMAL POPULATION MEANS SELECTING THE LARGEST OF K NORMAL POPULATION MEANS SELECTING THE LARGEST OF K NORMAL POPULATION MEANS SELECTING THE DEFECTIVE DISCRIMINATORS IN A MULT SELECTION AND DIALLEL CLASSIFIED VARIABLES	JASA 57 JASA 58 BIOGS69 AMS 62 BIOKA69 JASA 59 BIOKA69 JASA 59 BIOKA62 AMS 67 BIOKA57 BIOKA57 BIOKA57 BIOKA64 JASA 63 BIOCS65 AMS 68 JRSSB60 BIOCS68 BIOKS67 BIOKA64 TECH 64 JASA 63 BIOCS65 BIOCS68 BIOCS66 BIOKA67 BIOCS66	436 503 54 553 85 207 102 17BB 495 150 534 49 161 3BB 169 BB 1 1 845 174 1804 990 291 6B2 B43 499 17 397 282 49 195
TES OF GROSS NAT: LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QL SMALLEST VARIAN BEST CORRIGENDA TO '' "WITH DISCUSSION IATE-COVARIANCE A NORMAL POPULATIC QUANTILE ON THE CI THE 'I WITHOUT REPLAY SORBENT MARKOV CI	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN ANT/ NONPARAMETRIC PROCEDURES FOR ON THE USE OF A CONCOMITANT VARIABLE IN USE OF A CONCOMITANT VARIABLE IN USE OF DOUBLE SAMPLING FOR A MODEL FOR A TWO-STAGE MODEL FOR A SEQUENTIAL PROCEDURE FOR NONPARAMETRIC PROCEDURE FOR NONPARAMETRIC PROCEDURE FOR SOME MODEL I PROBLEMS OF NONPARAMETRIC PROCEDURE FOR SOME MODEL I PROBLEMS OF NONPARAMETRIC PROCEDURES FOR SOME MODEL I PROBLEMS OF TALLE OF INDIRECT SELECTION, I. MASS FEET OF FIELD BLOCKING ON GAIN FROM EMEMONY WITH UNEQUAL PROBABILITIES OF LAINS TO SIB MATING POPULATIONS WITH GENETIG EQUILIBRIUM UNDER OPTIMAL PROGRAMMERS FOR VARIETAL INDEX ON SOME MULTIPLE DECISION	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE HOW SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OF TWO TREATMENTS SELECTING THE LARGEST OF K MEANS SELECTING THE LARGEST OF K NORMAL POPULATION MEANS SELECTING THE MOST EFFECTIVE DISCRIMINATORS IN A MULT SELECTING THE POPULATION WITH THE LARGEST MEAN FROM K SELECTION AND SELECTION APPLICATION OF FINITE AB SELECTION (INVITED PAPER) SELECTION AND ESTIMATION FROM A SINCLE SAMPLE (SELECTION AND ESTIMATION FROM A SINCLE SAMPLE	JASA 57 JASA 58 BIOGS69 AMS 62 BIOKA69 JASA 59 BIOKA69 JASA 59 BIOKA67 BIOKA62 AMS 67 BIOKA57 BIOKA57 BIOKA64 JASA 63 BIOCS65 AMS 66 JASS 60 BIOCS65 BIOKA64 BIOCS65 BIOKA64 BIOCS65 BIOKA67 BIOCS65 BIOKA67 BIOKA67 BIOKA67 BIOCS65 BIOCS66 BIOKA67 BIOCS65 BIOCS65 BIOCS66 BIOKA67 BIOCS65 BIOCS66 BIOKA67 JRSSB61 BIOCS67 JRSSB61 BIOCS69 JRSSB61 BIOCS69 BIOCS69 JRSSB61 BIOCS69 JRSSB61 BIOCS69 BIOCS69 BIOCS69 JRSSB61 BIOCS69 B	436 503 54 553 85 207 102 17BB 495 1072 150 534 49 161 3BB 169 BB 1 B45 174 1804 990 291 6B2 843 499 17 397 282 49 195
TES OF GROSS NAT: LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QU SMALLEST VARIAN BEST CORRIGENDA TO '' "WITH DISCUSSION IATE-COVARIANCE A NORMAL POPULATIC QUANTILE ON THE CO THE SOME AND THE SOME A WITHOUT REPLAY SORBENT MARKOV CO STRATIFIED POPUL.	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN ANT/ NONPARAMETRIC PROCEDURES FOR ON THE USE OF A CONCOMITANT VARIABLE IN USE OF A CONCOMITANT VARIABLE IN USE OF DOUBLE SAMPLING FOR A TWO-STAGE MODEL FOR A SEQUENTIAL PROCEDURE FOR NONPARAMETRIC PROCEDURES FOR NONPARAMETRIC PROCEDURES FOR NONPARAMETRIC PROCEDURES FOR NONPARAMETRIC PROCEDURES FOR SOME MODEL I PROBLEMS OF INSTRUCTION OF AN INDEX FOR INDIRECT FOR SOME MODEL I PROBLEMS OF INSTRUCTION OF AN INDEX FOR INDIRECT FOR INDIRECT SELECTION, 1. MASS FECT OF FIELD BLOCKING ON GAIN FROM EMBENT WITH UNEQUAL PROBABILITIES OF INDIRECT SELECTION, 2. MASS THE OF THE OFFICE OF THE ORDER OPPULATIONS WITH GENETIC EQUILIBRIUM UNDER OPTIMAL PROGRAMMERS FOR VARIETAL INDEX ON SOME MULTIPLE DECISION ITOMS	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING THE LARGEST OF K MEANS SELECTING THE LARGEST OF K MEANS SELECTING THE LARGEST OF K MEANS SELECTING THE MOST EFFECTIVE DISCRIMINATORS IN A MULT SELECTING THE POPULATION WITH THE LARGEST MEAN FROM K SELECTION ON SAMPLING SELECTION SELECTION ADD SAMPLING APPLICATION OF FINITE AB SELECTION (INVITED PAPER) SELECTION (WITH DISCUSSION) SELECTION AMONG DIALLEL CLASSIFIED VARIABLES SELECTION AND ESTIMATION FROM A SINCLE SAMPLE (SELECTION AND RANKING) RULES SELECTION AND RANKING) RULES SELECTION AND THE CHOICE OF ESTIMATOR IN TWO-WAY	JASA 57 JASA 58 BIOCSG9 AMS 62 BIOKA69 JASA 59 AMS 67 BIOKA62 AMS 67 BIOKA67 BIOKA67 BIOKA67 BIOKA63 BIOCSG6 AMS 68 BIOCSG6 AMS 64 AMS 61 BIOCSG6 BIOC	436 503 54 553 85 207 102 17BB 495 161 3BB 169 BB 1 1804 990 6B2 B43 499 17 397 282 49 195 195 195 195 195 195 195 195 195 19
TES OF GROSS NAT: LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QU SMALLEST VARIANG BEST CORRIGENDA TO ''' "WITH DISCUSSION IATE-COVARIANCE IN NORMAL POPULATION QUANTILE ON THE CI THE SI WITHOUT REPLAY SORBENT MARKOV CO STRATIFIED POPUL LEDGEMENT 68 102:	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN ANT/ NONPARAMETRIC PROCEDURES FOR ON THE USE OF A CONCOMITANT VARIABLE IN USE OF A CONCOMITANT VARIABLE IN USE OF DOUBLE SAMPLING FOR A TWO-STAGE MODEL FOR A SEQUENTIAL PROCEDURE FOR NONPARAMETRIC PROCEDURES FOR NONPARAMETRIC PROCEDURES FOR NONPARAMETRIC PROCEDURES FOR NONPARAMETRIC PROCEDURES FOR SOME MODEL I PROBLEMS OF INSTRUCTION OF AN INDEX FOR INDIRECT FOR SOME MODEL I PROBLEMS OF INSTRUCTION OF AN INDEX FOR INDIRECT FOR INDIRECT SELECTION, 1. MASS FECT OF FIELD BLOCKING ON GAIN FROM EMBENT WITH UNEQUAL PROBABILITIES OF INDIRECT SELECTION, 2. MASS THE OF THE OFFICE OF THE ORDER OPPULATIONS WITH GENETIC EQUILIBRIUM UNDER OPTIMAL PROGRAMMERS FOR VARIETAL INDEX ON SOME MULTIPLE DECISION ITOMS	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE HOW SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING THE LARGEST OF K NORMAL POPULATION MEANS SELECTING THE LARGEST OF K NORMAL POPULATION MEANS SELECTING THE LARGEST OF K NORMAL POPULATION MEANS SELECTING THE POPULATION WITH THE LARGEST MEAN FROM K SELECTION APPLICATION FROM A SINCLE SAMPLE (SELECTION AND ESTIMATION FROM A SINCLE SAMPLE (SELECTION AND THE CHOICE OF ESTIMATOR IN TWO-WAY SELECTION AT A MULTI-ALLELIC SEX-LINKED LOCUS (ACKNOW	JASA 57 JASA 58 BIOCS69 AMS 62 BIOKA69 JASA 59 BIOKA69 JASA 59 BIOKA67 BIOKA57 BIOKA57 BIOKA57 BIOKA64 JASA 63 BIOCS65 AMS 66 BIOKA64 AMS 67 AMS 61 BIOCS65 BIOCS66 BIOKA67 BIOCS65 BIOCS66 BIOKA67 JRSSB61 BIOCS67 JRSSB61 BIOCS69 BIOCS68	436 503 54 553 85 207 102 17BB 495 150 534 9161 3BB 169 1845 174 1804 990 6B2 B43 499 17 397 282 49 195 225 187
TES OF GROSS NAT: LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QU SMALLEST VARIANI BEST CORRIGENDA TO '' "WITH DISCUSSION IATE-COVARIANCE A NORMAL POPULATION QUANTILE ON THE CONTROL THE NORMAL SORBENT MARKOV CONTROL STRATIFIED POPUL LEDGEMENT 68 102: CORRELATION	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN ANT/ NONPARAMETRIC PROCEDURES FOR ON THE USE OF A CONCOMITANT VARIABLE IN USE OF A CONCOMITANT VARIABLE IN USE OF A CONCOMITANT VARIABLE IN A MODEL FOR A TWO-STAGE MODEL FOR A SEQUENTIAL PROCEDURE FOR NONPARAMETRIC PROCEDURE FOR NONPARAMETRIC PROCEDURE FOR SOME MODEL I PROBLEMS OF NONPARAMETRIC PROCEDURE FOR SOME MODEL I PROBLEMS OF NONPARAMETRIC PROCEDURES FOR SOME MODEL I PROBLEMS OF NONPARAMETRIC PROCEDURES FOR SOME MODEL I PROBLEMS OF NONTRUCTION OF AN INDEX FOR INDIRECT SELECTION, 1. MASS FECT OF FIELD BLOCKING ON GAIN FROM EMEMENT WITH UNEQUAL PROBABILITIES OF IAINS TO SIB MATING POPULATIONS WITH CHART OF THE PROGRAMMERS FOR VARIETAL INDEX ON SOME MULTIPLE DECISION SAMPLE ON SOME MULTIPLE DECISION SAMPLE ON SOME MULTIPLE DECISION SAMPLE OF THE PROCEDURE OF THE PROGRAMMERS FOR VARIETAL INDEX ON SOME MULTIPLE DECISION SAMPLE OF THE PROCEDURE OF THE PROCED	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE HOW SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OF TWO TREATMENTS SELECTING THE LARGEST OF K MEANS SELECTING THE LARGEST OF K MEANS SELECTING THE DATE OF K MEANS SELECTING THE POPULATION WITH THE LARGEST MEAN FROM K SELECTING THE POPULATION WITH THE LARGEST ALPHA- SELECTION APPLICATION OF FINITE AB SELECTION (INVITED PAPER) SELECTION (WITH DISCUSSION) SELECTION AND SELIMATION FROM A SINCLE SAMPLE (SELECTION AND RANKING) RULES SELECTION AND RANKING) RULES SELECTION AND THE CHOICE OF ESTIMATOR IN TWO-WAY SELECTION AND THE CHOICE OF ESTIMATION OF THE GENETIC	JASA 57 JASA 58 BIOGS69 AMS 62 BIOKA69 JASA 59 BIOKA69 JASA 59 BIOKA67 BIOKA62 AMS 67 BIOKA57 BIOKA57 BIOKA64 JASA 63 BIOCS65 AMS 68 BIOCS65 AMS 68 BIOCS65 BIOKA64 BIOCS65 BIOKA64 BIOCS65 BIOKA67 BIOCS65 BIOKA67 BIOCS65 BIOCS66 BIOKA67 BIOCS65 BIOCS66 BIOCS67 JRSSB61 BIOCS63 BIOCS66 BIOCS66 BIOCS66 BIOCS67 JRSSB61 BIOCS66 BIOCS66 BIOCS68 BIOCS68 BIOCS68	436 503 54 553 85 207 102 17BB 495 1072 150 534 49 161 3BB 169 BB 1 1804 990 291 1804 990 291 17 397 282 49 17 397 282 495 107 295 107 207 207 207 207 207 207 207 207 207 2
TES OF GROSS NAT: LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QU SMALLEST VARIAN BEST CORRIGENDA TO '' "WITH DISCUSSION IATE-COVARIANCE AND	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN ANT/ NONPARAMETRIC PROCEDURES FOR ON THE USE OF A CONCOMITANT VARIABLE IN USE OF A CONCOMITANT VARIABLE IN USE OF DOUBLE SAMPLING FOR A TWO-STAGE MODEL FOR A SEQUENTIAL PROCEDURE FOR NONPARAMETRIC PROCEDURE FOR NONPARAMETRIC PROCEDURE FOR NONPARAMETRIC PROCEDURES FOR NONPARAMETRIC PROCEDURES FOR SOME MODEL I PROBLEMS OF INSTRUCTION OF AN INDEX FOR INDIRECT SAMPLE OF INDIRECT SELECTION, 1. MASS FEECT OF FIELD BLOCKING ON GAIN FROM EMBNY THE MODEL I PROBLEMS OF INDIRECT SELECTION, 1. MASS FEECT OF FIELD BLOCKING ON GAIN FROM EMBNY THE MODEL I PROBLEMS OF INDIRECT SELECTION, 1. MASS FEECT OF FIELD BLOCKING ON GAIN FROM EMBNY THE USE OF INDIRECT SELECTION, 1. MASS FEECT OF FIELD BLOCKING ON GAIN FROM EMBNY THE USE OF INDIRECT SELECTION, 1. MASS FEECT OF FIELD BLOCKING ON FOR MATING POPULATIONS WITH GENETIC EQUILIBRIUM UNDER OPTIMAL PROGRAMMERS FOR VARIETAL INDEX ON SOME MULTIPLE DECISION THE CONTROL OF EQUILIBRIUM UNDER CANDOM ALLOCATION FOR THE CONTROL OF AND ALLOCATION FOR THE CONTROL OF AND ALLOCATION FOR THE CONTROL OF AND ALLOCATION FOR THE CONTROL OF	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING THE LARGEST OF K MEANS SELECTING THE LARGEST OF K MEANS SELECTING THE LARGEST OF K MEANS SELECTING THE MARGET OF K MEANS SELECTING THE POPULATION WITH THE LARGEST MEAN FROM K SELECTING THE POPULATION WITH THE LARGEST ALPHA— SELECTION (WITH DISCUSSION) SELECTION (WITH DISCUSSION) SELECTION AND ESTIMATION FROM A SINCLE SAMPLE (SELECTION AND RANKING) RULES SELECTION AND RANKING) RULES SELECTION AND THE CHOICE OF ESTIMATOR IN TWO—WAY SELECTION BASIS IN ESTIMATION OF THE GENETIC SELECTION BASIS IN ESTIMATION OF THE GENETIC	JASA 57 JASA 58 BIOCAG9 AMS 62 BIOKAG9 JASA 59 AMS 67 BIOKAG2 AMS 67 BIOKAG57 BIOKAG57 BIOKAG57 BIOKAG57 BIOKAG64 AG50 BIOCSG5 AMS 66 BIOCSG65 AMS 64 AMS 61 BIOCSG65 BIOCSG65 BIOCSG65 BIOCSG66 BIOCSG66 BIOCSG67 BIOCSG68 BIOCSG68 BIOCSG68 BIOCSG68 BIOCSG69 BIOCSG68 BIOCSG68 BIOCSG68 BIOCSG68 BIOCSG68 BIOCSG68 BIOCSG68 BIOCSG68	436 503 54 553 85 207 102 178B 495 161 38B 169 88 1 1804 990 682 843 499 17 397 282 49 195 205 49 195 195 195 195 195 195 195 195 195 19
TES OF GROSS NAT: LECTION IN BREED: ASYMPTOTIC APPI MANY OF A GROUP LARGEST ALPHA-QU SMALLEST VARIAN BEST CORRIGENDA TO '' "WITH DISCUSSION IATE-COVARIANCE AND	ONAL PRODUCT AND ITS COMPONENTS, OF NG PROGRAMMES WHEN ALL DAUGHTERS OF LIMIT THEOREMS FOR RANDOMLY OXIMATION TO THE EXPECTED SIZE OF A OF RANDOM NUMBERS WILL BE USABLE IN ANT/ NONPARAMETRIC PROCEDURES FOR ON THE USE OF A CONCOMITANT VARIABLE IN USE OF A CONCOMITANT VARIABLE IN USE OF DOUBLE SAMPLING FOR A TWO-STAGE MODEL FOR A SEQUENTIAL PROCEDURE FOR NONPARAMETRIC PROCEDURE FOR NONPARAMETRIC PROCEDURE FOR NONPARAMETRIC PROCEDURES FOR NONPARAMETRIC PROCEDURES FOR SOME MODEL I PROBLEMS OF INSTRUCTION OF AN INDEX FOR INDIRECT SAMPLE OF INDIRECT SELECTION, 1. MASS FEECT OF FIELD BLOCKING ON GAIN FROM EMBNY THE MODEL I PROBLEMS OF INDIRECT SELECTION, 1. MASS FEECT OF FIELD BLOCKING ON GAIN FROM EMBNY THE MODEL I PROBLEMS OF INDIRECT SELECTION, 1. MASS FEECT OF FIELD BLOCKING ON GAIN FROM EMBNY THE USE OF INDIRECT SELECTION, 1. MASS FEECT OF FIELD BLOCKING ON GAIN FROM EMBNY THE USE OF INDIRECT SELECTION, 1. MASS FEECT OF FIELD BLOCKING ON FOR MATING POPULATIONS WITH GENETIC EQUILIBRIUM UNDER OPTIMAL PROGRAMMERS FOR VARIETAL INDEX ON SOME MULTIPLE DECISION THE CONTROL OF EQUILIBRIUM UNDER CANDOM ALLOCATION FOR THE CONTROL OF AND ALLOCATION FOR THE CONTROL OF AND ALLOCATION FOR THE CONTROL OF AND ALLOCATION FOR THE CONTROL OF	SELECTED FROM EACH STRATUM SELECTED NATIONAL INCOME COMPONENTS, AND OF PERSONAL SELECTED PARENTS ARE RETAINED /ON OF RESPONSE TO SE SELECTED PARTIAL SUMS SELECTED SUBSET SELECTING A PARTICULAR SAMPLE HOW SELEGTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SELECTING A SUBSET OF K POPULATIONS CONTAINING THE SELECTING AN EXPERIMENTAL DESIGN SELECTING AN EXPERIMENTAL DESIGN SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OF TWO MEDICAL TREATMENTS SELECTING ONE OF TWO TREATMENTS SELECTING THE LARGEST OF K NORMAL POPULATION MEANS SELECTING THE LARGEST OF K NORMAL POPULATION MEANS SELECTING THE DEPULATION WITH THE LARGEST ALPHA— SELECTION SELECTION THE TOPULATION WITH THE LARGEST ALPHA— SELECTION (WITH DISCUSSION) SELECTION SELECTION (INVITED PAPER) SELECTION (INVITED PAPER) SELECTION AMONG DIALLEL CLASSIFIED VARIABLES SELECTION AND ESTIMATION FROM A SINCLE SAMPLE (SELECTION AND RANKING) RULES SELECTION AND RANKING) RULES SELECTION AT A MULTI—ALLELIC SEX—LINKED LOCUS (ACKNOW SELECTION BASIS IN ESTIMATION OF THE GENETIC SELECTION BASIS IN ESTIMATION OF THE GENETIC SELECTION BIAS SELECTION DIFFERENTIAL FOR POSITIVE DIRECTIONAL SELEC	JASA 57 JASA 58 BIOCAG9 AMS 62 BIOKAG9 JASA 59 AMS 67 BIOKAG2 AMS 67 BIOKAG57 BIOKAG57 BIOKAG57 BIOKAG57 BIOKAG64 AG50 BIOCSG5 AMS 66 BIOCSG65 AMS 64 AMS 61 BIOCSG65 BIOCSG65 BIOCSG65 BIOCSG66 BIOCSG66 BIOCSG67 BIOCSG68 BIOCSG68 BIOCSG68 BIOCSG68 BIOCSG69 BIOCSG68 BIOCSG68 BIOCSG68 BIOCSG68 BIOCSG68 BIOCSG68 BIOCSG68 BIOCSG68	436 503 54 553 85 207 102 17BB 495 161 3BB 169 8B 174 1804 990 6B2 B43 499 17 397 282 49 195 225 1054 187 951 842

```
EQUILIBRIA UNDER SELECTION FOR K ALLELES
                                                                                                               BI0CS66 121
F SELECTED PARENTS/ THE PREDICTION OF RESPONSE TO SELECTION IN BREEDING PROGRAMMES WHEN ALL DAUGHTERS 0 BIOCS69 553
            SOME STATISTICAL PROPERTIES OF A GENETIC SELECTION INDEX
                                                                                                               RTOKA62
                                                       SELECTION INDICES FOR QUADRATIC MODELS OF TOTAL MERIT BIOCS68
                                                                                                                        937
                                      A BASIS FOR THE SELECTION OF A RESPONSE SURFACE DESIGN
                                                                                                               JASA 59
                                                                                                                        622
                                            SEQUENTIAL SELECTION OF EXPERIMENTS
                                                                                                                AMS 68 1953
                      A MULTI-STAGE PROCEDURE FOR THE SELECTION OF THE BEST OF SEVERAL POPULATIONS
                                                                                                               JASA 62
                            SEQUENTIAL PROCEDURES FOR SELECTION OF THE BEST ONE OF SEVERAL BINOMIAL POPULAT AMS 67
IONS
                                                                                                                        117
                                                       SELECTION OF THE BEST SUBSET IN REGRESSION ANALYSIS
                                                                                                               TECH 67
                                                                                                                         531
                                                       SELECTION OF THE BEST TREATMENT IN A PAIRED-
COMPARISON EXPERIMENT
                                                                                                                AMS 63
                                                                                                                         75
A REMARK ON A PAPER OF TRAWINSKI AND DAVID ENTITLED 'SELECTION OF THE BEST TREATMENT IN A PAIRED-COMPARISO
                                                                                                                AMS 63
                                                                                                                         92
N COMPARISONS CAN BE MADE ONLY IN PAIRS
                                                       SELECTION OF THE POPULATION WITH THE LARGEST MEAN WHE BIOKASS
                                                                                                                        581
                                                       SELECTION OF VARIABLES FOR FITTING EQUATIONS TO DATA
                                                                                                               TECH 66
                                                                                                                         27
        PONDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX SUR PLUSIEURS CARACTERES
                                                                                                               BT0CS69
                                                                                                                         295
                 A FIXED SUBSET-SIZE APPROACH TO THE SELECTION PROBLEM
                                                                                                               BIOKA68
                                                                                                                        401
                       SOME FIXED-SAMPLE RANKING AND SELECTION PROBLEMS
                                                                                                                AMS 67 1079
              AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION PROBLEMS
                                                                                                                AMS 69
                                                                                                                        492
                            AN EXTENSION OF PAULSON'S SELECTION PROCEDURE
                                                                                                                AMS 68 2067
                       AN INTRODUCTION TO RANKING AND SELECTION PROCEDURES
                                                                                                               JASA 66
                                                                                                                        640
                                                      SELECTION PROCEDURES FOR RESTRICTED FAMILIES OF
PROBABILITY DISTRIBUTIONS
                                                                                                                AMS 69
                                                                                                                        905
OF SAMPLING PLANS BY USING SEQUENTIAL, ITEM BY ITEM, SELECTION TECHNIQUES AND DIGITAL COMPUTERS /OPMENT
                                                                                                               JASA 62
                                                                                                                        3B7
                                          PROBLEMS OF SELECTION WITH RESTRICTIONS
                                                                                                               JRSS862
                                                                                                                         401
                                                INDEX SELECTION WITH RESTRICTIONS
                                                                                                               BIOCS68 1015
                                THE VALUE OF INDIRECT SELECTION, 1. MASS SELECTION
                                                                                                               BT0CS65
                                                                                                                        682
STIMATION BASED ON CHANGE OF COMPOSITION CAUSED BY A SELECTIVE REMOVAL
                                                                                                 POPULATION E BIOKA55
                                                                                                                         279
                                                MIXED SELF- AND CROSS-FERTILIZATION IN A TETRASOMIC SPECIES BIOCS68
                                    ON THE PROBLEM OF SELF-INCOMPATABILITY ALLELES
                            AN ENUMERATION PROBLEM IN SELF-STERILITY
                                                                                                               BIOCS69
                                                                                                                         39
ATION OF TWO METHODS OF ESTIMATION O/ SIMULTANEOUS SELFING AND PARTIAL DIALLEL TEST CROSSING 2. AN EVALU BIOCS67
                                                                                                                        325
                                                    A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX.
                                                                                                               TECH 60
                                                                                                                        387
                         THE EPOCHS OF EMPTINESS OF A SEMI-INFINITE DISCRETE RESERVOIR
                                                                                                               JRSSB63
                                                                                                                         131
                       A RANDOM TIME CHANGE RELATING SEMI-MARKOV AND MARKOV PROCESSES
                                                                                                                AMS 68
                                                                                                                        35B
                               BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS (WITH DISCUSSION)
                                                                                                               JRSSB59
                                                                                                                         36
                THE DISTRIBUTION OF THE MAXIMUM OF A SEMI-MARKOV PROCESS
                                                                                                                AMS 68
                                                                                                                        947
                         REMARK CONCERNING TWO-STATE SEMI-MARKOV PROCESSES
                                                                                                                AMS 61
                                                                                                                        615
         NOTE ON EXTREME VALUES, COMPETING RISKS AND SEMI-MARKOV PROCESSES
                                                                                                                AMS 63 1104
    THE SOLUTION OF QUEUEING AND INVENTORY MODELS BY SEMI-MARKOV PROCESSES
                                                                                                               JRSSB61 113
  ON THE DISTRIBUTION OF THE SUPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CONTINUOUS STATE SPACES
                                                                                                                AMS 69
                                                                                                                        844
TO 'THE SOLUTION OF QUEUEING AND INVENTORY MODELS BY SEMI-MARKOV PROCESSES'
                                                                                                A CORRECTION
                                                                                                               JRSSR63
                                                                                                                         455
OF THE NUMBER OF COMMON TREATMENTS BETWEEN BLOCKS OF SEMI-REGULAR GROUP DIVISIBLE DESIGNS
                                                                                               ON THE BOUNDS
                                                                                                               JASA 64
                                                                                                                        B67
                                       AN OSCILLATING SEMIGROUP
                                                                                                                AMS 67
                                                                                                                        924
                    A THEOREM OF LEVY AND A PECULIAR SEMIGROUP
                                                                                                                AMS 67 1552
                                               ON THE SEMIMARTINGALE CONVERGENCE THEOREM
                                                                                                                AMS 66
                                                                                                                        690
                             A NOTE ON UPCROSSINGS OF SEMIMARTINGALES
                                                                                                                        728
                                                                                                                AMS 66
                   DISCRETE DYNAMIC PROGRAMMING WITH SENSITIVE DISCOUNT OPTIMALITY CRITERIA
                                                                                                                AMS 69 1635
                                                                                                               JRSSB62
                             ON THE COMPARISON OF THE SENSITIVITIES OF EXPERIMENTS
ENT EXPERIMENTS
                                    COMPARISON OF THE SENSITIVITIES OF SIMILAR INDEPENDENT AND NON-INDEPEND BIOKA69
                                                                                                                         17
                                                ABOUT SENSITIVITY ANALYSIS IN LINEAR PROGRAMMING MODELS
  USE OF NON-LINEAR REGRESSION METHODS FOR ANALYSING SENSITIVITY AND QUANTAL RESPONSE DATA
                                                                                                           THE BIOCS67
LINEAR HYPOTHESIS
                                                       SENSITIVITY COMPARISONS AMONG TESTS OF THE GENERAL
                                                                                                               JASA 66
                                                                                                                         415
CANNOT BE CONTROLLED, CORR. 56 650
                                          ANALYSIS OF SENSITIVITY EXPERIMENTS WHEN THE LEVELS OF STIMULUS
                                                                                                               JASA 56
                                                                                                                        257
                    EXPECTED SIGNIFICANCE LEVEL AS A SENSITIVITY INDEX FOR TEST STATISTICS
                                                                                                               JASA 65
THE STOCHASTIC ASSUMPTIONS OF THE MODELS
                                               ON THE SENSITIVITY OF SIMULTANEOUS-EQUATIONS ESTIMATORS TO
                                                                                                               JASA 66
                                                                                                                        136
CLASS ESTIMATORS
                                         THE RELATIVE SENSITIVITY TO SPECIFICATION ERROR OF DIFFERENT K-
                                                                                                               JASA 66
                                                                                                                        345
                            SOME RESULTS ON TESTS OF SEPARATE FAMILIES OF HYPOTHESES
                                                                                                               BIOKA6B
                                                                                                                        355
                         FURTHER RESULTS ON TESTS OF SEPARATE FAMILIES OF HYPOTHESES
                                                                                                               JRSSB62
                                                                                                                        406
                                        SOME TESTS OF SEPARATE FAMILIES OF HYPOTHESES IN TIME SERIES
ANALYSTS.
                                                                                                               BTOKA67
                                                                                                                         39
HYPOTHESIS THAT A LINEAR REGRESSION SYSTEM OBEYS TWO SEPARATE REGIMES
                                                                                                TESTS OF THE
                                                                                                              JASA 60
                                                                                                                        324
 PARAMETER OF A LINEAR REGRESSION SYSTEM OBEYING TWO SEPARATE REGIMES
                                                                                        THE ESTIMATION OF THE JASA 58
                                                                                                                        873
DIALYSIS, A STOCHASTIC PROCESS
                                                  THE SEPARATION OF MOLECULAR COMPOUNDS BY COUNTERCURRENT
                                                                                                               BIOKA60
                                                                                                                         69
                          SOME ASPECTS OF THE RANDOM SEQUENCE
                                                                                                                AMS 65
                                                                                                                        236
                         RECOGNIZING THE MAXIMUM OF A SEQUENCE
                                                                                                               JASA 66
                                                                                                                         35
                      CONSTRUCTING AN UNBIASED RANDOM SEQUENCE
                                                                                                               JASA 68 1526
                                                                                                                AMS 69
     ON THE EXPECTED VALUE OF A STOPPED STOCHASTIC SEQUENCE
                                                                                                                        456
    NUMBERS FOR THE MAXIMUM IN A STATIONARY GAUSSIAN SEQUENCE
                                                                                               A LAW OF LARGE
                                                                                                               AMS 62
                                                                                                                         93
   OF ASCENDING PAIRS AND ASCENDING RUNS IN A RANDOM SEQUENCE
                                                                                       THE JOINT DISTRIBUTION BIOKA67
                                                                                                                         330
TIC EFFICIENCY OF AN ASYMPTOTICALLY NORMAL ESTIMATOR SEQUENCE (CORR. 67 196)
                                                                                       A NOTE ON THE ASYMPTO JRSSB63
                                                                                                                        195
    THE DISTRIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS
                                                                                                               BIOKA59
                                                                                                                         454
               ON THE LACK OF A UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENSITY FUNCTION IN CERTA
                                 DESIGN OF AN OPTIMAL SEQUENCE OF INTERRELATED SAMPLING PLANS
                                                                                                               JASA 64
                                                                                                                         96
                       A NON-NULL RANKING MODEL FOR A SEQUENCE OF M ALTERNATIVES
                                                                                                               BIOKA61
                                                                                                                        441
                                WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION PROBLEMS
                                                                                                                AMS 6B
                                                                                                                       2149
                                     DISTINGUISHING A SEQUENCE OF RANDOM VARIABLES FROM A TRANSLATE ITSELF
                                                                                                                AMS 65 1107
                                  NON-RANDOMNESS IN A SEQUENCE OF TWO ALTERNATIVES. I. WILCOXON'S AND ALLIE BIOKA58
NON-RANDOMNESS IN A SEQUENCE OF TWO ALTERNATIVES. II. RUNS TEST
BIOKA5B
                                                                                                                        166
D TEST STATISTICS
                                                                                                                        253
                   THE AUTOCORRELATION FUNCTION OF A SEQUENCE UNIFORMLY DISTRIBUTED MODULO 1
                                                                                                                AMS 63 1243
                              THE GAP TEST FOR RANDOM SEQUENCES
                                                                                                                AMS 61
                                                                                                                        524
   LIMIT THEOREMS FOR THE MAXIMUM TERM IN STATIONARY SEQUENCES
                                                                                                                AMS 64
                                                                                                                        502
         PERMUTATION WITHOUT RISING OR FALLING OMEGA-SEQUENCES
                                                                                                                AMS 67 1245
        ESTIMATION OF THE PARAMETERS IN SHORT MARKOV SEQUENCES
                                                                                                               JRSSB63
                                                                                                                        206
   OF CONSTRUCTION AND ANALYSIS OF SERIALLY BALANCED SEQUENCES
                                                                                                      METHODS JRSSB57
                                                                                                                        286
FOR STATIONARY PROBABILITY MEASURES ON FINITE STATE SEQUENCES RIAL CORRELATION COEFFICIENT IN SHORT AUTOREGRESSIVE SEQUENCES
                                                                                      SOME STRUCTURE THEOREMS
                                                                                                               AMS 64
                                                                                                                        550
                                                                           ALTERNATIVE DEFINITIONS OF THE SE JASA 58
                                                                                                                        881
                   TERIA FOR MARKOV CHAINS AND MARKOV SEQUENCES /OTIC DISTRIBUTION OF THE 'PSI-SQUARED' G AMS 61
THE REGRESSION ANALYSIS OF 81NARY SEQUENCES (WITH DISCUSSION) (CORR. 59 238)

JRSS858
OODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND MARKOV SEQUENCES
                                                                                                                         49
                                                                                                                        215
                                            8EHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS (WITH DISCUSSION)
                                                                                                               JRSSB59
                                                                                                                         36
```

TITLE WORD INDEX SEL - SEQ

	SEQUENCES BALANCED FOR PAIRS OF RESIDUAL EFFECTS	IASA 677 20E
CONSTRUCTION OF	SEQUENCES ESTIMATING THE MIXING DISTRIBUTION	JASA 67 205 AMS 6B 2B6
	SEQUENCES FOR SOLVING LESER'S LEAST-SQUARES GRADUATIO	
	SEQUENCES OF CONTINUOUS PARAMETER MARKOV CHAINS	
LIMITING DISTRIBUTION OF THE MAXIMUM TERM IN		AMS 62 B94
POISSON COUNTS FOR RANDOM	SEQUENCES OF EVENTS	AMS 63 1217
THE SUPERPOSITION OF SEVERAL STRICTLY PERIODIC		BIOKA53 1
THE SUPERPOSITION OF RANDOM		BIOKA66 3B3
(P-Q) SERIES, CORR. 62 919	SEQUENCES OF FRACTIONAL REPLICATES IN THE 2-TO-THE-	JASA 62 403
	SEQUENCES OF MAXIMA	AMS 67 1570
	SEQUENCES OF NON-FINITE CAMES SEQUENCES OF NORMINC CONSTANTS	AMS 69 467 AMS 68 391
CENTRAL LIMIT THEOREMS FOR FAMILIES OF		AMS 63 439
ON A THEOREM OF RENYL CONCERNING MIXING	SEQUENCES OF SETS	AMS 61 257
UCTION OF BALANCED DESIGNS FOR EXPERIMENTS INVOLVING	SEQUENCES OF TREATMENTS THE CONSTR	BIOKA52 32
	SEQUENCES OF TREATMENTS WITH CARRY-OVER EFFECTS	BIOCS66 292
	SEQUENCES OF TWO-LEVEL FRACTIONAL FACTORIAL PLANS	TECH 69 477
	SEQUENCES WITH THE STEIN PROPERTY	AMS 6B 1282
	SEQUENCES WITH TRANSITION PROBABILITIES BASED ON A MA	
	SEQUENTIAL ACCELERATED LIFE TEST. SEQUENTIAL ANALOGS OF STEIN'S TWO-STAGE TEST	TECH 62 367 BIOKA62 367
	SEQUENTIAL ANALOGUE OF THE BEHRENS-FISHER PROBLEM	AMS 67 13B4
	SEQUENTIAL ANALYSIS	JASA 60 561
HYPERGEOMETRIC FUNCTIONS IN		AMS 65 1870
DEPARTURES FROM ASSUMPTION IN	SEQUENTIAL ANALYSIS	BIOKA61 206
	SEQUENTIAL ANALYSIS	BIOKA61 281
SOME GENERAL RESULTS IN	SEQUENTIAL ANALYSIS	BIOKA64 123
SYMPTOTIC BEHAVIOR OF DENSITIES WITH APPLICATIONS TO	SEQUENTIAL ANALYSIS ON THE A	AMS 65 615
WEEN SUFFICIENCY AND INVARIANCE WITH APPLICATIONS IN DESIGNS IN THE ANALYSIS OF VARIANCE	SEQUENTIAL ANALYSIS SEQUENTIAL ANALYSIS ON THE A SEQUENTIAL ANALYSIS THE RELATIONSHIP BET SEQUENTIAL ANALYSIS APPLIED TO CERTAIN EXPERIMENTAL SEQUENTIAL ANALYSIS OF DEPENDENT OBSERVATIONS. I	AMS 65 575 BIOKA56 388
DESIGNS IN THE WAMPISTS OF AWKINNOE	SEQUENTIAL ANALYSIS OF DEPENDENT OBSERVATIONS. I	BIOKA65 157
MIXED MODELS	SEQUENTIAL ANALYSIS OF VARIANCE UNDER RANDOM AND	JASA 67 1401
	SEQUENTIAL ANALYSIS TO DAM THEORY	AMS 63 1588
	SEQUENTIAL ANALYSIS WITH DELAYED OBSERVATIONS	JASA 64 1006
	SEQUENTIAL ANALYSIS, DIRECT METHOD	TECH 6B 125
	SEQUENTIAL APPLICATION	BIOKA63 55
TION AND EVOLUTIONARY OPERATION	SEQUENTIAL APPLICATION OF FACTORS SEQUENTIAL APPLICATION OF SIMPLEX DESIGNS IN OPTIMISA	TECH 64 365 TECH 62 441
	SEQUENTIAL BATCHING FOR ACCEPTANCE-REJECTION SAMPLING	
	SEQUENTIAL BATCHING FOR ACCEPTANCE, REJECTION SAMPLIN	
PLICATION TO AN ACCEPTANCE SAMPLING PROBLEM	SEQUENTIAL CHI-SQUARE AND T-SQUARE TESTS AND THEIR AP	
	SEQUENTIAL CHI-SQUARED AND T-SQUARED TESTS	AMS 61 1063
	SEQUENTIAL CLASSIFICATION PROBLEM	AMS 63 1095
	SEQUENTIAL CLINICAL TRIALS	JASA 69 759
OF SOME CLASSICAL HYPOTHESES, WITH APPLICATIONS TO		JASA 66 577
ASVMPTOTIC SOLUTIONS OF THE	SEQUENTIAL COMBINATION CHEMOTHERAPY EXPERIMENTS SEQUENTIAL COMPOUND DECISION PROBLEM	BIOCS66 730 AMS 63 1079
	SEQUENTIAL COMPOUND DECISION PROBLEM CONVERG	
	SEQUENTIAL COMPOUND DECISION PROBLEMS WITH M-BY-N	AMS 66 954
	SEQUENTIAL COMPOUND ESTIMATION	AMS 68 1890
	SEQUENTIAL COMPOUND ESTIMATORS	AMS 65 879
PROBLEM	SEQUENTIAL COMPOUND RULES FOR THE FINITE DECISION	JRSSB66 63
	SEQUENTIAL CONFIDENCE BOUNDS FOR LINEAR REGRESSION PA	
AN EXTENSION OF A THEOREM OF CHOW AND ROBBINS ON	SEQUENTIAL CONFIDENCE INTERVALS FOR THE MEAN	AMS 65 457 AMS 69 667
NORMAL POPULATION WITH UNKNOWN VARIANCE	SEQUENTIAL CONFIDENCE INTERVALS FOR THE MEAN OF A	JRSSB57 133
	SEQUENTIAL CONTINUATION REGIONS	BIOKA66 455
	SEQUENTIAL CONTROL PROCESSES	AMS 64 341
A NOTE ON MEMORYLESS RULES FOR CONTROLLING	SEQUENTIAL CONTROL PROCESSES	AMS 66 276
	SEQUENTIAL COUNTERBALANCING IN LATIN SQUARES	AMS 66 741
	SEQUENTIAL DECISION PROBLEM FOR MARKOV DEPENDENT	AMS 64 1656
	SEQUENTIAL DECISION PROCEDURE FOR CHOOSING ONE OF K H SEQUENTIAL DESIGN (WITH DISCUSSION)	
	SEQUENTIAL DESIGN (WITH DISCUSSION) SEQUENTIAL DESIGN FOR COMPARINC SEVERAL EXPERIMENTAL	JRSSB65 371 AMS 63 14B6
	SEQUENTIAL DESIGN OF EXPERIMENTS FOR INFINITELY MANY	AMS 61 771
	SEQUENTIAL DESIGN OF EXPERIMENTS WITH TWO RANDOM	JRSSB66 73
FOR THE ESTIMATION OF A SUBCROUP OF PRE-AS/ BAYES	SEQUENTIAL DESIGN OF FRACTIONAL FACTORIAL EXPERIMENTS	AMS 68 973
OPERATING CHARACTERISTICS OF SOME		AMS 6B 1176
	SEQUENTIAL DESIGN WITH TWO RANDOM VARIABLES	BIOKA66 469
MARKOV CHAINS A COMPARISON OF SOME TRUNCATED	SEQUENTIAL DESIGNS SEQUENTIAL DESIGNS FOR CLINICAL TRIALS BASED ON	BIOKA69 301 BIOCS6B 159
TRUNCATED	SEQUENTIAL DESIGNS FOR CEINICAL TRIALS BASED ON SEQUENTIAL DESIGNS FOR SPHERICAL WEIGHT FUNCTIONS	TECH 67 517
POPULATIONS BAYES	SEQUENTIAL DESIGNS OF FIXED SIZE SAMPLES FROM FINITE	
A REMARK ON	SEQUENTIAL DISCRIMINATION	AMS 67 1666
	SEQUENTIAL DRUG SCREENING	BIOKA64 1
	SEQUENTIAL EFFECTS IN A LATIN SQUARE DESIGN, CORR. 5B	
YMPTOTICALLY OPTIMAL BAYES AND MINIMAX PROCEDURES IN PROCEDURES		AMS 68 422
	SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION SEQUENTIAL ESTIMATION APPLICABLE TO THE HYPERGEOMETRI	AMS 64 1048
	SEQUENTIAL ESTIMATION OF A BINOMIAL PARAMETER	BIOKA58 1
(WITH DISCUSSION)	SEQUENTIAL ESTIMATION OF QUANTAL RESPONSE CURVES	JRSSB63 1
NEW METHOD OF ESTIMATION	SEQUENTIAL ESTIMATION OF QUANTAL RESPONSE CURVES, A	BIOKA66 439
TRIBUTION HAVING A PRESCRIBED PROPORTIONAL CLOSEN/	SEQUENTIAL ESTIMATION OF THE MEAN OF A LOG-NORMAL DIS	
	SEQUENTIAL ESTIMATION PROCEDURE IS NON-SEQUENTIAL	BIOKA67 229
ON AN A.P.O. RULE IN THE CONSISTENCY OF CERTAIN	SEQUENTIAL ESTIMATION WITH QUADRATIC LOSS	AMS 69 417
	ODGODATIVE ESTRUCTOVS	AMS 69 568

REQ - SER TITLE WORD INDEX

```
STRONC CONSISTENCY OF CERTAIN SEQUENTIAL ESTIMATORS
                                                                                                               AMS 69 1492
                       UNCERTAINTY, INFORMATION, AND SEQUENTIAL EXPERIMENTS
                                                                                                               AMS 62 404
                                            SATURATED SEQUENTIAL FACTORIAL DESIGNS
                                                                                                              TECH 68 535
                                                      SEQUENTIAL FACTORIAL ESTIMATION
                                                                                                              TECH 64
                                             ERRATA, 'SEQUENTIAL FACTORIAL ESTIMATION'
                                                                                                              TECH 65
MARCINALLY STATIONARY PROCESSES
                                                      SEQUENTIAL HYPOTHESIS TESTS FOR THE R-DEPENDENT
                                                                                                               AMS 66
                               ASYMPTOTICALLY OPTIMUM SEQUENTIAL INFERENCE AND DESIGN
                                                                                                               AMS 63 705
 CLASS OF MULTIVARIATE REGRESSION PROBLEMS
                                                      SEQUENTIAL INFERENCE PROCEDURES OF STEIN'S TYPE FOR A
                                                                                                               AMS 62 1039
NORMAL POPULATIONS
                                                      SEQUENTIAL INTERVAL ESTIMATION FOR THE MEANS OF
                                                                                                               AMS 69 509
 CHANCINC PARAMETER
                                                      SEQUENTIAL LIFE FOR THE EXPONENTIAL DISTRIBUTION WITH TECH 66
                                                                                                                       217
        EXACT OPERATING CHARACTERISTIC FOR TRUNCATED SEQUENTIAL LIFE TESTS IN THE EXPONENTIAL CASE
OF A POPULATION
                                                      SEQUENTIAL MAXIMUM LIKELIHOOD ESTIMATION OF THE SIZE
                                                                                                               AMS 6B 1057
                                                      SEQUENTIAL MEDICAL TRIALS
                                                                                                              JASA 63 365
ANSCOMBE'S PAPER
                                                      SEQUENTIAL MEDICAL TRIALS, SOME COMMENTS ON F. J.
                                                                                                              JASA 63
VARIABLES
                                                     A SEQUENTIAL METHOD FOR SCREENING EXPERIMENTAL
                                                                                                              JASA 62
                                                      SEQUENTIAL METHOD OF TESTING THE LINEAR TRENDS OF
RESPONSES IN DOSE TRIALS
                                                                                                              BIOCS68
                                                                                                                       663
                                                      SEQUENTIAL METHODS IN HIERARCHICAL CLASSIFICATIONS
                               SIMULTANEOUS TESTS BY
                                                                                                              BIOKA64
                                                                                                                      439
REGRESSION ANALYSIS, I
                                                      SEQUENTIAL MODEL BUILDING FOR PREDICTION IN
                                                                                                               AMS 63
                                                                                                                       462
           LOWER BOUNDS FOR AVERACE SAMPLE NUMBER OF SEQUENTIAL MULTIHYPOTHESIS TESTS
                                                                                                               AMS 67 1343
                                            A NOTE ON SEQUENTIAL MULTIPLE DECISION PROCEDURES
                                                                                                               AMS 69
                                                                                                                       653
PRESCRIBED MAXIMUM ASYMPTOTIC ERROR PROBABILITY
                                                      SEQUENTIAL NONPARAMETRIC TWO-WAY CLASSIFICATION WITH
                                                                                                               AMS 69
                                                                                                                       445
                                                      SEQUENTIAL OCCUPANCY
                                                                                                              BTOKA59
                                                                                                                       21B
                                          A NOTE ON A SEQUENTIAL OCCUPANCY PROBLEM
                                                                                                              BIOKAGE.
                                                                                                                       591
                                                      SEQUENTIAL OCCUPANCY WITH CLASSIFICATION
                                                                                                              BIOKA6B
                                                                                                                       229
 OF A BINOMIAL PARAMETER
                                                      SEQUENTIAL OPTIMUM PROCEDURES FOR UNBIASED ESTIMATION TECH 64
              SOME ASPECTS OF THE USE OF THE SEQUENTIAL PROBABILITY RATIO TEST REMARK ON THE OPTIMUM CHARACTER OF THE SEQUENTIAL PROBABILITY RATIO TEST
                                                                                                              JASA 5B
                                                                                                                       187
                                                                                                               AMS 66
                                                                                                                       726
                        THE MOST ECONOMICAL BINOMIAL SEQUENTIAL PROBABILITY RATIO TEST
                                                                                                              BIOKA60
            BOUNDS FOR THE EXPECTED SAMPLE SIZE IN A SEQUENTIAL PROBABILITY RATIO TEST
                                                                                                              JRSSB60
                                                                                                                       360
NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST
                                                                                                              JASA 60
 AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST
                                                                                                              JASA 64
IVES, CORR. 67 1309 STOPPING TIME OF A RANK-ORDER SEQUENTIAL PROBABILITY RATIO TEST ON LEHMANN ALTERNAT AMS 66 1154
                 ON THE PERFORMANCE OF THE TRUNCATED SEQUENTIAL PROBABILITY RATIO TEST, CORR. 66 1247
                                                                                                              JASA 65
                                ON THE OPTIMALITY OF SEQUENTIAL PROBABILITY RATIO TESTS
                                                                                                               AMS 63
                                                                                                                        18
           EXISTENCE, UNIQUENESS AND MONOTONICITY OF SEQUENTIAL PROBABILITY RATIO TESTS
                                                                                                               AMS 63 1541
 ON THE SAMPLE SIZE AND SIMPLIFICATION OF A CLASS OF SEQUENTIAL PROBABILITY RATIO TESTS
                                                                                                               AMS 66
                                                                                                                      425
  ESSENTIAL COMPLETENESS OF THE CLASS OF CENERALIZED SEQUENTIAL PROBABILITY RATIO TESTS
                                                                                                               AMS 61
                                                                                                          THE
                                                                                                                       602
THE VARIANCE OF THE DISTRIBUTION OF SAMPLE NUMBER IN SEQUENTIAL PROBABILITY RATIO TESTS
                                                                                                                       700
                                                                                                   A NOTE ON TECH 66
SAMPLE SIZE DISTRIBUTION FOR A CLASS OF INVARIANT SEQUENTIAL PROBABILITY RATIO TESTS BOUNDS ON THE OOF OF TERMINATION WITH PROBABILITY ONE OF INVARIANT SEQUENTIAL PROBABILITY RATIO TESTS BASED ON MULTIVARI
                                                                                                               AMS 6B 104B
                                                                                                               AMS 67
                                                                                                                        В
      ON THE SAMPLE SIZE AND COVERAGE FOR THE JIRINA SEQUENTIAL PROCEDURE
                                                                                                               AMS 63
                                                                                                                       847
       BOUNDS ON THE MAXIMUM SAMPLE SIZE OF A BAYES SEQUENTIAL PROCEDURE
                                                                                                               AMS 65
                                                                                                                       B59
AL CATEGORIES WITH A STANDARD OR CONTROL
                                                    A SEQUENTIAL PROCEDURE FOR COMPARING SEVERAL EXPERIMENT
                                                                                                               AMS 62 43B
                   ON THE ASYMPTOTIC EFFICIENCY OF A SEQUENTIAL PROCEDURE FOR ESTIMATING THE MEAN
                                                                                                               AMS 66 1173
                                                    A SEQUENTIAL PROCEDURE FOR SELECTING THE LARGEST OF K
                                                                                                               AMS 6B
                                                                                                                       BB
H THE LARGEST MEAN FROM K NORMAL POPULATIONS
                                                    A SEQUENTIAL PROCEDURE FOR SELECTING THE POPULATION WIT
                                                                                                               AMS 64 174
AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS
                                                    A SEQUENTIAL PROCEDURE FOR TESTING A NULL HYPOTHESIS
                                                                                                              JRSSB69 NO.2
             AN EMPIRICAL EVALUATION OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS
                                                                                                               AMS 62 1413
IMATION OF THE MEAN
                                THE PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED-WIDTH INTERVAL EST
                                                                                                               AMS 66
                                                                                                                       36
                     SOME APPLICATIONS OF THE JIRINA SEQUENTIAL PROCEDURE TO OBSERVATIONS WITH TREND
                                                                                                               AMS 63
                                                                                                                       857
              A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL PROCEDURES
                                                                                                               AMS 64
                                           RESTRICTED SEQUENTIAL PROCEDURES
                                                                                                              BIOKA57
                                                                                                                         9
                                   A FAMILY OF CLOSED SEQUENTIAL PROCEDURES (CORR. 69 457)
                                                                                                              BIOKA62
                             THE PERFORMANCE OF SOME SEQUENTIAL PROCEDURES FOR A RANKING PROBLEM
                                                                                                               AMS 6B
S CONCERNING THE UNKNOWN DRIFT PARAMET/ A CLASS OF SEQUENTIAL PROCEDURES FOR CHOOSING ONE OF K HYPOTHESE
                                                                                                               AMS 67 1376
                         SOME ASYMPTOTICALLY EXTINCT SEQUENTIAL PROCEDURES FOR RANKING AND SLIPPAGE PROBLE JRSSB66
                                                                                                                       370
RISON OF THE ASYMPTOTIC EXPECTED SAMPLE SIZES OF TWO SEQUENTIAL PROCEDURES FOR RANKING PROBLEM
                                                                                                     A COMPA AMS 69 NO.6
OF SEVERAL BINOMIAL POPULATIONS
                                                      SEQUENTIAL PROCEDURES FOR SELECTION OF THE BEST ONE
                                                                                                               AMS 67
                                                                                                                       117
                                              OPTIMAL SEQUENTIAL PROCEDURES WHEN MORE THAN ONE STOP IS
                                                                                                               AMS 67 1618
REQUIRED
CORR. 65 1249
                                                      SEQUENTIAL RANGE TESTS FOR COMPONENTS OF VARIANCE,
                                                                                                              JASA 65 826
TWO-SAMPLE PROCEDURE
                                                      SEQUENTIAL RANK TESTS I. MONTE CARLO STUDIES OF THE
                                                                                                              TECH 65
                                                                                                                      463
PROCEDURES
                                                      SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE
                                                                                                              TECH 66
                                                                                                                       615
       A NOTE ON THE RISKS OF ERROR INVOLVED IN THE SEQUENTIAL RATIO TEST
                                                                                                              BIOKA56
                                                                                                                       231
                                                      SEQUENTIAL RELIABILITY ASSURANCE IN FINITE LOTS
                                                                                                              TECH 69
                                                                                                                        61
                                            MARKOVIAN SEQUENTIAL REPLACEMENT PROCESSES
                                                                                                               AMS 65 1677
POPULATION
                                        COMPARISON OF SEQUENTIAL RULES FOR ESTIMATION OF THE SIZE OF A
                                                                                                              BIOCS69
                                                                                                                       517
       A NOTE ON TESTS OF HOMOCENEITY APPLIED AFTER SEQUENTIAL SAMPLING
                                                                                                              JRSSB60
                                                                                                                       36B
PROCEDURE FOR CHOOSING BETWEEN TWO POPULATIONS USING SEQUENTIAL SAMPLING
                                                                                                   A MINIMAX
                                                                                                              JRSSB57
                                                                                                                       255
PROCEDURE FOR CHOOSING BETWEEN TWO POPULATIONS USING SEQUENTIAL SAMPLING
                                                                                           A MINIMAX-REGRET
                                                                                                              JRSSB63
                                                                                                                       297
AND CONSUM/ THE OPERATING CHARACTERISTIC CURVE FOR SEQUENTIAL SAMPLING BY VARIABLES WHEN THE PRODUCER'S
                                                                                                              JASA 56
                                                                                                                       108
                                              A BAYES SEQUENTIAL SAMPLING INSPECTION
                                                                                                               AMS 65
                                                                                                                      13B7
                                  THE MOST ECONOMICAL SEQUENTIAL SAMPLING SCHEME FOR INSPECTION BY VARIABLE JRSSB59
                                                                                                                       400
                                    AN APPLICATION OF SEQUENTIAL SAMPLING TO ANALYTICAL SURVEYS
                                                                                                              BIOKA66
                                                                                                                        85
R LOSSES FOR BINOMIAL AND NORMAL RANDOM VARIABLES.
                                                     SEQUENTIAL SAMPLING, TWO DECISION PROBLEMS WITH LINEA BIOKA65
                                                                                                                       507
ATIVE NORMAL QUANTAL RESPONSE CURVE SOME OPTIMAL SEQUENTIAL SCHEMES FOR ESTIMATING THE MEAN OF A CUMUL JRSSB62
                                                                                                                       393
                                                    A SEQUENTIAL SEARCH PROCEDURE
                                                                                                               AMS 67
                                                                                                                       494
                                                    A SEQUENTIAL SEARCH PROCEDURE FOR LOCATING A RESPONSE
                                                                                                              TECH 62
                                                                                                                       610
                                                                                                               AMS 68 1953
                                                      SEQUENTIAL SELECTION OF EXPERIMENTS
                        BOUNDARIES FOR CLOSED (WEDGE) SEQUENTIAL T TEST PLANS
                                                                                                              BIOKA66
                                                                                                                      431
                                        A NOTE ON THE SEQUENTIAL T-TEST
                                                                                                               AMS 65 1867
                                       ON A TWO-SIDED SEQUENTIAL T-TEST
                                                                                                              BIOKA52
                                                                                                                       302
                                         A TWO-SAMPLE SEQUENTIAL T-TEST
        ON CERTAIN SUCGESTED FORMULAE APPLIED TO THE SEQUENTIAL T-TEST
                                                                                                              BIOKA64
                                                                                                                        97
                         CORRICENDA, 'ON A TWO-SIDED SEQUENTIAL T-TEST'
                                                                                                              BTOKA54
                                                                                                                       568
                                               CLOSED SEQUENTIAL T-TESTS
                                                                                                                       359
                                                                                                              BIOKA62
CHARACTERISTIC AND AVERAGE SAMPLE NUMBER OF A SIMPLE SEQUENTIAL TEST /HE DETERMINATION OF THE OPERATING JRSSB67
```

TITLE WORD INDEX SEQ - SER

		DDQ	
EFFECT OF NON-NORMALITY ON A SEQUENTI.	AL TEST FOR MEAN	BIOKA64	2B1
A SEQUENTI		BIOKA53	111
A SEQUENTI.	AL TEST FOR RANDOMNESS OF INTERVALS	JRSSB56	95
	AL TEST FOR THE MEAN OF A NORMAL DISTRIBUTION	AMS 65	2B
	AL TEST OF RANDOMNESS FOR EVENTS OCCURRING IN		64
	AL TEST OF THE EQUALITY OF PROBABILITIES IN A		769
		JRSSB61	335
OXIMATION TO THE DISTRIBUTION OF THE SAMPLE SIZE FOR SEQUENTI. SCRIMINATION BETWEEN TWO COMPOSITE/ A LARGE SAMPLE SEQUENTI.		BIOKA60	190 357
		TECH 68	331
	AL TESTING OF TRUNCATION PARAMETERS	AMS 6B	203B
ASYMPTOTIC SHAPES OF BAYES SEQUENTI.	AL TESTING REGIONS	AMS 62	224
OPTIMUM PROPERTIES AND ADMISSIBILITY OF SEQUENTI	AL TESTS	AMS 63	1
INTEGRATED RISK OF ASYMPTOTICALLY BAYES SEQUENTI	AL TESTS	AMS 67 AMS 6B	1399
ASYMPTOTIC OPTIMUM PROPERTIES OF CERTAIN SEQUENTI. THE FREQUENCY JUSTIFICATION OF CERTAIN SEQUENTI.	AL TESTS	RIOKA52	144
APPROXIMATIONS TO THE CHARACTERISTICS OF SOME SEQUENTI		BIOKA69	203
IMPROVE WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTI	AL TESTS FORMULAE TO	JRSSB65	74
TO WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTI	AL TESTS AN IMPROVEMENT	JRSSB54	136
CHARACTERISTIC AND THE AVERAGE SAMPLE NUMBER OF SOME SEQUENTI	AL TESTS /AE FOR CALCULATING THE OPERATING	JRSSB5B	379
		JASA 56 JASA 69	440 NO 4
		BIOKA68	387
POPULATIONS SEQUENTI		BIOKA54	252
CLOSED SEQUENTI	AL TESTS FOR BINOMIAL PROBABILITIES	BIOKA66	73
N II, LARGE T SEQUENTI	AL TESTS FOR THE MEAN OF A NORMAL DISTRIBUTIO		162
	AL TESTS FOR THE MEAN OF A NORMAL DISTRIBUTIO		55
	AL TESTS FOR THE MEAN OF A NORMAL DISTRIBUTIO AL TESTS OF RATIO OF VARIANCES BASED ON RANGE		452 419
	AL TESTS OF THE MEAN OF A NORMAL DISTRIBUTION		
ON A CLASS OF SIMPLE SEQUENTI		TECH 62	
	AL TESTS WHICH MINIMIZE THE MAXIMUM EXPECTED		551
APPROXIMATION TO THE DISTRIBUTION OF SAMPLE SIZE FOR SEQUENTI		BIOKA59	130
THE FREQUENCY JUSTIFICATION OF SEQUENTI MEAN OF A NORMAL POPULATION WITH KNOWN VARIANCE A SEQUENTI		BIOKA53 AMS 67	468
GITAL COMP/ DEVELOPMENT OF SAMPLING PLANS BY USING SEQUENTI			3B7
OF P FACTORIAL EXPERIMENTS WITH THE FACTORS APPLIED SEQUENTI			
THE-P FACTORIAL EXPERIMENTS WITH THE FACTORS APPLIED SEQUENTI			644
	ALLY DETERMINED CONFIDENCE INTERVALS	BIOKA57	
OGNORMAL POPULATIONS AGAINST A GIVEN/ A CHART FOR SEQUENTI X STATIONARY TIME/ EXPECTATIONS AND COVARIANCES OF SERIAL A			605 213
ON SERIAL C		AMS 69	
EXACT TESTS FOR SERIAL C		BIOKA55	133
CRITERIA, BASED ON FIRST AND SECOND DIFFERENCES, FOR SERIAL C		AMS 62	186
AN ANGULAR TRANSFORMATION FOR THE SERIAL C		BIOKA54	261
THE NULL DISTRIBUTION OF THE FIRST SERIAL C	ORRELATION COEFFICIENT ORRELATION COEFFICIENT	BIOKA66 JRSSB65	623 30B
YMPTOTIC EXPANSIONS FOR THE MEAN AND VARIANCE OF THE SERIAL C		BIOKA61	85
	ORRELATION COEFFICIENT IN SHORT AUTOREGRESSIV		881
ON THE JOINT DISTRIBUTION OF THE CIRCULAR SERIAL C		BIOKA56	161
THE APPROXIMATE DISTRIBUTION OF SERIAL C			
TESTING FOR SERIAL C		BIOKA56	169
TESTING FOR SERIAL C		BIOKA57	57
	ORRELATION IN LEAST SQUARES REGRESSION. II.		
	ORRELATION IN LEAST SQUARES REGRESSION. II. ORRELATION IN POLYNOMIAL REGRESSION	BIOKA57 BIOKA51 BIOKA60	57 159
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C SERIAL C	ORRELATION IN LEAST SQUARES REGRESSION. II. ORRELATION IN POLYNOMIAL REGRESSION ORRELATION IN REGRESSION ANALYSIS BASED ON TH ORRELATION IN REGRESSION ANALYSIS. I.	BIOKA57 BIOKA51 BIOKA60 BIOKA69 BIOKA55	57 159 111 1 327
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C SERIAL C	ORRELATION IN LEAST SQUARES REGRESSION. II. ORRELATION IN POLYNOMIAL REGRESSION ORRELATION IN REGRESSION ANALYSIS BASED ON TH ORRELATION IN REGRESSION ANALYSIS. I. ORRELATION IN REGRESSION ANALYSIS. II	BIOKA57 BIOKA51 BIOKA60 BIOKA69 BIOKA55 BIOKA56	57 159 111 1 327 436
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C SERIAL C	ORRELATION IN LEAST SQUARES REGRESSION. II. ORRELATION IN POLYNOMIAL REGRESSION ORRELATION IN REGRESSION ANALYSIS BASED ON TH ORRELATION IN REGRESSION ANALYSIS. II. ORRELATION IN REGRESSION ANALYSIS. III ORRELATION IN SYSTEMS OF SIMULTANEOUS REGRESS	BIOKA57 BIOKA51 BIOKA60 BIOKA69 BIOKA55 BIOKA56 BIOKA57	57 159 111 1 327 436 370
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C SERIAL C SERIAL C SERIAL C SERIAL C TON EQUATIONS TESTING FOR SERIAL C Y TIME SERIES A QUICK TEST FOR SERIAL C	DRRELATION IN LEAST SQUARES REGRESSION. II. ORRELATION IN POLYNOMIAL REGRESSION ORRELATION IN REGRESSION ANALYSIS BASED ON TH ORRELATION IN REGRESSION ANALYSIS. I. ORRELATION IN REGRESSION ANALYSIS. II ORRELATION IN SYSTEMS OF SIMULTANBOUS REGRESS ORRELATION SUITABLE FOR USE WITH NONSTATIONAR	BIOKA57 BIOKA51 BIOKA60 BIOKA69 BIOKA55 BIOKA56 BIOKA57	57 159 111 1 327 436 370 728
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C ON BOUNDS OF SERIAL C ON BOUNDS OF SERIAL C ON BOUNDS OF SERIAL C	ORRELATION IN LEAST SQUARES REGRESSION. II. ORRELATION IN POLYNOMIAL REGRESSION ORRELATION IN REGRESSION ANALYSIS BASED ON TH ORRELATION IN REGRESSION ANALYSIS. I. ORRELATION IN REGRESSION ANALYSIS. II ORRELATION IN SYSTEMS OF SIMULTANEOUS REGRESS ORRELATION SUITABLE FOR USE WITH NONSTATIONAR ORRELATION WITH EXPONENTIALLY DISTRIBUTED ORRELATIONS	BIOKA57 BIOKA51 BIOKA60 BIOKA69 BIOKA55 BIOKA56 BIOKA57 JASA 63 BIOKA67 AMS 62	57 159 111 1 327 436 370 72B 395 1457
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C ON BOUNDS OF SERIAL C EXPERIMENTATION SERIAL C	ORRELATION IN LEAST SQUARES REGRESSION. II. ORRELATION IN POLYNOMIAL REGRESSION ORRELATION IN REGRESSION ANALYSIS BASED ON TH ORRELATION IN REGRESSION ANALYSIS. I. ORRELATION IN REGRESSION ANALYSIS. II ORRELATION IN SYSTEMS OF SIMULTANEOUS REGRESS ORRELATION SUITABLE FOR USE WITH NONSTATIONAR ORRELATION WITH EXPONENTIALLY DISTRIBUTED ORRELATIONS ESIGNS FOR ROUTINE QUALITY CONTROL AND	BIOKA57 BIOKA51 BIOKA60 BIOKA69 BIOKA55 BIOKA57 JASA 63 BIOKA67 AMS 62 TECH 64	57 159 111 1 327 436 370 72B 395 1457
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C ON BOUNDS OF SERIAL C ON BOUNDS OF SERIAL C	ORRELATION IN LEAST SQUARES REGRESSION. II. ORRELATION IN POLYNOMIAL REGRESSION ORRELATION IN REGRESSION ANALYSIS BASED ON TH ORRELATION IN REGRESSION ANALYSIS. I. ORRELATION IN REGRESSION ANALYSIS. II ORRELATION IN SYSTEMS OF SIMULTANEOUS REGRESS ORRELATION SUITABLE FOR USE WITH NONSTATIONAR ORRELATION WITH EXPONENTIALLY DISTRIBUTED DERELATIONS ESIGNS FOR ROUTINE QUALITY CONTROL AND ACTORIAL DESIGN	BIOKA57 BIOKA51 BIOKA60 BIOKA59 BIOKA55 BIOKA56 JASA 63 BIOKA67 AMS 62 TECH 64 BIOKA68	57 159 111 1 327 436 370 728 395 1457 77 67
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C VARIATES A QUICK TEST FOR SERIAL C VARIATES TESTING FOR SERIAL C ON BOUNDS OF SERIAL C SERIAL S SER	ORRELATION IN LEAST SQUARES REGRESSION. II. ORRELATION IN POLYNOMIAL REGRESSION ORRELATION IN REGRESSION ANALYSIS BASED ON TH ORRELATION IN REGRESSION ANALYSIS. I. ORRELATION IN REGRESSION ANALYSIS. II ORRELATION IN SYSTEMS OF SIMULTANEOUS REGRESS ORRELATION SUITABLE FOR USE WITH NONSTATIONAR ORRELATION WITH EXPONENTIALLY DISTRIBUTED ORRELATIONS ESIGNS FOR ROUTINE QUALITY CONTROL AND ACTORIAL DESIGN AMPLING ACCEPTANCE SCHEMES DERIVED FROM	BIOKA57 BIOKA61 BIOKA60 BIOKA65 BIOKA55 BIOKA57 JASA 63 BIOKA67 AMS 62 TECH 64 BIOKA68 TECH 60	57 159 111 1 327 436 370 728 395 1457 77 67 353
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C VARIATES TESTING FOR SERIAL C ON BOUNDS OF SERIAL C EXPERIMENTATION SERIAL C SERI	DRRELATION IN LEAST SQUARES REGRESSION. II. DRRELATION IN POLYNOMIAL REGRESSION DRRELATION IN REGRESSION ANALYSIS BASED ON TH DRRELATION IN REGRESSION ANALYSIS. I. DRRELATION IN REGRESSION ANALYSIS. II. DRRELATION IN SYSTEMS OF SIMULTANEOUS REGRESS DRRELATION SUITABLE FOR USE WITH NONSTATIONAR DRRELATION WITH EXPONENTIALLY DISTRIBUTED DREELATIONS ESIGNS FOR ROUTINE QUALITY CONTROL AND ACTORIAL DESIGN AMPLING ACCEPTANCE SCHEMES DERIVED FROM AMPLING ACCEPTANCE SCHEMES FOR LARGE BATCHES ARIATION CURVES	BIOKA57 BIOKA61 BIOKA60 BIOKA65 BIOKA55 BIOKA57 JASA 63 BIOKA67 AMS 62 TECH 64 BIOKA68 TECH 60	57 159 111 1 327 436 370 728 395 1457 77 67 353 393
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C Y TIME SERIES A QUICK TEST FOR SERIAL C VARIATES TESTING FOR SERIAL C ON BOUNDS OF SERIAL C EXPERIMENTATION SERIAL C EXPERIMENTATION BAYES'S THEOREM OF ITEMS WHERE THE MEAN QUALITY HAS A NORMAL PRIO/ THE FITTING OF MARKOFF SERIAL C SERIAL D SERIAL S SE	ORRELATION IN LEAST SQUARES REGRESSION. II. ORRELATION IN POLYNOMIAL REGRESSION ORRELATION IN REGRESSION ANALYSIS BASED ON TH ORRELATION IN REGRESSION ANALYSIS. I. ORRELATION IN REGRESSION ANALYSIS. II ORRELATION IN SYSTEMS OF SIMULTANEOUS REGRESS ORRELATION SUITABLE FOR USE WITH NONSTATIONAR ORRELATION WITH EXPONENTIALLY DISTRIBUTED DERELATIONS ESIGNS FOR ROUTINE QUALITY CONTROL AND ACTORIAL DESIGN AMPLING ACCEPTANCE SCHEMES DERIVED FROM AMPLING ACCEPTANCE SCHEMES FOR LARGE BATCHES ORRELATION CURVES ORRELATION DISTRIBUTION	BIOKA57 BIOKA60 BIOKA60 BIOKA69 BIOKA55 BIOKA57 JASA 63 BIOKA67 AMS 62 TECH 64 BIOKA6B TECH 60 BIOKA6B JRSSB58 BIOKA6B	57 159 111 1 327 436 370 728 395 1457 77 67 353 393 120 559
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C ON BOUNDS OF SERIAL C ON BOUNDS OF SERIAL C SERIAL C SERIAL C ON BOUNDS OF SERIAL C SERIAL	ORRELATION IN LEAST SQUARES REGRESSION. II. ORRELATION IN POLYNOMIAL REGRESSION ORRELATION IN REGRESSION ANALYSIS BASED ON TH ORRELATION IN REGRESSION ANALYSIS. I. ORRELATION IN REGRESSION ANALYSIS. II ORRELATION IN SYSTEMS OF SIMULTANEOUS REGRESS ORRELATION SUITABLE FOR USE WITH NONSTATIONAR ORRELATION WITH EXPONENTIALLY DISTRIBUTED ORRELATIONS ESIGNS FOR ROUTINE QUALITY CONTROL AND ACTORIAL DESIGN AMPLING ACCEPTANCE SCHEMES DERIVED FROM AMPLING ACCEPTANCE SCHEMES FOR LARGE BATCHES ARIATION CURVES ORRELATION DISTRIBUTION AND CONTEMPORANEOUSLY CORRELATED /A SYSTE	BIOKA57 BIOKA50 BIOKA60 BIOKA56 BIOKA55 BIOKA57 JASA 63 BIOKA67 AMS 62 TECH 64 BIOKA6B JECH 60 BIOKA6B JRSSB58 BIOKA58 BIOKA6B JRSSB58 BJASA 67	57 159 111 1 327 436 370 728 395 1457 77 67 353 393 120 559 500
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C VARIATES A QUICK TEST FOR SERIAL C ON BOUNDS OF SERIAL C EXPERIMENTATION SERIAL C SERIAL D SERIAL D SERIAL F SERIAL C SERIAL D SERIAL C	DRRELATION IN LEAST SQUARES REGRESSION. II. ORRELATION IN POLYNOMIAL REGRESSION ORRELATION IN REGRESSION ANALYSIS BASED ON TH ORRELATION IN REGRESSION ANALYSIS. I. ORRELATION IN REGRESSION ANALYSIS. II. ORRELATION IN SYSTEMS OF SIMULTANEOUS REGRESS ORRELATION SUITABLE FOR USE WITH NONSTATIONAR ORRELATION WITH EXPONENTIALLY DISTRIBUTED ORRELATIONS ESIGNS FOR ROUTINE QUALITY CONTROL AND ACTORIAL DESIGN AMPLING ACCEPTANCE SCHEMES DERIVED FROM AMPLING ACCEPTANCE SCHEMES FOR LARGE BATCHES ARIATION CURVES ORRELATION DISTRIBUTION AND CONTEMPORANEOUSLY CORRELATED /A SYSTE BALANCED SEQUENCES	BIOKA57 BIOKA60 BIOKA60 BIOKA60 BIOKA55 BIOKA55 BIOKA57 JASA 63 BIOKA67 AMS 62 TECH 64 BIOKA6B TECH 60 BIOKA6B JRSSB58 BIOKA5B JASA 67 JASA 67	57 159 111 1 327 436 370 72B 395 1457 77 67 353 393 120 559 500 286
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C ON BOUNDS OF SERIAL C ON BOUNDS OF SERIAL C SERIAL C SERIAL C ON BOUNDS OF SERIAL C SERIAL C SERIAL C SERIAL C ON BOUNDS OF SERIAL C ON BOUNDS OF SERIAL C SERIAL C SERIAL C SERIAL C ON BOUNDS OF SERIAL C SER	ORRELATION IN LEAST SQUARES REGRESSION. II. ORRELATION IN POLYNOMIAL REGRESSION ORRELATION IN PEGRESSION ANALYSIS BASED ON TH ORRELATION IN REGRESSION ANALYSIS. I. ORRELATION IN REGRESSION ANALYSIS. II. ORRELATION IN SYSTEMS OF SIMULTANEOUS REGRESS ORRELATION SUITABLE FOR USE WITH NONSTATIONAR ORRELATION WITH EXPONENTIALLY DISTRIBUTED ORRELATIONS ESIGNS FOR ROUTINE QUALITY CONTROL AND ACTORIAL DESIGN AMPLING ACCEPTANCE SCHEMES DERIVED FROM AMPLING ACCEPTANCE SCHEMES FOR LARGE BATCHES ARIATION CURVES ORRELATION DISTRIBUTION AND CONTEMPORANEOUSLY CORRELATED /A SYSTE BALANCED SEQUENCES CORRELATED /FOR THE TWO-WAY CLASSIFICATIO	BIOKA57 BIOKA60 BIOKA60 BIOKA60 BIOKA55 BIOKA55 BIOKA57 JASA 63 BIOKA67 AMS 62 TECH 64 BIOKA6B TECH 60 BIOKA6B JRSSB58 BIOKA5B JASA 67 JASA 67	57 159 111 1 327 436 370 72B 395 1457 77 67 353 393 120 559 500 286 NO.3
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C ON BOUNDS OF SERIAL C ON BOUNDS OF SERIAL C SERIAL C SERIAL C ON BOUNDS OF SERIAL C SERIAL	ORRELATION IN LEAST SQUARES REGRESSION. II. ORRELATION IN POLYNOMIAL REGRESSION ORRELATION IN REGRESSION ANALYSIS BASED ON TH ORRELATION IN REGRESSION ANALYSIS. I. ORRELATION IN REGRESSION ANALYSIS. II ORRELATION IN SYSTEMS OF SIMULTANEOUS REGRESS ORRELATION SUITABLE FOR USE WITH NONSTATIONAR ORRELATION WITH EXPONENTIALLY DISTRIBUTED ORRELATIONS ESIGNS FOR ROUTINE QUALITY CONTROL AND ACTORIAL DESIGN AMPLING ACCEPTANCE SCHEMES DERIVED FROM AMPLING ACCEPTANCE SCHEMES FOR LARGE BATCHES ARRIATION CURVES ORRELATION DISTRIBUTION AND CONTEMPORANEOUSLY CORRELATED /A SYSTE BALANCED SEQUENCES CORRELATED /FOR THE TWO-WAY CLASSIFICATIO CORRELATED INPUTS	BIOKA57 BIOKA60 BIOKA60 BIOKA66 BIOKA55 BIOKA55 BIOKA57 JASA 63 BIOKA67 AMS 62 TECH 64 BIOKA6B TECH 60 BIOKA6B JRSSB58 BIOKA5B JASA 67 JASSB57 BIOKA69	57 159 111 1 327 436 370 728 395 1457 77 67 353 393 120 559 500 208 85
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C VARIATES A QUICK TEST FOR SERIAL C ON BOUNDS OF SERIAL C SERIAL C ON BOUNDS OF SERIAL C SE	DRRELATION IN LEAST SQUARES REGRESSION. II. DRRELATION IN POLYNOMIAL REGRESSION ORRELATION IN REGRESSION ANALYSIS BASED ON TH DRRELATION IN REGRESSION ANALYSIS. I. DRRELATION IN REGRESSION ANALYSIS. II. DRRELATION IN SYSTEMS OF SIMULTANEOUS REGRESS DRRELATION SUITABLE FOR USE WITH NONSTATIONAR DRRELATION WITH EXPONENTIALLY DISTRIBUTED ORRELATION DORRELATION ESIGNS FOR ROUTINE QUALITY CONTROL AND ACTORIAL DESIGN AMPLING ACCEPTANCE SCHEMES DERIVED FROM AMPLING ACCEPTANCE SCHEMES FOR LARGE BATCHES ARIATION CURVES DRRELATION DISTRIBUTION AND CONTEMPORANEOUSLY CORRELATED /A SYSTE BALANCED SEQUENCES CORRELATED /FOR THE TWO-WAY CLASSIFICATIO CORRELATED NORMAL VARIABLES CORRELATED NORMAL VARIABLES CORRELATED OBSERVATIONS	BIOKA57 BIOKA60 BIOKA60 BIOKA60 BIOKA55 BIOKA55 BIOKA57 JASA 63 BIOKA67 TECH 64 BIOKA68 TECH 60 BIOKA68 JRSSB58 BIOKA68 JRSSB58 BIOKA69 JRSSB57 BIOKA69 TECH 63 BIOKA69 BIOKA69 BIOKA69	57 159 111 1 327 436 370 728 395 1457 77 67 353 393 120 559 500 286 NO.3 85 198
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C VARIATES A QUICK TESTING FOR SERIAL C ON BOUNDS OF SERIAL C ON BOUNDS OF SERIAL C SERIAL C EXPERIMENTATION SERIAL C S	DRRELATION IN LEAST SQUARES REGRESSION. II. DRRELATION IN POLYNOMIAL REGRESSION ORRELATION IN REGRESSION ANALYSIS BASED ON TH DRRELATION IN REGRESSION ANALYSIS. I. DRRELATION IN REGRESSION ANALYSIS. II. DRRELATION IN SYSTEMS OF SIMULTANEOUS REGRESS DRRELATION SUITABLE FOR USE WITH NONSTATIONAR DRRELATION WITH EXPONENTIALLY DISTRIBUTED ORRELATION DORRELATION ESIGNS FOR ROUTINE QUALITY CONTROL AND ACTORIAL DESIGN AMPLING ACCEPTANCE SCHEMES DERIVED FROM AMPLING ACCEPTANCE SCHEMES FOR LARGE BATCHES ARIATION CURVES DRRELATION DISTRIBUTION AND CONTEMPORANEOUSLY CORRELATED /A SYSTE BALANCED SEQUENCES CORRELATED /FOR THE TWO-WAY CLASSIFICATIO CORRELATED NORMAL VARIABLES CORRELATED NORMAL VARIABLES CORRELATED OBSERVATIONS	BIOKAS7 BIOKAS7 BIOKAS6 BIOKA69 BIOKA55 BIOKA55 BIOKA57 JASA 63 BIOKA67 AMS 62 TECH 64 BIOKA68 JRSSB58 BIOKA68 JRSSB58 BIOKA68 JRSSB58 BIOKA68 JRSSB58 BIOKA68 JRSSB57 BIOKA68 BIOKA68 JRSSB57 BIOKA68 BIOKA58 BIOKA55 BIOKA55	57 159 111 1 327 436 370 72B 395 1457 77 67 353 393 120 559 500 286 NO.3 85 198 151 208
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C VARIATES A QUICK TEST FOR SERIAL C ON BOUNDS OF SERIAL C ON BOUNDS OF SERIAL C EXPERIMENTATION SERIAL C SERIAL D SERIAL C SERI	DRRELATION IN LEAST SQUARES REGRESSION. II. DRRELATION IN POLYNOMIAL REGRESSION ORRELATION IN REGRESSION ANALYSIS BASED ON TH DRRELATION IN REGRESSION ANALYSIS. I. DRRELATION IN REGRESSION ANALYSIS. II. DRRELATION IN SYSTEMS OF SIMULTANEOUS REGRESS DRRELATION SUITABLE FOR USE WITH NONSTATIONAR DRRELATION WITH EXPONENTIALLY DISTRIBUTED ORRELATION DORRELATION ESIGNS FOR ROUTINE QUALITY CONTROL AND ACTORIAL DESIGN AMPLING ACCEPTANCE SCHEMES DERIVED FROM AMPLING ACCEPTANCE SCHEMES FOR LARGE BATCHES ARIATION CURVES DRRELATION DISTRIBUTION AND CONTEMPORANEOUSLY CORRELATED /A SYSTE BALANCED SEQUENCES CORRELATED /FOR THE TWO-WAY CLASSIFICATIO CORRELATED NORMAL VARIABLES CORRELATED NORMAL VARIABLES CORRELATED OBSERVATIONS	BIOKA57 BIOKA60 BIOKA60 BIOKA60 BIOKA55 BIOKA55 BIOKA56 AMS 62 TECH 64 BIOKA67 TECH 60 BIOKA6B JRSSB58 BIOKA6B JRSSB58 BIOKA6B JASA 67 JRSSB57 BIOKA69 TECH 60 BIOKA69 BIOKA69 BIOKA69 BIOKA69 BIOKA69 BIOKA69 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA65 BIOKA58	57 159 111 1 327 436 370 728 395 1457 77 67 353 393 120 286 NO.3 85 198 151 208
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C OR BOUNDS OF SERIAL C OR BOUNDS OF SERIAL C EXPERIMENTATION SERIAL C SER	DRRELATION IN LEAST SQUARES REGRESSION. II. DRRELATION IN POLYNOMIAL REGRESSION ORRELATION IN REGRESSION ANALYSIS BASED ON TH DRRELATION IN REGRESSION ANALYSIS. I. DRRELATION IN REGRESSION ANALYSIS. II. DRRELATION IN SYSTEMS OF SIMULTANEOUS REGRESS DRRELATION SUITABLE FOR USE WITH NONSTATIONAR DRRELATION WITH EXPONENTIALLY DISTRIBUTED ORRELATION DORRELATION ESIGNS FOR ROUTINE QUALITY CONTROL AND ACTORIAL DESIGN AMPLING ACCEPTANCE SCHEMES DERIVED FROM AMPLING ACCEPTANCE SCHEMES FOR LARGE BATCHES ARIATION CURVES DRRELATION DISTRIBUTION AND CONTEMPORANEOUSLY CORRELATED /A SYSTE BALANCED SEQUENCES CORRELATED /FOR THE TWO-WAY CLASSIFICATIO CORRELATED NORMAL VARIABLES CORRELATED NORMAL VARIABLES CORRELATED OBSERVATIONS	BIOKAS7 BIOKAS7 BIOKAS6 BIOKA69 BIOKA55 BIOKA55 BIOKA57 JASA 63 BIOKA67 AMS 62 TECH 64 BIOKA68 JRSSB58 BIOKA68 JRSSB58 BIOKA68 JRSSB58 BIOKA68 JRSSB58 BIOKA68 JRSSB57 BIOKA68 BIOKA68 JRSSB57 BIOKA68 BIOKA58 BIOKA55 BIOKA55	57 159 111 1 327 436 370 72B 395 1457 77 67 353 393 120 559 500 286 NO.3 85 198 151 208 299 221
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C VARIATES A QUICK TEST FOR SERIAL C ON BOUNDS OF SERIAL C SERIAL	DRRELATION IN LEAST SQUARES REGRESSION. II. DRRELATION IN POLYNOMIAL REGRESSION ORRELATION IN REGRESSION ANALYSIS BASED ON TH DRRELATION IN REGRESSION ANALYSIS. I. DRRELATION IN REGRESSION ANALYSIS. II. DRRELATION IN SYSTEMS OF SIMULTANEOUS REGRESS DRRELATION SUITABLE FOR USE WITH NONSTATIONAR DRRELATION WITH EXPONENTIALLY DISTRIBUTED ORRELATION DORRELATION ESIGNS FOR ROUTINE QUALITY CONTROL AND ACTORIAL DESIGN AMPLING ACCEPTANCE SCHEMES DERIVED FROM AMPLING ACCEPTANCE SCHEMES FOR LARGE BATCHES ARIATION CURVES DRRELATION DISTRIBUTION AND CONTEMPORANEOUSLY CORRELATED /A SYSTE BALANCED SEQUENCES CORRELATED /FOR THE TWO-WAY CLASSIFICATIO CORRELATED NORMAL VARIABLES CORRELATED NORMAL VARIABLES CORRELATED OBSERVATIONS	BIOKA57 BIOKA631 BIOKA60 BIOKA60 BIOKA55 BIOKA55 BIOKA56 BIOKA57 JASA 63 BIOKA67 TECH 60 BIOKA6B JRSSB58 BIOKA6B JRSSB58 BIOKA6B JRSSB57 BIOKA6B JRSSB57 BIOKA6B JRSSB57 BIOKA6B JRSSB57 BIOKA6B JRSSB57 BIOKA6B JRSSB57 BIOKA6B JRSSB57 BIOKA6B JRSSB57 BIOKA6B JRSSB57 BIOKA6B JRSSB57 BIOKA6B JRSSB57 BIOKA6B JRSSB57 BIOKA6B JRSSB57 BIOKA6B JRSSB57 BIOKA6B BIOKA5B BIOKA	57 159 111 1 327 436 370 72B 395 1457 77 67 353 393 120 559 500 286 NO.3 85 198 151 208 799 221
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C Y TIME SERIES A QUICK TEST FOR SERIAL C VARIATES TESTING FOR SERIAL C ON BOUNDS OF SERIAL C EXPERIMENTATION SERIAL C EXPERIMENTATION SERIAL C SERIAL F SERIAL F SERIAL F SERIAL F SERIAL F SERIAL S SERIAL C MARKOFF SERIAL V RESERVATION OF A SERIAL S SERIAL S SERIAL S SERIAL S SERIAL C SERIAL C RESTIAL D SERIAL C SERIAL C SERIAL C RESTIAL D SERIAL C SERIAL C SERIAL C RESTIAL D SERIAL C S	DRRELATION IN LEAST SQUARES REGRESSION. II. DRRELATION IN POLYNOMIAL REGRESSION ORRELATION IN REGRESSION ANALYSIS BASED ON TH DRRELATION IN REGRESSION ANALYSIS. I. DRRELATION IN REGRESSION ANALYSIS. II. DRRELATION IN SYSTEMS OF SIMULTANEOUS REGRESS DRRELATION SUITABLE FOR USE WITH NONSTATIONAR DRRELATION WITH EXPONENTIALLY DISTRIBUTED ORRELATION DORRELATION ESIGNS FOR ROUTINE QUALITY CONTROL AND ACTORIAL DESIGN AMPLING ACCEPTANCE SCHEMES DERIVED FROM AMPLING ACCEPTANCE SCHEMES FOR LARGE BATCHES ARIATION CURVES DRRELATION DISTRIBUTION AND CONTEMPORANEOUSLY CORRELATED /A SYSTE BALANCED SEQUENCES CORRELATED /FOR THE TWO-WAY CLASSIFICATIO CORRELATED NORMAL VARIABLES CORRELATED NORMAL VARIABLES CORRELATED OBSERVATIONS	BIOKA57 BIOKA69 BIOKA60 BIOKA60 BIOKA55 BIOKA55 BIOKA56 CANDER OF THE OF	57 159 111 1 327 436 370 72B 395 1457 77 67 353 120 559 500 286 NO.3 85 151 208 151 209 221 1077 1253 134
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C ON BOUNDS OF SERIAL C ON BOUNDS OF SERIAL C S	DRRELATION IN LEAST SQUARES REGRESSION. II. DRRELATION IN POLYNOMIAL REGRESSION ORRELATION IN REGRESSION ANALYSIS BASED ON TH DRRELATION IN REGRESSION ANALYSIS. I. DRRELATION IN REGRESSION ANALYSIS. II. DRRELATION IN SYSTEMS OF SIMULTANEOUS REGRESS DRRELATION SUITABLE FOR USE WITH NONSTATIONAR DRRELATION WITH EXPONENTIALLY DISTRIBUTED ORRELATION DORRELATION ESIGNS FOR ROUTINE QUALITY CONTROL AND ACTORIAL DESIGN AMPLING ACCEPTANCE SCHEMES DERIVED FROM AMPLING ACCEPTANCE SCHEMES FOR LARGE BATCHES ARIATION CURVES DRRELATION DISTRIBUTION AND CONTEMPORANEOUSLY CORRELATED /A SYSTE BALANCED SEQUENCES CORRELATED /FOR THE TWO-WAY CLASSIFICATIO CORRELATED NORMAL VARIABLES CORRELATED NORMAL VARIABLES CORRELATED OBSERVATIONS	BIOKA57 BIOKA69 BIOKA60 BIOKA66 BIOKA55 BIOKA55 BIOKA57 JASA 63 BIOKA67 TECH 64 BIOKA68 TECH 60 BIOKA68 JRSSB58 BIOKA58 JASA 67 BIOKA69 JRSSB57 BIOKA69 JRSSB57 BIOKA69 TECH 61 BIOKA68 BIOKA58 BIOKA58 BIOKA58 BIOKA58 BIOKA56 BIOKA5	57 159 111 1 327 436 370 72B 395 1457 77 67 353 393 120 559 500 286 NO.3 85 198 151 208 799 221 1077 1253 134
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C VARIATES A QUICK TEST FOR SERIAL C ON BOUNDS OF SERIAL C ON BOUNDS OF SERIAL C ON BOUNDS OF SERIAL C SERIAL	DRRELATION IN LEAST SQUARES REGRESSION. II. DRRELATION IN POLYNOMIAL REGRESSION ORRELATION IN REGRESSION ANALYSIS BASED ON TH DRRELATION IN REGRESSION ANALYSIS. I. DRRELATION IN REGRESSION ANALYSIS. II. DRRELATION IN SYSTEMS OF SIMULTANEOUS REGRESS DRRELATION SUITABLE FOR USE WITH NONSTATIONAR DRRELATION WITH EXPONENTIALLY DISTRIBUTED ORRELATION DORRELATION ESIGNS FOR ROUTINE QUALITY CONTROL AND ACTORIAL DESIGN AMPLING ACCEPTANCE SCHEMES DERIVED FROM AMPLING ACCEPTANCE SCHEMES FOR LARGE BATCHES ARIATION CURVES DRRELATION DISTRIBUTION AND CONTEMPORANEOUSLY CORRELATED /A SYSTE BALANCED SEQUENCES CORRELATED /FOR THE TWO-WAY CLASSIFICATIO CORRELATED NORMAL VARIABLES CORRELATED NORMAL VARIABLES CORRELATED OBSERVATIONS	BIOKAS7 BIOKAS7 BIOKAS6 BIOKA69 BIOKA66 BIOKA66 BIOKA66 BIOKA67 AMS 62 TECH 64 BIOKA68 BIOKA68 JRSSB58 BIOKA68 JRSSB58 BIOKA68 JRSSB58 BIOKA68 JRSSB57 BIOKA68 JRSSB57 BIOKA69 TECH 63 BIOKA68 BIOKA58 BIOKA58 BIOKA58 BIOKA58 BIOKA58 BIOKA56 ASS 67 AMS 63 AMS 67 AMS 69	57 159 1111 1 327 436 370 72B 395 1457 77 67 353 393 120 559 500 286 NO.3 85 198 151 208 799 221 1077 1253 134 1261
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C ON BOUNDS OF SERIAL C ON BOUNDS OF SERIAL C S	DRRELATION IN LEAST SQUARES REGRESSION. II. DRRELATION IN POLYNOMIAL REGRESSION ORRELATION IN REGRESSION ANALYSIS BASED ON TH DRRELATION IN REGRESSION ANALYSIS. I. DRRELATION IN REGRESSION ANALYSIS. II. DRRELATION IN SYSTEMS OF SIMULTANEOUS REGRESS DRRELATION SUITABLE FOR USE WITH NONSTATIONAR DRRELATION WITH EXPONENTIALLY DISTRIBUTED ORRELATION DORRELATION ESIGNS FOR ROUTINE QUALITY CONTROL AND ACTORIAL DESIGN AMPLING ACCEPTANCE SCHEMES DERIVED FROM AMPLING ACCEPTANCE SCHEMES FOR LARGE BATCHES ARIATION CURVES DRRELATION DISTRIBUTION AND CONTEMPORANEOUSLY CORRELATED /A SYSTE BALANCED SEQUENCES CORRELATED /FOR THE TWO-WAY CLASSIFICATIO CORRELATED NORMAL VARIABLES CORRELATED NORMAL VARIABLES CORRELATED OBSERVATIONS	BIOKA57 BIOKA69 BIOKA60 BIOKA66 BIOKA55 BIOKA55 BIOKA57 JASA 63 BIOKA67 TECH 64 BIOKA68 TECH 60 BIOKA68 JRSSB58 BIOKA58 JASA 67 BIOKA69 JRSSB57 BIOKA69 JRSSB57 BIOKA69 TECH 61 BIOKA68 BIOKA58 BIOKA58 BIOKA58 BIOKA58 BIOKA56 BIOKA5	57 159 111 1 327 436 370 72B 395 1457 77 67 353 393 120 559 500 286 NO.3 85 198 151 208 85 198 151 209 221 1077 1253 134 1261 1261 1496
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C OR BOUNDS OF SERIAL C OR BOUNDS OF SERIAL C SERIAL C SERIAL C OR BOUNDS OF SERIAL C SERIAL	DRRELATION IN LEAST SQUARES REGRESSION. II. DRRELATION IN POLYNOMIAL REGRESSION ORRELATION IN REGRESSION ANALYSIS BASED ON TH DRRELATION IN REGRESSION ANALYSIS. I. DRRELATION IN REGRESSION ANALYSIS. II. DRRELATION IN SYSTEMS OF SIMULTANEOUS REGRESS DRRELATION SUITABLE FOR USE WITH NONSTATIONAR DRRELATION WITH EXPONENTIALLY DISTRIBUTED ORRELATION DORRELATION ESIGNS FOR ROUTINE QUALITY CONTROL AND ACTORIAL DESIGN AMPLING ACCEPTANCE SCHEMES DERIVED FROM AMPLING ACCEPTANCE SCHEMES FOR LARGE BATCHES ARIATION CURVES DRRELATION DISTRIBUTION AND CONTEMPORANEOUSLY CORRELATED /A SYSTE BALANCED SEQUENCES CORRELATED /FOR THE TWO-WAY CLASSIFICATIO CORRELATED NORMAL VARIABLES CORRELATED NORMAL VARIABLES CORRELATED OBSERVATIONS	BIOKAS7 BIOKAS7 BIOKAS6 BIOKA69 BIOKA68 BIOKA65 BIOKA56 BIOKA57 JASA 63 BIOKA67 AMS 62 TECH 64 BIOKA68 JRSSB58 BIOKA68 JRSSB58 BIOKA68 JRSSB57 BIOKA68 JRSSB57 BIOKA68 JRSSB57 BIOKA68 JRSSB57 BIOKA68 AGS 67 AGS 67 AGS 67 AMS 69 AMS 68	57 159 1111 1 327 436 370 72B 395 1457 77 67 77 67 353 393 120 286 NO.3 85 198 151 208 799 221 1077 1253 134 126 1077 1253 134 126 1021 1496 479 198
AN APPROXIMATE TEST FOR SERIAL C E PERIODOGRAM OF LEAST-SQUARES RESIDUALS TESTS FOR SERIAL C ON BOUNDS OF SERIAL C ON BOUNDS OF SERIAL C SERIAL C SERIAL C SERIAL C SERIAL C ON BOUNDS OF SERIAL C SERIAL	DRRELATION IN LEAST SQUARES REGRESSION. II. DRRELATION IN POLYNOMIAL REGRESSION ORRELATION IN REGRESSION ANALYSIS BASED ON TH DRRELATION IN REGRESSION ANALYSIS. I. DRRELATION IN REGRESSION ANALYSIS. II. DRRELATION IN SYSTEMS OF SIMULTANEOUS REGRESS DRRELATION SUITABLE FOR USE WITH NONSTATIONAR DRRELATION WITH EXPONENTIALLY DISTRIBUTED ORRELATION DORRELATION ESIGNS FOR ROUTINE QUALITY CONTROL AND ACTORIAL DESIGN AMPLING ACCEPTANCE SCHEMES DERIVED FROM AMPLING ACCEPTANCE SCHEMES FOR LARGE BATCHES ARIATION CURVES DRRELATION DISTRIBUTION AND CONTEMPORANEOUSLY CORRELATED /A SYSTE BALANCED SEQUENCES CORRELATED /FOR THE TWO-WAY CLASSIFICATIO CORRELATED NORMAL VARIABLES CORRELATED NORMAL VARIABLES CORRELATED OBSERVATIONS	BIOKA57 BIOKA51 BIOKA60 BIOKA60 BIOKA65 BIOKA55 BIOKA56 BIOKA57 JASA 63 BIOKA67 AMS 62 TECH 64 BIOKA58 BIOKA58 BIOKA58 BIOKA58 BIOKA69 JRSSB58 BIOKA59 BIOKA58 BIOKA59 BIOKA59 BIOKA59 BIOKA69 TECH 61 AMS 62 AMS 63 JASA 67 AMS 62 AMS 67 AMS 69 BIOKA51	57 159 1111 1 327 436 370 728 395 1457 77 67 353 393 120 286 NO.3 85 198 151 208 799 221 1077 1253 134 1261 1021 1496 479 198

```
A CHANCE IN LEVEL OF A NON-STATIONARY TIME SERIES
                                                                                                                BIOKA65
                                                                                                                         181
             SPECTRAL FACTORIZATION OF MULTIPLE TIME SERIES
                                                                                                                BIOKA66
                                                                                                                         264
                  ON THE STRUCTURE OF THE TETRACHORIC SERIES
                                                                                                                BIOKA68
                                                                                                                         261
                TESTINC FOR HOMOCENEITY OF A BINOMIAL SERIES
                                                                                                                BTOKA68
                                                                                                                         426
                                            QUEUES IN SERIES
                                                                                                                JRSSB62
                                                                                                                         359
       STATIONARY AMPLITUDE FLUCTUATIONS IN A RANDOM SERIES
                                                                                                                JRSSR64
                                                                                                                         361
      ON THE WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES
                                                                                                                JRSSB65
                                                                                                                         491
         EXPONENTIAL SMOOTHING FOR MULTIVARIATE TIME SERIES
                                                                                                                JRSSR66
                                                                                                                         241
            LEAST-SOUARES EFFICIENCY FOR VECTOR TIME SERIES
                                                                                                                JRSSB6B
                                                                                                                         490
   NONPARAMETRIC TESTS FOR COMOVEMENTS BETWEEN TIME SERIES
                                                                                                          SOME JASA 61
                                                                                                                          1.1
  SQUARES REGRESSION ANALYSIS FOR TREND-REDUCED TIME SERIES
                                                                                                         LEAST JRSSB55
                                                                                                                          91
 EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY TIME SERIES
                                                                                                        ON THE AMS 65 1426
     OF THE INNOVATION VARIANCE OF A STATIONARY TIME SERIES
                                                                                                    ESTIMATION JASA 68
        OF CORRELATION COEFFICIENTS IN ECONOMIC TIME SERIES
                                                                                                 DISTRIBUTIONS JASA 61
                                                                                                                         637
  TO DISTRIBUTION FUNCTIONS WHICH ARE HYPERCEOMETRIC SERIES
                                                                                                APPROXIMATIONS BIOKAGE
 POWERS OF CERTAIN TESTS OF COODNESS OF FIT FOR TIME SERIES
                                                                                                THE ASYMPTOTIC JRSSB58
        OF RELATIONSHIPS BETWEEN AUTOCORRELATED TIME SERIES
                                                                                           REGRESSION ANALYSIS JRSSB56
        OF LOCAL STATISTICS IN STATIONARY STOCHASTIC SERIES
                                                                                           SAMPLING PROPERTIES BIOKA55
                                                                                                                         160
CORRELATION SUITABLE FOR USE WITH NONSTATIONARY TIME SERIES
                                                                                      A QUICK TEST FOR SERIAL JASA 63
                                                                                                                         72B
 THE POWERS OF THE RECORDS TESTS FOR TREND IN A TIME SERIES
                                                                                      A SAMPLING EXPERIMENT ON JRSSB55
                                                                                                                         115
    OF RUNS OF SIGNS OF FIRST DIFFERENCES IN ORDERED SERIES
                                                                                 PROBABILITY TABLE FOR NUMBER JASA 61
                                                                                                                         156
      CONCERNING LIMIT DISTRIBUTIONS FOR VARIATIONAL SERIES
                                                                             ON SOME RESULTS OF N. V. SMIRNOV
                                                                                                                AMS 69
                                                                                                                         480
     PROPERTIES OF SMOOTHLY HETEROMORPHIC STOCHASTIC SERIES
                                                                             STATISTICAL ANALYSIS USING LOCAL BIOKA57
                                                                                                                         454
THE CORRELATION BETWEEN TWO STATIONARY LINEAR MARKOV SERIES
                                                                             THE APPROXIMATE DISTRIBUTION OF
                                                                                                                BTOKA62
                                                                                                                         379
  SQUARES REGRESSION INVOLVING TREND-REDUCED MARKOFF SERIES
                                                                           A NUMERICAL INVESTIGATION OF LEAST JRSSB55
                                                                                                                         105
OBSERVATIONS FROM SECTIONS OF INDEPENDENT STOCHASTIC SERIES
                                                                          THE COMPARISON OF MEANS OF SETS OF JRSSB55
                                                                                                                         208
IVITY IN THE ABBREVIATED EDGEWORTH AND GRAM-CHARLIER SERIES
                                                                         THE REGIONS OF UNIMODALITY AND POSIT JASA 57
                                                                                                                         253
 THE COMPATIBILITY OF CORRELATION STRUCTURES IN TIME SERIES DENSITY FUNCTIONS FROM A CLIPPED STATIONARY TIME SERIES
                                                                        AN EXTENSION OF QUENOUILLE'S TEST FOR JRSSB6B
                                                                                                                         180
                                                                       ESTIMATING THE COVARIANCE AND SPECTRAL JRSSB67
                                                                                                                         180
   USEFUL IN THE ANALYSIS OF JOINTLY STATIONARY TIME SERIES
                                                                       ON THE DISTRIBUTION OF SOME STATISTICS AMS 68 1849
ERM PREDICTORS OR CONTROLLERS IN NON-STATIONARY TIME SERIES
                                                                  POLYNOMIAL PROJECTING PROPERTIES OF MULTI-T JRSSB65
F THE SPECTRAL DENSITY FUNCTION OF A STATIONARY TIME SERIES
                                                                 /PTOTICALLY EFFICIENT CONSISTENT ESTIMATES 0 JRSSB58
                                                                                                                         30.3
ORRELATION COEFFICIENTS IN A COMPLEX STATIONARY TIME SERIES
                                                                 /TIONS AND COVARIANCES OF SERIAL AND CROSS-C BIOKA63
                                                                                                                         213
V FOR THE 2-TO-THE-N AND 2-TO-THE-N TIMES 3-TO-THE-M SERIES
                                                                 RESULTS ON FACTORIAL DESIGNS OF RESOLUTION I TECH 69
OR TESTING TREND IN DISPERSION OF A P-DEPENDENT TIME SERIES
                                                                                 /OF COX AND STUART'S TESTS F BIOKA68
                                                               (CORR. 69 457)
                       THE SPECTRAL ANALYSIS OF TIME SERIES
                                                               (WITH DISCUSSION)
                                  AN APPROACH TO TIME SERIES
                                                               ANALYSIS
                                                                                                                 AMS 61
                                                                                                                         951
     SOME CONSEQUENCES OF SUPERIMPOSED ERROR IN TIME SERIES ANALYSIS
                                                                                                                BTOKA60
                                                                                                                          33
    TESTS OF SEPARATE FAMILIES OF HYPOTHESES IN TIME SERIES ANALYSIS
                                                                                                          SOME BIOKA67
                                                                                                                          39
       IN THE STUDY OF VARIANCE FLUCTUATIONS IN TIME SERIES ANALYSIS
                                                                                               FOURIER METHODS TECH 69
                                                                                                                         103
                                                  TIME SERIES ANALYSI'S BY MODIFIED LEAST-SQUARES TECHNIQUES
                                                                                                                JASA 66
                                                                                                                         152
D ESTIMATORS OF RELIABILITY FUNCTIONS FOR SYSTEMS IN SERIES AND IN PARALLEL /IASED AND MAXIMUM LIKELIHOO JASA 66 1052
                SEASONAL ADJUSTMENT OF ECONOMIC TIME SERIES AND MULTIPLE REGRESSION ANALYSIS
                                                                                                                JASA 63
                                                                                                                         993
     ON ESTIMATING THE PARAMETERS OF THE LOGARITHMIC SERIES AND NECATIVE BINOMIAL DISTRIBUTIONS
                                                                                                                BTOKA69
                                                                                                                         411
APPROXIMATE CONFIDENCE LIMITS FOR THE RELIABILITY OF SERIES AND PARALLEL SYSTEMS
                                                                                                                TECH 65
                                                                                                                         495
                            FHE INTERPOLATION OF TIME SERIES BY RELATED SERIES
                                                                                                                JASA 62
                                                                                                                         729
    TABLES OF THE LOCARITHMIC SERIES DISTRIBUTION
ON SOME ASYMPTOTIC PROPERTIES OF THE LOGARITHMIC SERIES DISTRIBUTION
                                                                                                                 AMS 64
                                                                                                                         2R4
                                                                                                         A NOTE BIOKA61
                                                                                                                         212
ION AND COMMUNITY ECOLOG/ MULTIVARIATE LOGARITHMIC SERIES DISTRIBUTION AS A PROBABILITY MODEL IN POPULAT JASA 67
ON CERTAIN PROPERTIES OF POWER-SERIES DISTRIBUTIONS
BIOKA59
                                                                                                                         655
                                                                                                                         486
 MAXIMUM LIKELIHOOD ESTIMATION FOR CENERALIZED POWER SERIES DISTRIBUTIONS AND ITS APPLICATION TO A TRUNCAT BIOKA62
                                                                                                                         227
                                                   ON SERIES EXPANSIONS FOR THE RENEWAL MOMENTS
                                                                                                                BTOKA63
                                                                                                                          75
E ERROR AFTER A NUMBER OF TERMS OF THE DAVID-JOHNSON SERIES FOR THE EXPECTED VALUES OF NORMAL ORDER STATIS BIOKAGO
                                                                                                                          79
DISTRIBUTIONS
                                              LAGUERRE SERIES FORMS OF NON-CENTRAL CHI-SQUARE AND F
                                                                                                                BIOKA65
 OF PROBABILITY DENSITIES AND CUMULATIVES BY FOURIER SERIES METHODS
                                                                                                THE ESTIMATION JASA 68
                                                                                                                         925
                                                     A SERIES OF BALANCED INCOMPLETE BLOCK DESIGNS
                                                                                                                 AMS 6B
                                                                                                                         6B1
                  THE QUANTAL RESPONSE ANALYSIS OF A SERIES OF BIOLOGICAL ASSAYS ON THE SAME SUBJECTS
                                                                                                                BIOKA60
                                                                                                                          23
               CONSTRUCTION AND ANALYSIS OF SOME NEW SERIES OF CONFOUNDED ASYMMETRICAL FACTORIAL DESICNS
                                                                                                                BIOCS67
                                                                                                                         B13
CTIONS FOR THE 2-TO-THE-N TIMES 3-TO-THE-N FACTORIAL SERIES OF DESIGNS /IMATION OF ALL TWO-FACTOR INTERA TECH 69 NO.4
              A STUDY OF THE MATRIX OF FITTING OF A SERIES OF DISCRETE FREQUENCY FUNCTIONS ANALOGOUS TO T SASJ 67
                  ON MEASURES OF CORRELATION IN TIME SERIES OF EVENTS
             SOME STATISTICAL METHODS CONNECTED WITH SERIES OF EVENTS (WITH DISCUSSION)
                                                                                                                JRSSB55
F TWO TESTS OF EQUALITY OF RATE OF OCCURRENCE IN TWO SERIES OF EVENTS OCCURRING RANDOMLY IN TIME
                                                                                                       /ENCE O BIOKASB
TESTS FOR RANDOMNESS IN A SERIES OF EVENTS WHEN THE ALTERNATIVE IS A TREND APHIC METHOD FOR FITTING THE BEST STRAIGHT LINE TO A SERIES OF POINTS ACCORDING TO THE CRITERION OF LEAST
                                                                                                                JRSSB56
                                                                                                                         234
                                                                                                               JASA 57
                                                                                                                          13
                                    THE ERGODICITY OF SERIES OF QUEUES WITH CENERAL PRIORITIES
                                                                                                                 AMS 65 1664
                                                                                                      THE DIST BIOKAST
RIBUTION OF INTERVALS BETWEEN SUCCESSIVE MAXIMA IN A SERIES OF RANDOM NUMBERS
                                                                                                                         524
     THE DIFFERENCE BETWEEN CONSECUTIVE MEMBERS OF A SERIES OF RANDOM VARIABLES ARRANGED IN ORDER OF SIZE
                                                                                                               BIOKA57
                                                                                                                         211
   THE ORTHOGONAL POLYNOMIALS OF THE FACTORIAL POWER SERIES PROBABILITY DISTRIBUTIONS
                                                                                                                SASJ 67
                                                                                                                          49
                 THE ORTHOGONAL POLYNOMIALS OF POWER SERIES PROBABILITY DISTRIBUTIONS AND THEIR USES
                                                                                                                BTOKA66
                                                                                                                         121
ING RELATIVE EFFICIENCY OF STATISTICAL TESTS IN TIME SERIES RECRESSION ANALYSIS
                                                                                     /VALUE METHOD FOR ADJUDC BIOKA66
                                                                                                                         109
LOWER BOUNDS FOR MINIMUM COVARIANCE MATRICES IN TIME SERIES REGRESSION PROBLEMS
                                                                                                                 AMS 64
                                                                                                                         362
                                                                                                                 AMS 67
FORMS IN NORMAL VARIABLES, I. CENTRAL CASE
                                                       SERIES REPRESENTATIONS OF DISTRIBUTIONS OF QUADRATIC
                                                                                                                         B23
                                                                                                                 AMS 67
FORMS IN NORMAL VARIABLES, II, NON-CENTRAL CASE
                                                       SERIES REPRESENTATIONS OF DISTRIBUTIONS OF QUADRATIC
                                                                                                                         B3B
DISTRIBUTION
                                                       SERIES REPRESENTATIONS OF THE DOUBLY NONCENTRAL T-
                                                                                                                JASA 68 1004
                                          A NOTE ON A SERIES SOLUTION OF A PROBLEM IN ESTIMATION
                                                                                                                BIOKA5B
                                                                                                                        565
         SOME TECHNIQUES FOR ANALYZING A SET OF TIME SERIES SUBJECT TO A LINEAR RESTRICTION
                                                                                                                JASA 63
            CONFIDENCE LIMITS FOR THE RELIABILITY OF SERIES SYSTEMS
                                                                                                                JASA 67 1452
                                    NOTE ON THE THREE SERIES THEOREM
                                                                                                                 AMS 69 1844
  OF PROCEDURES FOR SMOOTHING PERIODOGRAMS FROM TIME SERIES WITH CONTINUOUS SPECTRA
                                                                                            ON THE EFFICIENCY BIOKA55
                                  RECRESSION FOR TIME SERIES WITH ERRORS OF MEASUREMENT
                                                                                                                BTOKA63
R SPECTRAL DISTRIBUTION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL RESIDUALS /ODNESS OF FIT TEST FO BIOKA56
                                                  TIME SERIES WITH PERIODIC STRUCTURE
                                                                                                                BTOKA67
                                                                                                                         403
THE CORRELATION BETWEEN TWO STATIONARY LINEAR MARKOV SERIES. II.
                                                                            THE APPROXIMATE DISTRIBUTION OF
                                                                                                                         301
                                                                                                               BIOKA65
                                              DILUTION SERIES, A STATISTICAL TEST OF TECHNIQUE (CORR. 59
                                                                                                               JRSSB58
                                                                                                                         205
238)
      OF FRACTIONAL REPLICATES IN THE 2-TO-THE-(P-Q) SERIES, CORR. 62 919
                                                                                                     SEQUENCES JASA 62
```

TITLE WORD INDEX SER - SET

```
THE JASA 63
   ESTIMATION OF SEASONAL VARIATION IN ECONOMIC TIME SERIES, CORR. 63 1162
ESTIMATION OF SEASONAL VARIATION IN ECONOMIC TIME SERIES, CORR. 63 1162

THE JASA 63 31

INEAR, UNBIASED SEASONAL ADJUSTMENT OF ECONOMIC TIME SERIES, CORR. 65 1250

MINIMUM VARIANCE, L JASA 64 681
                                                                                                                         31
                               SOME DESIGNS OF USE IN SEROLOGY
                                                                                                               BIOCS67
                                                                                                                        779
   ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINCLE SERVER
                                                                                                               AMS 62
                                                                                                                        767
OISSON INPUT, CENERAL SERVICE TIME DISTRIBUTION, ONE SERVER
                                                                       ON THE QUEUEINC PROCESS, MARKOV OR P
                                                                                                               AMS 61
                                                                                                                        770
OD OF SOLUTION OF THE QUEUEING PROBLEM WITH A SINCLE SERVER AND CONSTANT PARAMETERS AN ELEMENTARY METH JRSSB56
                                                                                                                        125
  THE OUTPUT PROCESS OF THE QUEUEINC SYSTEM WITH ONE SERVER AND WHICH INTERARRIVAL AND SERVINC DISTRIBUTIO JRSSB59
ALS AND/ THE BUSY PERIOD IN RELATION TO THE SINGLE-SERVER QUEUEING SYSTEM WITH GENERAL INDEPENDENT ARRIV JRSSB60
                                                                                                                         89
    STATIONARY WAITING-TIME DISTRIBUTIONS FOR SINGLE-SERVER QUEUES
                                                                                                                AMS 62 1323
 SERVICE TIME THE TRANSIENT BEHAVIOR OF A SINCLE SERVER QUEUINC PROCESS WITH RECURRENT INPUT AND CAMMA AMS 61 1286
      STRUCTURE OF THE OUTPUT PROCESS OF SOME SINGLE SERVER SYSTEMS
                                                                                             THE CORRELATION AMS 68 1007
E NUMERICAL RESULTS FOR THE QUEUEINC SYSTEM WITH ONE SERVER, WHILE THE INTERARRIVAL AND SERVINC DISTRIBUTI JRSSB63 477
CTURE OF THE DEPARTURE PROCESS OF THE QUEUE WITH ONE SERVER, WHILE THE INTERARRIVAL AND SERVINC DISTRIBUTI JRSSB66
                                     A SYSTEM OF TWO SERVERS WITH LIMITED WAITING ROOMS AND CERTAIN ORDER
                                                                                                              BIOKA68
                                                                                                                        223
              ON THE BUSY PERIOD OF A FACILITY WHICH SERVES CUSTOMERS OF SEVERAL TYPES
                                                                                                               JRSSB65
                     ON QUEUEINC PROCESSES WITH BULK SERVICE
                                                                                                               JRSSB54
                                                                                                                         80
           RANDOM QUEUEINC PROCESSES WITH PHASE-TYPE SERVICE
                                                                                                               JRSSB56 129
          A SIMPLE CONCESTION SYSTEM WITH INCOMPLETE SERVICE
                                                                                                               JRSSB61
                  CONGESTION SYSTEMS WITH INCOMPLETE SERVICE (CORR. 64 365)
                                                                                                               JRSSB62 107
   TRANSIENT BEHAVIOR OF A QUEUEING SYSTEM WITH BULK SERVICE AND FINITE CAPACITY
                                                                                                       ON THE AMS 62
                                                                                                                        973
                                   QUEUES SUBJECT TO SERVICE INTERRUPTION
                                                                                                                AMS 62 1314
                                       ESTIMATING THE SERVICE LIFE OF HOUSEHOLD GOODS BY ACTUARIAL METHODS, JASA 57
                                 WAITING TIME IN BULK SERVICE QUEUES
           ON LIMITING DISTRIBUTIONS ARISING IN BULK SERVICE QUEUES
                                                                                                               JRSSB56
     EFFECTS OF SLOW-DOWNS AND FAILURE ON STOCHASTIC SERVICE SYSTEMS
ERVER QUEUING PROCESS WITH RECURRENT INPUT AND GAMMA SERVICE TIME THE TRANSIENT BEHAVIOR OF A SINCLE S AMS 61 1286
  QUEUEING PROCESS, MARKOV OR POISSON INPUT, GENERAL SERVICE TIME DISTRIBUTION, ONE SERVER ON THE AMS 61 770
           A NOTE ON QUEUEING SYSTEMS WITH ERLANGIAN SERVICE TIME DISTRIBUTIONS
                                                                                                               AMS 65 1574
                               DISTRIBUTION OF TOTAL SERVICE TIME FOR A FIXED OBSERVATION INTERVAL
                                                                                                              JASA 62
                                                                                                                       376
A SINGLE-SERVER QUEUE WITH POISSON INPUT AND CENERAL SERVICE TIMES THE TIME DEPENDENCE OF AMS 62
STEM WITH GENERAL INDEPENDENT ARRIVALS AND ERLANGIAN SERVICE-TIME /TION TO THE SINGLE-SERVER QUEUEING SY JRSSB60
                                                                                                               AMS 62 1340
                                                                                                                         89
 OF THE SINGLE CHANNEL QUEUE WITH A GENERAL CLASS OF SERVICE-TIME DISTRIBUTIONS BY THE METHOD OF GENERATIN JRSSB58
                                                                                                                        176
                     A WAITING LINE WITH INTERRUPTED SERVICE, INCLUDING PRIORITIES
                                                                                                               JRSSB62
                                                                                                                         73
                  ON SOME MEASURES OF FOOD MARKETING SERVICES
                                                                                                               JASA 61
                                                                                                                         65
 FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES
                                                                                                             A JASA 62
                                                                                                                        633
                           DEMAND FOR MANUFACTURERS' SERVICES FOR BAKERY PRODUCTS AND FRUITS AND VEGETABLE JASA 65
                                                                                                                        740
                         EXPECTED UTILITY FOR QUEUES SERVICING MESSAGES WITH EXPONENTIALLY DECAYING UTILIT AMS 61
                                                                                                                        587
                                QUEUEING AT A SINGLE SERVING POINT WITH GROUP ARRIVAL
A BOREL SET NOT CONTAINING A GRAPH
                                                                                                              JRSSB60
                                                                                                                        285
                                                                                                               AMS 6B 1345
                        TESTING THE HOMOCENEITY OF A SET OF CORRELATED VARIANCES
                                                                                                              RIOKAGE
                                                                                                                        317
                                         ON TESTING A SET OF CORRELATION COEFFICIENTS FOR EQUALITY
                                                                                                               AMS 63
                                                                                                                        149
ASYMPTOTIC RESULTS
                                         ON TESTING A SET OF CORRELATION COEFFICIENTS FOR EQUALITY. SOME
                                                                                                              BTOKA6B
                                                                                                                        513
           OF A QUANTUM HYPOTHESIS BASED ON A SINGLE SET OF DATA
                                                                                                 EXAMINATION BIOKA56
                                                                                                                        32
GNS OF RESOLUTION CREATER THEN OR EQUAL TO 5 AND THE SET OF EVEN 512-RUN DESIGNS OF RESOLUTION GREATER THE AMS 68

IMATE DISTRIBUTION FOR LARCEST AND FOR SMALLEST OF A SET OF INDEPENDENT OBSERVATIONS

APPROX SASJ 69
                                                                                                                       246
                                                                                                       APPROX SASJ 69 NO.2
ION OF CYCLIC COLLINEATIONS FOR OBTAINING A BALANCED SET OF L-RESTRICTIONAL PRIME-POWERED LATTICE DESIGNS
                                                                                                               AMS 67 1293
                                            COMPLETE SET OF LEADING COEFFICIENTS FOR ORTHOGONAL POLYNOMIAL TECH 65
S UP TO N = 26
                                                                                                                       644
                           ITERATIVE ESTIMATION OF A SET OF LINEAR REGRESSION EQUATIONS
                                                                                                               JASA 64 B45
                                  ON PARTITIONING A SET OF NORMAL POPULATIONS BY THEIR LOCATIONS WITH
RESPECT TO A CONTROL
                                                                                                               AMS 69 1300
  GRAPHICAL PROCEDURE FOR FITTING THE BEST LINE TO A SET OF POINTS
                                                                                                               TECH 60 477
                         THE CONVEX HULL OF A RANDOM SET OF POINTS
                                                                                                               BIOKA65
                                                                                                                        331
                            UNBIASED ESTIMATION OF A SET OF PROBABILITIES
                                                                                                               BIOKA61
                                                                                                                        227
GAMATION INTO BLOCKS, BY WEIGHTED MEANS, OF A FINITE SET OF REAL NUMBERS
                                                                                           THE COMPLETE AMAL BIOKA59
                                                                                                                        317
                              ON THE CONCURRENCE OF A SET OF REGRESSION LINES.
                                                                                                               BIOKA52
                                                                                                                        109
EXPERIM/ A CONFIDENCE REGION FOR THE SOLUTION OF A SET OF SIMULTANEOUS EQUATIONS WITH AN APPLICATION TO
                                                                                                              BIOKA54
                                                                                                                        190
                           LINEAR TRANSFORMATION TO A SET OF STOCHASTICALLY DEPENDENT NORMAL VARIABLES
                                                                                                              JASA 57
                                                                                                                        247
                     SOME TECHNIQUES FOR ANALYZING A SET OF TIME SERIES SUBJECT TO A LINEAR RESTRICTION
                                                                                                               JASA 63
    EXPERIMENTAL DESIGNS OF USE IN CHANGING FROM ONE SET OF TREATMENTS TO ANOTHER, PART 1 SOME JRSSB57
OME EXPERIMENTAL DESIGNS OF USE IN CHANGING FROM ONE SET OF TREATMENTS TO ANOTHER, PART 2, EXISTENCE OF TH JRSSB57
              ANTE-DEPENDENCE ANALYSIS OF AN ORDERED SET OF VARIABLES
ARTLETT'S CRITERION FOR TESTING THE HOMOGENEITY OF A SET OF VARIANCES /NTS FOR HARTLEY'S CORRECTION TO B BIOKA62
CATION OF THE COMBINATION OF PROBABILITIES TEST TO A SET OF 2-BY-2 TABLES A NOTE ON THE APPLI BIOKAS5
EQUAL TO 5 AND THE SET OF EVE/ CONSTRUCTION OF THE SET OF 256-RUN DESIGNS OF RESOLUTION GREATER THEN OR
                                                                                                              AMS 6B
                                             A RANDOM SET PROCESS IN THE PLANE WITH A MARKOVIAN PROPERTY
                      ESTIMATING MACHINING ERRORS IN SET-UPS WITH AUTOMATIC RESETTING
                                                                                                               TECH 64
               REDUCING A RANDOM SAMPLE TO A SMALLER SET, WITH APPLICATIONS
                                                                                                               JASA 67
                                                                                                                        510
ON A THEOREM OF RENYI CONCERNING MIXING SEQUENCES OF SETS
                                                                                                                AMS 61
                                                                                                                        257
 ENUMERATION OF LINEAR GRAPHS FOR MAPPINGS OF FINITE SETS
                                                                                                               AMS 62
                                                                                                                       178
           MINIMAX THEOREMS ON CONDITIONALLY COMPACT SETS
                                                                                                                AMS 63 1536
                    CONSISTENT ESTIMATES AND ZERO-ONE SETS
                                                                                                                AMS 64 157
                                           RECURRENT SETS
                                                                                                                AMS 65
                                                                                                                        535
                              NOTE ON SHIFT-INVARIANT SETS
                                                                                                                AMS 69
                                                                                                                        694
              WEAK QUALITATIVE PROBABILITY ON FINITE SETS
                                                                                                                AMS 69 NO 6
                                             LIMITING SETS AND CONVEX HULLS OF SAMPLES FROM PRODUCT
                                                                                                                AMS 69 1824
                                           CONFIDENCE SETS FOR MULTIVARIATE MEDIANS
                                                                                                                AMS 61
                                                                                                                        477
ON (WITH DISCUSSION)
                                           CONFIDENCE SETS FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTI JRSSB62
                                                                                                                        265
             INADMISSIBILITY OF THE USUAL CONFIDENCE SETS FOR THE MEAN OF A MULTIVARIATE NORMAL POPULATION AMS 67 1B68
              ADMISSIBILITY OF THE USUAL CONFIDENCE SETS FOR THE MEAN OF A UNIVARIATE OR BIVARIATE NORMAL
                                                                                                               AMS 69 1042
                                            INVARIANT SETS FOR TRANSLATION-PARAMETER FAMILIES OF MEASURES
                                                                                                               AMS 69
                                                                                                                        162
                                             BALANCED SETS OF BALANCED INCOMPLETE BLOCK DESIGNS OF BLOCK
                                                                                                               TECH 65
                                                                                                                       561
IVE DIRECTIONAL SELECTION ON NORMAL VARIABLES WITHIN SETS OF FINITE SUBPOPULATIONS /FFERENTIAL FOR POSIT BIOCS67
                                                                                                                        842
              BALANCED INCOMPLETE BLOCK DESIGNS WITH SETS OF IDENTICAL BLOCKS
                                                                                                                        613
                                      TWO PROBLEMS IN SETS OF MEASUREMENTS
                                                                                                               BIOKA54
                                                                                                                        560
                        CORRELATIONS BETWEEN SIMILAR SETS OF MEASUREMENTS
                                                                                                               810CS66
                                                                                                                        7B1
COMPUTER
                          ON METHODS OF CONSTRUCTING SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES USINC A
                                                                                                               TECH 60
                                                                                                                        507
COMPUTER. II
                           ON METHODS OF CONSTRUCTING SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES USING A
                                                                                                                       111
                                                                                                              TECH 61
```

SET - SIM TITLE WORD INDEX

```
CHASTIC SERIES
                          THE COMPARISON OF MEANS OF SETS OF OBSERVATIONS FROM SECTIONS OF INDEPENDENT STO JRSSB55
      SOME BALANCED INCOMPLETE BLOCK DESIGNS FOR TWO SETS OF TREATMENTS
                                                                                                              BIOKA66
                                                                                                                       497
                 SOME ROW AND COLUMN DESIGNS FOR TWO SETS OF TREATMENTS
                                                                                                              BIOCS66
                                                                                                                         1
 FUNCTIONS OF SOME TESTS OF INDEPENDENCE BETWEEN TWO SETS OF VARIATES
                                                                                   MONOTONICITY OF THE POWER AMS 64
                                                                                                                       206
ANALYSIS OF VARIANCE AND NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES
                                                                          /NDS ASSOCIATED WITH MULTIVARIATE
                                                                                                               AMS 66 1736
IKELIHOOD RATIO CRITERIA FOR TESTING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL HYPOTHESIS
                                                                                                    /NS OF L
                                                                                                               AMS 67 1160
                   THE USE OF SAMPLE QUASI-RANCES IN SETTING CONFIDENCE INTERVALS FOR THE POPULATION STAND JASA 61
ARD DEVIATION
                                                                                                                       260
                        THE USE OF SAMPLE RANCES IN SETTING EXACT CONFIDENCE BOUNDS FOR THE STANDARD DEVI JASA 61
ATION OF A RECTANCULA/
                                                                                                                       601
  STRATEGIES AND MARTINGALES IN A FINITELY ADDITIVE SETTING WILLIAM D. SUDDERTH
                                                                                          A NOTE ON THRIFTY AMS 69 NO.6
       DISTRIBUTION OF A PRODUCT AND THE STRUCTURAL SETUP OF DENSITIES

ON THE DISTRIBUTION OF THE LARGEST OF SEVEN ROOTS OF A MATRIX IN MULTIVARIATE ANALYSIS
                                                                                                               AMS 69 1439
                                                                                                              BTOKA64
                                                                                                                       270
      EQUILIBRIUM UNDER SELECTION AT A MULTI-ALLELIC SEX-LINKED LOCUS (ACKNOWLEDGEMENT 6B 1025)
                                                                                                              8I0CS68
                                                                                                                       187
  STOCHASTIC MODELS FOR THE POPULATION CROWTH OF THE SEXES
                                                                                                              BIOKA6B
                                                                                                                       469
          THE DETECTION OF A CORRELATION BETWEEN THE SEXES OF ADJACENT SIBS IN HUMAN FAMILIES
                                                                                                              JASA 65 1035
                                   ESTIMATION OF THE SHAPE AND SCALE PARAMETERS OF THE WEIBULL DISTRIBUTIO TECH 63
                                                                                                                       175
E SCALE PARAMETER OF A WEIBULL POPULATION WITH KNOWN SHAPE PARAMETER /ASED ON M ORDER STATISTICS, FOR TH TECH 65
                                                                       /T DISTRIBUTION OF THE PRODUCT OF I AMS 6B
NDEPENDENT GENERALIZED CAMMA VARIABLES WITH THE SAME SHAPE PARAMETER
AL OF THE GAMMA DISTRIBUTION FOR SMALL VALUES OF THE SHAPE PARAMETER
                                                                        /XIMATION TO THE PROBABILITY INTECR BIOKA62
                  ESTIMATION OF WEIBULL DISTRIBUTION SHAPE PARAMETER WHEN NO MORE THAN TWO FAILURES OCCUR TECH 64
                                                                                                                       415
 SEPARATE MAXIMUM-LIKELIHOOD ESTIMATION OF SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION USING ORDE BIOKA63
PARAMETERS
                                           ASYMPTOTIC SHAPES FOR SEQUENTIAL TESTING OF TRUNCATION
                                                                                                               AMS 68 2038
                                           ASYMPTOTIC SHAPES OF BAYES SEQUENTIAL TESTING RECIONS
                                                                                                               AMS 62
                                                                                                                       224
     AND TAX ELASTICITIES OF OUTPUT AND DISTRIBUTIVE SHARES
                                                                                                 WACE, PRICE, JASA 62
                                                                                                                       607
                                                 SOME SHARP MULTIVARIATE TCHEBYCHEFF INEQUALITIES
                                                                                                               AMS 67
                                                                                                                       393
                                                   ON SHARPENING SCHEFFE BOUNDS
                                                                                                              JRSSB67
                                                                                                                       110
                                  NOTE ON THE USE OF SHERMAN'S STATISTIC AS A TEST OF RANDOMNESS
                                                                                                              BTOKA54
                                                                                                                       556
      ROBUSTNESS OF THE HODGES-LEHMANN ESTIMATES FOR SHIFT
                                                                                                               AMS 65
                                                                                                                       174
     FOR THE ONE SAMPLE WILCOXON TEST FOR NON-NORMAL SHIFT ALTERNATIVES
                                                                                          SMALL SAMPLE POWER
                                                                                                               AMS 65 1767
                             NONPARAMETRIC TESTS FOR SHIFT AT UNKNOWN TIME POINT
                                                                                                               AMS 68 1731
                           ON THE HODCES AND LEHMANN SHIFT ESTIMATOR IN THE TWO SAMPLE PROBLEM
                                                                                                               AMS 66 1B14
                 ON SOME NONPARAMETRIC ESTIMATES FOR SHIFT IN THE BEHRENS-FISHER SITUATION
                                                                                                               AMS 66 593
                   ON SOME ALTERNATIVE ESTIMATES FOR SHIFT IN THE P-VARIATE ONE SAMPLE PROBLEM
                                                                                                               AMS 64 1079
            NONPARAMETRIC CONFIDENCE INTERVALS FOR A SHIFT PARAMETER
                                                                                                               AMS 63 1507
                           EFFICIENT ESTIMATION OF A SHIFT PARAMETER FROM CROUPED DATA
                                                                                                               AMS 67
                                              NOTE ON SHIFT-INVARIANT SETS
                                                                                                               AMS 69
TO SEASONAL CORRECTIONS AND ADJUSTMENTS FOR CALENDAR SHIFTS
                                                                              RECRESSION TECHNIQUES APPLIED
                                                                                                              JASA 56
                                                                                                                       615
DEFINITIONS OF THE SERIAL CORRELATION COEFFICIENT IN SHORT AUTOREGRESSIVE SEQUENCES
                                                                                                ALTERNATIVE
                                                                                                              JASA 5B
 MEAN USEFUL LIFE OF ITEMS BY ELIMINATING THOSE WITH SHORT LIVES
                                                                        ON THE POSSIBILITY OF IMPROVING THE TECH 61
                                                                                                                       2B1
                                                   A SHORT PROOF OF A KNOWN LIMIT THEOREM FOR SUM OF INDEP
ENDENT RANDOM VARIABLES WITH INFINITE EXPECTATI/
                                                                                                              AMS 69
                                                                                                                      1114
T LINE TO A SERIES OF POINTS ACCORDING TO THE C/
                                                    A SHORT-CUT GRAPHIC METHOD FOR FITTING THE BEST STRAIGH JASA 57
                                                                                                                        13
AND DOUBLE CLASSIFICATIONS. PART 1, RESULTS
                                                      SHORT-CUT MULTIPLE COMPARISONS FOR BALANCED SINCLE
                                                                                                              TECH 65
                                                                                                                        95
D DOUBLE CLASSIFICATIONS. PART 2. DERIVATIONS AND/
                                                      SHORT-CUT MULTIPLE COMPARISONS FOR BALANCED SINGLE AN BIOKA65
                                                                                                                       4B5
                                                    A SHORT-CUT RULE FOR A ONE-SIDED TEST OF HYPOTHESIS FOR TECH 69
 QUALITATIVE DATA
                                                                                                                       197
                                          FORECASTING SHORT-TERM ECONOMIC CHANGE
                                                                                                              JASA 69
                                                                                                                         1
                              THE ESTIMATION OF THE 'SHORT' DISTRIBUTION
                                                                                                                       417
                                                                                                              BTOCS69
                                                      SHORTER CONFIDENCE BANDS IN LINEAR REGRESSION
                                                                                                              JASA 67 1050
 DISTRIBUTION WITH KNOWN VARIANCE
                                                      SHORTER CONFIDENCE INTERVALS FOR THE MEAN OF A NORMAL AMS 63
                                                                                                                       574
                                                      SHORTER CONFIDENCE INTERVALS USING PRIOR OBSERVATIONS JASA 69
                                                                                                                       378
                                                      SHORTER INTERVALS FOR THE PARAMETER OF THE BINOMIAL
AND POISSON DISTRIBUTIONS
                                                                                                              BIOKA57
                                                                                                                       436
T BASED ON THE NUMBER OF OBSERVATIONS FALLING IN THE SHORTEST SAMPLE SPACINGS DETERMINED BY EARLIER OBSERV
                                                                                                               AMS 61
                                                                                                                       B3B
                     LIMIT THEOREMS FOR FUNCTIONS OF SHORTEST TWO-SAMPLE SPACINCS AND A RELATED TEST
                                                                                                               AMS 67
                                                                                                                       10B
  ON THE DISTRIBUTION OF THE FIRST SAMPLE MOMENTS OF SHOT NOISE
                                                                                                              TECH 64
                                                                                                                       2B7
                                                 SOME SHRINKAGE TECHNIQUES FOR ESTIMATING THE MEAN
                                                                                                              JASA 68
                                                                                                                       113
 ACCURACY BORROWING IN THE ESTIMATION OF THE MEAN BY SHRINKAGE TO AN INTERVAL
                                                                                                              JASA 6B
                                                                                                                       953
STIMATES OF HERITABILITY FROM TRANSFORMED PERCENTAGE SIB DATA WITH UNEQUAL SUBCLASS NUMBERS
                                                                                                            E BIOCS65
                                                                                                                      1001
    APPLICATION OF FINITE ABSORBENT MARKOV CHAINS TO SIB MATING POPULATIONS WITH SELECTION
                                                                                                              BIOCS69
                                                                                                                        17
      OF A CORRELATION BETWEEN THE SEXES OF ADJACENT SIBS IN HUMAN FAMILIES
                                                                                                THE DETECTION JASA 65
                                          A FAVORABLE SIDE BET IN NEVADA BACCARAT
                                                                                                              JASA 66
                                            THE OTHER SIDE OF THE LOWER BOUND. A NOTE WITH A CORRECTION
                                                                                                              JASA 61
ROCEDURE FOR TESTING A NULL HYPOTHESIS ACAINST A TWO SIDED ALTERNATIVE HYPOTHESIS
                                                                                              A SEQUENTIAL P JRSSB69 NO.2
                                                  ONE SIDED PROBLEMS IN MULTIVARIATE ANALYSIS
                                                                                                               AMS 69
                                                                                                                       549
                      ESTIMATES OF SURVIVAL FROM THE SICHTING OF MARKED ANIMALS
                                                                                                              BIOKA64
                                                                                                                       429
                           ON QUALITATIVE PROBABILITY SIGMA-ALCEBRAS
                                                                                                               AMS 64 17B7
                                                                                                               AMS 69
                           CONDITIONAL PROBABILITY ON SIGMA-COMPLETE BOOLEAN ALGEBRAS
                                                                                                                       970
     THE TAIL SIGMA-FIELD OF A MARKOV CHAIN AND A THEOREM OF OREY
A DENSITY WHICH IS MEASURABLE WITH RESPECT TO A SICMA-LATTICE ON ESTIMATI
                                                                                                               AMS 64 1291
                                                                                                               AMS 67
                                                                                               ON ESTIMATING
                                                                                                                       4B2
                     CONDITIONAL EXPECTATION GIVEN A SICMA-LATTICE AND APPLICATIONS
                                                                                                               AMS 65 1339
 A REPRESENTATION FOR CONDITIONAL EXPECTATIONS CIVEN SIGMA-LATTICES
                                                                                                               AMS 66 1279
MPLETE BLOCK DESIC/ ON USING AN INCORRECT VALUE OF SIGMA-SQUARE-SUB-B-OVER-SIGMA-SQUARE IN BALANCED INCO BIOKA6B
THE EQUIVALENCE OF POLYKAYS OF THE SECOND DEGREE AND SIGMA'S, CORR. 65 1069 ON AMS 64
                                                                                                                       254
                                                                                                               AMS 64 1663
       GENERALIZATION AND REPARAMETERIZATION OF SOME SICMOID OR OTHER NONLINEAR FUNCTIONS
                                                                                                              BT0CS65
                                                                                                                       70B
                                                                                                               AMS 67 1759
                                                      SICN AND WILCOXON TESTS FOR LINEARITY
                                      A NEW BIVARIATE SICN TEST
                                                                                                              JASA 5B
                                                                                                                       44B
EFFECT OF NON-NORMALITY ON THE POWER FUNCTION OF THE SIGN TEST
                                                                                                              JASA 64
                                                                                                                       142
  ON A CHI-SQUARE APPROXIMATION FOR THE MULTIVARIATE SICN TEST
                                                                                                         NOTE JRSSB65
                                                                                                                        R2
 ON THE ASYMPTOTIC EFFICIENCY OF BENNETT'S BIVARIATE SICN TEST
                                                                                                       A NOTE JRSSB66
                                                                                                                       146
FOR A TREATMENTS VERSUS CONTROL MULTIPLE COMPARISONS SIGN TEST
                                                                                                      TABLES TECH 65
                                                                                                                       293
      AND BAHADUR EFFICIENCY OF THE HODGES BIVARIATE SIGN TEST
                                                                                           NULL DISTRIBUTION
                                                                                                              AMS 62
                                                                                                                       RO3
ECTIONS TO 'A RELATIONSHIP BETWEEN HODGES' BIVARIATE SICN TEST AND A NON-PARAMETRIC TEST OF DANIELS' 60 11
                                                                                                              AMS 61
                                                                                                                       619
DISTRIBUTION
                               ON HODCES'S BIVARIATE SICN TEST AND A TEST FOR UNIFORMITY OF A CIRCULAR
                                                                                                              BTOKA69
                                                                                                                       446
OF THE MEDIAN FOR SAMPLE SIZES/ TABLE FOR BOTH THE SIGN TEST AND DISTRIBUTION-FREE CONFIDENCE INTERVALS
                                                                                                             JASA 64 935
                                          A BIVARIATE SIGN TEST FOR LOCATION
                                                                                                               AMS 66 1771
                 SMALL SAMPLE POWER OF THE BIVARIATE SIGN TEST OF BLUMEN AND HODGES
                                                                                                               AMS 64 1576
 PARAMETERS
                                       TABLES FOR THE SIGN TEST WHEN OBSERVATIONS ARE ESTIMATES OF BINOMIAL JASA 59
                                                                                                                      7B4
                               A MULTIPLE COMPARISONS SIGN TEST, ALL PAIRS OF TREATMENTS
                                                                                                              BIOCS67 539
                                A MULTIPLE COMPARISON SIGN TEST, TREATMENTS VERSUS CONTROL
                                                                                                              JASA 59
                                                                                                                       767
```

TITLE WORD INDEX SET - SIM

ON MULTIVARIATE	SIGN TESTS	JRSSB62	159
LARCE-SAMPLE	SIGN TESTS FOR TREND IN DISPERSION	BIOKA66	
SOME OUICK	SICN TESTS FOR TREND IN LOCATION AND DISPERSION	BIOKA55	80
DISTRIBUTION OF A FILTERED RANDOM TELECRAPH			890
SOME RESULTS FOR FIXED-TIME TRAFFIC		JRSSB64	
FILTERINC NON-STATIONARY		JRSSB69	150
REMARKS ON ZEROS AND TIES IN THE WILCOXON		JASA 59	655
EXTENDED TABLES OF THE WILCOXON MATCHED PAIR	SIGNED RANK STATISTIC	JASA 65	864
OPERTY OF THE TEST AND ESTIMATOR BASED ON WILCOXON'S	SICNED RANK PROCEDURE SIGNED RANK STATISTIC SICNED RANK STATISTIC ON A FURTHER ROBUSTNESS PR	AMS 68	282
A BIVARIATE NOTES.CONFIDENCE LIMITS FOR A RATIO USINC WILCOXON'S	SICNED RANK TEST	JRSSB64 BIOCS65	457 231
ALTERNATIVE EFFICIENCIES FOR ES ARE PRESENT THE NORMAL APPROXIMATION TO THE	SICNED RANK TESTS SICNED-RANK SAMPLING DISTRIBUTION WHEN ZERO DIFFERENC	AMS 65 JASA 67	
COMMENTS ON 'THE SIMPLEST NEW TABLES OF BEHREN'S TEST OF		JASA 59 JRSSB56	213 212
RAO'S PARADOX CONCERNING MULTIVARIATE TESTS OF	SICNIFICANCE	BIOCS69	411
ESTIMATION PROCEDURES AND ASSOCIATED TESTS OF		JRSSB60	154
CONTINGENCY, GOODNESS OF FIT AND OTHER PROBLEMS OF	SICNIFICANCE NOTE ON AN EXACT TREATMENT OF	BIOKA51	141
IBLY TWO SAMPLES SUBSEQUENT TO A PRELIMINARY TEST OF	SIGNIFICANCE /RELATION COEFFICIENT FROM ONE OR POSS	JRSSB67	282
A NOTE ON A METHOD FOR THE ANALYSIS OF		TECH 68	586
		JRSSB56	61
		BIOKA53	
		BIOKA57	
	SIGNIFICANCE FOR THE LATENT ROOTS OF COVARIANCE AND		
	SIGNIFICANCE IN A 2-BY-2 CONTINGENCY TABLE, EXTENSION SIGNIFICANCE IN A 2-BY-3 CONTINGENCY TABLE	TECH 63	74 501
		BIOKA52	501
	SIGNIFICANCE IN CANONICAL ANALYSIS	BIOKA52	59
EVACT TECTS OF	STONIETOANCE IN CONTINCENCY TABLES	TECH 69	393
CDNSTRUCTION DF A MATRIX USED IN DERIVING TESTS OF	SIGNIFICANCE IN MULTIVARIATE ANALYSIS THE	BIOKA64	503
	SIGNIFICANCE IN MULTIVARIATE REGRESSION WHEN THE INDE		154
	SIGNIFICANCE IN PEARSON'S BIOMETRIKA TABLES (NO. 11)		56
	SIGNIFICANCE IN PEARSON'S BIOMETRIKA TABLES (NO. 11)'		295
	SIGNIFICANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF		971
	SIGNIFICANCE LEVEL AS A SENSITIVITY INDEX FOR TEST	JASA 65	420
	SIGNIFICANCE DF COMPONENTS OF VARIANCE IN THE UNBALAN		423
	SIGNIFICANCE OF ODD BITS OF INFORMATION	BIOKA52	
	SIGNIFICANCE OF SMALL NUMBERS SIGNIFICANCE OF THE DIFFERENCE BETWEEN MEANS IN TWO N	BIOKA55	266 252
	SIGNIFICANCE OF THE DIFFERENCE BETWEEN MEANS IN TWO N		70
GOODNESS OF FIT STATISTIC V-SUB-N, DISTRIBUTION AND		BIDKA65	
	SIGNIFICANCE PDINTS FOR A PARTICULAR CASE /S OF KOL		233
SQUARE-SUB-M, N	SIGNIFICANCE POINTS FOR THE TWO-SAMPLE STATISTIC U-	BIOKA65	661
	SIGNIFICANCE PROBABILITY BOUNDS FOR RANK ORDERINGS	AMS 64	
A TWO-BY-TWO CONTINGENCY TABLE, AND FISHER'S 'EXACT'			
ORDERED HYPOTHESES FOR MULTIPLE TREATMENTS, A		JASA 63	
	SIGNIFICANCE TEST FOR MULTINOMIAL DISTRIBUTIONS (WITH SIGNIFICANCE TEST FOR SIMULTANEOUS QUANTAL AND	TECH 64	399 273
	SIGNIFICANCE TEST FOR THE DIFFERENCE IN EFFICIENCY	JRSSB55	266
	SIGNIFICANCE TEST PROCEDURE	JRSSB68	
	SIGNIFICANCE TESTING, SOME DATA WITH A MESSAGE	BIOKA69	
ON THE WEIGHTED COMBINATION OF	SIGNIFICANCE TESTS	JRSSB55	264
OF PATNAIK TYPE CHI APPROXIMATIONS TO THE RANCE IN	SIGNIFICANCE TESTS ON THE USE	BIOKA66	248
IN CHAIN-BINOMIAL THEORY	SIGNIFICANCE TESTS FOR A VARIABLE CHANCE OF INFECTION		
LINEAR FUNCTIONAL RELATIONSHIPS	SIGNIFICANCE TESTS FOR DISCRIMINANT FUNGTIONS AND	BIOKA55	
60, 610	SIGNIFICANCE TESTS FOR PAIRED-GOMPARISON EXPERIMENTS		95
62 919	SIGNIFICANCE TESTS IN DISCRETE DISTRIBUTIONS, CORR. SIGNIFICANCE TESTS IN PARALLEL AND IN SERIES	JASA 61 JASA 58	
TARIES FOR		BIOKA55	
		BIOKA56	344
	SIGNIFICANCE TESTS ON THE SPHERE	BIOKA60	87
	SIGNIFICANCE TESTS UNDER EXPERIMENTAL RANDOMIZATION	BIOKA69	231
	SIGNIFICANCE WITH ORDERED VARIABLES	JRSSB56	1
PUBLICATION DECISIONS AND TESTS OF		JASA 59	
	SIGNIFICANCE, OR VICE VERSA /ION DECISIONS AND THEI		
DN THE DISTRIBUTION OF FIRST	SIGNIFICANT DIGITS 'SIGNIFICANT TESTS FOR PAIRED-COMPARISON EXPERIMENTS'	AMS 61	
	SIGNIFICANT TESTS FOR PAIRED-COMPARISON EXPERIMENTS' SIGNIFICANTLY /ESIGNING AREA SAMPLES UTILIZING PROB		
	SIGNS OF FIRST DIFFERENCES IN ORDERED SERIES	JASA 60	
	SIGNS OF GROSS GORRELATION COEFFICIENTS AND PARTIAL		
ES TO MIXTURES OF POISONS UNDER CONDITIONS OF SIMPLE	SIMILAR ACTION, THE ANALYSIS OF UNCONTROLLED DATA /		
VARIATION THE COMBINATION OF ESTIMATES FROM	SIMILAR EXPERIMENTS, ALLOWING FOR INTER-EXPERIMENT	JASA 67	241
		BIOKA69	
	SIMILAR REGIONS AND DISTRIBUTION-FREE TESTS	JRSSB57	
	SIMILAR SETS OF MEASUREMENTS SIMILAR SLIPPAGE TESTS	BIOCS66 AMS 68	
	SIMILAR TEST FOR THE INDEPENDENCE OF TWO POISSON VARI		
	SIMILAR TO THE SAMPLE SPACE IN TESTS OF AN IMPORTANT		
	SIMILARITIES BETWEEN LIKELIHOODS AND ASSOCIATED	JRSSB61	
	SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S TAU AND KEND	JASA 62	8D4
	SIMILARITY INDEX BASED ON PROBABILITY	BIOCS66	
	SIMILARITY MATRICES BY TREES	JASA 67	
	SIMPLE APPRDACH TD THE BAYES CHOICE CRITERION, THE	JASA 64	
	SIMPLE APPROXIMATE TESTS FOR POISSON VARIATES	BIOKA53	
THE BEHAVIOUR OF AN ESTIMATOR FOR A DIFFERENCES BETWEEN SPECIES GROWING ACCORDING TO	SIMPLE BIRTH AND DEATH PROCESS SIMPLE BIRTH AND DEATH PROCESSES POPULATION	BIOKA56	
	DIMITE DIMITE DEATH I RECORDED TO OLD TON	PTOWNOO	010

SIM - SIN TITLE WORD INDEX

```
PROBABILISTIC SOLUTION OF THE SIMPLE BIRTH PROCESS
                                                                                                              BTOKA64
RATINC FUNCTIONAL FOR THE CUMULATIVE POPULATION IN A SIMPLE BIRTH-AND-DEATH PROCESS /HE PROBABILITY GENE BIOKA64
                                                                                                                       245
      OF THE STATIONARY MEASURE OF THE CRITICAL CASE SIMPLE BRANCHING PROCESS
                                                                                                  PROPERTIES AMS 67
                                                                                                                       977
                                                    A SIMPLE CONCESTION SYSTEM WITH INCOMPLETE SERVICE
                                                                                                              JRSSB6T
         IN A CHAIN OF MULTIPLE EVENTS WHEN THERE IS SIMPLE DEPENDENCE
                                                                                                 PERSISTENCE BIOKA62
                                                 SOME SIMPLE DURATION-DEPENDENT STOCHASTIC PROCESSES
                                                                                                              JRSSB59
                                                                                                                       T44
                        THE DETERMINISTIC MODEL OF A SIMPLE EPIDEMIC FOR MORE THAN ONE COMMUNITY
FUNCTION
                                                 ON A SIMPLE ESTIMATE OF THE RECIPROCAL OF THE DENSITY
                                                                                                               AMS 68 I083
                                                    A SIMPLE EXAMPLE OF A COMPARISON INVOLVINC QUANTAL DATA BIOKA66
                           SPEARMAN ESTIMATION FOR A SIMPLE EXPONENTIAL MODEL
                                                                                                              BIOCS65
                                                                                                                       858
                                    ESTIMATION FOR A SIMPLE EXPONENTIAL MODEL
                                                                                                              BIOCS67
                                                                                                                       717
                THE HALF-TABLE RATIO ESTIMATOR FOR A SIMPLE EXPONENTIAL MODEL
                                                                                                              BIOCS69
                                                                                                                       420
                                        A RELATIVELY SIMPLE FORM OF THE DISTRIBUTION OF THE MULTIPLE CORRE JRSSB68
                                                                                                                       276
LATION COEFFICIENT
ON OF SAMPLE SIZE FOR SEQUENTIAL TESTS. I. TESTS FOR SIMPLE HYPOTHESES APPROXIMATION TO THE DISTRIBUTI BIOKA59
                                                                                                                       I30
GMENTATIONS AND ERROR STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST SQUARES AND ANALYSIS OF VARIANCE PROGEDU JASA 69 NO.4
          CONDITIONS FOR OPTIMALITY AND VALIDITY AND SIMPLE LEAST SQUARES THEORY
                                                                                                               AMS 69 1617
                 LINEAR SEGMENT CONFIDENCE BANDS FOR SIMPLE LINEAR MODELS
                                                                                                              JASA 67
                                                                                                                      403
                                                                                                               AMS 68
                             ASYMPTOTIC NORMALITY OF SIMPLE LINEAR RANK STATISTICS UNDER ALTERNATIVES
                                                                                                                       325
                             ASYMPTOTIC NORMALITY OF SIMPLE LINEAR RANK STATISTICS UNDER ALTERNATIVES, II
                                                                                                              AMS 69 NO.6
                    DESIGN FOR OPTIMAL PREDICTION IN SIMPLE LINEAR REGRESSION
                                                                                                              JASA 65
                                                                                                                      205
  IN MULTIVARIATE STATISTICS II. POINT ESTIMATION IN SIMPLE LINEAR REGRESSION
                                                                                        MISSING OBSERVATIONS JASA 67
                                                                                                                        ΙO
                                    ON COMPARING TWO SIMPLE LINEAR REGRESSION LINES
                                                                                                              SASJ 68
                                                                                                                        33
UM-LIKELIHOOD ESTIMATOR OF AN UNKNOWN PARAMETER IN A SIMPLE MARKOV CHAIN / LENCY CONDITIONS FOR THE MAXIM BIOKA55 UM-LIKELIHOOD ESTIMATOR OF AN UNKNOWN PARAMETER IN A SIMPLE MARKOV CHAIN / PNCY CONDITIONS FOR THE MAXIM BIOKA56
                                                                                                                       342
                                                                                                                       497
                                 A FURTHER NOTE ON A SIMPLE METHOD FOR FITTING AN EXPONENTIAL CURVE
                                                                                                              BIOKA60
                                                                                                                       177
 2-BY-2 CONTINGENCY TABLES WITH SMALL MARGINAL/
                                                   A SIMPLE METHOD OF CALCULATING THE EXACT PROBABILITY IN BIOKA55
AR TO THE SAMPLE SPACE IN TESTS OF AN IMPORTANT/
                                                   A SIMPLE METHOD OF DERIVING BEST CRITICAL REGIONS SIMIL BIOKA53
                                                                                                                       23I
 PARABOLAS
                                                    A SIMPLE METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO BIOCS65
                                                                                                                       140
GAUSSIAN COMPONENTS
                                                    A SIMPLE METHOD OF RESOLUTION OF A DISTRIBUTION INTO
                                                                                                              BTOCS67
                                                                                                                       115
                                                                                                                        91
                                                    A SIMPLE METHOD OF TREND CONSTRUCTION
                                                                                                              JRSSB6I
                                                                                                                      319
 IN CONTINGENCY TABLES
                                                      SIMPLE METHODS FOR ANALYZING THREE-FACTOR INTERACTION JASA 64
UANTITATIVE ANALYSIS. GENERAL THEORY AND THE CASE OF SIMPLE ORDER /ION OF NON-NUMERICAL INFORMATION IN Q
                                                                                                              AMS 63 I347
               CENERALIZED POLYKAYS, AN EXTENTION OF SIMPLE POLYKAYS AND BIPOLYKAYS, CORR. 66 746
                                                                                                               AMS 66
                                                                                                                       226
                                                     A SIMPLE PRESENTATION OF OPTIMUM SAMPLING RESULTS
                                                                                                              JRSSB54
                                                                                                                       239
TS FOR THE AVERAGE SAMPLE RUN LENGTH OF A CUMUL/
                                                    A SIMPLE PROCEDURE FOR DETERMINING UPPER AND LOWER LIMI JRSSB67
                                                                                                                       263
                                   SOME REMARKS ON A SIMPLE PROCEDURE OF SAMPLING WITHOUT REPLACEMENT
                                                                                                              JASA 66
                                                                                                                       39T
                                                 ON A SIMPLE PROCEDURE OF UNEQUAL PROBABILITY SAMPLING
WITHOUT REPLACEMENT
                                                                                                              JRSSB62
                                                                                                                       4B2
      A DIFFERENCE EQUATION TECHNIQUE APPLIED TO THE SIMPLE QUEUE
                                                                                                              JRSSR5B
                                                                                                                       T65
     THE EFFECT OF THE SIZE OF THE WAITING ROOM ON A SIMPLE QUEUE
                                                                                                              JRSSB58
                                                                                                                       T82
                     ON THE TRANSIENT BEHAVIOUR OF A SIMPLE QUEUE
                                                                                                              JRSS860
                                                                                                                       277
  FURTHER RESULTS IN THE NON-EQUILIBRIUM THEORY OF A SIMPLE QUEUE

A CONTINUOUS TIME TREATMENT OF A SIMPLE QUEUE USING GENERATING FUNCTIONS
                                                                                                         SOME JRSSB57
                                                                                                                       326
                                                                                                              JRSSB54
                                                                                                                       2B8
     A DIFFERENCE EQUATION TECHNIQUE APPLIED TO THE SIMPLE QUEUE WITH ARBITRARY ARRIVAL INTERVAL DISTRIBU JRSSB5B
                                                                                                                       16B
        ON A PROPERTY OF THE RANDOM WALKS DESCRIBING SIMPLE QUEUES AND DAMS
                                                                                                              JRSSB65
                                                                                                                       T25
          TREATMENT OF THE NON-EQUILIBRIUM THEORY OF SIMPLE QUEUES BY MEANS OF CUMULATIVE PROBABILITIES
                                                                                                              JRSSB63
                                                                                                                       457
                   DOMAINS OF OPTIMALITY OF TESTS IN SIMPLE RANDOM SAMPLING
                                                                                                               AMS 69
                                                                                                                       308
                                        ON A CLASS OF SIMPLE RANDOM WALKS
                                                                                                               AMS 63
                                                                                                                       413
                                                    A SIMPLE RANDOMIZATION PROGEDURE
                                                                                                              JRSSB62
                                                                                                                       472
                                                   ON SIMPLE RULES FOR THE COMPOUND DECISION PROBLEM
                                                                                                              JRSSB65
                                                                                                                       238
RATING CHARACTERISTIC AND AVERAGE SAMPLE NUMBER OF A SIMPLE SEQUENTIAL TEST /HE DETERMINATION OF THE OPE JRSSB67
                                                                                                                       24B
                                        ON A CLASS OF SIMPLE SEQUENTIAL TESTS ON MEANS
                                                                                                              TECH 62
                                                                                                                       345
RESPONSES TO MIXTURES OF POISONS UNDER CONDITIONS OF SIMPLE SIMILAR ACTION, THE ANALYSIS OF UNCONTROLLED D BIOKA5B
                                                                                                                        74
                                                                                                               AMS 66
EXTRAPOLATION
                                                    A SIMPLE SOLUTION FOR OPTIMAL CHEBYSHEV REGRESSION
                                                                                                                       720
              A GENERAL EXPRESSION FOR THE MEAN IN A SIMPLE STOCHASTIC EPIDEMIC
                                                                                                              BTOKA54
                                                                                                                       272
                                                  THE SIMPLE STOCHASTIC EPIDEMIC CURVE FOR LARGE POPULATION BIOKA65
S OF SUSCEPTIBLES
                                                                                                                       571
                                                  THE SIMPLE STOCHASTIC EPIDEMIC FOR SMALL POPULATIONS WITH BIOKA69
 ONE OR MORE INITIAL INFECTIVES
                                                                                                                       T83
                 A PERTURBATION APPROXIMATION OF THE SIMPLE STOCHASTIC EPIDEMIC IN A LARGE POPULATION
                                                                                                              BIOKA68
                                                                                                                       199
                                                  THE SIMPLE STOCHASTIC EPIDEMIC, A COMPLETE SOLUTION IN
TERMS OF KNOWM FUNCTIONS
                                                                                                                       235
                                                                                                              BIOKA63
  AS A TECHNIQUE FOR ESTIMATING THE RELIABILITY OF A SIMPLE SYSTEM
                                                                                             PROBIT ANALYSIS TECH 67
                                                                                                                       197
                                                     A SIMPLE SYSTEM OF EVOLUTIONARY OPERATION SUBJECT TO
                                                                                                              TECH 66
                                                                                                                        Т9
EMPIRICAL FEEDBACK
                                                     A SIMPLE TEST FOR UNIFORMITY OF A CIRCULAR DISTRIBUTION BIOKAGE
                                                     A SIMPLE THEORETICAL APPROACH TO CUMULATIVE SUM CONTROL JASA 61
  'PROPERTIES OF DISTRIBUTIONS RESULTING FROM CERTAIN SIMPLE TRANSFORMATIONS OF THE NORMAL DISTRIBUTION'
                           ESTIMATION PROBLEMS WHEN A SIMPLE TYPE OF HETEROGENEITY IS PRESENT IN THE SAMPLE BIOKA5I
                                                                                                                        90
                                                 SOME SIMPLE WEAR-DEPENDENT RENEWAL PROCESSES
                                                                                                              JRSSB61
                                                                                                                       368
                                                                                                               AMS 68
                                                    A SIMPLER PROOF OF SMITH'S ROULETTE THEOREM
                                                                                                                       390
      CHARAGTER OF HOTELLING'S T-SQUARED TEST IN THE SIMPLEST CASE
                                                                                                      MINIMAX AMS 63 I524
                                     GOMMENTS ON 'THE SIMPLEST SIGNED-RANK TESTS'
                                                                                                              JASA 59
                                                                                                                      213
OPERATION
                            SEQUENTIAL APPLICATION OF SIMPLEX DESIGNS IN OPTIMISATION AND EVOLUTIONARY
                                                                                                              TECH 62
                                                                                                                       44 T
                                                      SIMPLEX LATTICE DESIGNS FOR MUTICOMPONENT SYSTEMS
                                                                                                              TECH 62
                                                                                                                       463
                 DISTRIBUTIONS DETERMINED BY CUTTING SIMPLEX WITH HYPERPLANES
                                                                                                               AMS 68 1473
                                                  THE SIMPLEX-CENTROID DESIGN FOR EXPERIMENTS WITH MIXTURES JRSSB63
 (WITH DISCUSSION)
                                                                                                                       235
  EXPERIMENTS WITH MIXTURES, A GENERALIZATION OF THE SIMPLEX-LATTICE DESIGN
                                                                                                              JRSSB68
                                                                                                                       T23
                                AN ALTERNATIVE TO THE SIMPLEX-LATTICE DESIGN FOR EXPERIMENTS WITH MIXTURES
                                                                                                              JRSSB69 NO.2
                                                                                                               AMS 66
                               ON THE SAMPLE SIZE AND SIMPLIFICATION OF A CLASS OF SEQUENTIAL PROBABILITY
                                                                                                                       425
                                                     A SIMPLIFICATION OF THE BLUS PROCEDURE FOR ANALYZING
REGRESSION DISTURBANCES
                                                                                                              JASA 68
                                                                                                                       242
N WITH EQUAL PROBABILITIES AND WITHOUT STAGES
                                                   ON SIMPLIFICATIONS OF SAMPLING DESIGN THROUGH REPLICATIO JASA 56
                                                                                                                        24
                                                       SIMPLIFIED BETA-APPROXIMATIONS TO THE KRUSKAL-WALLIS
                                                                                                              JASA 59
                                                                                                                       225
                                                       SIMPLIFIED DECISION FUNCTIONS
                                                                                                                       241
                                                                                                              BIOKA54
                                                       SIMPLIFIED ESTIMATES FOR THE EXPONENTIAL DISTRIBUTION
                                                                                                              AMS 63
                                                                                                                       I02
                                                      SIMPLIFIED ESTIMATORS FOR THE NORMAL DISTRIBUTION WHE TECH 59
                                                                                                                       217
N SAMPLES ARE SINGLY CENSORED OR TRUNCATED
SQUARE FUNCTION ON A CONTINGENCY TABLE
                                                     A SIMPLIFIED EXPRESSION FOR THE VARIANCE OF THE CHI-
                                                                                                              BIOKA54
                                                                                                                       280
                                                      SIMPLIFIED METHODS OF FITTING THE TRUNCATED NEGATIVE
                                                                                                              BIOKA58
                                                                                                                        59
BINOMIAL DISTRIBUTION
LANE ROAD
                                                     A SIMPLIFIED MODEL FOR DELAYS IN OVERTAKING ON A TWO-
                                                                                                              JRSSB58
                                                                                                                       408
                                                     A SIMPLIFIED MONTE CARLO SIGNIFICANCE TEST PROCEDURE
                                                                                                              JRSSB6B
MARKOFF CHAINS
                                                       SIMPLIFIED RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR
                                                                                                             BIOKA58
```

TITLE WORD INDEX SIM - SIN

SOME GENERALIZED POISSON DISTRIBUTIONS	SIMPLIFIED TECHNIQUES FOR ESTIMATING PARAMETERS OF SIMULATED DISTRIBUTIONS FOR SMALL N OF KENDALL'S	BIOKA67	555
PARTIAL RANK CORRELATION COEFFICIENT	SIMULATED DISTRIBUTIONS FOR SMALL N OF KENDALL'S	BIOKA63	520
ONDITIONAL DISTRIBUTION OF SETS OF TESTS ON A SYSTEM S	SIMULATED FROM TESTS ON ITS COMPONENTS THE C	AMS 63	1585
	SIMULATION A USEFUL APPROXIMATION TO THE		
V CAUCSTAN OPNICED IN THE ENDERLY PROCESS DV MONTE CARLO	SIMULATION /E-TIME MAXIMA AND MINIMA OF A STATIONAR	1454 60	1517
		JASA 67	
A COMPUTER :		JASA 67	
		BIOCS68	
		TECH 62	257
CHEMICAL PLANTS A GENERAL S	SIMULATION PROGRAMME FOR MATERIAL FLOW IN BATCH	TECH 61	497
TWO-SAMPLE TESTS WHEN THE VARIANCES ARE UNEQUAL. A S	SIMULATION STUDY SOME	BIOKA67	679
SAMPLING METHOD	SIMULATION STUDY OF ESTIMATORS FOR THE LINE TRANSECT	BIOCS69	317
	SIMULATION, CORR. 65 1251 /DISTRIBUTION SAMPLING P		27
		JASA 60	
	SIMULTANEOUS CONFIDENCE BOUNDS /CERTAIN INEQUALITIE		
DESIGN WITH NORMAL CORRELATION NOTES	SIMULTANEOUS CONFIDENCE INTERVALS AND EXPERIMENTAL	BIOCS68	
MILETROMAL DODULATIONS NOTED.	SIMULTANEOUS CONFIDENCE INTERVALS FOR CONTRASTS AMONG		716
MODITIONIAL FOROLATIONS	SIMULTANDOUS CONTIDENCE INTERVALS FOR CONTRASTS AMONG	TECH 64	
DESIGN WITH NORMAL CORRELATION NOTES. MULTINOMIAL POPULATIONS LARGE SAMPLE PROPORTIONS ON S	SIMULIANEOUS CONFIDENCE INTERVALS FOR MULTINOMIAL		
PROPORTIONS ON S	SIMULIANEOUS CONFIDENCE INTERVALS FOR MULIINOMIAL	TECH 65	
	SIMULTANEOUS CONFIDENCE INTERVALS FOR VARIANCES SIMULTANEOUS CONFIDENCE LIMITS FOR CROSS-PRODUCT SIMULTANEOUS CONFIDENCE LIMITS FOR THE BINOMIAL AND	JASA 69	
RATIOS IN CONTINGENCY TABLES	SIMULTANEOUS CONFIDENCE LIMITS FOR CROSS-PRODUCT	JRSSB64	86
AND POISSON DISTRIBUTIONS TABLES OF S	SIMULTANEOUS CONFIDENCE LIMITS FOR THE BINOMIAL AND	BIOKA69	452
	SIMULTANEOUS EQUATIONS WITH AN APPLICATION TO EXPERIM		190
COMPARTMENTAL MODELS	SIMULTANEOUS ESTIMATION BY PARTIAL TOTALS FOR	JASA 68	573
SPEARMAN S	SIMULTANEOUS ESTIMATION FOR A COMPARTMENTAL MODEL	TECH 69	551
EQUAL PROBABILITY TEST AND ITS APPLICATIONS TO SOME S	SIMULTANEOUS INFERENCE PROBLEMS THE	JASA 69	9B6
THE WISHART DISTRIBUTION DERIVED BY SOLVING S	SIMULTANEOUS LINEAR DIFFERENTIAL EQUATIONS	BIOKA51	470
PRECISION OF S	SIMULTANEOUS MEASUREMENT PROCEDURES	JASA 63	
1100202011 01 1	SIMULTANEOUS NONLINEAR ESTIMATION	TECH 66	319
EDDATA 10		TECH 67	353
ENNATA	SIMULTANEOUS NONLINEAR ESTIMATION SIMULTANEOUS PAIRWISE LINEAR STRUCTURAL RELATIONSHIPS		129
		TECH 68	323
		TECH 64	
TESTING FOR SERIAL CORRELATION IN SYSTEMS OF S		BIOKA57	
	SIMULTANEOUS REGRESSION EQUATIONS IN EXPERIMENTATION		96
	SIMULTANEOUS SELFING AND PARTIAL DIALLEL TEST CROSSIN		
ON CATEGORICAL DATA	SIMULTANEOUS TEST PROCEDURES FOR MULTIPLE COMPARISONS		
	SIMULTANEOUS TEST PROCEDURES, SOME THEORY OF MULTIPLE		
CAL CLASSIFICATIONS	SIMULTANEOUS TESTS BY SEQUENTIAL METHODS IN HIERARCHI		
	SIMULTANEOUS TESTS FOR THE EQUALITY OF COVARIANCE		
	SIMULTANEOUS TESTS OF LINEAR HYPOTHESES	BIOKA55	441
AN APPROACH TO S	SIMULTANEOUS TOLERANCE INTERVALS IN REGRESSION SIMULTANEOUS TOLERANCE INTERVALS IN REGRESSION	AMS 67	1536
	SIMULTANEOUS-EQUATIONS ESTIMATORS TO THE STOCHASTIC		
	SIMULTANEOUS TEST PROCEDURES IN MULTIVARIATE ANALYSIS		4B9
	SIMULTANEOUS DISCRIMINATION INTERVALS IN REGRESSION		
	SIMULTANEOUS ESTIMATION OF FUNCTIONS OF VARIANCE COMPO		
AN EXTENSION OF THE ARC:		AMS 62	
SOME INVARIANT LAWS RELATED TO THE ARC:		AMS 68	258
	SINGLE (NON-ISOTROPIC) HYPOTHETICAL PRINCIPAL COMPONE		397
	SINGLE AND DOUBLE ATTRIBUTES ACCEPTANCE SAMPLING PLAN		6B5
		TECH 65	95
	SINGLE AND DOUBLE CLASSIFICATIONS. PART 2. DERIVATION	BIOKA65	4B5
		SASJ 68	67
	SINGLE CHANNEL QUEUE WITH A GENERAL CLASS OF SERVICE-		176
R ESTIMATES BY ORDER STATISTICS OF THE PARAMETERS OF	SINGLE EXPONENTIAL DISTRIBUTIONS FROM SINGLY AND DOUB	JASA 57	5B
IMIZATION IN THE PRESENCE OF RANDOM VARIABILITY. THE	SINGLE FACTOR CASE NUMERICAL OPT	BIOKA69	65
ADMISSIBILITY OF QUANTILE ESTIMATES OF A	SINCLE LOCATION DARAMETER		
A METHOD OF FITTING A NON-LINEAR CURVE CONTAINING A	SINGLE BOCKITON PARAMETER	AMS 64	1019
			1019
THE DISTRIBUTION OF THE RATIO, IN A	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION	BIOKA54	1019 506 482
THE DISTRIBUTION OF THE RATIO, IN A : CONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A :	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OBSERVATION QUERY,	BIOKA54 TECH 66	1019 506 482 367
THE DISTRIBUTION OF THE RATIO, IN A : CONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A : ON THE DISTRIBUTION AND POWER OF A TEST FOR A :	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OBSERVATION QUERY,	BIOKA54	1019 506 482
THE DISTRIBUTION OF THE RATIO, IN A : CONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A : ON THE DISTRIBUTION AND POWER OF A TEST FOR A :	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OBSERVATION QUERY,	BIOKA54 TECH 66 SASJ 69	1019 506 482 367
THE DISTRIBUTION OF THE RATIO, IN A : CONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A : ON THE DISTRIBUTION AND POWER OF A TEST FOR A : BETWEEN CONFIDENCE POINT PROCEDURES IN THE CASE OF A :	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OBSERVATION QUERY,	BIOKA54 TECH 66 SASJ 69 JRSSB65	1019 506 482 367 9
THE DISTRIBUTION OF THE RATIO, IN A : CONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A : ON THE DISTRIBUTION AND POWER OF A TEST FOR A : BETWEEN CONFIDENCE POINT PROCEDURES IN THE CASE OF A : HOD OF CONSTRUCTION OF ATTRITION LIFE TABLES FOR THE :	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OBSERVATION QUERY, SINGLE OUTLIER SINGLE PARAMETER ON COMPARISONS SINGLE POPULATION BASED ON TWO SUCCESSIVE CENSUSES (C	BIOKA54 TECH 66 SASJ 69 JRSSB65	1019 506 482 367 9 1
THE DISTRIBUTION OF THE RATIO, IN A : CONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A : ON THE DISTRIBUTION AND POWER OF A TEST FOR A : BETWEEN CONFIDENCE POINT PROCEDURES IN THE CASE OF A : HOD OF CONSTRUCTION OF ATTRITION LIFE TABLES FOR THE :	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OBSERVATION QUERY, SINGLE OUTLIER ON COMPARISONS SINGLE PARAMETER ON COMPARISONS SINGLE POPULATION BASED ON TWO SUCCESSIVE CENSUSES (C SINGLE RECAPTURE CENSUS	BIOKA54 TECH 66 SASJ 69 JRSSB65 JASA 67	1019 506 482 367 9 1
THE DISTRIBUTION OF THE RATIO, IN A CONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A CONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A CONTROL OF A CONFIDENCE POINT PROCEDURES IN THE CASE OF A CONSTRUCTION OF ATTRITION LIFE TABLES FOR THE CONFIDENCE OF ATTRITION LIFE TABLES FOR THE CONFIDENCE OF THE MULTI-SAMPLE CONFIDENCE OF THE MULTI-SA	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OBSERVATION QUERY, SINGLE OUTLIER SINGLE PARAMETER ON COMPARISONS SINGLE POPULATION BASED ON TWO SUCCESSIVE CENSUSES (C SINGLE RECAPTURE CENSUS SINGLE RECRESSION LINE	BIOKA54 TECH 66 SASJ 69 JRSSB65 JASA 67 BIOKA62	1019 506 482 367 9 1 1433 339 21
THE DISTRIBUTION OF THE RATIO, IN A : CONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A : ON THE DISTRIBUTION AND POWER OF A TEST FOR A : BETWEEN CONFIDENCE POINT PROCEDURES IN THE CASE OF A : HOD OF CONSTRUCTION OF ATTRITION LIFE TABLES FOR THE : THE MULTI-SAMPLE PREDICTION REGIONS FOR SEVERAL PREDICTIONS FROM A : INDEX SELECTION AND ESTIMATION FROM A :	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OBSERVATION QUERY, SINGLE OUTLIER SINGLE PARAMETER ON COMPARISONS SINGLE POPULATION BASED ON TWO SUCCESSIVE CENSUSES (C SINGLE RECAPTURE CENSUS SINGLE RECRESSION LINE	BIOKA54 TECH 66 SASJ 69 JRSSB65 JASA 67 BIOKA62 TECH 61 BIOKA63	1019 506 482 367 9 1 1433 339 21 195
THE DISTRIBUTION OF THE RATIO, IN A : CONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A : ON THE DISTRIBUTION AND POWER OF A TEST FOR A : BETWEEN CONFIDENCE POINT PROCEDURES IN THE CASE OF A : HOD OF CONSTRUCTION OF ATTRITION LIFE TABLES FOR THE : THE MULTI-SAMPLE : PREDICTION REGIONS FOR SEVERAL PREDICTIONS FROM A : INDEX SELECTION AND ESTIMATION FROM A : DISTRIBUTIONS BAYESIAN :	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OBSERVATION QUERY, SINGLE OUTLIER SINGLE PARAMETER ON COMPARISONS SINGLE POPULATION BASED ON TWO SUCCESSIVE CENSUSES (C SINGLE RECAPTURE CENSUS SINGLE REGRESSION LINE SINGLE SAMPLE	BIOKA54 TECH 66 SASJ 69 JRSSB65 JASA 67 BIOKA62 TECH 61 BIOKA63 TECH 68	1019 506 482 367 9 1 1433 339 21 195 667
THE DISTRIBUTION OF THE RATIO, IN A : CONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A : ON THE DISTRIBUTION AND POWER OF A TEST FOR A : BETWEEN CONFIDENCE POINT PROCEDURES IN THE CASE OF A : HOD OF CONSTRUCTION OF ATTRITION LIFE TABLES FOR THE : PREDICTION REGIONS FOR SEVERAL PREDICTIONS FROM A : INDEX SELECTION AND ESTIMATION FROM A : DISTRIBUTIONS AND CONSUMER'S RISK THE DETERMINATION OF SOME LIMIT THEOREMS FOR THE DODGE-ROMIG LIPID :	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OBSERVATION QUERY, SINGLE OUTLIER SINGLE PARAMETER ON COMPARISONS SINGLE POPULATION BASED ON TWO SUCCESSIVE CENSUSES (C SINGLE RECAPTURE CENSUS SINGLE RECRESSION LINE SINGLE SAMPLE SAMPLE ATTRIBUTE PLANS FOR CONTINUOUS PRIOR SINGLE SAMPLING ATTRIBUTE PLANS WITH GIVEN PRODUCER'S SINGLE SAMPLING ATTRIBUTE PLANS WITH GIVEN PRODUCER'S SINGLE SAMPLING INSPECTION PLANS	BIOKA54 TECH 66 SASJ 69 JRSSB65 JASA 67 BIOKA62 TECH 61 TECH 62 TECH 68 TECH 67 TECH 62	1019 506 482 367 9 1 1433 339 21 195 667 401 497
THE DISTRIBUTION OF THE RATIO, IN A CONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A STANDARD DEVIATION FROM A STANDARD DEVIATION FROM A STANDARD FOR A TEST FOR A SETWEEN CONFIDENCE POINT PROCEDURES IN THE CASE OF A SHOW OF CONSTRUCTION OF ATTRITION LIFE TABLES FOR THE STANDARD FROM A STANDARD FROM A STANDARD FOR SEVERAL PREDICTIONS FROM A STANDARD FOR THE DETERMINATION OF STANDARD FROM A STANDARD FOR THE DODGE-ROMIG LIPPO COMPOUND HYPERGEOMETRIC DISTRIBUTION AND A SYSTEM OF	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OBSERVATION QUERY, SINGLE OUTLIER SINGLE PARAMETER ON COMPARISONS SINGLE POPULATION BASED ON TWO SUCCESSIVE CENSUSES (C SINGLE RECAPTURE CENSUS SINGLE REGRESSION LINE SINGLE SAMPLE SINGLE SAMPLING ATTRIBUTE PLANS FOR CONTINUOUS PRIOR SINGLE SAMPLING ATTRIBUTE PLANS WITH GIVEN PRODUCER'S SINGLE SAMPLING INSPECTION PLANS SINGLE SAMPLING INSPECTION PLANS SINGLE SAMPLING INSPECTION PLANS	BIOKA54 TECH 66 SASJ 69 JRSSB65 JASA 67 BIOKA62 TECH 61 TECH 62 TECH 68 TECH 67 TECH 62	1019 506 482 367 9 1 1433 339 21 195 667 401 497
THE DISTRIBUTION OF THE RATIO, IN A : CONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A : ON THE DISTRIBUTION AND POWER OF A TEST FOR A : BETWEEN CONFIDENCE POINT PROCEDURES IN THE CASE OF A : HOD OF CONSTRUCTION OF ATTRITION LIFE TABLES FOR THE : PREDICTION REGIONS FOR SEVERAL PREDICTIONS FROM A : INDEX SELECTION AND ESTIMATION FROM A : DISTRIBUTIONS AND CONSUMER'S RISK THE DETERMINATION OF SOME LIMIT THEOREMS FOR THE DODGE-ROMIG LIPID :	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OBSERVATION QUERY, SINGLE OUTLIER SINGLE PARAMETER ON COMPARISONS SINGLE POPULATION BASED ON TWO SUCCESSIVE CENSUSES (C SINGLE RECAPTURE CENSUS SINGLE REGRESSION LINE SINGLE SAMPLE SINGLE SAMPLING ATTRIBUTE PLANS FOR CONTINUOUS PRIOR SINGLE SAMPLING ATTRIBUTE PLANS WITH GIVEN PRODUCER'S SINGLE SAMPLING INSPECTION PLANS SINGLE SAMPLING INSPECTION PLANS SINGLE SAMPLING INSPECTION PLANS	BIOKA54 TECH 66 SASJ 69 JRSSB65 JASA 67 BIOKA62 TECH 61 TECH 62 TECH 68 TECH 67 TECH 62	1019 506 482 367 9 1 1433 339 21 195 667 401 497 275
THE DISTRIBUTION OF THE RATIO, IN A SECONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A SET ON THE DISTRIBUTION AND POWER OF A TEST FOR A SETWEEN CONFIDENCE POINT PROCEDURES IN THE CASE OF A SETWEEN CONSTRUCTION OF ATTRITION LIFE TABLES FOR THE SETWING THE MULTI-SAMPLE PREDICTION REGIONS FOR SEVERAL PREDICTIONS FROM A SUDDEX SELECTION AND ESTIMATION FROM A DISTRIBUTIONS AND CONSUMER'S RISK THE DETERMINATION OF SOME LIMIT THEOREMS FOR THE DODGE-ROMIG LTPD COMPOUND HYPERGEOMETRIC DISTRIBUTION AND A SYSTEM OF SOME REMARKS ON THE BAYESIAN SOLUTION OF THE SINGLE-SIDED SPECIFICATION LIMIT	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OUTLIER SINGLE OUTLIER SINGLE PARAMETER ON COMPARISONS SINGLE POPULATION BASED ON TWO SUCCESSIVE CENSUSES (C SINGLE RECAPTURE CENSUS SINGLE RECRESSION LINE SINGLE SAMPLE SINGLE SAMPLING ATTRIBUTE PLANS FOR CONTINUOUS PRIOR SINGLE SAMPLING ATTRIBUTE PLANS WITH GIVEN PRODUCER'S SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTR SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTR SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING INSPECTION SCHEME	BIOKA54 TECH 66 SASJ 69 JRSSB65 JASA 67 BIOKA62 TECH 61 BIOKA63 TECH 68 TECH 67 TECH 62 TECH 60 JASA 59	1019 506 482 367 9 1 1433 339 21 195 667 401 497 275 341 248
THE DISTRIBUTION OF THE RATIO, IN A : CONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A: ON THE DISTRIBUTION AND POWER OF A TEST FOR A: BETWEEN CONFIDENCE POINT PROCEDURES IN THE CASE OF A: HOD OF CONSTRUCTION OF ATTRITION LIFE TABLES FOR THE: THE MULTI-SAMPLE PREDICTION REGIONS FOR SEVERAL PREDICTIONS FROM A: INDEX SELECTION AND ESTIMATION FROM A: DISTRIBUTIONS AND CONSUMER'S RISK THE DETERMINATION OF SOME LIMIT THEOREMS FOR THE DODGE-ROMIG LIPD: COMPOUND HYPERGEOMETRIC DISTRIBUTION AND A SYSTEM OF SOME REMARKS ON THE BAYESIAN SOLUTION OF THE SINGLE-SIDED SPECIFICATION LIMIT ASYMPTOTIC PROPERTIES OF BAYESIAN	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OBSERVATION QUERY, SINGLE OUTLIER SINGLE PARAMETER ON COMPARISONS SINGLE POPULATION BASED ON TWO SUCCESSIVE CENSUSES (C SINGLE RECAPTURE CENSUS SINGLE RECAPTURE CENSUS SINGLE RECRESSION LINE SINGLE SAMPLING ATTRIBUTE PLANS FOR CONTINUOUS PRIOR SINGLE SAMPLING ATTRIBUTE PLANS WITH GIVEN PRODUCER'S SINGLE SAMPLING INSPECTION PLANS SINGLE SAMPLING INSPECTION PLANS SINGLE SAMPLING INSPECTION PLANS SINGLE SAMPLING INSPECTION PLANS SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING PLAN FOR CORRELATED VARIABLES WITH A SINGLE SAMPLING PLANS (CORR. 67 586)	BIOKA54 TECH 66 SASJ 69 JRSSB65 JASA 67 BIOKA62 TECH 61 BIOKA63 TECH 67 TECH 67 TECH 60 TECH 60 JASA 59 JRSSB67	1019 506 482 367 9 1 1433 339 21 195 667 401 497 275 341 248 162
THE DISTRIBUTION OF THE RATIO, IN A SECONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A SET WEER OF A TEST FOR A SET WEEN CONFIDENCE POINT PROCEDURES IN THE CASE OF A SET WEEN CONSTRUCTION OF ATTRITION LIFE TABLES FOR THE THE MULTI-SAMPLE PREDICTION REGIONS FOR SEVERAL PREDICTIONS FROM A SET WEEN SELECTION AND ESTIMATION FROM A SET WEEN SELECTION AND ESTIMATION FOR SOME LIMIT THEOREMS FOR THE DETERMINATION OF SOME LIMIT THEOREMS FOR THE DODGE-ROMIG LIFT OF SOME LIMIT THEOREMS FOR THE DODGE-ROMIG LIFT OF SOME REMARKS ON THE BAYESIAN SOLUTION OF THE SINGLE-SIDED SPECIFICATION LIMIT A ASYMPTOTIC PROPERTIES OF BAYESIAN ON THE GENERAL TIME DEFENDENT QUEUE WITH A	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OBSERVATION QUERY, SINGLE OUTLIER ON COMPARISONS SINGLE PARAMETER ON COMPARISONS SINGLE RECAPTURE CENSUS SINGLE RECAPTURE CENSUS SINGLE REGRESSION LINE SINGLE SAMPLE SINGLE SAMPLING ATTRIBUTE PLANS FOR CONTINUOUS PRIOR SINGLE SAMPLING ATTRIBUTE PLANS WITH GIVEN PRODUCER'S SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTR SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTR SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING PLAN FOR CORRELATED VARIABLES WITH A SINGLE SAMPLING PLANS (CORR. 67 586)	BIOKA54 TECH 66 SASJ 69 JRSSB65 JASA 67 BIOKA62 TECH 61 BIOKA63 TECH 68 TECH 67 TECH 60 JECH 60 JASA 59 JRSSB67 AMS 62	1019 506 482 367 9 1 1433 339 21 195 667 401 497 275 341 248 162 767
THE DISTRIBUTION OF THE RATIO, IN A SECONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A SET ON THE DISTRIBUTION AND POWER OF A TEST FOR A SET ON THE DISTRIBUTION AND POWER OF A TEST FOR A SET ON THE	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OBSERVATION QUERY, SINGLE OUTLIER SINGLE PARAMETER ON COMPARISONS SINGLE POPULATION BASED ON TWO SUCCESSIVE CENSUSES (C SINGLE RECAPTURE CENSUS SINGLE RECAPTURE CENSUS SINGLE RECRESSION LINE SINGLE SAMPLING ATTRIBUTE PLANS FOR CONTINUOUS PRIOR SINGLE SAMPLING ATTRIBUTE PLANS WITH GIVEN PRODUCER'S SINGLE SAMPLING INSPECTION PLANS SINGLE SAMPLING INSPECTION PLANS SINGLE SAMPLING INSPECTION PLANS SINGLE SAMPLING INSPECTION PLANS SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING PLAN FOR CORRELATED VARIABLES WITH A SINGLE SAMPLING PLANS (CORR. 67 586)	BIOKA54 TECH 66 SASJ 69 JRSSB65 JASA 67 BIOKA62 TECH 61 BIOKA63 TECH 68 TECH 67 TECH 60 JECH 60 JASA 59 JRSSB67 AMS 62	1019 506 482 367 9 1 1433 339 21 195 667 401 497 275 341 248 162 767
THE DISTRIBUTION OF THE RATIO, IN A : CONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A: ON THE DISTRIBUTION AND POWER OF A TEST FOR A: BETWEEN CONFIDENCE POINT PROCEDURES IN THE CASE OF A: HOD OF CONSTRUCTION OF ATTRITION LIFE TABLES FOR THE: PREDICTION REGIONS FOR SEVERAL PREDICTIONS FROM A: INDEX SELECTION AND ESTIMATION FROM A: DISTRIBUTIONS AND CONSUMER'S RISK THE DETERMINATION OF SOME LIMIT THEOREMS FOR THE DODGE-ROMIG LTPD: COMPOUND HYPERGEOMETRIC DISTRIBUTION AND A SYSTEM OF SOME REMARKS ON THE BAYESIAN SOLUTION OF THE SINGLE-SIDED SPECIFICATION LIMIT ASYMPTOTIC PROPERTIES OF BAYESIAN ON THE GENERAL TIME DEPENDENT QUEUE WITH A RY METHOD OF SOLUTION OF THE QUEUEING PROBLEM WITH A D GAMMA SERVICE TIME THE TRANSIENT BEHAVIOR OF A	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OBSERVATION QUERY, SINGLE OUTLIER SINGLE PARAMETER ON COMPARISONS SINGLE POPULATION BASED ON TWO SUCCESSIVE CENSUSES (C SINGLE RECAPTURE CENSUS SINGLE RECAPTURE CENSUS SINGLE RECRESSION LINE SINGLE SAMPLING ATTRIBUTE PLANS FOR CONTINUOUS PRIOR SINGLE SAMPLING ATTRIBUTE PLANS WITH GIVEN PRODUCER'S SINGLE SAMPLING INSPECTION PLANS SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTR SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTR SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTR SINGLE SAMPLING PLAN FOR CORRELATED VARIABLES WITH A SINGLE SERVER AND CONSTANT PARAMETERS AN ELEMENTA SINGLE SERVER AND CONSTANT PARAMETERS AN ELEMENTA SINGLE SERVER QUEUING PROCESS WITH RECURRENT INPUT AN	BIOKA54 TECH 66 SASJ 69 JRSSB65 JASA 67 BIOKA62 TECH 61 BIOKA63 TECH 62 TECH 62 TECH 60 JASA 59 JRSSB67 AMS 62 JRSSB56	1019 506 482 367 9 1 1433 339 21 195 667 401 497 275 341 248 162 767 125
THE DISTRIBUTION OF THE RATIO, IN A : CONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A: ON THE DISTRIBUTION AND POWER OF A TEST FOR A: BETWEEN CONFIDENCE POINT PROCEDURES IN THE CASE OF A: HOD OF CONSTRUCTION OF ATTRITION LIFE TABLES FOR THE: THE MULTI-SAMPLE: PREDICTION REGIONS FOR SEVERAL PREDICTIONS FROM A: INDEX SELECTION AND ESTIMATION FROM A: DISTRIBUTIONS BAYESIAN AND CONSUMER'S RISK THE DETERMINATION OF SOME LIMIT THEOREMS FOR THE DODGE-ROMIG LIFD: COMPOUND HYPERGEOMETRIC DISTRIBUTION AND A SYSTEM OF SOME REMARKS ON THE BAYESIAN SOLUTION OF THE SINGLE-SIDED SPECIFICATION LIMIT ASYMPTOTIC PROPERTIES OF BAYESIAN ON THE GENERAL TIME DEPENDENT QUEUE WITH A RY METHOD OF SOLUTION OF THE QUEUEING PROBLEM WITH A CORRELATION STRUCTURE OF THE OUTPUT PROCESS OF SOME	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OBSERVATION QUERY, SINGLE OUTLIER SINGLE PARAMETER ON COMPARISONS SINGLE RECAPTURE CENSUS SINGLE RECAPTURE CENSUS SINGLE REGRESSION LINE SINGLE SAMPLE SINGLE SAMPLE SINGLE SAMPLING ATTRIBUTE PLANS FOR CONTINUOUS PRIOR SINGLE SAMPLING ATTRIBUTE PLANS WITH GIVEN PRODUCER'S SINGLE SAMPLING INSPECTION PLANS SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTR SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTR SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING PLANS (CORR. 67 586) SINGLE SAMPLING PLANS (CORR. 67 586) SINGLE SERVER AND CONSTANT PARAMETERS AN ELEMENTA SINGLE SERVER AND CONSTANT PARAMETERS AN ELEMENTA SINGLE SERVER QUEUING PROCESS WITH RECURRENT INPUT AN SINGLE SERVER SYSTEMS	BIOKA54 TECH 66 SASJ 69 JRSSB65 JASA 67 BIOKA62 TECH 61 BIOKA63 TECH 62 TECH 62 TECH 60 JASA 59 JRSSB67 AMS 62 JRSSB56	1019 506 482 367 9 1 1433 339 21 195 667 401 497 275 341 248 162 767 125 1286
THE DISTRIBUTION OF THE RATIO, IN A : CONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A: ON THE DISTRIBUTION AND POWER OF A TEST FOR A: BETWEEN CONFIDENCE POINT PROCEDURES IN THE CASE OF A: HOD OF CONSTRUCTION OF ATTRITION LIFE TABLES FOR THE: THE MULTI-SAMPLE: PREDICTION REGIONS FOR SEVERAL PREDICTIONS FROM A: INDEX SELECTION AND ESTIMATION FROM A: DISTRIBUTIONS BAYESIAN AND CONSUMER'S RISK THE DETERMINATION OF SOME LIMIT THEOREMS FOR THE DODGE-ROMIG LIFD: COMPOUND HYPERGEOMETRIC DISTRIBUTION AND A SYSTEM OF SOME REMARKS ON THE BAYESIAN SOLUTION OF THE SINGLE-SIDED SPECIFICATION LIMIT ASYMPTOTIC PROPERTIES OF BAYESIAN ON THE GENERAL TIME DEPENDENT QUEUE WITH A RY METHOD OF SOLUTION OF THE QUEUEING PROBLEM WITH A CORRELATION STRUCTURE OF THE OUTPUT PROCESS OF SOME	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OBSERVATION QUERY, SINGLE OUTLIER SINGLE PARAMETER ON COMPARISONS SINGLE RECAPTURE CENSUS SINGLE RECAPTURE CENSUS SINGLE REGRESSION LINE SINGLE SAMPLE SINGLE SAMPLE SINGLE SAMPLING ATTRIBUTE PLANS FOR CONTINUOUS PRIOR SINGLE SAMPLING ATTRIBUTE PLANS WITH GIVEN PRODUCER'S SINGLE SAMPLING INSPECTION PLANS SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTR SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTR SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING PLANS (CORR. 67 586) SINGLE SAMPLING PLANS (CORR. 67 586) SINGLE SERVER AND CONSTANT PARAMETERS AN ELEMENTA SINGLE SERVER AND CONSTANT PARAMETERS AN ELEMENTA SINGLE SERVER QUEUING PROCESS WITH RECURRENT INPUT AN SINGLE SERVER SYSTEMS	BIOKA54 TECH 66 SASJ 69 JRSSB65 JASA 67 BIOKA62 TECH 61 BIOKA63 TECH 67 TECH 67 TECH 60 TECH 60 JASA 59 JRSSB67 AMS 62 JRSSB66 AMS 61	1019 506 482 367 9 1 1433 339 21 195 667 401 497 275 341 248 162 767 125 1286 1007
THE DISTRIBUTION OF THE RATIO, IN A : CONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A: ON THE DISTRIBUTION AND POWER OF A TEST FOR A: BETWEEN CONFIDENCE POINT PROCEDURES IN THE CASE OF A: HOD OF CONSTRUCTION OF ATTRITION LIFE TABLES FOR THE: THE MULTI-SAMPLE: PREDICTION REGIONS FOR SEVERAL PREDICTIONS FROM A: INDEX SELECTION AND ESTIMATION FROM A: DISTRIBUTIONS BAYESIAN AND CONSUMER'S RISK THE DETERMINATION OF SOME LIMIT THEOREMS FOR THE DODGE-ROMIG LIFD: COMPOUND HYPERGEOMETRIC DISTRIBUTION AND A SYSTEM OF SOME REMARKS ON THE BAYESIAN SOLUTION OF THE SINGLE-SIDED SPECIFICATION LIMIT ASYMPTOTIC PROPERTIES OF BAYESIAN ON THE GENERAL TIME DEPENDENT QUEUE WITH A RY METHOD OF SOLUTION OF THE QUEUEING PROBLEM WITH A CORRELATION STRUCTURE OF THE OUTPUT PROCESS OF SOME	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OUTLIER SINGLE OUTLIER SINGLE PARAMETER ON COMPARISONS SINGLE POPULATION BASED ON TWO SUCCESSIVE CENSUSES (C SINGLE RECAPTURE CENSUS SINGLE REGRESSION LINE SINGLE SAMPLESINGLE SAMPLING ATTRIBUTE PLANS FOR CONTINUOUS PRIOR SINGLE SAMPLING ATTRIBUTE PLANS WITH GIVEN PRODUCER'S SINGLE SAMPLING INSPECTION PLANS SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTR SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING PLANS (CORR. 67 586) SINGLE SAMPLING PLANS (CORR. 67 586) SINGLE SERVER AND CONSTANT PARAMETERS AN ELEMENTA SINGLE SERVER QUEUING PROCESS WITH RECURRENT INPUT AN SINGLE SERVER QUEUING PROCESS WITH RECURRENT INPUT AN SINGLE SERVER SYSTEMS SINGLE SERVER SYSTEMS	BIOKA54 TECH 66 SASJ 69 JRSSB65 JASA 67 BIOKA62 TECH 61 BIOKA62 TECH 61 TECH 60 TECH 60 TECH 60 TECH 60 JASA 59 JRSSB67 AMS 62 JRSSB56 AMS 61 AMS 68	1019 506 482 367 9 1 1433 339 21 195 667 401 497 275 341 248 162 767 125 1286 1007 285
THE DISTRIBUTION OF THE RATIO, IN A : CONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A: ON THE DISTRIBUTION AND POWER OF A TEST FOR A: BETWEEN CONFIDENCE POINT PROCEDURES IN THE CASE OF A: HOD OF CONSTRUCTION OF ATTRITION LIFE TABLES FOR THE: THE MULTI-SAMPLE: PREDICTION REGIONS FOR SEVERAL PREDICTIONS FROM A: INDEX SELECTION AND ESTIMATION FROM A: INDEX SELECTION AND ESTIMATION FROM A: SAME LIMIT THEOREMS FOR THE DETERMINATION OF SOME LIMIT THEOREMS FOR THE DODGE-ROMIG LIFD: COMPOUND HYPERGEOMETRIC DISTRIBUTION AND A SYSTEM OF SOME REMARKS ON THE BAYESIAN SOLUTION OF THE SINGLE-SIDED SPECIFICATION LIMIT ASYMPTOTIC PROPERTIES OF BAYESIAN ON THE GENERAL TIME DEPENDENT QUEUE WITH A RY METHOD OF SOLUTION OF THE QUEUEING PROBLEM WITH A CORRELATION STRUCTURE OF THE OUTPUT PROCESS OF SOME QUEUEING AT A EXAMINATION OF A QUANTUM HYPOTHESIS BASED ON A STATES	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OBSERVATION QUERY, SINGLE OUTLIER SINGLE PARAMETER ON COMPARISONS SINGLE POPULATION BASED ON TWO SUCCESSIVE CENSUSES (C SINGLE RECAPTURE CENSUS SINGLE RECAPTURE CENSUS SINGLE REGRESSION LINE SINGLE SAMPLE SINGLE SAMPLING ATTRIBUTE PLANS FOR CONTINUOUS PRIOR SINGLE SAMPLING ATTRIBUTE PLANS WITH GIVEN PRODUCER'S SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTR SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTR SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING PLANS (CORR. 67 586) SINGLE SAMPLING PLANS (CORR. 67 586) SINGLE SERVER AND CONSTANT PARAMETERS AN ELEMENTA SINGLE SERVER AND CONSTANT PARAMETERS AN ELEMENTA SINGLE SERVER SUSTEMS THE SINGLE SERVER SYSTEMS THE SINGLE SERVER SYSTEMS THE SINGLE SERVING POINT WITH GROUP ARRIVAL SINGLE STATE OF A STATIONARY PROCESS INTO MARKOVIAN	BIOKA54 TECH 66 SASJ 69 JRSSB65 JASA 67 BIOKA62 TECH 61 BIOKA63 TECH 68 TECH 67 TECH 60 JASA 59 JRSSB67 AMS 62 JRSSB66 AMS 61 AMS 68 JRSSB60	1019 506 482 367 9 1 1433 339 21 195 667 401 497 275 341 248 162 767 125 1286 1007 285 32
THE DISTRIBUTION OF THE RATIO, IN A SOME LIMIT THEOREMS FOR THE DOCE—ROMG LIMIT THEOREMS ON THE DISTRIBUTION AND POWER OF A TEST FOR A SETWEEN CONFIDENCE POINT PROCEDURES IN THE CASE OF A SHOOL OF CONSTRUCTION OF ATTRITION LIFE TABLES FOR THE THE MULTI-SAMPLE PREDICTION REGIONS FOR SEVERAL PREDICTIONS FROM A INDEX SELECTION AND ESTIMATION FROM A STATES TO THE DETERMINATION OF SOME LIMIT THEOREMS FOR THE DOCE—ROMIG LITPO SOME LIMIT THEOREMS FOR THE DOCE—ROMIG LITPO SOME REMARKS ON THE BAYESIAN SOLUTION OF THE SINGLE—SIDED SPECIFICATION LIMIT A SYMPTOTIC PROPERTIES OF BAYESIAN ON THE GENERAL TIME DEFENDENT QUEUE WITH A RY METHOD OF SOLUTION OF THE QUEUEING PROBLEM WITH A CORRELATION STRUCTURE OF THE OUTPUT PROCESS OF SOME CORRELATION STRUCTURE OF THE OUTPUT PROCESS OF SOME A SEXMINATION OF A QUANTUM HYPOTHESIS BASED ON A STATES THE ESTIMATION OF MORTALITY AND RECRUITMENT FROM A	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OUTLIER SINGLE PARAMETER ON COMPARISONS SINGLE POPULATION BASED ON TWO SUCCESSIVE CENSUSES (C SINGLE RECAPTURE CENSUS SINGLE RECAPTURE CENSUS SINGLE SAMPLE SINGLE SAMPLING ATTRIBUTE PLANS FOR CONTINUOUS PRIOR SINGLE SAMPLING ATTRIBUTE PLANS WITH GIVEN PRODUCER'S SINGLE SAMPLING INSPECTION PLANS SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTR SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING PLANS (CORR. 67 586) SINGLE SAMPLING PLANS (CORR. 67 586) SINGLE SERVER AND CONSTANT PARAMETERS AN ELEMENTA SINGLE SERVER QUEUING PROCESS WITH RECURRENT INPUT AN SINGLE SERVER QUEUING PROCESS WITH RECURRENT INPUT AN SINGLE SERVER SERVER SYSTEMS THE SINGLE SERVER SERVER SERVER SERVER SERVER STEMS SINGLE SERVER SERVER STEMS SINGLE SERVER SERVER SITH GROUP ARRIVAL SINGLE SERVING POINT WITH GROUP ARRIVAL SINGLE STATE OF A STATIONARY PROCESS INTO MARKOVIAN SINGLE TAGGING EXPERIMENT	BIOKA54 TECH 66 SASJ 69 JRSSB65 JASA 67 BIOKA62 TECH 61 BIOKA62 TECH 67 TECH 67 TECH 60 JASA 59 JRSSB67 AMS 61 JMSSB66 AMS 68 JRSSB60 BIOKA56	1019 506 482 367 9 1 1433 339 21 195 667 401 497 275 341 248 162 767 125 1286 1007 285 32
THE DISTRIBUTION OF THE RATIO, IN A SECURE INTERVAL FOR STANDARD DEVIATION FROM A SET ON THE DISTRIBUTION AND POWER OF A TEST FOR A SET ON THE DISTRIBUTION AND POWER OF A TEST FOR A SET ON THE CASE OF A SET OF CONSTRUCTION OF ATTRITION LIFE TABLES FOR THE THE MULTI-SAMPLE PREDICTION REGIONS FOR SEVERAL PREDICTIONS FROM A STANDER SEVERAL PREDICTIONS FROM A SET ON THE DISTRIBUTION AND A SYSTEM OF SOME LIMIT THEOREMS FOR THE DODGE-ROMIG LTPD COMPOUND HYPERGEOMETRIC DISTRIBUTION AND A SYSTEM OF SOME REMARKS ON THE BAYESIAN SOLUTION OF THE SINGLE-SIDED SPECIFICATION LIMIT A SYMPTOTIC PROPERTIES OF BAYESIAN ON THE GENERAL TIME DEPENDENT QUEUE WITH A RY METHOD OF SOLUTION OF THE QUEUEING PROBLEM WITH A CORRELATION STRUCTURE OF THE OUTPUT PROCESS OF SOME EXAMINATION OF A QUANTUM HYPOTHESIS BASED ON A STATES SPLITTING A A GENERALIZED	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OUTLIER SINGLE PARAMETER SINGLE PARAMETER SINGLE POPULATION BASED ON TWO SUCCESSIVE CENSUSES (C SINGLE RECAPTURE CENSUS SINGLE RECAPTURE CENSUS SINGLE SAMPLE SINGLE SAMPLING ATTRIBUTE PLANS FOR CONTINUOUS PRIOR SINGLE SAMPLING ATTRIBUTE PLANS WITH GIVEN PRODUCER'S SINGLE SAMPLING INSPECTION PLANS SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTR SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTR SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING PLANS (CORR. 67 586) SINGLE SAMPLING PLANS (CORR. 67 586) SINGLE SERVER AND CONSTANT PARAMETERS AN ELEMENTA SINGLE SERVER QUEUING PROCESS WITH RECURRENT INPUT AN SINGLE SERVER QUEUING PROCESS WITH RECURRENT INPUT AN SINGLE SERVER SYSTEMS SINGLE SERVER SYSTEMS SINGLE SERVER SINTO MARKOVIAN SINGLE STATE OF A STATIONARY PROCESS INTO MARKOVIAN SINGLE STATE OF A STATIONARY PROCESS INTO MARKOVIAN SINGLE—SERVER QUEUE WITH ERLANG INPUT	BIOKA54 TECH 66 SASJ 69 JRSSB65 JASA 67 BIOKA62 TECH 61 BIOKA63 TECH 67 TECH 67 TECH 60 JASA 59 JRSSB67 AMS 62 JRSSB66 AMS 61 AMS 68 BIOKA56 BIOKA56 BIOKA56 BIOKA56	1019 506 482 367 9 1 1433 339 21 195 667 401 497 275 341 162 767 125 1286 1007 285 32 1069 529 529 542
THE DISTRIBUTION OF THE RATIO, IN A SOME PERMARKS ON THE BAYESIAN ON THE DISTRIBUTION AND POWER OF A TEST FOR A SOME REMARKS ON THE DEPENDENCE THE WITH A SYMPTOTIC PROPERTIES OF BAYESIAN ON THE GENERAL TIME DEPENDENCE OF A STATES PREDICTION REGIONS FOR SEVERAL PREDICTIONS FROM A INDEX SELECTION AND ESTIMATION FROM A SOME LIMIT THEOREMS FOR THE DETERMINATION OF SOME LIMIT THEOREMS FOR THE DODGE-ROWIG LITD ON THE SINGLE-SIDED SPECIFICATION LIMIT ASSUMED SOME REMARKS ON THE BAYESIAN SOLUTION OF THE SINGLE-SIDED SPECIFICATION LIMIT ASSUMED THE DETERMINATION OF THE GENERAL TIME DEPENDENT QUEUE WITH A CORRELATION STRUCTURE OF THE OUTPUT PROCESS OF SOME CORRELATION STRUCTURE OF THE OUTPUT PROCESS OF SOME EXAMINATION OF A QUANTUM HYPOTHESIS BASED ON A STATES THE ESTIMATION OF MORTALITY AND RECRUITMENT FROM A A GENERALIZED SERVICE TIMES THE TIME DEPENDENCE OF A	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OBSERVATION QUERY, SINGLE OUTLIER SINGLE PARAMETER ON COMPARISONS SINGLE POPULATION BASED ON TWO SUCCESSIVE CENSUSES (C SINGLE RECAPTURE CENSUS SINGLE REGRESSION LINE SINGLE SAMPLE SINGLE SAMPLE SINGLE SAMPLING ATTRIBUTE PLANS FOR CONTINUOUS PRIOR SINGLE SAMPLING ATTRIBUTE PLANS WITH GIVEN PRODUCER'S SINGLE SAMPLING INSPECTION PLANS SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTR SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTR SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING PLANS (CORR. 67 586) SINGLE SAMPLING PLANS (CORR. 67 586) SINGLE SERVER AND CONSTANT PARAMETERS AN ELEMENTA SINGLE SERVER AND CONSTANT PARAMETERS AN ELEMENTA SINGLE SERVER SYSTEMS THE SINGLE STATE OF A STATIONARY PROCESS INTO MARKOVIAN SINGLE TAGGING EXPERIMENT SINGLE—SERVER QUEUE WITH ERLANG INPUT SINGLE—SERVER QUEUE WITH POISSON INPUT AND GENERAL	BIOKA54 TECH 66 SASJ 69 JRSSB65 JASA 67 BIOKA62 TECH 61 BIOKA62 TECH 67 TECH 60 TECH 60 TECH 60 TECH 60 JASA 59 JRSSB67 AMS 62 JRSSB56 AMS 61 JRSSB60 BIOKA62 BIOKA68 BIOKA68 BIOKA66	1019 506 482 367 9 1 1433 339 21 195 667 401 497 275 341 248 162 767 125 1286 1007 285 32 1069 529 242 1340
THE DISTRIBUTION OF THE RATIO, IN A SOME CONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A SET ON THE DISTRIBUTION AND POWER OF A TEST FOR A SETWEEN CONFIDENCE POINT PROCEDURES IN THE CASE OF A SETWEEN CONFIDENCE POINT PROCEDURES IN THE CASE OF A SETWEEN CONFIDENCE POINT PROCEDURES IN THE CASE OF A SETWICE THE MULTI-SAMPLE THE DETERMINATION FROM A SAME LIMIT THEOREMS FOR THE DODGE-ROMIG LITPS SOME LIMIT THEOREMS FOR THE DODGE-ROMIG LITPS SOME REMARKS ON THE BAYESIAN SOLUTION OF THE SINGLE-SIDED SPECIFICATION LIMIT A SAMPLE TO THE MULTI-SAMPLE THE MULTI-SAMPLE WITH A RAY METHOD OF SOLUTION OF THE QUEUEING PROBLEM WITH A DEAMMA SERVICE TIME THE TRANSIENT BEHAVIOR OF A CORRELATION STRUCTURE OF THE OUTPUT PROCESS OF SOME QUEUEING AT A EXAMINATION OF A QUANTUM HYPOTHESIS BASED ON A STATES SPLITTING A A GENERALIZED SERVICE TIMES THE TIME DEPENDENCE OF A TARRIVALS AND/ THE BUSY PERIOD IN RELATION TO THE	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OUTLIER SINGLE PARAMETER ON COMPARISONS SINGLE PARAMETER ON COMPARISONS SINGLE RECAPTURE CENSUS SINGLE RECAPTURE CENSUS SINGLE RECAPTURE CENSUS SINGLE REAPTURE CENSUS SINGLE SAMPLE SINGLE SAMPLING ATTRIBUTE PLANS FOR CONTINUOUS PRIOR SINGLE SAMPLING ATTRIBUTE PLANS WITH GIVEN PRODUCER'S SINGLE SAMPLING INSPECTION PLANS SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTR SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING PLANS (CORR. 67 586) SINGLE SAMPLING PLANS (CORR. 67 586) SINGLE SERVER AND CONSTANT PARAMETERS AN ELEMENTA SINGLE SERVER QUEUENG PROCESS WITH RECURRENT INPUT AN SINGLE SERVER QUEUENG PROCESS WITH RECURRENT INPUT AN SINGLE SERVER SYSTEMS SINGLE SERVER STATEORA SINGLE SET OF DATA SINGLE SET OF DATA SINGLE STATE OF A STATIONARY PROCESS INTO MARKOVIAN SINGLE TAGGING EXPERIMENT SINGLE—SERVER QUEUE WITH POISSON INPUT AND GENERAL SINGLE—SERVER QUEUE WITH POISSON INPUT AND GENERAL SINGLE—SERVER QUEUE WITH POISSON INPUT AND GENERAL	BIOKA54 TECH 66 SASJ 69 JRSSB65 JASA 67 BIOKA62 TECH 61 BIOKA62 TECH 67 TECH 60 TECH 60 TECH 60 TECH 60 JASA 59 JRSSB67 AMS 62 JRSSB56 AMS 61 JRSSB60 BIOKA62 BIOKA68 BIOKA68 BIOKA66	1019 506 482 367 9 1 1433 339 21 195 667 401 497 275 341 248 162 767 125 1286 1007 285 32 1069 529 242 1340
THE DISTRIBUTION OF THE RATIO, IN A SOME PERMARKS ON THE BAYESIAN ON THE DISTRIBUTION AND POWER OF A TEST FOR A SOME REMARKS ON THE DEPENDENCE THE WITH A SYMPTOTIC PROPERTIES OF BAYESIAN ON THE GENERAL TIME DEPENDENCE OF A STATES PREDICTION REGIONS FOR SEVERAL PREDICTIONS FROM A INDEX SELECTION AND ESTIMATION FROM A SOME LIMIT THEOREMS FOR THE DETERMINATION OF SOME LIMIT THEOREMS FOR THE DODGE-ROWIG LITD ON THE SINGLE-SIDED SPECIFICATION LIMIT ASSUMED SOME REMARKS ON THE BAYESIAN SOLUTION OF THE SINGLE-SIDED SPECIFICATION LIMIT ASSUMED THE DETERMINATION OF THE GENERAL TIME DEPENDENT QUEUE WITH A CORRELATION STRUCTURE OF THE OUTPUT PROCESS OF SOME CORRELATION STRUCTURE OF THE OUTPUT PROCESS OF SOME EXAMINATION OF A QUANTUM HYPOTHESIS BASED ON A STATES THE ESTIMATION OF MORTALITY AND RECRUITMENT FROM A A GENERALIZED SERVICE TIMES THE TIME DEPENDENCE OF A	SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION SINGLE OUTLIER SINGLE PARAMETER ON COMPARISONS SINGLE PARAMETER ON COMPARISONS SINGLE RECAPTURE CENSUS SINGLE RECAPTURE CENSUS SINGLE RECAPTURE CENSUS SINGLE REAPTURE CENSUS SINGLE SAMPLE SINGLE SAMPLING ATTRIBUTE PLANS FOR CONTINUOUS PRIOR SINGLE SAMPLING ATTRIBUTE PLANS WITH GIVEN PRODUCER'S SINGLE SAMPLING INSPECTION PLANS SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTR SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING INSPECTION SCHEME SINGLE SAMPLING PLANS (CORR. 67 586) SINGLE SAMPLING PLANS (CORR. 67 586) SINGLE SERVER AND CONSTANT PARAMETERS AN ELEMENTA SINGLE SERVER QUEUENG PROCESS WITH RECURRENT INPUT AN SINGLE SERVER QUEUENG PROCESS WITH RECURRENT INPUT AN SINGLE SERVER SYSTEMS SINGLE SERVER STATEORA SINGLE SET OF DATA SINGLE SET OF DATA SINGLE STATE OF A STATIONARY PROCESS INTO MARKOVIAN SINGLE TAGGING EXPERIMENT SINGLE—SERVER QUEUE WITH POISSON INPUT AND GENERAL SINGLE—SERVER QUEUE WITH POISSON INPUT AND GENERAL SINGLE—SERVER QUEUE WITH POISSON INPUT AND GENERAL	BIOKA54 TECH 66 SASJ 69 JRSSB65 JASA 67 BIOKA62 TECH 61 BIOKA62 TECH 67 TECH 60 TECH 60 TECH 60 TECH 60 JASA 59 JRSSB67 AMS 62 JRSSB56 AMS 61 JRSSB60 BIOKA62 BIOKA68 BIOKA68 BIOKA66	1019 506 482 367 9 1 1433 339 21 195 667 401 497 275 341 248 162 767 125 126 1207 285 329 242 21340 89

```
ED VARIANCES OF NORMAL POPULATIONS
                                                         SINCLE-STACE PROCEDURES FOR RANKINC MULTIPLY-CLASSIFI TECH 6B
CATION AND SCALE PARAMETERS BY ORDER STATISTICS FROM SINCLY AND DOUBLY CENSORED SAMPLES, PART I. THE NORMA AMS 39
TES OF THE PARAMETERS OF NORMAL POPULATIONS BASED ON SINCLY AND DOUBLY TRUNCATED SAMPLES
                                                                                                   /OF THE ESTIMA JASA 62
                                                                                                                             46
IMATORS FOR THE NORMAL DISTRIBUTION WHEN SAMPLES ARE SINCLY CENSORED OR TRUNCATED
                                                                                                   SIMPLIFIED EST TECH 59
                                                                                                                            217
TIMATION OF THE NORMAL POPULATION PARAMETERS CIVEN A SINCLY CENSORED SAMPLE
                                                                                                                ES BIOKA59
                                                                                                                            150
  MAXIMUM LIKELIHOOD ESTIMATES. SINCLY TRUNCATED AND SINCLY CENSORED SAMPLES
                                                                                                       TABLES FOR TECH 61
                                                                                                                            535
TES OF THE PARAMETERS OF NORMAL POPULATIONS BASED ON SINGLY CENSORED SAMPLES
                                                                                    /E EFFICIENCY OF BAN ESTIMA BIOKA62
                                                                                                                            570
    CONDITIONAL MAXIMUM-LIKELIHOOD ESTIMATION, FROM SINCLY CENSORED SAMPLES, OF THE SCALE PARAMETERS OF T TECH 68
                                                                                                                            349
       TABLES FOR MAXIMUM LIKELIHOOD ESTIMATES. SINCLY TRUNCATED AND SINCLY CENSORED SAMPLES CORRELATION BETWEEN THE SAMPLE VARIANCES IN A SINCLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION
                                                                                                                   TECH 61
                                                                                                                            535
                                                                                                                   BIOKA68
                                                                                                                            433
                                     CORRELATION IN A SINGLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION IV. EM BIOKA68 CORRELATION IN A SINCLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION. II. BIOKA65
PIRICAL VARIANCES OF RANK CORREL/
                                                                                                                             437
RANK CORRELATION
                                                                                                                             639
     NOTES. TABLES OF PEARSON-LEE-FISHER FUNCTIONS OF SINCLY TRUNCATED NORMAL DISTRIBUTIONS
                                                                                                                   RT0CS65
                                                                                                                            219
 GENERALIZED WILCOXON TEST FOR COMPARING ARBITRARILY SINGLY-CENSORED SAMPLES
                                                                                                                 A BIOKA65
                                                                                                                            203
      MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINGULAR COVARIANCE MATRIX
                                                                                                      CONDITIONAL JASA 64 1203
                              SOME APPLICATIONS OF THE SINGULAR DECOMPOSITION OF A MATRIX
                                                                                                                   TECH 69 NO.4
                     ON THE STRUGTURE AND ANALYSIS OF SINGULAR FRACTIONAL REPLICATES
                                                                                                                    AMS 68
                                                                                                                           657
                             ON THE BLOCK STRUCTURE OF SINGULAR GROUP DIVISIBLE DESIGNS
                                                                                                                    AMS 66 1398
                                          ON CONTINUOUS SINCULAR INFINITELY DIVISIBLE DISTRIBUTION FUNCTIONS
                                                                                                                    AMS 64
                                                                                                                            330
MEASURES
                                                    NON-SINGULAR RECURRENT MARKOV PROCESSES HAVE STATIONARY
                                                                                                                    AMS 64
                                                                                                                            B69
                                                         SINGULAR WEIGHING DESIGNS
                                                                                                                    AMS 64
                                                                                                                            673
                                        EQUIVALENCE AND SINGULARITY FOR FRIEDMAN URNS
                                                                                                                    AMS 66
                                                                                                                            268
CENERALIZED INVERSE (CORR. 69 719)
                                                         SINGULARITY IN HOTELLING'S WEICHING DESIGNS AND A
                                                                                                                    AMS 66 1021
                                                       A SINGULARITY IN THE ESTIMATION OF BINOMIAL VARIANCE
                                                                                                                   BIOKA57
                                                                                                                             262
                                       A NOTE ON MUTUAL SINGULARITY OF PRIORS
                                                                                                                    AMS 66
TION OF BACT/ ESTIMATION OF THE NUMBER OF CRITICAL SITES IN LIMITED GENOME EXPRESSION DURING VIRAL INFEC BIOCS69
                                                                                                                             537
                ON THE DISTRIBUTION OF THE LARGEST OF SIX ROOTS OF A MATRIX IN MULTIVARIATE ANALYSIS
                                                                                                                   BIOKA59
                                                                                                                            237
                                  ESTIMATION OF SAMPLE SIZE
                                                                                                                   TECH 62
                                                                                                                             59
                 ON FORMING STRATA OF EQUAL AGGREGATE SIZE
                                                                                                                   JASA 64
                                                                                                                             481
                         SEQUENTIAL TESTING OF SAMPLE SIZE
                                                                                                                   TECH 68
                                                                                                                            331
        ON THE VARIATION OF YIELD VARIANCE WITH PLOT SIZE
                                                                                                                   BIOKA56
                                                                                                                             337
OF SAMPLING WITH PROBABILITY EXACTLY PROPORTIONAL TO SIZE
                                                                                                        A METHOD
                                                                                                                  JRSSB54
                                                                                                                            236
WITHOUT REPLACEMENT WITH PROBABILITY PROPORTIONAL TO SIZE
                                                                                                        SAMPLING.
                                                                                                                  JRSSR58
                                                                                                                             393
STOPPINC RULES AND INFERENCES ABOUT POPULATION SIZE
OVER TWO OCCASIONS WITH PROBABILITY PROPORTIONATE TO SIZE
                                                                                                      INFORMATIVE JASA 67
                                                                                                                            763
                                                                                                     ON SAMPLING
                                                                                                                    AMS 65
                                                                                                                             327
    TESTS WHIGH MINIMIZE THE MAXIMUM EXPECTED SAMPLE SIZE
                                                                                                    ON SEQUENTIAL JASA 62
                                                                                                                             551
  APPROXIMATELY MINIMIZE THE MAXIMUM EXPECTED SAMPLE SIZE
                                                                                            SAMPLINC PLANS WHICH JASA 64
                                                                                                                             67
YSTEMATIC SAMPLING WITH PROBABILITY PROPORTIONATE TO SIZE
                                                                            VARIANCE ESTIMATION IN RANDOMIZED S JASA 65
                                                                                                                             27B
WITHOUT REPLACEMENT WITH PROBABILITY PROPORTIONAL TO SIZE
                                                                        A NOTE ON FELLEGI'S METHOD OF SAMPLING
                                                                                                                   JASA 67
                                                                                                                             79
OF A SERIES OF RANDOM VARIABLES ARRANCED IN ORDER OF SIZE
                                                                   THE DIFFERENCE BETWEEN CONSECUTIVE MEMBERS BIOKA57
                                                                                                                             211
 WHERE TREATMENTS OR BLOCKS ARE OF UNEQUAL STATUS OR SIZE
                                                                 /ATIONS OF NONORTHOCONAL DESIGNS TO SITUATIONS BIOCS66
 FROM THE BEST LINEAR ESTIMATES FOR A SMALLER SAMPLE SIZE
                                                                 /ONSTRUCTION OF GOOD LINEAR UNBIASED ESTIMATES TECH 65
NORMAL DISTRIBUTIONS BASED ON SMALL SAMPLES OF EQUAL SIZE
                                                                UNBAISED ESTIMATION OF THE COMMON MEAN OF TWO JASA 66
                                                                                                                             467
                                          ON THE SAMPLE SIZE AND COVERAGE FOR THE JIRINA SEQUENTIAL PROCEDURE
                  A MONTE CARLO INVESTIGATION OF THE SIZE AND POWER OF TESTS EMPLOYING SATTERTHWAITE'S SYN BIOKAGB
THETIC MEAN SO/
                                                                                                                            431
PROBABILITY RATIO TESTS
                                          ON THE SAMPLE SIZE AND SIMPLIFICATION OF A CLASS OF SEQUENTIAL
                                                                                                                    AMS 66
                                                                                                                            425
                                                  FIXED SIZE CONFIDENCE ELLIPSOIDS FOR LINEAR REGRESSION
PARAMETERS
                                                                                                                    AMS 66 1602
                                                 SAMPLE SIZE DETERMINATION FOR TOLERANCE LIMITS
                                                                                                                   TECH 68
                                                                                                                            343
                                ESTIMATION OF PARTICLE SIZE DISTRIBUTION BASED ON OBSERVED WEIGHTS OF GROUPS TECH 65
 OF PARTICLES
                                                                                                                            505
                                  BOUNDS ON THE SAMPLE SIZE DISTRIBUTION FOR A CLASS OF INVARIANT SEQUENTIAL AMS 6B 1048
 PROBABILITY RATIO TESTS
                                         CHANGES IN THE SIZE DISTRIBUTION OF DIVIDEND INCOME
                                                                                                                   JASA 61
                                                                                                                            250
                          A STOCHASTIC ANALYSIS OF THE SIZE DISTRIBUTION OF FIRMS, CORR. 59 B10
                                                                                                                   JASA 58
                                                                                                                            B93
                                    UNFOLDING PARTICLE SIZE DISTRIBUTIONS
                                                                                                                   TECH 69 NO.4
ENT CORRELATION COEFFIGIENT IN RANDOM SAMPLES OF ANY SIZE DRAWN FROM NON-NORMAL UNIVERSES
                                                                                                   /E PRODUCT-MOM BIOKA51
                                                                                                                           219
    FOR PROBABILITY PROPORTIONATE TO SOME MEASURE OF SIZE ESTIMATION
                                                                                              ON DOUBLE SAMPLING
                                                                                                                   AMS 64
                                                                                                                            900
     APPROXIMATION TO THE DISTRIBUTION OF THE SAMPLE SIZE FOR SEQUENTIAL TEST. II. TESTS OF COMPOSITE HYPO BIOKA60

APPROXIMATION TO THE DISTRIBUTION OF SAMPLE SIZE FOR SEQUENTIAL TESTS. I. TESTS FOR SIMPLE HYPOTH BIOKA59

NOTES. SAMPLE SIZE FOR THE ESTIMATION OF MEANS OF NORMAL POPULATION BIOCS67
                                                                                                                            190
ESES
                                                                                                                            130
                                                                                                                            846
YSTEMATIC SAMPLING WITH PROBABILITY PROPORTIONATE TO SIZE IN A LARGE SCALE SURVEY
                                                                                                     THE USE OF S JASA 64
                                                                                                                            251
                       BOUNDS FOR THE EXPECTED SAMPLE SIZE IN A SEQUENTIAL PROBABILITY RATIO TEST
                                                                                                                   JRSSB60
                                                                                                                            360
                MOMENTS OF THE DISTRIBUTION OF SAMPLE SIZE IN A SPRT
                                                                                                                   JASA 69 NO.4
                                                                                                                    AMS 64
               ASYMPTOTIC BEHAVIOR OF EXPECTED SAMPLE SIZE IN CERTAIN ONE-SIDED TESTS
                                                                                                                             36
                       AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION PROBLEMS
                                                                                                                    AMS 69
                                                                                                                             492
ONS ARE LOGNORMAL AND THE PRECISIO/ OPTIMAL SAMPLE SIZE IN TWO-ACTION PROBLEMS WHEN THE SAMPLE OBSERVATI JASA 68
                                                                                                                            653
                   HYPOTHESIS TESTING WHEN THE SAMPLE SIZE IS TREATED AS A RANDOM VARIABLE (WITH DISCUSSION JRSSB67
                                                                                                                             53
                          BOUNDS ON THE MAXIMUM SAMPLE SIZE OF A BAYES SEQUENTIAL PROCEDURE
                                                                                                                    AMS 65
                                                                                                                            B59
                                            FINDING THE SIZE OF A FINITE POPULATION
                                                                                                                    AMS 67 1392
                                              THE TOTAL SIZE OF A GENERAL STOCHASTIC EPIDEMIC
                                                                                                                   BIOKA53
                                                                                                                            177
                                A NOTE ON THE ULTIMATE SIZE OF A GENERAL STOCHASTIG EPIDEMIC
                                                                                                                   BIOKA67
     SEQUENTIAL MAXIMUM LIKELIHOOD ESTIMATION OF THE SIZE OF A POPULATION
                                                                                                                           1057
COMPARISON OF SEQUENTIAL RULES FOR ESTIMATION OF THE SIZE OF A POPULATION
                                                                                                                   BIOCS69
                                                                                                                            517
             ASYMPTOTIC APPROXIMATION TO THE EXPECTED SIZE OF A SELECTED SUBSET
                                                                                                                   BTOKA69
                                                                                                                            207
                                                 ON THE SIZE OF AN EPIDEMIC AND THE NUMBER OF PEOPLE HEARING
A RUMOUR
                                                                                                                   JRSSB66
                                                                                                                            4B7
                                          THE ULTIMATE SIZE OF CARRIER-BORNE EPIDEMICS
                                                                                                                   BIOKA68
                                                                                                                            277
                THE VARIABILITY OF PROFITIBILATY WITH SIZE OF FIRM, 1947-195B
                                                                                                                   JASA 64 1183
ME PROBABILITIES, EXPEGTATIONS AND VARIANCES FOR THE SIZE OF LARGEST CLUSTERS AND SMALLEST INTERVALS
                                                                                                                SO JASA 66 1191
       SOME PROPERTIES OF A METHOD OF ESTIMATING THE SIZE OF MOBILE ANIMAL POPULATIONS
                                                                                                                   BIOKA69
                                                                                                                            407
                               ON ESTIMATING THE SIZE OF MOBILE POPULATIONS FROM RECAPTURE DATA
THE DISTRIBUTION OF THE SIZE OF THE MAXIMUM CLUSTER OF POINTS ON A LINE
                                                                                                                   BIOKA51
                                                                                                                            293
                                                                                                                   JASA 65
                                                                                                                            532
                                     THE EFFECT OF THE SIZE OF THE WAITING ROOM ON A SIMPLE QUEUE
                                                                                                                   JRSSB58
                                                                                                                            182
EGORIES WI/ AN ASYMPTOTICALLY OPTIMAL FIXED SAMPLE SIZE PROCEDURE FOR COMPARING SEVERAL EXPERIMENTAL CAT
                                                                                                                   AMS 64 1571
                                 THE CONDITION FOR LOT SIZE PRODUCTION
                                                                                                                  JASA 56
                                                                                                                           627
                                                 SAMPLE SIZE REQUIRED FOR ESTIMATING THE VARIANCE WITIN D
UNITS OF THE TRUE VALUE
                                                                                                                    AMS 64
                                                                                                                            438
                                                 SAMPLE SIZE REQUIRED TO ESTIMATE THE PARAMETER IN THE UNIFOR JASA 64 550
M DENSITY WITHIN D UNITS OF THE TRUE VALUE
 BOUNDED RELATIVE ERROR
                                                 SAMPLE SIZE REQUIRED TO ESTIMATE THE RATIO OF VARIANCES WITH JASA 63 1044
                    BAYES SEQUENTIAL DESIGNS OF FIXED SIZE SAMPLES FROM FINITE POPULATIONS
                                                                                                                   JASA 69 NO.4
```

TITLE WORD INDEX SIN - SMA

LINEAR RELATIONSHIPS IN CROWTH AN	SIZE STUDIES	BIOCS68	639
SETS OF BALANCED INCOMPLETE BLOCK DESIGNS OF BLOC	SIZE THREE BALANCED	TECH 65	561
	SIZE TWENTY AND LESS FROM THE NORMAL DISTRIBUTION' 56	AMS 61	1345
	SIZE WHEN THE SIZES CHANCE SIGNIFICANTLY /ESIGNING		
	SIZE WITH REPLACEMENT A NOTE ON A BIASED ES		
	SIZE 10' /ICS FROM SINGLY AND DOUBLY CENSORED SAMPL		
	SIZE, AND A RELATION WITH THE MULTIPLE CORRELATION CO		
MEANS AND TOTALS FROM FINITE POPULATIONS OF UNKNOW	N SIZE, CORR. 64 1297 ESTIMATION OF	JASA 62	D1
REPLICATED, OR INTERPENETRATING, SAMPLES OF UNEQUA	SIZES	AMS 67	1142
UNEQUAL BLOCK ARRANGEMENTS WITH TWO UNEQUAL BLOC	SIZES SYMMETRICAL	AMS 62	620
AND A CHERNOFF-SAVAGE THEOREM FOR RANDOM SAMPL	SIZES WEAK CONVERGENCE	AMS 68	1675
OF SOME RENYI TYPE STATISTICS FOR FINITE SAMPL		JASA 69	870
CTATIONS OF ORDER STATISTICS IN SAMPLES OF DIFFEREN	SIZES SOME RELATIONS BETWEEN EXPE	BIOKA64	259
WITH AND WITHOUT REPLACEMENT FOR CLUSTERS OF UNEQUA	. SIZES METHODS OF CLUSTER SAMPLING	BIOKA62	27
	SIZES /NS FOR WHICH THE MAXIMUM-LIKELIHOOD ESTIMATO	BIOKA56	200
TILIZING PROBABILITIES PROPORTIONAL TO SIZE WHEN TH	SIZES CHANGE SIGNIFICANTLY /ESIGNING AREA SAMPLES U	JASA 68	1280
CALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPL	SIZES FOR CHI APPROXIMATION TO THE RANGE S	BIOKA53	449
ONS ON THE ECONOMIC CHOICE OF EXPERIMEN	SIZES FOR DECISION REGARDING CERTAIN LINEAR COMBINATI	JRSSB67	503
QUERY, COMPARISON OF SAMPL	SIZES IN INVERSE BINOMIAL SAMPLING	TECH 67	337
M A COMPARISON OF THE ASYMPTOTIC EXPECTED SAMPL	SIZES OF TWO SEQUENTIAL PROCEDURES FOR RANKING PROBLE	AMS 69	NO.6
N-FREE CONFIDENCE INTERVALS OF THE MEDIAN FOR SAMPL	SIZES TO 1,000 /BOTH THE SIGN TEST AND DISTRIBUTIO	JASA 64	935
	SIZES TO 1,000, CORR. 59 811 /ILITY LEVELS OF THE S		
THE SOUTH AFRICAN STATISTICAL ASSOCIATION.		SASJ 67	
	SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOME		
		BIOKA55	
IMPROVED BOUNDS ON A MEASURE O		AMS 62	
		AMS 63	
THE FIRST PASSAGE TIME DENSITY FOR HOMOGENEOU. ON A THEOREM O	SKUBUHUD	AMS 68	
		TECH 60	103
	SLIPPAGE A SLIPPAGE PROBLEMS SOME ASYMPTOTICALLY	TECH 68	193
	SLIPPAGE TEST (II) SIMILAR SLIPPAGE TESTS	AMS 68	
ON SLIPPAGE TEST (II) SIMILA		AMS 68	
		JASA 68	
	SLIPPAGE TESTS I. A GENERALIZATION OF NEYMAN	AMS 68	
	SLOPE OF THE MAJOR AXIS OF A BIVARIATE NORMAL DISTRIB		
ON THE PROBABILITY OF LARGE DEVIATIONS AND EXAC		AMS 69	
EFFECTS 0	SLOW-DOWNS AND FAILURE ON STOCHASTIC SERVICE SYSTEMS		
	SLOWLY BRANCHING PROCESSES	AMS 67	
FIT OF THE NEGATIVE BINOMIAL WHEN EXPECTATIONS AR			
ESTIMATION OF CROP YIELDS FO		BIOCS66	
	SMALL BUT EQUAL EXPECTED FREQUENCIES /CHI-SQUARE A		
	SMALL BUT EQUAL EXPECTED FREQUENCIES /XIMATION TO T		
OF THE TWO-SAMPLE CRAMER-VON MISES CRITERION FO			
	SMALL EXPECTATIONS IN CONTINGENCY TABLES, WITH SPECIA		
		BIOCS65	
	SMALL FREQUENCIES IN CONTINGENCY TABLES	JRSSB56	
DISCRETE DYNAMIC PROGRAMMING WITH		AMS 69	
	SMALL MARGINAL TOTALS /LE METHOD OF CALCULATING THE		
	SMALL N OF KENDALL'S PARTIAL RANK CORRELATION COEFFIC		
A PROBLEM IN THE SIGNIFICANCE OF		BIOKA55	
		TECH 64	
	SMALL POPULATIONS WITH ONE OR MORE INITIAL INFECTIVES		
	SMALL SAMPLE /MATION OF THE SLOPE OF THE MAJOR AXIS		
	SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE HYPOTH		
	'SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE HYPOTH		
	SMALL SAMPLE BIAS DUE TO MISSPECIFICATION IN THE 'PAR		
		BIOCS67	
	SMALL SAMPLE MEASURES OF TEST EFFICIENCY	JASA 69	
WILCOXON AND NORMAL SCORES TESTS	SMALL SAMPLE POWER AND EFFICIENCY FOR THE ONE SAMPLE		
PROBLEM	SMALL SAMPLE POWER CURVES FOR THE TWO SAMPLE LOCATION		
FOR NON-NORMAL SHIFT ALTERNATIVES	SMALL SAMPLE POWER FOR THE ONE SAMPLE WILCOXON TEST		
IVARIATE TWO-SAMPLE LOCATION PROBLEM IN THE NORMA/			
BLUMEN AND HODGES	SMALL SAMPLE POWER OF THE BIVARIATE SIGN TEST OF		
(CORR. 68 1549)	SMALL SAMPLE PROBABILITY LIMITS FOR THE RANGE CHART	JASA 67	1488
LEHMANN'S AN INVESTIGATION INTO THE	SMALL SAMPLE PROPERTIES OF A TWO SAMPLE TEST OF	JASA 68	345
SEEMINGLY UNRELATED REGRESSIONS	SMALL SAMPLE PROPERTIES OF ALTERNATIVE ESTIMATORS OF	JASA 68	1180
	SMALL SAMPLE SIZES FOR CHI APPROXIMATION TO THE RANGE		
		JASA 58	
THE UP-AND-DOWN METHOD FO	and the second s	JASA 65	
THE DISTRIBUTION OF QUANTILES OF	SMALL SAMPLES	BIOKA52	207
OF METHODS OF FITTERING THE KISK OF SOME MEAN ESTIMATORS I	SMALL SAMPLES I SMALL SAMPLES ON THE EFFECT SMALL SAMPLES SOME COMPARISONS	AMS 66	441
THE MEAN AND CORRESPONDE CURVE FO	SOME COMPARISONS	JASA 64	779
THE MEAN AND COEFFICIENT OF VARIATION OF RANGE I	SMALL SAMPLES FROM NON-NORMAL POPULATIONS	BIOKA54	469
	SMALL SAMPLES FROM NON-NORMAL POPULATIONS' /RIGENDA		
	SMALL SAMPLES FROM NORMAL POPULATIONS /ARISON OF TW		
		JASA 60	
	SMALL SAMPLES FROM THE NORMAL DISTRIBUTION, 2. ESTIMA		
	SMALL SAMPLES OF EQUAL SIZE UNBAISED ESTIMATION OF		
	SMALL SAMPLES OF THE MAXIMUM LIKELIHOOD AND BEST UNBI		
		BIOKA69	
THE ASYMP/ NON-PARAMETRIC ANALYSIS OF VARIANCE I	SMALL SAMPLES, A MONTE CARLO STUDY OF THE ADEQUACY OF	R10C269	593
TEST FOR THE MEAN OF A NORMAL DISTRIBUTION III	SMALL T SEQUENTIAL SMALL TRIMMED SAMPLES	AMS 65	28
E PROBABILITY TAMECRAL OR THE CAME PROPERTY.	SMALL TRIMMED SAMPLES	TECH 66	193
E FRUDADILITY INTEGRAL OF THE GAMMA DISTRIBUTION FO			276
VON MISES! W-SOHARED AND WATSONIS II SOHADED	(SMALL VALUES OF THE SHAPE PARAMETER /XIMATION TO TH	AMC CA	1001
VON MISES' W-SQUARED AND WATSON'S U-SQUARED	SMALL VALUES OF THE SHAPE PARAMETER /XIMATION TO TH SMALL-SAMPLE DISTRIBUTIONS OF THE TWO-SAMPLE CRAMER-	AMS 64	1091

SMA - SPE TITLE WORD INDEX

```
ON METHODS IN THE CONTEXT OF AUTOCORRELATED ERRORS SMALL-SAMPLE PROPERTIES OF SEVERAL TWO-STAGE REGRESSI JASA 69 253
ON THE MEAN AND VARIANCE OF THE SMALLER OF TWO DRAWINGS FROM A BINOMIAL POPULATION PTOTIC EFFICIENCIES OF A NONPARAMETRIC LIFE TEST FOR SMALLER PERCENTILES OF A GAMMA DISTRIBUTION AS
                                                                                                             BIOKA62
                                                                                                                       566
                                                                                                         ASYM JASA 56
                                                                                                                        467
             A NOTE ON REGRESSION TRANSFORMATION FOR SMALLER ROUNDOFF ERROR
                                                                                                              TECH 68
                                                                                                                        393
IASED ESTIMATES FROM THE BEST LINEAR ESTIMATES FOR A SMALLER SAMPLE SIZE /ONSTRUCTION OF GOOD LINEAR UNB TECH 65
                                                                                                                        543
                       REDUCING A RANDOM SAMPLE TO A SMALLER SET, WITH APPLICATIONS
                                                                                                              JASA 67
                                                                                                                        510
NCERNING COMPL/
                DISTRIBUTION OF THE LARGEST OR THE SMALLEST CHARACTERISTIC ROOT UNDER NULL HYPOTHESIS CO AMS 64 1807
                                  ON THE STUDENTIZED SMALLEST CHI-SQUARE, CORR. 59 812
                                                                                                               JASA 58
                                                                                                                        868
S AND VARIANCES FOR THE SIZE OF LARGEST CLUSTERS AND SMALLEST INTERVALS SOME PROBABILITIES, EXPECTATION JASA 66 1191
   DISTRIBUTION OF THE LARGEST LATENT ROOT AND THE SMALLEST LATENT ROOT OF THE GENERALIZED B STATISTIC A AMS 67 1152
        APPROXIMATE DISTRIBUTION FOR LARGEST AND FOR SMALLEST OF A SET OF INDEPENDENT OBSERVATIONS
                                                                                                              SASJ 69 NO.2
                                               ON THE SMALLEST OF SEVERAL CORRELATED F STATISTICS
                                                                                                              8I0KA62
                                                                                                                       509
TION OF THE PARAMETERS OF THE BETA DISTRIBUTION FROM SMALLEST ORDER STATISTICS MAXIMUM LIKELIHOOD ESTIMA TECH 67
                                                                                                                        607
                   ESTIMATION OF ERROR VARIANCE FROM SMALLEST ORDERED CONTRASTS
                                                                                                               JASA 63
                                                                                                                       152
           ON THE DISTRIBUTION OF THE LARGEST OR THE SMALLEST ROOT OF A MATRIX IN MULTIVARIATE ANALYSIS
                                                                                                              BIOKA56
                                                                                                                       122
         A SUBSET CONTAINING THE POPULATION WITH THE SMALLEST VARIANCE
                                                                                                 ON SELECTING BIOKA62
                                                                                                                       495
CS
       EXACT BAHADUR EFFICIENCIES FOR THE KOLMOGOROV-SMIRNOV AND KUIPER ONE-SAMPLE AND TWO-SAMPLE STATISTI AMS 67 1475
L SERIES
                             ON SOME RESULTS OF N. V. SMIRNOV CONCERNING LIMIT DISTRIBUTIONS FOR VARIATIONA
                                                                                                                AMS 69
                                                                                                                       4B0
E SAMPLING DISTRIBUTION OF THE TWO SAMPLE KOLMOGOROV-SMIRNOV CRITERION D-SUB-MN, M LESS THAN OR EQUAL TO N JASA 69 NO.4
      THE DISTRIBUTION FUNCTIONS OF TSAO'S TRUNCATED SMIRNOV STATISTICS
                                                                                                                AMS 67 120B
      ON THE ASYMPTOTIC EFFICIENCY OF THE KOLMOGOROV-SMIRNOV TEST
                                                                                                               JASA 65 843
ON THE ASYMPTOTIC POWER OF THE ONE-SAMPLE KOLMOGOROV-SMIRNOV TESTS
                                                                                                                AMS 65 1000
ON THE PITMAN EFFICIENCY OF ONE-SIDED KOLMOGOROV AND SMIRNOV TESTS FOR NORMAL ALTERNATIONS
                                                                                                                AMS 66 940
    PERTIES SOME MODIFIED KOLMOGOROV-SMIRNOV TESTS OF APPROXIMATE HYPOTHESES AND THEIR A K-SAMPLE EXTENSION OF THE ONE-SIDED TWO-SAMPLE SMIRNOV TESTS STATISTIC
PROPERTIES
                                                                                                                AMS 62 513
                                                                                                                AMS 67 1726
                 A DISTRIBUTION FREE VERSION OF THE SMIRNOV TWO SAMPLE TEST IN THE P-VARIATE CASE
                                                                                                                AMS 69
                                                                                                                         1
                                                  THE SMIRNOV TWO SAMPLE TESTS AS RANK TESTS
                                                                                                                AMS 69 1449
INEQUALITY CONCERNING TESTS OF FIT OF THE KOLMOGOROV-SMIRNOV TYPE
                                                                                                                AMS 67 1240
        POWER AND EFFICIENCY OF TESTS OF KOLMOGOROV-SMIRNOV TYPE
                                                                                                                AMS 67 1705
                                                                                             LOCAL ASYMPTOTIC
  RELATION BETWEEN TWO STATISTICS OF THE KOLOMOGOROV-SMIRNOV TYPE
                                                                                             RESULTS FROM THE
                                                                                                                AMS 69 1833
                                                                                                                AMS 61
 FOR ONE-SIDED DISTRIBUTION TESTS OF THE KOLMOGOROV-SMIRNOV TYPE
                                                                                           SOME EXACT RESULTS
                                                                                                                       499
                                                 SOME SMIRNOV TYPE THEOREMS OF PROBABILITY
                                                                                                                AMS 65 1113
                         SEVERAL K-SAMPLE KOLMOGOROV-SMIRNOV TESTS
                                                                                                                AMS 65 1019
                  VARIATIONS ON A RENEWAL THEOREM OF SMITH
                                                                                                                AMS 68
                                                                                                                       155
                                   A SIMPLER PROOF OF SMITH'S ROULETTE THEOREM
                                                                                                                AMS 68
        INHALATION IN RELATION TO TYPE AND AMOUNT OF SMOKING
                                                                                                               JASA 59
                                                                                                                         35
L RELATIONSHIP OF LUNG CANCER INCIDENCE TO CIGARETTE SMOKING AND A STOCHASTIC MODEL FOR THE MODE OF ACTION BIOCS65
                                                                                                                        839
                                         A REVIEW OF 'SMOKING AND HEALTH'
                                                                                                              JASA 65
                                                                                                                        722
CE IN HEALTH WITH SPECIAL REFERENCE TO THE CIGARETTE SMOKING AND LUNG CANCER CONTROVERSY /STICAL INFEREN JASA 69
IAL RISKS, WITH PARTICULAR REFERENCE TO THE STUDY OF SMOKING AND LUNG CANCER, CORR. 60 754 /ING EXPONENT JASA 60
RECENT REPORTS
CE IN HEALTH WITH SPECIAL REFERENCE TO THE CIGARETTE SMOKING AND LUNG CANCER CONTROVERSY
                                                                                                                        739
                                                                                                                        415
                                                      SMOKING AND LUNG CANCER, SOME OBSERVATIONS ON TWO
RECENT REPORTS
                                                                                                              JASA 58
                                                                                                                         2B
                                               ON THE SMOOTH EMPIRICAL BAYES APPROACH TO TESTING OF HYPOTHE BIOKAGS
SES AND THE COMPOUND DECISION PROBLEM
                                                                                                                         В3
DISTRIBUTIONS (CORR. 6B 597)
                                                       SMOOTH EMPIRICAL BAYES ESTIMATION FOR CONTINUOUS
                                                                                                              BTOKA67
                                                                                                                        435
DISCRETE DISTRIBUTIONS
                                                       SMOOTH EMPIRICAL BAYES ESTIMATION FOR ONE-PARAMETER
                                                                                                              BIOKA66
                                                                                                                        417
                        STOCHASTIC APPROXIMATION FOR SMOOTH FUNCTIONS
                                                                                                                AMS 69
                                                                                                                        299
                                                      SMOOTHED ESTIMATES FOR MULTINOMIAL CELL PROBABILITIES
                                                                                                               AMS 68
                                                                                                                        561
                          SOME PROPERTIES OF RUNS IN SMOOTHED RANDOM SERIES
                                                                                                              BIOKA52
                                                                                                                        198
                                CURVE AND PERIODOGRAM SMOOTHING (WITH DISCUSSION)
                                                                                                               JRSSB57
                                                                                                                         3B
                                                       SMOOTHING BY CHEATING
                                                                                                                AMS 69 1477
                                          EXPONENTIAL SMOOTHING FOR MULTIVARIATE TIME SERIES
                                                                                                               JRSSB66
                                                                                                                       241
                                               ON THE SMOOTHING OF PROBABILITY DENSITY FUNCTIONS
                                                                                                               JRSSB58
                                                                                                                        334
US SPECTRA
                 ON THE EFFICIENCY OF PROCEDURES FOR SMOOTHING PERIODOGRAMS FROM TIME SERIES WITH CONTINUO BIOKA55
                                                                                                                        143
                                   AN EMPIRICAL BAYES SMOOTHING TECHNIQUE
      STATISTICAL ANALYSIS USING LOCAL PROPERTIES OF SMOOTHLY HETEROMORPHIC STOCHASTIC SERIES
                                                                                                               BIOKA57
                                           ON COX AND SNELL'S DEFINITION OF RESIDUALS
                                                                                                               JRSSB69
                  MARK TWAIN AND THE QUINTUS CURTIUS SNODGRASS LETTERS, A STATISTICAL TEST OF AUTHORSHIP
                                                                                                               JASA 63
                                                                                                                         85
                                                      SNOWBALL SAMPLING
                                                                                                                AMS 61
                              AN APPLICATION FOR THE SOBOLEV IMBEDDING THEOREMS TO CRITERIA FOR THE CONTIN
UITY OF PROCESSES WITH A V/
                                                                                                                AMS 69
                                                                                                                        517
 OF STATISTICS IN THE FORMULATION AND EVALUATION OF SOCIAL PROGRAMMES
                                                                                                      THE USE JASA 60
 OF RELIGIOUS AFFILIATION WITH REFERENCES TO RELATED SOCIAL STUDIES, CORR. 59 B11 / FRATURE ON STATISTICS JASA 59
                                                                                                                        335
             COOPERATION AMONG STATISTICAL AND OTHER SOCIETIES
                                                                                                               JASA 61
                                       STATISTICS AND SOCIETY
                                                                                                               JASA 63
                               WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ.
COMMENTS
                                                                                                              JASA 69 NO.4
GES IN CENSUS METHODS
                              WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. CHAN JASA 69 NO.4
                               WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. ON
WILLIAM HURWITZ
                                                                                                              JASA 69 NO.4
                               WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. PROF JASA 69 NO.4
ESSOR WILLIAM N HURWITZ
 BASIC PRINCIPLES OF STATI/
                               WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. SOME JASA 69 NO.4
DEVELOPMENT OF HOUSEHOLD S/
                              WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. THE JASA 69 NO.4
 QUERY, BAULE'S EQUATION + (LEAST SQUARES ESTIMATE OF SOIL CONTENT)
                                                                                                              BIOCS69 159
       AND CONTROL OF CAPSULES, TABLETS, AND STERILE SOLIDS
                                                                               FILL WEIGHT VARIATION RELEASE TECH 69
                                                                                                                       161
   ALLOCATION IN MULTIVARIATE SURVEYS, AN ANALYTICAL SOLUTION
                                                                                                      OPTIMUM JRSSB67
                                                                                                                        115
               TRUNCATED LOGNORMAL DISTRIBUTIONS. I. SOLUTION BY MOMENTS
                                                                                                              BIOKA51
                                                                                                                        414
INPUTS
                                   THE TIME-DEPENDENT SOLUTION FOR AN INFINITE DAM WITH DISCRETE ADDITIVE
                                                                                                              JRSSB61
                                                                                                                        173
                                             A SIMPLE SOLUTION FOR OPTIMAL CHEBYSHEV REGRESSION EXTRAPOLATI AMS 66
                                                                                                                        720
          THE SIMPLE STOCHASTIC EPIDEMIC, A COMPLETE SOLUTION IN TERMS OF KNOWM FUNCTIONS
                                                                                                               BIOKA63
                                                                                                                        235
                                   A NOTE ON A SERIES SOLUTION OF A PROBLEM IN ESTIMATION
                                                                                                              BIOKA58
                                                                                                                        565
PPLICATION TO EXPERIM/ A CONFIDENCE REGION FOR THE SOLUTION OF A SET OF SIMULTANEOUS EQUATIONS WITH AN A BIOKA54
                                                                                                                        190
                                       A MONTE CARLO SOLUTION OF A TWO-DIMENSIONAL UNSTRUCTURED CLUSTER
                                        A NOTE ON THE SOLUTION OF DAM EQUATIONS
                                                                                                               JRSSB64
                                                                                                                        338
                                            ON THE SOLUTION OF ESTIMATING EQUATIONS FOR TRUNCATED AND CE BIOKA57
NSORED SAMPLES FROM NORMAL POPULATIONS
                                                                                                                        225
ES MULTIPARAMETRIC CASE
                                               ON THE SOLUTION OF LIKELIHOOD EQUATIONS BY ITERATION PROCESS BIOKA62
MARKOV PROCESSES
                                                  THE SOLUTION OF QUEUEING AND INVENTORY MODELS BY SEMI-
                                                                                                                        113
                               A CORRECTION TO 'THE SOLUTION OF QUEUEING AND INVENTORY MODELS BY SEMI-
MARKOV PROCESSES'
                                                                                                              JRSSB63
DEPENDENT OBSERVATIONS
                                                8AYES SOLUTION OF SEQUENTIAL DECISION PROBLEM FOR MARKOV
                                                                                                               AMS 64 1656
DESIGN OF EXPERIMENTS
                                        THE NUMERICAL SOLUTION OF SOME NON-LINEAR EQUATIONS, USEFUL IN THE JRSSB65
                                                                                                                        466
                                              MINIMAX SOLUTION OF STATISTICAL DECISION PROBLEMS BY
                                                                                                               AMS 66 1643
ITERATION
```

TITLE WORD INDEX SMA - SPE

TIME DEPENDENT	COLUMNON OF THE THEAD OF THE LINE! PRIORITY OHELE	IDCCDCO OI
	SOLUTION OF THE 'HEAD-OF-THE-LINE' PRIORITY QUEUE	JRSSB62 91
	SOLUTION OF THE EQUATIONS OF THE SINGLE CHANNEL QUEUE	
	SOLUTION OF THE EXPONENTIAL EQUATION EXP(B)-B/(1-P)=1	
	SOLUTION OF THE EXPONENTIAL EQUATION, EXP(-A)+KA=1 SOLUTION OF THE GENERAL STOCHASTIC EPIDEMIC.	BIOKAGO 439
		BIOKA65 613 JRSSB63 432
	SOLUTION OF THE INTEGRAL EQUATION OF RENEWAL THEORY SOLUTION OF THE LIKELIHOOD EQUATION BY ITERATION	JRSSB63 432 BIOKA61 452
	SOLUTION OF THE LIKELIHOOD EQUATION BY ITERATION	BIOKA62 284
PROCESSES' CORRIGENDA, 'ON THE ON DISTRIBUTIONS FOR WHICH THE HARTLEY-KHAMIS		8I0KA51 74
	SOLUTION OF THE QUEUEING PROBLEM WITH A SINGLE SERVER	
	SOLUTION OF THE SIMPLE BIRTH PROCESS	BIOKA64 25B
	SOLUTION OF THE SINGLE SAMPLING INSPECTION SCHEME	TECH 60 341
	SOLUTION TO A COUNTABLE SYSTEM OF EQUALITIES ARISING	AMS 67 582
	SOLUTION TO THE BEHRENS-FISHER PROBLEM	JASA 69 NO.4
	SOLUTION TO THE MULTIVARIATE BEHRENS-FISHER PROBLEM	BIOKA65 139
ONAL RELATIONSHIP THE MAXIMUM LIKELIHOOD	SOLUTION TO THE PROBLEM OF ESTIMATING A LINEAR FUNCTI	JRSSB69 NO.2
DOCUMENTS	SOLUTION TO THE PROBLEM OF LINKING MULTIVARIATE	JASA 69 163
GENERALIZED BAYES	SOLUTIONS IN ESTIMATION PROBLEMS	AMS 63 751
	SOLUTIONS IN LINEAR PROGRAMMING PROBLEMS	JASA 58 161
	SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE STOCHASTIC	JRSSB60 376
	SOLUTIONS OF THE PROBLEM OF THE DURATION OF PLAY /F	
	SOLUTIONS OF THE SEQUENTIAL COMPOUND DECISION PROBLEM	
		BIOCS69 27
	SOLUTIONS TO SOME PROBLEMS OF OPTIMAL STOPPING	AMS 69 993
STRINGENT S. IX. BIOGRAPHICAL NOTE FOR T. BAYES' ESSAY TOWARDS	SOLUTIONS TO STATISTICAL DECISION PROBLEMS SOLVING A PROBLEM IN THE DOCTRINE OF CHANGES (STIC	AMS 67 447 BIOKA5B 293
	SOLVING A PROBLEM IN THE DOCTRINE OF CHANCES. /SITC	
		TECH 66 675
	SOLVING EQUATIONS IN SUMS OF POWERS	JRSSB68 567
	SOLVING LESER'S LEAST-SQUARES GRADUATION EQUATIONS	JRSSB62 112
	SOLVING SIMULTANEOUS LINEAR DIFFERENTIAL EQUATIONS	8I0KA51 470
	SOMERVILLE'S PROCEDURE FOR RANKING MEANS OF NORMAL	BIOKA68 411
PARISON OF THE MOST STRINGENT AND THE MOST STRINGENT	SOMEWHERE MOST POWERFUL TEST FOR CERTAIN PROBLEMS WIT	AMS 68 531
	SORTS OF TEST FOR A CHANGE OF LOCATION APPLICABLE TO	JRSSB57 119
NORMAL DISTRIBUTION AND BAYESIAN ANALYSIS OF A POINT		JASA 63 72
POSSIBILITIES THREE	SOURCES OF DATA ON COMMUTING, PROBLEMS AND	JASA 60 8
	SOURCES OF STATISTICS ON CRIME AND CORRECTION	JASA 59 5B2
STATISTICS IN		SASJ 68 109
	SOUTH AFRICAN STATISTICAL ASSOCIATION, A SKETCH OF	SASJ 67 1
FEMALE THAN MALE MORTALITY IN SOME COUNTRIES OF		JASA 69 NO.4 JASA 69 452
ACCURACY OF INTERNATIONAL TRADE DATA, THE CASE OF	SOVIET STATISTICAL BOOKS OF 1957	JASA 69 452 JASA 59 12
TEST OF RANDOMNESS FOR EVENTS OCCURRING IN TIME OR		
XPERIMENT, OPERATIONAL DEFINITION OF THE PROBABILITY		
ITERATIVE METHOD OF DYNAMIC PROGRAMMING ON A FINITE		
	SPACE IN TESTS OF AN IMPORTANT CLASS OF COMPOSITE HYP	
RANDOM SUBDIVISIONS OF	SPACE INTO CRYSTALS	AMS 62 958
SYSTEMATIC STATISTICS USED FOR DATA COMPRESSION IN		JASA 65 97
	SPACE THAT IS NOT A LUSIN SPACE	AMS 67 1918
ENERALIZATION OF KNOX'S APPROACH TO THE DETECTION OF	SPACE-TIME INTERACTIONS DISEASE CLUSTERING, A G	BIOCS6B 541
RELATING PLANT YIELD WITH ARRANGEMENT FOR REGULARLY		8I0CS67 505
METHODS IN THE FITTING OF POLYNOMIALS TO EQUALLY METHODS IN THE FITTING OF POLYNOMIALS TO UNEQUALLY	SPACED OBSERVATIONS GROUPING	8I0KA54 62 BI0KA56 149
FITTING A POLYNOMIAL TO CORRELATED EQUALLY	SPACED OBSERVATIONS GROUPING	BIOKA65 275
PROBABILITY MEASURES ON PRODUCT	SPACES	SASJ 67 3
AND MINIMAX ESTIMATES OF PARAMETERS IN TRUNCATED		
ONAL FOR SEMI-MARKOV PROCESSES WITH CONTINUOUS STATE		
	SPACES AND THEIR USE FOR INVESTIGATING THE NORMALITY	
AN EXACT PROBABILITY DISTRIBUTION OVER SAMPLE	SPACES OF PAIRED COMPARISONS	BI0CS65 986
TEST FOR MONOTONE FAILURE RATE BASED ON NORMALIZED		AMS 69 1216
	SPACING AND WEIGHTING IN POLYNOMIAL PREDICTION	AMS 64 1553
MINIMAX VARIANCE OF THE FIT/ THE UNIQUENESS OF THE	SPACING OF OBSERVATIONS IN POLYNOMIAL REGRESSION FOR	
TMIT THEOREMS FOR PUNCTIONS OF SUCREDES THE SAME	SPACINGS (WITH DISCUSSION)	JRSSB65 395
LIMIT THEOREMS FOR FUNCTIONS OF SHORTEST TWO-SAMPLE	SPACINGS AND A RELATED TEST SPACINGS DETERMINED BY EARLIER OBSERVATIONS /THE N	AMS 67 10B
	SPACINGS THEORY, I. LIMIT DISTRIBUTIONS OF SUMS OF	
	SPACINGS THEORY, II. TESTS OF THE PARAMETRIC GOODNESS	
A REPRODUCIBLE METHOD OF COUNTING PERSONS OF		JASA 61 8B
	SPARE COMPONENTS IN SYSTEMS	TECH 61 399
	SPARE PARTS INVENTORY CONTROL	TECH 67 661
	SPATIAL ASSOCIATION WITH SPECIAL CONSIDERATION OF THE	
	SPATIAL CLUSTERING OF RETAIL ESTABLISHMENTS	JASA 65 1094
STUDIES IN STATISTICAL ECOLOGY. I.		BIOKA52 346
I HTH TAME INCOMMETION FROM A DIALIFE MATTICE OF	SPATIAL POINT PROCESSES, WITH APPLICATIONS TO ECOLOGY	
STOCHASTIC BIRTH, DEATH AND MIGRATION PROCESSES FOR	SPATIAL RELATIONSHIP AMONG EIGHT POPULATIONS ZEA MAYS	BIOCS6B B67 BIOKA68 189
DIGITIO DINIII, DEATH AND MIGRATION PROCESSES FOR		BIOCS65 B58
SOME PROPERTIES OF THE		BIOKA61 293
MODEL	SPEARMAN SIMULTANEOUS ESTIMATION FOR A COMPARTMENTAL	
A REMARK ON	SPEARMAN'S RANK CORRELATION COEFFICIENT	BIOKA5B 273
	SPEARMAN'S RHO IN NORMAL SAMPLES	BIOKA61 19
THE DISPERSION OF A NUMBER OF		
	SPECIES	JRSSB59 190
MIXED SELF- AND CROSS-FERTILIZATION IN A TETRASOMIC	SPECIES SPECIES	BIOCS68 485
MIXED SELF- AND CROSS-FERTILIZATION IN A TETRASOMIC PROPERTIES OF A STOCHASTIC MODEL FOR TWO COMPETING	SPECIES SPECIES SPECIES THE	BIOCS68 485 BIOKA58 316
MIXED SELF- AND CROSS-FERTILIZATION IN A TETRASOMIC	SPECIES SPECIES SPECIES THE SPECIES ANALYSIS OF PLANT	BIOCS68 485 BIOKA58 316 BIOKA67 471

```
THE POPULATION FREQUENCIES OF SPECIES AND THE ESTIMATION OF POPULATION PARAMETERS BIOKA53
E OF AN ANIMAL POPULATION IN WHICH THE ABUNDANCES OF SPECIES ARE LOC-NORMALLY DISTRIBUTED /ES IN A SAMPL BIOKA51
                                                     SPECIES FREQUENCY DISTRIBUTIONS
                                                                                                            BIOKA69 NO.3
                      POPULATION DIFFERENCES BETWEEN SPECIES CROWING ACCORDING TO SIMPLE BIRTH AND DEATH
                                                                                                            BIOKA53
                                                                                                                     370
AL MACN/ CENETIC COMPONENTS FOR NON-INBRED DIPLOID SPECIES HAVINC ALL DICENIC EPISTATIC VARIANCES OF EQU BIOCS69
                                                                                                                     545
RIMENTAL DATA A STOCHASTIC MODEL FOR TWO COMPETING SPECIES OF TRIBOLIUM AND ITS APPLICATION TO SOME EXPE BIOKA62
                                                                                                                       1
                            PLANT COMPETITION, THREE SPECIES PER POT
                                                                                                                      93
                                                                                                            JRSS868
 PROPERTIES OF A STOCHASTIC MODEL FOR TWO COMPETING SPECIES.'
                                                                                           CORRICENDA, 'THE BIOKA59
                                                                                                                     279
N A SAMPLE IS INCREASED
                                   THE NUMBER OF NEW SPECIES, AND THE INCREASE IN POPULATION COVERACE. WHE BIOKAS6
                                                                                                                      45
        A DEMOGRAPHIC MODEL FOR ESTIMATING ACE-ORDER SPECIFIC FERTILITY RATES
                                                                                                            JASA 63
                                                                                                                     774
                                         APPROXIMATE SPECIFICATION AND THE CHOICE OF A K-CLASS ESTIMATOR
                                                                                                            JASA 67 1265
TIVARIATE ACCEPTANCE SAMPLING PROCEDURES FOR GENERAL SPECIFICATION ELLIPSOIDS
                                                                                                        MUL JASA 65
                                                                                                                     905
       STEPWISE LEAST SQUARES. RESIDUAL ANALYSIS AND SPECIFICATION ERROR
                                                                                                            JASA 61
                                                                                                                     998
                         THE RELATIVE SENSITIVITY TO SPEGIFICATION ERROR OF DIFFERENT K-CLASS ESTIMATORS
                                                                                                            JASA 66
                                                                                                                     345
                                           TESTS FOR SPEGIFICATION ERRORS IN CLASSICAL LINEAR LEAST-SQUARE JRSSB69 NO.2
S REGRESSION ANALYSIS
   PLAN FOR CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATION LIMIT
                                                                                         A SINGLE SAMPLING JASA 59
                                                                                                                     24B
                                        MINIMUM RISK SPECIFICATION LIMITS
                                                                                                            JASA 59
                                                                                                                     260
       AND CONSUMER RISKS FOR ASYMMETRICAL TESTS AND SPECIFICATION LIMITS
                                                                                                   PRODUCER JASA 66
                                                                                                                     505
BABILITY AND THE JOINT PROBABILITY APPROACHES IN THE SPECIFICATION OF NEAREST-NEIGHBOUR SYSTEMS
                                                                                                   /NAL PRO BIOKA64
                                                                                                                     4B1
      A QUICK COMPACT TWO SAMPLE TEST TO DUCKWORTH'S SPEGIFICATIONS
                                                                                                            TECH 59
                                                                                                                      31
DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE SPECIFICITY
                                                                                TWO-SAMPLE COMPARISONS OF
                                                                                                             AMS 62
                                                                                                                     432
    LONGEST RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED ATTRIBUTE
                                                                                                            BIOKA61
                   SOME PROPERTIES OF A DISTRIBUTION SPECIFIED BY ITS CUMULANTS
                                                                                                            TECH 63
                                                                                                                      63
                 'SOME PROPERTIES OF A DISTRIBUTION SPECIFIED BY ITS CUMULANTS'
                                                                                                            TEGH 63
                                                                                                                     417
  THE PROBABILITY THAT AN OBSERVATION WILL FALL IN A SPECIFIED GLASS
                                                                                              ESTIMATION OF JASA 64
                                                                                                                     225
 IN THE COMPOUND DECISION PROBLEM FOR TWO COMPLETELY SPECIFIED DISTRIBUTIONS
                                                                                      RATES OF CONVERGENCE AMS 65 1743
           A NOTE ON MULTIVARIATE DISTRIBUTIONS WITH SPECIFIED MARCINALS
                                                                                                            JASA 67 1460
IN PREDIGTION BY REGRESSION FOR CERTAIN INCOMPLETELY SPECIFIED MODELS
                                                                                                           BIOKA63
                                                                                                                     391
      AN EXACT FORMULA FOR THE PROBABILITY THAT TWO SPECIFIED SAMPLING UNITS WILL OCCUR IN A SAMPLE DRAWN JASA 66
                                                                                                                     3B4
                        ON THE UTILIZATION OF MARKED SPECIMENS IN ESTIMATING POPULATIONS OF FLYING INSECTS BIOKA53
                                                                                                                     170
           GENERAL CONSIDERATIONS IN THE ANALYSIS OF SPECTRA
                                                                                                            TECH 61
                                                                                                                     1.33
    MATHEMATICAL CONSIDERATIONS IN THE ESTIMATION OF SPECTRA
                                                                                                            TECH 61
                                                                                                                     167
           BASIC CONSIDERATIONS IN THE ESTIMATION OF SPECTRA
                                                                                                            TECH 62
                                                                                                                     551
          AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA
                                                                                          LINEAR ESTIMATION TECH 62
                                                                                                                     565
 DIMENSIONAL STATIONARY PROCESSES WITH DISCONTINUOUS SPECTRA
                                                                                      THE ANALYSIS OF TWO- BIOKA64
                                                                                                                     195
OTHING PERIODOGRAMS FROM TIME SERIES WITH GONTINUOUS SPECTRA
                                                                   ON THE EFFICIENCY OF PROGEDURES FOR SMO BIOKA55
                                                                                                                     143
PROCESSES
                                       ESTIMATION OF SPECTRA AFTER HARD GLIPPING OF GAUSSIAN TIME
                                                                                                            TECH 67
                                                                                                                     391
                                 ESTIMATION OF POWER SPECTRA BY A WAVE ANALYZER
                                                                                                            TECH 65
                                                                                                                     553
SIDUALS
              A NOTE ON THE ESTIMATION OF AMPLITUDE SPECTRA FOR STOCHASTIC PROCESSES WITH QUASI-LINEAR RE JASA 66
                                                                                                                     397
     THE ANALYSIS OF STATIONARY PROCESSES WITH MIXED SPECTRA, 1
                                                                                                            JRSSB62
                                                                                                                     215
         ANALYSIS OF STATIONARY PROCESSES WITH MIXED SPECTRA, 2
                                                                                                                     511
                 A REAPPRAISAL OF THE PERIODOGRAM IN SPECTRAL ANALYSIS
                                                                                                            TECH 65
          BANDWIDTH AND RESOLVABILITY IN STATISTICAL SPECTRAL ANALYSIS
                                                                                                            JRSSB59
                                                     SPECTRAL ANALYSIS COMBINING A BARTLETT WINDOW WITH AN TECH 61
 ASSOCIATED INNER WINDOW
                                                                                                                     235
FLUCTUATIONS
                                                     SPECTRAL ANALYSIS IN THE PRESENCE OF VARIANCE
                                                                                                            JRSSB64
                                                                                                                     354
PRESENCE OF VARIANCE FLUCTUATIONS
                                               CROSS SPECTRAL ANALYSIS OF GAUSSIAN VECTOR PROCESS IN THE
                                                                                                             AMS 68 1507
                                                 THE SPECTRAL ANALYSIS OF POINT PROCESSES (WITH
                                                                                                            JRSSB63
                                                                                                                     264
                                    SOME COMMENTS ON SPECTRAL ANALYSIS OF TIME SERIES
                                                                                                            TECH 61
                                                                                                                     221
                                                 THE SPECTRAL ANALYSIS OF TIME SERIES (WITH DISCUSSION)
                                                                                                            JRSSB57
                                                 THE SPECTRAL ANALYSIS OF TWO-DIMENSIONAL POINT PROCESSES
                                                                                                            BIOKA64
                                                                                                                     299
                                    CORRIGENDA, 'THE SPECTRAL ANALYSIS OF TWO-DIMENSIONAL POINT PROCESSES
                                                                                                            BIOKA65
                                                                                                                     305
                                                     SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS.
THE BINOMIAL CASE
                                                                                                             AMS 65
                                                                                                                     971
                                                     SPECTRAL ANALYSIS WITH RECULARLY MISSED OBSERVATIONS
                                                                                                             AMS 62
                                                                                                                     455
N)
                                        EVOLUTIONARY SPECTRAL AND NON-STATIONARY PROCESSES (WITH DISCUSSIO JRSSB65
                                                                                                                     204
                     THE MAXIMUM DEVIATION OF SAMPLE SPECTRAL DENSITIES
                                                                                                             AMS 67
                                                                                                                    1558
                                   THE ESTIMATION OF SPECTRAL DENSITIES
                                                                                                            JRSSB62
                                                                                                                     185
                               THE ESTIMATION OF THE SPECTRAL DENSITY AFTER TREND REMOVAL
                                                                                                            JRSSB5B
                                                                                                                     323
                          AN INEQUALITY RELATING THE SPECTRAL DENSITY AND AUTOCORRELATION FUNCTION
                                                                                                            BIOKA62
                                                                                                                     262
                THE AUTOCORRELATION FUNCTION AND THE SPECTRAL DENSITY FUNCTION
                                                                                                            BIOKA55
                                                                                                                     151
 COMPONENTS
                                   ESTIMATION OF THE SPECTRAL DENSITY FUNCTION IN THE PRESENCE OF HARMONIC JRSS864
                                                                                                                     123
ASYMPTOTICALLY EFFICIENT CONSISTENT ESTIMATES OF THE SPECTRAL DENSITY FUNCTION OF A STATIONARY TIME SERIES JRSSB58
                                                                                                                     303
(WITH DISCUSSION)
                                  ON ESTIMATING THE SPECTRAL DENSITY FUNCTION OF A STOCHASTIG PROCESS
                                                                                                                      13
FIME SERIES
                       ESTIMATING THE COVARIANCE AND SPECTRAL DENSITY FUNCTIONS FROM A CLIPPED STATIONARY
                                                                                                            JRSS867
NS, AND THE APPROXIMATE CANONIGAL FACTORIZATION OF A SPECTRAL DENSITY MATRIX /MULTIVARIATE AUTOREGRESSIO BIOKA63
RIES WITH NORMAL RESID/
                          A COODNESS OF FIT TEST FOR SPECTRAL DISTRIBUTION FUNCTIONS OF STATIONARY TIME SE BIOKA56
                            ASYMPTOTIC PROPERTIES OF SPECTRAL ESTIMATES OF SECOND ORDER
                                                                                                            BTOKA69
                                                                                                                     375
                                                     SPECTRAL ESTIMATES USING NONLINEAR FUNCTIONS
                                                                                                             AMS 66
                                                                                                                    1237
I. ADJUSTMENT PROCEDURES
                                                     SPECTRAL EVALUATION OF BLS AND CENSUS REVISED SEASONA JASA 68
                                                                                                                     472
                                                     SPECTRAL FACTORIZATION OF MULTIPLE TIME SERIES
                                                                                                            BIOKA66
                                                                                                                     264
                           TESTING FOR A JUMP IN THE SPECTRAL FUNCTION
                                                                                                            JRSSB61
                                                                                                                     394
LINEAR STOCHASTIC DIFFERENCE EQUATIONS
                                                     SPECTRAL PROPERTIES OF NON-STATIONARY SYSTEMS OF
                                                                                                            JASA 69
                                                                                                                     581
                                                 THE SPECTRAL THEOREM FOR FINITE MATRICES AND COCHRAN'S
                                                                                                             AMS 64
                                                                                                                     443
RESULTS FOR REGRESSION ANALYSIS APPLIED TO GAMMA RAY SPECTROMETER DATA, 1
                                                                             SOME EXPERIMENTAL SAMPLING
                                                                                                           BIOCS67
                                                                                                                      11
RESULTS FOR REGRESSION ANALYSIS APPLIED TO GAMMA RAY SPECTROMETER DATA, 2
                                                                                SOME EXPERIMENTAL SAMPLING BIOCS68
                                                                                                                     353
                                   ESTIMATION OF THE SPECTRUM
                                                                                                             AMS 61
                                                                                                                     730
                             ESTIMATION OF THE CROSS-SPECTRUM
                                                                                                             AMS 63
                                                                                                                    1012
         BANDWIDTH AND VARIANCE IN ESTIMATION OF THE SPECTRUM
                                                                                                            JRSSB58
                                                                                                                     152
     THE CONNECTION SETWEEN ANALYSIS OF VARIANCE AND SPECTRUM ANALYSIS
                                                                                   DISCUSSION, EMPHASIZING TECH 61
                                                                                                                     191
                               ON THE CONCEPT OF THE SPECTRUM FOR NON-STATIONARY PROCESSES (WITH DISCUSSIO JRSSB68
                                                                                                                       1
DISCRETE PROCESS
                                                 THE SPECTRUM OF A CONTINUOUS PROCESS DERIVED FROM A
                                                                                                            810KA63
                                                                                                                     517
                                                 THE SPECTRUM OF A MODEL II NESTED ANOVA AND ITS
APPLICATIONS
                                                                                                            TECH 69
                                                                                                                      91
                            ESTIMATION OF THE CROSS-SPECTRUM OF A STATIONARY BIVARIATE GAUSSIAN PROCESS
FROM ITS ZEROS
                                                                                                            JRSS868
                                                                                                                     145
      SELECTED ECONOMIC DATA, ACCURACY VS. REPORTING SPEED
                                                                                                            JASA 68
                                                                                                                     436
    APPROXIMATION OF MINIMA WITH IMPROVED ASYMPTOTIC SPEED
                                                                                                 STOCHASTIC
                                                                                                            AMS 67
                                                                                                                     191
                                                 THE SPEED OF GLIVENKO-CANTELLI CONVERGENCE
                                                                                                             AMS 69
                                                                                                                      40
F HOMOGENEOU/ PROBABILITY CONTENT OF REGIONS UNDER SPHERICAL NORMAL DISTRIBUTIONS, IV, THE DISTRIBUTION O
                                                                                                             AMS 62
                                                                                                                     542
```

TITLE WORD INDEX SPE - SQU

## STOCKASTIC PROCESSES ON & SPREAKE 18,000		BE WORD TROOP	0.0	240
## ARDONG LYNEAU CASE STATE ON THE SPERCE ON A SPERCE 610A60 23 5	STOCHASTIC PROCESSES ON A	SPHERE	AMS 63	213
### APPENDIX DISTRIBUTIONS OF A SPHERE 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 10000000 10000000 10000000 100000000				
OF THE NORMAL DESTREETION OF THE CENTER AND THE SPEECE ON THE CONCENTRATION OF THE FROM THE FORCE ON THE CONCENTRATION OF THE FROM THE FRO				
DO THE NORMAL DISTRIBUTION ON THE CERCLE AND THE SPHERE OF SIGNATIONAME TESTS ON THE CENCLE AND THE SPHERE AMENOPIA THE MODAL THE PROBABILITY OF COVERING AS SPHERE WITH IN CIRCULAR CAPS. PROBABILITY OF COVERING AS SPHERE WITH IN CIRCULAR CAPS. PROBABILITY CONTROL OF A SPHERE WITH IN CIRCULAR CAPS. PROBABILITY OF A SPHERE WITH IN CIRCULAR CAPS. PROBABILITY CONTROL OF A SPHERE WITH IN CIRCULAR CAPS. PROBABILITY OF THE STAIL OF A SPHERE WITH IN CIRCULAR CAPS. PROBABILITY OF THE STAIL OF A SPHERE WITH IN CIRCULAR CAPS. PROBABILITY OF THE STAIL OF THE SPHERE WITH IN CIRCULAR CAPS. PROBABILITY OF THE STAIL OF THE SPHERE WITH IN CIRCULAR CAPS. PROBABILITY OF THE STAIL OF THE SPHERE WITH IN CIRCULAR CAPS. PROBABILITY OF THE STAIL OF THE SPHERE WITH IN CIRCULAR CAPS. PROBABILITY OF THE STAIL OF THE				
PRINCE PROBABILITY OF COURSELS OF A STREET PROBABILITY OF COURSE PROBABILITY OF COURSE PROBABILITY OF		STHERE ANALOCHES	BIOKAGA	ום
PRINCE PROBABILITY OF COURSELS OF A STREET PROBABILITY OF COURSE PROBABILITY OF COURSE PROBABILITY OF		SPHERE ON THE CONSTRUCTION	BIOKAGS	344
PRINCE PROBABILITY OF COURSELS OF A STREET PROBABILITY OF COURSE PROBABILITY OF COURSE PROBABILITY OF		COURSE TESTS FOR THE DISPERSION	BIOKAGO	211
DECIMITY TO FEQUENCIAL DISTRIBUTIONS ON A SPHERE. SEQUENTIAL DISTRIBUTION OF PRESENCE SPHERICAL NORMAL DISTRIBUTIONS, II. THE DISTRIBUTION AND SILVENIAL PROBABILITY CONTENT OF RESIDENCE SPHERICAL NORMAL DISTRIBUTIONS, II. THE DISTRIBUTION AND SILVENIAL PROBABILITY CONTENT OF RESIDENCE SPHERICAL NORMAL DISTRIBUTIONS OF THE SEQUENT AND SILVENIAL PROBABILITY CONTENT OF RESIDENCE SPHERICAL NORMAL DISTRIBUTION OF THE SEQUENT AND SILVENIAL PROBABILITY CONTENT OF RESIDENCE SPHERICAL NORMAL DISTRIBUTION OF THE SEGUENCE SPHERICAL PROBABILITY OF THE SEGUENCE SPHE		STHERE WITH N CIDCUI AD CADS	PIONAGE	303
APPENDIX TO 'EQUATORIAL DISTRIBUTIONS ON A SPHENE.' PROBRIET FROM PROBABILITY CONTENT OF PREIDS UNDER SPHENICAL MOST PREIDS IN THE PROBLEM IN THE PROBREMANT OF MELTIVARIATE PROBABILITY CONTENT OF RESIDNS UNDER SPHENICAL MONITORS IN THE STORY OF MELTIVARIATE PROBABILITY CONTENT OF RESIDNS UNDER SPHENICAL MONITORS IN THE PROBLEM IN THE USE OF SECOND-ORDER SPHENICAL MONITORS IN THE STORY OF MELTIVARY OF MEL				
DESISTING TO REASON PROBABILITY CONTENT OF PREIONS UNDER STHERACE. STITUTION OF MULTIVARIATE PROBABILITY CONTENT OF PREIONS UNDER STHERACE. NORMAL DISTRIBUTIONS. III. THE DISTRIBUTION AS 61 600 NAME. INC. STREET OF PREIONS UNDER STHERACE. NORMAL DISTRIBUTIONS. III. THE DISTRIBUTION OF THE USE OF SECONO-PORDER "SHERACE." AND CUEDIOLAL DISTRIBUTION OF THE BROWN DEPOTE STREET OF THE USE OF SECONO-PORDER "SHERACE." AND CUEDIOLAL DISTRIBUTION OF THE USE OF SECONO-PORDER "SHERACE." AND CUEDIOLAL DESIGNAL DISTRIBUTION OF THE USE OF SECONO-PORDER "SHERACE." AND CUEDIOLAL DESIGNAL DISTRIBUTION OF THE USE OF SECONO-PORDER "SHERACE." AND CUEDIOLAL DESIGNAL DISTRIBUTION OF THE MEDICAL DISTRIBUTION OF THE USE OF SECONO-PORDER "SHERACE." AND CUEDIOLAL DESIGNAL DISTRIBUTION OF THE USE OF SECONO-PORDER "SHERACE." AND CUEDIOLAL DESIGNAL DISTRIBUTION OF THE USE OF SECONO-PORDER "SHERACE." AND CUEDIOLAL DISTRIBUTION OF THE USE OF SECONO-PORDER "SHERACE." AND CUEDIOLAL DISTRIBUTION OF THE USE OF SECONO-PORDER "SHERACE." THE USE OF SECONO-PORD				
LE SHOULD READ "PROBABILITY CONTENT OF RECIONS UNDER SPHERICAL NORMAL DISTRIBUTIONS. II. THE DISTRIBUTION AM 60 171 REAL INTERCAL PROBABILITY CONTENT OF RECIONS UNDER SPHERICAL NORMAL DISTRIBUTIONS. OF THE RECORD TO SPHERICAL PROBABILITY CONTENT OF PRESENCE OF SPHERICAL PROBABILITY CONTENT OF PRESENCE OF THE SPHERICAL PROBABILITY CONTENT OF THE SPHERICAL PROBABILITY CONTEN				
REAL INTEGRAL PROBABILITY CONTENT OF REZIONS UNDER STHERICAL MORAL DISTRIBUTIONS, III. THE RIVARIATE MORAL DISTRIBUTIONS OF THE CISC OF SECOND-CHORN STHERICAL MOINT O'CHOLDIAL DESIONS IN THE WROUND INCOME. FERDILMS THE USE OF SECOND-CHORN STHERICAL MIGHT FUNCTION CONTENT WAS NOT BEEN STATED. THE USE OF SECOND-CHORN STHERICAL MIGHT FUNCTION CONTENT WAS NOT BEEN STATED. THE SECOND THE STHERICAL MIGHT FUNCTION CONTENT WAS NOT BEEN STATED. THE SECOND THE STHERICAL MIGHT FUNCTION HORTH-EAST INDIA SECOND THE SECOND THE STHERY WAS NOT BEEN STATED. THE MIGHT FUNCTION HORTH-EAST INDIA SECOND THE STATED THE MIGHT FUNCTION HORTH-EAST INDIA SECOND THE STATED THE MIGHT FUNCTION HORTH-EAST INDIA SECOND THE STATED THE MIGHT FUNCTION HORTH-EAST INDIA SECOND THE SECOND THE STATED THE MIGHT FUNCTION HORTH-EAST INDIA SECOND THE STATED THE MIGHT FUNCTION HERE AND ASSESSMENT OF STATED THE MIGHT FUNCTION HORTH-EAST INDIA SECOND THE STATED THE MIGHT FUNCTION HORTH-EAST INDIA SECOND THE MIGHT FUNCTION HORTH-EAST INDIA SECOND THE MIGHT FUNCTION HERE AND ASSESSMENT ASSESSMENT ASSESSMENT THE MIGHT FUNCTION HERE AND ASSESSMENT ASSESS				
REGIONS TO SEQUENTIAL DESIGNS FOR SHHERICAL WELGHT FUNCTIONS REGIONS TO STREET BUSING SEGORO-PORCER SHHERICAL WAS CALL AND CUEDIOLAL DESIGNS IN THE WRONG OF THE CRITERION OF THE CRITERION OF FOR THE STREET THE TOTAL AND CUEDIOLS. THE STREET THE TOTAL STREET THE TOTAL STREET THE STREET THE TOTAL STREET THE				
REDIENS THE USE OF SECOND-CORDEN SYNHRETCAL, MAN CURDINAL DESIGNS IN THE WINDOW 51 THE USE OF SECOND-CORDEN SYNHRETCAL, MAN CURDINAL DESIGNS IN THE USE OF SECOND-CORDEN SYNHRETCHY IN A THE PROBLEM IN REDIENSAL THROPY, MORE ON THE STHEME THE THE THE THROPY AND THE ON THE CORDEN SYNHRETCHY THE THROPY AND THE ON THE CORDEN SYNHRETCHY THE THROPY AND THE CORDEN SYNHRETCHY THROPY AND THRO				
E REACT DISTRIBUTIONS OF THE CRITERION # FOR TESTING SPHENCITY THE # P-WALTAR MORMAL DISTRIBUTION 0 MT 4M 56 1710 **PROBLEM IN REMPERAL THEORY, ROBERT THE BROCK'S SPIDOR** **PROBLEM IN REMPERAL THEORY THE ABOUNT TH				
## PROBLEM IN RENEWAL THRONY, ROBERT THE SHURE'S SPIGNET TO UTES COOP IN NORTH-EAST INDIA 6 66 64 MPLING TECHNIQUES FOR ESTIMATION OF INCIDENCE OF ROS SPIGNE THE OUT FAS COOP IN NORTH-EAST INDIA 6 80 INCS66 63 80 INCS66 64 INCS66 6				
### PROBLEM IN REMERKAL THEORY, ROBERT THE SRUCE'S SIDER ### ADDRESS TOR STITMATION OF INCIDENCE OF TROS STITLER REMERSSION ### ADDRESS TOR STITMATION OF INCIDENCE OF TROS STITLE CONTINUENCE TABLES. DOES 100.505 ### ADDRESS TOR THE CEPTER PACTORIAL STILLER EREMESSION ### ADDRESS TOR THE CEPTER PACTORIAL STILLER STILLT FLOT SERVER REMEMBERS IN COMPLETELY RANDOMIZED LYD \$3.65 09 ### ADDRESS TOR THE CEPTER PACTORIAL STILLER STILLT FLOT SERVER REMEMBERS IN COMPLETELY RANDOMIZED LYD \$3.65 09 ### ADDRESS TROS STILLER STATISTICAL ANALYSIS OF SERVER THE STILLT FLOT SERVER REMEMBERS IN COMPLETELY RANDOMIZED LYD \$3.65 09 ### ADDRESS TROS STATISTICAL STANDARY SOURCE SERVER TO THE CEPTER PACTORIAL STATE AND ASSESS TO COMPLETE AND ASSESS TO ASSESS TO COMPLETE STATE OF A STATISTICAL STANDARY PROCESS TO ASSESS TO COMPLETE STATE OF A STATISTICAL STANDARY PROCESS TO ASSESS TO COMPLETE STATE OF A STATISTICAL STANDARY PROCESS TO ASSESS TO COMPLETE STATE OF A STATISTICAL STANDARY PROCESS TO ASSESS TO COMPLETE STATE OF A STATISTICAL STANDARY PROCESS TO ASSESS TO ASSE				
### PILL DOWNTHOSE THE DESIGN FOR PICK YMMIAL SPLINE RESISSION ### PILL DOWNTHOSE THE UNITED THE COLUMN AS SELECT TO THE SERECT THE PILL DOWNTHOSE TO A LEVEL THE THE OFFICE THE SELECT THE THE THE SELECT THE S		STRENGTH TEST A PERSISTENCE	BIUKVEE	
THE EXTINATION OF SAMEANESS FOR POLYMONIAL SPLINE REPRESSION PULL ONLY SOURCE ASPECTS OF THE COLUMN TRANS. THIS SPLIT PLOT CONTONNOME. SOUR ASPECTS OF THE STATISTICAL ANALYSIS OF THE SPLIT PLOT CONTONNOME. THE RANDOWLIZATION DISTRIBUTION OF FARTAINTS OF THE SPLIT PLOT CONTONNOME. THE RANDOWLIZATION DISTRIBUTION OF FARTAINTS OF THE SPLIT PLOT EXPERIMENTS IN COMPLETELY RANDOMIZED LAYD HARMOVIAN STATES STATISTICAL SHALLDS OF THE SPLIT PLOT CONTONNOME. MINIOTIAN STATES STATISTICAL SHALLDS OF THE SPLIT PLOT EXPERIMENTS IN COMPLETELY RANDOMIZED LAYD MINIOTIAN STATES STATISTICAL EVALUATION OF SPRIT HE SPLIT PLOT EXPERIMENTS STATISTICAL EVALUATION OF SPRIT PLOT DESIGN. AN EMPIRICAL INVESTIGATION THE STIMATION OF MISSING OSSENTATION IN SPLIT-PLOT EXPERIMENTS STATISTICAL EVALUATION OF SPRIT PLOT DESIGN SHIPE, COME. A NOTE ON THE STRATISTICAL EVALUATION OF SPRIT PLOT DESIGN SHIPE, COME. THE STIMATION OF ARABETERS FROM THE SPREAD OF A DISEASE BY CONSIDERING HOUSEHOLDS OF THE BIOLOGIS AND		SPIDER WITE ON TEA CROP IN NORTH-FAST INDIA SA	BIOCSEE	
FULL CONTINENCY TABLES. LOGITS. AND SPLIT CONTINENCY TABLES. \$ 100.0589 383				
SIME TWO-LEVEL FACTORIAL PLANS WITH SPLIT PLOT COMPONDING 10 SOME ASPECTS OF THE STATISTICAL ANALYSIS OF SPLIT PLOT ESPERIANTS IN COMPLETELY RANDOWLEDGE AS 100-087 (1997) AND ANALYSIS OF SOME ASPECTS OF THE STATISTICAL ANALYSIS OF SOME ASPECTS OF THE ANALYSIS SIDNAGE AND ANALYSIS OF SOME ASPECTS OF THE ANALYSIS SIDNAGE AND ANALYSIS OF SOME ASPECTS OF THE ANALYSIS SIDNAGE AND ANALYSIS OF SOME ANALYSIS OF SOME ANALYSIS OF SOME ANALYSIS OF THE COMPLETE OF ANALYSIS OF THE COMPLETE OF THE COMPLETE OF ANALYSIS OF THE CO				
INCOMPLETE SPLIT FLOT DESIGNS SOUR ASPECTS OF THE STATISTICAL AMAYSIS OF 'SET				
USS SOME ASPECTS OF THE STATISTICAL ANALYSIS OF 'SELIT FLOT' EXPERIENTS IN COMPLETELY RANDOWIZED LAYD JASA 69 43 THE RANDOMIZATION DISTRIBUTION OF F-RATIOS FOR THE SFLIT-LITD ESSION. AN EMPIRICAL INVESTIGATION BIOLOGY. THE SPLIT-LITD ESSION AND SELITION SHOWS AND SELECTION SHO				
THE RANDALYSIS BIOLAGE 431 THE RANDALYSIS SOME NON-ORTHOGONAL DESIGNS WITH SELIT-LOTS THE RANDALYSIS BIOLAGE 431 THE RANDALYSION DISTRICTOR OF THE SELIT-LOTD ESIGN. AN EMPIRICAL INVESTICATION BIOLAGE 431 OR MIXED UP ESTIMATION OF MISSING OSEANCATIONS IN SELIT-LOTD EXPERIMENTS WHERE MILLE-LOTS ARE MISSING 1406 MARKOU'AN STATES STATISTICAL EVALUATION OF SELITING STATES AND ASSOCIATED STATES. THE SESTIMATION OF PARAMETERS FROM FREE STREET STATES IN MEASUREMENT DISTRICTS. THE SESTIMATION OF PARAMETERS FROM FREE STREET STATES AND MISSING OSEANCE 1005 THE SESTIMATION OF PARAMETERS FROM THE SPREAD OF A DISEASE BY CONSIDERING HOUSEHOLDS OF THO. BY ACANCIES A MONDAR MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF BREAST CANCER A MORE ON TABLES FOR THE COMPARISION OF THE SPREAD OF TWO NORMAL DISTRIBUTION OF SAME ASSOCIATED SPREAD A MORE ON TABLES FOR THE COMPARISION OF THE SPREAD OF TWO NORMAL DISTRIBUTIONS A MORE ON TABLES FOR THE COMPARISION OF THE SPREAD OF TWO NORMAL DISTRIBUTIONS A MORE ON TABLES FOR THE COMPARISION OF THE SPREAD OF TWO NORMAL DISTRIBUTIONS A MORE OF THE DISTRIBUTION OF SAME ASSOCIATED SPRE'S A MORE ON THE DISTRIBUTION OF SAME ASSOCIATED SPRE'S SESTIMATION OF A MEAN PROM ONE DESERVATION MAY MEE SURGES A MORE OF THE DISTRIBUTION FOR THE SPREAD OF THE SPREAD OF TWO NORMAL DISTRIBUTION OF A MEAN PROMISE THE DISTRIBUTION FUNCTION OF THE SPREAD OF TWO NORMAL DISTRIBUTION OF A MEAN PROMISE COMPANIES OF THE SPREAD OF THE SPREAD OF TWO NORMAL DISTRIBUTION OF A MEAN PROMISE SECONDARY OF THE SPREAD OF TWO NORMAL DISTRIBUTION OF A MEAN PROMISE SECONDARY OF THE SPREAD OF TWO NORMAL DISTRIBUTION OF A MEAN PROMISE SECONDARY OF THE SPREAD OF THE SPREAD OF TWO NORMAL DISTRIBUTION FUNCTION OF THE SPREAD OF THE SPR				
THE RANDOMIZATION DISTRIBUTION OF F-RATIOS FOR THE SPLIT-HOT DESIGN. AN EMPIRICAL INVESTIGATION BIOLAGY 37B RANGOVIAN STATES STATISTICAL VALIDATIONS IN SPLIT-HOT EXPERIMENTS A DOMPARAMETRIC SUM OF RANKS PROCEDURE FOR RELATIVE SPREAD IN UNFAIRED SAMPLES, CORE RELATIVE STREAM OF AN EPIDEMIC TO FIXED GROUPS WITHIN THE ESTIMATION OF PARAMETERS FROM THE SPREAD OF AN EPIDEMIC TO FIXED GROUPS WITHIN THE SIGNAGE STREAM OF AN EPIDEMIC TO FIXED GROUPS WITHIN THE SIGNAGE STREAM OF AN EPIDEMIC TO FIXED GROUPS WITHIN THE SIGNAGE STREAM OF AN EPIDEMIC TO FIXED GROUPS WITHIN THE SIGNAGE STREAM OF AN EPIDEMIC TO FIXED GROUPS WITHIN THE SIGNAGE STREAM OF AN EPIDEMIC TO FIXED GROUPS WITHIN THE SIGNAGE STREAM OF AN EPIDEMIC TO FIXED GROUPS WITHIN THE SIGNAGE STREAM OF AN EPIDEMIC TO FIXED GROUPS WITHIN THE SIGNAGE STREAM OF THE DISTRIBUTION OF SAMPLES OF THE SPREAD OF THE OFFICE AND THE STREAM OF THE				
ON MIXED UP ESTIMATION OF MISSING SOERVATIONS IN SPLIT-LOT EXPERIMENTS WHERE HOLE-PLOTS ARE MISSING BORGE 1488 MARKOVIAN STATES STATISTICAL EVALUATION OF SILT-PLOTE EXPERIMENTS WHERE HOLE-PLOTS ARE MISSING BORGE 1488 A NONPARAMETRIC SUM OF RANKES PROCEDURE FOR REALTIVE SPEAD IN UNFAIRED SAMPLES. CORN. G1 1003 THE ESTIMATION OF TRANSHERS FROM A MATHEMATICAL ANALYSIS OF THE GROTH AND SPREAD IN UNFAIRED SAMPLES. CORN. G1 1003 VACANCIES A MATHEMATICAL ANALYSIS OF THE GROTH AND SPREAD OF SPREAD OF STREAM OF SAMPLES. CORN. G1 1003 VACANCIES A MORE ON TABLES FOR THE COMPARISON OF THE SPREAD OF SPREAD OF STREAM OF SAMPLES. CORN. G1 1003 VACANCIES A MORE ON TABLES FOR THE COMPARISON OF THE SPREAD OF STREAM OF SAMPLES. CORN. G1 1003 VACANCIES A MORE ON TABLES FOR THE COMPARISON OF THE SPREAD OF SPREAD OF STREAM OF SAMPLES. CORN. G1 1003 VACANCIES A MORE ON TABLES FOR THE COMPARISON OF THE SPREAD OF STREAM OF SAMPLES. CORN. G1 1003 VACANCIES A MORE ON TABLES FOR THE COMPARISON OF THE SPREAD OF STREAM OF SAMPLES. CORN. G1 1003 VACANCIES A MORE ON THE STREAT OF SAMPLES SIZE IN A SPRET FACTOR ADDITIVE DESIGNS MORE GENERAL THAN THE LATIN SQUARE FACTOR ADDITIVE DESIGNS MORE GENERAL THAN THE CARCO-LATIN SQUARE FACTOR ADDITIVE DESIGNS MORE GENERAL THAN THE CARCO-LATIN SQUARE FROM STREAM OF A RANDOM DISTRIBUTION THE ROTH HEAD SQUARE OF THE EFFECTIS OF NON-ADDITIVITY IN THE LATIN SQUARE FROM STREAM OF THE WARN SQUARE SOURCES SUCHES AND THE INTERFERTATION BIDNAGE SAMPLES. CONFORMERS FROM STREAM OF THE WARN SQUARE SECTION OF THE SQUARE SOURCES SITE OF THE WARN SQUARE SOURCES SAMPLES. CONFORMERS OF THE EFFECTIS OF NON-ADDITIVITY IN THE LATIN SQUARE SOURCES SAMPLES. CONFORMERS OF THE EFFECTIS OF NON-ADDITIVITY IN THE LATIN SQUARE SOURCES SAMPLES. CONFORMERS FROM STREAM OF THE WARN SQUARE SOURCES SAMPLES. CONFORMERS OF THE EFFECTIS OF NON-ADDITIVITY IN THE LATIN SQUARE SOURCES SAMPLES. CONFORMERS FROM STREAM OF THE WARN SQUARE SOURCES SAMPLES. CONFORMERS. CONFORMERS OF THE EFFECTIS OF NON-ADDITIVITY IN THE LATIN SQ				
MARKOVIAN STATES A NONPARAMETRIC SUM OF RANKS PROCEDURE FOR RELATIVE SELITITING A SINCLE STATE OF A STATIONARY DISPUTS A NONPARAMETRIC SUM OF RANKS PROCEDURE FOR RELATIVE SELITING A SINCLE STATE OF A STATIONARY DISPUTS THE SETIMATION OF PARAMETRIS ROW THE SPREAD IN UNFARED SAMPLES, CORR. 61 1005 A NOTE OF RANKS PROCEDURE FOR RELATIVE SPREAD IN UNFARED SAMPLES, CORR. 61 1005 VACANCIES A MATHEMATICAL ANALYSIS OF THE CORP HAID WACANCIES A MOTE ON TABLES FOR THE COMPARISON OF THE SPREAD OF THE DISPUTS OF THE LINEAR SAMPLES. THE NOTE OF THE STREAM OF TH				
STATISTICAL EVALUATION OF SILTITING LITTIC CRITERIA IN MEASUREMENT 100 AMS 68 1069 A NOMPARAMETRIC SUM OF RANKS PROCEDURE FOR RELATIVE SPREAD IN UMPAIRED SAMPLES, CORR. 61 1005 THE ESTIMATION OF PARAMETERS FROM THE SPREAD OF A INSERSE BY CONSIDERING HOUSENESS. THE STATISTIC OF THE CROWN AND AND AND AND AND AND AND AND AND AN				
A MOMPARAMETRIC SUM OF RANKS PROCEDURE FOR RELATIVE SPREAD IN UNFAIRED SAMPLES, CORR. 61 1005 of TWO. 18,264 60 429 THE ESTIMATION OF PARAMETERS FROM THE SPREAD OF A DISEASE BY CONSIDERING HOUSEHOLDS OF TWO. 18,005 60 197 POPULATION A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF BREAST CANCER A MOTE ON TABLES FOR THE COMPARISION OF THE SPREAD OF BREAST CANCER A NOTE ON TABLES FOR THE COMPARISION OF THE SPREAD OF BREAST CANCER A NOTE ON TABLES FOR THE COMPARISION OF THE SPREAD OF TWO NORMAL DISTRIBUTIONS IN A SPRIT MOMENTS OF THE DISTRIBUTION OF SAMPLE SIZE IN A SPRIT THE MODIFIED LATIN SQUARE SESTIMATION OF A MARM WHEN ONE OSSEWATION MAY BE SPURTAUS A RAIN-GROWER AND THE STOPPING TIME OF SOME ASSOCIATED SPRIT'S THE MODIFIED LATIN SQUARE ALTERNATIVES TO A LATIN SQUARE SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOF MEAN SQUARE SOME OF THE INTERPRETATION SQUARE FROBBRILISTIC INTERPRETATION SPORT HE MEAN SQUARE COMPONENTS THE MODIFIED SPRIT SQUARE SOME OF THE SQUARE SOME OF THE SPREAD OF THE SQUARE SOME SOME OF THE SQUARE SOME OF THE SQUARE SOME				
A MORPARAMETRIC SUM OF RANKS PROCEDURE FOR RELATIVE SPREAD OF A DISSASE BY CONSIDERING HOUSEHOLDS OF TWO. BIOLAGE 1007 POPULATION THE STREAD OF A DISSASSE BY CONSIDERING HOUSEHOLDS OF TWO. BIOLAGE 1007 THE STREAD OF AN EFFECTIVE CONSIDERING HOUSEHOLDS OF TWO. BIOLAGE 1007 A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF BREAST CANCED. A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF DEBRAST CANCED. A MODEL FOR THE SPREAD OF SPREAD OF THE CONSIDERING HOUSEHOLDS OF TWO. BIOLAGE 2007 A MODEL FOR THE SPREAD OF SPREAD OF THE CONFERENCE OF THE COMPANISON OF THE SPREAD OF TWO NORMAL DISTRIBUTIONS IN BIOLAGE 2007 A MOMENTS OF THE DISTRIBUTION OF SARELS SIZE IN A SPREAD OF TWO NORMAL DISTRIBUTIONS IN A SPREAD OF TWO NORMAL DISTRIBUTIONS IN A SPREAD OF TWO NORMAL DISTRIBUTIONS IN A SPREAD OF TWO NORMAL DISTRIBUTION OF A MEAN THEN ONCE OSERVATION MAY BE SPREAD OF TWO NORMAL DISTRIBUTION OF A MEAN THEN ONCE OSERVATION MAY BE SPREAD OF TWO NORMAL DISTRIBUTION OF A MEAN THEN ONCE OSERVATION MAY BE SPREAD OF TWO NORMAL DISTRIBUTION FUNCTION ON THE SQUARE DISTRIBUTION FUNCTION				
THE ESTIMATION OF PARAMETERS FROM THE SPREAD OF A DISEASE BY CONSIDERING HOUSEHOLDS OF TWO BIGGSES 100508 1				
POPULATION A MATHEMATICAL ANALYSIS OF THE CROWTH AND SPREAD OF PREAST CANCERS VACANCIES A MOTHEMATICAL ANALYSIS OF THE CROWTH AND SPREAD OF DEREAST CANCER A MORE FOR THE SPREAD OF DISEASES IN A RECTANGULAR PLANTATION WITH BIOLOSS 95 AND A MORE ON TABLES FOR THE COMPARISION OF THE SPREAD OF TWO NORMAL DISTRIBUTIONS BIOLOSS 48 BIOLOSS 48 AND A MORE OF THE DISTRIBUTION OF SAME PREAD OF TWO NORMAL DISTRIBUTIONS BIOLOSS 48 BIOL				
A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF BREAST CANCER SPREAD OF DISEASES IN A RECTANGULAR PLANTATION WITH BIOKASS 95 A NOTE ON TABLES FOR THE COMPARISION OF THE SPREAD OF PIDENTICS BY CARRIERS BIOCASS AND ON THE DISTRIBUTION OF SAMPLE SIZE IN A SPRIT RANK-ONDER AND THE STOPPINO TIME OF SOME ASSOCIATED SPRIT S STIMATION OF A MEAN WHEN DOES OSSERVATION MAY BE SPRITOUS STIMATION OF A MEAN WHEN DOES OSSERVATION MAY BE SPRITOUS ALTHUR MODIFIED LATIN SQUARE PROPERTIES OF A RANDOM DISTRIBUTION FOR THE SURVEY OF STIMATION OF A MEAN WHEN DOES OSSERVATION MAY BE SPRITOUS ALTHUR MODIFIED LATIN SQUARE PROPERTIES OF A RANDOM DISTRIBUTION FOR THE SURVEY OF SURVEY OF STIMATION OF A MEAN WHEN DOES OSSERVATION MAY BE SPRITOUS ALTHUR MODIFIED LATIN SQUARE ADDITIVE DESIGNS MORE GENERAL THAN THE GRECO-LATIN SQUARE PROPERTIES OF A RANDOM DISTRIBUTION FON THE SQUARE ADDITIVE DESIGNS MORE GENERAL THAN THE GRECO-LATIN SQUARE PROPERTIES OF A RANDOM DISTRIBUTION FOR THE MEAN SQUARE OF THE SPRECTS OF NON-ADDITIVITY IN THE LATIN SQUARE OF THE SPRECTS OF NON-ADDITIVITY IN THE LATIN SQUARE OF THE SPREAD OF THE MEAN SQUARE CONFORMTS LISTING EXPECTED MEAN SQUARE CONFORMTS ILISTING EXPECTED MEAN SQUARE CONFORMTS CHERCALIZED LATIC EQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE BICCASSO AS A SOLUTION SPORT THE MEAN SQUARE CONFORMTS A THE ANALYSIS OF LATIN SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE GENERALIZED LATIC EQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE CHERCALIZED LATIC EQUARE DESIGN WITH INDIVIDUAL CURVATURES IN ONE FROM SOLUTION OF THE MEAN SQUARE ERPOR CRITERION FOR RESTRICTIONS IN JUNE AS				
A NOTE ON TABLES FOR THE COMPARISION OF THE SPREAD OF PIDEMINES BY CARRIERS				
A MODE NOT TABLES FOR THE COMPARISION OF THE SPREAD OF FIDENCES BY CARRIERS MOMENTS OF THE DISTRIBUTION OF SAMPLE SIZE IN A SPRIT RANK-ORDER AND THE STOPPINO TIME OF SOME ASSOCIATED SPRIT'S THE INFORMATION IN A AMS 68 1641 ESTIMATION OF A MEAN WHEN ONE OBSERVATION MAY BE SPURIOUS THE MODIFIED LATIN SQUARE FACTOR ADDITIVE DESIGNS MORE GENERAL THAN THE LATIN SQUARE FACTOR ADDITIVE DESIGNS MORE GENERAL THAN THE LATIN SQUARE FACTOR ADDITIVE DESIGNS MORE GENERAL THAN THE GRECO-LATIN SQUARE FACTOR ADDITIVE DESIGNS MORE GENERAL THAN THE GRECO-LATIN SQUARE FOUR FACTOR THE SPREAD OF A RANDOM DISTRIBUTION FUNCTION ON THE SQUARE ADDITIVE DESIGNS MORE GENERAL THAN THE GRECO-LATIN SQUARE OF THE FYFECTS OF ON-ADDITIVITY IN THE LATIN SQUARE OF THE FYFECTS OF MON-ADDITIVITY IN THE LATIN SQUARE OF THE FYFECTS OF MON-ADDITIVITY IN THE LATIN SQUARE OF THE FYFECTS OF MON-ADDITIVITY IN THE LATIN SQUARE OF THE FYFECTS OF MON-ADDITIVITY IN THE LATIN SQUARE OF THE FYFECTS OF MON-ADDITIVITY IN THE LATIN SQUARE OF THE FYFECTS OF MON-ADDITIVITY IN THE LATIN SQUARE OF THE FYFECTS OF MON-ADDITIVITY IN THE LATIN SQUARE OF THE FYFECTS OF MON-ADDITIVITY IN THE LATIN SQUARE OF THE FYFECTS OF MON-ADDITIVITY IN THE LATIN SQUARE OF THE FYFECTS OF MON-ADDITIVITY IN THE LATIN SQUARE OF THE FYFECTS OF MON-ADDITIVITY IN THE LATIN SQUARE OF THE FYFECTS OF MON-ADDITIVITY IN THE LATIN SQUARE OF THE FYFECTS OF MON-ADDITIVITY IN THE LATIN SQUARE OF THE FYFECTS OF MON-ADDITIVITY IN THE LATIN SQUARE FOR FACTOR OF THE MEAN SQUARE CONTINERNOY, CORR. 58 1030 DIRECTION THE ADDITION FOR THE MEAN SQUARE CONTINERNOY, CORR. 58 1030 DIRECTION THE ADDITION FOR THE MEAN SQUARE FOR CONTINERNOY, CORR. 58 1030 DIRECTION THE ADDITION FOR THE MEAN SQUARE FERROR CONTINERNOY, CORR. 58 1030 A NECESSARY AND SUPFICIENT CONTINERNOY. A NEED SCRESSION THE SQUARE OF SAMPLE STITUTION OF WATLANDER SOLD AND SAMPLE STITUTION OF MON-ADDITION OF THE SQUARE FOR THE MON-THIN SOLD AND SAMPLE STATEMENT OF THE MEAN SQUARE SOLD AND SAMPLE SAMPLE STATEMENT OF				
A NOTE ON TABLES FOR THE COMPARISION OF THE SPREAD OF TWO NORMAL DISTRIBUTIONS				
ANAM-ORDER AND THE STOPPING TIME OF SOME ASSOCIATED SPRT'S THE INFORMATION IA AMS 68 16-16-16-16-16-16-16-16-16-16-16-16-16-1				683
THE MODIFIED LATIN SQUARE ALTERNATIVES TO A LATIN SQUARE ALTERNATIVES TO A LATIN SQUARE PROPERTIES OF A RANDOM DISTRIBUTION FUNCTION ON THE SQUARE PROPERTIES OF A RANDOM DISTRIBUTION FUNCTION ON THE SQUARE ADDITIVE DESIGNS MORE GENERAL THAN THE LATIN SQUARE ADDITIVE DESIGNS MORE GENERAL THAN THE GRECO-LATIN SQUARE OF THE FFFECTS OF NON-ADDITIVITY IN THE LATIN SQUARE OF THE FFFECTS OF NON-ADDITIVITY IN THE LATIN SQUARE LISTING EXPECTED MEAN SQUARE CHISTING EXPECTED MEAN SQUARE PROBABILISTIC INTERPRETATIONS FOR THE MEAN SQUARE COMPONENTS THE ANALYSIS OF LATIN SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE PROBABILISTIC INTERPRETATIONS FOR THE MEAN SQUARE ERROR TESTY OF SETTIMATIONS OF VARIANCE A TEST OF THE MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE A TEST OF THE MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE A NOTE ON MATRIX INVERSION BY THE MEAN SQUARE ERROR TEST FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE BOSTON METHOD FOR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FOR EXACT FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FORD OF MATRIX INVERSION THE FORD AND AND AND AND AND AND AND AND AND AN		CDD#	JASA 69	NO.4
THE MODIFIED LATIN SQUARE ALTERNATIVES TO A LATIN SQUARE ALTERNATIVES TO A LATIN SQUARE PROPERTIES OF A RANDOM DISTRIBUTION FUNCTION ON THE SQUARE PROPERTIES OF A RANDOM DISTRIBUTION FUNCTION ON THE SQUARE ADDITIVE DESIGNS MORE GENERAL THAN THE LATIN SQUARE ADDITIVE DESIGNS MORE GENERAL THAN THE GRECO-LATIN SQUARE OF THE FFFECTS OF NON-ADDITIVITY IN THE LATIN SQUARE OF THE FFFECTS OF NON-ADDITIVITY IN THE LATIN SQUARE LISTING EXPECTED MEAN SQUARE CHISTING EXPECTED MEAN SQUARE PROBABILISTIC INTERPRETATIONS FOR THE MEAN SQUARE COMPONENTS THE ANALYSIS OF LATIN SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE PROBABILISTIC INTERPRETATIONS FOR THE MEAN SQUARE ERROR TESTY OF SETTIMATIONS OF VARIANCE A TEST OF THE MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE A TEST OF THE MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE A NOTE ON MATRIX INVERSION BY THE MEAN SQUARE ERROR TEST FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE BOSTON METHOD FOR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FOR EXACT FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FORD OF MATRIX INVERSION THE FORD AND AND AND AND AND AND AND AND AND AN		SPRT'S THE INFORMATION IN A	AMS 6B	1661
THE MODIFIED LATIN SQUARE ALTERNATIVES TO A LATIN SQUARE ALTERNATIVES TO A LATIN SQUARE PROPERTIES OF A RANDOM DISTRIBUTION FUNCTION ON THE SQUARE PROPERTIES OF A RANDOM DISTRIBUTION FUNCTION ON THE SQUARE ADDITIVE DESIGNS MORE GENERAL THAN THE LATIN SQUARE ADDITIVE DESIGNS MORE GENERAL THAN THE GRECO-LATIN SQUARE OF THE FFFECTS OF NON-ADDITIVITY IN THE LATIN SQUARE OF THE FFFECTS OF NON-ADDITIVITY IN THE LATIN SQUARE LISTING EXPECTED MEAN SQUARE CHISTING EXPECTED MEAN SQUARE PROBABILISTIC INTERPRETATIONS FOR THE MEAN SQUARE COMPONENTS THE ANALYSIS OF LATIN SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE PROBABILISTIC INTERPRETATIONS FOR THE MEAN SQUARE ERROR TESTY OF SETTIMATIONS OF VARIANCE A TEST OF THE MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE A TEST OF THE MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE A NOTE ON MATRIX INVERSION BY THE MEAN SQUARE ERROR TEST FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE BOSTON METHOD FOR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FOR EXACT FOR EXACT LARBAR RESTRICTIONS IN LINEAR A NOTE ON MATRIX INVERSION BY THE SQUARE FOR THE FORD OF MATRIX INVERSION THE FORD AND AND AND AND AND AND AND AND AND AN	ESTIMATION OF A MEAN WHEN ONE OBSERVATION MAY BE	SPURIOUS	TECH 69	331
PROBABILISTIC INTERPRETATIONS FOR THE MEAN SQUARE CONTINCENCY, CORR. 58 1030 GENERALIZED LATTICE SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE THE ANALYSIS OF LATIN SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE MEAN SQUARE ERROR CRITERION OF RESTRICTIONS IN LINEAR REGRESSION A TEST OF THE MEAN SQUARE ERROR CRITERION OF RESTRICTIONS IN LINEAR HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED T SQUARE ERROR TEST FOR EXACT LINEAR RESTRICTIONS IN JASA 69 NO. 4 HOTELLING'S GENERALIZED T SQUARE FROM TEST FOR EXACT LINEAR RESTRICTIONS IN JASA 69 NO. 4 HOTELLING'S GENERALIZED T SQUARE FROM THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED TO SQUARE FROM THE MULTIVATE ANALYSIS OF VARIANCE A NOTE ON MATRIX INVERSION BY THE SQUARE ROOT METHOD MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION TECH 64 197 MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION TECH 64 197 A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCES CATTICAL VALUES FRAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR LINEAR TREDS IN PROPORTIONS BIOCS68 315 FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR MATCHED SAMPLES JASA 69 NO. 4 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION UNDER SQUARED SANK TEST WITH EXISTING TIES ROBUSTNESS OF SUM OF SQUARES FOR THE NORMAL DISTRIBUTION OF ROOM SQUARES FOR THE POWER OF CHICKED OF THE NORMAL DISTRIBUTION ONDER SQUARES FOR THE POWER OF CHICKED OF THE NORMAL DISTRIBUTION OF SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION ONDER SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION OF SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION OF SQUARES SOURCES WITH THE WITH T				305
PROBABILISTIC INTERPRETATIONS FOR THE MEAN SQUARE CONTINCENCY, CORR. 58 1030 GENERALIZED LATTICE SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE THE ANALYSIS OF LATIN SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE MEAN SQUARE ERROR CRITERION OF RESTRICTIONS IN LINEAR REGRESSION A TEST OF THE MEAN SQUARE ERROR CRITERION OF RESTRICTIONS IN LINEAR HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED T SQUARE ERROR TEST FOR EXACT LINEAR RESTRICTIONS IN JASA 69 NO. 4 HOTELLING'S GENERALIZED T SQUARE FROM TEST FOR EXACT LINEAR RESTRICTIONS IN JASA 69 NO. 4 HOTELLING'S GENERALIZED T SQUARE FROM THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED TO SQUARE FROM THE MULTIVATE ANALYSIS OF VARIANCE A NOTE ON MATRIX INVERSION BY THE SQUARE ROOT METHOD MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION TECH 64 197 MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION TECH 64 197 A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCES CATTICAL VALUES FRAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR LINEAR TREDS IN PROPORTIONS BIOCS68 315 FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR MATCHED SAMPLES JASA 69 NO. 4 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION UNDER SQUARED SANK TEST WITH EXISTING TIES ROBUSTNESS OF SUM OF SQUARES FOR THE NORMAL DISTRIBUTION OF ROOM SQUARES FOR THE POWER OF CHICKED OF THE NORMAL DISTRIBUTION ONDER SQUARES FOR THE POWER OF CHICKED OF THE NORMAL DISTRIBUTION OF SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION ONDER SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION OF SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION OF SQUARES SOURCES WITH THE WITH T	ALTERNATIVES TO A LATIN	SQUARE	BIOCS68	657
PROBABILISTIC INTERPRETATIONS FOR THE MEAN SQUARE CONTINCENCY, CORR. 58 1030 GENERALIZED LATTICE SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE THE ANALYSIS OF LATIN SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE MEAN SQUARE ERROR CRITERION OF RESTRICTIONS IN LINEAR REGRESSION A TEST OF THE MEAN SQUARE ERROR CRITERION OF RESTRICTIONS IN LINEAR HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED T SQUARE ERROR TEST FOR EXACT LINEAR RESTRICTIONS IN JASA 69 NO. 4 HOTELLING'S GENERALIZED T SQUARE FROM TEST FOR EXACT LINEAR RESTRICTIONS IN JASA 69 NO. 4 HOTELLING'S GENERALIZED T SQUARE FROM THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED TO SQUARE FROM THE MULTIVATE ANALYSIS OF VARIANCE A NOTE ON MATRIX INVERSION BY THE SQUARE ROOT METHOD MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION TECH 64 197 MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION TECH 64 197 A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCES CATTICAL VALUES FRAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR LINEAR TREDS IN PROPORTIONS BIOCS68 315 FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR MATCHED SAMPLES JASA 69 NO. 4 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION UNDER SQUARED SANK TEST WITH EXISTING TIES ROBUSTNESS OF SUM OF SQUARES FOR THE NORMAL DISTRIBUTION OF ROOM SQUARES FOR THE POWER OF CHICKED OF THE NORMAL DISTRIBUTION ONDER SQUARES FOR THE POWER OF CHICKED OF THE NORMAL DISTRIBUTION OF SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION ONDER SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION OF SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION OF SQUARES SOURCES WITH THE WITH T	FACTOR ADDITIVE DESIGNS MORE GENERAL THAN THE LATIN	SQUARE THREE	TECH 62	187
PROBABILISTIC INTERPRETATIONS FOR THE MEAN SQUARE CONTINCENCY, CORR. 58 1030 GENERALIZED LATTICE SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE THE ANALYSIS OF LATIN SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE MEAN SQUARE ERROR CRITERION OF RESTRICTIONS IN LINEAR REGRESSION A TEST OF THE MEAN SQUARE ERROR CRITERION OF RESTRICTIONS IN LINEAR HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED T SQUARE ERROR TEST FOR EXACT LINEAR RESTRICTIONS IN JASA 69 NO. 4 HOTELLING'S GENERALIZED T SQUARE FROM TEST FOR EXACT LINEAR RESTRICTIONS IN JASA 69 NO. 4 HOTELLING'S GENERALIZED T SQUARE FROM THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED TO SQUARE FROM THE MULTIVATE ANALYSIS OF VARIANCE A NOTE ON MATRIX INVERSION BY THE SQUARE ROOT METHOD MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION TECH 64 197 MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION TECH 64 197 A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCES CATTICAL VALUES FRAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR LINEAR TREDS IN PROPORTIONS BIOCS68 315 FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR MATCHED SAMPLES JASA 69 NO. 4 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION UNDER SQUARED SANK TEST WITH EXISTING TIES ROBUSTNESS OF SUM OF SQUARES FOR THE NORMAL DISTRIBUTION OF ROOM SQUARES FOR THE POWER OF CHICKED OF THE NORMAL DISTRIBUTION ONDER SQUARES FOR THE POWER OF CHICKED OF THE NORMAL DISTRIBUTION OF SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION ONDER SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION OF SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION OF SQUARES SOURCES WITH THE WITH T	PROPERTIES OF A RANDOM DISTRIBUTION FUNCTION ON THE	SQUARE DIMENSIONAL	AMS 66	849
PROBABILISTIC INTERPRETATIONS FOR THE MEAN SQUARE CONTINCENCY, CORR. 58 1030 GENERALIZED LATTICE SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE THE ANALYSIS OF LATIN SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE MEAN SQUARE ERROR CRITERION OF RESTRICTIONS IN LINEAR REGRESSION A TEST OF THE MEAN SQUARE ERROR CRITERION OF RESTRICTIONS IN LINEAR HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED T SQUARE ERROR TEST FOR EXACT LINEAR RESTRICTIONS IN JASA 69 NO. 4 HOTELLING'S GENERALIZED T SQUARE FROM TEST FOR EXACT LINEAR RESTRICTIONS IN JASA 69 NO. 4 HOTELLING'S GENERALIZED T SQUARE FROM THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED TO SQUARE FROM THE MULTIVATE ANALYSIS OF VARIANCE A NOTE ON MATRIX INVERSION BY THE SQUARE ROOT METHOD MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION TECH 64 197 MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION TECH 64 197 A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCES CATTICAL VALUES FRAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR LINEAR TREDS IN PROPORTIONS BIOCS68 315 FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR MATCHED SAMPLES JASA 69 NO. 4 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION UNDER SQUARED SANK TEST WITH EXISTING TIES ROBUSTNESS OF SUM OF SQUARES FOR THE NORMAL DISTRIBUTION OF ROOM SQUARES FOR THE POWER OF CHICKED OF THE NORMAL DISTRIBUTION ONDER SQUARES FOR THE POWER OF CHICKED OF THE NORMAL DISTRIBUTION OF SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION ONDER SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION OF SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION OF SQUARES SOURCES WITH THE WITH T	ADDITIVE DESIGNS MORE GENERAL THAN THE GRECO-LATIN	SQUARE FOUR FACTOR	TECH 62	361
PROBABILISTIC INTERPRETATIONS FOR THE MEAN SQUARE CONTINCENCY, CORR. 58 1030 GENERALIZED LATTICE SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE THE ANALYSIS OF LATIN SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE MEAN SQUARE ERROR CRITERION OF RESTRICTIONS IN LINEAR REGRESSION A TEST OF THE MEAN SQUARE ERROR CRITERION OF RESTRICTIONS IN LINEAR HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED T SQUARE ERROR TEST FOR EXACT LINEAR RESTRICTIONS IN JASA 69 NO. 4 HOTELLING'S GENERALIZED T SQUARE FROM TEST FOR EXACT LINEAR RESTRICTIONS IN JASA 69 NO. 4 HOTELLING'S GENERALIZED T SQUARE FROM THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED TO SQUARE FROM THE MULTIVATE ANALYSIS OF VARIANCE A NOTE ON MATRIX INVERSION BY THE SQUARE ROOT METHOD MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION TECH 64 197 MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION TECH 64 197 A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCES CATTICAL VALUES FRAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR LINEAR TREDS IN PROPORTIONS BIOCS68 315 FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR MATCHED SAMPLES JASA 69 NO. 4 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION UNDER SQUARED SANK TEST WITH EXISTING TIES ROBUSTNESS OF SUM OF SQUARES FOR THE NORMAL DISTRIBUTION OF ROOM SQUARES FOR THE POWER OF CHICKED OF THE NORMAL DISTRIBUTION ONDER SQUARES FOR THE POWER OF CHICKED OF THE NORMAL DISTRIBUTION OF SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION ONDER SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION OF SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION OF SQUARES SOURCES WITH THE WITH T	SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN	SQUARE ON THE MEAN	BIOKA53	
PROBABILISTIC INTERPRETATIONS FOR THE MEAN SQUARE CONTINCENCY, CORR. 58 1030 GENERALIZED LATTICE SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE THE ANALYSIS OF LATIN SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE MEAN SQUARE ERROR CRITERION OF RESTRICTIONS IN LINEAR REGRESSION A TEST OF THE MEAN SQUARE ERROR CRITERION OF RESTRICTIONS IN LINEAR HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED T SQUARE ERROR TEST FOR EXACT LINEAR RESTRICTIONS IN JASA 69 NO. 4 HOTELLING'S GENERALIZED T SQUARE FROM TEST FOR EXACT LINEAR RESTRICTIONS IN JASA 69 NO. 4 HOTELLING'S GENERALIZED T SQUARE FROM THE MULTIVATE ANALYSIS OF VARIANCE HOTELLING'S GENERALIZED TO SQUARE FROM THE MULTIVATE ANALYSIS OF VARIANCE A NOTE ON MATRIX INVERSION BY THE SQUARE ROOT METHOD MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION TECH 64 197 MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION TECH 64 197 A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCES CATTICAL VALUES FRAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR LINEAR TREDS IN PROPORTIONS BIOCS68 315 FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR MATCHED SAMPLES JASA 69 NO. 4 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION UNDER SQUARED SANK TEST WITH EXISTING TIES ROBUSTNESS OF SUM OF SQUARES FOR THE NORMAL DISTRIBUTION OF ROOM SQUARES FOR THE POWER OF CHICKED OF THE NORMAL DISTRIBUTION ONDER SQUARES FOR THE POWER OF CHICKED OF THE NORMAL DISTRIBUTION OF SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION ONDER SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION OF SQUARES FOR THE POWER OF THE NORMAL DISTRIBUTION OF SQUARES SOURCES WITH THE WITH T	OF THE EFFECTS OF NON-ADDITIVITY IN THE LATIN	SQUARE THE INTERPRETATION	BIOKA58	69
GENERALIZED LATTICE SQUARE DESIGN THE ANALYSIS OF LATIN SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE JASA 69 NO. 4 RECRESSION A TEST OF THE MEAN SQUARE ERROR CRITERION FOR RESTRICTIONS IN LINEAR RECRESSION HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVARIATE ANALYSIS OF VARIANCE A NOTE ON MATRIX INVERSION BY THE SQUARE OF A RANDOM VARIABLETO BE GAMMA MATRIX INVERSION BY THE SQUARE ROOT METHOD MODIFIED SQUARE ROOT METHOD MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION MATRIX INVERSION BY THE SQUARE ROOT METHOD MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION ERRATA, 'MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION TECH 62 822 APPROXIMATIONS FOR MEAN SQUARE SUCCESSIVE DIFFERENCES CRITICAL VALUES FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR MATCHED DESIGNS FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR MATCHED DESIGNS FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR MATCHED DESIGNS FOR THE POWER OF CHI SQUARE ROOT MESTHOD OF MATRIX INVERSION NOTE ON CHI SQUARE TESTS FOR MATCHED DESIGNS FOR THE LATIN SQUARE TESTS FOR MATCHED DESIGNS SOME NEW TECH 62 622 JASS 69 801 FOR MATCH OF THE LATIN SQUARE TESTS FOR MATCHED DESIGNS FOR THE LATIN SQUARE TESTS FOR MATCHED DESIGNS SOME NEW TECH 67 732 JASS 69 805 FEXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQUARED ROTE ON CHI SQUARE DESIGNS OF THE LATIN SQUARE TESTS FOR MATCHED DESIGNS FOR STRUCTURES UNDER WHICH CERTAIN SUMPLE SQUARES SQUAREDS FULL OF THE POWER OF FOR THE THEORY OF LEAST SQUARES FULL OF THE POWER OF FOR THE THEORY OF LEAST SQUARES FULL OF THE POWER OF THE THEORY OF LEAST SQUARES FULL OF THE POWER OF THE THEORY OF LEAST SQUARES FULL OF THE POWER OF THE THEORY OF LEAST SQUARES FULL OF THE POWER OF THE THEORY OF LEAST SQUARES FULL OF THE POWER OF THE THEORY OF LEAST SQUARES FULL OF THE POWER OF THE THEORY OF LEAST SQUARES FULL OF THE POWER OF THE THEORY O				459
OMPONENTS MEAN SQUARE DEFICIENCY OF ESTIMATORS OF VARIANCE MEGRESSION A TEST OF THE MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE MODERATE OF THE MEAN SQUARE ERROR CRITERION FOR RESTRICTIONS IN LINEAR REGRESSION A TEST OF THE MEAN SQUARE ERROR CRITERION FOR RESTRICTIONS IN LINEAR REGRESSION HOTELLING'S GENERALIZED T SQUARE IN THE MEANT SQUARE ERROR TEST FOR EXACT LINEAR RESTRICTIONS IN LINEAR A NECESSARY AND SUFFICIENT CONDITION FOR THE SQUARE OF A RANDOM VARIABLETO BE GAMMA A NOTE ON MATRIX INVERSION BY THE SQUARE ROOT METHOD MATRIX INVERSION WITH THE SQUARE ROOT METHOD OF MATRIX INVERSION MATRIX INVERSION WITH THE SQUARE ROOT METHOD OF MATRIX INVERSION MATRIX INVERSION WITH THE SQUARE ROOT METHOD OF MATRIX INVERSION MATRIX INVERSION WITH THE SQUARE ROOT METHOD OF MATRIX INVERSION MATRIX INVERSION WITH THE SQUARE ROOT METHOD OF MATRIX INVERSION MATRIX INVERSION WITH THE SQUARE ROOT METHOD OF MATRIX INVERSION TECH 64 197 APPROXIMATIONS FOR MEAN SQUARE SUCCESSIVE DIFFERENCE CRITICAL VALUES FRAILLES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE SUCCESSIVE DIFFERENCE SHIPLES FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS MOTE ON CHIL SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS MOTE ON SOME SQUARED SHOW THE MAD RELATED DESIGNS FEXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQUARES FOUNDATIONS FOR THE NORMAL DISTRIBUTION UNDER SQUARES FOUNDATIONS FOR THE THEORY OF LEAST SQUARES THE MODIFIED GAUSS-MENTON FOR THE STEED OF THE SQUARES SOME NOW THE MAD INTERACT BICSCHOOL AND THE MEAN SQUARES THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN SQUARES FOUNDATIONS FOR THE THEORY OF LEAST SQUARES THE MODIFIED GAUSS-MENTON METHOD FOR THE TECH 62 269 THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN SQUARES FOUNDATIONS FOR THE THEORY OF LEAST SQUARES THE MODIFIED GAUSS-MENTON METHOD FOR THE TECH 62 269 THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN SQUARES FOUNDATIONS FOR THE THEORY OF SQUARES WITH INSCRIPTION OF THE STAN				
MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE JASA 69 NO. 4				
REGRESSION A TEST OF THE MEAN SQUARE ERROR CRITERION FOR RESTRICTIONS IN LINEAR REGRESSION TABLES FOR THE MEAN SQUARE ERROR TEST FOR EXACT LINEAR RESTRICTIONS IN JASA 69 NO. 4 NOTELING'S GENERALIZED T SQUARE IN THE MULTIVARIATE AWALYSIS OF VARIANCE JKSS63 358 A NECESSARY AND SUFFICIENT CONDITION FOR THE SQUARE OF A RANDOM VARIABLETO BE GAMMA BIOKAG6 275 A NOTE ON MATRIX INVERSION BY THE SQUARE ROOT METHOD TO THE CONDITION FOR THE SQUARE ROOT METHOD THE CONDITION THE TECH 64 197 MATRIX INVERSION WITH THE SQUARE ROOT METHOD OF MATRIX INVERSION TECH 62 282 ERRATA, MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION TECH 62 282 APPROXIMATIONS FOR MEAN SQUARE SUCCESSIVE DIFFERENCE CRITICAL VALUES TECH 68 397 A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCES JASA 59 801 ASYMPTOTIC POWER OF CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS JASA 59 801 ASYMPTOTIC POWER OF CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS JASA 59 801 ASYMPTOTIC POWER OF CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS JASA 59 801 ASYMPTOTIC POWER OF CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS JASA 59 801 ASYMPTOTIC POWER OF CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS JASA 59 801 ASYMPTOTIC POWER OF CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS JASA 59 801 ASYMPTOTIC POWER OF CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS JASA 59 801 ASYMPTOTIC POWER OF CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS JASA 59 801 ASYMPTOTIC POWER OF CHI SQUARE SENDING CHECK ON THE MAIN SEPTECTS AND INTERACT BIOCS67 751 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS OF THE LATIN SQUARE SENDING CHECK ON THE MAIN SEPTECTS AND INTERACT BIOCS67 751 SUCCESSIVE DIFFERENCE AND TOWN THE MEAN BIOKASE SENDING CHECK ON THE MAIN SEPTECTS AND INTERACT BIOCS67 751 SUCCESSIVE DIFFERENCE AND TOWN THE MEAN BIOKASE SENDING CHECK ON THE MAIN SEPTECTS AND INTERACT BIOCASE AND SAME SENDING CHECK ON THE MAIN SEPTECTS AND INTERACT BIOCASE AND SAME SENDING CHECK ON THE MAIN SEPTECTS AND INTERACT BI				
REGRESSION TABLES FOR THE MEAN SQUARE ERROR TEST FOR EXACT LINEAR RESTRICTIONS IN JASA 69 NO.4 NOTE ON MATERIA THE MOLITION FOR THE SQUARE OF A RANDOM VARIABLETO BE GAMMA BIOKA66 275 A NOTE ON MATERIA INVERSION BY THE SQUARE ROOT METHOD JASA 64 197 MATERIA THE SQUARE ROOT METHOD JASA 66 288 MATERIA INVERSION WITH THE SQUARE ROOT METHOD THE MATERIA INVERSION THE THE SQUARE ROOT METHOD THE MATERIA INVERSION THE THE SQUARE ROOT METHOD THE MATERIA INVERSION THE THE SQUARE ROOT METHOD TO MATERIA INVERSION THE THE SQUARE ROOT METHOD TO MATERIA INVERSION THE THE GO THE THE SQUARE ROOT METHOD TO MATERIA INVERSION THE THE GO THE THE SQUARE ROOT METHOD TO MATERIA INVERSION THE CHECK 62 282 APPROXIMATIONS FOR MEAN SQUARE SUCCESSIVE DIFFERENCE CRITICAL VALUES TECH 68 397 A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCES JASA 59 801 ASYMPTOTIC POWER OF CHI SQUARE TESTS FOR MATCHED SAMPLES JASA 59 801 ASYMPTOTIC POWER OF CHI SQUARE TESTS FOR MATCHED SAMPLES SUCCESSIVE DIFFERENCES SOME NEW TECH 67 229 IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERCT BIOLOGICAL SUCCESSIVE DIFFERENCE AND INTERCT BIOLOGICAL SUCCESSIVE DIFFERENCE AND INTERCT BIOLOGICAL SUCCESSIVE DIFFERENCE SOME NEW TECH 67 312 SUCCESSIVE DIFFERENCE AND INTERCT BIOLOGICAL SUCCESSIVE BIOLOGICAL SUCCESSIVE DIFFERENCE AND INTERCT BIOLOGICAL SUCCESSIVE BIO				
HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVARIATE ANALYSIS OF VARIANCE A NECESSARY AND SUFFICIENT CONDITION FOR THE SQUARE OF A RANDOW VARIABLETO BE GAMMA A NOTE ON MATRIX INVERSION BY THE SQUARE ROOT METHOD MATRIX INVERSION WITH THE SQUARE ROOT METHOD MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION TECH 62 282 APPROXIMATIONS FOR MEAN SQUARE SUCCESSIVE DIFFERENCE CRITICAL VALUES A POPEN OF A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCES A SYMPTOTIC POWER OF CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS BIOCS68 315 FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE SUCCESSIVE DIFFERENCES JASA 59 801 NOTE ON CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS BIOCS68 315 FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND RELATED DESIGNS FEXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQUARES SUCCESSIVE DIFFERENCE STATEMENT OF CONSTRUCTED STATEMENT OF THE ROOT MEAN SQUARE SUCCESSIVE DIFFERENCES FROM THE SQUARE TO THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERACT BIOCS67 571 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARE SUCCESSIVE DIFFERENCES FROM THE SOURCE THE NORMAL DISTRIBUTION UNDER SQUARED SERVE LIFERENCE AND INTERACT BIOCS67 571 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARE SUCCESSIVE DIFFERENCES FEXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQUARED SAVE SWITH EXISTING TIES FULL OF THE NORMAL DISTRIBUTION UNDER SQUARES SOURCES SWITH EXISTING TIES FULL OF THE NORMAL DISTRIBUTION OF SQUARES SOURCES SWITH EXISTING TIES FULL OF THE NORMAL DISTRIBUTION OF SQUARES OF THE MODIFICATION OF GROUP THEORY TO SATISFAND THE LEGIS SQUARES SOURCES SWITH DISCUSSION) TOPICS IN THE INVESTIGATI JRSS667 124 FULL OF THE SWITH S				
A NOTE ON MATRIX INVERSION BY THE SQUARE ROOT METHOD OF MATRIX INVERSION WITH THE SQUARE ROOT METHOD OF MATRIX INVERSION WITH THE SQUARE ROOT METHOD OF MATRIX INVERSION TECH 64 197 MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION TECH 62 282 RERATA, 'MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION TECH 62 282 A PAPROXIMATIONS FOR MEAN SQUARE SUCCESSIVE DIFFERENCES CRITICAL VALUES TECH 68 397 A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCES CRITICAL VALUES TECH 68 397 A NOTE ON CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS BIOGS68 315 NOTE ON CHI SQUARE TESTS FOR MATCHED SAMPLES JRSSB66 36B FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND RELATED DESIGNS SOME NEW TECH 67 229 IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERACT BIOCS67 571 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARE SUCCESSIVE DIFFERENCES TO THE MAIN EFFECTS AND INTERACT BIOCS67 571 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARE SQUARED RANK TESTS WITH EXISTING TIES TECH 67 312 ROBUSTNESS OF SUM OF SQUARED RANK TESTS WITH EXISTING TIES JASA 68 338 EQUAL AND PROPORTIONAL FREQUENCY SQUARES RANK TESTS WITH EXISTING THE SUM OF AMAS 68 1540 THE LOGIC OF LEAST SQUARES TO NOTHE APPLICATION OF GROUP THEORY TO BIOCA69 10.3 THE LOGIC OF LEAST SQUARES THE MODIFIED GAUSS-NEWTON METHOD FOR THE TECH 61 269 THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN SQUARES TO NOTHE APPLICATION OF THE SIZE AND POW BIOCA69 10.3 FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST SQUARES SQUARES THE MODIFIED DAYS NOTHE APPLICATION OF THE SIZE AND POW BIOCA69 10.3 FOR TESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN SQUARES SQUARES STRUCTURES UNDER WHICH CERTAIN STHPLE LEAST SQUARES AND AND STRUCTURES UNDER WHICH CERTAIN STHPLE LEAST SQUARES SQUARES STRUCTURES UNDER WHICH CERTAIN STHPLE LEAST SQUARES AND AND STRUCTURES UNDER WHICH CERTAIN STHPLE LEAST SQUARES AND PRODUCTS OF NORMAL VARIATES IN THE SICKAGE 419 THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST				
A NOTE ON MATRIX INVERSION BY THE SQUARE ROOT METHOD TECH 62 282 MATRIX INVERSION WITH THE SQUARE ROOT METHOD OF MATRIX INVERSION TECH 64 197 MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION TECH 62 282 A PPROXIMATIONS FOR MEAN SQUARE SUCCESSIVE DIFFERENCE CRITICAL VALUES TECH 68 262 A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCE CRITICAL VALUES TECH 68 262 A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCE CRITICAL VALUES TECH 68 262 A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCE CRITICAL VALUES TECH 68 262 A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCE CRITICAL VALUES TECH 68 262 A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCE CRITICAL VALUES TECH 68 262 A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCE SOME METHOD OF MATRIX INVERSION TECH 69 262 A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCE SOME METHOD OF MATRIX INVERSION TECH 62 262 A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCE SOME METHOD OF MATRIX INVERSION TECH 69 262 INSTANCE OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR MATCHED SAMPLES SOME METHOD TECH 67 229 IONS IN A 2 TO THE POWER N FACTORIALE / NOTES. THE SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERCACT BIOCS67 571 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARE SOME METHOD TO SHE MEAN BEFFOR SAMPLES SOME METHOD TO SHE MEAN SQUARED RANK TESTS WITH EXISTING TIES BIOCS67 571 SUCCESSIVE DIFFERENCE AND ROPARTICAL PROPORTIONAL FREQUENCY SQUARED RANK TESTS WITH EXISTING TIES JASA 68 33B EQUAL AND PROPORTIONAL FREQUENCY SQUARES CONSTRUCTION OF GROUP THEORY TO SHE METHOD FOR THE THEORY OF LEAST SQUARES SOME METHOD FOR THE THEORY OF LEAST SQUARES SOME SOME METHOD FOR THE THEORY OF LEAST SQUARES SOME SOME METHOD FOR THE THEORY OF LEAST SQUARES SOME SOME SOME SOME SOME SOME SOME SO				
MATRIX INVERSION WITH THE SQUARE ROOT METHOD OF MATRIX INVERSION TECH 62 292 RERATA, 'MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION' TECH 62 292 APPROXIMATIONS FOR MEAN SQUARE SUCCESSIVE DIFFERENCE CRITICAL VALUES TECH 68 397 A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCE CRITICAL VALUES TECH 68 397 ASYMPTOTIC POWER OF CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS BIOCS68 315 NOTE ON CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS BIOCS68 315 FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR MATCHED SAMPLES SUCCESSIVE DIFFERENCE SUCCESSIVE SUCCESSIVE DIFFERENCE SUCCESSIVE SUCCESSIVE DIFFERENCE SUCCESSIVE SUCCESSIVE SUCCESSIVE SUCCESSIVE SUCCESSIVE DIFFERENCE SUCCESSIVE SUCCESSIVE SUCCESSIVE SUCCESSIVE SUCCESI				
MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION TECH 62 282 ERRATA, 'MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION TECH 62 682 APPROXIMATIONS FOR MEAN SQUARE SUCCESSIVE DIFFERENCE CRITICAL VALUES TECH 68 397 A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCES JASA 59 801 ASYMPTOTIC POWER OF CHI SQUARE TESTS FOR MATCHED SAMPLES JRSS66 368 FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR MATCHED SAMPLES JRSS66 368 FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR MATCHED SAMPLES JRSS66 368 FOR THE LOBER OF THE LATIN SQUARE TESTS FOR MATCHED SAMPLES JRSS66 368 FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR MATCHED SAMPLES JRSS66 368 FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR MATCHED SAMPLES SOME NEW TECH 67 229 IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SQUARE TESTS WATCHED SAMPLES AND INTERACT BIOCS67 571 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARE CORRIGEDAD TO 'ON THE MEAN BIOKASE 587 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARE CORRIGEDAD TO 'ON THE MEAN BIOKASE 587 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARE CORRIGEDAD TO 'ON THE MEAN BIOKASE 587 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARE CORRIGEDAD TO 'ON THE MEAN BIOKASE 587 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARES ANANK TEST WITH EXISTING TIES TO 'ON THE MEAN BIOKASE 587 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARES ANANK TEST WITH EXISTING TIES TO 'ON THE MEAN BIOKASE 587 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARES SQUARES ON THE APPLICATION OF GROUP THEORY TO HEAD TO 'ON THE MEAN BIOKASE 587 SUCCESSIVE DIFFERENCE AND NON-EXISTENCE AND FOR BIOKASE 587 SUCCESSIVE DIFFERENCE AND TO MEAN SQUARES SAMD ANALYSIS OF VARIANCE PROCEDURES ARE ALSO JASA 69 124 SOURCES TO THE LATIN SIMPLE LEAST SQUARES AND CROSS PRODUCTS OF NORMAL VARIATES IN THE 100 AND ANALYSIS OF VARIANCE PROCEDURES ARE ALSO JASA 69 124 STEP TO THE FORMAL AND THE DISTRIBUTION OF GROUP ANALYSIS O				
A PAPROXIMATIONS FOR MEAN SQUARE SUCCESSIVE DIFFERENCE CRITICAL VALUES A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCES ASYMPTOTIC POWER OF CHI SQUARE SUCCESSIVE DIFFERENCES ASYMPTOTIC POWER OF CHI SQUARE STESTS FOR LINEAR TRENDS IN PROPORTIONS BIOCS68 315 NOTE ON CHI SQUARE TESTS FOR LATENDS IN PROPORTIONS FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR MATCHED SAMPLES JASSA 59 801 NOTE ON CHI SQUARE TESTS FOR MATCHED SAMPLES JASSA 69 36B FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND RELATED DESIGNS SOME NEW TECH 67 229 IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERACT BIOCS67 571 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARE' FEXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQUARED RANK TESTS WITH EXISTING TIES ROBUSTNESS OF SUM OF SQUARED RANK TESTS WITH EXISTING TIES ROBUSTNESS OF SUM OF SQUARED RANK TESTS WITH EXISTING TIES ROBUSTNESS OF SUM OF SQUARES EQUAL AND PROPORTIONAL FREQUENCY SQUARES CONSTRUCTION OF ROOM SQUARES FOUNDATIONS FOR THE THEORY OF LEAST SQUARES THE LOGIC OF LEAST SQUARES THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN SQUARES FOUNDATIONS FOR THE THEORY OF LEAST SQUARES THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN SQUARES THE MODIFIED GAUSS-NEWTON METHOD FOR THE TECH 61 269 THE EXISTENCE OF INTRA-/ ON THE DISTRIBUTION OF SUMS OF SQUARES AND ANALYSIS OF VARIANCE PROCEDURES ARE ALSO ON OF LINEAR RELATIONS FITTED 8Y THE METHOD OF LEAST SQUARES (WITH DISCUSSION) TOPICS IN THE INVESTIGATI INTER NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND ANALYSIS OF VARIANCE PROCEDURES ARE ALSO PRESENCE OF INTRA-/ ON THE DISTRIBUTION OF SUMS OF SQUARES AND ROPODUCTS THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST SQUARES BY 'SYNTHESIS' ON EXP BIOCS67 105 ECTATIONS, VARIANCES, AND CONVARIANCES OF 'ANOVA MEAN SQUARES BY 'SYNTHESIS' ON EXP BIOCS67 105 ECTATIONS, VARIANCES, AND CONVARIANCES OF ANOVA MEAN SQUARES BY SYNTHESIS' ON EXP BIOCS	MATRIX INVERSION WITH THE	SOULER DOOR METHOD OF MATERIAL THURSDAY		
A PAPROXIMATIONS FOR MEAN SQUARE SUCCESSIVE DIFFERENCE CRITICAL VALUES A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCES ASYMPTOTIC POWER OF CHI SQUARE SUCCESSIVE DIFFERENCES ASYMPTOTIC POWER OF CHI SQUARE STESTS FOR LINEAR TRENDS IN PROPORTIONS BIOCS68 315 NOTE ON CHI SQUARE TESTS FOR LATENDS IN PROPORTIONS FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TESTS FOR MATCHED SAMPLES JASSA 59 801 NOTE ON CHI SQUARE TESTS FOR MATCHED SAMPLES JASSA 69 36B FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND RELATED DESIGNS SOME NEW TECH 67 229 IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERACT BIOCS67 571 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARE' FEXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQUARED RANK TESTS WITH EXISTING TIES ROBUSTNESS OF SUM OF SQUARED RANK TESTS WITH EXISTING TIES ROBUSTNESS OF SUM OF SQUARED RANK TESTS WITH EXISTING TIES ROBUSTNESS OF SUM OF SQUARES EQUAL AND PROPORTIONAL FREQUENCY SQUARES CONSTRUCTION OF ROOM SQUARES FOUNDATIONS FOR THE THEORY OF LEAST SQUARES THE LOGIC OF LEAST SQUARES THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN SQUARES FOUNDATIONS FOR THE THEORY OF LEAST SQUARES THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN SQUARES THE MODIFIED GAUSS-NEWTON METHOD FOR THE TECH 61 269 THE EXISTENCE OF INTRA-/ ON THE DISTRIBUTION OF SUMS OF SQUARES AND ANALYSIS OF VARIANCE PROCEDURES ARE ALSO ON OF LINEAR RELATIONS FITTED 8Y THE METHOD OF LEAST SQUARES (WITH DISCUSSION) TOPICS IN THE INVESTIGATI INTER NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND ANALYSIS OF VARIANCE PROCEDURES ARE ALSO PRESENCE OF INTRA-/ ON THE DISTRIBUTION OF SUMS OF SQUARES AND ROPODUCTS THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST SQUARES BY 'SYNTHESIS' ON EXP BIOCS67 105 ECTATIONS, VARIANCES, AND CONVARIANCES OF 'ANOVA MEAN SQUARES BY 'SYNTHESIS' ON EXP BIOCS67 105 ECTATIONS, VARIANCES, AND CONVARIANCES OF ANOVA MEAN SQUARES BY SYNTHESIS' ON EXP BIOCS	MODIFIED	SQUARE ROOT METHOD OF MATRIX INVERSION		
A NOTE ON MEAN ASYMPTOTIC POWER OF CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS NOTE ON CHI SQUARE TESTS FOR ATCHED SAMPLES FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND RELATED DESIGNS SOME NEW FIGH OF CHI SQUARE TYPE AND RELATED DESIGNS SOME NEW FICH 67 SQUARE SUCCESSIVE DIFFERENCE AND INTERACT BIOCSFO FOR STREEME QUANTILES OF THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERACT BIOCSFO FEXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQUARED NOTE ON SOME SQUARED ROBUSTNESS OF SUM OF SQUARES FOUNDATIONS FOR THE THEORY OF LEAST SQUARES FOUNDATIONS FOR THE THEORY OF LEAST SQUARES FOUNDATIONS FOR THE THEORY OF LEAST SQUARES THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN NO FOR TESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN ON OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST SQUARES ON THE APPLICATION OF THE SIZE AND POW NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND ANALYSIS OF VARIANCE PROCEDURES ARE ALSO ON THE APPLICATION OF THE SIZE AND POW DISCASE OF INTRA-/ ON THE DISTRIBUTION OF SUMS OF SQUARES AND ANALYSIS OF VARIANCE PROCEDURES ARE ALSO ON THE EXACT SAMPLING DISTRIBUTION OF SUMS OF SQUARES CTATIONS, VARIANCES AND COVARIANCES OF ANOVA MEAN SQUARES BY SYNTHESIS' DISCASS ON THE METHOD OF SEMEN SQUARES BY SYNTHESIS' ON EXP BIOCS66 DECTATIONS, VARIANCES AND COVARIANCES OF ANOVA MEAN SQUARES BY SYNTHESIS' ON EXP BIOCS66 DECTATIONS, VARIANCES AND COVARIANCES OF ANOVA MEAN SQUARES BY SYNTHESIS' ON EXP BIOCS66 DECTATIONS, VARIANCES AND COVARIANCES OF ANOVA MEAN SQUARES BY SYNTHESIS' ON EXP BIOCS66 DECTATIONS, VARIANCES AND COVARIANCES OF ANOVA MEAN SQUARES BY SYNTHESIS' FORMULA EXTREME TESTS TORM THE METHOD TORS THE METHOD OF SUMS OF SQUAR	ERRATA, 'MODIFIEL	SOUNDE CHOOSCOINE DISSEDENCE OBISTON AND SECOND OF SECOND AND SECOND OF SECO		
ASYMPTOTIC POWER OF CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS BIGOCS68 315 NOTE ON CHI SQUARE TESTS FOR MATCHED SAMPLES FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND RELATED DESIGNS SOME NEW TECH 67 229 IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERACT BIOCS67 571 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARE' CORRIGENDA TO 'ON THE MEAN BIOKA58 587 F EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQUARED ERROR LOSS /THE BEST INVARIATE ESTIMATOR O AMS 69 1801 NOTE ON SOME SQUARED RANK TESTS WITH EXISTING TIES TECH 67 312 ROBUSTNESS OF SUM OF SQUARED RANK TESTS WITH EXISTING TIES TECH 67 312 ROBUSTNESS OF SUM OF SQUARED RANK TESTS WITH EXISTING TIES TECH 67 312 ROBUSTNESS OF SUM OF SQUARED RANK TESTS WITH EXISTING TIES TECH 67 312 ROBUSTNESS OF SUM OF SQUARES AND SQUARES AND SQUARES THE LOGIC OF LEAST SQUARES SQUARES SQUARES ON THE LOGIC OF LEAST SQUARES ON THE ELOGIC OF LEAST SQUARES ON THE ELOGIC OF LEAST SQUARES ON THE APPLICATION OF GROUP THEORY TO BIOKA69 NO.3 FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST SQUARES ON THE APPLICATION OF GROUP THEORY TO BIOKA69 NO.3 FITTING OF NON-LINEAR RECRESSION FUNCTIONS BY LEAST SQUARES THE MODIFIED GAUSS-NEWTON METHOD FOR THE TECH 61 269 ON OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST SQUARES (WITH DISCUSSION) TOPICS IN THE INVESTIGATI JRSSB67 1 ND ERROR STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST SQUARES (WITH DISCUSSION) TOPICS IN THE INVESTIGATI JRSSB67 1 NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND RODUCTS OF NORMAL VARIATES IN THE AMS 62 1461 NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND CROSS PRODUCTS OF NORMAL VARIATES IN THE AMS 62 1461 NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND PRODUCTS OF NORMAL VARIATES IN THE AMS 62 1461 NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND PRODUCTS OF NORMAL VARIATES IN THE AMS 62 1461 NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS O				
FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND RELATED DESIGNS SOME NEW TECH 67 229 IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SQUARES SUMMING CHECK ON THE MAIN EFFECTS AND INTERACT BIOCSSO 57 57 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARE TYPE AND RELATED DESIGNS CORRIGEDAD TO 'ON THE MEAN BIOKA58 587 CORRIGENDA TO 'ON TH				
FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND RELATED DESIGNS SOME NEW TECH 67 229 IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMBING CHECK ON THE MAIN EFFECTS AND INTERACT BIOCS67 FEXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQUARED NOTE ON SOME SQUARED RANK TESTS WITH EXISTING TIES ROBUSTNESS OF SUM OF SQUARED RANK TESTS WITH EXISTING TIES FOUNDATIONS FOR THE THEORY OF LEAST SQUARES THE LOGIC OF LEAST SQUARES FOUNDATIONS FOR THE THEORY OF LEAST SQUARES FOUNDATIONS FOR THE THEORY OF LEAST SQUARES FOON OF LINEAR RECRESSION FUNCTIONS BY LEAST SQUARES ON OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST SQUARES ON OF LINEAR RELATIONS FITTED BY THE METHOD OF SQUARES SQUARES NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND ANALYSIS OF VARIANCE PROCEDURES ARE ALSO NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND TWO-STAGE LEAST SQUARES SQUARES SQUARES AND TWO-STAGE LEAST SQUARES SETIMATORS FITTE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST EXAMPLED OF SQUARES AND TWO-STAGE LEAST SQUARES SQUARES SQUARES AND TWO-STAGE LEAST SQUARES SETIMATORS FITTE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST SQUARES BY 'SYNTHESIS' EXP BIOCS67 105 ECCTATIONS, VARIANCES AND CONVARIANCES OF 'ANOVA' MEAN SQUARES BY 'SYNTHESIS' ON EACH OF THE MAIN ETCH OF THE TECH 61 AMS 69 105 105 105 105 105 105 105 10				010
IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERACT BIOCS67 571 SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE MOOT MEAN SQUARE' F EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQUARED ERROR LOSS /THE BEST INVARIATE ESTIMATOR O AMS 69 1801 **ROBUSTNESS OF SUM OF SQUARED RANK TESTS WITH EXISTING TIES TECH 67 312 **ROBUSTNESS OF SUM OF SQUARED RANK TESTS WITH EXISTING TIES TECH 67 312 **ROBUSTNESS OF SUM OF SQUARED RANK TESTS WITH EXISTING TIES TECH 67 312 **ROBUSTNESS OF SUM OF SQUARED RANK TESTS WITH EXISTING TIES TECH 67 312 **ROBUSTNESS OF SUM OF SQUARED RANK TESTS WITH EXISTING TIES TECH 67 312 **ROBUSTNESS OF SUM OF SQUARES RANK TEST JASA 68 338 **ROBUSTNESS OF SUM OF SQUARES RANK TEST JASA 68 338 **GOUNTAIN OF ROOM SQUARES AMS TEST JASA 67 226 **CONSTRUCTION OF ROOM SQUARES SQUARES SQUARES SQUARES SQUARES SQUARES JASA 67 226 **FOUNDATIONS FOR THE THEORY OF LEAST SQUARES SQUARES ON THE APPLICATION OF GROUP THEORY TO BIOKA69 NO.3 **FITTING OF NON-LINEAR RECRESSION FUNCTIONS BY LEAST SQUARES SQUARES ON THE APPLICATION OF THE SIZE AND POW BIOKA69 NO.3 **FITTING OF NON-LINEAR RECRESSION FUNCTIONS BY LEAST SQUARES (WITH DISCUSSION) TOPICS IN THE INVESTIGATI JRSSB67 1 **NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES (WITH DISCUSSION) TOPICS IN THE INVESTIGATI JRSSB67 1 **NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND RODUCTS OF NORMAL VARIATES IN THE AMS 62 1461 **NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND CROSS PRODUCTS OF NORMAL VARIATES IN THE AMS 62 1461 **NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND PRODUCTS OF NORMAL VARIATES IN THE AMS 62 1461 **NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND PRODUCTS OF NORMAL VARIATES IN THE AMS 62 1461 **NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND PRODUCTS OF NORMAL VARIATES IN THE AMS 62 1461 **NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES BY "SYNTHESIS" ON EXP BIOCSSOF 105 **ECTATIONS		SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS	BIOCS68	
SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARE' F EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQUARED NOTE ON SOME SQUARED RANK TESTS WITH EXISTING TIES TECH 67 312 ROBUSTNESS OF SUM OF SQUARED RANK TESTS WITH EXISTING TIES TECH 67 312 ROBUSTNESS OF SUM OF SQUARED RANK TESTS WITH EXISTING TIES TECH 67 312 ROBUSTNESS OF SUM OF SQUARED RANK TESTS WITH EXISTING TIES TECH 67 312 ROBUSTNESS OF SUM OF SQUARES FUNDATIONAL FREQUENCY SQUARES CONSTRUCTION OF ROOM SQUARES THE LOGIC OF LEAST SQUARES FOUNDATIONS FOR THE THEORY OF LEAST SQUARES FOUNDATIONS FOR THE THEORY OF LEAST SQUARES FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST SQUARES FOR FESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN SQUARES (WITH DISCUSSION) TOPICS IN THE INVESTIGATI JRSS867 12 ND ERROR STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST SQUARES AND ANALYSIS OF VARIANCE PROCEDURES ARE ALSO JASA 69 NO.4 PRESENCE OF INTRA-/ ON THE DISTRIBUTION OF SUMS OF SQUARES AND RODUCTS OF NORMAL VARIATES IN THE NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND PRODUCTS OF NORMAL VARIATES IN THE AMS 62 1461 NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND PRODUCTS OF NORMAL VARIATES IN THE AMS 62 1461 NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND PRODUCTS OF NORMAL VARIATES IN THE AMS 62 1461 RODUCTS TECH 67 312 RANK TEST WITH EXISTING TIES IN THE MASS OF VARIANCE PROCEDURES ARE ALSO JASA 69 NO.4 PRESENCE OF INTRA-/ ON THE DISTRIBUTION OF SUMS OF SQUARES AND PRODUCTS OF NORMAL VARIATES IN THE AMS 62 1461 RODUCTS TECH 67 312 RANK TEST WITH EXISTING TIES IN THE MECHOD TO NOTE ON THE MEAN BOUNTS THE MASS OF VARIANCE PROCEDURES ARE ALSO JASA 69 NO.4 RODUCTS THE MOOTH THE MEAN BOUNTS THE MEAN SQUARES AND PRODUCTS OF NORMAL VARIATES IN THE MECHOD TO THE MEAN SQUARES BY 'SYNTHESIS' EXPREDICES OF SOURCES AND CONVARIANCES OF ANOVA MEAN SQUARES BY 'SYNTHESIS' ON EXPREDICES ON EXPRODUCTS OF NORMAL VARIATES IN THE MECHOD TO THE MEAN SQUARES BY 'SYNTHESIS' ON EXPREDICE OF NORMAL VARIATES ON EXPREDICE OF NORMAL VARIAT	FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATTE	SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS SQUARE TESTS FOR MATCHED SAMPLES	BIOCS68 JRSSB6B	36B
F EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQUARED NOTE ON SOME SQUARED ROBUSTNESS OF SUM OF SQUARED RANK TESTS WITH EXISTING TIES TECH 67 312 ASA 68 338 EQUAL AND PROPORTIONAL FREQUENCY SQUARES CONSTRUCTION OF ROOM SQUARES THE LOGIC OF LEAST SQUARES THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN SQUARES FOUNDATIONS FOR THE THEORY OF LEAST SQUARES FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST SQUARES FOR TESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEANS QUARES SQUARES AND RANGLES OF INTRA-/ ON THE DISTRIBUTION OF SUMS OF SQUARES AND ANALYSIS OF VARIANCE FOR CALCULATING CORRECTED SUMS OF SQUARES AND RANGLES OF INTRA-/ ON THE DISTRIBUTION OF ORDINARY LEAST SQUARES AND RANGLES OF SQUARES AND RANGLES OF SQUARES AND RODUCTS OF NORMAL VARIATES IN THE NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND RODUCTS OF NORMAL VARIATES IN THE NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND RODUCTS OF NORMAL VARIATES IN THE NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND RODUCTS OF NORMAL VARIATES IN THE NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND RODUCTS OF NORMAL VARIATES IN THE NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND RODUCTS OF NORMAL VARIATES IN THE NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND RODUCTS OF NORMAL VARIATES IN THE NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND RODUCTS OF NORMAL VARIATES IN THE SET WITH EXISTING TIES TECH 67 312 AMS 69 103 AND TWO-STAGE LEAST SQUARES ESTIMATORS JASA 69 103 AND TWO-STAGE LEAST SQUARES ESTIMATORS JASA 69 105 ECTATIONS, VARIANCES, AND CONVARIANCES OF 'ANOVA' MEAN SQUARES BY 'SYNTHESIS' ON EXPREDICES OF SOURCES BY SYNTHESIS' ON EXPREDICES OF SOURCES BY SATTERTHWAITE'S FORMULA ESTIMATING TH TECH 69 NO.4		SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS SQUARE TESTS FOR MATCHED SAMPLES SQUARE TYPE AND RELATED DESIGNS SOME NEW	BIOCS68 JRSSB6B TECH 67	36B 229
ROBUSTNESS OF SUM OF SQUARES ROBUSTNESS OF SUM OF SQUARES EQUAL AND PROPORTIONAL FREQUENCY SQUARES CONSTRUCTION OF ROOM SQUARES THE LOGIC OF LEAST SQUARES FOUNDATIONS FOR THE THEORY OF LEAST SQUARES THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN SQUARES FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST SQUARES ON OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST SQUARES ON OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST SQUARES NOTE ERROR STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST SQUARES NOTE OF INTRA-/ ON THE DISTRIBUTION OF SQUARES SQUARES NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND ANALYSIS OF VARIANCE PROCEDURES ARE ALSO NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND TWO-STAGE LEAST SQUARES SCHAPLING DISTRIBUTION OF ORDINARY LEAST SQUARES AND TWO-STAGE LEAST SQUARES SETIMATORS ECTATIONS, VARIANCES AND CONVARIANCES OF 'ANOVA' MEAN SQUARES BY 'SYNTHESIS' EDEGREES OF FREEDOM FOR LINEAR COMBINATIONS OF MEAN SQUARES BY 'SYNTHESIS' ITCH 67 312 ANAK TEST WITH EXISTING TIE SIZE AND SQUARES SQUARES ARMS TEST JASA 67 226 AMS 68 1540 TARSSEG 19 JRSSEG 10 AMS 68 1540 THE MODIFIED GAUSS-NEWTON METHOD FOR THE TECH 61 269 THE CARLO INVESTIGATION OF THE SIZE AND POW BIOKAGE 10 10 10 10 10 10 10 10 10 10 10 10 10	IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE	SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS SQUARE TESTS FOR MATCHED SAMPLES SQUARE TYPE AND RELATED DESIGNS SOME NEW SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERACT	BIOCS68 JRSSB6B TECH 67 BIOCS67	36B 229 571
ROBUSTNESS OF SUM OF SQUARES EQUAL AND PROPORTIONAL FREQUENCY SQUARES CONSTRUCTION OF ROOM SQUARES THE LOGIC OF LEAST SQUARES FOUNDATIONS FOR THE THEORY OF LEAST SQUARES THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN SQUARES FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST SQUARES FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST SQUARES FOR FESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN SQUARES ON OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST SQUARES ND ERROR STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST SQUARES (WITH DISCUSSION) TOPICS IN THE INVESTIGATI JRSSB67 12 ND ERROR STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST SQUARES AND ANALYSIS OF VARIANCE PROCEDURES ARE ALSO NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND PRODUCTS OF NORMAL VARIATES IN THE PRESENCE OF INTRA-/ ON THE DISTRIBUTION OF SQUARES AND PRODUCTS OF NORMAL VARIATES IN THE PRESENCE OF SYNTHESIS OF VARIANCES AND CONVARIANCES OF ANOVA MEAN SQUARES AND PRODUCTS THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST SQUARES AND PRODUCTS ECTATIONS, VARIANCES AND CONVARIANCES OF ANOVA MEAN SQUARES BY 'SYNTHESIS' EXP BIOCS66 963 E DEGREES OF FREEDOM FOR LINEAR COMBINATIONS OF MEAN SQUARES BY SATTERTHWAITE'S FORMULA ESTIMATING TH TECH 69 NO.4	IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN	SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS SQUARE TESTS FOR MATCHED SAMPLES SQUARE TYPE AND RELATED DESIGNS SQUARE TYPE AND CHECK ON THE MAIN EFFECTS AND INTERACT SQUARE' CORRIGENDA TO 'ON THE MEAN	BIOCS68 JRSSB6B TECH 67 BIOCS67 BIOKA58	36B 229 571 587
EQUAL AND PROPORTIONAL FREQUENCY SQUARES CONSTRUCTION OF ROOM SQUARES THE LOGIC OF LEAST SQUARES FOUNDATIONS FOR THE THEORY OF LEAST SQUARES THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN SQUARES FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST SQUARES FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST SQUARES FOR FESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN SQUARES ON OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST SQUARES ND ERROR STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST SQUARES AND ANALYSIS OF VARIANCE PROCEDURES ARE ALSO NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND CROSS PRODUCTS OF NORMAL VARIATES IN THE NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND RODUCTS THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST SQUARES AND TWO-STAGE LEAST SQUARES SETIMATORS FOR THE EXACT SAMPLING DISTRIBUTION OF ANOVA MEAN SQUARES BY 'SYNTHESIS' EXAMPLED OF THE PROCEDURE OF THE PROCEDURE OF ANOVA MEAN SQUARES BY 'SYNTHESIS' ON EXPROSENCE OF TREEDOM FOR LINEAR COMBINATIONS OF MEAN SQUARES BY 'SYNTHESIS' ON EXPROSENCE OF TREEDOM FOR LINEAR COMBINATIONS OF MEAN SQUARES BY SATTERTHWAITE'S FORMULA ESTIMATING TH TECH 61 JRSS 66 1540 TRESTS EMPLICATION OF GROUP THEORY TO BIOCAGE MB. BIOCAGE ON THE APPLICATION OF GROUP THEORY TO BIOCAGE MB. SQUARES AND THE MODIFIED GAUSS-NEWTON METHOD FOR THE TECH 61 LECTATIONS, VARIANCE SAND FOR THE METHOD OF LEAST SQUARES BY 'SYNTHESIS' ON THE MODIFIED GAUSS-NEWTON METHOD FOR THE TECH 61 LECTATIONS, VARIANCE SAND CONVARIANCES OF 'ANOVA MEAN SQUARES BY 'SYNTHESIS' ON THE APPLICATION OF GROUP THEORY TO BIOCAGE MB. LECTATIONS, VARIANCES, AND CONVARIANCES OF ANOVA MEAN SQUARES BY 'SYNTHESIS' ON EXPROSEMENT THE METHOD OF THE SIZE AND THE METHOD OF THE SIZE AND THE METHOD THE TECH 61 LECTATIONS, VARIANCES, AND CONVARIANCES OF ANOVA MEAN SQUARES BY 'SYNTHESIS' ON EXPROSEMENT THE METHOD THE TECH 61 LECTATIONS, VARIANCES, AND CONVARIANCES OF ANOVA MEAN SQUARES BY 'SYNTHESIS' ON EXPROSIZE THE METHOD THE TECH 61 LECTATIONS, VARIANCES, AND CONVARIA	IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN F EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER	SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS SQUARE TESTS FOR MATCHED SAMPLES SQUARE TYPE AND RELATED DESIGNS SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERACT SQUARE' CORRIGENDA TO 'ON THE MEAN SQUARED ERROR LOSS /THE BEST INVARIATE ESTIMATOR O	BIOCS68 JRSSB6B TECH 67 BIOCS67 BIOKA58 AMS 69	36B 229 571 587 1801
CONSTRUCTION OF ROOM SQUARES THE LOGIC OF LEAST SQUARES FOUNDATIONS FOR THE THEORY OF LEAST SQUARES THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN SQUARES FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST SQUARES ER OF TESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN SQUARES ON OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST SQUARES ON THE APPLICATION OF GROUP THEORY TO BIOKA69 NO.3 THE MODIFIED GAUSS-NEWTON METHOD FOR THE TECH 61 269 THE CARLO INVESTIGATION OF THE SIZE AND POW BIOKA69 NO.4 THE DISCUSSION) TOPICS IN THE INVESTIGATI JRSSB67 1 NO FROM STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST SQUARES (WITH DISCUSSION) TOPICS IN THE INVESTIGATI JRSSB67 1 NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND ANALYSIS OF VARIANCE PROCEDURES ARE ALSO NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND PRODUCTS THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST SQUARES AND TWO-STAGE LEAST SQUARES ESTIMATORS THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST SQUARES AND TWO-STAGE LEAST SQUARES ESTIMATORS THE DEGREES OF FREEDOM FOR LINEAR COMBINATIONS OF MEAN SQUARES BY 'SYNTHESIS' ON EXP BIOCS67 105 ECTATIONS, VARIANCES, AND CONVARIANCES OF 'ANOVA MEAN SQUARES BY 'SYNTHESIS' ON EXP BIOCS69 63	IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN F EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER NOTE ON SOME	SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS SQUARE TESTS FOR MATCHED SAMPLES SQUARE TYPE AND RELATED DESIGNS SOME NEW SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERACT SQUARE' CORRIGENDA TO 'ON THE MEAN SQUARED ERROR LOSS /THE BEST INVARIATE ESTIMATOR O SQUARED RANK TESTS WITH EXISTING TIES	BIOCS68 JRSSB6B TECH 67 BIOCS67 BIOKA58 AMS 69 TECH 67	36B 229 571 587 1B01 312
FOUNDATIONS FOR THE THEORY OF LEAST SQUARES THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN SQUARES FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST FOR TESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN SQUARES FOR TESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN SQUARES ON OF LINEAR RELATIONS FITTED 8Y THE METHOD OF LEAST ND ERROR STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST SQUARES AND ANALYSIS OF VARIANCE PROCEDURES ARE ALSO NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND RODUCTS THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST ECTATIONS, VARIANCES AND COVARIANCES OF 'ANOVA' MEAN SQUARES BY 'SYNTHESIS' EXP OF TESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN SQUARES BY 'SYNTHESIS' INCLUDENT OF THE SIZE AND POW BIOKA68 WO.3 JASA 69 NO.4 PROPER STRUCTURES OF CALCULATING CORRECTED SUMS OF SQUARES AND PRODUCTS THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST SQUARES AND TWO-STAGE LEAST SQUARES ESTIMATORS JASA 69 923 ECTATIONS, VARIANCES AND COVARIANCES OF 'ANOVA' MEAN SQUARES BY 'SYNTHESIS' ON THE APPLICATION OF GROUP THEORY TO BIOKA69 NO.3 PROPER STRUCTURES AND POW BIOKA69 NO.3 THE MODIFIED GAUSS-NEWTON METHOD FOR DIOKA69 NO.3 THE MODIFIED GAUSS-NEWTON METHOD FOR DIOKA69 NO.3 THE MODIFIED GAUSS-NEWTON METHOD FOR DIOKA69 NO.3 AND THE APPLICATION OF GROUP THEORY TO BIOKA69 NO.3 THE MODIFIED GAUSS-NEWTON METHOD FOR DIOKA69 NO.3 AND THE MODIFIED GAUSS-NEWTON METHOD FOR DIOKA69 NO.3 THE MODIFIED GAUSS-NEWTON METHOD FOR DIOKA69 NO.4 T	IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN F EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDEF NOTE ON SOME ROBUSTNESS OF SUM OF	SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS SQUARE TESTS FOR MATCHED SAMPLES SQUARE TYPE AND RELATED DESIGNS SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERACT SQUARE' CORRIGENDA TO 'ON THE MEAN SQUARED ERROR LOSS /THE BEST INVARIATE ESTIMATOR O SQUARED RANK TESTS WITH EXISTING TIES SQUARED RANKS TEST	BIOCS68 JRSSB6B TECH 67 BIOCS67 BIOKA58 AMS 69 TECH 67 JASA 68	36B 229 571 587 1801 312 33B
THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN SQUARES FITTING OF NON-LINEAR RECRESSION FUNCTIONS BY LEAST SQUARES ER OF TESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN SQUARES ON OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST SQUARES ON OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST SQUARES ON THE MODIFIED GAUSS-NEWTON METHOD FOR THE TECH 61 269 THE CARLO INVESTIGATION OF THE SIZE AND POW BIOKA68 431 ON THE APPLICATION OF GROUP THEORY TO BIOKA69 NO.3 THE MODIFIED GAUSS-NEWTON METHOD FOW BIOKA68 431 ON THE APPLICATION OF GROUP THEORY TO BIOKA69 NO.3 THE CARLO INVESTIGATION OF THE SIZE AND PWB BIOKA68 431 ON THE APPLICATION OF GROUP THEORY TO BIOKA69 NO.3 THE MODIFIED GAUSS-NEWTON METHOD FOW BIOKA68 431 ON THE APPLICATION OF GROUP THEORY TO BIOKA69 NO.3 THE MODIFIED GAUSS-NEWTON METHOD FOW BIOKA68 431 ON THE MODIFIED GAUSS-NEWTON METHOD FOW BIOKA68 431 ON THE APPLICATION OF GROUP THEORY TO BIOKA69 NO.3 THE MODIFIED GAUSS-NEWTON METHOD FOW BIOKA68 431 ON THE APPLICATION OF GROUP THEORY TO BIOKA69 NO.4 THE MODIFIED GAUSS-NEWTON METHOD FOW BIOKA68 431 ON THE APPLICATION OF GROUP THEORY TO BIOKA69 ON THE MODIFIED GAUSS-NEWTON METHOD FOW BIOKA68 431 ON THE APPLICATION OF GROUP THEORY TO BIOKA69 ON THE MODIFIED GAUSS-NEWTON METHOD FOW BIOKA68 431 ON THE MODIFIED GAUSS-NEWTON METHOD FOW BIOKA68 431 ON THE APPLICATION OF GROUP THEORY TO BIOKA69 ON THE MODIFIED GAUSS-NEWTON METHOD FOR THE TECH 61 AND CONTROL THEORY TO BIOKA69 ON THE MODIFIED GAUSS-NEWTON METHOD FOR THE TECH 61 AND CONTROL THEORY TO BIOKA69 ON THE MODIFIED GAUSS-NEWTON METHOD FOR THE TECH 61 AND CONTROL THEORY TO BIOKA69 ON THE MODIFIED GAUSS-NEWTON METHOD FOR THE TECH 61 AND CONTROL THEORY TO BIOKA69 ON THE MODIFIED GAUSS-NEWTON METHOD FOR THE TECH 61 AND CONTROL THEORY TO BIOKA69 ON THE MODIFIED GAUSS-NEWTON METHOD FOR THE TECH 61 AND CONTROL THEORY TO BOOKA THE MODIFIED GAUSS-NEWTON METHOD FOR THE TECH 61 AND CONTROL THEORY TO BOOKA THE MODIFIED GAUSS-NEWTON METHOD FOR THE TECH 61 AND CONTROL THEORY TO BOOKA THE MODIFIED GAUSS-NEWTON METHOD T	IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN F EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER NOTE ON SOME ROBUSTNESS OF SUM OF EQUAL AND PROPORTIONAL FREQUENCY CONSTRUCTION OF ROOM	SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS SQUARE TESTS FOR MATCHED SAMPLES SQUARE TYPE AND RELATED DESIGNS SOME NEW SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERACT SQUARE' CORRIGENDA TO 'ON THE MEAN SQUARED ERROR LOSS /THE BEST INVARIATE ESTIMATOR O SQUARED RANK TESTS WITH EXISTING TIES SQUARES SQUARES SQUARES	BIOCS68 JRSSB6B TECH 67 BIOCS67 BIOKA58 AMS 69 TECH 67 JASA 68 JASA 67 AMS 68	36B 229 571 587 1B01 312 33B 226 1540
FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST SQUARES ON OF LINEAR RELATIONS SATTERTHWAITE'S SYNTHETIC MEAN SQUARES ON OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST SQUARES (WITH DISCUSSION) TOPICS IN THE INVESTIGATI JRSSB67 ND ERROR STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST SQUARES AND ANALYSIS OF VARIANCE PROCEDURES ARE ALSO JASA 69 NO.4 PRESENCE OF INTRA-/ ON THE DISTRIBUTION OF SUMS OF SQUARES AND CROSS PRODUCTS OF NORMAL VARIATES IN THE AMS 62 1461 NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND PRODUCTS THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST SQUARES AND PRODUCTS ECTATIONS, VARIANCES AND COVARIANCES OF 'ANOVA' MEAN SQUARES BY 'SYNTHESIS' EXPRESENCE OF FREEDOM FOR LINEAR COMBINATIONS OF MEAN SQUARES BY 'SATTERTHWAITE'S FORMULA ESTIMATING TH TECH 69 NO.4	IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN F EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER NOTE ON SOME ROBUSTNESS OF SUM OF EQUAL AND PROPORTIONAL FREQUENCY CONSTRUCTION OF ROOM THE LOGIC OF LEAST	SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS SQUARE TESTS FOR MATCHED SAMPLES SQUARE TESTS FOR MATCHED SAMPLES SQUARE TESTS FOR MATCHED SAMPLES SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERACT SQUARE' CORRIGENDA TO 'ON THE MEAN SQUARED ERROR LOSS /THE BEST INVARIATE ESTIMATOR O SQUARED RANK TESTS WITH EXISTING TIES SQUARED RANKS TEST SQUARES SQUARES SQUARES SQUARES	BIOCS68 JRSSB6B TECH 67 BIOCS67 BIOKA58 AMS 69 TECH 67 JASA 68 JASA 67 AMS 68 JRSS863	36B 229 571 587 1B01 312 33B 226 1540
ER OF TESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN SQUARES /TE CARLO INVESTIGATION OF THE SIZE AND POW BIOKA68 431 ON OF LINEAR RELATIONS FITTED 8Y THE METHOD OF LEAST SQUARES (WITH DISCUSSION) TOPICS IN THE INVESTIGATI JRSSB67 1 ND ERROR STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST SQUARES AND ANALYSIS OF VARIANCE PROCEDURES ARE ALSO PRESENCE OF INTRA-/ ON THE DISTRIBUTION OF SUMS OF SQUARES AND CROSS PRODUCTS OF NORMAL VARIATES IN THE NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND PRODUCTS THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST SQUARES AND TWO-STAGE LEAST SQUARES ESTIMATORS THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST SQUARES BY 'SYNTHESIS' ECTATIONS, VARIANCES AND COVARIANCES OF 'ANOVA' MEAN SQUARES BY 'SYNTHESIS' ECTATIONS, VARIANCES, AND CONVARIANCES OF ANOVA MEAN SQUARES BY 'SYNTHESIS' ON EXP BIOCS66 963 E DEGREES OF FREEDOM FOR LINEAR COMBINATIONS OF MEAN SQUARES BY SATTERTHWAITE'S FORMULA ESTIMATING TH TECH 69 NO.4	IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN F EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDEF NOTE ON SOME ROBUSTNESS OF SUM OF EQUAL AND PROPORTIONAL FREQUENCY CONSTRUCTION OF ROOM THE LOGIC OF LEAST FOUNDATIONS FOR THE THEORY OF LEAST	SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS SQUARE TESTS FOR MATCHED SAMPLES SQUARE TYPE AND RELATED DESIGNS SQUARE TYPE AND RELATED DESIGNS SQUARES SQUARED SOME NEW SQUARED CORRIGENDA TO 'ON THE MEAN SQUARED CORRIGENDA TO 'ON THE MEAN SQUARED RANK TESTS WITH EXISTING TIES SQUARED SQUARES SQUARES SQUARES SQUARES SQUARES SQUARES	BIOCS68 JRSSB6B TECH 67 BIOCS67 BIOKA58 AMS 69 TECH 67 JASA 68 JASA 67 AMS 68 JRSS863 JRSS869	36B 229 571 587 1B01 312 33B 226 1540 124 89
ON OF LINEAR RELATIONS FITTED 8Y THE METHOD OF LEAST SQUARES (WITH DISCUSSION) TOPICS IN THE INVESTIGATI JRSSB67 1 ND ERROR STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST SQUARES AND ANALYSIS OF VARIANCE PROCEDURES ARE ALSO JASA 69 NO.4 PRESENCE OF INTRA-/ ON THE DISTRIBUTION OF SUMS OF SQUARES AND CROSS PRODUCTS OF NORMAL VARIATES IN THE NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND PRODUCTS THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST SQUARES AND TWO-STAGE LEAST SQUARES ESTIMATORS THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST SQUARES BY 'SYNTHESIS' ECTATIONS, VARIANCES AND COVARIANCES OF 'ANOVA MEAN SQUARES BY 'SYNTHESIS' ENTATIONS, VARIANCES, AND CONVARIANCES OF ANOVA MEAN SQUARES BY 'SYNTHESIS' ON EXP BIOCS67 EDEGREES OF FREEDOM FOR LINEAR COMBINATIONS OF MEAN SQUARES BY SATTERTHWAITE'S FORMULA ESTIMATING TH TECH 69 NO.4	IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN F EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER NOTE ON SOME ROBUSTNESS OF SUM OF EQUAL AND PROPORTIONAL FREQUENCY CONSTRUCTION OF ROOM THE LOGIC OF LEAST FOUNDATIONS FOR THE THEORY OF LEAST THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN	SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS SQUARE TESTS FOR MATCHED SAMPLES SQUARE TYPE AND RELATED DESIGNS SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERACT SQUARE' CORRIGENDA TO 'ON THE MEAN SQUARED ERROR LOSS / THE BEST INVARIATE ESTIMATOR O SQUARED RANK TESTS WITH EXISTING TIES SQUARES SOUR ARES SOUR A	BIOCS68 JRSSB6B TECH 67 BIOCS67 BIOCKA58 AMS 69 TECH 67 JASA 68 JASA 67 AMS 68 JRSS863 JRSS863 JRSS869 BIOKA69	36B 229 571 587 1B01 312 33B 226 1540 124 89 NO.3
ND ERROR STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST SQUARES AND ANALYSIS OF VARIANCE PROCEDURES ARE ALSO PRESENCE OF INTRA-/ ON THE DISTRIBUTION OF SUMS OF SQUARES AND CROSS PRODUCTS OF NORMAL VARIATES IN THE NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND PRODUCTS THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST SQUARES AND TWO-STAGE LEAST SQUARES ESTIMATORS THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST SQUARES BY 'SYNTHESIS' EXP BIOCS67 105 ECTATIONS, VARIANCES, AND CONVARIANCES OF 'ANOVA MEAN SQUARES BY 'SYNTHESIS' ON EXP BIOCS67 105 ECTATIONS, VARIANCES, AND CONVARIANCES OF ANOVA MEAN SQUARES BY 'SYNTHESIS' SON EXP BIOCS67 105 EDEGREES OF FREEDOM FOR LINEAR COMBINATIONS OF MEAN SQUARES BY SATTERTHWAITE'S FORMULA ESTIMATING TH TECH 69 NO.4	IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN F EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER ROBUSTNESS OF SUM OF EQUAL AND PROPORTIONAL FREQUENCY CONSTRUCTION OF ROOM THE LOGIC OF LEAST FOUNDATIONS FOR THE THEORY OF LEAST THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST	SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS SQUARE TESTS FOR MATCHED SAMPLES SQUARE TYPE AND RELATED DESIGNS SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERACT SQUARE' CORRIGENDA TO 'ON THE MEAN SQUARED ERROR LOSS /THE BEST INVARIATE ESTIMATOR O SQUARED RANK TESTS WITH EXISTING TIES SQUARED RANKS TEST SQUARES THE MODIFIED GAUSS—NEWTON METHOD FOR THE	BIOCS68 JRSSB6B TECH 67 BIOCS67 BIOKA58 AMS 69 TECH 67 JASA 68 JASA 68 JRSS863 JRSS863 JRSS863 JRSS863 JRSS863 TECH 61	36B 229 571 587 1B01 312 33B 226 1540 124 89 NO.3 269
PRESENCE OF INTRA-/ ON THE DISTRIBUTION OF SUMS OF SQUARES AND CROSS PRODUCTS OF NORMAL VARIATES IN THE AMS 62 1461 NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND PRODUCTS TECH 62 419 THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST SQUARES AND TWO-STAGE LEAST SQUARES ESTIMATORS LECTATIONS, VARIANCES AND COVARIANCES OF 'ANOVA' MEAN SQUARES BY 'SYNTHESIS' ECTATIONS, VARIANCES, AND CONVARIANCES OF ANOVA MEAN SQUARES BY 'SYNTHESIS' ON EXP BIOCSGB 963 E DEGREES OF FREEDOM FOR LINEAR COMBINATIONS OF MEAN SQUARES BY SATTERTHWAITE'S FORMULA ESTIMATING TH TECH 69 NO.4	IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN F EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER NOTE ON SOME ROBUSTNESS OF SUM OF EQUAL AND PROPORTIONAL FREQUENCY CONSTRUCTION OF ROOM THE LOGIC OF LEAST FOUNDATIONS FOR THE THEORY OF LEAST THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST ER OF TESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN	SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS SQUARE TESTS FOR MATCHED SAMPLES SQUARE TYPE AND RELATED DESIGNS SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERACT SQUARE' CORRIGENDA TO 'ON THE MEAN SQUARED ERROR LOSS /THE BEST INVARIATE ESTIMATOR O SQUARED RANK TESTS WITH EXISTING TIES SQUARED RANKS TEST SQUARES THE MODIFIED GAUSS-NEWTON METHOD FOR THE SQUARES /TE CARLO INVESTIGATION OF THE SIZE AND POW	BIOCS68 JRSSB6B TECH 67 BIOCS67 BIOKA58 AMS 69 TECH 67 JASA 68 JASA 67 AMS 68 JRSS863 JRSS869 BIOKA69 TECH 61 BIOKA68	36B 229 571 587 1801 312 33B 226 1540 124 89 NO.3 269 431
NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND PRODUCTS THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST SQUARES AND TWO-STAGE LEAST SQUARES ESTIMATORS JASA 69 923 ECTATIONS, VARIANCES AND COVARIANCES OF 'ANOVA' MEAN SQUARES BY 'SYNTHESIS' EXPRESSION EXP BIOCSES EDEGREES OF FREEDOM FOR LINEAR COMBINATIONS OF MEAN SQUARES BY SATTERTHWAITE'S FORMULA ESTIMATING TH TECH 69 NO.4	IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN F EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER NOTE ON SOME ROBUSTNESS OF SUM OF EQUAL AND PROPORTIONAL FREQUENCY CONSTRUCTION OF ROOM THE LOGIC OF LEAST FOUNDATIONS FOR THE THEORY OF LEAST THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST ER OF TESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN ON OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST	SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS SQUARE TESTS FOR MATCHED SAMPLES SQUARE TYPE AND RELATED DESIGNS SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERACT SQUARE' CORRIGENDA TO 'ON THE MEAN SQUARED ERROR LOSS / THE BEST INVARIATE ESTIMATOR O SQUARED RANK TESTS WITH EXISTING TIES SQUARES THE MODIFIED GAUSS—NEWTON METHOD FOR THE SQUARES /TE CARLO INVESTIGATION OF THE SIZE AND POW SQUARES (WITH DISCUSSION) TOPICS IN THE INVESTIGATI	BIOCS68 JRSSB6B TECH 67 BIOCS67 BIOKA58 AMS 69 TECH 67 JASA 68 JASA 67 AMS 68 JRSS863 JRSS863 JRSS869 BIOKA69 TECH 61 BIOKA68 JRSSB67	36B 229 571 587 1B01 312 33B 226 1540 124 89 NO.3 269 431
THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST SQUARES AND TWO-STAGE LEAST SQUARES ESTIMATORS. JASA 69 923 ECTATIONS, VARIANCES AND COVARIANCES OF 'ANOVA' MEAN SQUARES BY 'SYNTHESIS' EXPRIBUTIONS, VARIANCES, AND CONVARIANCES OF ANOVA MEAN SQUARES BY 'SYNTHESIS' ON EXP BIOCS67 105 ECTATIONS, VARIANCES, AND CONVARIANCES OF ANOVA MEAN SQUARES BY 'SYNTHESIS' ON EXP BIOCS68 963 EDEGREES OF FREEDOM FOR LINEAR COMBINATIONS OF MEAN SQUARES BY SATTERTHWAITE'S FORMULA ESTIMATING TH TECH 69 NO.4	IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN F EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER ROBUSTNESS OF SUM OF EQUAL AND PROPORTIONAL FREQUENCY CONSTRUCTION OF ROOM THE LOGIC OF LEAST FOUNDATIONS FOR THE THEORY OF LEAST THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST ER OF TESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN ON OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST ND ERROR STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST	SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS SQUARE TESTS FOR MATCHED SAMPLES SQUARE TYPE AND RELATED DESIGNS SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERACT SQUARED SQUARED ERROR LOSS /THE BEST INVARIATE ESTIMATOR O SQUARED RANK TESTS WITH EXISTING TIES SQUARED RANKS TEST SQUARES SQUAR	BIOCS68 JRSSB6B TECH 67 BIOCK67 BIOKA58 AMS 69 TECH 67 JASA 68 JASA 67 AMS 68 JRSS863 JRSS863 BIOKA69 TECH 61 BIOKA68 JRSS867 JRSS867 JRSS867	36B 229 571 587 1B01 312 33B 226 1540 124 89 NO.3 269 431 1
ECTATIONS, VARIANCES AND COVARIANCES OF 'ANOVA' MEAN SQUARES BY 'SYNTHESIS' EXP BIOCS67 105 ECTATIONS, VARIANCES, AND CONVARIANCES OF ANOVA MEAN SQUARES BY 'SYNTHESIS' ON EXP BIOCS6B 963 E DEGREES OF FREEDOM FOR LINEAR COMBINATIONS OF MEAN SQUARES BY SATTERTHWAITE'S FORMULA ESTIMATING TH TECH 69 NO.4	IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN F EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER ROBUSTNESS OF SUM OF EQUAL AND PROPORTIONAL FREQUENCY CONSTRUCTION OF ROOM THE LOGIC OF LEAST FOUNDATIONS FOR THE THEORY OF LEAST THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN FITTING OF NON-LINEAR RECRESSION FUNCTIONS BY LEAST ER OF TESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN ON OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST ND ERROR STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST PRESENCE OF INTRA-/ ON THE DISTRIBUTION OF SUMS OF	SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS SQUARE TESTS FOR MATCHED SAMPLES SQUARE TYPE AND RELATED DESIGNS SQUARE TYPE AND RELATED DESIGNS SQUARE SQUARE CORRIGENDA TO 'ON THE MEAN SQUARED ERROR LOSS /THE BEST INVARIATE ESTIMATOR O SQUARED RANK TESTS WITH EXISTING TIES SQUARED RANKS TEST SQUARES SQUARES SQUARES SQUARES SQUARES SQUARES SQUARES SQUARES SQUARES THE MODIFIED GAUSS-NEWTON METHOD FOR THE SQUARES /TE CARLO INVESTIGATION OF THE SIZE AND POW SQUARES (WITH DISCUSSION) TOPICS IN THE INVESTIGATI SQUARES AND CROSS PRODUCTS OF NORMAL VARIATES IN THE	BIOCS68 JRSSB6B TECH 67 BIOCS67 BIOKA58 AMS 69 TECH 67 JASA 68 JASSA 67 JASS 68 JRSS869 BIOKA69 TECH 61 BIOKA68 JRSSB67 JASA 69 AMS 62	36B 229 571 587 1B01 312 33B 226 1540 124 89 NO.3 269 431 1
ECTATIONS, VARIANCES, AND CONVARIANCES OF ANOVA MEAN SQUARES BY 'SYNTHESIS' ON EXP BIOCS6B 963 E DEGREES OF FREEDOM FOR LINEAR COMBINATIONS OF MEAN SQUARES BY SATTERTHWAITE'S FORMULA ESTIMATING TH TECH 69 NO.4	IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN F EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER NOTE ON SOME ROBUSTNESS OF SUM OF EQUAL AND PROPORTIONAL FREQUENCY CONSTRUCTION OF ROOM THE LOGIC OF LEAST FOUNDATIONS FOR THE THEORY OF LEAST THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST ER OF TESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN ON OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST ND ERROR STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST PRESENCE OF INTRA-/ ON THE DISTRIBUTION OF SUMS OF NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF	SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS SQUARE TESTS FOR MATCHED SAMPLES SQUARE TYPE AND RELATED DESIGNS SOME NEW SQUARES SQUARED TYPE AND RELATED DESIGNS SOME NEW SQUARED CORRIGENDA TO 'ON THE MEAN SQUARES (WITH DISCUSSION) TOPICS IN THE INVESTIGATI SQUARES AND ANALYSIS OF VARIANCE PROCEDURES ARE ALSO SQUARES AND CROSS PRODUCTS SQUARES AND PRODUCTS	BIOCS68 JRSS86B TECH 67 BIOCS67 BIOKA58 AMS 69 TECH 67 JASA 68 JASA 67 AMS 68 JRSS863 JRSS869 BIOKA69 TECH 61 BIOKA68 JRSS867 JASA 62 AMS 62 TECH 62	36B 229 571 587 1801 312 33B 226 1540 124 89 NO.3 269 431 NO.4 1461 419
E DEGREES OF FREEDOM FOR LINEAR COMBINATIONS OF MEAN SQUARES BY SATTERTHWAITE'S FORMULA ESTIMATING TH TECH 69 NO.4	IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN F EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER ROBUSTNESS OF SUM OF EQUAL AND PROPORTIONAL FREQUENCY CONSTRUCTION OF ROOM THE LOGIC OF LEAST FOUNDATIONS FOR THE THEORY OF LEAST THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST ER OF TESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN NON OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST ND ERROR STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST PRESENCE OF INTRA-/ ON THE DISTRIBUTION OF SUMS OF NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST	SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS SQUARE TESTS FOR MATCHED SAMPLES SQUARE TYPE AND RELATED DESIGNS SQUARE TYPE AND RELATED DESIGNS SQUARES SQUARES SQUARED CHROR LOSS SQUARED FROR LOSS SQUARED CHROR LOSS SQUARES AND CROSS PRODUCTS SQUARES AND TWO-STAGE LEAST SQUARES ESTIMATORS	BIOCS68 JRSSB6B JRSSB6B BIOCS67 BIOKA58 AMS 69 TECH 67 JASA 68 JASA 69 JRSSB63 JRSSB63 JRSSB69 TECH 61 BIOKA68 JRSSB69 TECH 62 AMS 69 AMS 62 TECH 62 JASA 69	36B 229 571 587 1801 312 33B 226 1540 124 89 NO.3 269 431 1 NO.4 1461 419 923
	IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN F EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER ROBUSTNESS OF SUM OF EQUAL AND PROPORTIONAL FREQUENCY CONSTRUCTION OF ROOM THE LOGIC OF LEAST FOUNDATIONS FOR THE THEORY OF LEAST THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST ER OF TESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN ON OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST ND ERROR STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST PRESENCE OF INTRA-/ ON THE DISTRIBUTION OF SUMS OF NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST ECTATIONS, VARIANCES AND COVARIANCES OF 'ANOVA' MEAN	SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS SQUARE TESTS FOR MATCHED SAMPLES SQUARE TYPE AND RELATED DESIGNS SQUARE SQUARES SQUARE CORRIGENDA TO 'ON THE MEAN SQUARED ERROR LOSS /THE BEST INVARIATE ESTIMATOR O SQUARED RANK TESTS WITH EXISTING TIES SQUARED RANKS TEST SQUARES SQ	BIOCS68 JRSSB6B TRSSB6B TBIOCS67 BIOKA58 AMS 69 JASA 68 JASA 69 JASA 68 JRSS863 JRSS869 BIOKA69 TECH 61 BIOKA68 JJSSA 69 AMS 62 TECH 62 JASA 69 BIOCS67	36B 229 571 587 1B01 312 33B 226 1540 124 89 NO.3 269 431 1 NO.4 1461 419 923 105
QUENT, DAULE O EQUATION T(LEAD) OQUANES ESTIMATE OF SUIL CONTENT) BIOCS69 159	IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN F EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER NOTE ON SOME ROBUSTNESS OF SUM OF EQUAL AND PROPORTIONAL FREQUENCY CONSTRUCTION OF ROOM THE LOGIC OF LEAST FOUNDATIONS FOR THE THEORY OF LEAST THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN FITTING OF NON-LINEAR RECRESSION FUNCTIONS BY LEAST ER OF TESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN ON OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST ND ERROR STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST PRESENCE OF INTRA-/ ON THE DISTRIBUTION OF SUMS OF NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST ECTATIONS, VARIANCES AND COVARIANCES OF 'ANOVA' MEAN ECTATIONS, VARIANCES, AND CONVARIANCES OF ANOVA MEAN	SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS SQUARE TESTS FOR MATCHED SAMPLES SQUARE TYPE AND RELATED DESIGNS SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERACT SQUARE' CORRIGENDA TO 'ON THE MEAN SQUARED ERROR LOSS /THE BEST INVARIATE ESTIMATOR O SQUARED RANK TESTS WITH EXISTING TIES SQUARED RANKS TEST SQUARES SQUARES SQUARES SQUARES SQUARES SQUARES SQUARES SQUARES SQUARES THE MODIFIED GAUSS-NEWTON METHOD FOR THE SQUARES /TE CARLO INVESTIGATION OF THE SIZE AND POW SQUARES (WITH DISCUSSION) TOPICS IN THE INVESTIGATI SQUARES AND CROSS PRODUCTS OF NORMAL VARIATES IN THE SQUARES AND PRODUCTS SQUARES AND TWO-STAGE LEAST SQUARES ESTIMATORS SQUARES BY 'SYNTHESIS' EXP	BIOCS68 JRSSB6B TECH 67 BIOCS67 BIOKA58 AMS 69 TECH 67 JASA 68 JASA 67 AMS 68 JRSS869 BIOKA69 TECH 61 BIOKA68 JRSSB67 JASA 69 TECH 61 JASA 69 TECH 62 JASA 69 BIOCS6B	36B 229 571 587 1B01 312 33B 226 1540 124 89 NO.3 269 431 NO.4 1461 419 923 105 963
	IONS IN A 2 TO THE POWER N FACTORIAL E/ NOTES. THE SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN F EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER NOTE ON SOME ROBUSTNESS OF SUM OF EQUAL AND PROPORTIONAL FREQUENCY CONSTRUCTION OF ROOM THE LOGIC OF LEAST FOUNDATIONS FOR THE THEORY OF LEAST THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEAST ER OF TESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN ON OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST ND ERROR STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST PRESENCE OF INTRA-/ ON THE DISTRIBUTION OF SUMS OF NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST ECTATIONS, VARIANCES AND COVARIANCES OF 'ANOVA' MEAN E DEGREES OF FREEDOM FOR LINEAR COMBINATIONS OF MEAN	SQUARE TESTS FOR LIMEAR TRENDS IN PROPORTIONS SQUARE TESTS FOR MATCHED SAMPLES SQUARE TYPE AND RELATED DESIGNS SQUARE TYPE AND RELATED DESIGNS SQUARE TYPE AND RELATED DESIGNS SQUARE SQUARE CORRIGENDA TO 'ON THE MEAN SQUARED ERROR LOSS / THE BEST INVARIATE ESTIMATOR O SQUARED RANK TESTS WITH EXISTING TIES SQUARES AND ANALYSIS OF VARIANCE PROCEDURES ARE ALSO SQUARES SY 'SYNTHESIS' ON EXP SQUARES SY SATTERTHWAITE'S FORMULA ESTIMATING TH	BIOCS68 JRSSB6B TECH 67 BIOCS67 BIOKA58 AMS 69 TECH 67 JASA 68 JRSS863 JRSS863 BIOKA69 BIOKA69 BIOKA69 AMS 62 JRSS863 JRSS863 JRSS863 JRSS863 JRSS863 BIOKA69 BIOKA69 BIOKA69 BIOKA69 BIOKA68 JRSSB67 JASA 69 AMS 62 TECH 62 JASA 69 BIOCS67 BIOCS66B BIOCS66B	36B 229 571 587 1801 312 33B 226 1540 124 89 NO.3 269 431 1 NO.4 1461 419 923 105 963 NO.4

```
ON THE LEAST SQUARES ESTIMATION OF NON-LINEAR RELATIONS
MATRIX
                                                 LEAST SQUARES ESTIMATION OF THE COMPONENTS OF A SYMMETRIC
                                                                                                                         360
                                ON A RESTRICTED LEAST SQUARES ESTIMATOR
                                                                                                               JASA 69
                                                                                                                         964
           ASYMPTOTIC PROPERTIES OF NON-LINEAR LEAST SQUARES ESTIMATORS
                                                                                                                AMS 69
                                                                                                                         633
BUTION OF ORDINARY LEAST SQUARES AND TWO-STAGE LEAST SQUARES ESTIMATORS
                                                                                    THE EXACT SAMPLING DISTRI JASA 69
                                                                                                                         923
                     WHEN ARE GAUSS-MARKOV AND LEAST SQUARES ESTIMATORS IDENTICAL. A COORDINATE-FREE APPRO
                                                                                                                         70
                                                                                                               AMS 6B
                                        EXPECTED MEAN SQUARES FOR NESTED CLASSIFICATIONS
                                                                                                               BIOCS69
                                                                                                                         427
              ON THE DISTRIBUTION OF VARIOUS SUMS OF SQUARES IN AN ANALYSIS OF VARIANCE TABLE FOR DIFFEREN
T CLASSIFI/
                                                                                                               JRSSR59
                                                                                                                         114
                 DISTRIBUTION OF THE RESIDUAL SUM OF SQUARES IN FITTING INEQUALITIES
                                                                                                               BIOKA67
                                                                                                                          69
IS IDENTIFIED
                                    THE EXPECTED MEAN SQUARES IN GENETIC EXPERIMENTS WHEN ONLY ONE PARENT
                                                                                                               BIOCS65
                                                                                                                         436
                                   A THEOREM ON LEAST SQUARES IN MULTIVARIATE LINEAR REGRESSION
                                                                                                                JASA 67 1494
                                                                                                                AMS 6B
                               CONVERGENCE OF SUMS OF SQUARES OF MARTINGALE DIFFERENCES
                                                                                                                         123
                                        ON THE SUM OF SQUARES OF NORMAL SCORES
                                                                                                               BIOKA56
                                                                                                                         456
  EXPECTED VALUES OF ORDERED VARIATES AND THE SUM OF SQUARES OF NORMAL SCORES
                                                                                        THE CURVE THROUGH THE BIOKA66
                                                                                                                         252
                          CORRIGENDA, 'ON THE SUM OF SQUARES OF NORMAL SCORES'
                                                                                                                         669
 POINT OF VIEW OF THE USER
                              AN APPRAISAL OF LEAST SQUARES PROGRAMS FOR THE ELECTRONIC COMPUTER FROM THE JASA 67
                                                                                                                         B19
  FOR SPECIFICATION ERRORS IN CLASSICAL LINEAR LEAST-SQUARES REGRESSION ANALYSIS
                                                                                                         TESTS JRSSB69
                                                 LEAST SQUARES REGRESSION ANALYSIS FOR TREND-REDUCED TIME
                                                                                                               JRSSB55
                                                                                                                          91
                                     RESTRICTED LEAST SQUARES REGRESSION AND CONVEX QUADRATIC PROGRAMMING
                                                                                                               TECH 69 NO.4
SERIES
                  A NUMERICAL INVESTIGATION OF LEAST SQUARES REGRESSION INVOLVING TREND-REDUCED MARKOFF
                                                                                                               JRSSB55
                                                                                                                         105
        FOR OPTIMALITY AND VALIDITY AND SIMPLE LEAST SQUARES THEORY
                                                                                                    CONDITIONS
                                                                                                               AMS 69 1617
 EQUALITY OF TWO MATRICES WITH APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS
                                                                                       /LEMMA FOR PROVING THE JASA 69
                                                                                                                         969
   OF CONSTRUCTING SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES USING A COMPUTER
                                                                                                    ON METHODS TECH 60
                                                                                                                         507
   OF CONSTRUCTING SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES USING A COMPUTER. II
                                                                                                    ON METHODS TECH 61
                                                                                                                         111
           FOUR-WAY BALANCED DESIGNS BASED ON YOUDEN SQUARES WITH 5, 6, OR 7 TREATMENTS
                                                                                                               BIOCS67
                                                                                                                         B<sub>0</sub>3
                                    ANALYSIS OF LATIN SQUARES WITHIN A CERTAIN TYPE OF ROW-COLUMN INTERACTI TECH 59
                                                                                                                         379
OWN ERROR VARIANCES, SAMPLING EXPERIMENTS WITH LEAST SQUARES, WEIGHTED LEAST SQUARES AND MAXIMUM LIKELIHOO BIOCS68
                                                                                                                         607
                                            NOTE ON MR SRIVASTAVA'S PAPER ON THE POWER FUNCTION OF STUDENT'S BIOKA5B
 TEST
                                                                                                                         429
UNEQUAL PROBABILITY SAM/
                           AN EMPIRICAL STUDY OF THE STABILITIES OF ESTIMATORS AND VARIANCE ESTIMATORS IN JASA 69
                                                                                                                         540
E EQUATIONS OF POPULATION GENETICS
                                                       STABILITY OF SOLUTIONS TO CERTAIN NONLINEAR DIFFERENC BIOCS69
                                                                                                                          27
 FOR POWER-SERIES DISTRIBUTIONS, AND THE APPROXIMATE STABILIZATION OF VARIANCE BY TRANSFORMATIONS /ATORS JASA 6B
                                                                                                                         321
VARIANCES
                                                   ON STABILIZING THE BINOMIAL AND NEGATIVE BINOMIAL
                                                                                                                JASA 61
                                                                                                                         143
ACCELERATION
                                              THE REAL STABLE CHARACTERISTIC FUNCTIONS AND CHAOTIC
                                                                                                                JRSSB61
                                                                                                                         1B0
                        SOME PROPERTIES OF SYMMETRIC STABLE DISTRIBUTIONS
                                                                                                                JASA 6B
                                                                                                                         817
              CONVERGENCE OF A HUMAN POPULATION TO A STABLE FORM
                                                                                                                         395
                                                                                                                JASA 6B
          CONVOLUTIONS OF DISTRIBUTIONS ATTRACTED TO STABLE LAWS
                                                                                                                 AMS 6B 13B1
                                                     A STABLE LIMIT THEOREM FOR MARKOV TESTS
                                                                                                                 AMS 69 1467
                                          ON DISCRETE STABLE POPULATION THEORY
                                                                                                                BIOCS69
            A REMARK ON HITTING PLACES FOR TRANSIENT STABLE PROCESS
                                                                                                                 AMS 6B
                                                                                                                         365
                                       ON HITTING FOR STABLE PROCESSES
                                                                                                                 AMS 67 1021
ATE LAW OF THE ITERATED LOGARITHM FOR NON-DECREASING STABLE PROCESSES (ADDENDUM, 69 1855)
                                                                                                       A DELIC
                                                                                                                AMS 6B 1B1B
                  ON A CHARACTERIZATION OF SYMMETRIC STABLE PROCESSES WITH FINITE MEAN
                                                                                                                 AMS 6B 149B
    FOR DISCUSSING THE PASSAGE TIME DISTRIBUTION FOR STABLE SYSTEMS
                                                                                                   A TECHNIQUE JRSSB66
                                                                                                                         477
                             CANNIBALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN EXPERIMENT AND A
STOCHASTIC MODEL
                                                                                                               BIOCS6B
                                                                                                                         247
                     MEMORYLESS STRATEGIES IN FINITE-STAGE DYNAMIC PROGRAMMING
                                                                                                                AMS 64
                                                                                                                         B63
PLING DISTRIBUTION OF ORDINARY LEAST SQUARES AND TWO-STAGE LEAST SQUARES ESTIMATORS
                                                                                                 THE EXACT SAM JASA 69
                                                                                                                         923
LINEAR ECONOMICS
                                                   TWO-STAGE NORMAL SAMPLING IN TWO-ACTION PROBLEMS WITH
                                                                                                                JASA 69 NO 4
                              COMPARISONS OF SOME TWO STAGE SAMPLING METHODS
                                                                                                                AMS 66
                                                                                                                        B91
                                  ESTIMATION IN MULTI-STAGE SURVEYS
                                                                                                                JASA 69
                                                                                                                         B30
                  GROUP SCREENING WITH MORE THAN TWO STAGES
                                                                                                               TECH 62
                                                                                                                         209
       ON GROWTH PARAMETER ESTIMATION FOR EARLY LIFE STAGES
                                                                                                               BT0CS66
                                                                                                                         162
  STUDY OF POPULATION GROWTH IN ORGANISMS GROUPED BY STAGES
                                                                                                           THE BIOCS65
                                                                                                                           1
                                                                  ON SIMPLIFICATIONS OF SAMPLING DESIGN THRO JASA 56
UGH REPLICATION WITH EQUAL PROBABILITIES AND WITHOUT STAGES
                                                                                                                          24
TIC MEANS FROM LOGNORMAL POPULATIONS AGAINST A GIVEN STANDARD
                                                                  /FOR SEQUENTIALLY TESTING OBSERVED ARITHME TECH 6B
                                                                                                                         605
                        AN UPPER BOUND FOR THE SAMPLE STANDARD DEVIATION
                                                                                                               TECH 62
                                                                                                                         134
                     BOUNDS FOR THE RATIO OF RANGE TO STANDARD DEVIATION
                                                                                                               BIOKA55
                                                                                                                         26B
                     A QUICK METHOD OF ESTIMATING THE STANDARD DEVIATION
                                                                                                               BIOKA66
                                                                                                                         559
OF THE RATIO, IN A SINGLE NORMAL SAMPLE, OF RANGE TO STANDARD DEVIATION
                                                                                            THE DISTRIBUTION BIOKA54
                                                                                                                         4R2
S IN SETTING CONFIDENCE INTERVALS FOR THE POPULATION STANDARD DEVIATION
                                                                                THE USE OF SAMPLE QUASI-RANGE JASA 61
                                                                                                                         260
             ERRATA, ' AN UPPER BOUND FOR THE SAMPLE STANDARD DEVIATION '
                                                                                                               TECH 62
                                                                                                                         440
            DISTRIBUTION THEORY OF TWO ESTIMATES FOR STANDARD DEVIATION BASED ON SECOND VARIATE DIFFERENCE BIOKAS4
                                       CONTROLLING THE STANDARD DEVIATION BY CUSUMS AND WARNING LINES
                                                                                                                TECH 63
                                                                                                                         307
                              ESTIMATING THE MEAN AND STANDARD DEVIATION FROM A CENSORED NORMAL SAMPLE
                                                                                                               BIOKA67
                       QUERY, CONFIDENCE INTERVAL FOR STANDARD DEVIATION FROM A SINGLE OBSERVATION
                                                                                                               TECH 66
                                                                                                                         367
                 THE USE OF THE RANGE IN PLACE OF THE STANDARD DEVIATION IN STEIN'S TEST
                                                                                                                AMS 63
                                                                                                                         346
                                THE RATIO OF RANGE TO STANDARD DEVIATION IN THE SAME NORMAL SAMPLE
                                                                                                               BIOKA64
                                                                                                                         4B4
           CORRIGENDA, 'THE USE OF RANGE IN PLACE OF STANDARD DEVIATION IN THE T-TEST.'
                                                                                                                         442
                                                                                                               BIOKA52
 FROM A NORMAL POPULATION WHEN AN UPPER BOUND TO THE STANDARD DEVIATION IS KNOWN /ROCEDURE WITH A SAMPLE JASA 60
                                                                                                                          94
                                 TESTING THE MEAN AND STANDARD DEVIATION OF A NORMAL DISTRIBUTION USING
                                                                                                               TECH 6B
                                                                                                                         7B1
OHANTILES
                           ESTIMATION OF THE MEAN AND STANDARD DEVIATION OF A NORMAL POPULATION FROM A CENS BIOKA52
ORED SAMPLE
                                                                                                                         260
LE RANGES IN SETTING EXACT CONFIDENCE BOUNDS FOR THE STANDARD DEVIATION OF A RECTANGULAR POPULATION
                                                                                                                         601
                                                                                                         /AMP JASA 61
                       APPROXIMATIONS TO THE MEAN AND STANDARD DEVIATION OF RECIPROCALS OF OBSERVATIONS
                                                                                                               TECH 63
                                                                                                                         522
                       'AN UPPER BOUND FOR THE SAMPLE STANDARD DEVIATION'
                                                                                                                         417
              ERRATA
                                                                                                               TECH 63
TAGE POINTS OF FREQUENCY CU/ APPROXIMATE MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETWEEN PERCEN BIOKA65 ROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND STANDARD DEVIATIONS OF THE RECIPROCAL OF A VARIABLE F JASA 62
                                                                                                                         533
                                                                                                                         439
                  TABLES OF RANDOM OBSERVATIONS FROM STANDARD DISTRIBUTIONS
                                                                                                               BIOKA59
                                                                                                                         17R
                         A PARAMETRIC ESTIMATE OF THE STANDARD ERROR OF THE SURVIVAL RATE, CORR. 63 1161
                                                                                                               JASA 61
                                                                                                                         111
                                                       STANDARD ERRORS FOR INDEXES FROM COMPLEX SAMPLES
                                                                                                               JASA 6B
                                                                                                                         512
ERIMENTS BY ELECTRONIC CO/ ESTIMATION OF MEANS AND STANDARD ERRORS IN THE ANALYSIS OF NON-ORTHOGONAL EXP JRSSB62
                                                                                                                         435
                       ON THE INADMISSIBILITY OF SOME STANDARD ESTIMATES IN THE PRESENCE OF PRIOR INFORMATI AMS 63
                                                                                                                         539
                           BAYESIAN INTERPRETATION OF STANDARD INFERENCE STATEMENTS (WITH DISCUSSION)
                                                                                                                JRSSB65
                                                                                                                         169
                                                                                                                AMS 67 1647
          NOTE ON DYNKIN'S 'ALPHA, XI' SUBPROCESS OF STANDARD MARKOV PROCESS
RVES, FOR GIVEN ROOT(BETA-1) AND BETA-2 EXPRESSED IN STANDARD MEASURE /F PERCENTAGE POINTS OF PEARSON CU BIOKA63 VES, FOR GIVEN ROOT(BETA-1) AND BETA-2, EXPRESSED IN STANDARD MEASURE / PERCENTAGE POINTS OF PEARSON CUR BIOKA65
                                                                                                                         459
                                                                                                                         669
METROPOLITAN AREA CONCEPT, AN EVALUATION OF THE 1950 STANDARD METROPOLITAN AREAS
                                                                                                         THE JASA 65
                                                                                                                        617
                          ON THE BAYES CHARACTER OF A STANDARD MODEL II ANALYSIS OF VARIANCE TEST
                                                                                                                AMS 69 1094
```

TITLE WORD INDEX SQU - STA

```
FOR COMPARINC SEVERAL EXPERIMENTAL CATECORIES WITH A STANDARD OR CONTROL
                                                                                     A SEQUENTIAL PROCEDURE
                                                                                                               AMS 62
                                                                                                                        438
                       PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF INTER-INDUSTRY TABLES, CORR. 64
                                                                                                               JASA 64 256
1299
                                                                                                               BIOKA51
                                        THE EFFECT OF STANDARDIZATION ON AN APPROXIMATION IN FACTOR
                                                                                                                        337
ANALYSIS
            MEASUREMENTS MADE BY MATCHINC WITH KNOWN STANDARDS
                                                                                                               TECH 59
                                                                                                                        101
                                                                                                               JASA 58 408
                                        WEICHT-HEICHT STANDARDS BASED ON WORLD WAR II EXPERIENCE
                                                      STARSHAPED TRANSFORMATIONS AND THE POWER OF RANK
TESTS
                                                                                                               AMS 69 1167
  APPLICATIONS OF TRUNCATED DISTRIBUTIONS IN PROCESS START-UPS AND INVENTORY CONTROL
                                                                                                               TECH 61 429
   CROSS STATE PRODUCT AND AN ECONOMETRIC MODEL OF A STATE
                                                                                                               JASA 69
                                                                                                                        7B7
REQUIREMENTS AMONC ENVIRONMENTAL POCKETS UPON STEADY STATE GENE FREQUENCIES /ION, AND DIFFERENT FITNESS
                                                                                                               BIOCS66
                                                                                                                        453
                   PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS
                                                                                                                AMS 69
                                                                                                                         97
     INFERENCE FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS
                                                                                                  STATISTICAL.
                                                                                                                AMS 66 1554
                                                                             ADMISSIBILITY AND DISTRIBUTIO
N OF SOME PROBABILISTIC FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS
                                                                                                                AMS 68 1646
INFINITESIMAL CENERATOR OF A CONTINUOUS TIME, FINITE STATE MARKOV PROCESS
                                                                                              ESTIMATING THE
                                                                                                                AMS 62 727
                                           ARBITRARY STATE MARKOVIAN DECISION PROCESSES
                                                                                                                AMS 68 2118
                                         DENUMERABLE STATE MARKOVIAN DECISION PROCESSES, AVERACE COST
                                                                                                                AMS 66 1545
                                                                                                                       841
  OF CENSUS SURVIVAL RATES IN ESTIMATING INTERCENSAL STATE NET MIGRATION
                                                                                                   EVALUATION JASA 62
                                  SPLITTING A SINGLE STATE OF A STATIONARY PROCESS INTO MARKOVIAN STATES
                                                                                                                AMS 6B 1069
                                                CROSS STATE PRODUCT AND AN ECONOMETRIC MODEL OF A STATE
                                                                                                               JASA 69
                                                                                                                       7B7
EOREMS FOR STATIONARY PROBABILITY MEASURES ON FINITE STATE SEQUENCES
                                                                                           SOME STRUCTURE TH AMS 64
FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CONTINUOUS STATE SPACES
                                                                       ON THE DISTRIBUTION OF THE SUPREMUM
                                                                                                                AMS 69
                                                                                                                        844
         THE DEMAND FOR FERTILIZER IN 1954, AN INTER-STATE STUDY
                                                                                                               JASA 59
                                                                                                                        377
                                    IDENTIFICATION OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS
                                                                                                                AMS 67
                                                                                                                        201
       BAYESIAN INTERPRETATION OF STANDARD INFERENCE STATEMENTS (WITH DISCUSSION)
                                                                                                               JRSSB65
                                                                                                                        169
         MARKOV RENEWAL PROCESSES WITH FINITELY MANY STATES
                                                                                                                AMS 61 1243
               FUNCTIONS OF PROCESSES WITH MARKOVIAN STATES
                                                                                                                AMS 68
                                                                                                                        938
 SINCLE STATE OF A STATIONARY PROCESS INTO MARKOVIAN STATES
                                                                                                  SPLITTING A AMS 68
                                                                                                                       1069
                                                                                  THE MIGRATION OF EMPLOYED JASA 67 1418
PERSONS TO AND FROM METROPOLITAN AREAS OF THE UNITED STATES
HEORY FOR MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES
                                                                              SOME ASYMPTOTIC DISTRIBUTION T BIOKA56
                                                                                                                        285
 MARKOV HYPOTHESIS WITH INDEPENDENCE OF INTERMEDIATE STATES AND RESTRICTED ORDER
                                                                                                   TESTINC A BIOKA67
               A NOTE ON EXCHANGEABLE PROCESSES WITH STATES OF FINITE RANK
                                                                                                                AMS 69 NO.6
SEQUENTIAL DESIGN OF EXPERIMENTS FOR INFINITELY MANY STATES OF NATURE
                                                                                                               AMS 61 771
                        MARKOV CHAINS WITH ABSORBING STATES, A GENETIC EXAMPLE
                                                                                                                AMS 61
                                                                                                                        716
               FUNCTIONS OF PROCESSES WITH MARKOVIAN STATES, II
                                                                                                                AMS 69
                                                                                                                        865
                        UNBIASED RATIO ESTIMATORS IN STATIFIED SAMPLING, CORR. 64 1298
                                                                                                               JASA 61
                                                                                                                         70
THE AUTOREGRESSIVE AND MOVING-AVERAGE TYPE
                                                      STATIONARITY CONDITIONS FOR STOCHASTIC PROCESSES OF
                                                                                                               BIOKA56
                                                                                                                        215
                                                      STATIONARY AMPLITUDE FLUCTUATIONS IN A RANDOM SERIES
                                                                                                               JRSSB64
                                                                                                                        361
 THE RELATIONSHIP BETWEEN THE MEAN AND VARIANCE OF A STATIONARY BIRTH-DEATH PROCESS, AND ITS ECONOMIC APPL BIOKA62
                                                                                                                        253
               ESTIMATION OF THE CROSS-SPECTRUM OF A STATIONARY BIVARIATE CAUSSIAN PROCESS FROM ITS ZEROS
                                                                                                               JRSSB68
                                                                                                                        145
NG IMMIGRATION, A REMARK ON THE CRITICAL CASE THE STATIONARY DISTRIBUTION OF A BRANCHING PROCESS ALLOWI JRSSB6B
                                                                                                                        176
GENETICS (WITH DISCUSSION)
                                                QUASI-STATIONARY DISTRIBUTIONS AND TIME-REVERSION IN
                                                                                                               JRSSB66
                                                                                                                        253
 TYPE FOR THE INFINITE DAM
                                                      STATIONARY DISTRIBUTIONS OF THE NEGATIVE EXPERIMENTAL JRSSB57
                                                                                                                        342
                            MULTIPLE REGRESSION WITH STATIONARY ERRORS
                                                                                                               JASA 66
                                                                                                                        917
                        RADON-NIKODYM DERIVATIVES OF STATIONARY GAUSSIAN MEASURES
                                                                                                               AMS 64
                                                                                                                        517
       ESTIMATING FINITE-TIME MAXIMA AND MINIMA OF A STATIONARY GAUSSIAN ORNSTEIN-UHLENBECK PROCESS BY MON JASA 6B 1517
TE/
                   THE EXPECTED NUMBER OF ZEROS OF A STATIONARY GAUSSIAN PROCESS
                                                                                                                AMS 65 1043
ON A LIMIT DISTRIBUTION OF HIGH LEVEL CROSSINGS OF A STATIONARY GAUSSIAN PROCESS
                                                                                                                AMS 68 2108
                    SAMPLING RATES AND APPEARANCE OF STATIONARY GAUSSIAN PROCESSES
                                                                                                               TECH 66
                                                                                                                        91
         A LAW OF LARGE NUMBERS FOR THE MAXIMUM IN A STATIONARY GAUSSIAN SEQUENCE
                                                                                                                AMS 62
                                                                                                                         93
                      ON THE CROSS PERIODOGRAM OF A STATIONARY GAUSSIAN VECTOR PROCESS
                                                                                                                AMS 67
                                                                                                                        593
ROXIMATE DISTRIBUTION OF THE CORRELATION BETWEEN TWO STATIONARY LINEAR MARKOV SERIES ROXIMATE DISTRIBUTION OF THE CORRELATION BETWEEN TWO STATIONARY LINEAR MARKOV SERIES. II.
                                                                                                      THE APP BIOKA62
                                                                                                                        379
                                                                                                      THE APP BIOKA65
                                                                                                                        301
                             THE OUTPUT PROCESS OF A STATIONARY M/M/S QUEUEINC SYSTEM
                                                                                                                AMS 6B 1144
 THE SAMPLE MEAN WHEN RESIDUALS FOLLOW A FIRST-ORDER STATIONARY MARKOFF PROCESS
                                                                                                EFFICIENCY OF JASA 6B 1237
      EXCHANGEABLE PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS ON STATIONARY MARKOV PROCESSES
                                                                                                                AMS 64
                                                                                                                        429
                                                                                                                AMS 67
                                                                                                                        588
        DESS PROPERTIES OF THE STATIONARY MEASURE OF THE CRITICAL CASE SIMPLE BRANCH AMS 67
NON-SINGULAR RECURRENT MARKOV PROCESSES HAVE STATIONARY MEASURES AMS 64
ING PROCESS
                                                                                                                        977
                                                                                                                        869
                     THE EXISTENCE AND UNIQUENESS OF STATIONARY MEASURES FOR MARKOV RENEWAL PROCESSES
                                                                                                                AMS 66 1439
                             A UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERGODIC MARKOV PROCESSES
                                                                                                                AMS 64 1781
               TESTING AND ESTIMATION FOR A CIRCULAR STATIONARY MODEL
                                                                                                                AMS 69 1358
                             FREQUENCY RESPONSE FROM STATIONARY NOISE. TWO CASE HISTORIES
                                                                                                               TECH 61
                                                                                                                        245
  MOMENTS OF THE NUMBER OF CROSSINGS OF A LEVEL BY A STATIONARY NORMAL PROCESS
                                                                                                          THE AMS 65 1656
        ON THE MEAN NUMBER OF CURVE CROSSINGS BY NON-STATIONARY NORMAL PROCESSES
                                                                                                                AMS 65
                                                                                                                        509
ERACE REPRESENTATION FOR RANDOM VARIABLES COVARIANCE STATIONARY ON A FINITE TIME INTERVAL
                                                                                                  A MOVING AV BIOKA65
                                                                                                                        295
ARABOLIC REGRESSION WITH RESTRICTED LOCATION FOR THE STATIONARY POINT
                                                                             LEAST SQUARES ESTIMATES AND P JASA 64
                                                                                                                        564
    HIGHER-ORDER PROPERTIES OF A STATIONARY POINT PROCESS
ON THE ESTIMATION OF THE INTENSITY FUNCTION OF A STATIONARY POINT PROCESS
                                                                                                               JRSSB63
                                                                                                                        413
                                                                                                               JRSSB65
                                                                                                                        332
                    ON THE LENGTHS OF INTERVALS IN A STATIONARY POINT PROCESS (CORR. 63 500)
                                                                                                               JRSSB62
                                                                                                                        364
NCES
                         SOME STRUCTURE THEOREMS FOR STATIONARY PROBABILITY MEASURES ON FINITE STATE SEQUE
                                                                                                               AMS 64
                                                                                                                        550
                       THE VARIANCE OF THE MEAN OF A STATIONARY PROCESS
SPLITTING A SINGLE STATE OF A STATIONARY PROCESS INTO MARKOVIAN STATES
                                                                                                               JRSSB57
                                                                                                                        282
                                                                                                                AMS 68 1069
V CHAIN
                          SUFFICIENT CONDITIONS FOR A STATIONARY PROCESS TO BE A FUNCTION OF A FINITE MARKO
                                                                                                               AMS 63 1033
                                       ON THE NORMAL STATIONARY PROCESS. AREAS OUTSIDE GIVEN LEVELS
                                                                                                               JRSSB63 1B9
            ZERO CROSSING PROBABILITIES FOR CAUSSIAN STATIONARY PROCESSES
                                                                                                               AMS 62 1306
    BEST LINEAR UNBIASED ESTIMATION FOR MULTIVARIATE STATIONARY PROCESSES
                                                                                                               TECH 68
                                                                                                                        523
                             EQUIVALENCE OF GAUSSIAN STATIONARY PROCESSES
                                                                                                                AMS 69
                                                                                                                        197
                             DESIGN RELATIONS FOR NON-STATIONARY PROCESSES
                                                                                                               JRSSB66
                                                                                                                        22B
                             ON THE PREDICTION OF NON-STATIONARY PROCESSES
                                                                                                               JRSSB67
                                                                                                                        570
     HYPOTHESIS TESTS FOR THE R-DEPENDENT MARGINALLY STATIONARY PROCESSES
                                                                                                   SEQUENTIAL
                                                                                                               AMS 66
                                                                                                                        90
IAN MOTION TO THE EQUIVALENCE CONDITIONS FOR CERTAIN STATIONARY PROCESSES
                                                                              /ENCE CONDITIONS FOR THE BROWN
                                                                                                               AMS 69 NO.6
                                                   ON STATIONARY PROCESSES IN THE PLANE
                                                                                                               BIOKA54
                                                                                                                        434
                                      CORRIGENDA, 'ON STATIONARY PROCESSES IN THE PLANE'
                                                                                                               BIOKA55
                                                                                                                        277
                      THE ANALYSIS OF TWO-DIMENSIONAL STATIONARY PROCESSES WITH DISCONTINUOUS SPECTRA
                                                                                                               8I0KA64
                                                                                                                        195
                                      THE ANALYSIS OF STATIONARY PROCESSES WITH MIXED SPECTRA, 1
                                                                                                               JRSSB62
                                                                                                                        215
                                          ANALYSIS OF STATIONARY PROCESSES WITH MIXED SPECTRA, 2
                                                                                                               JRSSB62
                                                                                                                        511
              LIMIT THEOREMS FOR THE MAXIMUM TERM IN STATIONARY SEQUENCES
                                                                                                                AMS 64 502
```

```
LINEAR CONTROL OF A LINEAR SYSTEM HAVING A NORMAL STATIONARY STOCHASTIC INPUT
                                                                                                      ON THE JRSSB6B 381
          ON THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONARY STOCHASTIC PROCESSES
                                                                                                               AMS 64 532
              ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCHASTIC PROCESSES
                                                                                                               AMS 64 1765
                  EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES
                                                                                                               AMS 65 993
                 DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCHASTIC PROCESSES
                                                                                                              JASA 67 484
                          MODELS FOR TWO-DIMENSIONAL STATIONARY STOCHASTIC PROCESSES
                                                                                                              BIOKA55
                                                                                                                      170
          SAMPLING PROPERTIES OF LOCAL STATISTICS IN STATIONARY STOCHASTIC SERIES
                                                                                                              BIOKA55 160
  THE DISTRIBUTIONS OF THE TIMES BETWEEN EVENTS IN A STATIONARY STREAM OF EVENTS
                                                                                                           ON JRSSB69 NO.2
                       THE DEGREE OF RANDOMNESS IN A STATIONARY TIME SERIES
                                                                                                               AMS 63 1253
          ON THE EXTRAPOLATION OF A SPECIAL GLASS OF STATIONARY TIME SERIES
                                                                                                               AMS 65 1426
          ESTIMATION OF THE INNOVATION VARIANCE OF A STATIONARY TIME SERIES
                                                                                                              JASA 68 141
RIANCE AND SPECTRAL DENSITY FUNCTIONS FROM A CLIPPED STATIONARY TIME SERIES
                                                                                         ESTIMATING THE COVA JRSSB67
                                                                                                                        1B0
OF SOME STATISTICS USEFUL IN THE ANALYSIS OF JOINTLY STATIONARY TIME SERIES
                                                                                        ON THE DISTRIBUTION
TENT ESTIMATES OF THE SPECTRAL DENSITY FUNCTION OF A STATIONARY TIME SERIES
                                                                                /PTOTICALLY EFFICIENT CONSIS JRSSB58
                                                                                                                       303
RIAL AND CROSS-CORRELATION COEFFICIENTS IN A COMPLEX STATIONARY TIME SERIES
                                                                                /TIONS AND COVARIANCES OF SE BIOKA63
                                                                                                                       213
S OF FIT TEST FOR SPECTRAL DISTRIBUTION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL RESIDUALS
                                                                                                      /ODNES BIOKA56
                                                                                                                       257
SERVER QUEUES
                                                      STATIONARY WAITING-TIME DISTRIBUTIONS FOR SINCLE-
                                                                                                               AMS 62 1323
                DISTRIBUTION OF THE ANDERSON-DARLING STATISTIC
                                                                                                               AMS 61 1118
                   NOTE ON THE WILCOXON-MANN-WHITNEY STATISTIC
                                                                                                               AMS 65 1058
                           DISTRIBUTIONS OF A M. KAC STATISTIC
                                                                                                               AMS 67 1919
                          ON THE TRIMMED MANN-WHITNEY STATISTIC
                                                                                                               AMS 68 1610
  CONTRIBUTIONS TO THE K-SAMPLE PROBLEM, A SYMMETRIC STATISTIC
                                                                                                               AMS 69 NO.6
ADDENDUM, THE LIMITING DISTRIBUTION OF KAMAT'S TEST STATISTIC
                                                                                                              BIOKA56 3B6
           A K-SAMPLE ANALOGUE OF WATSON'S U-SQUARE STATISTIC
                                                                                                              BIOKA66 579
 ON THE DISTRIBUTION FUNCTIONS OF THE BEHRENS-FISHER STATISTIC
                                                                                                       BOUNDS AMS 66
      FOR THE VARIANCE OF KENDALL'S RANK CORRELATION STATISTIC
                                                                                                       BOUNDS BIOKA56
     TABLES OF THE WILCOXON MATCHED PAIR SIGNED RANK STATISTIC
                                                                                                     EXTENDED JASA 65
                                                                                                                       864
        TABLE OF CRITIGAL VALUES FOR WILCOXON'S TEST STATISTIC
                                                                                                     EXTENDED BIOKA63
                                                                                                                       177
 EXTENSION OF THE ONE-SIDED TWO-SAMPLE SMIRNOV TESTS STATISTIC
                                                                                                   A K-SAMPLE AMS 67 1726
   ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC
                                                                                                A NOTE ON THE JASA 61 687
   PROPERTIES OF A GENERALIZED WILCOXON-MANN-WHITNEY STATISTIC
                                                                                         ON THE LARGE SAMPLE AMS 67
                                                                                                                       905
                                                                                EXTREME TAIL PROBABILITIES BIOKA67
FOR THE NULL DISTRIBUTION OF THE TWO-SAMPLE WILCOXON STATISTIC
                                                                                                                       629
     VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC
                                                                              AN EXTENDED TABLE OF CRITICAL JASA 64 925
THE DISTRIBUTION OF THE TRUNCATED POISSON SUFFICIENT STATISTIC
                                                                              A COMBINATORIAL DERIVATION OF
                                                                                                              AMS 61
                                                                                                                       904
E TEST AND ESTIMATOR BASED ON WILCOXON'S SIGNED RANK STATISTIC
                                                                    ON A FURTHER ROBUSTNESS PROPERTY OF TH
                                                                                                              AMS 68 282
OT AND THE SMALLEST LATENT ROOT OF THE GENERALIZED B STATISTIC AND F STATISTICS AND IN MULTIVARIATE ANALYS
                                                                                                              AMS 67 1152
                          AN EXAMPLE OF AN ANCILLARY STATISTIC AND THE COMBINATION OF TWO SAMPLES BY BAYES AMS 61
                                                                                                                      616
             SOME PROPERTIES AND AN APPLICATION OF A STATISTIC ARISING INTESTING CORRELATION
                                                                                                               AMS 69 1736
                        NOTE ON THE USE OF SHERMAN'S STATISTIC AS A TEST OF RANDOMNESS
                                                                                                              BTOKA54 556
                                           CHI-SQUARE STATISTIC BASED ON THE POOLED FREQUENCIES OF SEVERAL BIOKA63
OBSERVATIONS
                                                                                                                       524
IBULL MODEL WITH PROCRESSIVE C/ EXACT THREE, ORDER STATISTIG CONFIDENCE BOUNDS ON RELIABLE LIFE FOR A WE JASA 69
                                                                                                                       306
                                 USE OF THE WILCOXON STATISTIC FOR A GENERALIZED BEHRENS-FISHER PROBLEM
                                                                                                               AMS 63 1596
 THE EXPECTED COVERACE TO THE LEFT OF THE 1'TH ORDER STATISTIC FOR ARBITRARY DISTRIBUTIONS
                                                                                                               AMS 69 644
CT CRITICAL VALUES FOR MOOD'S DISTRIBUTION-FREE TEST STATISTIC FOR DISPERSION AND ITS NORMAL APPROXIMATION TECH 68 497
               EFFICIENCY OF THE WILCOXON TWO-SAMPLE STATISTIC FOR RANDOMIZED BLOCKS
                                                                                                              JASA 63
                                                                                                                       B94
                                                                                                                       377
   AN EXACT DISTRIBUTION OF THE BEHRENS-FISHER-WELCH STATISTIC FOR TESTING THE DIFFERENCE BETWEEN THE MEAN JRSSB61
                                   A GOODNESS-OF-FIT STATISTIC FOR THE CIRCLE, WITH SOME COMPARISONS
                                                                                                                       161
ERRATA, 'EXACT GONFIDENCE BOUNDS, BASED ON ONE ORDER STATISTIC FOR THE PARAMETER OF A ONE-PARAMETER NEGATI TECH 64
                                                                                                                       4B3
        EXACT CONFIDENCE BOUNDS, BASED ON ONE ORDER STATISTIC FOR THE PARAMETER OF AN EXPONENTIAL POPULAT TECH. 64
 DISTRIBUTION FOR THE DETERMINANT OF A NON-CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS AN ASYMPTOTIC SASJ 68
                      THE NON-NULL DISTRIBUTION OF A STATISTIC IN PRINCIPAL COMPONENTS ANALYSIS
                                                                                                              BIOKA66
                                                                                                                       590
                      ASYMPTOTIC LINEARITY OF A RANK STATISTIC IN REGRESSION PARAMETER
                                                                                                               AMS 69 NO.6
     APPROXIMATION TO THE DISTRIBUTION OF WILCOXON'S STATISTIC IN THE GENERAL CASE

THE WILCOXON TWO-SAMPLE STATISTIC ON STRONGLY MIXING PROCESSES
                                                                                                   A FURTHER JRSSB54 255
                                                                                                               AMS 6B 1202
              SIGNIFICANCE POINTS FOR THE TWO-SAMPLE STATISTIC U-SQUARE-SUB-M, N
                                                                                                              BIOKA65
                                                                                                                       661
             THE DISTRIBUTION OF THE GOODNESS-OF-FIT STATISTIC U-SQUARE-SUB-N.II
                                                                                                              BIOKA64
                                                                                                                       393
                                                                                                              BIOKA68 171
                           ON THE DISTRIBUTION OF A STATISTIC USED FOR TESTING A GOVARIANCE MATRIX
                                 THE GOODNESS OF FIT STATISTIC V-SUB-N, DISTRIBUTION AND SIGNIFICANCE
                                                                                                              BIOKA65
                                                                                                                       309
E PARAMETER OF A DISTRIBUTION ADMITTING A SUFFICIENT STATISTIG WHEN THE RANGE DEPENDS ON THE PARAMETER
                                                                                                            / JRSSB55
                                                                                                                        B6
ON THE DISTRIBUTION OF THE LOG LIKELIHOOD RATIO TEST STATISTIC WHEN THE TRUE PARAMETER IS 'NEAR' THE BOUND AMS 68 2044
                             ON A GENERALIZED SAVACE STATISTIC WITH APPLICATIONS TO LIFE TESTING
                                                                                                               AMS 6B 1591
EXACT AND APPROXIMATE DISTRIBUTIONS FOR THE WILCOXON STATISTIC WITH TIES
                                                                                                              JASA 61
                                                                                                                      2.93
                   THE INDEX OF DISPERSION AS A TEST STATISTIC.
                                                                                                              BTOKA65
                                                                                                                       627
       TABLES OF CRITICAL VALUES FOR WILCOXON'S TEST STATISTIC.'
                                                                                       CORRIGENDA, 'EXTENDED BIOKA64
                                                                                                                       527
                                                                                                                      537
 NOTE ON A PAPER BY RAY AND PITMAN +(FISHER-BEHRENS-STATISTIC)
                                                                                                             JRSSR62
   W-SQUARE-SUB-N +(CRAMER-VON MISES GOODNESS-OF-FIT STATISTIC)
                                                                               FURTHER PERCENTAGE POINTS FOR BIOKA6B
                                                                                                                      428
                             THE WILCOXON TWO-SAMPLE STATISTIC, TABLES AND BIBLIOGRAPHY
                                                                                                              JASA 63 10B6
             THE DISTRIBUTION OF THE GOODNESS-OF-FIT STATISTIC, U-SQUARE-SUB-N. I.
                                                                                                              BIOKA63
                                                                                                                      3 0 3
                                                                                A CLASS OF TESTS WITH MONOT AMS 65 1794
ONE POWER FUNCTIONS FOR TWO PROBLEMS IN MULTIVARIATE STATISTICAL ANALYSIS
COMPLEX GAUSSIAN DISTRIBUTION, AN INTRODUCTION
                                                    STATISTICAL ANALYSIS BASED ON A CERTAIN MULTIVARIATE
                                                                                                                      152
COMPLEX GAUSSIAN DISTRIBUTION
                                            CLASSICAL STATISTICAL ANALYSIS BASED ON A CERTAIN MULTIVARIATE
OMPLETELY RANDOMIZED LAYOUTS SOME ASPECTS OF THE STATISTICAL ANALYSIS OF 'SPLIT PLOT' EXPERIMENTS IN C JASA 69
ENT TO DETERMINE ROOT ACTIVITY IN POTA/ NOTES. THE STATISTICAL ANALYSIS OF A RADIO-ACTIVE TRACER EXPERIM BIOCS68
                                                                                                                       717
                                SOME PROBLEMS IN THE STATISTICAL ANALYSIS OF EPIDEMIC DATA (WITH DISCUSSIO JRSSB55
                                                                                                                        35
                                                 THE STATISTICAL ANALYSIS OF INDUSTRY STRUCTURE, AN APPLIC JASA 61 STATISTICAL ANALYSIS OF INTROGRESSION BIOCS66
ATION TO FOOD INDUSTRIES
                                                                                                                       925
                                                                                                                       488
S NATIONAL PRODUCT AND ITS COMPONENTS, OF SELEC/ A STATISTICAL ANALYSIS OF PROVISIONAL ESTIMATES OF CROS JASA 58
                                                                                                                        54
                                 SOME ASPECTS OF THE STATISTICAL ANALYSIS OF THE 'MIXED MODEL'
                                                                                                              BTOCS6B
                                                                                                                        27
LY HETEROMORPHIC STOCHASTIC SERIES
                                                     STATISTICAL ANALYSIS USING LOCAL PROPERTIES OF SMOOTH BIOKA57
                                                                                                                       454
                                   COOPERATION AMONG STATISTICAL AND OTHER SOCIETIES
                                                                                                                         1
                                         CONSIDERING STATISTICAL AND TIME AVERAGES IN A REGULATION PROBLEM JRSSB67
SYMPTOTIC DISTRIBUTION FOR AN OCCUPANCY PROBLEM WITH STATISTICAL APPLICATIONS
                                                                                                        AN A TECH 61
                                                                                                                        79
DISCUSSION)
                                                      STATISTICAL APPROACH TO PROBLEMS OF COSMOLOGY (WITH JRSSB58
CONTROL (WITH DISCUSSION)
                                                 SOME STATISTICAL ASPECTS OF ADAPTIVE OPTIMIZATION AND SOME STATISTICAL ASPECTS OF THE ECONOMICS OF ANALYTICAL
                                                                                                              JRSSB62
                                                                                                             TECH 59
                                                                                                                        49
TESTING
                                        THE AMERICAN STATISTICAL ASSOCIATION AND FEDERAL STATISTICS
                                                                                                             JASA 64
```

TITLE WORD INDEX STA - STA

			AGGGGT ATTOM A GUIDTOU OF THE OPTICING AND	0101.00	
GROWTH THE SC			ASSOCIATION, A SKETCH OF ITS ORIGINS AND BASIS FOR APPROXIMATION AND OPTIMIZATION		1 59
			BOOKS OF 1957	JASA 59	
RATIO	SOME	STATISTICAL	CHARACTERISTICS OF A PEAK TO AVERAGE	TECH 65	
			CLASSIFICATION WITH QUADRATIC FORMS	BIOKA63	
	THE		CONCEPTS IN THEIR RELATION TO REALITY CONSULTANT IN A SCIENTIFIC LABORATORY	JRSSB55 TECH 69	
ERRORS OF THE TH				JASA 57	
SOME OBSERVATIONS ON THE	TEACHING OF			BIOCS68	
·			CONTROL OF A GAUSSIAN PROCESS	TECH 67	
STEREOSCOPIC MODELS OF N	UI.TIVARIATE		CONTROL OF COUNTING EXPERIMENTS	BIOKA52 BIOCS66	
CERTAIN TYPES OF RECREATION				JASA 59	
ON THE PROPERTY, W, OF T				AMS 66	
THE EMPIRICAL BAYES			DECISION PROBLEMS DECISION PROBLEMS	AMS 64 AMS 67	
			DECISION PROBLEMS A SUPPLEMENTARY SA		
			DECISION PROBLEMS BY ITERATION		
			DECISIONS (WITH DISCUSSION) DEPENDENCE BETWEEN RANDOM EFFECTS AND THE	JRSSB54	
			DEPENDENCE BETWEEN SUBCLASS MEANS AND THE		
			DEPENDENCE IN NESTED SAMPLING	JASA 68	
OF DISTINCT REPRESENTATIVES WITH APPL NATIONAL ACCOUNTS			DESIGNS SOME GENERALIZATIONS DISCREPANCY IN THE REVISED UNITED STATES		
			DISTRIBUTIONS IN TWO DIMENSIONS		
			DISTRIBUTIONS INTO TWO NORMAL COMPONENTS		
			DISTRIBUTIONS OCCURING AT UNKNOWN TIME PO DISTRIBUTIONS OF EXTREME VALUES		
ALTHORIMATE FORMU				BIOKA52	
		STATISTICAL		AMS 67	
REQUIREMENT OF NEW MODEL AUTOMOBILES	. PARADOX IN	STATISTICAL STATISTICAL	ESTIMATION ESTIMATION OF THE GASOLINE OCTANE NUMBER	BIOKA55	
PROCESS				TECH 6B	
			EVALUATION OF CLOUD SEEDING OPERATIONS	JASA 60	
MEASUREMENT DISPUTES	THE		EVALUATION OF SPLITTING LIMIT CRITERIA IN FOURIER ANALYSIS OF VARIANCES	JRSSB65	
	****	STATISTICAL		JASA 57	1
				AMS 66	
ON OPTIMAL ASYMPTOTIC TESTS O		STATISTICAL STATISTICAL		JASA 61 AMS 67	
TESTING THE APPROXIMATE				JRSSB54	
AN OWNERS TROUBLES FOR RETURNING		STATISTICAL		JRSSB57	
AN OMNIBUS TECHNIQUE FOR ESTIMATION			HYPOTHESES CONFIDENCE CURVES, INDEPENDENCE	AMS 65	
	DA, 'ON THE	STATISTICAL	INDEPENDENCE OF QUADRATIC FORMS IN NORMAL	BIOKA59	279
			•	BIOKA51	
		STATISTICAL STATISTICAL		AMS 62 JASA 62	
		STATISTICAL		JASA 65	334
ON PARTIAL 'A PRIORI' INF				AMS 67	
(CORR. 66 252) CON FINITE STATE MARKOV CHAINS			INFERENCE AND DECISION (WITH DISCUSSION) INFERENCE FOR PROBABILISTIC FUNCTIONS OF		1 1554
THE QUALITY OF STATISTICAL INFO	RMATION AND	STATISTICAL	INFERENCE IN A RAPIDLY CHANGING WORLD	JASA 67	1
				BIOKA65	
LEM. UNBIASED ESTIMATION OF THE NUMBER OF			INFERENCE IN HEALTH WITH SPECIAL REFERENC INFERENCE IN THE CLASSICAL OCCUPANCY PROB		
DISTRIBUTIONS		STATISTICAL	INFERENCE WITH BIVARIATE GAMMA	BIOKA69	NO.3
			INFERENCE, BINARY EXPERIMENTS INFERENCE, CORR. 64 1296 /NCTIONS OF GE	AMS 61	
DISCUSSION OF 'ON THE FOU	NDATIONS OF	STATISTICAL	INFERENCE'	JASA 62	307
A RAPIDLY CHANGING WORLD THE	QUALITY OF	STATISTICAL	INFORMATION AND STATISTICAL INFERENCE IN	JASA 67	1
CONTROVERSY	A		INVESTIGATION OF THE INDUSTRIALIZATION ISOMORPHISM	JASA 60 AMS 66	
				TECH 60	
APPLICATIONS OF A NEW GRAPHI	C METHOD IN	STATISTICAL	MEASUREMENT	JASA 57	472
RECAPTURE EXPERIMENT A NO R. A. FISHER AND THE LAST FIF			METHOD FOR CULLING RECRUITS FROM A MARK-	JASA 65	
N. A. LIGHEN AND THE EAST FIF		STATISTICAL	METHODS AND SCIENTIFIC INDUCTION	JRSSB55	69
(WITH DISCUSSION)		STATISTICAL	METHODS CONNECTED WITH SERIES OF EVENTS	JRSSB55	129
			METHODS FOR THE MOVER-STAYER MODEL METHODS IN MARKOV CHAINS, CORR. 61 1343		
	A	STATISTICAL	MODEL FOR LIFE-LENGTH OF MATERIALS	JASA 58	151
THE BOOK STORAGE PROBLEM			MODEL OF BOOK USE AND ITS APPLICATION TO		
FEIT SYSTEMS FOR PLANTS MANUFACTURING HAZ			MODEL OF EVALUATING THE RELIABILITY OF SA MODELS AND INVARIANCE	TECH 59 AMS 67	
	ILISTIC AND	STATISTICAL	MODELS AND PROBLEMS (INVITED PAPER) /IL	BIOCS69	207
A COMMENT ON D.V				BIOKA57 BIOKA57	
SAMPLES OF GROUPED OBSERVATIONS IN THE ES		STATISTICAL STATISTICAL	PARAMETERS /ATION SUPPLIED BY CENSORED		
SPECIAL PAPER, PRINCIPLES OF P	ROFESSIONAL	STATISTICAL	PRACTICE	AMS 65	1883
		STATISTICAL	PREDICTION PROBLEM TO BE INVARIANT UNDER A LIE GROUP	BIOKA65	
(WITH DISCUSSION)			PROBLEMS CONNECTED WITH CRYSTAL LATTICES		
DISCUSSION)					
			PROBLEMS IN EXPERIMENTAL PSYCHOLOGY (WITH		
OF A COMPLETE HYPOTHESIS AUTOMATIC PROCESS CONTROL		STATISTICAL	PROBLEMS IN EXPERIMENTAL PSYCHOLOGY (WITH PROBLEMS IN SCIENCE. THE SYMMETRIC TEST PROCESS CONTROL AND THE IMPACT OF	JASA 69	NO.4

STA - STA TITLE WORD INDEX

```
HOUSEHOLDS
                                            PHILIPPINE STATISTICAL PROCRAM DEVELOPMENT AND THE SURVEY OF
HOUSEHOLDS

IN POPULATION AND COMMUNITY ECOLOCY AND SOME OF ITS STATISTICAL PROPERTIES /TION AS A PROBABILITY MODEL JASA 67 655
PROCESS

STATISTICAL PROPERTIES OF A CERTAIN PERIODIC BINARY TECH 66 247
                                                  SOME STATISTICAL PROPERTIES OF A CENETIC SELECTION INDEX
                                                                                                                BIOKA62
                                                       STATISTICAL PROPERTIES OF THE NUMBER OF POSITIVE SUMS AMS 66 1295
                                   SOME PROPERTIES OF STATISTICAL RELIABILITY FUNCTIONS
                                                                                                                 AMS 66 826
SUBFAMILIES
                                                       STATISTICAL REPRODUCTION OF ORDERINCS AND TRANSLATION AMS 66 196
      PRINCIPAL COMPONENTS RECRESSION IN EXPLORATORY STATISTICAL RESEARCH
                                                                                                                JASA 65 234
                                                   THE STATISTICAL SICNIFICANCE OF ODD BITS OF INFORMATION
                                                                                                                BIOKA52 228
                                    THE EFFICIENCY OF STATISTICAL SIMULATION PROCEDURES
                                                                                                                TECH 62 257
                                       WASHINCTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N.
HURWITZ CHANCES IN CENSUS METHODS
                                                                                                                JASA 69 NO.4
HURWITZ. ON WILLIAM HURWITZ
                                           WASHINCTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N.
                                                                                                                JASA 69 NO.4
HURWITZ. COMMENTS
                                           WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N.
                                                                                                                JASA 69 NO.4
HORWITZ. COMMENTS WILLIAM N. HURWITZ WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HJASA 69 NO.4
URWITZ. SOME BASIC PRINCIPLES OF STATI/ WASHINCTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. H JASA 69 NO.4 URWITZ. THE DEVELOPMENT OF HOUSEHOLD S/ WASHINCTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. H JASA 69 NO.4
                      BANDWIDTH AND RESOLVABILITY IN STATISTICAL SPECTRAL ANALYSIS
                                                                                                                JRSSB59 169
F PROBABILITY AND STATISTICS. IV. A NOTE ON AN EARLY STATISTICAL STUDY OF LITERARY STYLE /THE HISTORY O BIOKA56 248
PROBABILITY AND STATISTICS. VIII. DE MORCAN AND THE STATISTICAL STUDY OF LITERARY STYLE /THE HISTORY OF BIOKA58 2B2
ING FOR WILLIAM N. HURWITZ. SOME BASIC PRINCIPLES OF STATISTICAL SURVEYS /TISTICAL SOCIETY MEMORIAL MEET JASA 69 NO. 4
  CHOICES FOR THE FUTURE DEVELOPMENT OF THE FEDERAL STATISTICAL SYSTEM
                                                                                                     CROSSROAD JASA 6B B01
                                     A COMPARISON OF STATISTICAL TECHNIQUES IN THE DIFFERENTIAL DIAGNOSIS BIOCS68
OF NONTOXIC COITRE
                                                                                                                         1.03
                                                     A STATISTICAL TEST FOR EQUALITY OF TWO AVAILABILITIES TECH 6B 594
                                                     A STATISTICAL TEST INVOLVINC A RANDOM NUMBER OF RANDOM AMS 66 1305
VARIABLES
  TWAIN AND THE QUINTUS CURTIUS SNODCRASS LETTERS, A STATISTICAL TEST OF AUTHORSHIP
                                                                                                        MARK JASA 63
                                                                                                                         85
                                  DILUTION SERIES, A STATISTICAL TEST OF TECHNIQUE (CORR. 59 238)
                                                                                                               JRSSB5B
                                                                                                                          205
CAINST THE CLASS OF 'INTERDEPENDENT/ A NOTE ON THE STATISTICAL TESTABILITY OF 'EXPLICIT CAUSAL CHAINS' A JASA 65 1080
R OF TWO MORPHOLOGICALLY INDISTINCUISHABLE OBJECTS STATISTICAL TESTING OF DIFFERENCES IN CASUAL BEHAVIOU BIOCS67
AL VALUE METHOD FOR ADJUDGING RELATIVE EFFICIENCY OF STATISTICAL TESTS IN TIME SERIES RECRESSION ANALYSIS BIOKAG6
 OF DOMINANCE IN MONOFACTORIAL INHERITANCE NOTES. STATISTICAL TESTS OF HYPOTHESES CONCERNING THE DECREE BIOCS68
                                                                                                                         429
PLANIMETER
                                                       STATISTICAL THEORY OF A HICH-SPEED PHOTOELECTRIC
                                                                                                              BIOKA6B
                                                                                                                         419
                                                     A STATISTICAL THEORY OF REMNANTS
                                                                                                                JRSSB59
                                                                                                                         158
 APPLICATION OF NUMERIC: L INTECRATION TECHNIQUES TO STATISTICAL TOLERANCING
                                                                                                             AN TECH 67
                                                                                                                         441
FUNDAMENTAL FORMULAE
                                                       STATISTICAL TREATMENT OF CENSORED DATA . PART I.
                                                                                                               BTOKA54 228
                                                   THE STATISTICAL TREATMENT OF MEAN DEVIATION
                                                                                                                BTOKA54
                                                                                                                          12
                                                   THE STATISTICAL WORK OF OSKAR ANDERSON
                                                                                                                JASA 61 273
MAKING
                                                       STATISTICIAN AND POLICY MAKER, A PARTNERSHIP IN THE
                                                                                                               JASA 56
                                                                                                                          12
         INDETERMINISM IN SCIENCE AND NEW DEMANDS ON STATISTICIANS
                                                                                                                JASA 60 625
                                                                                                                         301
                                     LEADING AMERICAN STATISTICIANS IN THE NINETEENTH CENTURY
                                                                                                                JASA 57
                                      LEADING BRITISH STATISTICIANS OF THE NINETEENTH CENTURY
                                                                                                                JASA 60
                                                                                                                          38
                                     LEADING AMERICAN STATISTICIANS OF THE NINETEENTH CENTURY II
                                                                                                                JASA 58
                                                       STATISTICIANS, TODAY AND TOMORROW
                                                                                                                JASA 59
                                                                                                                          1
            TABLE OF PERCENTACE POINTS OF KOLMOCOROV STATISTICS
                                                                                                                JASA 56
                                                                                                                         111
        PRACTICAL VALUE OF INTERNATIONAL EDUCATIONAL STATISTICS
                                                                                                                JASA 56 605
                                        NONPARAMETRIC STATISTICS
                                                                                                                JASA 57
                                                                                                                         331
                                 THE DUAL FUNCTION OF STATISTICS
                                                                                                                JASA 60
                                 CERTAIN UNCORRELATED STATISTICS
                                                                                                                JASA 60
                                                                                                                         265
                                                                                                                JASA 60
             ON CONDITIONAL EXPECTATIONS OF LOCATION STATISTICS
                                                                                                                         714
            THE SAMPLE MEAN AMONG THE MODERATE ORDER STATISTICS
                                                                                                                 AMS 62 1160
             DECIMAL CORRECTION ERROR, AN EXAMPLE IN STATISTICS
                                                                                                                TECH 62
                                                                                                                         421
      THE SAMPLE MEAN AMONG THE EXTREME NORMAL ORDER STATISTICS
                                                                                                                 AMS 63
                                                                                                                          33
                                       LOCISTIC ORDER STATISTICS
                                                                                                                 AMS 63
             ON THE LIMIT BEHAVIOUR OF EXTREME ORDER STATISTICS
                                                                                                                 AMS 63
                                                                                                                         992
                          COMPUTATION WITH MULTIPLE K-STATISTICS
                                                                                                                JASA 63
                                                                                                                         120
           ON UNCORRELATED LINEAR FUNCTIONS OF ORDER STATISTICS
                                                                                                                JASA 63
                                                                                                                         245
  SOME NUMERICAL ASPECTS OF THE USE OF TRANSFORMS IN STATISTICS
                                                                                                                JASA 63
                                                                                                                         879
           SOME BASIC THEOREMS OF DISTRIBUTION-FREE STATISTICS
                                                                                                                 AMS 64 150
   CHARACTERIZATION OF MULTISAMPLE DISTRIBUTION-FREE STATISTICS
                                                                                                                 AMS 64 735
                            ON CONTINUOUS SUFFICIENT STATISTICS
                                                                                                                 AMS 64 1229
                                                                                                                 AMS 64 1356
         AN APPLICATION OF A BALLOT THEOREM IN ORDER STATISTICS
                                     ON EXTREME ORDER STATISTICS
                                                                                                                 AMS 64 1726
                     ON ASYMPTOTIC MOMENTS OF EXTREME STATISTICS
                                                                                                                 AMS 64 173B
            SOME BOUNDS FOR EXPECTED VALUES OF ORDER STATISTICS
                                                                                                                 AMS 65 1055
                           A K-SAMPLE MODEL IN ORDER STATISTICS
                                                                                                                 AMS 65 1223
                                    ON INFORMATION IN STATISTICS
                                                                                                                 AMS 65
    MINIMUM CHI-SQUARED ESTIMATION USING INDEPENDENT STATISTICS
                                                                                                                 AMS 67
                                                                                                                         267
          RATES OF CONVERCENCE OF ESTIMATES AND TEST STATISTICS
                                                                                                                 AMS 67
                                                                                                                         303
               ON THE COMBINATION OF INDEPENDENT TEST STATISTICS
                                                                                                                 AMS 67
                                                                                                                         65.9
                                                                                                                 AMS 67 1042
                   SIMPLE RANDOM WALK AND RANK ORDER STATISTICS
                     A NOTE ON MOMENTS OF CAMMA ORDER STATISTICS
                                                                                                                TECH 67
                                                                                                                         315
                         THE DISTRIBUTION OF CALTON'S STATISTICS
                                                                                                                 AMS 68 2114
             CERTAIN UNCORRELATED NONPARAMETRIC TEST STATISTICS
                                                                                                                JASA 6B 707
                             ERRORS OF MEASUREMENT IN STATISTICS
                                                                                                                TECH 68 637
                            LINEAR FUNCTIONS OF ORDER STATISTICS
                                                                                                                 AMS 69
                                                                                                                         770
  BOUNDS AND APPROXIMATIONS FOR THE MOMENTS OF ORDER STATISTICS
                                                                                                                JASA 69 NO.4
               SOME CENERAL REMARKS ON CONSULTING IN STATISTICS
                                                                                                                TECH 69 241
                     THE MOMENTS OF LOC-WEIBULL ORDER STATISTICS
                                                                                                                TECH 69 373
     EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO STATISTICS
                                                                                                                BIOKA59
                                                                                                                         4B3
            ON THE SMALLEST OF SEVERAL CORRELATED F STATISTICS
                                                                                                                RIOKA62
 ON THE ASYMPTOTIC SUFFICIENCY OF CERTAIN ORDER STATISTICS DISTRIBUTION FUNCTIONS OF TSAO'S TRUNCATED SMIRNOV STATISTICS
                                                                                                                JRSSB62
                                                                                                                         167
                                                                                                           THE AMS 67 1208
                                                                                                       NOTE ON AMS 69 1474
  A THEOREM OF DYNKIN ON THE DIMENSION OF SUFFICIENT STATISTICS
                                                                                                      EXPECTED JASA 65 420
  SIGNIFICANCE LEVEL AS A SENSITIVITY INDEX FOR TEST STATISTICS
                                                                                                                         442
      OF A MODIFIED 'HANNAN' AND THE BUREAU OF LABOR STATISTICS
                                                                                                  A COMPARTSON JASA 65
         OF A BALLOT THEOREM IN PHYSICS AND IN ORDER STATISTICS
                                                                                                  APPLICATIONS JRSSB65
                                                                                                                         130
                                                                                            SOME APPLICATIONS BIOKA58 578
   OF MEIJER-G FUNCTIONS TO DISTRIBUTION PROBLEMS IN STATISTICS
```

```
INVARIANTS FOR DISTRIBUTIONS ADMITTING SUFFICIENT STATISTICS
                                                                                       EXACT FORMS OF SOME BIOKASS 533
      OF THE MAXIMUM AND MINIMUM OF RATIOS OF ORDER STATISTICS
                                                                                       ON THE DISTRIBUTION AMS 69 918
                                                                                                            AMS 68 263
OF ASYMPTOTIC NORMALITY OF LINEAR FUNCTIONS OF ORDER STATISTICS
                                                                                      AN ELEMENTARY PROOF
        OF LINEAR COMBINATIONS OF FUNCTIONS OF ORDER STATISTICS
                                                                                      ASYMPTOTIC NORMALITY AMS 69 NO.6
    A CASE STUDY IN THE INTERPRETATION OF HISTORICAL STATISTICS
                                                                                   THE FEMALE LABOR FORCE, JASA 60
                                                                                                                     71
ATIONS BETWEEN EXPECTED VALUES OF FUNCTIONS OF ORDER STATISTICS
                                                                                  A NOTE ON RECURRENCE REL AMS 66
                                                                                                                     733
  OF TWO ALTERNATIVES. I. WILCOXON'S AND ALLIED TEST STATISTICS
                                                                              NON-RANDOMNESS IN A SEQUENCE BIOKA5B
                                                                                                                    166
OF GENERALIZED CLASSICAL LINEAR IDENTIFIABILITY TEST STATISTICS
                                                                           ON FINITE SAMPLE DISTRIBUTIONS JASA 60
                                                                                                                    650
NERALIZED TRUNCATED NORMAL DISTRIBUTIONS USING ORDER STATISTICS
                                                                         CHARACTERIZATION OF NORMAL AND GE AMS 66 1011
MATRIX WITH APPLICATIONS TO PROBLEMS IN MATHEMATICAL STATISTICS
                                                                     A NOTE ON A CENERALIZED INVERSE OF A JRSSB62
                                                                    BEST LINEAR UNBIASED ESTIMATORS OF THE TECH 67
PARAMETERS OF THE LOGISTIC DISTRIBUTION USING ORDER STATISTICS
MOGOROV-SMIRNOV AND KUIPER ONE-SAMPLE AND TWO-SAMPLE STATISTICS
                                                                    EXACT BAHADUR EFFICIENCIES FOR THE KOL AMS 67 1475
                                                                   ESTIMATION OF THE PARAMETERS OF THE EXT BIOKA69
REME VALUE DISTRIBUTION BY USE OF TWO OR THREE ORDER STATISTICS
                                                                                                                    429
                                                                  /ABLE GENERATING FUNCTION FOR COMPUTING JASA 64 487
/MPTOTIC RELATIVE EFFICIENCY OF TWO TEST AMS 63 1442
THE SAMPLING PROBABILITIES OF A CLASS OF WIDELY USED STATISTICS
S AND THE CORRELATION COEFFICIENT BETWEEN THEIR TEST STATISTICS
L DISTRIBUTION ON THE BASIS OF SUITABLY CHOSEN ORDER STATISTICS
                                                                  /ONE OF TWO PARAMETERS OF THE EXPONENTIA
                                                                                                            AMS 63 1419
TIVE EXPONENTIAL DISTRIBUTIONS FROM ONE OR TWO ORDER STATISTICS
                                                                  /UM ESTIMATORS OF THE PARAMETERS OF NEGA AMS 63
                                                                                                                    117
                                                                  /VATURE OF THE LIKELIHOOD SURFACE OF A S BIOKA60
AMPLE DRAWN FROM A DISTRIBUTION ADMITTING SUFFICIENT STATISTICS
                                                                                                                    203
AMETERS OF THE BETA DISTRIBUTION FROM SMALLEST ORDER STATISTICS
                                                                  MAXIMUM LIKELIHOOD ESTIMATION OF THE PAR TECH 67
                                                                                                                    607
                COMPUTERS. THE SECOND REVOLUTION IN STATISTICS (THE FIRST FISHER MEMORIAL LECTURE)
                                                                                                           BIOCS66
          NOTES. ASSUMPTION-FREE ESTIMATORS USING U STATISTICS AND A RELATIONSHIP TO THE JACKKNIFE METHOD BIOCS67
STATISTIC OF TH/ CONDITIONAL DISTRIBUTION OF ORDER STATISTICS AND DISTRIBUTION OF THE REDUCED ITH ORDER AMS 63
PROBLEMS
                                          ANCILLARY STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION
                                                                                                            AMS 6B
                                                                                                                   1756
  CORRECTION TO 'TABLES OF EXPECTED VALUES OF ORDER STATISTICS AND PRODUCTS OF ORDER STATISTICS FOR SAMPL
                                 ON MOMENTS OF ORDER STATISTICS AND QUASI-RANGES FROM NORMAL POPULATIONS
                                                                                                            AMS 63
                                                                                                                    633
                                                     STATISTICS AND SCIENCE
                                                                                                           JASA 57
                                                     STATISTICS AND SOCIETY
                                                                                                           JASA 63
                                              ORDER STATISTICS AND STATISTICS OF STRUCTURE
                                                                                                            AMS 65
   EXACT MOMENTS AND PERCENTAGE POINTS OF THE ORDER STATISTICS AND THE DISTRIBUTION OF THE RANGE FROM THE AMS 65
                                                                                                                    907
SOME GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATISTICS ARISING FROM RECTANGULAR POPULATIONS
                                                                                                                    557
                                                                                                           JASA 64
OF CUBES
                                    SECOND PAPER ON STATISTICS ASSOCIATED WITH THE RANDOM DISOREINTATION BIOKAS8
                                                                                                                    229
OF CURES
                                               SOME STATISTICS ASSOCIATED WITH THE RANDOM DISORIENTATION
                                                                                                           BTOKA57
                                                                                                                    205
               THE ASYMPTOTIC NORMALITY OF TWO TEST STATISTICS ASSOCIATED WITH THE TWO-SAMPLE PROBLEM
                                                                                                            AMS 63 1513
                                  ANALYSIS OF VITAL STATISTICS BY CENSUS TRACT
                                                                                                           JASA 59
                                                                                                                    730
ERCENTAGE POINTS AND APPLICATION TO TESTING FOR R/ STATISTICS CONNECTED WITH THE UNIFORM DISTRIBUTION, P BIOKAGE
                                                                                                                    235
         APPLICATIONS OF TIME-SHARED COMPUTERS IN A STATISTICS CURRICULUM
                                                                                                           JASA 6B
                                                                                                                    192
DISTRIBUTION
                                              ORDER STATISTICS ESTIMATORS OF THE LOCATION OF THE CAUCHY
                                               ORDER STATISTICS FOR DISCRETE POPULATIONS AND FOR GROUPED
SAMPLES
                                                                                                           JASA 68 1390
GROUPED SAMPLES
                                         CONSISTENT STATISTICS FOR ESTIMATING AND TESTING HYPOTHESES FROM BIOKAG6
AL DISTR/ DETERMINATION OF THE EXACT OPTIMUM ORDER STATISTICS FOR ESTIMATING THE PARAMETERS OF EXPONENTI TECH 67
      RECURRENCE RELATIONS BETWEEN MOMENTS OF ORDER STATISTICS FOR EXCHANGEABLE VARIATES
                                                                                                            AMS 68
        TABLES OF CRITICAL VALUES OF SOME RENYI TYPE STATISTICS FOR FINITE SAMPLE SIZES
                                                                                                           JASA 69
                                                                                                                    870
MATRICES
               AN EMPIRICAL COMPARISON OF DISTANCE STATISTICS FOR POPULATIONS WITH UNEQUAL COVARIANCE
                                                                                                           BIOCS6B
                                                                                                                    6B3
                                 MINIMAL SUFFICIENT STATISTICS FOR THE TWO-WAY CLASSIFICATION MIXED MODEL JASA 65
DESTON
                                                                                                                    1 B2
                                  INTERNAL MIGRATION STATISTICS FOR THE UNITED STATES
                                                                                                           JASA 60
                                                                                                                    664
                  ORDER STATISTICS FROM A CLASS OF NON-NORMAL DISTRIBUTIONS ON THE BIVARIATE MOMENTS OF ORDER STATISTICS FROM A LOGISTIC DISTRIBUTION
                                                                                                           BIOKA69 415
                                                                                                            AMS 66 1002
                          LINEAR FORMS IN THE ORDER STATISTICS FROM AN EXPONENTIAL DISTRIBUTION
                                                                                                            AMS 64 270
URRENCE RELATION FOR DISTRIBUTION FUNCTIONS OF ORDER STATISTICS FROM BIVARIATE DISTRIBUTIONS
                                                                                                     A REC JASA 69
                                                                                                                    600
 ASYMPTOTIC DISTRIBUTION OF DISTANCES BETWEEN ORDER STATISTICS FROM BIVARIATE POPULATIONS
                                                                                                            AMS 64 748
                                                                                                           JASA 69
  ASYMPTOTIC JOINT DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM MULTIVARIATE DISTRIBUTIONS
                                                                                                                    300
      INEQUALITIES FOR LINEAR COMBINATIONS OF ORDER STATISTICS FROM RESTRICTED FAMILIES
                                                                                                            AMS 66 1574
ESTIMATION OF LOCATION AND SCALE PARAMETERS BY ORDER STATISTICS FROM SINGLY AND DOUBLY CENSORED SAMPLES, P
                                                                                                            AMS 39
                                                                                                                    325
L DISTRIBUTION
                                   MOMENTS OF ORDER STATISTICS FROM THE EQUICORRELATED MULTIVARIATE NORMA AMS 62 1286
                                               ORDER STATISTICS FROM THE GAMMA DISTRIBUTION
                                                                                                           TECH 60
                                      ERRATA, 'ORDER STATISTICS FROM THE GAMMA DISTRIBUTION'
               PERCENTAGE POINTS AND MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTION
                                                                                                            AMS 61
                                                                                                                    888
     EXACT MOMENTS AND PRODUCT MOMENTS OF THE ORDER STATISTICS FROM THE TRUNCATED LOGISTIC DISTRIBUTION
                                                                                                           JASA 66
ESSION MISSING OBSERVATIONS IN MULTIVARIATE STATISTICS II. POINT ESTIMATION IN SIMPLE LINEAR REGR JASA 67
                                                                                                                     10
 THE EXPONENTIAL DISTRIBUTION BASED ON OPTIMUM ORDER STATISTICS IN CENSORED SAMPLES /F THE PARAMETERS OF
                                                                                                           AMS 66 1717
                    THE ACCURACY OF CENSUS LITERACY STATISTICS IN IRAN
                                                                                                           JASA 59
                                                                                                                    578
  OF THE RANGE AND PRODUCT MOMENTS OF EXTREME ORDER STATISTICS IN NORMAL SAMPLES
                                                                                            ON THE MOMENTS BIOKA56
                                                                                                                    458
TION POPULATIONS
                               DISTRIBUTION OF SOME STATISTICS IN SAMPLES FROM EXPONENTIAL AND POWER-FUNC JASA 67
                                                                                                                    259
               CORRIGENDA, 'ON THE MOMENTS OF ORDER STATISTICS IN SAMPLES FROM NORMAL POPULATIONS'
                                                                                                           BIOKA54
                                                                                                                    568
DEGREE OF FREEDOM
                       EXACT LOWER MOMENTS OF ORDER STATISTICS IN SAMPLES FROM THE CHI-DISTRIBUTION, ONE
                                                                                                           AMS 62 1292
                    RELATIONS AMONG MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO RELATED POPULATIONS
                                                                                                           TECH 63 514
                             ASYMPTOTICALLY OPTIMAL STATISTICS IN SOME MODELS WITH INCREASING FAILURE
RATE AVERAGE
                                                                                                            AMS 67 1731
                                                     STATISTICS IN SOUTH AFRICA
                                                                                                           SASJ 68 109
                       SAMPLING PROPERTIES OF LOCAL STATISTICS IN STATIONARY STOCHASTIC SERIES
                                                                                                           BTOK A55 160
                  ON THE DISTRIBUTION OF THE F-TYPE STATISTICS IN THE ANALYSIS OF A GROUP OF EXPERIMENTS
                                                                                                           JRSSB66
                                                                                                                    526
                                         SUFFICIENT STATISTICS IN THE CASE OF INDEPENDENT RANDOM
VARIABLES
                                                                                                            AMS 64 1456
                                                                                                           JASA 60 454
SOCIAL PROGRAMMES
                                         THE USE OF STATISTICS IN THE FORMULATION AND EVALUATION OF
CULATION OF DISTRIBUTIONS OF KOLMOGOROV-SMIRNOV TYPE STATISTICS INCLUDING A TABLE OF SIGNIFICANCE POINTS F AMS 68 233
                                                THE STATISTICS OF A PARTICULAR NON-HOMOGENEOUS POISSON
                                                                                                           BIOKA64 399
OF A CONTINUOUS UNIVARIATE POPULATION FROM THE ORDER STATISTICS OF A SAMPLE / ERSE DISTRIBUTION FUNCTION BIOKA69 NO.3
                              ON THE APPLICATION TO STATISTICS OF AN ELEMENTARY THEOREM IN PROBABILITY
                                                                                                           BIOKA56
                ASYMPTOTIC NORMALITY OF CERTAIN TEST STATISTICS OF EXPONENTIALITY
                                                                                                           BIOKA64
                 PROPERTIES OF THE MEDIAN AND OTHER STATISTICS OF LOGISTIC VARIATES
                                                                                                            AMS 65 1779
O RELATED SOCIAL STU/ A GUIDE TO THE LITERATURE ON STATISTICS OF RELICIOUS AFFILIATION WITH REFERENCES T JASA 59 335
   INTERRELATIONS BETWEEN CERTAIN LINEAR SYSTEMATIC STATISTICS OF SAMPLES FROM ANY CONTINUOUS POPULATION BIOKA51
LATION TO INVERSE SAMP/ EXACT MOMENTS OF THE ORDER STATISTICS OF THE GEOMETRIC DISTRIBUTION AND THEIR RE JASA 67
              RESULTS FROM THE RELATION BETWEEN TWO STATISTICS OF THE KOLOMOGOROV-SMIRNOV TYPE
                                                                                                            AMS 69 1833
                SOME RESULTS ON THE ORDER STATISTICS OF THE MULTIVARIATE NORMAL AND PARETO TYPE
                                                                                                           AMS 64 1815
STRIBUT/ TABLES FOR BEST LINEAR ESTIMATES BY ORDER STATISTICS OF THE PARAMETERS OF SINGLE EXPONENTIAL DI JASA 57
                                                                                                                    58
                               NOTES ON IMMICRATION STATISTICS OF THE UNITED STATES
                                                                                                           JASA 58
                                                                                                                   963
                                     NATIONAL INCOME STATISTICS OF UNDERDEVELOPED COUNTRIES
                                                                                                           JASA 57
                                                                                                                   162
```

```
SCALE PARAMETER ESTIMATION FROM THE ORDER STATISTICS OF UNEQUAL CAMMA COMPONENTS
                                                                                                            AMS 66 152
ATIONS OF NORMALITY BY CONSTANT RECRESSION OF LINEAR STATISTICS ON ANOTHER LINEAR STATISTIC
                                                                                              CHARACTERIZ
                                                                                                            AMS 67 1894
                                          SOURCES OF STATISTICS ON CRIME AND CORRECTION
                                                                                                                   582
                                                                                                           JASA 59
                             ON THE DISTRIBUTION OF STATISTICS SUITABLE FOR EVALUATING RAINFALL STIMULATI TECH 69
ON EXPERIMENTS
                                                                                                                    149
          ASYMPTOTIC NORMALITY OF SIMPLE LINEAR RANK STATISTICS UNDER ALTERNATIVES
                                                                                                            AMS 68
                                                                                                                    325
          ASYMPTOTIC NORMALITY OF SIMPLE LINEAR RANK STATISTICS UNDER ALTERNATIVES, II
                                                                                                            AMS 69 NO.6
 OF THE DISTRIBUTION OF SEVERAL NON-PARAMETRIC TEST STATISTICS UNDER CENSORING
                                                                                     RECURSIVE CENERATION JASA 68
                                                                                                                    353
                                          SYSTEMATIC STATISTICS USED FOR DATA COMPRESSION IN SPACE
                                                                                                           JASA 65
TELEMETRY
                                                                                                                     97
RY TIME SERIES
                        ON THE DISTRIBUTION OF SOME STATISTICS USEFUL IN THE ANALYSIS OF JOINTLY STATIONA AMS 68 1849
                                                     STATISTICS WE LIVE BY
                                                                                                          JASA 62
IBUTION OF LINEAR COMBINATIONS OF FUNCTIONS OF ORDER STATISTICS WITH APPLICATIONS TO ESTIMATION
                                                                                                  /C DISTR AMS 67
LITERAT/ STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS XVI. RANDOM RANDOM MECHANISMS IN TALMUDIC BIOKAG7
                  THE USE OF THE HANKEL TRANSFORM IN STATISTICS. I. GENERAL THEORY AND EXAMPLES
                                                                                                           BIOKA54
                                                                                                                     44
                  THE USE OF THE HANKEL TRANSFORM IN STATISTICS. II. METHODS OF COMPUTATION
                                                                                                           BTOKA54
                                                                                                                    344
           STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. XIX. FRANCIS YSIDRO EDGEWORTH (1845-1926) BIOKA68
                                                                                                                    269
           STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. XV. THE HISTORICAL DEVELOPMENT OF THE GAU BIOKA67
SS LINE/
                                                                                                                      1
           STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. XVII. SOME REFLEXIONS ON CONTINUITY IN TH BIOKA67
E DEVEL/
                                                                                                                    341
           STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. XVIII. THOMAS YOUNG ON COINCIDENCES
                                                                                                           BTOKA68
                                                                                                                    249
           STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. XXII. PROBABILITY IN THE TALMUD
                                                                                                           BIOKA69
                                                                                                                    437
                         SOME NEW DISTRIBUTION-FREE STATISTICS, (ACKNOWLEDCEMENT OF PRIORITY 65 1901)
                                                                                                            AMS 65
                                                                                                                    203
S BETWEEN THE PROBABILITY DENSITY FUNCTIONS OF ORDER STATISTICS,
                                                                 AND SOME APPLICATIONS /URRENCE RELATION
                                                                                                            AMS 62
                                                                                                                    169
CATIVE EXPONENTIAL POPULATIONS FROM ONE OR TWO ORDER STATISTICS,
                                                                 CORR. TO THIS PAPER PRINTED IN 63 1421 AN
                                                                                                            AMS 61 107B
                                          LIGHT BULB STATISTICS,
                                                                 CORR. 66 1248
                                                                                                           JASA 66
                                                                                                                    633
  THE ROLE OF EXPERIMENTAL RANDOMIZATION IN BAYESIAN STATISTICS, FINITE SAMPLING AND TWO BAYESIANS
                                                                                                           BIOKA69
                                                                                                                   NO.3
   POINT AND INTERVAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE SCALE PARAMETER OF A WEIBULL POPU TECH 65
                      MISSING VALUES IN MULTIVARIATE STATISTICS, I. REVIEW OF THE LITERATURE
                                                                                                           JASA 66
                                                                                                                    595
                MISSING OBSERVATIONS IN MULTIVARIATE STATISTICS, III
                                                                                                           JASA 69
                                                                                                                    337
                MISSING OBSERVATIONS IN MULTIVARIATE STATISTICS, IV
                                                                                                           JASA 69
                                                                                                                    359
TESTS
                                         SUFFICIENT STATISTICS, SIMILAR REGIONS AND DISTRIBUTION-FREE
                                                                                                           JRSSB57
                                                                                                                    262
ROXIMATIONS FOR THE DISTRIBUTIONS OF GOODNESS-OF-FIT STATISTICS, U-SQUARE-SUB-N AND W-SQUARE-SUB-N
                                                                                                    . /APP BIOKA65
                                                                                                                    630
ONS ON CONTINUITY IN THE DEVELOPMENT OF MATHEMATICAL STATISTICS, 1885-1920 /ATISTICS. XVII. SOME REFLEXI BIOKA67
                                                                                                                    341
    'EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO STATISTICS'
                                                                                               CORRIGENDA, BIOKA61
                                                                                                                    474
                                                                                                            AMS 66
                A NOTE ON 'A K-SAMPLE MODEL IN ORDER STATISTICS' BY W. J. CONOVER
                                                                                                                    287
CORRECTION TO 'ON THE MUTUAL INDEPENDENCE OF CERTAIN STATISTICS' 59 1258
                                                                                                            AMS 61 1344
RT DISTRIBUTION AND CERTAIN PROBLEMS OF MULTIVARIATE STATISTICS', 46 409
                                                                           /ECTION. 'THE NON-CENTRAL WISHA AMS 64
                                                                                                                    923
   L'ETUDE DES COMMUNAUTES VECETALES PAR L'ANALYSE STATISTIQUE DES LIAISONS ENTRE LES ESPECES ET LES VAR BIOCS65
     L'ETUDE DES COMMUNAUTES VECETALES PAR L'ANALYSE STATISTIQUE DES LIAISONS ENTRE LES ESPECES ET LES VAR BIOCS65
                                                                                                                    890
                                        THE PRESENT STATUS OF AUTOMATIC PRODUCTION AND CONTROL DEVICES
AND EXPECTED FUTURE DEVELOPMENTS
                                                                                                                     73
                                                                                                           TECH 66
SITUATIONS WHERE TREATMENTS OR BLOCKS ARE OF UNEQUAL STATUS OR SIZE /ATIONS OF NONORTHOGONAL DESIGNS TO
                                                                                                          BIOCS66
                                                                                                                    62.9
                  STATISTICAL METHODS FOR THE MOVER-STAYER MODEL
                                                                                                           JASA 61
                                                                                                                    841
    OF THE TIME-TO-EMPTINESS OF A DISCRETE DAM UNDER STEADY DEMAND
                                                                                          THE DISTRIBUTION JRSSB63
                                                                                                                    137
                            THE FIRST 1.945 BRITISH STEAMSHIPS
                                                                                                           JASA 5B
                                                                                                                    360
                         A PROPERTY OF THE METHOD OF STEEPEST ASCENT
                                                                                                            AMS 64
                                                                                                                    435
                         ON A FIDUCIAL EXAMPLE OF C. STEIN
                                                                                                           JRSSB66
                                                                                                                     5.3
                      INDEPENDENT SEQUENCES WITH THE STEIN PROPERTY
                                                                                                            AMS 68 1282
                          EFFECT OF NON-NORMALITY ON STEIN'S TWO SAMPLE TEST
                                                                                                            AMS 65
                                                                                                                    651
 OF THE RANCE IN PLACE OF THE STANDARD DEVIATION IN STEIN'S TEST
                                                                                                   THE USE AMS 63
                          SOME SEQUENTIAL ANALOGS OF STEIN'S TWO-STACE TEST
                                                                                                           BIOKA62
                                                                                                                    367
                 SEQUENTIAL INFERENCE PROCEDURES OF STEIN'S TYPE FOR A CLASS OF MULTIVARIATE RECRESSION
                                                                                                           AMS 62 1039
PROBLEMS
                                                    STEP-WISE CLUSTERING PROCEDURES
                                                                                                           JASA 67
                                                                                                                     86
                          A RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN TIME
                                                                                                           BTOKA59
                                                                                                                     30
                                             NOTE ON STEPWISE LEAST SQUARES
                                                                                                           JASA 61
                                                                                                                    105
                                                     STEPWISE LEAST SQUARES, RESIDUAL ANALYSIS AND
SPECIFICATION ERROR
                                                                                                           JASA 61
                                                                                                                    998
                     MULTIVARIATE THEORY FOR GENERAL STEPWISE METHODS
                                                                                                            AMS 63
                                                                                                                    873
                                                     STEPWISE MULTIVARIATE LINEAR RECRESSION
                                                                                                           JASA 63
                                                                                                                    770
                                                   A STEPWISE MULTIVARIATE T-DISTRIBUTION
                                                                                                           SASJ 69
                                                                                                                     17
                                                                                                                     63
                                   AN APPLICATION OF STEPWISE RECRESSION TO NON-LINEAR ESTIMATION
                                                                                                           TECH 68
                                   EFFICIENCIES FOR STEPWISE REGRESSIONS
                                                                                                           JASA 64 1179
                                                     STEREOSCOPIC MODELS OF MULTIVARIATE STATISTICAL DATA
                                                                                                           BTOCS66
      RELEASE AND CONTROL OF CAPSULES, TABLETS, AND STERILE SOLIDS
                                                                               FILL WEICHT VARIATION TECH 69
                                                                                                                    161
UTION OF STATISTICS SUITABLE FOR EVALUATING RAINFALL STIMULATION EXPERIMENTS
                                                                                           ON THE DISTRIB TECH 69
                                                                                                                    149
FOR THE NON-INTERACTIVE JOINT ACTION OF A MIXTURE OF STIMULI IN BIOLOGICAL ASSAY
                                                                                                   MODELS BIOKA66
                                                                                                                     49
ALYSIS OF SENSITIVITY EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED. CORR. 56 650
                                                                                                        AN JASA 56
                                                                                                                    257
                                                     STIRLING BEHAVIOR IS ASYMPTOTICALLY NORMAL
                                                                                                            AMS 67
                                                                                                                    410
GRESSION ANALYSIS WHEN THE 'PREDICTOR' VARIABLES ARE STOCHASTIC /ES OF THE LEAST SQUARES ESTIMATOR IN RE AMS 62 1365
                                                   A STOCHASTIC ANALYSIS OF THE SIZE DISTRIBUTION OF
FIRMS, CORR. 59 810
                                                                                                          JASA 58
                                                                                                                    B93
RETAIL ESTABLISHMENTS
                                                   A STOCHASTIC ANALYSIS OF THE SPATIAL CLUSTERING OF
                                                                                                           JASA 65 1094
 THE THEORY OF LEAST SQUARES WHEN THE PARAMETERS ARE STOCHASTIC AND ITS APPLICATION TO THE ANALYSIS OF CRO BIOKA65
                                                                                                                  447
                                                                                                            AMS 68 1327
                         ON ASYMPTOTIC NORMALITY IN STOCHASTIC APPROXIMATION
                                                     STOCHASTIC APPROXIMATION FOR SMOOTH FUNCTIONS
                                                                                                            AMS 69 299
                                           A DYNAMIC STOCHASTIC APPROXIMATION METHOD
                                                                                                            AMS 65 1695
                          ON THE CHOICE OF DESIGN IN STOCHASTIC APPROXIMATION METHODS
                                                                                                            AMS 68
                                                                                                                   457
                                                     STOCHASTIC APPROXIMATION OF MINIMA WITH IMPROVED
ASYMPTOTIC SPEED
                                                                                                            AMS 67 191
PROCESS CONTROL
                                               SOME STOCHASTIC APPROXIMATION PROCEDURES FOR USE IN
                                                                                                            AMS 64 1136
          A NOTE ON THE MAXIMUM SAMPLE EXCURSIONS OF STOCHASTIC APPROXIMATION PROCESSES
                                                                                                            AMS 66 513
                                        ON DVORETZKY STOCHASTIC APPROXIMATION THEOREMS
                                                                                                            AMS 66 1534
                                      APPLICATION OF STOCHASTIC APPROXIMATION TO PROCESS CONTROL
                                                                                                           JRSSB65 321
                                                  ON STOCHASTIC APPROXIMATIONS
                                                                                                            AMS 63
                                                                                                                   343
SITIVITY OF SIMULTANEOUS-EQUATIONS ESTIMATORS TO THE STOCHASTIC ASSUMPTIONS OF THE MODELS
                                                                                               ON THE SEN JASA 66
                                                                                                                   136
                                                     STOCHASTIC BIRTH, DEATH AND MIGRATION PROCESSES FOR
SPATIALLY DISTRIBUTED POPULATIONS
                                                                                                          BTOKA68
                                                                                                                   189
S AND SYSTEMS
                                                   A STOCHASTIC CHARACTERIZATION OF WEAR-OUT FOR COMPONENT
                                                                                                           AMS 66
                                                                                                                   816
                                                                                                          TECH 68
                                                     STOCHASTIC COALESCENCE
                                                                                                                   1.3.3
ISOLATED GROUPS
                                                     STOCHASTIC CROSS-INFECTION BETWEEN TWO OTHERWISE
                                                                                                          BIOKA57
                                                                                                                   193
                                           A NOTE ON STOCHASTIC DIFFERENCE EQUATIONS
                                                                                                            AMS 68
                                                                                                                   270
      PROPERTIES OF NON-STATIONARY SYSTEMS OF LINEAR STOCHASTIC DIFFERENCE EQUATIONS
                                                                                                 SPECTRAL JASA 69
                                                                                                                   581
STRIBUTIONS OF ESTIMATORS OF PARAMETERS IN EXPLOSIVE STOCHASTIC DIFFERENCE EQUATIONS
                                                                                     /TENCY AND LIMIT DI AMS 61 195
```

TITLE WORD INDEX STA - STO

TITLE NO		SIA -	310
THE ESTIMATION OF PARAMETERS IN SYSTEMS OF STOCE	CHASTIC DIFFERENTIAL EQUATIONS CHASTIC EPIDEMIC CURVE AND APPLICATIONS	BTOKA59	67
THE TOTAL SIZE OF A CENERAL STOCK	CHASTIC EPIDEMIC	BIOKA53	177
A CENERAL EXPRESSION FOR THE MEAN IN A SIMPLE STOCK	CHASTIC EPIDEMIC	BIOKA54	272
A NOTE ON THE ULTIMATE SIZE OF A GENERAL STOCK	CHASTIC EPIDEMIC	BIOKA67	314
ON BAILEY'S AND WHITTLE'S TREATMENT OF A CENERAL STOCK	CHASTIC EPIDEMIC A NOTE	BIOKA55	123
THE LOCISTIC PROCESS, TABLES OF THE STOCK	CHASTIC EPIDEMIC CURVE AND APPLICATIONS	JRSSB60	332
SUSCEPTIBLES THE SIMPLE STOCK	CHASTIC EPIDEMIC CURVE FOR LARCE POPULATIONS OF	BIOKA65	571
MORE INITIAL INFECTIVES THE SIMPLE STOCK	CHASTIC EPIDEMIC FOR SMALL POPULATIONS WITH ONE OR	BIOKA69	1B3
A PERTURBATION APPROXIMATION OF THE SIMPLE STOCK	CHASTIC EPIDEMIC IN A LARCE POPULATION CHASTIC EPIDEMIC.	BIOKA6B	199
	CHASTIC EPIDEMIC, A COMPLETE SOLUTION IN TERMS OF		
	CHASTIC EPIDEMIC, A NOTE ON BAILEY'S PAPER		
ONTROL OF A LINEAR SYSTEM HAVING A NORMAL STATIONARY STOCK ON THE CONVERCENCE OF ORDINARY INTECRALS TO STOCK	CHASTIC INPUT ON THE LINEAR C	JRSSB68	381
ON THE CONVERCENCE OF ORDINARY INTECRALS TO STOCE	CHASTIC INTECRALS	AMS 65	1560
STOCE	CHASTIC INTEGRALS AND DERIVATIVES	AMS 69	1610
LIMITING DISTRIBUTIONS ASSOCIATED WITH CERTAIN STOCK	CHASTIC LEARNING MODELS	AMS 62	12B1
THE LATENT ROOTS OF CERTAIN STOCK	CHASTIC MATRICES	BIOKA62	264
ON THE CONVERCENCE OF ORDINARY INTECRALS TO STOCK STOCK LIMITING DISTRIBUTIONS ASSOCIATED WITH CERTAIN STOCK THE LATENT ROOTS OF CERTAIN STOCK BETWEEN ARBITRARY POSITIVE MATRICES AND DOUBLY STOCK	CHASTIC MATRICES A RELATIONSHIP CHASTIC MATRIX IN A GENETIC MODEL OF MORAN	AMS 64	876
STAGE BY ADULT FLOUR BEETLES, AN EXPERIMENT AND A STOCK	MASILC MAINIX IN A GENETIC MODEL OF MONAN	DIOVAGE	200
	CHASTIC MODEL FOR DISTRIBUTIONS OF BIOLOGICAL		
	CHASTIC MODEL FOR DISTRIBUTIONS OF BIOLOGICAL		
IN BIOLOGICAL SYSTEMS BY NUMERICAL METHODS A STOCK			16
OF LUNG CANCER INCIDENCE TO CIGARETTE SMOKING AND A STOCK			
CTION BETWEEN TWO SPECIES THE PROPERTIES OF A STOCK THE PROPERTIES OF A STOCK	CHASTIC MODEL FOR TWO COMPETING SPECIES	BIOKAGO	316
UM AND ITS APPLICATION TO SOME EXPERIMENTAL DATA A STOCK	CHASTIC MODEL FOR TWO COMPETING SPECIES OF TRIBOLI	BIOKAGO	1
	CHASTIC MODEL FOR TWO COMPETING SPECIES OF TRIBULI		
A STOCK	CHASTIC MODEL OF ACHE TRANSPORTATION IN THE CHASTIC MODEL OF CREDIT SALES DEBT	JASA 66	1010
PTURE-RECAPTURE DATA WITH BOTH DEATH AND IMMICRATION-STOCK	CHASTIC MODEL. EXPLICIT ESTIMATES FROM CA	BIOKA65	225
PTURE-RECAPTURE DATA WITH BOTH DEATH AND IMMICRATION-STOCK OF EFFECTS OF ANTIBIOTICS ON BACTERIA BY MEANS OF STOCK	CHASTIC MODELS ANALYSIS	BIOCS66	761
SOME APPROXIMATIONS TO THE VARIANCE IN DISCRETE-TIME STOCK	CHASTIC MODELS FOR BIOLOGICAL SYSTEMS A NOTE ON		
SEXES STOCK	CHASTIC MODELS FOR THE POPULATION GROWTH OF THE	BIOKA6B	469
DISCUSSION) STOCK	CHASTIC MODELS OF CAPITAL INVESTMENT (WITH	JRSSB69	1
RESPONSE CURVES SOME STOCK	CHASTIC MODELS RELATING TIME AND DOSAGE IN	BIOCS65	583
STOCK	CHASTIC PHAGE ATTACHMENT TO BACTERIA	BIOCS65	134
STOCK	CHASTIC POINT PROCESSES, LIMIT THEOREMS	AMS 67	771
ARISON OF THEORETICAL AND EMPIRICAL RESULTS FOR SOME STOCK	CHASTIC POPULATION MODELS A COMP	BIOKA60	1
OF THE DIRECT MATRIX PRODUCT IN ANALYSING CERTAIN STOCK	CHASTIC POPULATION MODELS ON THE USE	BIOKA66	397
I THIT DISCRETENATIONS OF A DEANGUING STOCK	TUACTIC DECCECC		557
LIMIT DISTRIBUTIONS OF A BRANCHING STOCK	CHASIIC FRUCESS	AMS 64	551
A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A STOCK	CHASTIC PROCESS	AMS 64 AMS 64	866
A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A STOCK ON RANDOM SAMPLINC FROM A STOCK	CHASTIC PROCESS CHASTIC PROCESS	AMS 64 AMS 64 AMS 64	866 1713
A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A STOCK ON RANDOM SAMPLINC FROM A STOCK OF MOLECULAR COMPOUNDS BY COUNTERCURRENT DIALYSIS, A STOCK	CHASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS THE SEPARATION	AMS 64 AMS 64 AMS 64 BIOKA60	866 1713 69
A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A STOCK ON RANDOM SAMPLINC FROM A STOCK OF MOLECULAR COMPOUNDS BY COUNTERCURRENT DIALYSIS, A STOCK OF THE AUTOCORRELATIONS OF A SAMPLE FROM A LINEAR STOCK	CHASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS ON THE ASYMPTOTIC DISTRIBUTION	AMS 64 AMS 64 AMS 64 BIOKA60 AMS 64	866 1713 69 1296
SEXES STOCK DISCUSSION) STOCK RESPONSE CURVES SOME STOCK ARISON OF THEORETICAL AND EMPIRICAL RESULTS FOR SOME STOCK OF THE DIRECT MATRIX PRODUCT IN ANALYSING CERTAIN STOCK LIMIT DISTRIBUTIONS OF A BRANCHING STOCK A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A STOCK ON RANDOM SAMPLING FROM A STOCK OF MOLECULAR COMPOUNDS BY COUNTERCURRENT DIALYSIS, A STOCK OF THE AUTOCORRELATIONS OF A SAMPLE FROM A LINEAR STOCK ON ESTIMATING THE SPECTRAL DENSITY FUNCTION OF A STOCK	CHASTIC PROCESS CHASTIC PROCES	AMS 64 AMS 64 AMS 64 BIOKA60 AMS 64 JRSSB57	
A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A STOCK ON RANDOM SAMPLINC FROM A STOCK OF MOLECULAR COMPOUNDS BY COUNTERCURRENT DIALYSIS, A STOCK OF THE AUTOCORRELATIONS OF A SAMPLE FROM A LINEAR STOCK ON ESTIMATING THE SPECTRAL DENSITY FUNCTION OF A STOCK ESTIMATING AND TESTING TREND IN A STOCK	CHASTIC PROCESS CHASTIC PROCES	AMS 64 AMS 64 BIOKA60 AMS 64 JRSSB57 AMS 66	1564
A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A STOCK ON RANDOM SAMPLINC FROM A STOCK OF MOLECULAR COMPOUNDS BY COUNTERCURRENT DIALYSIS, A STOCK OF THE AUTOCORRELATIONS OF A SAMPLE FROM A LINEAR STOCK ON ESTIMATING THE SPECTRAL DENSITY FUNCTION OF A STOCK ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK	CHASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS ON THE ASYMPTOTIC DISTRIBUTION CHASTIC PROCESS (WITH DISCUSSION) CHASTIC PROCESS OF POISSON TYPE CHASTIC PROCESSES	AMS 64 AMS 64 BIOKA60 AMS 64 JRSSB57 AMS 66 AMS 61	1564 704
A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A STOCK ON RANDOM SAMPLINC FROM A STOCK OF MOLECULAR COMPOUNDS BY COUNTERCURRENT DIALYSIS, A STOCK OF THE AUTOCORRELATIONS OF A SAMPLE FROM A LINEAR STOCK ON ESTIMATING THE SPECTRAL DENSITY FUNCTION OF A STOCK ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK	CHASTIC PROCESS (WITH DISCUSSION) CHASTIC PROCESS OF POISSON TYPE CHASTIC PROCESSES CHASTIC PROCESSES	AMS 64 AMS 64 BIOKA60 AMS 64 JRSSB57 AMS 66 AMS 61 AMS 62	1564 704 98
A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A STOCK ON RANDOM SAMPLING FROM A STOCK OF MOLECULAR COMPOUNDS BY COUNTERCURENT DIALYSIS, A STOCK OF THE AUTOCORRELATIONS OF A SAMPLE FROM A LINEAR STOCK ON ESTIMATING THE SPECTRAL DENSITY FUNCTION OF A STOCK ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK	HASTIC PROCESS HASTIC PROCESS HASTIC PROCESS HASTIC PROCESS HASTIC PROCESS ON THE ASYMPTOTIC DISTRIBUTION HASTIC PROCESS (WITH DISCUSSION) HASTIC PROCESS OF POISSON TYPE HASTIC PROCESSES HASTIC PROCESSES HASTIC PROCESSES	AMS 64 AMS 64 AMS 64 BIOKA60 AMS 64 JRSSB57 AMS 66 AMS 61 AMS 62	1564 704 98 206
A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A STOCK ON RANDOM SAMPLINC FROM A STOCK ON RANDOM SAMPLINC FROM A STOCK OF THE AUTOCORRELATIONS OF A SAMPLE FROM A LINEAR STOCK ON ESTIMATING THE SPECTRAL DENSITY FUNCTION OF A STOCK ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK	HASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS ON THE SEPARATION CHASTIC PROCESS (WITH DISCUSSION) CHASTIC PROCESS OF POISSON TYPE CHASTIC PROCESSES CHASTIC PROCESSES CHASTIC PROCESSES CHASTIC PROCESSES CHASTIC PROCESSES CHASTIC PROCESSES	AMS 64 AMS 64 BIOKA60 AMS 64 JRSSB57 AMS 66 AMS 61 AMS 62 AMS 63 AMS 63	1564 704 98 206 274
A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A STOCK ON RANDOM SAMPLINC FROM A STOCK ON RANDOM SAMPLINC FROM A STOCK OF MOLECULAR COMPOUNDS BY COUNTERCURRENT DIALYSIS. A STOCK OF THE AUTOCORRELATIONS OF A SAMPLE FROM A LINEAR STOCK ON ESTIMATING THE SPECTRAL DENSITY FUNCTION OF A STOCK ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK	CHASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS ON THE SEPARATION CHASTIC PROCESS (WITH DISCUSSION) CHASTIC PROCESSES	AMS 64 AMS 64 BIOKA60 AMS 64 JRSSB57 AMS 66 AMS 61 AMS 62 AMS 63 AMS 63	1564 704 98 206 274 872
A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A STOCK ON RANDOM SAMPLINC FROM A STOCK OF MOLECULAR COMPOUNDS BY COUNTERCURRENT DIALYSIS, A STOCK OF THE AUTOCORRELATIONS OF A SAMPLE FROM A LINEAR STOCK ON ESTIMATING THE SPECTRAL DENSITY FUNCTION OF A STOCK ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCK	CHASTIC PROCESS (WITH DISCUSSION) CHASTIC PROCESSES	AMS 64 AMS 64 BIOKA60 AMS 64 JRSSB57 AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 64 AMS 64	1564 704 98 206 274 872 1765
A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A STOCK ON RANDOM SAMPLING FROM A STOCK ON RANDOM SAMPLING FROM A STOCK OF MOLECULAR COMPOUNDS BY COUNTERCURRENT DIALYSIS, A STOCK OF THE AUTOCORRELATIONS OF A SAMPLE FROM A LINEAR STOCK ON ESTIMATING THE SPECTRAL DENSITY FUNCTION OF A STOCK ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK ON A CLASS OF STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK	HASTIC PROCESS HASTIC PROCESS HASTIC PROCESS HASTIC PROCESS HASTIC PROCESS ON THE SEPARATION HASTIC PROCESS (WITH DISCUSSION) HASTIC PROCESS OF POISSON TYPE HASTIC PROCESSES	AMS 64 AMS 64 BIOKA60 AMS 64 JRSSB57 AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 64 AMS 64 AMS 64	1564 704 98 206 274 872 1765 133
A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A STOCK ON RANDOM SAMPLINC FROM A STOCK ON RANDOM SAMPLINC FROM A STOCK OF THE AUTOCORRELATIONS OF A SAMPLE FROM A LINEAR STOCK OF THE AUTOCORRELATIONS OF A SAMPLE FROM A LINEAR STOCK ON ESTIMATING THE SPECTRAL DENSITY FUNCTION OF A STOCK ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CHEVES BY A WIDE CLASS OF STOCK	HASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS ON THE ASYMPTOTIC DISTRIBUTION CHASTIC PROCESS OF POISSON TYPE CHASTIC PROCESSES	AMS 64 AMS 64 BIOKA60 AMS 64 JRSSB57 AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 64 TECH 64 AMS 65	1564 704 98 206 274 872 1765 133 993
A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A STOCK ON RANDOM SAMPLINC FROM A STOCK ON RANDOM SAMPLINC FROM A STOCK OF THE AUTOCORRELATIONS OF A SAMPLE FROM A LINEAR STOCK ON ESTIMATING THE SPECTRAL DENSITY FUNCTION OF A STOCK ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK	HABSTIC PROCESS CHASTIC PROCESS ON THE ASYMPTOTIC DISTRIBUTION CHASTIC PROCESSES	AMS 64 AMS 64 AMS 64 BIOKA60 AMS 64 JRSSB57 AMS 66 AMS 61 AMS 63 AMS 63 AMS 63 AMS 64 TECH 64 AMS 65 AMS 65 AMS 66	1564 704 98 206 274 872 1765 133 993 260
A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A STOCK ON RANDOM SAMPLINC FROM A STOCK ON RANDOM SAMPLINC FROM A STOCK OF MOLECULAR COMPOUNDS BY COUNTERCURRENT DIALYSIS. A STOCK OF THE AUTOCORRELATIONS OF A SAMPLE FROM A LINEAR STOCK ON ESTIMATING THE SPECTRAL DENSITY FUNCTION OF A STOCK ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK	CHASTIC PROCESS (WITH DISCUSSION) CHASTIC PROCESSES	AMS 64 AMS 64 AMS 64 BIOKA60 AMS 664 JIRSSB57 AMS 66 AMS 61 AMS 63 AMS 63 AMS 64 AMS 64 AMS 65 AMS 65 AMS 65 AMS 67 JASA 67	1564 704 98 206 274 872 1765 133 993 260 1000
A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A STOCK ON RANDOM SAMPLINC FROM A STOCK ON RANDOM SAMPLINC FROM A STOCK OF MOLECULAR COMPOUNDS BY COUNTERCURRENT DIALYSIS, A STOCK OF THE AUTOCORRELATIONS OF A SAMPLE FROM A LINEAR STOCK ON ESTIMATING THE SPECTRAL DENSITY FUNCTION OF A STOCK ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK ON A CLASS OF STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK	HABSTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS CHASTIC PROCESS ON THE ASYMPTOTIC DISTRIBUTION CHASTIC PROCESS OF POISSON TYPE CHASTIC PROCESSES	AMS 64 AMS 64 AMS 64 AMS 64 BIOKA60 AMS 66 AMS 66 AMS 66 AMS 63 AMS 63 AMS 63 AMS 64 AMS 64 AMS 64 AMS 64 AMS 66 AMS 67 AMS 67 AMS 67	1564 704 98 206 274 872 1765 133 993 260 1000 484
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK DYNAMIC STOCK ON ADDING INDEPENDENT STOCK ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK	CHASTIC PROCESS OF POISSON TYPE CHASTIC PROCESSES	AMS 64 AMS 64 AMS 64 BIOKA60 AMS 65 AMS 66 AMS 66 AMS 63 AMS 63 AMS 63 AMS 66 AMS 66 AMS 67 JASA 67 AMS 67 AMS 66	1564 704 98 206 274 872 1765 133 993 260 1000 484 164
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK DYNAMIC STOCK ON ADDING INDEPENDENT STOCK ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK	CHASTIC PROCESS OF POISSON TYPE CHASTIC PROCESSES	AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 64 AMS 64 TECH 64 AMS 65 AMS 65 AMS 67 JASA 67 AMS 68	1564 704 98 206 274 872 1765 133 993 260 1000 484 164 372
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK TRANSFORMS OF STOCK	CHASTIC PROCESS OF POISSON TYPE CHASTIC PROCESSES	AMS 66 AMS 61 AMS 62 AMS 63 AMS 64 AMS 64 AMS 64 AMS 65 AMS 65 AMS 66 AMS 67 JASA 67 JASA 67 AMS 68	1564 704 98 206 274 872 1765 133 993 260 1000 484 164 372 NO.6
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCK MODEL BUILDING WITH THE ALD OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK ODISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK TRANSFORMS OF STOCK THE LAW OF THE ITERATED LOGARITHM FOR MIXING STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK SOME SIMPLE DURATION-DEPENDENT STOCK	CHASTIC PROCESSES	AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 64 AMS 65 AMS 66 AMS 66 AMS 67 AMS 66 AMS 67 AMS 68 AMS 69 AMS 69 AMS 68	1564 704 98 206 274 872 1765 133 993 260 1000 484 164 372 NO.6 170 144
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK TRANSFORMS OF STOCK THE LAW OF THE ITERATED LOGARITHM FOR MIXING STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK SOME SIMPLE DURATION-DEPENDENT STOCK APPROXIMATE SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE STOCK	CHASTIC PROCESS OF POISSON TYPE CHASTIC PROCESSES	AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 64 AMS 64 TECH 64 AMS 65 AMS 67 AMS 66 AMS 67 AMS 68 BAMS 69 BIOKAS55 JRSSB59 JRSSB50	1564 704 98 206 274 872 1765 133 260 1000 484 164 372 NO.6 170 144 376
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK THE LAW OF THE ITERATED LOGARITHM FOR MIXING STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK SOME SIMPLE DURATION-DEPENDENT STOCK APPROXIMATE SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE STOCK THE ERGODIC THEORY OF SUBADDITIVE STOCK	CHASTIC PROCESS OF POISSON TYPE CHASTIC PROCESSES	AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 63 AMS 64 AMS 66 AMS 66 AMS 66 JASA 67 AMS 66 AMS 66 JASA 67 AMS 68 AMS 68 AMS 69 BIOKA55 JRSSB590 JRSSB586	1564 704 98 206 274 872 1765 133 993 260 1000 484 164 372 NO.6 170 144 376 499
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK TRANSFORMS OF STOCK THE LAW OF THE ITERATED LOGARITHM FOR MIXING STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK SOME SIMPLE DURATION-DEPENDENT STOCK APPROXIMATE SOLUTIONS OF GEEN'S TYPE FOR UNIVARIATE STOCK THE ERGODIC THEORY OF SUBADDITIVE STOCK ON A DISTRIBUTION ASSOCIATED WITH CERTAIN STOCK	CHASTIC PROCESSES	AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 63 AMS 64 AMS 66 AMS 68	1564 704 98 206 274 872 1765 133 993 260 1000 484 164 372 NO.6 170 144 499 160
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK THE LAW OF THE ITERATED LOGARITHM FOR MIXING STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK SOME SIMPLE DURATION-DEPENDENT STOCK SOME SIMPLE DURATION-DEPENDENT STOCK APPROXIMATE SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE STOCK THE ERGODIC THEORY OF SUBADDITIVE STOCK ON A DISTRIBUTION ASSOCIATED WITH CERTAIN STOCK EVALUATION OF A FUNCTIONAL ON INFINITELY DIVISIBLE STOCK	CHASTIC PROCESS OF POISSON TYPE CHASTIC PROCESSES	AMS 66 AMS 61 AMS 63 AMS 63 AMS 63 AMS 64 AMS 64 TECH 64 AMS 66 AMS 67 JASA 67 AMS 68 AMS 69 JRSSB68 JRSSB68 AMS 69	1564 704 98 206 274 872 1765 133 993 260 1000 484 164 372 NO.6 170 144 376 499 160 336
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK TRANSFORMS OF STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK APPROXIMATE SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE STOCK THE ERGODIC THEORY OF SUBADDITIVE STOCK ON A DISTRIBUTION ASSOCIATED WITH CERTAIN STOCK EVALUATION OF A FUNCTIONAL ON INFINITELY DIVISIBLE STOCK THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONARY STOCK	CHASTIC PROCESS OF POISSON TYPE CHASTIC PROCESSES CHASTIC PROCESSE	AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 64 AMS 64 TECH 64 AMS 65 AMS 67 AMS 68 AMS 69 JASA 67 JASA 67 JASA 67 JASA 67 JASA 67 AMS 68 AMS 69 JRSSB69 JRSSB69 JRSSB68 AMS 64	1564 704 98 206 274 872 1765 133 993 260 1000 484 164 372 NO.6 170 144 376 499 160 532
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK TRANSFORMS OF STOCK THE LAW OF THE ITERATED LOGARITHM FOR MIXING STOCK SOME SIMPLE DURATION-DEPENDENT STOCK APPROXIMATE SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE STOCK THE ERGODIC THEORY OF SUBADDITIVE STOCK ON A DISTRIBUTION ASSOCIATED WITH CERTAIN STOCK EVALUATION OF A FUNCTIONAL ON INFINITELY DIVISIBLE STOCK APPLICATION OF BIORTHONORMAL EXPANSIONS IN THEORY OF STOCK APPLICATION OF BIORTHONORMAL EXPANSIONS IN THEORY OF STOCK	CHASTIC PROCESS OF POISSON TYPE CHASTIC PROCESSES CHASTIC PROCESSE	AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 64 AMS 65 AMS 65 AMS 66 AMS 66 AMS 66 AMS 66 AMS 66 AMS 66 AMS 68 AMS 64 AMS 64 AMS 64 AMS 64 AMS 64 AMS 64 JRSSB68	1564 704 98 206 274 872 1765 133 260 1000 484 372 NO.6 174 4376 499 160 336 532 334
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK THE LAW OF THE ITERATED LOGARITHM FOR MIXING STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK SOME SIMPLE DURATION-DEPENDENT STOCK APPROXIMATE SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE STOCK THE ERGODIC THEORY OF SUBADDITIVE STOCK ON A DISTRIBUTION ASSOCIATED WITH CERTAIN STOCK EVALUATION OF A FUNCTIONAL ON INFINITELY DIVISIBLE STOCK THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONARY STOCK APPLICATION OF BIORTHONORMAL EXPANSIONS IN THEORY OF STOCK REMAINDER IN THE CENTRAL LIMIT THEOREM FOR MIXING STOCK	CHASTIC PROCESSES CHASTIC PROC	AMS 66 AMS 61 AMS 63 AMS 63 AMS 63 AMS 64 AMS 664 AMS 666 AMS 667 JASA 67 AMS 68 AMS 69 JASS 68 AMS 69 JRSSB68 JRSSB68 AMS 64 AMS 68	1564 704 98 206 274 872 1765 133 993 260 1000 484 164 372 NO.6 170 144 376 499 160 336 532 601
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK TRANSFORMS OF STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK SOME SIMPLE DURATION-DEPENDENT STOCK APPROXIMATE SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE STOCK THE ERGODIC THEORY OF SUBADDITIVE STOCK ON A DISTRIBUTION ASSOCIATED WITH CERTAIN STOCK EVALUATION OF A FUNCTIONAL ON INFINITELY DIVISIBLE STOCK THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONARY STOCK APPLICATION OF BIORTHONORMAL EXPANSIONS IN THEORY OF STOCK REMAINDER IN THE CENTRAL LIMIT THEOREM FOR MIXING STOCK USE OF THE NORMAL APPROXIMATION IN THE TREATMENT OF STOCK	CHASTIC PROCESSES CHASTIC PROC	AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 64 AMS 664 AMS 65 AMS 65 AMS 667 AMS 668 AMS 669 AMS 680 AMS 68	1564 704 98 206 274 872 1765 1993 260 1000 1000 1484 164 372 NO.6 499 140 336 532 334 601 268
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK TRANSFORMS OF STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK SOME SIMPLE DURATION-DEPENDENT STOCK APPROXIMATE SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE STOCK THE ERGODIC THEORY OF SUBADDITIVE STOCK ON A DISTRIBUTION ASSOCIATED WITH CERTAIN STOCK EVALUATION OF A FUNCTIONAL ON INFINITELY DIVISIBLE STOCK THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONARY STOCK APPLICATION OF BIORTHONORMAL EXPANSIONS IN THEORY OF STOCK REMAINDER IN THE CENTRAL LIMIT THEOREM FOR MIXING STOCK USE OF THE NORMAL APPROXIMATION IN THE TREATMENT OF STOCK OF FIT OF FREQUENCY DISTRIBUTIONS OBTAINED FROM STOCK	CHASTIC PROCESS OF POISSON TYPE CHASTIC PROCESSES CHASTIC PROCESSE	AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 63 AMS 664 AMS 65 AMS 667 AMS 668 AMS 698 BIOK A55 JRSSB560 JRSSB560 JRSSB68 AMS 694 AMS 64 AMS 64 AMS 64 AMS 64 AMS 64	1564 704 98 206 274 872 1765 133 993 260 1000 484 164 372 NO.6 170 144 499 160 336 336 450 484 164 499 160 484 484 164 499 160 484 484 484 484 485 487 487 487 487 487 487 487 487 487 487
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK TRANSFORMS OF STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK SOME SIMPLE DURATION-DEPENDENT STOCK APPROXIMATE SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE STOCK THE ERGODIC THEORY OF SUBADDITIVE STOCK ON A DISTRIBUTION ASSOCIATED WITH CERTAIN STOCK EVALUATION OF A FUNCTIONAL ON INFINITELY DIVISIBLE STOCK THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONARY STOCK APPLICATION OF BIORTHONORMAL EXPANSIONS IN THEORY OF STOCK REMAINDER IN THE CENTRAL LIMIT THEOREM FOR MIXING STOCK OF THE NORMAL APPROXIMATION IN THE TREATMENT OF STOCK OF FIT OF FREQUENCY DISTRIBUTIONS OBTAINED FROM STOCK R THE LINEAR COMBINATIONS OF EXCHANGEABLE AND MIXING STOCK	CHASTIC PROCESSES CHASTIC PROC	AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 64 AMS 66 AMS 66 AMS 66 AMS 66 AMS 66 AMS 66 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68 AMS 69 JRSSB68 AMS 69 JRSSB68 AMS 69 JRSSB68 AMS 69 JRSSB68 AMS 69 AMS 69 AMS 69 AMS 664 AMS 65	1564 704 98 206 274 872 1765 133 993 260 1400 484 164 372 170 144 379 160 336 532 334 601 268
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK THE LAW OF THE ITERATED LOGARITHM FOR MIXING STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK SOME SIMPLE DURATION-DEPENDENT STOCK SOME SIMPLE DURATION-DEPENDENT STOCK THE ERGODIC THEORY OF SUBADITIVE STOCK ON A DISTRIBUTION ASSOCIATED WITH CERTAIN STOCK THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONARY STOCK APPLICATION OF BIORTHONORMAL EXPANSIONS IN THEORY OF STOCK REMAINDER IN THE CENTRAL LÍMIT THEOREM FOR MIXING STOCK USE OF THE NORMAL APPROXIMATION IN THE TREATMENT OF STOCK OF FIT OF FREQUENCY DISTRIBUTIONS OBTAINED FROM STOCK R THE LINEAR COMBINATIONS OF EXCHANGEABLE AND MIXING STOCK CONTROL CHARTS AND STOCK	CHASTIC PROCESSES CHASTIC PROC	AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 63 AMS 664 AMS 665 AMS 66 AMS 67 JASA 67 AMS 68 AMS 69 JRSSB69	1564 704 98 206 274 872 1765 133 993 260 1000 484 164 376 499 336 532 334 450 601 268 450 239
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK TRANSFORMS OF STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK SOME SIMPLE DURATION-DEPENDENT STOCK APPROXIMATE SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE STOCK THE ERGODIC THEORY OF SUBADDITIVE STOCK ON A DISTRIBUTION ASSOCIATED WITH CERTAIN STOCK EVALUATION OF A FUNCTIONAL ON INFINITELY DIVISIBLE STOCK THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONARY STOCK APPLICATION OF BIORTHONORMAL EXPANSIONS IN THEORY OF STOCK REMAINDER IN THE CENTRAL LÍMIT THEOREM FOR MIXING STOCK USE OF THE NORMAL APPROXIMATION IN THE TREATMENT OF STOCK OF FIT OF FREQUENCY DISTRIBUTIONS OBTAINED FROM STOCK R THE LINEAR COMBINATIONS OF EXCHANGEABLE AND MIXING STOCK ON STOCK	CHASTIC PROCESSES CHASTIC PROC	AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 64 AMS 664 AMS 665 AMS 667 AMS 667 AMS 667 AMS 667 AMS 667 AMS 667 AMS 668 AMS 669 AMS 669 AMS 669 AMS 669 AMS 669 AMS 668	1564 704 98 206 274 872 1765 133 993 2600 484 164 170 100 144 376 499 160 532 334 601 845 450 845 845 845 845 845 845 845 845 845 845
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK TRANSFORMS OF STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK SOME SIMPLE DURATION-DEPENDENT STOCK APPROXIMATE SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE STOCK ON A DISTRIBUTION ASSOCIATED WITH CERTAIN STOCK EVALUATION OF A FUNCTIONAL ON INFINITELY DIVISIBLE STOCK THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONARY STOCK APPLICATION OF BIORTHONORMAL EXPANSIONS IN THEORY OF STOCK REMAINDER IN THE CENTRAL LIMIT THEOREM FOR MIXING STOCK USE OF THE NORMAL APPROXIMATION IN THE TREATMENT OF STOCK OF FIT OF FREQUENCY DISTRIBUTIONS OBTAINED FROM STOCK CONTROL CHARTS AND STOCK ON STOCK DISCRETE STOCK	CHASTIC PROCESSES CHASTIC PROC	AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 63 AMS 64 AMS 65 AMS 66 AMS 68 AMS 68 AMS 68 AMS 69 BIOKA55 JRSSB68 AMS 64 JRSSB68 AMS 69 JRSSB68 AMS 69 JRSSB68 AMS 65 JRSSB59 BIOKA55 BIOKA55 BIOKA55 JRSSB68 AMS 65 JRSSB68 AMS 65 JRSSB68	1564 704 98 206 274 872 1765 133 993 260 484 164 372 NO.6 170 144 376 499 160 336 601 268 450 1840 239 1840 239 1840 218
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK THE LAW OF THE ITERATED LOGARITHM FOR MIXING STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK SOME SIMPLE DURATION-DEPENDENT STOCK SOME SIMPLE DURATION-DEPENDENT STOCK APPROXIMATE SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE STOCK THE ERGODIC THEORY OF SUBADDITIVE STOCK ON A DISTRIBUTION ASSOCIATED WITH CERTAIN STOCK THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONARY STOCK APPLICATION OF BIORTHONORMAL EXPANSIONS IN THEORY OF STOCK REMAINDER IN THE CENTRAL LIMIT THEOREM FOR MIXING STOCK USE OF THE NORMAL APPROXIMATION IN THE TREATMENT OF STOCK OF FIT OF FREQUENCY DISTRIBUTIONS OBTAINED FROM STOCK R THE LINEAR COMBINATIONS OF EXCHANGEABLE AND MIXING STOCK CONTROL CHARTS AND STOCK ON STOCK DISCUSSION) DISCRETE STOCK	CHASTIC PROCESSES CHASTIC PROC	AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 64 AMS 664 AMS 664 AMS 667 AMS 667 AMS 667 AMS 667 AMS 667 AMS 668 AMS 67 AMS 689 AMS 699 BIOKA56 AMS 64 AMS 69 BIOKA56 AMS 64 AMS 69 BIOKA56 AMS 64 AMS 65 AMS 665 JRSSB57 AMS 665 JRSSB59	1564 704 98 206 274 872 1765 133 993 260 1000 484 164 376 499 336 532 331 450 1268 450 1286 239 1286 218 218 215
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK TRANSFORMS OF STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK SOME SIMPLE DURATION-DEPENDENT STOCK APPROXIMATE SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE STOCK THE ERGODIC THEORY OF SUBADDITIVE STOCK THE ERGODIC THEORY OF SUBADDITIVE STOCK THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONARY STOCK APPLICATION OF A FUNCTIONAL ON INFINITELY DIVISIBLE STOCK THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONARY STOCK APPLICATION OF BIORTHONORMAL EXPANSIONS IN THEORY OF STOCK REMAINDER IN THE CENTRAL LIMIT THEOREM FOR MIXING STOCK OF FIT OF FREQUENCY DISTRIBUTIONS OBTAINED FROM STOCK OF FIT OF FREQUENCY DISTRIBUTIONS OBTAINED FROM STOCK R THE LINEAR COMBINATIONS OF EXCHANGEABLE AND MIXING STOCK ON STOCK ON STOCK ON STOCK ON STOCK ON STOCK ON STOCK DISCRETE STOCK AVERAGE TYPE STATIONARITY CONDITIONS FOR STOCK STOCK	CHASTIC PROCESSES CHASTIC PROC	AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 63 AMS 64 AMS 65 AMS 65 AMS 66 AMS 66 AMS 66 AMS 66 AMS 66 AMS 66 AMS 69 BIOKA56 AMS 64 AMS 69 JRSSB68 AMS 69 JRSSB68 JRSSB68 AMS 64 JRSSB68 AMS 65 JRSSB68 AMS 64 AMS 65 AMS 65 AMS 65	1564 704 98 206 274 872 1765 133 993 260 1000 484 164 170 144 337 499 160 499 160 484 450 1184 450 1184 239 1286 218 215 213
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK TRANSFORMS OF STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK SOME SIMPLE DURATION-DEPENDENT STOCK APPROXIMATE SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE STOCK THE ERGODIC THEORY OF SUBADDITIVE STOCK ON A DISTRIBUTION ASSOCIATED WITH CERTAIN STOCK EVALUATION OF A FUNCTIONAL ON INFINITELY DIVISIBLE STOCK THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONARY STOCK APPLICATION OF BIORTHONORMAL EXPANSIONS IN THEORY OF STOCK REMAINDER IN THE CENTRAL LIMIT THEOREM FOR MIXING STOCK USE OF THE NORMAL APPROXIMATION IN THE TREATMENT OF STOCK OF FIT OF FREQUENCY DISTRIBUTIONS OBTAINED FROM STOCK R THE LINEAR COMBINATIONS OF EXCHANGEABLE AND MIXING STOCK CONTROL CHARTS AND STOCK ON STOCK DISCUSSION) DISCRETE STOCK STOCK	CHASTIC PROCESSES CHASTIC PROC	AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 63 AMS 664 AMS 65 AMS 667 AMS 667 AMS 667 AMS 667 AMS 667 AMS 667 AMS 668 AMS 668 AMS 669 BIOK A55 JRSSB50 JRSSB50 JRSSB60	1564 704 98 206 274 872 1765 133 993 260 1000 484 164 372 NO.6 170 160 336 499 160 336 499 160 239 184 268 450 1840 218 218 215 2213 529
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK THE LAW OF THE ITERATED LOGARITHM FOR MIXING STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK SOME SIMPLE DURATION-DEPENDENT STOCK APPROXIMATE SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE STOCK THE ERGODIC THEORY OF SUBADDITIVE STOCK ON A DISTRIBUTION ASSOCIATED WITH CERTAIN STOCK EVALUATION OF A FUNCTIONAL ON INFINITELY DIVISIBLE STOCK THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONARY STOCK APPLICATION OF BIORTHONORMAL EXPANSIONS IN THEORY OF STOCK USE OF THE NORMAL APPROXIMATION IN THE TREATMENT OF STOCK OF FIT OF FREQUENCY DISTRIBUTIONS OBTAINED FROM STOCK R THE LINEAR COMBINATIONS OF EXCHANGEABLE AND MIXING STOCK CONTROL CHARTS AND STOCK ON STOCK DISCUSSION) DISCRETE STOCK INS THE BEHAVIOR OF LIKELIHOOD RATIOS OF STOCK STOCK BOUND ON THE STRONG LAW OF LARGE NUMBERS FOR LINEAR STOCK BOUND ON THE STRONG LAW OF LARGE NUMBERS FOR LINEAR STOCK	CHASTIC PROCESSES CHASTIC PROC	AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 63 AMS 664 AMS 65 AMS 667 AMS 667 AMS 667 AMS 667 AMS 667 AMS 667 AMS 668 AMS 668 AMS 669 BIOK A55 JRSSB50 JRSSB50 JRSSB60	1564 704 98 206 274 872 1765 133 993 260 1000 484 164 376 499 499 450 1268 450 1286 450 1286 239 2286 218 215 2215 2215 2215
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK TRANSFORMS OF STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK SOME SIMPLE DURATION-DEPENDENT STOCK APPROXIMATE SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE STOCK THE ERGODIC THEORY OF SUBADDITIVE STOCK THE ERGODIC THEORY OF SUBADDITIVE STOCK THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONARY STOCK APPLICATION OF A FUNCTIONAL ON INFINITELY DIVISIBLE STOCK THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONARY STOCK APPLICATION OF BIORTHONORMAL EXPANSIONS IN THEORY OF STOCK REMAINDER IN THE CENTRAL LIMIT THEOREM FOR MIXING STOCK USE OF THE NORMAL APPROXIMATION IN THE TREATMENT OF STOCK REMAINDER IN THE CENTRAL LIMIT THEOREM FOR MIXING STOCK USE OF THE NORMAL APPROXIMATION IN THE TREATMENT OF STOCK OF FIT OF FREQUENCY DISTRIBUTIONS OBTAINED FROM STOCK R THE LINEAR COMBINATIONS OF EXCHANGEABLE AND MIXING STOCK CONTROL CHARTS AND STOCK ON STOCK DISCRETE STOCK ON STOCK JOSCUSSION) AVERAGE TYPE STATIONARITY CONDITIONS FOR STOCK STOCK SOME STOCK STOCK SOME STOCK SOME STOCK SOME STOCK S	CHASTIC PROCESSES CHASTIC PROC	AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 64 AMS 66 AMS 66 AMS 66 AMS 67 JASA 67 AMS 68 AMS 69 JASSB68 AMS 69 JRSSB68 AMS 64 AMS 64 AMS 65 AMS 66 AMS 66 AMS 69 JRSSB68 JRSSB68 AMS 64 AMS 64 JRSSB57 BIOKA56 AMS 66 JRSSB57 BIOKA56 AMS 66	1564 704 98 206 274 872 1765 133 993 260 1000 484 164 376 499 1336 532 334 450 1268 450 1286 218 218 213 529 3319
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK TRANSFORMS OF STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK SOME SIMPLE DURATION-DEPENDENT STOCK APPROXIMATE SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE STOCK THE ERGODIC THEORY OF SUBADITIVE STOCK THE ERGODIC THEORY OF SUBADITIVE STOCK ON A DISTRIBUTION ASSOCIATED WITH CERTAIN STOCK THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONARY STOCK APPLICATION OF BIORTHONORMAL EXPANSIONS IN THEORY OF STOCK REMAINDER IN THE CENTRAL LÍMIT THEOREM FOR MIXING STOCK REMAINDER IN THE CENTRAL LÍMIT THEOREM FOR MIXING STOCK USE OF THE NORMAL APPROXIMATION IN THE TREATMENT OF STOCK REMAINDER IN THE CENTRAL LÍMIT THEOREM FOR MIXING STOCK USE OF THE NORMAL APPROXIMATION IN THE TREATMENT OF STOCK OF FIT OF FREQUENCY DISTRIBUTIONS OBTAINED FROM STOCK R THE LINEAR COMBINATIONS OF EXCHANGEABLE AND MIXING STOCK CONTROL CHARTS AND STOCK ON STOCK DISCRETE STOCK AVERAGE TYPE STATIONARITY CONDITIONS FOR STOCK STOCK IONS THE BEHAVIOR OF LIKELIHOOD RATIOS OF STOCK BOUND ON THE STRONG LAW OF LARGE NUMBERS FOR LINEAR STOCK SOME STOCK	CHASTIC PROCESSES CHASTIC PROC	AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 63 AMS 65 AMS 66 AMS 65 AMS 66 AMS 67 JASA 67 AMS 68 AMS 69 JRSSB69 JRSSB69 JRSSB69 JRSSB69 JRSSB60 JRSSB68 AMS 64 JRSSB68 AMS 64 JRSSB68 AMS 66 JRSSB68 AMS 66 JRSSB69 JRSSB60	1564 704 986 274 872 1765 133 993 206 274 872 1765 133 993 206 1000 484 164 372 NO.6 6 170 144 337 499 160 499 160 484 450 184 450 184 450 184 450 185 185 185 185 185 185 185 185 185 185
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK TRANSFORMS OF STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK SOME SIMPLE DURATION-DEPENDENT STOCK APPROXIMATE SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE STOCK THE ERGODIC THEORY OF SUBADDITIVE STOCK ON A DISTRIBUTION ASSOCIATED WITH CERTAIN STOCK EVALUATION OF A FUNCTIONAL ON INFINITELY DIVISIBLE STOCK THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONARY STOCK APPLICATION OF BIORTHONORMAL EXPANSIONS IN THEORY OF STOCK REMAINDER IN THE CENTRAL LIMIT THEOREM FOR MIXING STOCK USE OF THE NORMAL APPROXIMATION IN THE TREATMENT OF STOCK REMAINDER IN THE CENTRAL LIMIT THEOREM FOR MIXING STOCK OF FIT OF FREQUENCY DISTRIBUTIONS OBTAINED FROM STOCK R THE LINEAR COMBINATIONS OF EXCHANGEABLE AND MIXING STOCK ON STOCK ON STOCK DISCUSSION) —AVERAGE TYPE STATIONARITY CONDITIONS FOR STOCK SOME STOCK SOME STOCK MULTIVARIATE STOCK MULTIVARIATE STOCK MULTIVARIATE STOCK	CHASTIC PROCESSES CHASTIC CHASTIC CONVERGENT COEFF CHASTIC PROCESSES CHASTIC CHASTIC CONVERGENT COEFF CHASTIC PROCESSES CHASTIC CHASTIC COUNTERED CHASTIC PROCESSES CHASTIC CHASTIC COUNTERED CHASTIC CHASTIC COUNTERED CHASTIC CHASTIC COUNTERED CHASTIC CHASTIC COUNTERED CHASTIC CH	AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 63 AMS 65 AMS 66 AMS 67 AMS 66 AMS 67 JASA 67 AMS 68 AMS 69 BIOKA55 JRSSB68 AMS 69 JRSSB68 AMS 64 JRSSB68 AMS 65 JRSSB68 AMS 65 JRSSB68 AMS 65 JRSSB68 AMS 66 JRSSB68 AMS 66 JRSSB68	1564 704 98 206 274 872 1765 133 993 260 1000 484 164 376 499 134 450 136 152 88 450 128 84 128 128 128 128 128 128 128 128 128 128
ESTIMATING AND TESTING TREND IN A STOCK MAXIMAL INDEPENDENT STOCK A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCK ON A CLASS OF STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK ON ADDING INDEPENDENT STOCK MODEL BUILDING WITH THE AID OF STOCK EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCK ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCK EPSILON ENTROPY OF STOCK DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCK SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCK THE LAW OF THE ITERATED LOGARITHM FOR MIXING STOCK MODELS FOR TWO-DIMENSIONAL STATIONARY STOCK SOME SIMPLE DURATION-DEPENDENT STOCK APPROXIMATE SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE STOCK THE ERGODIC THEORY OF SUBADDITIVE STOCK ON A DISTRIBUTION ASSOCIATED WITH CERTAIN STOCK THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONARY STOCK APPLICATION OF BIORTHONORMAL EXPANSIONS IN THEORY OF STOCK PREMAINDER IN THE CENTRAL LIMIT THEOREM FOR MIXING STOCK APPLICATION OF BIORTHONORMAL EXPANSIONS IN THEORY OF STOCK OF FIT OF FREQUENCY DISTRIBUTIONS OBTAINED FROM STOCK REMAINDER IN THE CENTRAL LIMIT THEOREM FOR MIXING STOCK OF FIT OF FREQUENCY DISTRIBUTIONS OBTAINED FROM STOCK CONTROL CHARTS AND STOCK OF FIT OF FREQUENCY DISTRIBUTIONS OBTAINED FROM STOCK CONTROL CHARTS AND STOCK ON STOCK DISCUSSION) DISCRETE STOCK ON STOCK SOME STOCK MULTIVARIATE STOCK A NOTE ON THE ESTIMATION OF AMPLITUDE SPECTRA FOR STOCK SOME STOCK MULTIVARIATE STOCK A NOTE ON THE ESTIMATION OF AMPLITUDE SPECTRA FOR STOCK	CHASTIC PROCESSES CHASTIC PROC	AMS 66 AMS 61 AMS 62 AMS 63 AMS 63 AMS 63 AMS 65 AMS 66 AMS 67 AMS 66 AMS 67 JASA 67 AMS 68 AMS 69 BIOKA55 JRSSB68 AMS 69 JRSSB68 AMS 64 JRSSB68 AMS 65 JRSSB68 AMS 65 JRSSB68 AMS 65 JRSSB68 AMS 66 JRSSB68 AMS 66 JRSSB68	1564 704 98 206 274 872 1765 133 993 260 1000 484 164 376 499 134 450 136 152 88 450 128 84 128 128 128 128 128 128 128 128 128 128

```
USING LOCAL PROPERTIES OF SMOOTHLY HETEROMORPHIC STOCHASTIC SERIES
                                                                                       STATISTICAL ANALYSIS BIOKA57 454
OF SETS OF OBSERVATIONS FROM SECTIONS OF INDEPENDENT STOCHASTIC SERIES
                                                                                   THE COMPARISON OF MEANS JRSSB55 208
               EFFECTS OF SLOW-DOWNS AND FAILURE ON STOCHASTIC SERVICE SYSTEMS
                                                                                                             TECH 63 385
REALIZATION OF STOCHASTIC SYSTEMS
ITIVE WHITE NOISE OBSERVATIONS ERROR ESTIMATION OF STOCHASTIC SYSTEMS, ARBITRARY SYSTEM PROCESS WITH ADD AMS 68
                                                                                                              AMS 67
                                                                                                                     927
                                                                                                                     785
               A LIMIT THEOREM FOR SUMS OF MINIMA OF STOCHASTIC VARIABLES
                                                                                                              AMS 65 1041
N DYNAMICS
                                                SOME STOCHASTIC VERSIONS OF THE MATRIX MODEL FOR POPULATIO JASA 69
                                                                                                                      111
                   LINEAR TRANSFORMATION TO A SET OF STOCHASTICALLY DEPENDENT NORMAL VARIABLES
                                                                                                             JASA 57 247
   LIKELIHOOD ESTIMATION OF THE DISTRIBUTIONS OF TWO STOCHASTICALLY ORDERED RANDOM VARIABLES
                                                                                                    MAXIMUM JASA 66 1067
       OF CONSUMER FINANCIAL CHARACTERISTICS, COMMON STOCK
                                                                                                  VALIDATION JASA 69 415
                                              INITIAL STOCK AND CONSUMER INVESTMENT IN AUTOMOBILES
                                                                                                             JASA 63
                                                                                                                      789
                   MARKET MAKING AND REVERSAL OF THE STOCK EXCHANGE
                                                                                                             JASA 66
                                                                                                                      897
                         SOME QUANTITATIVE TESTS FOR STOCK PRICE GENERATING MODELS AND TRADING FOLKLORE
                                                                                                             JASA 67 321
       THE PREDICTIVE ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLES
                                                                                                             JASA 64 987
    OPTIMAL SEQUENTIAL PROCEDURES WHEN MORE THAN ONE STOP IS REQUIRED
                                                                                                              AMS 67 1618
                          ON THE EXPECTED VALUE OF A STOPPED MARTINGALE
                                                                                                              AMS 66 1505
                                   LIMIT THEOREMS FOR STOPPED RANDOM WALKS
                                                                                                              AMS 64 1332
                                   LIMIT THEOREMS FOR STOPPED RANDOM WALKS. IT
                                                                                                              AMS 66 860
                                   LIMIT THEOREMS FOR STOPPED RANDOM WALKS, III
                                                                                                              AMS 66 1510
                          ON THE EXPECTED VALUE OF A STOPPED STOCHASTIC SEQUENCE
                                                                                                              AMS 69
                          ON THE EXPECTED VALUE OF A STOPPED SUBMARTINGALE
                                                                                                              AMS 67
                                  MOMENTS OF RANDOMLY STOPPED SUMS
                                                                                                              AMS 65
                                                                                                              AMS 66
                                          ON OPTIMAL STOPPING
                                                                                                                      30
      EXPLICIT SOLUTIONS TO SOME PROBLEMS OF OPTIMAL STOPPING
                                                                                                              AMS 69
                                                                                                                      993
                            SOME PROBLEMS OF OPTIMAL STOPPING
                                                                                                             JRSSB68
                                                                                                                     1.0B
                                              OPTIMAL STOPPING AND EXPERIMENTAL DESIGN
                                                                                                              AMS 66
                                                                                                                        7
                                             OPTIMAL STOPPING FOR FUNCTIONS OF MARKOV CHAINS
                                                                                                              AMS 68 1905
                                             OPTIMAL STOPPING IN A MARKOV PROCESS
                                                                                                              AMS 68 1333
   AND MAXIMAL REGULAR GENERALIZED SUBMARTINGALES IN STOPPING PROBLEMS
                                                                                              A NOTE ON RISK AMS 67 606
                                                                                                              AMS 63 1404
                                     A MODIFIED BAYES STOPPING RULE
                                                                                                              AMS 67 1915
                                                 ON A STOPPING RULE AND THE CENTRAL LIMIT THEOREM
                                         MOMENTS OF A STOPPING RULE RELATED TO THE CENTRAL LIMIT THEOREM
                                                                                                              AMS 69 1236
                    ON THE MOMENTS OF SOME ONE-SIDED STOPPING RULES
                                                                                                              AMS 66 382
                                 ON SECOND MOMENTS OF STOPPING RULES
                                                                                                              AMS 66 388
              SOME PROBLEMS IN THE THEORY OF OPTIMAL STOPPING RULES
                                                                                                              AMS 67 1627
                                       SOME ONE-SIDED STOPPING RULES
                                                                                                              AMS 67 1641
            ON THE ASYMPTOTIC NORMALITY OF ONE-SIDED STOPPING RULES
                                                                                                              AMS 68 1493
                       THE VARIANCE OF THE ONE-SIDED STOPPING RULES
                                                                                                              AMS 69 1074
OF DISCREPANCIES IN INFERENCES UNDER NON-INFORMATIVE STOPPING RULES
                                                                                                 AN EXAMPLE BIOKA67 329
                                         INFORMATIVE STOPPING RULES AND INFERENCES ABOUT POPULATION SIZE
                                                                                                             JASA 67
                                                                                                                      763
                                 EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS RELATED TO S-SUB-N-OVER-N
                                                                                                              AMS 68 1228
                                          AN OPTIMAL STOPPING THEOREM
                                                                                                              AMS 69 677
                                              FINITE STOPPING TIME AND FINITE EXPECTED STOPPING TIME
                                                                                                             JRSSB65 284
RATIO TEST ON LEHMANN ALTERNATIVES, CORR. 67 1309
                                                    STOPPING TIME OF A RANK-ORDER SEQUENTIAL PROBABILITY
                                                                                                              AMS 66 1154
             THE INFORMATION IN A RANK-ORDER AND THE STOPPING TIME OF SOME ASSOCIATED SPRT'S
                                                                                                              AMS 68 1661
                                        A THEOREM ON STOPPING TIMES
                                                                                                              AMS 64 1348
                             THE EXISTENCE OF CERTAIN STOPPING TIMES ON BROWNIAN MOTION
                                                                                                              AMS 69 715
                                             OPTIMAL STOPPING WHEN THE FUTURE IS DISCOUNTED
                                                                                                              AMS 67 601
         A TRANSIENT DISCRETE TIME QUEUE WITH FINITE STORAGE
                                                                                                              AMS 62
                                                                                                                      130
                   SURVEILLANCE PROGRAMS FOR LOTS IN STORAGE
                                                                                                             TECH 62 515
                                          INTER-PLANT STORAGE IN CONTINUOUS MANUFACTURING
                                                                                                             TECH 60 393
   MODEL OF BOOK USE AND ITS APPLICATION TO THE BOOK STORAGE PROBLEM
                                                                                              A STATISTICAL JASA 69 NO.4
               PROBLEMS IN THE PROBABILITY THEORY OF STORAGE SYSTEMS (WITH DISCUSSION)
                                                                                                             JRSSB57
                                                                                                                     181
                                    ON THE EFFECT OF STRAGGLERS ON THE RISK OF SOME MEAN ESTIMATORS IN
                                                      STRAIGHT LINE CONFIDENCE REGIONS OF LINEAR MODELS
                                                                                                             JASA 67 1365
                                 CONFIDENCE BANDS IN STRAIGHT LINE REGRESSION
                                                                                                             JASA 64 1B2
 NOTE ON THE EQUIVALENCE OF TWO METHODS OF FITTING A STRAIGHT LINE THROUGH CUMULATIVE DATA
                                                                                                           A JASA 64 863
C/ A SHORT-CUT GRAPHIC METHOD FOR FITTING THE BEST STRAIGHT LINE TO A SERIES OF POINTS ACCORDING TO THE JASA 57
                                                                                                                      13
                                            FITTING A STRAIGHT LINE TO CERTAIN TYPES OF CUMULATIVE DATA
                                                                                                             JASA 57
                                                                                                                      552
                                            FITTING A STRAIGHT LINE TO DATA FROM A TRUNCATED POPULATION
                                                                                                             BTOCS65
                                                                                                                      715
                          CURVE FITTING BY SEGMENTED STRAIGHT LINES
                                                                                                             JASA 69 1079
MPLE DISTRIBUTION FUNCTION LIES BETWEEN TWO PARALLEL STRAIGHT LINES
                                                                                THE PROBABILITY THAT THE SA AMS 6B
                                                                                                                     398
 SUBJECT TO ERROR
                                          FITTING OF STRAIGHT LINES AND PREDICTION WHEN BOTH VARIABLES ARE JASA 61
                                                                                                                      657
ERROR, CORR. 59 B12
                                       THE FITTING OF STRAIGHT LINES WHEN BOTH VARIABLES ARE SUBJECT TO
                                                                                                            JASA 59
                                                                                                                      173
                                             FITTING STRAIGHT LINES WHEN ONE VARIABLE IS CONTROLLED
                                                                                                             JASA 58
                                                                                                                     106
D APPLICATION OF INSTRUMENTAL VARIABLE ESTIMATION OF STRAIGHT-LINE RELATIONS WHEN BOTH VARIABLES ARE SUBJE TECH 69
                          PATHS AND CHAINS OF RANDOM STRAIGHT-LINE SEGMENTS
                                                                                                             TECH 66
                         MORTALITY PATTERNS IN EIGHT STRAINS OF FLOUR BEETLE
                                                                                                             BIOCS65
                           ESTIMATION EMPLOYING POST STRATA
                                                                                                             JASA 66 1172
                                           ON FORMING STRATA OF EQUAL AGGREGATE SIZE
                                                                                                             JASA 64 4B1
             OPTIMUM ALLOCATION OF SAMPLING UNITS TO STRATA WHEN THERE ARE R RESPONSES OF INTEREST
                                                                                                             JASA 65
                                                                                                                      225
                OUTLIERS IN PATTERNED EXPERIMENTS. A STRATEGIC APPRAISAL
                                                                                                             TECH 61
                                                                                                                       91
                                   A NOTE ON THRIFTY STRATEGIES AND MARTINGALES IN A FINITELY ADDITIVE SET AMS 69 NO.6
TING WILLIAM D. SUDDERTH
                                  ON THE RISK OF SOME STRATEGIES FOR OUTLYING OBSERVATIONS
                                                                                                              AMS 64 1524
                                             OPTIMAL STRATEGIES IN FACTORIAL EXPERIMENTS
                                                                                                              AMS 63 780
                                          MEMORYLESS STRATEGIES IN FINITE-STAGE DYNAMIC PROGRAMMING
                                                                                                              AMS 64 863
                       A CRITICAL COMPARISON OF THREE STRATEGIES OF COLLECTING DATA FROM HOUSEHOLDS
                                                                                                             JASA 67
                                                                                                                      976
                              MODELS, INFERENCE, AND STRATEGY
                                                                                                             BIOCS69 457
                                   ON THE CHOICE OF A STRATEGY FOR A RATIO METHOD OF ESTIMATION
                                                                                                             JRSSB67
                                                                                                                      392
                                          THE OPTIMUM STRATEGY IN BLACKJACK, CORR. 59 810
                                                                                                             JASA 56
                    DESIGN AND ESTIMATION IN TWO-WAY STRATIFICATION
                                                                                                             JASA 60
                                                                                                                      1 05
                               APPROXIMATELY OPTIMAL STRATIFICATION
                                                                                                             JASA 68 129B
OR HETEROGENEITY OF PROPORTIONS AFTER ADJUSTMENT FOR STRATIFICATION (ADDENDUM 67 197) /CHI-SQUARE TEST F JRSSB66
SOME THEORY OF SAMPLING WHEN THE STRATIFICATION IS SUBJECT TO ERROR TECH 67
DOUBLE SAMPLING FOR STRATIFICATION ON SUCCESSIVE OCCASIONS JASA 65
                                                                                                                     150
                                                                                                                      784
                                        THE USE OF A STRATIFICATION VARIABLE IN ESTIMATION BY PROPORTIONAL JASA 68 1310
STRATIFIED SAMPLING
```

TITLE WORD INDEX STO - STU

OPTIMUM			
	STRATIFICATION WITH TWO CHARACTERS STRATIFICATION. STRATIFICATION, A PRACTICAL INVESTICATION STRATIFICATION, CORR. 63 1161	AMS 63	866
SOME REMARKS ON DOUBLE SAMPLINC FOR	STRATIFICATION.	BIOKA65	587
WENT WITH THE TAXABLE WAS A STATE OF THE PARTY OF THE PAR	STRATIFICATION, A PRACTICAL INVESTIGATION	JASA 66	74
MINIMUM VARIANCE	STRATIFICATION, CORR. 63 1161	JASA 59	88
RECAPIONE CENSOS WHEN TAGGING AND SAMPLING ARE	STRAILFIED THE IWO-SAWILE CAFTURE-		
TION OPTIMAL ALLOCATION IN	STRATIFIED AND MULTISTACE SAMPLES USING PRIOR INFORMA	JASA 68	964
SELECTION AND THE CHOICE OF ESTIMATOR IN TWO-WAY	STRATIFIED POPULATIONS SAMPLE STRATIFIED SAMPLING STRATIFIED SAMPLINC THE USE OF A S	JASA 64	1054
OPTIMAL TWO-STACE	STRATIFIED SAMPLING	AMS 69	575
INTERVALS FOR A MEDIAN	STRATIFIED SAMPLINC AND DISTRIBUTION-FREE CONFIDENCE		772
		JASA 65	750
THE ANALYSIS OF VARIANCE OF DATA FROM		JASA 6B	64
		JASA 68	530
		BIOKA68	131
	STRATIFIED TWO-PHASE SAMPLING RESULTS, K CHARACTERIST		
THE VARIANCE OF AN ESTIMATOR WITH POST		JASA 62	
VARIANCE ESTIMATION WITH ONE UNIT PER		JASA 69	
SAMPLES WITH THE SAME NUMBER IN EACH		BIOKA52	414
VARIANCE WHERE TWO UNITS ARE SELECTED FROM EACH	STRATUM ESTIMATES OF SAMPLING	JASA 57	503
	STRATUM /ILITIES OF ESTIMATORS AND VARIANCE ESTIMAT		
	STRATUM (ADDENDUM 69 192) /M UTILIZATION OF AUXILIA		
IBUTIONS OF THE TIMES BETWEEN EVENTS IN A STATIONARY			
	STREAMS SOME APPLICATIONS OF PROBABILITY		
	STREAMS OF EVENTS AND MIXTURES OF STREAMS	JRSSB66	
ON THE RELATION BETWEEN EXTREME VALUES AND TENSILE			
	STRENGTH PROBLEM IN RELIABILITY ANALYSIS /ICATIONS		
SOME MAIN-EFFEGT PLANS AND ORTHOGONAL ARRAYS OF		AMS 61	
	STRENGTHS OF ASSOCIATION IN CONTINCENCY TABLES	BIOKA53	
	STRESS VS. STRENGTH PROBLEM IN RELIABILITY ANALYSIS		
	STRICTLY CONVEX LOSS IS USED /A NECESSARY AND SUFFI		23
		BIOKA53	1
		AMS 69	
	STRINGENT AND THE MOST STRINGENT SOMEWHERE MOST POWER		
	STRINGENT SOLUTIONS TO STATISTICAL DECISION PROBLEMS		
	STRINGENT SOMEWHERE MOST POWERFUL TEST FOR CERTAIN PR STRINGENT SOMEWHERE MOST POWERFUL TESTS AGAINST ALTER		
NEAR HYPOTHESES. LOCALLY ASYMPTOTICALLY MOST	STRINGENT TESTS AND LAGRANGIAN MULTIPLIER TESTS OF LI		
ON	STRONG CONSISTENCY OF CERTAIN SEQUENTIAL ESTIMATORS		
	STRONG CONSISTENCY OF DENSITY ESTIMATES	AMS 69 AMS 65	
A SHARPER FORM OF THE BOREL-CANTELLI LEMMA AND THE			800 583
	STRONG LAW OF LARGE NUMBERS FOR LINEAR STOCHASTIC PROSTRONG LAW OF LARGE NUMBERS FOR MARTINGALES		610
	STRONG LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKO		
	STRONG RATIO LIMIT PROPERTY FOR SOME CENERAL MARKOV		
THE WILCOXON TWO-SAMPLE STATISTIC ON	STRUCTURAL COEFFIGIENT ESTIMATOR	AND OB	1202
	SIRUCIUNAL CUEFFIGIENI ESIIMATUN		1214
THE EXACT DISTRIBUTION OF A	CTRICTION DROBARTITY AND A CENERALTZATION	DIONAGE	3
	STRUCTURAL PROBABILITY AND A GENERALIZATION	BIOKA66	1
MULTIVARIATE MODEL	STRONCLY MIXING PROCESSES STRUCTURAL COEFFIGIENT ESTIMATOR STRUCTURAL PROBABILITY AND A GENERALIZATION STRUCTURAL PROBABILITY AND PREDICTION FOR THE STRUCTURAL PROBABILITY AND PREDICTION FOR THE	BIOKA66 JRSSB69	1 NO.2
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED A	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS	JASA 67	1037
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED A	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS	JASA 67 BIOKA57	1037 84
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED A	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS	JASA 67 BIOKA57 BIOKA58	1037 84 136
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED A	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS	JASA 67 BIOKA57 BIOKA58 JASA 64	1037 84 136 1175
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED A	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS	JASA 67 BIOKA57 BIOKA58 JASA 64 BIOCS69	1037 84 136 1175 129
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED BIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN A NOTE ON LINEAR	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES	JASA 67 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA67	1037 84 136 1175 129 670
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED BIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN A NOTE ON LINEAR DISTRIBUTION OF A PRODUCT AND THE	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP A NOTE STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES STRUCTURAL SETUP OF DENSITIES	JASA 67 BIOKA57 BIOKA58 JASA 64 BIOCS69	1037 84 136 1175 129 670 1439
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED BIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN A NOTE ON LINEAR	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP A NOTE STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES STRUCTURAL SETUP OF DENSITIES STRUCTURE	JASA 67 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA67 AMS 69	1037 84 136 1175 129 670 1439
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED BIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN A NOTE ON LINEAR DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP A NOTE STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES STRUCTURAL SETUP OF DENSITIES STRUCTURE STRUCTURE STRUCTURE	JASA 67 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA67 AMS 69 AMS 65	1037 84 136 1175 129 670 1439 897
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED BIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR A NOTE ON LINEAR DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUGIAL CONSISTENCY AND GROUP TIME SERIES WITH A LINEAR	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP A NOTE STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES STRUCTURAL SETUP OF DENSITIES STRUCTURE STRUCTURE STRUCTURE STRUCTURE STRUCTURE A DECOMPOSITION	JASA 67 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA67 AMS 69 AMS 65 BIOKA65 BIOKA65 AMS 69	1037 84 136 1175 129 670 1439 897 55 403
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED BIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUGIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES ON THE	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP A NOTE STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES STRUCTURAL SETUP OF DENSITIES STRUCTURE STRUCTURE STRUCTURE STRUCTURE AD DECOMPOSITION STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL	JASA 67 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA67 AMS 69 AMS 65 BIOKA65 BIOKA65 AMS 69	1037 84 136 1175 129 670 1439 897 55 403 1845
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED BIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUGIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES ON THE	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP A NOTE STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES STRUCTURAL SETUP OF DENSITIES STRUCTURE A DECOMPOSITION STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL	JASA 67 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA67 AMS 69 AMS 65 BIOKA65 BIOKA65 AMS 69	1037 84 136 1175 129 670 1439 897 55 403 1845 657
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED BIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN A NOTE ON LINEAR DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUCIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES ON THE A SPECIAL	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP A NOTE STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES STRUCTURAL SETUP OF DENSITIES STRUCTURE STRUCTURE STRUCTURE STRUCTURE AD DECOMPOSITION STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL	JASA 67 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA67 AMS 69 AMS 65 BIOKA65 BIOKA67 AMS 69 AMS 68	1037 84 136 1175 129 670 1439 897 55 403 1845 657 1436
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED BIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN A NOTE ON LINEAR DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS OF FIDUGIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES A SPECIAL REGRESSION.	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS STRUCTURAL SETUP OF DENSITIES STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND EQUIVARIANT ESTIMATION STRUCTURE AND FUNCTIONAL RELATIONSHIP	JASA 67 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA67 AMS 69 AMS 65 BIOKA65 BIOKA65 AMS 69 AMS 69 AMS 68 AMS 67	1037 84 136 1175 129 670 1439 897 55 403 1845 657 1436 11
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED BIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR A ROTE ON LINEAR DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUGIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES ON THE A SPECIAL REGRESSION, REGRESSION,	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP A NOTE STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES STRUCTURAL SETUP OF DENSITIES STRUCTURAL SETUP OF DENSITIES STRUCTURE STRUCTURE STRUCTURE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND EQUIVARIANT ESTIMATION STRUCTURE AND FUNCTIONAL RELATIONSHIPS STRUCTURE AND FUNCTIONAL RELATIONSHIPS STRUCTURE AND TO FUNCTIONAL RELATIONSHIPS STRUCTURE AND TO STRUCTURE AND THE EXISTENCE OF A SYSTEM LIFE	JASA 67 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA67 AMS 69 AMS 65 BIOKA65 BIOKA67 AMS 69 AMS 69 AMS 67 BIOKA52 TECH 64	1037 84 136 1175 129 670 1439 897 55 403 1845 657 1436 11 96 459
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED BIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN A NOTE ON LINEAR DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUGIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES ON THE A SPECIAL REGRESSION, REGRESSION, SYSTEMS A PROBABILITY	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP A NOTE STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES STRUCTURAL SETUP OF DENSITIES STRUCTURE STRUCTURE STRUCTURE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND EQUIVARIANT ESTIMATION STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIPS II. STRUCTURE AND THE EXISTENCE OF A SYSTEM LIFE STRUCTURE FOR GROWTH CURVES	JASA 67 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA67 AMS 69 AMS 65 BIOKA67 AMS 69 AMS 68 AMS 67 BIOKA51 BIOKA51 BIOKA51	1037 84 136 1175 129 670 1439 897 55 403 1845 657 1436 11 96 459
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED BIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN A NOTE ON LINEAR DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS OF FIDUGIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES A SPECIAL REGRESSION, REGRESSION, REGRESSION, SYSTEMS A PROBABILITY CORRECTION. 'THE	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP A NOTE STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES STRUCTURAL SETUP OF DENSITIES STRUCTURE STRUCTURE STRUCTURE STRUCTURE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND EQUIVARIANT ESTIMATION STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND THE EXISTENCE OF A SYSTEM LIFE STRUCTURE FOR GROWTH CURVES STRUCTURE OF BIVARIATE DISTRIBUTIONS', 58 719	JASA 67 BIOKA57 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA67 AMS 69 AMS 65 BIOKA67 AMS 69 AMS 67 AMS 69 AMS 68 AMS 67 BIOKA51 BIOKA51 BIOKA52 TECH 64 BIOCS67 AMS 64	1037 84 136 1175 129 670 1439 897 55 403 1845 657 1436 11 96 459 217 1388
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUGIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES ON THE A SPECIAL REGRESSION, REGRESSION, SYSTEMS A PROBABILITY CORRECTION. 'THE SE OF INDIVIDUAL FIRMS THE ACCURACY AND	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES STRUCTURAL SETUP OF DENSITIES STRUCTURE STRUCTURE STRUCTURE STRUCTURE STRUCTURE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND EQUIVARIANT ESTIMATION STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND THE EXISTENCE OF A SYSTEM LIFE STRUCTURE OF BIVARIATE DISTRIBUTIONS', 58 719 STRUCTURE OF INDUSTRY EXPECTATIONS IN RELATION TO THO	JASA 67 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA67 AMS 69 AMS 65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA52 TECH 64 BIOCS67 AMS 68	1037 84 136 1175 129 670 1439 897 55 403 1845 657 1436 11 96 459 217 1388 317
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED BIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN A NOTE ON LINEAR DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUCIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES ON THE A SPECIAL REGRESSION, REGRESSION, SYSTEMS A PROBABILITY CORRECTION. 'THE SE OF INDIVIDUAL FIRMS THE ACCURACY AND GOMPUTATION AND	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP A NOTE STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS STRUCTURAL SETUP OF DENSITIES STRUCTURE STRUCTURE STRUCTURE STRUCTURE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND EQUIVARIANT ESTIMATION STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND THE EXISTENCE OF A SYSTEM LIFE STRUCTURE FOR GROWTH CURVES STRUCTURE OF BIVARIATE DISTRIBUTIONS', 58 719 STRUCTURE OF INDUSTRY EXPECTATIONS IN RELATION TO THO STRUCTURE OF OPTIMAL RESET POLICIES	JASA 67 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA67 AMS 69 AMS 65 BIOKA67 AMS 69 AMS 67 AMS 69 AMS 66 AMS 66 AMS 66 AMS 66 AMS 66 BIOKA51 BIOKA52 TECH 64 BIOCS67 AMS 64 JASA 66	1037 84 136 1175 129 670 1439 897 55 403 1845 657 1436 459 217 1388 317 1462
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED BIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN A NOTE ON LINEAR DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUCIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES ON THE A SPECIAL REGRESSION, REGRESSION, SYSTEMS A PROBABILITY CORRECTION. 'THE SE OF INDIVIDUAL FIRMS THE ACCURACY AND GOMPUTATION AND ON THE BLOCK	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS STRUCTURAL SETUP OF DENSITIES STRUCTURE STRUCTURE STRUCTURE STRUCTURE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND THE EXISTENCE OF A SYSTEM LIFE STRUCTURE OF BIVARIANT ESTRUCTURE OF BIVARIANT BISTRUCTURE OF BIVARIATE DISTRIBUTIONS', 58 719 STRUCTURE OF INDUSTRY EXPECTATIONS IN RELATION TO THO STRUCTURE OF SINGULAR RESET POLICIES STRUCTURE OF SINGULAR RESET POLICIES STRUCTURE OF SINGULAR RECOUP DIVISIBLE DESICNS	JASA 67 BIOKA57 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA67 AMS 69 AMS 66 BIOKA67 AMS 69 AMS 67 BIOKA51 BIOKA51 BIOKA51 BIOKA52 TECH 64 BIOCS67 AMS 64 JASA 67 AMS 66	1037 84 136 1175 129 670 1439 897 55 403 1845 657 1436 11 9217 1388 317 1462 1398
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED MULTIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN A NOTE ON LINEAR DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUGIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES A SPECIAL REGRESSION, SYSTEMS A PROBABILITY CORRECTION. 'THE SE OF INDIVIDUAL FIRMS THE ACCURACY AND GOMPUTATION AND ON THE BLOCK ON THE TOPOLOGICAL	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES STRUCTURAL SETUP OF DENSITIES STRUCTURE STRUCTURE STRUCTURE STRUCTURE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND EQUIVARIANT ESTIMATION STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND THE EXISTENCE OF A SYSTEM LIFE STRUCTURE AND THE EXISTENCE OF A SYSTEM LIFE STRUCTURE OF BIVARIATE DISTRIBUTIONS', 58 719 STRUCTURE OF INDUSTRY EXPECTATIONS IN RELATION TO THO STRUCTURE OF SINGULAR RECOVED TO DISTRIBUTIONS STRUCTURE OF SINGULAR ROOUP DIVISIBLE DESICNS STRUCTURE OF SOME ORDERED FAMILIES OF DISTRIBUTIONS	JASA 67 BIOKA57 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA66 BIOKA67 AMS 69 AMS 65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 AMS 68 AMS 67 BIOKA51 BIOKA52 TECH 64 BIOCS67 AMS 64 JASA 58 JASA 67 AMS 66 AMS 64	1037 84 136 1175 129 670 1439 897 55 403 1845 657 1436 11 96 459 217 1388 317 1462 1398 1216
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUCIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES A SPECIAL REGRESSION, SYSTEMS A PROBABILITY CORRECTION. 'THE SE OF INDIVIDUAL FIRMS THE ACCURACY AND GOMPUTATION AND ON THE BLOCK ON THE TOPOLOGICAL ONE SERVER, WHILE THE INTERARR/ON THE CORRELATION	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES STRUCTURAL SETUP OF DENSITIES STRUCTURE STRUCTURE STRUCTURE STRUCTURE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND EQUIVARIANT ESTIMATION STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND THE EXISTENCE OF A SYSTEM LIFE STRUCTURE OF BIVARIATE DISTRIBUTIONS', 58 719 STRUCTURE OF INDUSTRY EXPECTATIONS IN RELATION TO THO STRUCTURE OF SINGULAR GROUP DIVISIBLE DESICNS STRUCTURE OF SOME ORDERED FAMILIES OF DISTRIBUTIONS STRUCTURE OF THE DEPARTURE PROCESS OF THE QUEUE WITH	JASA 67 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA66 BIOKA67 AMS 69 AMS 65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 AMS 64 AMS 64 AMS 64 JASA 67 AMS 64 JASA 67 AMS 64 JASA 67 AMS 64 JASA 66	1037 84 136 1175 129 670 1439 897 55 403 1845 657 1436 11 96 459 217 1388 317 1462 1398 1216 336
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED BIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN A NOTE ON LINEAR DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUCIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES A SPECIAL REGRESSION, REGRESSION, SYSTEMS A PROBABILITY CORRECTION. 'THE SE OF INDIVIDUAL FIRMS THE ACCURACY AND GOMPUTATION AND ON THE BLOCK ON THE TOPOLOGICAL ONE SERVER, WHILE THE INTERARR/ ON THE CORRELATION ORDERS IN THE TWO SAMPLE CASE FINE	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP A NOTE STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS STRUCTURAL SETUP OF DENSITIES STRUCTURE STRUCTURE STRUCTURE STRUCTURE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND EQUIVARIANT ESTIMATION STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND THE EXISTENCE OF A SYSTEM LIFE STRUCTURE FOR GROWTH CURVES STRUCTURE OF BIVARIATE DISTRIBUTIONS', 58 719 STRUCTURE OF INDUSTRY EXPECTATIONS IN RELATION TO THO STRUCTURE OF OPTIMAL RESET POLICIES STRUCTURE OF SINGULAR GROUP DIVISIBLE DESICNS STRUCTURE OF SOME ORDERED FAMILIES OF DISTRIBUTIONS STRUCTURE OF THE DEPARTURE PROCESS OF THE QUEUE WITH STRUCTURE OF THE DEPARTURE PROCESS OF TRACK	JASA 67 BIOKA57 BIOKA57 BIOKA57 BIOKA57 BIOKA67 AMS 69 AMS 65 BIOKA67 AMS 69 AMS 68 BIOKA67 AMS 68 AMS 68 AMS 68 AMS 67 BIOKA51 BIOKA51 BIOKA52 TCH 64 BIOCS67 AMS 64 JASA 67 AMS 64 AMS 66 AMS 66 AMS 66	1037 87 136 1175 129 670 1439 897 55 403 1845 657 1436 11 96 459 217 1388 317 1462 1398 1216 336 98
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR A ROTE ON LINEAR DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUGIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES ON THE A SPECIAL REGRESSION, REGRESSION, SYSTEMS A PROBABILITY CORRECTION. 'THE SE OF INDIVIDUAL FIRMS THE ACCURACY AND ON THE BLOCK ON THE TOPOLOGICAL ONE SERVER, WHILE THE INTERARR/ON THE CORRELATION ORDERS IN THE TWO SAMPLE CASE THE CORRELATION THE CORRELATION	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES STRUCTURAL SETUP OF DENSITIES STRUCTURE STRUCTURE STRUCTURE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND EQUIVARIANT ESTIMATION STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND THE EXISTENCE OF A SYSTEM LIFE STRUCTURE OF BIVARIATE DISTRIBUTIONS', 58 719 STRUCTURE OF DIVARIATE DISTRIBUTIONS', 58 719 STRUCTURE OF SINGULAR REPECTATIONS IN RELATION TO THO STRUCTURE OF SINGULAR REPECTATIONS IN RELATION TO THO STRUCTURE OF SINGULAR GROUP DIVISIBLE DESICNS STRUCTURE OF SOME ORDERED FAMILIES OF DISTRIBUTIONS STRUCTURE OF THE DEPARTURE PROCESS OF THE QUEUE WITH STRUCTURE OF THE ORDERING OF PROBABILITIES OF RANK STRUCTURE OF THE OUTPUT PROCESS OF SOME SINGLE SERVER	JASA 67 BIOKA57 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA66 BIOKA67 AMS 69 AMS 65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA51 BIOKA51 BIOKA52 TECH 64 BIOCS67 AMS 64 JASA 67 AMS 66	1037 84 136 1175 129 670 1439 897 55 403 1845 657 1436 11 96 459 217 1388 317 1462 318 1398 1216 336 91007
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUGIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES A SPECIAL REGRESSION, SYSTEMS A PROBABILITY CORRECTION. 'THE SE OF INDIVIDUAL FIRMS THE ACCURACY AND GOMPUTATION AND ON THE BLOCK ON THE TOPOLOGICAL ONE SERVER, WHILE THE INTERARR/ ORDERS IN THE TWO SAMPLE CASE SYSTEMS THE CORRELATION ON THE ORDER	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES STRUCTURE STRUCTURE STRUCTURE STRUCTURE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND EQUIVARIANT ESTIMATION STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND THE EXISTENCE OF A SYSTEM LIFE STRUCTURE FOR GROWTH CURVES STRUCTURE OF BIVARIATE DISTRIBUTIONS', 58 719 STRUCTURE OF SINGULAR GROUP DIVISIBLE DESICNS STRUCTURE OF SINGULAR GROUP DIVISIBLE DESICNS STRUCTURE OF SINGULAR GROUP DIVISIBLE DESICNS STRUCTURE OF THE DEPARTURE PROCESS OF THE QUEUE WITH STRUCTURE OF THE ORDERING OF PROBABILITIES OF RANK STRUCTURE OF THE OUTPUT PROCESS OF SOME SINGLE SERVER STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS	JASA 67 BIOKA57 BIOKA57 BIOKA57 BIOKA57 BIOKA65 BIOKA66 BIOKA66 BIOKA66 AMS 69 AMS 69 AMS 69 AMS 68 AMS 67 BIOKA65 BIOKA65 BIOKA65 BIOKA65 AMS 67 AMS 68 AMS 67 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68	1037 84 136 1175 129 601 1439 897 55 403 1845 657 1436 459 217 1388 317 1462 1398 1216 336 98 1007 596
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUCIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES ON THE A SPECIAL REGRESSION, REGRESSION, SYSTEMS A PROBABILITY CORRECTION. THE ON THE ACCURACY AND GOMPUTATION AND ON THE BLOCK ON THE TOPOLOGICAL ONE SERVER, WHILE THE INTERARR/ ORDERS IN THE TWO SAMPLE CASE SYSTEMS THE CORRELATION ON THE ORDER ON THE	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS STRUCTURAL SETUP OF DENSITIES STRUCTURE STRUCTURE STRUCTURE STRUCTURE STRUCTURE STRUCTURE ADECOMPOSITION STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE OF OR GROWTH CURVES STRUCTURE OF DIVARIATE DISTRIBUTIONS', 58 719 STRUCTURE OF INDUSTRY EXPECTATIONS IN RELATION TO THO STRUCTURE OF OPTIMAL RESET POLICIES STRUCTURE OF SOME ORDERED FAMILIES OF DISTRIBUTIONS STRUCTURE OF SOME ORDERED FAMILIES OF DISTRIBUTIONS STRUCTURE OF THE DEPARTURE PROCESS OF THE QUEUE WITH STRUCTURE OF THE OUTPUT PROCESS OF SOME SINGLE SERVER STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS	JASA 67 BIOKA57 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA67 AMS 69 AMS 65 BIOKA67 AMS 69 AMS 66 AMS 68 AMS 67 BIOKA51 BIOKA51 BIOKA52 TECH 64 BIOCS67 AMS 64 BIOCS67 AMS 66	1037 84 136 1175 129 670 1439 897 55 403 1845 657 1436 11 96 459 217 1388 317 1462 1398 1216 98 1007 596 261
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED BIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN A NOTE ON LINEAR DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUCIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES ON THE A SPECIAL REGRESSION, REGRESSION, REGRESSION, REGRESSION, SYSTEMS A PROBABILITY CORRECTION. 'THE SE OF INDIVIDUAL FIRMS THE ACCURACY AND GOMPUTATION AND ON THE DOCKOON ON THE TOPOLOGICAL ONE SERVER, WHILE THE INTERARR/ ON THE CORRELATION ORDERS IN THE TWO SAMPLE CASE SYSTEMS THE CORRELATION ON THE ORDER ON THE S ON FINITE STATE SEQUENCE	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS STRUCTURAL SETUP OF DENSITIES STRUCTURE STRUCTURE STRUCTURE STRUCTURE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND THE EXISTENCE OF A SYSTEM LIFE STRUCTURE OF BIVARIATE DISTRIBUTIONS', 58 719 STRUCTURE OF BIVARIATE DISTRIBUTIONS', 58 719 STRUCTURE OF SINGULAR GROUP DIVISIBLE DESICNS STRUCTURE OF SINGULAR GROUP DIVISIBLE DESICNS STRUCTURE OF THE DEPARTURE PROCESS OF THE QUEUE WITH STRUCTURE OF THE ORDERING OF PROBABILITIES OF RANK STRUCTURE OF THE ORDERING OF PROBABILITIES OF RANK STRUCTURE OF THE ORDERING OF PROBABILITIES SERVER STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS STRUCTURE OF THE TETRACHORIC SERIES STRUCTURE OF THE TETRACHORIC SERIES	JASA 67 BIOKA57 BIOKA57 BIOKA57 BIOKA56 JASA 64 BIOCS69 BIOKA67 AMS 69 AMS 65 BIOKA67 AMS 69 AMS 67 BIOKA51 BIOKA51 BIOKA51 BIOKA52 TECH 64 AMS 64 JASA 58 JASA 67 AMS 66 AMS 66 AMS 66 AMS 66 AMS 66 AMS 66 AMS 68 AMS 66	1037 84 136 1175 129 670 1439 897 55 403 1845 657 1436 11 96 459 217 1388 317 1462 1398 1216 336 98 1007 596 261 550
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED BIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR A ROTE ON LINEAR DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUGIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES REPLICATES A PROBABILITY CORRECTION. 'THE SE OF INDIVIDUAL FIRMS A PROBABILITY CORRECTION. 'THE THE ACCURACY AND GOMPUTATION AND ON THE TOPOLOGICAL ONE SERVER, WHILE THE INTERARR/ ON THE CORRELATION ON THE TOPOLOGICAL ONE SERVER, WHILE THE INTERARR/ ON THE CORRELATION ON THE ORDER SYSTEMS THE CORRELATION ON THE ORDER ON THE S ON FINITE STATE SEQUENCE THE STATISTICAL ANALYSIS OF INDUSTRY	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES STRUCTURAL SETUP OF DENSITIES STRUCTURE STRUCTURE STRUCTURE STRUCTURE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND EQUIVARIANT ESTIMATION STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND THE EXISTENCE OF A SYSTEM LIFE STRUCTURE OF BIVARIATE DISTRIBUTIONS', 58 719 STRUCTURE OF BIVARIATE DISTRIBUTIONS', 58 719 STRUCTURE OF SOME ORDERED FAMILIES OF DISTRIBUTIONS STRUCTURE OF SOME ORDERED FAMILIES OF DISTRIBUTIONS STRUCTURE OF THE DEPARTURE PROCESS OF THE QUEUE WITH STRUCTURE OF THE ORDERING OF PROBABILITIES OF RANK STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS STRUCTURE OF THE TETRACHORIC SERIES STRUCTURE, AN APPLICATION TO FOOD INDUSTRIES	JASA 67 BIOKA57 BIOKA57 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA65 AMS 69 AMS 65 BIOKA65 AMS 67 BIOKA65 BIOKA65 AMS 67 BIOKA51 BIOKA51 BIOKA52 TECH 64 JASA 58 JASA 67 AMS 64 JASA 66 AMS 64 JASS 66 AMS 64 JRSSB66 AMS 66	1037 84 136 1175 129 670 1439 897 55 403 1845 657 1436 11 96 459 217 1388 317 1462 336 938 1216 336 96 251 550 925
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED BIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUCIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES A SPECIAL REGRESSION, REGRESSION, SYSTEMS A PROBABILITY CORRECTION. 'THE SE OF INDIVIDUAL FIRMS THE ACCURACY AND GOMPUTATION AND ON THE BLOCK ON THE TOPOLOGICAL ONE SERVER, WHILE THE INTERARR/ ORDERS IN THE TWO SAMPLE CASE SYSTEMS THE CORRELATION ON THE CORRELATION ON THE ORDER ON THE ORDER ON THE SOME THE STATISTICAL ANALYSIS OF INDUSTRY MULTI-COMPONENT SYSTEMS AND	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP A NOTE STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS STRUCTURAL SETUP OF DENSITIES STRUCTURE STRUCTURE STRUCTURE STRUCTURE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND EQUIVARIANT ESTIMATION STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE FOR GROWTH CURVES STRUCTURE OF DIVARIATE DISTRIBUTIONS', 58 719 STRUCTURE OF INDUSTRY EXPECTATIONS IN RELATION TO THO STRUCTURE OF OPTIMAL RESET POLICIES STRUCTURE OF SOME ORDERED FAMILIES OF DISTRIBUTIONS STRUCTURE OF THE OPTIMAL RESET POLICIES STRUCTURE OF THE OPTIMAL RESET POLICIES STRUCTURE OF THE OPTIMAL RESET FOLICIES STRUCTURE OF THE OPTIMAL RESET POLICIES STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS STRUCTURE OF THE TETRACHORIC SERIES STRUCTURE AN APPLICATION TO FOOD INDUSTRIES STRUCTURES AND THEIR RELIABILITY	JASA 67 BIOKA57 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA67 AMS 69 AMS 65 BIOKA67 AMS 69 AMS 66 BIOKA67 AMS 69 AMS 68 AMS 67 BIOKA51 BIOKA51 BIOKA51 BIOKA52 AMS 66	1037 84 136 1175 129 670 1439 897 55 403 1845 657 1436 11 96 459 217 1388 317 1462 1398 1216 98 1007 596 261 550 925 555
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED BIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN A NOTE ON LINEAR DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS OF FIDUCIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES ON THE A SPECIAL REGRESSION, REGRESSION, REGRESSION, SYSTEMS A PROBABILITY CORRECTION. 'THE SE OF INDIVIDUAL FIRMS THE ACCURACY AND GOMPUTATION AND ON THE TOPOLOGICAL ONE SERVER, WHILE THE INTERARR/ ON THE CORRELATION ORDERS IN THE TWO SAMPLE CASE SYSTEMS THE CORRELATION ON THE ORDER ON THE S ON FINITE STATE SEQUENCE THE STATISTICAL ANALYSIS OF INDUSTRY MULTI-COMPONENT SYSTEMS AND ENOUILLE'S TEST FOR THE COMPATIBILITY OF CORRELATION	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP A NOTE STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS STRUCTURAL SETUP OF DENSITIES STRUCTURE STRUCTURE STRUCTURE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND EQUIVARIANT ESTIMATION STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND THE EXISTENCE OF A SYSTEM LIFE STRUCTURE OF BIVARIATE DISTRIBUTIONS', 58 719 STRUCTURE OF BIVARIATE DISTRIBUTIONS', 58 719 STRUCTURE OF OPTIMAL RESET POLICIES STRUCTURE OF SOME ORDERED FAMILIES OF DISTRIBUTIONS STRUCTURE OF SOME ORDERED FAMILIES OF DISTRIBUTIONS STRUCTURE OF THE DEPARTURE PROCESS OF THE QUEUE WITH STRUCTURE OF THE OUTPUT PROCESS OF SOME SINGLE SERVER STRUCTURE OF THE OUTPUT PROCESS OF SOME SINGLE SERVER STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS STRUCTURE THEOREMS FOR STATIONARY PROBABILITY MEASURE STRUCTURE, AN APPLICATION TO FOOD INDUSTRIES STRUCTURES AND THEIR RELIABILITY AND EXTENSION OF QU	JASA 67 BIOKA57 BIOKA57 BIOKA57 BIOKA57 AMS 69 AMS 65 BIOKA67 AMS 69 AMS 67 AMS 69 AMS 66 BIOKA67 AMS 68 AMS 67 BIOKA51 BIOKA51 BIOKA52 TAMS 64 BIOKA52 AMS 64 JASA 66 AMS 68 AMS 66 AMS 66 AMS 66 AMS 68 AMS 66 AMS	1037 84 136 1175 129 670 1439 897 55 403 1845 657 1436 11 96 459 217 1388 317 1462 1398 1216 336 98 1007 596 98 1007 596 98 1007 596 1007 597 597 597 597 597 597 597 597 597 59
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED BIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR A ROTE ON LINEAR DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUGIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES A SPECIAL REGRESSION, SYSTEMS A PROBABILITY CORRECTION. 'THE SE OF INDIVIDUAL FIRMS THE ACCURACY AND GOMPUTATION AND ON THE BLOCK ON THE TOPOLOGICAL ONE SERVER, WHILE THE INTERARR/ ON THE CORRELATION ORDERS IN THE TWO SAMPLE CASE SYSTEMS THE CORRELATION ON THE ORDER ON THE SOME THE STATISTICAL ANALYSIS OF INDUSTRY MULTI-COMPONENT SYSTEMS AND BLOCK DESIGNS, CORR. 67 624 ON THE BLOCK ON THE BLOCK	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP A NOTE STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES STRUCTURAL SETUP OF DENSITIES STRUCTURE STRUCTURE STRUCTURE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND THE EXISTENCE OF A SYSTEM LIFE STRUCTURE OF BIVARIATE DISTRIBUTIONS', 58 719 STRUCTURE OF INDUSTRY EXPECTATIONS IN RELATION TO THO STRUCTURE OF OPTIMAL RESET POLICIES STRUCTURE OF SOME ORDERED FAMILIES OF DISTRIBUTIONS STRUCTURE OF SINGULAR GROUP DIVISIBLE DESICNS STRUCTURE OF THE DEPARTURE PROCESS OF THE QUEUE WITH STRUCTURE OF THE ORDERING OF PROBABILITIES OF RANK STRUCTURE OF THE ORDERING OF PROBABILITIES OF RANK STRUCTURE OF THE ORDERING OF PROBABILITIES OF RANK STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS STRUCTURE OF THE TETRACHORIC SERIES STRUCTURE OF THE TETRACHORIC SERIES STRUCTURE, AN APPLICATION TO FOOD INDUSTRIES STRUCTURE, AN APPLICATION TO FOOD INDUSTRIES STRUCTURES AND THEIR RELIABILITY STRUCTURES AN EXTENSION OF QUESTRUCTURES OF CERTAIN PARTIALLY BALANCED INGOMPLETE	JASA 67 BIOKA57 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA66 AMS 69 AMS 65 BIOKA65 AMS 67 BIOKA65 BIOKA65 BIOKA65 AMS 67 BIOKA51 BIOKA51 BIOKA52 TECH 64 JASA 66 AMS 66	1037 84 136 1175 129 670 1439 897 55 403 1845 657 1436 11 96 459 217 1388 317 1462 336 98 1007 596 261 590 925 55 180 1016
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUGIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES REPLICATES A SPECIAL REGRESSION, SYSTEMS A PROBABILITY CORRECTION. 'THE SE OF INDIVIDUAL FIRMS THE ACCURACY AND GOMPUTATION AND ON THE TOPOLOGICAL ONE SERVER, WHILE THE INTERARR/ ON THE CORRELATION ORDERS IN THE TWO SAMPLE CASE SYSTEMS THE CORRELATION ON THE ORDER ON THE S ON FINITE STATE SEQUENCE THE STATISTICAL ANALYSIS OF INDUSTRY MULTI-COMPONENT SYSTEMS AND ENOUILLE'S TEST FOR THE COMPATIBILITY OF CORRELATION BLOCK DESIGNS, CORR, 67 624 ON THE BIOCK GOHERENT	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP A NOTE STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES STRUCTURE SETUP OF DENSITIES STRUCTURE STRUCTURE STRUCTURE STRUCTURE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND EQUIVARIANT ESTIMATION STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE FOR GROWTH CURVES STRUCTURE OF DIVARIANT DISTRIBUTIONS', 58 719 STRUCTURE OF INDUSTRY EXPECTATIONS IN RELATION TO THO STRUCTURE OF SINGULAR GROUP DIVISIBLE DESICNS STRUCTURE OF SOME ORDERED FAMILIES OF DISTRIBUTIONS STRUCTURE OF THE DEPARTURE PROCESS OF THE QUEUE WITH STRUCTURE OF THE ORDERING OF PROBABILITIES OF RANK STRUCTURE OF THE OUTPUT PROCESS OF SOME SINGLE SERVER STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS STRUCTURE THEOREMS FOR STATIONARY PROBABILITY MEASURE STRUCTURE, AN APPLICATION TO FOOD INDUSTRIES STRUCTURES IN TIME SERIES AN EXTENSION OF QUESTICUTURES OF CERTAIN PARTIALLY BALANCED INGOMPLETE STRUCTURES OF CERTAIN PARTIALLY BALANCED INGOMPLETE STRUCTURES OF NON—IDENTICAL COMPONENTS	JASA 67 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA67 AMS 69 AMS 65 BIOKA65 BIOKA67 AMS 69 AMS 66 AMS 66 AMS 67 BIOKA51 BIOKA51 BIOKA51 BIOKA51 BIOKA52 TECH 64 BIOCS67 AMS 64 JASA 67 AMS 66 AMS 66 AMS 66 AMS 66 AMS 66 AMS 66 TECH 61	1037 84 136 1175 129 670 1439 897 55 403 1845 657 1436 11 99 217 1388 317 1462 1398 1216 336 98 1007 596 261 555 180 925 55 180
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED BIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUCIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES A SPECIAL REGRESSION, REGRESSION, SYSTEMS A PROBABILITY CORRECTION. 'THE SE OF INDIVIDUAL FIRMS THE ACCURACY AND GOMPUTATION AND ON THE BLOCK ON THE TOPOLOGICAL ONE SERVER, WHILE THE INTERARR/ ON THE CORRELATION ORDERS IN THE TWO SAMPLE CASE SYSTEMS THE CORRELATION ON THE ORDER ON THE SOME THE STATISTICAL ANALYSIS OF INDUSTRY MULTI-COMPONENT SYSTEMS AND ENOUILLE'S TEST FOR THE COMPATIBILITY OF CORRELATION BLOCK DESIGNS, CORR. 67 624 ON THE BLOCK GOHERENT ND ANALYSIS OF/_ PARAMETRIC AUGMENTATIONS AND ERROR	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP A NOTE STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS STRUCTURAL SETUP OF DENSITIES STRUCTURE STRUCTURE STRUCTURE STRUCTURE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE OF GROWTH CURVES STRUCTURE OF BIVARIATE DISTRIBUTIONS', 58 719 STRUCTURE OF INDUSTRY EXPECTATIONS IN RELATION TO THO STRUCTURE OF FOPIMAL RESET POLICIES STRUCTURE OF SOME ORDERED FAMILIES OF DISTRIBUTIONS STRUCTURE OF FINGULAR GROUP DIVISIBLE DESIGNS STRUCTURE OF THE DEPARTURE PROCESS OF THE QUEUE WITH STRUCTURE OF THE DEPARTURE PROCESS OF THE QUEUE WITH STRUCTURE OF THE DEPARTURE PROCESS OF SOME SINGLE SERVER STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS STRUCTURE THEOREMS FOR STATIONARY PROBABILITY MEASURE STRUCTURE THEOREMS FOR STATIONARY PROBABILITY MEASURE STRUCTURE AND THEIR RELIABILITY STRUCTURES AND THEIR RELIABILITY STRUCTURES AND THEIR RELIABILITY STRUCTURES AND THEIR RELIABILITY STRUCTURES OF CERTAIN PARTIALLY BALANCED INCOMPLETE STRUCTURES OF ON-IDENTICAL COMPONENTS STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST SQUARES A	JASA 67 BIOKA57 BIOKA57 BIOKA57 BIOKA57 BIOKA67 AMS 69 AMS 65 BIOKA67 AMS 69 AMS 66 AMS 67 BIOKA67 BIOKA67 BIOKA67 BIOKA67 BIOKA51 BIOKA51 BIOKA52 TECH 64 BIOCS67 AMS 64 JASA 58 JASA 58 JASA 66 AMS 63 AMS 64 JASA 61 TECH 61 JRSSB6B AMS 66 AMS 66 AMS 66 AMS 66 AMS 66 AMS 66 AMS 63 AMS 64 AMS 64 AMS 64 AMS 66	1037 84 136 1175 129 670 1439 897 55 403 1845 657 1436 11 96 459 217 1388 316 217 1388 316 336 98 1007 596 261 550 925 180 1016 1016 1016 1016 1016 1016 1016
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED BIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR A ROTE ON LINEAR DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUGIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES ON THE A SPECIAL REGRESSION, SYSTEMS A PROBABILITY CORRECTION. 'THE SE OF INDIVIDUAL FIRMS THE ACCURACY AND ON THE BLOCK ON THE TOPOLOGICAL ONE SERVER, WHILE THE INTERARR/ ON THE CORRELATION ORDERS IN THE TWO SAMPLE CASE SYSTEMS THE CORRELATION ON THE ORDER ON THE S ON FINITE STATE SEQUENCE THE STATISTICAL ANALYSIS OF INDUSTRY MULTI-COMPONENT SYSTEMS AND ENOUILLE'S TEST FOR THE COMPATIBILITY OF CORRELATION BLOCK DESIGNS, CORR. 67 624 ON THE BLOCK GOHERENT ND ANALYSIS OF/— PARAMETRIC AUGMENTATIONS AND ERROR E ON THE ASYMPTOTIC RELATIVE EFFICIENCIES OF COX AND	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS STRUCTURAL SETUP OF DENSITIES STRUCTURE STRUCTURE STRUCTURE STRUCTURE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND THE EXISTENCE OF A SYSTEM LIFE STRUCTURE OF BIVARIATE DISTRIBUTIONS', 58 719 STRUCTURE OF BIVARIATE DISTRIBUTIONS', 58 719 STRUCTURE OF FINDUSTRY EXPECTATIONS IN RELATION TO THO STRUCTURE OF SINGULAR GROUP DIVISIBLE DESICNS STRUCTURE OF SINGULAR GROUP DIVISIBLE DESICNS STRUCTURE OF THE DEPARTURE PROCESS OF THE QUEUE WITH STRUCTURE OF THE ORDERING OF PROBABILITIES OF RANK STRUCTURE OF THE ORDERING OF PROBABILITIES OF RANK STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS STRUCTURE OF THE TETRACHORIC SERIES STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS STRUCTURE OF THE TETRACHORIC SERIES STRUCTURE OF THE TETRACHORIC SERIES STRUCTURE OF THE TETRACHORIC SERIES STRUCTURE OF THE CERTAIN SIBPLE LEAST SQUARES A STUARTY'S TESTS FOR TESTING TREND IN DISPERSION OF A P	JASA 67 BIOKA57 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA67 AMS 69 AMS 65 BIOKA67 AMS 69 AMS 67 BIOKA67 BIOKA67 BIOKA51 BIOKA51 BIOKA52 TECH 64 JASA 68 AMS 67 AMS 64 JASA 68 AMS 66 AMS 66 AMS 66 AMS 68 AMS 66	1037 84 136 1175 129 670 1439 897 55 403 1845 657 1436 11 96 459 217 1388 317 1388 317 1462 1398 1216 336 98 1007 596 261 550 925 550 925 550 180 161 161 175 180 180 180 180 180 180 180 180 180 180
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR ARE KNOWN DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUGIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES REPLICATES A PROBABILITY CORRECTION. 'THE SE OF INDIVIDUAL FIRMS A PROBABILITY CORPECTION. 'THE SE OF INDIVIDUAL FIRMS ON THE THE ACCURACY AND GOMPUTATION AND ON THE TOPOLOGICAL ONE SERVER, WHILE THE INTERARR/ ON THE CORRELATION ORDERS IN THE TWO SAMPLE CASE SYSTEMS THE CORRELATION ON THE ORDER ON THE S ON FINITE STATE SEQUENCE THE STATISTICAL ANALYSIS OF INDUSTRY MULTI-COMPONENT SYSTEMS AND ENOUILLE'S TEST FOR THE COMPATIBILITY OF CORRELATION BLOCK DESIGNS, CORR. 67 624 ON THE BLOCK GOHERNT ND ANALYSIS OF/ PARAMETRIC AUGMENTATIONS AND ERROR E ON THE ASYMPTOTIC RELATIVE EFFICIENCIES OF COX AND ON CHARACTERIZING THE CHI SQUARE DISTRIBUTION BY THE	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP A NOTE STRUCTURAL RELATIONSHIPS HEND BOTH RESIDUAL VARIANCES STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES STRUCTURE STRUCTURE STRUCTURE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND THE EXISTENCE OF A SYSTEM LIFE STRUCTURE OF BIVARIATE DISTRIBUTIONS', 58 719 STRUCTURE OF BIVARIATE DISTRIBUTIONS', 58 719 STRUCTURE OF INDUSTRY EXPECTATIONS IN RELATION TO THO STRUCTURE OF OPTIMAL RESET POLICIES STRUCTURE OF SOME ORDERED FAMILIES OF DISTRIBUTIONS STRUCTURE OF FOR GROWTH CURVES OF THE QUEUE WITH STRUCTURE OF THE DEPARTURE PROCESS OF THE QUEUE WITH STRUCTURE OF THE ORDERING OF PROBABILITIES OF RANK STRUCTURE OF THE ORDERING OF PROBABILITIES OF RANK STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS STRUCTURE OF THE TETRACHORIC SERIES STRUCTURE OF THE TETRACHORIC SERIES STRUCTURE, AN APPLICATION TO FOOD INDUSTRIES STRUCTURE, AN APPLICATION TO FOOD INDUSTRIES STRUCTURES AND THEIR RELIABILITY STRUCTURES OF CERTAIN PARTIALLY BALANCED INCOMPLETE STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST SQUARES A STUADENT LAW	JASA 67 BIOKA57 BIOKA57 BIOKA57 BIOKA65 BIOKA65 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA67 AMS 69 AMS 69 AMS 67 BIOKA51 BIOKA51 BIOKA51 BIOKA52 TECH 64 JASA 58 JASA 67 AMS 64 JASA 66 AMS 64 JRSSB66 AMS 64 JRSSB66 AMS 64 JRSSB66 AMS 66 BIOKA68 AMS 66 BIOKA68 AMS 66 BIOKA68 AMS 66 BIOKA68	1037 84 136 1175 129 670 1439 897 55 403 1845 657 1436 11 96 459 217 1388 317 1462 336 9217 550 925 550 925 550 1016 191 NO.44 381 976
MULTIVARIATE MODEL WHEN THE GOVARIABLE IS UNCONTROLLED BIVARIATE MULTIVARIATE LINEAR ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR SIMULTANEOUS PAIRWISE LINEAR A ROTE ON LINEAR DISTRIBUTION OF A PRODUCT AND THE ORDER STATISTICS AND STATISTICS OF FIDUGIAL CONSISTENCY AND GROUP TIME SERIES WITH PERIODIC THEOREM FOR VECTOR VARIABLES WITH A LINEAR REPLICATES ON THE A SPECIAL REGRESSION, SYSTEMS A PROBABILITY CORRECTION. 'THE SE OF INDIVIDUAL FIRMS THE ACCURACY AND ON THE BLOCK ON THE TOPOLOGICAL ONE SERVER, WHILE THE INTERARR/ ON THE CORRELATION ORDERS IN THE TWO SAMPLE CASE SYSTEMS THE CORRELATION ON THE ORDER ON THE S ON FINITE STATE SEQUENCE THE STATISTICAL ANALYSIS OF INDUSTRY MULTI-COMPONENT SYSTEMS AND ENOUILLE'S TEST FOR THE COMPATIBILITY OF CORRELATION BLOCK DESIGNS, CORR. 67 624 ON THE BLOCK GOHERENT ND ANALYSIS OF/— PARAMETRIC AUGMENTATIONS AND ERROR E ON THE ASYMPTOTIC RELATIVE EFFICIENCIES OF COX AND	STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALYSIS STRUCTURAL RELATION STRUCTURAL RELATIONS STRUCTURAL RELATIONSHIP A NOTE STRUCTURAL RELATIONSHIPS STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES STRUCTURE SETUCTURE STRUCTURE STRUCTURE AND FOR STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL STRUCTURE AND EQUIVARIANT ESTIMATION STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND FUNCTIONAL RELATIONSHIP STRUCTURE AND THE EXISTENCE OF A SYSTEM LIFE STRUCTURE AND THE EXISTENCE OF A SYSTEM LIFE STRUCTURE OF INDUSTRY EXPECTATIONS IN RELATION TO THO STRUCTURE OF INDUSTRY EXPECTATIONS IN RELATION TO THO STRUCTURE OF OPTIMAL RESET POLICIES STRUCTURE OF SOME ORDERED FAMILIES OF DISTRIBUTIONS STRUCTURE OF SOME ORDERED FAMILIES OF THE QUEUE WITH STRUCTURE OF THE DEPARTURE PROCESS OF THE QUEUE WITH STRUCTURE OF THE OUTPUT PROCESS OF SOME SINGLE SERVER STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS STRUCTURE OF THE TETRACHORIC SERIES STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS STRUCTURE AN APPLICATION TO FOOD INDUSTRIES STRUCTURE AN APPLICATION TO FOOD INDUSTRIES STRUCTURES AND THEIR RELIABILITY STRUCTURES AND THEIR RELIABILITY STRUCTURES AND THEIR RELIABILITY STRUCTURES OF CERTAIN PARTIALLY BALANCED INGOMPLETE STRUCTURES OF NON-IDENTICAL COMPONENTS STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST SQUARES A STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A P STUDENT LAW STUDENT T-TESTS	JASA 67 BIOKA57 BIOKA57 BIOKA58 JASA 64 BIOCS69 BIOKA67 AMS 69 AMS 65 BIOKA65 BIOKA65 BIOKA67 AMS 68 AMS 68 AMS 68 AMS 66 AMS 68 BIOKA51 BIOKA51 BIOKA51 BIOKA51 BIOKA52 BIOKA51 BIOKA51 BIOKA52 BIOKA51 BIOKA51 BIOKA51 BIOKA51 BIOKA51 BIOKA51 BIOKA51 BIOKA52 BIOKA51 BIOKA51 BIOKA51 BIOKA51 BIOKA51 BIOKA51 BIOKA51 BIOKA51 BIOKA51 AMS 66 BIOKA68 AMS 66 JASA 69 BIOKA68	1037 84 136 1175 129 670 1439 897 55 403 1845 657 1436 11 96 459 217 1388 1216 336 98 1007 596 261 550 925 180 1016 1018 1018 1018 1018 1018 1018

STU - SUC TITLE WORD INDEX

```
A COMMON MULTIPLE COMPARISONS PROBLEM AND RELATED STUDENT-T PROBLEMS
                                                                                              BAYES RULES FOR AMS 61 1013
                                 'STUDENT' AND SMALL SAMPLE THEORY
A NOMOCRAM FOR THE 'STUDENT'*FISHER T TEST
                                                                                              JASA 58 777
                                                                                                               JASA 69 NO.4
                         AN INEQUALITY ON A BIVARIATE STUDENT'S 'T' DISTRIBUTION
                                                                                                              JASA 67 603
                                         THE DISCRETE STUDENT'S DISTRIBUTION
                                                                                                                AMS 68 1513
CEOMETRY
                                                       STUDENT'S DISTRIBUTION AND RIEMANN'S ELLIPTIC
                                                                                                               BIOKA57 264
        ON CHARACTERIZING THE NORMAL DISTRIBUTION BY STUDENT'S LAW
                                                                                                               BIOKA66
                                                                                                                        603
                   NOTE ON A CONDITIONAL PROPERTY OF STUDENT'S T
                                                                                                               AMS 63 1098
                                  AN APPROXIMATION OF STUDENT'S T
                                                                                                               TECH 65
                                                      STUDENT'S T IN A TWO-WAY CLASSIFICATION WITH UNEQUAL
VARIANCES
                                                                                                               AMS 65 1248
         THE CONDITIONAL LEVEL OF STUDENT'S T TEST EXTENDED TABLES OF THE PERCENTAGE POINTS OF STUDENT'S T-DISTRIBUTION
                                                                                                                AMS 67 106B
                                                                                                               JASA 59 683
                                AN APPROXIMATION FOR STUDENT'S T-DISTRIBUTION
                                                                                                               BIOKA68 571
TAIN PERCENTAGE POINTS OF A MULTIVARIATE ANALOGUE OF STUDENT'S T-DISTRIBUTION /BABILITY INTEGRAL AND CER BIOKAS5
                                                                                                                        25B
CIAL CASES A BIVARIATE CENERALIZATION OF STUDENT'S T-DISTRIBUTION, WITH TABLES FOR CERTAIN SPE BIOKA54 153
                                                       STUDENT'S T-TEST UNDER SYMMETRY CONDITIONS
                                        THE POWER OF STUDENT'S T-TEST, CORR. 65 1251
                                                                                                              JASA 65 320
   ON MR SRIVASTAVA'S PAPER ON THE POWER FUNCTION OF STUDENT'S TEST
                                                                                                         NOTE BIOKA58 429
      REVISED UPPER PERCENTACE POINTS OF THE EXTREME STUDENTIZED DEVIATE FROM THE SAMPLE MEAN
                                                                                                             BIOKA56 449
                   ON THE DISTRIBUTION OF THE EXTREME STUDENTIZED DEVIATE FROM THE SAMPLE MEAN
                                                                                                               BTOKA59 467
              UPPER PERCENTAGE POINTS OF THE EXTREME STUDENTIZED DEVIATE FROM THE SAMPLE MEAN
                                                                                                              BIOKA59 473
     USE OF TABLES OF PERCENTAGE POINTS OF RANGE AND STUDENTIZED RANGE
THE JOINT DISTRIBUTION OF THE STUDENTIZED REGRESSION COEFFICIENTS
                                                                                                              TECH 61 407
                                                                                                              BIOKA6B
                                                                                                                       424
                                               ON THE STUDENTIZED SMALLEST CHI-SQUARE, CORR. 59 B12
                                                                                                              JASA 58 868
                 TABLES OF PERCENTAGE POINTS OF THE 'STUDENTIZED' EXTREME DEVIATE FROM THE SAMPLE MEAN
                                                                                                              BIOKA52
                                                                                                                        1B9
                             ON THE DISTRIBUTION OF 'STUDENTIZED' RANGE
                                                                                                              BIOKA52 194
        TABLE OF THE UPPER 10 PERCENT POINTS OF THE 'STUDENTIZED' RANGE
RECTED TABLES OF THE UPPER PERCENTAGE POINTS OF THE 'STUDENTIZED' RANGE
                                                                                            EXTENDED AND COR BIOKA52 192
    CORRICENDA, 'TABLES OF PERCENTAGE POINTS OF THE 'STUDENTIZED' RANGE'
                                                                                                              BIOKA53
              DESIGNING SOME MULTI-FACTOR ANALYTICAL STUDIES
                                                                                                               JASA 67 1121
                PROPORTIONAL SAMPLING IN LIFE LENGTH STUDIES
                                                                                                               TECH 67
                                                                                                                        205
             LINEAR RELATIONSHIPS IN GROWTH AND SIZE STUDIES
                                                                                                              BT0CS68 639
                                                                         COVARIANCE ANALYSIS WITH UNEQUAL S BIOCS68
UBCLASS NUMBERS, COMPONENT ESTIMATION IN CORRELATION STUDIES
                                                                                                                         49
                                                                          THE EFFECTIVENESS OF ADJUSTMENT BY BIOCS6B
 SUBCLASSIFICATION IN REMOVING BIAS IN OBSERVATIONAL STUDIES
                                                       STUDIES IN STATISTICAL ECOLOGY. I. SPATIAL PATTERN BIOKA52
XVI. RANDOM RANDOM MECHANISMS IN TALMUDIC LITERAT/
                                                       STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS BIOKA67
                                                                                                                        316
 I. DICING AND GAMING (A NOTE ON THE HISTORY OF P/
                                                       STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. BIOKA55
 II. THE BEGINNINGS OF A PROBABILITY CALCULUS
                                                       STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. BIOKA56
 III. A NOTE ON THE HISTORY OF THE CRAPHICAL PRES/
                                                       STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. BIOKA56
 IV. A NOTE ON AN EARLY STATISTICAL STUDY OF LITE/
                                                       STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. BIOKA56
                                                       STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. BIOKA57
 V. A NOTE ON PLAYING CARDS
 VI. A NOTE ON THE EARLY SOLUTIONS OF THE PROBLEM/
                                                       STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. BIOKA57
 VII. THE PRINCIPLE OF THE ARITHMETIC MEAN
                                                       STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS, BIOKA58
 VIII. DE MORGAN AND THE STATISTICAL STUDY OF LIT/
                                                       STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. BIOKA5B
                                                                                                                        2R2
 IX. BIOCRAPHICAL NOTE FOR T. BAYES' ESSAY TOWARD/
                                                       STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. BIOKA58
                                                                                                                        293
 X. WHERE SHALL THE HISTORY OF STATISTICS BECIN
                                                       STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. BIOKAGO
                                                                                                                        447
 XI. DANIEL BERNOULLI ON MAXIMUM LIKELIHOOD
                                                       STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. BIOKA61
                                                                                                                         1
 XII. THE BOOK OF FATE
                                                       STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. BIOKA61
                                                                                                                        220
 XIII. ISAAC TODHUNTER'S HISTORY OF THE MATHEMATI/
                                                       STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. BIOKA63
                                                                                                                        204
 XIV. SOME INCIDENTS IN THE EARLY HISTORY OF BIOM/
                                                       STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. BIOKA65
 XVII. SOME REFLEXIONS ON CONTINUITY IN THE DEVEL/
                                                       STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. BIOKA67
 XV. THE HISTORICAL DEVELOPMENT OF THE GAUSS LINE/
                                                       STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. BIOKA67
 XVIII. THOMAS YOUNC ON COINGIDENCES
                                                       STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. BIOKA68
 XIX. FRANCIS YSIDRO EDCEWORTH (1845-1926)
                                                       STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. BIOKA68
                                                       STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. BIOKA69 437
 XXII. PROBABILITY IN THE TALMUD
                                           NUMERICAL STUDIES IN THE SEQUENTIAL ESTIMATION OF A BINOMIAL
                                                                                                              BTOKA58
   DISTRIBUTIONS OF VARIANCE COMPONENTS I. EMPIRICAL STUDIES OF BALANCED NESTED DESIGN
                                                                                                    SAMPLING TECH 66 457
    ERRORS IN THE ESTIMATION OF NET MICRATION IN THE STUDIES OF INTERNAL MIGRATION
                                                                                                              JASA 69 NO.4
                                                       STUDIES OF INTERVIEWER VARIANCE FOR ATTITUDINAL
                                                                                                              JASA 62 92
                SEQUENTIAL RANK TESTS I. MONTE CARLO STUDIES OF THE TWO-SAMPLE PROCEDURE
                                                                                                              TECH 65
                                                                                                                        463
 DISTRIBUTIONS OF VARIANCE COMPONENTS II. EMPIRICAL STUDIES OF UNBALANCED NESTED DESIGNS
                                                                                                    SAMPLING TECH 68 719
                           FINITE SAMPLE MONTE CARLO STUDIES. AND AUTOREGRESSIVE ILLUSTRATION
                                                                                                              JASA 67
IGIOUS AFFILIATION WITH REFERENCES TO RELATED SOCIAL STUDIES, CORR. 59 811 / FRATURE ON STATISTICS OF REL JASA 59 335
   THE DEMAND FOR FERTILIZER IN 1954, AN INTER-STATE STUDY
 TESTS WHEN THE VARIANCES ARE UNEQUAL. A SIMULATION STUDY

SOME TWO-SAMPLE BIOKA67

A MONTE CARLO STUDY COMPARING VARIOUS TWO-SAMPLE TESTS FOR DIFFEREN TECH 68
                      THE FEMALE LABOR FORCE, A CASE STUDY IN THE INTERPRETATION OF HISTORICAL STATISTICS JASA 60
TION FOR THE RANDOMIZED BLOCK DESIGN AN EMPIRICAL STUDY INTO FACTORS AFFECTING THE F-TEST UNDER PERMUTA JASA 68
A MATHEMATICAL MODEL WITH APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMONG CHILDREN JASA 65
                                                                                                                        902
                                                                                                             JASA 65 1046
ENCE TO EQUILIBRIA A GRAPHICAL METHOD FOR THE STUDY OF COMPLEX GENETICAL SYSTEMS WITH SPECIAL REFER BIOCS69 NO.4
 THEORY IN THE DERIVATION OF ROBUST CRITERIA AND THE STUDY OF DEPARTURES FROM ASSUMPTION (WITH DISCUSSION) JRSSB55
                                                                                                            BIOCS69
                                           SIMULATION STUDY OF ESTIMATORS FOR THE LINE TRANSECT SAMPLING
                                                                                                                       317
                   SOME DISTRIBUTIONS ARISING IN THE STUDY OF GENERALIZED MEAN DIFFERENCES
                                                                                                              BIOKA60
                                                                                                                        469
      CORRIGENDA, 'SOME DISTRIBUTIONS ARISING IN THE STUDY OF GENERALIZED MEAN DIFFERENCES'
                                                                                                              BIOKA61
                                                                                                                       230
                       A DISTRIBUTION ARISING IN THE STUDY OF INFECTIOUS DISEASES
                                                                                                              BIOKA54
CATIONS OF PROBABILITY GENERATING FUNCTIONALS TO THE STUDY OF INPUT-OUTPUT STREAMS
                                                                                                  SOME APPLI JRSSB68
Y AND STATISTICS. IV. A NOTE ON AN EARLY STATISTICAL STUDY OF LITERARY STYLE /THE HISTORY OF PROBABILIT BIOKA56
AND STATISTICS. VIII. DE MORCAN AND THE STATISTICAL STUDY OF LITERARY STYLE /THE HISTORY OF PROBABILITY BIOKA58
                                     THE EXPERIMENTAL STUDY OF PHYSICAL MECHANISMS
                                                                                                              TECH 65
                                                                                                                        23
                                                 THE STUDY OF POPULATION GROWTH IN ORGANISMS GROUPED BY
                                                                                                              BIOCS65
STRIBUTION OF WORD LENCTH AND ITS IMPORTANCE FOR THE STUDY OF QUANTITATIVE LINCUISTICS /HE OCCURRENCE DI BIOKA58 222
                SOME NEW THREE LEVEL DESIGNS FOR THE STUDY OF QUANTITATIVE VARIABLES
                                                                                                              TECH 60
                                                                                                                      455
       ERRATA, 'SOME NEW THREE LEVEL DESIGNS FOR THE STUDY OF QUANTITATIVE VARIABLES'
                                                                                                              TECH 61
                                                                                                                       576
HOUSEHOLD INTERVIEWS
                                                    A STUDY OF RESPONSE ERRORS IN EXPENDITURES DATA FROM
                                                                                                              JASA 64
                                                                                                                        18
                                                                                                              TECH 67 652
                                                     A STUDY OF ROBUST ESTIMATORS
                          CORRECTION. 'A COMPARATIVE STUDY OF SEVERAL ONE-SIDED COODNESS-OF-FIT TESTS'
                                                                                                               AMS 65 1583
```

TITLE WORD INDEX STU - SUC

DADONDHATAI DICAC WIMI DADATCHIAD DEEPDENCE TO THE	STUDY OF SMOKINC AND LUNG CANCER, CORR. 60 754 /ING	1454 60	415
	STUDY OF THE ADEQUACY OF THE ASYMPTOTIC APPROXIMATION		593
	STUDY OF THE DISTRIBUTION OF THE SAMPLE GENETIC CORRE		63
		TECH 63	397
		TECH 61	371
		TECH 65	444
	STUDY OF THE MULTINOMIAL DISTRIBUTION STUDY OF THE STABILITIES OF ESTIMATORS AND VARIANCE E	AMS 67	540
	STUDY OF THE STABILITY DUE TO COINCIDENT PASSAGE IN		
A CORRELATION MODEL USEFUL IN THE	STUDY OF TWINS	JASA 66	
	STUDY OF VARIANCE FLUCTUATIONS IN TIME SERIES ANALYSI		103
	STUDY OF VARIOUS TESTS FOR NORMALITY STUDYING THE DENTAL CARIES PROCESS /ILITY APPROACH	JASA 68	791
	STUDYING THE PROPERTIES OF CERTAIN BIOLOGICAL SYSTEMS		16
A' COLL. AND A COMPARISON WITH THOSE OF 'D. ROBUSTA'	STURT /ONS IN POPULATIONS OF 'DROSOPHILA SUBOBSCUR		469
ON MATHEMATICAL ANALYSIS OF		BIOKA52	
IV. A NOTE ON AN EARLY STATISTICAL STUDY OF LITERARY	STYLE /THE HISTORY OF PROBABILITY AND STATISTICS. STYLE /THE HISTORY OF PROBABILITY AND STATISTICS. V		
INFORMATION AND SUFFICIENT		AMS 68	
A NOTE ON CONVERGENCE OF		AMS 64	1811
	SUBADDITIVE STOCHASTIC PROCESSES	JRSSB68	499
	SUBCLASS FREQUENCIES TWO-WAY ANALYSIS OF		308
FROM TRANSFORMED PERCENTAGE SIB DATA WITH UNEQUAL	SUBCLASS MEANS AND THE NUMBERS OF OBSERVATIONS IN THE SUBCLASS NUMBERS ESTIMATES OF HERITABILITY		
	SUBCLASS NUMBERS, COMPONENT ESTIMATION IN CORRELATION		49
	SUBCLASSES FOR THE TWO-WAY COMPLETELY-RANDOM CLASSIFI		
	SUBCLASSIFICATION IN REMOVING BIAS IN OBSERVATIONAL SUBDIVISIONS OF SPACE INTO CRYSTALS	BIOCS68	
REPRODUCTION OF ORDERINGS AND TRANSLATION		AMS 62	95B 196
ON THE ORDER STRUCTURE OF THE SET OF SUFFICIENT		AMS 62	596
ADEQUATE	SUBFIELDS AND SUFFICIENCY	AMS 67	155
	SUBGROUP OF PRE-ASSIGNED PARAMETERS /DESIGN OF FRAC		973
A SIMPLE SYSTEM OF EVOLUTIONARY OPERATION SOME THEORY OF SAMPLING WHEN THE STRATIFICATION IS		TECH 66 TECH 67	19 1
ESPONSE DATA IN WHICH THE MEASUREMENT OF RESPONSE IS			B11
FOR ESTIMATING FUNCTIONS WHEN BOTH VARIABLES ARE		TECH 67	261
	,		255
		JRSSB55 JRSSB54	173 11B
INFERENCE PROBLEMS ABOUT PARAMETERS WHICH ARE		AMS 68	
POPULATIONS (WITH DISCUSSION)	SUBJECTIVE BAYESIAN MODELS IN SAMPLING FINITE	JRSSB69	
	SUBJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE		23
	SUBJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE SUBJECTIVE PROBABILITIES AND EXPECTED UTILITIES	AMS 69	50 1419
	SUBJECTIVE PROBABILITIES, A CONVERGENCE THEOREM	AMS 67	221
A DEFINITION OF	SUBJECTIVE PROBABILITY	AMS 63	199
PREFERENCE-BASED DEFINITIONS OF		AMS 67	
THE RATIONAL ORIGIN FOR MEASURING NALYSIS OF A SERIES OF BIOLOGICAL ASSAYS ON THE SAME	SUBJECTIVE VALUES THE QUANTAL RESPONSE A	DASA ST	458 23
ON THE EXPECTED VALUE OF A STOPPED	SUBMARTINGALE	AMS 67	60B
A NOTE ON RISK AND MAXIMAL REGULAR GENERALIZED		AMS 67	606
	SUBOBSCURA' COLL. AND A COMPARISON WITH THOSE OF 'D. SUBORDINATION OF DIFFERENTIAL PROCESSES TO BROWNIAN	BIOCS66 AMS 69	469
	SUBPOPULATIONS /FFERENTIAL FOR POSITIVE DIRECTIONAL		
	SUBPROCESS OF STANDARD MARKOV PROCESS	AMS 67	
THE PROPERTIES OF A SAMPLE MEAN BY EMPLOYING RANDOM			54
USING THE ANALYSIS OF VARIANCE OF DATA FROM STRATIFIED		JASA 69 JASA 68	NO.4 64
	SUBSAMPLING PROCEDURE FOR RANKING MEANS OF FINITE POP		355
ELATION COEFFICIENT FROM ONE OR POSSIBLY TWO SAMPLES	SUBSEQUENT TO A PRELIMINARY TEST OF SIGNIFICANCE /R	JRSSB67	282
APPROXIMATION TO THE EXPECTED SIZE OF A SELECTED			207
	SUBSET CONTAINING THE POPULATION WITH THE LARGEST ALP SUBSET CONTAINING THE POPULATION WITH THE SMALLEST	BIOKA62	
2 TO THE POWER N FACTORIAL EXPERIMENT ON A SPECIAL	SUBSET CIVING AN IRREGULAR FRACTIONAL REPLICATE OF A		
		TECH 67	
		AMS 67	
ESTIMATION AND INFERENCE FOR LINEAR MODELS IN WHICH		BIOKA68 JASA 68	
SQUARES GRADUATION EQUATIONS	SUBSIDIARY SEQUENCES FOR SOLVING LESER'S LEAST-	JRSSB62	112
		BIOKA61	
	SUBSTITUTE INTERVAL ESTIMATORS, WITH AN APPLICATION SUBSTITUTES FOR CHI-SQUARE	JASA 64 BIOKA55	
	SUBSTITUTION IN CONDITIONAL EXPECTATION	AMS 68	
ORIAL E/ GENERALIZED LEAST-SQUARES ESTIMATION OF A	SUBVECTOR OF PARAMETERS IN RANDOMIZED FRACTIONAL FACT	AMS 69	1344
		BIOKA59	
ON THE DISTRIBUTION OF THE NUMBER OF	SUCCESSES IN INDEPENDENT TRIALS SUCCESSES IN INDEPENDENT TRIALS	AMS 64 AMS 65	
FOR PERMUTATIONS WITHOUT RISING OR FALLING			
N LIFE TABLES FOR THE SINCLE POPULATION BASED ON TWO	SUCCESSIVE CENSUSES (CORR. 6B 1550) /ON OF ATTRITIO	JASA 67	1433
	SUCCESSIVE CONDITIONAL EXPECTATIONS OF AN INTEGRABLE		
A NOTE ON EQUALISING THE MEAN WAITING TIMES OF THE DISTRIBUTION OF THE MEAN HALF-SQUARE		JRSSB55 BIOKA67	
	SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN		
SQUARE' CORRIGENDA TO 'ON THE MEAN	SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN	BIOKA58	587
		TECH 68	
A NOTE ON MEAN SQUARE	SUCCESSIVE DIFFERENCES	JASA 59	801

SUC - SUR TITLE WORD INDEX

```
ISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES
                                                                                    APPROXIMATIONS TO THE D BIOKA57
               THE DISTRIBUTION OF INTERVALS BETWEEN SUCCESSIVE MAXIMA IN A SERIES OF RANDOM NUMBERS
                                                                                                            BTOKA57
                                                                                                                      524
D SECOND DIFFERENCES, FOR SERIAL CORRELATION BETWEEN SUCCESSIVE OBSERVATIONS /RITERIA, BASED ON FIRST AN AMS 62
                                                                                                                      186
               DOUBLE SAMPLING FOR STRATIFICATION ON SUCCESSIVE OCCASIONS
                                                                                                             JASA 65
                                                                                                                      784
CONTINUOUS PROCESSES WITH NO AUTOCORRELATION BETWEEN SUCCESSIVE RESULTS
                                                                                    SAMPLING INSPECTION OF
                                                                                                                      363
                                                                                                            BIOKA60
                                        ESTIMATES IN SUCCESSIVE SAMPLING USING A MULTI-STACE DESIGN
                                                                                                             JASA 68
                                                                                                                      99
QUES IN MEDICAL TAXONOMY
                                     A COMPARISON OF SUCCESSIVE SCREENINC AND DISCRIMINANT FUNCTION TECHNI BIOCS69 NO.4
ARTINGALES IN A FINITELY ADDITIVE SETTING WILLIAM D. SUDDERTH
                                                                        A NOTE ON THRIFTY STRATECIES AND M AMS 69 NO.6
                              ADEQUATE SUBFIELDS AND SUFFICIENCY
                                                                                                              AMS 67
                                   LOCAL CONDITIONAL SUFFICIENCY
                                                                                                             JRSSB64
                                  TRANSFORMATIONS AND SUFFICIENCY
                                                                                                             JRSSB65
                                                                                                                     479
                                                      SUFFICIENCY AND APPROXIMATE SUFFICIENCY
                                                                                                             AMS 64 1419
NTIAL ANALYSIS
                            THE RELATIONSHIP BETWEEN SUFFICIENCY AND INVARIANCE WITH APPLICATIONS IN SEQUE AMS 65
                                                                                                                      575
                                              ON THE SUFFICIENCY AND LIKELIHOOD PRINCIPLES
                                                                                                             JASA 63
                                                                                                                      641
                                          THE ROLE OF SUFFICIENCY AND OF ESTIMATION IN THERMODYNAMICS
                                                                                                              AMS 62 1021
                                                  ON SUFFICIENCY AND THE EXPONENTIAL FAMILY
                                                                                                             JRSSR63
                                                                                                                      115
                                   SOME THEOREMS AND SUFFICIENCY CONDITIONS FOR THE MAXIMUM-LIKELIHOOD EST BIOKA55
TMATOR OF AN UNKNOWN PARAMETER/
                                                                                                                      342
IMATOR OF AN UNK/ CORRICENDA TO 'SOME THEOREMS AND SUFFICIENCY CONDITIONS FOR THE MAXIMUM-LIKELIHOOD EST BIOKA56
                                                                                                                      497
CERTAIN RANDOM WALKS
                                                      SUFFICIENCY CONDITIONS IN RECULAR MARKOV CHAINS AND BIOKA56
                                                                                                                      276
                                            A NOTE ON SUFFICIENCY IN REGULAR MARKOV CHAINS
                                                                                                             BIOKA60
                                                                                                                      452
                                    DISTRIBUTION-FREE SUFFICIENCY IN SAMPLINC FINITE POPULATIONS
                                                                                                             JRSSB68
                                                      SUFFICIENCY IN SAMPLING THEORY
                                                                                                              AMS 64
                                                                                                                      795
                                                  THE SUFFICIENCY IN THE UNDOMINATED CASE
                                                                                                              AMS 61 1191
                                   ON THE ASYMPTOTIC SUFFICIENCY OF CERTAIN ORDER STATISTICS
                                                                                                             JRSSB62
                                                                                                                      167
WHEN STRICTLY CONVEX LOSS IS U/
                                  ON A NECESSARY AND SUFFICIENT CONDITION FOR ADMISSIBILITY OF ESTIMATORS
                                                                                                             AMS 68
                                                                                                                      23
TO BE A PROBABILITY DENSITY FUNCTION
                                                      SUFFICIENT CONDITION FOR THE MIXTURE OF EXPONENTIALS
                                                                                                              AMS 69 NO.6
                                     A NECESSARY AND SUFFICIENT CONDITION FOR THE SQUARE OF A RANDOM VARIA BIOKAG6
BLE TO BE GAMMA
                                                                                                                     275
MATORS BE BEST LINEAR UNBIASED
                                     A NECESSARY AND SUFFICIENT CONDITION THAT ORDINARY LEAST-SQUARES ESTI JASA 67 1302
A FUNCTION OF A FINITE MARKOV CHAIN
                                                      SUFFICIENT CONDITIONS FOR A STATIONARY PROCESS TO BE
                                                                                                              AMS 63 1033
 INVARIANT UNDER A LIE CROUP
                                       NECESSARY AND SUFFICIENT CONDITIONS FOR A STATISTICAL PROBLEM TO BE AMS 63
                                                                                                                      492
                                                                                                              AMS 67
 ADDITIVE PROBABILITY MEASURE
                                                      SUFFICIENT CONDITIONS FOR THE EXISTENCE OF A FINITELY
                                                                                                                      780
IVATION OF THE DISTRIBUTION OF THE TRUNCATED POISSON SUFFICIENT STATISTIC
                                                                                        A COMBINATORIAL DER AMS 61
                                                                                                                      904
VALS FOR THE PARAMETER OF A DISTRIBUTION ADMITTING A SUFFICIENT STATISTIC WHEN THE RANCE DEPENDS ON THE PA JRSSB55
                                                                                                                       86
                                       ON CONTINUOUS SUFFICIENT STATISTICS
                                                                                                              AMS 64 1229
     NOTE ON A THEOREM OF DYNKIN ON THE DIMENSION OF SUFFICIENT STATISTICS
                                                                                                              AMS 69 1474
FORMS OF SOME INVARIANTS FOR DISTRIBUTIONS ADMITTING SUFFICIENT STATISTICS
                                                                                                      EXACT BIOKASS
                                                                                                                     533
FACE OF A SAMPLE DRAWN FROM A DISTRIBUTION ADMITTING SUFFICIENT STATISTICS
                                                                              /VATURE OF THE LIKELIHOOD SUR BIOKAGO
                                                                                                                      203
MIXED MODEL DESIGN
                                              MINIMAL SUFFICIENT STATISTICS FOR THE TWO-WAY CLASSIFICATION JASA 65
                                                                                                                      182
                                                      SUFFICIENT STATISTICS IN THE CASE OF INDEPENDENT
RANDOM VARIABLES
                                                                                                              AMS 64 1456
ON-FREE TESTS
                                                      SUFFICIENT STATISTICS. SIMILAR RECIONS AND DISTRIBUTI JRSSB57 262
                                      INFORMATION AND SUFFICIENT SUB-FIELDS
                                                                                                              AMS 68 2056
                ON THE ORDER STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS
                                                                                                              AMS 62
                                                                                                                      596
                                          ON CERTAIN SUCCESTED FORMULAE APPLIED TO THE SEQUENTIAL T-TEST
                                                                                                             BTOKA64
                                                                                                                       97
EXPERIMENTS IN CARCINOCENESIS
                                                   A SUCCESTED METHOD OF ANALYSIS OF A CERTAIN CLASS OF
                                                                                                             BIOCS66
                                                                                                                      142
 THE QUANTIFICATION OF JUDCMENT. SOME METHODOLOGICAL SUCCESTIONS
                                                                                                             JASA 67 1105
                   ON THE DISTRIBUTION OF STATISTICS SUITABLE FOR EVALUATING RAINFALL STIMULATION EXPERIME TECH 69
OF ESTIMATION OF MISSINC VALUES IN MULTIVARIATE DATA SUITABLE FOR USE WITH AN ELECTRONIC COMPUTER /THOD JRSSB60 302
                                                                   NORMAL APPROXIMATION TO THE DISTRIBUTION
  OF TWO INDEPENDENT BINOMIALS, CONDITIONAL ON FIXED SUM
                                                                                                             AMS 63 1593
            THE AVERACE RUN LENCTH OF THE CUMULATIVE SUM CHART WHEN A V-MASK IS USED
                                                                                                             JRSSB61 149
                                           CUMULATIVE SUM CHARTS
                                                                                                             TECH 61
                                                                                                                        1
                                           CUMULATIVE SUM CHARTS FOR THE FOLDED NORMAL DISTRIBUTION
                                                                                                             TECH 63
                                                                                                                      451
         A SIMPLE THEORETICAL APPROACH TO CUMULATIVE SUM CONTROL CHARTS
                                                                                                             JASA 61
                                                                                                                      835
                   THE ECONOMIC DESIGN OF CUMULATIVE SUM CONTROL CHARTS
                                                                                                             TECH 68
                                                                                                                      479
                                           CUMULATIVE SUM CONTROL CHARTS AND THE WEIBULL DISTRIBUTION
                                                                                                             TECH 66
                                                                                                                      481
CLASSIFICATIONS
                                                 RANK SUM MULTIPLE COMPARISIONS IN ONE AND TWO-WAY
                                                                                                             BIOKA67
                                                                                                                      487
                                    A TABLE FOR RANK SUM MULTIPLE PAIRED COMPARISONS
                                                                                                             TECH 67
                                                                                                                      561
ED CAMMA-VARIABLES, (ACKNOWLEDCEM/
                                    DISTRIBUTION OF SUM OF IDENTICALLY DISTRIBUTED EXPONENTIALLY CORRELAT
                                                                                                             AMS 64
                                                                                                                      277
ANDOM VARIABLES, CORR./ EXACT DISTRIBUTION OF THE SUM OF INDEPENDENT IDENTICALLY DISTRIBUTED DISCRETE R JASA 65
                    PROBABILITY INEQUALITIES FOR THE SUM OF INDEPENDENT RANDOM VARIABLES
                                                                                                             JASA 62
                                                                                                                       33
         A SHORT PROOF OF A KNOWN LIMIT THEOREM FOR SUM OF INDEPENDENT RANDOM VARIABLES WITH INFINITE EXP
                                                                                                             AMS 69 1114
 A ONE-SIDED PROBABILITY INEQUALITY FOR THE SUM OF INDEPENDENT, BOUNDED RANDOM VARIABLES ON THE MOMENTS AND PROBABILITY INEQUALITIES FOR THE SUM OF INDEPENDENT, BOUNDED RANDOM VARIABLES.
                                                                                                             BTOKA68
                                                                                                                      565
                                                                                                       /UNDS BIOKA65
                                                                                                                      559
       INEQUALITIES OF THE RTH ABSOLUTE MOMENT OF A SUM OF RANDOM VARIABLES, 1 LESS THAN OR EQUAL TO R, R AMS 65
                                                                                                                      299
                     THE DISTRIBUTION OF THE MAXIMUM SUM OF RANKS
                                                                                                             TECH 67
                                                                                                                      271
                                     A NONPARAMETRIC SUM OF RANKS PROCEDURE FOR RELATIVE SPREAD IN UNPAIRE JASA 60
D SAMPLES, CORR. 61 1005
                                                                                                                      429
                                       ROBUSTNESS OF SUM OF SQUARED RANKS TEST
                                                                                                             JASA 68
                                                                                                                      338
                        DISTRIBUTION OF THE RESIDUAL SUM OF SQUARES IN FITTING INEQUALITIES
                                                                                                             BIOKA67
                                                                                                                       69
                                              ON THE SUM OF SQUARES OF NORMAL SCORES
                                                                                                             BIOKA56
                                                                                                                      456
OUCH THE EXPECTED VALUES OF ORDERED VARIATES AND THE SUM OF SQUARES OF NORMAL SCORES
                                                                                              THE CURVE THR BIOKA66
                                                                                                                      252
                                 CORRICENDA, 'ON THE SUM OF SQUARES OF NORMAL SCORES'
                                                                                                             BIOKA65
                                                                                                                      669
            THE DISTRIBUTION OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES
                                                                                                             JASA 69
                     FURTHER CRITICAL VALUES FOR THE SUM OF TWO VARIANCES
                                                                                                             BIOKA58
                                          QUERY, THE SUM OF VALUES FROM A NORMAL AND A TRUNCATED NORMAL
                                                                                                                      104
DISTRIBUTION
                                                                                                             TECH 64
                                          QUERY, THE SUM OF VALUES FROM A NORMAL AND A TRUNCATED NORMAL
DISTRIBUTION (CONTD)
                                                                                                             TECH 64
                                                                                                                      469
OMPARISON AND RANKING, OPTIMUM PROPERTIES OF THE ROW SUM PROCEDURE
                                                                                                 PAIRWISE C AMS 63
                                                                                                                      511
TS FOR THE AVERACE SAMPLE RUN LENCTH OF A CUMULATIVE SUM SCHEME /RE FOR DETERMINING UPPER AND LOWER LIMI JRSSB67
CUMULATIVE SUM SCHEMES USING CAUCING TECH 62
                                                                                                                      263
                                                                                                                       97
                                              A RANK SUM TEST FOR COMPARINC ALL PAIRS OF TREATMENTS
                                                                                                             TECH 60
                                                                                                                      197
                                  ON AN EXTREME RANK SUM TEST FOR OUTLIERS
                                                                                                             BIOKA63
                                                                                                                      375
                                  ON AN EXTREME RANK SUM TEST WITH EARLY DECISION
                                                                                                             JASA 65
                                                                                                                      859
.) IS A REALIZATION OF A NON-/
                                 THE DISTRIBUTION OF SUM-O-TO-M OF F(Y-SUB-T), WHERE (Y-SUB-0, Y-SUB-1,...
                                                                                                             BIOKA65
                                                                                                                      277
                                              FRENCH SUMMARIES OF PAPERS IN JUNE 1967 ISSUE
                                                                                                             BIOCS67
                                                                                                                      581
                             OPSOMMING VAN LESINGS. (SUMMARY OF PAPERS)
                                                                                                             SASJ 68
                                                                                                                      55
                                                     SUMMARY OF RECENT WORK ON VARIABLES ACCEPTANCE SAMPLI TECH 69 NO.4
NG WITH EMPHASIS ON NON-NORMALITY
                          NOTES. A DEFICIENCY IN THE SUMMATION OF CHI PROCEDURE
                                                                                                            BIOCS66
                                                                                                                    407
        LIMIT THEOREMS FOR RANDOMLY SELECTED PARTIAL SUMS
                                                                                                              AMS 62
```

TITLE WORD INDEX SUC - SUR

COMBINATORIAL THEOREM FOR PARTIAL		AMS 63 1600
MULTIPLE COMPARISIONS USING RANK		TECH 64 241
MOMENTS OF RANDOMLY STOPPED		AMS 65 789
A NOTE ON MULTIPLE COMPARISONS USING RANK		TECH 65 255
ON MOMENTS OF CUMULATIVE		AMS 66 1803
STATISTICAL PROPERTIES OF THE NUMBER OF POSITIVE		AMS 66 1295
ON CONVERGENCE IN R-MEAN OF NORMALIZED PARTIAL		AMS 68 379
ON MOMENTS OF THE MAXIMUM OF NORMED PARTIAL	SUMS	AMS 69 527
ON	SUMS AND PRODUCTS OF RECTANGULAR VARIATES SUMS FOR BALANCED COMPLETE FINITE POPULATIONS SUMS FOUND BY RIORDAN	BIOKA66 615
RELATIONSHIP OF GENERALIZED POLYKAYS TO UNRESTRICTED	SUMS FOR BALANCED COMPLETE FINITE POPULATIONS	AMS 68 643
NOTE ON TWO BINOMIAL COEFFICIENT	SUMS FOUND BY RIORDAN	AMS 63 333
		JASA 67 484
	SUMS OF A FINITE NUMBER OF INDEPENDENT NORMAL VARIATE	
	SUMS OF A FINITE NUMBER OF INDEPENDENT NORMAL VARIATE	
	SUMS OF A FINITE NUMBER OF INDEPENDENT NORMAL VARIATE	
	SUMS OF A RANDOM NUMBER OF INDEPENDENT RANDOM VECTORS SUMS OF BOUNDED RANDOM VARIABLES	
	SUMS OF BOUNDED, INDEPENDENT RANDOM VARIABLES /PROB	
THE MARKOV INFOUALITY FOR	SUMS OF INDEPENDENT RANDOM VARIABLES SUMS OF INDEPENDENT RANDOM VARIABLES	AMS 69 NO 6
FIRST MOMENT A NOTE ON	SUMS OF INDEPENDENT RANDOM VARIABLES WITH INFINITE	AMS 67 751
A LIMIT THEOREM FOR	SUMS OF MINIMA OF STOCHASTIC VARIABLES	AMS 65 1041
A REMARK ON SOLVING EQUATIONS IN	SUMS OF POWERS	JRSSB68 567
BOUNDS ON MOMENTS OF	SUMS OF MINIMA OF STOCHASTIC VARIABLES SUMS OF POWERS SUMS OF RANDOM VARIABLES SUMS OF RANDOM VARIABLES ON THE IN	AMS 69 1506
FLUENCE OF MOMENTS ON THE ASYMPTOTIC DISTRIBUTION OF	SUMS OF RANDOM VARIABLES ON THE IN	AMS 63 1042
THE NORMAL LAW ON LARGE DEVIATION PROBLEMS FOR	SUMS OF RANDOM VARIABLES WHICH ARE NOT ATTRACTED TO	AMS 67 1575
ON RANDOM	SUMS OF RANDOM VECTORS	AMS 65 1450
	SUMS OF RATIOS OF SPACINGS CONTRIBUTIONS	
	SUMS OF SQUARES AND CROSS PRODUCTS OF NORMAL VARIATES	
NOTE ON A METHOD FOR CALCULATING CORRECTED		TECH 62 419
DIFFERENT CLASSIFI/ ON THE DISTRIBUTION OF VARIOUS	SUMS OF SQUARES IN AN ANALYSIS OF VARIANCE TABLE FOR	
CONVERGENCE OF	SUMS OF SQUARES IN AN ANALYSIS OF VARIANCE TABLE FOR SUMS OF SQUARES OF MARTINGALE DIFFERENCES SUMS OF UNIFORM VARIABLES	AMS 68 123
RATIOS OF NORMAL VARIABLES AND RATIOS OF	SUMS OF UNIFORM VARIABLES	JASA 65 193
TO 'A PROOF OF WALD'S THEOREM ON CUMULATIVE		AMS 61 1344
ON DECEME THEODERS CONCEDNING THE		AMS 68 2098
PROCESSES ON THE	SUPERCRITICAL ONE DIMENSIONAL AGE DEPENDENT BRANCHING	
	SUPERIMPOSED ERROR IN TIME SERIES ANALYSIS	
A POTENTIAL THEORY FOR		AMS 68 802
ON THE	CUDED DOCUTION OF DOINE PROCECCES	IDCCDCO E76
THE	SUPERPOSITION OF RANDOM SEQUENCES OF EVENTS	BIOK A66 383
	SUPERPOSITION OF SEVERAL STRICTLY PERIODIC SEQUENCES	
ON THE	SUPERPOSITON OF RENEWAL PROCESSES	BIOKA54 91
SOME SYSTEMATIC	SUPERSATURATED DESIGNS	TECH 62 489
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING'	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC	JASA 64 1231 JRSSB65 166
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS A	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A	JASA 64 1231 JRSSB65 166 BIOKA67 451
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS A	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A	JASA 64 1231 JRSSB65 166 BIOKA67 451
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA.	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE 'SUPPLEMENTED BALANCE'	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE 'SUPPLEMENTED BALANCE' SUPPLEMENTED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475 BIOKA62 245
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 25 BIOKA61 475 BIOKA62 245 BIOKA63 207
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475 BIOKA62 245 BIOKA62 247 JASA 69 823
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475 BIOKA62 245 BIOKA62 207 JASA 69 223 JASA 61 299
NG AND RELATED TOPICS, CORR. 65 1249 ROCRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPORT FOR MULTIVARIATE TECHNIQUES	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA60 475 BIOKA62 245 BIOKA63 207 JASA 69 823 JASA 61 299 BIOKA64 65
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS A ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NTINUOUS STATE SPACES ON THE DISTRIBUTION OF THE	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE'SUPPLEMENTED BALANCE'SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPORT FOR MULTIVARIATE TECHNIQUES SUPPREMUM FUNCTIONAL FOR SEMT-MARKOV PROCESSES WITH CO	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475 BIOKA62 245 BIOKA63 207 JASA 69 823 JASA 61 299 BIOKA64 65 AMS 69 844
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NTINUOUS STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPORT FOR MULTIVARIATE TECHNIQUES SUPPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA60 475 BIOKA62 245 BIOKA63 207 JASA 69 823 JASA 61 299 BIOKA64 65 AMS 69 844 BIOCS69 295 AMS 69 1091
NG AND RELATED TOPICS, CORR. 65 1249 ROCRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NTINUOUS STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLED BY CHOSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPORT FOR MULTIVARIATE TECHNIQUES SUPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475 BIOKA62 245 BIOKA63 207 JASA 69 823 JASA 61 299 BIOKA64 65 AMS 69 844 BIOCS69 255 AMS 69 1091 AMS 68 1549
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NTINUOUS STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST RANDOM VARIABLES ALMOST	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE' SUPPLEMENTED BALANCE' SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPERMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDEN SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475 BIOKA62 245 BIOKA63 207 JASA 69 823 JASA 61 299 BIOKA64 65 AMS 69 844 BIOCS69 295 AMS 69 1091 AMS 68 1549
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NTINUOUS STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST RANDOM VARIABLES ROMMENT NECESSARY CONDITIONS FOR ALMOST	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPORT FOR MULTIVARIATE TECHNIQUES SUPPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDEN SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVI	JASA 64 1231 JRSSB65 166 EDIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475 BIOKA63 207 JASA 69 823 JASA 61 299 BIOKA64 65 AMS 69 844 BIOCS69 295 AMS 69 1091 AMS 68 1549 AMS 68 1502 AMS 68 2136
NG AND RELATED TOPICS, CORR. 65 1249 ROCRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS A ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NTINUOUS STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST RANDOM VARIABLES ROMMENT NECESSARY CONDITIONS FOR ALMOST A BASIS FOR THE SELECTION OF A RESPONSE	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPORT FOR MULTIVARIATE TECHNIQUES SUPPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDEN SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVI SURFACE DESIGN	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA60 245 BIOKA63 207 JASA 69 823 JASA 61 299 BIOKA64 65 AMS 69 844 BIOCS69 295 AMS 68 1502 AMS 68 1502 AMS 68 1502 AMS 68 1502 JASA 69 203
NG AND RELATED TOPICS, CORR. 65 1249 ROCRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS A ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NTINUOUS STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST RANDOM VARIABLES ROMMENT NECESSARY CONDITIONS FOR ALMOST A BASIS FOR THE SELECTION OF A RESPONSE PARTIAL DUPLICATION OF RESPONSE	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLED BY CHOSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPORT FOR MULTIVARIATE TECHNIQUES SUPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE SURE CONVERGENCE SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDENT SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVI SURFACE DESIGNS	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475 BIOKA63 207 JASA 69 823 JASA 61 299 BIOKA64 65 AMS 69 295 AMS 68 1504 AMS 68 1504 AMS 68 1502 AMS 68 2136
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS A ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF ON THE AMOUNT OF INFORMATION IN THE ESTIMATION OF ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NTINUOUS STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST RANDOM VARIABLES RONMENT NECESSARY CONDITIONS FOR ALMOST A BASIS FOR THE SELECTION OF A RESPONSE PARTIAL DUPLICATION OF RESPONSE MISSING VALUES IN RESPONSE	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE' SUPPLEMENTED BALANCE' SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPERMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDEN SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVI SURFACE DESIGNS SURFACE DESIGNS	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475 BIOKA62 245 BIOKA63 207 JASA 69 823 JASA 61 299 BIOKA66 65 AMS 69 1091 AMS 68 1549 AMS 68 1549 AMS 68 1549 AMS 68 2136 JASA 59 622 AMS 68 2136 JASA 59 622 TECH 60 185 TECH 61 389
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS A ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NITINUOUS STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST RANDOM VARIABLES ROMMENT NECESSARY CONDITIONS FOR ALMOST A BASIS FOR THE SELECTION OF A RESPONSE PARTIAL DUPLICATION OF RESPONSE MISSING VALUES IN RESPONSE RESPONSE	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE 'SUPPLEMENTED BALANCE' SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPORT FOR MULTIVARIATE TECHNIQUES SUPPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE SURE CONVERGENCE SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDEN SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVI SURFACE DESIGNS SURFACE DESIGNS SURFACE DESIGNS SURFACE DESIGNS	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA60 245 BIOKA63 207 JASA 69 823 JASA 61 299 BIOKA64 65 AMS 69 844 BIOCS69 295 AMS 68 1502 AMS 68 1502 AMS 68 1502 AMS 68 2136 JASA 59 622 TECH 60 185 TECH 61 387
NG AND RELATED TOPICS, CORR. 65 1249 ROCRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS A ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NITHUOUS STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST RANDOM VARIABLES RONMENT A BASIS FOR THE SELECTION OF RESPONSE PARTIAL DUPLICATION OF RESPONSE MISSING VALUES IN RESPONSE RESPONSE RESPONSE	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPORT FOR MULTIVARIATE TECHNIQUES SUPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE SURE CONVERGENCE SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDENT SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVI SURFACE DESIGNS SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS SURFACE DESIGNS FOR MIXTURE PROBLEMS	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475 BIOKA63 207 JASA 69 223 JASA 61 299 BIOKA64 65 AMS 69 844 BIOCS69 295 AMS 68 1502 TECH 60 185 TECH 61 389 TECH 61 389
NG AND RELATED TOPICS, CORR. 65 1249 ROCRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS A ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NTINUOUS STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST RANDOM VARIABLES ROMMENT A BASIS FOR THE SELECTION OF A RESPONSE PARTIAL DUPLICATION OF RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPORT FOR MULTIVARIATE TECHNIQUES SUPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDENT SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVI SURFACE DESIGNS SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE DESIGNS FOR MIXTURE PROBLEMS	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475 BIOKA62 245 BIOKA62 245 BIOKA62 665 AMS 69 823 JASA 61 299 AMS 68 1549 AMS 68 1549 AMS 68 1549 AMS 68 1549 AMS 68 1502 AMS 68 1549 AMS 68 1570 ECH 61 389 TECH 61 389 TECH 63 739 TECH 59 1
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NITINUOUS STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST RANDOM VARIABLES ROMMENT NECESSARY CONDITIONS FOR ALMOST A BASIS FOR THE SELECTION OF A RESPONSE PARTIAL DUPLICATION OF RESPONSE	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPORT FOR MULTIVARIATE TECHNIQUES SUPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDENT SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVI SURFACE DESIGNS SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE DESIGNS FOR MIXTURE PROBLEMS	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475 BIOKA62 245 BIOKA63 207 JASA 69 823 JASA 61 299 BIOKA64 65 AMS 69 1091 AMS 68 1549 AMS 68 1549 AMS 68 1549 AMS 68 1502 AMS 68 1549 AMS 68 1549 TECH 60 1389 TECH 60 1389 TECH 68 779 TECH 68 771
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NITINUOUS STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST RANDOM VARIABLES ROMMENT NECESSARY CONDITIONS FOR ALMOST A BASIS FOR THE SELECTION OF A RESPONSE PARTIAL DUPLICATION OF RESPONSE	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPORT FOR MULTIVARIATE TECHNIQUES SUPPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDEN SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVI SURFACE DESIGNS SURFACE DESIGNS SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE DESIGNS FOR THREE FACTORS AT THREE LEVELS SURFACE METHODOLOGY. A LITERATURE SURVEY SURFACE OF A SAMPLE DRAWN FROM A DISTRIBUTION ADMITTI	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475 BIOKA62 245 BIOKA63 207 JASA 69 823 JASA 61 299 BIOKA64 65 AMS 69 1091 AMS 68 1549 AMS 68 1549 AMS 68 1549 AMS 68 1502 AMS 68 1549 AMS 68 1549 TECH 60 1389 TECH 60 1389 TECH 68 779 TECH 68 771
NG AND RELATED TOPICS, CORR. 65 1249 ROCRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS A ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NTINUOUS STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST RANDOM VARIABLES RONMENT NECESSARY CONDITIONS FOR ALMOST A BASIS FOR THE SELECTION OF A RESPONSE PARTIAL DUPLICATION OF RESPONSE MISSING VALUES IN RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE OF RESPONSE	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLEMENTED BY CONSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPORT FOR MULTIVARIATE TECHNIQUES SUPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDENT SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVI SURFACE DESIGNS SURFACE DESIGNS SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE DESIGNS FOR THREE FACTORS AT THREE LEVELS SURFACE METHODOLOGY. A LITERATURE SURVEY SURFACE OF A SAMPLE DRAWN FROM A DISTRIBUTION ADMITTI SURFACES	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA60 245 BIOKA63 207 JASA 69 823 JASA 61 299 BIOKA64 65 AMS 69 1091 AMS 68 1509 AMS 68 1509 AMS 68 1502 AMS 68 2136 JASA 59 622 TECH 60 185 TECH 61 385 TECH 68 177 TECH 68 177 TECH 68 739 TECH 69 71 BIOKA60 203
NG AND RELATED TOPICS, CORR. 65 1249 ROCRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS A ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NITINUOUS STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST RANDOM VARIABLES RONMENT NECESSARY CONDITIONS FOR ALMOST A BASIS FOR THE SELECTION OF A RESPONSE PARTIAL DUPLICATION OF RESPONSE MISSING VALUES IN RESPONSE RESPON	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPORT FOR MULTIVARIATE TECHNIQUES SUPPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE SURE CONVERGENCE SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDEN SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVI SURFACE DESIGNS SURFACE DESIGNS SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE DESIGNS FOR THREE FACTORS AT THREE LEVELS SURFACE METHODOLOGY. A LITERATURE SURVEY SURFACES OF A SAMPLE DRAWN FROM A DISTRIBUTION ADMITTI SURFACES SURFACES SURFACES	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475 BIOKA63 207 JASA 69 823 BIOKA64 65 AMS 69 844 BIOCS69 295 AMS 68 1549 AMS 68 1502 AMS 68 15602 JASA 69 1091 AMS 68 15602 AMS 68 17602 TECH 60 185 TECH 61 185 TECH 68 779 TECH 68 779 TECH 68 779 TECH 69 71 BIOKA60 203 TECH 69 203 TECH 69 171 BIOKA60 203 TECH 69 289 TECH 69 289 TECH 69 469 BIOKA66 617
NG AND RELATED TOPICS, CORR. 65 1249 ROCRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS A ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NITHOUGH STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST RANDOM VARIABLES ROMMENT A BASIS FOR THE SELECTION OF A RESPONSE PARTIAL DUPLICATION OF RESPONSE MISSING VALUES IN RESPONSE RESPONSE A REVIEW OF RESPONSE RESPONSE A REVIEW OF RESPONSE OF THE SELECTION OF THE LIKELIHOOD THE USE OF LAGRANGE MULTIPLIERS WITH RESPONSE POISSON AND BINOMIAL FREQUENCY BIAS ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPORT FOR MULTIVARIATE TECHNIQUES SUPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDENT SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURFACE DESIGNS SURFACE DESIGNS SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE DESIGNS FOR THREE FACTORS AT THREE LEVELS SURFACE METHODOLOGY. A LITERATURE SURVEY SURFACE METHODOLOGY. A LITERATURE SURVEY SURFACES MINIMUM	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA60 245 BIOKA63 207 JASA 69 823 JASA 61 299 BIOKA64 656 AMS 69 844 BIOCS69 295 AMS 68 1502 AMS 68 1502 AMS 68 1502 AMS 68 1502 TECH 60 185 TECH 61 389 TECH 68 177 TECH 68 739 TECH 59 1 TECH 69 203 TECH 59 289 TECH 63 469 TECH 63 469 TECH 63 461
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS A ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NTINUOUS STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST T AND RAN/ SOME RESULTS ON THE SELECTION OF A RESPONSE PARTIAL DUPLICATION OF RESPONSE PARTIAL DUPLICATION OF RESPONSE RESPO	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPORT FOR MULTIVARIATE TECHNIQUES SUPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDENT SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVI SURFACE DESIGNS SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE DESIGNS FOR THREE FACTORS AT THREE LEVELS SURFACE OF A SAMPLE DRAWN FROM A DISTRIBUTION ADMITTI SURFACES	JASA 64 1231 JRSSB65 166 EDIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475 BIOKA63 207 JASA 69 823 JASA 61 299 BIOKA64 65 AMS 69 1091 AMS 68 1549 AMS 68 1549 AMS 68 1549 AMS 68 1560 AMS 68 1549 TECH 60 185 TECH 61 389 TECH 68 779 TECH 68 779 TECH 68 771 BIOKA60 203 TECH 65 289 TECH 63 469 BIOKA66 617 TECH 63 469 BIOKA66 617 TECH 69 461
NG AND RELATED TOPICS, CORR. 65 1249 ROCRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS A ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NITHOUGH STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST RANDOM VARIABLES ROMMENT A BASIS FOR THE SELECTION OF A RESPONSE PARTIAL DUPLICATION OF RESPONSE MISSING VALUES IN RESPONSE RESPONSE A REVIEW OF RESPONSE RESPONSE A REVIEW OF RESPONSE OF THE SELECTION OF THE LIKELIHOOD THE USE OF LAGRANGE MULTIPLIERS WITH RESPONSE POISSON AND BINOMIAL FREQUENCY BIAS ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPORT FOR MULTIVARIATE TECHNIQUES SUPPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDENT SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVISURFACE DESIGNS SURFACE DESIGNS SURFACE DESIGNS SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE DESIGNS FOR THREE FACTORS AT THREE LEVELS SURFACE DESIGNS FOR THREE FACTORS AT THREE LEVELS SURFACE DESIGNS FOR THREE FACTORS AT THREE LEVELS SURFACE METHODOLOGY. A LITERATURE SURVEY SURFACES OF A SAMPLE DRAWN FROM A DISTRIBUTION ADMITTI SURFACES SURFAC	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 253 BIOKA61 475 BIOKA62 245 BIOKA63 207 JASA 69 823 JASA 61 299 BIOKA64 65 AMS 69 1091 AMS 68 1549 AMS 68 1549 AMS 68 1549 AMS 68 1203 JASA 61 85 JASA 61 185 TECH 60 185 TECH 61 389 TECH 68 739 TECH 68 731 ECH 69 571 BIOKA60 203 TECH 69 285 TECH 69 171 BIOKA60 617 TECH 69 461 TECH 69 481
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS A ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NTINUOUS STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST RANDOM VARIABLES AN INEQUALITY AND ALMOST A BASIS FOR THE SELECTION OF A RESPONSE PARTIAL DUPLICATION OF RESPONSE MISSING VALUES IN RESPONSE RESPONSE RESPONSE A REVIEW OF RESPONSE NG/ A FORMULA FOR THE CURVATURE OF THE LIKELIHOOD THE USE OF LAGRANGE MULTIFLIERS WITH RESPONSE POISSON AND BINOMIAL FREQUENCY BIAS ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE A METHOD OF FITTING EMPIRICAL A REPRODUCIBLE METHOD OF COUNTING PERSONS OF SPANISH	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR MULTIVARIATE TECHNIQUES SUPPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDEN SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDENT SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVI SURFACE DESIGNS SURFACE DESIGNS SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS SURFACE DESIGNS FOR FACTORS AT THREE LEVELS SURFACE DESIGNS FOR THREE FACTORS AT THREE LEVELS SURFACE METHODOLOGY. A LITERATURE SURVEY SURFACES TO PHYSICAL AND CHEMICAL DATA SURNAME SURVEILLANCE PROGRAMS FOR LOTS IN STORAGE	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475 BIOKA62 245 BIOKA63 207 JASA 69 823 AMS 69 844 BIOCS69 295 AMS 68 1502 AMS 68 1502 AMS 68 1502 AMS 68 1750 AMS 68 177 TECH 60 185 TECH 61 385 TECH 62 303 TECH 59 289 TECH 59 289 TECH 69 461 TECH 69 461 TECH 69 461 TECH 69 461 TECH 69 411 JASA 61 88 TECH 62 515
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS A ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NTINUOUS STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST RANDOM VARIABLES ROMMENT A BASIS FOR THE SELECTION OF A RESPONSE PARTIAL DUPLICATION OF RESPONSE RESPONSE A REVIEW OF RESPONSE RESPONSE A REVIEW OF RESPONSE POISSON AND BINOMIAL FREQUENCY BIAS ESTIMATION AND EXPERTMENTAL DESIGN FOR RESPONSE A METHOD OF FITTING EMPIRICAL A REPRODUCIBLE METHOD OF COUNTING PERSONS OF SPANISH THE NEW DESIGN OF THE CANADIAN LABOUR FORCE	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLEMENTED BY CROSCED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDENT SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDENT SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURFACE DESIGNS SURFACE DESIGNS SURFACE DESIGNS SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE DESIGNS FOR THREE FACTORS AT THREE LEVELS SURFACE DESIGNS FOR THREE FACTORS AT THREE LEVELS SURFACE METHODOLOGY. A LITERATURE SURVEY SURFACE METHODOLOGY. A LITERATURE SURVEY SURFACES SURFACES SURFACES MINIMUM SURFACES OF A SAMPLE DRAWN FROM A DISTRIBUTION ADMITTI SURFACES SURFACES MITHOUS MINIMUM SURFACES TO PHYSICAL AND CHEMICAL DATA SURNAME SURVEY MINIMUM SURVEY	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475 BIOKA62 245 BIOKA63 207 JASA 69 235 JASA 61 299 BIOKA65 295 BIOKA66 165 AMS 69 1844 BIOCS69 255 AMS 68 1502 AMS 68 1502 AMS 68 1502 AMS 68 1502 TECH 60 185 TECH 61 389 TECH 62 779 TECH 68 779 TECH 68 779 TECH 68 177 TECH 68 779 TECH 69 203 TECH 59 1 TECH 63 469 BIOKA66 617 TECH 69 461 TECH 69 461 TECH 69 461 TECH 69 411 JASA 61 88 TECH 62 515 JASA 67 421
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS A ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NITINUOUS STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST TAND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST RANDOM VARIABLES ROMMENT NECESSARY CONDITIONS FOR ALMOST A BASIS FOR THE SELECTION OF A RESPONSE PARTIAL DUPLICATION OF RESPONSE PARTIAL DUPLICATION OF RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE A REVIEW OF RESPONSE POISSON AND BINOMIAL FREQUENCY BIAS ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE A METHOD OF FITTING EMPIRICAL A REPRODUCIBLE METHOD OF COUNTING PERSONS OF SPANISH THE NEW DESIGN OF THE CANADIAN LABOUR FORCE REVIEW OF RESPONSE SURFACE METHODOLOGY. A LITERATURE	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPORT FOR MULTIVARIATE TECHNIQUES SUPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDENT SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVI SURFACE DESIGNS SURFACE DESIGNS SURFACE DESIGNS SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE DESIGNS FOR THERE FACTORS AT THREE LEVELS SURFACES	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475 BIOKA62 245 BIOKA63 207 JASA 69 823 JASA 61 299 BIOKA64 65 AMS 69 1091 AMS 68 1549 AMS 68 1549 AMS 68 1549 AMS 68 1502 AMS 68 1549 AMS 68 1707 TECH 60 1389 TECH 60 1389 TECH 68 779 TECH 68 771 BIOKA60 203 TECH 59 289 TECH 69 461 TECH 69 461 TECH 69 461 TECH 69 411 JASA 61 88 TECH 62 515 TECH 62 515
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS A ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NITINUOUS STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST RANDOM VARIABLES ROMMENT A BASIS FOR THE SELECTION OF A RESPONSE PARTIAL DUPLICATION OF RESPONSE MISSING VALUES IN RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE POISSON AND BINOMIAL FREQUENCY BIAS ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE A METHOD OF FITTING EMPIRICAL A REPRODUCIBLE METHOD OF COUNTING PERSONS OF SPANISH THE NEW DESIGN OF THE CANADIAN LABOUR FORCE REVIEW OF RESPONSE SURFACE METHODOLOGY. A LITERATURE SAMPLE ALLOCATION AND ESTIMATION IN AN AGRICULTURAL	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE 'SUPPLEMENTED BALANCE 'SUPPLEMENTED BALANCE 'SUPPLED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPORT FOR MULTIVARIATE TECHNIQUES SUPPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE SURE CONVERGENCE SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDEN SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVI SURFACE DESIGNS SURFACE DESIGNS SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS SURFACE DESIGNS FOR FACTORS AT THREE LEVELS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE METHODOLOGY. A LITERATURE SURVEY SURFACES	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475 BIOKA62 245 BIOKA63 207 JASA 69 823 BIOKA64 65 AMS 69 844 BIOCS69 295 AMS 68 1502 AMS 68 1502 AMS 68 1502 AMS 68 1750 JASA 61 82 TECH 60 185 TECH 61 187 TECH 68 771 BIOKA60 203 TECH 69 271 BIOKA60 671 BIOKA60 871 BIOKA60 771 BIOKA60 771 BIOKA60 771 BIOKA60 871 BIOKA60
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS A ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NTINUOUS STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST T AND RAN/ SOME RESULTS ON THE SELECTION OF A RESPONSE PARTIAL DUPLICATION OF RESPONSE PARTIAL DUPLICATION OF RESPONSE MISSING VALUES IN RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE A REVIEW OF RESPONSE POISSON AND BINOMIAL FREQUENCY BIAS ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE A METHOD OF FITTING EMPIRICAL A REPRODUCIBLE METHOD OF COUNTING PERSONS OF SPANISH THE NEW DESIGN OF THE CANADIAN LABOUR FORCE REVIEW OF RESPONSE SURFACE METHODOLOGY. A LITERATURE SAMPLE ALLOCATION AND ESTIMATION IN AN AGRICULTURAL HOUSEHOLD INTERVIEW DESIGN FOR THE NATIONAL HEALTH	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPORT FOR MULTIVARIATE TECHNIQUES SUPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDENT SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVI SURFACE DESIGNS SURFACE DESIGNS SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE DESIGNS FOR THREE FACTORS AT THREE LEVELS SURFACE SURFACES SU	JASA 64 1231 JRSSB65 166 DIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475 BIOKA62 245 BIOKA63 207 JASA 61 299 BIOKA64 65 AMS 69 1091 AMS 68 1549 AMS 68 1549 AMS 68 1549 AMS 68 1560 AMS 68 1560 AMS 68 170 TECH 60 185 TECH 61 389 TECH 68 777 TECH 68 779 TECH 68 779 TECH 68 779 TECH 69 411 JASA 61 289 EICH 63 469 BIOKA66 617 TECH 69 461 TECH 69 471 JASA 61 88 TECH 62 571 JASA 61 421 TECH 66 571 JASA 61 421 TECH 66 571 JASA 66 571 JRSSB64 257
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NTINUOUS STATE SPACES ON THE DISTRIBUTION OF THE INFORMATION OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NTINUOUS STATE SPACES ON THE DISTRIBUTION OF THE INFORMATION AN INEQUALITY AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST RANDOM VARIABLES ROMMENT A BASIS FOR THE SELECTION OF A RESPONSE PARTIAL DUPLICATION OF RESPONSE A REVIEW OF RESPONSE POISSON AND BINOMIAL FREQUENCY BIAS ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE A METHOD OF FITTING EMPIRICAL A REPRODUCIBLE METHOD OF COUNTING PERSONS OF SPANISH THE NEW DESIGN OF THE CANADIAN LABOUR FORCE REVIEW OF RESPONSE SURFACE METHODOLOGY. A LITERATURE SAMPLE ALLOCATION AND ESTIMATION IN AN AGRICULTURAL HOUSEHOLD INTERVIEW DESIGN FOR THE NATIONAL HEALTH PROBABILITY PROPORTIONATE TO SIZE IN A LARGE SCALE	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPORT FOR MULTIVARIATE TECHNIQUES SUPPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDEN SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVI SURFACE DESIGNS SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE DESIGNS FOR THREE FACTORS AT THREE LEVELS SURFACE DESIGNS FOR THERE FACTORS AT THREE LEVELS SURFACE DESIGNS FOR THERE FACTORS AT THREE LEVELS SURFACE DESIGNS FOR THERE FACTORS AT THREE LEVELS SURFACE SURFACES SURFACES SURFACES MIXTURE PROBLEMS SURFACES OF A SAMPLE DRAWN FROM A DISTRIBUTION ADMITTI SURFACES SUR	JASA 64 1231 JRSSB65 166 DIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475 BIOKA62 245 BIOKA63 207 JASA 69 823 JASA 61 829 BIOKA64 65 AMS 69 1091 AMS 68 1549 AMS 68 1549 AMS 68 1549 AMS 68 175 TECH 60 1389 TECH 60 1389 TECH 68 777 TECH 68 777 TECH 68 771 EICH 68 771 EICH 68 771 EICH 69 411 JASA 61 88 TECH 69 411 JASA 61 88 TECH 62 515 TECH 66 571 JASA 61 88 TECH 62 511 JASA 61 421 TECH 66 571 JASA 61 421 TECH 66 571 JASA 67 421 TECH 66 571 JASA 67 421 TECH 66 571 JASA 67 69 JASA 64 251
NG AND RELATED TOPICS, CORR. 65 1249 ROCRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS A ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NITINUOUS STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST TAND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST RANDOM VARIABLES ROMMENT NECESSARY CONDITIONS FOR ALMOST A BASIS FOR THE SELECTION OF A RESPONSE PARTIAL DUPLICATION OF RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE A REVIEW OF RESPONSE POISSON AND BINOMIAL FREQUENCY BIAS ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE A METHOD OF FITTING EMPIRICAL A REPRODUCIBLE METHOD OF COUNTING PERSONS OF SPANISH THE NEW DESIGN OF THE CANADIAN LABOUR FORCE REVIEW OF RESPONSE SURFACE METHODOLOGY. A LITERATURE SAMPLE ALLOCATION AND ESTIMATION IN AN AGRICULTURAL HOUSEHOLD INTERVIEW DESIGN FOR THE NATIONAL HEALTH PROBABILITY PROPORTIONATE TO SIZE IN A LARGE SCALE PROBLEMS IN THE ANALYSIS OF	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPORT FOR MULTIVARIATE TECHNIQUES SUPPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE SURE CONVERGENCE SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDEN SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVI SURFACE DESIGNS SURFACE DESIGNS SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE DESIGNS FOR FACTORS AT THREE LEVELS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE DESIGNS FOR THREE FACTORS AT THREE LEVELS SURFACE METHODOLOGY. A LITERATURE SURVEY SURFACES MINIMUM SURFACES SURFACE	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 253 BIOKA61 475 BIOKA62 245 BIOKA63 207 JASA 69 823 BIOKA64 65 AMS 69 844 BIOCS69 295 AMS 68 1549 AMS 68 1549 AMS 68 1549 AMS 68 1549 AMS 68 1707 TECH 60 185 TECH 61 389 TECH 62 739 TECH 63 739 TECH 63 739 TECH 64 771 BIOKA60 203 TECH 69 617 TECH 69 461 JASA 61 469 BIOKA66 617 TECH 69 461 JASA 61 88 TECH 62 515 JASA 67 421 JASA 65 71 JRSSB54 253 JASA 67 67 JASS 65 671 JASS 65 671 JASS 66 71 JASS 67 621
NG AND RELATED TOPICS, CORR. 65 1249 ROCRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS A ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NTINUOUS STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST T AND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST RANDOM VARIABLES RONMENT A BASIS FOR THE SELECTION OF A RESPONSE PARTIAL DUPLICATION OF RESPONSE MISSING VALUES IN RESPONSE RESPONSE A REVIEW OF RESPONSE RESPONSE RESPONSE RESPONSE FOISSON AND BINOMIAL FREQUENCY BIAS ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE A METHOD OF FITTING EMPIRICAL A REPRODUCIBLE METHOD OF COUNTING PERSONS OF SPANISH THE NEW DESIGN OF THE CANADIAN LABOUR FORCE SAMPLE ALLOCATION AND ESTIMATION IN AN AGRICULTURAL HOUSEHOLD INTERVIEW DESIGN FOR THE NATIONAL HEALTH PROBABILITY PROPORTIONATE TO SIZE IN A LARGE SCALE PROBLEMS IN THE ANALYSIS OF SURVEYS COMPUTER EDITING OF	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR MULTIVARIATE TECHNIQUES SUPPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDEN SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVI SURFACE DESIGNS SURFACE DESIGNS SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE DESIGNS FOR THREE FACTORS AT THREE LEVELS SURFACES SURFACES SURFACES TO PHYSICAL AND CHEMICAL DATA SURVAME SURVEY ASMINIMUM SURVEY ASMINIMUM SURFACES TO PHYSICAL AND CHEMICAL DATA SURVEY PROBLEMS OF THE SURVEY SOME PROBLEMS OF THE SURVEY SOME PROBLEMS OF THE SURVEY DATA, AND A PROPOSAL SURVEY DATA, AND A PROPOSAL SURVEY DATA, AND A PROPOSAL	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475 BIOKA62 245 BIOKA63 207 JASA 69 823 JASA 61 299 BIOKA64 65 AMS 69 1091 AMS 68 1502 AMS 68 1502 AMS 68 1502 AMS 68 1502 TECH 60 185 TECH 61 389 TECH 62 373 TECH 63 739 TECH 63 677 BIOKA60 203 TECH 69 203 TECH 69 203 TECH 69 411 JASA 61 617 TECH 69 411 JASA 61 88 TECH 61 389 TECH 62 571 BIOKA60 203 TECH 63 469 TECH 64 411 JASA 61 88 TECH 69 411 JASA 61 88 TECH 62 515 JASA 67 421 TECH 66 571 TECH 66 571 TECH 66 517 TECH 69 461 TECH 69 411 JASA 61 421 TECH 62 515 JASA 67 421 TECH 66 571 TECH 66 571 TECH 66 571 TECH 67 421 TECH 68 571 TECH 69 461 TECH 69 4
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NTINUOUS STATE SPACES ON THE DISTRIBUTION OF THE INFORMATION TAND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST TAND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST RANDOM VARIABLES ROMMENT A BASIS FOR THE SELECTION OF A RESPONSE PARTIAL DUPLICATION OF RESPONSE RESPO	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA SUPPORT FOR MULTIVARIATE TECHNIQUES SUPPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDEN SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVI SURFACE DESIGNS SURFACE DESIGNS SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE DESIGNS FOR THREE FACTORS AT THREE LEVELS SURFACES SURFACES SURFACES TO PHYSICAL AND CHEMICAL DATA SURVAME SURVEY ASMINIMUM SURVEY ASMINIMUM SURFACES TO PHYSICAL AND CHEMICAL DATA SURVEY PROBLEMS OF THE SURVEY SOME PROBLEMS OF THE SURVEY SOME PROBLEMS OF THE SURVEY DATA, AND A PROPOSAL SURVEY DATA, AND A PROPOSAL SURVEY DATA, AND A PROPOSAL	JASA 64 1231 JRSSB65 166 DIOKA67 451 JRSSB60 172 BIOKA60 263 BIOKA61 475 BIOKA62 245 BIOKA63 207 JASA 69 823 JASA 61 299 BIOKA64 65 AMS 69 1091 AMS 68 1549 AMS 68 1549 AMS 68 1549 AMS 68 1549 AMS 68 1754 TECH 60 1389 TECH 60 1389 TECH 61 389 TECH 62 177 TECH 68 777 TECH 68 777 TECH 68 771 EICH 68 771 EICH 69 411 JASA 61 88 TECH 69 411 JASA 61 88 TECH 69 411 JASA 61 88 TECH 62 515 TECH 69 411 JASA 61 421 TECH 66 571 JRSSB54 221 TECH 66 571 JRSSB54 221 JASA 63 425 JASA 63 425 JASA 63 455 JASA 63 475 JASA 63 775 JASA 66 658
NG AND RELATED TOPICS, CORR. 65 1249 ROGRAMMING' PPROACH TO SOME STATISTICAL DECISION PROBLEMS ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT CORRIGENDA. IN THE ESTIMATION OF/ ON THE AMOUNT OF INFORMATION IN THE ESTIMATION O/ ON THE AMOUNT OF INFORMATION THE EXCEEDANCE TEST FOR TRUNCATION OF A OF PARTIALLY ORDERED OBSERVATIONS IN MEASURING THE PERMUTATION NITINUOUS STATE SPACES ON THE DISTRIBUTION OF THE DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX AN INEQUALITY AND ALMOST TAND RAN/ SOME RESULTS ON THE COMPLETE AND ALMOST RANDOM VARIABLES ROMMENT NECESSARY CONDITIONS FOR ALMOST A BASIS FOR THE SELECTION OF A RESPONSE PARTIAL DUPLICATION OF RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE A REVIEW OF RESPONSE RESPONSE RESPONSE RESPONSE A REVIEW OF RESPONSE POISSON AND BINOMIAL FREQUENCY BIAS ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE A METHOD OF FITTING EMPIRICAL A REPRODUCIBLE METHOD OF COUNTING PERSONS OF SPANISH THE NEW DESIGN OF THE CANADIAN LABOUR FORCE REVIEW OF RESPONSE SURFACE METHODOLOGY. A LITERATURE SAMPLE ALLOCATION AND ESTIMATION IN AN AGRICULTURAL HOUSEHOLD INTERVIEW DESIGN FOR THE NATIONAL HEALTH PROBABILITY PROPORTIONATE TO SIZE IN A LARGE SCALE PROBLEMS IN THE ANALYSIS OF SURVEYS COMPUTER EDITING OF NETTYPE SAMPLING ERRORS IN AN ORCHARD	SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTI SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL BAYES A SUPPLEMENTARY VARIABLES REGRESSION SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLEMENTED BALANCE SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY CENSORED SAMPLES OF GROUPED OBSERVATIONS SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS SUPPLIER'S DATA ON THE USE SUPPORT FOR A COMPLETE ORDER ON THE USE SUPPORT FOR MULTIVARIATE TECHNIQUES SUPPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CO SUR PLUSIEURS CARACTERES PONDERATION SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDEN SURE CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVI SURFACE DESIGNS SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS SURFACE DESIGNS FOR MIXTURE PROBLEMS SURFACE DESIGNS FOR THREE FACTORS AT THREE LEVELS SURFACE DESIGNS FOR THREE FACTORS AT THREE LEVELS SURFACES DESIGNS FOR THAT THE SURVEY SURFACES OF A SAMPLE DRAWN FROM A DISTRIBUTION ADMITTI SURFACES SURFACES MITHOUS AND THREE LEVELS SURFACES SURFACES MINIMUM SURFACES TO PHYSICAL AND CHEMICAL DATA SURNAME SURVEY PROBLEMS OF THE SURVEY SOME PROBLEMS OF THE SURVEY SURVEY SOME PROBLEMS OF THE SURVEY DATA, AND A PROPOSAL SURVEY DATA, FIVE YEARS OF EXPERIENCE IN BLS MANPOWER SURVEY DATA, FIVE YEARS OF EXPERIENCE IN BLS MANPOWER SURVEY DATA, FIVE YEARS OF EXPERIENCE IN BLS MANPOWER SURVEY DATA, FIVE YEARS OF EXPERIENCE IN BLS MANPOWER SURVEY DATA, FIVE YEARS OF EXPERIENCE IN BLS MANPOWER SURVEY DATA, FIVE YEARS OF EXPERIENCE IN BLS MANPOWER SURVEY DATA, FIVE YEARS OF EXPERIENCE IN BLS MANPOWER SURVEY DATA, FIVE YEARS OF EXPERIENCE IN	JASA 64 1231 JRSSB65 166 BIOKA67 451 JRSSB60 172 BIOKA60 253 BIOKA61 475 BIOKA62 245 BIOKA63 207 JASA 69 823 JASA 61 299 BIOKA64 65 AMS 69 1091 AMS 68 1549 AMS 68 1569 IECH 60 185 IECH 61 185 IECH 62 177 IECH 63 739 IECH 63 461 IECH 63 469 BIOKA60 203 IECH 69 215 IECH 69 461 IECH 69 461 JASA 61 488 IECH 62 515 JASA 66 571 JASA 67 421 JASA 67 421 JASA 67 571 JRSSB54 223 JASA 67 571 JRSSB54 223 JASA 66 571 JASA 63 415 JASA 66 658

SUR - SYS TITLE WORD INDEX

```
CROUND PROBABILISTIC AND STATISTICAL MODELS AND P/ SURVEY OF HISTOCOMPATIBILITY TESTING, BIOLOGICAL BACK BIOCS69
  PHILIPPINE STATISTICAL PROCRAM DEVELOPMENT AND THE SURVEY OF HOUSEHOLDS
                                                                                                                    78
                                                                                                           JASA 58
                                                  A SURVEY OF PROPERTIES AND APPLICATIONS OF THE NONCENTR TECH 68
            THE DESIGN OF FACTORIAL EXPERIMENTS, A SURVEY OF SOME SCHEMES REQUIRING NOT MORE THAN 256 TR BIOKA59
EATMENT CO/
                                                                                                                   251
                                  RESPONSE ERROR IN SURVEY REPORTS OF EARNINGS INFORMATION
                                                                                                           JASA 66
                                                                                                                   729
               THE EFFECT OF RESPONDENT ICNORANCE ON SURVEY RESULTS
                                                                                                           JASA 56
                                                                                                                   576
    INFLUENCE OF THE INTERVIEWER ON THE ACCURACY OF SURVEY RESULTS
                                                                                                           JASA 58 635
             A FIDUCIAL ARCUMENT WITH APPLICATION TO SURVEY SAMPLING
                                                                                                           JRSSB69 NO.2
                                                                                                                    63
                             RANDOMIZED RESPONSE, A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS JASA 65
                                                                                                            AMS 62
                          RECENT ADVANCES IN SAMPLE SURVEY THEORY AND METHODS
                                                                                                                   325
           ESTIMATES OF MORALITY AND POPULATION FROM SURVEY-REMOVAL RECORDS
                                                                                                           BIOCS65
                                                                                                                   921
             A NOTE ON THE EFFECTS OF NONRESPONSE ON SURVEYS
                                                                                                           JASA 57
                                                                                                                    29
 AN ANALYSIS OF CONSISTENCY OF RESPONSE IN HOUSEHOLD SURVEYS
                                                                                                           JASA 61
                                                                                                                    320
                                  THE RATIO BIAS IN SURVEYS
                                                                                                           JASA 62
             A DOUBLE SAMPLING SCHEME FOR ANALYTICAL SURVEYS
                                                                                                           JASA 65
                                                                                                                   985
                                                                                                           JASA 6B
                            MULTIVARIATE STRATIFIED SURVEYS
                                                                                                                   530
                PLANNING SOME TWO-FACTOR COMPARATIVE SURVEYS
                                                                                                           JASA 69
                                                                                                                   560
                          ESTIMATION IN MULTI-STAGE SURVEYS
                                                                                                           JASA 69
                                                                                                                   B30
 AN APPLICATION OF SEQUENTIAL SAMPLING TO ANALYTICAL SURVEYS
                                                                                                           BIOKA66
                                                                                                                    85
                 A NEW ESTIMATION THEORY FOR SAMPLE SURVEYS
                                                                                                           BIOKA68
                                                                                                                   547
 OF ROTATING SAMPLES IN THE CENSUS BUREAU'S MONTHLY SURVEYS
                                                                                                  THE USE JASA 63
                                                                                                                   454
DOMAIN ESTIMATORS WITH UNEQUAL PROBABILITY IN SAMPLE SURVEYS
                                                                                                   USE OF JASA 68
                                                                                                                   984
      OF USING MULTI-AUXILIARY INFORMATION IN SAMPLE SURVEYS
                                                                                              ON A METHOD JASA 65 270
LIAM N. HURWITZ. THE DEVELOPMENT OF HOUSEHOLD SAMPLE SURVEYS
                                                              /ATISTICAL SOCIETY MEMORIAL MEETING FOR WIL JASA 69 NO.4
IAM N. HURWITZ. SOME BASIC PRINCIPLES OF STATISTICAL SURVEYS
                                                              /TISTICAL SOCIETY MEMORIAL MEETING FOR WILL JASA 69 NO.4
                         THE RELIABILITY OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS, DEMAND DEPOSITS
                                                                                                          JASA 66
                        THE RELIABILITY OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS, TIME-DEPOSITS
                                                                                                          JASA 65
                                                                                                                   148
                                         ANALYTICAL SURVEYS WITH CLUSTER SAMPLING
                                                                                                          JRSSB65
                                                                                                                   264
                 OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS, AN ANALYTICAL SOLUTION
                                                                                                          JRSSB67
                                                                                                                   115
                      REGRESSION ANALYSIS IN SAMPLE SURVEYS, CORR. 63 1162
                                                                                                           JASA 62
                                                                                                                   590
                      TEN YEARS OF CONSUMER ATTITUDE SURVEYS, THEIR FORECASTING RECORD
                                                                                                           JASA 63
                                                                                                                   899
A METHODE DU MAXIMUM DE VRAISEMBLANCE DES COURBES DE SURVIE DE MICROORGANISMES IRRADIES ESTIMATION PAR L BIOCS66
                                                                                                                   673
                                       A PROBLEM IN SURVIVAL
                                                                                                           AMS 61
                      A TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED CANCER PATIENTS
                    MAXIMUM LIKELIHOOD ESTIMATION OF SURVIVAL CURVE PARAMETERS
                                                                                                          BTOCS68
                                        ANALYSIS OF SURVIVAL DATA BY REGRESSION TECHNIQUES
                                                                                                          TECH 63
                                                                                                                   161
     A METHOD OF ANALYZING LOG-NORMALLY DISTRIBUTED SURVIVAL DATA WITH INCOMPLETE FOLLOW-UP
                                                                                                           JASA 60
                                                                                                                   534
                                       ESTIMATES OF SURVIVAL FROM THE SIGHTING OF MARKED ANIMALS
                                                                                                          BTOKA64 429
                            A NOTE ON FOLLOW-UP FOR SURVIVAL IN THE PRESENCE OF MOVEMENT
                                                                                                          JASA 61
                                                                                                                   119
IAL S/ USE OF CONCOMITANT VARIABLES AND INCOMPLETE SURVIVAL INFORMATION IN THE ESTIMATION OF AN EXPONENT BIOCS66
      OF FLUCTUATING OFFSPRING DISTRIBUTIONS ON THE SURVIVAL OF A GENE
                                                                                             SOME EFFECTS BIOKAG6
                                                                                                                   391
                                                    SURVIVAL PROBABILITIES OF NEW INVERSIONS IN LARGE
                                                                                                          BTOCS68
                                                                                                                   501
                          ESTIMATION OF EXPONENTIAL SURVIVAL PROBABILITIES WITH CONCOMITANT INFORMATION
                                                                                                          BT0CS65
                                                                                                                   826
  A PARAMETRIC ESTIMATE OF THE STANDARD ERROR OF THE SURVIVAL RATE, CORR. 63 1161
                                                                                                          JASA 61
                                                                                                                   111
                               EVALUATION OF CENSUS SURVIVAL RATES IN ESTIMATING INTERCENSAL STATE NET
                               A NOTE ON THE CENSUS SURVIVAL RATIO METHOD OF ESTIMATING NET MIGRATION
                                                                                                          JASA 62
                                        EXPONENTIAL SURVIVAL WITH COVARIANCE
                                                                                                           JASA 67
FIELD MOUSE, APODEMUS SYLVATICUS. III/
                                        THE GROWTH, SURVIVAL, WANDERING AND VARIATION OF THE LONG-TAILED BIOKA52
                                                                                                                   389
                                      ESTIMATION OF SURVIVORSHIP IN CHRONIC DISEASE, THE 'ACTUARIAL'
                                                                                                          JASA 58
                                                                                                                   420
 STOCHASTIC EPIDEMIC CURVE FOR LARGE POPULATIONS OF SUSCEPTIBLES
                                                                                               THE SIMPLE BIOKA65
                                                                                                                   571
 PERIODS OF MEASLES, II. FAMILIES WITH THREE OR MORE SUSCEPTIBLES
                                                                    /ESTIMATING THE LATENT AND INFECTIOUS BIOKA56
                                                                                                                   322
 INFECTIOUS PERIODS OF MEASLES, I. FAMILIES WITH TWO SUSCEPTIBLES ONLY. ON ESTIMATING THE LATENT AND BIOKA56
                                                                                                                    15
 WITH TWO KINDS OF
                                                    SUSCEPTIBLES THE MATHEMATICAL ANALYSIS OF AN EPIDEMIC BIOCS68
                                                                                                                   557
DISTRIBUTION THEORY
                                  GENERALIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO MULTIVARIATE AMS 65
                               ON ESTIMATION BY THE SWEEP-OUT METHOD (CORR. 69 229)
                                                                                                          BIOKA68
D VARIATION OF THE LONG-TAILED FIELD MOUSE, APODEMUS SYLVATICUS. III. WANDERING POWER AND DISTRIBUTION
                                                                                                          BIOKA52
   NOTES. EIN EINFACHES VERFAHREN ZUR ERZEUGUNG VON SYMBOLFOLGEN MIT VORGEGEBENER RELATIVER DYADENKONTEXT BIOCS68
   COMPACT TABLE OF TWELVE PROBABILITY LEVELS OF THE SYMMETRIC BINOMIAL CUMULATIVE DISTRIBUTION FOR SAMPLE JASA 59
                            A REPRESENTATION OF THE SYMMETRIC BIVARIATE CAUCHY DISTRIBUTION
                                                                                                           AMS 62 1256
ONENTIAL POPULATION
                        BEST LINEAR ESTIMATES UNDER SYMMETRIC CENSORING OF THE PARAMETERS OF A DOUBLE EXP JASA 66
                                                                                                                  248
INEFFICIENCY' OF THE SAMPLE MEDIAN FOR MANY FAMILIAR SYMMETRIC DISTRIBUTIONS
                                                                                                    THE ' BIOKA55
                                                                                                                   520
HE NON-CENTRAL DISTRIBUTION OF THE SECOND ELEMENTARY SYMMETRIC FUNCTION OF THE ROOTS OF A MATRIX
                                                                                                     ON T AMS 68
                                                                                                                   833
                                  MONOMIAL-MONOMIAL SYMMETRIC FUNCTION TABLES
                                                                                                          BIOKA59 205
VARIATE ANALYSIS
                          THE MOMENTS OF ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF A MATRIX IN MULTI AMS 61 1152
MATRIX. DISTRIBUTIONS
                                      ON ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF A MULTIVARIATE
                                                                                                           AMS 64 1186
                       ON THE MOMENTS OF ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF TWO MATRICES
                                                                                                           AMS 64 1704
APPROXIMATIONS TO A DIST/ ON MOMENTS OF ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF TWO MATRICES AND
                                                                                                           AMS 68 1274
                                      ON ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF TWO MATRICES IN
MULTIVARIATE ANALYSIS.
                                                                                                          BIOKA65
                                          TABLES OF SYMMETRIC FUNCTIONS. PART IV.
                                                                                                          BIOKA53 427
                                          TABLES OF SYMMETRIC FUNCTIONS. PART V.
                                                                                                          BTOKA55
                                          TABLES OF SYMMETRIC FUNCTIONS. PARTS II AND III.
                                                                                                          BIOKA51
                                                                                                                   435
                               ERRATA IN 'TABLES OF SYMMETRIC FUNCTIONS'
                                                                                                          BIOKA58
                                                                                                                   292
                           LATENT VECTORS OF RANDOM SYMMETRIC MATRICES
                                                                                                          BIOK A61 133
                                   DECOMPOSITION OF SYMMETRIC MATRICES AND DISTRIBUTIONS OF QUADRATIC
FORMS
                                                                                                           AMS 65
                                                                                                                   683
    LEAST SQUARES ESTIMATION OF THE COMPONENTS OF A SYMMETRIC MATRIX
                                                                                                          TECH 66
                                                                                                                   360
               PERCENTACE POINTS OF THE RANGE FROM A SYMMETRIC MULTINOMIAL DISTRIBUTION
                                                                                                          BTOKA68
                                                                                                                  377
                               A BAYES RULE FOR THE SYMMETRIC MULTIPLE COMPARISONS PROBLEM
                                                                                                          JASA 69 NO.4
                                     ON THE DUALS OF SYMMETRIC PARTIALLY-BALANCED INCOMPLETE BLOCK DESIGNS AMS 63 528
RISTICS OF THE DISTRIBUTION OF THE LATENT ROOTS OF A SYMMETRIC RANDOM MATRIX UNDER GENERAL CONDITIONS
                                                                                                           AMS 61
                                                                                                                   864
                                 SOME PROPERTIES OF SYMMETRIC STABLE DISTRIBUTIONS
                                                                                                          JASA 68 817
                                                                                                           AMS 68 1498
                           ON A CHARACTERIZATION OF SYMMETRIC STABLE PROCESSES WITH FINITE MEAN
            CONTRIBUTIONS TO THE K-SAMPLE PROBLEM, A SYMMETRIC STATISTIC
                                                                                                           AMS 69 NO.6
               STATISTICAL PROBLEMS IN SCIENCE. THE SYMMETRIC TEST OF A COMPLETE HYPOTHESIS
                                                                                                          JASA 69 NO.4
                                 A PROPERTY OF SOME SYMMETRIC TWO-STACE SEQUENTIAL PROCEDURES
                                                                                                          AMS 64 755
                           AN APPROXIMATION FOR THE SYMMETRIC, QUADRIVARIATE NORMAL INTEGRAL
                                                                                                          BIOKA56 206
PLANS
                                                    SYMMETRICAL AND ASYMMETRICAL FRACTIONAL FACTORIAL
                                                                                                          TECH 62
```

TITLE WORD INDEX SUR - SYS

ON NECESSARY CONDITIONS FOR THE EXISTENCE OF SOME	SYMMETRICAL AND UNSYMMETRICAL TRIANGULAR PARTIALLY BA	AMS 63	348
IFICATION ON THE ADMISSIBILITY OF A RANDOMIZED	SYMMETRICAL DESIGN FOR THE PROBLEM OF A ONE WAY CLASS	AMS 69	356
DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR	SYMMETRICAL DISTRIBUTIONS A	SASJ 69	NO.2
AN APPROXIMATION TO THE	SYMMETRICAL DISTRIBUTIONS A SYMMETRICAL INCOMPLETE BETA FUNCTION SYMMETRICAL MULTINOMIAL DISTRIBUTION A NOTE ON	BIOKA52	204
THE FIRST TWO MOMENTS OF THE MEAN DEVIATION OF THE	SYMMETRICAL MULTINOMIAL DISTRIBUTION A NOTE ON		
DISTRIBUTION-FREE TOLERANCE INTERVALS FOR CONTINUOUS		AMS 62	
UNEQUAL BLOCK SIZES		AMS 62	
		BIOKA59	
ASYMPTOTICALLY NONPARAMETRIC TESTS OF		AMS 67	
FOR THE EXACT DISTRIBUTION OF THE WILCOXON TEST FOR			899
CONTINGENCY TABLE		JASA 69	
STUDENT'S T-TEST UNDER	SYMMETRY CONDITIONS SYMMETRY OF A COVARIANCE MATRIX ON THE EXACT DI	JASA 69	
	SYMMETRY TESTS FOR CIRCULAR DISTRIBUTIONS		
DIMADIAME	CVMNEMBY MECHC DADANEMBIO AND NONDADANEMBIO	AMS 69	259
V TEST FOR	SYMMETRY USING THE SAMPLE DISTRIBUTION FUNCTION	AMS 69	NO 6
		BIOCS67	
ARIANCES AND COVARIANCES OF 'ANOVA' MEAN SQUARES BY			
ARIANCES, AND CONVARIANCES OF ANOVA MEAN SQUARES BY	'SYNTHESIS' EXPECTATIONS, V 'SYNTHESIS' ON EXPECTATIONS, V	BIOCS68	963
HE SIZE AND POWER OF TESTS EMPLOYING SATTERTHWAITE'S	SYNTHETIC MEAN SQUARES /TE CARLO INVESTIGATION OF T	BIOKA68	431
ON A FACTOR AUTOMORPHISM OF A NORMAL DYNAMICAL		AMS 66	
THE OUTPUT PROCESS OF A STATIONARY M/M/S QUEUEING	SYSTEM	AMS 68	1144
CONSISTENT ESTIMATES OF THE PARAMETERS OF A LINEAR	SYSTEM	AMS 69	NO.6
THE FUTURE DEVELOPMENT OF THE FEDERAL STATISTICAL		JASA 68	801
TECHNIQUE FOR ESTIMATING THE RELIABILITY OF A SIMPLE			
IAL DISTRIBU/ POINT ESTIMATION OF RELIABILITY OF A	SYSTEM COMPRISED OF K ELEMENTS FROM THE SAME EXPONENT		
		TECH 60	43
		TECH 63	
	SYSTEM FOR ANTI-CANCER AGENTS BASED ON THE THERAPEUTI SYSTEM FOR THE CLASSIFICATION OF MATHEMATICAL MODELS		
DETERMINISTIC GUSTOMER IMPATIENCE IN THE QUEUEING		BIOC265	45
DETERMINISTIC GUSTOMER IMPATIENCE IN THE QUEUEING		BIOKA60	
		JRSSB68	
SYSTEMS STRUCTURE AND THE EXISTENCE OF A		TECH 64	
A NOTE ON THE QUEUEING	SYSTEM M-M-1 WITH BALKING.	BIOKA65	643
ESTIMATION OF THE PARAMETER OF A LINEAR REGRESSION	SYSTEM OBEYING TWO SEPARATE REGIMES THE SYSTEM OBEYS TWO SEPARATE REGIMES .	JASA 58	873
TESTS OF THE HYPOTHESIS THAT A LINEAR REGRESSION	SYSTEM OBEYS TWO SEPARATE REGIMES	JASA 60	324
A	SYSTEM OF DENUMERABLY MANY TRANSIENT MARKOV CHAINS	AMS 66	406
		BIOKA67	
ISTICS II. THE SAMPLE MEDIAN ON A GENERAL	SYSTEM OF DISTRIBUTIONS, I. ITS CURVE—SHAPE GHARACTER	JASA 68	627
ON A GENERAL	SISTEM OF DISTRIBUTIONS, III. THE SAMILE RANGE	U ADA OO	000
DEAD AD AT THE MERILIAN FOR GOLUTING AN AUTODOFFICIALITY	SYSTEM OF EQUALITIES ARISING IN MARKOVIAN DECISION	AMS 67	
PROBABILITY METHOD FOR SOLVING AN OVERDETERMINED	SYSTEM OF EQUATIONS AN A POSTERIORI SYSTEM OF EVOLUTIONARY OPERATION SUBJECT TO EMPIRICAL SYSTEM OF INEQUALITIES FOR THE INCOMPLETE GAMMA	TECH 66	
FEEDBACK A SIMPLE	SYSTEM OF EVOLUTIONARY OPERATION SUBJECT TO EMPIRICAL	AMS 65	19
TRUMCTIONS AND THE NORMAL INTEGRAL A	SYSTEM OF INEQUALITIES FOR THE INCOMPLETE GAMMA SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS FOR THE DISTR	AMC 60	
	SYSTEM OF MODELS FOR THE LIFE CYCLE OF A BIOLOGICAL		
DETERMINATION OF PARAMETERS IN THE JOHNSON		BIOKA59	
	SYSTEM OF RANDOMIZATION FOR CROSS-CLASSIFICATIONS		
	SYSTEM OF REGRESSION EQUATIONS WHEN DISTURBANCES ARE		
RI/ THE COMPOUND HYPERGEOMETRIC DISTRIBUTION AND A	SYSTEM OF SINGLE SAMPLING INSPECTION PLANS BASED ON P	TECH 60	275
	SYSTEM OF TWO SERVERS WITH LIMITED WAITING ROOMS AND		
	SYSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS		
THE ANALYSIS OF THE EFFECTS OF MARGINAL TESTING ON	SYSTEM RELIABILITY A MARKOVIAN MODEL FOR SYSTEM RELIABILITY COMPARISON OF TWO METHODS	AMS 62	754
	SYSTEM SIMULATED FROM TESTS ON ITS COMPONENTS	AMS 63 AMS 62	
ON THE TRANSLENT BEHAVIOR OF A QUEUEING		JRSSB61	
	SYSTEM WITH INCOMPLETE SERVICE SYSTEM WITH ONE SERVER AND WHICH INTERARRIVAL AND SER		
	SYSTEM WITH ONE SERVER, WHILE THE INTERARRIVAL AND SE		
	SYSTEMATIC ERRORS IN PHYSICAL CONSTANTS		
	SYSTEMATIC EXPERIMENTAL DESIGNS	BIOK A51	
		JASA 57	
	SYSTEMATIC METHODS FOR ANALYZING 2-TO-THE-N-TIMES-3-T		
		JASA 64	
		JRSSB54	
THE VARIANCE OF THE MEAN OF		BIOKA56	
ON MODITORIO	SYSTEMATIC SAMPLING SYSTEMATIC SAMPLING	BIOKA62	
		BIOKA68 BIOKA53	
	SYSTEMATIC SAMPLING WITH PROBABILITY PROPORTIONATE TO		
	SYSTEMATIC SAMPLING WITH PROBABILITY PROPORTIONATE TO		
		JASA 66	
	SYSTEMATIC STATISTICS FROM MULTIVARIATE DISTRIBUTIONS		
	SYSTEMATIG STATISTICS OF SAMPLES FROM ANY CONTINUOUS		
SPACE TELEMETRY	SYSTEMATIC STATISTICS USED FOR DATA COMPRESSION IN	JASA 65	97
		TECH 62	
THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN		TECH 61	
THE ESTIMATION OF 'TRANSFER FUNCTIONS' OF QUADRATIC		TECH 61	
SIMPLEX LATTICE DESIGNS FOR MUTICOMPONENT		TECH 62	
THE DEVELOPMENT OF NUMERICAL CREDIT EVALUATION PRODUCT TEST PLANNING FOR REPAIRABLE		JASA 63 TECH 65	
PRODUCT TEST PLANNING FOR REPAIRABLE REALIZATION OF STOCHASTIC		AMS 67	
CONFIDENCE LIMITS FOR THE RELIABILITY OF SERIES		JASA 67	
ON GONFIDENCE LIMITS FOR THE RELIABILITY OF		AMS 68	
ESTIMATION OF MIXED MOVING-AVERAGE AUTOREGRESSIVE		BIOKA69	

```
OF SLOW-DOWNS AND FAILURE ON STOCHASTIC SERVICE SYSTEMS
                                                                                                   EFFECTS TECH 63 385
     REQUIREMENTS FOR ACCEPTANCE TESTING OF COMPLEX SYSTEMS
                                                                                                  ACCURACY JASA 59
                                                                                                                    447
     CHARACTERIZATION OF WEAR-OUT FOR COMPONENTS AND SYSTEMS
                                                                                              A STOCHASTIC AMS 66
                                                                                                                    816
         OF KENDALL'S TAU BASED ON PARTIALLY ORDERED SYSTEMS
                                                                                             DISTRIBUTIONS BIOKA55
                                                                                                                    417
     MODELS FOR COMPETITIVE AND PREDATORY BIOLOGICAL SYSTEMS
                                                                                            ON THEORETICAL BIOKA57
                                                                                                                     27
DISCUSSING THE PASSAGE TIME DISTRIBUTION FOR STABLE SYSTEMS
                                                                                           A TECHNIQUE FOR JRSSB66
                                                                                                                    477
TRUCTURE OF THE OUTPUT PROCESS OF SOME SINCLE SERVER SYSTEMS
                                                                                         THE CORRELATION S AMS 68 1007
       OF VECTOR MIXED AUTOREGRESSIVE-MOVING AVERAGE SYSTEMS
                                                                                        THE IDENTIFICATION BIOKA69
                                                                                                                    223
   LIMITS FOR THE RELIABILITY OF SERIES AND PARALLEL SYSTEMS
                                                                                    APPROXIMATE CONFIDENCE TECH 65
                                                                                                                    495
FICANCE ON THE DIMENSIONALITY OF NORMAL MULTIVARIATE SYSTEMS
                                                               /F THE COMPUTINC ROUTINE FOR TESTS OF SIGNI JRSSB56
                                                                                                                     70
APPROACHES IN THE SPECIFICATION OF NEAREST-NEIGHBOUR SYSTEMS
                                                               /NAL PROBABILITY AND THE JOINT PROBABILITY BIOKA64
                                                                                                                    481
ION TO INVERSE SAMPLING AND RELIABILITY OF REDUNDANT SYSTEMS
                                                               /THE CEOMETRIC DISTRIBUTION AND THEIR RELAT JASA 67
                                                                                                                    915
CE IN DISCRETE-TIME STOCHASTIC MODELS FOR BIOLOGICAL SYSTEMS
                                                               A NOTE ON SOME APPROXIMATIONS TO THE VARIAN BIOKAGO
                                                                                                                    196
       PROBLEMS IN THE PROBABILITY THEORY OF STORAGE SYSTEMS (WITH DISCUSSION)
                                                                                                           JRSSB57
                                                                                                                    1 B1
                                     MULTI-COMPONENT SYSTEMS AND STRUCTURES AND THEIR RELIABILITY
                                                                                                           TECH 61
                                                                                                                     55
                                     QUALITY CONTROL SYSTEMS BASED ON INACCURATELY MEASURED VARIABLES
                                                                                                           BIOKA51
                                                                                                                    472
   FOR STUDYING THE PROPERTIES OF CERTAIN BIOLOGICAL SYSTEMS BY NUMERICAL METHODS
                                                                                        A STOCHASTIC MODEL BIOKA58
                                                                                                                     16
STICAL MODEL OF EVALUATING THE RELIABILITY OF SAFETY SYSTEMS FOR PLANTS MANUFACTURING HAZARDOUS PRODUCTS TECH 59
                                                                                                                    293
M LIKELIHOOD ESTIMATORS OF RELIABILITY FUNCTIONS FOR SYSTEMS IN SERIES AND IN PARALLEL /IASED AND MAXIMU JASA 66 1052
               SPECTRAL PROPERTIES OF NON-STATIONARY SYSTEMS OF LINEAR STOCHASTIC DIFFERENCE EQUATIONS
                                                                                                           JASA 69
                                                                                                                    581
                   TESTING FOR SERIAL CORRELATION IN SYSTEMS OF SIMULTANEOUS REGRESSION EQUATIONS
                                                                                                           BIOKA57
                                                                                                                    370
                     THE ESTIMATION OF PARAMETERS IN SYSTEMS OF STOCHASTIC DIFFERENTIAL EQUATIONS
                                                                                                           BIOKA59
                                                                                                                     67
  A METHOD TO DETERMINE THE RELIABILITY OF TELEMETRY SYSTEMS REPORTS
                                                                                                           JASA 62
                                                                                                                    6B6
                                                     SYSTEMS STRUCTURE AND THE EXISTENCE OF A SYSTEM LIFE TECH 64
                                                                                                                    459
    A GENERAL METHOD FOR THE RELIABILITY ANALYSIS OF SYSTEMS UNDER VARIOUS PREVENTIVE MAINTENANCE POLICIES AMS 62
                                                                                                                    137
ESIAN CONFIDENCE LIMITS FOR RELIABILITY OF REDUNDANT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAILURE
                                                                                                           TECH 68
                                                                                                                     29
                               ON CERTAIN REDUNDANT SYSTEMS WHICH OPERATE AT DISCRETE TIMES
                                                                                                           TECH 62
                                                                                                                     69
             SAMPLING ENTROPY FOR RANDOM HOMOCENEOUS SYSTEMS WITH COMPLETE CONNECTIONS (CORR. 69 NO.6)
                                                                                                            AMS 65 1433
                                  A NOTE ON QUEUEING SYSTEMS WITH ERLANGIAN SERVICE TIME DISTRIBUTIONS
                                                                                                            AMS 65 1574
                                                                                                           JRSSB66
 THE ERCODIC QUEUE LENGTH DISTRIBUTION FOR QUEUEING SYSTEMS WITH FINITE CAPACITY
                                                                                                                   190
                                          CONGESTION SYSTEMS WITH INCOMPLETE SERVICE (CORR. 64 365)
                                                                                                           JRSSB62
                                                                                                                    107
       SOME WAITING TIME DISTRIBUTIONS FOR REDUNDANT SYSTEMS WITH REPAIR
                                                                                                           TECH 64
                       THE RELIABILITY OF MULTIPLEX SYSTEMS WITH REPAIR
                                                                                                           JRSSB66
                                                                                                                    459
 GRAPHICAL METHOD FOR THE STUDY OF COMPLEX GENETICAL SYSTEMS WITH SPECIAL REFERENCE TO EQUILIBRIA
                                                                                                         A BIOCS69 NO.4
      COMPUTER SIMULATION EXPERIMENTS WITH ECONOMIC SYSTEMS. THE PROBLEM OF EXPERIMENTAL DESIGN
                                                                                                           JASA 67 1315
                                    CLOSED QUEUEING SYSTEMS, A GENERALIZATION OF THE MACHINE INTERFERENCE JRSSB61
 MODEL
                                                                                                                    385
 NOISE OBSERVATIONS ERROR
                           ESTIMATION OF STOCHASTIC SYSTEMS, ARBITRARY SYSTEM PROCESS WITH ADDITIVE WHITE AMS 68
                                                                                                                    7B5
        NOTE ON A CONDITIONAL PROPERTY OF STUDENT'S T
                                                                                                            AMS 63 109B
THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T
                                                                                                            AMS 64
                                                                                                                    298
                      AN APPROXIMATION OF STUDENT'S T
                                                                                                           TECH 65
                                                                                                                     71
 AN APPROXIMATION TO THE DISTRIBUTION OF NON-CENTRAL T
                                                                                                           BIOKA58
                                                                                                                    484
   INTEGRALS OF MULTIVARIATE NORMAL AND MULTIVARIATE T
                                                                                               PROBABILITY AMS 63
                                                                                                                    792
    FOR THE MEAN OF A NORMAL DISTRIBUTION III, SMALL T
                                                                                           SEQUENTIAL TEST AMS 65
                                                                                                                     28
     FOR THE MEAN OF A NORMAL DISTRIBUTION II, LARCE T
                                                                                          SEQUENTIAL TESTS
                                                                                                            AMS 64
                                                                                                                    162
TRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T
                                                                               AN APPROXIMATION TO THE DIS
                                                                                                           AMS 64
                                                                                                                    315
PROXIMATE BEHAVIOR OF THE DISTRIBUTION OF WINSORIZED T (TRIMMING-WINSORIZATION 2)
                                                                                                        AP TECH 68
                                                                                                                     83
                      VARIATIONS OF THE NON-CENTRAL T AND BETA DISTRIBUTIONS
                                                                                                            AMS 64 15B3
RELATING TO CERTAIN MULTIVARIATE GENERALIZATIONS OF T AND F
                                                                                         A COUNTER-EXAMPLE
                                                                                                           AMS 67
                                                                                                                    613
                                  A RELATION BETWEEN T AND F-DISTRIBUTIONS, CORR. 65 1249
                                                                                                           JASA 65
                                                                                                                    528
  RELATION BETWEEN THE DISTRIBUTIONS OF NON-CENTRAL T AND OF A TRANSFORMED CORRELATION COEFFICIENT
                                                                                                           BIOKA57
                                                                                                                    219
                                        MULTIVARIATE T AND THE RANKING PROBLEM
                                                                                                           BIOKA67
                                                                                                                    305
                                       EXPANSIONS OF T DENSITIES AND RELATED COMPLETE INTEGRALS
                                                                                                            AMS 67
                                                                                                                    503
                                       THE POSTERIOR T DISTRIBUTION
                                                                                                            AMS 63
                                                                                                                    568
                      A PROPERTY OF THE MULTIVARIATE T DISTRIBUTION
                                                                                                            AMS 65
                                                                                                                    712
 A NOTE ON REPRESENTATIONS OF THE DOUBLY NON-CENTRAL T DISTRIBUTION
                                                                                                           JASA 6B 1013
    OF THE PROBABILITY INTEGRAL OF THE MULTIVARIATE T DISTRIBUTION
                                                                                         ON THE EVALUATION BIOKA61
   MATRICVARIATE GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AND THE INVERTED MULTIVARIATE T DISTRI AMS 67
                                                                                                                    511
                                                                                                            AMS 67
                                         A BIVARIATE T DISTRIBUTION, CORR. 67 1594
                                                                                                                   162
     REPRESENTATIONS OF THE CENTRAL AND NON-CENTRAL T DISTRIBUTIONS
                                                                                                           BIOKA64 451
                                          STUDENT'S T IN A TWO-WAY CLASSIFICATION WITH UNEQUAL VARIANCES
                                                                                                           AMS 65 1248
          NONPARAMETRIC PROCEDURES FOR SELECTING THE T POPULATION WITH THE LARCEST ALPHA-QUANTILE
                                                                                                            AMS 67 1B04
                             HOTELLING'S CENERALIZED T SQUARE IN THE MULTIVARIATE ANALYSIS OF VARIANCE
                                                                                                           JRSSB63 358
                 THE CONDITIONAL LEVEL OF STUDENT'S T TEST
                                                                                                            AMS 67 1068
                 A NOMOGRAM FOR THE 'STUDENT'*FISHER T TEST
                                                                                                           JASA 69 NO.4
            BOUNDARIES FOR CLOSED (WEDGE) SEQUENTIAL T TEST PLANS
                                                                                                           BIOKA66 431
                     APPROXIMATION TO THE CUMULATIVE T-DISTRIBUTION
                                                                                                           TECH 66
                                                                                                                    358
                 THE MOMENTS OF A DOUBLY NONCENTRAL T-DISTRIBUTION
                                                                                                           JASA 67 278
                                                                                                           JASA 68 1004
     SERIES REPRESENTATIONS OF THE DOUBLY NONCENTRAL T-DISTRIBUTION
                             A STEPWISE MULTIVARIATE T-DISTRIBUTION
                                                                                                           SASJ 69
                                                                                                                   17
                      THE MOMENTS OF THE NON-CENTRAL T-DISTRIBUTION
                                                                                                           BIOKA61
                                                                                                                    465
           A SPECIAL CASE OF A BIVARIATE NON-CENTRAL T-DISTRIBUTION
                                                                                                           BIOKA65
                                                                                                                    437
                     AN APPROXIMATION FOR STUDENT'S T-DISTRIBUTION
                                                                                                           BIOKA68
                                                                                                                    571
    OF PROPERTIES AND APPLICATIONS OF THE NONCENTRAL T-DISTRIBUTION
                                                                                                  A SURVEY TECH 6B
                                                                                                                    445
        TABLES OF THE PERCENTAGE POINTS OF STUDENT'S T-DISTRIBUTION
                                                                                                  EXTENDED JASA 59
                                                                                                                    6B3
 COMPUTATION OF PERCENTAGE POINTS OF THE NON-CENTRAL T-DISTRIBUTION
                                                                                 TABLES TO FACILITATE THE AMS 62
                                                                                                                    580
NTACE POINTS OF A MULTIVARIATE ANALOGUE OF STUDENT'S T-DISTRIBUTION
                                                                      /BABILITY INTEGRAL AND CERTAIN PERCE BIOKA55
                                                                                                                    258
                                  TAIL AREAS OF THE T-DISTRIBUTION FROM A MILLS' RATIO-LIKE EXPANSION
                                                                                                            AMS 63
                                                                                                                    335
           SOME PERCENTAGE POINTS OF THE NON-CENTRAL T-DISTRIBUTION, CORR. 63 1163
                                                                                                           JASA 63
                                                                                                                    176
             A BIVARIATE CENERALIZATION OF STUDENT'S T-DISTRIBUTION, WITH TABLES FOR CERTAIN SPECIAL CASES BIOKA54
                                                                                                                    153
                                                                                                           JASA 65 573
              ESTIMATION OF MULTIPLE CONTRASTS USING T-DISTRIBUTIONS
                                                                                                            AMS 68 1605
                                   SOME MULTIVARIATE T-DISTRIBUTIONS
                                                                         ON THE EVALUATION OF PROBABILITI JRSSB66 366
ES OF CONVEX POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUTIONS
                             A GENERALIZATION OF THE T-METHOD OF MULTIPLE COMPARISONS
                                                                                                           JASA 69
                                                                                                                    290
                                                                                                           AMS 67 1882
                          ON HOROVITZ AND THOMPSON'S T-ONE CLASS OF LINEAR ESTIMATION
                                                THE T-RATIO DISTRIBUTION
                                                                                                           JASA 69 242
                                                                                                           JASA 67 124
                      THE ROBUSTNESS OF HOTELLING'S T-SQUARE
```

SYS - TAB

```
ON HOTELLING'S GENERALIZATION T-SQUARE
                                                                                                                BIOKA59 160
AL VARI/ SOME EMPIRICAL DISTRIBUTIONS OF BIVARIATE T-SQUARE AND HOMOSCEDASTICITY CRITERION M UNDER UNEQU JASA 63 1048
                             A TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS
                                                                                                                 BIOCS6B
                            SEQUENTIAL CHI-SQUARE AND T-SQUARE TESTS AND THEIR APPLICATION TO AN ACCEPTANCE TECH 61 519
 SAMPLING PROBLEM
IONS FOR THE DISTRIBUTION OF HOTELLING'S GENERALIZED T-SQUARE-SUB-ZERO /TEM OF LINEAR DIFFERENTIAL EQUAT AMS 6B 815
NCE WHEN VARIANCE-COVARI/ ON THE ROBUSTNESS OF THE T-SQUARE-SUB-O TEST IN MULTIVARIATE ANALYSIS OF VARIA BIOKA64
                                                                                                                           71
MPTOTICALLY NONPARAMETRIC COMPETITORS OF HOTELLING'S T-SQUARE, CORR. 65 1583

ON SOME ASY AMS 65 160
ON THE COMPLEX ANALOGUES OF T-SQUARED AND R-SQUARED TESTS

AMS 65 664
                     MINIMAX CHARACTER OF HOTELLING'S T-SQUARED TEST IN THE SIMPLEST CASE
                                                                                                                  AMS 63 1524
                           SEQUENTIAL CHI-SQUARED AND T-SQUARED TESTS
                                                                                                                  AMS 61 1063
FOR CLASSICAL MULTI/
                        ADMISSIBLE BAYES CHARACTER OF T-SQUARED, R-SQUARED AND OTHER FULLY INVARIANT TESTS
                                                                                                                 AMS 65 747
                            A NOTE ON THE SEQUENTIAL T-TEST
                                                                                                                  AMS 65 1867
                     A COMPACT TABLE FOR POWER OF THE T-TEST
                                                                                                                  AMS 68 1629
                            ON A TWO-SIDED SEQUENTIAL T-TEST
                                                                                                                 BIOKA52
                                                                                                                         302
    EFFECT OF NON-NORMALITY ON THE POWER FUNCTION OF T-TEST
                                                                                                                 BIOKA58 421
                              A TWO-SAMPLE SEQUENTIAL T-TEST
                                                                                                                 BIOKA61
CERTAIN SUGGESTED FORMULAE APPLIED TO THE SEQUENTIAL T-TEST
                                                                                                            ON BIOKA64
                                      THE TWO-SAMPLE T-TEST BASED ON RANGE
                                                                                                                 BIOKA57
                                                                                                                          4B2
                                            STUDENT'S T-TEST UNDER SYMMETRY CONDITIONS
                                                                                                                 JASA 69 NO.4
  USE OF RANGE IN PLACE OF STANDARD DEVIATION IN THE T-TEST.
                                                                                              CORRIGENDA, 'THE BIOKA52 442
                               THE POWER OF STUDENT'S T-TEST, CORR. 65 1251
                                                                                                                 JASA 65
                                                                                                                         320
              CORRIGENDA, 'ON A TWO-SIDED SEQUENTIAL T-TEST'
                                                                                                                 BTOKA54 568
               CRITICAL VALUES FOR BIVARIATE STUDENT T-TESTS
                                                                                                                 JASA 69 637
                         NON-NORMALITY IN TWO-SAMPLE T-TESTS
                                                                                                                 BIOKA53 223
                                    CLOSED SEQUENTIAL T-TESTS
                                                                                                                 BIOKA62 359
                    APPROXIMATIONS TO THE NON-CENTRAL T, WITH APPLICATIONS
                                                                                                                 TECH 63 295
          ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T. WITH APPLICATIONS' AN INEQUALITY ON A BIVARIATE STUDENT'S 'T' DISTRIBUTION
                                                                                                                 TECH 64 4B2
                                                                                                                 JASA 67 603
              A QUASI-MULTINOMIAL TYPE OF CONTINGENCY TABLE
                                                                                                                 SASJ 67
                                                                                                                          59
                THE GEOMETRY OF A R-BY-C CONTINGENCY TABLE
                                                                                                                 AMS 6B 1186
      MEAN AND VARIANCE OF AN ENTRY IN A CONTINGENCY TABLE
                                                                                                                 BIOKA51 468
    FOR TESTING SIGNIFICANCE IN A 2-BY-3 CONTINGENCY TABLE
                                                                                                         TABLES TECH 63 501
   AND MARGINAL HOMOGENEITY OF AN R-BY-R CONTINGENCY TABLE
                                                                                                       SYMMETRY JASA 69 NO.4
        OF THE EXACT TEST FOR THE 2-BY-3 CONTINGENCY TABLE
                                                                                           THE POWER FUNCTION TECH 64 439
        OF THE EXACT TEST FOR THE 2-BY-2 CONTINGENCY TABLE
                                                                                         ON THE POWER FUNCTION BIOKAGO
                                                                                                                          393
IN A 2-BY-2 CONTINGENCY TABLE, EXTENSION OF FINNEY'S TABLE
                                                                                        TESTS OF SIGNIFICANCE BIOKA53
OF CHI-SQUARE AS A TEST OF HOMOGENEITY FROM A 2-BY-N TABLE
                                                                                        THE RAPID CALCULATION
                                                                                                                 BIOKA55
                                                                                                                          519
                                                                     A SIMPLIFIED EXPRESSION FOR THE BIOKA54
VARIANCE OF THE CHI-SQUARE FUNCTION ON A CONTINGENCY TABLE
                                                                                                                         2B0
                                                                A SIMPLIFIED EARKEDSTON FOR THE SOME PROPERTIES OF THE BIVARIATE NORMAL BIOKAST
DISTRIBUTION CONSIDERED IN THE FORM OF A CONTINGENCY TABLE
                                                                                                                          289
NFIDENCE INTERVALS OF THE MEDIAN FOR SAMPLE SIZES/ TABLE FOR BOTH THE SIGN TEST AND DISTRIBUTION-FREE CO JASA 64
                                                                                                                          935
                                                     A TABLE FOR COMPUTING WORKING ANGLES
                                                                                                                BT0CS6B
                                                                                                                         413
F VARIOUS SUMS OF SQUARES IN AN ANALYSIS OF VARIANCE TABLE FOR DIFFERENT CLASSIFICATIONS WITH CORRELATED A JRSSB59
                                                                                                                         114
                                                     A TABLE FOR ESTIMATING THE MEAN OF A LOGNORMAL
DISTRIBUTION
                                                                                                                          632
                                                                                                                JASA 69
                                           PROBABILITY TABLE FOR NUMBER OF RUNS OF SIGNS OF FIRST DIFFERENCE JASA 61
S IN ORDERED SERIES
                                                                                                                          156
                                            A COMPACT TABLE FOR POWER OF THE T-TEST
                                                                                                                 AMS 6B 1629
                                                 A TABLE FOR PREDICTING THE PRODUCTION FROM A GROUP OF
MACHINES UNDER THE CARE OF ONE OPERATIVE
                                                                                                                 JRSSB54 285
                                                                                                                 TECH 67
                                                                                                                          561
                                                     A TABLE FOR RANK SUM MULTIPLE PAIRED COMPARISONS
                                                                                                                 BIOKA63
                                                       TABLE FOR THE SOLUTION OF THE EXPONENTIAL EQUATION
                                                                                                                          177
                ON PLACKETT'S TEST FOR CONTINGENCY TABLE INTERACTIONS
                                                                                                                 JRSSB63 179
                        A COMPARISON OF TWO LIFE TABLE METHODS
                                                                                                                           51
STATISTIC EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCO
S FOR THE BINOMIAL PARAMETER

TABLE OF NEVERAL CHOOSES
N TWO-SAMPLE STATISTIC
                                          AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXO JASA 64
                                                                                                                          177
                                                       TABLE OF NEYMAN-SHORTEST UNBIASED CONFIDENCE INTERVAL BIOKAGO
                     ON THE COMPUTATION AND USE OF A TABLE OF PERCENTAGE POINTS OF BARTLETT'S M
                                                                                                                BTOKA69
                                                                                                                          273
                                                      TABLE OF PERCENTAGE POINTS OF KOLMOGOROV STATISTICS
                                                                                                                          111
                                                                                                                JASA 56
                                                       TABLE OF PERCENTAGE POINTS OF NON-CENTRAL CHI
                                                                                                                 BIOKA69
                                                                                                                          255
EN ROOT(BETA-1) AND BETA-2 EXPRESSED IN STANDARD/
                                                       TABLE OF PERCENTAGE POINTS OF PEARSON CURVES, FOR GIV BIOKAG3
                                                                                                                          459
EN ROOT(BETA-1) AND BETA-2. EXPRESSE/ CORRIGENDA, 'TABLE OF PERCENTAGE POINTS OF PEARSON CURVES, FOR GIV BIOKA65
                                                                                                                          669
                                                A NEW TABLE OF PERCENTAGE POINTS OF THE CHI-SQUARE
DISTRIBUTION
                                                                                                                          231
                                                                                                                 BIOKA64
                                 CORRIGENDA, 'A NEW TABLE OF PERCENTAGE POINTS OF THE CHI-SQUARE DISTRIBU BIOKAGS
A NEW TABLE OF PERCENTAGE POINTS OF THE PEARSON TYPE III TECH 69
TIONS'
                                                                                                                          305
                                                                                                                          177
NS OF KOLMOGOROV-SMIRNOV TYPE STATISTICS INCLUDING A TABLE OF SIGNIFICANCE POINTS FOR A PARTICULAR CASE
NS OF KOLMOGURUV-SMITHTON THE FIRST FOUR MOMENTS ARE GIVEN
                                                                                                                 AMS 68
                                                                                                                          233
                                                       TABLE OF THE BOUNDS OF THE PROBABILITY INTEGRAL WHEN BIOKAGO
                                                                                                                          399
UTION OVER AN OFSET CIRCLE
                                                     A TABLE OF THE INTEGRAL OF THE BIVARIATE NORMAL DISTRIB JRSSB60
                                                                                                                          177
'STUDENTIZED' RANGE
                                                       TABLE OF THE UPPER 10 PERCENT POINTS OF THE
                                                                                                               BTOKA59
                                                                                                                          461
INOMIAL CUMULATIVE DISTRIBUTION FOR SAMPL/ COMPACT TABLE OF TWELVE PROBABILITY LEVELS OF THE SYMMETRIC B JASA 59
                                                                                                                         164
                                                       TABLE OF 0.1 PERCENTAGE POINTS OF BEHRENS'S D BIOKAGE
                                                                                                                          267
                                                A LIFE TABLE THAT AGREES WITH THE DATA
A LIFE TABLE THAT AGREES WITH THE DATA. II
                                                                                                                JASA 66 305
R THE DIFFERENCE BETWEEN TWO PROPORTIONS IN A 2-BY-2 TABLE, AND FISHER'S 'EXACT' SIGNIFICANCE TEST OR BIOKA55 502

EXACT BAYESIAN ANALYSIS OF A TWO-BY-TWO CONTINGENCY TABLE, AND FISHER'S 'EXACT' SIGNIFICANCE TEST JRSS69 NO.2

TESTS OF SIGNIFICANCE IN A 2-BY-2 CONTINGENCY TABLE FYTENSION OF FINNEY'S TABLE
       TESTS OF SIGNIFICANCE IN A 2-BY-2 CONTINGENCY TABLE, EXTENSION OF FINNEY'S TABLE
                                                                                                                 BTOK A53 74
UNCTION OF THE EXACT TEST FOR THE 2-BY-2 CONTINGENCY TABLE
                                                                                  CORRIGENDA, 'ON THE POWER F BIOKA61
                                                                                                                          475
   LAGRANGIAN COEFFICIENTS FOR INTERPOLATION BETWEEN TABLED PERCENTAGE POINTS
                                                                                                                          19
                                                                                                                 BIOKA68
                                                                                                                 JASA 57
                                RAPID ANALYSIS OF 2X2 TABLES
                                                                                                                           18
                 THE BAYESIAN ANALYSIS OF CONTINGENCY TABLES
                                                                                                                  AMS 64 1622
        INTERACTIONS IN MULTIDIMENSIONAL CONTINGENCY TABLES
                                                                                                                  AMS 64 632
       THE POWER OF CHI SQUARE TESTS FOR CONTINGENCY TABLES
                                                                                                                 JASA 66 965
            ASSOCIATION AND ESTIMATION IN CONTINGENCY TABLES
                                                                                                                 JASA 6B
            OPTIMUM CHOICE OF CLASSES FOR CONTINGENCY TABLES
                                                                                                                 JASA 68 291
          EXACT TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES
                                                                                                                 TECH 69 393
                MONOMIAL-MONOMIAL SYMMETRIC FUNCTION TABLES
                                                                                                                 BIOKA59 205
          TESTS OF INDEPENDENCE IN INTRACLASS 2-BY-2 TABLES
                                                                                                                BIOKAGI IBI
                 THE CONTINUITY CORRECTION IN 2-BY-2 TABLES
                                                                                                                BTOK A64 327
                A NOTE ON INTERACTIONS IN CONTINGENCY TABLES
                                                                                                                JRSSB62
                                                                                                                          162
             INTERACTIONS IN MULTI-FACTOR CONTINGENCY TABLES
                                                                                                                JRSSB62
                                                                                                                         251
```

```
MAXIMUM LIKELIHOOD IN THREE-WAY CONTINCENCY TABLES
                                                                                                            JRSSB63
                                                                                                                     220
                 ALTERNATIVE ANALYSIS OF CONTINCENCY TABLES
                                                                                                             JRSSB66
                                                                                                                     164
       THE ROBUSTNESS OF HOMOCENEITY TESTS IN 2 BY N TABLES
                                                                                                            BIOCS65
                                                                                                                      19
          NOTES. F-RATIO PROBABILITIES FROM BINOMIAL TABLES
                                                                                                            BIOCS66
                                                                                                                     404
ON THE HYPOTHESES OF 'NO INTERACTION' IN CONTINCENCY TABLES
                                                                                                            BIOCS6B
                                                                                                                     567
              INCOMPLETE TWO-DIMENSIONAL CONTINCENCY TABLES
                                                                                                            BTOCS69
                                                                                                                     119
  THE ESTIMATION OF SMALL FREQUENCIES IN CONTINCENCY TABLES
                                                                                                         ON JRSSB56
                                                                                                                     113
   CONTINGENCY TABLES, LOCITS, AND SPLIT CONTINCENCY TABLES
                                                                                                       FULL BIOCS69
                                                                                                                     383
    SMALL SAMPLE CONSIDERATIONS IN COMBINING 2 BY 2 TABLES
                                                                                                     NOTES BIOCS67
                                                                                                                     349
          OF RESULTS FROM SEVERAL 2 BY 2 CONTINCENCY TABLES
                                                                                                COMBINATION BIOCS65
                                                                                                                      86
OF 'NO INTERACTION' IN MULTI-DIMENSIONAL CONTINGENCY TABLES
                                                                                                HYPOTHESES TECH 68
                                                                                                                     1.07
  CRAPHICAL ANALYSIS OF MULTIDIMENSIONAL CONTINGENCY TABLES
                                                                                                                     4B1
                                                                                              A NOTE ON THE TECH 67
      FOR THE ANALYSIS OF ASSOCIATION IN CONTINGENCY TABLES
                                                                                              USE OF SCORES BIOKA52
                                                                                                                     274
   ANALYZING THREE-FACTOR INTERACTION IN CONTINCENCY TABLES
                                                                                         SIMPLE METHODS FOR JASA 64
                                                                                                                     319
OMPARISON OF STRENCTHS OF ASSOCIATION IN CONTINGENCY TABLES
                                                                                       THE ESTIMATION AND C BIOKA53
      LIMITS FOR CROSS-PRODUCT RATIOS IN CONTINCENCY TABLES
                                                                                    SIMULTANEOUS GONFIDENCE JRSSB64
       OF NO THREE FACTOR INTERACTION IN CONTINCENCY TABLES
                                                                                   LAMST AND THE HYPOTHESES JASA 69
                                                                                                                     207
       OF EXACT PROBABILITIES FOR 2-BY-3 CONTINGENCY TABLES
                                                                                   NOTES. RAPID CALCULATION BIOCS6B
                                                                                                                     714
COMBINATION OF PROBABILITIES TEST TO A SET OF 2-BY-2 TABLES
                                                                          A NOTE ON THE APPLICATION OF THE BIOKA55
                                                                                                                     404
     FOR THE TEST OF INDEPENDENCE IN 2X2 CONTINGENCY TABLES
                                                                          COMPARISON OF THE POWER FUNCTIONS AMS 64 1115
    ON MEASURES OF ASSOCIATION IN 2-BY-2 CONTINCENCY TABLES
                                                                          THE EFFECT OF NON-SAMPLING ERRORS JASA 69
                                                                                                                     852
ULATION. ESPECIALLY FOR MULTIDIMENSIONAL CONTINCENCY TABLES
                                                                        MAXIMUM ENTROPY FOR HYPOTHESIS FORM AMS 63
                                                                                                                     911
THER DISCUSSION OF ITERATIVE METHODS FOR CALCULATING TABLES
                                                                        ON THE COMPARISON OF TWO MEANS. FUR BIOKA54
                                                                                                                     361
N, WITH APPLICATION TO MANIFOLD, ORDERED CONTINCENCY TABLES
                                                               /GT-MOMENT PARTIAL CORRELATION AND REGRESSIO BIOKA59
                                                                                                                     241
   ON A TEST OF SIGNIFICANCE IN PEARSON'S BIOMETRIKA TABLES (NO. 11)
                                                                                                            JRSSB56
                                                                                                                      56
  'ON A TEST OF SICNIFICANCE IN PEARSON'S BIOMETRIKA TABLES
                                                                         /MENT ON SIR RONALD FISHER'S PAPER JRSSB56
                                                             (NO. 11)'
                                                                                                                     295
                  THE WILCOXON TWO-SAMPLE STATISTIC, TABLES AND BIBLIOGRAPHY
                                                                                                            JASA 63 1086
                               TESTS FOR CONTINCENCY TABLES AND MARKOV CHAINS
                                                                                                            TECH 62
                                                                                                                     573
                      MODELS FOR COMPLEX CONTINGENCY TABLES AND POLYCHOTOMOUS DOSACE RESPONSE CURVES
                                                                                                            BIOCS66
                                                                                                                      B3
                                                 TWO TABLES CONNECTED WITH COODNESS-OF-FIT TESTS FOR
EQUIPROBABLE ALTERNATIVES
                                                                                                            BTOKA68
                                                                                                                     441
                                                     TABLES FOR A PRECEDENCE LIFE TEST
                                                                                                            TECH 63
                                                                                                                     491
                                                     TABLES FOR A TREATMENTS VERSUS CONTROL MULTIPLE
COMPARTSONS SIGN TEST
                                                                                                            TECH 65
                                                                                                                     293
OF THE PARAMETERS OF SINCLE EXPONENTIAL DISTRIBUT/
                                                     TABLES FOR BEST LINEAR ESTIMATES BY ORDER STATISTICS
                                                                                                            JASA 57
                                                                                                                      58
   GENERALIZATION OF STUDENT'S T-DISTRIBUTION, WITH TABLES FOR CERTAIN SPECIAL CASES
                                                                                                A BIVARIATE BIOKA54
                                                                                                                     153
MULTIPLE CORRELATION COEFFICIENT
                                                     TABLES FOR CONSTRUCTING CONFIDENCE LIMITS ON THE
                                                                                                            JASA 63 10B2
SAMPLINC PLANS
                                      PROCEDURES AND TABLES FOR EVALUATING DEPENDENT MIXED ACCEPTANCE
                                                                                                            TECH 69
                                                                                                                    341
NORMAL DISTRIBUTION
                                                      TABLES FOR MAKING INFERENCES ABOUT THE VARIANCE OF A
                                                                                                            BIOKA60
                                                                                                                     433
                                        CORRICENDA, 'TABLES FOR MAKING INFERENCES ABOUT THE VARIANCE OF A
NORMAL DISTRIBUTION.'
                                                                                                            BTOKA61
                                        WORKING LIFE TABLES FOR MALES IN GHANA 1960
                                                                                                            JASA 69
                                                                                                                     102
ATED AND SINGLY CENSORED SAMPLES
                                                     TABLES FOR MAXIMUM LIKELIHOOD ESTIMATES. SINGLY TRUNC TECH 61
                                                                                                                     535
TES OF PARAMETERS OF THE WEIBULL DISTRIBUTION
                                                     TABLES FOR OBTAINING THE BEST LINEAR INVARIANT ESTIMA TECH 67
                                                                                                                     629
                                                     TABLES FOR POWER-LAW TRANSFORMATIONS
                                                                                                            BTOKA62
                                                                                                                     557
                                                     TABLES FOR SIGNIFICANCE TESTS OF 2-BY-2 GONTINGENCY
TARLES
                                                                                                            RIOK 455
                                                                                                                     494
CONTINGENCY TABLE
                                                     TABLES FOR TESTING SIGNIFICANCE IN A 2-BY-3
                                                                                                            TECH 63
                                                                                                                     501
NORMAL DISTRIBUTIONS
                                           A NOTE ON TABLES FOR THE COMPARISION OF THE SPREAD OF TWO
                                                                                                            BIOKA67
                                                                                                                     6R3
                                         PROBABILITY TABLES FOR THE EXTREMAL QUOTIENT
                                                                                                             AMS 67 1541
LINEAR RESTRICTIONS IN REGRESSION
                                                     TABLES FOR THE MEAN SQUARE ERROR TEST FOR EXACT
                                                                                                            JASA 69 NO.4
ANALYSIS OF INCOMPLETE BLOCK DESIGNS. II. ADDITIONAL TABLES FOR
                                                                THE METHOD OF PAIRED COMPARISONS
                                                                                                      RANK
                                                                                                            BIOKA54
ANALYSIS OF INCOMPLETE BLOCK DESIGNS. II. ADDITIONAL TABLES FOR THE METHOD OF PAIRED COMPARISONS.
                                                                                                      /ANK
                                                                                                            BIOKA64
ESTIMATES OF BINOMIAL PARAMETERS
                                                     TABLES FOR THE SIGN TEST WHEN OBSERVATIONS ARE
                                                                                                            JASA 59
IVE CENS/ METHOD OF CONSTRUCTION OF ATTRITION LIFE TABLES FOR THE SINGLE POPULATION BASED ON TWO SUCCESS JASA 67 1433
                                                                                                                     439
                                                     TABLES FOR THE SOLUTION OF THE EXPONENTIAL EQUATION.
EXP(-A)+KA=1
                                                                                                            BIOKA60
BASED ON SAMPLE MEAN AND RANGE OR MEAN RANCE
                                                     TABLES FOR TOLERANCE LIMITS FOR A NORMAL POPULATION
                                                                                                            JASA 57
                                                                                                                      88
 POPILIATION
                                                     TABLES FOR UNBIASED TESTS ON THE VARIANCE OF A NORMAL AMS 61
                                                                                                                      84
FUNCTION BY NORMIT ANALYSIS. PART I. DESCRIPTION/
                                                     TABLES FOR USE IN ESTIMATING THE NORMAL DISTRIBUTION BIOKA57
                                                                                                                     411
                                                     TABLES FOR WALD TESTS FOR THE MEAN OF A NORMAL
                                                                                                            BTOKA59
                                                                                                                     169
DISTRIBUTION
                               A NOTE ON CONTINCENCY TABLES INVOLVING ZERO FREQUENCIES AND THE 21 TEST
                                                                                                            TECH 63
                                                                                                                     39R
                                                 NEW TABLES OF BEHREN'S TEST OF SIGNIFICANCE
                                                                                                            JRSSB56
                                                                                                                     212
HAZARD RATE
                                                      TABLES OF BOUNDS FOR DISTRIBUTIONS WITH MONOTONE
                                                                                                            JASA 65
                                                                                                                     B72
RECIPROCALS
                    THE NORMAL PROBABILITY FUNCTION, TABLES OF CERTAIN AREA-ORDINATE RATIOS AND OF THEIR
                                                                                                            BIOKA55
DISTRIBUTION
                                                     TABLES OF CONFIDENCE LIMITS FOR THE BINOMIAL
                                                                                                            JASA 60
                               CORRICENDA, 'EXTENDED TABLES OF CRITICAL VALUES FOR WILCOXON'S TEST STATIST BIOKA64
                                                                                                                     527
                                                     TABLES OF CRITICAL VALUES OF SOME RENYI TYPE STATISTI JASA 69
                                                                                                                     B70
CS FOR FINITE SAMPLE SIZES
                                                     TABLES OF DISTRIBUTION-FREE TOLERANGE LIMITS
                                                                                                             AMS 64 1361
                                      CORRECTION TO 'TABLES OF EXPECTED VALUES OF ORDER STATISTICS AND PRO AMS 61 1345
DUCTS OF ORDER STATISTICS FOR SAMP/
                                                     TABLES OF GENERALIZED K-STATISTICS
                                                                                                            BIOKA54
                                                                                                                    253
                                                     TABLES OF INVERSE GAUSSIAN PERCENTAGE POINTS
                                                                                                            TECH 69
                                                                                                                     591
LS FOR THE POISSON PARAMETER
                                                     TABLES OF NEYMAN-SHORTEST UNBIASED CONFIDENCE INTERVA BIOKA61
                                                                                                                     191
TO BARTLETT'S CRITERION FOR TESTING/
                                        LARCE SAMPLE TABLES OF PERCENTAGE POINTS FOR HARTLEY'S CORRECTION
                                                                                                            BIOKA62
                                                                                                                     4B7
                                              USE OF TABLES OF PERCENTAGE POINTS OF RANGE AND STUDENTIZED
RANGE
                                                                                                            TECH 61
                                                                                                                     407
                                                     TABLES OF PERCENTACE POINTS OF ROOT'B1' AND B2 IN
NORMAL SAMPLES, A ROUNDING OFF
                                                                                                                     282
EXTREME DEVIATE FROM THE SAMPLE MEAN
                                                     TABLES OF PERCENTACE POINTS OF THE 'STUDENTIZED'
                                                                                                            BTOKA52
                                                                                                                     1 B9
                                        CORRIGENDA,
                                                    'TABLES OF PERCENTAGE POINTS OF THE 'STUDENTIZED'
                                                                                                            BIOKA53
RANGE'
                                        EXTENSION OF TABLES OF PERCENTAGE POINTS OF THE LARGEST VARIANCE R
                                                                                                                     225
                                                                                                            BIOKA67
ATTO S-SQUARE-MAX-OVER-S-SQUARE-SUB-0
                                                     TABLES OF POISSON POWER MOMENTS
                                                                                                                     489
                                                                                                            BTOKA56
                                                     TABLES OF RANDOM OBSERVATIONS FROM STANDARD
                                                                                                            BIOKA59
                                                                                                                    17B
DISTRIBUTIONS
                                                                                                            JASA 63 1113
                                        ILLUSTRATIVE TABLES OF SCHOOL LIFE, CORR. 64 1299
BINOMIAL AND AND POISSON DISTRIBUTIONS
                                                     TABLES OF SIMULTANEOUS CONFIDENCE LIMITS FOR THE
                                                                                                            BTOKA69
                                                                                                                    452
                                                     TABLES OF SYMMETRIC FUNCTIONS. PART IV.
                                                                                                            BIOKA53
                                                                                                                    427
                                                     TABLES OF SYMMETRIC FUNCTIONS. PART V.
                                                                                                            BIOKA55
                                                                                                                     223
                                                     TABLES OF SYMMETRIC FUNCTIONS. PARTS II AND III.
                                                                                                            BIOKA51
                                                                                                                     435
                                                                                                                     292
                                          ERRATA IN 'TABLES OF SYMMETRIC FUNCTIONS'
                                                                                                            BIOKA58
                                                     TABLES OF THE ANGULAR TRANSFORMATION
                                                                                                            BIOKA53
                                                                                                                     70
                                                     TABLES OF THE DISTRIBUTION OF THE MANN-WHITNEY-WILCOX TECH 67
                                                                                                                     666
ON U-STATISTIC UNDER LEHMANN ALTERNATIVES
BINOMIAL AND POISSON DISTRIBUTIONS
                                                     TABLES OF THE FREEMAN-TUKEY TRANSFORMATIONS FOR THE
                                                                                                           BTOKA61
                                                                                                                     433
                                                     TABLES OF THE LOGARITHMIC SERIES DISTRIBUTION
```

TITLE WORD INDEX TAB - TEC

DISTRIBUTION EXTENDED	TABLES OF THE PERCENTACE POINTS OF STUDENT'S T-	JASA 59	683
	TABLES OF THE PERCENTACE POINTS OF STUDENT'S T- TABLES OF THE POWER OF THE F-TEST (CORR. 68 1551) TABLES OF THE STOCHASTIC EPIDEMIC CURVE AND APPLICATI TABLES OF THE UPPER PERCENTACE POINTS OF THE 'STUDENT TABLES OF THE WILCOXON MATCHED PAIR SIGNED RANK	JASA 67	525
ONS THE LOCISTIC PROCESS, IZED' RANCE EXTENDED AND CORRECTED	TABLES OF THE STOCHASTIC EPIDEMIC CURVE AND APPLICATI TABLES OF THE UPPER PERCENTAGE POINTS OF THE 'STUDENT	BTOKA52	332 192
			864
RSON CURVES (WITH ARCUMENT BETA-1 AND BETA-2) EXP/ DISTRIBUTIONS	TABLES OF THE 5 PERCENT AND 0.5 PERCENT POINTS OF PEA TABLES OF TOLERANCE-LIMIT FACTORS FOR NORMAL		4 483
	'TABLES OF TOLERANCE-LIMIT FACTORS FOR NORMAL	TECH 61	
CURVES.		BIOKA65	
	TABLES TO FACILITATE THE COMPUTATION OF PERCENTACE TABLES WHEN THE CROSS CLASSIFICATIONS ARE UNKNOWN /	AMS 62 JASA 66	
ON THE ANALYSIS OF CONTINCENCY	TABLES WITH A QUANTITATIVE RESPONSE	BIOCS68	329
	TABLES WITH CIVEN MARCINALS TABLES WITH OR WITHOUT MISSING ENTRIES /DEPENDENCE,	BIOKA68	
CULATING THE EXACT PROBABILITY IN 2-BY-2 CONTINCENCY	TABLES WITH SMALL MARCINAL TOTALS /LE METHOD OF CAL	BIOKA55	522
THE INTERNATIONAL STANDARDIZATION OF INTER-INDUSTRY			
HI-SOMARE TEST FOR SMALL EXPECTATIONS IN CONTINCENCY	TABLES, LOCITS, AND SPLIT GONTINCENCY TABLES TABLES, WITH SPECIAL REFERENCE TO ACCIDENTS AND ABSEN	BIOCS69 BIOKA59	365
'TEST OF INDEPENDENCE IN INTRACLASS 2-BY-2	TABLES' CORRICENDA, TABLETS, AND STERILE SOLIDS FILL TABULAR ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE	BIOKA61	476
WEIGHT VARIATION RELEASE AND CONTROL OF CAPSULES, OF PUNCH CARDS, GORR. 56 650	TABLETS, AND STERILE SOLIDS FILL TABULAR ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE	TECH 69	161
NTIABILITY OF A FAMILY ON FUNCTIONS INTRODUCED BY L.	TACAKS ON THE INTEGRABILITY, CONTINUITY AND DIFFERE		
THE TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN		BIOKA61	
STIMATION OF MORTALITY AND RECRUITMENT FROM A SINGLE LIKE EXPANSION	TAIL AREAS OF THE T-DISTRIBUTION FROM A MILLS' RATIO-	BIOCS65 AMS 63	
THE	TAIL EIELD OF A MARKOV CHAIN	AMS 69	127
THE PROBABILITY IN THE	TAIL OF A DISTRIBUTION	AMS 63 TECH 64	
GENERATING A VARIABLE FROM THE	TAIL OF THE NORMAL DISTRIBUTION	TECH 64	
D EXACT BAHADUR EFFICIENCY OF THE TWO-SA/ EXTREME	TAIL OF A DISTRIBUTION TAIL OF A DISTRIBUTION TAIL OF THE NORMAL DISTRIBUTION TAIL PROBABILITIES FOR SAMPLING WITHOUT REPLACEMENT A TAIL PROBABILITIES FOR THE NULL DISTRIBUTION OF THE		
LTINOMIAL DISTRIBUTIONS. INTECRAL EXPRESSIONS FOR	TAIL PROBABILITIES FOR THE NULL DISTRIBUTION OF THE TAIL PROBABILITIES OF THE MULTINOMIAL AND NEGATIVE MU		
FOR BINOMIAL, F, BETA, AND OTHER COMMON, RELATED	TAIL PROBABILITIES, I A NORMAL APPROXIMATION	JASA 68	1416
	TAIL PROBABILITIES, II A NORMAL APPROXIMATION TAIL SICMA-FIELD OF A MARKOV CHAIN AND A THEOREM OF	AMS 64	
CONTROL OF PERCENTACES IN BOTH	TAILS OF THE NORMAL DISTRIBUTION	TECH 64	377
ERRATA, 'CONTROL OF PERGENTAGES IN BOTH PROBABILITY AND STATISTICS XXII PROBABILITY IN THE	TAILS OF THE NORMAL DISTRIBUTIONS' TALMUD STUDIES IN THE HISTORY OF	TECH 66	
	TALMUDIC LITERATURE /DIES IN THE HISTORY OF PROBABI		
ON QUEUES IN NOTES ON QUEUES IN		AMS 63 AMS 63	
THE DEPENDENCE OF DELAYS IN	TANDEM QUEUES	AMS 64	
A NOTE ON THE ABSENCE OF A DISTRIBUTION ANALOGOUS TO THE BOREL	TANCENCIES IN GAUSSIAN SAMPLE PATHS -TANNER	AMS 68	
	-TANNER		
THE BOREL	-TANNER DISTRIBUTION	BIOKA61 BIOKA60	167 143
THE BOREL OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA	TANNER DISTRIBUTION TARGETS A SURVEY	BIOKAGO TECH 69	167 143 561
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S	TANNER DISTRIBUTION TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES	BIOKAGO TECH 69 JASA 59 JASA 6B	143 561 776 1379
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING	-TANNER DISTRIBUTION TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION	BIOKAGO TECH 69 JASA 59 JASA 6B JASA 62	143 561 776 1379 567
OF COVERAGE PROBLEMS ASSOCIATED WITH FOINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S	-TANNER DISTRIBUTION TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION	BIOKA60 TECH 69 JASA 59 JASA 6B JASA 62 JASA 62	143 561 776 1379 567 804
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIG COMPUTATION OF A NOTE ON GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF	-TANNER DISTRIBUTION TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A COEFFICIENT OF DISARRAY'	BIOKA60 TECH 69 JASA 59 JASA 6B JASA 62 JASA 62 JASA 58 JASA 61	143 561 776 1379 567 804 441 736
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIC COMPUTATION OF A NOTE ON GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF	-TANNER DISTRIBUTION TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A COEFFICIENT OF DISARRAY' TAU AS A MEASURE OF CONCORDANCE	BIOKA60 TECH 69 JASA 59 JASA 6B JASA 62 JASA 62 JASA 58 JASA 61 JASA 60	143 561 776 1379 567 804 441 736 331
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIG COMPUTATION OF A NOTE ON GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF A NOTE ON AVERAGE DISTRIBUTIONS OF KENDALL'S ATION WITH GORRELAT/ THE DISTRIBUTION OF KENDALL'S	-TANNER DISTRIBUTION TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A COEFFICIENT OF DISARRAY' TAU AS A MEASURE OF CONCORDANCE TAU BASED ON PARTIALLY ORDERED SYSTEMS TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPUL	BIOKA60 TECH 69 JASA 59 JASA 6B JASA 62 JASA 62 JASA 62 JASA 61 JASA 60 BIOKA55 BIOKA63	143 561 776 1379 567 804 441 736 331 417 538
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIG COMPUTATION OF A NOTE ON GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF A NOTE ON AVERAGE DISTRIBUTIONS OF KENDALL'S ATION WITH GORRELAT/ THE DISTRIBUTION OF KENDALL'S A MODIFICATION OF KENDALL'S	-TANNER DISTRIBUTION TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A COEFFICIENT OF DISARRAY' TAU AS A MEASURE OF CONCORDANCE TAU BASED ON PARTIALLY ORDERED SYSTEMS TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPUL TAU FOR THE CASE OF ARBITRARY TIES IN BOTH RANKINCS	BIOKA60 TECH 69 JASA 59 JASA 6B JASA 62 JASA 62 JASA 61 JASA 60 BIOKA55 BIOKA63 JASA 57	143 561 776 1379 567 804 441 736 331 417 538 33
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIG COMPUTATION OF A NOTE ON GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF A NOTE ON AVERAGE DISTRIBUTIONS OF KENDALL'S ATION WITH GORRELAT/ THE DISTRIBUTION OF KENDALL'S	-TANNER DISTRIBUTION TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A COEFFICIENT OF DISARRAY TAU AS A MEASURE OF CONCORDANCE TAU BASED ON PARTIALLY ORDERED SYSTEMS TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPUL TAU FOR THE CASE OF ARBITRARY TIES IN BOTH RANKINCS TAU IN NORMAL SAMPLES	BIOKA60 TECH 69 JASA 59 JASA 6B JASA 62 JASA 62 JASA 62 JASA 61 JASA 60 BIOKA55 BIOKA63	143 561 776 1379 567 804 441 736 331 417 538 33 177
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIG COMPUTATION OF A NOTE ON GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF A NOTE ON AVERAGE DISTRIBUTIONS OF KENDALL'S ATION WITH GORRELAT/ THE DISTRIBUTION OF KENDALL'S THE THIRD MOMENT OF KENDALL'S MOMENTS OF THE RANK CORRELATION COEFFICIENT A COMPUTER METHOD FOR GALCULATING KENDALL'S	-TANNER DISTRIBUTION TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A COEFFICIENT OF DISARRAY' TAU AS A MEASURE OF CONCORDANCE TAU BASED ON PARTIALLY ORDERED SYSTEMS TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPUL TAU FOR THE CASE OF ARBITRARY TIES IN BOTH RANKINCS TAU IN NORMAL SAMPLES TAU IN THE CEMERAL CASE TAU WITH UNCROUPED DATA	BIOKA60 TECH 69 JASA 59 JASA 68 JASA 62 JASA 62 JASA 61 JASA 60 BIOKA55 BIOKA63 JASA 57 BIOKA63 JASA 57 BIOKA63 JASA 66	143 561 776 1379 567 804 441 736 331 417 538 33 177 409 436
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIG COMPUTATION OF A NOTE ON GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF A NOTE ON AVERAGE DISTRIBUTIONS OF KENDALL'S A MODIFICATION OF KENDALL'S A MODIFICATION OF KENDALL'S THE THIRD MOMENT OF KENDALL'S MOMENTS OF THE RANK CORRELATION COEFFICIENT A COMPUTER METHOD FOR GALCULATING KENDALL'S PARTIAL TESTS FOR PARTIAL FISCAL-YEAR REPORTING FOR CORPORATE INCOME	-TANNER DISTRIBUTION TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A COEFFICIENT OF DISARRAY' TAU AS A MEASURE OF CONCORDANCE TAU BASED ON PARTIALLY ORDERED SYSTEMS TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPUL TAU FOR THE CASE OF ARBITRARY TIES IN BOTH RANKINCS TAU IN NORMAL SAMPLES TAU WITH UNCROUPED DATA TAUS TAUS	BIOKAGO TECH 69 JASA 59 JASA 69 JASA 62 JASA 61 JASA 61 JASA 60 BIOKA63 JASA 67 BIOKA63 JASA 66 BIOKA63 JASA 66 BIOKA55 JASA 57	143 561 776 1379 567 804 441 736 331 417 538 33 177 409 436 425 304
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIG COMPUTATION OF A NOTE ON GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF A NOTE ON AVERAGE DISTRIBUTIONS OF KENDALL'S A MODIFICATION OF KENDALL'S A MODIFICATION OF KENDALL'S THE THIRD MOMENT OF KENDALL'S MOMENTS OF THE RANK CORRELATION COEFFICIENT A COMPUTER METHOD FOR GALCULATING KENDALL'S PARTIAL TESTS FOR PARTIAL FISCAL-YEAR REPORTING FOR CORPORATE INCOME INCOME UNDER THE WISCONSIN STATE INDIVIDUAL INCOME	-TANNER DISTRIBUTION TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A MEASURE OF CONCORDANCE TAU BASED ON PARTIALLY ORDERED SYSTEMS TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPUL TAU FOR THE CASE OF ARBITRARY TIES IN BOTH RANKINCS TAU IN NORMAL SAMPLES TAU IN THE CEMERAL CASE TAU WITH UNCROUPED DATA TAUS TAX TAX TAX TAX TAXPAYER COMPLIANCE IN REPORTING INTEREST	BIOKAGO TECH 69 JASA 59 JASA 69 JASA 66 JASA 62 JASA 68 JASA 61 JASA 57 BIOKAG3 JASA 57 BIOKAG3 JASA 66 BIOKAG3 JASA 66 BIOKAG3 JASA 66 BIOKAG3 JASA 66	143 561 776 1379 567 804 441 736 331 417 538 33 177 409 436 425 304 487
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIG COMPUTATION OF A NOTE ON GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF A NOTE ON AVERAGE DISTRIBUTIONS OF KENDALL'S A MODIFICATION OF KENDALL'S THE THIRD MOMENT OF KENDALL'S MOMENTS OF THE RANK CORRELATION COEFFICIENT A COMPUTER METHOD FOR GALCULATING KENDALL'S PARTIAL TESTS FOR PARTIAL FISCAL-YEAR REPORTING FOR CORPORATE INCOME INCOME UNDER THE WISCONSIN STATE INDIVIDUAL INCOME WAGE, PRICE, AND	-TANNER DISTRIBUTION TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A COEFFICIENT OF DISARRAY TAU AS A MEASURE OF CONCORDANCE TAU BASED ON PARTIALLY ORDERED SYSTEMS TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPUL TAU FOR THE CASE OF ARBITRARY TIES IN BOTH RANKINCS TAU IN NORMAL SAMPLES TAU IN THE CEMERAL CASE TAU WITH UNCROUPED DATA TAUS TAX TAX TAXPAYER COMPLIANCE IN REPORTING INTEREST TAX TAXPAYER COMPLIANCE IN REPORTING INTEREST TAX TAXPAYER COMPLIANCE IN REPORTING INTEREST	BIOKA60 TECH 69 JASA 69 JASA 68 JASA 62 JASA 68 JASA 61 JASA 60 BIOKA63 JASA 57 BIOKA63 JASA 57 BIOKA63 JASA 66 BIOKA63 JASA 66 BIOKA63 JASA 63 JASA 63 JASA 66	143 561 776 1379 567 804 441 736 331 417 538 33 177 409 436 425 304 487 607
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIG COMPUTATION OF A NOTE ON GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF A NOTE ON AVERAGE DISTRIBUTIONS OF KENDALL'S A MODIFICATION OF KENDALL'S A MODIFICATION OF KENDALL'S THE THIRD MOMENT OF KENDALL'S MOMENTS OF THE RANK CORRELATION COEFFICIENT A COMPUTER METHOD FOR GALCULATING KENDALL'S PARTIAL TESTS FOR PARTIAL FISCAL-YEAR REPORTING FOR CORPORATE INCOME INCOME UNDER THE WISCONSIN STATE INDIVIDUAL INCOME WAGE, PRICE, AND NING AND DISCRIMINANT FUNCTION TECHNIQUES IN MEDICAL R THE WISCONSIN STATE INDIVIDUAL INCOME	TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A COEFFICIENT OF DISARRAY TAU AS A MEASURE OF CONCORDANCE TAU BASED ON PARTIALLY ORDERED SYSTEMS TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPUL TAU FOR THE CASE OF ARBITRARY TIES IN BOTH RANKINCS TAU IN NORMAL SAMPLES TAU IN THE CENERAL CASE TAU WITH UNCROUPED DATA TAUS TAX TAX TAX TAX TAX TAXPAYER COMPLIANCE IN REPORTING INTEREST TAX STAXONOMY A COMPARISON OF SUCCESSIVE SCREE TAXONOMY A COMPARISON OF SUCCESSIVE SCREE TAXPAYER COMPLIANCE IN REPORTING INTEREST	BIOKAGO TECH 69 JASA 59 JASA 69 JASA 68 JASA 62 JASA 68 JASA 61 JASA 61 BIOKAG3 JASA 57 BIOKAG3 JASA 66 BIOKAG3 JASA 66 BIOKAG3 JASA 66 JASA 63 JASA 66 JASA 63 JASA 63	143 561 776 1379 567 804 441 736 331 417 538 33 177 409 436 425 304 487 607 No.4
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIG COMPUTATION OF A NOTE ON GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF A NOTE ON AVERAGE DISTRIBUTIONS OF KENDALL'S A MODIFICATION OF KENDALL'S A MODIFICATION OF KENDALL'S THE THIRD MOMENT OF KENDALL'S MOMENTS OF THE RANK CORRELATION COEFFICIENT A COMPUTER METHOD FOR GALCULATING KENDALL'S PARTIAL TESTS FOR PARTIAL FISCAL-YEAR REPORTING FOR CORPORATE INCOME INCOME UNDER THE WISCONSIN STATE INDIVIDUAL INCOME WAGE, PRICE, AND NING AND DISCRIMINANT FUNCTION TECHNIQUES IN MEDICAL R THE WISCONSIN STATE INDIVIDUAL INCOME TAX SOME SHARP MULTIVARIATE	TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A MEASURE OF CONCORDANCE TAU BASED ON PARTIALLY ORDERED SYSTEMS TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPUL TAU FOR THE CASE OF ARBITRARY TIES IN BOTH RANKINCS TAU IN NORMAL SAMPLES TAU IN THE CEMERAL CASE TAU WITH UNCROUPED DATA TAUS TAX TAX TAX TAXPAYER COMPLIANCE IN REPORTING INTEREST TAX TAXPAYER COMPLIANCE IN REPORTING INTEREST TAXONOMY A COMPARISON OF SUCCESSIVE SCREE TAXPAYER COMPLIANCE IN REPORTING UNDE TCHEBYCHEFF INEQUALITIES	BIOKA60 TECH 69 JASA 69 JASA 69 JASA 62 JASA 68 JASA 61 JASA 65 BIOKA65 JASA 57 BIOKA65 JASA 66 BIOKA65 JASA 66 BIOKA62 JASA 66 JASA 67	143 561 776 1379 567 804 441 736 331 417 538 33 177 409 436 425 304 487 607 No. 4 487 393
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIG COMPUTATION OF A NOTE ON GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF A NOTE ON AVERAGE DISTRIBUTIONS OF KENDALL'S A MODIFICATION OF KENDALL'S A MODIFICATION OF KENDALL'S THE THIRD MOMENT OF KENDALL'S THE THIRD MOMENT OF KENDALL'S OMMENTS OF THE RANK CORRELATION COEFFICIENT A COMPUTER METHOD FOR GALCULATING KENDALL'S PARTIAL TESTS FOR PARTIAL FISCAL-YEAR REPORTING FOR CORPORATE INCOME INCOME UNDER THE WISCONSIN STATE INDIVIDUAL INCOME WAGE, PRICE, AND NING AND DISCRIMINANT FUNCTION TECHNIQUES IN MEDICAL R THE WISCONSIN STATE INDIVIDUAL INCOME TAX SOME SHARP MULTIVARIATE GENERALIZATIONS OF AN ANALOCUE OF	TARGETS A SURVEY TARGETS AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A MEASURE OF CONCORDANCE TAU BASED ON PARTIALLY ORDERED SYSTEMS TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPUL TAU FOR SAMPLES OF ARBITRARY TIES IN BOTH RANKINCS TAU IN NORMAL SAMPLES TAU IN THE CENERAL CASE TAU WITH UNCROUPED DATA TAUS TAX	BIOKAGO TECH 69 JASA 69 JASA 69 JASA 69 JASA 68 JASA 62 JASA 65 BIOKAG3 JASA 66	143 561 776 1379 567 804 441 736 331 417 538 33 177 409 436 425 304 487 607 NO.4 487 393 139 133
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIG COMPUTATION OF A NOTE ON GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF A NOTE ON AVERAGE DISTRIBUTIONS OF KENDALL'S A MODIFICATION OF KENDALL'S A MODIFICATION OF KENDALL'S THE THIRD MOMENT OF KENDALL'S MOMENTS OF THE RANK CORRELATION COEFFICIENT A COMPUTER METHOD FOR GALCULATING KENDALL'S PARTIAL TESTS FOR PARTIAL FISCAL-YEAR REPORTING FOR CORPORATE INCOME INCOME UNDER THE WISCONSIN STATE INDIVIDUAL INCOME WAGE, PRICE, AND NING AND DISCRIMINANT FUNCTION TECHNIQUES IN MEDICAL R THE WISCONSIN STATE INDIVIDUAL INCOME TAX SOME SHARP MULTIVARIATE GENERALIZATIONS OF AN ANALOCUE OF OPTIMAL DESICNS ON	TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A COEFFICIENT OF DISARRAY TAU AS A MEASURE OF CONCORDANCE TAU BASED ON PARTIALLY ORDERED SYSTEMS TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPUL TAU FOR THE CASE OF ARBITRARY TIES IN BOTH RANKINCS TAU IN NORMAL SAMPLES TAU IN THE CENERAL CASE TAU WITH UNCROUPED DATA TAUS TAX TAX TAX TAX TAX TAX TAXPAYER COMPLIANCE IN REPORTING INTEREST TAYAYER COMPLIANCE IN GISTRIBUTIVE SHARES TAXONOMY A COMPARISON OF SUCCESSIVE SCREE TAXPAYER COMPLIANCE IN REPORTING INTEREST TCHEBYCHEFF'S INEQUALITIES (WITH DISCUSSION) TCHEBYCHEFF'S INEQUALITY IN TERMS OF THE RANCE TCHEBYCHEFF POINTS	BIOKAGO TECH 69 JASA 69 JASA 69 JASA 60 JASA 62 JASA 68 JASA 61 JASA 61 JASA 60 BIOKAG3 JASA 57 BIOKAG3 JASA 66 BIOKAG4 JASA 66 JASA 66 JASA 66 JASA 63 JASA 63 JASA 63 JASA 64 JASA 65 JASA 65 JASA 66 JASA 66 JASA 67 JASA 66	143 561 1379 567 804 441 736 331 417 538 33 177 409 436 425 304 487 60.0 4487 30.1 487 139 139 133 1435
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIG COMPUTATION OF A NOTE ON GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF A NOTE ON AVERAGE DISTRIBUTIONS OF KENDALL'S ATION WITH GORRELAT/ THE DISTRIBUTION OF KENDALL'S A MODIFICATION OF KENDALL'S THE THIRD MOMENT OF KENDALL'S MOMENTS OF THE RANK CORRELATION COEFFICIENT A COMPUTER METHOD FOR GALCULATING KENDALL'S PARTIAL TESTS FOR PARTIAL FISCAL-YEAR REPORTING FOR CORPORATE INCOME INCOME UNDER THE WISCONSIN STATE INDIVIDUAL INCOME WAGE, PRICE, AND NING AND DISCRIMINANT FUNCTION TECHNIQUES IN MEDICAL R THE WISCONSIN STATE INDIVIDUAL INCOME TAX SOME SHARP MULTIVARIATE GENERALIZATIONS OF AN ANALOCUE OF OPTIMAL DESIGNS ON FOR ESTIMATION OF INCIDENCE OF RED SPIDER MITE ON	TARGETS A SURVEY TARGETS AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A MEASURE OF CONCORDANCE TAU BASED ON PARTIALLY ORDERED SYSTEMS TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPUL TAU FOR SAMPLES OF ARBITRARY TIES IN BOTH RANKINCS TAU IN NORMAL SAMPLES TAU IN THE CENERAL CASE TAU WITH UNCROUPED DATA TAUS TAX	BIOKAGO TECH 69 JASA 69 JASA 69 JASA 60 JASA 62 JASA 68 JASA 61 JASA 61 JASA 60 BIOKAG3 JASA 57 BIOKAG3 JASA 66 BIOKAG4 JASA 66 JASA 66 JASA 66 JASA 63 JASA 63 JASA 63 JASA 64 JASA 65 JASA 65 JASA 66 JASA 66 JASA 67 JASA 66	143 561 1379 567 804 441 736 331 417 736 333 177 409 436 425 304 4487 607 NO. 4 487 607 NO. 4 487 393 133 133 133 133 133 133 133 133 133
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIC COMPUTATION OF A NOTE ON AVERAGE DISTRIBUTIONS OF KENDALL'S A MODIFICATION OF KENDALL'S A MODIFICATION OF KENDALL'S THE THIRD MOMENT OF KENDALL'S MOMENTS OF THE RANK CORRELATION COEFFICIENT A COMPUTER METHOD FOR GALCULATING KENDALL'S PARTIAL TESTS FOR PARTIAL FISCAL-YEAR REPORTING FOR CORPORATE INCOME INCOME UNDER THE WISCONSIN STATE INDIVIDUAL INCOME WAGE, PRICE, AND NING AND DISCRIMINANT FUNCTION TECHNIQUES IN MEDICAL R THE WISCONSIN STATE INDIVIDUAL INCOME TAX SOME SHARP MULTIVARIATE GENERALIZATIONS OF AN ANALOCUE OF OPTIMAL DESICNS ON THE LADY TASTINC	TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A COEFFICIENT OF DISARRAY TAU AS A MEASURE OF CONCORDANCE TAU BASED ON PARTIALLY ORDERED SYSTEMS TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPUL TAU FOR THE CASE OF ARBITRARY TIES IN BOTH RANKINCS TAU IN NORMAL SAMPLES TAU IN THE CENERAL CASE TAU WITH UNCROUPED DATA TAUS TAX TAX TAX TAX TAX TAXPAYER COMPLIANCE IN REPORTING INTEREST TAX ELASTICITIES OF OUTPUT AND DISTRIBUTIVE SHARES TAXONOMY A COMPARISON OF SUCCESSIVE SCREE TAXPAYER COMPLIANCE IN REPORTING INTEREST INCOME UNDE TCHEBYCHEFF'S INEQUALITIES TCHEBYCHEFF'S INEQUALITIES TCHEBYCHEFF'S INEQUALITY IN TERMS OF THE RANCE TCHEBYCHEFF POINTS TEA CROP IN NORTH—EAST INDIA SAMPLING TECHNIQUES TEACHING BIOMETRY IN THE UNIVERSITY	BIOKA60 TECH 69 JASA 69 JASA 69 JASA 69 JASA 68 JASA 61 JASA 61 JASA 61 JASA 61 JASA 61 JASA 66 BIOKA63 JASA 57 BIOKA63 JASA 66 BIOKA63 JASA 66 JASA 66 JASA 66 JASA 66 JASA 66 JASA 66 JASA 67 JASA 62 BIOKA63 JASA 69	143 561 1379 567 804 441 736 331 47 538 33 34 425 607 No. 4 487 607 80. 4 487 607 393 139 139 133 1435 776
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIC COMPUTATION OF A NOTE ON AVERAGE DISTRIBUTIONS OF KENDALL'S A MODIFICATION OF KENDALL'S A MODIFICATION OF KENDALL'S THE THIRD MOMENT OF KENDALL'S MOMENTS OF THE RANK CORRELATION COEFFICIENT A COMPUTER METHOD FOR GALCULATING KENDALL'S PARTIAL TESTS FOR PARTIAL FISCAL-YEAR REPORTING FOR CORPORATE INCOME INCOME UNDER THE WISCONSIN STATE INDIVIDUAL INCOME WAGE, PRICE, AND NING AND DISCRIMINANT FUNCTION TECHNIQUES IN MEDICAL R THE WISCONSIN STATE INDIVIDUAL INCOME TAX SOME SHARP MULTIVARIATE GENERALIZATIONS OF AN ANALOCUE OF OPTIMAL DESICNS ON THE LADY TASTINC	TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A COEFFICIENT OF DISARRAY TAU AS A MEASURE OF CONCORDANCE TAU BASED ON PARTIALLY ORDERED SYSTEMS TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPUL TAU FOR SAMPLES OF ARBITRARY TIES IN BOTH RANKINCS TAU IN NORMAL SAMPLES TAU IN THE CENERAL CASE TAU WITH UNCROUPED DATA TAUS TAX	BIOKA60 TECH 69 JASA 69 JASA 68 JASA 62 JASA 68 JASA 61 JASA 68 BIOKA63 JASA 57 BIOKA63 JASA 56 BIOKA63 JASA 66 BIOKA63 JASA 66 BIOKA63 JASA 67 JASA 67 JASA 67 JASA 66 JASA 63	143 561 1379 567 804 441 736 331 417 558 33 177 409 436 425 507 NO. 4 487 393 139 1435 385 776 1789
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIG COMPUTATION OF A NOTE ON GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF A NOTE ON AVERAGE DISTRIBUTIONS OF KENDALL'S A MODIFICATION OF KENDALL'S A MODIFICATION OF KENDALL'S THE THIRD MOMENT OF KENDALL'S MOMENTS OF THE RANK CORRELATION COEFFICIENT A COMPUTER METHOD FOR GALCULATING KENDALL'S PARTIAL TESTS FOR PARTIAL FISCAL-YEAR REPORTING FOR CORPORATE INCOME INCOME UNDER THE WISCONSIN STATE INDIVIDUAL INCOME WAGE, PRICE, AND NING AND DISCRIMINANT FUNCTION TECHNIQUES IN MEDICAL R THE WISCONSIN STATE INDIVIDUAL INCOME TAX SOME SHARP MULTIVARIATE GENERALIZATIONS OF AN ANALOCUE OF OPTIMAL DESIGNS ON FOR ESTIMATION OF INCIDENCE OF RED SPIDER MITE ON THE LADY TASTINC SOME OBSERVATIONS ON THE	TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A COEFFICIENT OF DISARRAY TAU AS A MEASURE OF CONCORDANCE TAU BASED ON PARTIALLY ORDERED SYSTEMS TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPUL TAU FOR THE CASE OF ARBITRARY TIES IN BOTH RANKINCS TAU IN NORMAL SAMPLES TAU IN THE CENERAL CASE TAU WITH UNCROUPED DATA TAUS TAX	BIOKAGO TECH 69 JASA 69 JASA 69 JASA 69 JASA 62 JASA 68 JASA 61 JASA 61 JASA 65 BIOKAG3 JASA 57 BIOKAG3 JASA 56 BIOKAG3 JASA 66 BIOKAG3 JASA 66 BIOKAG5 JASA 66 BIOKAG6 JASA 66 JASA 67 JASA 68 BIOCSG6 TECH 62 AMS 68 BIOCSG6 BIOCSG6 AMS 67	143 561 1379 567 804 441 736 331 417 409 436 425 304 487 607 80.4 487 393 385 1435 385 1776 1789 857 661
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIC COMPUTATION OF A NOTE ON GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF A NOTE ON AVERAGE DISTRIBUTIONS OF KENDALL'S ATION WITH GORRELAT/ THE DISTRIBUTION OF KENDALL'S A MODIFICATION OF KENDALL'S THE THIRD MOMENT OF KENDALL'S A MODIFICATION COEFFICIENT A COMPUTER METHOD FOR GALCULATING KENDALL'S PARTIAL TESTS FOR PARTIAL FISCAL-YEAR REPORTING FOR CORPORATE INCOME INCOME UNDER THE WISCONSIN STATE INDIVIDUAL INCOME WAGE, PRICE, AND NING AND DISCRIMINANT FUNCTION TECHNIQUES IN MEDICAL R THE WISCONSIN STATE INDIVIDUAL INCOME TAX SOME SHARP MULTIVARIATE GENERALIZATIONS OF AN ANALOCUE OF OPTIMAL DESICNS ON FOR ESTIMATION OF INCIDENCE OF RED SPIDER MITE ON THE LADY TASTINC	TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A COEFFICIENT OF DISARRAY TAU AS A MEASURE OF CONCORDANCE TAU BASED ON PARTIALLY ORDERED SYSTEMS TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPUL TAU FOR THE CASE OF ARBITRARY TIES IN BOTH RANKINCS TAU IN NORMAL SAMPLES TAU IN THE CENERAL CASE TAU WITH UNCROUPED DATA TAUS TAX	BIOKAGO TECH 69 JASA 69 JASA 69 JASA 69 JASA 68 JASA 61 JASA 65 BIOKAG3 JASA 57 BIOKAG3 JASA 66 BIOKAG3 JASA 66 JASA 66 JASA 67 JASA 66 BIOKAG5 JASA 66 BIOKAG5 JASA 66 BIOKAG5 JASA 67 JASA 68 BIOKAG5 AMS 67 JASA 68 BIOKAG6	143 561 1776 1379 567 804 4441 736 331 177 409 436 425 500 436 425 500 436 425 500 436 425 500 436 425 607 700 437 607 789 887 776 611 1789
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIC COMPUTATION OF A NOTE ON GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF A NOTE ON AVERAGE DISTRIBUTIONS OF KENDALL'S ATION WITH GORRELAT/ THE DISTRIBUTION OF KENDALL'S THE THIRD MOMENT OF KENDALL'S A MODIFICATION OF KENDALL'S THE THIRD MOMENT OF KENDALL'S OF THE RANK CORRELATION COEFFICIENT A COMPUTER METHOD FOR GALCULATING KENDALL'S PARTIAL TESTS FOR PARTIAL FISCAL-YEAR REPORTING FOR CORPORATE INCOME INCOME UNDER THE WISCONSIN STATE INDIVIDUAL INCOME WAGE, PRICE, AND NING AND DISCRIMINANT FUNCTION TECHNIQUES IN MEDICAL R THE WISCONSIN STATE INDIVIDUAL INCOME TAX SOME SHARP MULTIVARIATE GENERALIZATIONS OF AN ANALOCUE OF OPTIMAL DESIGNS ON FOR ESTIMATION OF INCIDENCE OF RED SPIDER MITE ON THE LADY TASTINC SOME OBSERVATIONS ON THE FAMILIES AN EMPIRICAL BAYES SMOOTHING DILUTION SERIES, A STATISTICAL TEST OF OF VARIABLES IN LINEAR REGRESSION BY A RANDOMISATION	TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A COEFFICIENT OF DISARRAY TAU AS A MEASURE OF CONCORDANCE TAU BASED ON PARTIALLY ORDERED SYSTEMS TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPUL TAU FOR SAMPLES OF ARBITRARY TIES IN BOTH RANKINCS TAU IN NORMAL SAMPLES TAU IN THE CASE OF ARBITRARY TIES IN BOTH RANKINCS TAU IN THE CENERAL CASE TAU WITH UNCROUPED DATA TAUS TAX TAX TAX TAX TAX TAX TAXPAYER COMPLIANCE IN REPORTING INTEREST TAX ELASTICITIES OF OUTPUT AND DISTRIBUTIVE SHARES TAXONOMY A COMPARISON OF SUCCESSIVE SCREE TAYAPYER COMPLIANCE IN REPORTING INTEREST TOCHEBYCHEFF INEQUALITIES TCHEBYCHEFF INEQUALITIES TCHEBYCHEFF INEQUALITIES (WITH DISCUSSION) TCHEBYCHEFF INEQUALITY IN TERMS OF THE RANCE TCHEBYCHEFF POINTS TEA CROP IN NORTH-EAST INDIA SAMPLING TECHNIQUES TEA, AND ALLIED TOPICS TEACHING OF STATISTICAL CONSULTINC TEAM DECISION PROBLEMS TECHNICAL LEMMA FOR MONOTONE LIKELIHOOD RATIO TECHNIQUE TECHNIQUE TECHNIQUE (CORR. 59 238) TECHNIQUE (CORR. 59 238)	BIOKAGO TECH 69 JASA 69 JASA 69 JASA 69 JASA 65 BIOKAG3 JASA 61 JASA 66 BIOKAG3 JASA 57 BIOKAG3 JASA 66 BIOKAG3 JASA 66 BIOKAG3 JASA 66 BIOKAG3 JASA 66 JASA 66 JASA 66 JASA 66 BIOKAG3 JASA 67 BIOKAG3 BIOKAG6	143 561 1776 1379 567 804 4441 736 331 417 409 436 425 304 487 80.7 NO. 4487 393 385 776 1 789 887 611 361 361 5695
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIC COMPUTATION OF A NOTE ON GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF A NOTE ON GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF A NOTE ON VERRAGE DISTRIBUTIONS OF KENDALL'S A MODIFICATION OF KENDALL'S A MODIFICATION OF KENDALL'S THE THIRD MOMENT OF KENDALL'S MOMENTS OF THE RANK CORRELATION COEFFICIENT A COMPUTER METHOD FOR GALCULATING KENDALL'S PARTIAL TESTS FOR PARTIAL FISCAL-YEAR REPORTING FOR CORPORATE INCOME INCOME UNDER THE WISCONSIN STATE INDIVIDUAL INCOME WAGE, PRICE, AND NING AND DISCRIMINANT FUNCTION TECHNIQUES IN MEDICAL R THE WISCONSIN STATE INDIVIDUAL INCOME TAX SOME SHARP MULTIVARIATE GENERALIZATIONS OF AN ANALOCUE OF OPTIMAL DESIGNS ON FOR ESTIMATION OF INCIDENCE OF RED SPIDER MITE ON THE LADY TASTINC SOME OBSERVATIONS ON THE FAMILIES AN EMPIRICAL BAYES SMOOTHING DILUTION SERIES, A STATISTICAL TEST OF OF VARIABLES IN LINEAR REGRESSION BY A RANDOMISATION A DIFFERENCE EQUATION	TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A MEASURE OF CONCORDANCE TAU BASED ON PARTIALLY ORDERED SYSTEMS TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPUL TAU FOR THE CASE OF ARBITRARY TIES IN BOTH RANKINCS TAU IN NORMAL SAMPLES TAU IN THE CENERAL CASE TAU WITH UNCROUPED DATA TAUS TAX	BIOKAGO TECH 69 JASA 69 JASA 69 JASA 69 JASA 68 JASA 61 JASA 65 BIOKAG3 JASA 57 BIOKAG3 JASA 56 BIOKAG3 JASA 66 JASA 66 JASA 66 JASA 66 JASA 67 JASA 68 JASA 69 BIOCS66 JASA 69 BIOCS68	143 561 1379 567 804 4441 736 331 177 409 436 425 304 487 607 80.4 487 393 139 139 139 139 139 139 139 139 139
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIC COMPUTATION OF A NOTE ON GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF A NOTE ON AVERAGE DISTRIBUTIONS OF KENDALL'S A MODIFICATION OF KENDALL'S A MODIFICATION OF KENDALL'S THE DISTRIBUTION OF KENDALL'S A MODIFICATION OF KENDALL'S THE THIRD MOMENT OF KENDALL'S A MODIFICATION OF KENDALL'S FARTIAL TESTS FOR PARTIAL FISCAL-YEAR REPORTING FOR CORPORATE INCOME INCOME UNDER THE WISCONSIN STATE INDIVIDUAL INCOME WAGE, PRICE, AND NING AND DISCRIMINANT FUNCTION TECHNIQUES IN MEDICAL R THE WISCONSIN STATE INDIVIDUAL INCOME TAX SOME SHARP MULTIVARIATE GENERALIZATIONS OF AN ANALOCUE OF OFTIMAL DESICNS ON FOR ESTIMATION OF INCIDENCE OF RED SPIDER MITE ON THE LADY TASTINC SOME OBSERVATIONS ON THE FAMILIES AN EMPIRICAL BAYES SMOOTHING DILUTION SERIES, A STATISTICAL TEST OF OF VARIABLES IN LINEAR REGRESSION BY A RANDOMISATION A DIFFERENCE EQUATION ARRIVAL INTERVAL DISTRIBUTI/ A DIFFERENCE EQUATION A RECRESSION	TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A COEFFICIENT OF DISARRAY TAU AS A MEASURE OF CONCORDANCE TAU BASED ON PARTIALLY ORDERED SYSTEMS TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPUL TAU FOR SAMPLES OF ARBITRARY TIES IN BOTH RANKINCS TAU IN NORMAL SAMPLES TAU IN THE CENERAL CASE TAU WITH UNCROUPED DATA TAUS TAX TAX TAX TAX TAXPAYER COMPLIANCE IN REPORTING INTEREST TAX ELASTICITIES OF OUTPUT AND DISTRIBUTIVE SHARES TAXONOMY A COMPARISON OF SUCCESSIVE SCREE TAYAPYER COMPLIANCE IN REPORTING INTEREST TCHEBYCHEFF'S INEQUALITIES TCHEBYCHEFF'S INEQUALITIES TCHEBYCHEFF'S INEQUALITIES (WITH DISCUSSION) TCHEBYCHEFF POINTS TEA CROP IN NORTH—EAST INDIA SAMPLING TECHNIQUES TEA, AND ALLIED TOPICS TEACHING DISTRIBUTIVE TEACHING OF STATISTICAL CONSULTINC TEAM DECISION PROBLEMS TECHNIQUE (CORR. 59 238) TECHNIQUE (CORR. 59 238) TECHNIQUE (APPLIED TO THE SIMPLE QUEUE WITH ARBITRARY TECHNIQUE POR ANGULAR VARIATES	BIOKAGO TECH 69 JASA 69 JASA 69 JASA 69 JASA 65 JASA 61 JASA 65 BIOKAG3 JASA 66 BIOKAG6 JASA 67 BIOKAG6 JASA 68 BIOKAG6 JASA 69 BIOKAG6 JASA 69 BIOKAG6 JASA 69 BIOKAG6 JASA 69 BIOKAG6 JASA 66 BIOKAG6 JASA 67 BIOKAG6 JASSB58 BIOKSG6 BIOKAG9 JRSSB58 JRSSB58 BIOKSG6	143 561 1776 1379 567 804 441 736 33 33 177 409 436 425 304 487 789 133 1435 776 1 789 611 361 695 166 695 168 NO.4
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIG COMPUTATION OF A NOTE ON GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF A NOTE ON AVERAGE DISTRIBUTIONS OF KENDALL'S A MODIFICATION OF KENDALL'S A MODIFICATION OF KENDALL'S THE THIRD MOMENT OF KENDALL'S A MODIFICATION OF KENDALL'S ONE OF THE RANK CORRELATION COEFFICIENT A COMPUTER METHOD FOR GALCULATING KENDALL'S PARTIAL TESTS FOR PARTIAL FISCAL-YEAR REPORTING FOR CORPORATE INCOME INCOME UNDER THE WISCONSIN STATE INDIVIDUAL INCOME WAGE, PRICE, AND NING AND DISCRIMINANT FUNCTION TECHNIQUES IN MEDICAL R THE WISCONSIN STATE INDIVIDUAL INCOME TAX SOME SHARP MULTIVARIATE GENERALIZATIONS OF AN ANALOCUE OF OPTIMAL DESIGNS ON FOR ESTIMATION OF INCIDENCE OF RED SPIDER MITE ON THE LADY TASTINC SOME OBSERVATIONS ON THE FAMILIES AN EMPIRICAL BAYES SMOOTHING DILUTION SERIES, A STATISTICAL TEST OF OF VARIABLES IN LINEAR REGRESSION BY A RANDOMISATION A PISTRIBUTION—FREE ANALYSIS OF VARIANCE	TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A COEFFICIENT OF DISARRAY TAU AS A MEASURE OF CONCORDANCE TAU BASED ON PARTIALLY ORDERED SYSTEMS TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPUL TAU FOR SAMPLES OF ARBITRARY TIES IN BOTH RANKINCS TAU IN NORMAL SAMPLES TAU IN THE CENERAL CASE TAU WITH UNCROUPED DATA TAUS TAX	BIOKA60 TECH 69 JASA 69 JASA 69 JASA 69 JASA 68 JASA 61 JASA 65 BIOKA63 JASA 57 BIOKA63 JASA 57 BIOKA63 JASA 66 BIOKA53 JASA 66 JASA 66 JASA 67 JASA 66 JASA 67 JASA 68 BIOKA63 JASA 69 JASA 6	143 561 1776 1379 567 804 441 736 331 177 409 436 425 304 487 607 789 333 1435 385 776 1 789 611 361 205 168 168 109 169 168 169 168
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIC COMPUTATION OF A NOTE ON AVERAGE DISTRIBUTIONS OF KENDALL'S A MODIFICATION OF KENDALL'S A MODIFICATION OF KENDALL'S THE THIRD MOMENT OF KENDALL'S A MOMENTS OF THE RANK CORRELATION COEFFICIENT A COMPUTER METHOD FOR GALCULATING KENDALL'S PARTIAL TESTS FOR PARTIAL FISCAL-YEAR REPORTING FOR CORPORATE INCOME INCOME UNDER THE WISCONSIN STATE INDIVIDUAL INCOME WAGE, PRICE, AND NING AND DISCRIMINANT FUNCTION TECHNIQUES IN MEDICAL R THE WISCONSIN STATE INDIVIDUAL INCOME TAX SOME SHARP MULTIVARIATE GENERALIZATIONS OF AN ANALOCUE OF OPTIMAL DESICNS ON FOR ESTIMATION OF INCIDENCE OF RED SPIDER MITE ON THE LADY TASTINC SOME OBSERVATIONS ON THE FAMILIES AN EMPIRICAL BAYES SMOOTHING DILUTION SERIES, A STATISTICAL TEST OF OF VARIABLES IN LINEAR REGRESSION BY A RANDOMISATION A DISTRIBUTION-FREE ANALYSIS OF VARIANCE N FOR STABLE SYSTEMS A A DISTRIBUTION-FREE ANALYSIS OF VARIANCE N FOR STABLE SYSTEMS	TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A COEFFICIENT OF DISARRAY TAU AS A MEASURE OF CONCORDANCE TAU BASED ON PARTIALLY ORDERED SYSTEMS TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPUL TAU FOR SAMPLES OF ARBITRARY TIES IN BOTH RANKINCS TAU IN NORMAL SAMPLES TAU IN THE CENERAL CASE TAU WITH UNCROUPED DATA TAUS TAX TAX TAX TAX TAXPAYER COMPLIANCE IN REPORTING INTEREST TAX ELASTICITIES OF OUTPUT AND DISTRIBUTIVE SHARES TAXONOMY A COMPARISON OF SUCCESSIVE SCREE TAYAPYER COMPLIANCE IN REPORTING INTEREST TCHEBYCHEFF'S INEQUALITIES TCHEBYCHEFF'S INEQUALITIES TCHEBYCHEFF'S INEQUALITIES (WITH DISCUSSION) TCHEBYCHEFF POINTS TEA CROP IN NORTH—EAST INDIA SAMPLING TECHNIQUES TEA, AND ALLIED TOPICS TEACHING DISTRIBUTIVE TEACHING OF STATISTICAL CONSULTINC TEAM DECISION PROBLEMS TECHNIQUE (CORR. 59 238) TECHNIQUE (CORR. 59 238) TECHNIQUE (APPLIED TO THE SIMPLE QUEUE WITH ARBITRARY TECHNIQUE POR ANGULAR VARIATES	BIOKA60 TECH 69 JASA 69 JASA 69 JASA 69 JASA 68 JASA 61 JASA 65 BIOKA63 JASA 57 BIOKA63 JASA 66 BIOKA63 JASA 66 BIOKA63 JASA 66 JASA 66 JASA 66 JASA 67 JASA 68 BIOKA65 JASA 67 JASA 68 BIOKA65 JASA 67 JASA 67 JASA 68 BIOKA69 JASA 67 JASA 68 BIOKA69 JASA 69 JASA 6	143 561 1776 1379 567 804 441 736 331 177 409 436 425 304 4487 607 700.4 487 393 139 139 133 1435 385 776 1789 887 776 111 205 695 168 168 168 168 168 168 168 168 168 168
OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA THE LADY OF THE REGRESSION COEFFICIENT BASED ON KENDALL'S OF AVERACE TAU WITH A GRITE/ A NOTE ON CALGULATING OF THE/ A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S GRAPHIG COMPUTATION OF A NOTE ON GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF A NOTE ON AVERAGE DISTRIBUTIONS OF KENDALL'S A MODIFICATION OF KENDALL'S A MODIFICATION OF KENDALL'S THE THIRD MOMENT OF KENDALL'S A MODIFICATION COEFFICIENT A COMPUTER METHOD FOR GALCULATING KENDALL'S PARTIAL TESTS FOR PARTIAL FISCAL-YEAR REPORTING FOR CORPORATE INCOME INCOME UNDER THE WISCONSIN STATE INDIVIDUAL INCOME INCOME UNDER THE WISCONSIN STATE INDIVIDUAL INCOME TAX SOME SHARP MULTIVARIATE GENERALIZATIONS OF AN ANALOCUE OF OPTIMAL DESIGNS ON FOR ESTIMATION OF INCIDENCE OF RED SPIDER MITE ON THE LADY TASTINC SOME OBSERVATIONS ON THE FAMILIES AN EMPIRICAL BAYES SMOOTHING DILUTION SERIES, A STATISTICAL TEST OF OF VARIABLES IN LINEAR REGRESSION BY A RANDOMISATION A DIFFERENCE EQUATION ARRIVAL INTERVAL DISTRIBUTI/ A DIFFERENCE EQUATION A RECRESSION A DISTRIBUTION-FREE ANALYSIS OF VARIANCE N FOR STABLE SYSTEMS RANDOMIZED RESPONSE, A SURVEY PROBIT ANALYSIS AS A	TARGETS A SURVEY TASTING TEA, AND ALLIED TOPICS TAU ESTIMATES TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION TAU AS A COEFFICIENT OF DISARRAY TAU AS A MEASURE OF CONCORDANCE TAU BASED ON PARTIALLY ORDERED SYSTEMS TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPUL TAU FOR THE CASE OF ARBITRARY TIES IN BOTH RANKINCS TAU IN NORMAL SAMPLES TAU IN THE CENERAL CASE TAU WITH UNCROUPED DATA TAUS TAX TAX TAX TAX TAX TAX TAX TAX TAYPAYER COMPLIANCE IN REPORTING INTEREST TAX SAMPLES OF OUTPUT AND DISTRIBUTIVE SHARES TAXONOMY A COMPARISON OF SUCCESSIVE SCREE TAXPAYER COMPLIANCE IN REPORTING INTEREST TCHEBYCHEFF'S INEQUALITIES TCHEBYCHEFF'S INEQUALITIES TCHEBYCHEFF'S INEQUALITIES TEA CROP IN NORTH—EAST INDIA SAMPLING TECHNIQUES TEACHING OF STATISTICAL CONSULTINC TEAM DECISION PROBLEMS TECHNIQUE (CORR. 59 238) TECHNIQUE (CORR. 59 238) TECHNIQUE (ERRATA, 69 627) /TINC FOR THE INCLUSION TECHNIQUE APPLIED TO THE SIMPLE QUEUE TECHNIQUE FOR ANGULAR VARIATES TECHNIQUE FOR ANGULAR VARIATES TECHNIQUE FOR BOSCU SSIGNS TECHNIQUE FOR DISCUSSING THE PASSACE TIME DISTRIBUTIO	BIOKA60 TECH 69 JASA 69 JASA 69 JASA 69 JASA 68 JASA 61 JASA 65 BIOKA63 JASA 57 BIOKA63 JASA 56 BIOKA53 JASA 66 BIOKA53 JASA 66 BIOKA56 JASA 67 BIOKA66 JASA 66 JASA 67 BIOKA66 JASA 67 BIOKA66 TECH 66 JRSSB58 TECH 66 JRSSB58 BIOCS6B JRSSB58 BIOCS6B JASA 65 JASSB5B BIOCS6B JASSB5B BIOCS6B JRSSB5B BIOCS6B BIOCS6	143 561 1379 567 804 441 736 331 177 409 436 425 304 487 607 789 313 1435 385 761 205 611 361 205 168 168 169 168 169 168 169 168 169 169 169 169 169 169 169 169

TEC - TES

TITLE WORD INDEX

```
A MODIFIED TECHNIQUE FOR IMPROVINC AN ESTIMATE OF THE MEAN
                                         ANALYTICAL TECHNIQUE FOR INCOMPLETE BLOCK EXPERIMENTS
                                                                                                          BIOCS66 829
ATIONAL ESTIMATES OF RETAIL T/ USE OF A RECRESSION TECHNIQUE TO PRODUCE AREA BREAKDOWNS OF THE MONTHLY N JASA 66 496
          ON THE RELATIVE ACCURACY OF SOME SAMPLING TECHNIQUES
                                                                                                         JASA 58
            ANALYSIS OF SURVIVAL DATA BY RECRESSION TECHNIQUES
                                                                                                          TECH 63
                                                                                                                  161
      TIME SERIES ANALYSIS BY MODIFIED LEAST-SQUARES TECHNIQUES
                                                                                                          JASA 66
                                                                                                                  152
               PERMUTATION SUPPORT FOR MULTIVARIATE TECHNIQUES
                                                                                                          BTOKA64
                                                                                                                   65
C PLANS BY USINC SEQUENTIAL, ITEM BY ITEM, SELECTION TECHNIQUES AND DIGITAL COMPUTERS /OPMENT OF SAMPLIN JASA 62
                                                                                                                   387
MENTS FOR CALENDAR SHIFTS
                                         RECRESSION TECHNIQUES APPLIED TO SEASONAL CORRECTIONS AND ADJUST JASA 56
                                                                                                                   615
 TO A LINEAR RESTRICTION
                                               SOME TECHNIQUES FOR ANALYZING A SET OF TIME SERIES SUBJECT JASA 63
PLANS
                                                    TECHNIQUES FOR CONSTRUCTING FRACTIONAL REPLICATE
                                                                                                         JASA 63
ZED POISSON DISTRIBUTIONS
                                        SIMPLIFIED TECHNIQUES FOR ESTIMATING PARAMETERS OF SOME CENERALI BIOKA67
                                    SOME SHRINKACE TECHNIQUES FOR ESTIMATING THE MEAN
                                                                                                          JASA 68
MITE ON TEA CROP IN NORTH-EAST INDIA
                                          SAMPLING TECHNIQUES FOR ESTIMATION OF INCIDENCE OF RED SPIDER BIOCS66
                                 LINEAR PROCRAMMING TECHNIQUES FOR RECRESSION ANALYSIS
                                                                                                          JASA 59
                                               NEW TECHNIQUES FOR THE ANALYSIS OF ABSENTEEISM DATA
                                                                                                          BIOKA54
                                                                                                                   77
  OF SUCCESSIVE SCREENING AND DISCRIMINANT FUNCTION TECHNIQUES IN MEDICAL TAXONOMY
                                                                                    A COMPARISON BIOCS69 NO.4
                               SOME EMPIRICAL BAYES TECHNIQUES IN POINT ESTIMATION
                                                                                                          BTOKA69 133
                        A COMPARISON OF STATISTICAL TECHNIQUES IN THE DIFFERENTIAL DIACNOSIS OF NONTOXIC
COTTRE
                                                                                                         BIOCS68
                                                                                                                   103
            AN APPLICATION OF NUMERICAL INTECRATION TECHNIQUES TO STATISTICAL TOLERANCINC
                                                                                                          TECH 67
                                          INDEX TO TECHNOMETRICS, VOLUMES 1-7
                                                                                                          TECH 66
                                                                                                                   216
                                 ERRATA TO INDEX TO TECHNOMETRICS, VOLUMES 1-7
                                                                                                          TECH 66 387
                    THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS
                                                                                                          JASA 62
                                                                                                                   338
ON THE PROBABILITY DISTRIBUTION OF A FILTERED RANDOM TELEGRAPH SIGNAL
                                                                                                          AMS 68
       STATISTICS USED FOR DATA COMPRESSION IN SPACE TELEMETRY
                                                                                               SYSTEMATIC JASA 65
                                                                                                                    97
           A METHOD TO DETERMINE THE RELIABILITY OF TELEMETRY SYSTEMS REPORTS
                                                                                                         JASA 62
                                                                                                                   686
  THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC
                                                                                                          AMS 61
                                                                                                                   230
FORECASTING RECORD
                                                    TEN YEARS OF CONSUMER ATTITUDE SURVEYS, THEIR
                                                                                                         JASA 63
                                                                                                                   899
        POWER FUNCTION OF THE NON-PARAMETRIC TEST OF TENDENCY
                                                                                  EXACT AND APPROXIMATE AMS 62 471
                                     THE POISSON TENDENCY IN TRAFFIC DISTRIBUTION
                                                                                                           AMS 63 308
                              A NOTE ON THE POISSON TENDENCY IN TRAFFIC DISTRIBUTION
                                                                                                           AMS 64 1B23
  PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND TENSILE STRENGTH
                                                                                               TWO EARLY BIOKA54
                                                                                                                   559
                                                    TENSOR NOTATION AND THE SAMPLING CUMULANTS OF K- BIOKA52
                     THE ESTIMATION OF SECOND-ORDER TENSORS, WITH RELATED TESTS AND DESIGNS
                                                                                                          BIOKA63
                         PROBLEMS IN MEASURING LONG TERM GROWTH IN INCOME AND WEALTH
                                                                                                         JASA 57
                LIMITING DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES
                                                                                                          AMS 62
                                                                                                                   894
                     LIMIT THEOREMS FOR THE MAXIMUM TERM IN STATIONARY SEQUENCES
                                                                                                          AMS 64
                                                                                                                   502
                                    ON A CORRECTION TERM IN THE METHOD OF PAIRED COMPARISONS
                                                                                                          BIOKA52
                                                                                                                   211
ENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN /ARSON D BIOKA68
                                                                                                                   559
 PROBLEM FOR UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE KNOWN
                                                                                     NOTE ON THE MOMENT- BIOKAS6
FOR RELIABILITY OF REDUNDANT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAILURE

//SIAN CONFIDENCE LIMITS TECH 68
IAL PROBABILITY RATIO TESTS BASE/ GENERAL PROOF OF TERMINATION WITH PROBABILITY ONE OF INVARIANT SEQUENT AMS 67
                                                                                                                    8
                                                                                                           AMS 69 1120
A CHARACTERIZATION OF THE UPPER AND LOWER CLASSES IN TERMS OF CONVERCENCE RATES
LUES OF NOR/ A NOTE ON THE ERROR AFTER A NUMBER OF TERMS OF THE DAVID-JOHNSON SERIES FOR THE EXPECTED VA BIOKAGO
                                                                                                                  79
         AN ANALOCUE OF TCHEBYCHEFF'S INEQUALITY IN TERMS OF THE RANGE
                                                                                                          TECH 62
                                                                                                                   133
HISTORICAL NOTES ON THE WILCOXON UNPAIRED TWO-SAMPLE TEST
                                                                                                          JASA 57 356
                              A NEW BIVARIATE SIGN TEST
                                                                                                          JASA 58
                                 ON THE EMPTY CELL TEST
                                                                                                          TECH 62 235
  THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST
                                                                                                          JASA 63
                                                                                                                  678
          EARLY DECISION IN THE WILCOXON TWO-SAMPLE TEST
                                                                                                          JASA 63
                                                                                                                  713
                       TABLES FOR A PRECEDENCE LIFE TEST
                                                                                                          TECH 63 491
         FLUCTUATION THEOREM AND A DISTRIBUTION-FREE TEST
                                                                                                          AMS 64 1359
                                     NOTE ON MOOD'S TEST
                                                                                                           AMS 64 1825
               ON THE NORMAL SCORES TWO-SAMPLE RANK TEST
                                                                                                          JASA 64 652
          A ROBUST VERSION OF THE PROBABILITY RATIO TEST
                                                                                                           AMS 65 1753
       EFFECT OF NON-NORMALITY ON STEIN S TWO SAMPLE TEST
                                                                                                           AMS 65 651
                           A NOTE ON THE SPHERICITY TEST
                                                                                                           AMS 66 464
            BIAS OF THE ONE-SAMPLE CRAMER-VON MISES TEST
                                                                                                          JASA 66
              THE TREATMENT OF TIES IN THE WILCOXON TEST
                                                                                                          AMS 67
                                                                                                                  519
                  THE POWER OF THE LIKELIHOOD RATIO TEST
                                                                                                           AMS 67
                                                                                                                  802
                                                                                                          AMS 67 1068
               THE CONDITIONAL LEVEL OF STUDENT'S T TEST
  ASYMPTOTIC EFFICIENCY OF MULTIVARIATE NORMAL SCORE TEST
                                                                                                           AMS 67 1753
                                                                                                          JASA 67 966
DISTRIBUTION AND POWER OF THE ABSOLUTE NORMAL SCORES TEST
                            THE V-SUB-NM TWO-SAMPLE TEST
                                                                                                           AMS 68 923
                 ROBUSTNESS OF SUM OF SQUARED RANKS TEST
                                                                                                          JASA 68 33B
                          A NOTE ON A DOUBLE SAMPLE TEST
                                                                                                          JASA 69 NO.4
               A NOMOGRAM FOR THE 'STUDENT'*FISHER T TEST
                                                                                                          JASA 69 NO.4
                        ON A TWO-SIDED SEQUENTIAL T-TEST
                                                                                                         BIOKA52 302
                                GALTON'S RANK-ORDER TEST
                                                                                                         BIOKA55
                     A TWO-SAMPLE DISTRIBUTION-FREE TEST
                                                                                                         BIOKA56 377
  EFFECT OF NON-NORMALITY ON THE POWER FUNCTION OF T-TEST
                                                                                                          BIOKASB
                                                                                                                  421
                          A TWO-SAMPLE SEQUENTIAL T-TEST
                                                                                                         BIOKA61
                                                                                                                   65
        SOME SEQUENTIAL ANALOGS OF STEIN'S TWO-STACE TEST
                                                                                                         BTOKA62 367
           A MULTIVARIATE ANALOGUE OF THE ONE-SIDED TEST
                                                                                                         BIOKA63 403
                                                                                                         JRSSR64 457
                            A BIVARIATE SIGNED RANK TEST
                            LOCALLY UNBIASED TYPE M TEST
                                                                                                         JRSSB66 29B
                        NOTES A NOTE ON COCHRAN'S Q TEST
                                                                                                         BIOCS65 1008
 THE ASYMPTOTIC EFFICIENCY OF THE KOLMOGOROV-SMIRNOV TEST
                                                                                                      ON JASA 65 843
 OF NON-NORMALITY ON THE POWER FUNCTION OF THE SIGN TEST
                                                                                                   EFFECT JASA 64 142
A CHI-SQUARE APPROXIMATION FOR THE MULTIVARIATE SIGN TEST
                                                                                                 NOTE ON JRSSB65
                                                                                                                   82
   ECONOMICAL BINOMIAL SEQUENTIAL PROBABILITY RATIO TEST
                                                                                                THE MOST BIOKAGO
                                                                                                                  103
 THE RISKS OF ERROR INVOLVED IN THE SEQUENTIAL RATIO TEST
                                                                                                A NOTE ON BIOKA56
                                                                                                                  231
     EFFICIENCY OF THE TWO SAMPLE KOLMOGOROV-SMIRNOV TEST
                                                                                               ASYMPTOTIC JASA 67
      SUGGESTED FORMULAE APPLIED TO THE SEQUENTIAL T-TEST
                                                                                              ON CERTAIN BIOKA64
                                                                                                                   97
         BETA-APPROXIMATIONS TO THE KRUSKAL-WALLIS H TEST
                                                                                              SIMPLIFIED JASA 59
RIVASTAVA'S PAPER ON THE POWER FUNCTION OF STUDENT'S TEST
                                                                                            NOTE ON MR S BIOKA58
                                                                                                                  429
```

TITLE WORD INDEX TEC - TES

OF THE USE OF THE SEQUENTIAL PROBABILITY RATIO	TEST	SOME ASPECTS	JASA 58	1B7
TREATMENTS VERSUS CONTROL MULTIPLE COMPARISONS SIGN	TEST	TABLES FOR A	TECH 65	293
ASYMPTOTIC EFFICIENCY OF BENNETT'S BIVARIATE SIGN	TEST	A NOTE ON THE	JRSSB66	146
ASYMPTOTIC EFFICIENCY OF FRIEDMAN'S CHI-SQUARE-SUB-R	-TEST	A NOTE ON THE	BIOKA67	677
NORMALITY ON THE POWER OF THE ANALYSIS OF VARIANCE	TEST	EFFECT OF NON-	BIOKA59	114
IN A SEQUENCE OF TWO ALTERNATIVES. II. RUNS		NON-RANDOMNESS		253
RANGE IN PLACE OF THE STANDARD DEVIATION IN STEIN'S		THE USE OF THE		346
LIMITS FOR A RATIO USING WILCOXON'S SIGNED RANK		NOTES . CONFIDENCE		231
TEST. A TWO-SIDED VERSION OF THE CONTROL MEDIAN		THE FIRST-MEDIAN		692
AND BAHADUR EFFICIENCY OF THE HODGES BIVARIATE SIGN		NULL DISTRIBUTION		803
				334
DISTRIBUTION AND POWER OF THE VARIANCE RATIO		ON THE RANDOMIZATION		
THE RATIO OF TWO RANGES AND POWER OF THE ASSOCIATED		PERCENTAGE POINTS OF		187
TABLES INVOLVING ZERO FREQUENCIES AND THE 21		A NOTE ON CONTINGENCY		398
TO THE CRITICAL VALUES FOR DUNCAN'S MULTIPLE RANGE		NOTES. APPROXIMATIONS		179
CHARACTER OF THE SEQUENTIAL PROBABILITY RATIO		REMARK ON THE OPTIMUM		726
OF A STANDARD MODEL II ANALYSIS OF VARIANCE		ON THE BAYES CHARACTER		
SAMPLE SIZE IN A SEQUENTIAL PROBABILITY RATIO		BOUNDS FOR THE EXPECTED		360
NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE	TEST	ASYMPTOTIC EFFICIENCY OF TWO	JASA 67	939
OF THE DURBIN-WATSON TEST AND THE POWER OF THE BLUS	TEST	A COMPARISON BETWEEN THE POWER	JASA 69	938
EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO	TEST	A NOTE ON THE LIMITING RELATIVE	JASA 60	660
STIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO	TEST	OPTIMALITY AND THE OPERATING CHARACTERI	JASA 64	464
CONTINGENCY TABLE, AND FISHER'S 'EXACT' SIGNIFICANCE	TEST	EXACT BAYESIAN ANALYSIS OF A TWO-BY-TWO	JRSSB69	NO.2
TIC AND AVERAGE SAMPLE NUMBER OF A SIMPLE SEQUENTIAL	TEST	/HE DETERMINATION OF THE OPERATING CHARACTERIS	JRSSB67	248
T BAHADUR EFFICIENCY OF THE TWO-SAMPLE NORMAL SCORES	TEST	/IES FOR SAMPLING WITHOUT REPLACEMENT AND EXAC	BIOKA68	371
D LEAST-SQUARES PROBLEMS AND THE ROBUSTNESS OF THE F		OF RESIDUAL VARIANCE IN QUADRATICALLY BALANCE		83
		(II) SIMILAR SLIPPAGE TESTS	AMS 6B	
		ACCEPTANCE PROCEDURES	TECH 60	435
			BIOKA54	133
NS TO 'A RELATIONSHIP BETWEEN HODGES' BIVARIATE SIGN			AMS 61	619
		AND A RELATED SIMPLE ESTIMATE OF LOCATION	AMS 67	73
		AND A TEST FOR UNIFORMITY OF A CIRCULAR DISTRIBU		446
E MEDIAN FOR SAMPLE SIZES/ TABLE FOR BOTH THE SIGN				935
		AND ESTIMATOR BASED ON WILCOXON'S SIGNED RANK ST		282
		AND ITS APPLICATIONS TO SOME SIMULTANEOUS INFERE		9B6
		AND LEHMANN'S TEST FOR HOMOGENEITY OF VARIANCES	AMS 69	
		AND NON-NULL HYPOTHESES	JRSSB60	402
		AND SYMMETRICALLY DISTRIBUTED RANDOM VARIABLES	BIOKA59	123
A COMPARISON BETWEEN THE POWER OF THE DURBIN-WATSON			JASA 69	938
THE TWO-SAMPLE T			BIOKA57	482
ON THE EXACT DISTRIBUTION OF A CLASS OF MULTIVARIATE			AMS 62	
A NOTE ON THE EQUIVALENCE OF TWO	TEST	CRITERIA FOR HYPOTHESES IN GATEGORIGAL DATA	JASA 66	228
ON THE NON-CENTRAL DISTRIBUTIONS OF TWO	TEST	CRITERIA IN MULTIVARIATE ANALYSIS OF VARIANCE	AMS 6B	215
FOR SERIAL GORRELATI/ ASYMPTOTIC POWER OF CERTAIN	TEST	CRITERIA, BASED ON FIRST AND SEGOND DIFFERENGES,	AMS 62	1B6
MATION O/ SIMULTANEOUS SELFING AND PARTIAL DIALLEL	TEST	CROSSING 2. AN EVALUATION OF TWO METHODS OF ESTI	BIOCS67	325
THE ANALYSIS OF LIFE	TEST	DATA	TECH 59	9
				9 447
ESTIMATION FROM LIFE	TEST	DATA	TECH 60	447
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE	TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR	TECH 60 BIOKA58	447 504
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF	TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S	TECH 60 BIOKA58 JASA 69	447 504 971
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF	TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR	TECH 60 BIOKA58 JASA 69 AMS 64	447 504 971 1537
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE	TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68	447 504 971 1537 850
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585)	TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB66	447 504 971 1537 850 1B0
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) A THE ASYMPTOTIC EFFIGIENCY OF THE CHI-SQUARE-SUB-R	TEST TEST TEST TEST TEST TEST TEST TEST	DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB66 BIOKA59	447 504 971 1537 850 180 475
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (ACKNOWLEDGEMENT 66 585) A THE ASYMPTOTIC EFFICIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT A	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANCE IN A PARAMETER OCCURRING AT AN	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB66 BIOKA59 BIOKA55	447 504 971 1537 850 180 475 523
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (ACKNOWLEDGEMENT 66 585) ATHE ASYMPTOTIC EFFIGIENCY OF THE CHI-SQUARE-SUB-RUKNOWN POINT A COMPARISON OF TWO SORTS OF	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB66 BIOKA59 BIOKA55 JRSSB57	447 504 971 1537 850 1B0 475 523 119
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) A THE ASYMPTOTIC EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT DATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB66 BIOKA59 BIOKA55 JRSSB57 BIOKA64	447 504 971 1537 850 180 475 523 119 250
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) THE ASYMPTOTIC EFFICIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A NORMAL MEAN	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB66 BIOKA55 JRSSB57 BIOKA64 JRSSB68	447 504 971 1537 850 180 475 523 119 250 461
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (ACKNOWLEDGEMENT 66 585) A THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-RE UNKNOWN POINT DATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A NORMAL MEAN FOR A SINGLE OUTLIER	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB66 BIOKA59 BIOKA55 JRSSB57 BIOKA64 JRSSB68 SASJ 69	447 504 971 1537 850 1B0 475 523 119 250 461
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (ACKNOWLEDGEMENT 66 585) A THE ASYMPTOTIC EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB66 BIOKA59 BIOKA55 JRSSB57 BIOKA64 JRSSB68 SASJ 69 BIOCS66	447 504 971 1537 850 180 475 523 119 250 461 9
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE'	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A NORMAL MEAN FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 BIOKA59 BIOKA55 JRSSB57 BIOKA64 JRSSB68 SASJ 69 BIOCS66 JASA 69	447 504 971 1537 850 180 475 523 119 250 461 9
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (ACKNOWLEDGEMENT 66 585) A THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT DATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE'	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A NORMAL MEAN FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR APPROXIMATE NUMERICAL RATIONALITY /'A SU	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB66 BIOKA59 BIOKA55 JRSSB57 BIOKA64 JRSSB68 SASJ 69 BIOCS66 JASA 69 JASA 69	447 504 971 1537 850 180 475 523 119 250 461 9
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (ACKNOWLEDGEMENT 66 585) A THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-RE UNKNOWN POINT A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFUL	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A NORMAL MEAN FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR APPROXIMATE NUMERICAL RATIONALITY /A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB66 BIOKA55 JRSSB57 BIOKA65 JRSSB68 SASJ 69 BIOCS66 JASA 69 JASA 69 JASA 69	447 504 971 1537 850 180 475 523 119 250 461 9 937 23 50 531
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (ACKNOWLEDGEMENT 66 585) A THE ASYMPTOTIC EFFICIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJE	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR APPROXIMATE NUMERICAL RATIONALITY /'A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR CLUSTERS	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB66 BIOKA55 JRSSB57 BIOKA64 JRSSB68 BIOCS66 JASA 69 JASA 69 JASA 69 JASA 69 JASA 69	447 504 971 1537 850 180 475 523 119 250 461 9 937 23 50 531 NO.4
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) A THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT DATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFUL PERCENTAGE POINTS OF A RANK SUM	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR CLUSTERS FOR COMPARING ALL PAIRS OF TREATMENTS	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB65 BIOKA55 JRSSB57 BIOKA64 JRSSB68 SASJ 69 BIOCS66 JASA 69 JASA 69 JASA 69 TECH 60	447 504 971 1537 850 180 475 523 119 250 461 9 937 23 50 531 No.4
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (ACKNOWLEDGEMENT 66 585) A THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFUL PERCENTAGE POINTS OF A RANK SUM SAMPLES A GENERALIZED WILCOXON	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A NORMAL MEAN FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR APPROXIMATE NUMERICAL RATIONALITY /'A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR CLUSTERS FOR COMPARING ALL PAIRS OF TREATMENTS FOR COMPARING ARBITRARILY SINGLY-CENSORED	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB66 BIOKA55 BIOKA55 JRSSB57 BIOKA64 JRSSB68 SASJ 69 BIOCS66 JASA 69 JASA 69 AMS 68 JASA 69 TECH 60 BIOKA65	447 504 971 1537 850 1B0 475 523 119 250 461 9 937 23 500 531 NO.4 197 203
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) A THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFUL PERCENTAGE POINTS OF A A RANK SUM SAMPLES A GENERALIZED WILCOXON DESIGNS AN EXACT	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A NORMAL MEAN FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR CLUSTERS FOR COMPARING ALL PAIRS OF TREATMENTS FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING MATCHED PROPORTIONS IN CROSSOVER	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 BIOKA59 BIOKA59 JRSSB66 BIOKA55 JRSSB68 SASJ 69 BIOCS66 JASA 69 JASA 69 JASA 69 JASA 69 JASA 69 TECH 60 BIOKA65 BIOKA65 BIOKA65 BIOKA65	447 504 971 1537 850 1B0 475 523 119 250 461 9 937 23 50 531 NO 4 197 203 75
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT DATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OP-FIT ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFUL PERCENTAGE POINTS OF A A RANK SUM SAMPLES A GENERALIZED WILCOXON NOTE ON A THREE-DECISION	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A NORMAL MEAN FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR APPROXIMATE NUMERICAL RATIONALITY /'A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR COMPARING ALL PAIRS OF TREATMENTS FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING MATCHED PROPORTIONS IN CROSSOVER FOR COMPARING MATCHED PROPORTIONS IN CROSSOVER	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB65 BIOKA55 JRSSB57 BIOKA65 JRSSB68 SASJ 69 BIOCS66 JASA 69 JASA 69 AMS 68 JASA 69 TECH 60 BIOKA65 BIOKA65	447 504 971 1537 850 180 475 523 119 250 461 9 937 23 50 531 NO.4 197 203 75 106
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT DATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFUL PERCENTAGE POINTS OF A RANK SUM SAMPLES A GENERALIZED WILCOXON DESIGNS NOTE ON A THREE-DECISION A TWO-SAMPLE DISTRIBUTION FREE	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A SINGLE OUTLIER FOR AN UNDESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR CUMPARING ALL PAIRS OF TREATMENTS FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING MATCHED PROPORTIONS IN CROSSOVER FOR COMPARING MATCHED PROPORTIONS FOR COMPARING VARIANCES	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 BIOKA55 BIOKA55 JRSSB57 BIOKA64 JASA 69 JASA 69 JASA 69 JASA 69 TECH 60 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65	447 504 971 1537 850 1B0 475 523 119 250 461 9 937 233 50 531 No.4 197 203 75 106 544
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) A THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-RE UNKNOWN POINT DATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFUL PERCENTAGE POINTS OF A A RANK SUM SAMPLES A GENERALIZED WILCOXON DESIGNS NOTE ON A THREE-DECISION A TWO-SAMPLE DISTRIBUTION FINE ON PLACKETT'S	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A NORMAL MEAN FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR APPROXIMATE NUMERICAL RATIONALITY /'A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR CLUSTERS FOR COMPARING ALL PAIRS OF TREATMENTS FOR COMPARING MATCHED PROPORTIONS IN CROSSOVER FOR COMPARING MATCHED PROPORTIONS IN CROSSOVER FOR COMPARING TWO BINOMIAL POPULATIONS FOR COMPARING TWO BINOMIAL POPULATIONS FOR COMPARING TABLE INTERACTIONS	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 BIOKA55 BIOKA55 JRSSB57 BIOKA64 JJSSB68 SASJ 69 BIOCS66 JASA 69 JASA 69 TECH 60 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65	447 504 971 1537 850 180 475 523 119 250 461 937 23 50 531 100.4 197 203 75 106 544 179
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT DATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFULL PERCENTAGE POINTS OF A A RANK SUM SAMPLES A GENERALIZED WILCOXON ON THE ON A THREE-DECISION A TWO-SAMPLE DISTRIBUTION FREE ON PLACKETT'SS AN EXACT	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A NORMAL MEAN FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR APPROXIMATE NUMERICAL RATIONALITY /'A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR COMPARING ALL PAIRS OF TREATMENTS FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING TWO BINOMIAL POPULATIONS FOR COMPARING VARIANCES FOR CONTINGENCY TABLE INTERACTIONS FOR CORRELATION BETWEEN TIME SERIES	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB65 BIOKA55 JRSSB57 BIOKA55 JRSSB68 SASJ 69 BIOCS66 JASA 69 JASA 69 TECH 60 BIOKA65 BIOKA65 BIOKA65 BIOKA63	447 504 971 1537 850 1B0 475 523 119 250 461 9 937 23 53 10.4 197 203 75 106 544 179 316
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT DATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFUL SAMPLES A GENERALIZED WILCOXON DESIGNS A GENERALIZED WILCOXON NOTE ON A THREE-DECISION A TWO-SAMPLE DISTRIBUTION FREE ON PLACKETT'S AN EXACT WITH KNOWN VARIANCE A SEQUENTIAL THREE HYPOTHESIS	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A NORMAL MEAN FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR APPROXIMATE NUMERICAL RATIONALITY /'A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR COMPARING ALL PAIRS OF TREATMENTS FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING MATCHED PROPORTIONS IN CROSSOVER FOR COMPARING TWO BINOMIAL POPULATIONS FOR COMPARING VARIANCES FOR CORRELATION BETWEEN TIME SERIES FOR DETERMINING THE MEAN OF A NORMAL POPULATION	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB65 BIOKA55 JRSSB57 BIOKA64 JRSSB68 SASJ 69 BIOCS66 JASA 69 JASA 69 JASA 69 TECH 60 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65	447 504 971 1537 850 1B0 475 523 119 250 461 9 937 23 50 531 NO 4 197 203 75 106 544 179 316 1365
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) ATHE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT DATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFUL PERCENTAGE POINTS OF A A RANK SUM SAMPLES A GENERALIZED WILCOXON DESIGNS AN EXACT NOTE ON A THREE-DECISION A TWO-SAMPLE DISTRIBUTION FREE ON PLACKETT'S AN EXACT WITH KNOWN VARIANCE A SEQUENTIAL THREE HYPOTHESIS ON THE EFFICIENCY OF TWO-SAMPLE MANN-WHITNEY	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR APPROXIMATE NUMERICAL RATIONALITY /'A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR CLUSTERS FOR COMPARING ALL PAIRS OF TREATMENTS FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING MATCHED PROPORTIONS IN CROSSOVER FOR COMPARING TWO BINOMIAL POPULATIONS FOR COMPARING VARIANCES FOR CONTINGENCY TABLE INTERACTIONS FOR CORRELATION BETWEEN TIME SERIES FOR DETERMINING THE MEAN OF A NORMAL POPULATION FOR DISCRETE POPULATIONS	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 BIOKA55 BIOKA55 BIOKA55 JRSSB57 BIOKA64 JASA 69 JASA 69 JASA 69 JASA 69 TECH 60 BIOKA65 BIOKA65 BIOKA65 BIOKA59 BIOKA58 JRSSB63 BIOKA58	447 504 971 1537 850 1B0 475 523 119 250 449 937 233 50 531 NO 4 106 203 75 106 479 203 75 106 479 203 75 106 479 203 75 106 479 203 75 106 479 203 75 106 203 203 76 203 203 76 203 203 203 203 203 203 203 203 203 203
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFUL PERCENTAGE POINTS OF A A RANK SUM SAMPLES A GENERALIZED WILCOXON A TWO-SAMPLE DISTRIBUTION FREE ON PLACKETT'S AN EXACT WITH KNOWN VARIANCE A SEQUENTIAL THREE HYPOTHESIS ON THE EFFICIENCY OF TWO-SAMPLE MANN-WHITNEY A	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A NORMAL MEAN FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR APPROXIMATE NUMERICAL RATIONALITY /'A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR COMPARING ALL PAIRS OF TREATMENTS FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING MATCHED PROPORTIONS IN CROSSOVER FOR COMPARING VARIANCES FOR COMPARING VARIANCES FOR COMPARING VARIANCES FOR CORRELATION BETWEEN TIME SERIES FOR DETERMINING THE MEAN OF A NORMAL POPULATION FOR DISCRETE POPULATIONS	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JINSSB66 BIOKA55 JINSSB67 BIOKA55 JINSSB68	447 504 971 1537 850 1B0 475 523 119 250 461 9 937 23 50 531 NO.4 197 316 1365 612 337
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT DATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFUL SAMPLES A CENERALIZED WILCOXON NOTE ON A THREE-DECISION A TWO-SAMPLE DISTRIBUTION FREE ON PLACKETT'S ON THE EFFICIENCY OF TWO-SAMPLE MANN-WHITNEY A DISTRIBUTION-FREE TWO SAMPLE	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A NORMAL MEAN FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR APPROXIMATE NUMERICAL RATIONALITY /'A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR COMPARING ALL PAIRS OF TREATMENTS FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING MATCHED PROPORTIONS IN CROSSOVER FOR COMPARING VARIANCES FOR COMPARING VARIANCES FOR COMPARING VARIANCES FOR COMPARING VARIANCES FOR COMPARING TWO BINOMIAL POPULATIONS FOR COMPARING THE MEAN OF A NORMAL POPULATION FOR DESCRETE POPULATIONS FOR DESCRETE POPULATIONS FOR DISCRETE POPULATIONS FOR DISCREMENTAL BETWEEN MODELS FOR DISCRETE POPULATIONS	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB66 BIOKA55 JRSSB57 BIOKA65 AMS 69 JASA 69 JASA 69 TECH 60 BIOKA65	447 504 971 1537 850 1B0 475 523 119 937 23 50 531 109 937 20 23 50 531 106 544 179 205 612 710 612 710 710 710 710 710 710 710 710 710 710
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT DATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFUL PERCENTAGE POINTS OF A A RANK SUM SAMPLES A GENERALIZED WILCOXON A TWO-SAMPLE DISTRIBUTION FREE ON PLACKETT'S AN EXACT WITH KNOWN VARIANCE A SEQUENTIAL THREE HYPOTHESIS ON THE EFFICIENCY OF TWO-SAMPLE MANN-WHITNEY A A DISTRIBUTION-FREE TWO SAMPLE A GENERALIZED TWO-SAMPLE WILCOXON	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A NORMAL MEAN FOR A SINGLE OUTLIER FOR AN UNDESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR CUMPARING ALL PAIRS OF TREATMENTS FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING MATCHED PROPORTIONS IN CROSSOVER FOR COMPARING MATCHED PROPORTIONS FOR COMPARING VARIANCES FOR CONTINCENCY TABLE INTERACTIONS FOR CORRELATION BETWEEN TIME SERIES FOR DESCRIMINATING BETWEEN MODELS FOR DISCRIMINATING BETWEEN MODELS FOR DISCRIMINATING BETWEEN MODELS FOR DUBLY-GENSORED DATA.	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB65 BIOKA55 JRSSB57 BIOKA64 JASA 69 JASA 69 JASA 69 JASA 69 JASA 69 TECH 60 BIOKA65 BIOKA66	447 504 971 1537 850 1B0 475 523 119 250 9937 203 75 203 75 106 544 179 203 75 106 544 179 806 106 1365 612 337 NO. 2
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (ACKNOWLEDGEMENT 66 585) A THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT DATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFUL PERCENTAGE POINTS OF A RANK SUM SAMPLES A GENERALIZED WILCOXON A TWO-SAMPLE DISTRIBUTION FREE ON PLACKETT'S AN EXACT WITH KNOWN VARIANCE A SEQUENTIAL THREE HYPOTHESIS ON THE EFFICIENCY OF TWO-SAMPLE MANN-WHITNEY A A DISTRIBUTION-FREE TWO SAMPLE A GENERALIZED TWO-SAMPLE WILCOXON A	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A NORMAL MEAN FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR CLUSTERS FOR COMPARING ALL PAIRS OF TREATMENTS FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING MATCHED PROPORTIONS IN CROSSOVER FOR COMPARING TWO BINOMIAL POPULATIONS FOR COMPARING TWO BINOMIAL POPULATIONS FOR COMPARING TWO BINOMIAL POPULATIONS FOR CORRELATION BETWEEN TIME SERIES FOR CONTINGENCY TABLE INTERACTIONS FOR DETERMINING THE MEAN OF A NORMAL POPULATION FOR DISCRETE POPULATIONS FOR DISCRETE	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB65 BIOKA55 BIOKA65 JRSSB57 BIOKA64 JJRSSB68 SASJ 69 BIOCS66 JJASA 69 TECH 60 BIOKA65 BIOKA66	447 504 971 1537 850 1B0 461 9 937 23 50 531 NO. 4 197 75 106 1365 612 337 NO. 2 6612 337 NO. 2 6612 337
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT DATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OP-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFULL PERCENTAGE POINTS OF A A RANK SUM SAMPLES A GENERALIZED WILCOXON A TWO-SAMPLE DISTRIBUTION FREE ON PLACKETT'S ON THE EFFICIENCY OF TWO-SAMPLE MANN-WHITNEY WITH KNOWN VARIANCE A GENERALIZED TWO-SAMPLE MANN-WHITNEY A GENERALIZED TWO-SAMPLE MANN-WHITNEY A GENERALIZED TWO-SAMPLE MANN-WHITNEY A GENERALIZED TWO-SAMPLE WILCOXON A TRO-SAMPLE DISTRIBUTION-FREE TWO SAMPLE A GENERALIZED TWO-SAMPLE WILCOXON ARE UNEQUAL	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A NORMAL MEAN FOR A NORMAL MEAN FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR APPROXIMATE NUMERICAL RATIONALITY /'A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR COMPARING ALL PAIRS OF TREATMENTS FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING TWO BINOMIAL POPULATIONS FOR COMPARING VARIANCES FOR CONTINGENCY TABLE INTERACTIONS FOR CORRELATION BETWEEN TIME SERIES FOR DETERMINING THE MEAN OF A NORMAL POPULATION FOR DISCRETE POPULATIONS FOR DUBLY-GENSORED DATA. FOR EQUAL CATCHABILITY FOR EQUALITY OF MEANS WHEN COVARIANCE MATRICES	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB66 BIOKA55 BIOKA55 JRSSB68 BIOKA55 JRSSB68 BIOKA66 JRSSB68 BIOKA66 BIOKA66 BIOKA66 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA68 BIOKA68 BIOKA66 BIOKA66	447 504 971 1537 850 1B0 475 523 119 250 461 93 723 500 501 106 544 197 203 75 106 544 1365 612 650 802 803 803 803 803 803 803 803 803 803 803
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT DATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OP-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFULL PERCENTAGE POINTS OF A A RANK SUM SAMPLES A GENERALIZED WILCOXON A TWO-SAMPLE DISTRIBUTION FREE ON PLACKETT'S ON THE EFFICIENCY OF TWO-SAMPLE MANN-WHITNEY WITH KNOWN VARIANCE A GENERALIZED TWO-SAMPLE MANN-WHITNEY A GENERALIZED TWO-SAMPLE MANN-WHITNEY A GENERALIZED TWO-SAMPLE MANN-WHITNEY A GENERALIZED TWO-SAMPLE WILCOXON A TRO-SAMPLE DISTRIBUTION-FREE TWO SAMPLE A GENERALIZED TWO-SAMPLE WILCOXON ARE UNEQUAL	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A NORMAL MEAN FOR A NORMAL MEAN FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR APPROXIMATE NUMERICAL RATIONALITY /'A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR COMPARING ALL PAIRS OF TREATMENTS FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING TWO BINOMIAL POPULATIONS FOR COMPARING VARIANCES FOR CONTINGENCY TABLE INTERACTIONS FOR CORRELATION BETWEEN TIME SERIES FOR DETERMINING THE MEAN OF A NORMAL POPULATION FOR DISCRETE POPULATIONS FOR DUBLY-GENSORED DATA. FOR EQUAL CATCHABILITY FOR EQUALITY OF MEANS WHEN COVARIANCE MATRICES	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB65 BIOKA55 BIOKA65 JRSSB57 BIOKA64 JJRSSB68 SASJ 69 BIOCS66 JJASA 69 TECH 60 BIOKA65 BIOKA66 BIOKA65 BIOKA65 BIOKA66 BIOKA65 BIOKA65 BIOKA66 BIOKA66	447 504 971 1537 850 1B0 475 523 119 250 461 93 723 500 501 106 544 197 203 75 106 544 1365 612 650 802 803 803 803 803 803 803 803 803 803 803
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT DATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFUL PERCENTAGE POINTS OF A A RANK SUM SAMPLES A GENERALIZED WILCOXON A TWO-SAMPLE DISTRIBUTION FREE ON PLACKETT'S AN EXACT WITH KNOWN VARIANCE A SEQUENTIAL THREE HYPOTHESIS ON THE EFFICIENCY OF TWO-SAMPLE MANN-WHITNEY A A DISTRIBUTION-FREE TWO SAMPLE A GENERALIZED TWO-SAMPLE WILCOXON ARE UNEQUAL A STATISTICAL TABLES FOR THE MEAN SQUARE ERROR	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A NORMAL MEAN FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR CLUSTERS FOR COMPARING ALL PAIRS OF TREATMENTS FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING MATCHED PROPORTIONS IN CROSSOVER FOR COMPARING TWO BINOMIAL POPULATIONS FOR COMPARING VARIANCES FOR COMPARING THE MEAN OF A NORMAL POPULATION FOR CORRELATION BETWEEN TIME SERIES FOR COMPARING THE MEAN OF A NORMAL POPULATION FOR DISCRETE POPULATIONS FOR DISC	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB66 BIOKA55 BIOKA55 JRSSB68 BIOKA55 JRSSB68 BIOKA66 JRSSB68 BIOKA66 BIOKA66 BIOKA66 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA68 BIOKA68 BIOKA66 BIOKA66	447 504 971 1537 850 1B0 475 523 119 9 937 7 23 50 531 100 461 197 203 75 106 544 179 106 612 330 607 671 594
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT DATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFUL PERCENTAGE POINTS OF A A RANK SUM SAMPLES A GENERALIZED WILCOXON A TWO-SAMPLE DISTRIBUTION FREE ON PLACKETT'S AN EXACT WITH KNOWN VARIANCE A SEQUENTIAL THREE HYPOTHESIS ON THE EFFICIENCY OF TWO-SAMPLE MANN-WHITNEY A A DISTRIBUTION-FREE TWO SAMPLE A GENERALIZED TWO-SAMPLE WILCOXON ARE UNEQUAL A STATISTICAL TABLES FOR THE MEAN SQUARE ERROR	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CHASS OF CASES OF DEPENDENT OBSERVATIONS FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR CLUSTERS FOR COMPARING ALL PAIRS OF TREATMENTS FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING MATCHED PROPORTIONS IN CROSSOVER FOR COMPARING WATCHED PROPORTIONS FOR COMPARING TWO BINOMIAL POPULATIONS FOR COMPARING TREATMENTS FOR COMPARING TREATMENT FOR CORPERING TO STREAM TO SET THE SERIES FOR COMPARING THE MEAN OF A NORMAL POPULATION FOR DISCRETE POPULATIONS FOR DISC	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB68 BIOKA55 JRSSB57 BIOKA55 JRSSB68 SASJ 69 BIOCS66 JASA 69 JASA 69 JASA 69 TECH 60 BIOKA65	447 504 971 1537 850 1B0 475 523 119 250 531 NO -4 179 203 75 106 544 179 316 612 337 NO .2 1365 660 330 671 NO .4
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT DATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFUL PERCENTAGE POINTS OF A A RANK SUM SAMPLES A GENERALIZED WILCOXON A TWO-SAMPLE DISTRIBUTION FREE ON PLACKETT'S AN EXACT WITH KNOWN VARIANCE A SEQUENTIAL THREE HYPOTHESIS ON THE EFFICIENCY OF TWO-SAMPLE MANN-WHITNEY A A DISTRIBUTION-FREE TWO SAMPLE A GENERALIZED TWO-SAMPLE WILCOXON ARE UNEQUAL A STATISTICAL TABLES FOR THE MEAN SQUARE ERROR	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A NORMAL MEAN FOR A NORMAL MEAN FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR APPROXIMATE NUMERICAL RATIONALITY /'A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR COMPARING ALL PAIRS OF TREATMENTS FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING TWO BINOMIAL POPULATIONS FOR COMPARING VARIANCES FOR CONTINGENCY TABLE INTERACTIONS FOR COMPARING THE MEAN OF A NORMAL POPULATION FOR DETERMINING THE MEAN OF A NORMAL POPULATION FOR DISCRETE POPULATIONS FOR DISCRIMINATING BETWEEN MODELS FOR DISCRIMINATING BETWEEN MODELS FOR DISCRIMINATING BETWEEN MODELS FOR DISCRIMINATING BETWEEN MODELS FOR DISCRETE POPULATIONS FOR DUSCRETE POPULATIONS FOR DISCRETE POPULATIONS FOR DUSCRETE POPULATIONS F	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JINSSB66 BIOKA55 JINSSB67 BIOKA55 JRSSB68 SASJ 69 BIOCA66 JASA 69 JASA 69 JASA 69 TECH 60 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA66	447 504 971 1537 850 1B0 475 523 119 250 461 937 23 500 671 1365 612 337 NO.2 650 671 594 671 594 671
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT DATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFULL SAMPLES A GENERALIZED WILCOXON A TWO-SAMPLE DISTRIBUTION FREE ON PLACKET'S ON THE EFFICIENCY OF TWO-SAMPLE MANN-WHITNEY A DISTRIBUTION-FREE TWO SAMPLE A GENERALIZED TWO-SAMPLE MANN-WHITNEY A DISTRIBUTION-FREE TWO SAMPLE A GENERALIZED TWO-SAMPLE WILCOXON ARE UNEQUAL A STATISTICAL TABLES FOR THE MEAN SQUARE ERROR EXACT POWER OF MANN-WHITNEY T FOR STRATIFICATION (ADDENDUM 67/ THE CHI-SQUARE	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A NORMAL MEAN FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR APPROXIMATE NUMERICAL RATIONALITY /'A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING MATCHED PROPORTIONS IN CROSSOVER FOR COMPARING VARIANCES FOR COMPARING VARIANCES FOR CORFELATION BETWEEN TIME SERIES FOR DETERMINING THE MEAN OF A NORMAL POPULATION FOR DISCRETE POPULATIONS FOR DUBLY-GENSORED DATA. FOR EQUALITY OF MEANS WHEN COVARIANCE MATRICES FOR EQUALITY OF MEANS WHEN COVARIANCE MATRICES FOR EQUALITY OF FWO AVAILABILITIES FOR EXACT LINEAR RESTRICTIONS IN REGRESSION FOR EXACT LINEAR RESTRICTIONS IN REGRESSION FOR EXACT LINEAR RESTRICTIONS AFTER ADJUSTMEN	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JINSSB66 BIOKA55 JINSSB67 BIOKA55 JRSSB68 SASJ 69 BIOCA66 JASA 69 JASA 69 JASA 69 TECH 60 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA66	447 504 971 1537 850 1B0 475 523 119 9 937 23 50 531 106 544 177 203 7 106 544 179 106 612 612 613 613 613 613 613 613 613 614 614 615 615 615 615 615 615 615 615 615 615
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT DATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFUL PERCENTAGE POINTS OF A A RANK SUM SAMPLES A GENERALIZED WILCOXON A TWO-SAMPLE DISTRIBUTION FREE ON PLACKETT'S AN EXACT WITH KNOWN VARIANCE A SEQUENTIAL THREE HYPOTHESIS ON THE EFFICIENCY OF TWO-SAMPLE MANN-WHITNEY A GENERALIZED TWO-SAMPLE WILCOXON ARE UNEQUAL A STATISTICAL TABLES FOR THE MEAN SQUARE ERROR EXACT POWER OF MANN-WHITNEY T FOR STRATIFICATION (ADDENDUM 67/ THE CHI-SQUARE A NEW	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CHASS OF CASES OF DEPENDENT OBSERVATIONS FOR A NORMAL MEAN FOR A SINGLE OUTLIER FOR AN UNDESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR COMPARING ALL PAIRS OF TREATMENTS FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING MATCHED PROPORTIONS IN CROSSOVER FOR COMPARING WATCHED PROPORTIONS FOR COMPARING WATCHED PROPORTIONS FOR COMPARING VARIANCES FOR COMPARING TWO BINOMIAL POPULATIONS FOR COMPARING THE MEAN OF A NORMAL POPULATION FOR DISCRETE POPULATIONS FOR DISCRETINNATING BETWEEN MODELS FOR DISCRETINATING BETWEEN MODELS FOR DISCRETION FOR SYMMETRICAL DISTRIBUTIONS FOR DUBLY-GENSORED DATA. FOR EQUAL CATCHABILITY FOR EQUAL TY OF MEANS WHEN COVARIANCE MATRICES FOR EQUAL TY OF MEANS WHEN COVARIANCE MATRICES FOR EQUALITY OF TWO AVAILABILITIES FOR EXACT LINEAR RESTRICTIONS IN REGRESSION FOR EXPONENTIAL AND RECTANCULAR ALTERNATIVES FOR HETEROGENEITY OF PROPORTIONS AFTER ADJUSTMEN	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB65 BIOKA55 JRSSB57 BIOKA64 JJRSSB68 SASJ 69 BIOCS66 JASA 69 JASA 69 JASA 69 JASA 69 JASA 69 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA66 BIOKA65 BIOKA66	447 504 971 1537 850 1B0 475 523 119 250 531 NO 4 106 106 106 106 106 106 106 106
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ON A MEASURE OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT OATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' BJECTIVE MANNA ON 'OBJECTIVE' BJECTIVE MANNA ON 'OBJECTIVE' BJECTIVE MANNA ON 'OBJECTIVE' BJECTIVE MANNA ON 'OBJECTIVE' A RANK SUM A GENERALIZED WILCOXON AN EXACT WITH KNOWN VARIANCE A SEQUENTIAL THREE HYPOTHESIS ON THE EFFICIENCY OF TWO-SAMPLE MANNA-WHITNEY A A DISTRIBUTION-FREE TWO SAMPLE A GENERALIZED TWO-SAMPLE WILCOXON ARE UNEQUAL A STATISTICAL TABLES FOR THE MEAN SQUARE ERROR EXACT POWER OF MANNA-WHITNEY T FOR STRATIFICATION (ADDENDUM 67/ THE CHI-SQUARE A NEW FROM DISCRETE UNIFORM FINITE POPULATIONS AND A RANGE	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A NORMAL MEAN FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR APPROXIMATE NUMERICAL RATIONALITY /'A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR COMPARING ALL PAIRS OF TREATMENTS FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING TWO BINOMIAL POPULATIONS FOR COMPARING VARIANCES FOR COMPARING VARIANCES FOR CORTINGENCY TABLE INTERACTIONS FOR CORRELATION BETWEEN TIME SERIES FOR DETERMINING THE MEAN OF A NORMAL POPULATION FOR DISCRETE POPULATIONS FOR DUBLY-GENSORED DATA. FOR EQUAL CATCHABILITY FOR EQUALITY OF MEANS WHEN COVARIANCE MATRICES FOR EXACT LINEAR RESTRICTIONS IN REGRESSION FOR EQUALITY OF PROPORTIONS AFTER ADJUSTMEN FOR HETEROGENEITY OF PROPORTIONS AFTER ADJUSTMEN FOR HETEROGENEITY OF PROPORTIONS OF THE RANGE	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JINSSB66 BIOKA55 BIOKA55 JRSSB68 BIOKA66 JASA 69 AMS 68 AMS 68 AMS 68 AMS 68 BIOKA65 BIOKA65 JASA 69 BIOKA65 BIOKA66	447 504 971 1537 850 1B0 475 523 119 250 461 937 23 500 531 NO. 4 197 203 75 106 544 179 316 612 337 NO. 2 650 661 337 NO. 2 650 671 594 615 617 817 818 818 818 818 818 818 818 818 8
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT DATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OP-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFULL PERCENTAGE POINTS OF A A RANK SUM SAMPLES A GENERALIZED WILCOXON NOTE ON A THREE-DECISION A TWO-SAMPLE DISTRIBUTION FREE ON PLACKETT'S ON THE EFFICIENCY OF TWO-SAMPLE MANN-WHITNEY A GENERALIZED TWO-SAMPLE MANN-WHITNEY A GENERALIZED THE MEAN SQUARE A DISTRIBUTION-FREE TWO SAMPLE A GENERALIZED TWO-SAMPLE WILCOXON ARE UNEQUAL A STATISTICAL TABLES FOR THE MEAN SQUARE ERROR EXACT POWER OF MANN-WHITNEY T FOR STRATIFICATION (ADDENDUM 67/ THE CHI-SQUARE A NEW FROM DISCRETE UNIFORM FINITE POPULATIONS AND A RANGE A TWO-WAY CLASSIFICATION	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A NORMAL MEAN FOR A NORMAL MEAN FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR APPROXIMATE NUMERICAL RATIONALITY /'A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR COMPARING ALL PAIRS OF TREATMENTS FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING MATCHED PROPORTIONS IN CROSSOVER FOR COMPARING TWO BINOMIAL POPULATIONS FOR COMPARING VARIANCES FOR CONTINGENCY TABLE INTERACTIONS FOR CORRELATION BETWEEN TIME SERIES FOR DETERMINING THE MEAN OF A NORMAL POPULATION FOR DISCRETE POPULATIONS FOR DISCRETE POPULATIONS FOR DISCRETE POPULATIONS FOR DISCRIMINATING BETWEEN MODELS FOR DUBLY-GENSORED DATA. FOR EQUALITY OF MEANS WHEN COVARIANCE MATRICES FOR EQUALITY OF MEANS WHEN COVARIANCE MATRICES FOR EQUALITY OF TWO AVAILABLITIES FOR EXACT LINEAR RESTRICTIONS IN REGRESSION FOR EXPONENTIAL AND RECTANGULAR ALTERNATIVES FOR HETEROGENEITY OF PROPORTIONS AFTER ADJUSTMEN FOR HETEROSKEDASTICITY FOR HOMOGENEITY OF THE MARGINAL DISTRIBUTIONS IN	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JINSSB66 BIOKA55 BIOKA55 JRSSB68 BIOKA66 JASA 69 AMS 68 AMS 68 AMS 68 AMS 68 BIOKA65 BIOKA65 JASA 69 BIOKA65 BIOKA66	447 504 971 1537 850 119 250 461 97 27 23 50 50 106 544 197 203 706 544 179 106 544 179 1365 612 650 87 87 87 87 87 87 87 87 87 87
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT DATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFUL SAMPLES A GENERALIZED WILCOXON A TWO-SAMPLE DISTRIBUTION FREE ON PLACKETT'S ON THE EFFICIENCY OF TWO-SAMPLE MANN-WHITNEY A A DISTRIBUTION-FREE TWO SAMPLE A GENERALIZED TWO-SAMPLE WILCOXON ARE UNEQUAL A STATISTICAL TABLES FOR THE MEAN SQUARE ERROR EXACT POWER OF MANN-WHITNEY T FOR STRATIFICATION (ADDENDUM 67/ THE CHI-SQUARE A NEW FROM DISCRETE UNIFORM FINITE POPULATIONS AND A RANGE A TWO-WAY CLASSIFICATION ON BARTLETT'S TEST AND LEHMANN'S	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A NORMAL MEAN FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR APPROXIMATE NUMERICAL RATIONALITY /'A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR COMPARING ALL PAIRS OF TREATMENTS FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING WARIANCES FOR COMPARING VARIANCES FOR COMPARING TWO BINOMIAL POPULATIONS FOR CORPARING VARIANCES FOR DETERMINING THE MEAN OF A NORMAL POPULATION FOR DISCRETE POPULATIONS FOR EQUAL TY OF MEANS WHEN COVARIANCE MATRICES FOR EQUAL TY OF MEANS WHEN COVARIANCE MATRICES FOR EXACT LINEAR RESTRICTIONS IN REGRESSION FOR EXPONENTIAL AND RECTANGULAR ALTERNATIVES FOR EXACT LINEAR RESTRICTIONS AFTER ADJUSTMEN FOR HETEROGENETTY OF PROPORTIONS AFTER ADJUSTMEN FOR HETEROGENETTY OF PROPORTIONS AFTER ADJUSTMEN FOR HOMOGENEITY OF THE MARGINAL DISTRIBUTIONS IN FOR HOMOGENEITY OF THE MARGINAL DISTRIBUTIONS IN FOR HOMOGENEITY OF VARIANCES	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JRSSB65 BIOKA55 JRSSB57 BIOKA55 JRSSB68 SASJ 69 BIOCS66 JASA 69 JASA 69 JASA 69 TECH 60 BIOKA65 BIOKA66 JRSSB63 BIOKA66	447 504 971 1537 850 1B0 475 523 119 9 937 7 23 50 531 NO 4 197 203 75 106 544 179 316 612 330 671 594 NO 4 945 650 330 671 594 NO 4 NO 4 150 150 150 150 150 150 150 150
ESTIMATION FROM LIFE IBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED LIFE IGNIFIGANCE LEVEL AND OTHER SMALL SAMPLE MEASURES OF ERVALS BASED ON PARTIAL OBSERVATIONS IN GERTAIN LIFE IDENT PRONENESS (AGKNOWLEDGEMENT 66 585) THE ASYMPTOTIG EFFIGIENCY OF THE CHI-SQUARE-SUB-R UNKNOWN POINT DATA A COMPARISON OF TWO SORTS OF THE CHI-SQUARE GOODNESS-OF-FIT A MULTI-STAGE ON THE DISTRIBUTION AND POWER OF A ERARCHAL DESIGN WITH A MIXED MO/ NOTE. THE QUASI-F BJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' NGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFUL SAMPLES A GENERALIZED WILCOXON A TWO-SAMPLE DISTRIBUTION FREE ON PLACKETT'S ON THE EFFICIENCY OF TWO-SAMPLE MANN-WHITNEY A A DISTRIBUTION-FREE TWO SAMPLE A GENERALIZED TWO-SAMPLE WILCOXON ARE UNEQUAL A STATISTICAL TABLES FOR THE MEAN SQUARE ERROR EXACT POWER OF MANN-WHITNEY T FOR STRATIFICATION (ADDENDUM 67/ THE CHI-SQUARE A NEW FROM DISCRETE UNIFORM FINITE POPULATIONS AND A RANGE A TWO-WAY CLASSIFICATION ON BARTLETT'S TEST AND LEHMANN'S	TEST TEST TEST TEST TEST TEST TEST TEST	DATA DATA /PARAMETERS OF MIXED EXPONENTIALLY DISTR EFFICIENCY THE MEDIAN S EFFICIENCY PROPOSED BY R. R. BAHADUR EXPERIMENTS A NOTE ON PREDICTION INT FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACG FOR A BALANCED INCOMPLETE BLOCK DESIGN FOR A CHANGE IN A PARAMETER OCCURRING AT AN FOR A CHANGE OF LOCATION APPLICABLE TO TRUNCATED FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS FOR A NORMAL MEAN FOR A SINGLE OUTLIER FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HI FOR APPROXIMATE NUMERICAL RATIONALITY A SU FOR APPROXIMATE NUMERICAL RATIONALITY /'A SU FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE FOR COMPARING ALL PAIRS OF TREATMENTS FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING ARBITRARILY SINGLY-CENSORED FOR COMPARING TWO BINOMIAL POPULATIONS FOR COMPARING TWO BINOMIAL POPULATIONS FOR COMPARING THE MEAN OF A NORMAL POPULATION FOR CORRELATION BETWEEN TIME SERIES FOR DETERMINING THE MEAN OF A NORMAL POPULATION FOR DISCRETE POPULATIONS FOR DETERMINATING BETWEEN MODELS FOR DOUBLY-GENSORED DATA FOR EQUALITY OF MEANS WHEN COVARIANCE MATRICES FOR EQUALITY OF TWO AVAILABILITIES FOR EQUALITY OF TWO AVAILABILITIES FOR EQUALITY OF TWO AVAILABILITIES FOR EXPONENTIAL AND RECTANGULAR ALTERNATIVES FOR HETEROSKEDASTICITY FOR HOMOGENEITY OF PROPORTIONS AFTER ADJUSTMEN FOR HOMOGENEITY OF PROPORTIONS OF THE RANCE FOR HOMOGENEITY OF THE MARGINAL DISTRIBUTIONS IN FOR HOMOGENEITY OF VARIANCES FOR INDEPENDENCE OF DICHOTOMOUS RESPONSES	TECH 60 BIOKA58 JASA 69 AMS 64 TECH 68 JASSA66 BIOKA55 BIOKA55 BIOKA55 BIOKA64 JASSB57 BIOKA64 JASA 69 JASA 69 JASA 69 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA66	447 504 971 1537 850 1B0 250 475 523 119 250 531 NO 4 179 203 75 106 544 179 316 661 337 NO .2 665 330 671 NO .4 1365 612 337 NO .4 179 316 612 337 850 875 875 875 875 875 875 875 875

```
A BIVARIATE SICN TEST FOR LOCATION
                                                   A TEST FOR MARKOFF CHAINS
                                                                                                              BIOKA54 430
                                 THE LIKELIHOOD RATIO TEST FOR MARKOFF CHAINS
                                                                                                              BIOKA55
                                                                                                                       531
                 CORRICENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOFF CHAINS'
                                                                                                             BIOKA57
                                                                                                                       301
                                        A COMPARISON TEST FOR MARTINCALE INEQUALITIES
                                                                                                               AMS 69 505
             EFFECT OF NON-NORMALITY ON A SEQUENTIAL TEST FOR MEAN
                                                                                                              BTOKA64 281
SPACING
                                                      TEST FOR MONOTONE FAILURE RATE BASED ON NORMALIZED
                                                                                                              AMS 69 1216
                             A BAYESIAN SICNIFICANCE TEST FOR MULTINOMIAL DISTRIBUTIONS (WITH DISCUSSION)
                                                                                                             JRSSB67 399
                MULTIVARIATE BETA DISTRIBUTION AND A TEST FOR MULTIVARIATE NORMALITY
                                                                                                              JRSSB68 511
                                    POWER OF TUKEY'S TEST FOR NON-ADDITIVITY
                                                                                                              JRSSB63
                                                                                                                      213
      SMALL SAMPLE POWER FOR THE ONE SAMPLE WILCOXON TEST FOR NON-NORMAL SHIFT ALTERNATIVES
                                                                                                              AMS 65 1767
                                                   A TEST FOR NON-STATIONARITY OF TIME-SERIES
                                                                                                              JRSSB69
                      THE CHI-SQUARE GOODNESS-OF-FIT TEST FOR NORMAL DISTRIBUTIONS
                                                                                                              BIOKA57
                             AN ANALYSIS OF VARIANCE TEST FOR NORMALITY (COMPLETE SAMPLES)
                                                                                                             BIOKA65
                           ON THE KOLMOCOROV-SMIRNOV TEST FOR NORMALITY WITH MEAN AND VARIANCE UNKNOWN
                                                                                                             JASA 67
      FOR THE NULL DISTRIBUTION OF THE W-STATISTIC + (TEST FOR NORMALITY)
                                                                                             APPROXIMATIONS TECH 68
                              ON AN EXTREME RANK SUM TEST FOR OUTLIERS
                                                                                                              BIOKA63 375
                                                   A TEST FOR RANDOM MINGLING OF THE PHASES OF A MOSAIC
                                                                                                              BIOCS67
                                                                                                                       657
                                              THE GAP TEST FOR RANDOM SEQUENCES
                                                                                                              AMS 61
                                                                                                                       524
                                         A SEQUENTIAL TEST FOR RANDOMNESS
                                                                                                              BIOKA53 111
                                                                                                             JRSSB56
                                         A SEQUENTIAL TEST FOR RANDOMNESS OF INTERVALS
                                                                                                                        95
                                                   A TEST FOR REALITY OF A COVARIANCE MATRIX IN A CERTAIN
COMPLEX GAUSSIAN DISTRIBUTION
                                                                                                              AMS 65
                                                                                                                      115
                            PATTERNS IN RESIDUALS, A TEST FOR REGRESSION MODEL ADEQUACY IN RADIONUCLIDE
                                                                                                              TECH 65
                                                                                                                       603
                                     AN APPROXIMATE TEST FOR SERIAL CORRELATION IN POLYNOMIAL REGRESSION
                                                                                                             BIOKA60 111
NONSTATIONARY TIME SERIES
                                             A QUICK TEST FOR SERIAL CORRELATION SUITABLE FOR USE WITH
                                                                                                             JASA 63
                                                ON A TEST FOR SEVERAL LINEAR RELATIONS
                                                                                                              JRSSB69
                                       A SIGNIFICANCE TEST FOR SIMULTANEOUS QUANTAL AND QUANTITATIVE
                                                                                                              TECH 64
RESPONSES
                                                                                                                       273
TH SPECIAL REFERENCE TO ACCIDENTS/
                                       THE CHI-SQUARE TEST FOR SMALL EXPECTATIONS IN CONTINGENCY TABLES, WI BIOKA59
                                                                                                                       365
ASYMPTOTIC EFFICIENCIES OF A NONPARAMETRIC LIFE TEST FOR SMALLER PERCENTILES OF A GAMMA DISTRIBUTION JASA 56
Y TIME SERIES WITH NORMAL RESID/ A GOODNESS OF FIT TEST FOR SPECTRAL DISTRIBUTION FUNCTIONS OF STATIONAR BIOKA56
                                                                                                                       467
                                                                                                                       257
OXIMATION FOR THE EXACT DISTRIBUTION OF THE WILCOXON TEST FOR SYMMETRY
                                                                                                     AN APPR JASA 64
                                                                                                                       899
FUNCTION
                                                   A TEST FOR SYMMETRY USING THE SAMPLE DISTRIBUTION
                                                                                                              AMS 69 NO.6
                                           A REVISED TEST FOR SYSTEMATIC OSCILLATION
                                                                                                              JRSSB54 292
   OF A UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR THE BINOMIAL
                                                                                   EXISTENCE AND UNIQUENESS BIOKA56
                                                                                                                       465
                                    A NON-PARAMETRIC TEST FOR THE BIVARIATE TWO-SAMPLE LOCATION PROBLEM
 THE NORMA/ SMALL SAMPLE POWER OF A NON-PARAMETRIC TEST FOR THE BIVARIATE TWO-SAMPLE LOCATION PROBLEM IN JRSSB68
       ON THE NULL DISTRIBUTION OF A NON-PARAMETRIC TEST FOR THE BIVARIATE TWO-SAMPLE PROBLEM
                                                                                                             JRSSB69
                                                                                                                        9B
                       AN EXTENSION OF QUENOUILLE'S TEST FOR THE COMPATIBILITY OF CORRELATION STRUCTURES
IN TIME SERIES
                                                                                                                      180
                                                                                                             JRSSB68
AND RELATED PROBLEMS
                                     A CONSERVATIVE TEST FOR THE CONCURRENCE OF SEVERAL REGRESSION LINES
                                                                                                             BIOKA66
                                                                                                                       272
2-BY-2 TAB/ CORRIGENDA, 'THE POWER FUNCTION OF THE TEST FOR THE DIFFERENCE BETWEEN TWO PROPORTIONS IN A
                                                                                                             BTOKA59
                                                                                                                       502
PREDICTORS
                                A SIGNIFICANCE TEST FOR THE DIFFERENCE IN EFFICIENCY BETWEEN TWO
                                                                                                             JRSSB55
                                                                                                                      266
ES ACAINST ONE-SIDED ALTERNATI/ ON A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRIC AMS 62 1463
                                                                                                                      3B7
                           ON THE KOLMOGOROV-SMIRNOV TEST FOR THE EXPONENTIAL DISTRIBUTION WITH MEAN
                                                                                                             JASA 69
     THE EFFECT OF UNEQUAL GROUP VARIANCES ON THE F-TEST FOR THE HOMOGENEITY OF GROUP MEANS
                                                                                                             BIOKA53 128
 A LOCALLY MOST POWERFUL BOUNDARY RANDOMIZED SIMILAR TEST FOR THE INDEPENDENCE OF TWO POISSON VARIABLES
                                                                                                              AMS 61
                                                                                                                       809
                                      A LARGE SAMPLE TEST FOR THE INDEPENDENCE OF TWO RENEWAL PROCESSES
                                                                                                              AMS 67 1037
                                        A NOTE ON THE TEST FOR THE LOCATION PARAMETER OF AN EXPONENTIAL
DISTRIBUTION
                                                                                                              AMS 69 1838
                                          SEQUENTIAL TEST FOR THE MEAN OF A NORMAL DISTRIBUTION III, SMALL AMS 65
                                     A RAPID TEST FOR THE POISSON DISTRIBUTION USING THE RANCE A NONPARAMETRIC TEST FOR THE PROBLEM OF SEVERAL SAMPLES
                                                                                                             BIOCS67
                                                                                                                       685
                                                                                                              · AMS 61 1108
IBUTION EFFECT OF TRUNCATION ON A TEST FOR THE SCALE PARAMETER OF THE EXPONENTIAL DISTR AMS 64 209
EANS IN TWO NORMAL POPULATIONS HAVING UNEQUAL VAR/ TEST FOR THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN M BIOKA51 252
                                             ANOTHER TEST FOR THE UNIFORMITY OF A CIRCULAR DISTRIBUTION
                                                                                                             BTOKA67
                                                                                                                       675
                  ON THE POWER FUNCTION OF THE EXACT TEST FOR THE 2-BY-2 CONTINCENCY TABLE
                                                                                                             BIOKA60
                                                                                                                      393
     CORRICENDA, 'ON THE POWER FUNCTION OF THE EXACT TEST FOR THE 2-BY-2 CONTINGENCY TABLE'
                                                                                                             BIOKA61 475
                     THE POWER FUNCTION OF THE EXACT TEST FOR THE 2-BY-3 CONTINCENCY TABLE
                                                                                                             TECH 64
                                                                                                                       439
                       THE EFFICIENCY OF THE RECORDS TEST FOR TREND IN NORMAL REGRESSION
                                                                                                             JRSSB57 149
                                      THE EXCEEDANCE TEST FOR TRUNCATION OF A SUPPLIER'S DATA
                                                                                                             JASA 69
                                             A SIMPLE TEST FOR UNIFORMITY OF A CIRCULAR DISTRIBUTION
                                                                                                             BIOKA68 343
               ON HODGES'S BIVARIATE SIGN TEST AND A TEST FOR UNIFORMITY OF A CIRCULAR DISTRIBUTION
                                                                                                             BTOKA69
                                                   A TEST FOR VARIANCE HETEROGENEITY IN THE RESIDUALS OF A JRSSB63 451
 GAUSSIAN MOVINC AVERAGE
                                      THE POWER OF A TEST IN COVARIANCE ANALYSIS
                                                                                                             BIOCS69 NO.4
                      ON THE EXACT DISTRIBUTION OF A TEST IN MULTIVARIATE ANALYSIS
                                                                                                             JRSSB5B 108
CE-COVARI/ ON THE ROBUSTNESS OF THE T-SQUARE-SUB-O TEST IN MULTIVARIATE ANALYSIS OF VARIANCE WHEN VARIAN BIOKA64
                                                                                                                       71
    OF NON-NORMALITY ON THE POWER FUNCTION OF THE F-TEST IN THE ANALYSIS OF VARIANCE THE EFFECT BIOKAS1
                                                                                                                        43
OCIATE PARTIALLY BALANCED INCOMPLETE BLO/ ON THE F-TEST IN THE INTRABLOCK ANALYSIS OF A CLASS OF TWO ASS JASA 65 285
 DISTRIBUTION FREE VERSION OF THE SMIRNOV TWO SAMPLE TEST IN THE P-VARIATE CASE
                                                                                                           A AMS 69
                                                                                                                       ٦
          MINIMAX CHARACTER OF HOTELLING'S T-SQUARED TEST IN THE SIMPLEST CASE
                                                                                                              AMS 63 1524
       FIRST AND SECOND MOMENTS OF THE RANDOMIZATION TEST IN TWO ASSOCIATE PB18 DESICNS
                                                                                                             JASA 69 NO.4
                                       A STATISTICAL TEST INVOLVING A RANDOM NUMBER OF RANDOM VARIABLES
                                                                                                              AMS 66 1305
      STATISTICAL PROBLEMS IN SCIENCE. THE SYMMETRIC TEST OF A COMPLETE HYPOTHESIS
                                                                                                             JASA 69 NO.4
                            ON THE LIKELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING PROBLEM II
                                                                                                              AMS 65 1061
64 1388
                             ON THE LIKELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING PROBLEM, CORR.
                                                                                                              AMS 64 181
THE QUINTUS CURTIUS SNODCRASS LETTERS, A STATISTICAL TEST OF AUTHORSHIP
                                                                                            MARK TWAIN AND
                                                                                                            JASA 63
           SMALL SAMPLE POWER OF THE 81VARIATE SIGN TEST OF BLUMEN AND HODCES
                                                                                                              AMS 64 1576
                                                   A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS ASSUM
                                                                                                             AMS 69 1374
ING HOMOCENEOUS COEFFICIENTS OF VARIATION
                                                    A TEST OF HOMOGENEITY FOR ORDERED ALTERNATIVES
                                                                                                             BTOKA59
                                                                                                                       36
                                                   A TEST OF HOMOGENEITY FOR ORDERED ALTERNATIVES. II
                                                                                                             BT0KA59 328
                                                    A TEST OF HOMOGENEITY FOR ORDERED VARIANCES
                                                                                                             JRSS861
                                                                                                                      1.95
                          EMPIRIC INVESTIGATION OF A TEST OF HOMOGENEITY FOR POPULATIONS COMPOSED OF NORMA JASA 58
L DISTRIBUTIONS
                                                                                                                      551
                                                                                                             8IOKA55
           THE RAPID CALCULATION OF CHI-SQUARE AS A TEST OF HOMOGENEITY FROM A 2-BY-N TABLE
                                                                                                                      519
TIVES (WITH DISCUSSION)
                                                   A TEST OF HOMOGENEITY OF MEANS UNDER RESTRICTED ALTERNA JRSS861
                                                                                                                      239
                                                                                                             JASA 56 644
               QUADRATIC EXTRAPOLATION AND A RELATED TEST OF HYPOTHESES
                    A SHORT-CUT RULE FOR A ONE-SIDED TEST OF HYPOTHESIS FOR QUALITATIVE DATA
                                                                                                             TECH 69 197
                                        CORRIGENDA, 'TEST OF INDEPENDENCE IN INTRACLASS 2-8Y-2 TABLES'
                                                                                                             BIOKA61 476
           COMPARISON OF THE POWER FUNCTIONS FOR THE TEST OF INDEPENDENCE IN 2X2 CONTINGENCY TABLES
                                                                                                              AMS 64 1115
```

TITLE WORD INDEX TES - TES

IONS A DISTRIBUTION-FREE TEST OF INDEPENDENCE WITH A SAMPLE OF PAIRED OBSERVAT		116
INTO THE SMALL SAMPLE PROPERTIES OF A TWO SAMPLE TEST OF LEHMANN'S AN INVESTIGATION		345
RECRESSION CURVE A TEST OF LINEARITY VERSUS CONVEXITY OF A MEDIAN A DEVELOPMENT OF TUKEY'S QUICK TEST OF LOCATION	AMS 62 JASA 66	949
	BIOKA54	
	TECH 62	430
SPACE A SEQUENTIAL TEST OF RANDOMNESS FOR EVENTS OCCURRING IN TIME OR	BIOKA56	64
	JRSSB56	
OR POSSIBLY TWO SAMPLES SUBSEQUENT TO A PRELIMINARY TEST OF SIGNIFICANCE /RELATION COEFFICIENT FROM ONE		
	JRSSB56 JRSSB56	61 56
NO. 1/ COMMENT ON SIR RONALD FISHER'S PAPER. 'ON A TEST OF SIGNIFICANCE IN PEARSON'S BIOMETRIKA TABLES (295
TO SEQUENTIAL CLINICAL TRIALS A BAYESIAN TEST OF SOME CLASSICAL HYPOTHESES, WITH APPLICATIONS		577
	JRSSB58	
	AMS 62 JASA 56	471 17
A TEST OF THE ACCURACY OF A PRODUCTION INDEX A SAMPLINC TEST OF THE CHI-SQUARE THEORY FOR PROBABILITY CHAINS		118
L DISTRIBUTION A SEQUENTIAL TEST OF THE EQUALITY OF PROBABILITIES IN A MULTINOMIA		769
ANALYSIS POWER OF THE LIKELIHOOD-RATIO TEST OF THE CENERAL LINEAR HYPOTHESIS IN MULTIVARIATE		467
	BIOKA62	107 558
ONS IN LINEAR RECRESSION A TEST OF THE MEAN SQUARE ERROR CRITERION FOR RESTRICTI A TEST OF VARIANCES	JASA 58	741
	BIOKA64	
NC TIME OF A RANK-ORDER SEQUENTIAL PROBABILITY RATIO TEST ON LEHMANN ALTERNATIVES, CORR. 67 1309 STOPPI	AMS 66	1154
	TECH 65	485
	BIOKA66 JRSSB68	431 582
WHEN AN UPPER BOUND TO THE STANDARD DEVIATION/ A TEST PROCEDURE WITH A SAMPLE FROM A NORMAL POPULATION		94
	JASA 61	125
	TECH 62	140
OF A UNIVARIATE MODEL AND ASSOCIATED ESTIMATION AND TEST PROCEDURES / PAIRED COMPARISONS. THE EXTENSION		81
AL DATA SIMULTANEOUS TEST PROGEDURES FOR MULTIPLE COMPARISONS ON CATECORIC STATISTICAL DISTRIBUTIONS OCCURING AT UNKNOWN TI/ TEST PROCEDURES FOR POSSIBLE CHANGES IN PARAMETERS OF		
SIMILTANIOUS TEST PROCEDURES IN MULTIVARIATE ANALYSIS OF VARIANCE		4B9
EM A CONFIDENCE INTERVAL COMPARISON OF TWO TEST PROCEDURES PROPOSED FOR THE BEHRENS-FISHER PROBL		454
	JASA 67	548
	AMS 69 AMS 65	
	TECH 66	591
	TECH 62	151
	BIOKA56	386
	BIOKA63	177
EXACT CRITICAL VALUES FOR MOOD'S DISTRIBUTION-FREE TEST STATISTIC FOR DISPERSION AND ITS NORMAL APPROXIM B/ ON THE DISTRIBUTION OF THE LOG LIKELIHOOD RATIO TEST STATISTIG WHEN THE TRUE PARAMETER IS 'NEAR' THE	AMS 6B	497 2044
THE INDEX OF DISPERSION AS A TEST STATISTIC.	BIOKA65	627
THE INDEX OF DISPERSION AS A TEST STATISTIC. 'EXTENDED TABLES OF CRITICAL VALUES FOR WILGOXON'S TEST STATISTIC.' RATES OF CONVERCENCE OF ESTIMATES AND TEST STATISTICS ON THE COMBINATION OF INDEPENDENT TEST STATISTICS CERTAIN UNCORRELATED NONPARAMETRIG TEST STATISTICS SIGNIFICANCE LEVEL AS A SENSITIVITY INDEX FOR TEST STATISTICS QUENCE OF TWO ALTERNATIVES. I. WILCOXON'S AND ALLIED TEST STATISTICS IONS OF CENERALIZED CLASSICAL LINEAR IDENTIFIABILITY TEST STATISTICS ON FINITE SAMPLE DISTRIBUT	BIOKA64	527
RATES OF CONVERCENCE OF ESTIMATES AND TEST STATISTICS	AMS 67	303
ON THE COMBINATION OF INDEPENDENT TEST STATISTICS CERTAIN UNCORRELATED NONPARAMETRIG TEST STATISTICS	AMS 67	659 707
SIGNIFICANCE LEVEL AS A SENSITIVITY INDEX FOR TEST STATISTICS EXPECTED	JASA 65	420
QUENCE OF TWO ALTERNATIVES. I. WILCOXON'S AND ALLIED TEST STATISTICS NON-RANDOMNESS IN A SE	BIOKA58	166
IONS OF CENERALIZED CLASSICAL LINEAR IDENTIFIABILITY TEST STATISTICS ON FINITE SAMPLE DISTRIBUT	JASA 60	650
M THE ASIMPTOTIC NORMALITY OF TWO TEST STATISTICS ASSOCIATED WITH THE TWO-SAMPLE PROBLE	AMS 63 BIOKA64	1513 253
RATION OF THE DISTRIBUTION OF SEVERAL NON-PARAMETRIC TEST STATISTICS UNDER CENSORING RECURSIVE CENE		353
PROBLEMS IN MENTAL TEST THEORY ARISING FROM ERRORS OF MEASUREMENT	JASA 59	472
BY MONTE CARLO METHODS USE OF WILCOXON TEST THEORY IN ESTIMATING THE DISTRIBUTION OF A RATIO		
QUERY, SAVINGS IN TEST TIME WHEN COMPARINC WEIBULL SCALE PARAMETERS THE APPLICATION OF THE GOMBINATION OF PROBABILITIES TEST TO A SET OF 2-BY-2 TABLES A NOTE ON	TECH 64	471 404
	TECH 59	31
R. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED POINT, COR	JASA 60	125
D/ SOME MONTE CARLO RESULTS ON THE POWER OF THE F-TEST UNDER PERMUTATION IN THE SIMPLE RANDOMIZED BLOCK		
	JASA 69 JRSSB61	
PARAMETERS TABLES FOR THE SIGN TEST WHEN OBSERVATIONS ARE ESTIMATES OF BINOMIAL		
OTHESES INADMISSIBILITY OF THE BEST INVARIANT TEST WHEN THE MOMENT IS INFINITE UNDER ONE OF THE HYP	AMS 69	1483
	JASA 65	
A MEDIAN TEST WITH SEQUENTIAL APPLICATION ATION TO THE POWER OF THE CHI-SQUARE GOODNESS OF FIT TEST WITH SMALL BUT EQUAL EXPECTED FREQUENCIES /XIM	BIOKA63	
	TECH 62	
THE FIRST-MEDIAN TEST. A TWO-SIDED VERSION OF THE CONTROL MEDIAN TEST	JASA 68	692
O THE DISTRIBUTION OF THE SAMPLE SIZE FOR SEQUENTIAL TEST. II. TESTS OF COMPOSITE HYPOTHESES /XIMATION T		
USE OF RANGE IN PLACE OF STANDARD DEVIATION IN THE T-TEST.' A MULTIPLE COMPARISONS SIGN TEST, ALL PAIRS OF TREATMENTS CORRIGENDA, 'THE	BIOKA52 BIOCS67	
THE POWER OF STUDENT'S T-TEST CORR 65 1251	JASA 65	320
RMANCE OF THE TRUNCATED SEQUENTIAL PROBABILITY RATIO TEST, CORR. 66 1247 ON THE PERFO	JASA 65	979
A PROPOSED TWO-SAMPLE RANK TEST, THE PSI TEST AND ITS PROPERTIES	JRSSB64	
A MULTIPLE COMPARISON SIGN TEST, TREATMENTS VERSUS GONTROL		
N DETRIEDN THO COMPOCITE / A LABOR CAMBLE CROHENTAL TROOP HOLD COMPONENTAL TROOP TO STORE THE CONTRACT OF THE	JASA 59	
N BETWEEN TWO COMPOSITE/ A LARGE SAMPLE SEQUENTIAL TEST, USING CONCOMITANT INFORMATION FOR DISCRIMINATIO CORRIGENDA. 'ON A TWO-SIDED SEQUENTIAL T-TEST'	JASA 59 JASA 66	357
	JASA 59 JASA 66 BIOKA54	357 56B
CORRICENDA, 'ON A TWO-SIDED SEQUENTIAL T-TEST' LASS OF 'INTERDEPENDENT/ A NOTE ON THE STATISTICAL TESTABILITY OF 'EXPLICIT CAUSAL GHAINS' AGAINST THE C A PROBLEM IN LIFE TESTING,	JASA 59 JASA 66 BIOKA54 JASA 65 JASA 57	357 56B 1080 350
CORRICENDA, 'ON A TWO-SIDED SEQUENTIAL T-TEST' LASS OF 'INTERDEPENDENT/ A NOTE ON THE STATISTICAL TESTABILITY OF 'EXPLICIT CAUSAL GHAINS' AGAINST THE C A PROBLEM IN LIFE TESTINC, FACTORIAL EXPERIMENTS IN LIFE TESTINC	JASA 59 JASA 66 BIOKA54 JASA 65 JASA 57 TECH 59	357 56B 1080 350 269
CORRICENDA, 'ON A TWO-SIDED SEQUENTIAL T-TEST' LASS OF 'INTERDEPENDENT/ A NOTE ON THE STATISTICAL TESTABILITY OF 'EXPLICIT CAUSAL GHAINS' AGAINST THE C A PROBLEM IN LIFE TESTINC, FACTORIAL EXPERIMENTS IN LIFE TESTINC EARLY FAILURES IN LIFE TESTING	JASA 59 JASA 66 BIOKA54 JASA 65 JASA 57 TECH 59 JASA 60	357 56B 1080 350 269 491
CORRICENDA, 'ON A TWO-SIDED SEQUENTIAL T-TEST' LASS OF 'INTERDEPENDENT/ A NOTE ON THE STATISTICAL TESTABILITY OF 'EXPLICIT CAUSAL GHAINS' AGAINST THE C A PROBLEM IN LIFE TESTINC FACTORIAL EXPERIMENTS IN LIFE TESTINC EARLY FAILURES IN LIFE TESTING PROCRESSIVELY CENSORED SAMPLES IN LIFE TESTING	JASA 59 JASA 66 BIOKA54 JASA 65 JASA 57 TECH 59	357 56B 1080 350 269 491 327

```
ON PRECEDENCE LIFE TESTING
                                                                                                                                           TECH 65
               ESTIMATION FROM QUANTILES IN DESTRUCTIVE TESTING
                                                                                                                                           JRSSB61
  STATISTICAL ASPECTS OF THE ECONOMICS OF ANALYTICAL TESTING
                                                                                                                                    SOME TECH 59
                                                                                                                                                        49
SAMPLING DISTRIBUTION OF AN ESTIMATE ARISING IN LIFE TESTING
                                                                                                                                    THE TECH 63
OF RELIABILITY FOR SOME DISTRIBUTIONS USEFUL IN LIFE TESTING
                                                                                                                            ESTIMATES TECH 64
            SAVACE STATISTIC WITH APPLICATIONS TO LIFE TESTING
                                                                                                                    ON A CENERALIZED AMS 68 1591
         DISTRIBUTIONS, SAMPLING THEORY AND HYPOTHESIS TESTING
                                                                                                          HALF-RECTIFIED TRUNCATED TECH 69
                                                                                                                                                       47
      MOMENTS OF THE POSITIVE BINOMIAL USEFUL IN LIFE TESTING
                                                                                                AN APPROXIMATION OF THE NECATIVE TECH 60
ECRESSION AS APPLIED TO EXTRAPOLATION IN S-N FATICUE TESTING
                                                                                 /N IN PRECISION FOR OPTIMAL ALLOCATION IN R TECH 69
                                                                                                                                                      389
           ON THE DISTRIBUTION OF A STATISTIC USED FOR TESTING A COVARIANCE MATRIX
                                                                                                                                           BIOKA68
                                                                                                                                                      171
RMEDIATE STATES AND RESTRICTED ORDER
                                                                    TESTING A MARKOV HYPOTHESIS WITH INDEPENDENCE OF INTE BIOKA67
                                                                                                                                                      605
                               A SEQUENTIAL PROCEDURE FOR TESTING A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNA JRSSB69 NO.2
TIVE HYPOTHESIS
                                                             ON TESTING A SET OF CORRELATION COEFFICIENTS FOR
EQUALITY
                                                                                                                                            AMS 63
                                                                                                                                                      149
                                                                ON TESTING A SET OF CORRELATION COEFFICIENTS FOR EQUALIT BIOKA68
Y. SOME ASYMPTOTIC RESULTS
                                                                                                                                                       513
                                   A CHANCE-OVER DESIGN FOR TESTING A TREATMENT FACTOR AT FOUR EQUALLY SPACED LEV JRSSB67
ELS (CORR. 67 586)
                                                                                                                                                      370
SIS OF VARIANCE, NORMAL THEORY AND NONPARAMETRIC
                                                                  TESTING ACAINST ORDERED ALTERNATIVES IN MODEL I ANALY AMS 67 1740
                     DISTRIBUTION OF LIKELIHOOD RATIO IN TESTING ACAINST TREND
                                                                                                                                            AMS 69
                                                                                                                                                      371
                                                    QUERY, LIFE TESTING AND EARLY FAILURE
                                                                                                                                           TECH 66
                                                                                                                                                      539
                                                                    TESTING AND ESTIMATING OF SCALE PAREMENTERS
                                                                                                                                           JASA 69 999
MODEL
                                                                    TESTING AND ESTIMATION FOR A CIRCULAR STATIONARY
                                                                                                                                            AMS 69 1358
                                   THE CENERALIZED VARIANCE, TESTING AND RANKING PROBLEM
                                                                                                                                            AMS 67
                                                                                                                                                      941
                                      A BIBLIOCRAPHY ON LIFE TESTING AND RELATED TOPICS
                                                                                                                                           8I0KA58
                                                                                                                                                      521
   A SUPPLEMENT TO MENDENHALL'S BIBLIOCRAPHY ON LIFE TESTING AND RELATED TOPIC , CORR. 65 1249
                                                                                                                                           JASA 64 1231
                                  BAYESIAN APPROACH TO LIFE TESTING AND RELIABILITY ESTIMATION
                                                                                                                                           JASA 67
TER EXPONENTIAL DISTRIBUTION
                                                            LIFE TESTING AND RELIABILITY ESTIMATION FOR THE TWO PARAME JASA 69
            COMPARATIVE SAMPLING ACCEPTANCE SCHEMES IN TESTING ANTICENICITY OF VACCINES
                                                                                                                                           BIOCS66
                                                                                                                                                      684
                                                                    TESTING APPROXIMATE HYPOTHESES IN THE COMPOSITE CASE,
                                                                                                                                           AMS 62 1356
 CORR. 63
           THE USE OF LEAST FAVORABLE DISTRIBUTIONS IN TESTING COMPOSITE HYPOTHESES
                                                                                                                                            AMS 61 1034
  ON THE EXACT DISTRIBUTIONS OF VOTAW'S CRITERIA FOR TESTING COMPOUND SYMMETRY OF A COVARIANCE MATRIX
                                                                                                                                            AMS 69 B36
                             PAIRED COMPARISON DESIGNS FOR TESTING CONCORDANCE BETWEEN JUDGES
                                                                                                                                           BIOKA56
                                                                                                                                                      113
PERTIES AND AN APPLICATION OF A STATISTIC ARISING IN TESTING CORRELATION
                                                                                                                               SOME PRO AMS 69 1736
       ESTIMATION OF MIXED WEIBULL PARAMETERS IN LIFE TESTING ELECTRON TUSES
                                                                                                                           A GRAPHICAL TECH 59
                                                                                                                                                      389
 EQUALITY OF VARIANCES
                                                                    TESTING EQUALITY OF MEANS AFTER A PRELIMINARY TEST OF BIOKA62
                                                                                                                                                       403
CORRELATION
                                                                     TESTING EQUALITY OF MEANS IN THE PRESENCE OF
                                                                                                                                           BTOKA69
                                                                                                                                                      119
                                                                     TESTING FOR A JUMP IN THE SPECTRAL FUNCTION
                                                                                                                                           JRSSR61
                                                                                                                                                       394
                                                                     TESTING FOR CORRELATION BETWEEN NON-NECATIVE VARIATES BIOKA67
                                                                                                                                                      385
DISTRIBUTION
                                                                    TESTING FOR DEPARTURE FROM THE EXPONENTIAL
                                                                                                                                           BIOKA57
                                                                                                                                                       253
WHEN EXPECTATIONS ARE SMALL
                                                                 ON TESTING FOR GOODNESS-OF-FIT OF THE NEGATIVE BINOMIAL
                                                                                                                                           BIOCS69
                                                                                                                                                      143
                                                                    TESTING FOR HOMOCENEITY OF A BINOMIAL SERIES
                                                                                                                                                       426
                                                                                                                                           BTOKA6B
MULTINOMIAL DISTRIBUTIONS
                                                                     TESTING FOR HOMOGENEITY. I. THE BINOMIAL AND
                                                                                                                                                      167
                                                                                                                                           BIOKA66
                                                                     TESTING FOR HOMOCENEITY. II. THE POISSON DISTRIBUTION 810KA66
                                                                                                                                                       183
                                                                     TESTING FOR LINEAR CONTAGION, INVERSE SAMPLING
                                                                                                                                           JRSSB69 NO. 2
M DISTRIBUTION, PERCENTAGE POINTS AND APPLICATION TO TESTING FOR RANDOMNESS OF DIRECTIONS /TH THE UNIFOR BIOKA66
                                                                     TESTING FOR SERIAL CORRELATION IN LEAST SQUARES
                                                                     TESTING FOR SERIAL CORRELATION IN LEAST SQUARES
                                                                                                                                                        57
EOUS REGRESSION EQUATIONS
                                                                     TESTING FOR SERIAL CORRELATION IN SYSTEMS OF SIMULTAN BIOKA57
DISTRIBUTED VARIATES
                                                                     TESTING FOR SERIAL CORRELATION WITH EXPONENTIALLY
                                                                                                                                           BIOKA67
                                                                                                                                                       395
                                                                ON TESTING FOR THE DECREE OF A POLYNOMIAL
                                                                                                                                                      757
                                                                                                                                           TECH 68
ESSION 8Y A RANDOMISATION TECHNIQUE (ERRATA, 69 6/ TESTINC FOR THE INCLUSION OF VARIABLES IN LINEAR REGR TECH 66
                                                                                                                                                      695
                                               USE OF RANGE IN TESTING HETEROGENEITY OF VARIANCE
                                                                                                                                           BIOKA66
                                                                                                                                                      221
                                                                    TESTING HOMOGENEITY ACAINST ORDERED ALTERNATIVES
                                                                                                                                            AMS 63
                                                                                                                                                      945
 GENETICS IF THE AGE OF ONSET IS RANDOM
                                                                    TESTING HYPOTHESES AND ESTIMATINC PARAMETERS IN HUMAN BIOKA63
                                                                                                                                                      265
               CONSISTENT STATISTICS FOR ESTIMATING AND TESTING HYPOTHESES FROM CROUPED SAMPLES
                                                                                                                                           BTOKA66
                                                                                                                                                      545
                                                         NOTE ON TESTING HYPOTHESES IN AN UNBALANCED RANDOM EFFECTS
MODEL.
                                                                                                                                           BIOKA67
                                                                                                                                                      659
EXPERIMENTS
                                                                    TESTING HYPOTHESES IN RANDOMIZED FACTORIAL
                                                                                                                                            AMS 67 1494
                     NOTES. ESTIMATION AFTER PRELIMINARY TESTING IN ANOVA MODEL I
                                                                                                                                           BIOCS65
                                                                                                                                                     752
EXACT DISTRIBUTIONS OF LIKELIHOOD RATIO CRITERIA FOR TESTING INDEPENDENCE OF SETS OF VARIATES UNDER THE HU AMS 67 1160
RICTED ALTERNATIVES
                                      ON THE PROBLEM OF TESTING LOCATION IN MULTIVARIATE POPULATIONS FOR REST
                                                                                                                                            AMS 66
                                                                                                                                                     113
                                                                                                                         AN EMPIRICAL
 EVALUATION OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS
                                                                                                                                            AMS 62 1413
                                                                ON TESTING MORE THAN ONE HYPOTHESIS
                                                                                                                                            AMS 63 555
               DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTING MULTIVARIATE LINEAR HYPOTHESES
                                                                                                                                            AMS 61 333
LATIONS ACAINST A GIVEN/
                                  A CHART FOR SEQUENTIALLY TESTING OBSERVED ARITHMETIC MEANS FROM LOCNORMAL POPU TEGH 6B
                                                                                                                                                      605
                       AN EMPIRICAL BAYES APPROACH TO THE TESTING OF CERTAIN PARAMETRIC HYPOTHESES
                                                                                                                                            AMS 63 1370
                     ACCURACY REQUIREMENTS FOR ACCEPTANCE TESTING OF COMPLEX SYSTEMS
                                                                                                                                           JASA 59
PHOLOGICALLY INDISTINGUISHABLE OBJECTS STATISTICAL TESTING OF DIFFERENCES IN CASUAL 8EHAVIOUR OF TWO MOR BIOCS67
                                                                                                                                                      137
              ON THE SMOOTH EMPIRICAL BAYES APPROACH TO TESTING OF HYPOTHESES AND THE COMPOUND DECISION PROBL BIOKA68
                                                                                                                                                       В3
                                                                    TESTING OF MEANS WITH DIFFERENT ALTERNATIVES
                                                      SEQUENTIAL TESTING OF SAMPLE SIZE
                                                                                                                                           TECH 68
                                                                                                                                                      331
                         ASYMPTOTIC SHAPES FOR SEQUENTIAL TESTING OF TRUNCATION PARAMETERS
                                                                                                                                            AMS 68 203B
                                                               THE TESTING OF UNIT VECTORS FOR RANDOMNESS
                                                                                                                                           JASA 64
   MODEL FOR THE ANALYSIS OF THE EFFECTS OF MARCINAL TESTING ON SYSTEM RELIABILITY
                                                                                                                          A MARKOVIAN AMS 62
                                                                                                                                                      754
  THE LIKELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING PROBLEM, CORR. 64 1388
                                                                                                                                           AMS 64
                                                                                                                                                      181
                                     THE ROBUSTNESS OF LIFE TESTING PROCEDURES DERIVED FROM THE EXPONENTIAL
                                                                                                                                           TECH 61
                                                                                                                                                       29
DISTRIBUTION
                                                                                                                                           TECH 66
                RELIABILITY GROWTH DURING A DEVELOPMENT TESTING PROGRAM
                                                                                                                                                       53
 TABLES FOR TESTING SIGNIFICANCE IN A 2-BY-3 GONTINGENCY TABLE
UNBALANCED NESTED ANALYSIS OF VARIANCE/
OUR TO THE STORY OF 
                                                                                                                                            AMS 62
                                                                                                                                                     224
                                                                                                                                           TECH 63
                                                                                                                                                      501
                                                      NOTES. ON TESTING SIGNIFICANCE OF COMPONENTS OF VARIANCE IN THE BIOCS6B
                                                                                                                                                      423
      CURVES, AN OMNIBUS TECHNIQUE FOR ESTIMATION AND TESTING STATISTICAL HYPOTHESES
                                                                                                                            CONFIDENCE JASA 61
                                                                                                                                                      246
                                                                    TESTING THE APPROXIMATE VALIDITY OF STATISTICAL
HYPOTHESES
                                                                                                                                           JRSS854
                                                                                                                                                      261
STRIBUTION OF THE SEHRENS-FISHER-WELCH STATISTIC FOR TESTING THE DIFFERENCE BETWEEN THE MEANS OF TWO NORMA JRSSB61
ON TESTING THE EQUALITY OF K COVARIANCE MATRICES BIOKA69
                                                                                                                                                      377
                                                                                                                                                      216
                                                                 ON TESTING THE EQUALITY OF PARAMETERS IN K RECTANGULAR
POPULATIONS
                                                                                                                                           JASA 60
                                                                                                                                                      144
                                   AN ITERATED PROCEDURE FOR TESTING THE EQUALITY OF SEVERAL EXPONENTIAL DISTRIBUT JASA 63
                                                                                                                                                      435
IONS
                                                                 ON TESTING THE EQUALITY OF UNIFORM AND RELATED
DISTRIBUTIONS
                                                                                                                                           JASA 66
                                                                                                                                                      856
VARIANCES TESTING THE HOMOGENEITY OF A SET OF CORRELATED BIOKA68
FOR HARTLEY'S CORRECTION TO BARTLETT'S CRITERION FOR TESTING THE HOMOGENEITY OF A SET OF VARIANCES /NTS BIOKA62
                                                                                                                                                      317
                                                                                                                                                      4R7
```

TITLE WORD INDEX TES - TES

CLASSIFICATION	TESTING	THE HOMOGENEITY OF VARIANCES IN A TWO-WAY	BIOCS69	153
VALUES OF THE COEFFICIENT OF RANK CORRELATION FOR				
SCHEFFE'S MIXED MODEL		THE HYPOTHESIS OF NO FIXED MAIN-EFFECTS IN		
				793
		THE LINEAR TRENDS OF RESPONSES IN DOSE TRIALS THE MEAN AND STANDARD DEVIATION OF A NORMAL		663 781
DISTRIBUTION USING QUANTILES		TREND IN A STOCHASTIC PROCESS OF POISSON TYPE		
RELATIVE EFFICIENCIES OF COX AND STUART'S TESTS FOR				381
			TECH 65	
			JRSSB67	53
HYPOTHESIS	TESTING	WITH FINITE MEMORY	AMS 69	828
ISTICAL MODELS AND P/ SURVEY OF HISTOCOMPATIBILITY				
SOME EXPERIMENTAL DESIGN PROBLEMS IN ATTRIBUTE LIFE			JASA 62	
			BIOKA69	
ERRATA, 'FACTORIAL EXPERIMENTS IN LIFE ECONOMICALLY OPTIMUM ACCEPTANCE			TECH 60 JASA 56	
SEQUENTIAL CHI-SQUARED AND T-SQUARED			AMS 61	
A NOTE ON UNBIASED			AMS 62	
NOTE ON MULTIVARIATE GOODNESS-OF-FIT	TESTS		AMS 62	807
ASYMPTOTICALLY MOST POWERFUL RANK-ORDER			AMS 62	1124
ON A MODIFICATION OF CERTAIN RANK			AMS 63	
OPTIMUM PROPERTIES AND ADMISSIBILITY OF SEQUENTIAL			AMS 63	1
ON THE OPTIMALITY OF SEQUENTIAL PROBABILITY RATIO ESTIMATES OF LOCATION BASED ON RANK			AMS 63 AMS 63	1B
THE DESIGN OF SCREENING			TECH 63	
ASYMPTOTIC EFFICIENCY OF CLASS OF C-SAMPLE			AMS 64	
ONE SAMPLE LIMITS OF SOME TWO-SAMPLE RANK			JASA 64	
ALTERNATIVE EFFICIENCIES FOR SIGNED RANK	TESTS		AMS 65	1759
ON THE COMPLEX ANALOGUES OF T-SQUARED AND R-SQUARED			AMS 65	
SEVERAL K-SAMPLE KOLMOGOROV-SMIROV			AMS 65	
PERCENTILE MODIFICATIONS OF TWO-SAMPLE RANK			JASA 65	
QUERY, CONFIDENCE LIMITS FROM RANK GOODNESS CRITERIA FOR TWO-SAMPLE DISTRIBUTION-FREE			TECH 65 AMS 66	
MULTIVARIATE NONPARAMETRIC SEVERAL-SAMPLE			AMS 66	
LOCALLY MINIMAX			AMS 67	
MULTI-SAMPLE ANALOGUES OF SOME ONE-SAMPLE			AMS 67	523
ESTIMATES OF REGRESSION PARAMETERS BASED ON RANK	TESTS		AMS 67	894
INTEGRATED RISK OF ASYMPTOTICALLY BAYES SEQUENTIAL			AMS 67	
EFFICIENCY LOSS DUE TO GROUPING IN DISTRIBUTION-FREE			JASA 67	
EFFICIENCY ROBUST TWO-SAMPLE RANK			JASA 67	
A CLASS OF DISTRIBUTION-FREE ANALYSIS OF VARIANCE ON THE POWER OF PRECEDENCE LIFE			SASJ 67 TECH 67	
TOWARDS A THEORY OF GENERALIZED BAYES			AMS 68	154
ON SLIPPAGE TEST (II) SIMILAR SLIPPAGE			AMS 68	
ASYMPTOTIC OPTIMUM PROPERTIES OF CERTAIN SEQUENTIAL			AMS 6B	
TWO K-SAMPLE SLIPPAGE	TESTS		JASA 68	614
STARSHAPED TRANSFORMATIONS AND THE POWER OF RANK			AMS 69	
THE SMIRNOV TWO SAMPLE TESTS AS RANK			AMS 69	
A STABLE LIMIT THEOREM FOR MARKOV			AMS 69	
THE FREQUENCY JUSTIFICATION OF CERTAIN SEQUENTIAL NON-NORMALITY IN TWO-SAMPLE T			BIOKA52 BIOKA53	
A NOTE ON THE THEORY OF QUICK			BIOKA56	
A NOTE ON WILCOXON'S AND ALLIED			BIOKA56	
A NOTE ON THE DERIVATION OF SOME EXACT MULTIVARIATE	TESTS		BIOKA60	4B0
POWER OF SOME TWO-SAMPLE NON-PARAMETRIC			BIOKA60	
SOME METHODS OF CONSTRUCTING EXACT			BIOKA61	41
ROBUSTNESS TO NON-NORMALITY OF REGRESSION			BIOKA62 BIOKA62	93
CLOSED SEQUENTIAL TO LINEAR HYPOTHESES AND INDUCED			BIOKA62 BIOKA64	359 41
ON THE WEIGHTED COMBINATION OF SIGNIFICANCE			JRSSB55	
ON MULTIVARIATE SIGN			JRSSB62	
LARGE-SAMPLE RESTRICTED PARAMETRIC			JRSSB62	234
CONFIDENCE-REGION			JRSSB64	
LIKELIHOOD RATIO AND GONFIDENCE-REGION			JRSSB65	
OF MEAN DEVIATION IN THE ANALYSIS OF INTERLABORATORY			TECH 67	
DISTRIBUTION IN ACCEPTANCE SAMPLING BASED ON LIFE AND ASYMPTOTIC MINIMAX PROPERTIES OF MULTIVARIATE			JASA 61 AMS 64	
CONTRACTS AND PRICE DIFFERENTIAL ACCEPTANCE		INCENTIVE		
EFFICIENCY OF CERTAIN LOCALLY MOST POWERFUL RANK		ASYMPTOTIC		
SAMPLE PROBLEM, A HEURISTIC METHOD FOR CONSTRUCTING	TESTS	ON THE TWO		
STATISTICS, SIMILAR REGIONS AND DISTRIBUTION-FREE		SUFFICIENT		
DEGENERACY AND THE EFFICIENCY OF SOME MULTIVARIATE		APPROACH TO		
TO THE CHARACTERISTICS OF SOME SEQUENTIAL THE POWERS OF TWO MULTIVARIATE ANALYSIS OF VARIANCE		APPROXIMATIONS		
BETWEEN ESTIMATING EFFICIENCY AND THE POWER OF		A COMPARISON OF ON THE RELATION		
AVERAGE SAMPLE NUMBER OF SEQUENTIAL MULTIHYPOTHESIS		LOWER BOUNDS FOR		
PROBABILITY OF DEFECTIVE FAILURE FROM DESTRUCTIVE		ESTIMATION OF THE		
POWER OF THE ONE-SAMPLE KOLMOGOROV-SMIRNOV	TESTS	ON THE ASYMPTOTIC	AMS 65	1000
CHARACTER OF THE POWER FUNCTIONS OF TWO MULTIVARIATE		ON THE MONOTONIC		
OF EXPECTED SAMPLE SIZE IN CERTAIN ONE-SIDED		ASYMPTOTIC BEHAVIOR		
AND MONOTONICITY OF SEQUENTIAL PROBABILITY RATIO TYPE CHI APPROXIMATIONS TO THE RANGE IN SIGNIFICANCE		EXISTENCE, UNIQUENESS ON THE USE OF PATNAIK		
REPANCY BETWEEN MEASURES OF ASYMPTOTIC EFFICIENCY OF		ON THE USE OF PATNAIK AN EXAMPLE OF LARGE DISC		
APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIAL		AN IMPROVEMENT TO WALD'S		
TAINING LOWER BOUNDS ON THE ASYMPTOTIC POWER OF RANK		AN ELEMENTARY METHOD OF OB		
APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIAL		FORMULAE TO IMPROVE WALD'S		

```
METHOD AND THE ASYMPTOTIC RELATIVE EFFICIENCY OF TESTS
                                                                               THE AVERACE CRITICAL VALUE BIOKA67 308
CIENCY FOR THE ONE SAMPLE WILCOXON AND NORMAL SCORES TESTS
                                                                               SMALL SAMPLE POWER AND EFFI AMS 63 624
IFICATION OF A CLASS OF SEQUENTIAL PROBABILITY RATIO TESTS
                                                                              ON THE SAMPLE SIZE AND SIMPL AMS 66
                                                                                                                    425
   CLASS OF GENERALIZED SEQUENTIAL PROBABILITY RATIO TESTS
                                                                        THE ESSENTIAL COMPLETENESS OF THE AMS 61
                                                                                                                   602
ION OF SAMPLE NUMBER IN SEQUENTIAL PROBABILITY RATIO TESTS
                                                                   A NOTE ON THE VARIANCE OF THE DISTRIBUT TECH 66
                                                                                                                   700
  A CLASS OF INVARIANT SEQUENTIAL PROBABILITY RATIO TESTS
                                                                BOUNDS ON THE SAMPLE SIZE DISTRIBUTION FOR AMS 6B 1048
   ASYMPTOTIC EFFICIENCY OF A GLASS OF NONPARAMETRIC TESTS
                                                               ON A DISTRIBUTION-FREE METHOD OF ESTIMATING
                                                                                                            AMS 66 1759
TIC AND THE AVERAGE SAMPLE NUMBER OF SOME SEQUENTIAL TESTS
                                                             /AE FOR CALCULATING THE OPERATING CHARACTERIS JRSSB58 379
             MOST STRINGENT SOMEWHERE MOST POWERFUL TESTS AGAINST ALTERNATIVE RESTRICTED BY A NUMBER OF L AMS 66 1161
INEAR INEQ/
  ASYMPTOTIC RELATIVE EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST SCALAR ALTERNATIVES
                                                                                                      THE JASA 65 410
ELATIVE EFFICIENCY OF MOOD'S AND MASSEY'S TWO SAMPLE TESTS AGAINST SOME PARAMETRIC ALTERNATIVES
                                                                                                 /TOTIC R AMS 62 1375
                                     TWO SEQUENTIAL TESTS AGAINST TREND
                                                                                                          JASA 56 440
   THE LIMITING POWER OF CATEGORICAL DATA CHI-SQUARE TESTS ANALOGOUS TO NORMAL ANALYSIS OF VARIANCE
                                                                                                            AMS 63 1432
                                                     TESTS AND CONFIDENCE INTERVALS BASED ON THE METRIC D2
                                                                                                            AMS 63 618
THE ESTIMATION OF SECOND-ORDER TENSORS, WITH RELATED TESTS AND DESIGNS
                                                                                                           BIOKA63 353
         LOCALLY ASYMPTOTICALLY MOST STRINCENT TESTS AND LAGRANGIAN MULTIPLIER TESTS OF LINEAR HYPOT BIOKA65
                                                                                                                   459
                                     SIMPLIFIED RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS BIOKASS 181
                                  KOLMOGOROV-SMIRNOV TESTS AND RENYI'S MODIFICATION
                                                                                                           BIOCS6B 1019
        PRODUCER AND CONSUMER RISKS FOR ASYMMETRICAL TESTS AND SPECIFICATION LIMITS
                                                                                                          JASA 66
TWEEN PITMAN'S ASYMPTOTIC RELATIVE EFFICIENCY OF TWO TESTS AND THE CORRELATION COEFFICIENT BETWEEN THEIR T
                                                                                                           AMS 63 1442
                 SEQUENTIAL GHI-SQUARE AND T-SQUARE TESTS AND THEIR APPLICATION TO AN ACCEPTANCE SAMPLING TECH 61 519
 PROBLEM
             'OPTIMAL' ONE-SAMPLE DISTRIBUTION-FREE TESTS AND THEIR TWO-SAMPLE EXTENSIONS
                                                                                                            AMS 66
                                                                                                                   120
NCE LIMITS FOR RELIABILITY OF REDUNDANT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST FAILURE
                                                                                            /STAN CONFIDE TECH 68
                                                                                                                    29
                             THE SMIRNOV TWO SAMPLE TESTS AS RANK TESTS
                                                                                                            AMS 69 1449
CHAIN
                                                    TESTS AUXILIARY TO CHI-SQUARED TESTS IN A MARKOV
                                                                                                            AMS 63
                                                                                                                    56
                     ON SOME MULTISAMPLE PERMUTATION TESTS BASED ON A CLASS OF U-STATISTICS
                                                                                                          JASA 67 1201
RRIGENDA, 'ON QUESTIONS RAISED BY THE COMBINATION OF TESTS BASED ON DISCONTINUOUS DISTRIBUTIONS.'
                                                                                                        CO BIOKA51 265
                                  THE COMBINATION OF TESTS BASED ON DISCRETE DISTRIBUTIONS
                                                                                                           JASA 62
                                                                                                                    10
                                       CONTROL CHART TESTS BASED ON CEOMETRIC MOVING AVERAGES
                                                                                                           TECH 59
                    THE ASYMPTOTIC POWERS OF CERTAIN TESTS BASED ON MULTIPLE CORRELATIONS
                                                                                                          JRSSB56
                                                                                                                   227
BILITY ONE OF INVARIANT SEQUENTIAL PROBABILITY RATIO TESTS BASED ON MULTIVARIATE NORMAL OBSERVATIONS
                                                                                                      /BA AMS 67
                                                                                                                      8
                          THE POWER FUNCTION OF SOME TESTS BASED ON RANCE
                                                                                                           BIOKA53
                                                                                                                   347
                                  DISTRIBUTION FREE TESTS BASED ON THE SAMPLE DISTRIBUTION FUNCTION
                                                                                                                    99
                                                                                                           BTOK A66
                      CORRECTION, 'DISTRIBUTION FREE TESTS BASED ON THE SAMPLE DISTRIBUTION FUNCTION'
                                                                                                           BIOKA67
                                                                                                                   333
                                THE GOODNESS-OF-FIT TESTS BASED ON W-SQUARE-SUB-N AND U-SQUARE-SUB-N
                                                                                                           BIOKA62
                                                                                                                   397
ATIONS
                                        SIMULTANEOUS TESTS BY SEQUENTIAL METHODS IN HIERARCHICAL CLASSIFIC BIOKA64
                                                                                                                   439
                            ASYMPTOTICALLY EFFICIENT TESTS BY THE METHOD OF N RANKINGS
                                                                                                          JRSSB68
                                                                                                                   312
NORMAL DIST/ PROPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERNING DISPERSION MATRICES OF MULTIVARIATE
                                                                                                           AMS 69
                                                                                                                   697
A MONTE CARLO INVESTICATION OF THE SIZE AND POWER OF TESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN SQUARE BIOKAGB
                                                                                                                   431
                              A CLASS OF RANK ORDER TESTS FOR A CENERAL LINEAR HYPOTHESIS
                                                                                                            AMS 69 1325
                                       RANDOMIZATION TESTS FOR A MULTIVARIATE TWO-SAMPLE PROBLEM
                                                                                                           JASA 58
BINOMIAL THEORY
                                        SICNIFICANCE TESTS FOR A VARIABLE CHANCE OF INFECTION IN CHAIN-
                                                                                                          BIOKA56
                                                                                                                   332
   OF ESTIMATING SEEMINCLY UNRELATED REGRESSIONS AND TESTS FOR ACCREGATION BIAS
                                                                                     AN EFFICIENT METHOD JASA 62 348
                               A CLASS OF SEQUENTIAL TESTS FOR AN EXPONENTIAL PARAMETER
                                                                                                           JASA 69 NO.4
                                   CLOSED SEQUENTIAL TESTS FOR AN EXPONENTIAL PARAMETER
                                                                                                           RIOKAGB 387
                                          SEQUENTIAL TESTS FOR BINOMIAL AND EXPONENTIAL POPULATIONS
                                                                                                           BTOKA54
                                                                                                                   252
                                   CLOSED SEQUENTIAL TESTS FOR BINOMIAL PROBABILITIES
                                                                                                           BIOKA66
                                                                                                                    73
                                                SOME TESTS FOR CATEGORICAL DATA
                                                                                                            AMS 61
                                                                                                                    72
                                                                                                            AMS 67 1520
                               ON TWO K-SAMPLE RANK TESTS FOR CENSORED DATA
                                                                                                            AMS 69 1791
              ON A CLASS OF NONPARAMETRIC TWO-SAMPLE TESTS FOR CIRCULAR DISTRIBUTIONS
                              NONPARAMETRIC SYMMETRY TESTS FOR CIRCULAR DISTRIBUTIONS
                                                                                                          BIOKA69 NO.3
ER OF T-SQUARED, R-SQUARED AND OTHER FULLY INVARIANT TESTS FOR CLASSICAL MULTIVARIATE NORMAL PROBLEMS
                                                                                                       /T AMS 65
                                                                                                                  747
                                  SOME NONPARAMETRIC TESTS FOR COMOVEMENTS BETWEEN TIME SERIES
                                                                                                          JASA 61
                                                                                                                    11
               ASYMPTOTIC EFFICIENCY OF CERTAIN RANK TESTS FOR COMPARATIVE EXPERIMENT
                                                                                                            AMS 67
                                   SEQUENTIAL RANGE TESTS FOR COMPONENTS OF VARIANCE, CORR. 65 1249
                                                                                                          JASA 65
                                                                                                                   826
                             THE POWER OF CHI SQUARE TESTS FOR CONTINGENCY TABLES
                                                                                                           JASA 66
                                                                                                                   965
                                                     TESTS FOR CONTINGENCY TABLES AND MARKOV CHAINS
                                                                                                           TECH 62
                                                                                                                   573
                      ON GHI-SQUARE GOODNESS-OF-FIT TESTS FOR GONTINUOUS DISTRIBUTIONS (WITH DISCUSSION) JRSSB58
                                                                                                                    44
                                                                                                                   327
                                                    TESTS FOR CORRELATION MATRICES
                                                                                                          BIOK A6B
                                               SOME TESTS FOR CORRELATION MATRICES
                                                                                                          BTOKA69
                                                                                                                   443
    A MONTE GARLO STUDY COMPARING VARIOUS TWO-SAMPLE TESTS FOR DIFFERENCES IN MEAN
                                                                                                           TEGH 6B
                                                                                                                   509
                                                                                                          BIOKA62
                              EXACT AND APPROXIMATE TESTS FOR DIRECTIONS. I
                                                                                                                   463
                               EXACT AND APPROXIMATE TESTS FOR DIRECTIONS. II
                                                                                                          BIOKA62
                                                                                                                   547
                                       SIGNIFICANCE TESTS FOR DISCRIMINANT FUNCTIONS AND LINEAR FUNCTIONA BIOKAS5
  NOTE ON THE CONSISTENCY OF SOME DISTRIBUTION-FREE TESTS FOR DISPERSION
                                                                                                                   1.05
                                                                                                          JASA 64
           TWO TABLES GONNECTED WITH GOODNESS-OF-FIT TESTS FOR EQUIPROBABLE ALTERNATIVES
                                                                                                          BIOKA68
                                                                                                                   441
                              INVARIANT PROPER BAYES TESTS FOR EXPONENTIAL FAMILIES
                                                                                                                   270
                                                                                                           AMS 69
             ASYMPTOTICALLY MOST POWERFUL RANK ORDER TESTS FOR CROUPED DATA
                                                                                                            AMS 67 1229
                                        ALTERNATIVE TESTS FOR HETEROCENEITY OF VARIANCE, SOME MONTE CARLO BIOKAG6
 RESULTS.
                                                                                                                   229
                                                SOME TESTS FOR HOMOSCEDASTICITY
                                                                                                          JASA 65
                                                                                                                   539
                               GRAPHICALLY ORIENTED TESTS FOR HOST VARIABILITY IN DILUTION EXPERIMENTS
                                                                                                          BIOCS67
                                                                                                                   269
TRANSFORMATIONS TO NORMALITY AND THE POWER OF NORMAL TESTS FOR INDEPENDENCE
                                                                                             CO-ORDINATE BIOKA69
                                                                                                                   139
                           A CLASS OF NONPARAMETRIC TESTS FOR
                                                              INDEPENDENCE IN BIVARIATE POPULATIONS
                                                                                                           AMS 64
                                                                                                                   138
                       PAIRED COMPARISON MODELS WITH TESTS FOR INTERACTION
                                                                                                          BIOCS65
                                                                                                                   651
       ON A CLASS OF CONDITIONALLY DISTRIBUTION-FREE TESTS FOR INTERACTIONS IN FACTORIAL EXPERIMENTS
                                                                                                           AMS 69
                                                                                                                   658
                      ASYMPTOTIC POWER OF CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS
                                                                                                          BIOCS68
                                                                                                                   315
                                  SIGN AND WILCOXON TESTS FOR LINEARITY
                                                                                                           AMS 67 1759
                                                                                                           AMS 67 1216
PROBLEM
                        ON THE THEORY OF RANK ORDER TESTS FOR LOCATION IN THE MULTIVARIATE ONE SAMPLE
                                                                                                          BTOKA60 476
                                        APPROXIMATE TESTS FOR M RANKINGS
                                SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT TIME SERIES
                                                                                                          JASA 65
                                                                                                                   134
         SIMPLIFIED RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS
                                                                                                          RIOKA58
                                                                                                                   181
                                 NOTE ON CHI SQUARE TESTS FOR MATCHED SAMPLES
                                                                                                          JRSSB68
                                                                                                                   368
                                   DISTRIBUTION FREE TESTS FOR MIXED PROBABILITY DISTRIBUTIONS
                                                                                                          BIOKA69 NO.3
                                                                                                           AMS 69 595
                                          A NOTE ON TESTS FOR MONOTONE FAILURE RATE BASED ON INCOMPLETE
                                                    TESTS FOR MONOTONE FAILURE RATE, II
                                                                                                           AMS 69 1250
                                                                                                           AMS 65 369
                             ASYMPTOTICALLY OPTIMUM TESTS FOR MULTINOMIAL DISTRIBUTIONS
```

TITLE WORD INDEX TES - TES

SOME NONPARAMETRIC					
	TESTS	FOR	R MULTISAMPLE PROBLEMS	TECH 6B	57B
ON THE MONOTONICITY PROPERTY OF THE THREE MAIN ASYMPTOTICALLY OPTIMAL PANK OPPOPER	TESTS	FOR	R MULTIVARIATE ANALYSIS OF VARIANCE	JRSSB64	77
ASYMPTOTICALLY OPTIMAL	TESTS	FOR	R MULTIVARIATE NORMAL DISTRIBUTIONS	AMS 67	
KANK OKDEK	IFSIS	run	MODITVARIATE FAIRED COMPARISONS	AMS 69	
ITMAN EFFICIENCY OF ONE-SIDED KOLMOCOROV AND SMIRNOV A COMPARATIVE STUDY OF VARIOUS				JASA 6B	940
			R ORDERED ALTERNATIVES IN RANDOMIZED BLOCKS	AMS 68	967
			OUTLIERS	BIOKA61	379
THE PERFORMANCE OF SEVERAL				BIOKA65	
			PAIRED-COMPARISON EXPERIMENTS	BIOKA61	
			PAIRED-COMPARISON EXPERIMENTS INVOLVING	AMS 64	122
CORRICENDA, 'SICNIFICANT	TESTS	FOR	PAIRED-COMPARISON EXPERIMENTS'	BIOKA61	475
			R PARTIAL TAUS	BIOKA59	
			POISSON PROCESSES.	BIOKA65	67
SOME SIMPLE APPROXIMATE				BIOKA53	
HAVE AN 'A PRIORI' ORDERING RANK ALTERNATIVE IS A TREND			RANDOMIZED BLOCKS WHEN THE ALTERNATIVES RANDOMNESS IN A SERIES OF EVENTS WHEN THE	AMS 67	
				BIOKA51	
CIRCULAR ALTERNATIVES				JASA 69	
OLIOODIN HELENIMIZATEO				BIOKA56	
COMPARISON OF				BIOKA63	
				BIOKA57	
UTION OF THE TRANSFORMED KENDALL COEFFICIENT	TESTS	FOR	RANK CORRELATION COEFFICIENTS. III. DISTRIB	BIOKA62	1B5
				BIOKA61	29
ASYMPTOTIC EFFICIENCY OF A CLASS OF NON-PARAMETRIC				AMS 67	
			RESTRICTED FAMILITES OF PROBABILITY DISTRIB		547
NON-PARAMETRIC A NOTE ON NONPARAMETRIC				AMS 62 AMS 67	498 274
			SERIAL CORRELATION	BIOKA55	133
ASED ON THE PERIODOGRAM OF LEAST-SQUARES RESIDUALS			SERIAL CORRELATION IN REGRESSION ANALYSIS B		133
			SHIFT AT UNKNOWN TIME POINT	AMS 68	
DISTRIBUTION OF SAMPLE SIZE FOR SEQUENTIAL TESTS. I.					
I-SQUARE AND TWO MODIFIED CHI-SQUARE GOODNESS-OF-FIT					
PROBLEMS SOME SCHEFFE—TYPE	TESTS	FOR	SOME BEHRENS-FISHER-TYPE REGRESSION SOME NON-EXPONENTIAL FAMILIES	JASA 65	1163
LEAST-SQUARES REGRESSION ANALYSIS			SPECIFICATION ERRORS IN CLASSICAL LINEAR		
FOLKLORE SOME QUANTITATIVE ASYMPTOTIC RELATIVE EFFICIENCIES OF GOX AND STUART'S			STOCK PRICE CENERATING MODELS AND TRADING		
			THE CONVERGENCE OF MARTINGALES	AMS 68	
A DISTRIBUTION ON A SPHERE	TESTS	FOR	THE DISPERSION AND FOR THE MODAL VECTOR OF	BIOK 467	211
A DISTRIBUTION ON A SPHERE CERTAIN ALTERNATIVES SIMULTANEOUS THE INTRACLASS CORRELATION MODEL	TESTS	FOR	THE EQUALITY OF COVARIANCE MATRICES AGAINST	AMS 68	1303
	TESTS	FOR	THE EQUALITY OF COVARIANCE MATRICES UNDER	AMS 67	1286
			THE EQUALITY OF TWO COVARIANCE MATRICES IN		
			THE FISHER DISTRIBUTION FOR DIRECTIONS		
				AMS 65 AMS 65	
EXAGT LINEAR SEQUENTIAL	TESTS	FOR		BIOKA56	
TABLES FOR WALD	TESTS	FOR	THE MEAN OF A NORMAL DISTRIBUTION		
			THE MEAN OF A NORMAL DISTRIBUTION II, LARGE		
DISCRETE GASE SEQUENTIAL			THE MEAN OF A NORMAL DISTRIBUTION IV,		55
					1668
ON A CLASS OF RANK ORDER					
PROCESSES SEQUENTIAL HYPOTHESIS	TESTS	FOR	THE R-DEPENDENT MARGINALLY STATIONARY	AMS 66	90
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK	TESTS TESTS	FOR FOR	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA	AMS 66 AMS 65	90 1243
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART/	TESTS TESTS TESTS	FOR FOR	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND	AMS 66 AMS 65 TECH 60	90 1243 B3
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK	TESTS TESTS TESTS TESTS	FOR FOR FOR	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN	AMS 66 AMS 65 TECH 60	90 1243
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART/	TESTS TESTS TESTS TESTS TESTS	FOR FOR FOR FOR	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION	AMS 66 AMS 65 TECH 60 TECH 60	90 1243 B3 167
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART/ DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PAR/ A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS	TESTS TESTS TESTS TESTS TESTS	FOR FOR FOR FOR	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES	AMS 66 AMS 65 TECH 60 TECH 60 BIOKA69 JRSSB55 BIOKA66	90 1243 B3 167 149 115 289
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART/ DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PAR/ A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN	TESTS TESTS TESTS TESTS TESTS TESTS TESTS TESTS TESTS	FOR FOR FOR FOR FOR FOR	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES TREND IN DISPERSION TREND IN LOCATION AND DISPERSION	AMS 66 AMS 65 TECH 60 TECH 60 BIOKA69 JRSSB55 BIOKA66 BIOKA55	90 1243 B3 167 149 115 289 80
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART/ DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PAR/ A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN ASYMPTOTIC THEORY OF A CLASS OF	TESTS	FOR FOR FOR FOR FOR FOR FOR	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES TREND IN DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION	AMS 66 AMS 65 TECH 60 TECH 60 BIOK 469 JRSSB55 BIOK 466 BIOK 455 AMS 69	90 1243 B3 167 149 115 289 80 1196
PROCESSES ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART/ DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PAR/ A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN ASYMPTOTIC THEORY OF A CLASS OF HE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM	TESTS	FOR FOR FOR FOR FOR FOR FOR FOR	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES TREND IN DISPERSION TREND IN LOCATION AND DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION UNIFORMITY OF A CIRCULAR DISTRIBUTION T	AMS 66 AMS 65 TECH 60 TECH 60 BIOKA69 JRSSB55 BIOKA66 BIOKA55 AMS 69 BIOKA69	90 1243 B3 167 149 115 289 80 1196 NO.3
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART/ DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART/ A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN ASYMPTOTIC THEORY OF A CLASS OF HE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM ON DEPENDENT	TESTS	FOR FOR FOR FOR FOR FOR FOR FOR	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES TREND IN DISPERSION TREND IN LOCATION AND DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION UNIFORMITY OF A CIRCULAR DISTRIBUTION M A NON-ORTHOGONAL DESIGN	AMS 66 AMS 65 TECH 60 TECH 60 BIOKA69 JRSSB55 BIOKA66 BIOKA65 AMS 69 BIOKA69 JASA 66	90 1243 B3 167 149 115 289 80 1196 NO.3 803
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART/ DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PAR/ A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN ASYMPTOTIC THEORY OF A CLASS OF HE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM ON DEPENDENT UTION THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE	TESTS	FOR FOR FOR FOR FOR FOR FOR FOR FOR	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES TREND IN DISPERSION TREND IN LOCATION AND DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION UNIFORMITY OF A CIRCULAR DISTRIBUTION T	AMS 66 AMS 65 TECH 60 TECH 60 BIOKA69 JRSSB55 BIOKA65 BIOKA65 AMS 69 BIOKA69 JASA 66 BIOKA69	90 1243 B3 167 149 115 289 80 1196 NO.3 803 NO.3
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART/ DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PAR/ A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN ASYMPTOTIC THEORY OF A CLASS OF HE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM ON DEPENDENT UTION THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE ON SLIPPAGE	TESTS	FOR FOR FOR FOR FOR FOR FOR FOR FROI FROI	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES TREND IN DISPERSION TREND IN LOCATION AND DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION UNIFORMITY OF A CIRCULAR DISTRIBUTION TOWN A NON-ORTHOGONAL DESIGN M TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIB A GENERALIZATION OF NEYMAN PEARSON'S LEMMA	AMS 66 AMS 65 TECH 60 TECH 60 BIOKA69 JRSSB55 BIOKA65 BIOKA65 AMS 69 BIOKA69 JASA 66 BIOKA69	90 1243 B3 167 149 115 289 80 1196 NO.3 803 NO.3 1693
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART/ DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART/ A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN ASYMPTOTIC THEORY OF A CLASS OF HE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM ON DEPENDENT UTION THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE ON SLIPPAGE PROCEDURE SEQUENTIAL RANK SEQUENTIAL RANK	TESTS	FOR FOR FOR FOR FOR FOR FOR FROI FROI I.	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES TREND IN DISPERSION TREND IN LOCATION AND DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION UNIFORMITY OF A CIRCULAR DISTRIBUTION M TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIB A GENERALIZATION OF NEYMAN PEARSON'S LEMMA MONTE CARLO STUDIES OF THE TWO-SAMPLE MODIFIED TWO-SAMPLE PROCEDURES	AMS 66 AMS 65 TECH 60 BIOK A69 JRSSB55 BIOK A66 BIOK A55 AMS 69 BIOK A69 JASA 66 BIOK A69 AMS 68 TECH 65	90 1243 B3 167 149 115 289 80 1196 NO.3 803 NO.3 1693 463 615
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART/ DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PAR/ A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN ASYMPTOTIC THEORY OF A CLASS OF HE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM ON DEPENDENT UTION THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE ON SLIPPAGE PROCEDURE SEQUENTIAL RANK SEQUENTIAL RANK SIGNIFICANCE	TESTS	FOR FOR FOR FOR FOR FOR FOR FROI I IN I	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES TREND IN DISPERSION TREND IN LOCATION AND DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION UNIFORMITY OF A CIRCULAR DISTRIBUTION T MA NON-ORTHOGONAL DESIGN M TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIB A GENERALIZATION OF NEYMAN PEARSON'S LEMMA MONTE CARLO STUDIES OF THE TWO-SAMPLE MODIFIED TWO-SAMPLE PROCEDURES DISCRETE DISTRIBUTIONS, CORR. 62 919	AMS 66 AMS 65 TECH 60 TECH 60 BIOKA69 JRSSB55 BIOKA69 BIOKA69 BIOKA69 AMS 68 BIOKA69 AMS 6B TECH 65 JASA 61	90 1243 B3 167 149 115 289 80 1196 NO.3 803 NO.3 1693 463 615 223
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PARY/ DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PARY/ A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN ASYMPTOTIC THEORY OF A CLASS OF HE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM ON DEPENDENT UTION THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE PROCEDURE SEQUENTIAL RANK SEQUENTIAL RANK SEQUENTIAL RANK ASYMPTOTICALLY MOST POWERFUL ASYMPTOTICALLY MOST POWERFUL	TESTS	FOR FOR FOR FOR FOR FOR FOR I	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES TREND IN DISPERSION TREND IN LOCATION AND DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION UNIFORMITY OF A CIRCULAR DISTRIBUTION M A NON-ORTHOGONAL DESIGN M TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIB M A GENERALIZATION OF NEYMAN PEARSON'S LEMMA MONTE CARLO STUDIES OF THE TWO-SAMPLE MODIFIED TWO-SAMPLE PROCEDURES DISCRETE DISTRIBUTIONS, CORR. 62 919 MARKOV PROCESSES	AMS 66 AMS 65 TECH 60 TECH 60 BIOKA69 JRSSB55 BIOKA65 BIOKA65 AMS 69 BIOKA69 JASA 66 BIOKA69 AMS 6B TECH 65 TECH 66 JASA 61 AMS 69	90 1243 B3 167 149 115 289 80 1196 NO.3 803 NO.3 1693 463 615 223 1207
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PARY/ DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PARY/ A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN ASYMPTOTIC THEORY OF A CLASS OF HE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM ON DEPENDENT UTION THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE PROCEDURE SEQUENTIAL RANK SEQUENTIAL RANK SEQUENTIAL RANK SIGNIFICANCE ASYMPTOTICALLY MOST POWERFUL SOME EXACT	TESTS	FOR	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES TREND IN LOCATION AND DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION TREND OF A CIRCULAR DISTRIBUTION UNIFORMITY OF A CIRCULAR DISTRIBUTION M A NON-ORTHOGONAL DESIGN M TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIB MONTE CARLO STUDIES OF THE TWO-SAMPLE MODIFIED TWO-SAMPLE PROCEDURES DISCRETE DISTRIBUTIONS, CORR. 62 919 MARKOV PROCESSES MULTIVARIATE ANALYSIS	AMS 66 AMS 65 TECH 60 TECH 60 TECH 60 BIOKA69 JRSSB55 BIOKA65 BIOKA65 BIOKA65 JASA 66 BIOKA69 AMS 68 TECH 65 TECH 66 JASA 61 AMS 69 BIOKA69	90 1243 B3 167 149 115 289 80 1196 NO.3 803 NO.3 1693 463 615 223 1207 17
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART/ DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PAR/ A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN ASYMPTOTIC THEORY OF A CLASS OF HE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM ON DEPENDENT UTION THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE ON SLIPPAGE PROCEDURE SEQUENTIAL RANK SIGNIFICANCE ASYMPTOTICALLY MOST POWERFUL SOME EXACT ADMISSIBLE	TESTS	FOR	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES TREND IN DISPERSION TREND IN LOCATION AND DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION UNIFORMITY OF A CIRCULAR DISTRIBUTION M TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIB A GENERALIZATION OF NEYMAN PEARSON'S LEMMA MONTE CARLO STUDIES OF THE TWO-SAMPLE MODIFIED TWO-SAMPLE PROCEDURES DISCRETE DISTRIBUTIONS, CORR. 62 919 MARKOV PROCESSES MULTIVARIATE ANALYSIS OF VARIANCE	AMS 66 AMS 65 TECH 60 TECH 60 BIOKA69 JRSSB56 BIOKA65 BIOKA65 AMS 69 BIOKA66 BIOKA69 JASA 66 BIOKA69 AMS 6B TECH 65 TECH 66 JASA 61 AMS 62 BIOKA69	90 1243 B3 167 149 115 289 80 1196 NO.3 803 NO.3 1693 463 615 223 1207 17 69B
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART/ DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PAR/ A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN ASYMPTOTIC THEORY OF A CLASS OF HE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM ON DEPENDENT UTION THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE ON SLIPPAGE PROCEDURE SEQUENTIAL RANK SIGNIFICANCE ASYMPTOTICALLY MOST POWERFUL SOME EXACT ADMISSIBLE	TESTS	FOR	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES TREND IN DISPERSION TREND IN LOCATION AND DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION UNIFORMITY OF A CIRCULAR DISTRIBUTION M TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIB A GENERALIZATION OF NEYMAN PEARSON'S LEMMA MONTE CARLO STUDIES OF THE TWO-SAMPLE MODIFIED TWO-SAMPLE PROCEDURES DISCRETE DISTRIBUTIONS, CORR. 62 919 MARKOV PROCESSES MULTIVARIATE ANALYSIS MULTIVARIATE ANALYSIS MULTIVARIATE ANALYSIS PARALLEL AND IN SERIES	AMS 66 AMS 65 TECH 60 TECH 60 TECH 60 BIOKA69 JRSSB55 BIOKA65 BIOKA65 BIOKA65 JASA 66 BIOKA69 AMS 68 TECH 65 TECH 66 JASA 61 AMS 69 BIOKA69	90 1243 B3 167 149 115 289 80 1196 NO.3 803 NO.3 1693 463 615 223 1207 17 69B 799
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART/ DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART/ A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN ASYMPTOTIC THEORY OF A CLASS OF HE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM ON DEPENDENT UTION THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE ON SLIPPAGE PROCEDURE SEQUENTIAL RANK SIGNIFICANCE ASYMPTOTICALLY MOST POWERFUL SOME EXACT ADMISSIBLE SIGNIFICANCE DOMAINS OF OPTIMALITY OF THE PERFORMANCE OF SOME TWO-SAMPLE	TESTS	FOR	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES TREND IN LOCATION AND DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION UNIFORMITY OF A CIRCULAR DISTRIBUTION M TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIBUTION M TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIB A GENERALIZATION OF NEYMAN PEARSON'S LEMMA MONTE CARLO STUDIES OF THE TWO-SAMPLE MODIFIED TWO-SAMPLE PROCEDURES DISCRETE DISTRIBUTIONS, CORR. 62 919 MARKOV PROCESSES MULTIVARIATE ANALYSIS MULTIVARIATE ANALYSIS OF VARIANCE PARALLEL AND IN SERIES SIMPLE RANDOM SAMPLING SMALL SAMPLES WITH AND WITHOUT CENSORING	AMS 66 AMS 65 TECH 60 TECH 60 BIOKA69 JRSSB56 BIOKA65 AMS 69 BIOKA69 JASA 66 BIOKA69 AMS 68 TECH 65 TECH 66 JASA 61 AMS 69 AMS 69 JASA 69 AMS 69 AMS 69 BIOKA69	90 1243 B3 167 149 115 289 80 1196 NO.3 803 NO.3 1693 463 615 223 1207 17 69B 799 308 127
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART/ DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PAR/ A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN ASYMPTOTIC THEORY OF A CLASS OF HE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM ON DEPENDENT UTION THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE ON SLIPPAGE PROCEDURE SEQUENTIAL RANK SIGNIFICANCE ASYMPTOTICALLY MOST POWERFUL SOME EXACT ADMISSIBLE SIGNIFICANCE DOMAINS OF OPTIMALITY OF THE PERFORMANCE OF SOME TWO-SAMPLE OF MISCLASSIFICATION ON THE PROPERTIES OF CHI-SQUARE-	TESTS	FOR	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES TREND IN LOCATION AND DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION UNIFORMITY OF A CIRCULAR DISTRIBUTION M TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIBUTION M TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIB A GENERALIZATION OF NEYMAN PEARSON'S LEMMA MONTE CARLO STUDIES OF THE TWO-SAMPLE MODIFIED TWO-SAMPLE PROCEDURES DISCRETE DISTRIBUTIONS, CORR. 62 919 MARKOV PROCESSES MULTIVARIATE ANALYSIS MULTIVARIATE ANALYSIS OF VARIANCE PARALLEL AND IN SERIES SIMPLE RANDOM SAMPLING SMALL SAMPLES WITH AND WITHOUT CENSORING THE ANALYSIS OF CATEGORICAL DATA. /EFFECT	AMS 66 AMS 65 TECH 60 TECH 60 BIOKA69 JRSSB56 BIOKA65 AMS 69 BIOKA69 JASA 66 BIOKA69 AMS 6B TECH 65 JASA 61 AMS 69 BIOKA66 JASA 61 AMS 69 JASA 58 AMS 69 BIOKA65 BIOKA65	90 1243 167 149 115 289 80 1196 NO.3 803 NO.3 1693 463 223 1207 17 69B 799 308 127 95
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART/ DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART/ A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN ASYMPTOTIC THEORY OF A CLASS OF HE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM ON DEPENDENT UTION THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE PROCEDURE SEQUENTIAL RANK SIGNIFICANCE ASYMPTOTICALLY MOST POWERFUL SOME EXACT ADMISSIBLE SIGNIFICANCE DOMAINS OF OPTIMALITY OF THE PERFORMANCE OF SOME TWO-SAMPLE OF MISCLASSIFICATION ON THE PROPERTIES OF CHI-SQUARE- ORDERED	TESTS	FOR FOR FOR FOR FOR FOR FOR FOR FOR FROM I	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES TREND IN DISPERSION TREND IN LOCATION AND DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION UNIFORMITY OF A CIRCULAR DISTRIBUTION THE ASSUMPTION OF NEYMAN PEARSON'S LEMMA MONTE CARLO STUDIES OF THE TWO-SAMPLE MODIFIED TWO-SAMPLE PROCEDURES DISCRETE DISTRIBUTIONS, CORR. 62 919 MARKOV PROCESSES MULTIVARIATE ANALYSIS MULTIVARIATE ANALYSIS OF VARIANCE PARALLEL AND IN SERIES SIMPLE RANDOM SAMPLING SMALL SAMPLES WITH AND WITHOUT CENSORING THE ANALYSIS OF CATEGORICAL DATA. /EFFECT THE ANALYSIS OF VARIANCE	AMS 66 AMS 65 TECH 60 TECH 60 BIOK A69 JRSSB55 AMS 69 BIOK A69 JASA 66 BIOK A69 JASA 66 BIOK A69 AMS 68 TECH 66 JASA 69 BIOK A52 AMS 69 BIOK A52 AMS 69 BIOK A55 AMS 67 JASA 68 BIOK A69 BIOK A55 AMS 69 BIOK A65	90 1243 83 167 149 115 289 80 1196 NO.3 803 NO.3 1693 463 615 223 1207 17 69B 799 308 127 95 325
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART/ DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART/ A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN ASYMPTOTIC THEORY OF A CLASS OF HE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM ON DEPENDENT UTION THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE PROCEDURE SEQUENTIAL RANK SIGNIFICANCE ASYMPTOTICALLY MOST POWERFUL SOME EXACT ADMISSIBLE SIGNIFICANCE DOMAINS OF OPTIMALITY OF THE PERFORMANCE OF SOME TWO-SAMPLE OF MISCLASSIFICATION ON THE PROPERTIES OF CHI-SQUARE- ORDERED	TESTS	FOR FOR FOR FOR FOR FOR FOR FOR FOR FROM I	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES TREND IN DISPERSION TREND IN LOCATION AND DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION UNIFORMITY OF A CIRCULAR DISTRIBUTION THE ASSUMPTION OF NEYMAN PEARSON'S LEMMA MONTE CARLO STUDIES OF THE TWO-SAMPLE MODIFIED TWO-SAMPLE PROCEDURES DISCRETE DISTRIBUTIONS, CORR. 62 919 MARKOV PROCESSES MULTIVARIATE ANALYSIS MULTIVARIATE ANALYSIS OF VARIANCE PARALLEL AND IN SERIES SIMPLE RANDOM SAMPLING SMALL SAMPLES WITH AND WITHOUT CENSORING THE ANALYSIS OF CATEGORICAL DATA. /EFFECT THE ANALYSIS OF VARIANCE	AMS 66 AMS 65 TECH 60 TECH 60 TECH 60 BIOKA69 JRSSB55 BIOKA65 AMS 69 BIOKA69 JASA 66 BIOKA69 AMS 68 TECH 66 JASA 61 AMS 67 JASA 58 AMS 67 JASA 58 AMS 66 BIOKA69 AMS 67 JASA 58 AMS 66 BIOKA61 AMS 66	90 1243 B3 167 149 115 289 80 1196 NO.3 803 NO.3 1693 463 615 223 1207 17 69B 799 308 127 95 325 1403
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PAR/ DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PAR/ A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN ASYMPTOTIC THEORY OF A CLASS OF HE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM ON DEPENDENT UTION THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE ON SLIPPAGE PROCEDURE SEQUENTIAL RANK SIGNIFICANCE ASYMPTOTICALLY MOST POWERFUL SOME EXACT ADMISSIBLE SIGNIFICANCE DOMAINS OF OPTIMALITY OF THE PERFORMANCE OF SOME TWO-SAMPLE OF MISCLASSIFICATION ON THE PROPERTIES OF CHI-SQUARE- ORDERED ERATING CHARACTERISTIC FOR TRUNCATED SEQUENTIAL LIFE TWO SAMPLE	TESTS	FOR	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES TREND IN LOCATION AND DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION TREND IN LOCATION AND DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION THAT AND A CIRCULAR DISTRIBUTION THE A CHORD THAT THE THE THAT THAT	AMS 66 AMS 65 TECH 60 TECH 60 TECH 60 BIOKA69 JRSSB56 BIOKA65 AMS 69 BIOKA69 JASA 66 BIOKA69 AMS 6B TECH 66 JASA 61 AMS 69 BIOKA69 JASA 58 AMS 67 JASA 58 AMS 69 BIOKA65 BIOKA66 BIOKA66 BIOKA66 BIOKA66 AMS 67 JASA 68 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66	90 1243 B3 167 149 115 289 80 1196 NO.3 803 NO.3 1693 463 223 1207 69B 799 308 127 95 325 1403 NO.4
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PARY/ DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PARY/ A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN ASYMPTOTIC THEORY OF A CLASS OF HE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM ON DEPENDENT UTION THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE PROCEDURE SEQUENTIAL RANK SIGNIFICANCE ASYMPTOTICALLY MOST POWERFUL SOME EXACT ADMISSIBLE SIGNIFICANCE DOMAINS OF OPTIMALITY OF THE PERFORMANCE OF SOME TWO-SAMPLE OF MISCLASSIFICATION ON THE PROPERTIES OF CHI-SQUARE- ORDERED ERATING CHARACTERISTIC FOR TRUNCATED SEQUENTIAL LIFE HOD FOR ADJUDGING RELATIVE EFFICIENCY OF STATISTICAL	TESTS	FOR	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VALIDITY OF THE ASSUMPTIONS THAT THE UN TREND IN A TIME SERIES TREND IN DISPERSION TREND IN LOCATION AND DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION UNIFORMITY OF A CIRCULAR DISTRIBUTION TM A NON-ORTHOGONAL DESIGN M TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIB MA CENERALIZATION OF NEYMAN PEARSON'S LEMMA MONTE CARLO STUDIES OF THE TWO-SAMPLE MODIFIED TWO-SAMPLE PROCEDURES DISCRETE DISTRIBUTIONS, CORR. 62 919 MARKOV PROCESSES MULTIVARIATE ANALYSIS MULTIVARIATE ANALYSIS OF VARIANCE PARALLEL AND IN SERIES SIMPLE RANDOM SAMPLING SMALL SAMPLES WITH AND WITHOUT CENSORING THE ANALYSIS OF VARIANCE THE EXPONENTIAL CASE EXACT OP THE WEIBULL DISTRIBUTION TIME SERIES REGRESSION ANALYSIS /VALUE MET	AMS 66 AMS 66 TECH 60 TECH 60 BIOK A69 JINSSB55 AMS 69 BIOK A69 JAS A 66 BIOK A69 JAS A 66 BIOK A69 JAS A 66 BIOK A69 AMS 69 BIOK A69 AMS 69 BIOK A55 AMS 69 BIOK A55 AMS 67 JAS A 66 BIOK A65 BIOK A69 AMS 68 BIOK A69 BIOK A69 BIOK A69 BIOK A69 BIOK A69 BIOK A69 BIOK A61 AMS 62 TECH 66 BIOK A66	90 1243 83 167 149 115 289 80 100.3 803 NO.3 803 NO.3 1693 463 615 223 1207 17 69B 127 99 308 127 95 325 1403 NO.4 109
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PARY/ DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PARY/ A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN ASYMPTOTIC THEORY OF A CLASS OF HE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM ON DEPENDENT UTION THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE PROCEDURE SEQUENTIAL RANK SIGNIFICANCE ASYMPTOTICALLY MOST POWERFUL SOME EXACT ADMISSIBLE SIGNIFICANCE DOMAINS OF OPTIMALITY OF THE PERFORMANCE OF SOME TWO-SAMPLE OF MISCLASSIFICATION ON THE PROPERTIES OF CHI-SQUARE- ORDERED ERATING CHARACTERISTIC FOR TRUNCATED SEQUENTIAL LIFE HOD FOR ADJUDGING RELATIVE EFFICIENCY OF STATISTICAL	TESTS	FOR	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES TREND IN DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION UNIFORMITY OF A CIRCULAR DISTRIBUTION M A NON-ORTHOGONAL DESIGN M TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIB MONTE CARLO STUDIES OF THE TWO-SAMPLE MODIFIED TWO-SAMPLE PROCEDURES DISCRETE DISTRIBUTIONS, CORR. 62 919 MARKOV PROCESSES MULTIVARIATE ANALYSIS MULTIVARIATE ANALYSIS OF VARIANCE PARALLEL AND IN SERIES SIMPLE RANDOM SAMPLING SMALL SAMPLES WITH AND WITHOUT CENSORING THE ANALYSIS OF CATEGORICAL DATA. /EFFECT THE ANALYSIS OF VARIANCE THE WEIBULL DISTRIBUTION TIME SERIES REGRESSION ANALYSIS /VALUE MET TIME—SERIES BASED ON THE BREAKINC OF RECORDS	AMS 66 AMS 66 TECH 60 TECH 60 BIOK A69 JINSSB55 AMS 69 BIOK A69 JAS A 66 BIOK A69 JAS A 66 BIOK A69 JAS A 66 BIOK A69 AMS 69 BIOK A69 AMS 69 BIOK A55 AMS 69 BIOK A55 AMS 67 JAS A 66 BIOK A65 BIOK A69 AMS 68 BIOK A69 BIOK A69 BIOK A69 BIOK A69 BIOK A69 BIOK A69 BIOK A61 AMS 62 TECH 66 BIOK A66	90 1243 83 167 149 115 289 80 1196 NO.3 803 NO.3 1693 463 4615 223 1207 17 69B 799 308 127 9308 127 95 325 1403 NO.4 109 1
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PARY DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PARY A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN ASYMPTOTIC THEORY OF A CLASS OF HE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM ON DEPENDENT UTION THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE PROCEDURE SEQUENTIAL RANK SEQUENTIAL RANK SEQUENTIAL RANK SIGNIFICANCE ASYMPTOTICALLY MOST POWERFUL SOME EXACT ADMISSIBLE SIGNIFICANCE DOMAINS OF OPTIMALITY OF THE PERFORMANCE OF SOME TWO-SAMPLE OF MISCLASSIFICATION ON THE PROPERTIES OF CHI-SQUARE- ORDERED ORDERED ERATING CHARACTERISTIC FOR TRUNCATED SEQUENTIAL LIFE TWO SAMPLE HOD FOR ADJUDGING RELATIVE EFFICIENCY OF STATISTICAL (WITH DISGUSSION) DISTRIBUTION-FREE ON A CLASS OF ALIGNED RANK ORDER	TESTS	FOR	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES TREND IN DISPERSION TREND IN LOCATION AND DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION UNIFORMITY OF A CIRCULAR DISTRIBUTION M A NON-ORTHOGONAL DESIGN M TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIB A GENERALIZATION OF NEYMAN PEARSON'S LEMMA MONTE CARLO STUDIES OF THE TWO-SAMPLE MODIFIED TWO-SAMPLE PROCEDURES DISCRETE DISTRIBUTIONS, CORR. 62 919 MARKOV PROCESSES MULTIVARIATE ANALYSIS MULTIVARIATE ANALYSIS OF VARIANCE PARALLEL AND IN SERIES SIMPLE RANDOM SAMPLING SMALL SAMPLES WITH AND WITHOUT CENSORING THE ANALYSIS OF CATEGORICAL DATA. /EFFECT THE ANALYSIS OF VARIANCE THE EXPONENTIAL CASE EXACT OP THE WEIBULL DISTRIBUTION TIME SERIES REGRESSION ANALYSIS /VALUE MET TIME-SERIES BASED ON THE BREAKINC OF RECORDS TWO-WAY LAYOUTS	AMS 66 AMS 65 TECH 60 TECH 60 TECH 60 BIOKA69 JASSA55 BIOKA66 BIOKA55 AMS 69 BIOKA69 JASA 66 BIOKA69 AMS 68 BIOKA69 AMS 68 BIOKA69 AMS 66 BIOKA60 AMS 66 BIOKA61 AMS 67 JASA 58 AMS 69 BIOKA64 AMS 66 BIOKA65 AMS 66 BIOKA65 AMS 66 BIOKA65 JRSSB54	90 1243 B3 167 149 115 289 80 1196 NO.3 803 NO.3 1693 463 4615 223 1207 17 69B 799 308 127 95 3403 NO.4 109 11115
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PARY/ DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PARY/ A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN ASYMPTOTIC THEORY OF A CLASS OF HE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM ON DEPENDENT UTION THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE PROCEDURE SEQUENTIAL RANK SEQUENTIAL RANK SEQUENTIAL RANK SEQUENTIAL RANK SIGNIFICANCE ASYMPTOTICALLY MOST POWERFUL SOME EXACT ADMISSIBLE SIGNIFICANCE DOMAINS OF OPTIMALITY OF THE PERFORMANCE OF SOME TWO-SAMPLE OF MISCLASSIFICATION ON THE PROPERTIES OF CHI-SQUARE- ORDERED ERATING CHARACTERISTIC FOR TRUNCATED SEQUENTIAL LIFE HOD FOR ADJUDGING RELATIVE EFFICIENCY OF STATISTICAL (WITH DISGUSSION) DISTRIBUTION-FREE ON A CLASS OF ALIGNED RANK ORDER OPTIMUM INVARIANT THE ROBUSTNESS OF HOMOGENEITY	TESTS	FOR	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES TREND IN DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION UNIFORMITY OF A CIRCULAR DISTRIBUTION UNIFORMITY OF A CIRCULAR DISTRIBUTION M A NON-ORTHOGONAL DESIGN M TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIB A GENERALIZATION OF NEYMAN PEARSON'S LEMMA MONTE CARLO STUDIES OF THE TWO-SAMPLE MODIFIED TWO-SAMPLE PROCEDURES DISCRETE DISTRIBUTIONS, CORR. 62 919 MARKOV PROCESSES MULTIVARIATE ANALYSIS MULTIVARIATE ANALYSIS OF VARIANCE PARALLEL AND IN SERIES SIMPLE RANDOM SAMPLING SMALL SAMPLES WITH AND WITHOUT CENSORING THE ANALYSIS OF CATEGORICAL DATA. /EFFECT THE ANALYSIS OF VARIANCE THE EXPONENTIAL CASE EXACT OP THE WEIBULL DISTRIBUTION TIME SERIES REGRESSION ANALYSIS /VALUE MET TIME—SERIES BASED ON THE BREAKINC OF RECORDS TWO-WAY LAYOUTS UNBALANCED VARIANCE COMPONENTS MODELS 2 BY N TABLES	AMS 66 AMS 65 TECH 60 TECH 60 TECH 60 BIOKA66 BIOKA55 BIOKA66 BIOKA55 AMS 69 BIOKA69 JASA 66 BIOKA69 AMS 68 TECH 65 JASA 61 JASA 58 AMS 67 BIOKA69 BIOKA69 AMS 68 BIOKA69 BIOKA640 AMS 69 BIOKA640 AMS 69 BIOKA640 AMS 60 BIOKA640 AMS 67 BIOKA61 AMS 62 TECH 66 BIOKA61 AMS 62 TECH 66 BIOKA61 AMS 67 BIOKA661 AMS 67 BIOKA61 AMS 67 BIOKA661	90 1243 83 167 149 115 289 80 1196 NO.3 803 NO.3 1693 463 615 223 1207 17 69B 127 99 308 127 95 316 1403 NO.4 109 1 1115 422 19
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PARY DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PARY A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN ASYMPTOTIC THEORY OF A CLASS OF HE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM ON DEPENDENT UTION THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE PROCEDURE SEQUENTIAL RANK SEQUENTIAL RANK SEQUENTIAL RANK SEQUENTIAL RANK SIGNIFICANCE ASYMPTOTICALLY MOST POWERFUL SOME EXACT ADMISSIBLE SIGNIFICANCE DOMAINS OF OPTIMALITY OF THE PERFORMANCE OF SOME TWO-SAMPLE OF MISCLASSIFICATION ON THE PROPERTIES OF CHI-SQUARE- ORDERED ERATING CHARACTERISTIC FOR TRUNCATED SEQUENTIAL LIFE TWO SAMPLE HOD FOR ADJUDGING RELATIVE EFFICIENCY OF STATISTICAL (WITH DISGUSSION) DISTRIBUTION-FREE ON A CLASS OF ALIGNED RANK ORDER OPTIMUM INVARIANT THE ROBUSTNESS OF HOMOGENEITY LOCALLY AND ASYMPTOTICALLY MINIMAX	TESTS	FOR	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES TREND IN DISPERSION TREND IN LOCATION AND DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION UNIFORMITY OF A CIRCULAR DISTRIBUTION M A NON-ORTHOGONAL DESIGN M TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIB MONTE CARLO STUDIES OF THE TWO-SAMPLE MODIFIED TWO-SAMPLE PROCEDURES DISCRETE DISTRIBUTIONS, CORR. 62 919 MARKOV PROCESSES MULTIVARIATE ANALYSIS OF VARIANCE PARALLEL AND IN SERIES SIMPLE RANDOM SAMPLING SMALL SAMPLES WITH AND WITHOUT CENSORING THE ANALYSIS OF CATEGORICAL DATA. /EFFECT THE ANALYSIS OF CATEGORICAL DATA. /EFFECT THE ANALYSIS OF VARIANCE THE ANALYSIS OF VARIANCE THE ANALYSIS OF VARIANCE THE ANALYSIS OF CATEGORICAL DATA. /EFFECT THE EXPONENTIAL CASE EXACT OP THE WEIBULL DISTRIBUTION TIME SERIES REGRESSION ANALYSIS /VALUE MET TIME-SERIES BASED ON THE BREAKINC OF RECORDS TWO-WAY LAYOUTS UNBALANCED VARIANCE COMPONENTS MODELS 2 BY N TABLES A MULTIVARIATE PROBLEM	AMS 66 AMS 65 TECH 60 TECH 60 TECH 60 BIOKA69 JRSSB55 BIOKA65 BIOKA69 JASA 66 BIOKA69 AMS 68 TECH 65 TECH 66 BIOKA69 AMS 67 JASA 58 AMS 67 JASA 58 AMS 66 BIOKA69 BIOKA69 BIOKA69 BIOKA64 AMS 69 BIOKA65 BIOKA66	90 1243 B3 167 149 115 289 80 1196 NO.3 803 NO.3 1693 463 615 223 1207 17 69B 799 308 127 95 1403 NO.4 109 11115 422 19 171
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PAR/ DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PAR/ A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN ASYMPTOTIC THEORY OF A CLASS OF HE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM ON DEPENDENT UTION THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE ON SLIPPAGE PROCEDURE SEQUENTIAL RANK SIGNIFICANCE ASYMPTOTICALLY MOST POWERFUL SOME EXACT ADMISSIBLE SIGNIFICANCE DOMAINS OF OPTIMALITY OF THE PERFORMANCE OF SOME TWO-SAMPLE OF MISCLASSIFICATION ON THE PROPERTIES OF CHI-SQUARE- ORDERED ERATING CHARACTERISTIC FOR TRUNCATED SEQUENTIAL LIFE TWO SAMPLE HOD FOR ADJUDGING RELATIVE EFFICIENCY OF STATISTICAL (WITH DISGUSSION) ON A CLASS OF ALIGNED RANK ORDER OPTIMUM INVARIANT THE ROBUSTNESS OF HOMOGENEITY LOCALLY AND ASYMPTOTICALLY MINIMAX BEST CRITICAL REGIONS SIMILAR TO THE SAMPLE SPACE IN	TESTS	FOR	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES TREND IN DISPERSION TREND IN LOCATION AND DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION UNIFORMITY OF A CIRCULAR DISTRIBUTION M TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIBUTION M TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIB A GENERALIZATION OF NEYMAN PEARSON'S LEMMA MONTE CARLO STUDIES OF THE TWO-SAMPLE MODIFIED TWO-SAMPLE PROCEDURES DISCRETE DISTRIBUTIONS, CORR. 62 919 MARKOV PROCESSES MULTIVARIATE ANALYSIS MULTIVARIATE ANALYSIS OF VARIANCE PARALLEL AND IN SERIES SIMPLE RANDOM SAMPLING SMALL SAMPLES WITH AND WITHOUT CENSORING THE ANALYSIS OF CATEGORICAL DATA. /EFFECT THE ANALYSIS OF CATEGORICAL DATA. /EFFECT THE ANALYSIS OF VARIANCE THE EXPONENTIAL CASE EXACT OP THE WEIBULL DISTRIBUTION TIME SERIES REGRESSION ANALYSIS /VALUE MET TIME—SERIES BASED ON THE BREAKINC OF RECORDS TWO—WAY LAYOUTS UNBALANCED VARIANCE COMPONENTS MODELS 2 BY N TABLES A MULTIVARIATE PROBLEM AN IMPORTANT CLASS OF COMPOSITE HYPOTHESES	AMS 66 AMS 65 TECH 60 TECH 60 BIOKA69 JRSSB56 BIOKA69 BIOKA69 JASA 66 BIOKA69 AMS 68 BIOKA69 AMS 68 BIOKA69 AMS 68 BIOKA69 AMS 69 AMS 67 AMS 69 AMS 66 BIOKA69 AMS 66 BIOKA69 AMS 67 AMS 68 BIOKA66 BIOKA61 AMS 66 BIOKA66	90 1243 B3 167 149 115 289 80 1196 NO.3 803 NO.3 1693 463 615 223 1207 95 325 1403 NO.4 109 1115 422 19 171 231
PROCESSES SEQUENTIAL HYPOTHESIS ASYMPTOTICALLY MOST POWERFUL RANK ERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PAR/ DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PAR/ A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS LARGE-SAMPLE SIGN SOME QUICK SIGN ASYMPTOTIC THEORY OF A CLASS OF HE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM ON DEPENDENT UTION THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE ON SLIPPAGE PROCEDURE SEQUENTIAL RANK SIGNIFICANCE ASYMPTOTICALLY MOST POWERFUL SOME EXACT ADMISSIBLE SIGNIFICANCE DOMAINS OF OPTIMALITY OF THE PERFORMANCE OF SOME TWO-SAMPLE OF MISCLASSIFICATION ON THE PROPERTIES OF CHI-SQUARE- ORDERED ERATING CHARACTERISTIC FOR TRUNCATED SEQUENTIAL LIFE TWO SAMPLE HOD FOR ADJUDGING RELATIVE EFFICIENCY OF STATISTICAL (WITH DISGUSSION) ON A CLASS OF ALIGNED RANK ORDER OPTIMUM INVARIANT THE ROBUSTNESS OF HOMOGENEITY LOCALLY AND ASYMPTOTICALLY MINIMAX BEST CRITICAL REGIONS SIMILAR TO THE SAMPLE SPACE IN	TESTS	FOR	THE R-DEPENDENT MARGINALLY STATIONARY THE TWO-SAMPLE PROBLEM WITH CENSORED DATA THE VALIDITY OF THE ASSUMPTION THAT THE UND THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VALIDITY OF THE ASSUMPTIONS THAT THE UN THE VON MISES DISTRIBUTION TREND IN A TIME SERIES TREND IN DISPERSION UNIFORMITY OF A CIRCULAR DISTRIBUTION UNIFORMITY OF A CIRCULAR DISTRIBUTION UNIFORMITY OF A CIRCULAR DISTRIBUTION M A NON-ORTHOGONAL DESIGN M TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIB A GENERALIZATION OF NEYMAN PEARSON'S LEMMA MONTE CARLO STUDIES OF THE TWO-SAMPLE MODIFIED TWO-SAMPLE PROCEDURES DISCRETE DISTRIBUTIONS, CORR. 62 919 MARKOV PROCESSES MULTIVARIATE ANALYSIS MULTIVARIATE ANALYSIS OF VARIANCE PARALLEL AND IN SERIES SIMPLE RANDOM SAMPLING SMALL SAMPLES WITH AND WITHOUT CENSORING THE ANALYSIS OF CATEGORICAL DATA. /EFFECT THE ANALYSIS OF VARIANCE THE ANALYSIS OF CATEGORICAL DATA. /EFFECT THE ANALYSIS OF VARIANCE THE EXPONENTIAL CASE EXACT OP THE WEIBULL DISTRIBUTION TIME SERIES REGRESSION ANALYSIS /VALUE MET TIME—SERIES BASED ON THE BREAKINC OF RECORDS TWO—WAY LAYOUTS UNBALANCED VARIANCE COMPONENTS MODELS 2 BY N TABLES A MULTIVARIATE PROBLEM AN IMPORTANT CLASS OF COMPOSITE HYPOTHESES APPROXIMATE HYPOTHESES AND THEIR PROPERTIES	AMS 66 AMS 65 TECH 60 TECH 60 BIOK A69 JINSSB55 AMS 69 BIOK A69 JASA 66 BIOK A69 JASA 66 BIOK A69 JASA 66 BIOK A69 JASA 66 BIOK A55 AMS 69 BIOK A65 JASA 66 BIOK A65 JASA 66 BIOK A65 BIOK A65 BIOK A69 BIOK A69 BIOK A69 BIOK A69 BIOK A66 BIOK A67 BIOK A68 BIOK A67 BIOK A68 BIOK A68 BIOK A68 JRSSB54 AMS 67 BIOK A68	90 1243 B3 167 149 115 289 80 1196 803 NO.3 803 NO.3 1693 463 615 223 1207 17 69B 325 1403 NO.4 109 1115 422 19 171 231

TES - THE TITLE WORD INDEX

```
NTS WITH NONCONTROLLED PRE/ ASYMPTOTICALLY OPTIMAL TESTS OF COMPOSITE HYPOTHESES FOR RANDOMIZED EXPERIME JASA 65 699
EXPONENTIAL FAMILY, CORR. 67 1928
                                                    TESTS OF COMPOSITE HYPOTHESES FOR THE MULTIVARIATE
                                                                                                          AMS 67
                                                                                                                   681
                              ON OPTIMAL ASYMPTOTIC TESTS OF COMPOSITE STATISTICAL HYPOTHESES
                                                                                                           AMS 67 1845
                                               RANK TESTS OF DISPERSION
                                                                                                           AMS 63
                                                                                                                   973
OF EVENTS OCCURRING RA/
                          ON THE EQUIVALENCE OF TWO TESTS OF EQUALITY OF RATE OF OCCURRENCE IN TWO SERIES BIOKA58
                                                                                                                   267
                              POWER COMPARISIONS OF TESTS OF EQUALITY OF TWO COVARIANCE MATRICES BASED ON BIOKA68
 FOUR CRITERIA
                                                                                                                   335
                                 KOLMOCOROV-SMIRNOV TESTS OF FIT BASED ON SOME CENERAL BOUNDS
                                                                                                          JASA 68
                                                                                                                   919
INC IN THE SHORTEST SAMPLE SPACINGS DETERMINED BY/ TESTS OF FIT BASED ON THE NUMBER OF OBSERVATIONS FALL AMS 61
                                                                                                                   838
                                                    TESTS OF FIT IN TIME SERIES
                                                                                                                   309
                                                                                                          BIOKA52
                            AN INEQUALITY CONCERNING TESTS OF FIT OF THE KOLMOCOROV-SMIRNOV TYPE
                                                                                                          AMS 67 1240
                                                     TESTS OF GOODNESS OF FIT
                                                                                                          JRSSB63
SCHEMES
                           ASYMPTOTIC EXPANSIONS FOR TESTS OF GOODNESS OF FIT FOR LINEAR AUTOREGRESSIVE
                                                                                                          BIOKA64
                   THE ASYMPTOTIC POWERS OF CERTAIN TESTS OF GOODNESS OF FIT FOR TIME SERIES
                                                                                                          JRSSB58
                                                                                                                   143
                             SAMPLING PROPERTIES OF TESTS OF GOODNESS-OF-FIT FOR LINEAR AUTOREGRESSIVE
SCHEMES
                                                                                                          JRSSB62
                                                                                                                   492
SAMPLING.
                                          A NOTE ON TESTS OF HOMOGENEITY APPLIED AFTER SEQUENTIAL
                                                                                                          JRSSB60
                                                                                                                   368
                                                    TESTS OF HOMOCENEITY FOR CORRELATED SAMPLES
                                                                                                          JASA 63
                                                                                                                   97
                                        ON ITERATED TESTS OF HYPOTHESES
                                                                                                          JASA 67
                                                                                                                   520
                                                    TESTS OF HYPOTHESES ABOUT THE PARAMETERS OF THE
LOCISTIC FUNCTION
                                                                                                          BIOKA66
                                                                                                                   535
 69 194)
                                                    TESTS OF HYPOTHESES CONCERNING MATCHED SAMPLES (CORR. JRSSB67
                                                                                                                   468
E IN MONOFACTORIAL INHERITANCE NOTES. STATISTICAL TESTS OF HYPOTHESES CONCERNING THE DEGREE OF DOMINANC BIOCS68
                                                                                                                   429
WEIBULL DISTRIBUTION
                                               SOME TESTS OF HYPOTHESES CONCERNING THE THREE-PARAMETER JASA 68
                                                                                                                   853
                        THE EFFECT OF TRUNCATION ON TESTS OF HYPOTHESES FOR NORMAL POPULATIONS
                                                                                                           AMS 65
EL. II. NULL DISTRIBUTIONS FOR HIGHER ORDER SCHEM/ TESTS OF HYPOTHESES IN THE LINEAR AUTO-REGRESSIVE MOD BIOKA56
MODEL PART I
                                                    TESTS OF HYPOTHESES IN THE LINEAR AUTOREGRESSIVE
                                                                                                         BIOKA54
                                                                                                                   405
IBUTION WHEN SOME OUTLIERS ARE PRESENT, C/ ON SOME TESTS OF HYPOTHESES RELATING TO THE EXPONENTIAL DISTR JASA 65
                                                                                                                   548
                                  DISTRIBUTION-FREE TESTS OF INDEPENDENCE
                                                                                                           AMS 67
                                                                                                                   429
                                  DISTRIBUTION FREE TESTS OF INDEPENDENCE BASED ON THE SAMPLE DISTRIBUTIO
                                                                                                          AMS 61
                                                                                                                   485
        MONOTONICITY OF THE POWER FUNCTIONS OF SOME TESTS OF INDEPENDENCE BETWEEN TWO SETS OF VARIATES
                                                                                                           AMS 64
                                                                                                                   206
                          THE PERFORMANCE OF SOME TESTS OF INDEPENDENCE FOR CONTINGENCY-TYPE BIVARIATE
DISTRIBUTIONS
                                                                                                          RTOK A69
                                                                                                                   449
                                                    TESTS OF INDEPENDENCE IN INTRACLASS 2-BY-2 TABLES
                                                                                                          BIOKA61
                                                                                                                   1.81
                               CRITICAL REGIONS FOR TESTS OF INTERVAL HYPOTHESES ABOUT THE VARIANCE
                                                                                                          JASA 66
                                                                                                                   204
           LOCAL ASYMPTOTIC POWER AND EFFICIENCY OF TESTS OF KOLMOGOROV-SMIRNOV TYPE
                                                                                                           AMS 67 1705
                              A NOTE ON RECIONS FOR TESTS OF KURTOSIS
                                                                                                          BIOKA53
                                                                                                                   465
AL EXPERIMENTS, CORR. 66 1246
                                               LAMP TESTS OF LINEAR AND LOGLINEAR HYPOTHESES IN MULTINOMI JASA 66
                                       SIMULTANEOUS TESTS OF LINEAR HYPOTHESES
                                                                                                          BIOKA55
                                         RANK ORDER TESTS OF LINEAR HYPOTHESES
                                                                                                          JRSSB68
IATE ANALYSIS WHEN THE RATIOS OF THE POPULATION V/ TESTS OF LINEAR HYPOTHESES IN UNIVARIATE AND MULTIVAR BIOKA54
                                                                                                                   19
 TRANSFORMATIONS, CORR. 64 12/ ASYMPTOTIC POWER OF TESTS OF LINEAR HYPOTHESES USING THE PROBIT AND LOGIT JASA 62
                                                                                                                   877
                       ON THE ADMISSIBILITY OF SOME TESTS OF MANOVA
                                                                                                           AMS 64
                                                                                                                   789
                          A POWER COMPARISON OF TWO TESTS OF NON-RANDOM CLUSTERING
                                                                                                          TECH 66
                                                                                                                   493
                            A COMPARISON OF CERTAIN TESTS OF NORMALITY
                                                                                                          SASJ 69 NO.2
                                THE EFFICIENCIES OF TESTS OF RANDOMNESS AGAINST NORMAL REGRESSION
                                                                                                          JASA 56 285
                             ON THE INDEPENDENCE OF TESTS OF RANDOMNESS AND OTHER HYPOTHESES
                                                                                                          JASA 57
                                                                                                                   53
                                                    TESTS OF RANDOMNESS BASED ON DISTANCE METHODS.
                                                                                                          BIOKA65
                                                                                                                   345
                                      ON SEQUENTIAL TESTS OF RATIO OF VARIANCES BASED ON RANGE
                                                                                                          BIOKA63
                                                    TESTS OF RELATEDNESS
                                                                                                          BIOKA67
                                    SOME RESULTS ON TESTS OF SEPARATE FAMILIES OF HYPOTHESES
                                                                                                          BTOKA68
                                 FURTHER RESULTS ON TESTS OF SEPARATE FAMILIES OF HYPOTHESES
                                                                                                          JRSSB62
                                                                                                                   406
                                               SOME TESTS OF SEPARATE FAMILIES OF HYPOTHESES IN TIME
                                                                                                          BIOKA67
SERIES ANALYSIS
                                                                                                                   39
              RAO'S PARADOX CONCERNING MULTIVARIATE TESTS OF SIGNIFICANCE
                                                                                                          BIOCS69
                                                                                                                   411
     LIKELIHOOD ESTIMATION PROCEDURES AND ASSOCIATED TESTS OF SIGNIFICANCE
                                                                                                MAXIMUM- JRSSB60
                                                                                                                  1.54
                                                    TESTS OF SICNIFICANCE FOR CONCURRENT REGRESSION LINES BIOKA53
                                                                                                                  2.97
                                          A NOTE ON TESTS OF SIGNIFICANCE FOR LINEAR FUNCTIONAL
                                                                                                          BTOKA57
                                                                                                                   268
NCE AND CORRELATION MATRICES
                                                    TESTS OF SICNIFICANCE FOR THE LATENT ROOTS OF COVARIA BIOKA56
                                                                                                                   128
EXTENSION OF FINNEY'S TABLE
                                                    TESTS OF SICNIFICANCE IN A 2-BY-2 CONTINGENCY TABLE,
                                                                                                          BIOKA53
                                                                                                                    74
                                                    TESTS OF SICNIFICANCE IN CANONICAL ANALYSIS
                                                                                                          BIOKA52
                                                    TESTS OF SIGNIFICANCE IN CANONICAL ANALYSIS
                                                                                                          BIOKA59
                                                                                                                    59
                                              EXACT TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES
       THE CONSTRUCTION OF A MATRIX USED IN DERIVING TESTS OF SIGNIFICANCE IN MULTIVARIATE ANALYSIS
                                                                                                          BTOKA64
                                                                                                                   503
      ALCEBRAIC THEORY OF THE COMPUTING ROUTINE FOR TESTS OF SIGNIFICANCE ON THE DIMENSIONALITY OF NORMAL JRSSB56
                                               SOME TESTS OF SIGNIFICANCE WITH ORDERED VARIABLES
                                                                                                          JRSSB56
                          PUBLICATION DECISIONS AND TESTS OF SIGNIFICANCE, A COMMENT
                                                                                                                   593
                                                                                                          JASA 59
 AND THEIR POSSIBLE EFFECTS ON INFERENCES DRAWN FROM TESTS OF SIGNIFICANCE, OR VICE VERSA /ION DECISIONS JASA 59
                                                                                                                   30
                       ASYMPTOTICALLY NONPARAMETRIC TESTS OF SYMMETRY
                                                                                                          AMS 67
                                                                                                                   849
                                          ITERATED TESTS OF THE EQUALITY OF SEVERAL DISTRIBUTIONS
                                                                                                          JASA 62
                                                                                                                  579
                                                 ON TESTS OF THE EQUALITY OF TWO COVARIANCE MATRICES
                                                                                                          AMS 68
                                                                                                                  275
MONOTONICITY PROPERTY OF THE POWER FUNCTIONS OF SOME TESTS OF THE EQUALITY OF TWO COVARIANCE MATRICES, COR AMS 64 1059
                      SENSITIVITY COMPARISONS AMONG TESTS OF THE GENERAL LINEAR HYPOTHESIS
                                                                                                          JASA 66
                       SOME NOTES ON VARIANCE-RATIO TESTS OF THE GENERAL LINEAR HYPOTHESIS
                                                                                                          BIOKA64
                                                                                                                   508
HETEROGENEITY
                  SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE HYPOTHESIS OF EQUAL MEANS UNDER VARIANCE BIOKA60
                                                                                                                   345
H/ CORRIGENDA, 'SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE HYPOTHESIS OF EQUAL MEANS UNDER VARIANCE BIOKAGI
SYSTEM OBEYS TWO SEPARATE REGIMES
                                                    TESTS OF THE HYPOTHESIS THAT A LINEAR REGRESSION
                                                                                                         JASA 60
                                                                                                                  324
      SOME EXACT RESULTS FOR ONE-SIDED DISTRIBUTION TESTS OF THE KOLMOGOROV-SMIRNOV TYPE
                                                                                                           AMS 61
                                                                                                                  499
      DIRECT METHODS FOR EXACT TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A NORMAL DISTRIBUTION
                                                                                                          TECH 69 NO.4
        MONOTONICITY OF THE POWER FUNCTIONS OF SOME TESTS OF THE MULTIVARIATE LINEAR HYPOTHESIS
                                                                                                          AMS 64 200
       CONTRIBUTIONS TO SAMPLE SPACINGS THEORY, II. TESTS OF THE PARAMETRIC GOODNESS OF FIT AND TWO-SAMPL AMS 66
                                                                                                                   925
E PR/
                             ON COMPARING DIFFERENT TESTS OF THE SAME HYPOTHESIS
                                                                                                         BTOKA60
                                                                                                                  297
                                    A COMPARISON OF TESTS OF THE WILKS-LAWLEY HYPOTHESIS IN MULTIVARIATE BIOKA65 149
ANALYSTS
OOTS OF A COVARIANCE MATRIX AND WILKS' CRITERION FOR TESTS OF THREE HYPOTHESES /S OF THE RATIOS OF THE R AMS 69 NO.6
                               POWER COMPARISONS OF TESTS OF TWO MULTIVARIATE HYPOTHESES BASED ON FOUR
                                                                                                         BTOKA67 195
                             TABLES FOR SIGNIFICANCE TESTS OF 2-BY-2 CONTINGENCY TABLES
                                                                                                          BTOKA55
                                                                                                                   494
                                    GOODNESS-OF-FIT TESTS ON A CIRCLE
                                                                                                          BIOKA61 109
                                                                                                          BIOKA62
                                                                                                                   57
                                    GOODNESS-OF-FIT TESTS ON A CIRCLE.II
            THE CONDITIONAL DISTRIBUTION OF SETS OF TESTS ON A SYSTEM SIMULATED FROM TESTS ON ITS COMPONE AMS 63 1585
                                                                                                          TECH 62 345
                    ON A CLASS OF SIMPLE SEQUENTIAL TESTS ON MEANS
                ON THE CONSTRUCTION OF SIGNIFICANCE TESTS ON THE CIRCLE AND THE SPHERE
                                                                                                          BIOKA56 344
```

TITLE WORD INDEX TES - THE

	ON THE POWER OF TWO-SAMPLE RANK TESTS ON THE EQUALITY OF TWO DISTRIBUTION MORE SICNIFICANCE TESTS ON THE SPHERE TABLES FOR UNBIASED TESTS ON THE VARIANCE OF A NORMAL POPULATI	BIOKA60 87	7
	NON-NORMALITY AND TESTS ON VARIANCES,	BIOKA53 318	3
SAMPLE EXTENSION	OF THE ONE-SIDED TWO-SAMPLE SMIRNOV TESTS STATISTIC	A K- AMS 67 1726	
CMIDA	THE BEHAVIOUR OF SOME SIGNIFICANCE TESTS UNDER EXPERIMENTAL RANDOMIZATION	BIOKA69 231 IMULATION BIOKA67 679	
STUDY	SOME TWO-SAMPLE TESTS WHEN THE VARIANCES ARE UNEQUAL. A SI ON SEQUENTIAL TESTS WHICH MINIMIZE THE MAXIMUM EXPECTED		
THE LOCATION MOD			
	NOTE ON SOME SQUARED RANK TESTS WITH EXISTING TIES	TECH 67 312	2
	QUICK POWERFUL TESTS WITH CROUPED DATA	BI0KA68 264	
	HE ASYMPTOTIC POWERS OF MULTIVARIATE TESTS WITH CROUPED DATA	JRSSB68 338	
MANTEL-HAENSZEL	STATISTICAL ANALYSIS A CLASS OF TESTS WITH MONOTONE POWER FUNCTIONS FOR TW PROCEDURE CHI-SQUARE TESTS WITH ONE DECREE OF FREEDOM, EXTENSION		
	QUARE AND KOLMOCOROV COODNESS-OF-FIT TESTS WITH RESPECT TO VALIDITY, CORR. 66 1		
	BUTION OF SAMPLE SIZE FOR SEQUENTIAL TESTS. I. TESTS FOR SIMPLE HYPOTHESES		О
	'SOME METHODS OF CONSTRUCTING EXACT TESTS.'	BIOKA66 629	
		OMPARISON OF BIOKA63 546	
	REQUENCY JUSTIFICATION OF SEQUENTIAL TESTS, ADDENDUM FIXED EFFECTS ANALYSIS OF VARIANCE F TESTS, ALPHA EQUALS 0.01 AND 0.05 /ATINO	BIOKA53 46E C CHARACTERI JASA 57 345	
SIIC CONVES FOR	ON SOME TWO-SAMPLE NON-PARAMETRIC TESTS, CORR. 66 1249	JASA 65 1118	
HARTS OF THE POW	ER FUNCTION FOR ANALYSIS OF VARIANCE TESTS, DERIVED FROM THE NON-CENTRAL F-DIST		
	BIVARIATE SYMMETRY TESTS, PARAMETRIC AND NONPARAMETRIC	AMS 69 259	
	OMMENTS ON 'THE SIMPLEST SICNED-RANK TESTS'	JASA 59 213	
		CORRICENDA, BIOKA65 669 CTION. 'A CO AMS 65 15B3	
	'A CONSERVATIVE PROPERTY OF BINOMIAL TESTS' 60 1205	AMS 61 1343	
	ON THE STRUCTURE OF THE TETRACHORIC SERIES	BIOKA68 261	
MIXE	D SELF- AND CROSS-FERTILIZATION IN A TETRASOMIC SPECIES	BIOCS68 485	
CE MATRICES	UNBIASEDNESS OF SOME TEXT CRITERIA FOR THE EQUALITY OF ONE OR T		
ON NAHORDNING AN	A COMPUTER SIMULATION MODEL OF THE TEXTILE INDUSTRY D FERNORDNUNG IN SAMPLES OF LITERARY TEXTS	JASA 67 1338 BIOKA54 116	
on minoribilities in	ON THEIL'S MIXED RECRESSION ESTIMATOR	JASA 69 273	
SOME EXTE	NSIONS OF THE WALD-WOLFOWITZ-NOETHER THEOREM	AMS 61 506	-
	NOTE ON THE BERRY-ESSEN THEOREM	AMS 63 1107	
CE	A LOCAL LIMIT THEOREM NERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM	AMS 64 419 AMS 65 1292	
O.E.	A UNIFORM ERCODIC THEOREM	AMS 65 1853	
ON THE CONVERG	ENCE OF MOMENTS IN THE CENTRAL LIMIT THEOREM	AMS 65 808	3
	ON THE SEMIMARTINCALE CONVERCENCE THEOREM	AMS 66 690	
	A GENERALIZATION OF THE CAUSS-MARKOV THEOREM	JASA 66 1063 AMS 67 221	
	JECTIVE PROBABILITIES, A CONVERGENCE THEOREM STOPPING RULE AND THE CENTRAL LIMIT THEOREM	AMS 67 221 AMS 67 1915	
OH A	A NOTE ON THE BIRKHOFF ERGODIC THEOREM	AMS 67 922	
	A SIMPLER PROOF OF SMITH'S ROULETTE THEOREM	AMS 68 390)
ON CO	NVERCENCE RATES IN THE CENTRAL LIMIT THEOREM	AMS 69 475	
	AN OPTIMAL STOPPINC THEOREM NOTE ON THE THREE SERIES THEOREM	AMS 69 677 AMS 69 1844	
	AN L-TO-THE-P CONVERGENCE THEOREM	AMS 69 1068	
	A UNIFORM OPERATOR ERCODIC THEOREM	AMS 69 1126	
	NOTE ON THE INVERSION THEOREM ON AN EXTENSION OF CEARY'S THEOREM	BIOKA51 481 BIOKA53 228	
A FU	RTHER LOOK AT ROBUSTNESS VIA BAYES'S THEOREM	BIOKA62 419	
	FIDUCIAL DISTRIBUTIONS AND BAYES' THEOREM	JRSSB58 102	
	A MULTIVARIATE VERSION OF FIELLER'S THEOREM	JRSSB59 59	
	EM FOR FINITE MATRICES AND COCHRAN'S THEOREM EPTANCE SCHEMES DERIVED FROM BAYES'S THEOREM	THE AMS 64 443	
	NG RULE RELATED TO THE CENTRAL LIMIT THEOREM	SERIAL TECH 60 353 MOMENTS AMS 69 1236	
	NT MEASURE AND AN ORNSTEIN'S ERGODIC THEOREM	EXISTENCE AMS 69 79	
OF A CLASS OF	FREQUENCY DISTRIBUTIONS VIA BAYES'S THEOREM	DERIVATION JRSSB65 290	
	MIXINC WHICH GENERALIZE DE FINETTI'S THEOREM	INVARIANTS AMS 62 916	
		A SIMPLE PRO AMS 65 1294 NERALIZATION AMS 68 2145	
ATISTIC AND THE	COMBINATION OF TWO SAMPLES BY BAYES' THEOREM AN EXAMPLE OF AN A	ANCILLARY ST AMS 61 616	3
IRICAL PROCESS A	ND A NEW APPROACH TO CHERNOFF-SAVACE THEOREM WEAK CONVERGENCE OF A TWO		
	FLUCTUATION THEOREM AND A CENERALIZATION	AMS 64 1359 BIOKA67 567	
ANALYSIS	FIELLER'S THEOREM AND A CENERALIZATION BAYES'S THEOREM AND THE USE OF PRIOR KNOWLEDGE IN		
	A UNIQUENESS THEOREM CONCERNING MOMENT DISTRIBUTIONS	JASA 65 1203	3
	A CENERALIZATION OF ITO'S THEOREM CONCERNING THE POINTWISE ERCODIC T		
	A LOCAL LIMIT THEOREM FOR A CERTAIN CLASS OF RANDOM WALK		
	A FLUCTUATION THEOREM FOR CYCLIC RANDOM VARIABLES THE SPECTRAL THEOREM FOR FINITE MATRICES AND COCHRAN'S	AMS 62 1450 THEOREM AMS 64 443	
	A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCHASTIC PROCESSES	AMS 62 98	3
	THE CENTRAL LIMIT THEOREM FOR GENERALIZED RANDOM FIELDS	AMS 69 203	
	ON THE GLIVENKO-CANTELLI THEOREM FOR INFINITE INVARIANT MEASURES	AMS 67 1273	
	A STABLE LIMIT THEOREM FOR MARKOV TESTS THE REMAINDER IN THE CENTRAL LIMIT THEOREM FOR MIXING STOCHASTIC PROCESSES	AMS 69 1467 AMS 69 601	
	A LIMIT THEOREM FOR MULTIDIMENSIONAL GALTON-WATSON		
	ON THE CODINC THEOREM FOR NOISELESS CHANNEL	AMS 61 594	1
	INITELY DIVISIBLE LAWS AND A RENEWAL THEOREM FOR NON-NEGATIVE RANDOM VARIABLES		
FUNCTIONS	A LOCAL LIMIT THEOREM FOR NONLATTICE MULTI-DIMENSIONAL D		
	COMBINATORIAL THEOREM FOR PARTIAL SUMS	AMS 63 1600	,
	COMBINATORIAL THEOREM FOR PARTIAL SUMS A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES	AMS 61 677	7
PROCESSES		AMS 61 677 NERATIVE AMS 66 866	7

```
A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A STOCHASTIC
PROCESS
                                                                                                           AMS 64 866
                       A MULTIVARIATE CENTRAL LIMIT THEOREM FOR RANDOM LINEAR VECTOR FORMS
                                                                                                            AMS 66 1825
             WEAK CONVERCENCE AND A CHERNOFF-SAVACE THEOREM FOR RANDOM SAMPLE SIZES
                                                                                                            AMS 68 1675
NON-IDENTICALLY DISTRIBUTED
                                          A RENEWAL THEOREM FOR RANDOM VARIABLES WHICH ARE DEPENDENT OR
                                                                                                            AMS 63 390
      POSTERIOR DISTRIBUTION OF PERCENTILES. BAYES' THEOREM FOR SAMPLINC FROM A POPULATION
                                                                                                           JASA 68
                                                                                                                    677
                                        A UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERCODIC MARKOV
                                                                                                            AMS 64 1781
INFINITE EXPECTATI/
                     A SHORT PROOF OF A KNOWN LIMIT THEOREM FOR SUM OF INDEPENDENT RANDOM VARIABLES WITH
                                                                                                            AMS 69 1114
                                            A LIMIT THEOREM FOR SUMS OF MINIMA OF STOCHASTIC VARIABLES
                                                                                                            AMS 65 1041
MOTTON
                                  AN OCCUPATION TIME THEOREM FOR THE ANCULAR COMPONENT OF PLANE BROWNIAN
                                                                                                            AMS 67
                                                                                                                    25
CTION OF TWO GRAPHS (CORR. 69 151/ A CENTRAL LIMIT THEOREM FOR THE NUMBER OF EDGES IN THE RANDOM INTERSE
                                                                                                                   144
                                                                                                            AMS 69
                                     A DECOMPOSITION THEOREM FOR VECTOR VARIABLES WITH A LINEAR STRUCTURE
                                                                                                            AMS 69 1845
                          AN APPLICATION OF A BALLOT THEOREM IN ORDER STATISTICS
                                                                                                            AMS 64 1356
                            APPLICATIONS OF A BALLOT THEOREM IN PHYSICS AND IN ORDER STATISTICS
                                                                                                           JRSSB65 130
   ON THE APPLICATION TO STATISTICS OF AN ELEMENTARY THEOREM IN PROBABILITY
                                                                                                           BIOKA56
                                                                                                                    85
                                                  A THEOREM IN TREND ANALYSIS
                                                                                                           BIOKA61
                                                                                                                    224
                                                ON A THEOREM OF BAHADUR AND GOODMAN
                                                                                                            AMS 66
                               A GENERALIZATION OF A THEOREM OF BALAKRISHNAN
                                                                                                            AMS 61 1337
                                , AN EXTENSION OF A THEOREM OF CHOW AND ROSSINS ON SEQUENTIAL CONFIDENCE
INTERVALS FOR THE MEAN
                                                                                                            AMS 69
                                                                                                                    667
                                                ON A THEOREM OF CRAMER AND LEADSETTER
                                                                                                            AMS 66
                                                                                                                    682
                   A POTENTIAL THEORETIC PROOF OF A THEOREM OF DERMAN AND VEINOTT
                                                                                                            AMS 67
                                                                                                                    585
                                                ON A THEOREM OF DOBRUSHIN
                                                                                                            AMS 68 1391
                                           NOTE ON A THEOREM OF DYNKIN ON THE DIMENSION OF SUFFICIENT
STATISTICS
                                                                                                            AMS 69 1474
CHING PROCESSES TO A BRANCH/ EXTENSIONS OF A LIMIT THEOREM OF EVERETT, ULAM AND HARRIS ON MULTITYPE 8RAN
                                                                                                            AMS 67 992
                                                ON A THEOREM OF HOEL AND LEVINE ON EXTRAPOLATION
                                                                                                            AMS 65 1627
                                 NOTE ON THE ERGODIC THEOREM OF INFORMATION THEORY
                                                                                                            AMS 61
                                                                                                                    612
ESTIMATES IN EXPONENTIAL POPULATIONS
                                                ON A THEOREM OF KARLIN REGARDING ADMISSIBILITY OF LINEAR
                                                                                                            AMS 66 1809
EXPONENTIAL POPULATIONS
                                                ON A THEOREM OF KARLIN REGARDING ADMISSIBLE ESTIMATES FOR
                                                                                                            AMS 69
                                                                                                                   216
                                           NOTE ON A THEOREM OF KINGMAN AND A THEOREM OF CHUNG
                                                                                                            AMS 66 1844
                                                   A THEOREM OF LEVY AND A PECULIAR SEMIGROUP
                                                                                                            AMS 67 1552
                         MARTINCALE EXTENSIONS OF A THEOREM OF MARCINKIEWICZ AND ZYGMUND
                                                                                                            AMS 69 427
                         THE MARTINGALE VERSION OF A THEOREM OF MARCINKIEWICZ AND ZYGMUND
                                                                                                            AMS 67
                                                                                                                    725
        THE TAIL SICMA-FIELD OF A MARKOV CHAIN AND A THEOREM OF OREY
                                                                                                            AMS 64 1291
                                                ON A THEOREM OF RENYI CONCERNING MIXING SEQUENCES OF SETS
                                                                                                            AMS 61 257
                                ON AN OPERATOR LIMIT THEOREM OF ROTA
                                                                                                            AMS 65 1864
                                                ON A THEOREM OF SKOROHOD
                                                                                                            AMS 68 2094
                             VARIATIONS ON A RENEWAL THEOREM OF SMITH
                                                                                                            AMS 68 155
                    CORRECTION TO 'A PROOF OF WALD'S THEOREM ON CUMULATIVE SUMS' 59 1245
                                                                                                            AMS 61 1344
                                   CORRECTIONS TO 'A THEOREM ON FACTORIAL MOMENTS AND ITS APPLICATIONS' 50
                                                                                                            AMS 61
                                                                                                                    620
MULTIVARIATE LINEAR RECRESSION
                                                   A THEOREM ON LEAST SQUARES AND VECTOR CORRELATION IN
                                                                                                        JASA 66
                                                   A THEOREM ON LEAST SQUARES IN MULTIVARIATE LINEAR
REGRESSION
                                                                                                           JASA 67 1494
                                                   A THEOREM ON RANK ORDERS FOR TWO CENSORED SAMPLES
                                                                                                           AMS 65 316
                                                   A THEOREM ON STOPPING TIMES
                                                                                                            AMS 64 1348
                         SHORT PROOF OF DR HARLEY'S THEOREM ON THE CORRELATION COEFFICIENT
                                                                                                           BTOKA58
                                                                                                                    571
                                                   A THEOREM ON THE CALTON-WATSON PROCESS
                                                                                                                    695
                                                                                                            AMS 66
                            AN EXTENSION OF ROSEN'S THEOREM TO NON-IDENTICALLY DISTRIBUTED RANDOM VARIABL
ES
                                                                                                            AMS 68
                                                                                                                    897
                       A GENERALIZATION OF FIELLER'S THEOREM TO THE RATIO OF COMPLEX PARAMETERS
                                                                                                          JRSSB67 126
NVARIANTS UNDER MIXING WHICH GENERALIZE DE FINETTI'S THEOREM. CONTINUOUS TIMES PARAMETER
                                                                                                         I AMS 63 1194
           'A FURTHER LOOK AT ROBUSTNESS VIA 8AYES'S THEOREM.'
                                                                                               CORRIGENDA, 810KA63
                                                                                                                    546
                  A NEW PROOF OF THE PEARSON-FISHER THEOREM, (ACKNOWLEDGEMENT OF PRIORITY, 65 344)
                                                                                                            AMS 64
                                                                                                                    817
ACKNOWLEDGEMENT OF PRIORITY), 'NOTE ON THE INVERSION THEOREM'
                                                                                                          8IOKA52 215
                                   CONDITIONED LIMIT THEOREMS
                                                                                                            AMS 63 1147
               ON DVORETZKY STOCHASTIC APPROXIMATION THEOREMS
                                                                                                            AMS 66 1534
                  STOCHASTIC POINT PROCESSES, LIMIT THEOREMS
                                                                                                            AMS 67
                          A NOTE ON CHERNOFF-SAVAGE THEOREMS
                                                                                                            AMS 69 1116
      INCOMPLETE 8LOCK DESIGNS AND SOME NONEXISTENCE THEOREMS
                                                                              DUALS OF PARTIALLY SALANCED
                                                                                                            AMS 66 1048
   TIME MARKOV SRANCHING PROCESSES AND RELATED LIMIT THEOREMS
                                                                 EMBEDDING OF URN SCHEMES INTO CONTINUOUS
                                                                                                            AMS 68 1801
                   NEW CONDITIONS FOR CENTRAL LIMIT THEOREMS (CORR. 69 1855)
                                                                                                            AMS 69
                                                                                                                    319
IKELIHOOD ESTIMATOR OF AN UNKNOWN PARAMETER/ SOME THEOREMS AND SUFFICIENCY CONDITIONS FOR THE MAXIMUM-L BIOKA55
                                                                                                                    342
IKELIHOOD ESTIMATOR OF AN UNK/ CORRIGENDA TO SOME THEOREMS AND SUFFICIENCY CONDITIONS FOR THE MAXIMUM-L 810KA56
                                                                                                                    497
                                                     THEOREMS CONCERNING EISENHART'S MODEL II
                                                                                                            AMS 61
                                                                                                                    261
FOR NON-HOMOGENEOUS MARKOV CHAINS
                                               SOME THEOREMS CONCERNING THE STRONG LAW OF LARGE NUMBERS
                                                                                                            AMS 64
                                                                                                                    566
PROCESS
                                           ON RECENT THEOREMS CONCERNING THE SUPERCRITICAL GALTON-WATSON
                                                                                                            AMS 68
                                                                                                                   2098
                               SOME RENYI TYPE LIMIT THEOREMS FOR EMPIRICAL DISTRIBUTION FUNCTIONS, CORR.
65 1069
                                                                                                            AMS 65
                                       CENTRAL LIMIT THEOREMS FOR FAMILIES OF SEQUENCES OF RANDOM
VARIABLES
                                                                                                            AMS 63
                                                                                                                    439
                                              LIMIT THEOREMS FOR FUNCTIONS OF SHORTEST TWO-SAMPLE SPACING
                                                                                                          AMS 67
S AND A RELATED TEST
                                                                                                                    1.08
                                            ON LIMIT THEOREMS FOR GAUSSIAN PROCESSES
                                                                                                            AMS 65
                                                                                                                    304
                                    ADDITIONAL LIMIT THEOREMS FOR INDECOMPOSABLE MULTIDIMENSIONAL GALTON-
WATSON PROCESSES
                                                                                                            AMS 66 1463
                                   SOME CONVERGENCE THEOREMS FOR INDEPENDENT RANDOM VARIABLES
                                                                                                            AMS 66 1482
 WITH APPLICATIONS IN ACCEPTANCE SAMPLING
                                                TWO THEOREMS FOR INFERENCES ABOUT THE NORMAL DISTRIBUTION JASA 64
                                                                                                                    89
                                              LIMIT THEOREMS FOR MARKOV RENEWAL PROCESSES
                                                                                                            AMS 64 1746
                                         CONVERGENCE THEOREMS FOR MULTIPLE CHANNEL LOSS PROBABILITIES
                                                                                                            AMS 63 260
                                          SOME LIMIT THEOREMS FOR NON-HOMOGENEOUS MARKOV CHAINS
                                                                                                            AMS 66 1224
                                               LIMIT THEOREMS FOR QUEUES WITH TRAFFIC INTENSITY ONE
                                                                                                            AMS 65 1437
                                               LIMIT THEOREMS FOR RANDOMLY SELECTED PARTIAL SUMS
                                                                                                            AMS 62
                                                                                                                     85
                                    CHARACTERIZATION THEOREMS FOR SOME UNIVARIATE PROBABILITY DISTRIBUTION JRSS864
                                                                                                                    286
                                   CHARACTERIZATION THEOREMS FOR SOME UNIVARIATE PROBABILITY DISTRIBUTION JRSS866
E STATE SEQUENCES
                                     SOME STRUCTURE THEOREMS FOR STATIONARY PROBABILITY MEASURES ON FINIT
                                                                                                          AMS 64
                                                                                                                    550
                                               LIMIT THEOREMS FOR STOPPED RANDOM WALKS
                                                                                                            AMS 64 1332
                                               LIMIT THEOREMS FOR STOPPED RANDOM WALKS, II
                                                                                                            AMS 66
                                                                                                                   860
                                               LIMIT THEOREMS FOR STOPPED RANDOM WALKS, III
                                                                                                            AMS 66 1510
                                                                                                                   497
                                          SOME LIMIT THEOREMS FOR THE DODGE-ROMIG LTPD SINCLE SAMPLING
                                                                                                          TECH 62
INSPECTION PLANS
                                     A NOTE ON LIMIT THEOREMS FOR THE ENTROPY OF MARKOV CHAINS
                                                                                                                   522
                                                                                                           AMS 66
                                              LIMIT THEOREMS FOR THE MAXIMUM TERM IN STATIONARY SEQUENCES
                                                                                                           AMS 64
                                                                                                                   502
                                               LIMIT THEOREMS FOR THE MULTI-URN EHREFEST MODEL
                                                                                                            AMS 68 864
                                          SOME BASIC THEOREMS OF DISTRIBUTION-FREE STATISTICS
                                                                                                            AMS 64 150
                                  SOME SMIRNOV TYPE THEOREMS OF PROBABILITY
                                                                                                           AMS 65 1113
```

TITLE WORD INDEX THE - THE

MINIMA	THEODENC ON CONDITIONALLY COMPACE CEEC	AMC CZ	1576
MINIMAZ	THEOREMS ON CONDITIONALLY COMPACT SETS THEOREMS ON FUNCTIONALS OF MARKOV CHAINS	AMS 64	1275
	THEOREMS ON MATRIX DIFFERENTIATION WITH SPECIAL REFER		
	THEOREMS TO CRITERIA FOR THE CONTINUITY OF PROCESSES		
INFINITE RENEWAL	. THEOREMS WHEN THE FIRST OR THE SECOND MOMENT IS	AMS 68	1210
	. THEOREMS WITH APPLICATION TO A FIRST PASSAGE PROBLEM		
	THEORETIC PROOF OF A THEOREM OF DERMAN AND VEINOTT		585 163
INTERSECTION A COMPARISON OF	THEORETICAL ANALYSIS OF DELAYS AT AN UNCONTROLLED THEORETICAL AND EMPIRICAL RESULTS FOR SOME STOCHASTIC	BIOK460	163
A SIMPLE	THEORETICAL APPROACH TO CUMULATIVE SUM CONTROL CHARTS	JASA 61	B35
	THEORETICAL ASPECTS OF DIFFUSION THEORY IN POPULATION		939
INSPECTION PLAN SOME			
	THEORETICAL CONSIDERATIONS REGARDING H. R. B. HACK'S		
RATE	THEORETICAL EXPLANATION OF OBSERVED DECREASE FAILURE	TECH 63 JASA 69	
THE UNRELATED QUESTION RANDOMIZED RESPONSE MODEL,	THEORETICAL INVESTIGATION /REGRESSION COEFFICIENTS		61
		BIOKA57	27
		BIOKA51	
'STUDENT' AND SMALL SAMPLE		JASA 58	
ON THE RUIN PROBLEM OF COLLECTIVE RISP		AMS 61	
RANDOMIZED ROUNDED-OFF MULTIPLIERS IN SAMPLING AN INVARIANCE PRINCIPLE IN RENEWAL		JASA 61 AMS 62	
COMBINATORIAL RESULTS IN FLUCTUATION		AMS 63	
APPLICATION OF METHODS IN SEQUENTIAL ANALYSIS TO DAM		AMS 63	
SOME RECENT ADVANCES IN SAMPLING	THEORY	JASA 63	
ON THE AXIOMS OF INFORMATION		AMS 64	
THE LINEAR HYPOTHESIS AND LARGE SAMPLE SUFFICIENCY IN SAMPLING		AMS 64 AMS 64	
ON MOMENT GENERATING FUNCTIONS AND RENEWAL		AMS 65	
ON A PROBLEM IN NON-LINEAR PREDICTION		AMS 65	
ON ABSOLUTELY CONTINUOUS COMPONENTS AND RENEWAL	THEORY	AMS 66	271
AN OLD APPROACH TO FINITE POPULATION SAMPLING		JASA 6B	
HIERARCHICAL BIRTH AND DEATH PROCESSES. I. A CONTRIBUTION TO COUNTER	mumo DV	BIOKA60	1.00
ON DISCRETE STABLE POPULATION	THEORY	JRSSB63	285
FOR OPTIMALITY AND VALIDITY AND SIMPLE LEAST SQUARES	THEORY CONDITIONS	AMS 69	1617
WIDE-SENSE MARKOV PROCESSES AND PREDICTION	THEORY MULTIVARIATE	AMS 63	424
TO NON-OPTIMAL DESIGN IN BAYESIAN DECISION	THEORY INSENSITIVITY	JASA 65	584
SOLUTION OF THE INTEGRAL EQUATION OF RENEWAL OF MULTI-SIZED PARTICLES, AN APPLICATION OF RENEWAL	THEORY AN APPROXIMATE	JRSSB63	432 285
FOR A VARIABLE CHANCE OF INFECTION IN CHAIN-BINOMIAI	THEORY SIGNIFICANCE TESTS	BIOKA56	332
FOR CROSS CLASSIFICATIONS, 111 APPROXIMATE SAMPLING	THEORY MEASURES OF ASSOCIATION	JASA 63	310
ESTIMATION AND CERTAIN PROBLEMS OF ADDITIVE NUMBER	THEORY MINIMUM VARIANCE UNBIASED	AMS 63	1050
FOR A NATURAL CENERALIZATION OF CLASSICAL RENEWAL		JRSSB67	141
OF HICH EFFICIENCY IN BIVARIATE EXTREME VALUE AND RELATED DISTRIBUTIONS, AND A PARADOX IN FIDUCIAL	THEORY PIVOTAL GUANTITIES FOR WISHART'S	JASA 69	79
AND ITS APPLICATIONS TO MULTIVARIATE DISTRIBUTION	THEORY CENERALIZATION OF SVERDRUP'S LEMMA	AMS 65	671
OF THE HANKEL TRANSFORM IN STATISTICS. I. GENERAL	THEORY AND EXAMPLES THE USE		44
HALF-RECTIFIED TRUNCATED DISTRIBUTIONS, SAMPLING		TECH 69	47
		AMS 66 AMS 67	643 795
		JRSSB58	243
RECENT ADVANCES IN SAMPLE SURVEY	THEORY AND METHODS	AMS 62	325
	THEORY AND NONPARAMETRIC TESTING AGAINST ORDERED		
	THEORY AND THE CASE OF SIMPLE ORDER /ION OF NON-NUM		
DISCUSSION) THE DECISION PROBLEMS IN MENTAL TEST	THEORY APPROACH TO SAMPLINC INSPECTION (WITH THEORY ARISING FROM ERRORS OF MEASUREMENT	JASA 59	
CONTRIBUTIONS TO CENTRAL LIMIT		AMS 68	
MULTIVARIATE	THEORY FOR CENERAL STEPWISE METHODS	AMS 63	873
STATES SOME ASYMPTOTIC DISTRIBUTION	THEORY FOR MARKOV CHAINS WITH A DENUMERABLE NUMBER OF	BIOKA56	285
A SAMPLING TEST OF THE CHI_SOHARE	THEORY FOR PROBABILITY CHAINS	BIOK 452	11R
A SIMILATION OF THE OHI-SQUARE	THEORY FOR RECORD LINKAGE	JASA 69	NO.4
A NEW ESTIMATION	THEORY FOR SAMPLE SURVEYS	BIOKA6B	547
RANDOM ALLOCATION DESIGNS II, APPROXIMATE	THEORY FOR SIMPLE RANDOM ALLOCATION	AMS 61	387
A POTENTIAL COMPARISON OF REPLACEMENT POLICIES, AND RENEWAL	THEORY FOR MARKOV CHAINS WITH A DENUMERABLE NUMBER OF THEORY FOR PRINCIPAL COMPONENT ANALYSIS THEORY FOR PROBABILITY CHAINS THEORY FOR RECORD LINKAGE THEORY FOR SAMPLE SURVEYS THEORY FOR SIMPLE RANDOM ALLOCATION THEORY FOR SUPERMARTINGALES THEORY IMPLICATIONS	AMS 68 AMS 64	577
		JASA 65	
APPLICATIONS OF PROBABILITY		JASA 65	
MONTE CARDO METHODS CSE OF WILCONON TEST	THEORY IN ESTIMATING THE DISTRIBUTION OF A RATIO BY		
		AMS 68	
TODE OF DEPARTURES FROM ASSUMPTION (W/ PERMUTATION	THEORY IN THE DERIVATION OF ROBUST CRITERIA AND THE S	AMS 65	946
CIRCULAR DISTRIBUTION ASYMPTOTIC	THEORY IN THE PLANE THEORY OF A CLASS OF TESTS FOR UNIFORMITY OF A THEORY OF A HIGH-SPEED PHOTOELECTRIC PLANIMETER THEORY OF A SIMPLE DUELE	AMS 69	1196
STATISTICAL	THEORY OF A HIGH-SPEED PHOTOELECTRIC PLANIMETER	BIOKA68	419
DOME TONTHER RESOLIS IN THE NON-EQUIETENTON	THEORY OF A SIMILED GODOD	01/222201	020
DISCRETE DISTRIBUTION WITH SPECIAL REFERENCE TO THE	THEORY OF ACCIDENT PRONENESS THEORY OF ACCIDENT PRONENESS ON A	JASA 65	1060
A TEST FOR 'INTRINSIC CORRELATION' IN THE	THEORY OF ACCIDENT PRONENESS (ACKNOWLEDGEMENT 66 5B5)		
A MATHEMATICAL	THEORY OF ANIMAL TRAPPINC	BIOKA51	307
A CONTRIBUTION TO THE		JRSSB59	
	THEORY OF CARCINOCENESIS THEORY OF CLASSICAL REGRESSION AND DOUBLE SAMPLINC	BIOKA60	
	THEORY OF CLASSICAL REGRESSION AND DOUBLE SAMPLING THEORY OF CORRELATION BETWEEN TWO CONTINUOUS VARIABLE		
LIMIT DISTRIBUTION IN THE	THEORY OF COUNTERS, CORR. 62 1466 THEORY OF CYCLIC ROTATION EXPERIMENTS (WITH	AMS 61	1271
DISCUSSION)	THEORY OF CYCLIC ROTATION EXPERIMENTS (WITH	JRSSB64	1

```
SOME PROBLEMS IN THE THEORY OF DAMS (WITH DISCUSSION)
                                                                                                           JRSSB57 207
                                          A UNIFIED THEORY OF ESTIMATION, I
                                                                                                            AMS 61
                                                                                                                   112
PROBABILITY SPACE
                                                 THE THEORY OF EXPERIMENT, OPERATIONAL DEFINITION OF THE
                                                                                                            AMS 67
                                                                                                                    401
                                     ELEMENTS OF THE THEORY OF EXTREME VALUES
                                                                                                           TECH 60
                                                                                                                    27
                           ON A BOUND USEFUL IN THE THEORY OF FACTORIAL DESICNS AND ERROR CORRECTING
                                                                                                            AMS 64
                                                                                                                    408
                                ON THE ASYMPTOTIC THEORY OF FIXED-SIZE SEQUENTIAL CONFIDENCE BOUNDS FOR
 LINEAR RECRESSION PARAMETERS
                                                                                                           AMS 65
                                                                                                                    463
 FOR THE MEAN
                                   ON THE ASYMPTOTIC THEORY OF FIXED-WIDTH SEQUENTIAL CONFIDENCE INTERVALS
                                                                                                            AMS 65
                                                                                                                    457
 OF LOCATION
                                      THE ASYMPTOTIC THEORY OF CALTON'S TEST AND A RELATED SIMPLE ESTIMATE
                                                                                                            AMS 67
                                                                                                                     73
                                           TOWARDS A THEORY OF GENERALIZED BAYES TESTS
                                                                                                            AMS 68
                         INTEGER PROGRAMMING AND THE THEORY OF CROUPING
                                                                                                           JASA 69
                                                                                                                    506
                                 SOME RESULTS IN THE THEORY OF INVENTORY
                                                                                                           BIOKA64
                                                                                                                    487
                                 FOUNDATIONS FOR THE THEORY OF LEAST SQUARES
                                                                                                           JRSSB69
                                                                                                                     89
ASTIC AND ITS APPLICATION TO THE ANALYSIS OF/ THE THEORY OF LEAST SQUARES WHEN THE PARAMETERS ARE STOCH BIOKA65
                                                                                                                   447
                           SOME CONTRIBUTIONS TO THE THEORY OF MACHINE INTERFERENCE
                                                                                                                    135
                  SIMULTANEOUS TEST PROCEDURES, SOME THEORY OF MULTIPLE COMPARISONS
                                SOME PROBLEMS IN THE THEORY OF OPTIMAL STOPPING RULES
                                                                                                            AMS 67 1627
                                      A MATHEMATICAL THEORY OF PATTERN RECOGNITION
                                                                                                            AMS 63
                         SOME FURTHER RESULTS IN THE THEORY OF PEDESTRIANS AND ROAD TRAFFIC
                                                                                                           BIOKA54
                                                                                                                    375
          CORRIGENDA TO 'SOME FURTHER RESULTS IN THE THEORY OF PEDESTRIANS AND ROAD TRAFFIC'
                                                                                                                    291
                                                                                                           BTOKA58
                                             GENERAL THEORY OF PRIME-POWER LATTICE DESIGNS
                                                                                                           JASA 65
                                                                                                                    891
 XIII. ISAAC TODHUNTER'S HISTORY OF THE MATHEMATICAL THEORY OF PROBABILITY
                                                                             /PROBABILITY AND STATISTICS, BIOKA63
                                                                                                                    204
                                CORRECTIONS TO 'THE THEORY OF PROBABILITY DISTRIBUTIONS OF POINTS ON A
LATTICE! 58 256
                                                                                                            AMS 61
                                                                                                                    619
                                                                                                           BTOKA55
                                SOME PROBLEMS IN THE THEORY OF PROVISIONING AND OF DAMS
                                                                                                                    179
                               A BIBLIOGRAPHY ON THE THEORY OF QUEUES
                                                                                                           BIOKA57
                                                                                                                   490
WALK (IN CONTINUOUS TIME) AND ITS APPLICATION TO THE THEORY OF QUEUES
                                                                                               THE RANDOM
                                                                                                           BIOKA59
                                                                                                                    400
    OF THE BALLOT PROBLEM AND ITS APPLICATION IN THE THEORY OF QUEUES
                                                                                          A CENERALIZATION JASA 62
                     CEOMETRIC DISTRIBUTIONS IN THE THEORY OF QUEUES (WITH DISCUSSION)
                                                                                                           JRSSB59
                                       A NOTE ON THE THEORY OF QUICK TESTS
                                                                                                           BIOKA56
 CHAIN
                         A CONVEXITY PROPERTY IN THE THEORY OF RANDOM VARIABLES DEFINED ON A FINITE MARKOV
                                                                                                           AMS 61 1260
               SOME QUESTIONS OF DISTRIBUTION IN THE THEORY OF RANK CORRELATION
                                                                                                           BIOKA51 131
ARIATE ONE SAMPLE PROBLEM
                                             ON THE THEORY OF RANK ORDER TESTS FOR LOCATION IN THE MULTIV
                                                                                                           AMS 67 1216
ES FROM A FINITE POPULATION
                                          ASYMPTOTIC THEORY OF REJECTIVE SAMPLING WITH VARYING PROBABILITI
                                                                                                            AMS 64 1491
                                       A STATISTICAL THEORY OF REMNANTS
                                                                                                           JRSSR59 15B
                                                 THE THEORY OF RISK (WITH DISCUSSION)
                                                                                                           JRSSB67
                                                                                                                    432
         SOME ACCEPTANCE SAMPLINC PLANS BASED ON THE THEORY OF RUNS
                                                                                                           TECH 62
                                                                                                                   177
                                          A UNIFIED THEORY OF SAMPLING FROM FINITE POPULATIONS
                                                                                                           JRSSB55
                                                                                                                    269
TO ERROR
                                                SOME THEORY OF SAMPLING WHEN THE STRATIFICATION IS SUBJECT TECH 67
                                              ON THE THEORY OF SCREENING FOR CHRONIC DISEASES
                                                                                                           BIOKA69 NO.3
                   TREATMENT OF THE NON-EQUILIBRIUM THEORY OF SIMPLE QUEUES BY MEANS OF CUMULATIVE PROBAB JRSSB63
       AN APPLICATION OF BIORTHONORMAL EXPANSIONS IN THEORY OF STOCHASTIC PROCESSES
                                                                                                           JRSSB68
                                                                                                                    334
                         PROBLEMS IN THE PROBABILITY THEORY OF STORACE SYSTEMS (WITH DISCUSSION)
                                                                                                           JRSSR57
                                                                                                                    1.81
                                         THE ERGODIC THEORY OF SUBADDITIVE STOCHASTIC PROCESSES
                                                                                                           JRSSB6B
                                                                                                                    499
                                          A GENERAL THEORY OF SUBJECTIVE PROBABILITIES AND EXPECTED
UTILITIES
                                                                                                           AMS 69 1419
ANCE ON THE DIMENSIONALITY OF NORMAL MU/
                                          ALGEBRAIC THEORY OF THE COMPUTING ROUTINE FOR TESTS OF SIGNIFIC JRSSB56
                                                                                                                     70
                                       DISTRIBUTION THEORY OF TWO ESTIMATES FOR STANDARD DEVIATION BASED BIOKA54
ON SECOND VARIATE DIFFERENCES
                                                                                                                     1
        APPLICATIONS OF MULTIVARIATE POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMATION
                                                                                                           JASA 57
                                                                                                                   511
 EDWARD C. POSNER, 'THE APPLICATION OF EXTREME VALUE THEORY TO ERROR FREE COMMUNICATION'
                                                                                              COMMENTS TO, TECH 66
                                                                                                                    363
                                                                                                           TECH 65
                    THE APPLICATION OF EXTREME VALUE THEORY TO ERROR-FREE COMMUNICATION
                                                                                                                   517
                         ON THE APPLICATION OF GROUP THEORY TO THE EXISTENCE AND NON-EXISTENCE OF ORTHOGON BIOKA69 NO.3
AL LATIN SQUARES
                          SOME NONRESPONSE SAMPLING THEORY WHEN THE FRAME CONTAINS AND UNKNOWN AMOUNT OF JASA 68
DUPLICATION
                                                                                                                     87
                                             ERCODIC THEORY WITH RECURRENT WEIGHTS
                                                                                                            AMS 68 1107
      ON A PARTIAL DIFFERENTIAL EQUATION OF EPIDEMIC THEORY. I.
                                                                                                           BIOKA65
                                                                                                                   617
MBINATORIAL RESULTS IN MULTI-DIMENSIONAL FLUCTUATION THEORY, CORR. 64 924
                                                                                                        CO AMS 63
                                                                                                                    402
                    CONTRIBUTIONS TO SAMPLE SPACINGS THEORY, I. LIMIT DISTRIBUTIONS OF SUMS OF RATIOS OF
                                                                                                            AMS 66
                                                                                                                    904
SPACINGS
ND TWO-SAMPLE PR/
                    CONTRIBUTIONS TO SAMPLE SPACINGS THEORY, II. TESTS OF THE PARAMETRIC GOODNESS OF FIT A
                                                                                                            AMS 66
                                                                                                                    925
                    A PERSISTENCE PROBLEM IN RENEWAL THEORY, ROBERT THE BRUCE'S SPIDER
                                                                                                           BTOKA66
                                                                                                                    255
SCREENING SYSTEM FOR ANTI-CANCER AGENTS BASED ON THE THERAPEUTIC INDEX
                                                                                                        A BTOCS65
                                                                                                                   150
                         LES MANQUANTS DANS L'ESSAI THERAPEUTIQUE
                                                                                                           BIOCS67
                                                                                                                    145
   THE MULTIPLE-RECAPTURE CENSUS II. ESTIMATION WHEN THERE IS IMMIGRATION OR DEATH
                                                                                                           BIOKA59
                                                                                                                   336
     PERSISTENCE IN A CHAIN OF MULTIPLE EVENTS WHEN THERE IS SIMPLE DEPENDENCE
                                                                                                           BIOKA62
                                                                                                                    351
        THE ROLE OF SUFFICIENCY AND OF ESTIMATION IN THERMODYNAMICS
                                                                                                            AMS 62 1021
                                       ERRORS OF THE THIRD KIND IN STATISTICAL CONSULTING
                                                                                                           JASA 57
                                                                                                                   133
                                                 THE THIRD MOMENT OF CINI'S MEAN DIFFERENCE
                                                                                                                    451
                                                                                                           BIOKA53
                                                 THE THIRD MOMENT OF KENDALL'S TAU IN NORMAL SAMPLES
                                                                                                           BTOKA62
                                                                                                                   177
                                                 TWO THIRD ORDER ROTATABLE DESIGNS IN FOUR DIMENSIONS
                                                                                                           AMS 64
                                                                                                                   445
                                                     THIRD ORDER ROTATABLE DESIGNS IN THREE DIMENSIONS.
                                                                                                            AMS 61
                                                                                                                    91.0
SOME SPECIFIC DESIGNS
ANALYSIS
                                                     THIRD ORDER ROTATABLE DESIGNS IN THREE FACTORS.
                                                                                                           TECH 62
                                                                                                                    219
OMMENT ON THE NOTES BY NEYMAN, BARTLETT AND WELCH IN THIS JOURNAL (VOL. 1B, NO. 2, 1956)
                                                                                                         C JRSSB57
                                                                                                                    179
IN THE HISTORY OF PROBABILITY AND STATISTICS. XVIII. THOMAS YOUNG ON COINCIDENCES
                                                                                                  STUDIES BIOKA6B
                                                                                                                   249
                                    ON HOROVITZ AND THOMPSON'S T-ONE CLASS OF LINEAR ESTIMATION
                                                                                                            AMS 67 18B2
PROVING THE MEAN USEFUL LIFE OF ITEMS BY ELIMINATING THOSE WITH SHORT LIVES
                                                                               ON THE POSSIBILITY OF IM TECH 61
                                                                                                                   281
 OF BALANCED INCOMPLETE BLOCK DESIGNS OF BLOCK SIZE THREE
                                                                                            BALANCED SETS TECH 65
                                                                                                                    561
                                                                                                           JRSSB66
AN EXTENSION OF THE TRIANGULAR ASSOCIATION SCHEME TO THREE ASSOCIATE CLASSES
                                                                                                                    361
         METHODS FOR ESTIMATING THE COMPOSITION OF A THREE COMPONENT LIQUID MIXTURE
                                                                                                           TECH 64
COMPONENTS
                                     A COMPARISON OF THREE DIFFERENT PROCEDURES FOR ESTIMATING VARIANCE
                                                                                                           TECH 63
                                                                                                                    421
FOR FOUR COMPONENT MIXTURES
                                                     THREE DIMENSIONAL MODELS OF EXTREME VERTICES DESIGNS
                                                                                                          TECH 67
                                                                                                                    472
LATIN SQUARE
                                                     THREE FACTOR ADDITIVE DESIGNS MORE CENERAL THAN THE
                                                                                                           TECH 62
                                                                                                                    187
                     LAMST AND THE HYPOTHESES OF NO THREE FACTOR INTERACTION IN CONTINCENCY TABLES
                                                                                                           JASA 69
                                                                                                                    2.07
                                 MIXTURE DESIGNS FOR THREE FACTORS
                                                                                                           JRSSB65
                                                                                                                    450
                        RESPONSE SURFACE DESIGNS FOR THREE FACTORS AT THREE LEVELS
                                                                                                           TECH 59
                                                                                                                   219
                    THIRD ORDER ROTATABLE DESIGNS IN THREE FACTORS. ANALYSIS
                                                                                                          TECH 62
 COVARIANCE MATRIX AND WILKS' CRITERION FOR TESTS OF THREE HYPOTHESES /S OF THE RATIOS OF THE ROOTS OF A
                                                                                                           AMS 69 NO.6
ORMAL POPULATION WITH KNOWN VARIANCE
                                     A SEQUENTIAL THREE HYPOTHESIS TEST FOR DETERMINING THE MEAN OF A N
                                                                                                           AMS 67 1365
                                           SOME NEW THREE LEVEL DESIGNS FOR THE STUDY OF QUANTITATIVE
                                                                                                          TECH 60
                                                                                                                   455
                                  ERRATA, 'SOME NEW THREE LEVEL DESIGNS FOR THE STUDY OF QUANTITATIVE
                                                                                                          TECH 61
                                                                                                                   576
VARIABLES
       RESPONSE SURFACE DESIGNS FOR THREE FACTORS AT THREE LEVELS
                                                                                                          TECH 59
```

RESPONSE SURFACE DESIGNS FOR FACTORS AT TWO AND			TECH 68	177
		E MAIN TESTS FOR MULTIVARIATE ANALYSIS OF VARIANC		77
IMATINC A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST				559
			AMS 68	
		NORMAL POPULATIONS WITH KNOWN VARIANCES		436
AND INFECTIOUS PERIODS OF MEASLES, II. FAMILIES WITH				
S OF THE EXTREME VALUE DISTRIBUTION BY USE OF TWO OR				429
		E PROCEDURES OF SAMPLING FROM FINITE POPULATIONS		438
		SERIES THEOREM	AMS 69	
PLANT COMPETITION,			JRSSB68	93
			JASA 67	
CENERALIZED BEHRENS-FISHER DISTRIBUTION INVOLVING				
			BIOKA67 BIOKA59	
			BIOKA68	
GENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING GENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING				
			JASA 64	
			JASA 63	72
			JASA 68	
VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A			BIOCS66	
			JRSSB63	220
E ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED	THREE	E-WAY NESTED CLASSIFICATION /NG VARIANCES OF TH	AMS 63	521
LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE C/ EXACT	THREE	E, ORDER STATISTIC CONFIDENCE BOUNDS ON RELIABLE	JASA 69	306
TIVE SETTING WILLIAM D. SUDDERTH A NOTE ON				
EXPERIENCE, AND GAINS AND LOSSES IN HUMAN CAPITAL				
THE SUM OF SQUARES OF NORMAL SCORES THE CURVE			BIOKA66	
THE DISTRIBUTION OF KENDALL'S SCORE S FOR A PAIR OF				151
NOTE ON SOME SQUARED RANK TESTS WITH EXISTING	TIES		TECH 67	
NOTE ON SOME SQUARED RANK TESTS WITH EXISTING DISTRIBUTIONS FOR THE WILCOXON STATISTIC WITH IFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRARY	TIES	EXACT AND APPROXIMATE	JASA 61	293
IFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRARY	TIES	IN BOTH RANKINGS A MOD IN PAIRED COMPARISONS		33
ON OF THE BRADLEY-TERRY MODEL (CORR. 68 1550)	TIES	IN PAIRED COMPARISONS IN PAIRED-COMPARISON EXPERIMENTS. A GENERALIZATI	AMS 68	2002 194
THE AVERAGE RANK CORRELATION COEFFICIENT FOR				872
			JASA 59	
THE TREATMENT OF	TIES	TH THE WILCOYON TEST	AMS 67	
THE EFFECT OF	TIES		BIOKA57	
THE WILCOXON.	TIES	AND THE COMPUTER	JASA 66	772
A RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN	TIME		BIOKA59	30
A RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN AUTOMATIC WINDING MACHINES WITH CONSTANT PATROLLING ABOUT PARAMETERS WHICH ARE SUBJECTED TO CHANGES OVER OF A MARKOV CHAIN AND THE TRANSITION TO CONTINUOUS NORMAL DISTRIBUTION WHICH IS SUBJECTED TO CHANGES IN EULING PROCESS WITH RECURRENT INPUT AND GAMMA SERVICE	TIME	THE EFFICIENCY OF	JRSSB59	381
ABOUT PARAMETERS WHICH ARE SUBJECTED TO CHANGES OVER	TIME	INFERENCE PROBLEMS	AMS 68	840
OF A MARKOV CHAIN AND THE TRANSITION TO CONTINUOUS	TIME	THE FREQUENCY COUNT	AMS 61	41
NORMAL DISTRIBUTION WHICH IS SUBJECTED TO CHANGES IN	TIME	ESTIMATING THE CURRENT MEAN OF A	AMS 64	999
EUING PROCESS WITH RECURRENT INPUT AND GAMMA SERVICE	TIME	THE TRANSIENT BEHAVIOR OF A SINGLE SERVER QU	AMS 61	1286
RRENCE IN TWO SERIES OF EVENTS OCCURRING RANDOMLY IN				583
SUME STUCHASTIC MUDELS RELATING	TIME		BIOCS65 JRSSB65	284
DIRECTIONALLY PATROLLED BY ONE OPERATOR WHEN WALKING	TIME	AND REPAIR TIMES ARE CONSTANTS /MACHINES DINT-		166
		AS AN EXTREME VALUE PHENOMENON		
			JRSSB67	475
THE INTERVALS BETWEEN REGULAR EVENTS DISPLACED IN	TIME	BY INDEPENDENT RANDOM DEVIATIONS OF LARGE DISPER	JRSSB61	476
A RANDOM	TIME	CHANGE RELATING SEMI-MARKOV AND MARKOV PROCESSES	AMS 68	358
CONTINUUM THE FIRST PASSAGE	TIME	DENSITY FOR HOMOGENEOUS SKIP-FREE WALKS ON THE	AMS 63	1003
		DEPENDENCE OF A SINGLE-SERVER QUEUE WITH POISSON		
		DEPENDENT QUEUE WITH A SINGLE SERVER	AMS 62	767
A NEW RESPONSE			BIOCS67	
A TECHNIQUE FOR DISCUSSING THE PASSAGE			JRSSB66	477
PROCESS, MARKOV OR POISSON INPUT, GENERAL SERVICE A NOTE ON QUEUEING SYSTEMS WITH ERLANGIAN SERVICE			AMS 61	770
		DISTRIBUTIONS FOR REDUNDANT SYSTEMS WITH REPAIR		27
ARAMETERS OF MIXED EXPONENTIALLY DISTRIBUTED FAILURE				504
			JASA 62	
			AMS 61	
			JRSSB55	
R RANDOM VARIABLES COVARIANCE STATIONARY ON A FINITE	TIME	INTERVAL A MOVING AVERACE REPRESENTATION FO		
		INTERVALS BETWEEN ACCIDENTS, A NOTE ON MAGUIRE,		
		INTERVALS BETWEEN INDUSTRIAL ACCIDENTS		
DIRECTIONALLY PATROLLED BY ONE OPERATOR WHEN WALKING				
SOME RESULTS ON MULTITYPE CONTINUOUS OREMS EMBEDDING OF URN SCHEMES INTO CONTINUOUS		MARKOV BRANCHING PROCESSES AND RELATED LIMIT THE	AMS 68	
OF DYNAMIC PROGRAMMING ON A FINITE SPACE DISCRETE				
T ON LEHMANN ALTERNATIVES, CORR. 67 1309 STOPPING				
THE INFORMATION IN A RANK-ORDER AND THE STOPPING			AMS 68	
TEST OF RANDOMNESS FOR EVENTS OCCURRING IN				
NVERGENCE OF RANDOM PROCESSES WITH MULTI-DIMENSIONAL				
NONPARAMETRIC TESTS FOR SHIFT AT UNKNOWN	TIME	POINT	AMS 68	1731
ERS OF STATISTICAL DISTRIBUTIONS OCCURING AT UNKNOWN				
OF SPECTRA AFTER HARD CLIPPING OF GAUSSIAN	TIME	PROCESSES ESTIMATION QUEUE WITH FINITE STORAGE		
			AMS 62	
SOME NONPARAMETRIC TESTS FOR COMOVEMENTS BETWEEN			JASA 61	
SOME COMMENTS ON SPECTRAL ANALYSIS OF ON LINEAR ESTIMATION FOR REGRESSION PROBLEMS ON			TECH 61 AMS 62	
THE DEGREE OF RANDOMNESS IN A STATIONARY			AMS 63	
SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT			JASA 65	
	111			
ON FIXED PRECISION ESTIMATION IN	TIME	SERIES	AMS 69	1021
ON FIXED PRECISION ESTIMATION IN TESTS OF FIT IN			AMS 69 BIOKA52	

```
AN EXACT TEST FOR CORRELATION BETWEEN TIME SERIES
                                                                                                             BIOKA55 316
               A CHANGE IN LEVEL OF A NON-STATIONARY TIME SERIES
                                                                                                             BIOKA65 181
                  SPECTRAL FACTORIZATION OF MULTIPLE TIME SERIES
                                                                                                             BTOK A66 264
 LEAST SQUARES RECRESSION ANALYSIS FOR TREND-REDUCED TIME SERIES
                                                                                                             JRSSB55
                                                                                                                       91
              EXPONENTIAL SMOOTHING FOR MULTIVARIATE TIME SERIES
                                                                                                             JRSSB66
                                                                                                                      241
                 LEAST-SQUARES EFFICIENCY FOR VECTOR TIME SERIES
                                                                                                             JRSSB68
                                                                                                                      490
ISTRIBUTIONS OF CORRELATION COEFFICIENTS IN ECONOMIC TIME SERIES
                                                                                                           D JASA 61
                                                                                                                      637
  THE EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY TIME SERIES
                                                                                                          ON AMS 65 1426
          OF THE INNOVATION VARIANCE OF A STATIONARY TIME SERIES
                                                                                                  ESTIMATION JASA 68
                                                                                                                      141
    ANALYSIS OF RELATIONSHIPS BETWEEN AUTOCORRELATED TIME SERIES
                                                                                                  REGRESSION JRSSB56
      POWERS OF CERTAIN TESTS OF GOODNESS OF FIT FOR TIME SERIES
                                                                                              THE ASYMPTOTIC JRSSB58
                                                                                                                      143
   ON THE POWERS OF THE RECORDS TESTS FOR TREND IN A TIME SERIES
                                                                                       A SAMPLINC EXPERIMENT JRSSB55
                                                                                                                      115
     CORRELATION SUITABLE FOR USE WITH NONSTATIONARY TIME SERIES
                                                                                     A QUICK TEST FOR SERIAL JASA 63
                                                                                                                      728
TISTICS USEFUL IN THE ANALYSIS OF JOINTLY STATIONARY TIME SERIES
                                                                            ON THE DISTRIBUTION OF SOME STA AMS 68 1849
                                                                     AN EXTENSION OF QUENOUILLE'S TEST JRSSB68
POLYNOMIAL PROJECTING PROPERTIES OF MU JRSSB65
  FOR THE COMPATIBILITY OF CORRELATION STRUCTURES IN TIME SERIES
                                                                                                                      180
LTI-TERM PREDICTORS OR CONTROLLERS IN NON-STATIONARY TIME SERIES
                                                                                                                      144
TES OF THE SPECTRAL DENSITY FUNCTION OF A STATIONARY TIME SERIES
                                                                    /PTOTICALLY EFFICIENT CONSISTENT ESTIMA JRSSB58
                                                                                                                      303
OSS-CORRELATION COEFFICIENTS IN A COMPLEX STATIONARY TIME SERIES
                                                                    /TIONS AND COVARIANCES OF SERIAL AND CR BIOKA63
                                                                                                                       213
STS FOR TESTING TREND IN DISPERSION OF A P-DEPENDENT TIME SERIES (CORR. 69 457) /OF COX AND STUART'S TE BIOKA68
                            THE SPECTRAL ANALYSIS OF TIME SERIES
                                                                   (WITH DISCUSSION)
                                                                                                             JRSSB57
                                      AN APPROACH TO TIME SERIES ANALYSIS
          SOME CONSEQUENCES OF SUPERIMPOSED ERROR IN TIME SERIES ANALYSIS
                                                                                                             BIOKA60
                                                                                                                       33
                                                                                                             BIOKA67
    SOME TESTS OF SEPARATE FAMILIES OF HYPOTHESES IN TIME SERIES ANALYSIS
    METHODS IN THE STUDY OF VARIANCE FLUCTUATIONS IN TIME SERIES ANALYSIS
                                                                                                     FOURIER TECH 69
                                                                                                                       103
                                                     TIME SERIES ANALYSIS BY MODIFIED LEAST-SQUARES
TECHNIQUES
                                                                                                                      152
                                                                                                             JASA 66
                     SEASONAL ADJUSTMENT OF ECONOMIC TIME SERIES AND MULTIPLE REGRESSION ANALYSIS
                                                                                                             JASA 63
                                                                                                                       993
                                THE INTERPOLATION OF TIME SERIES BY RELATED SERIES
                                                                                                                       729
                                                                                                             JASA 62
                       ON MEASURES OF CORRELATION IN TIME SERIES OF EVENTS
                                                                                                             BIOCS69
                                                                                                                       73
DJUDGING RELATIVE EFFICIENCY OF STATISTICAL TESTS IN TIME SERIES REGRESSION ANALYSIS /VALUE METHOD FOR A BIOKAG6
                                                                                                                      109
     LOWER BOUNDS FOR MINIMUM COVARIANCE MATRICES IN TIME SERIES REGRESSION PROBLEMS
                                                                                                                       362
                                                                                                              AMS 64
              SOME TECHNIQUES FOR ANALYZING A SET OF TIME SERIES SUBJECT TO A LINEAR RESTRICTION
                                                                                                             JASA 63
                                                                                                                       513
CIENCY OF PROCEDURES FOR SMOOTHING PERIODOGRAMS FROM TIME SERIES WITH CONTINUOUS SPECTRA
                                                                                               ON THE EFFI BIOKA55
                                      REGRESSION FOR TIME SERIES WITH ERRORS OF MEASUREMENT
                                                                                                             BIOKA63
ST FOR SPECTRAL DISTRIBUTION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL RESIDUALS /ODNESS OF FIT TE BIOKA56
                                                      TIME SERIES WITH PERIODIC STRUCTURE
                                                                                                             BIOKA67
                                                                                                                       403
    THE ESTIMATION OF SEASONAL VARIATION IN ECONOMIC TIME SERIES, CORR. 63 1162
                                                                                                             JASA 63
                                                                                                                       31
    LINEAR, UNBIASED SEASONAL ADJUSTMENT OF ECONOMIC TIME SERIES, CORR. 65 1250
                                                                                           MINIMUM VARIANCE JASA 64
                                                                                                                       681
QUEUE WITH A GENERAL CLASS OF SERV/ THE CONTINUOUS TIME SOLUTION OF THE EQUATIONS OF THE SINGLE CHANNEL JRSSB58
BROWNIAN MOTION AN OCCUPATION TIME THEOREM FOR THE ANGULAR COMPONENT OF PLANE AMS 67
                                                                                                                      176
                                                                                                                       25
                                        A CONTINUOUS TIME TREATMENT OF A SIMPLE QUEUE USING CENERATING
FUNCTIONS
                                                                                                             JRSSB54
                                                                                                                       2B8
                  EXPERIMENTAL DESIGNS TO ADJUST FOR TIME TRENDS
                                                                                                             TECH 60
                                                                                                                       67
                             QUERY, SAVINCS IN TEST TIME WHEN COMPARING WEIBULL SCALE PARAMETERS
                                                                                                             TECH 64
                                                                                                                      471
                      THE RANDOM WALK (IN CONTINUOUS TIME) AND ITS APPLICATION TO THE THEORY OF QUEUES
                                                                                                             BIOKA59
                                                                                                                      400
DISCRETE ADDITIVE INPUTS
                                                  THE TIME-DEPENDENT SOLUTION FOR AN INFINITE DAM WITH
                                                                                                             JRSSB61
                                                                                                                      173
PRIORITY QUEUE
                                                      TIME-DEPENDENT SOLUTION OF THE 'HEAD-OF-THE-LINE'
                                                                                                             JRSSB62
                                                                                                                       91
LIABILITY OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS, TIME-DEPOSITS
                                                                                                      THE RE JASA 65
                                                                                                                      148
                  QUASI-STATIONARY DISTRIBUTIONS AND TIME-REVERSION IN GENETICS (WITH DISCUSSION)
                                                                                                             JRSSB66
                                                                                                                      253
                     SOME REMARKS ON THE ANALYSIS OF TIME-SERIES
                                                                                                             BIOKA67
                   THE COMPARISON OF CORRELATIONS IN TIME-SERIES
                                                                                                             JRSSB58
                                                                                                                      158
                      A TEST FOR NON-STATIONARITY OF TIME-SERIES
                                                                                                             JRSSB69
                                                                                                                      140
        MATRIX OF A CONTINUOUS AUTOREGRESSIVE VECTOR TIME-SERIES
                                                                                              THE COVARIANCE
                                                                                                             AMS 63 1259
                                   DISCRIMINATION IN TIME-SERIES ANALYSIS
                                                                                                             BIOK A52
                                                                                                                      434
                          DISTRIBUTION-FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF RECORDS (WITH
DISCUSSION)
                                                                                                             JRSSB54
                                                                                                                        1
                         ESTIMATION OF PARAMETERS IN TIME-SERIES REGRESSION MODELS
                                                                                                             JRSSB60
                                                                                                                      139
                                     APPLICATIONS OF TIME-SHARED COMPUTERS IN A STATISTICS CURRICULUM
                                                                                                             JASA 68
                                                                                                                      192
                             THE DISTRIBUTION OF THE TIME-TO-EMPTINESS OF A DISCRETE DAM UNDER STEADY
                                                                                                             JRSSB63
                                                                                                                      137
TIMATING THE INFINITESIMAL GENERATOR OF A CONTINUOUS TIME, FINITE STATE MARKOV PROCESS
                                                                                                             AMS 62
                                                                                                                      727
                               A THEOREM ON STOPPING TIMES
                                                                                                              AMS 64 1348
 CERTAIN REDUNDANT SYSTEMS WHICH OPERATE AT DISCRETE TIMES
                                                                                                          ON TECH 62
                                                                                                                       69
      MODEL FOR DISTRIBUTIONS OF BIOLOGICAL RESPONCE TIMES
                                                                                                A STOCHASTIC BIOCS65
                                                                                                                      562
                                                                                          CERTAIN PROPERTIES JRSSB65
                                                                                                                      505
       OF GAUSSIAN PROCESSES AND THEIR FIRST PASSAGE TIMES
TROLLED BY ONE OPERATOR WHEN WALKING TIME AND REPAIR TIMES ARE CONSTANTS
                                                                             /MACHINES UNI-DIRECTIONALLY PA JRSSB57
                                                                                                                      166
NE OPERATOR WHEN WALKING TIME IS CONSTANT AND REPAIR TIMES ARE VARIABLE /NI-DIRECTIONALLY PATROLLED BY 0 JRSSB57
                                                                                                                      173
                         ON THE DISTRIBUTIONS OF THE TIMES BETWEEN EVENTS IN A STATIONARY STREAM OF EVENTS JRSSB69 NO.2
                        THE DISTRIBUTION OF RESPONSE TIMES IN A BIRTH-DEATH PROCESS
                                                                                                             BIOKA65
                                                                                                                      581
                         A LIMIT THEOREM FOR PASSACE TIMES IN ERGODIC REGENERATIVE PROCESSES
                                                                                                              AMS 66
                                                                                                                      B66
                  SOME NUMERICAL RESULTS FOR WAITING TIMES IN THE QUEUE E-SUB-K-M-1
                                                                                                             BIOKA60
                                                                                                                      202
     CORRIGENDA, 'SOME NUMERICAL RESULTS FOR WAITING TIMES IN THE QUEUE E-SUB-K-M-1.'
                                                                                                             BIOKA60
                                                                                                                      484
                                       FIRST PASSACE TIMES OF A GENERALIZED RANDOM WALK, CORR. AND ACKNOWL AMS 61
                                                                                                                      235
EDCEMENT OF PRIORITY 61 1345
                     SOME FEATURES OF THE GENERATION TIMES OF INDIVIDUAL BACTERIA
                                                                                                             BIOK A55
                                                                                                                       16
               A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE QUEUE
                                                                                                             JRSSB55
                                                                                                                      262
             A QUEUEING PROBLEM IN WHICH THE ARRIVAL TIMES OF THE CUSTOMERS ARE SCHEDULED
                                                                                                             JRSSB60
                                                                                                                      108
                   THE EXISTENCE OF CERTAIN STOPPING TIMES ON BROWNIAN MOTION
                                                                                                              AMS 69 715
   WHICH CENERALIZE DE FINETTI'S THEOREM. CONTINUOUS TIMES PARAMETER
                                                                                    INVARIANTS UNDER MIXING
                                                                                                              AMS 63 1194
S OF RESOLUTION IV FOR THE 2-TO-THE-N AND 2-TO-THE-N TIMES 3-TO-THE-M SERIES RESULTS ON FACTORIAL DESIGN TEGH 69 431
                                                      TIMID PLAY IS OPTIMAL
                                                                                                              AMS 67 1281
                                                      TIMID PLAY IS OPTIMAL, II
                                                                                                              AMS 67 1284
                                                                                                             JASA 5B
                                                                                                                       89
                                                      TINBERGEN ON ECONOMIC POLICY
                                      STATISTICIANS, TODAY AND TOMORROW
                                                                                                             JASA 59
E HISTORY OF PROBABILITY AND STATISTICS. XIII. ISAAC TODHUNTER'S HISTORY OF THE MATHEMATICAL THEORY OF PRO BIOKA63 204
BUTIONS BASED ON FAILURE RATE, CORR. 67 950
                                                     TOLERANCE AND CONFIDENCE LIMITS FOR CLASSES OF DISTRI AMS 66 1593
      A NOTE ON 'THE ESTIMATION OF THE PARAMETERS OF TOLERANCE DISTRIBUTIONS'
                                                                                                             BIOKA52 439
                                               QUERY, TOLERANCE INTERVAL IN REGRESSION
                                                                                                             TECH 6B
                                                                                                                      207
                   EXPECTED-COVER AND LINEAR-UTILITY TOLERANCE INTERVALS
                                                                                                             JRSSB66
                                                                                                                      57
                                        ON TWO-SIDED TOLERANCE INTERVALS FOR A NORMAL DISTRIBUTION
                                                                                                             AMS 64 762
                                   DISTRIBUTION-FREE TOLERANCE INTERVALS FOR CONTINUOUS SYMMETRICAL
                                                                                                              AMS 62 1167
POPULATIONS
```

TITLE WORD INDEX TIM - TRA

AN APPROACH TO SIMULTANEOUS	TOLERANCE INTERVALS IN RECRESSION	AMS 67	
SIMULTANEOUS	TOLERANCE INTERVALS IN RECRESSION	BIOKA63 JASA 62	
TABLES OF DISTRIBUTION-FREE	TOLERANCE LIMITS	AMS 64	
SAMPLE SIZE DETERMINATION FOR	TOLERANCE INTERVALS IN RECRESSION TOLERANCE INTERVALS IN RECRESSION TOLERANCE LIMITS TOLERANCE LIMITS TOLERANCE LIMITS		
QUERY,	TOLERANCE LIMITS FOR A BINOMIAL DISTRIBUTION	TECH 69	
	TOLERANCE LIMITS FOR A NORMAL POPULATION BASED ON SAM		
	TOLERANCE LIMITS FOR NORMAL POPULATIONS TOLERANCE LIMITS FOR NORMAL POPULATIONS, SOME	TECH 66 JASA 69	
INCREASING HAZARD RATE	TOLERANCE LIMITS FOR THE CLASS OF DISTRIBUTIONS WITH		
DISTRIBUTION	TOLERANCE LIMITS FOR THE CENERALIZED CAMMA	JASA 65	
	TOLERANCE LIMITS WITH TYPE I CENSORING	TECH 6B	
	TOLERANCE LIMITS. ELIMINATION OF REQUIREMENT THAT CUM TOLERANCE LIMITS, THE EXPONENTIAL CASE	TECH 63	
	TOLERANCE RECION FOR THE MULTIVARIATE NORMAL	JRSSB68	
NONPARAMETRIC DISCRIMINATION USINC	TOLERANCE RECIONS	AMS 68	664
	TOLERANCE RECIONS (WITH DISCUSSION)	JRSSB64	
	TOLERANCE RECIONS FOR THE MULTIVARIATE NORMAL DISTRIB TOLERANCE-LIMIT FACTORS FOR NORMAL DISTRIBUTIONS	TECH 60	
	TOLERANCE-LIMIT FACTORS FOR NORMAL DISTRIBUTIONS'	TECH 61	
OF NUMERICAL INTECRATION TECHNIQUES TO STATISTICAL			
STATISTICIANS, TODAY AND		JASA 59	
	TOO VARIABLE FOR EVOP. TOOL IN ALLOCATING PREDETERMINED AGGRECATES	TECH 68 JASA 69	
A LEARNING MODEL FOR PROCESSES WITH		TECH 68	
THE LADY TASTING TEA, AND ALLIED		JASA 59	
A BIBLIOCRAPHY ON LIFE TESTING AND RELATED	TOPICS	BIOKA58	521
MULATION, CAMING, ARTIFICIAL INTELLIGENCE AND ALLIED	TOPICS BIBLIOGRAPHY ON SI TOPICS, GORR. 65 1249 A SUPPLEMENT TO M	JASA 60	736
FUNCTIONS, AND DIFFUSION	TOPOCRAPHIC CORRELATION, POWER-LAW COVARIANCE	BIOKA62	
DENSITY ESTIMATION IN A		AMS 65	1047
CTERIZATION OF THE UNIFORM DISTRIBUTION ON A COMPACT		AMS 63	
	TOPOLOGICAL STRUCTURE OF SOME ORDERED FAMILIES OF TOPOLOGY AND CONVERGENCE IN SOME ORDERED FAMILIES OF	AMS 64 AMS 69	
THE LAST RETURN TO EQUILIBRIUM IN A COIN		AMS 64	
A REMARK ON THE COIN	TOSSINC CAME	AMS 64	1345
LINEAR APPROXIMATION USING THE CRITERION OF LEAST		JRSSB67	
SELECTION INDICES FOR QUADRATIC MODELS OF	TOTAL NUMBERS /ETERS FROM DATA OBTAINED BY MEANS OF	BIOCS68	
	TOTAL PROBABILITY OF THE UNOBSERVED OUTCOMES OF AN	AMS 68	
	TOTAL PRODUCT QUALITY /SEQUENTIAL BATCHING FOR ACC		
	TOTAL PRODUCT QUALITY' /SEQUENTIAL BATCHING FOR AC		
	TOTAL SERVICE TIME FOR A FIXED OBSERVATION INTERVAL TOTALS /LE METHOD OF CALCULATING THE EXACT PROBABIL	JASA 62 BIOKA55	
SIMULTANEOUS ESTIMATION BY PARTIAL		JASA 68	
	TOTALS FROM FINITE POPULATIONS OF UNKNOWN SIZE, CORR.		61
PROBABILISTIC COMPLETION OF A KNOCKOUT INFERENCE FROM A KNOCKOUT		AMS 66 AMS 68	
ON THE PROBABILITY OF WINNING WITH DIFFERENT		JASA 63	
	TOURNAMENT SCORES	BIOKA69	
PAIRWISE COMPARISON AND RANKING IN		AMS 63	
A GOMPARISON OF THE EFFECTIVENESS OF		BIOKA60 BIOKA59	
	TOWARDS A THEORY OF GENERALIZED BAYES TESTS	AMS 68	1
	TOWARDS SOLVING A PROBLEM IN THE DOCTRINE OF CHANCES.		
	TOWARDS SOLVING A PROBLEM IN THE DOGTRINE OF CHANCES. TRACE OF A MATRIX AND APPROXIMATIONS TO ITS NON-CENTR		
	TRACER EXPERIMENT TO DETERMINE ROOT ACTIVITY IN POTAT		
VARIABLES	TRACES AND CUMULANTS OF QUADRATIC FORMS IN NORMAL	JRSSB54	247
	TRACES OF TWO MATRICES SOME RESULTS ON THE NON-C		
ANALYSIS OF VITAL STATISTICS BY CENSUS TO 'CORRELATED RANDOM NORMAL DEVIATES' PUBLISHED IN		JASA 59	
	TRADE /OF A REGRESSION TECHNIQUE TO PRODUCE AREA BR		
		JASA 69	
TITATIVE TESTS FOR STOCK PRICE CENERATINC MODELS AND ON QUEUES IN HEAVY		JASA 67 JRSSB62	
RESULTS IN THE THEORY OF PEDESTRIANS AND ROAD			
BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE	TRAFFIC THE TRANSIENT	AMS 61	230
		BIOKA64	
THE POISSON TENDENCY IN A NOTE ON THE POISSON TENDENCY IN		AMS 63 AMS 64	
	TRAFFIC FLOW (WITH DISCUSSION)	JRSSB61	
LIMIT THEOREMS FOR QUEUES WITH		AMS 65	
	TRAFFIC INTERSECTIONS TRAFFIC LIGHT	JRSSB66 BIOKA59	
	TRAFFIC LICHT QUEUE	AMS 64	
SOME RESULTS FOR FIXED-TIME	TRAFFIC SIGNALS	JRSSB64	133
QUEUEING FOR GAPS IN		BIOKA65	79
RESULTS IN THE THEORY OF PEDESTRIANS AND ROAD PERIOD CHANGE-OVER DESIGN AND ITS USE IN CLINICAL	TRAFFIC' CORRICENDA TO 'SOME FURTHER TRAILS THE TWO-	BIOCS65	467
	TRANSECT METHOD OF ESTIMATING GROUSE POPULATION	BIOCS68	135
SIMULATION STUDY OF ESTIMATORS FOR THE LINE	TRANSECT SAMPLINC METHOD	BIOCS69	
AN EXAMPLE OF THE ESTIMATION OF LINEAR OPEN LOOP		TECH 63 TECH 61	
THE ESITMATION OF		TECH OT	
EXAMPLES THE USE OF THE HANKEL	'TRANSFER FUNCTIONS' OF QUADRATIC SYSTEMS TRANSFORM IN STATISTICS. I. CENERAL THEORY AND		44

```
ATTONS
                          ON THE CENERALIZED MELLIN TRANSFORM OF A COMPLEX RANDOM VARIABLE AND ITS APPLIC AMS 65 1459
                       A QUICK METHOD FOR CHOOSING A TRANSFORMATION
                                                                                                             TECH 63 317
                               TABLES OF THE ANCULAR TRANSFORMATION
                                                                                                             BIOKA53
            NOTE ON MR QUENOUILLE'S EDCEWORTH TYPE A TRANSFORMATION
                                                                                                             BTOKA59
                         ON THE PROBABILITY INTECRAL TRANSFORMATION
                                                                                                             BIOKA59
                                                                                                                      481
               INTERVAL ANALYSIS AND THE LOGARITHMIC TRANSFORMATION
                                                                                                            JRSSB58
                                                                                                                      1B7
                                                                                                         THE AMS 6B 1125
 ESTIMATION OF VARIANCES AFTER USING A CAUSSIANATING TRANSFORMATION
                                A NOTE ON REGRESSION TRANSFORMATION FOR SMALLER ROUNDOFF ERROR
                                                                                                             TECH 6B
                                                                                                                     393
                       SOME PROPERTIES OF AN ANCULAR TRANSFORMATION FOR THE CORRELATION COEFFICIENT
                                                                                                             BTOKA56
                                                                                                                      219
                                           AN ANCULAR TRANSFORMATION FOR THE SERIAL CORRELATION COEFFICIENT BIOKA54
                                                                                                                      261
                                                                                                              AMS 65
     ONE-PARAMETER EXPONENTIAL FAMILIES CENERATED BY TRANSFORMATION CROUPS
                                                                                                                      261
RECORDS
                                      THE LOC (-LOC) TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION
                                                                                                             BIOCS68
                                                                                                                      627
                    FURTHER PROPERTIES OF AN ANCULAR TRANSFORMATION OF THE CORRELATION COEFFICIENT
                                                                                                             BIOKA57
                                                                                                                      273
                                           ON NAIR'S TRANSFORMATION OF THE CORRELATION COEFFICIENT
                                                                                                             BIOKA58
                                    NOTE ON FISHER'S TRANSFORMATION OF THE CORRELATION COEFFICIENT
                                                                                                             JRSSB59
                                                      TRANSFORMATION OF THE INDEPENDENT VARIABLES
                                                                                                             TECH 62
                                                                                                                      531
                                              LINEAR TRANSFORMATION TO A SET OF STOCHASTIGALLY DEPENDENT
                                                                                                             JASA 57
            NOTE ON 'THE JACOBIANS OF CERTAIN MATRIX TRANSFORMATION USEFULL IN MULTIVARIATE ANALYSIS'
                                                                                                             BIOKA53
                                                                                                                      43
       ASYMMETRICAL ROTATABLE DESIGNS AND ORTHOGONAL TRANSFORMATIONS
                                                                                                             TECH 68
                                                                                                                      313
                                TABLES FOR POWER-LAW TRANSFORMATIONS
                                                                                                             BTOKA62
                                                                                                                      557
 RATIOS OF STOCHASTIC PROCESSES RELATED BY GROUPS OF TRANSFORMATIONS
                                                                                 THE BEHAVIOR OF LIKELIHOOD AMS 65
                                                                                                                      529
                                                                        /ATORS FOR POWER-SERIES DISTRIBUTIO JASA 68
NS, AND THE APPROXIMATE STABILIZATION OF VARIANCE BY TRANSFORMATIONS
                                                                                                                     321
                                      AN ANALYSIS OF TRANSFORMATIONS (WITH DISCUSSION)
                                                                                                             JRSSB64
                                                                                                                      211
S OF QUANTAL EXPERIMENTS INVOLVINC TWO/
                                          THE USE OF TRANSFORMATIONS AND MAXIMUM LIKELIHOOD IN THE ANALYSI BIOKA55
                                                                                                                     382
                                                     TRANSFORMATIONS AND SUFFICIENCY
                                                                                                             JRSSB65
                                                                                                                     479
                                                DATA TRANSFORMATIONS AND THE LINEAR MODEL
                                                                                                             AMS 67 1456
                                          STARSHAPED TRANSFORMATIONS AND THE POWER OF RANK TESTS
                                                                                                              AMS 69 1167
                         TABLES OF THE FREEMAN-TUKEY TRANSFORMATIONS FOR THE BINOMIAL AND POISSON DISTRIBU BIOKAG1
C PARAMETERS FROM DAUGHTER-DAM RECRESSION SOME TRANSFORMATIONS OF SCALE AND THE ESTIMATION OF GENETI BIOCS67
                                                      TRANSFORMATIONS OF THE BINOMIAL, NEGATIVE BINOMIAL,
POISSON AND CHI-SQUARE DISTRIBUTIONS
OISSON AND GHI-SQUARE DISTRIBUTION/
                                      GORRIGENDA TO 'TRANSFORMATIONS OF THE BINOMIAL, NECATIVE BINOMIAL, P BIOKA56
                                                                                                                     2.35
     OF FACTORIAL EXPERIMENTS BY ESTIMATING MONOTONE TRANSFORMATIONS OF THE DATA
                                                                                                   ANALYSTS JRSSB65
                                                                                                                     251
RTIES OF DISTRIBUTIONS RESULTING FROM CERTAIN SIMPLE TRANSFORMATIONS OF THE NORMAL DISTRIBUTION
                                                                                                      PROPE BIOKA52
                                                                                                                     290
RTIES OF DISTRIBUTIONS RESULTING FROM CERTAIN SIMPLE TRANSFORMATIONS OF THE NORMAL DISTRIBUTION'
                                                                                                    / PROPE BIOKA53
                                                                                                                     236
                                       THE EFFECT OF TRANSFORMATIONS OF VARIABLES UPON THEIR CORRELATION
COEFFICIENTS
                                                                                                            BIOKA57
TESTS FOR INDEPENDENCE
                                         CO-ORDINATE TRANSFORMATIONS TO NORMALITY AND THE POWER OF NORMAL
OF THE VARIABLE
                                                      TRANSFORMATIONS TO NORMALITY USING FRACTIONAL POWERS JASA 57
D ON LECTURES BY/
                    THE JACOBIANS OF CERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE ANALYSIS, BASE BIOKA51
ESTS OF LINEAR HYPOTHESES USING THE PROBIT AND LOGIT TRANSFORMATIONS, CORR. 64 1297 /YMPTOTIG POWER OF T JASA 62
                                                      TRANSFORMATIONS, SOME EXAMPLES REVISITED
                                                                                                             TECH 69
                                                                                                                      23
BETWEEN THE DISTRIBUTIONS OF NON-CENTRAL T AND OF A TRANSFORMED CORRELATION COEFFICIENT
                                                                                                   RELATION BIOKA57
                                                                                                                     219
  CORRELATION COEFFICIENTS. III. DISTRIBUTION OF THE TRANSFORMED KENDALL COEFFICIENT
                                                                                             TESTS FOR RANK BIOKA62
                                                                                                                     185
                     ESTIMATES OF HERITABILITY FROM TRANSFORMED PERCENTAGE SIB DATA WITH UNEQUAL SUBCLASS BIOCS65 1001
 NUMBERS
NVOLVED IN THE ESTIMATION OF A POPULATION MEAN USING TRANSFORMED SAMPLE DATA
                                                                                             DIFFIGULTIES I TECH 66
                                                                                                                     535
                                      CUMULANTS OF A TRANSFORMED VARIATE
                                                                                                            BTOKA55
                                                                                                                     529
                                          MARTINGALE TRANSFORMS
                                                                                                              AMS 66 1494
            DIVERGENCE PROPERTIES OF SOME MARTINCALE TRANSFORMS
                                                                                                              AMS 69 1852
                SOME NUMERICAL ASPECTS OF THE USE OF TRANSFORMS IN STATISTICS
                                                                                                            JASA 63 879
                                       SOME INTEGRAL TRANSFORMS OF CHARACTERISTIC FUNCTIONS
                                                                                                             AMS 68 1923
                                                      TRANSFORMS OF STOCHASTIC PROCESSES
                                                                                                              AMS 68
FUNCTIONS
                                 THE USE OF INTEGRAL TRANSFORMS TO DETERMINE EXPANSIONS OF DISTRIBUTION
                                                                                                             BIOKA60
TELEPHONE TRAFFIC
                                                 THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN
                                                                                                             AMS 61
SERVICE AND FINITE CAPACITY
                                              ON THE TRANSIENT BEHAVIOR OF A QUEUEINC SYSTEM WITH BULK
                                                                                                              AMS 62
                                                                                                                      973
                                                 THE TRANSIENT BEHAVIOR OF A SINGLE SERVER QUEUING PROCESS
                                                                                                             AMS 61 1286
 WITH RECURRENT INPUT AND GAMMA SERVICE TIME
                                              ON THE TRANSIENT BEHAVIOUR OF A SIMPLE QUEUE
                                                                                                            JRSSB60
                                                                                                                     277
                                                   A TRANSIENT DISCRETE TIME QUEUE WITH FINITE STORACE
                                                                                                             AMS 62
                                                                                                                     130
                       ESTIMATION OF PARAMETERS IN A TRANSIENT MARKOV CHAIN ARISING IN A RELIABILITY GROWT
H MODEL.
                                                                                                             AMS 69 1542
                        A SYSTEM OF DENUMERABLY MANY TRANSIENT MARKOV CHAINS
                                                                                                              AMS 66 406
                                                                                                             AMS 68 365
                      A REMARK ON HITTINC PLACES FOR TRANSIENT STABLE PROCESS
                     NONPARAMETRIC ESTIMATION OF THE TRANSITION DISTRIBUTION FUNCTION OF A MARKOV PROCESS
                                                                                                             AMS 69 1386
INTEGRAL KERNELS AND INVARIANT MEASURES FOR MARKOFF TRANSITION FUNCTIONS
                                                                                                             AMS 65 517
FIXED POINT PROBABILITY VECTOR OF REGULAR OR ERGODIC TRANSITION MATRICES
                                                                                                    ON THE JASA 67
                                                                                                                     600
                     ON THE LOCAL BEHAVIOR OF MARKOV TRANSITION PROBABILITIES
                                                                                                             AMS 68 2123
            A MENDELIAN MARKOV PROCESS WITH BINOMIAL TRANSITION PROBABILITIES
                                                                                                            BIOK A66
                                                                                                                      37
      DEVELOPMENT OF RANDOMIZED LOAD SEQUENCES WITH TRANSITION PROBABILITIES BASED ON A MARKOV PROCESS
                                                                                                            TECH 66
                                                                                                                     1.07
            NOTES. ON ESTIMATING THE EQUILIBRIUM AND TRANSITION PROBABILITIES OF A FINITE-STATE MARKOV CHA BIOCS68
IN FROM/
                                                                                                                     185
       MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION OF TRANSITION PROBABILITIES.
                                                                                                            JASA 68 1162
       THE FREQUENCY COUNT OF A MARKOV CHAIN AND THE TRANSITION TO CONTINUOUS TIME
                                                                                                             AMS 61
                                                                                                                      41
                       EFFECT OF VARYING DECREES OF TRANSITORY INCOME ON INCOME ELASTICITY OF EXPENDITURE JASA 58
                                                                                                                     348
                                                                                                             AMS 65 1107
DISTINGUISHING A SEQUENCE OF RANDOM VARIABLES FROM A TRANSLATE ITSELF
                                   ON DISTINGUISHING TRANSLATES OF MEASURES
                                                                                                             AMS 69 1773
MS, CORR. 63 1/ THE LOCNORMAL DISTRIBUTION AND THE TRANSLATION METHOD, DESCRIPTION AND ESTIMATION PROBLE JASA 63
                                                                                                                     231
                                                                                                             AMS 68
                            ESTIMATION OF THE LARGER TRANSLATION PARAMETER
                                                                                                                     502
                           ESTIMATION OF TWO ORDERED TRANSLATION PARAMETERS
                                                                                                             AMS 68
                                                                                                                     517
           STATISTICAL REPRODUCTION OF ORDERINGS AND TRANSLATION SUBFAMILIES
                                                                                                             AMS 66
                                                                                                                     196
                                  INVARIANT SETS FOR TRANSLATION-PARAMETER FAMILIES OF MEASURES
                                                                                                             AMS 69
                                                                                                                    162
                              ON THE OPTIMUM RATE OF TRANSMITTING INFORMATION
                                                                                                             AMS 69
                          A STOCHASTIC MODEL OF ACHE TRANSPORTATION IN THE PERIPHERAL NERVE TRUNKS
                                                                                                            BIOKA62
                                                      TRANSPOSED BRANCHING PROCESSES
                                                                                                            JRSSB54
                                                                                                                      76
                     A MATHEMATICAL THEORY OF ANIMAL TRAPPING
                                                                                                            BIOKA51
          CONTRIBUTIONS TO THE MATHEMATICS OF ANIMAL TRAPPING
                                                                                                            BIOCS66
                                                                                                                     925
        A CROSS-SECTION ANALYSIS OF NON-BUSINESS AIR TRAVEL
                                                                                                            JASA 58
                                                                                                                     928
                             A CONTRIBUTION TO THE 'TRAVELLING-SALESMAN' PROBLEM (WITH DISCUSSION) JRSSB55
A REMARK ON A PAPER OF TRAWINSKI AND DAVID ENTITLED 'SELECTION OF THE BEST T AMS 63
                                                                                                            JRSSB55
                                                                                                                    185
REATMENT IN A PAIRED-COMPA/
                                                                                                                      92
     A TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED CANCER PATIENTS
                                                                                                            JASA 65
                                                                                                                      16
        THE DESIGN OF AN EXPERIMENT IN WHICH CERTAIN TREATMENT ARRANGEMENTS ARE INADMISSIBLE
                                                                                                            BIOKA54
                                                                                                                     287
```

TITLE WORD INDEX TRA - TRI

```
A SURVEY OF SOME SCHEMES REQUIRING NOT MORE THAN 256 TREATMENT COMBINATIONS /OF FACTORIAL EXPERIMENTS, BICKA59 251
ROM A RANDOMISED BLOCK EXPERIMEN/ NOTES. ERRORS OF TREATMENT COMPARISONS WHEN OBSERVATIONS ARE MISSING F BIOCS66
                A GHANCE-OVER DESIGN FOR TESTING A TREATMENT FACTOR AT FOUR EQUALLY SPACED LEVELS (GORR. JRSSB67
                                                                                                                       370
SELECTION OF THE BEST TREATMENT IN A PAIRED-COMPARISON EXPERIMENT TRAWINSKI AND DAVID ENTITLED 'SELECTION OF THE BEST TREATMENT IN A PAIRED-COMPARISON EXPERIMENT'
                                                                                                              AMS 63
                                                                                                                        75
                                                                                                      /ER OF AMS 63
                                                                                                                        92
                    A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC
                                                                                                             RIOK A55
                                                                                                                       123
                                   A CONTINUOUS TIME TREATMENT OF A SIMPLE QUEUE USING CENERATING FUNCTION JRSSB54
                                                                                                            BIOKA54
FORMULAE
                                         STATISTICAL TREATMENT OF CENSORED DATA . PART I. FUNDAMENTAL
                                                                                                                       228
PROBLEMS OF SIGNIFIGANCE
                                    NOTE ON AN EXACT TREATMENT OF GONTINCENGY, COODNESS OF FIT AND OTHER
                                                                                                             BTOKA51
                                     THE STATISTICAL TREATMENT OF MEAN DEVIATION
                                                                                                              BIOKA54
                                                                                                                       12
                                                                                                                       26B
       ON THE USE OF THE NORMAL APPROXIMATION IN THE TREATMENT OF STOCHASTIC PROCESSES
                                                                                                              JRSSB57
UES BY MEANS OF GUMULATIVE PROBABILITIES TREATMENT OF THE NON-EQUILIBRIUM THEORY OF SIMPLE QUE JRSSB63 457
A TREATMENT OF TIES IN PAIRED COMPARISONS AMS 68 2020
                                                 THE TREATMENT OF TIES IN THE WILCOXON TEST
SERIALLY CORRELATED OBSERVATIONS
                                                      TREATMENT VARIANCES FOR EXPERIMENTAL DESIGNS WITH
                                                                                                              BIOKA56
   DISTRIBUTION-FREE MULTIPLE GOMPARISON PROCEDURE, TREATMENT VERSUS CONTROL
                                                                                         AN ASYMPTOTIGALLY AMS 66
          A RANK SUM TEST FOR COMPARINC ALL PAIRS OF TREATMENTS
                                                                                                              TEGH 60
                                                                                                                       197
           A MODEL FOR SELECTING ONE OF TWO MEDICAL TREATMENTS
                                                                                                              JASA 63
                                                                                                                       38B
          A TWO-STACE MODEL FOR SELECTING ONE OR TWO TREATMENTS
                                                                                                              BIOCS65
                                                                                                                       169
         SOME ROW AND GOLUMN DESIGNS FOR TWO SETS OF TREATMENTS
                                                                                                              BT0GS66
                                                                                                                         - 1
      A MULTIPLE COMPARISONS SICN TEST, ALL PAIRS OF TREATMENTS
                                                                                                              BTOCS67
                                                                                                                       539
   BALANCED INGOMPLETE BLOCK DESIGNS FOR TWO SETS OF TREATMENTS
                                                                                                         SOME BIOKA66
                                                                                                                       497
FOR PAIRED-COMPARISON EXPERIMENTS INVOLVING SEVERAL TREATMENTS
                                                                                                  RANK TESTS AMS 64
                                                                                                                       122
     DESIGNS BASED ON YOUDEN SQUARES WITH 5, 6, OR 7 TREATMENTS
                                                                                           FOUR-WAY BALANGED BIOGS67
                                                                                                                       803
OMPLETE BLOCK DESIGNS WITH TWO-WAY CLASSIFICATION OF TREATMENTS
                                                                                      PARTIALLY BALANGED ING AMS 69
                                                                                                                       175
      DESIGNS FOR EXPERIMENTS INVOLVING SEQUENCES OF TREATMENTS
                                                                              THE GONSTRUCTION OF BALANCED BIOKA52
                                                                                                                        32
    WITH THE NUMBER OF BLOCKS EQUAL TO THE NUMBER OF TREATMENTS
                                                                        A NOTE ON INCOMPLETE BLOCK DESIGNS AMS 65 1877
IN THE ANALYSIS OF QUANTAL EXPERIMENTS INVOLVING TWO TREATMENTS
                                                                   /TRANSFORMATIONS AND MAXIMUM LIKELIHOOD BIOKA55
Y BALANCED INCOMP/ BOUNDS FOR THE NUMBER OF COMMON TREATMENTS BETWEEN ANY TWO BLOCKS OF CERTAIN PARTIALL AMS 65
    COMPARISON OF THE BOUNDS OF THE NUMBER OF COMMON TREATMENTS BETWEEN BLOCKS OF CERTAIN PARTIALLY BALANC
                                              GOMMON TREATMENTS BETWEEN BLOCKS OF GERTAIN PARTIALLY BALANG AMS 68
ED INGOMPLETE BLOCK DESIGNS
IBLE DESIGNS ON THE BOUNDS OF THE NUMBER OF GOMMON TREATMENTS BETWEEN BLOCKS OF SEMI-REGULAR GROUP DIVIS JASA 64
                                                                                                                       867
GED BLOCK EXPERIMENTS HAVING ERROR VARIANGE AND SOME TREATMENTS IN GOMMON ANALYSIS OF A GROUP OF BALAN BIOGS68
                                                                                                                       389
                                           FACTORIAL TREATMENTS IN REGTANGULAR LATTICE DESIGNS
                                                                                                                       368
                                                                                                              JASA 61
GATIONS OF NONORTHOGONAL DESIGNS TO SITUATIONS WHERE TREATMENTS OR BLOCKS ARE OF UNEQUAL STATUS OR SIZE
                                                                                                             BIOGS66
                                                                                                                       629
ERIMENTAL DESIGNS OF USE IN CHANGING FROM ONE SET OF TREATMENTS TO ANOTHER, PART 1 SOME EXP JRSSB57
ERIMENTAL DESIGNS OF USE IN CHANGING FROM ONE SET OF TREATMENTS TO ANOTHER, PART 2, EXISTENCE OF THE DESIG JRSSB57
                                                                                                                       154
                                                                                                                       163
                    A MULTIPLE GOMPARISON SIGN TEST, TREATMENTS VERSUS GONTROL
                                                                                                              JASA 59
                                                                                                                       767
                                        TABLES FOR A TREATMENTS VERSUS CONTROL MULTIPLE COMPARISONS SIGN
                                                                                                             TEGH 65
                                                                                                                       293
                            DESIGNS FOR SEQUENCES OF TREATMENTS WITH GARRY-OVER EFFECTS
                                                                                                              BIOGS66
                                                                                                                       292
                     ORDERED HYPOTHESES FOR MULTIPLE TREATMENTS, A SIGNIFIGANGE TEST FOR LINEAR RANKS
                                                                                                              JASA 63
                                                                                                                       216
                                                   A TREE GOUNTING PROBLEM
                                                                                                               AMS 6B
                                                                                                                      242
       A FORMULA FOR THE PROBABILITY OF OBTAINING A TREE FROM A GRAPH CONSTRUCTED RANDOMLY EXCEPT FOR 'EX
                                                                                                               AMS 67
OGAM/
                                                                                                                       226
            REPRESENTATION OF SIMILARITY MATRICES BY TREES
                                                                                                              JASA 67 1140
                                      RANDOM MINIMAL TREES
                                                                                                              BIOKA6B
                       TWO SEQUENTIAL TESTS AGAINST TREND
                                                                                                              JASA 56
POWER FUNCTIONS FOR COX'S TEST OF RANDOMNESS AGAINST TREND
                                                                                                              TECH 62
                                                                                                                       430
DISTRIBUTION OF LIKELIHOOD RATIO IN TESTING AGAINST TREND
                                                                                                              AMS 69
                                                                                                                      371
                               A DESIGN BALANCED FOR TREND
                                                                                                              BIOKA68
                                                                                                                       535
     IN A SERIES OF EVENTS WHEN THE ALTERNATIVE IS A TREND
                                                                                        TESTS FOR RANDOMNESS JRSSB56
                                                                                                                      234
THE JIRINA SEQUENTIAL PROGEDURE TO OBSERVATIONS WITH TREND
                                                                                       SOME APPLICATIONS OF
                                                                                                              AMS 63
                                                                                                                       857
                                        A THEOREM IN TREND ANALYSIS
                                                                                                              BTOKA61
                                                                                                                       224
                          ESTIMATION OF QUASI-LINEAR TREND AND SEASONAL VARIATION
                                                                                                              JASA 63 1033
                                 A SIMPLE METHOD OF TREND CONSTRUCTION
                                                                                                             JRSSB61
                                                                                                                        91
                              ESTIMATING AND TESTING TREND IN A STOCHASTIC PROCESS OF POISSON TYPE
                                                                                                               AMS 66 1564
  EXPERIMENT ON THE POWERS OF THE REGORDS TESTS FOR TREND IN A TIME SERIES
                                                                                                 A SAMPLING JRSSB55
                                                                                                                      115
                         LARGE-SAMPLE SIGN TESTS FOR TREND IN DISPERSION
                                                                                                              BIOKA66
                                                                                                                       289
                                                                                                                       381
E EFFICIENCIES OF COX AND STUART'S TESTS FOR TESTING TREND IN DISPERSION OF A P-DEPENDENT TIME SERIES (GOR BIOKA68
                           SOME QUICK SIGN TESTS FOR TREND IN LOGATION AND DISPERSION
                                                                                                                       80
                                                                                                              BIOKA55
              THE EFFIGIENCY OF THE REGORDS TEST FOR TREND IN NORMAL RECRESSION
                                                                                                              JRSSB57
       THE ESTIMATION OF THE SPECTRAL DENSITY AFTER TREND REMOVAL
                                                                                                                      323
 INVESTIGATION OF LEAST SQUARES REGRESSION INVOLVING TREND-REDUCED MARKOFF SERIES
                                                                                                A NUMERICAL JRSSB55
               LEAST SQUARES REGRESSION ANALYSIS FOR TREND-REDUGED TIME SERIES
                                                                                                              JRSSB55
             EXPERIMENTAL DESIGNS TO ADJUST FOR TIME TRENDS
                                                                                                              TECH 60
                                                                                                                        67
THE-(P-Q) PLANS ROBUST AGAINST LINEAR AND QUADRATIC TRENDS
                                                                                            FACTORIAL 2-TO- TEGH 66
   DESIGN FOR ESTIMATING ENVIRONMENTAL AND GENETIC TRENDS

WHITED STATES NONWHITE POPULATION AS INDICATED BY TRENDS IN DEATH RATES

BIAS IN ESTIMATES OF THE JASA 61
                                                                                                                       63
                                                                                                                       44
                           FAGTOR CHANGES AND LINEAR TRENDS IN EIGHT-RUN TWO LEVEL FACTORIAL DESIGNS
                                                                                                              TECH 6B
                                                                                                                       301
     ASYMPTOTIC POWER OF CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS
                                                                                                             RTOCS6B
                                                                                                                       315
          A SEQUENTIAL METHOD OF TESTING THE LINEAR TRENDS OF RESPONSES IN DOSE TRIALS
                                                                                                             BIOGS68
                                                                                                                       663
                                                 THE TRENTILE DEVIATION METHOD OF WEATHER FORECAST
                                                                                                             JASA 58
                                                                                                                       398
         THE DISTRIBUTION OF THE NUMBER OF CIRCULAR TRIADS IN PAIRED COMPARISONS
                                                                                                             BIOKA62
                                                                                                                       265
   PLAY THE WINNER RULE AND THE GONTROLLED CLINICAL TRIAL
                                                                                                             JASA 69
                                                                                                                       131
                                  SEQUENTIAL MEDICAL TRIALS
                                                                                                             JASA 63 365
                                                                                                               AMS 65 1272
           ON THE NUMBER OF SUCCESSES IN INDEPENDENT TRIALS
       AN ADAPTIVE PROCEDURE FOR SEQUENTIAL CLINICAL TRIALS
                                                                                                              JASA 69 759
     ON THE EFFIGIENCY OF MATCHED PAIRS IN BERNOULLI TRIALS
                                                                                                              BIOKA68
                                                                                                                       365
                     TWO-STAGE DESIGNS FOR CLINICAL TRIALS
                                                                                                             BIOGS69 111
                    SOME OBSERVATIONS ON GHANGE-OVER TRIALS
                                                                                                             BIOGS69
                                                                                                                       413
STRIBUTION OF THE NUMBER OF SUGGESSES IN INDEPENDENT TRIALS
                                                                                                   ON THE DI AMS 64 1317
      APPROACH TO THE ANALYSIS OF DATA FROM GLINICAL TRIALS
                                                                                                  A BAYESIAN JASA 65
                                                                                                                       81
   OF THE PROBABILITY OF ZERO FAILURES IN M BINOMIAL TRIALS
                                                                                                  ESTIMATION JASA 67
   OF TESTING THE LINEAR TRENDS OF RESPONSES IN DOSE TRIALS
                                                                                         A SEQUENTIAL METHOD BIOGS68
                                                                                                                       663
  THE NUMBER OF SUGGESSES IN A SEQUENCE OF DEPENDENT TRIALS
                                                                                         THE DISTRIBUTION OF BIOKA59
                                                                                                                       454
HYPOTHESES, WITH APPLICATIONS TO SEQUENTIAL GLINIGAL TRIALS
                                                                         A BAYESIAN TEST OF SOME GLASSIGAL JASA 66
                                                                                                                       577
           TRUNGATED SEQUENTIAL DESIGNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS
                                                                                                             RTOGS68
                                                                                                                      159
```

TRI - TWO TITLE WORD INDEX

```
ON COMBINING THE RESULTS FROM CLINICAL TRIALS OF A VACCINE
                                                                                                           BT0CS65
                                                                                                                   616
RTHOCONAL POLYNOMIALS IN THE ANALYSIS OF CHANCE-OVER TRIALS WITH DAIRY COWS
                                                                                           THE VALUE OF 0 BIOCS67 297
                                  SEQUENTIAL MEDICAL TRIALS, SOME COMMENTS ON F. J. ANSCOMBE'S PAPER
                                                                                                           JASA 63
                                                                                                                   384
                      THE PROBABILITY THAT A RANDOM TRIANCLE IS OBTUSE
                                                                                                           BIOKA69 NO 3
                    THE QUOTIENT OF A RECTANCULAR OR TRIANCULAR AND A CENERAL VARIATE
                                                                                                           BIOKA54 330
CLASSES
                                 AN EXTENSION OF THE TRIANCULAR ASSOCIATION SCHEME TO THREE ASSOCIATE
                                                                                                           JRSSB66
 THE EXISTENCE OF SOME SYMMETRICAL AND UNSYMMETRICAL TRIANGULAR PARTIALLY BALANCED INCOMPLETE BLOCK DESIGN
                                                                                                           AMS 63
                                     SAMPLINC FROM A TRIANCULAR POPULATION
                                                                                                           JASA 63
    A STOCHASTIG MODEL FOR TWO COMPETING SPECIES OF TRIBOLIUM AND ITS APPLICATION TO SOME EXPERIMENTAL DA BIOKA62
                              ON THE DISTRIBUTION OF TRIBOLIUM CONFUSUM IN A CONTAINER
                                                                                                           BIOKA57
                                                                                                                    328
                                                   A TRIBUTE TO FRANK WILCOXON
                                                                                                           TECH 66
                                                                                                                    195
                                             ON THE TRIMMED MANN-WHITNEY STATISTIC
                                                                                                            AMS 6B 1610
                                        QUERY, SMALL TRIMMED SAMPLES
                                                                                                           TECH 66 193
       BEHAVIOR OF THE DISTRIBUTION OF WINSORIZED T (TRIMMINC-WINSORIZATION 2)
                                                                                               APPROXIMATE TECH 6B
                                                                                                                     83
                      A NOTE ON LINEAR REGRESSION IN TRIVARIATE DISTRIBUTIONS
                                                                                                           JASA 68 1042
 A POPULATION MEAN WHICH REDUCES THE EFFECT OF LARCE TRUE OBSERVATIONS
                                                                                          AN ESTIMATOR FOR JASA 66
                                                                                                                   1200
 OF THE LOC LIKELIHOOD RATIO TEST STATISTIC WHEN THE TRUE PARAMETER IS 'NEAR' THE BOUNDARIES OF THE HYPOTH AMS 68 2044
   FOR ESTIMATING THE VARIANCE WITHIN D UNITS OF THE TRUE VALUE
                                                                                     SAMPLE SIZE REQUIRED AMS 64
                                                                                                                    43B
RAMETER IN THE UNIFORM DENSITY WITHIN D UNITS OF THE TRUE VALUE
                                                                   SAMPLE SIZE REQUIRED TO ESTIMATE THE PA JASA 64
                                                                                                                    550
                                   THE REGRESSION OF TRUE VALUE ON ESTIMATED VALUE
                                                                                                           BTOKA60
                                                                                                                    457
    DISTRIBUTION WHEN SAMPLES ARE SINGLY CENSORED OR TRUNCATED
                                                                     SIMPLIFIED ESTIMATORS FOR THE NORMAL TECH 59
                                                                                                                    217
 PARAMETERS OF A MULTIVARIATE NORMAL POPULATION FROM TRUNCATED AND CENSORED SAMPLES
                                                                                            ESTIMATION OF JRSSB60
                                                                                                                    307
        ON THE SOLUTION OF ESTIMATING EQUATIONS FOR TRUNCATED AND CENSORED SAMPLES FROM NORMAL POPULATION BIOKAST
                                                                                                                    225
                              THE FITTING OF GROUPED TRUNCATED AND GROUPED CENSORED NORMAL DISTRIBUTIONS
                                                                                                          BIOKA52
                                                                                                                    252
    TABLES FOR MAXIMUM LIKELIHOOD ESTIMATES. SINCLY TRUNCATED AND SINGLY CENSORED SAMPLES
                                                                                                           TECH 61
                                                                                                                    535
METHOD OF MOMENTS ESTIMATES OF THE PARAMETERS OF THE TRUNCATED BINOMIAL AND NEGATIVE BINOMIAL DISTRIBUTION JASA 61
                                                                                                                    990
            ON ESTIMATING THE PARAMETER OF A DOUBLY TRUNCATED BINOMIAL DISTRIBUTION
                                                                                                           JASA 66
                                                                                                                    259
 POWER SERIES DISTRIBUTIONS AND ITS APPLICATION TO A TRUNCATED BINOMIAL DISTRIBUTION
                                                                                       /ON FOR GENERALIZED BIOKA62
                       ESTIMATION OF PARAMETERS OF A TRUNCATED BIVARIATE NORMAL DISTRIBUTION
                                                                                                           JASA 63
                                                                                                                    519
CORRELATION BETWEEN THE SAMPLE VARIANCES IN A SINCLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION
                                                                                                           BTOKA68
                                                                                                                    433
                                       MOMENTS OF A TRUNCATED BIVARIATE NORMAL DISTRIBUTION
                                                                                                           JRSSB61
                                                                                                                    405
                            GORRELATION IN A SINGLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION, IV. EMPIRICAL BIOKAGB
 VARIANCES OF RANK CORREL/
                                                                                                                    437
                            CORRELATION IN A SINGLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION. II. RANK
CORRELATION
                                                                                                           BTOKA65
                                                                                                                    639
TION BETWEEN RANKS AND VA/ CORRELATION IN A SINGLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION. III. CORRELA BIOKAG6
                                                                                                                    27B
SORTS OF TEST FOR A CHANCE OF LOCATION APPLICABLE TO TRUNCATED DATA
                                                                                                          JRSSB57
                                                                                     A GOMPARISON OF TWO
                                                                                                                    119
     THE ESTIMATION OF THE POISSON PARAMETER FROM A TRUNCATED DISTRIBUTION
                                                                                                           BIOKA52
INVENTORY CONTROL
                                    APPLICATIONS OF TRUNCATED DISTRIBUTIONS IN PROCESS START-UPS AND
IS TESTING
                                     HALF-RECTIFIED TRUNCATED DISTRIBUTIONS, SAMPLING THEORY AND HYPOTHES TECH 69
                                                                                                                     47
                                       A NOTE ON THE TRUNCATED EXPONENTIAL DISTRIBUTION
                                                                                                            AMS 64 1366
 VARIANCE UNBIASED ESTIMATION OF RELIABILITY FOR THE TRUNCATED EXPONENTIAL DISTRIBUTION
                                                                                                   MINIMUM TECH 69
                                                                                                                    609
UTION OF AN ESTIMATOR ARISING IN CONNECTION WITH THE TRUNCATED EXPONENTIAL DISTRIBUTION /AMPLING DISTRIB AMS 69
                                                                                                                    702
                       RELIABILITY ESTIMATION OF THE TRUNCATED EXPONENTIAL MODEL
                                                                                                           TECH 67
                                                                                                                    332
    ESTIMATION OF LOCATION AND SCALE PARAMETERS IN A TRUNCATED GROUPED SECH SQUARE DISTRIBUTION
                                                                                                           JASA 61
                                                                                                                    692
AND PRODUCT MOMENTS OF THE ORDER STATISTICS FROM THE TRUNCATED LOGISTIC DISTRIBUTION
                                                                                           EXACT MOMENTS
                                                                                                          JASA 66
                                                                                                                    514
MOMENTS
                                                    TRUNCATED LOGNORMAL DISTRIBUTIONS, I. SOLUTION BY
                                                                                                           BTOKA51
                                                                                                                    414
               THE MOMENT GENERATING FUNCTION OF THE TRUNCATED MULTI-NORMAL DISTRIBUTION
                                                                                                           JRSSR61
                                                                                                                    223
                                        CUMULANTS OF TRUNCATED MULTINORMAL DISTRIBUTIONS
                                                                                                           JRSSB62
                                                                                                                    535
                                                THE TRUNCATED NEGATIVE BINOMIAL DISTRIBUTION
                                                                                                           BIOKA55
                                                                                                                     5B
                  SIMPLIFIED METHODS OF FITTING THE TRUNCATED NEGATIVE BINOMIAL DISTRIBUTION
                                                                                                           BIOKA58
                                                                                                                     59
        QUERY, THE SUM OF VALUES FROM A NORMAL AND A TRUNCATED NORMAL DISTRIBUTION
                                                                                                           TECH 64 104
ELATION BETWEEN VARIATE-VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL DISTRIBUTION
                                                                                                 THE CORR BIOKA66
                                                                                                                    281
        QUERY. THE SUM OF VALUES FROM A NORMAL AND A TRUNCATED NORMAL DISTRIBUTION (CONTD)
                                                                                                           TECH 64
                              CENSORED SAMPLES FROM TRUNCATED NORMAL DISTRIBUTIONS
                                                                                                           BIOKA55
                                                                                                                    516
TES.TABLES OF PEARSON-LEE-FISHER FUNGTIONS OF SINGLY TRUNCATED NORMAL DISTRIBUTIONS
                                                                                                        NO BIOCS65
          CHARACTERIZATION OF NORMAL AND GENERALIZED TRUNGATED NORMAL DISTRIBUTIONS USING ORDER STATISTICS
                                                                                                           AMS 66 1011
TIMATING THE POISSON PARAMETER FROM SAMPLES THAT ARE TRUNCATED ON THE RIGHT
                                                                                                        ES TECH 61 433
                          ESTIMATING PARAMETERS IN TRUNCATED PEARSON FREQUENCY DISTRIBUTIONS WITHOUT RES BIOKA53
ORT TO HIGHER MOMENTS
                                                                                                                     50
                         A NOTE ON ESTIMATION IN THE TRUNCATED POISSON
                                                                                                           BTOKA65
                                                                                                                    279
       NOTES. MAXIMUM LIKELIHOOD ESTIMATION FOR THE TRUNCATED POISSON
                                                                                                           RIOCS66
                                                                                                                    620
ONES ARE MISSING
                                   ESTIMATION IN THE TRUNCATED POISSON DISTRIBUTION WHEN ZEROS AND SOME
                                                                                                           JASA 60
                                                                                                                    342
 COMBINATORIAL DERIVATION OF THE DISTRIBUTION OF THE TRUNCATED POISSON SUFFICIENT STATISTIC
                                                                                                         A AMS 61
                                                                                                                    904
                A NOTE ON THE NEGATIVE MOMENTS OF A TRUNCATED POISSON VARIATE
                                                                                                           JASA 64 1220
                      ESTIMATION OF PARAMETERS OF A TRUNCATED POISSONIAN BINOMIAL
                                                                                                           BIOCS68
                                                                                                                   377
              FITTING A STRAIGHT LINE TO DATA FROM A TRUNCATED POPULATION
                                                                                                           BIOCS65
     NOTES. ON ESTIMATING RECESSIVE FREQUENCIES FROM TRUNCATED SAMPLES
ERS OF NORMAL POPULATIONS BASED ON SINGLY AND DOUBLY TRUNCATED SAMPLES
                                                                          /OF THE ESTIMATES OF THE PARAMET JASA 62
MATION O/ ON THE AMOUNT OF INFORMATION SUPPLIED BY TRUNCATED SAMPLES OF GROUPED OBSERVATIONS IN THE ESTI BIOKA63
BASED ON MARKOV CHAINS
                                                     TRUNCATED SEQUENTIAL DESIGNS FOR CLINICAL TRIALS
                                                                                                           BIOCS68
                                                                                                                   159
                 EXACT OPERATING CHARACTERISTIC FOR TRUNCATED SEQUENTIAL LIFE TESTS IN THE EXPONENTIAL
                                                                                                           AMS 62 1403
CASE
                          ON THE PERFORMANCE OF THE TRUNCATED SEQUENTIAL PROBABILITY RATIO TEST, CORR. 66 JASA 65
 1247
DISTRIBUTION
                           DIRECT METHODS FOR EXACT TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A NORMAL
                                                                                                         TECH 69 NO. 4
                      THE AVERAGE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE ATTRIBUTES ACCEPTANCE SAM TECH 68 685
PLINC PLANS
               THE DISTRIBUTION FUNCTIONS OF TSAO'S TRUNCATED SMIRNOV STATISTICS
                                                                                                            AMS 67 1208
   ADMISSIBLE AND MINIMAX ESTIMATES OF PARAMETERS IN TRUNCATED SPACES
                                                                                                            AMS 61 136
                 MONOTONICITY OF THE VARIANCE UNDER TRUNCATION AND VARIATIONS OF HENSEN'S INEQUALITY
                                                                                                            AMS 69 1106
                              ELLIPTICAL AND RADIAL TRUNCATION IN NORMAL POPULATIONS
                                                                                                            AMS 63 940
                                               PLANE TRUNCATION IN NORMAL POPULATIONS
                                                                                                           JRSSB65
                                                                                                                   301
                            THE EXCEEDANCE TEST FOR TRUNCATION OF A SUPPLIER'S DATA
                                                                                                           JASA 69
                                                                                                                   823
EXPONENTIAL DISTRIBUTION
                                          EFFECT OF TRUNCATION ON A TEST FOR THE SCALE PARAMETER OF THE
                                                                                                           AMS 64 209
POPULATIONS
                                       THE EFFECT OF TRUNCATION ON TESTS OF HYPOTHESES FOR NORMAL
                                                                                                           AMS 65 1504
         ASYMPTOTIC SHAPES FOR SEQUENTIAL TESTING OF TRUNCATION PARAMETERS
                                                                                                            AMS 68 2038
                                    ESTIMATION OF A TRUNCATION POINT
                                                                                                          BIOKA64 33
                                                                                                           JASA 57
                                                                                                                   527
                                                     TRUNCATION TO MEET REQUIREMENTS ON MEANS
                                                                                                          JASA 63 1011
                  THE VARYING QUALITY OF INVESTMENT TRUST MANAGEMENT
                                                   A TRUSTWORTHY JACKKNIFE
                                                                                                           AMS 64 1594
                      THE DISTRIBUTION FUNCTIONS OF TSAO'S TRUNCATED SMIRNOV STATISTICS
                                                                                                           AMS 67 1208
```

TITLE WORD INDEX TRI - TWO

OF MIXED WEIBULL PARAMETERS IN LIFE TESTINC ELECTRON TUBES COMMENTS ON THE DISCUSSIONS OF MESSRS. TUKEY AND CO COMMENTS ON PAPER BY KURTZ, LINK, TUKEY AND WA		TECH 59 TECH 61 TECH 65	389 229 163
DISTRIBUTIONS TABLES OF THE EDERMAN THEFT TO ANCE	ODMARTONE FOR THE RINOWIAL AND DOTCEON	D T O V A C 1	177
A CRAPHICAL VERSION OF TUKEY'S CONF	ORMATIONS FOR THE BINOMIAL AND FOISSON IDENCE INTERVAL FOR SLIPPACE K TEST OF LOCATION FOR NON-ADDITIVITY	TECH 68	193
A DEVELOPMENT OF TUKEY'S QUIC	K TEST OF LOCATION FOR NON-ADDITIVITY	JASA 66 JRSSB63	949 213
STATISTICAL TEST OF AUTHORSHIP MARK TWAIN AND TH	E QUINTUS CURTIUS SNODCRASS LETTERS, A	JASA 63	85
UMULATIVE DISTRIBUTION FOR SAMPL/ COMPACT TABLE OF TWELVE PROBA	BILITY LEVELS OF THE SYMMETRIC BINOMIAL C	JASA 59	
AND PRODUCTS OF ORDER STATISTICS FOR SAMPLES OF SIZE TWENTY AND L THE TWENTY-SEVEN		AMS 61 AMS 64	
A CORRELATION MODEL USEFUL IN THE STUDY OF TWINS		JASA 66	
MAIN-EFFECT PLANS AND ORTHOCONAL ARRAYS OF STRENCTH TWO	SOME	AMS 61	1167 22
STICS NON-RANDOMNESS IN A SECUENCE OF TWO ALTERNAT	TVES T WILCOYON'S AND ALLIED TEST STATT	BTOKA58	
NON-RANDOMNESS IN A SEQUENCE OF TWO ALTERNAT	IVES. II. RUNS TEST	BIOKA58	253
RESPONSE SURFACE DESIGNS FOR FACTORS AT TWO AND THRE	E LEVELS	TECH 6B	177 27
TAL RESPONSES TO MIXTURES OF DRUGS A COMPARISON OF TWO APPROACH OF CONSTRUCTION OF PARTIALLY BALANCED DESIGNS WITH TWO ASSOCIAT			
ILV RALANCED INCOMPLETE BLOCK DESIGNS WITH MORE THAN TWO ASSOCIATE	F CLASSES AMALYSTS OF A CLASS OF PARTIA	AMS 61	800
AND SECOND MOMENTS OF THE RANDOMIZATION TEST IN TWO ASSOCIAT	E PBIB DESIGNS FIRST	JASA 69	
A STATISTICAL TEST FOR EQUALITY OF TWO AVAILABI MIZATION IN BAYESIAN STATISTICS, FINITE SAMPLING AND TWO BAYESIAN		TECH 68	
NS ON COMPARING INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY C	HARACTERISTICS IN TWO DIFFERENT POPULATIO	JASA 61	889
	COEFFICIENT SUMS FOUND BY RIORDAN		
CONFIDENCE INTERVALS FOR THE PRODUCT OF TWO SINOMIAL NOTE ON A THREE-DECISION TEST FOR COMPARING TWO BINOMIAL		JASA 57 BIOKA59	482 106
UNDS FOR THE NUMBER OF COMMON TREATMENTS BETWEEN ANY TWO BLOCKS O			337
FREQUENCY RESPONSE FROM STATIONARY NOISE, TWO CASE HIS		TECH 61	
A THEOREM ON RANK ORDERS FOR TWO CENSORED THE DISTRIBUTION OF THE PRODUCT OF TWO CENTRAL		AMS 65 AMS 62	
OPTIMUM STRATIFICATION WITH TWO CHARACTE	RS	AMS 63	B66
TESTS FOR RANDOMNESS OF DIRECTIONS AGAINST TWO CIRCULAR		JASA 69	280
THE PROPERTIES OF A STOCHASTIC MODEL FOR TWO COMPETIN N TO SOME EXPERIMENTAL DATA A STOCHASTIC MODEL FOR TWO COMPETIN		BIOKA58	316 1
ORRIGENDA. 'THE PROPERTIES OF A STOCHASTIC MODEL FOR TWO COMPETIN	G SPECIES.'	BTOKA59	279
OF CONVERGENCE IN THE COMPOUND DECISION PROBLEM FOR TWO COMPLETE	LY SPECIFIED DISTRIBUTIONS RATES	AMS 65	1743
PROCESS CURVE AND THE EQUIVALENT MIXED BINOMIAL WITH TWO COMPONEN	THE THE	JRSSB59	63
OF CONVERGENCE IN THE COMPOUND DECISION PROBLEM FOR TWO COMPLETE PROCESS CURVE AND THE EQUIVALENT MIXED BINOMIAL WITH TWO COMPONEN THE DISTANCES BETWEEN RANDOM POINTS IN TWO CONCENTR THE TWO CONCEPTS	OF INFORMATION	JASA 67	685
THE MUDGET OF CORREST METALL REPORTED AND CONTESTANCE	NO THE PART OF THE	D T 0	0.05
ON THE RATIO OF TWO CORRELAT	ED NORMAL RANDOM VARIABLES	BIOKA69	NO.3
ON TESTS OF THE EQUALITY OF TWO COVARIAN	US VARIABLES WHEN ONE IS DICHOTOMIZED ED NORMAL RANDOM VARIABLES ED VARIANCES CE MATRICES CE MATRICES UNBIASEDNESS	AMS 68	275
OF SOME TEXT CRITERIA FOR THE EQUALITY OF ONE OR TWO COVARIAN	CE MATRICES UNBIASEDNESS	AMS 68	1686
POWER COMPARISIONS OF TESTS OF EQUALITY OF TWO COVARIAN	CE MATRICES BASED ON FOUR CRITERIA CE MATRICES IN RELATION TO A BEST LINEAR	BIOKA68	335 191
FIRST EMPTINESS OF TWO DAMS IN		AMS 61	219
AND NORMAL RANDOM VARIABLES. SEQUENTIAL SAMPLING, TWO DECISION			507
MINIMAX DESIGNS IN TWO DIMENSIO	NAL REGRESSION	AMS 65	1 097 384
CLUSTERING OF RANDOM POINTS IN TWO DIMENSIO	NS. A MAXIMUM-MINIMUM	BIOKA65	263
THE NONCENTRAL MULTIVARIATE BETA TYPE TWO DISTRIBU	TION	SASJ 69	
POWER OF TWO-SAMPLE RANK TESTS ON THE EQUALITY OF TWO DISTRIBU	TION FUNCTIONS ON THE	JRSSB64	293 566
PROBLEM RELATED TO STATISTICAL DISTRIBUTIONS IN TWO DIMENSIO CLUSTERING OF RANDOM POINTS IN TWO DIMENSIO THE NONCENTRAL MULTIVARIATE BETA TYPE TWO DISTRIBU POWER OF TWO-SAMPLE RANK TESTS ON THE EQUALITY OF TWO DISTRIBU ON THE MEAN AND VARIANCE OF THE SMALLER OF TWO DRAWINCS ON TWO EQUIVALE	NCE RELATIONS BETWEEN MEASURES	AMS 66	
OF THE VARIANCE FUNCTION OF THE DIFFERENCE BETWEEN TWO ESTIMATE	D RESPONSES THE BEHAVIOUR	JRSSB67	174
EQUIVALENCE OF TWO ESTIMATE 182) TWO ESTIMATE	NCE RELATIONS BETWEEN MEASURES D RESPONSES THE BEHAVIOUR S OF PRODUCT VARIANCE S OF THE BINOMIAL DISTRIBUTION, (CORR. 64	JASA 56	451 809
THE METHOD OF MOMENTS APPLIED TO A MIXTURE OF TWO EXPONENT	IAL DISTRIBUTIONS	AMS 61	143
IBULL DISTRIBUTION SHAPE PARAMETER WHEN NO MORE THAN TWO FAILURES	OCCUR PER LOT ESTIMATION OF WE		
OR THE NUMBER OF EDGES IN THE RANDOM INTERSECTION OF TWO GRAPHS (NORMAL APPROXIMATION TO THE DISTRIBUTION OF TWO INDEPEND		AMS 69 AMS 63	
ON THE DISTRIBUTION OF THE WEIGHTED DIFFERENCE OF TWO INDEPEND	ENT STUDENT VARIABLES	TRSSB60	188
TWO K-SAMPLE	SLIPPAGE TESTS	JASA 68	614
THE MATHEMATICAL ANALYSIS OF AN EPIDEMIC WITH TWO KINDS OF USE OF HALF-NORMAL PLOTS IN INTERPRETING FACTORIAL TWO LEVEL EX	PERIMENTS	TECH 59	311
FACTOR CHANGES AND LINEAR TRENDS IN EIGHT-RUN TWO LEVEL FA	CTORIAL DESIGNS	TECH 68	301
TWO K-SAMPLE THE MATHEMATICAL ANALYSIS OF AN EPIDEMIC WITH TWO KINDS OF USE OF HALF-NORMAL PLOTS IN INTERPRETING FACTORIAL TWO LEVEL EX FACTOR CHANGES AND LINEAR TRENDS IN EIGHT-RUN TWO LEVEL FA A COMPARISON OF TWO LIFE TAB COMPARATIVE COST OF TWO LIFE TAB THE DISTRIBUTION OF THE LOCADIMENT THE SUM OF TWO LOCADEM	LE METHODS	BIOCS67	51
THE DISTRIBUTION OF THE LOGARITHM OF THE SUM OF TWO LOG-NORM	AL VARIATES	JASA 69	655
OF ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF TWO MATRICES	ON THE MOMENTS	AMS 64	1704
TIVARIATE BETA DISTRIBUTION AND MOMENTS OF TRACES OF TWO MATRICES TS OF ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF TWO MATRICES	SOME RESULTS ON THE NON-CENTRAL MUL	AMS 65	1911
ON ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF TWO MATRICES		BIOKA65	
QUADRA/ A USEFUL LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES	WITH APPLICATIONS TO LEAST SQUARES TYPE		
	DBLEM A SECONDARILY BAYES APPROACH URTHER DISCUSSION OF ITERATIVE METHODS		
	OF COMPUTING DISCRIMINANT FUNCTION COEFFI		
THE FOLDED NORMAL DISTRIBUTION. TWO METHODS	OF ESTIMATING PARAMETERS FROM MOMENTS	TECH 61	551
ND PARTIAL DIALLEL TEST CROSSING 2. AN EVALUATION OF TWO METHODS TIVE DATA A NOTE ON THE EQUIVALENCE OF TWO METHODS			
	OF OSTAINING A STRAIGHT LINE THROUGH COMOLA OF OSTAINING APPROXIMATE CONFIDENCE INTER		
ASYMPTOTIC VALUES OF THE FIRST TWO MOMENTS	IN MARKOV RENEWAL PROCESSES	810KA67	597
MULTINOMIAL DISTRIBUTION A NOTE ON THE FIRST TWO MOMENTS	OF THE MEAN DEVIATION OF THE SYMMETRICAL	SIUKA67	312
			000

```
STICAL TESTING OF DIFFERENCES IN CASUAL BEHAVIOUR OF TWO MORPHOLOGICALLY INDISTINGUISHABLE OBJECTS STATI BIOCS67 137
                       POWER COMPARISONS OF TESTS OF TWO MULTIVARIATE HYPOTHESES BASED ON FOUR CRITERIA
                                                                                                            BIOKA67 195
COVARIANCE MATRICES
                                CLASSIFICATION INTO TWO MULTIVARIATE NORMAL DISTRIBUTIONS WITH DIFFERENT
                                                                                                             AMS 62
                                                                                                                      420
OPTIMUM CLASSIFICATION RULES FOR CLASSIFICATION INTO TWO MULTIVARIATE NORMAL POPULATIONS
                                                                                                              AMS 65 1174
ON THE MONOTONIC CHARACTER OF THE POWER FUNCTIONS OF TWO MULTIVARIATE TESTS
                                                                                                              AMS 61 1145
                            ASYMPTOTIC EFFICIENCY OF TWO NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPL JASA 67
                                                                                                                     939
  FOR THE ANALYSIS OF STATISTICAL DISTRIBUTIONS INTO TWO NORMAL COMPONENTS
                                                                                        A GRAPHICAL METHOD BIOKA53
RNATI/ ON A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTE AMS 62 1463
                           ESTIMATION IN MIXTURES OF TWO NORMAL DISTRIBUTIONS
                                                                                                            TECH 67
                                                                                                                      15
 NOTE ON TABLES FOR THE COMPARISION OF THE SPREAD OF TWO NORMAL DISTRIBUTIONS
                                                                                                           A BIOKA67
                                                                                                                     683
UNBAISED ESTIMATION OF THE GOMMON MEAN OF TWO NORMAL DISTRIBUTIONS BASED ON SMALL SAMPLES OF EQ JASA 66
                                                                                                                     467
                        ESTIMATION OF THE LARGEST OF TWO NORMAL MEANS
                                                                                                            JASA 68
                                                                                                                     861
FICTENTS OF VARIATION
                               A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS ASSUMING HOMOGENEOUS COEF
                                                                                                             AMS 69 1374
               JOINT ESTIMATION OF THE PARAMETERS OF TWO NORMAL POPULATIONS
                                                                                                            JASA 62
                                                                                                                     446
                                    RANKING MEANS OF TWO NORMAL POPULATIONS WITH UNKNOWN VARIANCES
                                                                                                            BIOKA58
                                                                                                                     250
STIC FOR TESTING THE DIFFERENCE BETWEEN THE MEANS OF TWO NORMAL POPULATIONS WITH UNKNOWN VARIANCES
                                                                                                       /TATI JRSSB61
                                                                                                                     377
                                    ON SAMPLING OVER TWO OCCASIONS WITH PROBABILITY PROPORTIONATE TO SIZE
                                                                                                                     327
                                                                                                             AMS 65
RAMETERS OF THE EXTREME VALUE DISTRIBUTION BY USE OF TWO OR THREE ORDER STATISTICS
                                                                                      ESTIMATION OF THE PA BIOKA69
                                                                                                                      429
                                       ESTIMATION OF TWO ORDERED TRANSLATION PARAMETERS
                ON COMPARING THE CORRELATIONS WITHIN TWO PAIRS OF VARIABLES
                                                                                                            BIOCS68
                                                                                                                      987
 A SIMPLE METHOD OF ESTIMATING RELATIVE POTENCY FROM TWO PARABOLAS
                                                                                                            BIOCS65
                                                                                                                     140
  THAT THE SAMPLE DISTRIBUTION FUNGTION LIES BETWEEN TWO PARALLEL STRAIGHT LINES
                                                                                            THE PROBABILITY AMS 6B
                                                                                                                     398
    LIFE TESTING AND RELIABILITY ESTIMATION FOR THE TWO PARAMETER EXPONENTIAL DISTRIBUTION
                                                                                                                     621
                                                                                                            JASA 69
                    ESTIMATION OF THE PARAMETERS OF TWO PARAMETER EXPONENTIAL DISTRIBUTIONS FROM CENSORED TECH 60
 SAMPLES
                                                                                                                     403
     PROGRAMMING FISHER'S EXACT METHOD OF COMPARING TWO PERCENTAGES
                                                                                                            TECH 60
                                                                                                                     1.03
              A COMBINATORIAL METHOD FOR PRODUCTS OF TWO POLYKAYS WITH SOME GENERAL FORMULAE
                                                                                                              AMS 64 1174
         ESTIMATES FOR THE POINTS OF INTERSECTION OF TWO POLYNOMIAL REGRESSIONS
                                                                                                            JASA 64
                                                                                                                     214
                                                                                                            JRSSB59
    A DIFFERENT LOSS FUNCTION FOR THE CHOICE BETWEEN TWO POPULATIONS
                                                                                                                     203
                                                                                                            JRSSB57
           A MINIMAX PROCEDURE FOR CHOOSING BETWEEN TWO POPULATIONS USING SEQUENTIAL SAMPLING
                                                                                                                      255
                                                                                                                     297
     A MINIMAX-REGRET PROCEDURE FOR CHOOSING BETWEEN TWO POPULATIONS USING SEQUENTIAL SAMPLING
                                                                                                            JRSSB63
       TEST FOR THE DIFFERENCE IN EFFICIENCY BETWEEN TWO PREDICTORS
                                                                                             A SIGNIFICANCE JRSSB55
                                                                                                                      266
OWER FUNCTION OF THE TEST FOR THE DIFFERENCE BETWEEN TWO PROPORTIONS IN A 2-BY-2 TABLE. ' /IGENDA, 'THE P BIOKA59
                      AN INEQUALITY FOR THE RATIO OF TWO QUADRATIC FORMS IN NORMAL VARIATES
                                                                                                              AMS 6B 1762
                   A PROBLEM OF INTERFERENCE BETWEEN TWO QUEUES
                                                                                                            BIOKA53
                                                                                                                      5B
                                                     TWO QUEUES IN PARALLEL
                                                                                                            BTOKA58
                                                                                                                      401
                                                  ON TWO QUEUES IN PARALLEL
                                                                                                            BIOKA60
                                                                                                                     198
ALANCED I/ BAYESIAN ANALYSIS OF LINEAR MODELS WITH TWO RANDOM COMPONENTS WITH SPECIAL REFERENCE TO THE B BIOKA68
                                                                                                                     1.01
CORR. 64 924 SOME RESULTS ON THE DISTRIBUTION OF TWO RANDOM MATRICES USED IN CLASSIFICATION PROCEDURES AMS 63
                                                                                                                     1.81
                     ON BAYES SEQUENTIAL DESIGN WITH TWO RANDOM VARIABLES
                                                                                                            BTOKA66
                                                                                                                     469
       ON AN IDENTITY FOR THE VARIANCE OF A RATIO OF TWO RANDOM VARIABLES
                                                                                                            JRSSB64
                                                                                                                      484
    ASYMPTOTIC SEQUENTIAL DESIGN OF EXPERIMENTS WITH TWO RANDOM VARIABLES
                                                                                                            JRSSB66
                                                                                                                      73
                   PERCENTAGE POINTS OF THE RATIO OF TWO RANGES AND POWER OF THE ASSOCIATED TEST
                                                                                                                      1B7
                                                                                                            BIOKA63
                                        A MIXTURE OF TWO RECURRENT RANDOM WALKS NEED NOT BE REGURRENT
                                                                                                              AMS 6B 1753
   AMONG MOMENTS OF ORDER STATISTICS IN SAMPLES FROM TWO RELATED POPULATIONS
                                                                                                  RELATIONS TECH 63
                                                                                                                     514
         A LARGE SAMPLE TEST FOR THE INDEPENDENCE OF TWO RENEWAL PROCESSES
                                                                                                              AMS 67 1037
                           ON A RELATIONSHIP BETWEEN TWO REPRESENTATIONS OF A MODEL FOR PAIRED COMPARISONS BIOCS69
                                                                                                                     597
                  DESIGNS FOR DISCRIMINATING BETWEEN TWO RIVAL MODELS
                                                                                                                     307
                                                                                                            TECH 65
                  EVALUATION OF CHEMICAL ANALYSES ON TWO ROCKS
                                                                                                                     409
                                                                                                            TECH 59
 THE ORDERING OF PROBABILITIES OF RANK ORDERS IN THE TWO SAMPLE CASE
                                                                                         FINE STRUCTURE OF
                                                                                                            AMS 66
                                                                                                                      98
                          ON THE DISTRIBUTION OF THE TWO SAMPLE CRAMER-VON MISES CRITERION
                                                                                                              AMS 62 1148
E EXACT AND APPROXIMATE SAMPLING DISTRIBUTION OF THE TWO SAMPLE KOLMOGOROV-SMIRNOV CRITERION D-SUB-MN, M L JASA 69 NO.4
                       ASYMPTOTIC EFFICIENCY OF THE TWO SAMPLE KOLMOGOROV-SMIRNOV TEST
                                                                                                                     932
                                                                                                            JASA 67
                   SMALL SAMPLE POWER CURVES FOR THE TWO SAMPLE LOCATION PROBLEM
                                                                                                            TEGH 69
                                                                                                                     299
    ON THE HODGES AND LEHMANN SHIFT ESTIMATOR IN THE TWO SAMPLE PROBLEM
                                                                                                              AMS 66 1814
NG TESTS
                                              ON THE TWO SAMPLE PROBLEM, A HEURISTIC METHOD FOR CONSTRUCTI AMS 61 1091
                  EFFECT OF NON-NORMALITY ON STEIN S TWO SAMPLE TEST
                                                                                                              AMS 65
      OF TWO NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE TEST
                                                                                      ASYMPTOTIC EFFICIENCY JASA 67
                                                                                                                      939
BUTIONS
                                 A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRI SASJ 69 NO.2
          A DISTRIBUTION FREE VERSION OF THE SMIRNOV TWO SAMPLE TEST IN THE P-VARIATE CASE
                                                                                                             AMS 69
                                                                                                                       1
 INVESTIGATION INTO THE SMALL SAMPLE PROPERTIES OF A TWO SAMPLE TEST OF LEHMANN'S
                                                                                                          AN JASA 6B
                                                                                                                     345
                                     A QUICK COMPACT TWO SAMPLE TEST TO DUCKWORTH'S SPECIFICATIONS
                                                                                                            TECH 59
                                                                                                                      31
SYMPTOTIC RELATIVE EFFICIENCY OF MOOD'S AND MASSEY'S TWO SAMPLE TESTS AGAINST SOME PARAMETRIC ALTERNATIVES AMS 62 1375
                                         THE SMIRNOV TWO SAMPLE TESTS AS RANK TESTS
                                                                                                              AMS 69 1449
                                                                                                            TECH 69 NO.4
                                                      TWO SAMPLE TESTS IN THE WEIBULL DISTRIBUTION
ABLES I. THE LOCATION MODEL
                                        MULTIVARIATE TWO SAMPLE TESTS WITH DICHOTOMOUS AND CONTINUOUS VARI AMS 69 290
    OF AN ANCILLARY STATISTIC AND THE COMBINATION OF TWO SAMPLES BY BAYES' THEOREM
                                                                                                AN EXAMPLE
                                                                                                             AMS 61
                      A NON-PARAMETRIC COMPARISON OF TWO SAMPLES ONE OF WHICH IS CENSORED
                                                                                                            BTOK A66
ULATION CORRELATION COEFFICIENT FROM ONE OR POSSIBLY TWO SAMPLES SUBSEQUENT TO A PRELIMINARY TEST OF SIGNI JRSSB67
                                                                                                                     2B2
THE HYPOTHESIS THAT A LINEAR REGRESSION SYSTEM OBEYS TWO SEPARATE REGIMES
                                                                                                  TESTS OF JASA 60
 THE PARAMETER OF A LINEAR REGRESSION SYSTEM OBEYING TWO SEPARATE REGIMES
                                                                                          THE ESTIMATION OF JASA 58
CE OF TWO TESTS OF EQUALITY OF RATE OF OCCURRENCE IN TWO SEQUENTIAL PROCEDURES FOR RANKING PROBLEM A C AMS 69 NO.6

ORDER OF VISITS

A SYSTEM OF TWO TESTS OF EQUALITY OF RATE OF OCCURRENCE IN TWO SERIES OF EVENTS OCCURRING RANDOMLY IN TIME /EN BIOKA58 267

ORDER OF VISITS
         SOME BALANCED INCOMPLETE BLOCK DESIGNS FOR TWO SETS OF TREATMENTS
                                                                                                            BIOKA66
                                                                                                                     497
                     SOME ROW AND COLUMN DESIGNS FOR TWO SETS OF TREATMENTS
                                                                                                            BTOCS66
                                                                                                                       1
                                                                                     MONOTONICITY OF THE P AMS 64
OWER FUNCTIONS OF SOME TESTS OF INDEPENDENCE BETWEEN TWO SETS OF VARIATES
                                                                                                                     206
ATE ANALYSIS OF VARIANCE AND NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES
                                                                            /NDS ASSOCIATED WITH MULTIVARI AMS 66 1736
   PROCEDURE FOR TESTING A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS
                                                                                             A SEQUENTIAL JRSSB69 NO.2
                                                     TWO SIMILAR QUEUES IN PARALLEL
                                                                                                             AMS 61 1314
                                        ON COMPARING TWO SIMPLE LINEAR REGRESSION LINES.
                                                                                                            SASJ 68
                                                                                                                     33
                                     A COMPARISON OF TWO SORTS OF TEST FOR A CHANGE OF LOCATION APPLICABLE JRSSB57
 TO TRUNCATED DATA
                                                                                                                     119
                                 COMPARISONS OF SOME TWO STAGE SAMPLING METHODS
                                                                                                             AMS 66
                                                                                                                     891
                      GROUP SCREENING WITH MORE THAN TWO STAGES
                                                                                                            TECH 62
                                                                                                                     209
 APPROXIMATE DISTRIBUTION OF THE CORRELATION BETWEEN TWO STATIONARY LINEAR MARKOV SERIES
                                                                                                        THE BIOKA62 379
 APPROXIMATE DISTRIBUTION OF THE CORRELATION BETWEEN TWO STATIONARY LINEAR MARKOV SERIES. II
                                                                                                        THE BIOKA65
                                                                                                                     301
                                                                                                            AMS 69 1833
                  RESULTS FROM THE RELATION BETWEEN TWO STATISTICS OF THE KOLOMOGOROV-SMIRNOV TYPE
```

	TWO SUCCESSIVE CENSUSES (CORR. 68 1550) /ON OF ATTR	JASA 67 1433
AND INFECTIOUS PERIODS OF MEASLES, I. FAMILIES WITH	TWO SUSCEPTIBLES ONLY. ON ESTIMATING THE LATENT	BIOKA56 15
EQUIPROBABLE ALTERNATIVES	TWO TABLES CONNECTED WITH COODNESS-OF-FIT TESTS FOR	BIOKA68 441
	TWO TEST CRITERIA IN MULTIVARIATE ANALYSIS OF VARIANC	
	TWO TEST STATISTICS ASSOCIATED WITH THE TWO-SAMPLE	
N BETWEEN PITMAN'S ASYMPTOTIC RELATIVE EFFICIENCY OF	TWO TESTS AND THE CORRELATION COEFFICIENT BETWEEN THE	AMS 63 1442
A POWER COMPARISON OF	TWO TESTS OF NON-RANDOM CLUSTERING	TECH 66 493
THE CONSTRUCTION OF SATURATED	TWO TO THE POWER OF K-P DESIGNS	AMS 67 1110
ON CONSTRUCTING THE FACTORIAL REPLICATES OF THE	TWO TO THE POWER OF M DESICNS WITH BLOCKS	AMS 62 1440
LENCTHS ON IDENTITY RELATIONSHIPS FOR	TWO TO THE POWER OF N-R DESIGNS HAVING WORDS OF EQUAL	
A TWO-STACE MODEL FOR SELECTING ONE OR		BIOCS65 169
	TWO TREATMENTS /TRANSFORMATIONS AND MAXIMUM LIKELIH	
OF EXPONENTIALLY DISTRIBUTED LIFE-TIMES WITH	TWO TYPES OF FAILURE THE ANALYSIS TWO UNEQUAL BLOCK SIZES	JRSSB59 411
SYMMETRICAL UNEQUAL BLOCK ARRANGEMENTS WITH	TWO UNEQUAL BLOCK SIZES	AMS 62 620
ZATION OF AUXILIARY INFORMATION, (PI)PS SAMPLING OF	TWO UNITS FROM A STRATUM (ADDENDUM 69 192) /M UTILI	JRSSB67 374
RIANCE ESTIMATORS IN UNEQUAL PROBABILITY SAMPLING OF	TWO UNITS PER STRATUM /ILITIES OF ESTIMATORS AND VA	JASA 69 540
OF LEVELS OF POLYNOMIAL REGRESSION WITH ONE OR		TECH 65 325
THE WHEEL COLUMN AND THE COLUMN AS	MINO WARTANGEO	DIGHTED OFF
TOKINEK OKTITOAL VALUES FOR THE SOM OF	TWO VANTANCES ADDITOR	ANC CA CEO
TIONS OF THE CALCULUS FOR FACTURIAL ARRANGEMENTS II.	TWO WAY ELIMINATION OF HETEROGENEITY APPLICA TWO WEIBULL PROCESSES TWO WEIBULL PROCESSES TWO WEIBULL PROCESSES'	AMD 64 608
THE DISCRIMINATION BETWEEN	TWO WEIBULL PROCESSES	TECH 64 57
SAMPLING INSPECTION PLANS FOR DISCRIMINATING BETWEEN	TWO WEIBULL PROCESSES	TECH 65 589
ERRATA, 'THE DISCRIMINATION BETWEEN	TWO WEIBULL PROCESSES'	TECH 64 240
THE SPREAD OF A DISEASE BY CONSIDERING HOUSEHOLDS OF	TWO. THE ESTIMATION OF PARAMETERS FROM	BIOKA65 271
LOGNORMAL AND THE PRECISIO/ OPTIMAL SAMPLE SIZE IN	TWO-ACTION PROBLEMS WHEN THE SAMPLE OBSERVATIONS ARE	JASA 68 653
TWO-STAGE NORMAL SAMPLING IN	TWO-ACTION PROBLEMS WITH LINEAR ECONOMICS	JASA 69 NO 4
RAMDOMIZED BILLEG FOR THE	TWO-ACTION PROBLEMS WITH LINEAR ECONOMICS TWO-ARMED BANDIT WITH FINITE MEMORY TWO-ARMED BANDIT' PROBLEM	AMS 68 2107
THE NOT COLUMN TO THE	TWO APMED DANDITH DEADLEM	AMC CO CIUS
CONTRIBUTIONS TO THE	THO WIND DANDIE BOOKEN WITH STATES AND	AND 62 847
THE ROBBINS-ISBELL		AMS 65 1375
GNIFICANCE IESI EXACI DAIESIAN ANALISIS OF A	INC-DI-INC CONTINGENCE TABLE, AND FISHER'S 'EXACT' SI	
INCOMPLETE		BI0CS69 119
THE SPECTRAL ANALYSIS OF	TWO-DIMENSIONAL POINT PROCESSES	BIOKA64 299
CORRICENDA, 'THE SPECTRAL ANALYSIS OF	TWO-DIMENSIONAL POINT PROCESSES'	BIOKA65 305
Δ	TWO-DIMENSIONAL POISSON CROWTH PROCESS	JRSSB65 497
US SPECTRA THE ANALYSIS OF	TWO-DIMENSIONAL STATIONARY PROCESSES WITH DISCONTINUO	
	TWO-DIMENSIONAL STATIONARY STOCHASTIC PROCESSES	
		BIOKA67 625
PLANNINC SOME	TWO-FACTOR COMPARATIVE SURVEYS	JASA 69 560
MAIN-EFFECT 2-TO-THE-N-TIMES-3-TO-THE-M DESIGNS AND	TWO-FACTOR COMPARATIVE SORVEYS TWO-FACTOR INTERACTION ALIASINC ORTHOGONAL	TECH 68 559
CONAL MAIN-EFFECT PLANS PERMITTING ESTIMATION OF ALL	TWO-FACTOR INTERACTIONS FOR THE 2-TO-THE-N TIMES 3-TO	TECH 69 NO.4
TRAFFIC DELAYS ON A		BIOKA64 11
A SIMPLIFIED MODEL FOR DELAYS IN OVERTAKING ON A		JRSSB58 408
	TWO-LANE ROAD (WITH DISCUSSION)	JRSSB61 38
	TWO-LEVEL FACTORIAL PLANS WITH SPLIT PLOT CONFOUNDING	
CHAIN-POOLINC ANALYSIS OF VARIANCE FOR	TWO-LEVEL FACTORIAL REPLICATION-FREE EXPERIMENTS	
SEQUENCES OF	TWO-LEVEL FRACTIONAL FACTORIAL PLANS	TECH 69 477
FURTHER CRITICAL VALUES FOR THE	TWO-MEANS PROBLEM	BIOKA56 203
THE	TWO-PACK MATCHINC PROBLEM	
		JRSSB60 114
A	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS	JASA 64 133
CANCER PATIENTS A	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED	JASA 64 133 JASA 65 16
CANCER PATIENTS A POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS	JASA 64 133 JASA 65 16 TECH 68 231
CANCER PATIENTS A POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL	JASA 64 133 JASA 65 16 TECH 68 231 BIOCS65 467
CANCER PATIENTS A POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS THE	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESIGN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS	JASA 64 133 JASA 65 16 TECH 68 231 BIOCS65 467 BIOCS68 61
CANCER PATIENTS A POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS THE	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESIGN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS	JASA 64 133 JASA 65 16 TECH 68 231 BIOCS65 467 BIOCS68 61
CANCER PATIENTS A POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS THE	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESIGN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS	JASA 64 133 JASA 65 16 TECH 68 231 BIOCS65 467 BIOCS68 61
CANCER PATIENTS A POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS THE	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESIGN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS	JASA 64 133 JASA 65 16 TECH 68 231 BIOCS65 467 BIOCS68 61
CANCER PATIENTS A POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS THE	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESIGN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS	JASA 64 133 JASA 65 16 TECH 68 231 BIOCS65 467 BIOCS68 61
CANCER PATIENTS A POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS THE	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESIGN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS	JASA 64 133 JASA 65 16 TECH 68 231 BIOCS65 467 BIOCS68 61
CANCER PATIENTS A POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS THE	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESIGN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS	JASA 64 133 JASA 65 16 TECH 68 231 BIOCS65 467 BIOCS68 61
CANCER PATIENTS A POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS THAT WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO-TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLING ARE STRATIFIED.	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESIGN AND ITS USE IN CLINICAL TWO-PERSON GAME TWO-PHASE RECRESSION TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS, K CHARACTERISTICS TWO-PHASE SAMPLING RESULTS, K CHARACTERISTICS TWO-PHASE SAMPLING RESULTS, WHEN TAGGING AND	JASA 64 133 JASA 65 16 TECH 68 231 BIOCS65 467 BIOCS68 61 AMS 69 789 BIOKA69 NO.3 JASA 62 628 BIOKA68 131 BIOKA68 587 AMS 67 937
CANCER PATIENTS A POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS THAT WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO-TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLING ARE STRATIFIED.	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESIGN AND ITS USE IN CLINICAL TWO-PERSON GAME TWO-PHASE RECRESSION TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS, K CHARACTERISTICS TWO-PHASE SAMPLING RESULTS, K CHARACTERISTICS TWO-PHASE SAMPLING RESULTS, WHEN TAGGING AND	JASA 64 133 JASA 65 16 TECH 68 231 BIOCS65 467 BIOCS68 61 AMS 69 789 BIOKA69 NO.3 JASA 62 628 BIOKA68 131 BIOKA68 587 AMS 67 937
CANCER PATIENTS A POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS THAT WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO-TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE ALTERNATIVES OF INTERMEDIATE SPECIFICITY	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESIGN AND ITS USE IN CLINICAL TWO-PERSON GAME TWO-PHASE RECRESSION TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS, K CHARACTERISTICS TWO-PHASE SAMPLING RESULTS, WHEN TAGGING AND TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR	JASA 64 133 JASA 65 16 TECH 68 231 BIOCS65 467 BIOCS68 61 AMS 69 789 BIOKA69 NO.3 JASA 62 628 BIOKA68 131 BIOKA68 587 AMS 67 937 BIOKA61 241 AMS 62 432
CANCER PATIENTS A POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE ALTERNATIVES OF INTERMEDIATE SPECIFICITY SAMPLES DISTRIBUTION OF THE	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERSON GAME TWO-PHASE RECRESSION TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLING SCHEMES TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL	JASA 64 133 JASA 65 16 TECH 68 251 BIOCS65 467 BIOCS68 61 AMS 69 789 BIOKA69 NO.3 JASA 62 628 BIOKA68 131 BIOKA68 887 AMS 67 937 BIOKA61 241 AMS 63 95
CANCER PATIENTS A POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO-TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE ALTERNATIVES OF INTERMEDIATE SPECIFICITY SAMPLES U-SQUARED SMALL-SAMPLE DISTRIBUTION OF THE U-SQUARED	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERSON GAME TWO-PHASE RECRESSION TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLING RESULTS, K CHARACTERISTICS TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL	JASA 64 133 JASA 65 16 TECH 68 231 BIOCS65 467 BIOCS68 61 AMS 69 789 BIOKA69 NO. 3 JASA 62 628 BIOKA68 131 BIOKA68 587 AMS 67 937 BIOKA61 241 AMS 62 432 AMS 63 95 AMS 64 1091
CANCER PATIENTS A POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLES THE ALTERNATIVES OF INTERMEDIATE SPECIFICITY SAMPLES DISTRIBUTION OF THE U—SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERSON GAME TWO-PHASE RECRESSION TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS, K CHARACTERISTICS TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES: W-SQUARED AND WATSON'S TWO-SAMPLE CRAMER-VON MISES: W-SQUARED AND WATSON'S TWO-SAMPLE CRAMER-VON MISES: TWO-SAMPLE CRAMER-VON MISES THE TEST FOR COMPARING	JASA 64 133 JASA 65 16 TECH 68 231 BIOCS65 467 BIOCS68 61 AMS 69 789 BIOKA69 NO.3 JASA 62 628 BIOKA68 131 BIOKA68 587 AMS 67 937 BIOKA61 241 AMS 62 432 AMS 63 95 AMS 64 1091 BIOKA58 544
CANCER PATIENTS A POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLING ARE STRATIFIED THE ALTERNATIVES OF INTERMEDIATE SPECIFICITY SAMPLES DISTRIBUTION OF THE U-SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES A	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERSON GAME TWO-PHASE RECRESSION TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE CRAMER-VON MISES! W-SQUARED AND WATSON'S TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION-FREE TEST	JASA 64 133 JASA 65 16 TECH 68 231 BIOCS65 467 BIOCS68 61 AMS 69 789 BIOKA69 NO.3 JASA 62 628 BIOKA68 587 AMS 67 937 AMS 67 937 AMS 63 95 AMS 64 1091 BIOKA68 544 BIOKA56 347
CANCER PATIENTS A POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED ALTERNATIVES OF INTERMEDIATE SPECIFICITY SAMPLES U-SQUARED SMALL—SAMPLE DISTRIBUTION OF THE VARIANCES A GOODNESS CRITERIA FOR	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS TWO-PHASE RECRESSION TWO-PHASE SAMPLING TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING SCHEMES TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE CRAMER-VON MISES' W-SQUARED AND WATSON'S TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST	JASA 64 133 JASA 65 16 ECH 68 231 BIOCS65 467 BIOCS68 61 AMS 69 708 JASA 62 628 BIOKA69 7037 BIOKA68 887 AMS 67 937 BIOKA61 241 AMS 62 432 AMS 63 95 AMS 64 1091 BIOKA58 577 AMS 64 377
CANCER PATIENTS A POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED ALTERNATIVES OF INTERMEDIATE SPECIFICITY SAMPLES U-SQUARED SMALL—SAMPLE DISTRIBUTION OF THE VARIANCES A GOODNESS CRITERIA FOR	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERSON GAME TWO-PHASE RECRESSION TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE CRAMER-VON MISES! W-SQUARED AND WATSON'S TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION-FREE TEST	JASA 64 133 JASA 65 16 ECH 68 231 BIOCS65 467 BIOCS68 61 AMS 69 708 JASA 62 628 BIOKA69 7037 BIOKA68 887 AMS 67 937 BIOKA61 241 AMS 62 432 AMS 63 95 AMS 64 1091 BIOKA58 577 AMS 64 377
CANCER PATIENTS A POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED ALTERNATIVES OF INTERMEDIATE SPECIFICITY SAMPLES DISTRIBUTION OF THE U—SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES A GOODNESS CRITERIA FOR ERNOFF—SAVACE THEOREM WEAK CONVERCENCE OF A	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS TWO-PHASE RECRESSION TWO-PHASE SAMPLING TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING SCHEMES TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE CRAMER-VON MISES' W-SQUARED AND WATSON'S TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST	JASA 64 133 JASA 65 16 TECH 68 231 BIOCS65 467 BIOCS68 61 AMS 69 789 BIOKA69 NO. 3 JASA 62 628 BIOKA68 131 BIOKA68 587 AMS 67 937 BIOKA61 241 AMS 62 432 AMS 63 95 AMS 64 1091 BIOKA58 377 AMS 67 337 AMS 66 1333 AMS 68 755
CANCER PATIENTS A POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED ALTERNATIVES OF INTERMEDIATE SPECIFICITY SAMPLES DISTRIBUTION OF THE U—SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES A GOODNESS CRITERIA FOR ERNOFF—SAVACE THEOREM WEAK CONVERCENCE OF A	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERSON GAME TWO-PHASE RECRESSION TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS, K CHARACTERISTICS TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE CRAMER-VON MISES: W-SQUARED AND WATSON'S TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TESTS TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO CH TWO-SAMPLE EXTENSIONS	JASA 64 133 JASA 65 16 TECH 68 231 BIOCS65 467 BIOCS68 61 AMS 69 789 BIOKA69 NO. 3 JASA 62 628 BIOKA68 131 BIOKA68 587 AMS 67 937 BIOKA61 241 AMS 62 432 AMS 63 95 AMS 64 1091 BIOKA58 377 AMS 67 337 AMS 66 1333 AMS 68 755
CANCER PATIENTS POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLES DISTRIBUTION OF THE U-SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES A A GOODNESS CRITERIA FOR ERNOFF—SAVACE THEOREM WEAK CONVERCENCE OF A ONE—SAMPLE DISTRIBUTION—FREE TESTS AND THEIR	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS TWO-PHASE RECRESSION TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE CRAMER-VON MISES: W-SQUARED AND WATSON'S TWO-SAMPLE DISTRIBUTION FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE EXTENSIONS 'OPTIMAL' TWO-SAMPLE EXTENSIONS 'OPTIMAL'	JASA 64 133 JASA 65 16 TECH 68 231 BIOCS65 467 BIOCS68 61 AMS 69 789 BIOKA69 NO.3 JASA 62 628 BIOKA68 131 BIOKA68 587 AMS 62 432 AMS 62 432 AMS 63 95 BIOKA68 1091 BIOKA56 377 AMS 66 133 AMS 66 133 AMS 66 150
CANCER PATIENTS POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLES OF INTERMEDIATE SPECIFICITY SAMPLES DISTRIBUTION OF THE U—SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES A GOODNESS CRITERIA FOR ERNOFF—SAVACE THEOREM WEAK CONVERCENCE OF A ONE—SAMPLE DISTRIBUTION—FREE TESTS AND THEIR ROBUSTNESS OF SOME PROCEDURES FOR THE A NON—PARAMETRIC TEST FOR THE BIVARIATE	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERSON GAME TWO-PHASE RECRESSION TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO CH TWO-SAMPLE EXTENSIONS 'OPTIMAL' TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM	JASA 64 133 JASA 65 164 TECH 68 231 BIOCS65 467 BIOCS68 61 AMS 69 703 JASA 62 628 BIOKA68 131 BIOKA68 587 AMS 67 937 BIOKA61 241 AMS 62 432 AMS 63 95 AMS 64 1091 BIOKA58 544 BIOKA58 6133 AMS 68 755 AMS 66 133 AMS 68 755 AMS 66 120 JASA 64 665 JRSSSB67 320
CANCER PATIENTS POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLES OF INTERMEDIATE SPECIFICITY SAMPLES DISTRIBUTION OF THE U-SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES A GOODNESS CRITERIA FOR ERNOFF—SAVACE THEOREM WEAK CONVERCENCE OF A ONE—SAMPLE DISTRIBUTION—FREE TESTS AND THEIR ROBUSTNESS OF SOME PROCEDURES FOR THE A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BIVARIATE	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERSON GAME TWO-PHASE RECRESSION TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS, K CHARACTERISTICS TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE LOCATION PROBLEM	JASA 64 133 JASA 65 16 TECH 68 231 BIOCS68 61 AMS 69 789 BIOKA69 NO. 3 JASA 62 628 BIOKA68 57 BIOKA68 57 BIOKA68 54 BIOKA68 54 BIOKA68 54 BIOKA68 54 BIOKA68 57 BIOKA61 241 AMS 62 432 AMS 63 95 BIOKA68 57 AMS 64 1091 BIOKA58 377 AMS 66 133 AMS 68 133 AMS 68 133 AMS 68 120 JASA 64 665 JASA 64 665 JASSA 64 665 JRSSB6 83
CANCER PATIENTS POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE ALTERNATIVES OF INTERMEDIATE SPECIFICITY SAMPLES DISTRIBUTION OF THE U—SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES A GOODNESS CRITERIA FOR ERNOFF—SAVACE THEOREM WEAK CONVERCENCE OF A ONE—SAMPLE DISTRIBUTION—FREE TESTS AND THEIR ROBUSTNESS OF SOME PROCEDURES FOR THE A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BIVARIATE ON THE EFFICIENCY OF	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS TWO-PHASE RECRESSION TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS	JASA 64 133 JASA 65 16 TECH 68 251 BIOCS65 467 BIOCS68 61 AMS 69 789 BIOKA69 NO.3 JASA 62 628 BIOKA68 131 BIOKA68 877 AMS 67 937 BIOKA61 241 AMS 63 95 AMS 64 1091 BIOKA68 775 AMS 66 133 AMS 66 120 JASA 64 665 JRSSB67 320 JRSSB68 83 AMS 63 612
CANCER PATIENTS POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE ALTERNATIVES OF INTERMEDIATE SPECIFICITY SAMPLES DISTRIBUTION OF THE U—SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES A GOODNESS CRITERIA FOR ERNOFF—SAVACE THEOREM WEAK CONVERCENCE OF A ONE—SAMPLE DISTRIBUTION—FET ESTS AND THEIR ROBUSTNESS OF SOME PROCEDURES FOR THE A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC T	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS TWO-PHASE RECRESSION TWO-PHASE SAMPLING TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE EXTENSIONS 'OPTIMAL' TWO-SAMPLE EXTENSIONS TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE MONN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE MONN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE MONTHER TEST FOR DISCRETE POPULATIONS	JASA 64 133 JASA 65 16 ECH 68 231 BIOCS65 467 BIOCS68 61 AMS 69 78 JASA 62 628 BIOKA69 7937 BIOKA61 241 AMS 67 937 BIOKA61 241 AMS 62 432 AMS 63 795 AMS 64 1091 BIOKA58 777 AMS 66 133 AMS 68 775 AMS 66 120 JASA 64 65 JRSSB67 320 JRSSB67 320 JRSSB68 8312 BIOKA54 170
CANCER PATIENTS POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE ALTERNATIVES OF INTERMEDIATE SPECIFICITY SAMPLES DISTRIBUTION OF THE U—SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES A GOODNESS CRITERIA FOR ERNOFF—SAVACE THEOREM WEAK CONVERCENCE OF A ONE—SAMPLE DISTRIBUTION—FREE TESTS AND THEIR ROBUSTNESS OF SOME PROCEDURES FOR THE A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BIVARIATE ON THE EFFICIENCY OF ANS OF NORMAL POPULATIONS WITH A COMMON UNKNOWN/ A POWER OF SOME	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS TWO-PHASE RECRESSION TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS, K CHARACTERISTICS TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE EXTENSIONS 'OPTIMAL' TWO-SAMPLE EXTENSIONS 'OPTIMAL' TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE MULTIPLE DECISION PROCEDURE FOR RANKING ME TWO-SAMPLE MULTIPLE DECISION PROCEDURE FOR RANKING ME TWO-SAMPLE MON-PARAMETRIC TESTS	JASA 64 133 JASA 65 164 TECH 68 231 BIOCS65 467 BIOCS68 61 AMS 69 709 JASA 62 628 BIOKA68 131 BIOKA68 79 937 BIOKA61 241 AMS 62 432 AMS 63 95 AMS 64 1091 BIOKA58 795 AMS 66 133 AMS 68 120 JASA 64 665 JASS 66 120 JASS 68 83 AMS 63 612 JRSSB67 320 JRSSB67 320 JRSSB68 83 AMS 63 6120
CANCER PATIENTS POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLES OF INTERMEDIATE SPECIFICITY SAMPLES DISTRIBUTION OF THE U-SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES A COODNESS CRITERIA FOR ERNOFF—SAVACE THEOREM WEAK CONVERCENCE OF A ONE—SAMPLE DISTRIBUTION—FREE TESTS AND THEIR ROBUSTNESS OF SOME PROCEDURES FOR THE A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BIVARIATE ON THE EFFICIENCY OF ANS OF NORMAL POPULATIONS WITH A COMMON UNKNOWN/ A POWER OF SOME ON SOME	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WELBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS TWO-PHASE RECRESSION TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO CH TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE MON-PARAMETRIC TESTS, CORR. 66 1249	JASA 64 133 JASA 65 164 TECH 68 251 BIOCS65 467 BIOCS68 61 AMS 69 789 BIOKA69 NO.3 JASA 62 628 BIOKA68 131 BIOKA68 877 AMS 67 937 BIOKA61 241 AMS 63 95 AMS 64 1091 BIOKA68 544 BIOKA68 6775 AMS 66 133 AMS 66 120 JASA 64 65 JRSSB67 320 JRSSB68 83 AMS 63 612 BIOKA64 120 JRSSB68 83 AMS 63 612 BIOKA54 170 BIOKA65 120 JRSSB67 320 JRSSB68 83 AMS 63 612 BIOKA54 170 BIOKA65 355 JASA 65 1118
CANCER PATIENTS POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE ALTERNATIVES OF INTERMEDIATE SPECIFICITY SAMPLES DISTRIBUTION OF THE U-SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES A GOODNESS CRITERIA FOR WEAK CONVERCENCE OF A ONE—SAMPLE DISTRIBUTION—FREE TESTS AND THEIR ROBUSTNESS OF SOME PROCEDURES FOR THE A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BIVARIATE ON THE EFFICIENCY OF ANS OF NORMAL POPULATIONS WITH A COMMON UNKNOWN/ A POWER OF SOME ON SOME HOUT REPLACEMENT AND EXACT BAHADUR EFFICIENCY OF THE	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS TWO-PHASE RECRESSION TWO-PHASE SAMPLING TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES: W-SQUARED AND WATSON'S TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TESTS TWO-SAMPLE EXTENSIONS TWO-SAMPLE DISTRIBUTION-FREE TESTS TWO-SAMPLE EXTENSIONS TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM IN THE NORMAL CASE /SAM TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE MANN-WHITNEY TESTS TWO-SAMPLE MANN-WHITNEY TESTS, CORR. 66 1249 TWO-SAMPLE NON-PARAMETRIC TESTS, CORR. 66 1249 TWO-SAMPLE NORMAL SCORES TEST / IES FOR SAMPLING WIT	JASA 64 133 JASA 65 16 TECH 68 251 BIOCS65 467 BIOCS68 61 AMS 69 709 JASA 62 628 BIOKA68 131 BIOKA68 87 BIOKA68 69 793 BIOKA61 241 AMS 62 432 AMS 64 1091 BIOKA68 677 AMS 64 1091 BIOKA68 677 AMS 66 133 AMS 66 177 AMS 66 1200 JASA 64 620 JRSSB67 320 JRSSB67 32
CANCER PATIENTS POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE ALTERNATIVES OF INTERMEDIATE SPECIFICITY SAMPLES DISTRIBUTION OF THE U—SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES A GOODNESS CRITERIA FOR ERNOFF—SAVACE THEOREM WEAK CONVERCENCE OF A ONE—SAMPLE DISTRIBUTION—FREE TESTS AND THEIR ROBUSTNESS OF SOME PROCEDURES FOR THE A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BIVARIATE ON THE EFFICIENCY OF ANS OF NORMAL POPULATIONS WITH A COMMON UNKNOWN/ A POWER OF SOME ON SOME RANDOMIZATION TESTS FOR A MULTIVARIATE	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS TWO-PHASE RECRESSION TWO-PHASE SAMPLING TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO CH TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE MON-PARAMETRIC TESTS TWO-SAMPLE MON-PARAMETRIC TESTS TWO-SAMPLE NON-PARAMETRIC TESTS TWO-SAMPLE NON-PARAMETRIC TESTS / CORR. 66 1249 TWO-SAMPLE NON-PARAMETRIC TESTS / IES FOR SAMPLING WIT TWO-SAMPLE PROBLEM	JASA 64 133 JASA 65 164 TECH 68 231 BIOCS65 467 BIOCS68 61 AMS 69 70 JASA 62 628 BIOKA68 131 BIOKA68 587 AMS 67 937 BIOKA61 241 AMS 62 432 AMS 63 95 AMS 64 1091 BIOKA58 67 BIOKA68 755 AMS 66 133 AMS 68 755 AMS 66 120 JASA 64 665 JRSSB67 320 JRSSB68 83 AMS 63 615 JRSSB68 83 AMS 63 615 JRSSB68 170 BIOKA60 355 JASA 64 170 BIOKA60 355 JASA 65 1118 BIOKA68 371 JASA 65 729
CANCER PATIENTS POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLES OF INTERMEDIATE SPECIFICITY SAMPLES DISTRIBUTION OF THE U-SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES A GOODNESS CRITERIA FOR ERNOFF—SAVACE THEOREM WEAK CONVERCENCE OF A ONE—SAMPLE DISTRIBUTION—FREE TESTS AND THEIR ROBUSTNESS OF SOME PROCEDURES FOR THE A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BIVARIATE ON THE EFFICIENCY OF ANS OF NORMAL POPULATIONS WITH A COMMON UNKNOWN/ A POWER OF SOME ON SOME HOUT REPLACEMENT AND EXACT BAHADUR EFFICIENCY OF THE RANDOMIZATION TESTS FOR A MULTIVARIATE TRIBUTION OF A NON—PARAMETRIC TEST FOR THE BIVARIATE	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS TWO-PERSON GAME TWO-PHASE RECRESSION TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE DISTRIBUTION-FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO CH TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE MON-PARAMETRIC TESTS TWO-SAMPLE NON-PARAMETRIC TESTS TWO-SAMPLE NON-PARAMETRIC TESTS TWO-SAMPLE NON-PARAMETRIC TESTS TWO-SAMPLE NORMAL SCORES TEST /IES FOR SAMPLING WIT TWO-SAMPLE PROBLEM TWO-SAMPLE PROBLEM ON THE NULL DIS	JASA 64 133 JASA 65 164 TECH 68 231 BIOCS65 467 BIOCS68 61 AMS 69 70 JASA 62 628 BIOKA68 131 BIOKA68 587 AMS 67 937 BIOKA61 241 AMS 62 432 AMS 63 95 AMS 64 1091 BIOKA58 67 BIOKA68 755 AMS 66 133 AMS 68 755 AMS 66 120 JASA 64 665 JRSSB67 320 JRSSB68 83 AMS 63 615 JRSSB68 83 AMS 63 615 JRSSB68 170 BIOKA60 355 JASA 64 170 BIOKA60 355 JASA 65 1118 BIOKA68 371 JASA 65 729
CANCER PATIENTS POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE ALTERNATIVES OF INTERMEDIATE SPECIFICITY SAMPLES DISTRIBUTION OF THE U—SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES A GOODNESS CRITERIA FOR ERNOFF—SAVACE THEOREM WEAK CONVERCENCE OF A ONE—SAMPLE DISTRIBUTION—FREE TESTS AND THEIR ROBUSTNESS OF SOME PROCEDURES FOR THE A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BIVARIATE ON THE EFFICIENCY OF ANS OF NORMAL POPULATIONS WITH A COMMON UNKNOWN/ A POWER OF SOME ON SOME HOUT REPLACEMENT AND EXACT BAHADUR EFFICIENCY OF THE RANDOMIZATION TESTS FOR A MULTIVARIATE	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS TWO-PERSON GAME TWO-PHASE RECRESSION TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE DISTRIBUTION-FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO CH TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE MON-PARAMETRIC TESTS TWO-SAMPLE NON-PARAMETRIC TESTS TWO-SAMPLE NON-PARAMETRIC TESTS TWO-SAMPLE NON-PARAMETRIC TESTS TWO-SAMPLE NORMAL SCORES TEST /IES FOR SAMPLING WIT TWO-SAMPLE PROBLEM TWO-SAMPLE PROBLEM ON THE NULL DIS	JASA 64 133 JASA 65 164 TECH 68 231 BIOCS65 467 BIOCS68 61 AMS 69 70 JASA 62 628 BIOKA68 131 BIOKA68 587 AMS 67 937 BIOKA61 241 AMS 62 432 AMS 63 95 AMS 64 1091 BIOKA58 67 BIOKA68 755 AMS 66 133 AMS 68 755 AMS 66 120 JASA 64 665 JRSSB67 320 JRSSB68 83 AMS 63 615 JRSSB68 83 AMS 63 615 JRSSB68 170 BIOKA60 355 JASA 64 170 BIOKA60 355 JASA 65 1118 BIOKA68 371 JASA 65 729
CANCER PATIENTS POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE ALTERNATIVES OF INTERMEDIATE SPECIFICITY SAMPLES DISTRIBUTION OF THE U—SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES A GOODNESS CRITERIA FOR WEAK CONVERCENCE OF A ONE—SAMPLE DISTRIBUTION—FREE TESTS AND THEIR ROBUSTNESS OF SOME PROCEDURES FOR THE A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BIVARIATE ON THE EFFICIENCY OF ANS OF NORMAL POPULATIONS WITH A COMMON UNKNOWN/ A POWER OF SOME ON SOME HOUT REPLACEMENT AND EXACT BAHADUR EFFICIENCY OF THE RANDOMIZATION TESTS FOR A MULTIVARIATE TRIBUTION OF A NON—PARAMETRIC TEST FOR THE BIVARIATE CANDOMIZATION TESTS FOR A MULTIVARIATE TRIBUTION OF A NON—PARAMETRIC TEST FOR THE BIVARIATE CANDOMIZATION TESTS FOR A MULTIVARIATE TRIBUTION OF A NON—PARAMETRIC TEST FOR THE BIVARIATE ASYMPTOTICALLY MOST POWERFUL RANK TESTS FOR THE	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS TWO-PERSON GAME TWO-PHASE RECRESSION TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE DISTRIBUTION-FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO CH TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE MON-PARAMETRIC TESTS TWO-SAMPLE NON-PARAMETRIC TESTS TWO-SAMPLE NON-PARAMETRIC TESTS TWO-SAMPLE NON-PARAMETRIC TESTS TWO-SAMPLE NORMAL SCORES TEST /IES FOR SAMPLING WIT TWO-SAMPLE PROBLEM TWO-SAMPLE PROBLEM ON THE NULL DIS	JASA 64 133 JASA 65 164 TECH 68 251 BIOCS65 467 BIOCS68 61 AMS 69 789 BIOKA69 NO.3 JASA 62 628 BIOKA68 131 BIOKA68 797 AMS 67 937 BIOKA61 241 AMS 63 95 AMS 64 1091 BIOKA68 6775 AMS 66 133 AMS 66 120 JASA 64 665 JRSS67 320 JRSSB67 320 JRSSB67 320 JRSSB67 320 JRSSB67 320 JASA 64 170 BIOKA54 170 BIOKA54 170 BIOKA54 170 BIOKA54 371 JASA 65 1118 BIOKA68 99 JRSSB69 98 AMS 65 1243
CANCER PATIENTS POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE ALTERNATIVES OF INTERMEDIATE SPECIFICITY SAMPLES DISTRIBUTION OF THE U—SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES A GOODNESS CRITERIA FOR ERNOFF—SAVACE THEOREM WEAK CONVERCENCE OF A ONE—SAMPLE DISTRIBUTION—FET ESTS AND THEIR ROBUSTNESS OF SOME PROCEDURES FOR THE A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BIVARIATE ON THE EFFICIENCY OF THE RANDOMIZATION TESTS FOR A MULTIVARIATE TRIBUTION OF A NON—PARAMETRIC TEST FOR THE BIVARIATE RANDOMIZATION TESTS FOR A MULTIVARIATE TRIBUTION OF A NON—PARAMETRIC TEST FOR THE BIVARIATE TRIBUTION OF THE PARAMETRIC TEST FOR THE BIVARIATE ASYMPTOTICALLY MOST POWERFUL RANK TESTS FOR THE ORY, II. TESTS OF THE PARAMETRIC GOODNESS OF FIT AND	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS TWO-PHASE RECRESSION TWO-PHASE SAMPLING TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES: W-SQUARED AND WATSON'S TWO-SAMPLE DISTRIBUTION-FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE EXTENSIONS TWO-SAMPLE EXTENSIONS TWO-SAMPLE EXTENSIONS TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE MON-PARAMETRIC TESTS TWO-SAMPLE MON-PARAMETRIC TESTS TWO-SAMPLE MON-PARAMETRIC TESTS TWO-SAMPLE NON-PARAMETRIC TESTS TOS-SAMPLE NON-PARAMETRI	JASA 64 133 JASA 65 164 TECH 68 231 BIOCS65 467 BIOCS68 61 AMS 69 703 JASA 62 628 BIOKA68 587 AMS 67 937 BIOKA61 241 AMS 62 432 AMS 63 795 AMS 64 1091 BIOKA58 775 AMS 66 133 AMS 66 3777 AMS 66 133 AMS 66 137 JASA 64 665 JRSSB67 320 JRSSB67 320 JRSSB68 83 AMS 65 123 AMS 63 170 BIOKA60 355 JASA 64 665 JRSSB68 755 AMS 66 123 BIOKA54 170 BIOKA50 355 JASA 64 612 BIOKA54 170 BIOKA60 355 JASA 65 1118 BIOKA60 371 JASA 68 171 JASA 58 729 JRSSB69 792 JRSSB69 792 AMS 66 1243 AMS 66 1243
CANCER PATIENTS POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE ALTERNATIVES OF INTERMEDIATE SPECIFICITY SAMPLES DISTRIBUTION OF THE U—SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES A GOODNESS CRITERIA FOR ERNOFF—SAVACE THEOREM WEAK CONVERCENCE OF A ONE—SAMPLE DISTRIBUTION—FREE TESTS AND THEIR ROBUSTNESS OF SOME PROCEDURES FOR THE A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BIVARIATE ON THE EFFICIENCY OF THE HOUT REPLACEMENT AND EXACT BAHADUR EFFICIENCY OF THE RANDOMIZATION TESTS FOR A MULTIVARIATE TRIBUTION OF A NON—PARAMETRIC TEST FOR THE BIVARIATE ASYMPTOTICALLY MOST POWERFUL RANK TESTS FOR THE ORY, II. TESTS OF THE PARAMETRIC GOODNESS OF FIT AND SEQUENTIAL RANK TESTS I. MONTE CARLO STUDIES OF THE	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS TWO-PHASE RECRESSION TWO-PHASE SAMPLING TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE EXTENSIONS 'OPTIMAL' TWO-SAMPLE EXTENSIONS 'OPTIMAL' TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE MON-PARAMETRIC TESTS TWO-SAMPLE MON-PARAMETRIC TESTS TWO-SAMPLE MON-PARAMETRIC TESTS TWO-SAMPLE MON-PARAMETRIC TESTS TWO-SAMPLE NON-PARAMETRIC TESTS TWO-SAMPLE PROBLEM TWO-SAMPLE	JASA 64 133 JASA 65 164 TECH 68 231 BIOCS65 467 BIOCS68 61 AMS 69 70 BIOKA69 NO.3 JASA 62 628 BIOKA68 587 AMS 67 937 BIOKA61 241 AMS 62 432 AMS 63 95 AMS 64 1091 BIOKA58 755 AMS 66 123 AMS 66 120 JASA 64 665 JASA 64 170 BIOKA60 355 JASA 65 1118 BIOKA60 3755 JASA 65 1118 BIOKA60 3755 JASA 65 1118 BIOKA60 3750 JASA 65 124 JASA 65 120
CANCER PATIENTS POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE ALTERNATIVES OF INTERMEDIATE SPECIFICITY SAMPLES DISTRIBUTION OF THE U—SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES A GOODNESS CRITERIA FOR ERNOFF—SAVACE THEOREM WEAK CONVERCENCE OF A ONE—SAMPLE DISTRIBUTION—FREE TESTS AND THEIR ROBUSTNESS OF SOME PROCEDURES FOR THE A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BIVARIATE ON THE EFFICIENCY OF ANS OF NORMAL POPULATIONS WITH A COMMON UNKNOWN/ A POWER OF SOME HOUT REPLACEMENT AND EXACT BAHADUR EFFICIENCY OF THE RANDOMIZATION TESTS FOR A MULTIVARIATE TRIBUTION OF A NON—PARAMETRIC TEST FOR THE BIVARIATE TRIBUTION OF A NON—PARAMETRIC TEST FOR THE BIVARIATE ASYMPTOTICALLY MOST POWERFUL RANK TESTS FOR THE ORY, II. TESTS OF THE PARAMETRIC GOODNESS OF FIT AND SEQUENTIAL RANK TESTS II. MODIFIED	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS TWO-PERSON GAME TWO-PHASE RECRESSION TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE EXTENSIONS TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE NON-PARAMETRIC TESTS TWO-SAMPLE NON-PARAMETRIC TESTS TWO-SAMPLE NON-PARAMETRIC TESTS, CORR. 66 1249 TWO-SAMPLE NON-PARAMETRIC TESTS, CORR. 66 1249 TWO-SAMPLE PROBLEM TWO-SAMPLE PROBLEM TWO-SAMPLE PROBLEM TWO-SAMPLE PROBLEM TWO-SAMPLE PROBLEM ON THE NULL DIS TWO-SAMPLE PROBLEM TWO-SAMPLE PROBLEM ON THE NULL DIS TWO-SAMPLE PROBLEM TWO-SAMPLE PROBLEM TWO-SAMPLE PROBLEMS /BUTIONS TO SAMPLE SPACINGS THE TWO-SAMPLE PROBLEMES /BUTIONS TO SAMPLE SPACINGS THE TWO-SAMPLE PROBLEMES /BUTIONS TO SAMPLE PROCEDURE TWO-SAMPLE PROBLEMES /BUTIONS TO SAMPLE SPACINGS THE TWO-SAMPLE PROBLEMES /BUTIONS TO SAMPLE PROCEDURE	JASA 64 1.33 JASA 65 1.64 TECH 68 251 BIOCS65 467 BIOCS68 6.61 AMS 69 789 BIOKA69 NO.3 JASA 62 628 BIOKA68 877 AMS 67 937 BIOKA61 241 AMS 63 95 AMS 64 1091 BIOKA68 775 AMS 66 120 JASA 64 65 JRSSB67 320 JRSSB67 320 JRSSB68 83 AMS 63 612 BIOKA68 120 JASA 64 120 JASA 64 120 JASA 64 120 JASA 65 120 JASA 65 120 JASA 65 120 BIOKA68 371 JASA 67 120 BIOKA68 371 JASA 68 120 BIOKA68 371 JASA 69 122 AMS 66 925 AMS 66 925 TECH 65 463 TECH 65 463
CANCER PATIENTS POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED ALTERNATIVES OF INTERMEDIATE SPECIFICITY SAMPLES DISTRIBUTION OF THE U-SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES A GOODNESS CRITERIA FOR ERNOFF—SAVACE THEOREM WEAK CONVERCENCE OF A ONE—SAMPLE DISTRIBUTION—PREE TESTS AND THEIR ROBUSTNESS OF SOME PROCEDURES FOR THE A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BIVARIATE ON THE EFFICIENCY OF ANS OF NORMAL POPULATIONS WITH A COMMON UNKNOWN/ A POWER OF SOME HOUT REPLACEMENT AND EXACT BAHADUR EFFICIENCY OF THE RANDOMIZATION TESTS FOR A MULTIVARIATE TRIBUTION OF A NON—PARAMETRIC TEST FOR THE BIVARIATE ASYMPTOTICALLY MOST POWERFUL RANK TESTS FOR THE ORY, II. TESTS OF THE PARAMETRIC GOODNESS OF FIT AND SEQUENTIAL RANK TESTS I. MONTE CARLO STUDIES OF THE SEQUENTIAL RANK TESTS II. MODIFIED ON THE NORMAL SCORES	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER WODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS TWO-PHASE RECRESSION TWO-PHASE SAMPLING TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TESTS TWO-SAMPLE EXTENSIONS TWO-SAMPLE EXTENSIONS TWO-SAMPLE EXTENSIONS TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE MANN-WHITNEY TESTS TWO-SAMPLE MON-PARAMETRIC TESTS TWO-SAMPLE NON-PARAMETRIC TESTS TWO-SAMPLE PROBLEM TWO-SA	JASA 64 1.33 JASA 65 1.64 TECH 68 231 BIOCS65 467 BIOCS68 61 AMS 69 70.3 JASA 62 628 BIOKA68 79.37 BIOKA61 241 AMS 62 432 AMS 63 795 AMS 64 1091 BIOKA58 775 AMS 66 133 AMS 68 755 AMS 66 123 AMS 68 755 JASA 64 665 JRSSB67 320 JRSSB67 320 JRSSB68 83 AMS 63 122 BIOKA54 170 BIOKA61 277 AMS 68 755 AMS 68 755 JASA 65 123 BIOKA55 1137 JASA 64 615 JASA 65 1243 AMS 68 779 JRSSB69 78 JRSSB69 78 JRSSB69 79 JRSSB69 1243 AMS 66 125 JRSSB69 1243 AMS 66 125 TECH 66 615 JASA 65 1243 AMS 66 125
CANCER PATIENTS POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE RELATIVE EFFICIENCY OF SOME LONG SAMPLINC ARE STRATIFIED THE ALTERNATIVES OF INTERMEDIATE SPECIFICITY SAMPLES DISTRIBUTION OF THE U—SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES A GOODNESS CRITERIA FOR ERNOFF—SAVACE THEOREM WEAK CONVERCENCE OF A ONE—SAMPLE DISTRIBUTION—FREE TESTS AND THEIR ROBUSTNESS OF SOME PROCEDURES FOR THE A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BIVARIATE ON THE EFFICIENCY OF ANS OF NORMAL POPULATIONS WITH A COMMON UNKNOWN/ A POWER OF SOME HOUT REPLACEMENT AND EXACT BAHADUR EFFICIENCY OF THE RANDOMIZATION TESTS FOR A MULTIVARIATE TRIBUTION OF A NON—PARAMETRIC TEST FOR THE BIVARIATE ASYMPTOTICALLY MOST POWERFUL RANK TESTS FOR THE ORY, II. TESTS OF THE PARAMETRIC GOODNESS OF FIT AND SEQUENTIAL RANK TESTS II. MODIFIED ON THE NORMAL SCORES A PROPOSED	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS TWO-PHASE RECRESSION TWO-PHASE SAMPLING TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM IN THE NORMAL CASE /SAM TWO-SAMPLE LOCATION PROBLEM IN THE NORMAL CASE /SAM TWO-SAMPLE LOCATION PROBLEM IN THE NORMAL CASE /SAM TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE NON-PARAMETRIC TESTS TWO-SAMPLE NON-PARAMETRIC TESTS TWO-SAMPLE NON-PARAMETRIC TESTS /IES FOR SAMPLING WIT TWO-SAMPLE PROBLEM ON-PARAMETRIC TESTS TWO-SAMPLE PROBLEM ON-PARAMETRIC TESTS TWO-SAMPLE PROBLEM ON-PARAMETRIC TESTS TWO-SAMPLE PROBLEM TWO-SAMPLE PROBLEM ON THE NULL DIS TWO-SAMPLE PROBLEM TWO-SAMPLE PROBLEMS TWO-SAMPLE PROBLEMS TWO-SAMPLE PROBLEMS TWO-SAMPLE P	JASA 64 133 JASA 65 164 TECH 68 231 BIOCS65 467 BIOCS68 61 AMS 69 70.3 JASA 62 628 BIOKA68 737 BIOKA61 241 AMS 62 432 AMS 63 795 AMS 64 1091 BIOKA58 62 137 AMS 66 133 AMS 68 755 AMS 66 120 JRSSB68 820 JRSSB68 830 AMS 63 160 JRSSB68 110 BIOKA68 110 BIOKA68 110 BIOKA68 120 JRSSB68 120 JRSSB68 110 BIOKA68 110 BIOKA68 120 JRSSB68 120 JRSSB68 111 BIOKA68 120 JRSSB69 120 JRSB69 1
CANCER PATIENTS POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE ALTERNATIVES OF INTERMEDIATE SPECIFICITY SAMPLES U-SQUARED SMALL—SAMPLE DISTRIBUTION OF THE U-SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES A GOODNESS CRITERIA FOR A GOODNESS OF THE BLYANIATE ROBUSTNESS OF SOME PROCEDURES FOR THE A NON—PARAMETRIC TEST FOR THE BLYANIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BLYANIATE ON THE EFFICIENCY OF ANS OF NORMAL POPULATIONS WITH A COMMON UNKNOWN/ A POWER OF SOME HOUT REPLACEMENT AND EXACT BAHADUR EFFICIENCY OF THE RANDOMIZATION TESTS FOR A MULTIVARIATE TRIBUTION OF A NON—PARAMETRIC TEST FOR THE BLYANIATE ASYMPTOTICALLY MOST POWERFUL RANK TESTS FOR THE ORY, II. TESTS OF THE PARAMETRIC GOODNESS OF FIT AND SEQUENTIAL RANK TESTS II. MODIFIED ON THE NORMAL SCORES A PROPOSED ONE SAMPLE LIMITS OF SOME	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WELBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS TWO-PERSON GAME TWO-PHASE RECRESSION TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE EXTENSIONS TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE MON-PARAMETRIC TESTS TWO-SAMPLE NON-PARAMETRIC TESTS TWO-SAMPLE NON-PARAMETRIC TESTS TWO-SAMPLE PROBLEM TWO-SA	JASA 64 133 JASA 65 164 TECH 68 251 BIOCS65 467 BIOCS68 61 AMS 69 789 BIOKA69 NO.3 JASA 62 628 BIOKA68 131 BIOKA61 241 AMS 63 95 AMS 64 1091 BIOKA68 544 BIOKA68 61 133 AMS 66 133 AMS 66 120 JASA 64 65 JRSSB67 320 JASA 65 1118 BIOKA68 371 JASA 65 1118 BIOKA68 371 JASA 65 1118 BIOKA68 371 JASA 65 120 JASA 65 1118 BIOKA68 371 JASA 65 121 JASA 65 121 JASA 66 123 AMS 66 120 JASA 65 121 BIOKA68 371 JASA 65 121 JASA 66 121 JASA 66 121 JASA 66 121 JASA 67 121 JASA 68 131
CANCER PATIENTS POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE ALTERNATIVES OF INTERMEDIATE SPECIFICITY SAMPLES DISTRIBUTION OF THE U—SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES A GOODNESS CRITERIA FOR WEAK CONVERCENCE OF A ONE—SAMPLE DISTRIBUTION—FREE TESTS AND THEIR ROBUSTNESS OF SOME PROCEDURES FOR THE A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BIVARIATE ON THE EFFICIENCY OF ANS OF NORMAL POPULATIONS WITH A COMMON UNKNOWN/ A POWER OF SOME HOUT REPLACEMENT AND EXACT BAHADUR EFFICIENCY OF THE RANDOMIZATION TESTS FOR A MULTIVARIATE TRIBUTION OF A NON—PARAMETRIC TEST FOR THE BIVARIATE ASYMPTOTICALLY MOST POWERFUL RANK TESTS FOR THE GRY, II. TESTS OF THE PARAMETRIC GOODNESS OF FIT AND SEQUENTIAL RANK TESTS II. MODIFIED ON THE NORMAL SCORES A PROPOSED ONE SAMPLE LIMITS OF SOME ONE SAMPLE LIMITS OF SOME PERCENTILE MODIFICATIONS OF	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERSON GAME TWO-PHASE RECRESSION TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE CRAMER-VON MISES; W-SQUARED AND WATSON'S TWO-SAMPLE DISTRIBUTION FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE EXTENSIONS TWO-SAMPLE EXTENSIONS TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM IN THE NORMAL CASE /SAM TWO-SAMPLE LOCATION PROBLEM IN THE NORMAL CASE /SAM TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE MANN-WHITNEY TEST, CORR. 66 1249 TWO-SAMPLE NON-PARAMETRIC TESTS, TWO-SAMPLE NON-PARAMETRIC TESTS, CORR. 66 1249 TWO-SAMPLE NON-PARAMETRIC TESTS, CORR. 66 1249 TWO-SAMPLE NON-PARAMETRIC TESTS, CORR. 66 1249 TWO-SAMPLE PROBLEM TWO-S	JASA 64 133 JASA 65 16 TECH 68 251 BIOCS65 467 BIOCS68 61 AMS 69 70 JASA 62 628 BIOKA68 131 BIOKA68 79 BIOKA68 69 79 BIOKA68 69 79 AMS 63 79 AMS 64 1091 BIOKA68 67 AMS 66 177 AMS 66 177 AMS 66 177 AMS 66 170 JASA 64 120 JASA 64 120 JASA 64 170 BIOKA68 170 JASA 64 170 BIOKA68 171 JASA 65 729 JASS66 120
CANCER PATIENTS POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TRAILS WEAK APPROACHABILITY IN A INFERENCE ABOUT THE INTERSECTION IN SOME RATIO—TYPE ESTIMATORS IN SOME BAYESIAN STRATIFIED BAYESIAN STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE RELATIVE EFFICIENCY OF SOME SAMPLINC ARE STRATIFIED THE ALTERNATIVES OF INTERMEDIATE SPECIFICITY SAMPLES DISTRIBUTION OF THE U—SQUARED SMALL—SAMPLE DISTRIBUTIONS OF THE VARIANCES A GOODNESS CRITERIA FOR WEAK CONVERCENCE OF A ONE—SAMPLE DISTRIBUTION—FREE TESTS AND THEIR ROBUSTNESS OF SOME PROCEDURES FOR THE A NON—PARAMETRIC TEST FOR THE BIVARIATE PLE POWER OF A NON—PARAMETRIC TEST FOR THE BIVARIATE ON THE EFFICIENCY OF ANS OF NORMAL POPULATIONS WITH A COMMON UNKNOWN/ A POWER OF SOME ON SOME HOUT REPLACEMENT AND EXACT BAHADUR EFFICIENCY OF THE RANDOMIZATION TESTS FOR A MULTIVARIATE TRIBUTION OF A NON—PARAMETRIC TEST FOR THE BIVARIATE ASYMPTOTICALLY MOST POWERFUL RANK TESTS FOR THE ORY, II. TESTS OF THE PARAMETRIC GOODNESS OF FIT AND SEQUENTIAL RANK TESTS II. MODIFIED ON THE NORMAL SCORES A PROPOSED ONE SAMPLE LIMITS OF SOME ONE SAMPLE LIMITS OF SOME PERCENTILE MODIFICATIONS OF	TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED TWO-PARAMETER WELBULL AND EXTREME-VALUE DISTRIBUTIONS TWO-PERIOD CHANGE-OVER DESICN AND ITS USE IN CLINICAL TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS TWO-PERSON GAME TWO-PHASE RECRESSION TWO-PHASE SAMPLINC TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLINC RESULTS TWO-PHASE SAMPLING RESULTS TWO-PHASE SAMPLING SCHEMES TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE DISTRIBUTION-FREE TEST TWO-SAMPLE EXTENSIONS TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE LOCATION PROBLEM TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS TWO-SAMPLE MON-PARAMETRIC TESTS TWO-SAMPLE NON-PARAMETRIC TESTS TWO-SAMPLE NON-PARAMETRIC TESTS TWO-SAMPLE PROBLEM TWO-SA	JASA 64 133 JASA 65 164 TECH 68 251 BIOCS65 467 BIOCS68 61 AMS 69 789 BIOKA69 NO.3 JASA 62 628 BIOKA68 131 BIOKA61 241 AMS 63 95 AMS 64 1091 BIOKA68 544 BIOKA68 61 133 AMS 66 133 AMS 66 120 JASA 64 65 JRSSB67 320 JASA 65 1118 BIOKA68 371 JASA 65 1118 BIOKA68 371 JASA 65 1118 BIOKA68 371 JASA 65 120 JASA 65 1118 BIOKA68 371 JASA 65 121 JASA 65 121 JASA 66 123 AMS 66 120 JASA 65 121 BIOKA68 371 JASA 65 121 JASA 66 121 JASA 66 121 JASA 66 121 JASA 67 121 JASA 68 131

TWO - UNB TITLE WORD INDEX

```
TION FUNCTIONS
                                     ON THE POWER OF TWO-SAMPLE RANK TESTS ON THE EQUALITY OF TWO DISTRIBU JRSSB64 293
    DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS OF THE TWO-SAMPLE RANK VECTOR
                                                                                            THE ASYMPTOTIC AMS 69 1011
                                                 THE TWO-SAMPLE SCALE PROBLEM WHEN LOCATIONS ARE UNKNOWN
                                                                                                             AMS 65 1236
                                                   A TWO-SAMPLE SEQUENTIAL T-TEST
                                                                                                            BIOKA61
                                                                                                                     65
               A K-SAMPLE EXTENSION OF THE ONE-SIDED TWO-SAMPLE SMIRNOV TESTS STATISTIC
                                                                                                             AMS 67 1726
            LIMIT THEOREMS FOR FUNCTIONS OF SHORTEST TWO-SAMPLE SPACINCS AND A RELATED TEST
                                                                                                             AMS 67 108
    OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC
                                                                                         AN EXTENDED TABLE JASA 64 925
                          EFFICIENCY OF THE WILCOXON TWO-SAMPLE STATISTIC FOR RANDOMIZED BLOCKS
                                                                                                            JASA 63 894
                                        THE WILCOXON TWO-SAMPLE STATISTIC ON STRONCLY MIXING PROCESSES
                                                                                                             AMS 68 1202
                         SICNIFICANCE POINTS FOR THE TWO-SAMPLE STATISTIC U-SQUARE-SUB-M, N
                                                                                                            BIOKA65 661
                                                                                                            JASA 63 10B6
                                        THE WILCOXON TWO-SAMPLE STATISTIC, TABLES AND BIBLIOGRAPHY
FOR THE KOLMOGOROV-SMIRNOV AND KUIPER ONE-SAMPLE AND TWO-SAMPLE STATISTICS EXACT BAHADUR EFFICIENCIES
                                                                                                             AMS 67 1475
                                                 THE TWO-SAMPLE T-TEST BASED ON RANGE
                                                                                                            BIOKA57 482
                                    NON-NORMALITY IN TWO-SAMPLE T-TESTS
                                                                                                            BIOKA53
           HISTORICAL NOTES ON THE WILCOXON UNPAIRED TWO-SAMPLE TEST
                                                                                                            JASA 57
                                                                                                                     356
                      EARLY DECISION IN THE WILCOXON TWO-SAMPLE TEST
                                                                                                            JASA 63
                                                                                                                     713
                                        THE V-SUB-NM TWO-SAMPLE TEST
                                                                                                             AMS 68
                                                                                                                     923
                                 A DISTRIBUTION-FREE TWO-SAMPLE TEST ON A CIRCLE
                                                                                                            BTOKA64 256
                         ON A CLASS OF NONPARAMETRIC TWO-SAMPLE TESTS FOR CIRCULAR DISTRIBUTIONS
                                                                                                             AMS 69 1791
               A MONTE CARLO STUDY COMPARINC VARIOUS TWO-SAMPLE TESTS FOR DIFFERENCES IN MEAN
                                                                                                            TECH 68 509
LAR DISTRIBUTION THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM TESTS FOR UNIFORMITY OF A CIRCU BIOKA69 NO.3
CENSORING
                             THE PERFORMANCE OF SOME TWO-SAMPLE TESTS IN SMALL SAMPLES WITH AND WITHOUT
                                                                                                            BIOKA69 127
SIMULATION STUDY
                                                SOME TWO-SAMPLE TESTS WHEN THE VARIANCES ARE UNEQUAL. A
                                                                                                            BIOKA67
                                                                                                                     679
 TAIL PROBABILITIES FOR THE NULL DISTRIBUTION OF THE TWO-SAMPLE WILCOXON STATISTIC
                                                                                                   EXTREME BIOKA67
                                                                                                                     629
                                       A GENERALIZED TWO-SAMPLE WILCOXON TEST FOR DOUBLY-CENSORED DATA. BIOKA65
                                                                                                                     650
  HOPF TYPE METHOD FOR A GENERAL RANDOM WALK WITH A TWO-SIDED BOUNDARY
                                                                                                 A WIENER- AMS 63 1168
                                                SOME TWO-SIDED DISTRIBUTION-FREE TOLERANCE INTERVALS OF A JASA 62
                                                                                                                     775
MAL DISTRIBUTION
                            FACTORS FOR CALCULATING TWO-SIDED PREDICTION INTERVALS FOR SAMPLES FROM A NOR JASA 69
                                                ON A TWO-SIDED SEQUENTIAL T-TEST
                                                                                                            BTOKA52
                                                                                                                     302
                                   CORRIGENDA, 'ON A TWO-SIDED SEQUENTIAL T-TEST'
                                                                                                            BIOKA54
                                                                                                                     568
                                                  ON TWO-SIDED TOLERANCE INTERVALS FOR A NORMAL
DISTRIBUTION
                                                                                                             AMS 64
                                                                                                                     762
                                 AN APPROXIMATION TO TWO-SIDED TOLERANCE LIMITS FOR NORMAL POPULATIONS
                                                                                                            TECH 66
                                                                                                                     115
SOME IMPROVEMENTS
                                                     TWO-SIDED TOLERANCE LIMITS FOR NORMAL POPULATIONS,
                                                                                                            JASA 69
                                                                                                                     610
                            THE FIRST-MEDIAN TEST. A TWO-SIDED VERSION OF THE CONTROL MEDIAN TEST.
                                                                                                                     692
                                                                                                            JASA 68
                                                     TWO-STAGE DESIGNS FOR CLINICAL TRIALS
                                                                                                            BIOCS69 111
 SAMPLING DISTRIBUTION OF ORDINARY LEAST SQUARES AND TWO-STAGE LEAST SQUARES ESTIMATORS
                                                                                                  THE EXACT JASA 69
                                                   A TWO-STAGE MODEL FOR SELECTING ONE OR TWO TREATMENTS BIOCS65
                ESTIMATION OF VARIANCE COMPONENTS IN TWO-STAGE NESTED DESIGNS WITH COMPOSITE SAMPLES
                                                                                                            TECH 67
                                                                                                                     373
ESTIMATION PROCEDURES FOR ESTIMATING PARAMETERS IN A TWO-STAGE NESTED PROCESS /MPARISONS OF DESIGNS AND
                                                                                                           TECH 67
                                                                                                                     499
                                                  ON TWO-STAGE NON-PARAMETRIC ESTIMATION
                                                                                                             AMS 64 1099
                                                     TWO-STAGE NORMAL SAMPLING IN TWO-ACTION PROBLEMS WITH JASA 69 NO.4
LINEAR ECONOMICS
BETWEEN MEANS
                                                     TWO-STACE PROCEDURES FOR ESTIMATING THE DIFFERENCE
                                                                                                           BIOKA54 146
                 SMALL-SAMPLE PROPERTIES OF SEVERAL TWO-STAGE RECRESSION METHODS IN THE CONTEXT OF AUTOCO JASA 69
RRELATED ERRORS
                                                                                                                     253
S IN THE BINOMIAL AND POISSON DISTRIBUTIONS BASED ON TWO-STAGE SAMPLING /THE VARIANCE FOR THE PARAMETER JASA 66 220
ESTIMATING THE ARITHMETIC MEAN OF A POPULATION WITH TWO-STAGE SAMPLING BAYES AND MINIMAX PROCEDURES FOR AMS 66 1186
                       A PROPERTY OF SOME SYMMETRIC TWO-STACE SEQUENTIAL PROCEDURES
                                                                                                             AMS 64 755
                                            OPTIMAL TWO-STAGE STRATIFIED SAMPLING
                                                                                                             AMS 69
                                                                                                                     575
FINITE POPULATIONS WITH AN APPLICATION TO BULK/
                                                 A TWO-STACE SUBSAMPLING PROCEDURE FOR RANKING MEANS OF TECH 67 355
                  SOME SEQUENTIAL ANALOGS OF STEIN'S TWO-STACE TEST
                                                                                                            BIOKA62
                                                                                                                     367
                                                   A TWO-STATE MARKOV MODEL FOR BEHAVIORAL CHANGE
                                                                                                            JASA 68
                                                                                                                    993
                                   REMARK CONCERNING TWO-STATE SEMI-MARKOV PROCESSES
                                                                                                             AMS 61
                                                                                                                     615
MPLING PROBABILITIES OF A CLASS OF WIDELY USED/ A TWO-VARIABLE GENERATING FUNCTION FOR COMPUTING THE SA JASA 64 487
                                   NON-ADDITIVITY IN TWO-WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH BIOCS65

TWO-WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH BIOCS65
                                                                                                                     878
DISPROPORTIONATE SUBCLASS FREQUENCIES
                                                                                                                     308
      DISTRIBUTION-FREE ANALYSIS OF VARIANCE FOR THE TWO-WAY CLASSIFICATION
                                                                                                            SASJ 67
                                                                                                                      67
                             ONE-WAY VARIANCES IN A TWO-WAY CLASSIFICATION
                                                                                                            BTOK A5B
          TESTING THE HOMOGENEITY OF VARIANCES IN A TWO-WAY CLASSIFICATION
                                                                                                            BIOCS69 153
  FOR HOMOGENEITY OF THE MARGINAL DISTRIBUTIONS IN A TWO-WAY CLASSIFICATION
                                                                                                     A TEST BIOKA55
                                                                                                                     412
ATES OF COMPONENTS OF VARIANCE FROM A NON-ORTHOCONAL TWO-WAY CLASSIFICATION SAMPLING VARIANCES OF ESTIM BIORAG4 491
                   THE ANALYSIS OF VARIANCE FOR THE TWO-WAY CLASSIFICATION FIXED EFFECTS MODEL WITH OBSER BIOKA69 NO.3
               MINIMAL SUFFICIENT STATISTICS FOR THE TWO-WAY CLASSIFICATION MIXED MODEL DESIGN
                                                                                                           JASA 65 182
                              VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH INTERACTION
                                                                                                            BIOKA63
                                                                                                                    327
    PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH TWO-WAY CLASSIFICATION OF TREATMENTS
                                                                                                            AMS 69 175
        ESTIMABILITY OF VARIANCE COMPONENTS FOR THE TWO-WAY CLASSIFICATION WITH ITERATION
                                                                                                             AMS 67 1508
                         SEQUENTIAL NONPARAMETRIC TWO-WAY CLASSIFICATION WITH PRESCRIBED MAXIMUM ASYMPT
OTIC ERROR PROBABILITY
                                                                                                            AMS 69 445
                                    STUDENT'S T IN A TWO-WAY CLASSIFICATION WITH UNEQUAL VARIANCES
                                                                                                             AMS 65 1248
           RANK SUM MULTIPLE COMPARISIONS IN ONE AND TWO-WAY CLASSIFICATIONS
                                                                                                            BIOKA67 487
HE NUMBERS OF OBSERVATIONS IN THE SUBCLASSES FOR THE TWO-WAY COMPLETELY-RANDOM CLASSIFICATION /ANS AND T JASA 6B 1484
 OF VARIANCE-COMPONENT ESTIMATORS FOR THE UNBALANCED TWO-WAY CROSS CLASSIFICATION WITH APPLICATION TO BALA
                                                                                                            AMS 69 408
 ESTIMATION OF FUNCTIONS OF VARIANCE COMPONENTS FROM TWO-WAY CROSSED CLASSIFICATIONS /OR THE SIMULTANEOUS BIOKA67 127
         SOME METHODS OF CONSTRUCTION OF DESIGNS FOR TWO-WAY ELIMINATION OF HETEROGENEITY, I
                                                                                                            JASA 66 1153
             AN APPROXIMATE METHOD OF ANALYSIS FOR A TWO-WAY LAYOUT
                                                                                                            BIOCS65 376
         ON SOME OPTIMUM NONPARAMETRIC PROCEDURES IN TWO-WAY LAYOUTS
                                                                                                            JASA 67 1214
           ON A CLASS OF ALICNED RANK ORDER TESTS IN TWO-WAY LAYOUTS
                                                                                                             AMS 68 1115
               VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED CLASSIFICATION
                                                                                                             AMS 61 1161
                            DESIGN AND ESTIMATION IN TWO-WAY STRATIFICATION
                                                                                                            JASA 60 105
     SAMPLE SELECTION AND THE CHOICE OF ESTIMATOR IN TWO-WAY STRATIFIED POPULATIONS
                                                                                                            JASA 64 1054
                                                                                                             AMS 68 1264
 GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER TYPE
AND TESTING TREND IN A STOCHASTIC PROCESS OF POISSON TYPE
                                                                                               ESTIMATING
                                                                                                             AMS 66 1564
   CONCERNING TESTS OF FIT OF THE KOLMOGOROV-SMIRNOV TYPE
                                                                                             AN INEQUALITY AMS 67 1240
                                                                                 RESULTS FROM THE RELATION
    BETWEEN TWO STATISTICS OF THE KOLMOGOROV-SMIRNOV TYPE
                                                                                                            AMS 69 1833
  SIDED DISTRIBUTION TESTS OF THE KOLMOGOROV-SMIRNOV TYPE
                                                                                SOME EXACT RESULTS FOR ONE-
                                                                                                             AMS 61 499
VOLUTION, WHEN THE OTHER COMPONENT IS OF EXPONENTIAL TYPE
                                                                        ESTIMATION OF A COMPONENT OF A CON TECH 64 222
  PROCESSES OF THE AUTOREGRESSIVE AND MOVINC-AVERAGE TYPE
                                                                    STATIONARITY CONDITIONS FOR STOCHASTIC BIOKA56 215
     ON THE DERIVATION AND APPLICABILITY OF NEYMAN'S TYPE A DISTRIBUTION
                                                                                                            BIOKA58
                                                                                                                     32
               BIVARIATE GENERALIZATIONS OF NEYMAN'S TYPE A DISTRIBUTION
                                                                                                            BIOKA66 241
```

TITLE WORD INDEX TWO - UNB

```
OF THE METHOD OF MOMENTS AND THE GRAM-CHARLIER TYPE A DISTRIBUTION
                                                                                                     EFFICIENCY BIOKA51
OF THE METHOD OF MOMENTS AND THE GRAM-CHARLIER TYPE A DISTRIBUTION EFFICIENCY BIOKASI
S OF ESTIMATION FOR THE NEGATIVE BINOMIAL AND NEYMAN TYPE A DISTRIBUTIONS EFFICIENCY OF CERTAIN METHOD BIOKA62
IES OF DISCRETE FREQUENCY FUNCTIONS ANALOGOUS TO THE TYPE A SERIES /DY OF THE MATRIX OF FITTING OF A SER SASJ 67
                                                                                                                           55
                    NOTE ON MR QUENOUILLE'S EDGEWORTH TYPE A TRANSFORMATION
                                                                                                                BIOKA59
                                                                                                                          203
                            INHALATION IN RELATION TO TYPE AND AMOUNT OF SMOKING
                                                                                                                JASA 59
                                                                                                                           35
   OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND RELATED DESIGNS SOME NEW FAMILIES TECH 67
                                                                                                                          229
                      ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIONS IN MULTIPLE LINEAR REGRESSION AMS 69 NO.6
    A PROPERTY OF THE MEAN DEVIATION FOR THE PEARSON TYPE DISTRIBUTIONS
                                                                                                                RTOK 466
                                                                                                                          287
   A PROPERTY OF THE MEAN DEVIATION FOR THE PEARSON TYPE DISTRIBUTIONS

'A PROPERTY OF THE MEAN DEVIATION FOR THE PEARSON TYPE DISTRIBUTIONS' (ACKNOWLEDGEMENT OF PRIORITY BIOKA67)
                                                                                                                          333
          SEQUENTIAL INFERENCE PROCEDURES OF STEIN'S TYPE FOR A CLASS OF MULTIVARIATE REGRESSION PROBLEMS
                                                                                                                AMS 62 1039
TATIONARY DISTRIBUTIONS OF THE NEGATIVE EXPERIMENTAL TYPE FOR THE INFINITE DAM
                                                                                                              S JRSSB57
                                                                                                                          342
  AND UNBIASEDNESS FOR MULTIPLE DECISION PROBLEMS OF TYPE I
                                                                                                   MINIMAX RISK AMS 69 1684
TIMATION OF THE NORMAL POPULATION PARAMETERS GIVEN A TYPE I CENSORED SAMPLE
                                                                                                             ES BIOKA61
                                                                                                                          367
                     A NOTE ON TOLERANCE LIMITS WITH TYPE I CENSORING
                                                                                                                TECH 68
                                                                                                                          392
                         A NOTE ON ESTIMATION FROM A TYPE I EXTREME-VALUE DISTRIBUTION
                                                                                                                 TECH 67
                                                                                                                          325
HE VARIABLES ARE DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED NORMAL DATA /ENT ESTIMATORS WHEN T BIOKA62
TIMATES OF THE LOCATION AND SCALE PARAMETERS GIVEN A TYPE II CENSORED NORMAL SAMPLE /XIMUM LIKELIHOOD ES BIOKA61
     TECH OF THE LOCATION AND CONTROL OF THE SCALE PARAMETERS OF TYPE II BATKERNE VALUE AND CONTROL OF THE SCALE PARAMETERS OF TYPE III DISTRIBUTION

A NEW TABLE OF PERCENTAGE POINTS OF THE PEARSON TYPE III POPULATION

THE MEAN DEVIATION, BIOKASB JASA 58
 SINGLY CENSORED SAMPLES, OF THE SCALE PARAMETERS OF TYPE II EXTREME-VALUE DISTRIBUTIONS /TIMATION, FROM TECH 68
                                                                                                                          349
                                                                                                                          177
    WITH SPECIAL REFERENCE TO SAMPLES FROM A PEARSON TYPE III POPULATION
                                                                                                                          47B
                                                                                                                          164
                            INEQUALITIES OF CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS
                                                                                                                  AMS 69 NO 6
   RATIO AND THE PROBABILITY INTEGRAL FOR A PEARSON TYPE IV DISTRIBUTION.
                                                                                                     THE MILLS BIOKA65 119
ONS, CORR. 65 1069
                                           SOME RENYI TYPE LIMIT THEOREMS FOR EMPIRICAL DISTRIBUTION FUNCTI AMS 65 322
SIDED BOUNDARY
                                         A WIENER-HOPF TYPE METHOD FOR A GENERAL RANDOM WALK WITH A TWO-
                                                                                                                  AMS 63 1168
                             SOME FURTHER DESIGNS OF TYPE 0-PP
                                                                                                                 AMS 61 1186
                                ON THE ORDER AND THE TYPE OF ENTIRE CHARACTERISTIC FUNCTIONS
                                                                                                                 AMS 62 1238
                                                                                                          BIOK A51
                   ESTIMATION PROBLEMS WHEN A SIMPLE TYPE OF HETEROGENEITY IS PRESENT IN THE SAMPLE
                                                                                                                         90
OPERTIES OF A STOCHASTIC MODEL FOR THE PREDATOR-PREY TYPE OF INTERACTION BETWEEN TWO SPECIES
                                                                                                        THE PR BIOKAGO
                                                                                                                          219
          ANALYSIS OF LATIN SQUARES WITHIN A CERTAIN TYPE OF ROW-COLUMN INTERACTION
                                                                                                                TECH 59 379
   FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES
                                                                                                                  AMS 68 1020
Y OF TWO MATRICES WITH APPLICATIONS TO LEAST SQUARES TYPE QUADRATIC FORMS /LEMMA FOR PROVING THE EQUALIT JASA 69
                                                                                                                          969
             TABLES OF CRITICAL VALUES OF SOME RENYI TYPE STATISTICS FOR FINITE SAMPLE SIZES
                                                                                                                JASA 69
                                                                                                                          870
E CALCULATION OF DISTRIBUTIONS OF KOLMOGOROV-SMIRNOV TYPE STATISTICS INCLUDING A TABLE OF SIGNIFICANCE POI AMS 68
                                         SOME SMIRNOV TYPE THEOREMS OF PROBABILITY
                                                                                                                  AMS 65 1113
                     THE NONCENTRAL MULTIVARIATE BETA TYPE TWO DISTRIBUTION
                                                                                                                SASJ 69 NO'. 2
                                SOME RESULTS ON POLYA TYPE 2 DISTRIBUTIONS
                                                                                                                  AMS 68 1759
VOLUTION, WHEN THE OTHER COMPONENT IS OF EXPONENTIAL TYPE' ERRATA, 'ESTIMATION OF A COMPONENT OF A CON TECH 65 462

OF EXPONENTIALLY DISTRIBUTED LIFE-TIMES WITH TWO TYPES OF FAILURE

THE ANALYSIS JRSSB59 411
     SOME PROPERTIES OF COUNTS OF EVENTS FOR CERTAIN TYPES OF POINT PROCESS
                                                                                                                JRSSB64
                                                                                                                          325
     DATA AVAILABLE FOR ECONOMIC RESEARCH ON CERTAIN TYPES OF RECREATION
                                                                                                    STATISTICAL JASA 59
                                                                                                                          281
                   CYLINDRICALLY ROTATABLE DESIGNS OF TYPES 1, 2, AND 3
                                                                                                                 AMS 67
                                                                                                                          167
                           USING SUBSAMPLE VALUES AS TYPICAL VALUES
                                                                                                                JASA 69 NO.4
             NOTES. ASSUMPTION-FREE ESTIMATORS USING U STATISTICS AND A RELATIONSHIP TO THE JACKKNIFE METH BIOCS67 567
                      A K-SAMPLE ANALOGUE OF WATSON'S U-SQUARE STATISTIC
                                                                                                                BTOKA66
                                                                                                                          579
    SIGNIFICANCE POINTS FOR THE TWO-SAMPLE STATISTIC U-SQUARE-SUB-M, N
                                                                                                                BIOKA65
                                                                                                                          661
   GOODNESS-OF-FIT TESTS BASED ON W-SQUARE-SUB-N AND U-SQUARE-SUB-N
                                                                                                            THE BIOKA62
                                                                                                                          397
FOR THE DISTRIBUTIONS OF GOODNESS-OF-FIT STATISTICS, U-SQUARE-SUB-N AND W-SQUARE-SUB-N /APPROXIMATIONS BIOKA65
                                                                                                                          630
  THE DISTRIBUTION OF THE GOODNESS-OF-FIT STATISTIC, U-SQUARE-SUB-N. I.
                                                                                                                BIOKA63
                                                                                                                          303
   THE DISTRIBUTION OF THE GOODNESS-OF-FIT STATISTIC U-SQUARE-SUB-N.II
                                                                                                                BIOKA64
                                                                                                                          393
 TWO-SAMPLE CRAMER-VON MISES' W-SQUARED AND WATSON'S U-SQUARED
                                                                           SMALL-SAMPLE DISTRIBUTIONS OF THE AMS 64 1091
   JOINT ASYMPTOTIC DISTRIBUTION OF THE MEDIAN AND A U-STATISTIC
                                                                                                                JRSSB57
                                                                                                                          144
    OF THE DISTRIBUTION OF THE MANN-WHITNEY-WILCOXON U-STATISTIC UNDER LEHMANN ALTERNATIVES
                                                                                                         TABLES TECH 67
                                                                                                                          666
                                           JACKKNIFING U-STATISTICS
                                                                                                                  AMS 69 NO.6
  MULTISAMPLE PERMUTATION TESTS BASED ON A CLASS OF U-STATISTICS
                                                                                                       ON SOME JASA 67 1201
E GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES
                                                                                                      RECURSIV AMS 66
                                                                                                                          284
 BRANCH/ EXTENSIONS OF A LIMIT THEOREM OF EVERETT, ULAM AND HARRIS ON MULTITYPE BRANCHING PROCESSES TO A AMS 67
DEPENDENT BRANCHING PROCESSES UNDER A CONDITION OF ULTIMATE EXTINCTION AGE- BIOKA68
                                                                                                                          992
                                                                                                           AGE- BIOKA68 291
                                        A NOTE ON THE ULTIMATE SIZE OF A GENERAL STOCHASTIC EPIDEMIC
                                                                                                                BTOKA67
                                                                                                                          314
                                                   THE ULTIMATE SIZE OF CARRIER-BORNE EPIDEMICS
                                                                                                                BIOK A68 277
DISTRIBUTIONS BASED ON SMALL SAMPLES OF EQUAL SIZE UNBAISED ESTIMATION OF THE COMMON MEAN OF TWO NORMAL
                                                                                                                          467
                                                                                                               JASA 66
                                                                                                                          594
                             SOME FINITE POPULATION UNBAISED RATIO AND REGRESSION ESTIMATORS, CORR. 60 JASA 59
  QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR UNBALANCED DESIGNS
                                                                                                            ON JRSSB61
                                                                                                                          493
 THE QUASI-F TEST FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HIERARCHAL DESIGN WITH A MIXED MODEL /E. BIOCS66
                                                                                                                          937
ESTING SIGNIFICANCE OF COMPONENTS OF VARIANCE IN THE UNBALANCED NESTED ANALYSIS OF VARIANCE (CORRECTION 68 BIOCS68
                                                                                                                          423
IONS OF VARIANCE COMPONENTS II. EMPIRICAL STUDIES OF UNBALANCED NESTED DESIGNS
                                                                                       SAMPLING DISTRIBUT TECH 68 719
D THE NUMBERS OF OBSERVATIONS ON THE EFFECTS FOR THE UNBALANCED ONE-WAY RANDOM CLASSIFICATION /FFECTS AN JASA 67 1375
  OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION
                                                                                                     VARIANCES BIOCS68 527
                    NOTE ON TESTING HYPOTHESES IN AN UNBALANCED RANDOM EFFECTS MODEL
                                                                                                                BIOKA67
                                                                                                                          659
ANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY NESTED CLASSIFICATION /NG VARI AMS 63
                                                                                                                          521
 VARIANCES OF VARIANCE-COMPONENT ESTIMATORS FOR THE UNBALANCED TWO-WAY CROSS CLASSIFICATION WITH APPLICAT AMS 69 408
                           VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED CLASSIFICATION
                                                                                                                  AMS 61 1161
                           OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS MODELS
                                                                                                                  AMS 67 422
HAT ORDINARY LEAST-SQUARES ESTIMATORS BE BEST LINEAR UNBIASED A NECESSARY AND SUFFICIENT CONDITION T JASA 67 1302
LITY FUNCTIONS FOR SYSTEMS IN SE/ . MINIMUM VARIANCE UNBIASED AND MAXIMUM LIKELIHOOD ESTIMATORS OF RELIABI JASA 66 1052
UTIONS FOR WHICH THE MAXIMUM-LIKELIHOOD ESTIMATOR IS UNBIASED AND OF MINIMUM VARIANCE FOR ALL SAMPLE SIZES BIOKAS6
                                                                                                                          200
1163
                                                       UNBIASED COMPONENTWISE RATIO ESTIMATION, CORR. 63
                                                                                                                JASA 61
                                                                                                                          350
TER
                             TABLE OF NEYMAN-SHORTEST UNBIASED CONFIDENCE INTERVALS FOR THE BINOMIAL PARAME BIOKA60
                                                                                                                          381
                            TABLES OF NEYMAN-SHORTEST UNBIASED CONFIDENCE INTERVALS FOR THE POISSON PARAMET BIOKAG1
                                                                                                                          191
ER
               ALMOST LINEARLY-OPTIMUM COMBINATION OF UNBIASED ESTIMATES
                                                                                                                           36
                                                                                                                 JASA 61
                               LEAST SQUARES AND BEST UNBIASED ESTIMATES
                                                                                                                 AMS 62
                                                                                                                          266
 A SMALLER SAMPLE/ THE CONSTRUCTION OF GOOD LINEAR UNBIASED ESTIMATES FROM THE BEST LINEAR ESTIMATES FOR TECH 65
                                                                                                                          543
                                             ON LOCAL UNBIASED ESTIMATION
                                                                                                               JRSSB64
                                                                                                                          46
NUMBER THEORY
                                     MINIMUM VARIANCE UNBIASED ESTIMATION AND CERTAIN PROBLEMS OF ADDITIVE
                                                                                                                 AMS 63 1050
PROCESSES
                                          BEST LINEAR UNBIASED ESTIMATION FOR MULTIVARIATE STATIONARY
                                                                                                                TECH 68 523
                                                       UNBIASED ESTIMATION IN CONVEX FAMILIES
                                                                                                                 AMS 69 1523
```

UNB - UNI TITLE WORD INDEX

```
SEQUENTIAL OPTIMUM PROCEDURES FOR UNBIASED ESTIMATION OF A BINOMIAL PARAMETER
                                                                      UNBIASED ESTIMATION OF A SET OF PROBABILITIES
                                                                                                                                              TECH 64 259
                                                                                                                                              BIOKA61 227
                                                                      UNBIASED ESTIMATION OF LOCATION AND SCALE PARAMETERS
                                                                                                                                              AMS 66 1671
                                          ON MINIMUM VARIANCE UNBIASED ESTIMATION OF RELIABILITY
                                                                                                                                                AMS 69 710
EXPONENTIAL DISTRIBUTION
                                             MINIMUM VARIANCE UNBIASED ESTIMATION OF RELIABILITY FOR THE TRUNCATED TECH 69 609
                                                                     UNBIASED ESTIMATION OF SOME MULTIVARIATE PROBABILITY
DENSITIES
                                                                                                                                              AMS 69 1261
STICAL INFERENCE IN THE CLASSICAL OCCUPANCY PROBLEM, UNBIASED ESTIMATION OF THE NUMBER OF CLASSES STATI JASA 68 837
                                   QUADRATIC UNBIASED ESTIMATION OF VARIANCE COMPONENTS OF THE
ONE-WAY CLASSIFICATION
                                                                                                                                             BIOKA69 313
                                              ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES
                                                                                                                                              JASA 62 184
                                                                 AN UNBIASED ESTIMATOR FOR POWERS OF THE ARITHMETIC MEAN JRSSB61
                                                                                                                                                          154
                                               MINIMUM VARIANCE UNBIASED ESTIMATORS FOR POISSON PROBABILITIES
                                                                                                                                             TECH 62 409
                              ON A COMPLETE CLASS OF LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL EXPERIME AMS 63
                                                                                                                                                          769
A NOTE ON UNIFORMLY BEST UNBIASED ESTIMATORS FOR VARIANCE COMPONENTS

JASA 56 266

IN SMALL SAMPLES OF THE MAXIMUM LIKELIHOOD AND BEST UNBIASED ESTIMATORS OF RELIABILITY FUNCTIONS /NCIES JASA 66 1033
LITY OF UNKNOWN VARIANCES COMBINATIONS OF UNBIASED ESTIMATORS OF THE MEAN WHICH CONSIDER INEQUA JASA 69 1042
 DISTRIBUTION USING ORDER STATISTICS BEST LINEAR UNBIASED ESTIMATORS OF THE PARAMETERS OF THE LOGISTIC TECH 67
                                                                                                                                                           43
 THE PROBABILITY OF MISCLASSIFICATION I/ AN ALMOST UNBIASED METHOD OF OBTAINING CONFIDENCE INTERVALS FOR BIOCS67
ROM ONE-WAY-CLASSIFICATION TABLES WHEN THE CROSS/ UNBIASED MULTIPLE RECRESSION COEFFICIENTS ESTIMATED F JASA 66 720
REGRESSION MODEL
                                                BEST LINEAR UNBIASED PREDICTION IN THE GENERALIZED LINEAR
                                                                                                                                             JASA 62 369
                                             THE ASYMPTOTICALLY UNBIASED PRIOR DISTRIBUTION
                                                                                                                                               AMS 65 1137
                                               CONSTRUCTING AN UNBIASED RANDOM SEQUENCE
                                                                                                                                              JASA 68 1526
                                   THE PRECISION OF MICHEY'S UNBIASED RATIO ESTIMATOR
                                                                                                                                             BIOKA67 321
                              ON SAMPLING SCHEMES PROVIDING UNBIASED RATIO ESTIMATORS
                                                                                                                                               AMS 64 222
CORR 64 1298
                                                                     UNBIASED RATIO ESTIMATORS IN STATIFIED SAMPLING,
                                                                                                                                             JASA 61
                                                                                                                                                          70
                                              THE PRECISION OF UNBIASED RATIO-TYPE ESTIMATION AP JASA 57
THE PRECISION OF UNBIASED RATIO-TYPE ESTIMATORS, CORR. 63 1162

VARIANCE, LINEAR UNDIASED CRACOLLY IN THE PROPERTY OF THE PROPERTY 
PLICATIONS OF MULTIVARIATE POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMATION
                                                                                                                                            JASA 58 491
 THE PRECISION OF UNBIASED RATIO-TYPE ESTIMATORS, CORR. 63 1162 JASA 58

CORR. 65 1250 MINIMUM VARIANCE, LINEAR, UNBIASED SEASONAL ADJUSTMENT OF ECONOMIC TIME SERIES, JASA 64
  UNIQUENESS OF A UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR THE BINOMIAL EXISTENCE AND BIOKA56 465
                                                        A NOTE ON UNBIASED TESTS
                                                                                                                                               AMS 62 292
                                                        TABLES FOR UNBIASED TESTS ON THE VARIANCE OF A NORMAL POPULATION AMS 61
                                                                                                                                                          84
                                                          LOCALLY UNBIASED TYPE M TEST
                                                                                                                                              JRSSB66 298
                                               MINIMAX RISK AND UNBIASEDNESS FOR MULTIPLE DECISION PROBLEMS OF TYPE I AMS 69 1684
                                                                     UNBIASEDNESS OF SOME TEXT CRITERIA FOR THE EQUALITY
                                              UNBIASEDNESS OF SOME TEXT UNITERIA FOR THE UNBIASEDNESS OF ZELLNER'S SEEMINGLY UNRELATED REGRESS JASA 67 141
OF ONE OR TWO COVARIANCE MATRICES
ION EQUATIONS ESTIMATORS
A LARCE-SAMPLE BIOASSAY DESIGN WITH RANDOM DOSES AND UNCERTAIN CONCENTRATION
                                                                                                                                            BIOKA55 307
                        THE FOUNDATIONS OF DECISION UNDER UNCERTAINTY, AN ELEMENTARY EXPOSITION
                                                                                                                                              JASA 64 353
                                                                     UNCERTAINTY, INFORMATION, AND SEQUENTIAL EXPERIMENTS AMS 62 404
ALENTS AND INFORMATION EVALUATION IN DECISIONS UNDER UNCERTAINTY, PARTS I, II, AND III ON CASH EQUIV JASA 68
                                                                                                                                                          252
PROACH TO COVARIANCE ANALYSIS WHEN THE COVARIABLE IS UNCONTROLLED

A STRUCTURAL REGRESSION AP JASA 67 CONDITIONS OF SIMPLE SIMILAR ACTION, THE ANALYSIS OF UNCONTROLLED DATA /ES TO MIXTURES OF POISONS UNDER BIOKA58
                                                                                                     A STRUCTURAL REGRESSION AP JASA 67 1037
                  A THEORETICAL ANALYSIS OF DELAYS AT AN UNCONTROLLED INTERSECTION
                                                                                                                                              BIOKA62 163
                                            THE CAPACITY OF AN UNCONTROLLED INTERSECTION
                                                                                                                                              BIOKA67
                                                                                                                                                          657
                                                                ON UNCORRELATED LINEAR FUNCTIONS OF ORDER STATISTICS
                                                                                                                                              JASA 63 245
                     ON COMBINABILITY OF INFORMATION FROM UNCORRELATED LINEAR MODELS BY SIMPLE WEIGHTING
                                                                                                                                               AMS 66 1338
                                                           CERTAIN UNCORRELATED NONPARAMETRIC TEST STATISTICS
                                                                                                                                              JASA 68 707
   ON CERTAIN FUNCTIONS OF NORMAL VARIATES WHICH ARE UNCORRELATED OF A HIGHER ORDER
                                                                                                                                              BIOKA60 175
                                                           CERTAIN UNCORRELATED STATISTICS
                                                                                                                                              JASA 60 265
                              NATIONAL INCOME STATISTICS OF UNDERDEVELOPED COUNTRIES
                                                                                                                                             JASA 57 162
                                     INVESTMENT ESTIMATES OF UNDERDEVELOPED COUNTRIES, AN APPRAISAL
                                                                                                                                              JASA 58
                                                       PROCESSING UNDERDEVELOPED DATA FROM AN UNDERDEVELOPED AREA
                                                                                                                                              JASA 60 23
    TESTS FOR THE VALIDITY OF THE ASSUMPTION THAT THE UNDERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART TECH 60
                                                                                                                                                            83
  TESTS FOR THE VALIDITY OF THE ASSUMPTIONS THAT THE UNDERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART TECH 60 167
                                                                                                                   FACTOR ANALYSIS, BIOCS65 190
    AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS
                                    THE ORTHOGONALIZATION OF UNDESIGNED EXPERIMENTS
                                                                                                                                              TECH 66 279
                         ERRATA, 'THE ORTHOGONALIZATION OF UNDESIGNED EXPERIMENTS'
                                                                                                                                              TECH 66 731
                                                      A NOTE ON UNDISCOUNTED DYNAMIC PROCRAMMING
                                                                                                                                               AMS 66 1042
                                       THE SUFFICIENCY IN THE UNDOMINATED CASE
                                                                                                                                               AMS 61 1191
                                                                                                                                     A TEST AMS 63 671
  FOR EQUALITY OF MEANS WHEN COVARIANCE MATRICES ARE UNEQUAL
                                                      SYMMETRICAL UNEQUAL BLOCK ARRANCEMENTS WITH TWO UNEQUAL BLOCK
                                                                                                                                               AMS 62
                                                                                                                                                          62.0
ON BALANCED UNEQUAL BLOCK DESIGNS

A NOTE ON DISCRIMINATION IN THE CASE OF UNEQUAL COVARIANCE MATRICES

MPARISON OF DISTANCE STATISTICS FOR POPULATIONS WITH UNEQUAL COVARIANCE MATRICES

AN EMPIRICAL CO BIOCS68 883
                    GENERALISED COVARIANCE ANALYSIS WITH UNEQUAL ERROR
                                                                                                                                             BIOCS69 NO.4
               ANALYSIS OF VARIANCE OF PROPORTIONS WITH UNEQUAL FREQUENCIES
                                                                                                                                              JASA 63 1133
   PARAMETER ESTIMATION FROM THE ORDER STATISTICS OF UNEQUAL CAMMA COMPONENTS
                                                                                                                                      SCALE AMS 66 152
                                                              UNEQUAL GROUP VARIANCES IN THE FIXED-EFFECTS ONE-WAY BIOKA66
ANALYSIS OF VARIANCE, A BAYESIAN SIDELIGHT
EITY OF GROUP MEANS

THE EFFECT OF UNEQUAL GROUP VARIANCES ON THE F-TEST FOR THE HOMOGEN BIOKA53
EQUENCY DISTRIBUTION, WITH ESPECIAL REFERENCE TO THE UNEQUAL INTERVAL CASE /CLASS MARKS OF A GROUPED FR TECH 68
                                                                                                                                                          793
          ANALYSIS OF MULTIFACTOR CLASSIFICATIONS WITH UNEQUAL NUMBERS OF OBSERVATIONS
                                                                                                                                             BIOCS66 525
        SAMPLING ERRORS IN AN ORCHARD SURVEY INVOLVING UNEQUAL NUMBERS OF ORCHARDS OF DISTINCT TYPE
                                                                                                                                             BT0CS65 55
                                        BALANCED DESIGNS WITH UNEQUAL NUMBERS OF REPLICATES
                                                                                                                                               AMS 64 897
                                     ON INVERSE SAMPLING WITH UNEQUAL PROBABILITIES
                                                                                                                                              BIOKA64 185
                                                   SAMPLING WITH UNEQUAL PROBABILITIES AND WITHOUT REPLACEMENT
                                                                                                                                               AMS 62
                                                                                                                                                          350
IED SAMPLING UNITS WILL OCCUR IN A SAMPLE DRAWN WITH UNEQUAL PROBABILITIES AND WITHOUT REPLACEMENT /ECIF JASA 66 384
                    ON SAMPLINC WITHOUT REPLACEMENT WITH UNEQUAL PROBABILITIES OF SELECTION
                                                                                                                                             BIOKA67
                                                                                                                                                          499
                                    SYSTEMATIC SAMPLINC WITH UNEQUAL PROBABILITY AND WITHOUT REPLACEMENT
                              USE OF DOMAIN ESTIMATORS WITH UNEQUAL PROBABILITY IN SAMPLE SURVEYS
                                                                                                                                              JASA 68
                                                                                                                                                          984
STABILITIES OF ESTIMATORS AND VARIANCE ESTIMATORS IN UNEQUAL PROBABILITY SAMPLING OF TWO UNITS PER STRATUM JASA 69 540
                                    ON THREE PROCEDURES OF UNEQUAL PROBABILITY SAMPLING WITHOUT REPLACEMENT JASA 63 202
ON A SIMPLE PROCEDURE OF UNEQUAL PROBABILITY SAMPLING WITHOUT REPLACEMENT JRSSB62 482
           REPLICATED, OR INTERPENETRATING, SAMPLES OF UNEQUAL SIZES
                                                                                                                                               AMS 67 1142
                                                                                                                 METHODS OF CLUSTER S BIOKA62 27
AMPLING WITH AND WITHOUT REPLACEMENT FOR CLUSTERS OF UNEQUAL SIZES
IGNS TO SITUATIONS WHERE TREATMENTS OR BLOCKS ARE OF UNEQUAL STATUS OR SIZE /ATIONS OF NONORTHOGONAL DES BIOCS66 629
RITABILITY FROM TRANSFORMED PERCENTAGE SIB DATA WITH UNEQUAL SUBCLASS NUMBERS ESTIMATES OF HE BIOCS65 1001
RELATION STUDIES COVARIANCE ANALYSIS WITH UNEQUAL SUBCLASS NUMBERS, COMPONENT ESTIMATION IN COR BIOCS68 49
IATE T-SQUARE AND HOMOSCEDASTICITY CRITERION M UNDER UNEQUAL VARIANCE AND LEPTOKURTOSIS /UTIONS OF BIVAR JASA 63 1048
```

TITLE WORD INDEX UNB - UNI

AR DISCRIMINANT FUNCTION THE EFFECT OF	UNEQUAL VARIANCE-COVARIANCE MATRICES ON FISHER'S LINE		
STUDENT'S T IN A TWO-WAY CLASSIFICATION WITH		AMS 65	
	UNEQUAL VARIANCES /OR THE SIGNIFICANCE OF THE DIFFE		
SOME TWO-SAMPLE TESTS WHEN THE VARIANCES ARE		BIOKA67	
GROUPING METHODS IN THE FITTING OF POLYNOMIALS TO		BIOKA56	
NOTES.ORTHOCONAL POLYNOMIALS FOR		BIOCS65	
THE PROBABILITY THAT A RANDOM GAME IS		AMS 66	
	UNFOLDING PARTICLE SIZE DISTRIBUTIONS	TECH 69	
A COMPUTER METHOD FOR CALCULATING KENDALL'S TAU WITH			436
	UNI-DIRECTIONALLY PATROLLED BY ONE OPERATOR WHEN WALK		166
	UNI-DIRECTIONALLY PATROLLED BY ONE OPERATOR WHEN WALK	JRSSB57 JRSSB56	173 61
A TEST OF SIGNIFICANCE FOR AN	UNIFIED APPROACH FOR CONSTRUCTING A USEFUL CLASS OF N		
	UNIFIED DERIVATION OF SOME NONPARAMETRIC DISTRIBUTION		
5		JASA 65	
Α	UNIFIED THEORY OF ESTIMATION, I	AMS 61	
		JRSSB55	
		JASA 66	
ON TESTING THE EQUALITY OF	UNIFORM AND RELATED DISTRIBUTIONS	JASA 66	856
	UNIFORM APPROXIMATION OF MINIMAX POINT ESTIMATES	AMS 64	1031
ROBUSTNESS OF	UNIFORM BAYESIAN ENCODING	TECH 63	121
FUNCTION	UNIFORM GONSISTENCY OF SOME ESTIMATES OF A DENSITY	AMS 69	
	UNIFORM CONVERGENCE OF FAMILIES OF MARTINGALES	AMS 69	
	UNIFORM CONVERCENCE OF MEASURES WITH APPLICATIONS	AMS 62	
	UNIFORM COVARIANCE CASE	JRSSB64	
AMPLE SIZE REQUIRED TO ESTIMATE THE PARAMETER IN THE	UNIFORM DENSITY WITHIN D UNITS OF THE TRUE VALUE S UNIFORM DISCRIMINATION	JASA 64	
QUERY, GOMBINATION OF A NORMAL AND A		BIOKA68 TECH 65	
	UNIFORM DISTRIBUTION OF INDEPENDENT RANDOM VARIABLES		
	UNIFORM DISTRIBUTION OF INDEFENDENT RANDOM VARIABLES	AMS 63	
	UNIFORM DISTRIBUTION, PERCENTAGE POINTS AND APPLICATI		
	UNIFORM ERGODIC THEOREM	AMS 65	
THE SAMPLINC DISTRIBUTION OF THE RANCE FROM DISCRETE	UNIFORM FINITE POPULATIONS AND A RANGE TEST FOR HOMOG		
	UNIFORM OPERATOR ERGODIC THEOREM	AMS 69	
EXPRESSING A RANDOM VARIABLE IN TERMS OF	UNIFORM RANDOM VARIABLES	AMS 61	
RATIOS OF NORMAL VARIABLES AND RATIOS OF SUMS OF	UNIFORM VARIABLES	JASA 65	
ASYMPTOTIC THEORY OF A CLASS OF TESTS FOR	UNIFORMITY OF A CIRCULAR DISTRIBUTION	AMS 69	
ANOTHER TEST FOR THE	UNIFORMITY OF A CIRCULAR DISTRIBUTION	BIOKA67	
A SIMPLE TEST FOR		BIOKA68	
ON HODGED D DIVANTALE DIGHTEDI AND A LEDI FON	UNIFORMITY OF A CIRCULAR DISTRIBUTION THE DERIVAT	BIOKA69	
	UNIFORMLY BEST UNBIASED ESTIMATORS FOR VARIANCE		
ARRANCEMENTS WITH CONFOUNDING		JASA 50 JASA 67	
ANNAHOLIELITS WITH CONTOUNDING			
CONSTRUCTING	UNIFORMLY RETTER ESTIMATORS	1454 63	172
		JASA 63 AMS 64	
USE OF INTER-BLOCK INFORMATION TO OBTAIN	UNIFORMLY BETTER ESTIMATORS	AMS 64	1064
USE OF INTER-BLOCK INFORMATION TO OBTAIN	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS	AMS 64	1064 471
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS	AMS 64 AMS 67	1064 471 1243
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR	AMS 64 AMS 67 AMS 63 AMS 65 BIOKA56	1064 471 1243 993 465
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA	AMS 64 AMS 67 AMS 63 AMS 65 BIOKA56 BIOKA52	1064 471 1243 993 465 425
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY	AMS 64 AMS 67 AMS 63 AMS 65 BIOKA56 BIOKA52 AMS 69	1064 471 1243 993 465 425 1661
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS	AMS 64 AMS 67 AMS 63 AMS 65 BIOKA56 BIOKA52 AMS 69 AMS 69	1064 471 1243 993 465 425 1661 1746
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE	AMS 64 AMS 67 AMS 63 AMS 65 BIOKA56 BIOKA52 AMS 69 AMS 69 BIOKA56	1064 471 1243 993 465 425 1661 1746 224
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND CRAM-CHARLIER SERIES THE REGIONS OF	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR	AMS 64 AMS 67 AMS 63 AMS 65 BIOKA56 BIOKA52 AMS 69 AMS 69 BIOKA56 JASA 57	1064 471 1243 993 465 425 1661 1746 224 253
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L	AMS 64 AMS 67 AMS 63 AMS 65 BIOKA56 BIOKA52 AMS 69 AMS 69 BIOKA56	1064 471 1243 993 465 425 1661 1746 224 253 1296
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR	AMS 64 AMS 67 AMS 63 AMS 65 BIOKA56 BIOKA52 AMS 69 AMS 69 BIOKA56 JASA 57 AMS 67	1064 471 1243 993 465 425 1661 1746 224 253 1296
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNION OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES	AMS 64 AMS 67 AMS 63 AMS 65 BIOKA56 BIOKA56 BIOKA56 AMS 69 BIOKA56 JASA 57 AMS 67 AMS 68 JRSSB65	1064 471 1243 993 465 425 1661 1746 224 253 1296 2154
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A PROBABILITY BOUNDS FOR A ESTIMATION OF NON- TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNION OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES UNIQUE QUANTILES UNIQUE SATURATED DESIGNS /ESIGNS OF RESOLUTION GREA	AMS 64 AMS 67 AMS 63 AMS 65 BIOKA56 BIOKA52 AMS 69 AMS 69 AMS 69 JASA 57 AMS 67 AMS 68 JRSSB65 AMS 68	1064 471 1243 993 465 425 1661 1746 224 253 1296 2154 57 451 246
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE RECIONS OF BOUNDS OF THE PROBABILITY OF A PROBABILITY BOUNDS FOR A ESTIMATION OF NON. TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS EXISTENCE,	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNIMOD OF EVENTS, WITH APPLICATIONS UNION OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES -UNIQUE QUANTILES UNIQUE SATURATED DESIGNS /ESIGNS OF RESOLUTION GREA UNIQUENESS AND MONOTONICITY OF SEQUENTIAL PROBABILITY	AMS 64 AMS 67 AMS 63 AMS 65 BIOKA56 BIOKA56 BIOKA56 JASA 57 AMS 67 AMS 67 AMS 68 JRSSB65 AMS 68 AMS 68 AMS 68 AMS 68	1064 471 1243 993 465 425 1661 1746 224 253 1296 2154 57 451 246 1541
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A PROBABILITY BOUNDS FOR A ESTIMATION OF NON- TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS PRONENESS	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNION OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES -UNIQUE QUANTILES UNIQUE SATURATED DESIGNS /ESIGNS OF RESOLUTION GREA UNIQUENESS AND MONOTONICITY OF SEQUENTIAL PROBABILITY UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT	AMS 64 AMS 67 AMS 65 BIOKA56 BIOKA56 BIOKA56 AMS 69 AMS 69 JASA 57 AMS 67 AMS 67 AMS 68 JRSSB65 AMS 66 AMS 68 BIOKA56	1064 471 1243 993 465 425 1661 1746 224 253 1296 2154 57 451 246 1541 530
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A PROBABILITY BOUNDS FOR A ESTIMATION OF NON- TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS EXISTENCE, PRONENESS UNBIASED TEST FOR THE BINOMIAL EXISTENCE AND	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL DENSITY UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNION OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES UNIQUE QUANTILES UNIQUE SATURATED DESIGNS /ESIGNS OF RESOLUTION GREA UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A UNIFORMLY MOST POWERFUL RANDOMIZED	AMS 64 AMS 67 AMS 65 BIOKA56 BIOKA56 BIOKA56 AMS 69 BIOKA56 JASA 57 AMS 67 AMS 68 JRSSB65 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68	1064 471 1243 993 465 425 1661 1746 224 253 1296 2154 57 451 246 1541 530 465
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A PROBABILITY BOUNDS FOR A ESTIMATION OF NON- TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS EXISTENCE, PRONENESS UNBIASED TEST FOR THE BINOMIAL EXISTENCE AND PROCESSES	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNION OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES UNIQUE QUANTILES UNIQUE SATURATED DESIGNS /ESIGNS OF RESOLUTION GREA UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A RUNFORMLY MOST POWERFUL RANDOMIZED UNIQUENESS OF STATIONARY MEASURES FOR MARKOV RENEWAL	AMS 64 AMS 67 AMS 63 AMS 65 BIOKA56 BIOKA56 BIOKA56 JASA 57 AMS 69 AMS 69 JASS 67 AMS 68 JRSSB65 AMS 68 AMS 63 BIOKA56 AMS 68 AMS 63	1064 471 1243 993 465 425 1661 1746 224 253 1296 2154 57 451 246 1541 530 465 1439
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF BOUNDS OF THE PROBABILITY OF A PROBABILITY BOUNDS FOR A ESTIMATION OF NON. TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS EXISTENCE, PRONENESS UNBIASED TEST FOR THE BINOMIAL EXISTENCE AND PROCESSES THE EXISTENCE AND AL REGRESSION FOR MINIMAX VARIANCE OF THE FIT/ THE	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNIMOD OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES -UNIQUE QUANTILES UNIQUE ASTURATED DESIGNS /ESIGNS OF RESOLUTION GREA UNIQUENESS AND MONOTONICITY OF SEQUENTIAL PROBABILITY UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A UNIFORMLY MOST POWERFUL RANDOMIZED UNIQUENESS OF STATIONARY MEASURES FOR MARKOV RENEWAL UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYNOMI	AMS 64 AMS 67 AMS 63 AMS 65 BIOKA56 BIOKA56 BIOKA56 JASA 57 AMS 67 AMS 67 AMS 68 JRSSB65 AMS 68 AMS 63 BIOKA57 BIOKA57 BIOKA56 AMS 63	1064 471 1243 993 465 425 1661 1746 224 253 1296 2154 57 451 246 1541 530 465 1439 810
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A PROBABILITY BOUNDS FOR A ESTIMATION OF NON- TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS PRONENESS UNBIASED TEST FOR THE BINOMIAL EXISTENCE AND PROCESSES THE EXISTENCE AND AL REGRESSION FOR MINIMAX VARIANCE OF THE FIT/ THE MODELS NOTE ON A	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL DENSITY UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY AND POSITIVITY OF SEQUENTIAL PROBABILITY UNION OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES UNIQUE QUANTILES UNIQUE SATURATED DESIGNS /ESIGNS OF RESOLUTION GREA UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF STATIONARY MOST POWERFUL RANDOMIZED UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYNOMI UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYNOMI UNIQUENESS RELATION IN CERTAIN ACCIDENT PRONENESS	AMS 64 AMS 67 AMS 65 BIOKA56 BIOKA56 BIOKA56 JASA 57 AMS 69 BIOKA56 JASA 67 AMS 68 JRSSB65 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68 AMS 64 AMS 66 AMS 66 AMS 66 AMS 66 AMS 66	1064 471 1243 993 465 425 1661 1746 223 1296 2154 57 451 246 1541 530 465 1439 810 288
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A PROBABILITY BOUNDS FOR A ESTIMATION OF NON- TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS EXISTENCE, PRONENESS UNBIASED TEST FOR THE BINOMIAL EXISTENCE AND PROCESSES THE EXISTENCE AND AL REGRESSION FOR MINIMAX VARIANCE OF THE FIT/ THE MODELS NOTE ON A A	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNION OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES UNIQUE QUANTILES UNIQUE QUANTILES UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A UNIFORMLY MOST POWERFUL RANDOMIZED UNIQUENESS OF A UNIFORMLY MOST POWERFUL RANDOMIZED UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYNOMI UNIQUENESS RELATION IN CERTAIN ACCIDENT PRONENESS UNIQUENESS RELATION IN CERTAIN ACCIDENT PRONENESS UNIQUENESS THEOREM CONCERNING MOMENT DISTRIBUTIONS	AMS 64 AMS 67 AMS 65 BIOKA56 BIOKA56 BIOKA56 AMS 69 BIOKA56 JASA 67 AMS 68 JRSSB65 AMS 68 AMS 63 BIOKA56 AMS 68 AMS 63 AMS 63 BIOKA57 BIOKA56 AMS 66 AMS 66 AMS 66 AMS 66 AMS 66	1064 471 1243 993 465 425 1661 1746 224 253 1296 2154 57 451 246 1541 530 465 1439 810 288 1203
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A PROBABILITY BOUNDS FOR A ESTIMATION OF NON- TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS EXISTENCE, PRONENESS UNBIASED TEST FOR THE BINOMIAL EXISTENCE AND PROCESSES THE EXISTENCE AND AL REGRESSION FOR MINIMAX VARIANCE OF THE FIT/ THE MODELS NOTE ON A A	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNION OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES UNIQUE QUANTILES UNIQUE SATURATED DESIGNS /ESIGNS OF RESOLUTION GREA UNIQUENESS AND MONOTONICITY OF SEQUENTIAL PROBABILITY UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF STATIONARY MEASURES FOR MARKOV RENEWAL UNIQUENESS OF STATIONARY MEASURES FOR MARKOV RENEWAL UNIQUENESS RELATION IN CERTAIN ACCIDENT PRONENESS UNIQUENESS THEOREM GONCENTING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERCODIC	AMS 64 AMS 67 AMS 65 BIOKA56 BIOKA56 BIOKA56 AMS 69 BIOKA56 JASA 67 AMS 68 JRSSB65 AMS 68 AMS 63 BIOKA56 AMS 68 AMS 63 AMS 63 BIOKA57 BIOKA56 AMS 66 AMS 66 AMS 66 AMS 66 AMS 66	1064 471 1243 993 465 425 1661 1746 224 253 1296 2154 57 451 246 1541 530 465 1439 810 288 1203 1781
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A PROBABILITY DOUNDS FOR A ESTIMATION OF NON- TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS FRONENESS UNBIASED TEST FOR THE BINOMIAL EXISTENCE AND AL RECRESSION FOR MINIMAX VARIANCE OF THE FIT/ THE MODELS MARKOV PROCESSES A WARIANCE ESTIMATION WITH ONE	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNION OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES -UNIQUE QUANTILES UNIQUE QUANTILES UNIQUENESS AND MONOTONICITY OF SEQUENTIAL PROBABILITY UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A THE SPACING OF OBSERVATIONS IN POLYNOMI UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYNOMI UNIQUENESS RELATION IN CERTAIN ACCIDENT PRONENESS UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERCODIC UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERCODIC UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERCODIC UNIT PER STRATUM	AMS 64 AMS 67 AMS 63 AMS 65 BIOKA56 BIOKA56 BIOKA56 JASA 57 AMS 69 AMS 69 JASA 65 AMS 68 JRSSB65 AMS 68 AMS 63 BIOKA56 AMS 63 BIOKA57 BIOKA56 AMS 64 AMS 62 JASA 67 JASA 67 JASA 67	1064 471 1243 993 465 425 1661 1746 224 253 1253 1254 57 451 61541 530 465 810 288 1203 810 288 1203 1781
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A PROBABILITY BOUNDS FOR A ESTIMATION OF NON- TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS EXISTENCE, PRONENESS UNBIASED TEST FOR THE BINOMIAL EXISTENCE AND PROCESSES THE EXISTENCE AND AL REGRESSION FOR MINIMAX VARIANCE OF THE FIT/ THE MODELS VARIANCE ESTIMATION WITH OND THE TESTING OF NOTES ON IMMICRATION STATISTICS OF THE	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNION OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES UNIQUE SATURATED DESIGNS /ESIGNS OF RESOLUTION GREA UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A UNIFORMLY MOST POWERFUL RANDOMIZED UNIQUENESS OF STATIONARY MEASURES FOR MARKOV RENEWAL UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYNOMI UNIQUENESS THEOREM CONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERCODIC UNIT PER STRATUM UNITUD STATES	AMS 64 AMS 67 AMS 65 BIOKA56 BIOKA56 BIOKA56 BIOKA56 AMS 69 BIOKA56 AMS 67 AMS 67 AMS 66 AMS 66	1064 471 1243 993 465 465 4661 1746 224 253 1296 2154 57 451 246 1541 530 465 1439 810 288 1203 1781
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A PROBABILITY OF A PROBABILITY BOUNDS FOR A ESTIMATION OF NON- TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS PRONENESS UNBIASED TEST FOR THE BINOMIAL EXISTENCE AND AL REGRESSION FOR MINIMAX VARIANCE OF THE FIT/ THE MODELS MARKOV PROCESSES A VARIANCE ESTIMATION WITH ONE THE TESTING OF NOTES ON IMMICRATION STATISTICS OF THE INTERNAL MICRATION STATISTICS OF THE	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNION OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES -UNIQUE QUANTILES UNIQUE SATURATED DESIGNS /ESIGNS OF RESOLUTION CREA UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A UNIFORMLY MOST POWERFUL RANDOMIZED UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYMOMI UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYMOMI UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERCODIC UNIT PER STRATUM UNIT VECTORS FOR RANDOMNESS UNITED STATES UNITED STATES	AMS 64 AMS 67 AMS 65 BIOKA56 BIOKA56 BIOKA56 AMS 69 AMS 69 JASA 57 AMS 67 AMS 66 AMS 66 AMS 66 AMS 63 BIOKA57 BIOKA57 BIOKA56 AMS 62 JASA 67 JASA 65 JASA 65 JASA 69 JASA 69 JASA 69 JASA 69	1064 471 12243 993 465 425 1661 17746 224 253 1296 2154 451 246 1541 530 465 1439 810 288 1781 841 160 963 664
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A PROBABILITY BOUNDS FOR A ESTIMATION OF NON- TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS EXISTENCE, PRONENESS UNBIASED TEST FOR THE BINOMIAL EXISTENCE AND PROCESSES THE EXISTENCE AND AL REGRESSION FOR MINIMAX VARIANCE OF THE FIT/ THE MODELS VARIANCE ESTIMATION WITH ONE THE TESTING OF NOTES ON IMMICRATION STATISTICS OF THE INTERNAL MICRATION STATISTICS FOR THE A QUARTERLY ECONOMETRIC MODEL OF THE	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNION OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES -UNIQUE QUANTILES UNIQUENESS AND MONOTONICITY OF SEQUENTIAL PROBABILITY UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF STATIONARY MEASURES FOR MARKOV REMEWAL UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYNOMI UNIQUENESS RELATION IN CERTAIN ACCIDENT PRONENESS UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERCODIC UNIT PER STRATUM UNIT VECTORS FOR RANDOMNESS UNITED STATES UNITED STATES UNITED STATES	AMS 64 AMS 67 AMS 65 BIOKA56 BIOKA56 BIOKA56 AMS 69 BIOKA56 JASA 57 AMS 68 JRSSB65 AMS 68 AMS 68 AMS 68 AMS 68 AMS 66 AMS 68 AMS 66	1064 471 1243 993 465 425 1661 1746 224 57 451 246 1541 246 1541 246 1439 810 288 1203 1781 160 963 664 379
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A PROBABILITY BOUNDS FOR A ESTIMATION OF NON- TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS EXISTENCE, PRONENESS UNBIASED TEST FOR THE BINOMIAL EXISTENCE AND PROCESSES THE EXISTENCE AND AL REGRESSION FOR MINIMAX VARIANCE OF THE FIT/ THE MODELS VARIANCE ESTIMATION WITH ONE THE TESTING OF NOTES ON IMMICRATION STATISTICS OF THE INTERNAL MICRATION STATISTICS FOR THE A QUARTERLY ECONOMETRIC MODEL OF THE	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNION OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES -UNIQUE QUANTILES UNIQUENESS AND MONOTONICITY OF SEQUENTIAL PROBABILITY UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF STATIONARY MEASURES FOR MARKOV REMEWAL UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYNOMI UNIQUENESS RELATION IN CERTAIN ACCIDENT PRONENESS UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERCODIC UNIT PER STRATUM UNIT VECTORS FOR RANDOMNESS UNITED STATES UNITED STATES UNITED STATES	AMS 64 AMS 67 AMS 65 BIOKA56 BIOKA56 BIOKA56 AMS 69 BIOKA56 JASA 57 AMS 68 JRSSB65 AMS 68 AMS 68 AMS 68 AMS 68 AMS 66 AMS 68 AMS 66	1064 471 1243 993 465 425 1661 1746 224 57 451 246 1541 246 1541 246 1439 810 288 1203 1781 160 963 664 379
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A PROBABILITY BOUNDS FOR A ESTIMATION OF NON- TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS EXISTENCE, PRONENESS UNBIASED TEST FOR THE BINOMIAL EXISTENCE AND PROCESSES THE EXISTENCE AND AL REGRESSION FOR MINIMAX VARIANCE OF THE FIT/ THE MODELS VARIANCE ESTIMATION WITH ONE THE TESTING OF NOTES ON IMMICRATION STATISTICS OF THE INTERNAL MICRATION STATISTICS FOR THE A QUARTERLY ECONOMETRIC MODEL OF THE	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNION OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES -UNIQUE QUANTILES UNIQUENESS AND MONOTONICITY OF SEQUENTIAL PROBABILITY UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF STATIONARY MEASURES FOR MARKOV REMEWAL UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYNOMI UNIQUENESS RELATION IN CERTAIN ACCIDENT PRONENESS UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERCODIC UNIT PER STRATUM UNIT VECTORS FOR RANDOMNESS UNITED STATES UNITED STATES UNITED STATES	AMS 64 AMS 67 AMS 65 BIOKA56 BIOKA56 BIOKA56 AMS 69 BIOKA56 JASA 57 AMS 68 JRSSB65 AMS 68 AMS 68 AMS 68 AMS 68 AMS 66 AMS 68 AMS 66	1064 471 1243 993 465 425 1661 1746 224 57 451 246 1541 246 1541 246 1439 810 288 1203 1781 160 963 664 379
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A PROBABILITY BOUNDS FOR A ESTIMATION OF NON- TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS EXISTENCE, PRONENESS UNBIASED TEST FOR THE BINOMIAL EXISTENCE AND PROCESSES THE EXISTENCE AND AL REGRESSION FOR MINIMAX VARIANCE OF THE FIT/ THE MODELS VARIANCE ESTIMATION WITH ONE THE TESTING OF NOTES ON IMMICRATION STATISTICS OF THE INTERNAL MICRATION STATISTICS FOR THE A QUARTERLY ECONOMETRIC MODEL OF THE MIGRATION EXPECTANCY IN THE AN ECONOMETRIC MODEL FOR	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNION OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES -UNIQUE QUANTILES UNIQUE SATURATED DESIGNS /ESIGNS OF RESOLUTION GREA UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF TATIONARY MEASURES FOR MARKOV RENEWAL UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYNOMI UNIQUENESS RELATION IN CERTAIN ACCIDENT PRONENESS UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERCODIC UNITED STATES	AMS 64 AMS 67 AMS 65 BIOKA56 BIOKA56 BIOKA56 BIOKA56 AMS 69 AMS 69 AMS 67 AMS 67 AMS 68 AMS 66 AMS 68 AMS 68 AMS 66 JASA 67 JASA 67 JASA 67 JASA 59	1064 471 1243 993 465 425 1661 1746 224 57 451 246 1541 246 1541 163 288 1203 1781 160 963 664 379 444 4118 556
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A PROBABILITY BOUNDS FOR A ESTIMATION OF NON- TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS EXISTENCE, PRONENESS UNBIASED TEST FOR THE BINOMIAL EXISTENCE AND PROCESSES THE EXISTENCE AND AL REGRESSION FOR MINIMAX VARIANCE OF THE FIT/ THE MODELS VARIANCE ESTIMATION WITH ONE THE TESTING OF NOTES ON IMMICRATION STATISTICS OF THE INTERNAL MICRATION STATISTICS FOR THE A QUARTERLY ECONOMETRIC MODEL OF THE MIGRATION EXPECTANCY IN THE AN ECONOMETRIC MODEL FOR	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNION OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES -UNIQUE QUANTILES UNIQUE SATURATED DESIGNS /ESIGNS OF RESOLUTION GREA UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF TATIONARY MEASURES FOR MARKOV RENEWAL UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYNOMI UNIQUENESS RELATION IN CERTAIN ACCIDENT PRONENESS UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERCODIC UNITED STATES	AMS 64 AMS 67 AMS 65 BIOKA56 BIOKA56 BIOKA56 AMS 69 BIOKA56 JASA 57 AMS 68 JRSSB65 AMS 68 AMS 68 AMS 68 AMS 66 AMS 68 AMS 66 AMS 68 AMS 65 AMS 66 AMS 68 AMS 65 AMS 66	1064 471 1243 993 465 425 1661 1746 224 57 451 246 1541 246 1541 163 1841 160 963 664 379 444 444 441 1418 665
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A PROBABILITY BOUNDS FOR A PROBABILITY BOUNDS FOR A ESTIMATION OF NON- TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS EXISTENCE, PRONENESS UNBIASED TEST FOR THE BINOMIAL EXISTENCE AND PROCESSES THE EXISTENCE AND AL REGRESSION FOR MINIMAX VARIANCE OF THE FIT/ THE MODELS VARIANCE ESTIMATION WITH OND A MARKOV PROCESSES A VARIANCE ESTIMATION WITH OND THE TESTING OF NOTES ON IMMICRATION STATISTICS FOR THE INTERNAL MICRATION STATISTICS FOR THE INTERNAL MICRATION STATISTICS FOR THE MICRATION EXPECTANCY IN THE PLOYED PERSONS TO AND FROM METROPOLITAN AREAS OF THE AN ECONOMETRIC MODEL FOR ANTICIPATIONS AND INVESTMENT BEHAVIOR IN ON THE STATISTICAL DISCREPANCY IN THE REVISED	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNION OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES UNIQUE SATURATED DESIGNS /ESIGNS OF RESOLUTION GREA UNIQUE SATURATED DESIGNS /ESIGNS OF RESOLUTION GREA UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A UNIFORMLY MOST POWERFUL RANDOMIZED UNIQUENESS OF STATIONARY MEASURES FOR MARKOV RENEWAL UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYNOMI UNIQUENESS THEOREM CONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM CONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERCODIC UNIT PER STATUM UNIT VECTORS FOR RANDOMNESS UNITED STATES AGRICULTURE UNNITED STATES AGRICULTURE UNITED STATES AMAUFACTURING 1947-1960 UNITED STATES NATIONAL ACCOUNTS	AMS 64 AMS 67 AMS 65 BIOKA56 BIOKA56 BIOKA56 AMS 69 BIOKA56 JASA 57 AMS 68 JRSSB65 AMS 68 AMS 63 BIOKA56 AMS 63 BIOKA56 AMS 64 JASA 67 JASA 67 JASA 67 JASA 61 JASA 61 JASA 61 JASA 61 JASA 61 JASA 61 JASA 63 JASA 61 JASA 63 JASA 61 JASA 63	1064 471 1243 993 465 425 1661 1746 224 253 1296 2154 57 451 246 1541 246 1541 288 103 1781 841 160 963 664 379 444 1418 556 67 1219
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A PROBABILITY BOUNDS FOR A ESTIMATION OF NON- TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS EXISTENCE, PRONENESS UNBIASED TEST FOR THE BINOMIAL EXISTENCE AND PROCESSES THE EXISTENCE AND AL REGRESSION FOR MINIMAX VARIANCE OF THE FIT/ THE MODELS WARRAVOV PROCESSES VARIANCE ESTIMATION WITH ONE THE TESTING OF NOTES ON IMMICRATION STATISTICS OF THE INTERNAL MICRATION STATISTICS FOR THE MIGRATION EXPECTANCY IN THE PLOYED PERSONS TO AND FROM METROPOLITAN AREAS OF THE AN ECONOMETRIC MODEL FOR ANTICIPATIONS AND INVESTMENT BEHAVIOR IN ON THE STATISTICAL DISCREPANCY IN THE REVISED NDS IN DEATH RATES BIAS IN ESTIMATES OF THE RESIDENCE HISTORIES AND EXPOSURE RESIDENCES FOR THE	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNION OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES UNIQUE QUANTILES UNIQUE QUANTILES UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A UNIFORMLY MOST POWERFUL RANDOMIZED UNIQUENESS OF A INFORMLY MOST POWERFUL RANDOMIZED UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYNOMI UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERCODIC UNITY VECTORS FOR RANDOMNESS UNITED STATES MANUFACTURING 1947-1960 UNITED STATES NATIONAL ACCOUNTS UNITED STATES NONWHITE POPULATION AS INDICATED BY TRE UNITED STATES NONWHITE POPULATION AS INDICATED BY TRE	AMS 64 AMS 67 AMS 65 BIOKA56 BIOKA56 BIOKA56 AMS 69 AMS 69 AMS 67 AMS 67 AMS 67 AMS 67 AMS 68 JRSSB65 AMS 66 AMS 68 JRSSB65 AMS 66 AMS 66 AMS 66 AMS 66 AMS 66 JASA 67 JASA 67 JASA 67 JASA 65 JASA 67 JASA 69 JASA 67	1064 471 1243 993 465 425 1661 1746 224 57 451 246 1541 530 465 1439 810 288 1203 1781 841 160 963 664 379 444 1418 556 67 1219
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A PROBABILITY BOUNDS FOR A ESTIMATION OF NON- TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS EXISTENCE, PRONENESS UNBIASED TEST FOR THE BINOMIAL EXISTENCE AND PROCESSES THE EXISTENCE AND AL REGRESSION FOR MINIMAX VARIANCE OF THE FIT/ THE MODELS WARRAVOV PROCESSES VARIANCE ESTIMATION WITH ONE THE TESTING OF NOTES ON IMMICRATION STATISTICS OF THE INTERNAL MICRATION STATISTICS FOR THE MIGRATION EXPECTANCY IN THE PLOYED PERSONS TO AND FROM METROPOLITAN AREAS OF THE AN ECONOMETRIC MODEL FOR ANTICIPATIONS AND INVESTMENT BEHAVIOR IN ON THE STATISTICAL DISCREPANCY IN THE REVISED NDS IN DEATH RATES BIAS IN ESTIMATES OF THE RESIDENCE HISTORIES AND EXPOSURE RESIDENCES FOR THE	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNION OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES UNIQUE QUANTILES UNIQUE QUANTILES UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A UNIFORMLY MOST POWERFUL RANDOMIZED UNIQUENESS OF A INFORMLY MOST POWERFUL RANDOMIZED UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYNOMI UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERCODIC UNITY VECTORS FOR RANDOMNESS UNITED STATES MANUFACTURING 1947-1960 UNITED STATES NATIONAL ACCOUNTS UNITED STATES NONWITE POPULATION AS INDICATED BY TRE UNITED STATES NONWITE POPULATION AS INDICATED BY TRE	AMS 64 AMS 67 AMS 65 BIOKA56 BIOKA56 BIOKA56 AMS 69 BIOKA56 JASA 57 AMS 68 JRSSB65 AMS 68 AMS 63 BIOKA56 AMS 63 BIOKA56 AMS 64 JASA 67 JASA 67 JASA 67 JASA 61 JASA 61 JASA 61 JASA 61 JASA 61 JASA 61 JASA 63 JASA 61 JASA 63 JASA 61 JASA 63	1064 471 1243 993 465 425 1661 1746 224 57 451 246 1541 246 1541 246 1541 160 963 465 1439 810 288 1203 1781 160 963 464 444 444 444 444 445 446 447 447 447 448 448 448 448 448 448 448
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A PROBABILITY BOUNDS FOR A ESTIMATION OF NON- TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS EXISTENCE, PRONENESS UNBIASED TEST FOR THE BINOMIAL EXISTENCE AND PROCESSES THE EXISTENCE AND AL REGRESSION FOR MINIMAX VARIANCE OF THE FIT/ THE MODELS WARRAVOV PROCESSES VARIANCE ESTIMATION WITH ONE THE TESTING OF NOTES ON IMMICRATION STATISTICS OF THE INTERNAL MICRATION STATISTICS FOR THE MIGRATION EXPECTANCY IN THE PLOYED PERSONS TO AND FROM METROPOLITAN AREAS OF THE AN ECONOMETRIC MODEL FOR ANTICIPATIONS AND INVESTMENT BEHAVIOR IN ON THE STATISTICAL DISCREPANCY IN THE REVISED NDS IN DEATH RATES BIAS IN ESTIMATES OF THE RESIDENCE HISTORIES AND EXPOSURE RESIDENCES FOR THE	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNION OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES UNIQUE SATURATED DESIGNS /ESIGNS OF RESOLUTION GREA UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A UNIFORMLY MOST POWERFUL RANDOMIZED UNIQUENESS OF A INIFORMLY MOST POWERFUL RANDOMIZED UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYNOMI UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERCODIC UNIT PER STATES UNITED STATES AGRICULTURE UNITED STATES AGRICULTURE UNITED STATES AMOUGHACHING 1947-1960 UNITED STATES NANUFACTURING 1947-1960 UNITED STATES NOWHITE POPULATION AS INDICATED BY TRE UNITED STATES RELIGIOUS GROUPS	AMS 64 AMS 67 AMS 65 BIOKA56 BIOKA56 BIOKA56 AMS 69 BIOKA56 JASA 57 AMS 68 JRSSB65 AMS 68 AMS 68 AMS 63 BIOKA56 AMS 66 AMS 68 AMS 66 JASA 67 JASA 67 JASA 67 JASA 67 JASA 67 JASA 60 JASA 61 JASA 69 JASA 61 JASA 61 JASA 61	1064 471 1243 993 465 425 1661 1746 224 253 1296 2154 57 451 246 1541 1541 160 963 664 47 481 481 481 482 482 484 568
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A PROBABILITY BOUNDS FOR A ESTIMATION OF NON- TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS EXISTENCE, PRONENESS UNBIASED TEST FOR THE BINOMIAL EXISTENCE AND PROCESSES THE EXISTENCE AND AL REGRESSION FOR MINIMAX VARIANCE OF THE FIT/ THE MODELS WARRANCY PROCESSES A MARKOV PROCESSES A VARIANCE ESTIMATION WITH ONE THE TESTING OF NOTE ON IMMICRATION STATISTICS OF THE INTERNAL MICRATION STATISTICS OF THE INTERNAL MICRATION STATISTICS FOR THE A QUARTERLY ECONOMETRIC MODEL OF THE MIGRATION EXPECTANCY IN THE PLOYED PERSONS TO AND FROM METROPOLITAN AREAS OF THE AN ECONOMETRIC MODEL FOR ANTICIPATIONS AND INVESTMENT BEHAVIOR IN ON THE STATISTICAL DISCREPANCY IN THE REVISED NDS IN DEATH RATES BIAS IN ESTIMATES OF THE RESIDENCE HISTORIES AND EXPOSURE RESIDENCES FOR THE A COMPARISON OF MAJOR REGIONAL CYCLES OF MANUFACTURINC EMPLOYMENT IN THE	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNION OF EVENTS, WITH APPLICATIONS UNION OF PYPERSPHERICAL CONES -UNIQUE QUANTILES UNIQUE SATURATED DESIGNS /ESIGNS OF RESOLUTION GREA UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A TATIONARY MEASURES FOR MARKOV RENEWAL UNIQUENESS OF STATIONARY MEASURES FOR MARKOV RENEWAL UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYNOMI UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERCODIC UNITY DER STRATUM UNIT PER STRATUM UNIT VECTORS FOR RANDOMNESS UNITED STATES MANUFACTURING 1947-1960 UNITED STATES MANUFACTURING 1947-1960 UNITED STATES NATIONAL ACCOUNTS UNITED STATES NATIONAL ACCOUNTS UNITED STATES RELICIOUS CROUPS UNITED STATES RELICIOUS CROUPS UNITED STATES, 1951-1960	AMS 64 AMS 67 AMS 65 BIOKA56 BIOKA56 BIOKA56 BIOKA56 AMS 69 AMS 69 AMS 67 AMS 67 AMS 68 JASA 67 AMS 68 AMS 68 AMS 68 AMS 66 AMS 68 AMS 66 AMS 68 AMS 66 JASA 67 JASA 67 JASA 67 JASA 69 JASA 69 JASA 69 JASA 69 JASA 66	1064 471 1243 993 465 425 1661 1746 224 57 451 246 1541 246 1541 163 1296 288 1203 1781 1439 664 4379 444 1418 556 67 1219 448 1249 67 1219 4824 568
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A PROBABILITY BOUNDS FOR A ESTIMATION OF NON- TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS EXISTENCE, PRONENESS UNBIASED TEST FOR THE BINOMIAL EXISTENCE AND PROCESSES THE EXISTENCE AND AL REGRESSION FOR MINIMAX VARIANCE OF THE FIT/ THE MODELS WARRANCY PROCESSES A MARKOV PROCESSES A VARIANCE ESTIMATION WITH ONE THE TESTING OF NOTE ON IMMICRATION STATISTICS OF THE INTERNAL MICRATION STATISTICS OF THE INTERNAL MICRATION STATISTICS FOR THE A QUARTERLY ECONOMETRIC MODEL OF THE MIGRATION EXPECTANCY IN THE PLOYED PERSONS TO AND FROM METROPOLITAN AREAS OF THE AN ECONOMETRIC MODEL FOR ANTICIPATIONS AND INVESTMENT BEHAVIOR IN ON THE STATISTICAL DISCREPANCY IN THE REVISED NDS IN DEATH RATES BIAS IN ESTIMATES OF THE RESIDENCE HISTORIES AND EXPOSURE RESIDENCES FOR THE A COMPARISON OF MAJOR REGIONAL CYCLES OF MANUFACTURINC EMPLOYMENT IN THE	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNION OF EVENTS, WITH APPLICATIONS UNION OF PYPERSPHERICAL CONES -UNIQUE QUANTILES UNIQUE SATURATED DESIGNS /ESIGNS OF RESOLUTION GREA UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A TATIONARY MEASURES FOR MARKOV RENEWAL UNIQUENESS OF STATIONARY MEASURES FOR MARKOV RENEWAL UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYNOMI UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERCODIC UNITY DER STRATUM UNIT PER STRATUM UNIT VECTORS FOR RANDOMNESS UNITED STATES MANUFACTURING 1947-1960 UNITED STATES MANUFACTURING 1947-1960 UNITED STATES NATIONAL ACCOUNTS UNITED STATES NATIONAL ACCOUNTS UNITED STATES RELICIOUS CROUPS UNITED STATES RELICIOUS CROUPS UNITED STATES, 1951-1960	AMS 64 AMS 67 AMS 65 BIOKA56 BIOKA56 BIOKA56 AMS 69 BIOKA56 JASA 57 AMS 68 JRSSB65 AMS 68 AMS 68 AMS 66 AMS 68 AMS 66 JASA 67 JASA 67 JASA 65 JASA 67 JASA 69 JASA 69 JASA 69 JASA 69 JASA 69 JASA 69 JASA 61 JASA 69 JASA 61 JASA 66 JASA 61 JASA 66	1064 471 1243 993 465 425 1661 1746 224 57 245 1541 246 1541 163 1841 160 963 379 444 1418 667 1219 444 1418 566 67 1219 44 568 151 67 1219 661
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE RECIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A PROBABILITY OF A ESTIMATION OF NON- TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS EXISTENCE, PRONENESS UNBIASED TEST FOR THE BINOMIAL EXISTENCE AND AL REGRESSION FOR MINIMAX VARIANCE OF THE FIT/ THE MODELS NOTE ON A MARKOV PROCESSES A MARKOV PROCESSES A WARIANCE ESTIMATION WITH ONE INTERNAL MICRATION STATISTICS FOR THE A QUARTERLY ECONOMETRIC MODEL OF THE INTERNAL MICRATION STATISTICS FOR THE A QUARTERLY ECONOMETRIC MODEL OF THE PLOYED PERSONS TO AND FROM METROPOLITAN AREAS OF THE AND ECONOMETRIC MODEL FOR ANTICIPATIONS AND INVESTMENT BEHAVIOR IN ON THE STATISTICAL DISCREPANCY IN THE REVISED NDS IN DEATH RATES BIAS IN ESTIMATES OF THE RESIDENCE HISTORIES AND EXPOSURE RESIDENCES FOR THE A COMPARISON OF MAJOR REGIONAL CYCLES OF MANUFACTURINC EMPLOYMENT IN THE SEASONAL VARIANTON OF DEATHS IN THE SETIMATES OF SAMPLING VARIANCE WHERE TWO	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNION OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES -UNIQUE QUANTILES UNIQUE QUANTILES UNIQUE SATURATED DESIGNS /ESIGNS OF RESOLUTION CREA UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A UNIFORMLY MOST POWERFUL RANDOMIZED UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYMOMI UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYMOMI UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERCODIC UNIT PER STRATUM UNIT VECTORS FOR RANDOMNESS UNITED STATES AGRICULTURE UNITED STATES NOWHITE POPULATION AS INDICATED BY TRE UNITED STATES POPULATION UNITED STATES POPULATION UNITED STATES, 1914-1953, CORR. 60 755 UNITED STATES, 1914-1953, CORR. 60 755 UNITED STATES, 1951-1960 UNITS UNITS STATES SELECTED FROM EACH STRATUM	AMS 64 AMS 67 AMS 65 BIOKA56 BIOKA56 BIOKA56 BIOKA56 AMS 69 AMS 69 AMS 67 AMS 67 AMS 67 AMS 67 AMS 66 AMS 68 JRSSB65 AMS 66 AMS 66 AMS 62 JASA 67 JASA 65 JASA 67 JASA 65 JASA 66 JASA 61	1064 471 1243 993 465 425 16661 1746 2243 1296 2154 451 246 1530 465 1439 841 160 288 810 288 1781 841 160 664 379 444 444 441 824 824 827 827 828 829 839 841 841 841 841 841 841 841 841 841 844 844
USE OF INTER-BLOCK INFORMATION TO OBTAIN ITY FUNCTION IN CERTAIN CASES ON THE LACK OF A THE AUTOGORRELATION FUNCTION OF A SEQUENCE EXTREME VALUES IN THE BINOMIAL EXISTENCE AND UNIQUENESS OF A RLIER AND EDGEWORTH GURVES ARE POSITIVE DEFINITE AND A NOTE ON ESTIMATING A THE MAXIMUM VARIANCE OF RESTRICTED KNOWN NOTE ON THE MOMENT-PROBLEM FOR TH AND GRAM-CHARLIER SERIES THE REGIONS OF A NOTE ON THE BOUNDS OF THE PROBABILITY OF A PROBABILITY OF A ESTIMATION OF NON- TER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE RATIO TESTS EXISTENCE, PRONENESS UNBIASED TEST FOR THE BINOMIAL EXISTENCE AND AL REGRESSION FOR MINIMAX VARIANCE OF THE FIT/ THE MODELS NOTE ON A MARKOV PROCESSES A MARKOV PROCESSES A MARKOV PROCESSES A MARKOV PROCESSES A ONTE ON IMMICRATION STATISTICS FOR THE INTERNAL MICRATION STATISTICS FOR THE A QUARTERLY ECONOMETRIC MODEL OF THE INTERNAL MICRATION EXPECTANCY IN THE PLOYED PERSONS TO AND FROM METROPOLITAN AREAS OF THE AND INVESTMENT BEHAVIOR IN ON THE STATISTICAL DISCREPANCY IN THE REVISED NDS IN DEATH RATES BIAS IN ESTIMATES OF THE RESIDENCE HISTORIES AND EXPECTANCY IN THE REVISED NDS IN DEATH RATES BIAS IN ESTIMATES OF THE RESIDENCE HISTORIES AND EXPOSURE RESIDENCES FOR THE A COMPARISON OF MAJOR REGIONAL CYCLES OF MANUFACTURINC EMPLOYMENT IN THE SEASONAL VARIATION OF DEATHS IN THE SEASONAL VARIATION OF DEATHS IN THE SEASONAL VARIATION OF DEATHS IN THE SETIMATES OF SAMPLING VARIANCE WHERE TWO	UNIFORMLY BETTER ESTIMATORS UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENS UNIFORMLY DISTRIBUTED MODULO 1 UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR UNIMODAL THE CONDITIONS UNDER WHICH GRAM-CHA UNIMODAL DENSITY UNIMODAL DISTRIBUTIONS UNIMODAL DISTRIBUTIONS WHEN ONE OR BOTH TERMINALS ARE UNIMODALITY AND POSITIVITY IN THE ABBREVIATED EDGEWOR UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L UNION OF EVENTS, WITH APPLICATIONS UNION OF HYPERSPHERICAL CONES -UNIQUE QUANTILES UNIQUE SATURATED DESIGNS /ESIGNS OF RESOLUTION GREA UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT UNIQUENESS OF A TATIONARY MEASURES FOR MARKOV RENEWAL UNIQUENESS OF TATIONARY MEASURES FOR MARKOV RENEWAL UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYNOMI UNIQUENESS THEOREM GONCERNING MOMENT DISTRIBUTIONS UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERCODIC UNITY PER STRATUM UNITY VECTORS FOR RANDOMNESS UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ERCODIC UNITED STATES MANUFACTURING 1947-1960 UNITED STATES MANUFACTURING 1947-1960 UNITED STATES NATIONAL ACCOUNTS UNITED STATES NONWHITE POPULATION AS INDICATED BY TRE UNITED STATES POPULATION UNITED STATES POPULATION UNITED STATES POPULATION UNITED STATES POPULATION UNITED STATES, 1951-1960 UNITED STATES, 1951-1960 UNITS UNITED STATES, 1951-1960 UNITS PROM 1940 TO 1950	AMS 64 AMS 67 AMS 65 BIOKA56 BIOKA56 BIOKA56 BIOKA56 AMS 69 AMS 69 AMS 67 AMS 67 AMS 67 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68 AMS 68 AMS 64 JRSA66 AMS 66 AMS 66 AMS 66 AMS 66 AMS 66 JASA 67 JASA 67 JASA 69 JASA 67 JASA 69 JASA 61 JASA 61 JASA 66 JASA 67 JASA 66 JASA 67 JASA 69 JASA 67 JASA 69	1064 471 1243 993 465 425 1661 1746 224 45 1296 2154 451 246 1541 160 288 1203 1781 160 963 664 379 444 1418 1556 67 71219 44 4824 568 161 706 706 706 706 706 706 706 706 706 706

```
TIMATE THE PARAMETER IN THE UNIFORM DENSITY WITHIN D UNITS OF THE TRUE VALUE SAMPLE SIZE REQUIRED TO ES JASA 64
                                                                                                                      550
CE ESTIMATORS IN UNEQUAL PROBABILITY SAMPLING OF TWO UNITS PER STRATUM /ILITIES OF ESTIMATORS AND VARIAN JASA 69
                                                                                                                      540
                     OPTIMUM ALLOCATION OF SAMPLING UNITS TO STRATA WHEN THERE ARE R RESPONSES OF INTERES JASA 65
                                                                                                                      225
MULA FOR THE PROBABILITY THAT TWO SPECIFIED SAMPLINC UNITS WILL OCCUR IN A SAMPLE DRAWN WITH UNEQUAL PROBA JASA 66
                                                                                                                      384
                                         PROCRAMMINC UNIVARIATE AND MULTIVARIATE ANALYSIS OF VARIANCE
                                                                                                            TECH 63
                                                                                                                       95
OF THE POPULATION V/
                      TESTS OF LINEAR HYPOTHESES IN UNIVARIATE AND MULTIVARIATE ANALYSIS WHEN THE RATIOS BIOKA54
                                                                                                                       19
 MULTIVARIATE PAIRED COMPARISONS. THE EXTENSION OF A UNIVARIATE MODEL AND ASSOCIATED ESTIMATION AND TEST P BIOKA69
                                                                                                                       81
ILITY OF THE USUAL CONFIDENCE SETS FOR THE MEAN OF A UNIVARIATE OR BIVARIATE NORMAL POPULATION ADMISSIB AMS 69 1042
                                                                                        UPPER AND LOWER PR BIOKA67
OBABILITY INFERENCES BASED ON A SAMPLE FROM A FINITE UNIVARIATE POPULATION
                                                                                                                     515
TO THE INVERSE DISTRIBUTION FUNCTION OF A CONTINUOUS UNIVARIATE POPULATION FROM THE ORDER STATISTICS OF A BIOKA69
                  CHARACTERIZATION THEOREMS FOR SOME UNIVARIATE PROBABILITY DISTRIBUTIONS
                  CHARACTERIZATION THEOREMS FOR SOME UNIVARIATE PROBABILITY DISTRIBUTIONS
                                                                                                             JRSSB66
                                                                                                                      143
           APPROXIMATE SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE STOCHASTIC PROCESSES
                                                                                                             JRSSB60
                                                                                                                      376
                    ON PRODUCT MOMENTS FROM A FINITE UNIVERSE
                                                                                                             JASA 6B
                                                                                                                      535
       MORE RESULTS ON PRODUCT MOMENTS FROM A FINITE UNIVERSE
                                                                                                             JASA 69
                                                                                                                      864
                                                                  /E PRODUCT-MOMENT CORRELATION COEFFICIENT BIOKA51
 IN RANDOM SAMPLES OF ANY SIZE DRAWN FROM NON-NORMAL UNIVERSES
                                                                                                                      219
                  SAMPLING FROM BIVARIATE NON-NORMAL UNIVERSES BY MEANS OF COMPOUND NORMAL DISTRIBUTIONS
                                                                                                             BIOKA52
                                                                                                                      238
                            TEACHING BIOMETRY IN THE UNIVERSITY
                                                                                                             BTOCS68
                                                                                                                        1
RECRESSION
                                                     UNLIMITED SIMUTANEOUS DISCRIMINATION INTERVALS IN
                                                                                                             BTOKA67
                                                                                                                      1.3.3
IGN WITH A MIXED MO/ NOTE THE QUASI-F TEST FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HIERARCHAL DES BIOCS66
                                                                                                                      937
             ESTIMATING THE TOTAL PROBABILITY OF THE UNOBSERVED OUTCOMES OF AN EXPERIMENT
                                                                                                              AMS 6B
                                                                                                                      256
METRIC SUM OF RANKS PROCEDURE FOR RELATIVE SPREAD IN UNPAIRED SAMPLES, CORR. 61 1005
                                                                                                   A NONPARA JASA 60
                                                                                                                      429
                    HISTORICAL NOTES ON THE WILCOXON UNPAIRED TWO-SAMPLE TEST
                                                                                                             JASA 57
                                                                                                                      356
THEORETICAL FRAMEWORK
                                                 THE UNRELATED QUESTION RANDOMIZED RESPONSE MODEL,
                                                                                                             JASA 69
             THE UNBIASEDNESS OF ZELLNER'S SEEMINGLY UNRELATED RECRESSION EQUATIONS ESTIMATORS
                                                                                                             JASA 67
                                                                                                                      141
                          ESTIMATORS FOR SEEMINGLY UNRELATED RECRESSION EQUATIONS, SOME EXACT FINITE
SAMPLE RESULTS
                                                                                                             JASA 63
                                                                                                                      977
  PROPERTIES OF ALTERNATIVE ESTIMATORS OF SEEMINGLY UNRELATED REGRESSIONS
                                                                                               SMAIL SAMPLE JASA 6B 1180
        AN EFFICIENT METHOD OF ESTIMATING SEEMINGLY UNRELATED REGRESSIONS AND TESTS FOR ACCREGATION BIAS JASA 62
                                                                                                                     34B
BUT NOT REPLACED
                              THE COMPUTATION OF THE UNRESTRICTED AOQL WHEN DEFECTIVE MATERIAL IS REMOVED
                                                                                                             JASA 69
                                                                                                                      665
                              QUOTA FULFILMENT USING UNRESTRICTED RANDOM SAMPLING
                                                                                                             BIOKA61
                                                                                                                      333
                                      THE CORRELATED UNRESTRICTED RANDOM WALK
                                                                                                             JRSSB63
                                                                                                                      394
             RELATIONSHIP OF CENERALIZED POLYKAYS TO UNRESTRICTED SUMS FOR BALANCED COMPLETE FINITE POPULA AMS 6B
                                                                                                                      643
         A MONTE CARLO SOLUTION OF A TWO-DIMENSIONAL UNSTRUCTURED CLUSTER PROBLEM
                                                                                                            BIOKA67
CONDITIONS FOR THE EXISTENCE OF SOME SYMMETRICAL AND UNSYMMETRICAL TRIANCULAR PARTIALLY BALANCED INCOMPLET AMS 63
                                                                                                                      348
ER CONTAGIOUS DISTRIBUTIONS A METHOD OF ANALYSING UNTRANSFORMED DATA FROM THE NEGATIVE BINOMIAL AND OTH BIOKA68
                                                                                                                      163
                                                      UNUSUAL FREQUENCY DISTRIBUTIONS
                                                                                                             BIOCS65
                                                                                                                      159
 OF LEADING COEFFICIENTS FOR ORTHOCONAL POLYNOMIALS UP TO N = 26
                                                                                               COMPLETE SET TECH 65
                                                                                                                      644
LY CENSORED SAMPLES, PART I. THE NORMAL DISTRIBUTION UP TO SAMPLES OF SIZE 10'
                                                                                 /ICS FROM SINGLY AND DOUB AMS 39
                                                                                                                      325
                                                 THE UP-AND-DOWN METHOD FOR SMALL SAMPLES
                                                                                                                      967
                                                                                                            JASA 65
                  ASYMPTOTIC PROPERTIES OF THE BLOCK UP-AND-DOWN METHOD IN BIO-ASSAY
                                                                                                              AMS 67 1822
                                 THE MULTIPLE SAMPLE UP-AND-DOWN METHOD IN BIOASSAY
                                                                                                             JASA 69
                                                                                                                     147
                                                                                                              AMS 67
                      ALTERNATIVE PROOFS FOR CERTAIN UPCROSSING INEQUALITIES
                                                                                                                      735
                                           A NOTE ON UPCROSSINGS OF SEMIMARTINGALES
                                                                                                                      72B
                                                                                                              AMS 66
                           A CHARACTERIZATION OF THE UPPER AND LOWER CLASSES IN TERMS OF CONVERCENCE RATES
                                                                                                              AMS 69 1120
                  A SIMPLE PROCEDURE FOR DETERMINING UPPER AND LOWER LIMITS FOR THE AVERACE SAMPLE RUN LEN JRSSB67
                                                                                                                      263
CLOSED INTERVAL
                                                     UPPER AND LOWER PROBABILITIES GENERATED BY A RANDOM
                                                                                                             AMS 68
                                                                                                                      957
MULTIVALUED MAPPING
                                                     UPPER AND LOWER PROBABILITIES INDUCED BY A
                                                                                                              AMS 67
                                                                                                                      325
PLE FROM A FINITE UNIVARIATE POPULATION
                                                     UPPER AND LOWER PROBABILITY INFERENCES BASED ON A SAM BIOKA67
                                                                                                                      515
                                                     UPPER AND LOWER PROBABILITY INFERENCES FOR FAMILIES
OF HYPOTHESES WITH MONOTONE DENSITY RATIOS
                                                                                                             AMS 69
                                                                                                                      953
AIN PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS AN UPPER BOUND FOR THE NUMBER OF DISJOINT BLOCKS IN CERT AMS 64
                                                                                                                      398
                                                  AN UPPER BOUND FOR THE SAMPLE STANDARD DEVIATION
                                                                                                             TECH 62
                                                                                                                     134
                                        ERRATA, ' AN UPPER BOUND FOR THE SAMPLE STANDARD DEVIATION '
                                                                                                             TECH 62
                                                                                                                      440
                                         ERRATA, 'AN UPPER BOUND FOR THE SAMPLE STANDARD DEVIATION'
                                                                                                             TECH 63
                                                                                                                      417
EDURE WITH A SAMPLE FROM A NORMAL POPULATION WHEN AN UPPER BOUND TO THE STANDARD DEVIATION IS KNOWN
                                                                                                       /ROC JASA 60
                                                                                                                      94
IES FOR THE SUM OF INDEPENDENT, BOUNDED RANDOM VA/ UPPER BOUNDS ON THE MOMENTS AND PROBABILITY INEQUALIT BIOKA65
                                                                                                                      559
HE PROBABILITY THAT Y IS LESS THAN/ NONPARAMETRIC UPPER CONFIDENCE BOUNDS, AND CONFIDENCE LIMITS, FOR T JASA 64
                                                                                                                      906
MATRIX IN MULTIVARIATE ANALYSIS
                                                     UPPER PERCENTAGE POINTS OF THE LARGEST ROOT OF A
                                                                                                             BIOKA67
                                                     UPPER 5 AND 1 PERCENT POINTS OF THE MAXIMUM F-RATIO
                                                                                                            BIOKA52
                                                                                                                      422
                                  BERNARD FRIEDMAN'S URN
                                                                                                              AMS 65
                                                                                                                      956
CESSES AND RELATED LIMIT THEOREMS
                                       EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV BRANCHING PRO AMS 6B 1B01
           EQUIVALENCE AND SINGULARITY FOR FRIEDMAN URNS
                                                                                                              AMS 66
                                                                                                                     268
       HOW MANY OF A GROUP OF RANDOM NUMBERS WILL BE USABLE IN SELECTING A PARTICULAR SAMPLE
                                                                                                                     1.02
                                                                                                             JASA 59
                     RECENT EFFORTS TO IMPROVE LAND USE INFORMATION
                                                                                                            JASA 66
                                                                                                                      647
 GENERALIZED MULTIVARIATE ANALYSIS OF VARIANCE MODEL USEFUL ESPECIALLY FOR GROWTH CURVE PROBLEMS
                                                                                                          A BIOKA64
                                                                                                                     313
 ON 'THE JACOBIANS OF CERTAIN MATRIX TRANSFORMATION USEFUL IN MULTIVARIATE ANALYSIS'
                                                                                                       NOTE BIOKA53
                                                                                                                      43
 BIVARIATE NORMAL POPULATION ADMISSIBILITY OF THE USUAL CONFIDENCE SETS FOR THE MEAN OF A UNIVARIATE OR AMS 69 1042 UNKNOWN LOCATION AND SCAL/ INADMISSIBILITY OF THE USUAL ESTIMATORS OF SCALE PARAMETERS IN PROBLEMS WITH AMS 68 29
SE DISC/ L'ANALYSE EN COMPOSANTES PRINCIPALES, SON UTILISATION EN GENETIQUE ET SES RAPPORTS AVEC L'ANALY BIOCS66
     THEORY OF SUBJECTIVE PROBABILITIES AND EXPECTED UTILITIES
                                                                                                  A GENERAL AMS 69 1419
                                   BOUNDED EXPECTED UTILITY
                                                                                                             AMS 67 1054
LLY DECAYING UTILITY
                                            EXPECTED UTILITY FOR QUEUES SERVICING MESSAGES WITH EXPONENTIA AMS 61
                                                                                                                     5B7
ORROBORATION, EXPLANATORY POWER, INFORMATION AND THE UTILITY OF EXPERIMENTS (CORR. 68 203) /EVIDENCE, G JRSSB60
                                                                                                                     319
                                             THE UTILIZATION OF A KNOWN COEFFICIENT OF VARIATION IN JASA 64
OPTIMUM UTILIZATION OF AUXILIARY INFORMATION, (PI)PS SAMPLIN JRSSB67
THE ESTIMATION PROCEDURE
                                                                                                            JASA 64 1225
C OF TWO UNITS FROM A STRATUM (ADDENDUM 6/
                                                                                                                     374
                                             ON THE UTILIZATION OF MARKED SPECIMENS IN ESTIMATING POPULAT BIOKA53
                                                                                                                     170
IONS OF FLYING INSECTS
IVE ANALYSIS. GENERAL THEORY AND THE CA/ EFFICIENT UTILIZATION OF NON-NUMERICAL INFORMATION IN QUANTITAT AMS 63 1347
                                     CROUP SCREENING UTILIZING BALANCED AND PARTIALLY BALANCED INCOMPLETE BIOCS65
BLOCK DESIGNS
                                                                                                                     865
IAL RELATIONSHIP AMONG EICHT POPULATIONS ZEA MAYS L. UTILIZING INFORMATION FROM A DIALLEL MATING DESIGN
                                                                                                            BTOGS68
                                                                                                                     867
                                                  ON UTILIZING INFORMATION FROM A SECOND SAMPLE IN
ESTIMATING VARIANCE
                                                                                                            BIOKA69 NO.3
       SEVERAL METHODS OF RE-DESIGNING AREA SAMPLES UTILIZING PROBABILITIES PROPORTIONAL TO SIZE WHEN THE JASA 6B 12B0
            ON ADDELMAN'S 2-TO-THE-(17-9) RESOLUTION V PLAN
                                                                                                            TECH 66 705
        CONSTRUCTION OF A 2-TO-THE-(17-9) RESOLUTION V PLAN IN EIGHT BLOCKS OF 32
                                                                                                            TECH 65
                                                                                                                     439
       RUN LENCTH OF THE CUMULATIVE SUM CHART WHEN A V-MASK IS USED
                                                                                                THE AVERACE JRSSB61 149
                       THE GOODNESS OF FIT STATISTIC V-SUB-N, DISTRIBUTION AND SIGNIFICANCE POINTS
                                                                                                            BIOKA65
                                                                                                                     309
                                                 THE V-SUB-NM TWO-SAMPLE TEST
                                                                                                             AMS 6B 923
       ON THE MOMENT GENERATING FUNCTION OF PILLAI'S V-SUPER-S CRITERION
                                                                                                             AMS 6B
```

TITLE WORD INDEX UNI - VAL

LY BALANCED INCOMPLETE BLOCK DESIGNS WITH PARAMETERS V=28, N1=12	2, N2=15 AND P2(1,1)=4 /CTION OF PARTIAL	AMS 66	1783
SPREAD OF DISEASES IN A RECTANGULAR PLANTATION WITH VACANCIES		BIOKA53	287
THE DISTRIBUTION OF VACANCIES O	N A LINE	JRSSB59	364
A NOTE ON VACANCIES O	N A LINE	JRSSB61	207
ON COMBINING THE RESULTS FROM CLINICAL TRIALS OF A VACCINE		BIOCS65	616
ACCEPTANCE SCHEMES IN TESTING ANTIGENICITY OF VACCINES	COMPARATIVE SAMPLING	BIOCS66	684
PLUSIEURS CARACTERES PONDERATION DES VALEURS GEN			295
COMMON STOCK VALIDATION	RESULTS OF SAMPLING INSPECTION BY OF CONSUMER FINANCIAL CHARACTERISTICS,	1464 60	415
CONDITIONS FOR OPTIMALITY AND VALIDITY AN	ID SIMPLE LEAST SQUARES THEORY	AMS 69	1617
WHO RECEIVED WELFARE ASSISTANCE DURING 1959 THE VALIDITY OF			
TESTING THE APPROXIMATE VALIDITY OF		JRSSB54	261
BUTION OF LIFE IS EXPONENTIAL, PART/ TESTS FOR THE VALIDITY OF			В3
IBUTION OF LIFE IS EXPONENTIAL, PAR/ TESTS FOR THE VALIDITY OF			167
E GOODNESS-OF-FIT TESTS FOR SMALL BUT/ COMPARATIVE VALIDITY OF			619
AND KOLMOGOROV GOODNESS-OF-FIT TESTS WITH RESPECT TO VALIDITY, C	ORR. 66 1249 /OF THE PEARSON CHI-SQUARE	JASA 65	854
THE REGRESSION OF TRUE VALUE ON ESTIMATED VALUE		BIOKA60	457
ESTIMATING THE VARIANCE WITHIN D UNITS OF THE TRUE VALUE	SAMPLE SIZE REQUIRED FOR	AMS 64	43B
ER IN THE UNIFORM DENSITY WITHIN D UNITS OF THE TRUE VALUE SA	MPLE SIZE REQUIRED TO ESTIMATE THE PARAMET	JASA 64	550
LINEAR ESTIMATES OF PARAMETERS IN THE EXTREME VALUE DISTR	IBUTION	TECH 66	3
STICS ESTIMATION OF THE PARAMETERS OF THE EXTREME VALUE DISTR	IBUTION BY USE OF TWO OR THREE ORDER STATI	BIOKA69	429
GAME VALUE DISTR		AMS 67	242
GAME VALUE DISTR		AMS 67	251
	D AND THE ASYMPTOTIC RELATIVE EFFICIENCY		308
	D FOR ADJUDGING RELATIVE EFFICIENCY OF STA		109
PRESENT VALUE OF A		AMS 64	
ON THE PARTIES OF A	GMODDED WARRINGALD	AMS 66	
ON THE EXPERIED VALUE OF A	CTODDED CTOCHACTIC CENTENCE		456
ON THE EXPECTED VALUE OF A		AMS 69	
ON THE EXPECTED VALUE OF A	SIULIED SUDMAKIINGALE		
A NOTE ON THE EXPECTED VALUE OF AN	INVERSE MATKIX	8IOKA69	NU.3
THE VALUE OF IN	DIRECT SELECTION, 1. MASS SELECTION	RIOCS65	682
PRACTICAL VALUE OF IN	DIRECT SELECTION, 1. MASS SELECTION TERNATIONAL EDUCATIONAL STATISTICS THOGONAL POLYNOMIALS IN THE ANALYSIS OF	JASA 56	605
NCED INCOMPLETE BLOCK DESIG/ ON USING AN INCORRECT VALUE OF SI	GMA-SQUARE-SUB-B-OVER-SIGMA-SQUARE IN BALA		
NCED INCOMPLETE BLOCK DESIG/ ON USING AN INCORRECT VALUE OF SI THE REGRESSION OF TRUE VALUE ON ES' BACTERIAL EXTINCTION TIME AS AN EXTREME VALUE PHENO	TIMATED VALUE	BIOKA60	457
BACTERIAL EXTINCTION TIME AS AN EXTREME VALUE PHENO	MENON	BIOCS67	B35
AN ESTIMATOR OF HIGH EFFICIENCY IN BIVARIATE EXTREME VALUE THEOR	Y APPLICATION OF	JASA 69	NO.4
TS TO, EDWARD C. POSNER, 'THE APPLICATION OF EXTREME VALUE THEOR'	Y TO ERROR FREE COMMUNICATION' COMMEN	TECH 66	363
THE APPLICATION OF EXTREME VALUE THEOR	Y TO ERROR-FREE COMMUNICATION	TECH 65	517
THE RATIONAL ORIGIN FOR MEASURING SUBJECTIVE VALUES		JASA 57	458
ELEMENTS OF THE THEORY OF EXTREME VALUES		TECH 60	27
QUERY, REJECTION OF OUTLYING VALUES		TECH 64	228
QUERY, BIVARIATE SAMPLES WITH MISSING VALUES		TECH 67	679
USING SUBSAMPLE VALUES AS TYPICAL VALUES		JASA 69	
OF POLYNOMIALS TO EQUIDISTANT DATA WITH MISSING VALUES	THE FITTING		
	APPROXIMATIONS		
FOR MEAN SOMARE SMCCESSIVE DIFFERENCE CRITICAL VALUES		TECH 6B	
FOR MEAN SQUARE SUCCESSIVE DIFFERENCE CRITICAL VALUES FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES			397
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES	APPROXIMATE FORMULAE	BIOKA58	397 447
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME	BIOKA58 JASA 6B	397 447 8B9
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY	BIOKA58 JASA 6B AMS 62	397 447 8B9 810
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-MORMAL POPULATIO	BIOKA58 JASA 6B AMS 62 8IOKA67	397 447 8B9 810 541
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /FI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-MORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 62	397 447 8B9 810 541 439
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-NORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 62 BIOKA54	397 447 8B9 810 541 439 559
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AS T	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-NORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YPICAL VALUES	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 62 BIOKA54 JASA 69	397 447 8B9 810 541 439 559 NO.4
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I USING SUBSAMPLE VALUES AS T CRITICAL VALUES FOR I	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-MORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH 'YPICAL VALUES BIVARIATE STUDENT T-TESTS	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 62 BIOKA54 JASA 69 JASA 69	397 447 889 810 541 439 559 No.4 637
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I USING SUBSAMPLE VALUES FOR I ROTTECAL VALUES FOR I NOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR I	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-MORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YEARLY LALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 62 BIOKA54 JASA 69 JASA 69 BIOCS66	397 447 889 810 541 439 559 No.4 637 179
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /FI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I USING SUBSAMPLE VALUES AS T CRITICAL VALUES FOR I NOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR I R DISPERSION AND ITS NORMAL APPROX/ EXACT CRITICAL VALUES FOR I	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-NORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 62 BIOKA54 JASA 69 JASA 69 BIOCS66 TECH 68	397 447 8B9 810 541 439 559 No.4 637 179 497
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I CRITICAL VALUES FOR I NOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR I R DISPERSION AND ITS NORMAL APPROX/ EXACT CRITICAL VALUES FOR I STIC AN EXTENDED TABLE OF CRITICAL VALUES FOR I	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-MORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH 'YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST DUNCAN'S MULTIPLE RANGE TEST THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 62 BIOKA54 JASA 69 JASA 69 BIOCS66 TECH 68 JASA 64	397 447 8B9 810 541 439 559 No.4 637 179 497 925
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I CRITICAL VALUES FOR I NOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR I R DISPERSION AND ITS NORMAL APPROX/ EXACT CRITICAL VALUES FOR I STIC AN EXTENDED TABLE OF CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-MORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH 'YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST DUNCAN'S MULTIPLE RANGE TEST THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 62 BIOKA54 JASA 69 JASA 69 JASA 69 TECH 68 JASA 64 BIOKA58	397 447 8B9 810 541 439 559 NO.4 637 179 497 925 279
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I CRITICAL VALUES FOR I NOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR I R DISPERSION AND ITS NORMAL APPROX/ EXACT CRITICAL VALUES FOR I STIC AN EXTENDED TABLE OF CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-MORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH 'YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST DUNCAN'S MULTIPLE RANGE TEST THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 62 BIOKA54 JASA 69 JASA 69 BIOCS66 TECH 68 BIOKA58 BIOKA58	397 447 8B9 810 541 439 559 NO.4 637 179 497 925 279 203
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I USING SUBSAMPLE VALUES AS T CRITICAL VALUES FOR I NOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR I R DISPERSION AND ITS NORMAL APPROX/ EXACT CRITICAL VALUES FOR I STIC AN EXTENDED TABLE OF CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-NORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MODO'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 62 BIOKA54 JASA 69 BIOCS66 TECH 68 JASA 64 BIOKA58 BIOKA56 BIOKA56	397 447 8B9 810 541 439 559 No.4 637 179 497 925 279 203 177
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES AND I ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I CRITICAL VALUES FOR I ONOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR I R DISPERSION AND ITS NORMAL APPROX/ EXACT CRITICAL VALUES FOR I STIC AN EXTENDED TABLE OF CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLES OF CRITICAL VALUES FOR I CORRIGENDA	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-MORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC WILCOXON'S TEST STATISTIC	BIOKA58 JASA 6B AMS 62 BIOKA67 JASA 62 BIOKA54 JASA 69 JASA 69 JASA 69 JASA 64 BIOKA56 BIOKA56 BIOKA56 BIOKA63 BIOKA64	397 447 8B9 810 541 439 559 NO.4 637 179 497 925 279 203 177 527
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I CRITICAL VALUES FOR I NOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR I R DISPERSION AND ITS NORMAL APPROX/ EXACT CRITICAL VALUES FOR I STIC AN EXTENDED TABLE OF CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA CORRIGENDA CORRIGENDA CORRIGENDA CORRIGENDA CORRIGENDA CORRIGENDA	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-MORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH 'YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC WILCOXON'S TEST STATISTIC.' A NORMAL AND A TRUNCATED NORMAL DISTRIBUT	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 62 BIOKA54 JASA 69 JASA 66 TECH 68 JASA 64 BIOKA58 BIOKA58 BIOKA56 BIOKA65 BIOKA65	397 447 8B9 810 541 439 559 NO.4 637 179 497 925 279 203 177 527 104
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND :	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-NORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC.' IA NORMAL AND A TRUNCATED NORMAL DISTRIBUT A NORMAL AND A TRUNCATED NORMAL DISTRIBUT	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 62 BIOKA54 JASA 69 BIOCS66 TECH 68 JASA 64 BIOKA58 BIOKA63 BIOKA63 BIOKA64 TECH 64	397 447 8B9 810 541 439 559 NO.4 637 179 497 925 279 203 177 527 104 469
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I CRITICAL VALUES FOR I CRITICAL VALUES FOR I R DISPERSION AND ITS NORMAL APPROX/ EXACT CRITICAL VALUES FOR I STIC AN EXTENDED TABLE OF CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLES OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I ON QUERY, THE SUM OF VALUES FROM ION (CONTD)' QUERY, THE SUM OF VALUES FROM QUERY, MISSING VALUES IN F.	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-NORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH 'YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MODO'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC WILCOXON'S TEST STATISTIC A NORMAL AND A TRUNCATED NORMAL DISTRIBUT A NORMAL AND A TRUNCATED NORMAL DISTRIBUT ACTORIAL EXPERIMENTS	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 69 BIOKA54 JASA 69 JASA 69 BIOCS66 TECH 68 JASA 64 BIOKA58 BIOKA58 BIOKA58 BIOKA64 TECH 64 TECH 64 TECH 65	397 447 8B9 810 541 439 559 NO.4 637 179 497 925 279 203 177 527 104 469 649
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I CRITICAL VALUES AND I CRITICAL VALUES FOR I NOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR I STIC AN EXTENDED TABLE OF CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLE OF CRITICAL VALUES FOR I ON QUERY, THE SUM OF VALUES FROM ION (CONTD)' QUERY, THE SUM OF VALUES FROM ION (CONTD)' QUERY, THE SUM OF VALUES IN F. MISSING VALUES IN E.	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-MORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH 'YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MONOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC.' A NORMAL AND A TRUNCATED NORMAL DISTRIBUT A NORMAL AND A TRUNCATED NORMAL DISTRIBUT ACTORIAL EXPERIMENTS INEAR MULTIPLE DISCRIMINANT ANALYSIS	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 62 BIOKA54 JASA 69 JASA 69 JASA 69 BIOCS66 TECH 68 JASA 64 BIOKA58 BIOKA56 BIOKA56 BIOKA64 TECH 64 TECH 64 TECH 64 BIOCS68	397 447 889 810 541 439 559 No.4 637 179 497 925 279 203 177 527 104 469 835
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I CRITICAL VALUES FOR I NOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR I R DISPERSION AND ITS NORMAL APPROX/ EXACT CRITICAL VALUES FOR I STIC AN EXTENDED TABLE OF CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLES OF CRITICAL VALUES FOR I ON QUERY, THE SUM OF VALUES FROM QUERY, THE SUM OF VALUES FROM QUERY, MISSING VALUES IN IL ELECTRONIC COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN MI	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-MORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH 'YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC A NORMAL AND A TRUNCATED NORMAL DISTRIBUT ACTORIAL EXPERIMENTS INFAR MULTIPLE DISCRIMINANT ANALYSIS ULTIVARIATE DATA SUITABLE FOR USE WITH AN	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 62 BIOKA54 JASA 69 JASA 69 BIOCS66 TECH 68 BIOKA58 BIOKA56 BIOKA63 BIOKA64 TECH 64 TECH 64 TECH 64 TECH 65 BIOCS66 JRSSB60	397 447 889 810 541 439 559 NO.4 637 179 497 925 279 203 177 527 104 469 649 635 302
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I USING SUBSAMPLE VALUES AND I CRITICAL VALUES FOR I NOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR I STIC AN EXTENDED TABLE OF CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I ON QUERY, THE SUM OF VALUES FOR I QUERY, MISSING VALUES IN FORM MISSING VALUES IN FORM ELECTRONIC COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN MISSING	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-NORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC.' A NORMAL AND A TRUNCATED NORMAL DISTRIBUT A NORMAL AND A TRUNCATED NORMAL DISTRIBUT ACTORIAL EXPERIMENTS INEAR MULTIPLE DISCRIMINANT ANALYSIS ULTIVARIATE DATA SUITABLE FOR USE WITH AN ULTIVARIATE STATISTICS, I. REVIEW OF THE	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 62 BIOKA54 JASA 69 JASA 69 BIOCS66 TECH 68 JASA 64 BIOKA58 BIOKA56 BIOKA63 BIOKA64 TECH 64 TECH 64 TECH 65 BIOCS68 JASA 64	397 447 889 810 541 439 559 NO.4 637 179 497 925 279 203 177 527 104 469 649 835 302 595
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I CRITICAL VALUES FOR I NOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR I R DISPERSION AND ITS NORMAL APPROX/ EXACT CRITICAL VALUES FOR I STIC AN EXTENDED TABLE OF CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLES OF CRITICAL VALUES FOR I ON QUERY, THE SUM OF VALUES FROM QUERY, THE SUM OF VALUES FROM QUERY, MISSING VALUES IN F, MISSING VALUES IN E ELECTRONIC COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN P.	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-MORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC WILCOXON'S TEST STATISTIC A NORMAL AND A TRUNCATED NORMAL DISTRIBUT A NORMAL AND A TRUNCATED NORMAL DISTRIBUT ACTORIAL EXPERIMENTS INEAR MULTIPLE DISCRIMINANT ANALYSIS ULTIVARIATE DATA SUITABLE FOR USE WITH AN ULTIVARIATE STATISTICS, I REVIEW OF THE ARTIAL DIALLEL CROSS EXPERIMENTS	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 69 BIOKA54 JASA 69 JASA 69 BIOCS66 TECH 68 JASA 64 BIOKA58 BIOKA58 BIOKA64 TECH 64 TECH 64 TECH 64 TECH 65 BIOCS68 JASA 66 BIOCS68	397 447 889 810 541 439 559 NO.4 637 179 925 279 203 177 527 104 4649 835 302 595 903
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I USING SUBSAMPLE VALUES AND I CRITICAL VALUES FOR I NOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR I STIC AN EXTENDED TABLE OF CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLES OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I ON QUERY, THE SUM OF VALUES FROM QUERY, MISSING VALUES IN FOR I ELECTRONIC COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN MISSING VAL	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-NORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC.' A NORMAL AND A TRUNCATED NORMAL DISTRIBUT A NORMAL AND A TRUNCATED NORMAL DISTRIBUT ACTORIAL EXPERIMENTS INEAR MULTIPLE DISCRIMINANT ANALYSIS ULTIVARIATE DATA SUITABLE FOR USE WITH AN ULTIVARIATE STATISTICS, I REVIEW OF THE ARTIAL DIALLEL CROSS EXPERIMENTS	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 62 BIOKA54 JASA 69 JASA 69 JASA 69 BIOCS66 TECH 68 JASA 64 BIOKA58 BIOKA58 BIOKA58 BIOKA58 BIOKA64 TECH 64 TECH 64 TECH 65 BIOCS68 JASA 66 BIOCS68 JASA 66 BIOCS68 BIOCS68 JASA 66 BIOCS68	397 447 889 810 541 439 550.4 637 179 497 925 279 203 177 527 104 469 649 835 302 595 903
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I USING SUBSAMPLE VALUES AS T CRITICAL VALUES FOR I NOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR I STIC AN EXTENDED TABLE OF CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLES OF CRITICAL VALUES FOR I ON QUERY, THE SUM OF VALUES FOR I QUERY, MISSING VALUES IN F. MISSING VALUES IN F. MISSING VALUES IN R. MISSING VALUES IN MISSING VALUES IN R.	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-NORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC.' A NORMAL AND A TRUNCATED NORMAL DISTRIBUT A NORMAL AND A TRUNCATED NORMAL DISTRIBUT A NORMAL AND A TRUNCATED NORMAL DISTRIBUT ACTORIAL EXPERIMENTS INEAR MULTIPLE DISCRIMINANT ANALYSIS ULTIVARIATE DATA SUITABLE FOR USE WITH AN ULTIVARIATE STATISTICS, I REVIEW OF THE ARTIAL DIALLEL CROSS EXPERIMENTS ESPONSE SURFACE DESIGNS AMPLES FROM A NORMAL DISTRIBUTION	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 62 BIOKA54 JASA 69 JASA 69 JASA 69 BIOCS66 BIOKA58 BIOKA58 BIOKA58 BIOKA58 BIOKA58 BIOKA58 BIOKA64 TECH 64 TECH 64 TECH 65 BIOCS68	397 447 8B9 810 541 439 NO.4 637 179 925 279 203 177 527 104 469 649 835 595 903 389
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I CRITICAL VALUES FOR I NOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR I R DISPERSION AND ITS NORMAL APPROX/ EXACT CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLES OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I ON QUERY, THE SUM OF VALUES FOR I QUERY, THE SUM OF VALUES FROM QUERY, MISSING VALUES IN I ELECTRONIC COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN IL LITERATURE MISSING VALUES IN I THE DISTRIBUTION OF EXTREMAL AND NEARLY EXTREMAL VALUES IN S. DISTRIBUTION OF PRODUCT AND OF QUOTIENT OF MAXIMUM VALUES IN S.	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-MORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC WILCOXON'S TEST STATISTIC 'A NORMAL AND A TRUNCATED NORMAL DISTRIBUT A NORMAL AND A TRUNCATED NORMAL DISTRIBUT ACTORIAL EXPERIMENTS INEAR MULTIPLE DISCRIMINANT ANALYSIS ULTIVARIATE DATA SUITABLE FOR USE WITH AN ULTIVARIATE STATISTICS, I REVIEW OF THE 'ARTIAL DIALLEL CROSS EXPERIMENTS ESPONSE SURFACE DESIGNS AMPLES FROM A NORMAL DISTRIBUTION AMPLES FROM A POWER-FUNCTION POPULATION	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 69 BIOKA54 JASA 69 JASA 69 BIOCS66 TECH 68 BIOKA58 BIOKA58 BIOKA56 BIOKA64 TECH 64 TECH 64 TECH 64 TECH 65 BIOCS68 JASA 66 BIOCS68 JASA 66 BIOCS68 JASA 66 BIOCS68 JASA 64	397 447 8B9 810 541 439 559 NO.4 637 179 925 279 203 177 527 104 469 835 309 879 89
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I CRITICAL VALUES FOR I NOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR I R DISPERSION AND ITS NORMAL APPROX/ EXACT CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLES OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I ON QUERY, THE SUM OF VALUES FOR I QUERY, THE SUM OF VALUES FROM QUERY, MISSING VALUES IN I ELECTRONIC COMP/ A METHOD OF ESTIMATION OF MISSING VALUES IN IL LITERATURE MISSING VALUES IN I THE DISTRIBUTION OF EXTREMAL AND NEARLY EXTREMAL VALUES IN S. DISTRIBUTION OF PRODUCT AND OF QUOTIENT OF MAXIMUM VALUES IN S.	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-MORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC WILCOXON'S TEST STATISTIC 'A NORMAL AND A TRUNCATED NORMAL DISTRIBUT A NORMAL AND A TRUNCATED NORMAL DISTRIBUT ACTORIAL EXPERIMENTS INEAR MULTIPLE DISCRIMINANT ANALYSIS ULTIVARIATE DATA SUITABLE FOR USE WITH AN ULTIVARIATE STATISTICS, I REVIEW OF THE 'ARTIAL DIALLEL CROSS EXPERIMENTS ESPONSE SURFACE DESIGNS AMPLES FROM A NORMAL DISTRIBUTION AMPLES FROM A POWER-FUNCTION POPULATION	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 69 BIOKA54 JASA 69 JASA 69 BIOCS66 TECH 68 BIOKA58 BIOKA58 BIOKA56 BIOKA64 TECH 64 TECH 64 TECH 64 TECH 65 BIOCS68 JASA 66 BIOCS68 JASA 66 BIOCS68 JASA 66 BIOCS68 JASA 64	397 447 8B9 810 541 439 559 NO.4 637 179 925 279 203 177 527 104 469 835 309 879 89
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I USING SUBSAMPLE VALUES AS T CRITICAL VALUES FOR I R DISPERSION AND ITS NORMAL APPROX/ EXACT CRITICAL VALUES FOR I STIC AN EXTENDED TABLE OF CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLES OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I UN QUERY, THE SUM OF VALUES FOR I QUERY, MISSING VALUES IN F. MISSING VALUES IN F. MISSING VALUES IN M	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-NORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC.' A NORMAL AND A TRUNCATED NORMAL DISTRIBUT A NORMAL AND A TRUNCATED NORMAL DISTRIBUT ACTORIAL EXPERIMENTS INEAR MULTIPLE DISCRIMINANT ANALYSIS ULTIVARIATE DATA SUITABLE FOR USE WITH AN ULTIVARIATE STATISTICS, I REVIEW OF THE ARTIAL DIALLEL CROSS EXPERIMENTS ESPONSE SURFACE DESIGNS AMPLES FROM A NORMAL DISTRIBUTION AMPLES FROM A POWER-FUNCTION POPULATION NIFORMLY MIXING STATIONARY STOCHASTIC ERTAIN COVERAGE PROBABILITIES	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 62 BIOKA54 JASA 69 BIOCS66 TECH 68 JASA 64 BIOKA58 BIOKA66 BIOKA66 BIOKA64 TECH 64 TECH 65 BIOCS68 JASA 64 TECH 65 BIOCS68 JASA 66 BIOCS68 JASA 66 BIOCS68 JASA 66 BIOCS68 JASA 66 BIOCS68	397 447 8B9 810 541 439 NO.4 637 179 925 279 203 177 527 104 469 649 835 595 903 389 877 993 NO.3
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I CRITICAL VALUES FOR I USING SUBSAMPLE VALUES AS T CRITICAL VALUES FOR I R DISPERSION AND ITS NORMAL APPROX/ EXACT CRITICAL VALUES FOR I STIC AN EXTENDED TABLE OF CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLES OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I QUERY, THE SUM OF VALUES FOR I QUERY, THE SUM OF VALUES IN F. MISSING VALUES IN F. MISSING VALUES IN IN MISSING VALUES IN MISSING VALUES IN MISSING VALUES IN IN MISSING VALUES IN MISSING VALUES IN P.	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-NORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC.' A NORMAL AND A TRUNCATED NORMAL DISTRIBUT A NORMAL AND A TRUNCATED NORMAL DISTRIBUT A NORMAL AND A TRUNCATED NORMAL DISTRIBUT ACTORIAL EXPERIMENTS INEAR MULTIPLE DISCRIMINANT ANALYSIS INEAR MULTIPLE DISCRIMINANT ANALYSIS ULTIVARIATE STATISTICS, I. REVIEW OF THE ARTIAL DIALLEL CROSS EXPERIMENTS ESPONSE SURFACE DESIGNS AMPLES FROM A NORMAL DISTRIBUTION AMPLES FROM A POWER-FUNCTION POPULATION NIFORMLY MIXING STATIONARY STOCHASTIC ERTAIN FUNCTIONS	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 62 BIOKA54 JASA 69 JASA 69 JIASA 69 BIOCS66 BIOKA58 JASA 64 BIOKA58 JASA 66 BIOCS68 JASA 66 BIOCS68 JASA 66 BIOCS68 BIOKA63 JASA 64 AMS 65	397 447 8B9 810 541 439 NO.4 637 179 925 279 203 177 527 104 469 649 835 595 903 389 877 993 877 993 1454
TERS OF THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME USING SUBSAMPLE VALUES FOR I CRITICAL VALUES FOR I NOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR I R DISPERSION AND ITS NORMAL APPROX/ EXACT CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLES OF CRITICAL VALUES FOR I QUERY, THE SUM OF VALUES FROM QUERY, MISSING VALUES IN I MISSING VALUES IN I LITERATURE MISSING VALUES IN I THE DISTRIBUTION OF EXTREMAL AND NEARLY EXTERME VALUES IN S. DISTRIBUTION OF PRODUCT AND OF QUOTIENT OF MAXIMUM VALUES IN S. PROCESSES THE ASYMPTOTIC VALUES IN U DETERMINING BOUNDS ON EXPECTED VALUES OF CI	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-MORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC WILCOXON'S TEST STATISTIC A NORMAL AND A TRUNCATED NORMAL DISTRIBUT ACTORIAL EXPERIMENTS INEAR MULTIPLE DISCRIMINANT ANALYSIS ULTIVARIATE STATISTICS, I REVIEW OF THE ARTIAL DIALLEL CROSS EXPERIMENTS ESPONSE SURFACE DESIGNS AMPLES FROM A POWER-FUNCTION POPULATION NIFORMLY MIXING STATIONARY STOCHASTIC ERTAIN COVERAGE PROBABILITIES ERTAIN FUNCTIONS UNCTIONS OF ORDER STATISTICS	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 69 BIOKA54 JASA 69 JASA 69 JASA 69 JASA 69 BIOCS66 BIOKA58 BIOKA58 BIOKA58 BIOKA58 BIOKA58 BIOKA56 BIOKA64 TECH 64 TECH 65 BIOCS68 JASS 66 BIOCS68 TECH 61 BIOKA63 BIOKA64 AMS 65 BIOKA63	397 447 8B9 810 541 439 559 NO.4 637 179 497 925 279 203 177 527 104 469 649 649 5903 389 89 877 993 NO.3 1454 733
FOR THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND :	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-NORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC.' IA NORMAL AND A TRUNCATED NORMAL DISTRIBUT A NORMAL AND A TRUNCATED NORMAL DISTRIBUT ACTORIAL EXPERIMENTS ULTIVARIATE DATA SUITABLE FOR USE WITH AN ULTIVARIATE STATISTICS, I REVIEW OF THE ARTIAL DIALLEL CROSS EXPERIMENTS ESPONSE SURFACE DESIGNS AMPLES FROM A NORMAL DISTRIBUTION AMPLES FROM A POWER-FUNCTION POPULATION NIFORMLY MIXING STATIONARY STOCHASTIC ERTAIN FUNCTIONS UNCTIONS OF ORDER STATISTICS ORMAL ORDER STATISTICS	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 62 BIOKA64 JASA 69 BIOCS66 TECH 68 JASA 64 BIOKA58 BIOKA64 TECH 61 BIOKA63 JASA 66 BIOCS68 BIOCS68 BIOCS68 BIOKA63 AMS 65 BIOKA69 AMS 66 BIOKA61	397 447 8B9 810 541 439 559 N0.4 637 179 925 279 203 177 527 104 469 649 835 302 595 903 89 877 993 N0.3 1454 733
TERS OF THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I CRITICAL VALUES FOR I NOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR I R DISPERSION AND ITS NORMAL APPROX/ EXACT CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I QUERY, THE SUM OF VALUES FOR I QUERY, THE SUM OF VALUES FOR I QUERY, MISSING VALUES IN I MISSING VALUES IN I MISSING VALUES IN I MISSING VALUES IN I THE DISTRIBUTION OF EXTREMAL AND NEARLY EXTREMAL VALUES IN S DISTRIBUTION OF PRODUCT AND OF QUOTIENT OF MAXIMUM VALUES IN S PROCESSES THE ASYMPTOTIC DETERMINING BOUNDS ON EXPECTED VALUES OF FI F TERMS OF THE DAVID—JOHNSON SERIES FOR THE EXPECTED VALUES OF FI F TERMS OF THE DAVID—JOHNSON SERIES FOR THE EXPECTED VALUES OF FI	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-NORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MODD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC "ILCOXON'S TEST STATISTIC "I A NORMAL AND A TRUNCATED NORMAL DISTRIBUT A NORMAL AND A TRUNCATED NORMAL DISTRIBUT ACTORIAL EXPERIMENTS INEAR MULTIPLE DISCRIMINANT ANALYSIS UNCATIVARIATE DATA SUITABLE FOR USE WITH AN ULTIVARIATE DATA SUITABLE FOR USE WITH AN ULTIVARIATE STATISTICS, I REVIEW OF THE ARTIAL DIALLEL CROSS EXPERIMENTS ESPONSE SURFACE DESIGNS AMPLES FROM A POWER-FUNCTION POPULATION NIFORMLY MIXING STATIONARY STOCHASTIC ERTAIN COVERAGE PROBABILITIES ERTAIN FUNCTIONS UNCTIONS OF ORDER STATISTICS ORMAL ORDER STATISTICS ORMAL ORDER STATISTICS ORMAL ORDER STATISTICS (AFTER A NUMBER O	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 62 BIOKA54 JASA 69 JASA 69 JASA 69 JASA 64 BIOKA58 BIOKA58 BIOKA58 BIOKA58 BIOKA64 TECH 64 TECH 65 BIOKA58 BIOKA64 TECH 65 BIOCS68 JASA 66 BIOCS68 JASA 66 BIOCS68 JASA 66 BIOCS68 AMS 66 AMS 66 AMS 66 AMS 66	397 447 8B9 810 541 439 N0.4 637 179 925 279 203 177 527 104 469 649 835 595 903 389 877 993 877 993 1454 733 151
TERS OF THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME USING SUBSAMPLE VALUES FOR I CRITICAL VALUES FOR I NOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR I R DISPERSION AND ITS NORMAL APPROX/ EXACT CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLES OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLES OF CRITICAL VALUES FOR I QUERY, THE SUM OF VALUES FROM QUERY, MISSING VALUES IN I MISSING VALUES IN I LITERATURE MISSING VALUES IN I THE DISTRIBUTION OF EXTREMAL AND NEARLY EXTERMAL VALUES IN S DISTRIBUTION OF PRODUCT AND OF QUOTIENT OF MAXIMUM VALUES IN S PROCESSES THE ASYMPTOTIC VALUES IN I DETERMINING BOUNDS ON EXPECTED VALUES OF NI F TERMS OF THE DAVID—JOHNSON SERIES FOR THE EXPECTED VALUES OF NI CORRIGENDA, 'EXPECTED VALUES OF NI CORRIGENDA	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-MORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC WILCOXON'S TEST STATISTIC 'A NORMAL AND A TRUNCATED NORMAL DISTRIBUT A NORMAL AND A TRUNCATED NORMAL DISTRIBUT ACTORIAL EXPERIMENTS INEAR MULTIPLE DISCRIMINANT ANALYSIS ULTIVARIATE STATISTICS, I REVIEW OF THE 'ARTIAL DIALLEL CROSS EXPERIMENTS ESPONSE SURFACE DESIGNS AMPLES FROM A POWER-FUNCTION POPULATION NIFORMLY MIXING STATIONARY STOCHASTIC ERTAIN COVERAGE PROBABILITIES ERTAIN FUNCTIONS UNCTIONS OF ORDER STATISTICS ORMAL ORDER STATISTICS	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 69 BIOKA54 JASA 69 JASA 69 JASA 69 JASA 69 BIOCS66 BIOKA58 BIOKA58 BIOKA58 BIOKA58 BIOKA58 BIOKA64 TECH 64 TECH 64 TECH 65 BIOCS68 JASA 66 BIOCS68 JASA 66 BIOCS68 JASA 66 BIOCS68 JASA 66 BIOKA63 JASA 64 AMS 65 BIOKA63 JASA 64 AMS 65 BIOKA60 BIOKA61 BIOKA60 BIOKA61	397 447 8B9 810 541 439 559 NO.4 637 179 925 279 203 177 527 104 469 835 309 877 993 89 877 993 NO.3 151 1454 733 151 79 476
TERS OF THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I ON THE EXTREME VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I CRITICAL VALUES AND I CRITICAL VALUES FOR I R DISPERSION AND ITS NORMAL APPROX/ EXACT CRITICAL VALUES FOR I STIC AN EXTENDED TABLE OF CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES IN II IN IN INTENDITY OF	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-MORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH 'YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITHEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC ' I A NORMAL AND A TRUNCATED NORMAL DISTRIBUT A NORMAL AND A TRUNCATED NORMAL DISTRIBUT ACTORIAL EXPERIMENTS INEAR MULTIPLE DISCRIMINANT ANALYSIS ULTIVARIATE DATA SUITABLE FOR USE WITH AN ULTIVARIATE STATISTICS, I REVIEW OF THE ARTIAL DIALLEL CROSS EXPERIMENTS ESPONSE SURFACE DESIGNS AMPLES FROM A NORMAL DISTRIBUTION AMPLES FROM A NORMEL DISTRIBUTION NIFORMLY MIXING STATIONARY STOCHASTIC ERTAIN COVERAGE PROBABILITIES ERTAIN FUNCTIONS UNCTIONS OF ORDER STATISTICS ORMAL ORDER STATISTICS ORMAL ORDER STATISTICS ORMAL ORDER STATISTICS BERVED CHI-SQUARE'S	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 69 BIOKA54 JASA 69 JASA 69 JASA 69 BIOCS66 BIOKA58 BIOKA58 BIOKA58 BIOKA58 BIOKA56 BIOKA58 BIOKA56 BIOKA56 BIOKA56 BIOCS68 JASS 66 BIOCS68 TECH 64 BIOCS68 BIOCS68 BIOKA64 AMS 65 BIOKA64 AMS 65 BIOKA61 BIOKA61 BIOKA61 BIOKA61 BIOKA61 BIOKA61 BIOKA61	397 447 8B9 810 541 439 559 N0.4 637 179 925 203 177 527 104 469 649 835 302 595 389 87 993 N0.3 1454 733 151 79 476 709
TERS OF THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I VARIABLE FROM A DECAPITATED NEGATIVE BI/ EXPECTED VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME USING SUBSAMPLE VALUES FOR I CRITICAL VALUES FOR I NOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR I R DISPERSION AND ITS NORMAL APPROX/ EXACT CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLES OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLES OF CRITICAL VALUES FOR I QUERY, THE SUM OF VALUES FROM QUERY, MISSING VALUES IN I MISSING VALUES IN I LITERATURE MISSING VALUES IN I THE DISTRIBUTION OF EXTREMAL AND NEARLY EXTERMAL VALUES IN S DISTRIBUTION OF PRODUCT AND OF QUOTIENT OF MAXIMUM VALUES IN S PROCESSES THE ASYMPTOTIC VALUES IN I DETERMINING BOUNDS ON EXPECTED VALUES OF NI F TERMS OF THE DAVID—JOHNSON SERIES FOR THE EXPECTED VALUES OF NI CORRIGENDA, 'EXPECTED VALUES OF NI CORRIGENDA	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-MORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH 'YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITHEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC ' I A NORMAL AND A TRUNCATED NORMAL DISTRIBUT A NORMAL AND A TRUNCATED NORMAL DISTRIBUT ACTORIAL EXPERIMENTS INEAR MULTIPLE DISCRIMINANT ANALYSIS ULTIVARIATE DATA SUITABLE FOR USE WITH AN ULTIVARIATE STATISTICS, I REVIEW OF THE ARTIAL DIALLEL CROSS EXPERIMENTS ESPONSE SURFACE DESIGNS AMPLES FROM A NORMAL DISTRIBUTION AMPLES FROM A NORMEL DISTRIBUTION NIFORMLY MIXING STATIONARY STOCHASTIC ERTAIN COVERAGE PROBABILITIES ERTAIN FUNCTIONS UNCTIONS OF ORDER STATISTICS ORMAL ORDER STATISTICS ORMAL ORDER STATISTICS ORMAL ORDER STATISTICS BERVED CHI-SQUARE'S	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 69 BIOKA54 JASA 69 JASA 69 JASA 69 JASA 69 BIOCS66 BIOKA58 BIOKA58 BIOKA58 BIOKA58 BIOKA58 BIOKA64 TECH 64 TECH 64 TECH 65 BIOCS68 JASA 66 BIOCS68 JASA 66 BIOCS68 JASA 66 BIOCS68 JASA 66 BIOKA63 JASA 64 AMS 65 BIOKA63 JASA 64 AMS 65 BIOKA60 BIOKA61 BIOKA60 BIOKA61	397 447 8B9 810 541 439 559 N0.4 637 179 925 203 177 527 104 469 649 835 302 595 389 87 993 N0.3 1454 733 151 79 476 709
TERS OF THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES TERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES /FI NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NI NS ON THE EXTREME VALUES AND I ON THE EXTREME VALUES AND I TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND I CRITICAL VALUES AND I CRITICAL VALUES FOR I R DISPERSION AND ITS NORMAL APPROX/ EXACT CRITICAL VALUES FOR I STIC AN EXTENDED TABLE OF CRITICAL VALUES FOR I FURTHER CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES FOR I CORRIGENDA, 'EXTENDED TABLE OF CRITICAL VALUES FOR I EXTENDED TABLE OF CRITICAL VALUES IN II IN IN INTENDITY OF	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-NORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC.' A NORMAL AND A TRUNCATED NORMAL DISTRIBUT A NORMAL AND A TRUNCATED NORMAL DISTRIBUT ACTORIAL EXPERIMENTS INEAR MULTIPLE DISCRIMINANT ANALYSIS ULTIVARIATE DATA SUITABLE FOR USE WITH AN ULTIVARIATE STATISTICS, I REVIEW OF THE ARTIAL DIALLEL CROSS EXPERIMENTS ESPONSE SURFACE DESIGNS AMPLES FROM A NORMAL DISTRIBUTION AMPLES FROM A POWER-FUNCTION POPULATION NIFORMLY MIXING STATIONARY STOCHASTIC ERTAIN FUNCTIONS UNCTIONS OF ORDER STATISTICS ORMAL ORDER STATISTICS	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 62 BIOKA54 JASA 69 JASA 69 JASA 69 JASA 69 BIOCS66 BIOKA58 BIOKA58 BIOKA64 TECH 68 BIOKA64 TECH 65 BIOCS68 JASA 64 BIOKA64 TECH 65 BIOCS68	397 447 8B9 810 541 439 N0.4 637 179 255 279 203 177 527 469 649 835 595 903 89 877 993 N0.3 1454 733 151 79 476 709 1055
TERS OF THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES /FINOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NINS ON THE EXTREME VALUES AND INS ON THE EXTREME VALUES AND INSTRUMENT OF TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND INSTRUMENT OF TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AS TOTAL CRITICAL VALUES FOR INSTRUMENT OF THE VALUES FOR INSTRUMENT OF THE CRITICAL VALUES FOR INSTRUMENT OF THE VALUES FOR INSTRUMENT OF VALUES IN	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-MORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC WILCOXON'S TEST STATISTIC 'A NORMAL AND A TRUNCATED NORMAL DISTRIBUT A NORMAL AND A TRUNCATED NORMAL DISTRIBUT ACTORIAL EXPERIMENTS INEAR MULTIPLE DISCRIMINANT ANALYSIS ULTIVARIATE DATA SUITABLE FOR USE WITH AN ULTIVARIATE STATISTICS, I REVIEW OF THE ARTIAL DIALLEL CROSS EXPERIMENTS ESPONSE SURFACE DESIGNS AMPLES FROM A POWER-FUNCTION POPULATION NIFORMLY MIXING STATIONARY STOCHASTIC ERTAIN COVERAGE PROBABILITIES ERTAIN FUNCTIONS UNCTIONS OF ORDER STATISTICS ORMAL ORDER STATISTICS ORMAL ORDER STATISTICS ORMAL ORDER STATISTICS BERVED CHI-SQUARE'S ROER STATISTICS ROER STATISTICS ROER STATISTICS BERVED CHI-SQUARE'S ROER STATISTICS AND PRODUCTS OF ORDER STAT AMPLES GUANTILES	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 69 BIOKA54 JASA 69 JASA 69 JASA 69 JASA 69 BIOCS66 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA64 TECH 64 TECH 65 BIOCS68 JASS 66 BIOKA64 AMS 65 BIOKA61	397 447 8B9 810 541 439 559 N0.4 637 179 225 2203 177 527 104 469 649 835 302 595 389 89 877 993 N0.3 1451 79 1055 1151 79 1055 1055 1055 1055 1055 1055 1055 105
TERS OF THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES /FINOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NINS ON THE EXTREME VALUES AND INS ON THE EXTREME VALUES AND INSTRUMENT OF TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND INSTRUMENT OF TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AS TOTAL CRITICAL VALUES FOR INSTRUMENT OF THE VALUES FOR INSTRUMENT OF THE CRITICAL VALUES FOR INSTRUMENT OF THE VALUES FOR INSTRUMENT OF VALUES IN	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-NORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC "ILCOXON'S TEST STATISTIC "I A NORMAL AND A TRUNCATED NORMAL DISTRIBUT A CTORIAL EXPERIMENTS INEAR MULTIPLE DISCRIMINANT ANALYSIS ULTIVARIATE DATA SUITABLE FOR USE WITH AN ULTIVARIATE STATISTICS, I REVIEW OF THE ARTIAL DIALLEL CROSS EXPERIMENTS EMPLES FROM A NORMAL DISTRIBUTION AMPLES FROM A POWER-FUNCTION POPULATION NIFORMLY MIXING STATIONARY STOCHASTIC ERTAIN COVERAGE PROBABILITIES ERTAIN FUNCTIONS UNCTIONS OF ORDER STATISTICS ORMAL ORDER STATISTICS ORMAL ORDER STATISTICS ORMAL ORDER STATISTICS RDER STATISTICS	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 69 BIOKA54 JASA 69 JASA 69 JASA 69 JASA 69 BIOCS66 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA56 BIOKA64 TECH 64 TECH 65 BIOCS68 JASS 66 BIOKA64 AMS 65 BIOKA61	397 447 8B9 810 541 439 559 N0.4 637 179 225 2203 177 527 104 469 649 835 302 595 389 89 877 993 N0.3 1451 79 1055 1151 79 1055 1055 1055 1055 1055 1055 1055 105
TERS OF THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES /FINDMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /N. NS ON THE EXTREME VALUES AND IN TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND INTERPRETATION OF TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND INTERPRETATION OF TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND INTERPRETATION OF THE CRITICAL VALUES FOR INTERPRETATION OF THE SUM OF VALUES IN PROPERTY. THE SUM OF VALUES IN PROPERTY OF VALUES IN SUBJECT OF VALUES OF CONTROL OF VALUES OF C	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-MORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC WILCOXON'S TEST STATISTIC 'A NORMAL AND A TRUNCATED NORMAL DISTRIBUT A NORMAL AND A TRUNCATED NORMAL DISTRIBUT ACTORIAL EXPERIMENTS INEAR MULTIPLE DISCRIMINANT ANALYSIS ULTIVARIATE DATA SUITABLE FOR USE WITH AN ULTIVARIATE STATISTICS, I REVIEW OF THE ARTIAL DIALLEL CROSS EXPERIMENTS ESPONSE SURFACE DESIGNS AMPLES FROM A POWER-FUNCTION POPULATION NIFORMLY MIXING STATIONARY STOCHASTIC ERTAIN COVERAGE PROBABILITIES ERTAIN FUNCTIONS UNCTIONS OF ORDER STATISTICS ORMAL ORDER STATISTICS ORMAL ORDER STATISTICS ORMAL ORDER STATISTICS BERVED CHI-SQUARE'S ROER STATISTICS ROER STATISTICS ROER STATISTICS BERVED CHI-SQUARE'S ROER STATISTICS AND PRODUCTS OF ORDER STAT AMPLES GUANTILES	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 69 BIOKA54 JASA 69 BIOCS66 TECH 68 JASA 64 BIOKA58 BIOKA58 BIOKA64 TECH 64 TECH 64 TECH 64 TECH 65 BIOCS68 BIOKA64 TECH 61 BIOKA66 AMS 65 AMS 66 AMS 65 AMS 65 AMS 67 JASA 64	397 447 8B9 810 541 439 559 N0.4 637 179 203 177 527 104 469 649 835 302 595 903 89 877 903 N0.3 1454 733 151 79 476 709 1055 1345 870
TERS OF THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES /FINDMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NINS ON THE EXTREME VALUES AND IN TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND INTWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND INTWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AS TO CRITICAL VALUES FOR INTWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES FOR INTEGRAL PAPERS ON THE RELATIONS TO THE CRITICAL VALUES FOR INTEGRAL PAPERS ON EXTENDED TABLE OF CRITICAL VALUES FOR INTEGRAL PAPERS ON EXTENDED TABLE OF CRITICAL VALUES FOR INTEGRAL PAPERS ON EXTENDED TABLE OF CRITICAL VALUES FOR INTEGRAL PAPERS ON IN	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-NORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC.' A NORMAL AND A TRUNCATED NORMAL DISTRIBUT ACTORIAL EXPERIMENTS INEAR MULTIPLE DISCRIMINANT ANALYSIS ULTIVARIATE DATA SUITABLE FOR USE WITH AN ULTIVARIATE STATISTICS, I REVIEW OF THE ARTIAL DIALLEL CROSS EXPERIMENTS ESPONSE SURFACE DESIGNS AMPLES FROM A NORMAL DISTRIBUTION AMPLES FROM A POWER-FUNCTION POPULATION NIFORMLY MIXING STATIONARY STOCHASTIC ERTAIN COVERAGE PROBABILITIES ERTAIN FUNCTIONS UNCTIONS OF ORDER STATISTICS ORMAL ORDER STATISTICS ORMAL ORDER STATISTICS PROBER STATISTICS ROER STATISTICS FOR FINITE	BIOKA58 JASA 6B AMS 62 8IOKA67 JASA 69 BIOKA54 JASA 69 BIOCS66 BIOKA54 JASA 69 BIOCS66 BIOKA63 BIOKA63 BIOKA64 TECH 68 BIOKA64 TECH 65 BIOKA63 BIOKA64 TECH 65 BIOCS68	397 447 8B9 810 541 439 559 N0.4 637 179 925 279 203 177 527 104 469 649 835 595 903 389 877 993 N0.3 1454 733 151 79 476 7055 1345 1817 870 444
TERS OF THE STATISTICAL DISTRIBUTIONS OF EXTREME VALUES /FINDMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE FITTED VALUES /NINS ON THE EXTREME VALUES AND IN TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND INTWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND INTWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AS TO CRITICAL VALUES FOR INTWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES FOR INTEGRAL PAPERS ON THE RELATIONS TO THE CRITICAL VALUES FOR INTEGRAL PAPERS ON EXTENDED TABLE OF CRITICAL VALUES FOR INTEGRAL PAPERS ON EXTENDED TABLE OF CRITICAL VALUES FOR INTEGRAL PAPERS ON EXTENDED TABLE OF CRITICAL VALUES FOR INTEGRAL PAPERS ON IN	APPROXIMATE FORMULAE ROM DOUBLY CENSORED SAMPLES, OF THE PARAME ESS OF THE SPACING OF OBSERVATIONS IN POLY RANGE OF SAMPLES FROM NON-MORMAL POPULATIO STANDARD DEVIATIONS OF THE RECIPROCAL OF A TENSILE STRENGTH YPICAL VALUES BIVARIATE STUDENT T-TESTS DUNCAN'S MULTIPLE RANGE TEST MOOD'S DISTRIBUTION-FREE TEST STATISTIC FO THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATI THE SUM OF TWO VARIANCES THE TWO-MEANS PROBLEM WILCOXON'S TEST STATISTIC WILCOXON'S TEST STATISTIC 'A NORMAL AND A TRUNCATED NORMAL DISTRIBUT A NORMAL AND A TRUNCATED NORMAL DISTRIBUT ACTORIAL EXPERIMENTS INEAR MULTIPLE DISCRIMINANT ANALYSIS UNCATIVARIATE DATA SUITABLE FOR USE WITH AN ULTIVARIATE DATA SUITABLE FOR USE WITH AN ULTIVARIATE STATISTICS, I. REVIEW OF THE 'ARTIAL DIALLEL CROSS EXPERIMENTS ESPONSE SURFACE DESIGNS AMPLES FROM A NORMAL DISTRIBUTION AMPLES FROM A POWER-FUNCTION POPULATION NIFORMLY MIXING STATIONARY STOCHASTIC ERTAIN COVERAGE PROBABILITIES ERTAIN FUNCTIONS UNCTIONS OF ORDER STATISTICS ORMAL ORDER STATISTICS DESERVED CHI—SQUARE'S RDER STATISTICS RDER STATISTICS AND PRODUCTS OF ORDER STAT AMPLE QUANTILES OME RENYI TYPE STATISTICS FOR FINITE HE COEFFICIENT OF RANK CORRELATION FOR TES HE FIRST TWO MOMENTS IN MARKOV RENEWAL	BIOKA58 JASA 6B AMS 62 BIOKA67 JASA 69 BIOKA54 JASA 69 JASA 69 JASA 69 JASA 69 BIOCS66 BIOKA58 BIOKA58 BIOKA58 BIOKA58 BIOKA64 TECH 64 TECH 65 BIOCS68 JASA 66 BIOCS68 BIOCS68 JASA 66 BIOCS68 JASA 66 BIOCS68 BIOKA61 BIOKA61 JASA 66 BIOKA61 AMS 65 BIOKA61	397 447 8B9 810 541 439 559 N0.4 637 179 225 227 203 177 527 104 469 649 835 302 595 389 89 877 993 N0.3 1451 796 709 1055 1817 870 444 597

```
ON THE COMPARISON OF SEVERAL MEAN VALUES, AN ALTERNATIVE APPROACH
                                                                                                             BIOKA51 330
                                      NOTE ON EXTREME VALUES, COMPETING RISKS AND SEMI-MARKOV PROCESSES
                                                                                                              AMS 63 1104
               QUERY. BIVARIATE SAMPLES WITH MISSING VALUES. II
                                                                                                              TECH 6B B67
C BLOOD CELL COUNTER
                                       A STUDY OF THE VARIABILITY DUE TO COINCIDENT PASSACE IN AN ELECTRONI BIOCS67
                                                                                                                       671
                 GRAPHICALLY ORIENTED TESTS FOR HOST VARIABILITY IN DILUTION EXPERIMENTS
                                                                                                              RIOCS67
                                                                                                                       269
                         NOTES. ON THE EVALUATION OF VARIABILITY IN ISOCENIC HYBRIDS

THE VARIABILITY OF PROFITIBILATY WITH SIZE OF FIRM, 1947- JASA 64 1183
1958
    NUMERICAL OPTIMIZATION IN THE PRESENCE OF RANDOM VARIABILITY. THE SINCLE FACTOR CASE NOTES. A MEASURE OF 'OVERALL VARIABILITY' IN POPULATIONS
                                                                                                             BIOKA69
                                                                                                              BIOCS6B
      ON FINDING LOCAL MAXIMA OF FUNCTIONS OF A REAL VARIABLE
                                                                                                              BIOKA67
               THE USE OF RESIDUALS AS A CONCOMITANT VARIABLE
                                                                                                              BIOKA69
          INTERVALS FOR THE EXPECTATION OF A POISSON VARIABLE
                                                                                                  CONFIDENCE BIOKA59
         TO NORMALITY USING FRACTIONAL POWERS OF THE VARIABLE
                                                                                             TRANSFORMATIONS JASA 57
                                                                                                                       237
    FOR THE INVERSE MOMENTS OF THE POSITIVE BINOMIAL VARIABLE
                                                                                        RECURRENCE RELATIONS JASA 63
 OF THE CONDITIONAL EXPECTATION OF A POSITIVE RANDOM VARIABLE
                                                                                    A NOTE ON THE RECIPROCAL AMS 65 1302
R WHEN WALKING TIME IS CONSTANT AND REPAIR TIMES ARE VARIABLE
                                                                 /NI-DIRECTIONALLY PATROLLED BY ONE OPERATO JRSSB57
                                                                                                                      173
 TESTING WHEN THE SAMPLE SIZE IS TREATED AS A RANDOM VARIABLE (WITH DISCUSSION)
                                                                                                  HYPOTHESIS JRSSB67
                                                                                                                       5.3
                                                                                                              AMS 65 1459
THE GENERALIZED MELLIN TRANSFORM OF A COMPLEX RANDOM VARIABLE AND ITS APPLICATIONS
                                                                                                         ON
FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED ESTIMATION AND INFERENCE JASA 68 1201
                A BULK-SERVICE QUEUEING PROBLEM WITH VARIABLE CAPACITY
                                                                                                              JRSSB61
                                                                                                              BIOCS65
                  REGRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED
A-HOUSEHOLD EPI/
                   THE USE OF CHAIN-BINOMIALS WITH A VARIABLE CHANCE OF INFECTION FOR THE ANALYSIS OF INTR BIOKA53
                             SIGNIFICANCE TESTS FOR A VARIABLE CHANCE OF INFECTION IN CHAIN-BINOMIAL THEORY BIOKA56
          A GENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE ESTIMATION OF STRAIGHT-LINE RELATIONS WHEN B TECH 69
                                ISN'T MY PROCESS TOO VARIABLE FOR EVOP.
                                                                                                             TECH 6B
ALUES AND STANDARD DEVIATIONS OF THE RECIPROCAL OF A VARIABLE FROM A DECAPITATED NEGATIVE BINOMIAL DISTRIB JASA 62
                                                                                                                       439
                                        GENERATING A VARIABLE FROM THE TAIL OF THE NORMAL DISTRIBUTION
                                                                                                             TECH 64
NG PROBABILITIES OF A CLASS OF WIDELY USED/ A TWO-VARIABLE GENERATING FUNCTION FOR COMPUTING THE SAMPLI JASA 64
                                                                                                                       487
                         THE USE OF A STRATIFICATION VARIABLE IN ESTIMATION BY PROPORTIONAL STRATIFIED
SAMPLING.
                                                                                                             JASA 68 1310
EXPERIMENTAL DESIGNS FOR ESTIMATING THE INDEPENDENT VARIABLE IN REGRESSION
                                                                                                     OPTIMAL TECH 68 811
                             THE USE OF A CONCOMITANT VARIABLE IN SELECTING AN EXPERIMENTAL DESIGN
                                                                                                             BIOKA57
                                                                                                                       150
             CORRIGENDA TO 'THE USE OF A CONCOMITANT VARIABLE IN SELECTING AN EXPERIMENTAL DESIGN'
                                                                                                             BIOKA57
                                 EXPRESSING A RANDOM VARIABLE IN TERMS OF UNIFORM RANDOM VARIABLES
                                                                                                               AMS 61
                                                                                                                       894
                     FITTING STRAIGHT LINES WHEN ONE VARIABLE IS CONTROLLED
                                                                                                              JASA 58
                                                                                                                      1.06
TERS FOR A MULTIVARIATE NORMAL DISTRIBUTION WHEN ONE VARIABLE IS DICHOTOMISED.
                                                                                   ESTIMATION OF THE PARAME BIOKA65
  LARGE-SAMPLE COVARIANCE ANALYSIS WHEN THE CONTROL VARIABLE IS FALLIBLE
                                                                                                             JASA 60
    CORRELATION COEFFICIENTS WHEN OBSERVATION ON ONE VARIABLE IS RESTRICTED
                                                                                            NOTES. CORRECTED BIOCS66
                                                                                                                       182
       A BRANCHING PROCESS IN WHICH INDIVIDUALS HAVE VARIABLE LIFETIMES
                                                                                                             BIOKA64
                     PREDICTION OF AN AUTOREGRESSIVE VARIABLE SUBJECT BOTH TO DISTURBANCES AND TO ERRORS
OF OBSERVATION
                                                                                                             JASA 65
 AND SUFFICIENT CONDITION FOR THE SQUARE OF A RANDOM VARIABLE TO BE CAMMA
                                                                                                 A NECESSARY BIOKA66
                                                                                                                       275
                                                                                                             JASA 67 1277
                                   AN APPLICATION OF VARIABLE WEIGHT DISTRIBUTED LAGS
THE RECIPROCAL OF THE DECAPITATED NEGATIVE BINOMIAL VARIABLE, CORR. 63 1162
                                                                                                             JASA 62
                                                                                                                       906
                              CURTAILED SAMPLING FOR VARIABLES
                                                                                                              JASA 58
                                                                                                                       B62
         QUALITY CONTROL METHODS FOR SEVERAL RELATED VARIABLES
                                                                                                              TECH 59
                                                                                                                       359
                                                                                                              AMS 61
                       GENERATING EXPONENTIAL RANDOM VARIABLES
                                                                                                                       899
        A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES
                                                                                                               AMS 61
                                                                                                                       677
       ANTE-DEPENDENCE ANALYSIS OF AN ORDERED SET OF VARIABLES
                                                                                                               AMS 62
          PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIABLES
                                                                                                               AMS 62
             A FLUCTUATION THEOREM FOR CYCLIC RANDOM VARIABLES
                                                                                                               AMS 62 1450
             THE VARIANCE OF THE PRODUCT OF K RANDOM VARIABLES
                                                                                                              JASA 62
                                                                                                                        54
     STUDIES OF INTERVIEWER VARIANCE FOR ATTITUDINAL VARIABLES
                                                                                                              JASA 62
                                                                                                                        92
      A SEQUENTIAL METHOD FOR SCREENING EXPERIMENTAL VARIABLES
                                                                                                              JASA 62
                                                                                                                       455
                   TRANSFORMATION OF THE INDEPENDENT VARIABLES
                                                                                                              TECH 62
                                                                                                                       531
            DISTRIBUTIONS OF PRODUCTS OF INDEPENDENT VARIABLES
                                                                                                             TECH 62
                                                                                                                       277
              ON THE INDEPENDENCE OF CERTAIN WISHART VARIABLES
                                                                                                               AMS 63
                                                                                                                       935
       CORRELATION AND COMPLETE DEPENDENCE OF RANDOM VARIABLES
                                                                                                               AMS 63 1315
 PROBABILITY INEQUALITIES FOR SUMS OF BOUNDED RANDOM VARIABLES
                                                                                                              JASA 63
                                                                                                                      13
          ASYMPTOTIC EXTREMES FOR M-DEPENDENT RANDOM VARIABLES
                                                                                                               AMS 64 1322
    A LIMIT THEOREM FOR SUMS OF MINIMA OF STOCHASTIC VARIABLES
                                                                                                               AMS 65 1041
CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT RANDOM VARIABLES
                                                                                                               AMS 66 567
    SOME CONVERGENCE THEOREMS FOR INDEPENDENT RANDOM VARIABLES
                                                                                                               AMS 66 1482
      INFINITE DIVISIVILITY OF INTEGER-VALUED RANDOM VARIABLES
                                                                                                               AMS 67 1306
    THE INVARIANCE PRINCIPLE FOR A LATTICE OF RANDOM VARIABLES
                                                                                                               AMS 68 382
                AN INEQUALITY IN CONSTRAINED RANDOM VARIABLES
                                                                                                               AMS 6B 1080
CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES DISTANCES OF PROBABILITY MEASURES AND RANDOM VARIABLES
                                                                                                               AMS 68 1158
                                                                                                               AMS 68 1563
                                                                                                             JASA 68 1399
                 ON DISCRIMINATION USING QUALITATIVE VARIABLES
THE MARKOV INEQUALITY FOR SUMS OF INDEPENDENT RANDOM VARIABLES
                                                                                                              AMS 69 NO.6
                 BOUNDS ON MOMENTS OF SUMS OF RANDOM VARIABLES
                                                                                                               AMS 69 1506
       ON THE EXACT COVARIANCE OF PRODUCTS OF RANDOM VARIABLES
                                                                                                              JASA 69 NO.4
                               SAMPLING WITH CONTROL VARIABLES
                                                                                                             BIOKA54 494
     THE MULTIVARIATE DISTRIBUTION OF COMPLEX NORMAL VARIABLES
                                                                                                             BIOKA56
                                                                                                                       212
     THE Z-TEST AND SYMMETRICALLY DISTRIBUTED RANDOM VARIABLES
                                                                                                             BIOKA59
                                                                                                                      123
   GAMMA-DISTRIBUTED PRODUCTS OF INDEPENDENT RANDOM VARIABLES
                                                                                                             BIOKA62
          ON BAYES SEQUENTIAL DESIGN WITH TWO RANDOM VARIABLES
                                                                                                             BIOKA66
                                                                                                                       469
        ON THE RATIO OF TWO CORRELATED NORMAL RANDOM VARIABLES
                                                                                                             BIOKA69 NO.3
  TRACES AND CUMULANTS OF QUADRATIC FORMS IN NORMAL VARIABLES
                                                                                                             JRSSB54
                                                                                                                      247
            SOME TESTS OF SIGNIFICANCE WITH ORDERED VARIABLES
                                                                                                             JRSSB56
                        THE COMPARISON OF REGRESSION VARIABLES
                                                                                                             JRSSB59
           ON THE DISTRIBUTION OF PRODUCTS OF RANDOM VARIABLES
                                                                                                             JRSSR67
                                                                                                                      513
   ON COMPARING THE CORRELATIONS WITHIN TWO PAIRS OF VARIABLES
                                                                                                             BIOCS68
                                                                                                                      987
                  SELECTION AMONG DIALLEL CLASSIFIED VARIABLES
                                                                                                             BIOCS69
                                                                                                                       49
STATISTICAL TEST INVOLVING A RANDOM NUMBER OF RANDOM VARIABLES
                                                                                                              AMS 66 1305
LINEAR FUNCTIONS OF ORDERED CORRELATED NORMAL RANDOM VARIABLES
                                                                                                         ON BIOKA65 367
   DISTRIBUTION OF A QUADRATIC FORM OF NORMAL RANDOM VARIABLES
                                                                                                         THE AMS 67 1700
    KOLMOGOROFF-TYPE INEQUALITIES FOR BOUNDED RANDOM VARIABLES
                                                                                                        SOME BIOKA67 641
```

TITLE WORD INDEX VAL - VAR

TREVETEN BOR THE WARTANGE OF A RATIO OF THE RANDON	WARTARIEC	ON AN	IDCCDCA	404
IDENTITY FOR THE VARIANCE OF A RATIO OF TWO RANDOM			JRSSB64	484
OF LEVELS OF POLYNOMIAL REGRESSION WITH ONE OR TWO			TECH 65	325
LIMIT THEOREMS FOR FAMILIES OF SEQUENCES OF RANDOM			AMS 63	
CONTROL SYSTEMS BASED ON INACCURATELY MEASURED		QUALITY		472
THREE LEVEL DESIGNS FOR THE STUDY OF QUANTITATIVE	VARIABLES	SOME NEW	TECH 60	455
MAXIMUM-LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM	VARIABLES	A NOTE ON	JRSSB61	444
THE DISTRIBUTION OF QUADRATIC FORMS IN NORMAL	VARIABLES	COMPUTING	BIOKA61	419
SEQUENTIAL DESIGN OF EXPERIMENTS WITH TWO RANDOM	VARIABLES	ASYMPTOTIC	JRSSB66	73
STATISTICS IN THE CASE OF INDEPENDENT RANDOM		SUFFICIENT		1456
INEQUALITIES FOR THE SUM OF INDEPENDENT RANDOM		PROBABILITY		33
CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT RANDOM		ALMOST SURE	AMS 68	
THE PROBABILITY OF AN EVENT AS A FUNCTION OF SEVERAL		ESTIMATION OF		167
TYPE INEQUALITY FOR SUMS OF INDEPENDENT RANDOM		ON A CHEBYSHEV-		248
ARIABLES IN CLASSIFICATION PROBLEMS WITH DICHOTOMOUS		ON THE CHOICE OF V		668
WITH MISSING OBSERVATIONS AMONG THE INDEPENDENT		MULTIPLE REGRESSION		122
WHEN THERE IS PRIOR INFORMATION ABOUT SUPPLEMENTARY		REGRESSION ANALYSIS		
SEQUENTIAL SAMPLING SCHEME FOR INSPECTION BY	VARIABLES	THE MOST ECONOMICAL	JRSSB59	400
FOR THE MEANS OF DEPENDENT NORMALLY DISTRIBUTED	VARIABLES	CONFIDENCE INTERVALS	JASA 59	613
TO A SET OF STOCHASTICALLY DEPENDENT NORMAL	VARIABLES	LINEAR TRANSFORMATION	JASA 57	247
MEAN OF A CENSORED NORMAL DISTRIBUTION BY ORDERED	VARIABLES	THE ESTIMATION OF THE	BIOKA56	482
AND INDEPENDENT GAMMA-DISTRIBUTED PRODUCTS OF RANDOM		INVERSE DISTRIBUTIONS		505
OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM		LIMITING DISTRIBUTION	AMS 62	
THE WEIGHTED DIFFERENCE OF TWO INDEPENDENT STUDENT		ON THE DISTRIBUTION OF		188
THEOREM TO NON-IDENTICALLY DISTRIBUTED RANDOM		AN EXTENSION OF ROSEN'S		
LAWS AND A RENEWAL THEOREM FOR NON-NEGATIVE RANDOM		ON INFINITELY DIVISIBLE		139
		NOTE ON WEYL'S CRITERION		
AND THE UNIFORM DISTRIBUTION OF INDEPENDENT RANDOM				
NEQUALITY FOR THE SUM OF INDEPENDENT, BOUNDED RANDOM		A ONE-SIDED PROBABILITY I		565
REGRESSION WITH CONSTRAINTS ON THE INDEPENDENT		CONFIDENCE BANDS IN LINEAR		
WITH MISSING OBSERVATIONS AMONG THE INDEPENDENT		LINEAR REGRESSION ANALYSIS		834
OF QUADRATIC FORMS IN SERIALLY CORRELATED NORMAL		MOMENT GENERATING FUNCTIONS		198
ON THE ASYMPTOTIC DISTRIBUTION OF SUMS OF RANDOM		ON THE INFLUENCE OF MOMENTS		
OF HERMITIAN QUADRATIC FORMS IN COMPLEX NORMAL	VARIABLES	THE CHARACTERISTIC FUNCTION	BIOKA60	199
ONSUMER ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL	VARIABLES	THE PREDICTIVE ABILITY OF C	JASA 64	987
DISTRIBUTIONS OF TWO STOCHASTICALLY ORDERED RANDOM	VARIABLES	MAXIMUM LIKELIHOOD ESTIMATION OF THE	JASA 66	1067
AUTOCORRELATED RESIDUALS BY THE USE OF INSTRUMENTAL	VARIABLES	THE ESTIMATION OF RELATIONSHIPS WITH		91
ZED SIMILAR TEST FOR THE INDEPENDENCE OF TWO POISSON		/A LOCALLY MOST POWERFUL BOUNDARY RANDOMI		809
UMBERS FOR LINEAR GOMBINATIONS OF INDEPENDENT RANDOM		/E CONVERGENCE RATE OF THE LAW OF LARGE N		559
EXPECTATION FOR SUMS OF BOUNDED, INDEPENDENT RANDOM		/PROBABILITY OF LARGE DEVIATIONS FROM THE		528
RANDOMIZED EXPERIMENTS WITH NONCONTROLLED PREDICTOR		/PTIMAL TESTS OF COMPOSITE HYPOTHESES FOR		699
US AND NON-HOMOGENEOUS QUADRATIC FUNCTIONS OF NORMAL		/TIONS, IV, THE DISTRIBUTION OF HOMOGENEO		542
THE ANALYSIS OF ASSOCIATION AMONG MANY			JRSS867	199
			TECH 69	
LINEAR RELATIONSHIPS BETWEEN			BIOCS66	252
ESTIMATION OF AN EXPONENTIAL S/ USE OF CONCOMITANT				665
NCE OF LINEAR GOMBINATIONS OF INDEPENDENT AND RANDOM				
		AND RATIOS OF SUMS OF UNIFORM VARIABLES	JASA 65	193
		AND THE DISPERSION OF A RADON-NIKODYM DERIV		100
E II GENSORE/ EFFICIENT MOMENT ESTIMATORS WHEN THE				155
				154
ANCE IN MULTIVARIATE REGRESSION WHEN THE INDEPENDENT				
REGRESSION PROBLEMS WHEN THE PREDICTOR STIMATOR IN REGRESSION ANALYSIS WHEN THE 'PREDICTOR'			JRSSB69	
FITTING OF STRAIGHT LINES AND PREDICTION WHEN BOTH				
			JASA 61 JASA 64	657
INTERVAL ESTIMATION IN LINEAR REGRESSION WHEN BOTH				
DISTRIBUTIONS FOR ESTIMATING FUNCTIONS WHEN BOTH				
ABLE ESTIMATION OF STRAIGHT-LINE RELATIONS WHEN BOTH				
THE FITTING OF STRAIGHT LINES WHEN BOTH			JASA 59	
CE BETWEEN CONSECUTIVE MEMBERS OF A SERIES OF RANDOM				
		COVARIANCE STATIONARY ON A FINITE TIME INTE		
A CONVEXITY PROPERTY IN THE THEORY OF RANDOM			AMS 61	
SE STATISTIQUE DES LIAISONS ENTRE LES ESPECES ET LES				
SE STATISTIQUE DES LIAISONS ENTRE LES ESPECES ET LES			BIOCS65	B90
		FOR FITTING EQUATIONS TO DATA	TECH 66	
		FOR PRELIMINARY GULLING	BIOCS67	
DISTINGUISHING A SEQUENCE OF RANDOM			AMS 65	
TWO SAMPLE TESTS WITH DICHOTOMOUS AND CONTINUOUS	VARIABLES	I. THE LOCATION MODEL MULTIVARIATE	AMS 69	290
OBABILITY OF LARGE DEVIATIONS OF THE MEAN FOR RANDOM	VARIABLES	IN AN INTERVAL OF LENGTH ONE ON THE PR	AMS 65	280
VARIABLES ON THE CHOICE OF	VARIABLES	IN CLASSIFICATION PROBLEMS WITH DICHOTOMOUS	BIOKA67	668
HNIQUE (ERRATA, 69 6/ TESTING FOR THE INCLUSION OF	VARIABLES	IN LINEAR REGRESSION BY A RANDOMISATION TEC	TECH 66	695
THE CHOICE OF	VARIABLES	IN MULTIPLE REGRESSION (WITH DISCUSSION)	JRSSB68	31
THE DISCARDING OF	VARIABLES	IN MULTIVARIATE ANALYSIS	BIOKA67	357
			JASA 57	
			BIOKA69	
AMPLE COEFFICIENT OF VARIATION AND AN APPLICATION OF			TECH 65	67
DESIGN AND OPERATION OF A DOUBLE-LIMIT	VARIABLES	SAMPLING PLAN	JASA 58	543
DISTRIBUTION			TECH 67	417
THE EFFECT OF TRANSFORMATIONS OF	VARIABLES	UPON THEIR CORRELATION COEFFICIENTS	BIOKA57	272
THE THEORY OF CORRELATION BETWEEN TWO CONTINUOUS			BIOKA55	
TING CHARACTERISTIC CURVE FOR SEQUENTIAL SAMPLING BY				
		WHERE THE QUOTIENT OF THEIR COORDINATES FOL		
		WHICH ARE DEPENDENT OR NON-IDENTICALLY DIST		
ON LARGE DEVIATION PROBLEMS FOR SUMS OF RANDOM			AMS 67	
		WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTIO		
A DECOMPOSITION THEOREM FOR VECTOR			AMS 69	
			JASA 59	
LINEAR FUNCTIONS OF ORDERED CORRELATED NORMAL RANDOM				
	ANKINDEED			
A KNOWN LIMIT THEOREM FOR SUM OF INDEPENDENT RANDOM				1114

```
A NOTE ON SUMS OF INDEPENDENT RANDOM VARIABLES WITH INFINITE FIRST MOMENT
                                                                                                             AMS 67 751
                             DISTRIBUTIONS OF RANDOM VARIABLES WITH RANDOM PARAMETERS
                                                                                                            SASJ 69
         CONDITIONAL MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINCULAR COVARIANCE MATRIX
                                                                                                             JASA 64 1203
TION OF THE PRODUCT OF INDEPENDENT CENERALIZED CAMMA VARIABLES WITH THE SAME SHAPE PARAMETER /T DISTRIBU AMS 68 1751
RENTIAL FOR POSITIVE DIRECTIONAL SELECTION ON NORMAL VARIABLES WITHIN SETS OF FINITE SUBPOPULATIONS /FFE BIOCS67
                                                                                                             AMS 65 1556
                  CONDITIONAL EXPECTATIONS OF RANDOM VARIABLES WITHOUT EXPECTATIONS
QUALITIES FOR THE SUM OF INDEPENDENT, BOUNDED RANDOM VARIABLES.
                                                                  /UNDS ON THE MOMENTS AND PROBABILITY INE BIOKA65
MS WITH LINEAR LOSSES FOR BINOMIAL AND NORMAL RANDOM VARIABLES.
                                                                   SEQUENTIAL SAMPLING, TWO DECISION PROBLE BIOKA65
                                                                                        /RENCE RELATIONS B BIOKA67
ETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES, AND SOME APPLICATIONS
ORRELATION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, CORR. 65 343
                                                                                             MULTIVARIATE C AMS 61
 INDEPENDENT IDENTICALLY DISTRIBUTED DISCRETE RANDOM VARIABLES, CORR. 66 1246
                                                                                 /ISTRIBUTION OF THE SUM OF JASA 65
                                                                                                                      837
ATIONS OF DISTRIBUTIONS OF QUADRATIC FORMS IN NORMAL VARIABLES, I, CENTRAL CASE
                                                                                          SERIES REPRESENT AMS 67
                                                                                                                      B23
ATIONS OF DISTRIBUTIONS OF QUADRATIC FORMS IN NORMAL VARIABLES, II, NON-CENTRAL CASE
                                                                                           SERIES REPRESENT AMS 67
                                                                                                                      838
                                  ASSOCIATION RANDOM VARIABLES, WITH APPLICATIONS
                                                                                                              AMS 67 1466
LITIES OF THE RTH ABSOLUTE MOMENT OF A SUM OF RANDOM VARIABLES, 1 LESS THAN OR EQUAL TO R, R LESS THAN OR THREE LEVEL DESIGNS FOR THE STUDY OF QUANTITATIVE VARIABLES'
                                                                                                              AMS 65
                                                                                                                      299
                                                                                     ERRATA, 'SOME NEW TECH 61
CORRIGENDA, 'COMPUTING BIOKA62
                                                                                                                      576
       THE DISTRIBUTION OF QUADRATIC FORMS IN NORMAL VARIABLES'
                                                                                                                      284
                             A NOTE ON AN 'ERRORS IN VARIABLES' MODEL
                                                                                                             JASA 66
                                                                                                                      128
             EQUIVALENCE OF TWO ESTIMATES OF PRODUCT VARIANCE
                                                                                                             JASA 56
                                                                                                                      451
               NON-ADDITIVITY IN TWO-WAY ANALYSIS OF VARIANCE
                                                                                                             JASA 61
                                                                                                                      B78
                    ROBUST ESTIMATION IN ANALYSIS OF VARIANCE
                                                                                                             AMS 63
                                                                                                                      957
 PROCRAMMING UNIVARIATE AND MULTIVARIATE ANALYSIS OF VARIANCE
                                                                                                             TECH 63
                                                                                                                       95
                                                                                                             AMS 64
                        ORTHOGONALITY IN ANALYSIS OF VARIANCE
                                                                                                                      705
                  PSEUDO-INVERSES IN THE ANALYSIS OF VARIANCE
                                                                                                              AMS 64
                                                                                                                      895
                 THE DISTRIBUTION OF THE GENERALIZED VARIANCE
                                                                                                              AMS 65
                                                                                                                      120
        ADMISSIBLE TESTS IN MULTIVARIATE ANALYSIS OF VARIANCE
                                                                                                              AMS 67
                                                                                                                      698
          A NOTE ON ROBUST ESTIMATION IN ANALYSIS OF VARIANCE
                                                                                                              AMS 6B 1486
      COMPARISON OF ANOVA AND HARMONIC COMPONENTS OF VARIANCE
                                                                                                             TECH 69
                                                                                                                      75
    FURTHER APPLICATIONS OF RANGE TO THE ANALYSIS OF VARIANCE
                                                                                                             BIOKA51
                                                                                                                      393
        THE INTERPRETATION OF NEGATIVE COMPONENTS OF VARIANCE
                                                                                                             BIOKA54
         A SINGULARITY IN THE ESTIMATION OF BINOMIAL VARIANCE
                                                                                                             BIOKA57
     APPROXIMATE CONFIDENCE LIMITS FOR COMPONENTS OF VARIANCE
                                                                                                             BIOKA57
                                                                                                                      159
CONFIDENCE INTERVALS FOR DISTANCE IN THE ANALYSIS OF VARIANCE
                                                                                                             BIOKA58
                                                                                                                      360
                    ORDERED TESTS IN THE ANALYSIS OF VARIANCE
                                                                                                             BIOKA61
                                                                                                                      325
            USE OF RANGE IN TESTING HETEROCENEITY OF VARIANCE
                                                                                                             BTOK A66
                                                                                                                      221
         ON INFERRINC ORDER RELATIONS IN ANALYSIS OF VARIANCE
                                                                                                            BTOCS65
                                                                                                                      337
                                                                                                      A NOTE AMS 68 1744
  ON THE ADMISSIBILITY OF POOLING IN THE ANALYSIS OF VARIANCE
SAMPLING PLANS WHERE THE ACCEPTANCE CRITERION IS THE VARIANCE
                                                                                                    DOUBLE TECH 6B
                                                                                                                       99
 REGIONS FOR TESTS OF INTERVAL HYPOTHESES ABOUT THE VARIANCE
                                                                                                    CRITICAL JASA 66
 COMPARISON RANK PROCEDURE FOR A ONE-WAY ANALYSIS OF VARIANCE
                                                                                                  A MULTIPLE SASJ 69
                                                                                                                      35
GENERALIZED T SQUARE IN THE MULTIVARIATE ANALYSIS OF VARIANCE
                                                                                               HOTELLING'S JRSSB63
      INFORMATION FROM A SECOND SAMPLE IN ESTIMATING VARIANCE
                                                                                                ON UTILIZING BIOKA69 NO.3
        TEST PROCEDURES IN MULTIVARIATE ANALYSIS OF VARIANCE
                                                                                               SIMULTANIOUS BIOKA6B
A SUBSET CONTAINING THE POPULATION WITH THE SMALLEST VARIANCE
                                                                                              ON SELECTING BIOKA62
                                                                                              ON THE EFFECT JRSSB62
 OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE
       FACTORS IN LINEAR REGRESSION AND ANALYSIS OF VARIANCE
                                                                                    ESTIMATION OF WEIGHTING TECH 64
  INDEPENDENCE OF QUADRATIC FORMS IN THE ANALYSIS OF VARIANCE
                                                                                  A NOTE ON THE STATISTICAL BIOKA51
                                                                                SEQUENTIAL ANALYSIS APPLIED BIOKA56
THE CONSTRUCTION OF OPTIMAL JRSSB61
  TO CERTAIN EXPERIMENTAL DESIGNS IN THE ANALYSIS OF VARIANCE
                                                                                                                      3BB
 DESIGNS FOR THE ONE-WAY CLASSIFICATION ANALYSIS OF VARIANCE
                                                                                                                      352
       OF INDEPENDENT EXPERIMENTS IN THE ANALYSIS OF VARIANCE
                                                                               RANK METHODS FOR COMBINATION AMS 62
                                                                                                                      482
    FOR THE MEAN OF A NORMAL DISTRIBUTION WITH KNOWN VARIANCE
                                                                               SHORTER CONFIDENCE INTERVALS AMS 63
                                                                                                                      574
OF THE THREE MAIN TESTS FOR MULTIVARIATE ANALYSIS OF VARIANCE
                                                                              ON THE MONOTONICITY PROPERTY JRSSB64
                                                                                                                       77
 THE POWER FUNCTION OF THE F-TEST IN THE ANALYSIS OF VARIANCE
                                                                             THE EFFECT OF NON-NORMALITY ON BIOKA51
                                                                                                                       43
    FOR THE MEAN OF A NORMAL POPULATION WITH UNKNOWN VARIANCE
                                                                            SEQUENTIAL CONFIDENCE INTERVALS JRSSB57
    OF TWO TEST CRITERIA IN MULTIVARIATE ANALYSIS OF VARIANCE
                                                                           ON THE NON-CENTRAL DISTRIBUTIONS
                                                                                                             AMS 68
                                                                        THE LIMITING POWER OF CATEGORICAL D
ATA CHI-SQUARE TESTS ANALOGOUS TO NORMAL ANALYSIS OF VARIANCE
TERMINING THE MEAN OF A NORMAL POPULATION WITH KNOWN VARIANCE
                                                                  A SEQUENTIAL THREE HYPOTHESIS TEST FOR DE
                                                                                                             AMS 67 1365
                                                                /LLEL TEST CROSSING 2. AN EVALUATION OF TW BIOCS67
O METHODS OF ESTIMATION OF CENETIC AND ENVIRONMENTAL VARIANCE
NG MEANS OF NORMAL POPULATIONS WITH A COMMON UNKNOWN VARIANCE
                                                                 /PLE MULTIPLE DECISION PROCEDURE FOR RANKI BIOKA54
METHOD FOR JUDGINC ALL CONTRASTS IN THE ANALYSIS OF VARIANCE (CORR. 69 229) (CORR. 69 229)
                                                                                                          A BIOKA53
                           MODELS IN THE ANALYSIS OF VARIANCE (WITH DISCUSSION)
                                                                                                             JRSSB60
                                                                                                                     195
OF VARIATION OF HERITABILITY ESTIMATES OBTAINED FROM VARIANCE ANALYSES'
                                                                               CORRECTION TO 'COEFFICIENTS
                                                                                                            BTOCS65
                                                                                                                     2.65
                                            RESPONSE VARIANCE AND ITS ESTIMATION
                                                                                                            JASA 64 1016
QUARE AND HOMOSCEDASTICITY CRITERION M UNDER UNEQUAL VARIANCE AND LEPTOKURTOSIS /UTIONS OF BIVARIATE T-S JASA 63 1048
O SOME NON-PARAMETRIC GENERALIZATIONS OF ANALYSIS OF VARIANCE AND MULTIVARIATE ANALYSIS /INTRODUCTION T BIOKA56 361
ENCE BOUNDS ASSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND NONINDEPENDENCE BETWEEN TWO SETS OF VARI AMS 66 1736
F A GROUP OF BALANCED BLOCK EXPERIMENTS HAVING ERROR VARIANCE AND SOME TREATMENTS IN COMMON
                                                                                                 ANALYSIS O BIOCS68 389
SION, EMPHASIZING THE CONNECTION BETWEEN ANALYSIS OF VARIANCE AND SPECTRUM ANALYSIS
                                                                                                     DISCUS TECH 61
                                                                                                                     191
                                         ANALYSIS OF VARIANCE AS AN ALTERNATIVE TO FACTOR ANALYSIS
                                                                                                            JRSSB57
                       ON NON-REGULAR ESTIMATION, I. VARIANCE BOUNDS FOR ESTIMATORS OF LOCATION PARAMETERS JASA 69 1056
DISTRIBUTIONS, AND THE APPROXIMATE STABILIZATION OF VARIANCE BY TRANSFORMATIONS /ATORS FOR POWER-SERIES JASA 68
                                                                                                                     321
                      SOME OPERATORS FOR ANALYSIS OF VARIANCE CALCULATIONS
                                                                                                             TECH 69
                                                                                                                     511
                                                                                                             JRSSB63
                               FIDUCIAL LIMITS FOR A VARIANCE COMPONENT
                                                                                                                     128
                             A COMPARISON OF SEVERAL VARIANCE COMPONENT ESTIMATORS
                                                                                                            BTOKA67
                                                                                                                     301
                                        LIMITS FOR A VARIANCE COMPONENT WITH AN EXACT CONFIDENCE COEFFICIE AMS 61
                                                                                                                     466
    A NOTE ON UNIFORMLY BEST UNBIASED ESTIMATORS FOR VARIANCE COMPONENTS
                                                                                                            JASA 56
                                                                                                                     266
                THE PROBLEM OF NEGATIVE ESTIMATES OF VARIANCE COMPONENTS
                                                                                                             AMS 62
                                                                                                                     273
                          NON-NEGATIVE ESTIMATES OF VARIANCE COMPONENTS
                                                                                                             TECH 63
             A GENERAL APPROACH TO THE ESTIMATION OF VARIANCE COMPONENTS
                                                                                                             TECH 67
                                                                                                                      93
             MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE COMPONENTS
                                                                                                            JASA 69 NO.4
                          A CONFIDENCE INTERVAL FOR VARIANCE COMPONENTS
                                                                                                            BIOKA62
 FURTHER EVIDENCE ON THE CONSISTENCY OF ESTIMATES OF VARIANCE COMPONENTS
                                                                                                            BIOCS65
                                                                                               A COMPARTSON TECH 63
                                                                                                                     421
       OF THREE DIFFERENT PROCEDURES FOR ESTIMATING VARIANCE COMPONENTS
                                                                                                                     749
   ANOTHER LOOK AT HENDERSON'S METHODS OF ESTIMATINC VARIANCE COMPONENTS (WITH DISCUSSION)
                                                                                                            BTOCS68
                         A NOTE ON THE ESTIMATION OF VARIANCE COMPONENTS BY THE METHOD OF FITTING CONSTANT BIOKA69 NO.3
                             ITERATIVE ESTIMATION OF VARIANCE COMPONENTS FOR NON-ORTHOCONAL DATA
                                                                                                            BIOCS69 NO.4
```

TITLE WORD INDEX VAR - VAR

WITH ITERATION ESTIMABILITY OF	VARIANCE	COMPONENTS FOR THE TWO-WAY CLASSIFICATION	AMS 67 150B
SIGNS FOR THE SIMUTANEOUS ESTIMATION OF FUNCTIONS OF			BIOK467 127
		COMPONENTS I. EMPIRICAL STUDIES OF BALANCED	
		COMPONENTS II. EMPIRICAL STUDIES OF UNBALANC	
ITERATIVE PROCEDURE FOR ESTIMATING FIXED EFFECTS AND	VARIANCE	COMPONENTS IN MIXED MODEL SITUATIONS AN	BIOCS68 13
ESTIMATORS OF	VARIANCE	COMPONENTS IN THE BALANCED INCOMPLETE BLOCK	JASA 69 1014
			JASA 65 806
			AMS 61 1161
CLASSIFICATION			
COMPOSITE SAMPLES ESTIMATION OF	VARIANCE	COMPONENTS IN TWO-STACE NESTED DESIGNS WITH	TECH 67 373
WITH INTERACTION	VARIANCE	COMPONENTS IN TWO-WAY CLASSIFICATION MODELS	BIOKA63 327
OPTIMUM INVARIANT TESTS IN UNBALANCED	VARIANCE	COMPONENTS MODELS	AMS 67 422
			BIOKA69 313
CONCERNING 'A GENERAL APPROACH TO THE ESTIMATION OF	VARIANCE	COMPONENTS. SOME FORTHER REMARKS	1ECH 66 551
A CHECK ON GROSS ERRORS IN CERTAIN	VARIANCE	COMPUTATIONS	JASA 59 741
QUERY, NEGATIVE	VARIANCE		TECH 65 75
NESTED SAMPLING NEGATIVE	VARIANCE	ESTIMATES AND STATISTICAL DEPENDENCE IN	JASA 68 1000
			JASA 61 135
EDGEMENT/ COMPARISON OF LEAST SQUARES AND MINIMUM		ESTIMATES OF REGRESSION PARAMETERS, (ACKNOWL	
WITH PROBABILITY PROPORTIONATE TO SIZE		ESTIMATION IN RANDOMIZED SYSTEMATIC SAMPLING	
			JASA 69 841
EMPIRICAL STUDY OF THE STABILITIES OF ESTIMATORS AND	VARIANCE	ESTIMATORS IN UNEQUAL PROBABILITY SAMPLING O	JASA 69 540
CHARACTERISTIC CURVES FOR FIXED EFFECTS ANALYSIS OF	VARIANCE	F TESTS. ALPHA EQUALS 0.01 AND 0.05 /ATING	JASA 57 345
PERIODOGRAM ANALYSIS AND			JRSSB63 442
SPECTRAL ANALYSIS IN THE PRESENCE OF ALYSIS OF GAUSSIAN VECTOR PROCESS IN THE PRESENCE OF	VARIANCE	PLUCTUATIONS CROSS CORRESPONDENCE	110 00 1500
			TECH 69 103
MULTIVARIATE ANALYSIS OF	VARIANCE	FOR A SPECIAL COVARIANCE CASE, CORR. 64 1296	JASA 63 660
IMUM-LIKELIHOOD ESTIMATOR IS UNBIASED AND OF MINIMUM	VARIANCE	FOR ALL SAMPLE SIZES /NS FOR WHICH THE MAX	BIOKA56 200
		FOR ATTITUDINAL VARIABLES	JASA 62 92
FACTORIAL EXPERIMENTATION IN SCHEFFE'S ANALYSIS OF			JASA 5B 529
		FOR THE K-SAMPLE PROBLEM	AMS 66 1747
SUBCLASS FREQUENCIES TWO-WAY ANALYSIS OF	VARIANCE	FOR THE MIXED MODEL WITH DISPROPORTIONATE	BIOCS65 308
ON DISTRI/ ESTIMATORS WITH PRESCRIBED BOUND ON THE	VARIANCE	FOR THE PARAMETERS IN THE BINOMIAL AND POISS	JASA 66 220
			SASJ 67 67
MODEL WITH OBSERVATIONS WITHIN A/ THE ANALYSIS OF			
			TECH 69 NO.4
ON QUADRATIC ESTIMATES OF THE INTERCLASS			JRSSB61 493
COEFFICIENT OF CONCENTRATION	VARIANCE	FORMULAS FOR THE MEAN DIFFERENCE AND	JASA 62 648
SAMPLING VARIANCES OF ESTIMATES OF COMPONENTS OF	VARIANCE	FROM A NON-ORTHOGONAL TWO-WAY CLASSIFICATION	BIOKA64 . 491
ESTIMATION OF ERROR	VARTANCE	FROM SMALLEST ORDERED CONTRASTS	JASA 63 152
		FUNCTION OF THE DIFFERENCE BETWEEN TWO ESTIM	
CERTAIN TESTS OF THE HYPOTHESIS OF EQUAL MEANS UNDER			
		HETEROGENEITY IN THE RESIDUALS OF A GAUSSIAN	
CERTAIN TESTS OF THE HYPOTHESIS OF EQUAL MEANS UNDER			BIOKA61 230
ON THE BIAS OF SOME LEAST-SQUARES ESTIMATORS OF	VARIANCE	IN A GENERAL LINEAR MODEL	BIOKA68 313
GICAL SYSTEMS A NOTE ON SOME APPROXIMATIONS TO THE	VARIANCE	IN DISCRETE-TIME STOCHASTIC MODELS FOR BIOLO	BIOKA60 196
		IN ESTIMATION OF THE SPECTRUM	
		IN QUADRATICALLY BALANCED LEAST-SQUARES PROB	
ADEQUACY OF THE ASYMP/ NON-PARAMETRIC ANALYSIS OF			
E/ NOTES. ON TESTING SIGNIFICANCE OF COMPONENTS OF			
ON POOLING MEANS WHEN	VARIANCE	IS UNKNOWN	JASA 68 1333
LIKELIHOOD ESTIMATION FOR THE MIXED ANALYSIS OF	VARIANCE	MODEL MAXIMUM-	BIOKA67 93
OBLEMS A GENERALIZED MULTIVARIATE ANALYSIS OF	VARIANCE	MODEL USEFULL ESPECIALLY FOR GROWTH CURVE PR	BIOKA64 313
OPTIMAL CONFIDENCE INTERVALS FOR THE			JASA 59 674
TABLES FOR MAKING INFERENCES ABOUT THE			BIOKA60 433
BAYESIAN ESTIMATION OF THE			JRSSB64 63
CORRIGENDA, 'TABLES FOR MAKING INFERENCES ABOUT THE			BIOKA61 230
TABLES FOR UNBIASED TESTS ON THE	VARIANCE	OF A NORMAL POPULATION	AMS 61 84
		OF A PARTIALLY BALANCED INCOMPLETE BLOCK DES	AMS 65 1815
FUNCTIONS OF THE SAMPLE MEAN AND SAMPLE			BIOCS69 171
		OF A RATIO OF TWO RANDOM VARIABLES	
/ ON DURBIN'S FORMULA FOR THE LIMITING GENERALIZED			
A, 'ON DURBIN'S FORMULA FOR THE LIMITING GENERALIZED			
ECONOMIC A/ THE RELATIONSHIP BETWEEN THE MEAN AND			
ESTIMATION OF THE INNOVATION	VARIANCE	OF A STATIONARY TIME SERIES	JASA 6B 141
			BIOK A51 468
WEIGHTING	VARIANCE	OF AN ESTIMATOR WITH POST-STRATIFIED	JASA 62 622
S OF FIXED AND MIXED VARIATES THE SAMPLING	VARTANCE	OF CORRELATION COFFETCIENTS IMDED ASSUMPTION	BTOK 458 471
		OF DATA FROM STRATIFIED SUBSAMPLES	
		OF DESIGNS WITH MANY NON-ORTHOGONAL CLASSIFI	
		OF DISPROPORTIONATE DATA WHEN INTERACTION IS	
		OF KENDALL'S RANK CORRELATION STATISTIC	
ES REGRESSION COEFFICIENTS COMPARISON OF THE	VARIANCE	OF MINIMUM VARIANCE AND WEIGHTED LEAST SQUAR	AMS 63 984
		OF PRODUCTS, CORR. 61 917	JASA 60 708
		OF PROPORTIONS WITH UNEQUAL ERROLEMOTES	JASA 63 1133
THE MAYTMIN	VARTANCE	OF PROPORTIONS WITH UNEQUAL FREQUENCIES OF RESTRICTED UNIMODAL DISTRIBUTIONS	AMS 60 1746
PLOTE MAXIMUM	VARIANCE	OF COME NOW OBMINGONYL DESTREE STATE OF THE COLUMN OF WEST VIOLED ON THIODHY DISTUTDUITIONS	AND 03 1140
PLOTS THE ANALYSIS OF	VARIANCE	OF SOME NON-ORTHOGONAL DESIGNS WITH SPLIT	DIUNABY 43
THE	VARIANCE	OF SPEARMAN'S RHO IN NORMAL SAMPLES	RTOK VET 18
TABLE A SIMPLIFIED EXPRESSION FOR THE	VARIANCE	OF THE CHI-SQUARE FUNCTION ON A CONTINGENCY	BIOKA54 280
GENETIC EXPERIMENTS THE SAMPLING	VARIANCE	OF THE CORRELATION COEFFICIENTS ESTIMATED IN	BIOCS66 187
GENETIC EXPERIMENTS THE SAMPLING ENTIAL PROBABILITY RATIO TESTS A NOTE ON THE	VARIANCE	OF THE DISTRIBUTION OF SAMPLE NUMBER IN SECUL	TECH 66 700
OF OBSERVATIONS IN POLYNOMIAL REGRESSION FOR MINIMAX			
NUMBER OF INDEPENDENT NORMAL VARIATES THE			
THE	VARIANCE	OF THE MEAN OF A STATIONARY PROCESS	JRSSB57 282
THE			
Inc	VARIANCE	OF THE MEAN OF SYSTEMATIC SAMPLES	BIOKA56 137
DISTRIBUTION	VARIANCE VARIANCE	OF THE MEAN OF SYSTEMATIC SAMPLES OF THE MEDIAN OF SAMPLES FROM A CAUCHY	BIOKA56 137 JASA 60 322

```
VARIANCE OF THE MEDIAN OF SMALL SAMPLES FROM SEVERAL JASA 60 14B
SPECIAL POPULATIONS
                                                     THE VARIANCE OF THE ONE-SIDED STOPPING RULES
                                                                                                                    AMS 69 1074
                                                     THE VARIANCE OF THE PRODUCT OF K RANDOM VARIABLES
                                                                                                                   JASA 62 54
                                          A NOTE ON THE VARIANCE OF THE RATIO ESTIMATE
                                                                                                                   JASA 64 895
                 ON SOME PROPERTIES OF THE ASYMPTOTIC VARIANCE OF THE SAMPLE QUANTILES AND MID-RANGES
                                                                                                                   .IRSSR61 453
               ASYMPTOTIC EXPANSIONS FOR THE MEAN AND VARIANCE OF THE SERIAL CORRELATION COEFFICIENT
                                                                                                                   BIOKA61
                                                                                                                             B5
                                       ON THE MEAN AND VARIANCE OF THE SMALLER OF TWO DRAWINGS FROM A BINOMI BIOKA62
ING ERRORS ARE INDEPENDENT AND HETEROSCEDASTIC

THE VARIANCE OF WEIGHTED REGRESSION ESTIMATORS

VARIANCE OF WEIGHTED REGRESSION ESTIMATORS
                                                                                                            JASA 67 1290
                                                     VARIANCE OF WEIGHTED REGRESSION ESTIMATORS WHEN SAMPL JASA 69 NO.4
                                  A PROBLEM IN MINIMAX VARIANCE POLYNOMIAL EXTRAPOLATION
                            COMPARISON OF ANALYSIS OF VARIANCE POWER FUNCTION IN THE PARAMETRIC AND RANDOM BIOKA52
                                                                                                                             427
R WHICH CERTAIN SIMPLE LEAST SQUARES AND ANALYSIS OF VARIANCE PROCEDURES ARE ALSO BEST /STRUCTURES UNDE JASA 69 NO.4
ENSION OF TABLES OF PERCENTAGE POINTS OF THE LARGEST VARIANCE RATIO S-SQUARE-MAX-OVER-S-SQUARE-SUB-O
                                                                                                               EXT BIOKA67
  ON THE RANDOMIZATION DISTRIBUTION AND POWER OF THE VARIANCE RATIO TEST
                                                                                                                   JRSSB63
                                CONFIDENCE REGIONS FOR VARIANCE RATIOS OF RANDOM MODELS
                                                                                                                   JASA 69
                                                                                                                             660
                             SOME EMPIRICAL RESULTS ON VARIANCE RATIOS UNDER PERMUTATION IN THE COMPLETELY
RANDOMIZED DESIGN
                                                                                                                  JASA 66
                                                                                                                            81.3
                                                MINIMUM VARIANCE STRATIFICATION, CORR. 63 1161
                                                                                                                   JASA 59
                                                                                                                             88
IBUTION OF VARIOUS SUMS OF SQUARES IN AN ANALYSIS OF VARIANCE TABLE FOR DIFFERENT CLASSIFICATIONS WITH COR JRSSB59
                      A DISTRIBUTION-FREE ANALYSIS OF VARIANCE TECHNIQUE FOR BLOCK DESICNS
                                                                                                                   SASJ 6B
                                                                                                                              9
    OF NON-NORMALITY ON THE POWER OF THE ANALYSIS OF VARIANCE TEST
                                                                                                            EFFECT BIOKA59
 BAYES CHARACTER OF A STANDARD MODEL II ANALYSIS OF VARIANCE TEST
                                                                                                           ON THE AMS 69 1094
                                         AN ANALYSIS OF VARIANCE TEST FOR NORMALITY (COMPLETE SAMPLES)
                                                                                                                   BIOKA65 591
            A CLASS OF DISTRIBUTION-FREE ANALYSIS OF VARIANCE TESTS
       OF THE POWERS OF TWO MULTIVARIATE ANALYSIS OF VARIANCE TESTS
                                                                                                     A COMPARTSON BIOKA62
ARISON OF THE POWERS OF TWO MULTIVARIATE ANALYSIS OF VARIANCE TESTS.'

CORRIGENDA, 'A COMP BIOKA63

BUTI/ CHARTS OF THE POWER FUNCTION FOR ANALYSIS OF VARIANCE TESTS, DERIVED FROM THE NON-CENTRAL F-DISTRI BIOKA51
                                                                                                                             112
             APPLICATION OF MULTIVARIATE ANALYSIS OF VARIANCE TO REPEATED MEASUREMENTS EXPERIMENTS BIOCS66
F RELIABILITY FUNCTIONS FOR SYSTEMS IN SE/ MINIMUM VARIANCE UNBIASED AND MAXIMUM LIKELIHOOD ESTIMATORS O JASA 66 1052
                                                MINIMUM VARIANCE UNBIASED ESTIMATION AND CERTAIN PROBLEMS OF AMS 63 1050
ADDITIVE NUMBER THEORY
                                            ON MINIMUM VARIANCE UNBIASED ESTIMATION OF RELIABILITY . AMS 69
MINIMUM VARIANCE UNBIASED ESTIMATION OF RELIABILITY FOR THE TECH 69
                                                                                                                    AMS 69 710
TRUNCATED EXPONENTIAL DISTRIBUTION
                                                MINIMUM VARIANCE UNBIASED ESTIMATORS FOR POISSON PROBABILITIE TECH 62 409
                                SEQUENTIAL ANALYSIS OF VARIANCE UNDER RANDOM AND MIXED MODELS
                                  EQUENTIAL ANALYSIS OF VARIANCE UNDER RANDOM AND MIXED MODELS

MONOTONICITY OF THE VARIANCE UNDER TRUNCATION AND VARIATIONS OF HENSEN'S AMS 69 1106
INEQUALITY
 KOLMOGOROV-SMIRNOV TEST FOR NORMALITY WITH MEAN AND VARIANCE UNKNOWN
                                                                                                           ON THE JASA 67
         A NOTE ON DESIGNS FOR MODEL DISCRIMINATION, VARIANCE UNKNOWN CASE
                                                                                                                  TECH 69 396
L FOR THE MEAN ON THE COST OF NOT KNOWING THE VARIANCE WHEN MAKINC A FIXED WIDTH CONFIDENCE INTERVA AMS 68 1946
 THE T-SQUARE-SUB-O TEST IN MULTIVARIATE ANALYSIS OF VARIANCE WHEN VARIANCE-COVARIANCE MATRICES ARE NOT EQ BIOKA64
                                ESTIMATES OF SAMPLINC VARIANCE WHERE TWO UNITS ARE SELECTED FROM EACH
                                                                                                                   JASA 57
                                                                                                                             503
 THE BIAS OF VARIOUS ESTIMATORS OF THE LOGIT AND ITS VARIANCE WITH APPLICATION TO QUANTAL BIOASSAY
                                                                                                                ON BIOKA67
                                                                                                                             181
                            ON THE VARIATION OF YIELD VARIANCE WITH PLOT SIZE
                                                                                                                   BIOKA56
                                                                                                                            337
              SAMPLE SIZE REQUIRED FOR ESTIMATING THE VARIANCE WITIN D UNITS OF THE TRUE VALUE
                                                                                                                    AMS 64 438
ANALYSIS OF RANDOM-EFFECT MODELS IN THE ANALYSIS OF VARIANCE. I. POSTERIOR DISTRIBUTION OF VARIANCE-COMPO BIOKAG5
                                                                                                                             37
 ANALYSIS OF RANDOM-EFFECT MODELS IN THE ANALYSIS OF VARIANCE. II. EFFECT OF AUTOCORRELATED ERRORS /SIAN BIOKAG6
OF INDEPENDENT NONCENTRAL CHI-SQUAR/
WAY CROSS CLASSIFICATION WITH APPLIC/

WAY CROSS CLASSIFICATION WITH APPLIC/
E ANALYSIS OF VARIANCE. I POSTERIOR DISTRIBUTION OF VARIANCE-COMPONENTS /OF RANDOM-EFFECT MODELS IN TH BIOKA65
SUB-O TEST IN MULTIVARIATE ANALYSIS OF VARIANCE WHEN VARIANCE-COVARIANCE MATRICES ARE NOT EQUAL /SQUARE- BIOKA64
IMINANT FUNCTION
                     THE EFFECT OF UNEQUAL VARIANCE—COVARIANCE MATRICES ON FISHER'S LINEAR DISCR BIOCS69
                APPROXIMATING THE GENERAL NON-NORMAL VARIANCE-RATIO SAMPLING DISTRIBUTIONS

BIOKA64

SOME NOTES ON VARIANCE-RATIO TESTS OF THE GENERAL LINEAR HYPOTHESIS BIOKA64
                                                                                                                              B.3
 VARIANCES IN THE FIXED-EFFECTS ONE-WAY ANALYSIS OF VARIANCE, A BAYESIAN SIDELICHT UNEQUAL GROUP BIOKA66
                                                                                                                             27
             SEQUENTIAL RANCE TESTS FOR COMPONENTS OF VARIANCE, CORR. 65 1249
                                                                                                                   JASA 65
 NOMIC TIME SERIES, CORR 65 1250 MINIMUM VARIANCE, LINEAR, UNBIASED SEASONAL ADJUSTMENT OF ECO JASA 64 6B1
AGAINST ORDERED ALTERNATIVES IN MODEL I ANALYSIS OF VARIANCE, NORMAL THEORY AND NONPARAMETRIC TESTING AMS 67 1740
NOMIC TIME SERIES, CORR 65 1250
               ALTERNATIVE TESTS FOR HETEROGENEITY OF VARIANCE, SOME MONTE CARLO RESULTS
                                                                                                                   BIOKA66 229
                                                                                                                    AMS 67
                                                                                                                             941
                                        THE GENERALIZED VARIANCE, TESTING AND RANKING PROBLEM
                    ON LINEAR COMBINATIONS OF SEVERAL VARIANCES
                                                                                                                   JASA 56
                                                                                                                             132
                                              A TEST OF VARIANCES
                                                                                                                   JASA 58
   ON STABILIZING THE BINOMIAL AND NEGATIVE BINOMIAL VARIANCES
                                                                                                                   JASA 61
                                                                                                                             143
                                       ALMOST PERIODIC VARIANCES
                                                                                                                    AMS 63 1549
                     ON FISHER'S BOUND FOR ASYMPTOTIC VARIANCES
                                                                                                                    AMS 64 1545
STUDENT'S T IN A TWO-WAY CLASSIFICATION WITH UNEQUAL VARIANCES
                                                                                                                    AMS 65 1248
                        QUERY, TESTING TWO CORRELATED VARIANCES
                                                                                                                   TECH 65 447
                                             JACKNIFING VARIANCES
                                                                                                                    AMS 68 567
                SIMULTANEOUS CONFIDENCE INTERVALS FOR VARIANCES
                                                                                                                   JASA 69
                                                                                                                            324
RANKING MEANS OF TWO NORMAL POPULATIONS WITH UNKNOWN VARIANCES
                                                                                                                   BIOKA58 250
          FURTHER CRITICAL VALUES FOR THE SUM OF TWO VARIANCES
                                                                                                                   BIOKA58
                                                                                                                             279
   A TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING VARIANCES
                                                                                                                             544
                                                                                                                   BIOKA58
      TESTING THE HOMOGENEITY OF A SET OF CORRELATED VARIANCES
                                                                                                                   BIOKA6B
                                                                                                                             317
                    A TEST OF HOMOCENEITY FOR ORDERED VARIANCES
                  THE STATISTICAL FOURIER ANALYSIS OF VARIANCES
                                                                                                                   JRSSB65
                                                                                                                             159
  OF BEST AND OUTLYING NORMAL POPULATIONS WITH KNOWN VARIANCES
                                                                                                        DETECTION BIOKA61
                                                                                                                             457
           TEST AND LEHMANN'S TEST FOR HOMOGENEITY OF VARIANCES
                                                                                                    ON BARTLETT'S AMS 69 NO.6
    OF MEANS AFTER A PRELIMINARY TEST OF EQUALITY OF VARIANCES
                                                                                                 TESTING EQUALITY BIOKA62
THE BEST AMONGST THREE NORMAL POPULATIONS WITH KNOWN VARIANCES
                                                                                               ON THE CHOICE OF BIOKA58
                                                                                                                             436
                                                                                           A METHOD OF ASSICNING BIOKA55
         CONFIDENCE LIMITS TO LINEAR COMBINATIONS OF VARIANCES
                                                                                                                             471
 THE LARGEST MEAN OF K NORMAL POPULATIONS WITH KNOWN VARIANCES
                                                                                          INTERVAL ESTIMATION OF JASA 69
                                                                                                                             296
  BASED ON RANKS FOR CERTAIN PROBLEMS IN ANALYSIS OF VARIANCES
                                                                                   MULTIPLE DECISION PROCEDURES AMS 69
                                                                                                                             619
PORTANCE OF ASSUMPTIONS APPLIED TO THE COMPARISON OF VARIANCES
                                                                                  A BAYESIAN APPROACH TO THE IM BIOKA64 153
    OF THE MEAN WHICH CONSIDER INEQUALITY OF UNKNOWN VARIANCES
                                                                           COMBINATIONS OF UNBIASED ESTIMATORS JASA 69 1042
'S CRITERION FOR TESTING THE HOMOGENEITY OF A SET OF VARIANCES
                                                                     /NTS FOR HARTLEY'S CORRECTION TO BARTLETT BIOKA62
                                                                                                                             4B7
TWEEN MEANS IN TWO NORMAL POPULATIONS HAVING UNEQUAL VARIANCES
                                                                     /OR THE SIGNIFICANCE OF THE DIFFERENCE BE BIOKA51
                                                                                                                             252
                                                                                                                            377
EEN THE MEANS OF TWO NORMAL POPULATIONS WITH UNKNOWN VARIANCES
                                                                      /TATISTIC FOR TESTING THE DIFFERENCE BETW JRSSB61
                                     THE ESTIMATION OF VARIANCES AFTER USINC A GAUSSIANATINC TRANSFORMATION AMS 6B 1125
                                     ON ESTIMATORS FOR VARIANCES AND COVARIANCES
```

TITLE WORD INDEX VAR - VAR

'SYNTHESIS' EXPECTATIONS, VARIANCES AND COVARIANCES OF 'ANOVA' MEAN SQUARES BY	BIOCS67	105
ATORS, FROM CENSORED SAMPLES, OF THE P/ ASYMPTOTIC VARIANCES AND COVARIANCES OF MAXIMUM-LIKELIHOOD ESTIM		
LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH RESIDUAL VARIANCES ARE KNOWN A NOTE ON	BIOKA67	
SOME TWO-SAMPLE TESTS WHEN THE VARIANCES ARE UNEQUAL. A SIMULATION STUDY	BIOKA67	679
PS OF OBSERVATIONS WHEN THE RATIOS OF THE POPULATION VARIANCES ARE UNKNOWN /E COMPARISON OF SEVERAL CROU		324
TIVARIATE ANALYSIS WHEN THE RATIOS OF THE POPULATION VARIANCES ARE UNKNOWN /THESES IN UNIVARIATE AND MUL		19
ON SEQUENTIAL TESTS OF RATIO OF VARIANCES BASED ON RANGE	BIOKA63	419
Y ASSUMPTIONS ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALIT		
CORRELATED OBSERVATIONS TREATMENT VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY		208
ST INTERVALS SOME PROBABILITIES, EXPECTATIONS AND VARIANCES FOR THE SIZE OF LARCEST CLUSTERS AND SMALLE		
	BIOKA57	
RIBUTION CORRELATION BETWEEN THE SAMPLE VARIANCES IN A SINCLY TRUNCATED BIVARIATE NORMAL DIST		433
	BIOKA58	111
	BIOCS69	153
THE RANKINC OF VARIANCES IN NORMAL POPULATIONS	JASA 56	621
HETEROCENEOUS ERROR VARIANCES IN SPLIT-PLOT EXPERIMENTS	BIOKA57	378
	BIOKA66	27
-INBRED DIPLOID SPECIES HAVING ALL DICENIC EPISTATIC VARIANCES OF EQUAL MACNITUDE /IC COMPONENTS FOR NON		545
A NON-ORTHOCONAL TWO-WAY CLASSIFICATION SAMPLING VARIANCES OF ESTIMATES OF COMPONENTS OF VARIANCE FROM		
	BIOCS66	553
ETERS OF THE TRUNCATED BINOMIAL AN/ THE ASYMPTOTIC VARIANCES OF METHOD OF MOMENTS ESTIMATES OF THE PARK		990
IN THE UNBALANCED R-WAY CLASSIFICATION VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS		527 481
ESTIMATES OF BOUNDED RELATIVE ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTIONS STACE PROCEDURES FOR RANKING MULTIPLY-CLASSIFIED VARIANCES OF NORMAL POPULATIONS SINCLE-	JASA 56	693
COMPARISONS WITH A CONTROL FOR MULTIPLY-CLASSIFIED VARIANCES OF NORMAL POPULATIONS MULTIPLE		715
COMPARISONS WITH A CONTROL FOR MOLITEL-CLASSIFIED VARIANCES OF NORMAL POPULATIONS MOLITELE RUNGATED BIVARIATE NORMAL DISTRIBUTION IV. EMPIRICAL VARIANCES OF RANK CORRELATION COEFFICIENTS /// ACCUMPANISONS WITH A CONTROL FOR MOLITELE		437
STACE SAMPLES, CORR. 63 1162 ON VARIANCES OF RANT OS AND THEIR DIFFERENCES IN MULTI-	JASA 59	416
SINCE SAMPLES, CORR. OS 1102. ES AND THEIR USE FOR INVESTIGATING THE NORMALITY AND VARIANCES OF RESIDUALS. /ONORMAL BASES OF ERROR SPAC		
THE UNBALANCED THREE-WAY NESTED CLASSIFI/ SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN		521
BALANCED TWO-WAY CROSS CLASSIFICATION WITH APPLIC VARIANCES OF VARIANCE COMPONENT ESTIMATORS FOR THE UN		408
MEANS THE EFFECT OF UNEQUAL CROUP VARIANCES ON THE F-TEST FOR THE HOMOCENEITY OF CROUP		12B
	JASA 60	
SAMPLE SIZE REQUIRED TO ESTIMATE THE RATIO OF VARIANCES WITH BOUNDED RELATIVE ERROR	JASA 63	
NON-NORMALITY AND TESTS ON VARIANCES.	BIOKA53	318
'SYNTHESIS' ON EXPECTATIONS, VARIANCES, AND CONVARIANCES OF ANOVA MEAN SQUARES BY		963
LINEAR RECRESSION WITH NON-CONSTANT, UNKNOWN ERROR VARIANCES, SAMPLING EXPERIMENTS WITH LEAST SQUARES, W		607
CUMULANTS OF A TRANSFORMED VARIATE	BIOKA55	529
NOTE ON THE NECATIVE MOMENTS OF A TRUNCATED POISSON VARIATE	JASA 64	1220
OF THE SAMPLE MEAN AND SAMPLE VARIANCE OF A POISSON VARIATE FUNCTIONS	BIOCS69	171
OF A RECTANCULAR OR TRIANCULAR AND A CENERAL VARIATE THE QUOTIENT		330
OLUTE DEVIATION IN CONFIDENCE INTERVALS FOR A NORMAL VARIATE THE CORRECT USE OF THE SAMPLE MEAN ABS	TECH 66	663
NON-CENTRALITY PARAMETER OF A NONCENTRAL CHI-SQUARE VARIATE THE MAXIMUM LIKELIHOOD ESTIMATE OF THE	JASA 67	1258
TWO ESTIMATES FOR STANDARD DEVIATION BASED ON SECOND VARIATE DIFFERENCES DISTRIBUTION THEORY OF	BIOKA54	1
NOTE ON THE VARIATE DIFFERENCES OF AUTORECRESSIVE SERIES	BIOKA51	479
OF COCHRAN'S FORMULAE FOR ADDITION OR OMISSION OF A VARIATE IN MULTIPLE REGRESSION ANALYSIS EXTENSION		
	JASA 63	527
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC	AMS 61	230
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI	AMS 61 AMS 67	230 1170
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS	AMS 61 AMS 67 JASA 67	230 1170 1305
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T	AMS 61 AMS 67 JASA 67 AMS 64	230 1170 1305 298
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T	AMS 61 AMS 67 JASA 67 AMS 64 AMS 64	230 1170 1305 298 315
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA	AMS 61 AMS 67 JASA 67 AMS 64 AMS 64 AMS 67	230 1170 1305 298 315 944
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE—DIFFERENCE METHOD	AMS 61 AMS 67 JASA 67 AMS 64 AMS 64 AMS 67 BIOKA53	230 1170 1305 298 315 944 383
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q. A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE—DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE—VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR	AMS 61 AMS 67 JASA 67 AMS 64 AMS 64 AMS 67 BIOKA53 BIOKA66	230 1170 1305 298 315 944 383 278
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE-VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATE-VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL	AMS 61 AMS 67 JASA 67 AMS 64 AMS 67 BIOKA53 BIOKA66 BIOKA66	230 1170 1305 298 315 944 383 278 281
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN VARIATE-VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATE-VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES	AMS 61 AMS 67 JASA 67 AMS 64 AMS 64 AMS 67 BIOKA53 BIOKA66 BIOKA66 JASA 62	230 1170 1305 298 315 944 383 278 281 184
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE-VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATE-VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES	AMS 61 AMS 67 JASA 67 AMS 64 AMS 67 BIOKA53 BIOKA66 BIOKA66	230 1170 1305 298 315 944 383 278 281
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN VARIATE-VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATE-VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES	AMS 61 AMS 67 JASA 67 AMS 64 AMS 64 AMS 67 BIOKA53 BIOKA66 BIOKA66 JASA 62 AMS 66	230 1170 1305 298 315 944 383 278 281 184 480
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q. A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE—DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE—VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATE—VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES CAUCHY—DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES	AMS 61 AMS 67 JASA 67 AMS 64 AMS 64 AMS 67 BIOKA53 BIOKA66 BIOKA66 JASA 62 AMS 66 AMS 67	230 1170 1305 298 315 944 383 278 281 184 480 916
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE-VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATE-VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES ON DETECTING CHANCES IN THE MEAN OF NORMAL VARIATES	AMS 61 AMS 67 JASA 67 AMS 64 AMS 67 BIOKA53 BIOKA66 BIOKA66 JASA 62 AMS 66 AMS 67 AMS 69	230 1170 1305 298 315 944 383 278 281 184 480 916 116
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE-VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATE-VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES ON DETECTINC CHANCES IN THE MEAN OF NORMAL VARIATES THE ORTHANT PROBABILITIES OF FOUR GAUSSIAN VARIATES	AMS 61 AMS 67 JASA 67 AMS 64 AMS 67 BIOKA53 BIOKA56 BIOKA66 JASA 62 AMS 66 AMS 67 AMS 69	230 1170 1305 298 315 944 383 278 281 184 480 916 116 152 354
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE—DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE—VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATES ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES ON DETECTING CHANCES IN THE MEAN OF NORMAL VARIATES THE ORTHANT PROBABILITIES OF FOUR GAUSSIAN VARIATES SOME SIMPLE APPROXIMATE TESTS FOR POISSON VARIATES A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMIAL VARIATES A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMIAL VARIATES	AMS 61 AMS 67 JASA 67 AMS 64 AMS 67 BIOKA53 BIOKA66 JASA 62 AMS 66 AMS 67 AMS 69 BIOKA53	230 1170 1305 298 315 944 383 278 281 184 480 916 116 1152 354 588
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE—DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE—VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATE—VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES ON DETECTINC CHANCES IN THE MEAN OF NORMAL VARIATES THE ORTHANT PROBABILITIES OF FOUR GAUSSIAN VARIATES SOME SIMPLE APPROXIMATE TESTS FOR POISSON VARIATES A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES	AMS 61 AMS 67 JASA 67 AMS 64 AMS 67 BIOK A65 BIOK A66 BIOK A66 BIOK A66 AMS 67 AMS 69 AMS 69 BIOK A68 BIOK A66 BIOK A66 BIOK A66 BIOK A66 BIOK A66 BIOK A66	230 1170 1305 298 315 944 383 278 281 184 480 916 116 152 354 588 614 615
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE—DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE—VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATE—VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES ON DETECTINC CHANCES IN THE MEAN OF NORMAL VARIATES THE ORTHANT PROBABILITIES OF FOUR GAUSSIAN VARIATES SOME SIMPLE APPROXIMATE TESTS FOR POISSON VARIATES A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES TESTINC FOR CORRELATION BETWEEN NON-NEGATIVE VARIATES TESTINC FOR CORRELATION BETWEEN NON-NEGATIVE VARIATES	AMS 61 AMS 67 JASA 67 JASA 67 BIOK 63 BIOK 63 BIOK 66 BIOK 66 JASA 62 AMS 69 AMS 69 BIOK 69 BIOK 66 BIOK 66	230 1170 1305 298 315 944 383 278 281 184 480 916 116 152 354 588 614 615 385
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE—DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE—VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATE—VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES CAUCHY—DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES ON DETECTINC CHANCES IN THE MEAN OF NORMAL VARIATES SOME SIMPLE APPROXIMATE TESTS FOR POISSON VARIATES A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES TESTING FOR CORRELATION BETWEEN NON-NEGATIVE VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES TESTING FOR CORRELATION BETWEEN NON-NEGATIVE VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES	AMS 61 AMS 67 JASA 67 AMS 64 AMS 64 AMS 65 BIOKA66 BIOKA66 BIOKA66 BIOKA66 AMS 66 AMS 67 AMS 69 AMS 69 BIOKA65 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66	230 1170 1305 298 315 944 383 278 281 184 480 916 1152 354 588 614 615 385 97
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE-VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATES ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES ON DETECTINC CHANCES IN THE MEAN OF NORMAL VARIATES THE ORTHANT PROBABILITIES OF FOUR GAUSSIAN VARIATES A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMIAL VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES TESTINC FOR CORRELATION BETWEEN NON-NEGATIVE VARIATES A RECRESSION TECHNIQUE FOR ANGULAR VARIATES	AMS 61 AMS 67 AMS 64 AMS 64 AMS 67 BIOK A66 BIOK A66 BIOK A66 AMS 67 AMS 69 AMS 69 AMS 69 BIOK A66	230 1170 1305 298 315 944 383 278 281 184 480 916 116 152 354 614 615 385 97
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE—DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE—VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION OF THE CORRELATION BETWEEN VARIATE—VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES ON DETECTINC CHANCES IN THE MEAN OF NORMAL VARIATES THE ORTHANT PROBABILITIES OF FOUR GAUSSIAN VARIATES A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMIAL VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES TESTINC FOR CORRELATION BETWEEN NON-NEGATIVE VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES TESTINC FOR CORRELATION BETWEEN NON-NEGATIVE VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES A RECRESSION TECHNIQUE FOR ANGULAR VARIATES DISTRIBUTION OF CERTAIN QUADRATIC FORMS IN NORMAL VARIATES ON THE	AMS 61 AMS 67 JASA 67 AMS 64 AMS 67 BIOKA63 BIOKA66 BIOKA66 JASA 62 JASA 62 AMS 69 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66	230 1170 1305 298 315 944 383 278 281 184 480 916 116 152 354 614 615 385 97 NO.4
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE—DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE—VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATE—VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES ON DETECTING CHANCES IN THE MEAN OF NORMAL VARIATES THE ORTHANT PROBABILITIES OF FOUR GAUSSIAN VARIATES SOME SIMPLE APPROXIMATE TESTS FOR POISSON VARIATES A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES TESTING FOR CORRELATION BETWEEN NON-NEGATIVE VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES TESTING FOR CORRELATION BETWEEN NON-NEGATIVE VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES A RECRESSION TECHNIQUE FOR ANGULAR VARIATES DISTRIBUTION OF CERTAIN QUADRATIC FORMS IN NORMAL VARIATES ON THE OF THE MEDIAN AND OTHER STATISTICS OF LOCISTIC VARIATES PROPERTIES	AMS 61 AMS 67 JASA 67 JASA 67 AMS 64 AMS 67 BIOKA53 BIOKA66 BIOKA66 AMS 67 AMS 69 BIOKA65 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66	230 1170 1305 298 315 944 480 916 116 152 354 588 614 615 385 97 NO.4 148 1779
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE-VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION ON THE CORRELATION BETWEEN VARIATES ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES ON DETECTINC CHANCES IN THE MEAN OF NORMAL VARIATES THE ORTHANT PROBABILITIES OF FOUR GAUSSIAN VARIATES A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMIAL VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES TESTINC FOR CORRELATION BETWEEN NON-NEGATIVE VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES A RECRESSION TECHNIQUE FOR ANGULAR VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES A RECRESSION TECHNIQUE FOR ANGULAR VARIATES DISTRIBUTION OF CERTAIN QUADRATIC FORMS IN NORMAL VARIATES ON THE OF THE MEDIAN AND OTHER STATISTICS OF LOCISTIC VARIATES SERIAL CORRELATION WITH EXPONENTIALLY DISTRIBUTED VARIATES TESTING FOR	AMS 61 AMS 67 AMS 64 AMS 64 AMS 67 BIOK A66 BIOK A66 BIOK A66 BIOK A66 AMS 67 AMS 69 AMS 69 AMS 69 AMS 69 AMS 69 AMS 68 BIOK A66	230 1170 1305 298 315 944 383 278 281 184 480 916 116 152 354 588 614 615 385 97 NO.4 148 1779 395
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE—DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE—VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATES ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES ON DETECTINC CHANCES IN THE MEAN OF NORMAL VARIATES THE ORTHANT PROBABILITIES OF FOUR GAUSSIAN VARIATES A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMIAL VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES A RECRESSION TECHNIQUE FOR ANGULAR VARIATES DISTRIBUTION OF CERTAIN QUADRATIC FORMS IN NORMAL VARIATES PROPERTIES SERIAL CORRELATION WITH EXPONENTIALLY DISTRIBUTED VARIATES FROM THE RATIO OF TWO QUADRATIC FORMS IN NORMAL VARIATES AN INEQUALITY AN INEQUALITY AN INEQUALITY AN INEQUALITY	AMS 61 AMS 67 JASA 67 JASA 67 JASA 67 JASA 67 JASA 667 JASA 667 JASA 66 JOKA66 JOKA66 JASA 66 JASA 66 JOKA66 JOKA66 JOKA66 JOKA66 JOKA66 JOKA66 JOKA66 JOKA67 JOKA66 JOKA67 JRSSB62 JRSSB62 JRSSB62 JRSSB62 JRSSB62 JRSSB62	230 1170 1305 298 315 944 383 278 281 184 480 916 1152 354 588 614 615 385 97 NO.4 148 1779 395 1762
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE RELATED TO THE NON-CENTRAL T MODIFICATIONS TO THE VARIATE—DIFFERENCE METHOD MAL DISTRIBUTION, III. CORRELATION BETWEEN RANKS AND VARIATE—VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATE—VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES ON DETECTINC CHANCES IN THE MEAN OF NORMAL VARIATES THE ORTHANT PROBABILITIES OF FOUR GAUSSIAN VARIATES A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMIAL VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES A RECRESSION TECHNIQUE FOR ANGULAR VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES A RECRESSION TECHNIQUE FOR ANGULAR VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES A RECRESSION TECHNIQUE FOR ANGULAR VARIATES ON EXPECTATION OF CERTAIN QUADRATIC FORMS IN NORMAL VARIATES DISTRIBUTION OF CERTAIN QUADRATIC FORMS IN NORMAL VARIATES DISTRIBUTION OF CERTAIN QUADRATIC FORMS IN NORMAL VARIATES DISTRIBUTION OF CERTAIN QUADRATIC FORMS IN NORMAL VARIATES TESTING FOR THE MEDIAN AND OTHER STATISTICS OF LOCISTIC VARIATES THE THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES THE DISTRIBUTION THE DISTRIBUTION THE DISTRIBUTION THE DISTRIBUTION THE DISTRIBUTION THE DISTRIBUTION	AMS 61 AMS 67 JASA 67 JASA 67 JASA 68 AMS 64 AMS 67 BIOKA66 BIOKA66 JASA 62 AMS 67 AMS 69 BIOKA65 BIOKA66 BIOKA67 BIOCS68 BIOKS68 BIOKS68 BIOKS68 BIOKS68 BIOKS68 BIOKS68 BIOKS68 BIOKA67 AMS 68	230 1170 1305 298 315 944 383 278 281 184 480 916 116 152 354 588 614 615 385 97 NO.4 148 1779 395 1762 655
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE PLATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE—VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION. III. CORRELATION BETWEEN VARIATE—VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATES A NOTE ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES CAUCHY—DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES A CAUCHY—DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES THE ORTHANT PROBABILITIES OF FOUR GAUSSIAN VARIATES A Q—TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMIAL VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES TESTINC FOR CORRELATION BETWEEN NON-NEGATIVE VARIATES A RECRESSION TECHNIQUE FOR ANGULAR VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES A RECRESSION TECHNIQUE FOR ANGULAR VARIATES DISTRIBUTION OF CERTAIN QUADRATIC FORMS IN NORMAL VARIATES FROPERTIES SERIAL CORRELATION WITH EXPONENTIALLY DISTRIBUTED VARIATES FOR THE RATIO OF TWO QUADRATIC FORMS IN NORMAL VARIATES FOR THE RATIO OF TWO QUADRATIC FORMS IN NORMAL VARIATES THE DISTRIBUTION OF THE DISTR	AMS 61 AMS 67 AMS 64 AMS 664 AMS 67 BIOK A66 BIO	230 1170 1305 298 315 944 480 916 116 152 354 588 614 615 385 97 NO.4 148 1779 395 1762 655 1016
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTION ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE—DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE—VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATE—VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI—SQUARE VARIATES CAUCHY—DISTRIBUTED FOON OF CAUCHY VARIATES ON DETECTINC CHANCES IN THE MEAN OF NORMAL VARIATES THE ORTHANT PROBABILITIES OF FOUR GAUSSIAN VARIATES A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMIAL VARIATES ON SUMS AND PRODUCTS OF RECTANGULAR VARIATES TESTINC FOR CORRELATION BETWEEN NON-NEGATIVE VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES DISTRIBUTION OF CERTAIN QUADRATIC FORMS IN NORMAL VARIATES DISTRIBUTION OF CERTAIN QUADRATIC FORMS IN NORMAL VARIATES PROPERTIES SERIAL CORRELATION WITH EXPONENTIALLY DISTRIBUTED VARIATES PROPERTIES SERIAL CORRELATION OF THE SUM OF TWO LOC—NORMAL VARIATES THE DISTRIBUTION OF THE DISTRIBUTION OF BETWEEN MON-CENTRAL CHI—SQUARE VARIATES THE DISTRIBUTION OF THE DISTRIBUTION OF BETWEEN MOMENTS OF ORDER STATISTICS FOR EXCHANCEABLE VARIATES THE DISTRIBUTION OF THE DISTRIBUTION OF BETWEEN MOMENTS OF ORDER STATISTICS FOR EXCHANCEABLE VARIATES RECURRENCE RELATIONS OF RECHARD OF THE DISTRIBUTION OF BETWEEN MOMENTS OF ORDER STATISTICS FOR EXCHANCEABLE VARIATES RECURRENCE RELATIONS THE DISTRIBUTION OF CREATER OF THE DISTRIBUTION OF BETWEEN MOMENTS	AMS 61 AMS 67 AMS 67 AMS 64 AMS 67 BIOK A65 BIOK A66 BIOK A66 AMS 67 AMS 66 AMS 66 AMS 66 BIOK A66 BIOK A67 BIOK A67 BIOK A67 AMS 69 AMS 69 AMS 66 AMS 68	230 1170 1305 298 315 944 480 916 116 152 354 585 917 70 148 1779 395 1762 655 1016 272
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE-VALUES AND RANKS IN A DOUBLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES ON DETECTINC CHANCES IN THE MEAN OF NORMAL VARIATES A Q-TECHNAUT PROBABILITIES OF FOUR CAUSSIAN VARIATES A Q-TECHNAUT PROBABILITIES OF FOUR CAUSSIAN VARIATES A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMIAL VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMIAL VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES A RECRESSION TECHNIQUE FOR ANOLUAR VARIATES A RECRESSION TECHNIQUE FOR ANOLUAR VARIATES A RECRESSION TECHNIQUE FOR ANOLUAR VARIATES OF THE MEDIAN AND OTHER STATISTICS OF LOCISTIC VARIATES PROPERTIES SERIAL CORRELATION WITH EXPONENTIALLY DISTRIBUTED VARIATES FOR THE RATIO OF TWO QUADRATIC FORMS IN NORMAL VARIATES THE DISTRIBUTION THE DISTRIBUTION OF THE DISTRIBUTED VARIATES THE DISTRIBUTION OF THE DISTRIBUTION OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES THE DISTRIBUTION OF T	AMS 61 AMS 67 JASA 67 JASA 67 JASA 67 JASA 67 BIOKA66 BIOKA66 JASA 66 JASA 69 BIOKA53 BIOKA66 BIOKA66 JASA 69 BIOKA66 AMS 68 BIOKA66 AMS 68 JASA 69 AMS 68 JASA 69 AMS 68 BIOKA53	230 1170 1305 298 315 944 480 916 1152 354 588 614 615 385 97 NO.4 148 1779 395 1016 272 35
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE-VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES ON DETECTINC CHANCES IN THE MEAN OF NORMAL VARIATES A Q-TECHNATOR PROBABILITIES OF FOUR CAUSSIAN VARIATES A Q-TECHNATOR FOR THE CALCULATION OF CANONICAL VARIATES A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMIAL VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES A RECRESSION TECHNIQUE FOR ANGULAR VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES A RECRESSION TECHNIQUE FOR ANGULAR VARIATES DISTRIBUTION OF CERTAIN QUADRATIC FORMS IN NORMAL VARIATES SERIAL CORRELATION WITH EXPONENTIALLY DISTRIBUTED VARIATES SERIAL CORRELATION WITH EXPONENTIALLY DISTRIBUTED VARIATES FOR THE MEDIAN AND OTHER STATISTICS OF LOCISTIC VARIATES FOR THE RATIO OF TWO QUADRATIC FORMS IN NORMAL VARIATES THE DISTRIBUTION THE DISTRIBUTION OF THE DISTRIBUT	AMS 61 AMS 67 JASA 67 JASA 67 AMS 64 AMS 64 AMS 65 BIOKA36 BIOKA66 JOSA 62 AMS 67 AMS 69 BIOKA53 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA67 BIOCS68 BIOKS67 AMS 65 AMS 65 AMS 65 AMS 65 BIOKA67 AMS 66 AMS 62 AMS 65 BIOKA68	230 1170 1305 298 315 944 383 278 281 184 480 916 116 152 354 354 354 355 97 NO.4 148 1779 395 1762 655 1016 272 35 NO.3
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q. A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE-VALUES AND RANKS IN A DOUBLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES ON DETECTINC CHANCES IN THE MEAN OF NORMAL VARIATES A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMIAL VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES TESTINC FOR CORRELATION BETWEEN NON-MEGATIVE VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES A RECRESSION TECHNIQUE FOR ANGULAR VARIATES DISTRIBUTION OF CERTAIN QUADRATIC FORMS IN NORMAL VARIATES OF THE MEDIAN AND OTHER STATISTICS OF LOCISTIC VARIATES DISTRIBUTION OF CERTAIN QUADRATIC FORMS IN NORMAL VARIATES PROPERTIES SERIAL CORRELATION WITH EXPONENTIALLY DISTRIBUTED VARIATES OF THE RATIO OF TWO QUADRATIC FORMS IN NORMAL VARIATES FOR THE RATIO OF TWO CENTRAL OR NON-CENTRAL CHI-SQUARE VARIATES THE DISTRIBUTION OF BETWEEN MOMENTS OF PROPERTIES SERIAL CORRELATION WITH EXPONENTIALLY DISTRIBUTED VARIATES THE DISTRIBUTION OF BETWEEN MOMENTS OF ORDER STATISTICS FOR EXCHANCEABLE VARIATES THE DISTRIBUTION OF BETWEEN MOMENTS OF ORDER STATISTICS FOR EXCHANCEABLE VARIATES ON THE RANCE OF PARTIAL EXPENSIVE VARIATES AND THE PROPOUCT OF TWO CENTRAL OR NON-CENTRAL CHI-SQUARE VARIATES ON THE RANCE OF PARTIAL EXPENSIVE VARIATES ON THE RAN	AMS 61 AMS 67 AMS 67 AMS 64 AMS 67 BIOK A66 BIOK A67 BIOK A66 BIOK A67 AMS 69 JRSSB62 AMS 68 BIOK A67 BIOK A69	230 1170 1305 298 315 944 480 916 116 152 354 588 614 615 385 614 615 397 NO.4 148 1779 395 1762 655 1016 272 35 NO.5 NO.5 NO.5 NO.5 NO.5 NO.5 NO.5 NO.
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE-VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES ON DETECTINC CHANCES IN THE MEAN OF NORMAL VARIATES SOME SIMPLE APPROXIMATE TESTS FOR POISSON VARIATES A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMIAL VARIATES A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMIAL VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES A RECRESSION TECHNIQUE FOR ANGULAR VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES A RECRESSION TECHNIQUE FOR ANGULAR VARIATES DISTRIBUTION OF CERTAIN QUADRATIC FORMS IN NORMAL VARIATES SERIAL CORRELATION WITH EXPONENTIALLY DISTRIBUTED VARIATES SERIAL CORRELATION WITH EXPONENTIALLY DISTRIBUTED VARIATES FROPERTIES SERIAL CORRELATION FOR THE SUM OF TWO LOC-NORMAL VARIATES THE DISTRIBUTION OF THE CENTRAL CHI-SQUARE VARIATES THE DISTRIBUTION OF THE CENTRAL CORNELL FOR SUM NORMAL VARIATES THE DISTRIBUTION OF THE CENTRAL CORNELL FOR SUM NORMAL VARIATES THE DISTRIBUTION OF THE CENTRAL CORNEL FOR SUM OF THE DISTRIBUTION OF THE CENTRAL CORNEL FOR SUM OF THE DISTRIBUTION OF THE CENTRAL CORNEL FOR SUM OF THE DISTRIBUTION OF THE CENTRAL CORNEL FOR SUM OF THE PROPUCT OF TWO CENTRAL OR NON-CENTRAL CHI-SQUARE VARIATES FRECURRENCE RELATION SO THE CENTRAL CHI-SQUARE VARIATES THE DISTRIBUTION OF THE CENTRAL CORNEL FOR SUM OF THE	AMS 61 AMS 67 JASA 67 JASA 67 JASA 67 JASA 67 JASA 667 JASA 667 JASA 62 JASA 68 JOKA66 JOKA66 JOKA66 JOKA66 JOKA66 JOKA67 JASA 68 JOKA67 JASA 68 JASA 69	230 1170 1305 298 315 944 480 916 1152 354 588 614 615 385 97 NO.4 148 1779 395 1762 655 1016 272 35 NO.3 96 79
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTION ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE—VALUES / IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION, III. CORRELATION BETWEEN RANKS AND VARIATE—VALUES / IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATE—VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES CAUCHY—DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES CAUCHY—DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES ON DETECTINC CHANCES IN THE MEAN OF NORMAL VARIATES A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMICAL VARIATES A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMICAL VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES DISTRIBUTION OF CERTAIN QUADRATIC FORMS IN NORMAL VARIATES DISTRIBUTION OF CRETAIN QUADRATIC FORMS IN NORMAL VARIATES DISTRIBUTION OF TWO QUADRATIC FORMS IN NORMAL VARIATES FROPERTIES SERIAL CORRELATION WITH EXPONENTIALLY DISTRIBUTED VARIATES FOR THE RATIO OF TWO QUADRATIC FORMS IN NORMAL VARIATES THE DISTRIBUTION OF THE SUM OF TWO CONCRAL VARIATES FOR THE RATIO OF TWO CENTRAL OR NON-CENTRAL CHI-SQUARE VARIATES THE DISTRIBUTION OF BESTIMATION OF TWO CONCRAL VARIATES THE DISTRIBUTION OF THE SUM OF TWO CONCRAL VARIATES ON THE MOMENTS OF ORDER STATISTICS FOR EXCHANCEABLE VARIATES THE DISTRIBUTION OF THE MAXIMUM OF P ARTIAL SUMS OF A FINITE NUMBER OF INDEPENDENT NORMAL VARIATES ON THE MOMENTS OF THE M	AMS 61 AMS 67 JASA 67 JASA 67 JASA 66 AMS 64 AMS 66 BIOKA66 BIOKA66 JASA 66 AMS 67 AMS 69 BIOKA53 BIOKA66 BIOKA67 AMS 69 JRSSB62 AMS 65 BIOKA67 AMS 68 JASA 69 AMS 65 BIOKA67 BIOKA66 BIOKA67 BIOKA66 BIOKA67 BIOKA66 BIOKA67 AMS 68 BIOKA67 AMS 68 BIOKA63 BIOKA69 BIOKA69	230 1170 1305 298 315 944 383 278 281 184 480 916 1152 354 588 614 615 385 97 NO.4 148 1779 395 1016 272 35 NO.3 96 97 9206
THE TRANSLENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTION THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE THE NUMBERS OF ANOTHER INDEPENDENT WISHA MODIFICATIONS OF CANABLA VARIATE THE NUMBERS OF ANOTHER INDEPENDENT WISHA MODIFICATION BETWEEN VARIATE—POIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN VARIATE—VALUES AND RANKS IN A DOUBLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATE—VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES ON DETECTING CHANCES IN THE MEAN OF NORMAL VARIATES THE ORTHANT PROBABILITIES OF FOUR CAUSSIAN VARIATES A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMIAL VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES A RECRESSION TECHNIQUE FOR ANGULAR VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES A RECRESSION TECHNIQUE FOR ANGULAR VARIATES ON THE MEDIAN AND OTHER STATISTICS OF LOCISTIC VARIATES A RECRESSION TECHNIQUE FOR ANGULAR VARIATES OF THE MEDIAN OF THE SUMPRIAL CHI-SQUARE VARIATES THE DISTRIBUTION OF CERTAIN OURDANT OF THE VARIATES ON THE PRODUCT OF TWO CENTRAL OR NON-CENTRAL CHI-SQUARE VARIATES SUMS OF A FINITE NUMBER OF INDEPENDENT NORMAL VARIATES ON THE RANCE OF THE MAXIMUM OF P ARTIAL SUMS OF A FINITE NUMBER OF INDEPENDENT NORMAL VARIATES ON THE MAXIMUM OF P OF SOME TESTS OF INDEPENDENT NORMAL VARIATES ON THE MAXIMUM OF P OF THE VARIANCE OF	AMS 61 AMS 67 AMS 67 AMS 64 AMS 66 AMS 66 BIOK A66 BIOK A67 BIOK A66 BIOK A67 BIOK A68 BIOK A66 BIOK A67 BIOK A68 BIOK A68 BIOK A65 BIOK A65 BIOK A66 BIOK A66 BIOK A66 BIOK A66 BIOK A65 BIOK A66 BIOK A65 BIOK A66 BIOK A65 BIOK A66	230 1170 1305 298 315 944 383 278 281 184 480 916 1152 354 585 916 1152 354 585 1779 395 1762 655 1016 272 35 1016 272 35 1016 1026 1036 1036 1036 1036 1036 1036 1036 103
THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q. A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MAL DISTRIBUTION. ILL. CORRELATION BETWEEN RANKS AND VARIATE—VALUES (IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATE—VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL ON TWO METHODS ON UNBIASED ESTITMATION WITH AUXILIARY VARIATES CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES ON DETECTINC CHANCES IN THE MEAN OF NORMAL VARIATES THE ORTHANT PROBABILITIES OF FOUR GAUSSIAN VARIATES A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMIAL VARIATES ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMIAL VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF PROSON VARIATES ON EXPECTATION OF CORRELATION BETWEEN NON-NEGATIVE VARIATES OF THE MEDIAN AND OTHER STATISTICS OF LOCISTIC VARIATES SERIAL CORRELATION WITH EXPONENTIALLY DISTRIBUTED VARIATES OF THE MEDIAN AND OTHER STATISTICS OF LOCISTIC VARIATES SERIAL CORRELATION WITH EXPONENTIALLY DISTRIBUTED VARIATES OF THE MEDIAN AND OTHER STATISTICS OF LOCISTIC VARIATES FROPERTIES SERIAL CORRELATION WITH EXPONENTIALLY DISTRIBUTED VARIATES OF THE MEDIAN AND OTHER STATISTICS OF EXCHANCEABLE VARIATES OF THE MEDIAN AND OTHER STATISTICS OF EXCHANCEABLE VARIATES FROPERTIES FROPERTIES A RECRESSION TECHNIQUE FOR ANGULAR VARIATES OF THE MEDIAN OF THE SUM OF TWO LOC-NORMAL VARIATES THE DISTRIBUTION OF CENTRAL OF THE MEDIAN OF TH	AMS 61 AMS 67 JASA 67 JASA 67 JASA 67 JASA 66 AMS 66 BIOK A66 BIOK A66 JASA 69 BIOK A53 BIOK A66 BIOK A67 BIOC A68 BIOK A68 BIOK A68 BIOK A68 BIOK A68 AMS 68 BIOK A56 AMS 68 BIOK A56 AMS 64 BIOK A56 AMS 64 BIOK A56 AMS 64 AMS 64	230 1170 1305 298 315 944 480 916 1152 354 588 614 615 385 97 NO.4 148 1779 395 1016 272 35 NO.3 96 471 NO.6 1736
ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T AN APPROXIMATION TO THE DISTRIBUTION OF Q. A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE—VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION. III. CORRELATION BETWEEN VARIATE—VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES CACACHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES ON DETECTINC CHANCES IN THE MEAN OF NORMAL VARIATES THE ORTHANT PROBABILITIES OF FOUR GAUSSIAN VARIATES A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMIAL VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POSSON VARIATES A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMIAL VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POSSON VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POSSON VARIATES DISTRIBUTION OF CERTAIN QUADRATIC FORMS IN NORMAL VARIATES DISTRIBUTION OF CERTAIN QUADRATIC FORMS IN NORMAL VARIATES PROPERTIES SERIAL CORRELATION WITH EXPONENTIALLY DISTRIBUTED VARIATES OF THE RATIO OF TWO QUADRATIC FORMS IN NORMAL VARIATES FIRE DISTRIBUTION OF DESTRIBUTION INVOLVING THREE VARIATES FIRE DISTRIBUTION OF THE SUM OF TWO LOC-NORMAL VARIATES FIRE DISTRIBUTION OF THE SUM OF TWO LOC-NORMAL VARIATES FIRE DISTRIBUTION OF THE DISTRIBUTION OF POSSON THE RANGE OF PARTIALL ERALIZED BEHRENS-FISHER DISTRIBUTION INVOLVING THREE VARIATES THE DISTRIBUTION OF THE MAXIMUM OF POSSON THE RANGE OF PARTIALL SUMS OF A FINITE NUMBER OF INDEPENDENT NORMAL VARIATES ON THE RANGE OF THE MAXIMUM OF POSSON THE PROPER	AMS 61 AMS 67 AMS 64 AMS 66 AMS 67 BIOK A66 BIOK A67 AMS 68 JASA 69 JASA 69 BIOK A55 BIOK A56 BIOK A56 BIOK A56 BIOK A56 BIOK A56 AMS 64 BIOK A56 AMS 64 BIOK A56 AMS 64	230 1170 1305 298 315 944 480 916 116 152 354 588 614 615 385 797 NO.4 148 1779 395 1762 655 1016 272 370 1016 1016 1016 1016 1016 1016 1016 10
THE TRANSLENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE—DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE—VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATES ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES ON DETECTINC CHANCES IN THE MEAN OF NORMAL VARIATES A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES A POPEN OF SOME SIMPLE APPROXIMATE TESTS FOR POISSON VARIATES A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES OF THE MEDIAN AND OTHER STATISTICS OF LOCISTIC VARIATES OF THE MEDIAN AND OTHER STATISTICS OF LOCISTIC VARIATES OF THE MEDIAN AND OTHER STATISTICS OF LOCISTIC VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE RATIO OF TWO QUADRATIC FORMS IN NORMAL VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE PRODUCT OF TWO CENTRAL OR NON-CENTRAL CHI-SQUARE VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE LOCARITHM O	AMS 61 AMS 67 AMS 67 AMS 64 AMS 67 BIOK A66 BIOK A67 BIOK A67 BIOK A68 BIOK A67 BIOK A68 BIOK A67 AMS 68 BIOK A63 BIOK A63 BIOK A63 BIOK A65 BIOK A65 BIOK A65 AMS 64 AMS 64 JRSSB58	230 1170 1305 298 315 944 480 916 1152 354 588 614 615 385 614 615 397 NO.4 148 1779 395 1762 655 1016 272 35 NO.5 96 79 206 471 NO.6 61736 475 373
THE TRANSLENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTION ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL THE CHARACTERISTIC ROOTS OF THE DISTRIBUTION OF Q. A VARIATE RELATED TO THE NON-CENTRAL THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHAM MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE-VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATE-VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES ON DETECTING CHANGES IN THE MEAN OF NORMAL VARIATES CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES ON DETECTING CHANGES IN THE MEAN OF NORMAL VARIATES A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES A NOTE ON CRACI-S PAPER ON THE MINIMUM OF BINOMIAL VARIATES ON SUMS AND PRODUCTS OF RECTANCULA VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF FORTAGINAL VARIATES ON EXPECTATIONS OF SOME FOUNT ON OF ANONICAL VARIATES ON EXPECTATIONS OF SOME FOUNTIONS OF FORTAGINAL VARIATES DISTRIBUTION OF CERTAIN QUADRATIC FORMS IN NORMAL VARIATES OF THE MEDIAN AND OTHER STATISTICS OF LOCISITY VARIATES SERIAL CORRELATION WITH EXPONENTIALLY DISTRIBUTED VARIATES SERIAL CORRELATION WITH EXPONENTIALLY DISTRIBUTED VARIATES FOR THE RETING FOR CORRELATION OF THE SUM OF TWO LOC-NORMAL VARIATES SUMS OF A FINITE NUMBER OF INDEPENDENT NORMAL VARIATES SUMS OF A FINITE NUMBER OF STATISTICS OF CONCENTED WITH AUXILIARY OF THE MOMENTS OF THE MAXIMUM OF POF SOME TESTS OF INDEPENDENCE BETWEEN TWO SETS OF VARIATES FILE PRODUCT OF TWO COMPRAIL OR NON-CENTRAL CHI-SQUARE VARIATES SUMS OF A FINITE NUMBER OF INDEPENDENT NORMAL VARIATES ON THE MOMENTS OF THE MAXIMUM OF POF SOME TESTS OF INDEPENDENCE BETWEEN TWO SETS OF VARIATES ON THE M	AMS 61 AMS 67 JASA 67 JASA 67 JASA 67 JASA 67 JASA 66 JOKA66 BIOKA66 JASA 69 BIOKA53 BIOKA66 BIOKA65 JASA 69 AMS 68 BIOKA65 BIOKA65 BIOKA65 BIOKA65 BIOKA66 BIOKA65 BIOKA66 BIOKA66 BIOKA66 BIOKA66 BIOKA66 AMS 64 BIOKA68 AMS 64 BIOKA68 AMS 64 BIOKA68 BIOKA	230 1170 1305 298 315 944 480 916 1152 354 588 614 615 385 97 NO.4 148 1779 395 1762 655 1016 272 35 NO.3 96 471 NO.6 1736 475 373 9
THE TRANSLENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC ONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBUTION ON THE EXACT DISTRIBUTI ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHA MODIFICATIONS TO THE VARIATE—DIFFERENCE METHOD MAL DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND VARIATE—VALUES /IN A SINCLY TRUNCATED BIVARIATE NOR DISTRIBUTION THE CORRELATION BETWEEN VARIATES ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES ON DETECTINC CHANCES IN THE MEAN OF NORMAL VARIATES A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES A POPEN OF SOME SIMPLE APPROXIMATE TESTS FOR POISSON VARIATES A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES OF THE MEDIAN AND OTHER STATISTICS OF LOCISTIC VARIATES OF THE MEDIAN AND OTHER STATISTICS OF LOCISTIC VARIATES OF THE MEDIAN AND OTHER STATISTICS OF LOCISTIC VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE RATIO OF TWO QUADRATIC FORMS IN NORMAL VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE PRODUCT OF TWO CENTRAL OR NON-CENTRAL CHI-SQUARE VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE LOCARITHM OF THE SUM OF TWO LOC-NORMAL VARIATES OF THE LOCARITHM O	AMS 61 AMS 67 AMS 64 AMS 667 BIOK A66 BIOK A67 AMS 68 JASA 69 AMS 68 BIOK A63 BIOK A63 BIOK A63 BIOK A63 BIOK A64 BIOK A65 BIOK A66	230 1170 1305 298 315 944 480 916 116 1152 354 588 614 615 385 797 NO.4 148 1779 395 1762 655 1016 272 373 96 79 206 471 NO.6 1736 475 373 9268

VAR - WAN TITLE WORD INDEX

```
MULTIVARIATE REGRESSION OF DUMMY VARIATES UNDER NORMALITY ASSUMPTIONS
                                                                                                               JASA 63 1054
D RATIO CRITERIA FOR TESTING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL HYPOTHESIS //NS OF LIKELIHOO AMS 67 1160
                       ON CERTAIN FUNCTIONS OF NORMAL VARIATES WHICH ARE UNCORRELATED OF A HICHER ORDER BIOKA60 175
LTIVARIATE DENSITY FUNCTIONS OF PRODUCTS OF GAUSSIAN VARIATES
                                                                                                      SOME MU BIOKA65
TATISTICAL INDEPENDENCE OF QUADRATIC FORMS IN NORMAL VARIATES
                                                                                        CORRIGENDA, 'ON THE S BIOKA59
 OF A DEFINITE QUADRATIC FORM FOR NON-CENTRAL NORMAL VARIATES, CORR. 63 673
                                                                                                 DISTRIBUTION AMS 61
       ESTIMATION OF QUASI-LINEAR TREND AND SEASONAL VARIATION
                                                                                                               JASA 63 1033
  THE PERCENTAGE POINTS OF THE SAMPLE COEFFICIENT OF VARIATION
                                                                                                            ON BIOKA68
                                                                                                                       580
  OF A NORMAL DISTRIBUTION WITH KNOWN COEFFICIENT OF VARIATION
                                                                               A NOTE ON ESTIMATING THE MEAN JASA 68 1039
  SIMILAR EXPERIMENTS, ALLOWING FOR INTER-EXPERIMENT VARIATION
                                                                           THE COMBINATION OF ESTIMATES FROM JASA 67
                                                                                                                        241
OPULATION MEANS ASSUMING HOMOGENEOUS COEFFICIENTS OF VARIATION
                                                                           A TEST OF EQUALITY OF TWO NORMAL P AMS 69 1374
         AN INEQUALITY FOR THE SAMPLE COEFFICIENT OF VARIATION AND AN APPLICATION OF VARIABLES SAMPLING
                                                                                                               TECH 65
                                                                                                                        67
                        THE FITTING OF MARKOFF SERIAL VARIATION CURVES
                                                                                                               .TRSSR58
                                                                                                                        120
         CONFIDENCE INTERVALS FOR THE COEFFICIENT OF VARIATION FOR THE NORMAL AND LOG NORMAL DISTRIBUTIONS BIOKA64
                                                                                                                         25
                           THE ESTIMATION OF SEASONAL VARIATION IN ECONOMIC TIME SERIES, CORR. 63 1162
                                                                                                               JASA 63
                                                                                                                          31
APPROXIMATE CONFIDENCE LIMITS FOR THE COEFFICIENT OF VARIATION IN GAMMA DISTRIBUTIONS
THE UTILIZATION OF A KNOWN COEFFICIENT OF VARIATION IN THE ESTIMATION PROCEDURE
                                                                                                               BT0CS65 733
                                                                                                               JASA 64 1225
                           PROBABILITY MODELS FOR THE VARIATION IN THE NUMBER OF BIRTHS PER COUPLE
                                                                                                               JASA 63
                                                                                                                       721
                            A CHANCE MECHANISM OF THE VARIATION IN THE NUMBER OF BIRTHS PER COUPLE
                                                                                                               JASA 68
                                             SEASONAL VARIATION OF DEATHS IN THE UNITED STATES, 1951-1960
                                                                                                               JASA 66
                                      A BOUND FOR THE VARIATION OF GAUSSIAN DENSITIES
                                                                                                                AMS 69 NO.6
TANCE ANALYSES!
                      CORRECTION TO 'COEFFICIENTS OF VARIATION OF HERITABILITY ESTIMATES OBTAINED FROM VAR BIOCS65 265
POPULATIONS
           THE MEAN AND COEFFICIENT OF VARIATION OF RANGE IN SMALL SAMPLES FROM NON-NORMAL BIOKA54
CORRIGENDA, 'THE MEAN AND COEFFICIENT OF VARIATION OF RANGE IN SMALL SAMPLES FROM NON-NORMAL P BIOKA55
                                                                                                                        469
337
DROTTE
                                                       VARIATION QUADRATIQUE DES MARTINCALES CONTINUES A
                                                                                                                AMS 69
                                                                                                                        284
AND STERILE SOLIDS
                                          FILL WEIGHT VARIATION RELEASE AND CONTROL OF CAPSULES, TABLETS,
                                                                                                               TECH 69
                                                                                                                        161
                       HARMONIC ANALYSIS OF SEASONAL VARIATION WITH AN APPLICATION TO HOG PRODUCTION
                                                                                                               JASA 62
WEN AND RO/ THE DISTRIBUTION OF THE COEFFICIENT OF VARIATION, COMMENT ON A CRITICISM MADE BY KOOPMANS, O BIOKA65
                                                                                                                        303
 OF N. V. SMIRNOV CONCERNING LIMIT DISTRIBUTIONS FOR VARIATIONAL SERIES
                                                                                             ON SOME RESULTS AMS 69
 OF AN ITERATED MOVING AVERACE IN MEASURING SEASONAL VARIATIONS
                                                                                                       THE USE JASA 62
                                                                                                                        149
                                                      VARIATIONS FLOW ANALYSIS
                                                                                                               TECH 60
                                                                                                                        373
   MONOTONICITY OF THE VARIANCE UNDER TRUNCATION AND VARIATIONS OF HENSEN'S INEQUALITY
                                                                                                                AMS 69 1106
                                          SAMPLE PATH VARIATIONS OF HOMOGENEOUS PROCESSES
                                                                                                                AMS 69 399
                                                       VARIATIONS OF THE NON-CENTRAL T AND BETA
DISTRIBUTIONS
                                                                                                                AMS 64 1583
                                                       VARIATIONS ON A RENEWAL THEOREM OF SMITH
                                                                                                                AMS 68 155
                             OPTIMAL PROGRAMMERS FOR VARIETAL SELECTION (WITH DISCUSSION)
                                                                                                               JRSSR61
                                                                                                                        282
                   ANALYSIS AND INTERPRETATION OF THE VARIETY CROSS DIALLEL AND RELATED POPULATIONS
                                                                                                               BTOCS66
                                                                                                                        439
                                                                                                                        296
               A NOTE ON THE MULTIPLYING FACTORS FOR VARIOUS CHI-SQUARE APPROXIMATIONS
                                                                                                               JRSSB54
 APPLICATION TO QUANTAL BIOASSAY ON THE BIAS OF VARIOUS ESTIMATORS OF THE LOGIT AND ITS VARIANCE WITH BIOA67

A COMPARATIVE STUDY OF VARIOUS TESTS FOR NORMALITY

JASA 68
                                                                                                                        181
                                                                                                               JASA 68 1343
                       A MONTE CARLO STUDY COMPARING VARIOUS TWO-SAMPLE TESTS FOR DIFFERENCES IN MEAN
                                                                                                               TECH 68
CITY OF EXPENDITURES
                                            EFFECT OF VARYING DEGREES OF TRANSITORY INCOME ON INCOME ELASTI JASA 58
 THE ERROR-VARIANCE OF AN ESTIMATOR IN SAMPLING WITH VARYING PROBABILITIES FROM A FINITE POPULATION /FOR JASA 68
                                                                                                                         91
                    SOME ESTIMATORS IN SAMPLING WITH VARYING PROBABILITIES WITHOUT REPLACEMENT
                                                                                                               JASA 56
                                                                                                                        269
    ON A CLASS OF LINEAR ESTIMATORS IN SAMPLING WITH VARYING PROBABILITIES WITHOUT REPLACEMENT
                                                                                                               JASA 65
                                                                                                                        637
                                        SAMPLING WITH VARYING PROBABILITIES WITHOUT REPLACEMENT, ROTATING
AND NON-ROTATING SAMPLES
                                                                                                               JASA 63
                                                                                                                        1.83
                                                  THE VARYING QUALITY OF INVESTMENT TRUST MANACEMENT
                                                                                                               JASA 63 1011
                                                                                                               JASA 58
                                                                                                                        66
                                               USE OF VARYING SEASONAL WEIGHTS IN PRICE INDEX CONSTRUCTION
         ALL ADMISSIBLE LINEAR ESTIMATES OF THE MEAN VECTOR
                                                                                                                AMS 66
                                                                                                                        458
CONFIDENCE BOUNDS FOR REGRESSION PARAMETERS AND MEAN VECTOR
                                                                                              ON FIXED-WIDTH
                                                                                                               JRSSB67
                                                                                                                        132
 OF SOME NON-LINEAR FUNCTIONS OF THE TWO-SAMPLE RANK VECTOR
                                                                                 THE ASYMPTOTIC DISTRIBUTION AMS 69 1011
 INDEPENDENCE OF SECOND DEGREE POLYNOMIALS IN NORMAL VECTOR
                                                                               CONDITIONS FOR WISHARTNESS AND
                                                                                                               AMS 62 1002
                      A THEOREM ON LEAST SQUARES AND VECTOR CORRELATION IN MULTIVARIATE LINEAR REGRESSION JASA 66
                                   ADDING A POINT TO VECTOR DIAGRAMS IN MULTIVARIATE ANALYSIS
                                                                                                               BIOKA68
                                                                                                                        582
THE LARGEST LATENT ROOT AND THE CORRESPONDING LATENT VECTOR FOR PRINCIPAL COMPONENT ANALYSIS /IBUTION OF
                                                                                                               AMS 66
MULTIVARIATE CENTRAL LIMIT THEOREM FOR RANDOM LINEAR VECTOR FORMS
                                                                                                                AMS 66 1825
         SOME DISTANCE PROPERTIES OF LATENT ROOT AND VECTOR METHODS USED IN MULTIVARIATE ANALYSIS
                                                                                                               BTOKA66
                                                                                                                       325
                                THE IDENTIFICATION OF VECTOR MIXED AUTOREGRESSIVE-MOVING AVERAGE SYSTEMS
                                                                                                               RIOK 469
                                                                                                                        223
         TESTS FOR THE DISPERSION AND FOR THE MODAL VECTOR OF A DISTRIBUTION ON A SPHERE
                                                                                                               BIOKA67
                                                                                                                        211
OF LINEAR COMBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A MULTIVARIATE DISTRIBUTION
                                                                                                   ESTIMATES
                                                                                                                AMS 65
                                                                                                                         78
                      ON THE FIXED POINT PROBABILITY VECTOR OF REGULAR OR ERGODIC TRANSITION MATRICES
                                                                                                               JASA 67
                                                                                                                        600
S TO CRITERIA FOR THE CONTINUITY OF PROCESSES WITH A VECTOR PARAMETER /FOR THE SOBOLEV IMBEDDING THEOREM
                                                                                                                AMS 69
                                                                                                                        517
   ON THE CROSS PERIODOGRAM OF A STATIONARY GAUSSIAN VECTOR PROCESS
                                                                                                                AMS 67
                                                                                                                        593
                 CROSS SPECTRAL ANALYSIS OF GAUSSIAN VECTOR PROCESS IN THE PRESENCE OF VARIANCE FLUCTUATIO
                                                                                                                AMS 68 1507
                        LEAST-SQUARES EFFICIENCY FOR VECTOR TIME SERIES
                                                                                                               JRSSB68 490
THE COVARIANCE MATRIX OF A CONTINUOUS AUTOREGRESSIVE VECTOR TIME-SERIES
                                                                                                                AMS 63 1259
                         A DECOMPOSITION THEOREM FOR VECTOR VARIABLES WITH A LINEAR STRUCTURE
                                                                                                                AMS 69 1845
ONS IN POPULATIONS OF 'DROSOPHILA SUBOBSCURA' CO/
                                                       VECTORIAL ANALYSIS FOR CENETIC GLINES IN BODY DIMENSI BIOCS66
                  ON THE GENERATION OF NORMAL RANDOM VECTORS
                                                                                                               TECH 62
                                                                                                                        278
                            ON RANDOM SUMS OF RANDOM VECTORS
                                                                                                                AMS 65 1450
       AN AVERACE ASSOCIATED WITH DEPENDENT GAUSSIAN VECTORS
                                                                                                                AMS 68 1844
                                                                                                ON DOMINATING
                                                                                   ON LIMITING DISTRIBUTIONS AMS 69
   FOR SUMS OF A RANDOM NUMBER OF INDEPENDENT RANDOM VECTORS
                                                                                                                        935
  ON POSITIVE DEFINITE QUADRATIC FUNCTIONS IN NORMAL VECTORS
                                                                     ON CERTAIN DISTRIBUTION PROBLEMS BASED AMS 66
                                                                                                                        468
                   ON THE DISTRIBUTION OF THE LATENT VECTORS FOR PRINCIPAL COMPONENTS ANALYSIS
                                                                                                                AMS 65 1875
                                                                                                                       160
                                  THE TESTING OF UNIT VECTORS FOR RANDOMNESS
                                                                                                               JASA 64
                                               LATENT VECTORS OF RANDOM SYMMETRIC MATRICES
                                                                                                               BIOKA61
                                                                                                                        133
L DISTRIB/ BAYESIAN ESTIMATION OF LATENT ROOTS AND VECTORS WITH SPECIAL REFERENCE TO THE BIVARIATE NORMA BIOKA69
                                                                                                                         97
CTURERS' SERVICES FOR BAKERY PRODUCTS AND FRUITS AND VEGETABLES
                                                                                           DEMAND FOR MANUFA JASA 65
                                                                                                                        740
CTURERS' SERVICES FOR BAKERY PRODUCTS AND FRUITS AND VEGETABLES

DEMAND FOR MANUFA JASA 65
E LES ESPECES ET LES VARI/

L'ETUDE DES COMMUNAUTES VEGETALES PAR L'ANALYSE STATISTIQUE DES LIAISONS ENTR BIOCS65
E LES ESPECES ET LES VARI/

L'ETUDE DES COMMUNAUTES VEGETALES PAR L'ANALYSE STATISTIQUE DES LIAISONS ENTR BIOCS65
                                                                                                                        890
POTENTIAL THEORETIC PROOF OF A THEOREM OF DERMAN AND VEINOTT
ENER RELATIVER DYADENKONTEXT/ NOTES. EIN EINFACHES VERFAHREN ZUR ERZEUGUNG VON SYMBOLFOLGEN MIT VORGEGEB BIOCS68
                                                                                                                        703
                                     SOME STOCHASTIC VERSIONS OF THE MATRIX MODEL FOR POPULATION DYNAMICS JASA 69
                                                                                                                       111
                              TABLES FOR A TREATMENTS VERSUS CONTROL MULTIPLE COMPARISONS SIGN TEST
                                                                                                               TECH 65
```

TITLE WORD INDEX VAR - WAN

,			
	EXTREME VERTICES DESIGN OF MIXTURE EXPERIMENTS N AND V.L. ANDERSON DISCUSSION OF 'EXTREME VERTICES DESIGN OF MIXTURE EXPERIMENTS' BY R.A. MCLEA	TECH 66	447
	N AND V.L. ANDERSON DISCUSSION OF SEARCH PERIODS DESIGNS FOR FOUR COMPONENT MIXTURES		
	OF EXTREME-VALUE DATA BY SAMPLE QUANTILES FOR VERY LARCE SAMPLES ANALYSIS	JASA 68	877
	A FURTHER LOOK AT ROBUSTNESS VIA BAYES'S THEOREM	BIOKA62	419
	CORRICENDA, 'A FURTHER LOOK AT ROBUSTNESS VIA BAYES'S THEOREM.'	BIOKA63	546
j	OF EXTREME-VALUE DATA BY SAMPLE QUANTILES FOR VERY LARCE SAMPLES A FURTHER LOOK AT ROBUSTNESS VIA BAYES'S THEOREM CORRICENDA, 'A FURTHER LOOK AT ROBUSTNESS VIA BAYES'S THEOREM.' PARAMETERS FOR A MIXTURE OF NORMAL DISTRIBUTIONS' BY VIEW OF THE USER. OCCAMAS FOR THE RECOMMENTER FROM THE PRODUCT OF THE USER. AN ARBESTAL OF LEAST SOLARS FOR	TECH 66	445
'	OGRAMS FOR THE ELECTRONIC COMPUTER FROM THE POINT OF VIEW OF THE USER AN APPRAISAL OF LEAST SQUARES PR 'N BENADERING VIR 'N MACREEKS WAARSKYNLIKHEIDSVERDELING	SASJ 69	013
1	F CRITICAL SITES IN LIMITED CENOME EXPRESSION DURING VIRAL INFECTION OF BACTERIA /MATION OF THE NUMBER O		
. '	OF POISSON RECRESSION WITH AN APPLICATION IN VIROLOCY THE ANALYSIS		
		BIOCS65	
	WITH LIMITED WAITING ROOMS AND CERTAIN ORDER OF VISITS A SYSTEM OF TWO SERVERS		
	ANALYSIS OF VITAL STATISTICS BY CENSUS TRACT RESPONSE CRITERIA FOR THE BIOASSAY OF VITAMIN K	JASA 59 BIOCS69	
		BIOCS66	
	INDEX TO TECHNOMETRICS, VOLUMES 1-7	TECH 66	
	ERRATA TO INDEX TO TECHNOMETRICS, VOLUMES 1-7	TECH 66	
	ON THE DISTRIBUTION OF THE TWO SAMPLE CRAMER-VON MISES CRITERION	AMS 62	0.5
	ERRATA TO INDEX TO TECHNOMETRICS, VOLUMES 1-7 ON THE DISTRIBUTION OF THE TWO SAMPLE CRAMER-VON MISES CRITERION DISTRIBUTION OF THE TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL SAMPLES TESTS FOR THE VON MISES DISTRIBUTION SOME RELATIONSHIPS BETWEEN THE NORMAL AND VON MISES DISTRIBUTIONS	AMS 63 BIOKA69	95 149
	SOME RELATIONSHIPS BETWEEN THE NORMAL AND VON MISES DISTRIBUTIONS		
	SOME RELATIONSHIPS AMONG THE VON MISES DISTRIBUTIONS OF DIFFERENT DIMENSIONS	BIOKA66	269
	BIAS OF THE ONE-SAMPLE CRAMER-VON MISES TEST	JASA 66	
,	SMALL-SAMPLE DISTRIBUTIONS OF THE TWO-SAMPLE CRAMER-VON MISES' W-SQUARED AND WATSON'S U-SQUARED NFACHES VERFAHREN ZUR ERZEUGUNG VON SYMBOLFOLGEN MIT VORGEGEBENER RELATIVER DYADENKONTEXTREDUNDANZ /N EI	AMS 64	
	NEACHED VERHARDEN OF RECEDING VOIL SIMBOLFULEEN MIL VOICE COVARIANCE MATRIX ON THE EXACT DISTRIBUTIONS OF VOTAWS CRITERIA FOR TESTING COMPOUND SYMMETRY OF A		
	PROBABILITIES IN THE VOTING PARADOX	AMS 64	857
	S IRRADIES ESTIMATION PAR LA METHODE DU MAXIMUM DE VRAISEMBLANCE DES COURBES DE SURVIE DE MICROORGANISME		
	BUTION ON THE EXACT DISTRIBUTIONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRI		
	NS OF GOODNESS-OF-FIT STATISTICS, U-SQUARE-SUB-N AND W-SQUARE-SUB-N /APPROXIMATIONS FOR THE DISTRIBUTIO STATISTIG) FURTHER PERCENTAGE POINTS FOR W-SQUARE-SUB-N +(CRAMER-VON MISES GOODNESS-OF-FIT		
·	THE GOODNESS-OF-FIT TESTS BASED ON W-SQUARE-SUB-N AND U-SQUARE-SUB-N	BIOKA62	397
	DISTRIBUTIONS OF THE TWO-SAMPLE CRAMER-VON MISES' W-SQUARED AND WATSON'S U-SQUARED SMALL-SAMPLE APPROXIMATIONS FOR THE NULL DISTRIBUTION OF THE W-STATISTIC +(TEST FOR NORMALITY)	AMS 64	1091
	APPROXIMATIONS FOR THE NULL DISTRIBUTION OF THE W-STATISTIC +(TEST FOR NORMALITY) ON THE PROPERTY, W. OF THE CLASS OF STATISTICAL DECISION FUNCTIONS	TECH 68	861
		SASJ 69	
1	RENSIAALVERGELYKINGE EIENSKAPPE VAN WAARSKYNLIKHEIDSVERDELINGS DEUR DIE GEBRUIK VAN DIFFE		1
	DISTRIBUTIVE SHARES WAGE, PRICE, AND TAX ELASTICITIES OF OUTPUT AND		
1		JRSSB62	
		JRSSB58 BIOKA68	
	REPAIR SOME WAITING TIME DISTRIBUTIONS FOR REDUNDANT SYSTEMS WITH		
	WAITING TIME IN BULK SERVICE QUEUES	JRSSB55	256
	SOME NUMERICAL RESULTS FOR WAITING TIMES IN THE QUEUE E-SUB-K-M-1 CORRICENDA, 'SOME NUMERICAL RESULTS FOR WAITING TIMES IN THE QUEUE E-SUB-K-M-1.'	BIOK 460	202
		DIONACO	404
-	CORRICENDA, 'SOME NUMERICAL RESULTS FOR WAITING TIMES IN THE QUEUE E-SUB-K-M-1.'	BIOKA60	484
(CORRICENDA, 'SOME NUMERICAL RESULTS FOR WAITING TIMES IN THE QUEUE E-SUB-K-M-1.' QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES	JRSSB55	262
	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING-TIME DISTRIBUTIONS FOR SURGLE-SERVER QUEUES STATIONARY WAITING-TIME DISTRIBUTIONS FOR SINGLE-SERVER QUEUES	JRSSB55 JRSSB65 AMS 62	262 491 1323
	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING-TIME DISTRIBUTIONS FOR SURGLE-SERVER QUEUES STATIONARY WAITING-TIME DISTRIBUTIONS FOR SINGLE-SERVER QUEUES	JRSSB55 JRSSB65 AMS 62	262 491 1323
	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING-TIME DISTRIBUTIONS FOR SINGLE-SERVER QUEUES A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM	JRSSB55 JRSSB65 AMS 62 JASA 60 JASA 64	262 491 1323 660 464
	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING-TIME DISTRIBUTIONS FOR SURGLE-SERVER QUEUES STATIONARY WAITING-TIME DISTRIBUTIONS FOR SINGLE-SERVER QUEUES	JRSSB55 JRSSB65 AMS 62 JASA 60 JASA 64	262 491 1323 660 464 169
	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING-TIME DISTRIBUTIONS FOR SINGLE-SERVER QUEUES A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM TABLES FOR WALD TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION SOME EXTENSIONS OF THE WALD-WOLFOWITZ-NOETHER THEOREM AN IMPROVEMENT TO WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA	JRSSB55 JRSSB65 AMS 62 JASA 60 JASA 64 BIOKA59 AMS 61 JRSSB54	262 491 1323 660 464 169 506 136
	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING-TIME DISTRIBUTIONS FOR SINGLE-SERVER QUEUES A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM TABLES FOR WALD TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION SOME EXTENSIONS OF THE WALD-WOLFOWITZ-NOETHER THEOREM L TESTS AN IMPROVEMENT TO WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIAL L TESTS FORMULAE TO IMPROVE WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA	JRSSB55 JRSSB65 AMS 62 JASA 60 JASA 64 BIOKA59 AMS 61 JRSSB54 JRSSB65	262 491 1323 660 464 169 506 136 74
	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING-TIME DISTRIBUTIONS FOR SINGLE-SERVER QUEUES A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM TABLES FOR WALD TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION SOME EXTENSIONS OF THE WALD-WOLFOWITZ-NOETHER THEOREM AN IMPROVEMENT TO WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA FORMULAE TO IMPROVE A GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS TO RANDOM WALKS	JRSSB55 JRSSB65 AMS 62 JASA 60 JASA 64 BIOKA59 AMS 61 JRSSB54 JRSSB65 AMS 61	262 491 1323 660 464 169 506 136 74 549
	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING-TIME DISTRIBUTIONS FOR SINGLE-SERVER QUEUES A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM TABLES FOR WALD TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION SOME EXTENSIONS OF THE WALD-WOLFOWITZ-NOETHER THEOREM L TESTS AN IMPROVEMENT TO WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIAL L TESTS FORMULAE TO IMPROVE WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA	JRSSB55 JRSSB65 AMS 62 JASA 60 JASA 64 BIOKA59 AMS 61 JRSSB54 JRSSB65	262 491 1323 660 464 169 506 136 74 549 1344
	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING-TIME DISTRIBUTIONS FOR SINGLE-SERVER QUEUES A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM TABLES FOR WALD TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION SOME EXTENSIONS OF THE WALD-WOLFOWITZ-NOETHER THEOREM AN IMPROVEMENT TO WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA CORRECTION TO 'A PROOF OF WALD'S IDENTITY WITH APPLICATIONS TO RANDOM WALKS THE GROWTH OF A RANDOM WALK THE GROWTH OF A RANDOM WALK	JRSSB55 JRSSB65 AMS 62 JASA 60 JASA 64 BIOKA59 AMS 61 JRSSB54 JRSSB65 AMS 61 AMS 61 AMS 66 AMS 66	262 491 1323 660 464 169 506 136 74 549 1344 1040 NO.6
1	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING-TIME DISTRIBUTIONS FOR SINCLE-SERVER QUEUES A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM TABLES FOR WALD TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION SOME EXTENSIONS OF THE WALD-WOLFOWITZ-NOETHER THEOREM AN IMPROVEMENT TO WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIAL FORMULAE TO IMPROVE A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA CORRECTION TO 'A PROOF OF WALD'S THEOREM ON CUMULATIVE SUMS' 59 1245 THE GROWTH OF A RECURRENT RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT-CONTINUOUS RANDOM WALK QUASI-	JRSSB55 JRSSB65 AMS 62 JASA 60 JASA 64 BIOKA59 AMS 61 JRSSB54 JRSSB65 AMS 61 AMS 66 AMS 66 AMS 66 AMS 669	262 491 1323 660 464 169 506 136 74 549 1344 1040 No.6 532
1	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING-TIME DISTRIBUTIONS FOR SINCLE-SERVER QUEUES A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM TABLES FOR WALD TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION SOME EXTENSIONS OF THE WALD-WOLFOWITZ-NOETHER THEOREM L TESTS A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA CORRECTION TO 'A PROOF OF WALD'S THEOREM ON CUMULATIVE SUMS' 59 1245 THE GROWTH OF A RECURRENT RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT-ONTHOUGUS RANDOM WALK THE GROWTH OF A RANDOM WALK THE GROWTH OF A RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT-ONTHOUGUS RANDOM WALK QUASI-	JRSSB55 JRSSB65 AMS 62 JASA 60 JASA 64 BIOKA59 AMS 61 JRSSB54 JRSSB65 AMS 61 AMS 66 AMS 69 AMS 69 BIOKA59	262 491 1323 660 464 169 506 136 74 549 1344 1040 NO.6 532 400
1	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING—TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING—TIME DISTRIBUTIONS FOR SINCLE—SERVER QUEUES A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM TABLES FOR WALD TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION SOME EXTENSIONS OF THE WALD—WOLFOWITZ—NOETHER THEOREM L TESTS A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS TO RANDOM WALKS CORRECTION TO 'A PROOF OF WALD'S THEOREM ON CUMULATIVE SUMS' 59 1245 THE GROWTH OF A RECURRENT RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT—ONLY SANDOM WALK THE GROWTH OF A RANDOM WALK THE RANDOM WALK (IN CONTINUOUS TIME) AND ITS APPLICATION TO THE	JRSSB55 JRSSB65 AMS 62 JASA 60 JASA 64 BIOKA59 AMS 61 JRSSB54 JRSSB65 AMS 61 AMS 66 AMS 69 BIOKA59 AMS 67	262 491 1323 660 464 169 506 136 74 549 1344 1040 NO.6 532 400 1042
1	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING—TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING—TIME DISTRIBUTIONS FOR SINCLE—SERVER QUEUES A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIME SOME EXTENSIONS OF THE WALD—WOLFOWITZ—NOETHER THEOREM AN IMPROVEMENT TO WALD—WOLFOWITZ—NOETHER THEOREM L TESTS AN IMPROVEMENT TO WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIAL FORMULAE TO IMPROVE A GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS TO RANDOM WALKS CORRECTION TO 'A PROOF OF WALD'S THEOREM ON CUMULATIVE SUMS' 59 1245 THE GROWTH OF A RECURRENT RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT—CONTINUOUS RANDOM WALK THE GROWTH OF A RECURRENT WALK ON THE WALL THE RANDOM WALK (IN CONTINUOUS TIME) AND ITS APPLICATION TO THE SIMPLE RANDOM WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RECURRENT EVENTS (WITH DISCUSSION) THE RANDOM WALK BETWEEN A REFLECTING AND AN ABSORBINC BARRIER	JRSSB55 JRSSB55 JRSSB65 JRSSB65 JASA 60 JASA 60 JISSB55 JRSSB54 JRSSB61 AMS 61 AMS 61 AMS 66 AMS 69 BIOKA59 AMS 67 JRSSB57 AMS 61	262 491 1323 660 464 169 506 136 74 1344 1040 NO.6 532 400 1042 64 765
1	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING—TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING—TIME DISTRIBUTIONS FOR SINCLE—SERVER QUEUES A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM TABLES FOR WALD TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION SOME EXTENSIONS OF THE WALD—WOLFOWITZ—NOETHER THEOREM L TESTS AN IMPROVEMENT TO WALD—WOLFOWITZ—NOETHER THEOREM L TESTS FORMULAE TO IMPROVE WALD—S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS TO RANDOM WALKS CORRECTION TO 'A PROOF OF WALD'S THEOREM ON CUMULATIVE SUMS' 59 1245 THE GROWTH OF A RECURRENT RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT—CONTINUOUS RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT—CONTINUOUS RANDOM WALK THE GROWTH OF A RANDOM WALK (IN CONTINUOUS TIME) AND ITS APPLICATION TO THE SIMPLE RANDOM WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RECURRENT EVENTS (WITH DISCUSSION) THE RANDOM WALK AND RECURRENT EVENTS (WITH DISCUSSION) THE RANDOM WALK AND RECURRENT EVENTS (WITH DISCUSSION) THE RANDOM WALK BETWEEN A REFLECTING AND AN ABSORBINC BARRIER RANDOM WALK DESIGN IN BIO—ASSAY	JRSSB55 JRSSB65 JRSSB65 JRSSB65 JASA 60 JASA 64 BIOKA59 JMSSB65 JRSSB65 AMS 61 AMS 61 AMS 66 AMS 69 BIOKA59 AMS 67 JRSSB57 AMS 67 JRSSB57 AMS 67 JRSSB57 AMS 67	262 491 1323 660 464 169 506 136 74 549 1344 1040 NO .6 532 400 1042 64 765 842
1	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING-TIME DISTRIBUTIONS FOR SINGLE-SERVER QUEUES WAITING-TIME DISTRIBUTION FOR SINGLE-SERVER QUEUES WALTH AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM SOME EXTENSIONS OF THE AND IMPROVEMENT TO AN IMPROVEMENT TO AN IMPROVEMENT TO A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S THEOREM ON CUMULATIVE SUMS' 59 1245 THE GROWTH OF A RECURRENT RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT-CONTINUOUS RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT-CONTINUOUS RANDOM WALK SIMPLE RANDOM WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RECURRENT EVENTS (WITH DISCUSSION) THE RANDOM WALK BETWEEN A REFLECTING AND AN ABSORBINC BARRIER RANDOM WALK BETWEEN A REFLECTING AND AN ABSORBINC BARRIER RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN TIME	JRSSB55 JRSSB56 JRSSB66 JASA 60 JASA 60 JASA 61 JRSSB564 JRSSB564 AMS 61 AMS 66 AMS 69 AMS 69 AMS 69 JRSSB57 AMS 67 JRSSB57 AMS 67	262 491 1323 660 464 169 506 136 74 549 1344 1040 NO.6 532 400 1042 64 765 842 30
1	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING-TIME DISTRIBUTIONS FOR SINGLE-SERVER QUEUES WAITING-TIME DISTRIBUTION FOR SINGLE-SERVER QUEUES WALTH AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM SOME EXTENSIONS OF THE AND IMPROVEMENT TO AN IMPROVEMENT TO AN IMPROVEMENT TO A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S THEOREM ON CUMULATIVE SUMS' 59 1245 THE GROWTH OF A RECURRENT RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT-CONTINUOUS RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT-CONTINUOUS RANDOM WALK SIMPLE RANDOM WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RECURRENT EVENTS (WITH DISCUSSION) THE RANDOM WALK BETWEEN A REFLECTING AND AN ABSORBINC BARRIER RANDOM WALK BETWEEN A REFLECTING AND AN ABSORBINC BARRIER RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN TIME	JRSSB55 JRSSB65 JRSSB65 JRSSB65 JASA 60 JASA 64 BIOKA59 JMSSB65 JRSSB65 AMS 61 AMS 61 AMS 66 AMS 69 BIOKA59 AMS 67 JRSSB57 AMS 67 JRSSB57 AMS 67 JRSSB57 AMS 67	262 491 1323 660 464 169 506 136 74 549 1040 NO.6 532 400 1042 64 765 842 30 385
1	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALT AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALT SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM SOME EXTENSIONS OF THE WALD TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION SOME EXTENSIONS OF THE AN IMPROVEMENT TO A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS TO RANDOM WALKS CORRECTION TO 'A PROOF OF WALD'S THEOREM ON CUMULATIVE SUMS' 59 1245 THE GROWTH OF A RECURRENT RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT-CONTINUOUS RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT-CONTINUOUS RANDOM WALK SIMPLE RANDOM WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RECURRENT EVENTS (WITH DISCUSSION) THE RANDOM WALK EFTWEEN A REFLECTING AND AN ABSORBINC BARRIER RANDOM WALK DESIGN IN BIO-ASSAY A RANDOM WALK ESTIGN IN BIO-ASSAY A RANDOM WALK ON A CIRCLE ONE DIMENSIONAL RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER A WIENER-HOPF TYPE METHOD FOR A CENERAL RANDOM WALK WITH A TWO-SIDED BOUNDARY	JRSSB55 JRSSB56 JRSSB66 JASA 60 JASA 60 JASA 60 BIOKA59 AMS 61 JRSSB56 AMS 61 AMS 66 AMS 69 AMS 69 BIOKA59 AMS 67 JRSSB57 AMS 61 JASA 67 JRSSB57 AMS 61 JASA 67 BIOKA63 AMS 63	262 491 1323 660 464 169 506 136 74 1344 1040 NO.6 532 400 1042 64 765 842 30 385 405 116B
1 1	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING-TIME DISTRIBUTIONS FOR SINGLE-SERVER QUEUES A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE MALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM TABLES FOR THE MEAN OF A NORMAL DISTRIBUTION SOME EXTENSIONS OF THE WALD—WOLFOWITZ—NOETHER THEOREM A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA PROBABILITY RATIO TEST OFTIME WALD—WOLFOWITZ—NOETHER THEOREM A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA PROBABILITY WITH APPLICATIONS TO RANDOM WALKS CORRECTION TO 'A PROOF OF WALD'S THEOREM ON CUMULATIVE SUMS' 59 1245 THE GROWTH OF A RECURRENT RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT—CONTINUOUS RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT—CONTINUOUS RANDOM WALK THE GROWTH OF ARANDOM WALK (IN CONTINUOUS TIME) AND ITS APPLICATION TO THE SIMPLE RANDOM WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RANK ORDER STATISTICS ARANDOM WALK SETWEEN A REFLECTING AND AN ABSORBING BARRIER RANDOM WALK DESIGN IN BIO—ASSAY A RANDOM WALK DESIGN IN BIO—ASSAY A RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN TIME RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN TIME RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER A WIENER—HOPF TYPE METHOD FOR A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK CORR. AND ACKNOWLEDGEMENT OF PRIORITY 61 1345	JRSSB55 JRSSB56 JRSSB65 JRSSB66 JASA 60 JASA 60 JASA 60 JASA 61 JRSSB54 JRSSB56 AMS 61 AMS 61 AMS 66 AMS 69 AMS 69 AMS 67 JRSSB57 AMS 61 JASA 67 JRSSB57 AMS 61 AMS 63 AMS 63 AMS 63 AMS 63 AMS 63	262 491 1323 660 464 169 506 134 549 1344 1040 1042 64 765 842 30 385 405 1168 235
1 1	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING—TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING—TIME DISTRIBUTIONS FOR SINCLE—SERVER QUEUES A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIME DISTRIBUTION SOME EXTENSIONS OF THE WALD—WOLFOWITZ—NOETHER THEOREM AN IMPROVEMENT TO WALD—WOLFOWITZ—NOETHER THEOREM AN IMPROVEMENT TO WALD—S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS TO RANDOM WALKS CORRECTION TO 'A PROOF OF WALD'S THEOREM ON CUMULATIVE SUMS' 59 1245 THE GROWTH OF A RECURRENT RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT—CONTINUOUS RANDOM WALK THE GROWTH OF A RANDOM WALK (IN CONTINUOUS TIME) AND ITS APPLICATION TO THE SIMPLE RANDOM WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RANK ORDER STATISTICS A RANDOM WALK ORDER STATISTICS ONE DIMENSIONAL RANDOM WALK AND RECURRENT EVENTS (WITH DISCUSSION) THE RANDOM WALK ORDER STATISTICS A WIENER—HOPF TYPE METHOD FOR A GENERAL RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER A WIENER—HOPF TYPE METHOD FOR A GENERAL RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A THO—SIDED BOUNDARY FOR THE WALL THE WALL THE WALL TIME WALL TI	JRSSB55 JRSSB65 JRSSB65 JRSSB65 JASA 60 JASA 60 JISA 60 JASA 60 JASA 60 JRSSB54 JRSSB61 AMS 61 AMS 66 AMS 69 BIOK A59 AMS 67 JRSSB57 AMS 61 JASA 67 BIOKA59 AMS 63 AMS 63 AMS 63 AMS 63 AMS 63 AMS 61 JRSSB57	262 491 1323 660 464 169 506 136 74 1344 1040 NO.6 532 400 1042 64 765 842 30 385 405 1168 235
1 1	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING-TIME DISTRIBUTIONS FOR SINGLE-SERVER QUEUES A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE MALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM TABLES FOR THE MEAN OF A NORMAL DISTRIBUTION SOME EXTENSIONS OF THE WALD—WOLFOWITZ—NOETHER THEOREM A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA PROBABILITY RATIO TEST OFTIME WALD—WOLFOWITZ—NOETHER THEOREM A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA PROBABILITY WITH APPLICATIONS TO RANDOM WALKS CORRECTION TO 'A PROOF OF WALD'S THEOREM ON CUMULATIVE SUMS' 59 1245 THE GROWTH OF A RECURRENT RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT—CONTINUOUS RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT—CONTINUOUS RANDOM WALK THE GROWTH OF ARANDOM WALK (IN CONTINUOUS TIME) AND ITS APPLICATION TO THE SIMPLE RANDOM WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RANK ORDER STATISTICS ARANDOM WALK SETWEEN A REFLECTING AND AN ABSORBING BARRIER RANDOM WALK DESIGN IN BIO—ASSAY A RANDOM WALK DESIGN IN BIO—ASSAY A RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN TIME RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN TIME RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER A WIENER—HOPF TYPE METHOD FOR A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK CORR. AND ACKNOWLEDGEMENT OF PRIORITY 61 1345	JRSSB55 JRSSB65 JRSSB65 JRSSB65 JASA 60 JASA 60 JISA 60 JASA 60 JASA 60 JRSSB54 JRSSB61 AMS 61 AMS 66 AMS 69 BIOK A59 AMS 67 JRSSB57 AMS 61 JASA 67 BIOKA59 AMS 63 AMS 63 AMS 63 AMS 63 AMS 63 AMS 61 JRSSB57	262 491 1323 660 464 169 506 136 74 1344 1040 No. 6 532 400 1042 64 403 385 405 116B 235 166 173
1 1	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE STATIONARY WAITING—TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING—TIME DISTRIBUTIONS FOR SINCLE—SERVER QUEUES A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE TABLES FOR WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM SOME EXTENSIONS OF THE WALD—WOLFOWITZ—NOETHER THEOREM A NIMPROVEMENT TO WALD—WOLFOWITZ—NOETHER THEOREM L TESTS AN IMPROVEMENT TO WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS TO RANDOM WALK THE GROWTH OF A RANDOM WALK THE GROWTH OF A RANDOM WALK THE GROWTH OF A RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT—CONTINUOUS RANDOM WALK SIMPLE RANDOM WALK SIMPLE RANDOM WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RECURRENT EVENTS (WITH DISCUSSION) THE RANDOM WALK AND RECURRENT EVENTS (WITH DISCUSSION) THE RANDOM WALK DESIGN IN BIO—ASSAY A RANDOM WALK DESIGN IN BIO—ASSAY A RANDOM WALK ON A CIRCLE ONE DIMENSIONAL RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER RANDOM WALK ON A CIRCLE ONE DIMENSIONAL RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF SUPPENTOR WHEN WALKING TIME AND REPAIR TIMES ARE CONSTANT	JRSSB55 JRSSB55 JRSSB65 JRSSB65 JASA 60 JASA 60 JASA 60 JASA 61 JRSSB54 JRSSB65 AMS 61 AMS 61 AMS 69 AMS 69 AMS 69 AMS 67 JRSSB57 AMS 61 JASA 67 BIOKA63 AMS 63 AMS 64	262 491 1323 660 464 169 506 136 74 1040 NO.6 532 400 1042 64 765 842 30 385 405 1168 235 1166 173 1332
1 1	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING-TIME DISTRIBUTION FOR SINGLE-SERVER QUEUES A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM SOME EXTENSIONS OF THE WALD—WOLFOWITZ—NOETHER THEOREM AN IMPROVEMENT TO WALD—WOLFOWITZ—NOETHER THEOREM L TESTS AN IMPROVEMENT TO WALD—WOLFOWITZ—NOETHER THEOREM A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA FORMULAE TO IMPROVE WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S THEOREM ON CUMULATIVE SUMS' 59 1245 THE GROWTH OF A RECURRENT RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT—CONTINUOUS RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT—CONTINUOUS RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT—CONTINUOUS RANDOM WALK ON A CONTINUOUS TIME) AND ITS APPLICATION TO THE SIMPLE RANDOM WALK AND RANNO ROPER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RANNO ROPER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RECURRENT EVENTS (WITH DISCUSSION) THE RANDOM WALK NO RECURRENT EVENTS (WITH DISCUSSION) THE RANDOM WALK NO HIGH THE STEPS OCCUR RANDOMLY IN TIME RANDOM WALK NO HIGH THE STEPS OCCUR RANDOMLY IN TIME RANDOM WALK NO A CIRCLE ONE DIMENSIONAL RANDOM WALK WITH A PRATIALLY REFLECTING BARRIER A WIENER—HOFF TYPE METHOD FOR A CENERAL RANDOM WALK WITH A PRATIALLY REFLECTING BARRIER A WIENER—HOFF TYPE METHOD FOR A CENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK OR AND REPAIR TIMES ARE CONSTANTS /MACHI NES UNI—DIRECTIONALLY PATROLLE	JRSSB55 JRSSB65 JRSSB65 JRSSB65 JASA 60 JASA 64 BIOKA591 JRSSB54 JRSSB65 AMS 61 AMS 61 AMS 66 AMS 69 BIOKA59 AMS 67 JRSSB57	262 491 1323 660 464 169 506 136 74 1344 1040 NO.6 532 400 1042 64 765 842 305 1168 235 166 173 413 1332 855
1 1	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE STATIONARY WAITING—TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING—TIME DISTRIBUTIONS FOR SINCLE—SERVER QUEUES A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE TABLES FOR WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM SOME EXTENSIONS OF THE WALD—WOLFOWITZ—NOETHER THEOREM A NIMPROVEMENT TO WALD—WOLFOWITZ—NOETHER THEOREM L TESTS AN IMPROVEMENT TO WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS TO RANDOM WALK THE GROWTH OF A RANDOM WALK THE GROWTH OF A RANDOM WALK THE GROWTH OF A RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT—CONTINUOUS RANDOM WALK SIMPLE RANDOM WALK SIMPLE RANDOM WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RECURRENT EVENTS (WITH DISCUSSION) THE RANDOM WALK AND RECURRENT EVENTS (WITH DISCUSSION) THE RANDOM WALK DESIGN IN BIO—ASSAY A RANDOM WALK DESIGN IN BIO—ASSAY A RANDOM WALK ON A CIRCLE ONE DIMENSIONAL RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER RANDOM WALK ON A CIRCLE ONE DIMENSIONAL RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERAL RANDOM WALK WITH A TWO—SIDED BOUNDARY FIRST PASSAGE TIMES OF SUPPENTOR WHEN WALKING TIME AND REPAIR TIMES ARE CONSTANT	JRSSB55 JRSSB65 JRSSB65 JRSSB65 JRSSB65 JASA 60 JASA 60 JASA 61 JRSSB56 AMS 61 AMS 66 AMS 69 AMS 69 BIOKA59 AMS 67 JRSSB57 JRSSB57 AMS 63 AMS 63 AMS 63 AMS 63 AMS 63 AMS 63 AMS 66 JRSSB57 AMS 63 AMS 66 BIOKA61	262 491 1323 660 464 169 506 136 74 549 1344 1040 1042 64 765 842 30 385 405 168 235 168 235 168 173 413 1332 855 391
1 1	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING-TIME DISTRIBUTIONS FOR SINGLE-SERVER QUEUES A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM TABLES FOR WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM TABLES FOR WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM WALD-WOLFOWITZ-NOETHER THEOREM L TESTS AN IMPROVEMENT TO AN IMPROVEMENT TO A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS TO RANDOM WALK CORRECTION TO 'A PROOF OF WALD'S THEOREM ON CUMULATIVE SUMS' 59 1245 THE GROWTH OF A RECURRENT RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT-CONTINUOUS RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT-CONTINUOUS RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT-CONTINUOUS RANDOM WALK (IN CONTINUOUS TIME) AND ITS APPLICATION TO THE SIMPLE RANDOM WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK WALK BETWEEN REFLECTING AND AN ABSORBINC BARRIER RANDOM WALK BETWEEN REFLECTING AND AN ABSORBINC BARRIER RANDOM WALK ON A CIRCLE ONE DIMENSIONAL RANDOM WALK WITH A TWO-SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A TWO-SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A TWO-SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A TWO-SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A TWO-SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A TWO-SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A TWO-SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A TWO-SIDED BOUND	JRSSB55 JRSSB65 JRSSB65 JRSSB65 JASA 60 JASA 60 JASA 64 BIOKA651 JRSSB56 AMS 61 AMS 66 AMS 69 BIOKA59 AMS 67 JRSSB57 AMS 61 JASA 67 BIOKA59 AMS 63 AMS 63 AMS 63 AMS 63 AMS 63 AMS 66 JRSSB57 AMS 63 AMS 66 JRSSB57 AMS 63 AMS 66 JRSSB57 AMS 66 JRSSB57 AMS 66 JRSSB57 AMS 66 BIOKA61 AMS 66	262 491 1323 660 464 169 506 136 74 1344 1040 NO.6 532 400 1042 64 765 842 30 385 405 1168 235 166 173 413 2855 391 549 276
1 1	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING-TIME DISTRIBUTIONS FOR SINCLE-SERVER QUEUES A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM TABLES FOR WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM TOWN OF WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM AN IMPROVEMENT TO WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM L TESTS AN IMPROVEMENT TO WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM A GENERALIZATION OF WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM A GENERALIZATION OF WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM A GENERALIZATION OF WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM A GENERALIZATION OF WALD SEQUENTIAL PROBABILITY RATIO TO RANDOM WALK SEQUENTIAL PROBABILITY RATIO SEQUENTIAL PROBABILITY RATIO TO THE GROWTH OF A RECURENT RANDOM WALK SET THE GROWTH OF A RECURENT RANDOM WALK WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK WALK BESIGN IN BIO-ASSAY A RANDOM WALK DESIGN IN BIO-ASSAY A RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER A WIENER-HOPF TYPE METHOD FOR A CENERAL RANDOM WALK WITH A TWO-SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A THE SCONSTANT AND REPAIR TIMES ARE CONSTANTS /MACHI NES UNI-DIRECTIONALLY PATROLLED BY ONE OPERATOR WHEN WALKING TIME IS CONSTANT AND REPAIR TIMES ARE VARIABL ON A CLASS OF SIMPLE RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER A WIEN	JRSSB55 JRSSB56 JRSSB66 JRSSB66 JASA 60 JASA 60 JASA 66 JIRSSB65 AMS 61 AMS 61 AMS 66 AMS 69 AMS 69 BIOKA59 AMS 67 JRSSB57 AMS 61 JASA 67 BIOKA63 AMS 63 AMS 66 BIOKA63 AMS 66 BIOKA63 AMS 66 BIOKA63 AMS 66 BIOKA63	262 491 1323 660 464 169 506 136 74 549 1344 1040 No.6 532 400 1042 64 765 842 30 385 405 116B 235 16B 235 116B 235 16B 235 16B 235 16B 235 240 25 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28
	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING—TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING—TIME DISTRIBUTION FOR QUEUES IN SERIES ALITY AND THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM TABLES FOR WALD TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION SOME EXTENSIONS OF THE WALD—WOLFOWITZ—NOETHER THEOREM L TESTS AN IMPROVEMENT TO WALD SAPPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS TO RANDOM WALK CORRECTION TO 'A PROOF OF WALD'S THEOREM ON CUMULATIVE SUMS' 59 1245 THE GROWTH OF A RECURRENT RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT—CONTINUOUS RANDOM WALK THE GROWTH OF A RANDOM WALK SIMPLE RANDOM WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RANK ORDER STATISTICS ONE DIMENSIONAL RANDOM WALK DESIGN IN BIO-ASSAY A RANDOM WALK DESIGN IN BIO-ASSAY A RANDOM WALK DESIGN IN BIO-ASSAY A RANDOM WALK ON A CITCLE ONE DIMENSIONAL RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN TIME RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN TIME RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER A WIENER—HOFF TYPE METHOD FOR A GENERAL RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER A WIENER—HOFF TYPE METHOD FOR A GENERAL RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER A WIENER—HOFF TYPE METHOD FOR A GENERAL RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER A WIENER—HOFF TYPE METHOD FOR A GENERAL RANDOM WALK WITH A TWO-DED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A PARTIALLY REFLECTING AND THE A	JRSSB55 JRSSB65 JRSSB65 JRSSB65 JRSSB65 JRSSB65 JRSSB67 JRSSB65 JRSSB64 JRSSB661 AMS 61 AMS 669 AMS 69 AMS 69 AMS 67 JRSSB57 AMS 61 JASA 67 JRSSB57 JR	262 491 1323 660 464 169 506 134 1040 1042 64 765 842 30 385 400 385 400 1168 235 166 173 413 1332 855 166 173 413 135 1549 276 391 549 276 393 1753
	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES ALTY AND THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM TABLES FOR WALD TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION SOME EXTENSIONS OF THE WALD-WOLFOWITZ-DOTHER THEOREM L TESTS AN IMPROVEMENT TO WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S THEOREM ON CUMULATIVE SUMS' 59 1245 THE GROWTH OF A RECURRENT RANDOM WALK THE GROWTH OF A RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT-CONTINUOUS RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT-CONTINUOUS RANDOM WALK SIMPLE RANDOM WALK AND ROURE PROPERTIES OF SEQUENTIA THE RANDOM WALK AND ROURE PROPERTIES OF SEQUENTIA BUSINEL RANDOM WALK AND ROURE PROPERTIES OF SEQUENTIA A RANDOM WALK AND ROURE PROPERTIES OF SEQUENTIA A RANDOM WALK AND ROURE PROPERTIES OF SEQUENTIA BUSINEL RANDOM WALK AND ROURE PROPERTIES OF SEQUENTIA A RANDOM WALK AND ROURE PROPERTIES OF SEQUENTIA BUSINEL RANDOM WALK BETWEEN A REFLECTING AND AN ABSORBING BARRIER BUSINEL RANDOM WALK BUSINE PROPERTIES OF SEQUENTIA BUSINEL RANDOM WALK BUSINE PROPERTIES OF SEQUENTIA BUSINEL RANDOM WALK WITH A PARTILLLY REFLECTING BARRIER BUSINEL RANDOM WALK WITH A PARTILLLY REFLECTING BARRIER BUSINEL RANDOM WALK WITH A TWO-SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A TWO-SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK SOLD FARATOR WHEN WALKING TIME AND ACKNOWLEDGEMENT OF PRIORITY 61 1345 A	JRSSB55 JRSSB56 JRSSB66 JRSSB66 JASA 60 JASA 60 JASA 66 JIRSSB65 AMS 61 AMS 61 AMS 66 AMS 69 AMS 69 BIOKA59 AMS 67 JRSSB57 AMS 61 JASA 67 BIOKA63 AMS 63 AMS 66 BIOKA63 AMS 66 BIOKA63 AMS 66 BIOKA63 AMS 66 BIOKA63	262 491 1323 660 464 169 506 136 74 1040 NO .6 532 400 1042 64 765 842 30 385 405 1168 235 1166 173 1332 855 391 143 1549 276 393 1753 1003
	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING.—TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING—TIME DISTRIBUTIONS FOR SINGLE—SERVER QUEUES A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM TABLES FOR WALD THE WALD—MOUNTED THE WALD SEQUENTIAL PROBABILITY RATIO TEST SOME EXTENSIONS OF THE WALD—MOUNTED THE THEOREM L TESTS AN IMPROVEMENT TO WALD SOME FROPERTIES OF SEQUENTIAL A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS TO RANDOM WALK THE GROWTH OF A RECURRENT RANDOM WALK THE GROWTH OF A RANDOM WALK THE GROWTH OF A RANDOM WALK THE GROWTH OF A RANDOM WALK THE RANDOM WALK (IN CONTINUOUS TIME) AND ITS APPLICATION TO THE SIMPLE RANDOM WALK AND REAMK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND REAMK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND REAMK ORDER STATISTICS THE RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN TIME RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN TIME A WIENER-HOPF TYPE METHOD FOR A GENERAL RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN TIME RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN TIME RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER A WIENER-HOPF TYPE METHOD FOR A GENERAL RANDOM WALK WITH A TWO-SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A TWO-SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER A WIENER-HOPF TYPE METHOD FOR A GENERAL RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER A WIENER-HOPF TYPE METHOD FOR A GENERAL RANDOM WALK WITH A TWO-SIDED BOUNDARY FIRST PASSAGE TIME OF A GENERAL RANDOM WALK ORDS AND SHAPE A GENERAL RANDOM WALK SHAPE LIMIT THEOREMS FOR STOPPED RANDOM WALKS LIMIT THEOREMS FOR STOPPED RANDOM WALKS SHED NOT BE RECURRENT FIRST PASSAGE TIME DENSITY FOR HOMOGENEOUS S	JRSSB55 JRSSB55 JRSSB65 JRSSB65 JRSSB65 JRSSB65 JRSSB65 AMS 61 JRSSB564 JRSSB566 AMS 66 AMS 66 AMS 66 AMS 67 JRSSB57 J	262 491 1323 660 464 169 506 136 74 549 1344 1040 1042 64 765 842 30 385 400 385 400 385 166 173 413 1332 855 166 173 413 1332 855 166 173 413 1549 1549 1549 1549 1549 1549 1549 1549
	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING-TIME DISTRIBUTION FOR SINGLE-SERVER QUEUES A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM TABLES FOR WALD TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION SOME EXTENSIONS OF THE WALD-WOLDFUNITA-NOTHER THEOREM SOME EXTENSIONS OF THE WALD-WOLDFUNITA-NOTHER THEOREM IN THE FORMULA TO IMPROVE WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S THEOREM ON COMMULATIVE SUMS' 59 1245 THE CROWTH OF A RECURRENT RANDOM WALK THE GROWTH OF A RECURRENT RANDOM WALK STATIONARY BEHAVIOUR OF A LEFT-CONTINUOUS RANDOM WALK THE GROWTH OF A RANDOM WALK (IN CONTINUOUS TIME) AND ITS APPLICATION TO THE SIMPLE RANDOM WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RANK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RECURRENT EVENTS (WITH DISCUSSION) THE RANDOM WALK DESIGN IN BIO-ASSAY A RANDOM WALK ON CIRCLE A WIENER-HOPF TYPE METHOD FOR A CENERAL RANDOM WALK WITH A TWO-SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A TWO-SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A TWO-SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A TWO-SIDED BOUNDARY ON A CLASS OF SIMPLE RANDOM WALK WITH A TWO-SIDED BOUNDARY THE ERGODIC BEHAVIOUR OF RANDOM WALKS LIMITITE DESTREAMENT OF RANDOM WALKS A LOCAL LIMIT THEOREMS FOR STOPPED RANDOM WALKS OF WALD'S IDENTITY WITH APPLICATIONS TO RANDOM WALKS A MIXTURE OF TWO RECURRENT RANDOM WALKS ON THE CONTINUUM THE ERGODIC BEHAVIOUR OF RANDOM WALKS ON THE CONTINUUM THE LIMIT THEOREMS FOR STOPPED RANDOM WALKS ON T	JRSSB55 JRSSB65 JRSSB65 JRSSB65 JRSSB65 JASA 60 JASA 60 JASA 60 JASA 61 JRSSB54 JRSSB56 AMS 61 AMS 60 AMS 69 JOK A59 AMS 61 JASA 67 JASSB57 AMS 61 JASA 67 JASSB57 AMS 61 JRSSB57 AMS 66 AMS 68 AMS 68 AMS 66 AMS 66 AMS 66 AMS 66 AMS 66 TECH 65	262 491 1323 660 464 169 506 136 74 1344 1040 No.6 532 400 1042 64 765 842 30 385 405 1168 235 1166 173 413 1332 855 391 549 276 391 276 391 276 391 276 391 391 391 391 391 391 391 391 391 391
	QUEUE A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCESSIVE CUSTOMERS IN A FINITE ON THE WAITING.—TIME DISTRIBUTION FOR QUEUES IN SERIES STATIONARY WAITING—TIME DISTRIBUTIONS FOR SINGLE—SERVER QUEUES A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST ALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST OPTIM TABLES FOR WALD THE WALD—MOUNTED THE WALD SEQUENTIAL PROBABILITY RATIO TEST SOME EXTENSIONS OF THE WALD—MOUNTED THE THEOREM L TESTS AN IMPROVEMENT TO WALD SOME FROPERTIES OF SEQUENTIAL A GENERALIZATION OF WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIA A GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS TO RANDOM WALK THE GROWTH OF A RECURRENT RANDOM WALK THE GROWTH OF A RANDOM WALK THE GROWTH OF A RANDOM WALK THE GROWTH OF A RANDOM WALK THE RANDOM WALK (IN CONTINUOUS TIME) AND ITS APPLICATION TO THE SIMPLE RANDOM WALK AND REAMK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND REAMK ORDER STATISTICS DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND REAMK ORDER STATISTICS THE RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN TIME RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN TIME A WIENER-HOPF TYPE METHOD FOR A GENERAL RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN TIME RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN TIME RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER A WIENER-HOPF TYPE METHOD FOR A GENERAL RANDOM WALK WITH A TWO-SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A TWO-SIDED BOUNDARY FIRST PASSAGE TIMES OF A GENERALIZED RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER A WIENER-HOPF TYPE METHOD FOR A GENERAL RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER A WIENER-HOPF TYPE METHOD FOR A GENERAL RANDOM WALK WITH A TWO-SIDED BOUNDARY FIRST PASSAGE TIME OF A GENERAL RANDOM WALK ORDS AND SHAPE A GENERAL RANDOM WALK SHAPE LIMIT THEOREMS FOR STOPPED RANDOM WALKS LIMIT THEOREMS FOR STOPPED RANDOM WALKS SHED NOT BE RECURRENT FIRST PASSAGE TIME DENSITY FOR HOMOGENEOUS S	JRSSB55 JRSSB65 JRSSB65 JRSSB65 JRSA 64 BIOKA59 JASA 64 JRSSB661 AMS 61 AMS 66 AMS 69 BIOKA59 AMS 67 JRSSB57 AMS 61 JASA 67 BIOKA59 AMS 66 AMS 69 BIOKA63 AMS 66 AMS 63 AMS 61 JRSSB57 AMS 63 AMS 66 AMS 63 AMS 66 AMS 63 AMS 66	262 491 1323 660 464 169 506 136 74 1344 1040 NO.6 532 400 1042 30 385 405 1168 235 166 173 413 1332 855 391 1549 276 393 1753 1003 860 1510 163 225

WAR - WIL TITLE WORD INDEX

```
WEICHT-HEICHT STANDARDS BASED ON WORLD WAR II EXPERIENCE
                                                                                                                                 JASA 58 408
     CONTROLLING THE STANDARD DEVIATION BY CUSUMS AND WARNING LINES
                                                                                                                                 TECH 63
                                                                                                                                           307
                                       CONTROL CHARTS WITH WARNING LINES
                                                                                                                                 BIOKA55
                           A MODIFIED CONTROL CHART WITH WARNING LINES
                                                                                                                                 BIOKA62
                                                                                                                                           171
                                                A BIVARIATE WARNING-TIME, FAILURE-TIME DISTRIBUTION
                                           ON EVALUATION OF WARRANTY ASSURANCE WHEN LIFE HAS A WEIBULL DISTRIBUTI BIOKA69 NO.3
WILLIAM N. HURWITZ CHANCES IN CENSUS METHODS WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR JASA 69 NO.4
WILLIAM N. HURWITZ. ON WILLIAM HURWITZ
                                                               WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR
                                                                                                                                 JASA 69 NO.4
WILLIAM N. HURWITZ. COMMENTS

ILLIAM N. HURWITZ. COMMENTS

ILLIAM N. HURWITZ. COMMENTS

ILLIAM N. HURWITZ. PROFESSOR WILLIAM N. HURWITZ

ILLIAM N. HURWITZ. SOME BASIC PRINCIPLES OF STATI/

ILLIAM N. HURWITZ. THE DEVELOPMENT OF HOUSEHOLD S/

WASHINCTON STATISTICAL SOCIETY MEMORIAL MEETING FOR W JASA 69 NO.4

WASHINCTON STATISTICAL SOCIETY MEMORIAL MEETING FOR W JASA 69 NO.4

WASHINCTON STATISTICAL SOCIETY MEMORIAL MEETING FOR W JASA 69 NO.4

WASHINCTON STATISTICAL SOCIETY MEMORIAL MEETING FOR W JASA 69 NO.4

WASHINCTON STATISTICAL SOCIETY MEMORIAL MEETING FOR W JASA 69 NO.4

WASHINCTON STATISTICAL SOCIETY MEMORIAL MEETING FOR W JASA 69 NO.4

WASHINCTON STATISTICAL SOCIETY MEMORIAL MEETING FOR W JASA 69 NO.4

WASHINCTON STATISTICAL SOCIETY MEMORIAL MEETING FOR W JASA 69 NO.4

WASHINCTON STATISTICAL SOCIETY MEMORIAL MEETING FOR W JASA 69 NO.4

WASHINCTON STATISTICAL SOCIETY MEMORIAL MEETING FOR W JASA 69 NO.4

WASHINCTON STATISTICAL SOCIETY MEMORIAL MEETING FOR W JASA 69 NO.4

WASHINCTON STATISTICAL SOCIETY MEMORIAL MEETING FOR W JASA 69 NO.4

WASHINCTON STATISTICAL SOCIETY MEMORIAL MEETING FOR W JASA 69 NO.4

WASHINCTON STATISTICAL SOCIETY MEMORIAL MEETING FOR W JASA 69 NO.4
                                             ON THE CALTON-WATSON BRANCHINC PROCESS WITH MEAN LESS THAN ONE
                                                                                                                                 AMS 67 264
                                   A THEOREM ON THE GALTON-WATSON PROCESS
                                                                                                                                  AMS 66 695
                                    THE MULTI-TYPE CALTON-WATSON PROCESS IN A CENETICAL CONTEXT
                                                                                                                                 BIOCS6B 147
                                                                                                           ADDITIONAL LIMIT AMS 66 1211
          A LIMIT THEOREM FOR MULTIDIMENSIONAL GALTON-WATSON PROCESSES
 THEOREMS FOR INDECOMPOSABLE MULTIDIMENSIONAL GALTON-WATSON PROCESSES
                             A NOTE ON MULTI-TYPE CALTON-WATSON PROCESSES WITH RANDOM BRANCHINC PROBABILITIES BIOKA68 5B9
         A COMPARISON BETWEEN THE POWER OF THE DURBIN-WATSON TEST AND THE POWER OF THE BLUS TEST
                                                                                                                                 JASA 69
                                                                                                                                           938
                                            A NOTE ON G.S. WATSON'S PAPER 'A STUDY OF THE GROUP SCREENING
                                                                                                                                 TECH 65
                                                                                                                                           444
                                   A K-SAMPLE ANALOCUE OF WATSON'S U-SQUARE STATISTIC
                                                                                                                                BIOKA66 579
   OF THE TWO-SAMPLE CRAMER-VON MISES' W-SQUARED AND WATSON'S U-SQUARED SMALL-SAMPLE DISTRIBUTIONS AMS 64 1091
                        ESTIMATION OF POWER SPECTRA BY A WAVE ANALYZER
                                                                                                                                 TECH 65
                                                                                                                                           553
E LARCE SAMPLE ESTIMATION OF AN UNKNOWN DISCRETE WAVEFORM WHICH IS RANDOMLY REPEATING IN GAUSSIAN NOIS
                                                                                                                                 AMS 65
                                                                                                                                           489
NDOMIZED SYMMETRICAL DESIGN FOR THE PROBLEM OF A ONE WAY CLASSIFICATION ON THE ADMISSIBILITY OF A RA AMS 69
                                                                                                                                           356
                                                    WHERE DO WE GO FROM HERE
                                                                                                                                JASA 60
                                                                                                                                            B0
                                         RELATIONS BETWEEN WEAK AND UNIFORM CONVERGENCE OF MEASURES WITH APPLICA AMS 62
TIONS
                                                                                                                                           659
                                                               WEAK APPROACHABILITY IN A TWO-PERSON GAME
                                                                                                                                  AMS 69
                                                                                                                                           789
RANDOM SAMPLE SIZES
                                                               WEAK CONVERGENCE AND A CHERNOFF-SAVAGE THEOREM FOR
                                                                                                                                  AMS 68 1675
PROBLEMS
                                                               WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION
                                                                                                                                  AMS 68 2149
D A NEW APPROACH TO CHERNOFF-SAVAGE THEOREM
                                                               WEAK CONVERGENCE OF A TWO-SAMPLE EMPIRICAL PROCESS AN AMS 6B 755
                               A CHARACTERIZATION OF THE WEAK CONVERGENCE OF MEASURES
                                                                                                                                  AMS 61
                                                                                                                                           561
SIONAL TIME/ INEQUALITIES WITH APPLICATIONS TO THE WEAK CONVERGENCE OF RANDOM PROCESSES WITH MULTI-DIMEN
                                                                                                                                 AMS 69 681
                                            PRESERVATION OF WEAK CONVERGENCE UNDER MAPPINGS
                                                                                                                                  AMS 67 1661
                                              A NOTE ON THE WEAK LAW
                                                                                                                                  AMS 68 2159
                                               A NOTE ON THE WEAK LAW OF LARGE NUMBERS
                                                                                                                                  AMS 6B 1348
                                                               WEAK QUALITATIVE PROBABILITY ON FINITE SETS
                                                                                                                                  AMS 69 NO 6
                         ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCHASTIC PROCESSES
                                                                                                                                  AMS 64 1765
                    ON THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONARY STOCHASTIC PROCESSES
                                                                                                                                  AMS 64 532
PROBLEMS IN MEASURING LONG TERM CROWTH IN INCOME AND WEALTH
                                                                                                                                 JASA 57 450
                                                  THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERAGE SAVING
                                                                                                                                JASA 64
                                                                                                                                           737
                                                      INCOME, WEALTH, AND THE DEMAND FOR MONEY, SOME EVIDENCE FROM JASA 64
              A LEARNING MODEL FOR PROCESSES WITH TOOL WEAR
                                                                                                                                 TECH 68
                                                                                                                                           379
                                                SOME SIMPLE WEAR-DEPENDENT RENEWAL PROCESSES
                                                                                                                                JRSSB61
                                                                                                                                           368
                        A STOCHASTIC CHARACTERIZATION OF WEAR-OUT FOR COMPONENTS AND SYSTEMS
                                                                                                                                 AMS 66
                                                                                                                                           816
   ON THE 'FINAL REPORT OF THE ADVISORY GOMMITTEE ON WEATHER CONTROL'
                                                                                                           FURTHER COMMENTS JASA 61
                                                                                                                                           580
                        THE TRENTILE DEVIATION METHOD OF WEATHER FORECAST EVALUATION
                                                                                                                                JASA 58 398
                                   BOUNDARIES FOR CLOSED (WEDGE) SEQUENTIAL T TEST PLANS
                                                                                                                                BTOKA66
                                                                                                                                           431
MISSIBLE ESTIMATORS OF THE LOCATION PARAMETER OF THE WEIBULL AND CERTAIN OTHER DISTRIBUTIONS ON SOME PER TECH 67
INTERVAL ESTIMATION PROCEDURES FOR THE TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS POINT AND TECH 68
                                                                                                                                           293
                                                                                                                                           231
IMATORS, FROM CENSORED SAMPLES, OF THE PARAMETERS OF WEIBULL AND GAMMA POPULATIONS /XIMUM-LIKELIHOOD EST AMS 67
                                                                                                                                           557
 ESTIMATION OF THE SHAPE AND SCALE PARAMETERS OF THE WEIBULL DISTRIBUTION
                                                                                                                                 TECH 63
                                                                                                                                           175
                         ON THE RENEWAL FUNCTION FOR THE WEIBULL DISTRIBUTION
                                                                                                                                TECH 63 393
                  CUMULATIVE SUM CONTROL CHARTS AND THE WEIBULL DISTRIBUTION
                                                                                                                                 TECH 66
                                                                                                                                           481
                         ESTIMATION OF PARAMETERS IN THE WEIBULL DISTRIBUTION
                                                                                                                                 TECH 67
                    INFERENCES ON THE PARAMETERS OF THE WEIBULL DISTRIBUTION
                                                                                                                                 TECH 69 445
                                  TWO SAMPLE TESTS IN THE WEIBULL DISTRIBUTION
                                                                                                                                 TECH 69 NO.4
 ON EVALUATION OF WARRANTY ASSURANCE WHEN LIFE HAS A WEIBULL DISTRIBUTION
                                                                                                                                BIOKA69 NO.3
  TESTS OF HYPOTHESES CONCERNING THE THREE-PARAMETER WEIBULL DISTRIBUTION
                                                                                                                          SOME JASA 68 853
BEST LINEAR INVARIANT ESTIMATES OF PARAMETERS OF THE WEIBULL DISTRIBUTION

TABLES FOR OBTAINING THE TECH 67

CONFIDENCE BOUND FOR RELIABILITY IN THE CASE OF THE WEIBULL DISTRIBUTION /XACT ASYMPTOTICALLY EFFICIENT TECH 66
                                                                                                TABLES FOR OBTAINING THE TECH 67
                                                                                                                                           629
                                                                                                                                           135
D SAMPLES MAXIMUM LIKELIHOOD ESTIMATION IN THE WEIBULL DISTRIBUTION BASED ON COMPLETE AND ON CENSORE TECH 65 D S/ ERRATA. MAXIMUM LIKELIHOOD ESTIMATION IN THE WEIBULL DISTRIBUTION BASED ON COMPLETE AND ON CENSORE TECH 66
                                                                                                                                           579
                                                                                                                                           570
N TWO FAILURES OCCUR PER LOT ESTIMATION OF WEIBULL DISTRIBUTION SHAPE PARAMETER WHEN NO MORE THA TECH 64
                                                                                                                                           415
R STATISTIC CONFIDENCE BOUNDS ON RELIABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE CENSORINC /REE, ORDE JASA 69
                                                                                                                                           306
                                      ' THE MOMENTS OF LOC-WEIBULL ORDER STATISTICS
                                                                                                                                TECH 69 373
       ASYMPTOTIC PROPERTIES OF SEVERAL ESTIMATORS OF WEIBULL PARAMETERS
                                                                                                                                TECH 65
                                                                                                                                           423
                         SOME PERCENTILE ESTIMATORS FOR WEIBULL PARAMETERS
                         A GRAPHICAL ESTIMATION OF MIXED WEIBULL PARAMETERS IN LIFE TESTING ELECTRON TUBES
ON M ORDER STATISTICS, FOR THE SCALE PARAMETER OF A WEIBULL POPULATION WITH KNOWN SHAPE PARAMETER /ASED TECH 65
LIKELIHOOD ESTIMATION OF THE PARAMETERS OF CAMMA AND WEIBULL POPULATIONS FROM COMPLETE AND FROM CENSORED S TECH 65
LIKELIHOOD ESTIMATION OF THE PARAMETERS OF GAMMA AND WEIBULL POPULATIONS FROM COMPLETE AND FROM GENSORED S TECH 67
                         THE DISCRIMINATION BETWEEN TWO WEIBULL PROCESSES
                                                                                                                                TECH 64
                                                                                                                                            57
      INSPECTION PLANS FOR DISCRIMINATING BETWEEN TWO WEIBULL PROCESSES
                                                                                                                     SAMPLING TECH 65 589
                                                                                                                                TECH 64 240
               ERRATA, 'THE DISCRIMINATION BETWEEN TWO WEIBULL PROCESSES'
                                                                                                                                BTOKA66 375
                                              A NOTE ON THE WEIBULL RENEWAL PROCESS
            QUERY, SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE PARAMETERS
                                                                                                                                TECH 64 471
            NOTES.ORTHOGONAL POLYNOMIALS FOR UNEQUALLY WEIGHED MEANS
                                                                                                                                BIOCS65 226
                                                                                                                                 AMS 64 673
                                                    SINGULAR WEIGHING DESIGNS
                            ON NON-RANDOMIZED FRACTIONAL WEICHING DESIGNS
                                                                                                                                  AMS 66 1B36
                                                                                                                                  AMS 66 13B2
                                    RANDOMIZED FRACTIONAL WEICHING DESIGNS
                                                                                                                                 AMS 66 1021
719)
                               SINGULARITY IN HOTELLING'S WEICHING DESIGNS AND A GENERALIZED INVERSE (CORR. 69
                                             ON HOTELLING'S WEIGHING DESIGNS UNDER AUTO-CORRELATION OF ERRORS
                                                                                                                                 AMS 65 1B29
                                                               WEICHING DESIGNS WHEN N IS ODD
                                                                                                                                 AMS 66 1371
                               AN APPLICATION OF VARIABLE WEICHT DISTRIBUTED LAGS
                                                                                                                                JASA 67 1277
                       SEQUENTIAL DESIGNS FOR SPHERICAL WEIGHT FUNCTIONS
                                                                                                                                TECH 67 517
```

TITLE WORD INDEX WAR - WIL

INFORMATION AND THE UTILITY OF EXPERIMENTS (CORR/ WEICHT OF EVIDENCE, CORROBORATION, EXPLANATORY POWER,		
		319
TABLETS, AND STERILE SOLIDS FILL WEICHT VARIATION RELEASE AND CONTROL OF CAPSULES,		161
CURRENT WEICHT-HEICHT RELATIONSHIPS OF YOUTHS OF MILITARY ACE		895
		408
		264
		229 188
LES ON THE UISTRIBUTION OF THE WEICHTED DIFFERENCE OF TWO INDEPENDENT STUDENT VARIAB		
		299
AN EXPERIMENT WITH WEIGHTED INDEXES OF CYCLICAL DIFFUSION VARIANCES, SAMPLINC EXPERIMENTS WITH LEAST SQUARES, WEICHTED LEAST SQUARES AND MAXIMUM LIKELIHOOD ESTIMAT		39 607
VARIANCES, SAMPLING EAPERIMENTS WITH LEAST SQUARES, WELCHIEU LEAST SQUARES AND MALIMON LIRELIHOUD ESTIMAT COMPARISON OF THE VARIANCE OF MINIMUM VARIANCE AND WELCHTED LEAST SQUARES REGRESSION COEFFICIENTS		984
		318
		73
THE BEHRENS-FISHER DISTRIBUTION AND WEICHTED MEANS MIZATION BASES OF THE PROBLEM OF THE AMALCAMATION OF WEICHTED MEANS ON THE ACCURACY OF WEICHTED MEANS AND RATIOS		423
ON THE ACCURACY OF WEIGHTED MEANS AND RATIOS	BIOKA56	
THE COMPLETE AMALGAMATION INTO BLOCKS, BY WEICHTED MEANS, OF A FINITE SET OF REAL NUMBERS		317
		414
A NOTE ON A MODIFIED EXPONENTIALLY WEIGHTED PREDIGTOR		318
THE CONTROLS WEIGHTED PROBITS ALLOWING FOR A NON-ZERO RESPONSE IN	BIOKA56	207
	JASA 67 1	
ARE INDEPENDENT AND HETEROSCEDASTIC VARIANCE OF WEIGHTED REGRESSION ESTIMATORS WHEN SAMPLING ERRORS	JASA 69 N	10.4
INVERSE POLYNOMIALS WEIGHTED REGRESSION, QUANTAL RESPONSE DATA, AND	BIOCS68	979
THE VARIANCE OF AN ESTIMATOR WITH POST-STRATIFIED WEIGHTING	JASA 62	
NFORMATION FROM UNCORRELATED LINEAR MODELS BY SIMPLE WEIGHTING ON COMBINABILITY OF I		
NFORMATION FROM UNCORRELATED LINEAR MODELS BY SIMPLE WEIGHTING ON COMBINABILITY OF I SOME OBSERVATIONS ON THE PRACTICAL ASPECTS OF WEIGHTING DESIGNS OF VARIANCE ESTIMATION OF WEIGHTING FACTORS IN LINEAR REGRESSION AND ANALYSIS		
OF VARIANCE ESTIMATION OF WEIGHTING FACTORS IN LINEAR REGRESSION AND ANALYSIS	TECH 64	1
OPTIMAL SPACING AND WEIGHTING IN POLYNOMIAL PREDICTION	AMS 64 1	
A PROBLEM CONCERNED WITH WEIGHTING OF DISTRIBUTIONS	JASA 61	
ERGODIC THEORY WITH RECURRENT WEIGHTS	AMS 68 1	
OPTIMAL SPACING AND WEIGHTING IN POLYNOMIAL PREDICTION A PROBLEM CONCERNED WITH WEIGHTING OF DISTRIBUTIONS ERGODIC THEORY WITH RECURRENT WEIGHTS USE OF VARYING SEASONAL WEIGHTS IN PRICE INDEX CONSTRUCTION OF PARTICLE SIZE DISTRIBUTION BASED ON OBSERVED WEIGHTS OF GROUPS OF PARTICLES ESTIMATION NOTE ON THE CONFIDENCE PRIOR OF WEIGHTS OF PROPERS ESTIMATION	JASA 58	66
OF PARTICLE SIZE DISTRIBUTION BASED ON OBSERVED WEIGHTS OF GROUPS OF PARTICLES NOTE ON THE CONFIDENCE-PRIOR OF WELCH AND PEERS ESTIMATION	IECH 65	505
NOTE ON THE CONFIDENCE-INTOK OF WELCH AND FEELS	JRSSB66 JRSSB57	55 179
COMMENT ON THE NOTES BY NEYMAN, BARTLEIT AND WELCH IN THIS JOURNAL (VOL. 18, NO. 2, 1990) B MEA/ AN EXACT DISTRIBUTION OF THE BEHRENS-FISHER-WELCH STATISTIC FOR TESTING THE DIFFERENCE BETWEEN TH		377
INCOME REPORTED BY A SAMPLE OF FAMILIES WHO RECEIVED WELFARE ASSISTANCE DURING 1959 THE VALIDITY OF		680
DISCUSSION OF THE PAPERS OF MESSRS. HALD, WEITHERILL AND COX		361
	AMS 69 1	
A NOTE ON THE PERIODOGRAM OF THE BEVERIDCE WHEAT PRICE INDEX	JRSSB55	
ON THE QUESTION OF WHETHER A DISEASE IS FAMILIAL		409
STIC SYSTEMS, ARBITRARY SYSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVATIONS ERROR ESTIMATION OF STOCHA	AMS 68	785
ERRORS IN THE 1960 CENSUS ENUMERATION OF NATIVE WHITES		437
AN APPROXIMATION TO THE WILCOXON-MANN-WHITNEY DISTRIBUTION	JASA 69	591
NOTE ON THE WILCOXON-MANN-WHITNEY STATISTIC	AMS 65 1	058
SAMPLE PROPERTIES OF A GENERALIZED WILCOXON-MANN-WHITNEY STATISTIC ON THE LARGE	AMS 67	905
ON THE EFFICIENCY OF TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS		612
IVES EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND RECTANGULAR ALTERNAT	1110 00	
		945
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO	JASA 60	125
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PORECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES	JASA 60 AMS 66	125 284
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILGOXON STATISTIC	JASA 60 AMS 66 JASA 61	125 284 687
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC	JASA 60 AMS 66 JASA 61 JASA 64	125 284 687 925
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILGOXON STATISTIC AN EXTENDED TABLE OF CRITIGAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC	JASA 60 AMS 66 JASA 61 JASA 64 BIOKA55	125 284 687 925 123
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILGOXON STATISTIC AN EXTENDED TABLE OF CRITIGAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF	JASA 60 AMS 66 JASA 61 JASA 64 BIOKA55 BIOKA61	125 284 687 925 123 468
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC AN EXTENDED TABLE OF CRITIGAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN	JASA 60 AMS 66 JASA 61 JASA 64 BIOKA55 BIOKA61 AMS 68	125 284 687 925 123 468 492
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN	JASA 60 AMS 66 JASA 61 JASA 64 BIOKA55 BIOKA61 AMS 68 BIOKA68	125 284 687 925 123 468
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION.	JASA 60 AMS 66 JASA 61 JASA 64 BIOKA55 BIOKA61 AMS 68 BIOKA68 BIOKA65	125 284 687 925 123 468 492 559
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC AN EXTENDED TABLE OF CRITIGAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION.	JASA 60 AMS 66 JASA 61 JASA 64 BIOKA55 BIOKA61 AMS 68 BIOKA68 BIOKA65 AMS 66	125 284 687 925 123 468 492 559 289
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS	JASA 60 AMS 66 JASA 61 JASA 64 BIOKA65 BIOKA61 AMS 68 BIOKA68 BIOKA68 BIOKA65 AMS 66 AMS 63 JASA 62	125 284 687 925 123 468 492 559 289 260 424 338
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENCE INTERVAL FOR THE MEAN ON THE	JASA 60 AMS 66 JASA 61 JASA 64 BIOKA55 BIOKA61 AMS 68 BIOKA65 AMS 66 AMS 63 JASA 62 AMS 68 1	125 284 687 925 123 468 492 559 289 260 424 338 1946
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC AN EXTENDED TABLE OF CRITIGAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENCE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS	JASA 60 AMS 66 JASA 61 JASA 64 BIOKA55 BIOKA61 AMS 68 BIOKA68 BIOKA68 BIOKA65 AMS 66 AMS 63 JASA 62 AMS 68 1 JASA 68	125 284 687 925 123 468 492 559 289 260 424 338 1946 182
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND FREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENCE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED-WIDTH INTERVAL ESTIMATION OF THE MEAN THE	JASA 60 AMS 66 JASA 61 JASA 64 BIOKA55 BIOKA61 AMS 68 BIOKA68 BIOKA65 AMS 66 AMS 63 JASA 62 AMS 68 1 JASA 66 AMS 66	125 284 687 925 123 468 492 559 289 260 424 338 1946 182 36
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENCE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED-WIDTH INTERVAL ESTIMATION OF THE MEAN THE THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST	JASA 60 AMS 66 JASA 61 JASA 64 BIOKA55 BIOKA61 AMS 68 BIOKA65 AMS 66 AMS 63 JASA 62 AMS 68 1 JASA 66 JASA 66 JASA 63	125 284 687 925 123 468 492 559 289 260 424 338 1946 182 36 678
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC AN EXTENDED TABLE OF CRITIGAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENCE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED-WIDTH INTERVAL ESTIMATION OF THE MEAN THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST ON MEASURES EQUIVALENT TO WIENER MEASURE	JASA 60 AMS 66 JASA 61 JASA 64 BIOKA61 AMS 68 BIOKA65 AMS 66 AMS 63 JASA 62 AMS 68 1 JASA 66 AMS 66 AMS 66 AMS 66 AMS 66	125 284 687 925 123 468 492 559 289 260 424 338 1946 182 36 678 261
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENCE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED-WIDTH INTERVAL ESTIMATION OF THE MEAN THE THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST ON MEASURES EQUIVALENT TO WIENER MEASURE A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS	JASA 60 AMS 66 JASA 61 JASA 64 BIOKA65 BIOKA65 AMS 68 BIOKA68 BIOKA65 AMS 63 JASA 62 AMS 68 1 JASA 66 AMS 66 JASA 63 JASA 67 AMS 67	125 284 687 925 123 468 492 559 289 260 424 338 1946 182 36 678 261
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENCE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED—WIDTH INTERVAL ESTIMATION OF THE MEAN THE THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST ON MEASURES EQUIVALENT TO WIENER MEASURE A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS ON THE AS	JASA 60 AMS 66 JASA 61 JASA 64 BIOKA55 BIOKA61 AMS 68 BIOKA65 AMS 63 JASA 62 AMS 63 JASA 66 JASA 66 JASA 63 AMS 67 AMS 67 AMS 67 1 AMS 69 1	125 284 687 925 123 468 492 559 289 260 424 338 1946 182 36 678 261 1912
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENCE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED-WIDTH INTERVAL ESTIMATION OF THE MEAN THE THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST ON MEASURES EQUIVALENT TO WIENER MEASURE A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS ON THE AS THESES CONCERNING THE UNKNOWN DRIFT PARAMETER OF THE WIENER PROCESS ON THE AS	JASA 60 AMS 66 JASA 61 JASA 64 BIOKA55 BIOKA61 AMS 68 BIOKA65 AMS 66 AMS 63 JASA 62 AMS 68 1 JASA 66 JASA 66 JASA 63 AMS 67 AMS 67 AMS 67 AMS 67	125 284 687 925 123 468 492 559 289 260 424 338 1946 182 36 678 1912 1409 1376
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC AN EXTENDED TABLE OF CRITIGAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENGE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED-WIDTH INTERVAL ESTIMATION OF THE MEAN THE THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST ON MEASURES EQUIVALENT TO WIENER MEASURE A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMED ON THE AS THESE CONCERNING THE UNKNOWN DRIFT PARAMETER OF THE WIENER PROCESS YMED ON THE AS THESE CONCERNING THE UNKNOWN DRIFT PARAMETER OF THE WIENER PROCESS ON THE AS THESE CONCERNING THE UNKNOWN DRIFT PARAMETER OF THE WIENER PROCESS //CEDURES FOR CHOOSING ONE OF K HYPO WITH A TWO-SIDED BOUNDARY A WIENER-HOPF TYPE METHOD FOR A GENERAL "ANDOM WALK	JASA 60 AMS 66 JASA 64 BIOKA65 BIOKA65 BIOKA68 BIOKA68 BIOKA68 BIOKA68 AMS 63 JASA 62 AMS 66 AMS 67 AMS 67 AMS 67 AMS 67 AMS 67 1 AMS 67 1 AMS 66 3	125 284 687 925 123 468 492 559 289 260 424 338 1946 182 36 678 261 1912 1409 1376
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENCE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED-WIDTH INTERVAL ESTIMATION OF THE MEAN THE THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST ON MEASURES EQUIVALENT TO WIENER MEASURE A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPT	JASA 60 AMS 66 JASA 61 JASA 64 BIOKA65 BIOKA61 AMS 68 BIOKA68 BIOKA68 AMS 63 JASA 62 AMS 63 JASA 63 JASA 63 JASA 63 AMS 66 AMS 67	125 284 687 925 123 468 492 559 289 424 338 1946 182 678 261 1912 1409 11376 1168 195
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILGOXON STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND FREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENCE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED—WIDTH INTERVAL ESTIMATION OF THE MEAN THE THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST ON MEASURES EQUIVALENT TO WIENER MEASURE A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS ON T	JASA 60 AMS 66 JASA 61 JASA 64 BIOKA55 BIOKA61 AMS 68 BIOKA65 AMS 66 AMS 63 JASA 62 AMS 68 1 JASA 66 JASA 66 JASA 66 JASA 67 AMS 67 1 AMS 67 1 AMS 63 1 TECH 66 BIOGS66	125 284 687 925 123 468 492 559 260 424 336 1946 1182 36 678 11912 1409 1376 1168 1195 192
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC AN EXTENDED TABLE OF CRITIGAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIRED WIDTH CONFIDENCE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED—WIDTH INTERVAL ESTIMATION OF THE MEAN THE THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST ON MEASURES EQUIVALENT TO WIENER MEASURE A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS ON THE AS THESSES CONCERNING THE UNKNOWN DRIFT PARAMETER OF THE WIENER PROCESS ON THE AS THESSES CONCERNING THE UNKNOWN DRIFT PARAMETER OF THE WIENER PROCESS ON THE AS A TRIBUTE TO FRANK WILCOXON OBITUARY, FRANK WILCOXON PUBLICATIONS OF FRANK WILCOXON (1892-1965)	JASA 60 AMS 66 JASA 61 JASA 64 BIOKA65 BIOKA61 AMS 68 BIOKA68 BIOKA68 AMS 63 JASA 62 AMS 63 JASA 63 JASA 63 JASA 63 AMS 66 AMS 67	125 284 687 123 468 492 559 260 424 338 1946 678 261 1912 1409 1376 1168 195 192
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILGOXON STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A CENERAL STOCHASTIC EPIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENCE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED—WIDTH INTERVAL ESTIMATION OF THE MEAN THE ON MEASURES EQUIVALENT TO WIENER MEASURE 4 FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS ON THE AS THESES CONCERNING THE UNKNOWN DRIFT PARAMETER OF THE WIENER PROCESS ON THE AS THESES CONCERNING THE UNKNOWN DRIFT PARAMETER OF THE WIENER PROCESS ON THE AS THESES CONCERNING THE UNKNOWN DRIFT PARAMETER OF THE WIENER PROCESS ON THE AS THESES CONCERNING THE UNKNOWN DRIFT PARAMETER OF THE WIENER PROCESS ON THE AS THESES CONCERNING THE UNKNOWN DRIFT PARAMETER OF THE WIENER PROCESS ON THE AS THESES CONCERNING THE UNKNOWN DRIFT PARAMETER OF THE WIENER PROCESS ON THE AS THE TWO SHOULD BE AND DEFICIENCY FOR THE ONE SAMPLE WILCOXON (1892-1965) SMALL SAMPLE POWER AND EFFICIENCY FOR THE ONE S	JASA 60 AMS 66 JASA 61 JASA 64 BIOKA55 BIOKA61 AMS 68 BIOKA65 AMS 66 AMS 63 JASA 62 AMS 66 JASA 66 JASA 66 JASA 67 AMS 67 1 AMS 67 1 AMS 63 1 TECH 66 BIOGS66 BIOGS66 BIOGS66 BIOGS67 AMS 63	125 284 468 925 123 468 492 5559 289 260 182 424 338 1946 678 261 1912 1409 1195 192 1 195 192 184 184
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC AN EXTENDED TABLE OF CRITIGAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENGE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED-WIDTH INTERVAL ESTIMATION OF THE MEAN THE THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST ON MEASURES EQUIVALENT TO WIENER MEASURE A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS ON THE AS THESES CONCERNING THE UNKNOWN DRIFT PARAMETER OF THE WIENER PROCESS ON THE AS THESES CONCERNING THE UNKNOWN DRIFT PARAMETER OF THE WIENER PROCESS ON THE AS THESES CONCERNING THE UNKNOWN DRIFT PARAMETER OF THE WIENER PROCESS ON THE AS WILCOXON ON ONFINENCE INTERVALS FOR LOGATION PARAMETERS DEFENDENCE ROBUSTNESS OF THE WILCOXON CONFIDENCE INTERVALS FOR LOGATION PARAMETERS DEFENDENCE ROBUSTNESS OF	JASA 60 AMS 66 AMS 66 BIOKA61 AMS 68 BIOKA68 BIOKA68 AMS 66 AMS 63 JASA 62 AMS 66 AMS 67 AMS 67 AMS 67 AMS 67 AMS 67 AMS 63 JASA 62 AMS 63 JASA 67 AMS 63 AMS 67 AMS 68 AMS 68 AMS 68 AMS 67 AMS 68 AMS 68 AMS 68 AMS 67 AMS 68 AMS 68	125 284 687 925 123 468 492 289 260 289 260 182 36 678 261 1912 1162 1162 1195 1195 1195 1194
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC AN EXTENDED TABLE OF CRITIGAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENGE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED-WIDTH INTERVAL ESTIMATION OF THE MEAN THE THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST ON MEASURES EQUIVALENT TO WIENER MEASURE A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS ON THE AS THESES CONCERNING THE UNKNOWN DRIFT PARAMETER OF THE WIENER PROCESS ON THE AS THESES CONCERNING THE UNKNOWN DRIFT PARAMETER OF THE WIENER PROCESS ON THE AS THESES CONCERNING THE UNKNOWN DRIFT PARAMETER OF THE WIENER PROCESS ON THE AS WILCOXON ON ONFINENCE INTERVALS FOR LOGATION PARAMETERS DEFENDENCE ROBUSTNESS OF THE WILCOXON CONFIDENCE INTERVALS FOR LOGATION PARAMETERS DEFENDENCE ROBUSTNESS OF	JASA 60 AMS 66 AMS 66 BIOKA61 AMS 68 BIOKA68 BIOKA68 AMS 66 AMS 63 JASA 62 AMS 66 AMS 67 AMS 67 AMS 67 AMS 67 AMS 67 AMS 63 JASA 62 AMS 63 JASA 67 AMS 63 AMS 67 AMS 68 AMS 68 AMS 68 AMS 67 AMS 68 AMS 68 AMS 68 AMS 67 AMS 68 AMS 68	125 284 687 925 123 468 492 289 260 289 260 182 36 678 261 1912 1162 1162 1195 1195 1195 1194
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON TATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE FRODUCT FORCESSES MULTIVARIATE WHOSE FOR THE REMINAL AND FIRST THREE MOMENTS ARE KNOWN ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WHOTH CONFIDENCE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED-WHITH INTERVAL ESTIMATION OF THE MEAN THE THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST ON MEASURES EQUIVALENT TO WENNER MEASURE A FIRST PASSAGE PROBLEM FOR THE WIENNER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENNER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENNER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WILCOXON OBITUARY, FRANK WILCOXON PUBLICATIONS OF FRANK WILCOXON OBITUARY, FRANK WILCOXON OBITUARY, FRANK WILCOXON AND NORMAL SCORES	JASA 60 AMS 66 JASA 61 JASA 64 BIOKA65 BIOKA61 AMS 68 BIOKA68 BIOKA68 AMS 66 AMS 63 JASA 62 AMS 66 AMS 67 AMS 63 JASA 67 AMS 63	125 284 4687 925 123 468 289 260 289 260 424 338 81946 678 261 1912 1409 1376 1168 1195 192 1624 184 1196 678 678 678 678 678 678 678 678 678 67
INT, GORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON TATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE FRODUCT FORCESSES MULTIVARIATE WHOSE FOR THE REMINAL AND FIRST THREE MOMENTS ARE KNOWN ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WHOTH CONFIDENCE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED-WHITH INTERVAL ESTIMATION OF THE MEAN THE THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST ON MEASURES EQUIVALENT TO WENNER MEASURE A FIRST PASSAGE PROBLEM FOR THE WIENNER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENNER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENNER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WILCOXON OBITUARY, FRANK WILCOXON PUBLICATIONS OF FRANK WILCOXON OBITUARY, FRANK WILCOXON OBITUARY, FRANK WILCOXON AND NORMAL SCORES	JASA 60 AMS 66 JASA 61 JASA 64 BIOKA65 BIOKA61 AMS 68 BIOKA68 BIOKA68 AMS 66 AMS 63 JASA 62 AMS 66 AMS 67 AMS 63 JASA 67 AMS 63	125 284 4687 925 123 468 289 260 289 260 424 338 81946 678 261 1912 1409 1376 1168 1195 192 1624 184 1196 678 678 678 678 678 678 678 678 678 67
INT, CORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON STATISTIC A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE FIRST N MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE—SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENGE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED—WIDTH INTERVAL ESTIMATION OF THE MEAN THE ON MEASURES EQUIVALENT TO WIENER MEASURE A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS AFTENDED TABLES OF THE WILCOXON STATISTIC REMARKS ON ZEROS AND TIES IN THE WILCOXON STATISTIC REMARKS ON ZEROS AND TIES IN THE WILCOXON STATISTIC A BILITLES FOR THE NULL DISTRIBUTION OF THE MANN-WHITNEY-WILCOXON STATISTIC EXTREMETAL PROBA	JASA 60 AMS 66 AMS 66 BIOKA65 BIOKA65 BIOKA68 BIOKA68 BIOKA68 BIOKA68 AMS 63 JASA 62 AMS 66 AMS 67 AMS 63 JASA 65 AMS 63 JASA 67 AMS 63 JASA 65 JASA 65 JASA 65 JASA 66	125 284 925 123 468 492 5559 289 289 1946 1182 36 678 261 1912 1409 1624 1195 1624 1196 864 655 629
INT, CORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED FO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITNEY-WILCOXON TWO-SAMPLE STATISTIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON FAIRS OF INDEFENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEM-AGE WIDOWS THE CASE OF THE INDIANS AND THE TEEM-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENCE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED-WIDTH INTERVAL ESTIMATION OF THE MEAN THE THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST ON MEASURES EQUIVALENT TO WIENER MEASURE A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF FARMW WILCOXON ON ONFIDENCE INTERVALS FOR CHOOSING ONE OF K HYPO WILLOXON ON ONFIDENCE FOR CHOOSING ONE OF K HYPO	JASA 60 AMS 66 AMS 66 BIOKA65 BIOKA65 BIOKA68 BIOKA68 BIOKA68 BIOKA68 AMS 63 JASA 62 AMS 66 AMS 63 JASA 66 AMS 67 AMS 67 AMS 67 AMS 67 AMS 67 AMS 63 ITECH 66 BIOGS66 BIOGS66 BIOGS67 AMS 63 JASA 63 JASA 63 JASA 65 JASA 65 JASA 55 JASA 59 JASA 61 BIOKA67 AMS 63 1 BIOKA67	125 284 4687 925 123 468 492 559 260 424 338 1946 678 261 1912 1409 1168 1195 1192 1409 1168 1195 1168 1196 667 1196 1196 1196 1196 1196 1196
INT, CORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED FO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EFIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENCE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED—WIDTH INTERVAL ESTIMATION OF THE MEAN THE THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST ON MEASURES EQUIVALENT TO WIENER MEASURE A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WILCOXON (1892-1965) SMALL SAMPLE POWER AND EFFICIENCY FOR THE ONE SAMPLE WILCOXON AND NORMAL SCORES TESTS IN THE DISCRETE CASE DEPENDENCE ROBUSTNESS OF THE WILCOXON AND NORMAL SCORES TESTS WILCOXON CONFIDENCE INTERVALS FOR LOGATION PARAMETERS DEFENDENCE REMARKS ON ZEROS AND TIES IN THE WILCOXON STATISTIC EXTREME TAIL PROBA EXTENDED THE MILLOXON SIGNED RANK P	JASA 60 AMS 66 AMS 66 BIOKA65 BIOKA61 AMS 68 BIOKA68 BIOKA68 AMS 63 JASA 62 AMS 66 AMS 63 JASA 66 AMS 67 AMS 63 JASA 67 AMS 63 JASA 67 AMS 68 I JASA 65 JASA 67 AMS 68 JASA 61 JASA 61 JASA 61	125 284 4687 925 123 468 289 260 242 338 1946 678 261 1912 1409 1376 192 192 1168 195 192 624 1184 1196 687 687 667 687 667 687 667 687 667 687 68
INT, CORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED FO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EFIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENCE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED—WIDTH INTERVAL ESTIMATION OF THE MEAN THE THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST ON MEASURES EQUIVALENT TO WIENER MEASURE A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WILCOXON (1892-1965) SMALL SAMPLE POWER AND EFFICIENCY FOR THE ONE SAMPLE WILCOXON AND NORMAL SCORES TESTS IN THE DISCRETE CASE DEPENDENCE ROBUSTNESS OF THE WILCOXON AND NORMAL SCORES TESTS WILCOXON CONFIDENCE INTERVALS FOR LOGATION PARAMETERS DEFENDENCE REMARKS ON ZEROS AND TIES IN THE WILCOXON STATISTIC EXTREME TAIL PROBA EXTENDED THE MILLOXON SIGNED RANK P	JASA 60 AMS 66 AMS 66 BIOKA65 BIOKA61 AMS 68 BIOKA68 BIOKA68 AMS 63 JASA 62 AMS 66 AMS 63 JASA 66 AMS 67 AMS 63 JASA 67 AMS 63 JASA 67 AMS 68 I JASA 65 JASA 67 AMS 68 JASA 61 JASA 61 JASA 61	125 284 4687 925 123 468 289 260 424 338 1946 678 261 1912 1409 1376 192 192 1168 195 192 624 1196 1196 678 195 678 195 678 195 678 195 195 195 195 195 195 195 195 195 195
INT, CORR. 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED FO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EFIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENCE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED—WIDTH INTERVAL ESTIMATION OF THE MEAN THE THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST ON MEASURES EQUIVALENT TO WIENER MEASURE A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WILCOXON (1892-1965) SMALL SAMPLE POWER AND EFFICIENCY FOR THE ONE SAMPLE WILCOXON AND NORMAL SCORES TESTS IN THE DISCRETE CASE DEPENDENCE ROBUSTNESS OF THE WILCOXON AND NORMAL SCORES TESTS WILCOXON CONFIDENCE INTERVALS FOR LOGATION PARAMETERS DEFENDENCE REMARKS ON ZEROS AND TIES IN THE WILCOXON STATISTIC EXTREME TAIL PROBA EXTENDED THE MILLOXON SIGNED RANK P	JASA 60 AMS 66 AMS 66 BIOKA65 BIOKA61 AMS 68 BIOKA68 BIOKA68 AMS 63 JASA 62 AMS 66 AMS 63 JASA 66 AMS 67 AMS 63 JASA 67 AMS 63 JASA 67 AMS 68 I JASA 65 JASA 67 AMS 68 JASA 61 JASA 61 JASA 61	125 284 4687 925 123 468 289 260 424 338 1946 678 261 1912 1409 1376 192 192 1168 195 192 624 1196 1196 678 195 678 195 678 195 678 195 195 195 195 195 195 195 195 195 195
INT, GORR. 60 755 EXTENSION OF THE WILCOXON—MANN—WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN—WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN—WHITNEY—WILCOXON STATISTIC AN EXTENDED TABLE OF CRITIGAL VALUES FOR THE MANN—WHITNEY—WILCOXON TWO—SAMPLE STATISTIC A NOTE ON BAILEY: SAND WHITTLEY: STREATMENT OF A GENERAL STOCHASTIC EFIDEMIC MISSING OBSERVATIONS IN SPLIT—PLOT EXPERIMENTS WHERE WHOLE—PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE—SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENCE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED—WIDTH INTERVAL ESTIMATION OF THE MEAN THE THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST ON MEASURES EQUIVALENT TO WIENER MEASURE A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS A TRIBUTE TO FRANK WILCOXON OBITUARY, FRANK WILCOXON OBITUARY, FRANK WILCOXON OBITUARY, FRANK WILCOXON OBITUARY, FRANK WILCOXON (1892—1965) SMALL SAMPLE POWER AND EFFICIENCY FOR THE ONE SAMPLE WILCOXON AND NORMAL SCORES TESTS WILCOXON CONFIDENCE INTERVALS FOR LOGATION PARAMETERS DEPENDENCE REMARKS ON ZEROS AND TIES IN THE WILCOXON STATISTIC EXTREME TAIL PROBA POBLICATION OF THE TWO—SAMPLE WILCOXON STATISTIC EXTREME	JASA 60 AMS 66 AMS 66 BIOKA65 BIOKA61 AMS 68 BIOKA68 BIOKA68 AMS 63 JASA 62 AMS 66 AMS 63 JASA 66 AMS 67 AMS 63 JASA 67 AMS 63 JASA 67 AMS 68 I JASA 65 JASA 67 AMS 68 JASA 61 JASA 61 JASA 61	125 284 4687 925 123 468 492 2559 260 424 338 1946 678 261 1912 1409 1376 192 1624 1196 1196 1196 624 1196 655 667 667 678 1967 667 678 1967 1967 1967 1967 1967 1967 1967 1967
INT, GORR. 60 755 EXTENSION OF THE WILCOXON—MANN—WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN—WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN—WHITNEY—WILCOXON STATISTIC AN EXTENDED TABLE OF CRITIGAL VALUES FOR THE MANN—WHITNEY—WILCOXON TWO—SAMPLE STATISTIC A NOTE ON BAILEY: SAND WHITTLEY: STREATMENT OF A GENERAL STOCHASTIC EFIDEMIC MISSING OBSERVATIONS IN SPLIT—PLOT EXPERIMENTS WHERE WHOLE—PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE—SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENCE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED—WIDTH INTERVAL ESTIMATION OF THE MEAN THE THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST ON MEASURES EQUIVALENT TO WIENER MEASURE A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS A TRIBUTE TO FRANK WILCOXON OBITUARY, FRANK WILCOXON OBITUARY, FRANK WILCOXON OBITUARY, FRANK WILCOXON OBITUARY, FRANK WILCOXON (1892—1965) SMALL SAMPLE POWER AND EFFICIENCY FOR THE ONE SAMPLE WILCOXON AND NORMAL SCORES TESTS WILCOXON CONFIDENCE INTERVALS FOR LOGATION PARAMETERS DEPENDENCE REMARKS ON ZEROS AND TIES IN THE WILCOXON STATISTIC EXTREME TAIL PROBA POBLICATION OF THE TWO—SAMPLE WILCOXON STATISTIC EXTREME	JASA 60 AMS 66 AMS 66 BIOKA65 BIOKA61 AMS 68 BIOKA68 BIOKA68 AMS 63 JASA 62 AMS 66 AMS 63 JASA 66 AMS 67 AMS 63 JASA 67 AMS 63 JASA 67 AMS 68 I JASA 65 JASA 67 AMS 68 JASA 61 JASA 61 JASA 61	125 284 4687 925 123 468 492 2559 260 424 338 1946 678 261 1912 1409 1376 192 1624 1196 1196 1196 624 1196 655 667 667 678 1967 667 678 1967 1967 1967 1967 1967 1967 1967 1967
INT, GORR. 60 755 EXTENSION OF THE WILCOXON—MANN—WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN—WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN—WHITNEY—WILCOXON STATISTIC AN EXTENDED TABLE OF CRITIGAL VALUES FOR THE MANN—WHITNEY—WILCOXON TWO—SAMPLE STATISTIC A NOTE ON BAILEY: SAND WHITTLEY: STREATMENT OF A GENERAL STOCHASTIC EFIDEMIC MISSING OBSERVATIONS IN SPLIT—PLOT EXPERIMENTS WHERE WHOLE—PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE—SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENCE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED—WIDTH INTERVAL ESTIMATION OF THE MEAN THE THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST ON MEASURES EQUIVALENT TO WIENER MEASURE A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS A TRIBUTE TO FRANK WILCOXON OBITUARY, FRANK WILCOXON OBITUARY, FRANK WILCOXON OBITUARY, FRANK WILCOXON OBITUARY, FRANK WILCOXON (1892—1965) SMALL SAMPLE POWER AND EFFICIENCY FOR THE ONE SAMPLE WILCOXON AND NORMAL SCORES TESTS WILCOXON CONFIDENCE INTERVALS FOR LOGATION PARAMETERS DEPENDENCE REMARKS ON ZEROS AND TIES IN THE WILCOXON STATISTIC EXTREME TAIL PROBA POBLICATION OF THE TWO—SAMPLE WILCOXON STATISTIC EXTREME	JASA 60 AMS 66 AMS 66 BIOKA65 BIOKA61 AMS 68 BIOKA68 BIOKA68 AMS 63 JASA 62 AMS 66 AMS 63 JASA 66 AMS 67 AMS 63 JASA 67 AMS 63 JASA 67 AMS 68 I JASA 65 JASA 67 AMS 68 JASA 61 JASA 61 JASA 61	125 284 4687 925 123 468 492 2559 260 424 338 1946 678 261 1912 1409 1376 192 1624 1196 1196 1196 624 1196 655 667 667 678 1967 667 678 1967 1967 1967 1967 1967 1967 1967 1967
INT, CORR 60 755 EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE SAME FIXED PO RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC MISSING OBSERVATIONS IN SPLIT-PLOT EXPERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP ESTIMATION OF MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN E PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDICTION THEORY THE CASE OF THE INDIANS AND THE TEED—WIDTH CONFIDENCE INTERVAL FOR THE MEAN ON THE CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED—WIDTH INTERVAL ESTIMATION OF THE MEAN THE THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST ON MEASURES EQUIVALENT TO WIENER MEASURE A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS YMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS ON THE AS THESSES CONCERNING THE UNKNOWN DRIFT PARAMETERS OF THE WILCOXON OBITUARY, FRANK WILCOXON PUBLICATION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS ON THE AS THE STANK WILCOXON OBITUARY, FRANK WILCOXON OBITUARY, FRANK WILCOXON (1892-1965) SMALL SAMPLE POWER AND EFFICIENCY FOR THE ONE SAMPLE WILCOXON NORMAL SCORES TESTS WILCOXON CONFIDENCE INTERVALS FOR LOGATION PARAMETERS OF THE WILCOXON STATISTIC REMARKS ON ZEROS AND TIES IN THE WILCOXON STATISTIC PRICE A GENERALIZED BEHRENS—FISHER EXTENDED TABLES OF THE WILCOXON STATISTIC FOR A GENERALIZE	JASA 60 AMS 66 AMS 66 BIOKA65 BIOKA65 BIOKA68 BIOKA68 BIOKA68 BIOKA68 AMS 63 JASA 62 AMS 66 AMS 67 AMS 63 JASA 67 AMS 67 AMS 67 AMS 67 AMS 68 JASA 61 JASA 61 AMS 67 JASS 61 JASS 61 JASS 61 JASS 61 JASS 65 JASS 65 JASS 64	125 284 4687 925 123 468 289 260 424 338 1946 678 261 1912 1409 3376 192 1168 1195 1168 1195 1168 1195 129 624 1196 629 129 639 649 649 649 649 649 649 649 649 649 64

WIL - 195 TITLE WORD INDEX

```
SICN AND WILCOXON TESTS FOR LINEARITY
                                                                                                           AMS 67 1759
TENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC
                                                                                                    AN EX JASA 64 925
                                  EFFICIENCY OF THE WILCOXON TWO-SAMPLE STATISTIC FOR RANDOMIZED BLOCKS JASA 63 894
PROCESSES
                                                THE WILCOXON TWO-SAMPLE STATISTIC ON STRONCLY MIXING
                                                                                                           AMS 68 1202
BIBLIOCRAPHY
                                                 THE WILCOXON TWO-SAMPLE STATISTIC, TABLES AND
                                                                                                           JASA 63 1086
                              EARLY DECISION IN THE WILCOXON TWO-SAMPLE TEST
                                                                                                          JASA 63 713
RECRESSION
                              ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE RECIONS IN MULTIPLE LINEAR
                                                                                                           AMS 69 NO.6
                             HISTORICAL NOTES ON THE WILCOXON UNPAIRED TWO-SAMPLE TEST
                                                                                                           JASA 57 356
                             AN APPROXIMATION TO THE WILCOXON-MANN-WHITNEY DISTRIBUTION
                                                                                                          JASA 69
                                        NOTE ON THE WILCOXON-MANN-WHITNEY STATISTIC
                                                                                                           AMS 65 1058
     ON THE LARCE SAMPLE PROPERTIES OF A CENERALIZED WILCOXON-MANN-WHITNEY STATISTIC
                                                                                                           AMS 67
                                                                                                                   905
 SAME FIXED POINT, CORR. 60 755
                                  EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAMPLES CENSORED AT THE JASA 60
                                                                                                                   125
                                                THE WILCOXON, TIES, AND THE COMPUTER
                                                                                                          JASA 66
                                                                                                                   772
NON-RANDOMNESS IN A SEQUENCE OF TWO ALTERNATIVES. I. WILCOXON'S AND ALLIED TEST STATISTICS
                                                                                                          BTOKA58
                                                                                                                  166
                                           A NOTE ON WILCOXON'S AND ALLIED TESTS
                                                                                                          BIOKA56
                                                                                                                   485
BUSTNESS PROPERTY OF THE TEST AND ESTIMATOR BASED ON WILCOXON'S SIGNED RANK STATISTIC
                                                                                          ON A FURTHER RO AMS 68
                                                                                                                   282
          NOTES. CONFIDENCE LIMITS FOR A RATIO USING WILCOXON'S SIGNED RANK TEST
                                                                                                          BTOCS65
                                                                                                                   231
      A FURTHER APPROXIMATION TO THE DISTRIBUTION OF WILCOXON'S STATISTIC IN THE CENERAL CASE
                                                                                                          JRSSB54
                                                                                                                   255
              EXTENDED TABLE OF CRITICAL VALUES FOR WILCOXON'S TEST STATISTIC
                                                                                                          BIOKA63
                                                                                                                   177
 CORRIGENDA, 'EXTENDED TABLES OF CRITICAL VALUES FOR WILCOXON'S TEST STATISTIC.
                                                                                                          BIOKA64
      EFFICIENCY OF TWO NONPARAMETRIC COMPETITORS OF WILCOXON'S TWO SAMPLE TEST
                                                                                               ASYMPTOTIC JASA 67
                                     SOME REMARKS ON WILD OBSERVATIONS
                                                                                                          TECH 60
                                                                                                                     ٦
                               PUBLICATIONS OF S. S. WILKS
                                                                                                           AMS 65
                                                                                                                    24
                                          SAMUEL S. WILKS
                                                                                                          JASA 65
                                                                                                                   939
                                      SAMUEL STANLEY WILKS 1906-1964
                                                                                                           AMS 65
                                                                                                                     1
                        A COMPARISON OF TESTS OF THE WILKS-LAWLEY HYPOTHESIS IN MULTIVARIATE ANALYSIS.
                                                                                                          BIOKA65 149
F THE RATIOS OF THE ROOTS OF A COVARIANCE MATRIX AND WILKS' CRITERION FOR TESTS OF THREE HYPOTHESES /S O
                                                                                                           AMS 69 NO.6
                                           A NOTE ON WILKS' INTERNAL SCATTER
                                                                                                           AMS 65 1308
                        ON THE EXACT DISTRIBUTION OF WILKS'S CRITERION
                                                                                                           BIOKA69
                             EXACT DISTRIBUTIONS OF WILKS'S LIKELIHOOD RATIO CRITERION
                                                                                                          BIOKA66 347
ECIES AND MARTINGALES IN A FINITELY ADDITIVE SETTING WILLIAM D. SUDDERTH A NOTE ON THRIFTY STRAT AMS 69 NO.6
                                                                                   WASHINGTON STATISTICAL JASA 69 NO.4
 SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. ON WILLIAM HURWITZ
                         THE EFFICIENCY OF AUTOMATIC WINDING MACHINES WITH GONSTANT PATROLLING TIME
                                                                                                           JRSSB59
                                                                                                                  381
COMBINING A BARTLETT WINDOW WITH AN ASSOCIATED INNER WINDOW
                                                                                       SPECTRAL ANALYSIS
                                                                                                          TECH 61
              SPECTRAL ANALYSIS COMBINING A BARTLETT WINDOW WITH AN ASSOCIATED INNER WINDOW
                                                                                                          TECH 61
                                                                                                                   235
                                           PLAY THE WINNER RULE AND THE CONTROLLED CLINICAL TRIAL
                                                                                                          JASA 69
                                                                                                                   131
                              ON THE PROBABILITY OF WINNING WITH DIFFERENT TOURNAMENT PROCEDURES
                                                                                                          JASA 63 1064
       OF THE DISTRIBUTION OF WINSORIZED T (TRIMMING-WINSORIZATION 2)
                                                                                     APPROXIMATE BEHAVIOR TECH 68
                                                                                                                    B.3
         APPROXIMATE BEHAVIOR OF THE DISTRIBUTION OF WINSORIZED T (TRIMMING-WINSORIZATION 2)
                                                                                                          TECH 6B
                                                                                                                    83
   COMPLIANCE IN REPORTING INTEREST INCOME UNDER THE WISCONSIN STATE INDIVIDUAL INCOME TAX
                                                                                                 TAXPAYER JASA 63
                                                                                                                  487
                                                                                                           AMS 63 178
    THE DISTRIBUTION OF THE DETERMINANT OF A GOMPLEX WISHART DISTRIBUTED MATRIX
                          A CHARACTERIZATION OF THE WISHART DISTRIBUTION
                                                                                                            AMS 62 1272
                                     ON THE COMPLEX WISHART DISTRIBUTION
                                                                                                            AMS 65 313
                                    DECOMPOSITION OF WISHART DISTRIBUTION
                                                                                                          BIOKA64
IATE STATISTICS', 46/ CORRECTION. 'THE NON-CENTRAL WISHART DISTRIBUTION AND CERTAIN PROBLEMS OF MULTIVAR AMS 64
LINEAR DIFFERENTIAL EQUATIONS
                                                THE WISHART DISTRIBUTION DERIVED BY SOLVING SIMULTANEOUS BIOKA51
                CORRECTION. 'SOME EXTENSIONS OF THE WISHART DISTRIBUTION', 44 345
                                                                                                           AMS 64
ETA DISTRIBUTIONS AND INDEPENDENCE PROPERTIES OF THE WISHART DISTRIBUTIONS, CORR. 66 297
                                                                                           MULTIVARIATE B AMS 64
                                                                                                                   261
         PERCENTAGE POINTS OF THE EXTREME ROOTS OF A WISHART MATRIX
                                                                                                          BIOKA68
                                                                                                                   505
           A NOTE ON THE BARTLETT DECOMPOSITION OF A WISHART MATRIX
                                                                                                          JRSSB64
                                                                                                                   270
                      ON THE INDEPENDENCE OF CERTAIN WISHART VARIABLES
                                                                                                           AMS 63
                                                                                                                   935
ED WITH THE CHARACTERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDE AMS 67
                                                                                                                   944
                                     THE CONDITIONAL WISHART, NORMAL AND NONNORMAL
                                                                                                            AMS 68
                                                                                                                   593
                                     EDITORIAL, JOHN WISHART, 1898-1956
                                                                                                          BIOKA57
                                                                                                                     1
                             PIVOTAL QUANTITIES FOR WISHART'S AND RELATED DISTRIBUTIONS, AND A PARADOX IN JRSSB55
 FIDUCIAL THEORY
                                      CONDITIONS FOR WISHARTNESS AND INDEPENDENCE OF SECOND DEGREE POLYNOM AMS 62 1002
IALS IN NORMAL VECTOR
                          ANALYSIS OF LATIN SQUARES WITHIN A CERTAIN TYPE OF ROW-COLUMN INTERACTION
                                                                                                          TECH 59
CLASSIFICATION FIXED EFFEGTS MODEL WITH OBSERVATIONS WITHIN A ROW SERIALLY CORRELATED /FOR THE TWO-WAY
                                                                                                          BIOKA69 NO.3
RED TO ESTIMATE THE PARAMETER IN THE UNIFORM DENSITY WITHIN D UNITS OF THE TRUE VALUE
                                                                                        SAMPLE SIZE REQUIT JASA 64 550
                  ON THE ADMISSIBILITY AT INFINITY, WITHIN THE CLASS OF RANDOMIZED DESICNS, OF BALANCED
DESTGNS
                                                                                                           AMS 68 1978
           THE SPREAD OF AN EPIDEMIC TO FIXED GROUPS WITHIN THE POPULATION
                                                                                                          BT0CS68 1007
                       ON COMPARING THE CORRELATIONS WITHIN TWO PAIRS OF VARIABLES
                                                                                                          BIOCS68 987
                       MULTIPLE REGRESSION COMBINING WITHIN- AND BETWEEN-PLOT INFORMATION
                                                                                                          BTOCS66
                                                                                                                   26
                                                THE WITHIN-ANIMAL BIOASSAY WITH QUANTAL RESPONSES
                                                                                                          JRSSB56
                                                                                                                  133
        NOTES.COMPUTING A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSIONS
                                                                                                          BIOCS65 1011
                        ON CONVERGENCE OF THE KIEFER-WOLFOWITZ APPROXIMATION PROCEDURE
                                                                                                           AMS 67 1031
                                A CONTINUOUS KIEFER-WOLFOWITZ PROCEDURE FOR RANDOM PROCESSES, CORR. 66
                                                                                                           AMS 64 590
                         SOME EXTENSIONS OF THE WALD-WOLFOWITZ-NOETHER THEOREM
                                                                                                           AMS 61
NARY DISTRIBUTION AND THE OCCURRENCE DISTRIBUTION OF WORD LENGTH AND ITS IMPORTANCE FOR THE STUDY OF QUANT BIOKASB
TIONSHIPS FOR TWO TO THE POWER OF N-R DESICNS HAVING WORDS OF EQUAL LENGTHS
                                                                                         ON IDENTITY RELA AMS 66 1842
RING PERMUTATIONS
                                        FOUR-LETTER WORDS. THE DISTRIBUTION OF PATTERN FREQUENCIES IN
                                                                                                          JRSSB67
                                                                                                                  550
                                    THE STATISTICAL WORK OF OSKAR ANDERSON
                                                                                                          JASA 61
                                                                                                                   273
                                  SUMMARY OF RECENT WORK ON VARIABLES ACCEPTANCE SAMPLING WITH EMPHASIS
ON NON-NORMALITY
                                                                                                          TECH 69 NO.4
                                  THE USE OF RANDOM WORK SAMPLING FOR COST ANALYSIS AND CONTROL, CORR. 58 JASA 58
 1031
                                                                                                                   382
                               A TABLE FOR COMPUTING WORKING ANCLES
                                                                                                          RT0CS6B
                                                                                                                   413
                                                     WORKING LIFE TABLES FOR MALES IN CHANA 1960
                                                                                                          JASA 69
                                                                                                                  1.02
      ON A DISCRIMINATORY PROBLEM CONNECTED WITH THE WORKS OF PLATO
                                                                                                          JRSSR59
                                                                                                                   195
TION AND STATISTICAL INFERENCE IN A RAPIDLY CHANGING WORLD
                                                                       THE QUALITY OF STATISTICAL INFORMA JASA 67
                                                                                                          JASA 58
                    WEICHT-HEICHT STANDARDS BASED ON WORLD WAR II EXPERIENCE
                                                                                                                   408
   CONTINUOUS SAMPLINC PLANS UNDER THE ASSUMPTION OF WORST CONDITIONS
                                                                                 THE EVALUATION OF H 106 JASA 66
                                                                                                                  B33
                                             FISHER, WRICHT, AND PATH COEFFICIENTS
                                                                                                          BIOCS68
                                                                                                                  471
                     PROTECTION AGAINST ASSUMING THE WRONG DECREE IN POLYNOMIAL RECRESSION
                                                                                                          TECH 69 NO.4
     ORDER 'SPHERICAL' AND 'CUBOIDAL' DESIGNS IN THE WRONG RECIONS
                                                                                       THE USE OF SECOND- BIOKA66
                                                                                       TIME INTERVALS BIOKA53
   BETWEEN ACCIDENTS, A NOTE ON MAGUIRE, PEARSON AND WYNN'S PAPER
                                                                                                                   212
ITHM FOR THE DETERMINATION OF THE ECONOMIC DESIGN OF X-CHARTS BASED ON DUNCAN'S MODEL
                                                                                                 AN ALGOR JASA 68
 COMPLETE MULTINOMIAL DISTRIBUTION COMPARED WITH THE X-SQUARE APPROXIMATION AND AN IMPROVEMENT TO IT
                                                                                                       A BIOKA64
```

TITLE WORD INDEX WIL - 195

```
MULTINOMIAL PROBABILITIES AND THE CHI-SQUARE AND X-SQUARE DISTRIBUTIONS
                                                                                                                 BIOKA63 145
   'MULTINOMIAL PROBABILITIES AND THE CHI-SQUARE AND X-SQUARE DISTRIBUTIONS.
                                                                                                    CORRIGENDA BIOKA63
                                                                                                                           546
ENCE LIMITS, FOR THE PROBABILITY THAT Y IS LESS THAN X, WHEN X AND Y ARE NORMAL /ENCE BOUNDS, AND CONFID JASA 64
                                                                                                                           906
                             ILITY THAT Y IS LESS THAN A, WHEN A AND I AND STANDARD MARKOV PROCESS
NOTE ON DYNKIN'S 'ALPHA, XI' SUBPROCESS OF STANDARD MARKOV PROCESS
                                                                                                                   AMS 67 1647
TUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. XIX. FRANCIS YSIDRO EDGEWORTH (1845-1926)
                                                                                                               S BTOKA68
                                                                                                                           269
TUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. XVII. SOME REFLEXIONS ON CONTINUITY IN THE DEVELOPMEN BIOKA67 TUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. XVIII. THOMAS YOUNG ON COINCIDENCES S BIOKA6B
                                                                                                                           341
                                                                                                                           249
NDS, AND CONFIDENCE LIMITS, FOR THE PROBABILITY THAT Y IS LESS THAN X, WHEN X AND Y ARE NORMAL /ENCE BOU JASA 64
                                                                                                                           906
ION OF A NON-/ THE DISTRIBUTION OF SUM-O-TO-M OF F(Y-SUB-T), WHERE (Y-SUB-0, Y-SUB-1,....) IS A REALIZAT BIOKA65
                                                                                                                            277
                                      THE INVERSE YATES ALGORITHM TO ANY COMPLETE FACTORIAL TECH 68
THE EXTENSION OF YATES' 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL TECH 68
                                                                                                                           177
 EXPERIMENT
                                      NOTES. CHECKS ON YATES'S ALGORITHM
                                                                                                                  BIOCS67
                                                                                                                           573
TO THE POWER N FACTORIAL EXPERIMENT AS CALCULATED BY YATES'S ALGORITHM /EFFECTS AND INTERACTIONS IN A 2
                                                                                                                  BIOCS67
                                                                                                                           571
                                                   TEN YEARS OF CONSUMER ATTITUDE SURVEYS, THEIR FORECASTING JASA 63
                      R. A. FISHER AND THE LAST FIFTY YEARS OF STATISTICAL METHODOLOGY
                                                                                                                  JASA 65
                                                                                                                           395
                                   ON THE VARIATION OF YIELD VARIANCE WITH PLOT SIZE
                                                                                                                  BTOKA56
                                                                                                                           337
                  A MATHEMATICAL MODEL RELATING PLANT YIELD WITH ARRANGEMENT FOR REGULARLY SPACED CROPS
                                                                                                                  BIOCS67
                                                                                                                           505
                                    ESTIMATION OF CROP YIELDS FOR SMALL AREAS
                                                                                                                           374
                                                                                                                  BTOCS66
                                       HOW DEVIANT CAN YOU BE.
                                                                                                                  JASA 68 1522
                                           CLASSIFYING YOUDEN RECTANGLES
                                                                                                                  JRSSR66 118
                   FOUR-WAY BALANCED DESIGNS BASED ON YOUDEN SQUARES WITH 5, 6, OR 7 TREATMENTS
                                                                                                                  BTOCS67
                                                                                                                           803
HISTORY OF PROBABILITY AND STATISTIGS. XVIII. THOMAS YOUNG ON COINCIDENCES
                                                                                     STUDIES IN THE BIOKA68
                                                                                                                           249
                 LABOR FORCE ENTRY AND ATTACHMENT OF YOUNG PEOPLE, CORR. 66 1248
                                                                                                                  JASA 66
                                                                                                                           117
               CURRENT WEIGHT-HEIGHT RELATIONSHIPS OF YOUTHS OF MILITARY AGE
                                                                                                                  JASA 62
                                                                                                                           895
HISTORY OF PROBABILITY AND STATISTICS. XIX. FRANCIS YSIDRO EDGEWORTH (1845-1926)
                                                                                                 STUDIES IN THE BIOKA68
                                                                                                                           269
ETWEEN GREENBERG'S INDEX OF LINGUISTIC DIVERSITY AND YULE'S GHARACTERISTIC THE MATHEMATIGAL RELATION B BIOKA58
                                                                                                                           268
                                                   THE Z-TEST AND SYMMETRICALLY DISTRIBUTED RANDOM VARIABLES BIOKA59
       SPATIAL RELATIONSHIP AMONG EIGHT POPULATIONS ZEA MAYS L. UTILIZING INFORMATION FROM A DIALLEL MATI BIOCS68
                                  THE UNBIASEDNESS OF ZELLNER'S SEEMINGLY UNRELATED REGRESSION EQUATIONS
        FORMULA FOR THE DIFFERENGES OF THE POWERS AT ZERO
                                                                                                   AN ASYMPTOTIC AMS 61
                                                                                                                           249
                                                        ZERO CROSSING PROBABILITIES FOR GAUSSIAN STATIONARY
                                                                                                                  AMS 62 1306
MATION TO THE SIGNED-RANK SAMPLING DISTRIBUTION WHEN ZERO DIFFERENCES ARE PRESENT
                                                                                            THE NORMAL APPROXI JASA 67 106B
                    ESTIMATION OF THE PROBABILITY OF ZERO FAILURES IN M BINOMIAL TRIALS
                                                                                                                  JASA 67
                                                                                                                           272
              A NOTE ON CONTINGENCY TABLES INVOLVING ZERO FREQUENCIES AND THE 21 TEST
                                                                                                                  TECH 63
                                                                                                                           39B
                        DISCRIMINATION IN THE CASE OF ZERO MEAN DIFFERENGES
                                                                                                                  BTOKA63
                                                                                                                            17
         VALYSIS AN ALGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIV JASA 67
BOUNDED LENGTH CONFIDENCE INTERVALS FOR THE ZERO OF A REGRESSION FUNCTION AMS 62
ARIATE ANALYSIS
                                                                                                                           114
                                                                                                                           237
                                            PREDICTIVE ZERO-MEAN UNIFORM DISCRIMINATION
                                                                                                                  BIOKA6B
                                                                                                                           519
                                  SOME APPLICATIONS OF ZERO-ONE PROGESSES
                                                                                                                  JRSSB55
                                                                                                                           243
                                                                                                                   AMS 64
                             CONSISTENT ESTIMATES AND ZERO-ONE SETS
                                                                                                                           157
ON CENS/
         FAILURE OF ENUMERATORS TO MAKE ENTRIES OF ZERO, ERRORS IN RECORDING CHILDLESS GASES IN POPULATI JASA 61
                                                                                                                           909
                                                        ZEROES OF INFINITELY DIVISIBLE DENSITIES
                                                                                                                   AMS 69 1503
 OF A STATIONARY BIVARIATE GAUSSIAN PROCESS FROM ITS ZEROS
                                                                              ESTIMATION OF THE GROSS-SPECTRUM JRSSB6B
                                                                                                                           145
STIMATION IN THE TRUNGATED POISSON DISTRIBUTION WHEN ZEROS AND SOME ONES ARE MISSING
                                                                                                               E JASA 60
                                            REMARKS ON ZEROS AND TIES IN THE WILCOXON SIGNED RANK PROCEDURE JASA 59
                                                                                                                           655
                               THE EXPECTED NUMBER OF ZEROS OF A STATIONARY GAUSSIAN PROCESS
CE-BELTRAMI OPERATOR
                                        CALCULATION OF ZONAL POLYNOMIAL COEFFICIENTS BY THE USE OF THE LAPLA AMS 68 1711
        EXTENSIONS OF A THEOREM OF MARCINKIEWICZ AND ZYGMUND
                                                                                                      MARTINGALE AMS 69 427
MARTINGALE VERSION OF A THEOREM OF MARCINKIEWICZ AND ZYGNUND
                                                                                                            THE
                                                                                                                  AMS 67
                                                                                                                           725
         THE EPSILON ENTROPY ON CERTAIN MEASURES ON (0,1)
                                                                                                                   AMS 68 1310
                      INDEX TO TECHNOMETRICS, VOLUMES 1-7
                                                                                                                  TECH 66
                                                                                                                           216
           ERRATA TO INDEX TO TECHNOMETRICS, VOLUMES 1-7
                                                                                                                  TECH 66
                                                                                                                           387
NFIDENCE INTERVALS OF THE MEDIAN FOR SAMPLE SIZES TO 1,000
                                                                 /BOTH THE SIGN TEST AND DISTRIBUTION-FREE CO JASA 64
                                                                                                                           935
BINOMIAL CUMULATIVE DISTRIBUTION FOR SAMPLE SIZES TO 1,000, CORR. 59 811 /ILITY LEVELS OF THE SYMMETRIC JASA 59
                                                                                                                           164
K DESIGNS WITH PARAMETERS V=28, N1=12, N2=15 AND P2(1,1)=4 /CTION OF PARTIALLY BALANCED INCOMPLETE BLOC AMS 66 1783
THE FIRST 1,945 BRITISH STEAMSHIPS JASA 58 360
RACTERISTIC CURVES FOR FIXED EFFECT/ CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE OPERATING CHA JASA 57
                                                                                                                           345
ART I. THE NORMAL DISTRIBUTION UP TO SAMPLES OF SIZE 10' /ICS FROM SINGLY AND DOUBLY CENSORED SAMPLES, P AMS 39
                                                                                                                           325
                                  THE EVALUATION OF H 106 CONTINUOUS SAMPLING PLANS UNDER THE ASSUMPTION OF JASA 66
 WORST CONDITIONS
                                                                                                                           833
ED INCOMPLETE BLOCK DESIGNS WITH PARAMETERS V=28, N1=12, N2=15 AND P2(1,1)=4 /CTION OF PARTIALLY BALANC AMS 66 1783
MPLETE BLOCK DESIGNS WITH PARAMETERS V=28, N1=12, N2=15 AND P2(1,1)=4 /CTION OF PARTIALLY BALANCED INCO AMS 66 1783 OF GHANCES. (REPRODUCED FROM PHIL. TRANS. ROY. SOC. 1763, 53, 370-41B.) /VING A PROBLEM IN THE DOCTRINE BIOKASS 296
ILITY AND STATISTICS. XIX. FRANCIS YSIDRO EDGEWORTH (1845-1926)
                                                                             STUDIES IN THE HISTORY OF PROBAB BIOKA68
                     CENTENARY LECTURE, KARL PEARSON, 1857-1957
                                                                                                                  BIOKA57
                                                                                                                           303
                             WILLIAM PALIN ELDERTON, 1877-1962
                                                                                                                           297
                                                                                                                  BIOKA62
                                     MAJOR GREENWOOD, 1B80-1949
                                                                                                                  BIOKA51
                                                                    /ATISTIGS. XVII. SOME REFLEXIONS ON CONTI BIOKA67
NUITY IN THE DEVELOPMENT OF MATHEMATICAL STATISTICS, 1885-1920
                                                                                                                           341
NTS IN THE EARLY HISTORY OF BIOMETRY AND STATISTICS, 1890-1894
                                                                    /ABILITY AND STATISTICS. XIV. SOME INCIDE BIOKA65
                                                                                                                             3
                MEMORIAL TO SIR RONALD AYLMER FISHER, 1890-1962
                                                                                                                  JASA 62
                                RONALD AYLMER FISHER, 1890-1962
                                                                                                                  BTOKA63
                      PUBLICATIONS OF FRANK WILCOXON (1892-1965)
                                                                                                                  BTOCS67
                                                                                                                             1
                             EDITORIAL, JOHN WISHART, 1898-1956
                                                                                                                  BIOKA57
      AGE PATTERNS OF MORTALITY OF AMERICAN NEGROES, 1900-02 TO 1959-61
                                                                                                                  JASA 69
                                                                                                                  BIOKA51
                                            BIOMETRIKA,1901-1951
                                                                                                                           267
   OF MANUFACTURING EMPLOYMENT IN THE UNITED STATES, 1914-1953, CORR. 60 755
                                                                                                REGIONAL CYCLES JASA 60
                                                                                                                           151
      OF DOMESTIG MANUFACTURING ESTABLISHMENT OUTPUT 1939-1958
                                                                                     CHANGES IN CONCENTRATION JASA 62
                                                                                                                           797
              INCREASE IN RENT OF DWELLING UNITS FROM 1940 TO 1950
                                                                                                                  JASA 59
   COMPANY DIVERSIFICATION AND PRODUCT CONCENTRATION 1947-1954
                                                                                                 MARKET GROWTH, JASA 60
 THE VARIABILITY OF PROFITIBILATY WITH SIZE OF FIRM, 1947-1958
                                                                                                                  JASA 64 1183
  INVESTMENT BEHAVIOR IN UNITED STATES MANUFACTURING 1947-1960
                                                                                              ANTICIPATIONS AND JASA 69
                                                                                                                           67
     INCREASE IN RENT OF DWELLING UNITS FROM 1940 TO 1950
                                                                                                                  JASA 59 358
 THE METROPOLITAN AREA CONCEPT, AN EVALUATION OF THE 1950 STANDARD METROPOLITAN AREAS
                                                                                                                           617
                                                                                                                  JASA 65
                                      BIOMETRIKA.1901-1951
                                                                                                                  BIOK A51
                                                                                                                           267
  SEASONAL VARIATION OF DEATHS IN THE UNITED STATES, 1951-1960
                                                                                                                 JASA 66
                                                                                                                           706
 MANUFACTURING EMPLOYMENT IN THE UNITED STATES, 1914-1953, GORR. 60 755
DIVERSIFICATION AND PRODUCT CONCENTRATION 1947-1954
                                                                                             REGIONAL CYGLES OF JASA 60
                                                                                                                           151
                                                                                       MARKET GROWTH, COMPANY JASA 60
                                                                                                                          640
```

195 - 7 T TITLE WORD INDEX

```
THE DEMAND FOR FERTILIZER IN 1954, AN INTER-STATE STUDY
                                                                                                           JASA 59
                               CONFESSION OF FAITH, 1955
                                                                                                           JASA 56
                   SOME SOVIET STATISTICAL BOOKS OF 1957
                                                                                                           JASA 59
  OF FAMILIES WHO RECEIVED WELFARE ASSISTANCE DURING 1959
                                                              THE VALIDITY OF INCOME REPORTED BY A SAMPLE JASA 62
                        BOOK REVIEWS, 10 YEAR INDEX (1959-1968)
                                                                                                           TECH 69
                                                                                                                    223
              WORKING LIFE TABLES FOR MALES IN CHANA 1960
                                                                                                           JASA 69
                                      ERRORS IN THE 1960 CENSUS ENUMERATION OF NATIVE WHITES
                                                                                                           JASA 64
                                                                                                                    437
                CONTROL OF QUALITY OF CODING IN THE 1960 CENSUSES
                                                                                                                    120
                                                                                                           JASA 64
     NOTES . SMALL SAMPLE CONSIDERATIONS IN COMBINING 2 BY 2 TABLES
                                                                                                           BIOCS67
                                                                                                                    349
MINC CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL EXPERIMENT AS CALCULATED B BIOCS67
                                                                                                                    571
                                                                              THE RAPID CALCULATION BIOKA55
      OF CHI-SQUARE AS A TEST OF HOMOCENEITY FROM A 2-BY-N TABLE
                                                                                                                    519
     ON THE POWER FUNCTION OF THE EXACT TEST FOR THE 2-BY-2 CONTINCENCY TABLE
                                                                                                           BIOKA60
                                                                                                                    393
                         TESTS OF SICNIFICANCE IN A 2-BY-2 CONTINCENCY TABLE, EXTENSION OF FINNEY'S TABLE BIOKA53
                                                                                                                    74
    'ON THE POWER FUNCTION OF THE EXACT TEST FOR THE 2-BY-2 CONTINCENCY TABLE'
                                                                                              CORRIGENDA, BIOKA61
                   TABLES FOR SIGNIFICANCE TESTS OF 2-BY-2 CONTINCENCY TABLES
                                                                                                           BIOKA55
                                                                                                                    494
OF NON-SAMPLING ERRORS ON MEASURES OF ASSOCIATION IN 2-BY-2 CONTINGENCY TABLES
                                                                                                           JASA 69
                                                                                                                    852
IMPLE METHOD OF CALCULATING THE EXACT PROBABILITY IN 2-BY-2 CONTINCENCY TABLES WITH SMALL MARGINAL TOTALS
                                                                                                           BIOKA55
                                                                                                                    522
TEST FOR THE DIFFERENCE BETWEEN TWO PROPORTIONS IN A 2-BY-2 TABLE.' /IGENDA, 'THE POWER FUNCTION OF THE TESTS OF INDEPENDENCE IN INTRACLASS 2-BY-2 TABLES
                                                                                                                    502
                                                                                                           BIOKA59
                                                                                                                    181
                                                                                                           BIOKA61
                       THE CONTINUITY CORRECTION IN 2-BY-2 TABLES
                                                                                                           BTOKA64
                                                                                                                    327
OF THE COMBINATION OF PROBABILITIES TEST TO A SET OF 2-BY-2 TABLES
                                                                              A NOTE ON THE APPLICATION BIOKASS
                                                                                                                    404
     CORRIGENDA, 'TEST OF INDEPENDENCE IN INTRACLASS 2-BY-2 TABLES'
                                                                                                           BIOKA61
                                                                                                                    476
               TABLES FOR TESTING SIGNIFICANCE IN A 2-BY-3 GONTINGENGY TABLE
                                                                                                           TECH 63
                                                                                                                    501
        THE POWER FUNCTION OF THE EXACT TEST FOR THE 2-BY-3 CONTINGENCY TABLE
                                                                                                           TECH 64
                                                                                                                    439
 NOTES. RAPID CALCULATION OF EXACT PROBABILITIES FOR 2-BY-3 CONTINGENCY TABLES
                                                                                                           BIOCS68
                                                                                                                    714
        A NOTE ON A NON-PARAMETRIC APPROACH TO THE 2-CUBE FACTORIAL DESIGN
                                                                                                           TECH 69
                                                                                                                   193
       OF FACTORIAL EXPERIMENT (PARTIALLY CONFOUNDED 2-CUBE)
                                                                                          QUERY, ANALYSIS TECH 67
      OF FACTORIAL EXPERIMENT (PARTIALLY CONFOUNDED 2-CUBE)
                                                                                          QUERY, ANALYSIS TECH 67
                                                 THE 2-TO-THE-(K-P) FRACTIONAL FACTORIAL DESIGNS
                                                                                                           TECH 61
                                                                                                                    311
                                                 THE 2-TO-THE-(K-P) FRACTIONAL FACTORIAL DESIGNS, II
                                                                                                           TECH 61
                                                                                                                    449
                                        ERRATA, 'THE 2-TO-THE-(K-P) FRACTIONAL FACTORIAL DESIGNS'
                                                                                                           TECH 63
                                                                                                                    417
                                          AUGMENTING 2-TO-THE-(N-1) DESIGNS
                                                                                                           TECH 66
                                                                                                                    469
QUADRATIC TRENDS
                                          FACTORIAL 2-TO-THE-(P-Q) PLANS ROBUST AGAINST LINEAR AND
                                                                                                                    259
                                                                                                           TECH 66
           SEQUENCES OF FRACTIONAL REPLICATES IN THE 2-TO-THE-(P-Q) SERIES, CORR. 62 919
                                                                                                           JASA 62
                                                                                                                    403
                                      ON ADDELMAN'S 2-TO-THE-(17-9) RESOLUTION V PLAN
                                                                                                           TECH 66
                                                                                                                    705
                                   CONSTRUCTION OF A 2-TO-THE-(17-9) RESOLUTION V PLAN IN EIGHT BLOCKS OF TECH 65
32
                                                                                                                    439
                            THE EXTENSION OF YATES' 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL EXPERI TECH 68
                                                                                                                    575
ESULTS ON FAGTORIAL DESIGNS OF RESOLUTION IV FOR THE 2-TO-THE-N AND 2-TO-THE-N TIMES 3-TO-THE-M SERIES R TECH 69
                                                                                                                    431
                             SATURATED FRACTIONS OF 2-TO-THE-N AND 3-TO-THE-N FACTORIAL DESIGNS
                    SOME NONORTHOGONAL FRACTIONS OF 2-TO-THE-N DESIGNS
                                                                                                           JRSSB69 NO.2
                         IRREGULAR FRACTIONS OF THE 2-TO-THE-N FACTORIAL EXPERIMENTS
                                                                                                           TECH 61 479
RIAL DESIGNS OF RESOLUTION IV FOR THE 2-TO-THE-N AND 2-TO-THE-N TIMES 3-TO-THE-M SERIES RESULTS ON FACTO TECH 69
                                                                                                                   431
NG ESTIMATION OF ALL TWO-FACTOR INTERACTIONS FOR THE 2-TO-THE-N TIMES 3-TO-THE-N FACTORIAL SERIES OF DESIG TECH 69 NO.4
INTERACTION ALIASINC ORTHOGONAL MAIN-EFFECT 2-TO-THE-N-TIMES-3-TO-THE-M DESIGNS AND TWO-FACTOR
                                                                                                          TECH 68 559
H APPLICATIONS SYSTEMATIC METHODS FOR ANALYZING 2-TO-THE-N-TIMES-3-TO-THE-M FACTORIAL EXPERIMENTS WIT TECH 67
                                                                                                                    245
LIED SEQUENTIALLY
                      FRACTIONAL REPLICATION OF 2-TO-THE-P FACTORIAL EXPERIMENTS WITH THE FACTORS APP JASA 68
                                                                                                                    644
ONTINGENCY TABLES INVOLVINC ZERO FREQUENCIES AND THE 21 TEST
                                                                                              A NOTE ON C TECH 63
                                                                                                                   398
 THE POWER FUNCTIONS FOR THE TEST OF INDEPENDENCE IN 2X2 CONTINCENCY TABLES
                                                                                             GOMPARISON OF AMS 64 1115
                                  RAPID ANALYSIS OF 2X2 TABLES
                                                                                                           JASA 57
                                                                                                                   18
  THE DISTRIBUTION OF RANGE IN NORMAL SAMPLES WITH N=200
                                                                                                           BIOKA57
O 5 AND THE SET OF EVE/ CONSTRUCTION OF THE SET OF 256-RUN DESIGNS OF RESOLUTION GREATER THEN OR EQUAL T
                                                                                                           AMS 68
  COEFFICIENTS FOR ORTHOGONAL POLYNOMIALS UP TO N = 26
                                                                               COMPLETE SET OF LEADING TECH 65
                                                                                                                    644
 BALANCED INCOMPLETE BLOCK DESIGNS WITH PARAMETERS V=28, N1=12, N2=15 AND P2(1,1)=4 /CTION OF PARTIALLY AMS 66 1783
                                        BLOCKING OF 3-TIMES-2-TO-THE-(N-K)
                                                                                                           TECH 64 371
                             A NOTE ON FRACTIONS OF 3-TO-THE-(4N+1) DESIGNS
                                                                                                           TECH 65
                                                                                                                    69
ESOLUTION IV FOR THE 2-TO-THE-N AND 2-TO-THE-N TIMES 3-TO-THE-M SERIES RESULTS ON FACTORIAL DESIGNS OF R TECH 69
                                                                                                                    431
              SATURATED FRACTIONS OF 2-TO-THE-N AND 3-TO-THE-N FACTORIAL DESIGNS
                                                                                                           TECH 67 569
ALL TWO-FACTOR INTERACTIONS FOR THE 2-TO-THE-N TIMES 3-TO-THE-N FACTORIAL SERIES OF DESIGNS /IMATION OF
                                                                                                          TECH 69 NO.4
2-T0-THE-(17-9) RESOLUTION V PLAN IN EIGHT BLOCKS OF 32
                                                                                       CONSTRUCTION OF A TECH 65
                                                                                                                   439
IGNS WITH PARAMETERS V=28, N1=12, N2=15 AND P2(1,1)=4 /CTION OF PARTIALLY BALANCED INCOMPLETE BLOCK DES AMS 66 1783
                  SOME NON-ORTHOGONAL PARTITIONS OF 4X4, 5X5, AND 6X6 LATIN SQUARES
6-RUN DESIGNS OF RESOLUTION GREATER THEN OR EQUAL TO 5 AND THE SET OF EVEN 512-RUN DESIGNS OF RESOLUTION G AMS 68
                                                                                                                    246
  WAY BALANCED DESIGNS BASED ON YOUDEN SQUARES WITH 5, 6, OR 7 TREATMENTS
                                                                                                    FOUR- BIOCS67
SOME NON-ORTHOCONAL PARTITIONS OF 4X4, 5X5, AND 6X6 LATIN SQUARES

AMS 66
VES FOR FIXED EFFECT/ CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE OPERATING CHARACTERISTIC CUR JASA 57
                                                                                                                    666
                                                                                                                   345
UTION CREATER THEN OR EQUAL TO 5 AND THE SET OF EVEN 512-RUN DESIGNS OF RESOLUTION GREATER THEN OR EQUAL T AMS 68
                                                                                                                   246
2-RUN DESIGNS OF RESOLUTION GREATER THEN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE UNIQUE SATURATED DESI
                                                                                                            AMS 68
                                                                                                                    246
WAY BALANCED DESIGNS BASED ON YOUDEN SQUARES WITH 5, 6, OR 7 TREATMENTS
                                                                                                    FOUR- BIOCS67
                                                                                                                    803
    SOME NON-ORTHOGONAL PARTITIONS OF 4X4, 5X5, AND 6X6 LATIN SQUARES
                                                                                                           AMS 66
                                                                                                                    666
      DESIGNS BASED ON YOUDEN SQUARES WITH 5, 6, OR 7 TREATMENTS
                                                                                       FOUR-WAY BALANCED BIOCS67
                                                                                                                   803
```

UTHOR INDEX

- ABBOTT, J. H. ON A THEOREM OF RENYI CONCERNING MIXING SEQUENCES OF
- ABDEL ATY, S. H. APPROXIMATE FORMULAE FOR THE PERCENTAGE POINTS AND THE PROBABILITY INTEGRAL OF THE NON-C, BIOKA 54, 53B
- ABDEL ATY, S. H. TABLES OF GENERALIZED K-STATISTICS, BIOKA 54, 253 ABDRABBO, N. A. FILTERING NON-STATIONARY SIGNALS, JRSSB 69, 150
- ABDRABBO, N. A. ON THE PREDICTION OF NON-STATIONARY PROCESSES, JRSSB 67. 570
- ABE, O. A CENTRAL LIMIT THEOREM FOR THE NUMBER OF EDGES IN THE RANDOM INTERSECTION OF TWO GRAPHS (CORR. 6, AMS 69, 144
- ABEL, MARTIN E. HARMONIC ANALYSIS OF SEASONAL VARIATION WITH AN AP-PLICATION TO HOG PRODUCTION, JASA 62, 655
- ABEL, MARTIN E. ON FRACTIONAL POWERS OF A MATRIX, JASA 67, 1018
- ABELSON, ROBERT P. EFFICIENT UTILIZATION OF NON-NUMERICAL INFORMA-TION IN QUANTITATIVE ANALYSIS. GENERAL T, AMS 63, 1347
- ABRAHAM, WILLIAM I. INVESTMENT ESTIMATES OF UNDERDEVELOPED COUN-TRIES, AN APPRAISAL, JASA 58, 669
- ABRAHAMSE, A. P. J. A COMPARISON BETWEEN THE POWER OF THE DURBIN-WATSON TEST AND THE POWER OF THE BLUS TE, JASA 69, 938
- ABRAHAMSE, A. P. J. ON THE POWER OF THE BLUS PROCEDURE, JASA 68, 1227 ABRAHAMSE, ALLAN F. THE TAIL FIELD OF A MARKOV CHAIN, AMS 69, 127
- ABRAHAMSON, I. G. ORTHANT PROBABILITIES FOR THE QUADRIVARIATE NOR-MAL DISTRIBUTION, AMS 64, 1685
- ABRAHAMSON, INNIS G. EXACT BAHADUR EFFICIENCIES FOR THE KOLMOGOROV-SMIRNOV AND KUIPER ONE-SAMPLE AND TWO-, AMS 67, 1475
- ABRAMSON, L. R. ASYMPTOTIC SEQUENTIAL DESIGN OF EXPERIMENTS WITH TWO RANDOM VARIABLES, JRSSB 66, 73
- ABRAMSON, MORTON PERMUTATION WITHOUT RISING OR FALLING OMEGA-SEQUENCES, AMS 67, 1245
- ABUL-ELA, ABDEL-LATIF A. A MULTI-PROPORTIONS RANDOMIZED RESPONSE MODEL, JASA 67, 990
- ABUL-ELA, ABDEL-LATIF A. THE UNRELATED QUESTION RANDOMIZED RESPONSE MODEL, THEORETICAL FRAMEWORK, JASA 69, 520
- ADAMS, A. COMPARATIVE SAMPLING ACCEPTANCE SCHEMES IN TESTING AN-TIGENICITY OF VACCINES, BIOCS 66, 6B4
- ADAMS, F. GERARD ON THE STATISTICAL DISCREPANCY IN THE REVISED
- UNITED STATES NATIONAL ACCOUNTS, JASA 66, 1219 ADAMS, F. GERARD THE PREDICTIVE ABILITY OF CONSUMER ATTITUDES,
- STOCK PRICES, AND NON-ATTITUDINAL VARIABLE, JASA 64, 987 ADAMS, JOHN W. DISTRIBUTION OF SUM OF IDENTICALLY DISTRIBUTED EX-
- PONENTIALLY CORRELATED GAMMA-VARIABLES, AMS 64, 277 ADDELMAN, S. SEQUENCES OF TWO-LEVEL FRACTIONAL FACTORIAL PLANS,
- TECH 69, 477 ADDELMAN, S. SEQUENTIAL COMBINATION CHEMOTHERAPY EXPERIMENTS,
- BIOCS 66, 730
- ADDELMAN, SIDNEY A PROCEDURE FOR CONSTRUCTING INCOMPLETE BLOCK DESIGNS, TECH 64.389
- ADDELMAN, SIDNEY CONSTRUCTION OF A 2-TO-THE-(17-9) RESOLUTION V PLAN IN EIGHT BLOCKS OF 32, TECH 65, 439
- ADDELMAN, SIDNEY DESIGNS FOR THE SEQUENTIAL APPLICATION OF FAC-TORS, TECH 64, 365
- ADDELMAN, SIDNEY EQUAL AND PROPORTIONAL FREQUENCY SQUARES, JASA
- ADDELMAN, SIDNEY ERRATA, 'ORTHOGONAL MAIN-EFFECT PLANS FOR ASYM-METRICAL FACTORIAL EXPERIMENTS', TECH 62, 440 ADDELMAN, SIDNEY IRREGULAR FRACTIONS OF THE 2-TO-THE-N FACTORIAL
- EXPERIMENTS, TECH 61, 479
- ADDELMAN, SIDNEY ORTHOGONAL MAIN-EFFECT PLANS FOR ASYMMETRICAL FACTORIAL EXPERIMENTS, TECH 62, 21
- ADDELMAN, SIDNEY SOME MAIN-EFFECT PLANS AND ORTHOGONAL ARRAYS OF STRENGTH TWO. AMS 61, 1167
- ADDELMAN, SIDNEY SOME TWO-LEVEL FACTORIAL PLANS WITH SPLIT PLOT CONFOUNDING, TECH 64, 253
- ADDELMAN, SIDNEY SYMMETRICAL AND ASYMMETRICAL FRACTIONAL FACTORI-AL PLANS, TECH 62, 47
- ADDELMAN, SIDNEY TECHNIQUES FOR CONSTRUCTING FRACTIONAL REPLICATE PLANS, JASA 63, 45
- ADELMAN, IRMA ON AN INDEX OF QUALITY CHANGE, JASA 61, 535
- ADELMAN, IRMA G. A STOCHASTIC ANALYSIS OF THE SIZE DISTRIBUTION OF FIRMS, CORR. 59810, JASA 58, 893
- ADICHIE, J. N. ASYMPTOTIC EFFICIENCY OF A CLASS OF NON-PARAMETRIC TESTS FOR REGRESSION PARAMETERS, AMS 67, B84
- ADICHIE, J. N. ESTIMATES OF REGRESSION PARAMETERS BASED ON RANK TESTS, AMS 67, 894
- ADLER, LETA MACKINNEY A MODIFICATION OF KENDALL'S TAU FOR THE CASE OF ARBITRARY TIES IN BOTH RANKINGS, JASA 57. 33
- ADLER, NORMAN TAXPAYER COMPLIANCE IN REPORTING INTEREST INCOME UNDER THE WISCONSIN STATE INDIVIDUAL INCOM, JASA 63, 487
- AFIFI, A. MISSING VALUES IN MULTIVARIATE STATISTICS, I. REVIEW OF THE LITERATURE, JASA 66, 595
- AFIFI, A. A. AN INVESTIGATION INTO THE SMALL SAMPLE PROPERTIES OF A TWO SAMPLE TEST OF LEHMANN'S, JASA 68, 345
- AFIFI, A. A. MISSING OBSERVATIONS IN MULTIVARIATE STATISTICS II. POINT ESTIMATION IN SIMPLE LINEAR REGRES, JASA 67, 10

- AFIFI, A. A. MISSING OBSERVATIONS IN MULTIVARIATE STATISTICS, III, JASA 69, 337
- AFIFI, A. A. MISSING OBSERVATIONS IN MULTIVARIATE STATISTICS, IV, JASA 69, 359
- AFIFI, A. A. MULTIVARIATE TWO SAMPLE TESTS WITH DICHOTOMOUS AND CON-TINUOUS VARIABLES I. THE LOCATION MODE, AMS 69, 290
- AFONJA, B. ANALYSIS OF A GROUP OF BALANCED BLOCK EXPERIMENTS HAVING ERROR VARIANCE AND SOME TREATMENTS IN, BIOCS 6B, 389
- AGGARWAL, OM P. BAYES AND MINIMAX PROCEDURES FOR ESTIMATING THE
- ARITHMETIC MEAN OF A POPULATION WITH TWO-, AMS 66, 1186
 AGNEW, R. A. ON THE SUPERPOSITION OF POINT PROCESSES, JRSS8 68, 576
- AGRAWAL. HIRALAL COMPARISON OF THE BOUNDS OF THE NUMBER OF COMMON TREATMENTS BETWEEN BLOCKS OF CERTAIN P. AMS 66, 739
- AGRAWAL, HIRALAL ON THE BOUNDS OF THE NUMBER OF COMMON TREATMENTS BETWEEN BLOCKS OF SEMI-REGULAR GROUP DI, JASA 64.867
- AGRAWAL, HIRALAL SOME GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPLICATIONS TO STATISTICAL DESIGN, AMS 66, 525
- AGRAWAL, HIRALAL SOME METHODS OF CONSTRUCTION OF DESIGNS FOR TWO-WAY ELIMINATION OF HETEROGENEITY, I, JASA 66, 1153
- AHMED, MOHAMAD SALAHUDDIN ON A LOCALLY MOST POWERFUL BOUNDARY RAN-DOMIZED SIMILAR TEST FOR THE INDEPENDENC, AMS 61, 809
- AIGAONKAR, S. G. PRABHU BOUNDS FOR THE ERROR-VARIANCE OF AN ESTIMA-TOR IN SAMPLING WITH VARYING PROBABILIT, JASA 6B, 91
- AIGNER, DENNIS J. A LINEAR APPROXIMATOR FOR THE CLASS MARKS OF A GROUPED FREQUENCY DISTRIBUTION, WITH ESP, TECH 68, 793
- AIGNER, DENNIS J. AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION PROBLEMS, JASA 65, 308
- AITCHISON. J. A STATISTICAL THEORY OF REMNANTS, JRSSB 59, 158
- AITCHISON, J. AN ESTIMATION PROBLEM IN QUANTITATIVE ASSAY, BIOKA 54,33B
- AITCHISON, J. BAYESIAN TOLERANCE REGIONS (WITH DISCUSSION), JRSSB 64, 161
- AITCHISON, J. CONFIDENCE-REGION TESTS, JRSSB 64, 462
- AITCHISON, J. EXPECTED-COVER AND LINEAR-UTILITY TOLERANCE INTER-VALS, JRSSB 66, 57
- AITCHISON, J. INVERSE DISTRIBUTIONS AND INDEPENDENT GAMMA-DIS-TRIBUTED PRODUCTS OF RANDOM VARIABLES, BIOKA 63, 505
- AITCHISON, J. LIKELIHOOD RATIO AND CONFIDENCE-REGION TESTS, JSSB 65. 245
- AITCHISON, J. LINEAR-LOSS INTERVAL ESTIMATION OF LOCATION AND SCALE PARAMETERS, 810KA 68, 141
- AITCHISON. J. MAXIMUM-LIKELIHOOD ESTIMATION PROCEDURES AND AS-SOCIATED TESTS OF SIGNIFICANCE, JRSSB 60, 154
- AITCHISON. J. SOME PROBLEMS OF STATISTICAL PREDICTION, BIOKA 65. 469
- AITCHISON, J. THE CONSTRUCTION OF OPTIMAL DESIGNS FOR THE ONE-WAY CLASSIFICATION ANALYSIS OF VARIANCE, JRSSB 61, 352
- AITCHISON, J. THE GENERALIZATION OF PROBIT ANALYSIS TO THE CASE OF
- MULTIPLE RESPONSES, BIOKA 57, 131 AITCHISON, JOHN LARGE-SAMPLE RESTRICTED PARAMETRIC TESTS, JRSSB 62. 234
- CORRIGENDA, 'ON THE STATISTICAL INDEPENDENCE OF AITKEN. A. QUADRATIC FORMS IN NORMAL VARIATES ', BIOKA 59, 279
 AITKIN, M. A. CORRELATION IN A SINGLY TRUNCATED 81VARIATE NORMAL
- DISTRIBUTION. II. RANK CORRELATION, BIOKA 65, 639
- AITKIN, M. A. CORRELATION IN A SINGLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION. III. CORRELATION BETWEEN R, BIOKA 66, 27B
- AITKIN, M. A. CORRELATION IN A SINGLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION IV. EMPIRICAL VARIANCES OF, BIOKA 6B, 437
- AITKIN, M. A. SOME TESTS FOR CORRELATION MATRICES, BIOKA 69, 443 AITKIN, M. A. TESTS FOR CORRELATION MATRICES, BI A 68, 327
- AITKIN, M. A. THE CORRELATION BETWEEN VARIATE-VALUES AND RANKS IN A DOUBLY TRUNCATED NORMAL DISTRIBUTION. BIOKA 66 281
- AIYAR, K. R. ON UNCORRELATED LINEAR FUNCTIONS OF ORDER STATISTICS. JASA 63, 245
- AJGAONKAR, S. G. PRABHU ON A CLASS OF LINEAR ESTIMATORS IN SAMPLING WITH VARYING PROBABILITIES WITHOUT RE, JASA 65, 637
- AJGAONKAR, S. G. PRABHU ON HOROVITZ AND THOMPSON'S T-ONE CLASS OF LINEAR ESTIMATION, AMS 67, 1882
- AJNE, B. A SIMPLE TEST FOR UNIFORMITY OF A CIRCULAR DISTRIBUTION. 8I0KA 68, 343
- AL-ANI, S. ON THE DISTRIBUTIONS OF THE RATIOS OF THE ROOTS OF A COVARIANCE MATRIX AND WILKS' CRITERION FO, AMS 69, NO.6
- ALAM, KHURSHEED SOME RESULTS ON POLYA TYPE 2 DISTRIBUTIONS, AMS 6B, 1759
- ALANEN, J. D. ASYMPTOTIC RELATIVE EFFICIENCY OF MOOD'S AND MASSEY'S TWO SAMPLE TESTS AGAINST SOME PARAMET, AMS 62, 1375
- ALANEN, J. D. SAMPLING INSPECTION PLANS FOR DISCRIMINATING BETWEEN TWO WEIBULL PROCESSES, TECH 65, 589
- ALBASINY, E. L. THE NUMERICAL SOLUTION OF SOME NON-LINEAR EQUA-TIONS, USEFUL IN THE DESIGN OF EXPERIMENTS, JRSSB 65, 466
- ALBERT, ARTHUR A MATHEMATICAL THEORY OF PATTERN RECOGNITION, AMS 63.284
- ALBERT, ARTHUR ESTIMATING THE INFINITESIMAL GENERATOR OF A CON-TINUOUS TIME, FINITE STATE MARKOV PROCESS, AMS 62, 727

- ALBERT, ARTHUR FIXED SIZE CONFIDENCE ELLIPSOIDS FOR LINEAR RECRES-SION PARAMETERS, AMS 66, 1602
- ALBERT, ARTHUR E. THE SEQUENTIAL DESIGN OF EXPERIMENTS FOR IN-FINITELY MANY STATES OF NATURE, AMS 61, 771
- ALI, MIR M. ASYMPTOTIC OPTIMUM QUANTILES FOR THE ESTIMATION OF THE PARAMETERS OF THE NECATIVE EXPONENTIAL, AMS 66, 143
- ALI, MIR M. ON GUPTA'S ESTIMATES OF THE PARAMETERS OF THE NORMAL DIS-TRIBUTION, BIOKA 64, 498
- ALI, MIR M. SOME BOUNDS FOR EXPECTED VALUES OF ORDER STATISTICS, AMS 65.1055
- A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION OF A ALI, S. M. RADON-NIKODYM DERIVATIVE TO THE PROBL, JRSSB 65. 108
- ALI, S. M. A GENERAL CLASS OF COEFFICIENTS OF DIVERGENCE OF ONE DIS-TRIBUTION FROM ANOTHER, JRSSB 66, 131
- ALI, S. M. ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPERSION OF A RADON-NHODYM DERIVATIVE (CORR. 6, JRSSB 65, 100 ALLAIRE, F. R. NOTES. EXPEGTED SELECTION DIFFERENTIAL FOR POSITIVE
- DIRECTIONAL SELECTION ON NORMAL VARIAB, 810CS 67, 842 ALLEN, D. M. ANALYSIS OF CROWTH AND DOSE RESPONSE CURVES, BIOCS 69, 357
- ALLEN, J. L. A STATISTICAL TEST INVOLVING A RANDOM NUMBER OF RANDOM VARIABLES, AMS 66, 1305
- ALLEN, J. L. DISTRIBUTIONS OF A M. KAC STATISTIC, AMS 67, 1919
- ALLING, D. W. CLOSED SEQUENTIAL TESTS FOR BINOMIAL PROBABILITIES. BIOKA 66, 73
- ALLING, D. W. TESTS OF RELATEDNESS, 810KA 67, 459
- ALLING, DAVID W. EARLY DECISION IN THE WILCOXON TWO-SAMPLE TEST, JASA 63, 713
- ALTHAM, PATRICIA M. E. EXAGT SAYESIAN ANALYSIS OF A TWO-BY-TWO CON-TINGENCY TABLE, AND FISHER'S 'EXACT' SI, JRSSB 69, NO.2
- ALWAY, G. G. THE DISTRIBUTION OF THE NUMBER OF CIRCULAR TRIADS IN PAIRED COMPARISONS, BIOKA 62, 265
- AMES, EDWARD DISTRIBUTIONS OF CORRELATION COEFFICIENTS IN ECONOMIC TIME SERIES, JASA 61, 637
- AMOS, D. E. A NOTE ON A DOUBLE SAMPLE TEST. JASA 69, NO. 4
- A NOTE ON REPRESENTATIONS OF THE DOUBLY NON-CENTRAL T DISTRIBUTION, JASA 6B, 1013
- AMOS, D. E. ADDITIONAL PERCENTAGE POINTS FOR THE INCOMPLETE BETA DISTRIBUTION, BIOKA 63, 449
- AMOS, D. E. CORRICENDA, 'TABLE OF PERCENTAGE POINTS OF PEARSON
- CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2, BIOKA 65, 669
 AMOS, D. E. REPRESENTATIONS OF THE CENTRAL AND NON-CENTRAL T DIS-TRIBUTIONS, BIOKA 64, 451
- AMOS, D. E. TABLE OF PERCENTAGE POINTS OF PEARSON CURVES, FOR CIVEN ROOT (8ETA-1) AND BETA-2 EXPRESSED IN, 8IOKA 63, 459
- AMOS, D. E. THE EXCEEDANCE TEST FOR TRUNCATION OF A SUPPLIER'S DATA, JASA 69, 823
- AMSTER, SIGMUND J. A MODIFIED BAYES STOPPING RULE, AMS 63, 1404
- ANDEL, JIRI LOCAL ASYMPTOTIC POWER AND FFICIENCY OF TESTS OF KOL-MOGOROV-SMIRNOV TYPE, AMS 67, 1705
- ANDERSEN, G. SOME INTECRAL TRANSFORMS OF CHARACTERISTIC FUNCTIONS, AMS 63, 1923
- PERMUTATION THEORY IN THE DERIVATION OF ROBUST CRITERIA AND THE STUDY OF DEPARTURES FROM, JRSSB 55, 1
- ANDERSON JR, WILLIAM N. CONSISTENT ESTIMATES OF THE PARAMETERS OF A LINEAR SYSTEM, AMS 69. NO.6 ANDERSON, A. J. B. A GENERAL COMPUTER PROGRAMME FOR THE ANALYSIS OF
- FACTORIAL EXPERIMENTS, BIOCS 66, 503
- ANDERSON, E. A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX PROBLEMS, TECH 60, 387 ANDERSON, GEORGE A. AN ASYMPTOTIC EXPANSION FOR THE DISTRIBUTION OF
- THE LATENT ROOTS OF THE ESTIMATED COV. AMS 65, 1153 ANDERSON, HENRY PRODUCT DIVERSIFICATION AND LIVING COSTS, A FURTHER COMMENT, JASA 66, 788
- ANDERSON, HENRY PRODUCT DIVERSIFICATION AND THE COST OF LIVING.
- CORR. 64 1296, JASA 63, B07 ANDERSON, J. A. A COMPARISON OF STATISTICAL TECHNIQUES IN THE DIF-
- FERENTIAL DIAGNOSIS OF NONTOXIC GOITRE, BIOCS 6B, 103
- ANDERSON, J. A. DISCRIMINATION BETWEEN K POPULATIONS WITH CON-STRAINTS ON THE PROBABILITIES OF MISCLASSIFI, JRSSB 69, 123 ANDERSON, R. L. A COMPARISON OF THREE DIFFERENT PROCEDURES FOR ESTI-
- MATING VARIANCE COMPONENTS, TECH 63, 421 ANDERSON, R.L. AN INVESTIGATION OF THE EFFECT OF MISCLASSIFICATION
- ON THE PROPERTIES OF CHI-SQUARE-TESTS, 810KA 65, 95
- ANDERSON, R. L. COMPARISONS OF DESIGNS AND ESTIMATION PROCEDURES FOR ESTIMATING PARAMETERS IN A TWO-STAGE, TECH 67, 499
- ANDERSON, R. L. DISCUSSION OF 'A SUBJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' TEST FOR APPROXIM, JASA 69, 50 NDERSON, R. L. ESTIMATION OF VARIANCE COMPONENTS IN TWO-STACE NESTED DESIGNS WITH COMPOSITE SAMPLES, TECH 67, 373
- ANDERSON, R.L. QUERY, NEGATIVE VARIANCE ESTIMATES, TECH 65, 75
- ANDERSON, R. L. THE DISTRIBUTION OF THE PRODUCT OF TWO CENTRAL OR
- NON-CENTRAL CHI-SQUARE VARIATES, AMS 62, 1016 ANDERSON, T. W. A TEST FOR EQUALITY OF MEANS WHEN COVARIANCE MATRICES ARE UNEQUAL, AMS 63, 671
- ANDERSON, T. W. APPROXIMATING THE LOWER BINOMIAL CONFIDENCE LIMIT
- (CORR 69 660), JASA 68, 1413 ANDERSON, T. W. ASYMPTOTIC THEORY FOR PRINCIPAL COMPONENT ANALY-
- SIS. AMS 63, 122

- ANDERSON, T. W. CLASSIFICATION INTO TWO MULTIVARIATE NORMAL DIS-TRIBUTIONS WITH DIFFERENT COVARIANCE MATRI, AMS 62, 420
- ANDERSON, T.W. CORRECTION. 'SOME EXTENSIONS OF THE WISHART DIS-
- TRIBUTION', 44 345, AMS 64, 923
 ANDERSON, T. W. CORRECTION. 'THE NON-CENTRAL WISHART DISTRIBUTION AND CERTAIN PROBLEMS OF MULTIVARIATE ST, AMS 64, 923
- ANDERSON, T. W. CORRICENDA, 'SOME INEQUALITIES ON CHARACTERISTIC ROOTS OF MATRICES', BIOKA 65, 669
- ANDERSON, T. W. LEAST SQUARES AND BEST UNBIASED ESTIMATES, AMS 62,
- ANDERSON, T. W. MAXIMUMLIKELIHOOD ESTIMATES FOR A MULTIVARIATE
- NORMAL DISTRIBUTION WHEN SOME OBSERVATION, JASA 57, 200 ANDERSON, T. W. MONOTONICITY OF THE POWER FUNCTIONS OF SOME TESTS OF
- THE MULTIVARIATE LINEAR HYPOTHESIS, AMS 64, 200 ANDERSON, T. W. MONOTONICITY OF THE POWER FUNCTIONS OF SOME TESTS OF
- INDEPENDENCE BETWEEN TWO SETS OF VAR, AMS 64, 206 ANDERSON, T. W. MONOTONICITY PROPERTY OF THE POWER FUNCTIONS OF SOME
- TESTS OF THE EQUALITY OF TWO COVARIA, AMS 64, 1059 ANDERSON, T. W. ON BAYES PROCEDURES FOR A PROBLEM WITH CHOICE OF OB-
- SERVATIONS, AMS64, 1128 ANDERSON, T. W. ON THE ASYMPTOTIC DISTRIBUTION OF THE AUTOCORRELA-TIONS OF A SAMPLE FROM A LINEAR STOCHAST, AMS 64, 1296
- ANDERSON, T. W. ON THE DISTRIBUTION OF THE TWO SAMPLE CRAMER-VON MISES CRITERION, AMS 62, 1148
- ANDERSON, T. W. PUBLICATIONS OF S. S. WILKS, AMS 65, 24
- ANDERSON, T. W. SAMUEL STANLEY WILKS 1906-1964, AMS 65, 1
- ANDERSON, T. W. SEQUENTIAL ANALYSIS WITH DELAYED OBSERVATIONS, JASA 64, 1006
- ANDERSON, T. W. SOME INEQUALITIES ON CHARACTERISTIC ROOTS OF MATRICES, BIOKA 63, 522
- ANDERSON, T. W. SOME OPTIMUM CONFIDENCE BOUNDS FOR ROOTS OF DETERMI-NANTAL EQUATIONS, AMS 65, 468 ANDERSON, T. W. THE CHOICE OF THE DEGREE OF A POLYNOMIAL REGRESSION
- AS A MULTIPLE DECISION PROBLEM, AMS 62, 255 ANDERSON, V. L. A STATISTICAL MODEL OF BOOK USE AND ITS APPLICATION
- TO THE 800K STORAGE PROBLEM, JASA 69, NO. 4 ANDERSON, V. L. EXTREME VERTIGES DESIGN OF MIXTURE EXPERIMENTS,
- TECH 66, 447 ANDO, ALBERT BAYESIAN ANALYSIS OF THE INDEPENDENT MULTINORMAL
- PROCESS, NEITHER MEAN NOR PRECISION KNOWN, JASA 65, 347 ANDREWS, F. C. A LARGE-SAMPLE BIOASSAY DESIGN WITH RANDOM DOSES AND
- UNCERTAIN CONCENTRATION, BIOKA 55, 307 ANIS, A. A. ON THE MOMENTS OF THE MAXIMUM OF PARTIAL SUMS OF A FINITE
- NUMBER OF INDEPENDENT NORMAL VARIAT, BIOKA 56, 79 ANIS, A. A. ON THE RANGE OF PARTIAL SUMS OF A FINITE NUMBER OF INDE-
- PENDENT NORMAL VARIATES, BIOKA 53, 35 ANIS, A. A. THE VARIANCE OF THE MAXIMUM OF PARTIAL SUMS OF A FINITE
- NUMBER OF INDEPENDENT NORMAL VARIATES, BIOKA 55, 96 ANSCOMBE, F. J. A DEFINITION OF SUBJECTIVE PROBABILITY, AMS 63, 199
- ANSCOMBE, F. J. DEPENDENCE OF THE FIDUCIAL ARGUMENT ON THE SAMPLING RULE, BIOKA 57, 464
- ANSCOMBE, F. J. DISCUSSION OF THE PAPERS OF MESSRS. HALD, WETHERILL AND COX, TECH 60, 361
- ANSCOMBE, F. J. ESTIMATING A MIXED-EXPONENTIAL RESPONSE LAW, JASA 61.493 ANSCOMBE, F. J. ON ESTIMATING BINOMIAL RESPONSE RELATIONS, BIOKA
- 56.461 ANSCOMBE, F. J. QUICK ANALYSIS METHODS FOR RANDOM BALANCE SCREENING
- EXPERIMENTS, TECH 59, 195
- ANSCOMBE, F. J. RECTIFYING INSPECTION OF A CONTINUOUS OUTPUT, CORR. 59 B10, JASA 5B, 702
- ANSCOMBE, F. J. RECTIFYING INSPECTION OF LOTS, JASA 61, 807
- ANSCOMBE, F. J. REJECTION OF OUTLIERS, TECH 60, 123
- ANSCOMBE, F. J. SEQUENTIAL MEDICAL TRIALS, JASA 63, 365
- ANSCOMBE, F. J. SEQUENTIAL TESTS FOR SINOMIAL AND EXPONENTIAL POPU-LATIONS, BIOKA 54, 252
- ANSCOMBE, F. J. TESTS OF GOODNESS OF FIT, JRSSB 63, 81
- ANSCOMBE, F. J. THE EXAMINATION AND ANALYSIS OF RESIDUALS, TECH 63, 141
- ANSCOMBE, F. J. TOPICS IN THE INVESTICATION OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST SQUARES (WI, JRSSB 67, 1
- ANSCOMBE, FRANCIS J. COMMENTS ON PAPER BY KURTZ, LINK, TUKEY AND WALLACE, TECH 65, 163
- ANSCOMBE, FRANCIS J. DISCUSSION OF 'A SUBJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' TEST FOR APP, JASA 69, 50 ANTELMAN, GORDON R. INSENSITIVITY TO NON-OPTIMAL DESIGN IN BAYE-
- SIAN DECISION THEORY, JASA 65, 5B4 ANTLE, C. THE CHOICE OF THE DEGREE OF A POLYNOMIAL MODEL, JRSSB 68,
- 469 ANTLE, C. E. ESTIMATION OF PARAMETERS IN THE WEIBULL DISTRIBUTION, TECH 67, 621
- ANTLE, C. E. INFERENCES ON THE PARAMETERS OF THE WEIBULL DISTRIBU-TION, TECH 69, 445
- ANTLE, CHARLES E. OPTIMUM ALLOCATION OF SAMPLING UNITS TO STRATA WHEN THERE ARE R RESPONSES OF INTEREST, JASA 65, 225
- ANTLE, CHARLES E. STRAIGHT LINE CONFIDENCE REGIONS OF LINEAR MODELS, JASA 67 1365

- ANTLE, CHARLES E. THE UNIQUENESS OF THE SPACING OF OBSERVATIONS IN POLYNOMIAL REGRESSION FOR MINIMAX VARI, AMS 62, 810
- APPLEBY, R. H. AN EMPIRICAL EVALUATION OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS, AMS 62, 1413
- ARBOUS, A. G. NEW TECHNIQUES FOR THE ANALYSIS OF ABSENTEEISM DATA, BIOKA 54, 77
- ARMITAGE, P. BOUNDARIES FOR CLOSED (WEDGE) SEQUENTIAL TIEST PLANS, BIOKA 66, 431
- ARMITAGE, P. CLOSED SEQUENTIAL T-TESTS, BIOKA 62, 359
- ARMITAGE, P. NUMERICAL STUDIES IN THE SEQUENTIAL ESTIMATION OF A BINOMIAL PARAMETER, BIOKA 58, 1
- ARMITAGE, P. RESTRICTED SEQUENTIAL PROCEDURES, BIOKA 57, 9
- ARMITAGE, P. SEQUENTIAL MEDICAL TRIALS, SOME COMMENTS ON F. J. AN-SCOMBE'S PAPER, JASA 63, 3B4
- ARMITAGE, P. THE CHI-SQUARE TEST FOR HETEROGENEITY OF PROPORTIONS AFTER ADJUSTMENT FOR STRATIFICATION (AD, JRSSB 66, 150
- ARMITAGE, P. USE OF CONCOMITANT VARIABLES AND INCOMPLETE SURVIVAL INFORMATION IN THE ESTIMATION OF AN EXP, 810CS 66, 665
- ARMITAGE, P. A. A FAMILY OF CLOSED SEQUENTIAL PROCEDURES (CORR. 69 457), BIOKA 62, 41
- ARMSEN, P. TABLES FOR SIGNIFICANCE TESTS OF 2-BY-2 CONTINGENCY TA-BLES, BIOKA 55, 494
- ARMSEN, P. E. R. ABOUT SENSITIVITY ANALYSIS IN LINEAR PROGRAMMING MODELS, SASJ 67, 33
- ARNOLD, BARRY C. A NOTE ON MULTIVARIATE DISTRIBUTIONS WITH SPECIFIED MARGINALS, JASA 67, 1460
- ARNOLD, BARRY C. PARAMETER ESTIMATION FOR A MULTIVARIATE EXPONEN-TIAL DISTRIBUTION, JASA 68, 848
- ARNOLD, H. J. PERMUTATION SUPPORT FOR MULTIVARIATE TECHNIQUES, BIOKA 64. 65
- ARNOLD, HARVEY J. SMALL SAMPLE POWER FOR THE ONE SAMPLE WILCOXON TEST FOR NON-NORMAL SHIFT ALTERNATIVES, AMS 65, 1767
- ARNOLD, J. C. A MODIFIED TECHNIQUE FOR IMPROVING AN ESTIMATE OF THE MEAN, BIOCS 69, 5BB
- AROIAN, L. A. DIRECT METHODS FOR EXACT TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A NORMAL DISTRIBUTION, TECH 69, NO. 4
- AROIAN, LEO A. SEQUENTIAL ANALYSIS, DIRECT METHOD, TECH 6B, 125
- AROIAN, LEO A. SEQUENTIAL LIFE FOR THE EXPONENTIAL DISTRIBUTION WITH CHANGING PARAMETER, TECH 66, 217
- ARROW, KENNETH J. TINBERGEN ON ECONOMIC POLICY, JASA 5B, B9
- ARVESEN, JAMES N. JACKKNIFING U-STATISTICS, AMS 69, NO.6
- ASHFORD, J. R. A SYSTEM OF MODELS FOR THE LIFE CYCLE OF A BIOLOGICAL ORGANISM. BIOKA 6B, 211
- ASHFORD, J. R. AN ALTERNATIVE SYSTEM FOR THE CLASSIFICATION OF MATHEMATICAL MODELS FOR QUANTAL RESPONSES, BIOCS 65, 1B1
- ASHFORD, J. R. AN ANALYSIS OF QUANTAL RESPONSE DATA IN WHICH THE MEA-SUREMENT OF RESPONSE IS SUBJECT TO ER, 810CS 65, 811
- ASHFORD, J. R. GENERAL MODELS FOR QUANTAL RESPONSE TO THE JOINT ACTION OF A MIXTURE OF DRUGS, BIOKA 64, 413
- ASHFORD, J. R. GENERALISED COVARIANCE ANALYSIS WITH UNEQUAL ERROR, BIOCS 69, NO. 4
- ASHFORD, J. R. MODELS FOR THE NON-INTERACTIVE JOINT ACTION OF A MIX-
- TURE OF STIMULI IN BIOLOGICAL ASSAY, 810KA 66, 49
 ASHFORD, J. R. QUANTAL RESPONSES TO MIXTURES OF POISONS UNDER CONDI-
- TIONS OF SIMPLE SIMILAR ACTION, THE AN, BIOKA 5B, 74 ASHFORD, J. R. THE QUANTAL RESPONSE ANALYSIS OF A SERIES OF BIOLOGI-
- CAL ASSAYS ON THE SAME SUBJECTS, BIOKA 60, 23
 ASHLOCK, JOHN C. APPLICATION OF AN ESTIMATOR OF HIGH EFFICIENCY IN
- BIVARIATE EXTREME VALUE THEORY, JASA 69, NO.4 ASKOVITZ, S. I. A SHORT-CUT GRAPHIC METHOD FOR FITTING THE BEST
- STRAIGHT LINE TO A SERIES OF POINTS ACCOR, JASA 57, 13
 ASKOVITZ, S. I. GRAPHIC METHODS BASED UPON PROPERTIES OF ADVANCING
 CENTROIDS, JASA 59, 668
- ATHREYA, KRISHNA B. EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND RELATED, AMS 68, 1801
- ATHREYA, KRISHNAB, ON THE SUPERCRITICAL ONE DIMENSIONAL AGE DEPEN-DENT BRANCHING PROCESSES, AMS 69, 743
- ATHREYA, KRISHNA BALASUNDARAM SOME RESULTS ON MULTITYPE CONTINUOUS TIME MARKOV BRANCHING PROCESSES, AMS 6B, 347
- ATIQULLAH, M. ON A PROPERTY OF BALANCED DESIGNS, BIOKA 61, 215
- ATIQULLAH, M. ON A RESTRICTED LEAST SQUARES ESTIMATOR, JASA 69, 964 ATIQUALLAH, M. ON ESTIMATION BY THE SWEEP-OUT METHOD (CORR. 69 229), 810KA 6B. 305
- ATTQULLAH, M. ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE, JRSSB 62, 140
- ATIQULLAH, M. ON THE RANDOMIZATION DISTRIBUTION AND POWER OF THE VARIANCE RATIO TEST. JRSSB 63. 334
- ATTQULLAH, M. THE ESTIMATION OF RESIDUAL VARIANCE IN QUADRATICALLY BALANCED LEAST-SQUARES PROBLEMS AND TH, BIOKA 62, B3
- ATIQULLAH, M. THE ROBUSTNESS OF THE COVARIANCE ANALYSIS OF A ONE-WAY CLASSIFICATION, BIOKA 64, 365
- ATIQULLAH, M. THE USE OF CONTROL OBSERVATIONS AS AN ALTERNATIVE TO INCOMPLETE BLOCK DESIGNS, JRSSB 62, 464
- ATKINSON, A. C. A TEST FOR DISCRIMINATING BETWEEN MODELS, BIOKA 69, 337
- ATKINSON, A. C. CONSTRAINED MAXIMISATION AND THE DESIGN OF EXPERIMENTS, TECH 69, 616
- ATKINSON, A. C. THE USE OF RESIDUALS AS A CONCOMITANT VARIABLE, 810KA 69,33

- ATKINSON, ANTHONY C. THE DESIGN OF EXPERIMENTS FOR PARAMETER ESTI-MATION, TECH 68, 271
- ATKINSON, F. V. DECISION PROCEDURES FOR FINITE DECISION PROBLEMS UNDER COMPLETE IGNORANCE, AMS 64, 1644
- ATKINSON, G. F. DESIGNS FOR SEQUENCES OF TREATMENTS WITH CARRY-OVER EFFECTS, BIOCS 66, 292
- ATWOOD, CORWIN L. OPTIMAL AND EFFICIENT DESIGNS OF EXPERIMENTS, AMS 69. 1570
- AUMANN, R. J. A DEFINITION OF SUBJECTIVE PROBABILITY, AMS 63, 199
- AUSTIN, D. G. A NOTE ON THE BIRKHOFF ERGODIC THEOREM, AMS 67, 922
- AUSTIN, D. G. A SAMPLE FUNCTION PROPERTY OF MARTINGALES, AMS 66,
- AVRAHAMI, RAM QUERY, ANALYSIS OF FACTORIAL EXPERIMENT (PARTIALLY CONFOUNDED 2-CUBE), TECH 67, 490
- AXTELL, LILLIAN M. PARTITIONING OF A PATIENT POPULATION WITH RESPECT TO DIFFERENT MORTALITY RISKS, JASA 63, 701
- BABIAK, HARVEY DIVIDEND POLICY, AN EMPIRICAL ANALYSIS, JASA 68.
- BACON, RALPH HOYT APPROXIMATIONS TO MULTIVARIATE NORMAL ORTHANT PROBABILITIES, AMS 63, 191
- BAGAI, O. P. THE DISTRIBUTION OF THE GENERALIZED VARIANCE, AMS 65, 120
- BAHADUR, R. R. A NOTE ON QUANTILES IN LARGE SAMPLES, AMS 66, 577
- BAHADUR, R. R. CLASSIFICATION INTO TWO MULTIVARIATE NORMAL DISTRIBUTIONS WITH DIFFERENT COVARIANCE MATRIC, AMS 62, 420
- BAHADUR, R. R. ON FISHER'S BOUND FOR ASYMPTOTIC VARIANCES, AMS 64, 1545
- BAHADUR, R. R. RATES OF CONVERGENCE OF ESTIMATES AND TEST STATISTICS, AMS 67, 303
 BAHADUR, R. R. SUBSTITUTION IN CONDITIONAL EXPECTATION, AMS 68, 377
- BAHADUR, R. R. SUBSTITUTION IN CONDITIONAL EXPECTATION, AMS 68, 377
 BAILAR, BARBARA A RECENT RESEARCH IN REINTERVIEW PROCEDURES, JASA
 68, 41
- BAILEY, MARTIN J. A REGRESSION METHOD FOR REAL ESTATE PRICE INDEX CONSTRUCTION. JASA 63.933
- BAILEY, MARTIN J. PREDICTION OF AN AUTOREGRESSIVE VARIABLE SUBJECT 80TH TO DISTURBANCES AND TO ERRORS OF, JASA 65, 164
- BAILEY, N. T. STOCHASTIC BIRTH, DEATH AND MIGRATION PROCESSES FOR SPATIALLY DISTRIBUTED POPULATIONS, BIOKA 68.189
- SPATIALLY DISTRIBUTED POPULATIONS, BLUKA 68.189
 BAILEY, N. T. J. A CONTINUOUS TIME TREATMENT OF A SIMPLE QUEUE USING GENERATING FUNCTIONS, JRSSB 54, 288
- BAILEY, N. T. J. A PERTURBATION APPROXIMATION OF THE SIMPLE STOCHASTIC EPIDEMIC IN A LARGE POPULATION, BIOKA 6B, 199
- BAILEY, N. T. J. ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF MEASLES, I. FAMILIES WITH TWO SUSCEPT, BIOKA 56, 15
- BAILEY, N. T. J. ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF
- MEASLES, II. FAMILIES WITH THREE OR M, BIOKA 56, 322
 BAILEY, N. T. J. ON QUEUEING PROCESSES WITH BULK SERVICE, JRSSB 54,
- 80
 BAILEY, N. T. J. SIGNIFICANCE TESTS FOR A VARIABLE CHANCE OF INFECTION IN CHAIN-BINOMIAL THEORY, BIOKA 56, 332
- BAILEY, N. T. J. SOME FURTHER RESULTS IN THE NON-EQUILIBRIUM THEORY OF A SIMPLE QUEUE, JRSSB 57, 326
- BAILEY, NORMAN T. J. A NOTE ON EQUALISING THE MEAN WAITING TIMES OF
- SUCCESSIVE CUSTOMERS IN A FINITE QUEU, JRSSB 55, 262
 BAILEY, NORMAN T. J. ON ESTIMATING THE SIZE OF MOBILE POPULATIONS
- FROM RECAPTURE DATA, BIOKA 51, 293
 BAILEY, NORMAN T. J. SOME PROBLEMS IN THE STATISTICAL ANALYSIS OF EPIDEMIC DATA (WITH DISCUSSION), JRSSB 55, 35
- BAILEY, NORMAN T. J. THE SIMPLE STOCHASTIC EPIDEMIC, A COMPLETE SOLUTION IN TERMS OF KNOWN FUNCTIONS, BIOKA 63, 235
- BAILEY, NORMAN T. J. THE TOTAL SIZE OF A GENERAL STOCHASTIC EPIDEMIC, BIOKA53, 177
- BAILEY, NORMAN T. J. THE USE OF CHAIN-BINOMIALS WITH A VARIABLE CHANCE OF INFECTION FOR THE ANALYSIS OF I. BIOKA53, 279
- BAIN, L. J. ESTIMATION OF PARAMETERS IN THE WEIBULL DISTRIBUTION, TECH $67,\,621$
- BAIN, L. J. INFERENCES ON THE PARAMETERS OF THE WEIBULL DISTRIBU-TION, TECH 69, 445
- TION, TECH 69, 445
 BAIN, L. J. TWO SAMPLE TESTS IN THE WEIBULL DISTRIBUTION, TECH 69, NO 4
- BAIN, LEE J. A NOTE ON THE TRUNCATED EXPONENTIAL DISTRIBUTION, AMS 64, 1366
- BAIN, LEE J. REDUCING A RANDOM SAMPLE TO A SMALLER SET, WITH APPLICA-
- TIONS. JASA 67, 510
 BAIN. LEE J. SOME TESTS OF HYPOTHESES CONCERNING THE THREE-PARAMETER WEIBULL DISTRIBUTION. JASA 68, 853
- TER WEIBULLDISTRIBUTION, JASA 68, 893
 BAIN, LEE J. TOLERANCE LIMITS FOR THE GENERALIZED GAMMA DISTRIBUTION, JASA 65, 1142
- BAINBRIDGE, J. R. TABULAR ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650, JASA 56, 149
- BAKER, F. B. SOME MONTE CARLO RESULTS ON THE POWER OF THE F-TEST UNDER PERMUTATION IN THE SIMPLE RANDOMIZ, BIOKA 66, 199
- BAKER, FRANKB. AN EMPIRICAL STUDY INTO FACTORS AFFECTING THE F-TEST UNDER PERMUTATION FOR THE RANDOMIZED, JASA 68,902
 BAKER, FRANKB. SOME EMPIRICAL RESULTS ON VARIANCE RATIOS UNDER PER-
- MUTATION IN THE COMPLETELY RANDOMIZED, JASA 66, 813
- BAKER, FRANK B. THE RANDOMIZATION DISTRIBUTION OF F-RATIOS FOR THE SPLIT-PLOTDESIGN, AN EMPIRICAL INVEST, BIOKA 63. 431

- BAKER, G. A. EMPIRIC INVESTIGATION OF A TEST OF HOMOGENEITY FOR POPULATIONS COMPOSED OF NORMAL DISTRIBUTI, JASA 58, 551
- BALAAM, L. N. A TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS, BIOCS 6B, 61
- BALAAM, L. N QUERY, ERRORRATE BASES, TECH 65, 260
- BALAKRISHNAN, T. R. STRATIFICATION, A PRACTICAL INVESTIGATION, JASA 66, 74
- BALAKRISHNAN, V. DISTANCE BETWEEN POPULATIONS ON THE BASIS OF ATTRIBUTE DATA, BIOCS 6B, B59
- BALDESSARI, BRUNO THE DISTRIBUTION OF A QUADRATIC FORM OF NORMAL RANDOM VARIABLES. AMS 67, 1700
- BALDWIN, ROGER R. THE OPTIMUM STRATECY IN BLACKJACK, CORR. 59 810, JASA 56, 429
- BALLAS, JOE A. ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN, JASA 66. BO 3
- BANCROFT, T. A BIASES IN PREDICTION BY REGRESSION FOR CERTAIN IN-
- COMPLETELY SPECIFIED MODELS, BIOKA 63, 391
 BANCROFT, T. A. INFERENCE FOR SOME INCOMPLETELY SPECIFIED MODELS
 INVOLVING NORMAL APPROXIMATIONS TO DISCR, BIOCS 67, 335
- BANCROFT, T. A. INFERENCES CONCERNING A POPULATION CORRELATION COEFFICIENT FROM ONE OR POSSIBLY TWO SAMPL, JRSSB 67, 282
- BANCROFT, T. A. ON POOLINC MEANS WHEN VARIANCE IS UNKNOWN, JASA 6B, 1333
- BANCROFT, T. A. SEQUENTIAL MODEL BUILDING FOR PREDICTION IN REGRES-SION ANALYSIS, I, AMS 63, 462
- BANERJEE, D. P. ON THE EXACT DISTRIBUTION OF A TEST IN MULTIVARIATE ANALYSIS, JRSSB 5B, 10B
- BANERJEE, K.S. A NOTE ON IDEMPOTENT MATRICES, AMS 64, 880
- BANERJEE, K.S. BOUNDS IN A MINIMAX CLASSIFICATION PROCEDURE, 810KA 65.653
- BANERJEE, K. S. ESTIMATES OF EFFECTS FOR FRACTIONAL REPLICATES, AMS $64,711\,$
- BANERJEE, K. S. INDEX NUMBERS FOR FACTORIAL EFFECTS AND THEIR CONNECTION WITH A SPECIAL KIND OF IRREGULAR, JASA 63, 497
- BANERJEE, K. S. ON A SPECIAL SUBSET GIVING AN IRREGULAR FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTOR, JRSSB 67, 292
- BANERJEE, K. S. ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL EXPERIMENT AS ORTHOGONAL LINEAR COMBIN, AMS 63, 1068
- BANERJEE, K. S. ON ESTIMATION AND CONSTRUCTION IN FRACTIONAL REPLI-CATION, AMS 66, 1033
- BANERJEE, K. S. ON HOTELLING'S WEICHING DESIGNS UNDER AUTO-COR-RELATION OF ERRORS, AMS 65, 1829
- BANERJEE, K.S. ON NON-RANDOMIZED FRACTIONAL WEICHING DESIGNS, AMS
- BANERJEE, K. S. ON THE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL REPLICATES, AMS 68, 657
- BANERJEE, K. S. SINGULARITY IN HOTELLING'S WEIGHING DESIGNS AND A GENERALIZED INVERSE (CORR. 69 719), AMS 66, 1021
- BANERJEE, K. S. SOME OBSERVATIONS ON THE PRACTICAL ASPECTS OF WEIGHTING DESIGNS, BIOKA51, 24B
- BANERJEE, SAIBAL CONFIDENCE INTERVAL OF PREASSIGNED LENGTH FOR THE BEHRENS-FISHER PROBLEM. AMS 67, 1175
- BANKS, CHARLOTTE THE FACTORIAL ANALYSIS OF CROP PRODUCTIVITY, JRSSB 54, 100
- BANOS, ALFREDO ON PSEUDO-CAMES, AMS 68, 1932
- BANTEGUI, CELIA C. ON THE DISTRIBUTION OF THE LARGEST OF SIX ROOTS OF A MATRIX IN MULTIVARIATE ANALYSIS, BIOKA 59, 237
- BARDWELL, C. E. ON CERTAIN CHARACTERISTICS OF SOME DISCRETE DISTRIBUTIONS, BIOKA 60, 473
- BARDWELL, GEORGE E. A TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS, JASA 64, 133
- BARCMANN, R. E. MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE MUL-TIVARIATEDATA, AMS 64, 647
- BARGMANN, R. E. POWER OF THE LIKELIHOOD-RATIO TEST OF THE CENERAL LINEAR HYPOTHESIS IN MULTIVARIATE ANALY, BIOKA 64, 467
- BARGMANN, ROLF E. DISCUSSION OF 'A SUBJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' TEST FOR APPROX, JASA 69, 50
- BARLOW, R. E. A NOTE ON TESTS FOR MONOTONE FAILURE RATE BASED ON IN-COMPLETE DATA, AMS 69, 595
- BARLOW, R. E. ON THE DISTRIBUTION OF THE MAXIMUM AND MINIMUM OF RATIOS OF ORDER STATISTICS, AMS 69, 918
- BARLOW, R. E. SYSTEM EFFICIENCY AND RELIABILITY, TECH 60, 43
- BARLOW, RICHARD E. BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE, I, AMS 64, 1234
- BARLOW, RICHARD E. BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE, II, AMS $64,\,1258$
- BARLOW, RICHARD E. BOUNDS ON INTEGRALS WITH APPLICATIONS TO RELIA-BILITY PROBLEMS, AMS 65, 565
- BARLOW, RICHARD E. COMPARISON OF REPLACEMENT POLICIES, AND RENEWAL THEORY IMPLICATIONS, AMS 64, 577
- BARLOW, RICHARD E. DISTRIBUTION-FREE LIFE TEST SAMPLING PLANS, TECH 66, 591
- BARLOW, RICHARD E. EXPONENTIAL LIFE TEST PROCEDURES WHEN THE DISTRIBUTION HAS MONOTONE FAILURE RATE, JASA 67, 548
- BARLOW, RICHARD E. INEQUALITIES FOR LINEAR COMBINATIONS OF ORDER STATISTICS FROM RESTRICTED FAMILIES, AMS 66, 1574
- BARLOW, RICHARD E. LIKELIHOOD RATIO TESTS FOR RESTRICTED FAMILIES
 OF PROBABILITY DISTRIBUTIONS. AMS 68, 547

- BARLOW, RICHARD E. PROPERTIES OF PROBABILITY DISTRIBUTIONS WITH MONOTONE HAZARD RATE, AMS 63, 375
- BARLOW, RICHARD E. RELIABILITY GROWTH DURING A DEVELOPMENT TESTING PROCRAM, TECH 66, 53
- BARLOW, RICHARD E. SELECTION PROCEDURES FOR RESTRICTED FAMILIES OF PROBABILITY DISTRIBUTIONS, AMS 69, 905
- BARLOW, RICHARD E. STATISTICAL ESTIMATION PROCEDURES FOR THE 'BURN-IN' PROCESS, TECH 68, 51
- BARLOW, RICHARD E. TABLES OF BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE, JASA 65, 872
- BARLOW, RICHARD E. TOLERANCE AND CONFIDENCE LIMITS FOR CLASSES OF DISTRIBUTIONS BASED ON FAILURE RATE, CO, AMS 66, 1593
- BARNARD, G. A. AN ANALOGUE OF TCHEBYCHEFF'S INEQUALITY IN TERMS OF THE RANGE, TECH 62, 133
- BARNARD, G. A. CONTROL CHARTS AND STOCHASTIC PROCESSES (WITH DISCUSSION), JRSSB 59, 239 BARNARD, G. A. DISCUSSION OF THE PAPERS OF MESSRS, HALD, WETHERILL
- AND COX, TECH 60, 361
- BARNARD, C. A. DISTRIBUTIONS OF PRODUCTS OF INDEPENDENT VARIABLES, TECH 62, 277
- BARNARD, G. A. SAMPLING INSPECTION AND STATISTICAL DECISIONS (WITH DISCUSSION), JRSSB 54, 151
- BARNARD, G. A. SIMPLIFIED DECISION FUNCTIONS, BIOKA 54, 241
- BARNARD, G. A. SOME LOGICAL ASPECTS OF THE FIDUCIAL ARGUMENT, JRSSB 63, 111
- BARNARD, G. A. STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS.
 IX.BIOGRAPHICAL NOTE FOR T. BAYES'. BIOKA 58, 293
 BARNARD, G. A THE FREQUENCY JUSTIFICATION OF CERTAIN SEQUENTIAL
- TESTS, BIOKA 52, 144
 BARNARD, G A. THE FREQUENCY JUSTIFICATION OF SEQUENTIAL TESTS, AD-
- DENDUM, BIOKA 53, 468
 BARNARD, G. A THE LOGIC OF LEAST SQUARES; JRSSB 63, 124
- BARNARD, G. A. TIME INTERVALS BETWEEN ACCIDENTS, A NOTE ON MAGUIRE, PEARSON AND WYNN'S PAPER, BIOKA 53, 212
- BARNARD, GEORGE DISCUSSION OF 'ON THE FOUNDATIONS OF STATISTICAL INFERENCE'. JASA 62, 307
- BARNDOFF-NIELSEN, OLE ON THE LIMIT BEHAVIOUR OF EXTREME ORDER STATISTICS. AMS 63, 992 BARNETT, B. N. SEQUENTIAL SAMPLING, TWO DECISION PROBLEMS WITH
- LINEAR LOSSES FOR BINOMIAL AND NORMAL RAND, BIOKA 65, 507
 BARNETT, F. C. LINEAR ESTIMATES OF A POPULATION SCALE PARAMETER.
- BIOKA 67, 551

 BARNETT. V. D A NOTE ON-LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH
- RESIDUAL VARIANCES ARE KNOWN, BIOKA 67, 670
 BARNETT, V. D. EVALUATION OF THE MAXIMUM-LIKELIHOOD ESTIMATOR WHERE THE LIKELIHOOD EQUATION HAS MULTIPLE, BIOKA 66, 151
- BARNETT, V. D. LARGE SAMPLE TABLES OF PERCENTAGE POINTS FOR HART-LEY'S CORRECTION TO BARTLETT'S CRITERION, BIOKA 62, 4B7
- BARNETT, V. D. ORDER STATISTICS ESTIMATORS OF THE LOCATION OF THE CAUCHY DISTRIBUTION, JASA 66, 1205
- BARNETT, V. D. SIMULTANEOUS PAIRWISE LINEAR STRUCTURAL RELATION— SHIPS, BIOCS 69, 129 BARR, DAVID R. AN INTRODUCTION TO RANKING AND SELECTION PROCEDURES,
- JASA 66, 640
- BARR, DAVID R. ON TESTING THE EQUALITY OF UNIFORM AND RELATED DISTRIBUTIONS, JASA 66, B56
- BARRACLOUGH, ELIZABETH D. TABLES FOR WALD TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION. BIOKA 59, 169
- BARTHOLOMEW. D. J. A COMPARISON OF SOME BAYESIAN AND FREQUENTIST IN-FERENCES., BIOKA 65, 19
- BARTHOLOMEW. D. J. A COMPARISON OF SOME BAYESIAN AND FREQUENTIST IN-FERENCES. II, BIOKA 66, 262
- BARTHOLOMEW, D. J. A MULTI-STAGE RENEWAL PROCESS, JRSSB 63, 150
- BARTHOLOMEW, D. J. A PROBLEM IN LIFE TESTING, JASA 57, 350
- BARTHOLOMEW, D. J. A SEQUENTIAL TEST FOR RANDOMNESS OF INTERVALS, JRSSB 56, 95
- BARTHOLOMEW, D. J. A SEQUENTIAL TEST OF RANDOMNESS FOR EVENTS OCCUR-RING IN TIME OR SPACE, BIOKA 56. 64
- BARTHOLOMEW, D. J. A TEST OF HOMOGENEITY FOR ORDERED ALTERNATIVES, BIOKA 59, 36
- BARTHOLOMEW. D. J. A TEST OF HOMOGENEITY FOR ORDERED ALTERNATIVES
 II. BIOKA 59. 328
- BARTHOLOMEW, D. J. A TEST OF HOMOGENEITY OF MEANS UNDER RESTRICTED ALTERNATIVES (WITH DISCUSSION), JRSSB 61, 239
- BARTHOLOMEW, D. J. AN APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION OF RENEWAL THEORY, JRSSB 63, 432
- BARTHOLOMEW, D J. HYPOTHESIS TESTING WHEN THE SAMPLE SIZE IS TREATED AS A RANDOM VARIABLE (WITHDISCUSSION), JRSSB 67, 53
 BARTHOLOMEW, D. J. ORDERED TESTS IN THE ANALYSIS OF VARIANCE, BIOKA
- 61.325
 BARTHOLOMEW, D. J. SUFFICIENT CONDITION FOR THE MIXTURE OF EXPONEN-
- TIALS TO BE A PROBABILITY DENSITY FUNCT, AMS 69, NO.6
 BARTHOLOMEW, D. J. TESTING FOR DEPARTURE FROM THE EXPONENTIAL DIS-
- BARTHOLOMEW, D. J. TESTS FOR RANDOMNESS IN A SERIES OF EVENTS WHEN THE ALTERNATIVE IS A TREND, JRSSB 56, 234

TRIBUTION, BIOKA 57, 253

BARTHOLOMEW, D. J. THE SAMPLING DISTRIBUTION OF AN ESTIMATE ARISING IN LIFE TESTING, TECH 63, 361

- BARTHOLOMEW, D. J. NOTE ON THE USE OF SHERMAN'S STATISTIC AS A TEST OF RANDOMNESS, BIOKA 54, 556
- BARTKO, J. J. ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES. BIOCS 6B, 97
- BARTKO, J. J. SOME PROBLEMS OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS., BIOKA 65, 127
- BARTKO, JOHN J INFERENCE ON A GENETIC MODEL OF THE MARKOV CHAIN TYPE, BIOKA 63, 251
- BARTKO, JOHN J. A NOTE ON THE NEGATIVE BINOMIAL DISTRIBUTION. TECH 62,609
- BARTKO, JOHN J. APPROXIMATING THE NEGATIVE BINOMIAL, TECH 66, 345 BARTKO, JOHN J. ERRATA, 'APPROXIMATING THE NEGATIVE BINOMIAL' TECH 67, 49B
- BARTLETT, M. S. A COMMENT ON D. V. LINDLEY'S STATISTICAL PARADOX. BIOKA 57, 533
- BARTLETT, M. S. A COMPARISON OF THEORETICAL AND EMPIRICAL RESULTS FOR SOME STOCHASTIC POPULATION MODELS, BIOKA 60, 1
- BARTLETT, M. S. A NOTE ON TESTS OF SIGNIFICANCE FOR LINEAR FUNC-TIONAL RELATIONSHIPS, BIOKA 57, 268
- BARTLETT, M. S. A NOTE ON THE MULTIPLYING FACTORS FOR VARIOUS CHI-SQUARE APPROXIMATIONS, JRSSB 54, 296
 BARTLETT, M. S. A SAMPLING TEST OF THE CHI-SQUARE THEORY FOR PROBA-
- BILITY CHAINS, BIOKA 52, 118
- BARTLETT, M. S. APPROXIMATE CONFIDENCE INTERVALS, BIOKA 53, 12
- BARTLETT, M. S. APPROXIMATE CONFIDENCE INTERVALS III. A BIAS COR-RECTION, BIOKA 55, 201
- BARTLETT, M. S. APPROXIMATE CONFIDENCE INTERVALS. II. MORE THAN ONE UNKNOWN PARAMETER, BIOKA 53, 306
- BARTLETT, M. S. COMMENT ON SIR RONALD FISHER'S PAPER, 'ON A TEST OF SIGNIFICANCE IN PEARSON'S BIOMETRIKA, JRSSB 56, 295
- BARTLETT, M. S. CORRIGENDA, 'THE SPECTRAL ANALYSIS OF TWO-DIMEN-SIONAL POINT PROCESSES', BIOKA 65, 305
- BARTLETT, M. S. DISCRIMINATION IN THE CASE OF ZERO MEAN DIFFERENCES, BIOKA 63, 17
- BARTLETT, M. S. DISTRIBUTIONS ASSOCIATED WITH CELL POPULATIONS, BIOKA 69, 391
- BARTLETT, M. S. ON THE EFFICIENCY OF PROCEDURES FOR SMOOTHING PERIODOGRAMS FROM TIME SERIES WITH CONTINUO, BIOKA 55, 143
- BARTLETT, M. S. ON THEORETICAL MODELS FOR COMPETITIVE AND PREDATORY BIOLOGICAL SYSTEMS, BIOKA 57, 27
- 8ARTLETT, M. S. R. A. FISHER AND THE LAST FIFTY YEARS OF STATISTICAL METHODOLOGY, JASA 65, 395
- BARTLETT, M. S. SOME REMARKS ON THE ANALYSIS OF TIME-SERIES, BIOKA 67.25
- BARTLETT, M. S. THE EFFECT OF STANDARDIZATION ON AN APPROXIMATION IN FACTOR ANALYSIS, BIOKA 51, 337
- BARTLETT, M. S. THE SPECTRAL ANALYSIS OF POINT PROCESSES (WITH DISCUSSION), JRSSB 63, 264
- BARTLETT, M. S. THE SPECTRAL ANALYSIS OF TWO-DIMENSIONAL POINT PROCESSES, 810KA 64, 299
- BARTLETT, M. S. THE STATISTICAL SIGNIFICANCE OF ODD BITS OF INFORMA-TION, BIOKA 52, 22B
- BARTON, D. E. A CLASS OF DISTRIBUTIONS FOR WHICH THE MAXIMUM-LIKELIHOOD ESTIMATOR IS UNBIASED AND OF MINI, BIOKA 56, 200
- BARTON, D. E. A COMPARISON OF TWO SORTS OF TEST FOR A CHANGE OF LOCA-TION APPLICABLE TO TRUNCATED DATA, JRSSB 57, 119
- BARTON, D. E. A PERSISTENCE PROBLEM IN RENEWAL THEORY, ROBERT THE BRUCE'S SPIDER, BIOKA 66, 255
- BARTON, D. E. A QUICK ESTIMATE OF THE REGRESSION COEFFICIENT, BIOKA 58, 431
- BARTON, D. E. ADDENDUM, THE LIMITING DISTRIBUTION OF KAMAT'S TEST STATISTIC, BIOKA 56, 386
- BARTON, D. E. CONTAGIOUS OCCUPANCY, JRSSB 59, 120
- BARTON, D. E. CORRIGENDA TO 'MULTIPLE RUNS', BIOKA 57, 534
- BARTON, D. E. FOUR-LETTER WORDS. THE DISTRIBUTION OF PATTERN FREQUENCIES IN RING PERMUTATIONS, JRSSB 67, 550
- BARTON, D. E. MULTIPLE RUNS, BIOKA 57, 168
- BARTON, D. E. NON-RANDOMNESS IN A SEQUENCE OF TWO ALTERNATIVES. I. WILCOXON'S AND ALLIED TEST STATISTICS, BIOKA 5B, 166
- BARTON, D. E. NON-RANDOMNESS IN A SEQUENCE OF TWO ALTERNATIVES. II. RUNS TEST. BIOKA 58, 253
- BARTON, D. E. ON THE EQUIVALENCE OF TWO TESTS OF EQUALITY OF RATE OF OCCURRENCE IN TWO SERIES OF EVENTS 0, BIOKA 58, 267 BARTON, D. E. PERSISTENCE IN A CHAIN OF MULTIPLE EVENTS WHEN THERE IS
- SIMPLE DEPENDENCE, BIOKA 62, 351
- BARTON, D. E. QUERY, COMPARISON OF SAMPLE SIZES IN INVERSE BINOMIAL SAMPLING, TECH 67, 337 BARTON, D. E. QUERY, COMPLETED RUNS OF LENGTH K ABOVE AND BELOW MEDI-AN, TECH 67, 682
- BARTON, D. E. RANDOM POINTS IN A CIRCLE AND THE ANALYSIS OF CHROMOSOME PATTERNS, BIOKA 63, 23
- BARTON, D.E. RUNS IN A RING, BIOKA 58, 572
- BARTON, D. E. SEQUENTIAL OCCUPANCY, BIOKA 59, 218
- BARTON, D. E. SEQUENTIAL OCCUPANCY WITH CLASSIFICATION, BIOKA 68,
- BARTON, D. E. SOME ASPECTS OF THE RANDOM SEQUENCE, AMS 65, 236
- BARTON, D. E. SOME NOTES ON ORDERED RANDOM INTERVALS, JRSSB 56, 79
- BARTON, D. E. SOME PROPERTIES OF THE DISTRIBUTION OF THE LOGARITHM OF NON-CENTRAL F. BIOKA 60, 417

- BARTON, D. E. TABLE FOR THE SOLUTION OF THE EXPONENTIAL EQUATION EXP (B)-B(1-P)=1, BIOKA 63, 177
- BARTON, D. E. TABLES FOR THE SOLUTION OF THE EXPONENTIAL EQUATION EXP(-A)+KA=1, BIOKA 60, 439
- BARTON, D. E. TESTS FOR RANDOMNESS OF POINTS ON A LINE, BIOKA 56, 104 BARTON, D. E. THE CENTRAL SAMPLING MOMENTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION (ATY'S FORMULA, BIOKA 61, 199
- THE CONDITIONS UNDER WHICH GRAM-CHARLIER AND EDGEWORTH CURVES ARE POSITIVE DEFINITE AND UNI. BIOKA 52, 425
- BARTON, D. E. THE DISPERSION OF A NUMBER OF SPECIES, JRSS8 59, 190
- BARTON, D. E. THE MATCHING DISTRIBUTIONS, POISSON LIMITING FORMS AND DERIVED METHODS OF APPROXIMATION, JRSSB 58, 73
- BARTON, D. E. THE POLYKAYS OF THE NATURAL NUMBERS, BIOKA 60, 53
- 8ARTON, D. E. THE RANDOMIZATION BASES OF THE PROBLEM OF THE AMALGA-MATION OF WEIGHTED MEANS, JRSSB 61, 423
- BARTON, D. E. UNBIASED ESTIMATION OF A SET OF PROBABILITIES, BIOKA 61.227
- BARTOO, J. B. ASYMPTOTIC DISTRIBUTION OF DISTANCES BETWEEN ORDER STATISTICS FROM BIVARIATE POPULATIONS. AMS 64.748
- BARTOO, JAMES B. ON OPTIMAL ASYMPTOTIC TESTS OF COMPOSITE STATISTI-
- CAL HYPOTHESES, AMS 67, 1845
 BARTOSZYNSKI, R. A STOCHASTIC MODEL OF ACHE TRANSPORTATION IN THE PERIPHERAL NERVE TRUNKS, BIOKA 62, 447
- BARTOSZYNSKI, ROBERT A CHARACTERIZATION OF THE WEAK CONVERGENCE OF MEASURES. AMS 61, 561
- BASMANN, R. L. A NOTE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF GENERALIZED CLASSICAL LINEAR ESTI, JASA 61, 619
- BASMANN, R. I. A NOTE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF GENERALIZED CLASSICAL LINEAR ESTI. JASA 63. 161
- BASMANN, R. L. A NOTE ON THE STATISTICAL TESTABILITY OF 'EXPLICIT CAUSAL CHAINS' AGAINST THE CLASS OF 'IN. JASA 65. 1080
- BASMANN, R. L. ON FINITE SAMPLE DISTRIBUTIONS OF GENERALIZED CLAS-SICAL LINEAR IDENTIFIABILITY TEST STATIS, JASA 60, 650
- BASMANN, R. L. REMARKS CONCERNING THE APPLICATION OF EXACT FINITE SAMPLE DISTRIBUTION FUNCTIONS OF GENERA, JASA 63, 943
- BASSETT, E. E. A COMPARISON OF SOME BAYESIAN AND FREQUENTIST IN-FERENCES. II, BIOKA 66, 262
- BASU, A.O. ON A TEST FOR SEVERAL LINEAR RELATIONS, JRSSB 69, 65
- BASU, A.P. A NOTE ON NONPARAMETRIC TESTS FOR SCALE, AMS 67, 274
- BASU. A. P. EFFECT OF TRUNCATION ON A TEST FOR THE SCALE PARAMETER OF THE EXPONENTIAL DISTRIBUTION, AMS 64, 209
- BASU. A. P. ESTIMATES OF RELIABILITY FOR SOME DISTRIBUTIONS USEFUL IN LIFE TESTING, TECH 64, 215
- BASU, A. P. ON A GENERALIZED SAVAGE STATISTIC WITH APPLICATIONS TO LIFE TESTING, AMS 6B, 1591
- BASU, A. P. ON SOME TESTS OF HYPOTHESES RELATING TO THE EXPONENTIAL DISTRIBUTION WHEN SOME OUTLIERS ARE P. JASA 65, 548
- ON THE LARGE SAMPLE PROPERTIES OF A GENERALIZED BASU. A. P. WILCOXON-MANN-WHITNEY STATISTIC, AMS 67, 905
- BASU, A. P. ON TWO K-SAMPLE RANK TESTS FOR CENSORED DATA, AMS 67, 1520 BASU. D. INVARIANT SETS FOR TRANSLATION-PARAMETER FAMILIES OF MEA-SURES, AMS 69, 162
- BATHER, J. A. CONTROL CHARTS AND THE MINIMIZATION OF COSTS (WITH DISCUSSION), JRSSB 63, 49
- BATHER, J. A. INVARIANT CONDITIONAL DISTRIBUTIONS, AMS 65, 829
- BATHER, J. A. ON A QUICKEST DETECTION PROBLEM, AMS 67, 711
- BATSCHELET, EDWARD TESTING HYPOTHESES AND ESTIMATING PARAMETERS IN HUMAN GENETICS IF THE AGE OF ONSET IS, BIOKA 63, 265
- BAUM, LEONARD E. ASYMPTOTIC DISTRIBUTORS FOR THE COUPON COLLEC-TOR'S PROBLEM. AMS 65, 1835
- BAUM, LEONARD E. ON CONVERGENCE TO INFINITY IN THE LAW OF LARGE NUM-BERS, (ACKNOWLEDGEMENT OF PRIORITY 63, AMS 63, 219
- BAUM, LEONARD E. ON THE INFLUENCE OF MOMENTS ON THE ASYMPTOTIC DIS-TRIBUTION OF SUMS OF RANDOM VARIABLES. AMS 63, 1042
- BAUM, LEONARD E. STATISTICAL INFERENCE FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS, AMS 66, 1554
- BAXTER, GLEN A COMBINATORIAL LEMMA FOR COMPLEX NUMBERS, AMS 61, 901 BAXTER, GLEN GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM, AMS 65, 1292
- BAXTER, GLEN ON A GENERALIZATION OF THE FINITE ARC-SINE LAW, AMS 62, 909
- BAYES. THOMAS ESSAY TOWARDS SOLVING A PROBLEM IN THE DOCTRINE OF CHANCES., REPRODUCED FROM PHIL. TRANS. R, BIOKA 58, 296
- BAYLESS. D. L. AN EMPIRICAL STUDY OF THE STABILITIES OF ESTIMATORS AND VARIANCE ESTIMATORS IN UNEQUAL PRO, JASA 69. 540
- BEALE, E. M. L. CONFIDENCE REGIONS IN NON-LINEAR ESTIMATION (WITH DISCUSSION), JRSSB 60.41
- BEALE, E. M. L. ON MINIMIZING A CONVEX FUNCTION SUBJECT TO LINEAR IN-EQUALITIES (WITHDISCUSSION), JRSSB 55, 173
- BEALE, E. M. L. THE DISCARDING OF VARIABLES IN MULTIVARIATE ANALY-SIS, BIOKA 67, 357
- BEATTIE, RONALD H. SOURCES OF STATISTICS ON CRIME AND CORRECTION, JASA 59, 582
- BEATTY, GLENN H. ERRATA, 'TABLES OF TOLERANCE-LIMIT FACTORS FOR NORMAL DISTRIBUTIONS', TECH 61, 576
- BEATTY, GLENN H. TABLES OF TOLERANCE-LIMIT FACTORS FOR NORMAL DIS-TRIBUTIONS, TECH 60, 483

- BEAUCHAMP, J. J. MAXIMUM LIKELIHOOD ESTIMATION OF SURVIVAL CURVE PARAMETERS, BIOGS 6B, 595
- BEAUCHAMP, J. J. SPEARMAN SIMULTANEOUS ESTIMATION FOR A COMPART-MENTAL MODEL, TEGH 69, 551
- BEAUCHAMP, JOHN J. ERRATA 'SIMULTANEOUS NONLINEAR ESTIMATION', TECH 67, 353
- BEAUGHAMP, JOHN J. SIMULTANEOUS ESTIMATION BY PARTIAL TOTALS FOR COMPARTMENTAL MODELS, JASA 68, 573
- BEAUCHAMP, JOHN J. SIMULTANEOUS NONLINEAR ESTIMATION, TECH 66, 319 BECHHOFER, R. E. A TWO-SAMPLE MULTIPLE DECISION PROGEDURE FOR RANK-ING MEANS OF NORMAL POPULATIONS WITH A. BIOKA 54, 170
- BECHHOFER. R. E. A TWO-STAGE SUBSAMPLING PROCEDURE FOR RANKING MEANS OF FINITE POPULATIONS WITH AN APPLIC, TECH 67, 355
- BECHHOFER, ROBERT E. A MULTIPLICATIVE MODEL FOR ANALYZING VARI-ANCES WHIGH ARE AFFECTED BY SEVERAL FACTORS, JASA 60. 245
- BECHHOFER, ROBERT E. A NOTE ON THE LIMITING RELATIVE EFFIGIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO, JASA 60, 660
- BEGHHOFER. ROBERT E. MULTIPLE COMPARISONS WITH A CONTROL FOR MUL-
- TIPLY-CLASSIFIED VARIANCES OF NORMAL POPU, TEGH 6B, 715 BECHHOFER, ROBERT E. SINGLE-STAGE PROGEDURES FOR RANKING MULTIPLY-CLASSIFIED VARIANCES OF NORMAL POPULATI. TECH 6B. 693
- BECKER, N. G. MODELS FOR THE RESPONSE OF A MIXTURE, JRSSB 6B. 349
- BECKER, N. G. REGRESSION PROBLEMS WHEN THE PREDICTOR VARIABLES ARE PROPORTIONS, JRSSB 69, 107
- BEGKER, N. G. THE SPREAD OF AN EPIDEMIC TO FIXED GROUPS WITHIN THE POPULATION, BIOGS 68, 1007
- BECKER, W. A. ESTIMATES OF HERITABILITY FROM TRANSFORMED PERCENT-AGE SIB DATA WITH UNEQUAL SUBGLASS NUMBER, BIOCS 65, 1001
- BEEKMAN, J. A. A STATISTIGAL TEST INVOLVING A RANDOM NUMBER OF RAN-DOM VARIABLES, AMS 66, 1305
- BEEKMAN, J. A. DISTRIBUTIONS OF A M. KAC STATISTIG, AMS 67, 1919
- BEHNKEN, D. W. ERRATA, 'SOME NEW THREE LEVEL DESIGNS FOR THE STUDY OF QUANTITATIVE VARIABLES', TEGH 61, 576
- BEHNKEN, D. W. SAMPLING MOMENTS OF MEANS FROM FINITE MULTIVARIATE POPULATIONS, AMS 61, 406
- BEHNKEN, D. W. SOME NEW THREE LEVEL DESIGNS FOR THE STUDY OF QUAN-TITATIVE VARIABLES, TECH 60, 455
- BEIGHTLER, C. S. DESIGN OF AN OPTIMAL SEQUENCE OF INTERRELATED SAM-PLING PLANS, JASA 64, 96
- BELL, G. B. 'OPTIMAL' ONE-SAMPLE DISTRIBUTION-FREE TESTS AND THEIR TWO-SAMPLE EXTENSIONS, AMS 66, 120
- BELL, G. B. BIVARIATE SYMMETRY TESTS, PARAMETRIG AND NONPARAMET-RIC, AMS 69, 259
- BELL, G. B. CHARACTERIZATION OF MULTISAMPLE DISTRIBUTION-FREE STATISTICS, AMS 64, 735
- BELL, C. B. DISTRIBUTION-FREE TESTS OF INDEPENDENCE, AMS 67, 429 BELL, G. B. GOODNESS GRITERIA FOR TWO-SAMPLE DISTRIBUTION-FREE
- TESTS. AMS 66. 133 BELL, C.B. MAXIMAL INDEPENDENT STOGHASTIG PROGESSES, AMS 61, 704 BELL, C. B. MUTUAL INFORMATION AND MAXIMAL GORRELATION AS MEASURES
- OF DEPENDENCE, AMS 62, 5B7 BELL, G. B. SOME BASIG THEOREMS OF DISTRIBUTION-FREE STATISTIGS, AMS 64, 150
- BELL, G. B. SOME NEW DISTRIBUTION-FREE STATISTIGS, (ACKNOWLEDGE-
- MENT OF PRIORITY 65 1901), AMS 65, 203 BELL, EARL J. THE STATISTIGAL ANALYSIS OF INDUSTRY STRUGTURE, AN AP-PLIGATION TO FOOD INDUSTRIES, JASA 61, 925
- BELLMAN, RIGHARD GURVE FITTING BY SEGMENTED STRAIGHT LINES, JASA 69.1079
- BEMENT, T. R. VARIANGE OF WEIGHTED REGRESSION ESTIMATORS WHEN SAM-PLING ERRORS ARE INDEPENDENT AND HETEROS, JASA 69, NO. 4
- BEN-ISRAEL, A. A PROBLEM OF DELAYED SERVIGE, 1, JRSSB 60, 245
- BEN-ISRAEL, A. A PROBLEM OF DELAYED SERVIGE, 2, JRSSB 60, 270
- BEN-TUVIA, S. THE EFFIGIENCY OF STATISTICAL SIMULATION PROCEDURES, TEGH 62, 257
- BENES, V. E. A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOGHASTIG PROCESSES, AMS 62, 9B
- BENISHAY, HASKEL A STOGHASTIC MODEL OF GREDIT SALES DEBT. JASA 66. 1010
- BENNETT, B. M. A BIVARIATE SIGNED RANK TEST, JRSSB 64, 457
- BENNETT, B. M. A NOTE ON COMBINING GORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS, TEGH 64, 463
- BENNETT, B. M. GONFIDENGE LIMITS FOR MULTIVARIATE RATIOS, JRSSB 61, 108
- BENNETT, B. M. GORRIGENDA, 'ON THE POWER FUNGTION OF THE EXAGT TEST FOR THE 2-BY-2 GONTINGENGY TABLE', BIOKA 61, 475 BENNETT, B. M. NOTE ON A CHI-SQUARE APPROXIMATION FOR THE MUL-
- TIVARIATE SIGN TEST, JRSSB 65, B2
- BENNETT, B. M. NOTE ON CHI SQUARE TESTS FOR MATCHED SAMPLES, JRSSB $6\mathrm{B},\,368$
- NOTES . GONFIDENCE LIMITS FOR A RATIO USING WILCOXON'S SIGNED RANK TEST, BIOGS 65, 231
- BENNETT, B. M. ON A MULTIVARIATE VERSION OF FIELLER'S THEOREM, JRSSB
- BENNETT, B. M. ON COMBINING ESTIMATES OF A RATIO OF MEANS, JRSSB 63, 201
- BENNETT, B. M. ON MULTIVARIATE SIGN TESTS, JRSSB 62, 159
- BENNETT, B. M. ON THE POWER FUNGTION OF THE EXACT TEST FOR THE 2-BY-2 GONTINGENGY TABLE, BIOKA 60, 393

- BENNETT, B. M. PERCENTAGE POINTS OF THE RANGE FROM A SYMMETRIC MUL-TINOMIAL DISTRIBUTION, BIOKA 6B, 377
- BENNETT, B. M. RANK ORDER TESTS OF LINEAR HYPOTHESES, JRSSB 6B, 4B3 BENNETT, B. M. TABLES FOR TESTING SIGNIFIGANGE IN A 2-BY-3 GONTIN-GENCY TABLE, TECH 63, 501
- BENNETT, B. M. TESTS OF HYPOTHESES CONCERNING MATCHED SAMPLES (CORR. 69 194), JRSSB 67, 46B
- BENNETT, B. M. THE POWER FUNGTION OF THE EXACT TEST FOR THE 2-BY-3 CONTINGENCY TABLE, TEGH 64, 439
- BENNETT, D. THE USE OF LAMBDA AS AN INDEX OF PRECISION, BIOGS 69, 174 BENNETT, G. A ONE-SIDED PROBABILITY INEQUALITY FOR THE SUM OF INDE-PENDENT, BOUNDED RANDOM VARIABLES, BIOKA 68, 565
- BENNETT, G. ON THE PROBABILITY OF LARGE DEVIATIONS FROM THE EXPEGTA-TION FOR SUMS OF BOUNDED, INDEPENDENT, BIOKA 63, 52B
- BENNETT, G. UPPER BOUNDS ON THE MOMENTS AND PROBABILITY INEQUALI-TIES FOR THE SUM OF INDEPENDENT, BOUNDED, BIOKA 65, 559
- BENNETT, GEORGE PROBABILITY INEQUALITIES FOR THE SUM OF INDEPEN-DENT RANDOM VARIABLES, JASA 62, 33
- BENNETT, J. H. A GENERAL GLASS OF ENUMERATIONS ARISING IN GENETICS. BIOCS 67, 517
- BENNETT, J. H. MIXED SELF- AND CROSS-FERTILIZATION IN A TETRASOMIC SPECIES, BIOCS 68, 485
- BENNETT, J. H. PARTITIONS IN MORE THAN ONE DIMENSION, JRSSB 56, 104 BENNETT, J. H. THE DISTRIBUTION OF HETEROGENEITY UPON INBREEDING, JRSSB 54. BB
- BENSON, F. CLOSED QUEUEING SYSTEMS, A GENERALIZATION OF THE MAGHINE INTERFERENCE MODEL, JRSSB 61, 385
 BENTLEY, D. L. A CONTRIBUTION TO COUNTER THEORY, JRSSB 63, 169
- BERAN, R. J. ASYMPTOTIC THEORY OF A CLASS OF TESTS FOR UNIFORMITY OF A GIRGULAR DISTRIBUTION. AMS 69. 1196
- BERAN R .I THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM TESTS FOR UNIFORMITY OF A GIRGULAR DIS, BIOKA 69, NO. 3 BERENBLUT, I. I. A GHANGE-OVER DESIGN FOR TESTING A TREATMENT FACTOR
- AT FOUR EQUALLY SPACED LEVELS , CORR., JRSSB 67, 370 BERENBLUT, I. I. GHANGEOVER DESIGNS BALANCED FOR THE LINEAR COM-
- PONENT OF FIRST RESIDUAL EFFECTS, BIOKA 6B, 297 BERENBLUT, I. I. THE ANALYSIS OF CHANGEOVER DESIGNS WITH GOMPLETE
- BALANCE FOR FIRST RESIDUAL EFFEGTS, BIOCS 67, 578 BERGER, A. NOTES. ON ESTIMATING REGESSIVE FREQUENCIES FROM TRUN-CATED SAMPLES, BIOCS 67, 356
- BERGER, A. ON THE QUESTION OF WHETHER A DISEASE IS FAMILIAL, JASA 67,
- BERGER, AGNES ON COMPARING INTENSITIES OF ASSOCIATION BETWEEN TWO BINARY GHARACTERISTICS IN TWO DIFFERENT, JASA 61, 889
- BERGSTROM, H. A REMARK ON SPEARMAN'S RANK GORRELATION GOEFFIGIENT, BIOKA 5B. 273
- BERK, KENNETH AN EVALUATION OF A FUNCTIONAL ON INFINITELY DIVISIBLE STOCHASTIC PROCESSES, AMS 64, 336
- BERK, KENNETH N. ERGODIG THEORY WITH RECURRENT WEIGHTS, AMS 6B, 1107 BERK, ROBERT H. A SPEGIAL STRUGTURE AND EQUIVARIANT ESTIMATION, AMS 67,1436
- BERK, ROBERT H. BIORTHOGONAL AND DUAL CONFIGURATIONS AND THE REGIPROCAL NORMAL DISTRIBUTION, AMS 69, 393
- BERK, ROBERT H. LIMITING BEHAVIOR OF POSTERIOR DISTRIBUTIONS WHEN THE MODEL IS INGORREGT, CORR. 66745, AMS 66, 51
- BERK, ROBERTH. ON INVARIANCE AND ALMOST INVARIANCE, AMS 6B, 1573 BERK, ROBERT H. STRONG CONSISTENCY OF CERTAIN SEQUENTIAL ESTIMA-TORS. AMS 69. 1492
- BERK, ROBERT H. THE INFORMATION IN A RANK-ORDER AND THE STOPPING TIME OF SOME ASSOCIATED SPRT'S, AMS 68, 1661
- BERKSON, J. APPLICATION OF MINIMUM LOGIT GHI-SQUARE ESTIMATE TO A PROBLEM OF GRIZZLE WITH A NOTATION ON T. BIOCS 68, 75
- BERKSON, J. ESTIMATION OF A LINEAR FUNGTION FOR A CALIBRATION LINE, CONSIDERATION OF A RECENT PROPOSAL, TEGH 69, NO.4
- BERKSON, J. NOMOGRAMS FOR FITTING THE LOGISTIC FUNCTION BY MAXIMUM LIKELIHOOD, BIOKA 60, 121 BERKSON, J. TABLES FOR USE IN ESTIMATING THE NORMAL DISTRIBUTION
- FUNCTION BY NORMIT ANALYSIS. PART I. DES, BIOKA 57, 411 BERKSON, JOSEPH GOMPETING EXPONENTIAL RISKS, WITH PARTICULAR
- REFERENCE TO THE STUDY OF SMOKING AND LUNG C. JASA 60, 415 BERKSON, JOSEPH SMOKING AND LUNG CANGER, SOME OBSERVATIONS ON TWO
- RECENT REPORTS, JASA 5B, 2B BERKSON, JOSEPH THE OTHER SIDE OF THE LOWER BOUND. A NOTE WITH A GOR-
- REGTION, JASA 61, 670 BERMAN, S. M. ON THE QUESTION OF WHETHER A DISEASE IS FAMILIAL, JASA 67,409
- BERMAN, SIMEON M. A LAW OF LARGE NUMBERS FOR THE MAXIMUM IN A STA-
- TIONARY GAUSSIAN SEQUENCE, AMS 62, 93 BERMAN, SIMEON M. A MARKOV PROCESS ON BINARY NUMBERS, AMS 63, 416
- BERMAN, SIMEON M. AN EXTENSION OF THE ARC SINE LAW, AMS 62, 681
- BERMAN, SIMEON M. AN OCCUPATION TIME THEOREM FOR THE ANGULAR COM-
- PONENT OF PLANE BROWNIAN MOTION, AMS 67, 25 BERMAN, SIMEON M. LIMIT THEOREMS FOR THE MAXIMUM TERM IN STATIONARY SEQUENCES, AMS 64, 502
- BERMAN, SIMEON M. LIMITING DISTRIBUTION OF THE MAXIMUM OF A DIFFU-SION PROCESS, AMS 64, 319
- BERMAN, SIMEON M. LIMITING DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES, AMS 62, B94

- BERMAN, SIMEON M. NOTE ON EXTREME VALUES, COMPETINC RISKS AND SEMI-MARKOV PROCESSES, AMS 63. 1104
- BERNDT, CERALD D. THE REGIONS OF UNIMODALITY AND POSITIVITY IN THE ABBREVIATEO EOGEWORTH AND GRAM-CHARLIE, JASA 57, 253
- BERRETTONI, J. N. CHAIN-POOLING ANALYSIS OF VARIANCE FOR TWO-LEVEL FACTORIAL REPLICATION-FREE EXPERIMENTS, TECH 69, NO.4
- BERRY, G. A MATHEMATICAL MODEL RELATING PLANT YIELD WITH ARRANCE— MENT FOR REGULARLY SPACED CROPS. BIOCS 67. 505
- BERSHAD, MAX A. WASHINCTON STATISTICAL SOCIETY MEMORIAL MEETINC FOR WILLIAM N. HURWITZ. THE OEVELOPMENT O, JASA 69, NO. 4
- BERZ, F. ON THE CUMULATIVE EFFECT OF CHANCE OEVIATIONS, JRSSB 54.
- BESSLER. S. AN OPTIMAL SEQUENTIAL ACCELERATED LIFE TEST., TECH 62.
- BEUTLER, FREDERICK J. MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDICTION THEORY, AMS 63, 424
- BHAPKAR, V. P. A NONPARAMETRIC TEST FOR THE PROBLEM OF SEVERAL SAM-PLES, AMS 61, 1108
- BHAPKAR, V. P. A NOTE ON THE EQUIVALENCE OF TWO TEST CRITERIA FOR HYPOTHESES IN CATEGORICAL DATA. JASA 66, 22B
- BHAPKAR, V. P. HYPOTHESES OF 'NO INTERACTION' IN MULTI-DIMENSIONAL CONTINGENCY TABLES. TECH 6B. 107
 BHAPKAR, V. P. ON THE ANALYSIS OF CONTINGENCY TABLES WITH A QUAN-
- BHAPKAR, V. P. ON THE ANALYSIS OF CONTINGENCY TABLES WITH A QUAN-TITATIVE RESPONSE, BIOCS 68, 329
- BHAPKAR, V. P. ON THE HYPOTHESES OF 'NO INTERACTION' IN CONTINGENCY TABLES. BIOCS $6B,\,567$
- BHAPKAR, V.P. SOME NONPARAMETRIC MEDIAN PROCEDURES. AMS 61, B46 BHAPKAR, V.P. SOME NONPARAMETRIC TESTS FOR MULTISAMPLE PROBLEMS. TECH 6B, 57B
- BHAPKAR, V. P. SOME TESTS FOR CATEGORICAL DATA, AMS 61, 72
- BHAT. B. R. A NOTE ON SUFFICIENCY IN REGULAR MARKOV CHAINS, B KA 60,
- BHAT, B. R. LAMP TESTS OF LINEAR AND LOGLINEAR HYPOTHESES IN MULTINOMIAL EXPERIMENTS, CORR. 66 1246, JASA 66, 236
- BHAT, B. R. LOCALLY ASYMPTOTICALLY MOST STRINGENT TESTS AND LAGRAN-GIAN MULTIPLIER TESTS OF LINEAR HYPOTHE, BIOKA 65, 459
- BHAT, B. R. ON EFFICIENT MULTINOMIAL ESTIMATION, JRSSB 66, 45
- BHAT, B. R. ON THE ASYMPTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' GOODNESS OF FIT CRITERIA FOR MARKOV CHAIN, AMS 61, 49
- BHAT, B. R. ON THE DISTRIBUTION OF CERTAIN QUADRATIC FORMS IN NORMAL VARIATES, JRSSB 62, 14B
- BHAT, B. R. ON THE DISTRIBUTION OF VARIOUS SUMS OF SQUARES IN AN ANAL-YSIS OF VARIANCE TABLE FOR DIFFERENT, JRSSB 59, 114
- BHAT, B. R. SOME PROPERTIES OF REGULAR MARKOV CHAINS, AMS 61, 59
- BHAT, R. R. BAYES SOLUTION OF SEQUENTIAL DECISION PROBLEM FOR MARKOV DEPENDENT OBSERVATIONS, AMS 64, 1656
- BHATE, D. H. APPROXIMATION TO THE DISTRIBUTION OF SAMPLE SIZE FOR SEQUENTIAL TESTS. I. TESTS FOR SIMPLE H, BIOKA 59, 130
- BHATE, D. H. APPROXIMATION TO THE DISTRIBUTION OF THE SAMPLE SIZE FOR SEQUENTIAL TEST. II. TESTS OF COMPO. BIOKA 60, 190
- BHATT, N.M. ESTIMATION OF FRACTION DEFEGTIVE IN CURTAILED SAMPLINC PLANS BY ATTRIBUTES, TEGH 67, 219
- BHATTACHARJEE, G. P. DIMENSIONAL CHAINS INVOLVING RECTANCULAR AND NORMAL ERROR-DISTRIBUTIONS, TECH 63, 404
- BHATTACHARJEE, G. P. EFFECT OF NON-NORMALITY ON A SEQUENTIAL TEST FOR MEAN, BIOKA 64, 2B1
- BHATTACHARJEE, G. P. EFFECT OF NON-NORMALITY ON STEIN'S TWO SAMPLE TEST, AMS 65, 651
- BHATTACHARYA, C. G. A SIMPLE METHOD OF RESOLUTION OF A DISTRIBUTION INTO GAUSSIAN COMPONENTS, BIOCS 67, 115
- BHATTACHARYA, N. REGIONAL DISPARITIES IN HOUSEHOLD CONSUMPTION IN INDIA, JASA 67, 143 BHATTACHARYA, P. K. EFFICIENT ESTIMATION OF A SHIFT PARAMETER FROM
- GROUPED DATA, AMS 67. 1770
 BHATTACHARYA, P. K. ESTIMATING THE MEAN OF A MULTIVARIATE NORMAL
- POPULATION WITH GENERAL QUADRATIC LOSS F, AMS 66, 1B19
 BHATTACHARYA. P. K. ON AN ANALOG OF REGRESSION ANALYSIS AMS 63
- 1459
- BHATTACHARYA, P. K. SOME PROPERTIES OF THE LEAST SQUARES ESTIMATOR IN REGRESSION ANALYSIS WHEN THE 'PREDI, AMS 62, 1365
- BHATTACHARYA, S. K. A RESULT ON ACCIDENT PRONENESS, BIOKA 67, 324
 BHATTACHARYA, S. K. ON A DISCRETE DISTRIBUTION WITH SPECIAL
 REFERENCE TO THE THEORY OF ACCIDENT PRONENESS, JASA 65, 1060
- BHATTACHARYA, SAMIR KUMAR BAYESIAN APPROACH TO LIFE TESTING AND RE-LIABILITY ESTIMATION, JASA 67, 48
- BHATTACHARYYA, A. K. ESTIMATING MACHINING ERRORS IN SET-UPS WITH AUTOMATIC RESETTING, TECH 64, 423
- BHATTACHARYYA, G. K. A NOTE ON THE ASYMPTOTIC EFFICIENCY OF BENNETT'S BIVARIATE SIGN TEST, JRSSB 66, 146
- BHATTACHARYYA, G. K. APPROACH TO DEGENERACY AND THE EFFICIENCY OF SOME MULTIVARIATE TESTS, AMS 6B, 1654
- BHATTACHARYYA, G. K. ASYMPTOTIC EFFICIENCY OF MULTIVARIATE NORMAL SCORE TEST, AMS 67, 1753
- BHATTACHARYYA, G. K. NONPARAMETRIC TESTS FOR SHIFT AT UNKNOWN TIME POINT, AMS 6B, 1731
- BHATTACHARYYA, G. K. ON HODGES'S BIVARIATE SIGN TEST AND A TEST FOR UNIFORMITY OF A CIRCULAR DISTRIBUTION, BIOKA 69, 446

- BHUCHONGKUL, S. A CLASS OF NONPARAMETRIC TESTS FOR INDEPENOENCE IN BIVARIATE POPULATIONS, AMS 64, 138
- BHUCHONCKUL, SUBHA ON THE ESTIMATION OF CONTRASTS IN LINEAR MOOELS, AMS 65, 19B
- BICKEL, P. J. A DISTRIBUTION FREE VERSION OF THE SMIRNOV TWO SAMPLE TEST IN THE P-VARIATE CASE, AMS $69,\ 1$
- BICKEL, P. J. A REMARK ON THE KOLMOGOROFF-PETROVSKII CRITERION, AMS 69, 1086
- BICKEL, P. J. ON INVARIANCE AND ALMOST INVARIANCE, AMS 6B, 1573
- BICKEL, P. J. SUBSTITUTION IN CONDITIONAL EXPECTATION, AMS 6B, 377 BICKEL, P. J. TESTS FOR MONOTONE FAILURE RATE, II, AMS 69, 1250
- BICKEL, P. J. THE ASYMPTOTIC THEORY OF CALTON'S TEST AND A RELATED SIMPLE ESTIMATE OF LOCATION, AMS 67, 73
- BICKEL, P. J. UNBIASED ESTIMATION IN CONVEX FAMILIES, AMS 69, 1523
- BICKEL, PETER TEST FOR MONOTONE FAILURE RATE BASED ON NORMALIZED SPACINC, AMS 69, 1216
- BICKEL, PETER J. A NOTE ON BAYES ESTIMATES, AMS 67, 1907
- BICKEL, PETER J. ASYMPTOTICALLY OPTIMAL BAYES AND MINIMAX PROCEDURES IN SEQUENTIAL ESTIMATION, AMS 68, 422
- BICKEL, PETER J. ON AN A.P.O. RULE IN SEQUENTIAL ESTIMATION WITH QUADRATIC LOSS, AMS 69, 417
- BICKEL, PETER J. ON SOME ALTERNATIVE ESTIMATES FOR SHIFT IN THE P-VARIATE ONE SAMPLE PROBLEM, AMS 64, 1079
- BICKEL, PETER J. ON SOME ASYMPTOTICALLY NONPARAMETRIC COMPETITORS OF HOTELLING'S T-SQUARE, CORR. 65 1583, AMS 65, 160
- BIGKEL, PETER J. ON SOME ROBUST ESTIMATES OF LOCATION, AMS 65, B47
- BICKEL, PETER J. RENEWAL THEORY IN THE PLANE. AMS 65, 946
- BIELENSTEIN, U. M. THE APPROXIMATE DISTRIBUTION OF THE CORRELATION BETWEEN TWO STATIONARY LINEAR MARKOV S, BIOKA 65, 301
- BIGGERS, J. D. ESTIMATION OF MISSING OBSERVATIONS IN SPLIT-PLOT EX-PERIMENTS WHERE WHOLE-PLOTS ARE MISSING, BIOKA 61, 46B
- BIGGERS, J. D. THE ESTIMATION OF MISSING AND MIXED-UP OBSERVATIONS IN SEVERAL EXPERIMENTAL DESIGNS, BIOKA 59, 91
- BIKLE. A. THE COMBINATION OF ESTIMATES FROM SIMILAR EXPERIMENTS, ALLOWING FOR INTER-EXPERIMENT VARIATION, JASA 67, 241
- BILDIKAR, S. MULTIVARIATE LOGARITHMIC SERIES DISTRIBUTION AS A PROBABILITY MODEL IN POPULATION AND COMMUN, JASA 67, 655
- BILDIKAR, SHEELA MULTIVARIATE EXPONENTIAL-TYPE DISTRIBUTIONS, AMS 68, 1316
- BILLARD, L. A SEQUENTIAL PROCEDURE FOR TESTING A NULL HYPOTHESIS AGAINST A TWO SIDED ALTERNATIVE HYPOTHES, JRSSB 69, NO. 2
- BILLEWICZ, W. Z. THE EFFIGIENCY OF MATCHED SAMPLES, BIOCS 65, 623
 BILLINCSLEY, PATRICK ASYMPTOTIC DISTRIBUTORS FOR THE COUPON COL-
- LECTOR'S PROBLEM, AMS 65, 1B35
 BILLINGSLEY, PATRICK LIMIT THEOREMS FOR RANDOMLY SELECTED PARTIAL SUMS, AMS 62, 85
- BILLINGSLEY, PATRICK ON THE CODING THEOREM FOR NOISELESS CHANNEL, AMS 61, 594
- BILLINGSLEY, PATRICK STATISTICAL METHODS IN MARKOV CHAINS, CORR. 61 1343, AMS 61, 12
- BINET, F. E. ALCEBRAIC THEORY OF THE COMPUTING ROUTINE FOR TESTS OF SIGNIFICANCE ON THE DIMENSIONALITY OF, JRSSB 56, 70
- BINET, F. E. ON THE CONSTRUCTION OF AN INDEX FOR INDIRECT SELECTION, BIOCS 65, 291
- BINGHAM JR, R. S. APPROXIMATIONS FOR MEAN SQUARE SUCCESSIVE DIF-FERENCE CRITICAL VALUES, TECH 6B, 397
- BINMORE, K. G. A NOTE ON CHARACTERISTIC FUNCTIONS, AMS 69, 303
- BIRCH, JOHN J SMALL SAMPLE POWER CURVES FOR THE TWO SAMPLE LOCATION PROBLEM, TECH 69, 299
- BIRCH, JOHN J. APPROXIMATIONS FOR THE ENTROPY FOR FUNCTIONS OF MAR-KOV CHAINS, AMS 62, 930
- BIRCH, M. W. A NEW PROOF OF THE PEARSON-FISHER THEOREM, (ACKNOWLEDGEMENT OF PRIORITY, 63 344), AMS 64, B17
- BIRCH, M. W. A NOTE ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR STRUGTURAL RELATIONSHIP, JASA 64, 1175
- BIRCH, M. W. MAXIMUM LIKELIHOOD IN THREE-WAY CONTINCENCY TABLES, JRSSB 63, 220
- BIRCH, M. W. THE DETECTION OF PARTIAL ASSOCIATION, 1. THE 2 BY 2 CASE, JRSSB 64, 313
- BIRCH, M. W. THE DETECTION OF PARTIAL ASSOCIATION, 2. THE GENERAL CASE. JRSSB 65, 111
- BIRNBAUM, ALLAN AUNIFIED THEORY OF ESTIMATION, I, AMS 61, 112
- BIRNBAUM, ALLAN CONFIDENCE CURVES, AN OMNIBUS TECHNIQUE FOR ESTI-MATION AND TESTING STATISTICAL HYPOTHESES, JASA 61, 246
- BIRNBAUM, ALLAN DISCUSSION OF 'ON THE FOUNDATIONS OF STATISTICAL INFERENCE', JASA 62, 307
- BIRNBAUM, ALLAN EFFICIENCY ROBUST TWO-SAMPLE RANK TESTS, JASA 67,
- BIRNBAUM, ALLAN LOGISTIC ORDER STATISTICS, AMS 63, 658
- BIRNBAUM, ALLAN ON THE ANALYSIS OF FACTORIAL EXPERIMENTS WITHOUT REPLICATION, TECH 59, 343
- BIRNBAUM, ALLAN ON THE FOUNDATIONS OF STATISTICAL INFERENCE, JASA 62,269
- BIRNBAUM, ALLAN ON THE FOUNDATIONS OF STATISTICAL INFERENCE, BINARY EXPERIMENTS, AMS 61, 414
- BIRNBAUM, ALLAN OPTIMAL ROBUSTNESS. A GENERAL METHOD, WITH APPLI-CATIONS TO LINEAR ESTIMATORS OF LOCATION, JASA 67, 1230

- BIRNBAUM, ALLAN SOME PROCEDURES FOR COMPARINC POISSON PROCESSES OR POPULATIONS, BIOKA 53, 447
- BIRNBAUM, Z. W. A STATISTICAL MODEL FOR LIFE-LENCTH OF MATERIALS. JASA 58, 151
- 8IRNBAUM, Z. W. A STOCHASTIC CHARACTERIZATION OF WEAR-OUT FOR COM-PONENTS AND SYSTEMS, AMS 66, 816
- BIRNBAUM. Z. W MULTI-COMPONENT SYSTEMS AND STRUCTURES AND THEIR RELIABILITY, TECH 61, 55
- BIRNBAUM. Z. W. SOME MULTIVARIATE CHEBYSHEV INEQUALITIES WITH EXTENSIONS TO CONTINUOUS PARAMETER PROCESS, AMS 61, 687
- BIRNBAUM, Z. W. TABLES OF CRITICAL VALUES OF SOME RENYI TYPE STATISTICS FOR FINITE SAMPLE SIZES, JASA 69, 870
- BISHIR, J. A LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE— QUADRANT ORIENTED—ATOM PERCOLATION PROCE, JRSSB 63, 401
- BISHOP, Y. M. M. INCOMPLETE TWO-DIMENSIONAL CONTINGENCY TABLES, BIOCS 69, 119
- BISHOP, YVONNE M. M. FULL CONTINCENCY TABLES, LOGITS, AND SPLIT CONTINCENCY TABLES, BIOCS 69, 3B3
- BIZLEY, M. T. L. THE TWO-PACK MATCHING PROBLEM, JRSSB 60, 114
- BLACKWELL, D. NON-EXISTENCE OF EVERYWHERE PROPER CONDITIONAL DISTRIBUTIONS, AMS 63, 223
- BLACKWELL, D. THE LAST RETURN TO EQUILIBRIUM IN A COIN TOSSING CAME, AMS 64, 1344
- BLACKWELL, DAVID MEMORYLESS STRATECIES IN FINITE-STAGE DYNAMIC PROGRAMMINC, AMS 64, 863
- BLACKWELL, DAVID A BOREL SET NOT CONTAINING A GRAPH, AMS 6B, 1345
- BLACKWELL, DAVID A NOTE ON BAYES ESTIMATES, AMS 67, 1907
- BLACKWELL, DAVID A REMARK ON THE GOIN TOSSING GAME, AMS 64, 1345
- BLACKWELL, DAVID DISCOUNTED DYNAMIC PROGRAMMING, AMS 65, 226
- BLACKWELL, DAVID DISCRETE DYNAMIC PROCRAMMING, AMS 62, 719
 BLACKWELL, DAVID MERGING OF OPINIONS WITH INCREASING INFORMA
- BLACKWELL, DAVID MERGING OF OPINIONS WITH INCREASINC INFORMATION. AMS 62, 882
- BLACKWELL, DAVID ON THE LOCAL BEHAVIOR OF MARKOV TRANSITION PROBABILITIES, AMS 68, 2123
- BLACKWELL, DAVID THE BIG MATCH, AMS 6B, 159
- BLACKWELL, DAVID THE TAIL SIGMA-FIELD OF A MARKOV CHAIN AND A THEOREM OF OREY, AMS 64, 1291
- BLALOCK JR, H. M. PROBABILISTIC INTERPRETATIONS FOR THE MEAN SQUARE GONTINCENCY, CORR. 5B 1030, JASA 5B, 102
- BLAND, R. P. ON THE DISTRIBUTIONS OF THE RANGE AND MEAN RANCE FOR SAM-PLES FROM A NORMAL DISTRIBUTION. BLOKA 66, 245
- BLANK, A. A. EXISTENCE AND UNIQUENESS OF A UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR THE BINOM, BIOKA 56, 465
- BLIGHT, B. J. N A NOTE ON A MODIFIED EXPONENTIALLY WEIGHTED PREDIC-TOR, JRSSB 6B, 318
- BLISCHKE, W. R. ESTIMATING THE PARAMETERS OF MIXTURES OF BINOMIAL DISTRIBUTIONS, JASA 64, 510
- BLISCHKE, W. R. MOMENT ESTIMATORS FOR THE PARAMETERS OF A MIXTURE OF TWO BINOMIAL DISTRIBUTIONS, AMS 62, 444
- BLISCHKE, W. R. ON NON-RECULAR ESTIMATION, I. VARIANCE BOUNDS FOR
- ESTIMATORS OF LOGATION PARAMETERS, JASA 69. 1056 BLISCHKE, W. R. VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A
- THREE-WAY CLASSIFICATION, BIOCS 66, 553
 BLISCHKE, W. R. VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICAT, BIOCS 6B, 527
- BLISCHKE, WALLACE R. ASYMPTOTIC PROPERTIES OF SOME ESTIMATORS OF QUANTILES OF CIRCULAR ERROR, JASA 66, 618
- BLISS, C. I. A REJECTION CRITERION BASED UPON THE RANCE, BIOKA 56,
- BLISS, C. I. A TABLE FOR COMPUTING WORKING ANGLES, BIOCS 6B, 413
- BLISS, C. I. FITTING THE RECTANGULAR HYPERBOLA, BIOCS 66, 573
- BLISS, C. I. NECATIVE BINOMIAL DISTRIBUTIONS WITH A COMMON K, BIOKA $58.\,37$
- BLISS, C. I. RESPONSE CRITERIA FOR THE BIOASSAY OF VITAMIN K, BIOCS 69, NO. 4
- BLOCH, DANIEL A NOTE ON THE ESTIMATION OF THE LOCATION PARAMETER OF THE CAUCHY DISTRIBUTION, JASA 66, B52
- BLOCH, DANIEL A. A BAYESIAN STUDY OF THE MULTINOMIAL DISTRIBUTION, AMS 67, 1423
- BLOCH, DANIEL A. ON A SIMPLE ESTIMATE OF THE RECIPROCAL OF THE DENSI-TY FUNCTION, AMS 6B, 1083
- BLOM, G. CORRIGENDA TO 'TRANSFORMATIONS OF THE BINOMIAL, NECATIVE BINOMIAL, POISSON AND CHI-SQUARE DISTRI, BIOKA 56, 235
- BLOM, G. HIERARCHICAL BIRTH AND DEATH PROCESSES. I. THEORY, BIOKA $60\,,\,235$
- BLOM, G. HIERARCHICAL BIRTH AND DEATH PROCESSES. II. APPLICATIONS, BIOKA 60, 245 BLOM, G. TRANSFORMATIONS OF THE BINOMIAL, NEGATIVE BINOMIAL, POIS—
- SON AND CHI-SQUARE DISTRIBUTIONS, BIOKA 54, 302
 BLOM, GUNNAR SOME CONTRIBUTIONS TO THE THEORY OF MACHINE INTER-
- FERENCE, BIOKA 63, 135
 BLOOD, DWIGHT M. A CROSS-SECTION ANALYSIS OF NON-BUSINESS AIR
- TRAVEL, JASA 58, 92B

 BILMA . J R DISTRIBUTION FREE TESTS OF INDEPENDENCE RASED ON THE
- SAMPLE DISTRIBUTION FREE TESTS OF INDEPENDENCE BASED ON THE
- BLUM, J. R. ON A CLASS OF SIMPLE RANDOM WALKS, AMS $63\,,\,413\,$
- BLUM, J. R. ON A THEOREM OF RENYI CONCERNING MIXINC SEQUENCES OF SETS. AMS 61. 257

- BLUM. J. R. ON FIXED PRECISION ESTIMATION IN TIME SERIES, AMS 69, 1021
- BLUM, J. R. ON MULTISTACE ESTIMATION, AMS 63, 1452
- BLUM, J. R. ON PARTIAL 'A PRIORI' INFORMATION IN STATISTICAL IN-FERENCE, AMS 67, 1671
- BLUM, J. R. ON RANDOM SAMPLINC FROM A STOCHASTIC PROCESS, AMS 64, 1713
- BLUMEN, ISADORE A NEW BIVARIATE SIGN TEST, JASA 5B, 44B
- BLUMENSON, L. E. A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF BREAST CANCER, BIOCS 69, 95
- BLUMENSON, L. E. PROPERTIES OF GENERALIZED RAYLEIGH DISTRIBUTIONS, AMS 63, 903
- BLUMENSTEIN, B. A. A GENERALIZATION OF THE LOCISTIC LAW OF CROWTH, BIOCS 69, 577
- BLUMENTHAL, R. M. A THEOREM ON STOPPING TIMES, AMS 64, 1348
- BLUMENTHAL, S. PROPORTIONAL SAMPLINC IN LIFE LENGTH STUDIES, TECH 67, 205
- BLUMENTHAL, SAUL CONTRIBUTIONS TO SAMPLE SPACINGS THEORY, II.
 TESTS OF THE PARAMETRIC GOODNESS OF FIT AND, AMS 66, 925
 BLUMENTHAL, SAUL CONTRIBUTIONS TO SAMPLE SPACINGS THEORY, I. LIMIT
- DISTRIBUTIONS OF SUMS OF RATIOS OF SPA, AMS 66, 904
 BLUMENTHAL, SAUL ESTIMATION OF THE LARGER TRANSLATION PARAMETER,
- AMS 6B, 502
 BLUMENTHAL, SAUL ESTIMATION OF THE LARGEST OF TWO NORMAL MEANS, JASA
- 6B, 861
 BLUMENTHAL, SAUL ESTIMATION OF TWO ORDERED TRANSLATION PARAMETERS,
- AMS 6B, 517
- BLUMENTHAL, SAUL LIMIT THEOREMS FOR FUNCTIONS OF SHORTEST TWO-SAM-PLE SPACINGS AND A RELATED TEST, AMS 67, 10B
- BLUMENTHAL, SAUL MULTINOMIAL SAMPLING WITH PARTIALLY CATEGORIZED DATA, JASA 6B. 542
- BLUMENTHAL, SAUL THE ASYMPTOTIC NORMALITY OF TWO TEST STATISTICS ASSOCIATED WITH THE TWO-SAMPLE PROBLEM, AMS 63, 1513
- BLYTH, C. R. ESTIMATION OF A PARAMETER IN THE CLASSICAL OCCUPANCY PROBLEM, BIOKA 60. 1B0
- BLYTH, C. R. TABLE OF NEYMAN-SHORTEST UNBIASED CONFIDENCE INTER-VALS FOR THE BINOMIAL PARAMETER, BIOKA 60, 381 BLYTH, G. R. TABLES OF NEYMAN-SHORTEST UNBIASED CONFIDENCE INTER-
- VALS FOR THE POISSON PARAMETER, BIOKA 61, 191
 BOAS, R. P. LIPSCHITZ BEHAVIOR AND INTEGRABILITY OF CHARACTERISTIC
- FUNCTIONS, AMS 67, 32
 BOCK, R. DARRELL PROGRAMMING UNIVARIATE AND MULTIVARIATE ANALYSIS
- OF VARIANCE, TECH 63, 95
 BODMER, W. F. DISCRETE STOCHASTIC PROCESSES IN POPULATION GENETICS
 (WITH DISCUSSION), JRSSB 60, 21B
- (WITH DISCUSSION), ARSSEO, 21B BODMER, W. F. THE LIMITINC FREQUENCIES OF INTEGERS WITH A CIVEN PAR-TITIONAL CHARACTERISTIC, JRSSB 59, 134
- BOEN, J. R. A QUANTITATIVE DISGUSSION OF THE EFFECTIVENESS OF VOID-ING AS A DEFENCE ACAINST BLADDER INFECT, BIOCS 66, 53
- BOEN, J. R. USE OF PRIOR INFORMATION TO DESIGN A ROUTINE PARALLEL LINE ASSAY, 810CS 67, 257
- BOES, ARDEL J. CONDITIONAL PROBABILITY ON SIGMA-COMPLETE 800LEAN ALGEBRAS, AMS 69, 970
- BOES, D. C. ON THE ESTIMATION OF MIXING DISTRIBUTIONS, AMS 66, 177 BOFINGER, EVE THE GAP TEST FOR RANDOM SEQUENCES, AMS 61, 524
- BOFINGER, V. J. THE GAP TEST FOR RANDOM SEQUENCES, AMS 61, 524
 BOGOROV, V. G. EXPERIMENTAL DEVELOPMENT OF NUTRITIVE MEDIA FOR
 MICRO-ORGANISMS, BIOKA 68, 43
- BOGYO, T. P. ESTIMATES OF HERITABILITY FROM TRANSFORMED PERCENTAGE SIB DATA WITH UNEQUAL SUBGLASS NUMBERS, BIOCS 65, 1001
- BOGYO, THOMAS P. GORRECTION TO 'GOEFFICIENTS OF VARIATION OF HERITABILITY ESTIMATES OBTAINED FROM VARIANC, BIOCS 65, 265
- BOHREN, 8. B. THE EXPECTED MEAN SQUARES IN GENETIC EXPERIMENTS WHEN ONLY ONE PARENT IS IDENTIFIED. BIOCS 65. 436
- BOHRER, R. ON BAYES STQUENTIAL DESIGN WITH TWO RANDOM VARIABLES, BIOKA 66, 469
- BOHRER, R. ON SHARPENINC SCHEFFE BOUNDS, JRSSB 67, 110
- BOHRER, R. E. SEQUENTIAL COMBINATION CHEMOTHERAPY EXPERIMENTS, BIOCS 66, 730
- BOHRER, ROBERT A NOTE ON TOLERANCE LIMITS WITH TYPE I CENSORING, TECH 68, 392
- BOHRER, ROBERT OPERATING CHARACTERISTICS OF SOME SEQUENTIAL DESIGN RULES, AMS 68, 1176
- BOHRNSTEDT, GEORCE W. ON THE EXACT COVARIANCE OF PRODUCTS OF RANDOM VARIABLES, JASA 69, NO. 4
 BOLGER, E. M. CHARACTERIZATIONS OF SOME DISTRIBUTIONS BY CONDI-
- TIONAL MOMENTS, AMS 65, 703
 BOMBAY, BARBARA F, AN APPROXIMATION OF STUDENT'S T. TECH 65, 71
- BOOKER, AARON NONLINEAR LEAST SQUARES ESTIMATION, AMS 65, 638
- BOOTH, GORDON PLANNING SOME TWO-FACTOR COMPARATIVE SURVEYS, JASA 69,560
- BOOTH, KATHLEEN H. V. SOME SYSTEMATIC SUPERSATURATED DESIGNS, TECH 62, 489

 BORARRAIN, O. M. APPLICATION OF FINITE ABSORBENT MARKOV CHAINS TO
- SIB MATING POPULATIONS WITH SELECTION, BIOCS 69, 17
 BORCH, K. THE THEORY OF RISK (WITH DISCUSSION), JRSSB 67, 432
- BORGES, R. ONE-PARAMETER EXPONENTIAL FAMILIES GENERATED BY TRANS-FORMATION CROUPS, AMS 65, 261

- BORGMAN, LEON E. RANDOM HYDRODYNAMIC FORCES ON OBJECTS, AMS 67, 37 BORTS, GEORGE H. REGIONAL CYCLES OF MANUFACTURING EMPLOYMENT IN THE UNITED STATES, 1914-1953, CORR. 60 75, JASA 60, 151
- BORUS, MICHAEL E. RESPONSE ERROR IN SURVEY REPORTS OF EARNINGS IN-FORMATION, JASA 66, 729
- BOSE, R. C. MOMENTS OF ORDER STATISTICS FROM A NORMAL POPULATION, BIOKA 59, 433
- BOSE, R. C. ON A BOUND USEFUL IN THE THEORY OF FACTORIAL DESIGNS AND ERROR CORRECTING CODES, AMS 64, 40B
 BOSE, R. C. ON METHODS OF CONSTRUCTING SETS OF MUTUALLY ORTHOGONAL
- LATIN SQUARES USING A COMPUTER, TECH 60, 507
- BOSE, R. C. ON METHODS OF CONSTRUCTING SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES USING A COMPUTER. II, TECH 61, 111
- BOSE, R. C. PAIRED COMPARISON DESIGNS FOR TESTING CONCORDANCE BETWEEN JUDGES, 810KA 56, 113
- BOSSO, J. A. APPLICATION OF FINITE ABSORBENT MARKOV CHAINS TO SIB MATING POPULATIONS WITH SELECTION, 810CS 69, 17
- BOSWELL, M. T. DISTRIBUTION OF LIKELIHOOD RATIO IN TESTING AGAINST TREND, AMS 69, 371 BOSWELL, M. T. ESTIMATING AND TESTING TREND IN A STOCHASTIC PROCESS
- OF POISSON TYPE, AMS 66, 1564
- BOUDREAU, PAUL E FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES, AMS 68, 1020
- BOWDEN, D. C. LINEAR SEGMENT CONFIDENCE BANDS FOR SIMPLE LINEAR MODELS, JASA 67, 403
- 80WDEN, DAVID C. CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS, JASA 66, 1B2
- BOWDEN, DAVID C. QUERY, TOLERANCE INTERVAL IN REGRESSION. TECH 6B.
- BOWERS, DAVID A. ESTIMATION IN A HETEROSCEDASTIC REGRESSION MODEL, JASA 68. 552
- BOWKER, ALBERT H. QUALITY AND QUANTITY IN HIGHER EDUCATION, JASA 65.
- BOWMAN, K. HIGHER MOMENTS OF A MAXIMUM-LIKELIHOOD ESTIMATE, JRSSB 63,305
- BOWMAN, MARY JEAN SCHOOLING, EXPERIENCE, AND GAINS AND LOSSES IN HUMAN CAPITAL THROUGH MIGRATION, JASA 67, 875
- BOWMAN, RAYMOND T. CROSSROAD CHOICES FOR THE FUTURE DEVELOPMENT OF THE FEDERAL STATISTICAL SYSTEM, JASA 68, 801
- BOWMAN, RAYMOND T. THE AMERICAN STATISTICAL ASSOCIATION AND FEDERAL STATISTICS, JASA 64. 1
- BOX, G. E. P. A BASIS FOR THE SELECTION OF A RESPONSE SURFACE DESIGN.
 JASA 59, 622
- BOX, G. E. P. A BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS, BIOKA 68,
- BOX. G. E. P. A BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS
 APPLIED TO THE COMPARTSON OF VARIANCES. BLOCA 64, 153
- APPLIED TO THE COMPARISON OF VARIANCES, BIOKA 64, 153 BOX, G. E. P. A CHANGE IN LEVEL OF A NON-STATIONARY TIME SERIES, BIOKA

65.181

- BOX, G. E. P. A CONFIDENCE REGION FOR THE SOLUTION OF A SET OF SIMUL-TANEOUS EQUATIONS WITH AN APPLICATION, BIOKA 54, 190
- BOX, G. E. P. A FURTHER LOOK AT ROBUSTNESS VIA BAYES'S THEOREM, BIOKA 62, 419
- BOX, G. E. P. A NOTE ON CRITERION ROBUSTNESS AND INFERENCE ROBUST-NESS, BIOKA 64, 169
- BOX, G. E. P. A NOTE ON REGIONS FOR TESTS OF KURTOSIS, BIOKA 53, 465 BOX, G. E. P. AN ANALYSIS OF TRANSFORMATIONS (WITH DISCUSSION),
- JRSSB 64, 211 BOX, G. E. P. 8AYESIAN ANALYSIS OF A THREE-COMPONENT HIERARCHICAL
- DESIGN MODEL, 810KA 67, 109 BOX, G. E. P. BAYESIAN ESTIMATION OF MEANS FOR THE RANDOM EFFECT MODEL, JASA 68, 174
- BOX, G. E. P. CONDENSED CALCULATIONS FOR EVOLUTIONARY OPERATION
- PROGRAMS, TECH 59, 77
 BOX, G. E. P. CORRIGENDA, 'A FURTHER LOOK AT ROBUSTNESS VIA BAYES'S THEOREM.', BIOKA 63, 546
- BOX, G. E. P. CORRIGENDA, 'ROBUSTNESS TO NON-NORMALITY OF REGRES-SION TESTS', BIOKA 65, 669
- BOX, G. E. P. CORRIGENDA, 'THE CHOICE OF A SECOND ORDER ROTATABLE DESIGN', BIOKA 65, 305
- DESIGN', BLOKA 65, 305
 BOX, G. E. P. DESIGN OF EXPERIMENTS IN NON-LINEAR SITUATIONS, BIOKA 59, 77
- BOX, G. E. P. DISCRIMINATION AMONG MECHANISTIC MODELS, TECH 67, 57 BOX, G. E. P. DISCUSSION OF 'ON THE FOUNDATIONS OF STATISTICAL IN-FERENCE', JASA 62, 307
- BOX, G. E. P. DISCUSSION OF THE PAPERS OF MESSRS. SATTERTHWAITE AND BUDNE, TECH 59, 157
- BOX, G. E. P. ERRATA, 'SOME NEW THREE LEVEL DESIGNS FOR THE STUDY OF QUANTITATIVE VARIABLES', TECH 61, 576
- BOX, G. E. P. ERRATA, 'THE 2-TO-THE-(K-P) FRACTIONAL FACTORIAL DESIGNS', TECH 63, 417
- BOX, G. E. P. ISN'T MY PROCESS TOO VARIABLE FOR EVOP., TECH 6B, 439
- BOX, G. E. P. MULTI-FACTOR DESIGNS OF FIRST ORDER, BIOKA 52, 49
 BOX, G. E. P. MULTIPARAMETER PROBLEMS FROM A BAYESIAN POINT OF VIEW,
 AMS 65, 1468
- BOX, G. E. P. NON-NORMALITY AND TESTS ON VARIANCES., BIOKA 53, 318
- BOX, G. E. P. PERMUTATION THEORY IN THE DERIVATION OF ROBUST CRITERIA AND THE STUDY OF DEPARTURES FROM AS, JRSSB 55, 1

- BOX, G. E. P. ROBUSTNESS TO NON-NORMALITY OF REGRESSION TESTS, BIOKA 62, 93
- BOX, G. E. P. SOME ASPECTS OF RANDOMIZATION, JRSSB 66, 543
- BOX, G. E. P. SOME NEW THREE LEVEL DESIGNS FOR THE STUDY OF QUANTITA-TIVE VARIABLES, TECH 60, 455
- BOX, G. E. P. SOME STATISTICAL ASPECTS OF ADAPTIVE OPTIMIZATION AND CONTROL (WITH DISCUSSION), JRSSB 62, 297
- BOX, G. E. P. THE BAYESIAN ESTIMATION OF COMMON PARAMETERS FROM SEVERAL RESPONSES, BIOKA 65, 355
- BOX, G. E. P. THE EFFECTS OF ERRORS IN THE FACTOR LEVELS AND EXPERIMENTAL DESIGN, TECH 63, 247
- BOX, G. E. P. THE EXPERIMENTAL STUDY OF PHYSICAL MECHANISMS, TECH 65, 23
 BOX, G. E. P. THE 2-TO-THE-(K-P) FRACTIONAL FACTORIAL DESIGNS, TECH
- 61.311 BOX, G. E. P. THE 2-TO-THE-(K-P) FRACTIONAL FACTORIAL DESIGNS, II,
- TECH 61, 449
- BOX. G. E. P. TRANSFORMATION OF THE INDEPENDENT VARIABLES, TECH 62, 531
- BOX, GEORGE E. P. A NOTE ON AUGMENTED DESIGNS, TECH 66, 1B4
- BOX, GEORGE E. P. A SIMPLE SYSTEM OF EVOLUTIONARY OPERATION SUBJECT TO EMPIRICAL FEEDBACK, TECH 66, 19
- BOX, GEORGE E. P. A USEFUL METHOD FOR MODEL BUILDING, TECH 62, 301
- BOX. GEORGE E. P. THE CHOICE OF A SECOND ORDER ROTATABLE DESIGN, BIOKA 63, 335
- BOX. GEORGE E. P. USE AND ABUSE OF REGRESSION, TECH 66, 625
- BOX, M. J. THE OCCURRENCE OF REPLICATIONS IN OPTIMAL DESIGNS OF EX-PERIMENTS TO ESTIMATE PARAMETERS IN NON, JRSSB 6B, 290
- BOYCE, RAY DISTRIBUTION OF RADICAL ERROR IN THE BIVARIATE ELLIPTI-CAL NORMAL DISTRIBUTION, TECH 62, 13B
- BOYD, D. W. SERIES REPRESENTATIONS OF DISTRIBUTIONS OF QUADRATIC FORMS IN NORMAL VARIABLES, I, CENTRAL CA, AMS 67, B23
- BOYD, D. W. SERIES REPRESENTATIONS OF DISTRIBUTIONS OF QUADRATIC FORMS IN NORMAL VARIABLES, II, NON-CENTR, AMS 67, 838
- BOYD, WILLIAM C. A NOMOGRAM FOR CHI-SQUARE, CORR. 66 1246, JASA 65, 344
- BOYD, WILLIAM C. A NOMOGRAM FOR THE 'STUDENT'*FISHER T TEST, JASA 69, NO.4
- BOYLE, J. A. A COMPARISON OF STATISTICAL TECHNIQUES IN THE DIF-FERENTIAL DIACNOSIS OF NONTOXIC GOTTRE, STOCS 68, 103
- BRACKEN, JEROME PERCENTAGE POINTS OF THE SETA DISTRIBUTION FOR USE IN BAYESIAN ANALYSIS OF BERNOULLI PROC, TECH 66, 6B7
- BRADLEY, HUGH E. MULTIPLE CLASSIFICATION ANALYSIS FOR ARBITRARY EXPERIMENTAL DESIGN, TECH 6B, 13
- BRADLEY, JAMES V. COMPLETE COUNTERBALANCING OF IMMEDIATE SEQUEN-TIAL EFFECTS IN A LATIN SQUARE DESIGN, COR, JASA 5B, 525
- BRADLEY, R. A. CORRIGENDA, 'THE RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. II. ADDITIONAL TABLES FOR THE, BIOKA 64, 288
- BRADLEY, R. A. MULTIVARIATE PAIRED COMPARISONS. THE EXTENSION OF A UNIVARIATE MODEL AND ASSOCIATED ESTIMA, BIOKA 69, B1
- BRADLEY, R. A. ONE-WAY VARIANCES IN A TWO-WAY CLASSIFICATION, BIOKA 58,111
- BRADLEY, R. A. RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. II. ADDI-TIONAL TABLES FOR THE METHOD OF PAIRED, BIOKA 54, 502
- BRADLEY, R. A. RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. III. SOME LARGE-SAMPLE RESULTS ON ESTIMATION AN, 810KA 55, 450
- BRADLEY, RALPH SEQUENTIAL CHI-SQUARE AND T-SQUARE TESTS AND THEIR APPLICATION TO AN ACCEPTANCE SAMPLING P, TECH 61, 519
 BRADLEY, RALPH A. SEQUENTIAL CHI-SQUARED AND T-SQUARED TESTS, AMS
- 61,1063 BRADLEY, RALPH A. SEQUENTIAL RANK TESTS I. MONTE CARLO STUDIES OF
- THE TWO-SAMPLE PROCEDURE, TECH 65, 463
 BRADLEY, RALPH A. SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE
- PROCEDURES, TECH 66, 615
 BRADLEY, RALPH A. THE ASYMPTOTIC PROPERTIES OF MAXIMUM LIKELIHOOD
- ESTIMATORS WHEN SAMPLING FROM ASSOCIATE, BIOKA 62, 205 BRADLEY, RALPH ALLAN RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. I.
- THE METHOD OF PAIRED COMPARISONS., BIOKA 52, 324
 BRADU, DAN MAIN-EFFECT ANALYSIS OF THE GENERAL NON-ORTHOGONAL
- LAYOUT WITH ANY NUMBER OF FACTORS. AMS 65, 88 BRAGA-ILLA, ALVISE A SIMPLE APPROACH TO THE BAYES CHOICE CRITERION.
- BRAGA-ILLA, ALVISE A SIMPLE AFFAVAGA IN THE BATES AND THE CALLED AND THE MATTER OF THE MATTER PROBABILITIES, JASA 64, 1227
 BRAINERD, B. A NOTE ON SIMPLE BINOMIAL SAMPLING PLANS, AMS 61, 906
- BRANDWOOD, L. ON A DISCRIMINATORY PROBLEM CONNECTED WITH THE WORKS OF PLATO, JRSSB 59, 195
- BRASS, W. SIMPLIFIED METHODS OF FITTING THE TRUNCATED NEGATIVE BINOMIAL DISTRIBUTION, 810KA 58, 59
- BRAY, D. F. EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR METHODS OF REPRO, BIOCS 65, 447
- BREAKWELL, JOHN SEQUENTIAL TESTS FOR THE MEAN OF A NORMAL DISTRIBU-TION II, LARGE T. AMS 64, 162
- BREAKWELL, JOHN V. ECONOMICALLY OPTIMUM ACCEPTANCE TESTS, JASA 56, 243
 BREIMAN, LEO A DELICATE LAW OF THE ITERATED LOGARITHM FOR NON-
- DECREASING STABLE PROCESSES (ADDENDUM, 691, AMS 68, 1818 BREIMAN, LEO CONSISTENT ESTIMATES AND ZERO-ONE SETS, AMS 64, 157
- BREIMAN, LEO CONVERGENCE PROPERTIES OF A LEARNING ALGORITHM. AMS 64.1819

- BREIMAN, LEO THE POISSON TENDENCY IN TRAFFIC DISTRIBUTION, AMS 63, 308
- BREITENBERGER, ERNEST ANALOCUES OF THE NORMAL DISTRIBUTION ON THE CIRCLE AND THE SPHERE, 810KA 63, 81
- BRELSFORD, W. M. TIME SERIES WITH PERIODIC STRUCTURE, BIOKA 67, 403 BREMS, HANS WACE, PRICE, AND TAX ELASTICITIES OF OUTPUT AND DIS-TRIBUTIVE SHARES, JASA 62, 607

BRENNA, LEROY STANLEY FACTORIAL TREATMENTS IN RECTANCULAR LATTICE DESIGNS, JASA 61, 36B

- BRETHERTON, M. H. TABLES OF THE LOCARITHMIC SERIES DISTRIBUTION, AMS 64, 284
- BREUER, M. A. THE BOREL-TANNER DISTRIBUTION, BIOKA 60, 143
- BREWER, K. R. W. A NOTE ON FELLECI'S METHOD OF SAMPLING WITHOUT REPLACEMENT WITH PROBABILITY PROPORTIONAL, JASA 67, 79
- BRILLINCER, D. R. A MOVING AVERAGE REPRESENTATION FOR RANDOM VARIA-BLES COVARIANCE STATIONARY ON A FINITE, BIOKA 65, 295
- BRILLINCER, D. R. AN EXTREMAL PROPERTY OF THE CONDITIONAL EXPECTATION, BIOKA 66, 594
 BRILLINCER, D. R. ASYMPTOTIC PROPERTIES OF SPECTRAL ESTIMATES OF
- SECOND ORDER, BIOKA 69, 375
 BRILLINGER, D. R. ESTIMATION OF THE GROSS-SPECTRUM OF A STATIONARY
- BIVARIATE GAUSSIAN PROCESS FROM ITS ZE, JRSSB 68, 145
- BRILLINGER, DAVID AN INTRODUCTION TO POLYSPECTRA, AMS 65, 1351 BRILLINGER, DAVID R. A NOTE ON THE RATE OF CONVERGENCE OF A MEAN, BIOKA 62, 574
- BRILLINGER, DAVID R. A NOTE ON THE RE-USE OF SAMPLES, AMS 63, 341
- BRILLINCER, DAVID R. EXAMPLES 8EARING ON THE DEFINITION OF FIDUCIAL PROBABILITY WITH A BIBLIOCRAPHY, AMS 62, 1349
- BRILLINCER, DAVID R. NECESSARY AND SUFFICIENT CONDITIONS FOR A STATISTICAL PROBLEM TO 8E INVARIANT UNDER, AMS 63, 492
- BRINEGAR, C. S. STATISTICAL ESTIMATION OF THE GASOLINE OCTANE NUMBER REQUIREMENT OF NEW MODEL AUTOMOBILES, TECH 60, 5
- BRINEGAR, CLAUDE S. MARK TWAIN AND THE QUINTUS CURTIUS SNODCRASS LETTERS, A STATISTICAL TEST OF AUTHORSHI, JASA 63, 85
- BROADBENT, S. R. EXAMINATION OF A QUANTUM HYPOTHESIS BASED ON A SIN-GLE SET OF DATA, BIOKA 56, 32
- BROADBENT, S. R. LOGNORMAL APPROXIMATION TO PRODUCTS AND QUOTIENTS, BIOKA 56, 404
- BROADBENT, S. R. QUANTUM HYPOTHESES, BIOKA 55, 45
- BROADBENT, S. R. THE INSPECTION OF A MARKOV PROCESS, JRSSB 58, 111 BROADBENT, S. R. THE QUOTIENT OF A RECTANGULAR OR TRIANGULAR AND A CENERAL VARIATE, BIOKA 54, 330
- BROCK, N. A SCREENING SYSTEM FOR ANTI-CANCER AGENTS BASED ON THE THERAPEUTIC INDEX, BIOCS 65, 150
- BROEMELING, L. D. CONFIDENCE INTERVALS FOR MEASURES OF HERITABILI-TY, BIOCS 69, 424
- BROEMELINC, L. D. GONFIDENCE REGIONS FOR VARIANCE RATIOS OF RANDOM MODELS, JASA 69, 660
- BRONS, H. K. GENERALIZED MEANS AND ASSOCIATED FAMILIES OF DISTRIBU-TIONS, AMS 69, 339
- BROOK, D. ON THE DISTINCTION BETWEEN THE GONDITIONAL PROBABILITY AND THE JOINT PROBABILITY APPROACHES IN, BIOKA 64, 4B1
- BROOKHOUSE, J. K. SOME ACCEPTANCE SAMPLING PLANS BASED ON THE THEORY OF RUNS, TECH 62, $177\,$
- BROSS, I. D. J. A MATHEMATICAL ANALYSIS OF THE GROWTH AND SPREAD OF BREAST CANCER, BIOCS 69, 95
- BROSS, IRWIN D. J. DISCUSSION OF 'A SUBJECTIVE EVALUATION OF 80DE'S LAW AND AN 'OBJECTIVE' TEST FOR APPRO, JASA 69, 50
- BROSS, IRWIN D. J. DISCUSSION OF 'ON THE FOUNDATIONS OF STATISTICAL INFERENCE', JASA 62, 307
- BROSS, IRWIN D. J. OUTLIERS IN PATTERNED EXPERIMENTS. A STRATECIC APPRAISAL, TEGH 61, 91
- BROSS, IRWIND. J. RAPID ANALYSIS OF 2X2 TABLES, JASA 57, 1B
- BROSS, IRWIND. J. TAKING A COVARIABLE INTO ACCOUNT, JASA 64, 725
- BROWN JR. 8. W. PLANNING A QUANTAL ASSAY OF POTENCY, 810GS 66, 322 BROWN JR. B. W. USE OF PRIOR INFORMATION TO DESIGN A ROUTINE PARALLEL
 - LINE ASSAY, BIOCS 67, 257
- BROWN JR, B. WM. SOME PROPERTIES OF THE SPEARMAN ESTIMATOR IN BIOASSAY, BIOKA 61, 293
- BROWN, B. M. USE OF RANCE IN TESTING HETEROCENEITY OF VARIANCE, BIOKA 66, 221
- BROWN, BARRY W. ON THE ITERATIVE METHOD OF DYNAMIC PROGRAMMING ON A FINITE SPACE DISCRETE TIME MARKOV PRO, AMS 65. 1279
- BROWN, BRUCE M. MOMENTS OF A STOPPING RULE RELATED TO THE CENTRAL LIMIT THEOREM, AMS 69, 1236
- BROWN, G. H. AN EMPIRICAL STUDY OF THE DISTRIBUTION OF THE SAMPLE GENETIC CORRELATION COEFFICIENT, BIOCS 69, 63
- BROWN, G. H. THE USE OF CORRELATED VARIABLES FOR PRELIMINARY CULLING, BIOCS 67, 551
- BROWN, J. A. C. AN ESTIMATION PROBLEM IN QUANTITATIVE ASSAY, BIOKA 54, 33B
- BROWN, L. INADMISSIBILITY OF THE USUAL ESTIMATORS OF SCALE PARAMETERS IN PROBLEMS WITH UNKNOWN LOCATION A, AMS 6B, 29
- BROWN, L. SUFFICIENT STATISTICS IN THE CASE OF INDEPENDENT RANDOM VARIABLES, AMS 64, 1456
- BROWN, L. THE CONDITIONAL LEVEL OF STUDENT'S T TEST, AMS 67, 1068
- BROWN, LAWRENCE DAVID ON THE ADMISSIBILITY OF INVARIANT ESTIMATORS OF ONE OR MORE LOCATION PARAMETERS, AMS 66, 1087

- BROWN, M. 8. THE TWO MEANS PROBLEM A SECONDARILY BAYES APPROACH, BIOKA 67, 85
- BROWN, MORTON B. BOUNDS ON THE DISTRIBUTION FUNCTIONS OF THE BEHRENS-FISHER STATISTIC, AMS 66, 639
- BROWN, MURRAY A FORECASTING MODEL OF FEDERAL PURCHASES OF COODS AND SERVICES, JASA 62, 633
- BROWN, MURRAY EX ANTE AND EX POST DATA IN INVENTORY INVESTMENT, JASA
- BROWN, R. L. SIVARIATE STRUCTURAL RELATION, BIOKA 57, 84
- BROWN, R. L. MULTIVARIATE LINEAR STRUCTURAL RELATIONS, BIOKA 58,
- BROWN, SUSANNAH CENERALISED COVARIANCE ANALYSIS WITH UNEQUAL ER-ROR, BIOCS 69, NO.4
- BROWN, SUSANNAH THE QUANTAL RESPONSE ANALYSIS OF A SERIES OF BIOLOG-ICAL ASSAYS ON THE SAME SUBJECTS, BIOKA 60, 23
- BROWN, THOMAS A. ENTROPY AND CONJUGACY, AMS 63, 226
- BROWNLEE, K. A. A NOTE ON THE EFFECTS OF NONRESPONSE ON SURVEYS, JASA 57, 29
- 8ROWNLEE, K. A. A REVIEW OF 'SMOKING AND HEALTH', JASA 65, 722
- BROWNLEE, K. A. STATISTICAL EVALUATION OF CLOUD SEEDING OPERA-TIONS, JASA 60, 446
- BRUCKNER, L. INTERPOLATION OF HOMOGENEOUS RANDOM FIELDS ON DISCRETE GROUPS, AMS 69, 251
- BRUNK, H. D. CONDITIONAL EXPECTATION GIVEN A SICMA-LATTICE AND AP-PLICATIONS, AMS 65, 1339
- BRUNK, H. D. DISTRIBUTION OF LIKELIHOOD RATIO IN TESTING AGAINST TREND, AMS 69, 371
- BRUNK, H. D. CENERALIZED MEANS AND ASSOCIATED FAMILIES OF DISTRIBU-TIONS, AMS 69, 339 BRUNK, H. D. MATHEMATICAL MODELS FOR RANKING FROM PAIRED COM-
- PARISONS, JASA 60, 503
 BRUNK, H. D. MAXIMUM LIKELIHOOD ESTIMATION OF THE DISTRIBUTIONS OF
- TWO STOCHASTICALLY ORDERED RANDOM VARI, JASA 66, 1067
 BRUNK, H. D. ON THE RANGE OF THE DIFFERENCE BETWEEN HYPOTHETICAL
- DISTRIBUTION FUNCTION AND PYKE'S MODIFIE, AMS 62, 525
- BRYAN-JONES, J. A DESIGN BALANCED FOR TREND, BIOKA 6B. 535 BRYANT, EDWARD C. DESIGN AND ESTIMATION IN TWO-WAY STRATIFICATION, JASA 60. 105
- BRYSON, MARION R. ERRORS OF CLASSIFICATION IN A BINOMIAL POPULA-TION, JASA 65, 217
- BRYSON, MAURICE G. SOME CRITERIA FOR AGINC, JASA 69, NO. 4
- BUCK, S. F. A METHOD OF ESTIMATION OF MISSING VALUES IN MULTIVARIATE DATA SUITABLE FOR USE WITH AN ELECTR, JRSSB 60, 302
- BUCKLE, N. AN APPROXIMATION TO THE WILCOXON-MANN-WHITNEY DISTRIBU-TION, JASA 69, 591
- BUCKLEY, D. J. SOME RESULTS FOR FIXED-TIME TRAFFIC SIGNALS, JRSSB 64, 133
- BUCY, R.S. REGURRENT SETS, AMS 65, 535
- BUDNE, T. A. ERRATA, 'THE APPLICATION OF RANDOM BALANCE DESIGNS' TECH 59, 419
- BUDNE, T. A. THE APPLICATION OF RANDOM BALANCE DESIGNS, TECH 59, 139
 BUECHLEY, ROBERT W. A REPRODUCIBLE METHOD OF COUNTING PERSONS OF
 SPANISH SURNAME, JASA 61, 88
- BUEHLER, R J. CONFIDENCE LIMITS FOR THE RELIABILITY OF SERIES SYSTEMS, JASA 67, 1452
- BUEHLER, R. J. FIDUCIAL THEORY AND INVARIANT ESTIMATION. AMS 66, 643 BUEHLER, R. J. FIDUCIAL THEORY AND INVARIANT PREDICTION, AMS 67, 795
- BUEHLER, R. J. NOTE ON A GONDITIONAL PROPERTY OF STUDENT'S T, AMS 63, 1098
- BUEHLER, R. J. SOME INFERENCES ABOUT CAMMA PARAMETERS WITH AN APPLICATION TO A RELIABILITY PROBLEM, JASA 63, 670
- BUEHLER, ROBERT J. GONFIDENCE INTERVALS FOR THE PRODUCT OF TWO BINOMIAL PARAMETERS, JASA 57, 4B2
- BUEHLER, ROBERT J. THE LIMIT OF THE NTH POWER OF A DENSITY, AMS 65, 1878
- BUENAVENTURA, ANGELES R. UPPER PERCENTAGE POINTS OF A SUBSTITUTE F-RATIO USING RANCES, BIOKA 61, 195
- BUHLER, WOLFCANG J. SLOWLY BRANCHINC PROCESSES, AMS 67, 919
- BUHLER, WOLFCANC J. THE TREATMENT OF TIES IN THE WILCOXON TEST, AMS $67,\,519$
- BUHLMANN, HANS PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS, AMS 63, 501
- BULGREN, W. C. A NOTE ON REPRESENTATIONS OF THE DOUBLY NON-CENTRAL T DISTRIBUTION, JASA 6B, 1013
- BULCREN, W. C. AN ESTIMATION PROCEDURE FOR MIXTURES OF DISTRIBUTIONS, JRSSB 68, 444
- BULCREN, WILLIAMG. A NOTE ON A DOUBLE SAMPLE TEST, JASA 69, NO.4 BULMER, M. G. APPROXIMATE CONFIDENCE LIMITS FOR COMPONENTS OF VARI-ANCE, BIORA 57, 159
- BULMER, M. G. CONFIDENCE INTERVALS FOR DISTANCE IN THE ANALYSIS OF VARIANCE, BIOKA 58, 360
- BULMER, M. C. CONFIRMING STATISTICAL HYPOTHESES, JRSSB 57, 125 BURCH, S. W. THE FORECASTING ACCURACY OF CONSUMER ATTITUDE DATA, JASA 69, NO.4
- BURCH, SUSAN W. SELECTED ECONOMIC DATA, ACCURACY VS. REPORTING SPEED, JASA 6B, 436
- BURDICK, DONALD S. COMPUTER SIMULATION EXPERIMENTS WITH ECONOMIC SYSTEMS. THE PROBLEM OF EXPERIMENTAL DES, JASA 67, 1315

- BURK, MARCUERITE C. SOME ANALYSES OF INCOME-FOOD RELATIONSHIPS. JASA 58, 905
- BURKE, CEORCE A UNIFORM ERCODIC THEOREM, AMS 65, 1853
- BURKE, P. J. THE DEPENDENCE OF DELAYS IN TANDEM QUEUES, AMS 64, 874
- BURKE, P. J. THE OUTPUT PROCESS OF A STATIONARY M-MS QUEUEINC SYSTEM, AMS 68, 1144
- BURKHOLDER, D. L. INDEPENDENT SEQUENCES WITH THE STEIN PROPERTY, AMS 68. 12B2
- BURKHOLDER, D. L. MARTINCALE TRANSFORMS, AMS 66, 1494
- BURKHOLDER, D. L. ON THE ORDER STRUCTURE OF THE SET OF SUFFICIENT SUBFIELDS. AMS 62, 596
- BURKHOLDER, D. L. OPTIMUM PROPERTIES AND ADMISSIBILITY OF SEQUEN-TIAL TESTS, AMS 63, 1
- BURKHOLDER, D. L. SUCCESSIVE CONDITIONAL EXPECTATIONS OF AN IN-TECRABLE FUNCTION, AMS 62, 887
- BURKHOLDER, D. L. THE SUFFICIENCY IN THE UNDOMINATED CASE, AMS 61,
- GROWTH-INVARIANT DISCRIMINANT FUNCTIONS AND GENERALIZED DISTANCES, BIOCS 66. 96
- BURNETT-HALL, D. G. INDICES OF SYNCHRONY IN CELLULAR CULTURES. 8IOCS 67, 693
- BURR, E. J. DISTRIBUTION OF THE TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL SAMPLES, AMS 63, 95
- BURR, E. J. LONGEST RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED ATTRIBUTE, BIOKA 61, 461
- BURR, E. J. SMALL-SAMPLE DISTRIBUTIONS OF THE TWO-SAMPLE CRAMER-VON MISES' W-SQUARED AND WATSON'S U-SQUAR, AMS 64, 1091
- BURR, E. J. THE DISTRIBUTION OF KENDALL'S SCORE S FOR A PAIR OF TIED RANKINGS, BIOKA 60, 151
- SURR, IRVINC W. A USEFUL APPROXIMATION TO THE NORMAL DISTRIBUTION FUNCTION, WITH APPLICATION TO SIMULATIO, TECH 67, 647
- BURR, IRVINC W. CORRECTION, 'CALCULATION OF EXACT SAMPLING DIS-TRIBUTION OF RANGES FROM A DISCRETE POPULAT, AMS 67, 280
- BURR, IRVING W. ON A CENERAL SYSTEM OF DISTRIBUTIONS, I. ITS CURVE-SHAPE CHARACTERISTICS II. THE SAMPLE M. JASA 68, 627
- BURR, IRVING W. ON A GENERAL SYSTEM OF DISTRIBUTIONS, III. THE SAM-PLE RANGE, JASA 68, 636
- BURR, IRVING W. QUERY, CALCULATION OF THE SAMPLINC DISTRIBUTION OF THE RANCE, TECH 65, 73
- BURROWS, C. CORRICENDA, 'SOME NUMERICAL RESULTS FOR WAITING TIMES IN THE QUEUE E-SU8-K-M-1.', BIOKA 60, 484
- BURROWS, C. SOME NUMERICAL RESULTS FOR WAITING TIMES IN THE QUEUE E-SUB-K-M-1, BIOKA 60, 202
- BURROWS, G. L. AN ASYMPTOTIC DISTRIBUTION FOR AN OCCUPANCY PROBLEM WITH STATISTICAL APPLICATIONS, TECH 61, 79
- BURROWS, C. L. ERRATA, 'THE EFFECT OF SEQUENTIAL BATCHING FOR AC-
- CEPTANCE-REJECTION SAMPLINC UPON SAMPLE A, TECH 61, 131 BURROWS, G. L. THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE, RE-
- JECTION SAMPLING UPON SAMPLE ASSURANCE, TECH 60, 19 BURSTEIN, HERMAN APPROXIMATING THE LOWER BINOMIAL CONFIDENCE LIMIT
- (CORR. 69 669), JASA 68, 1413 BUSH, K. A. CORRIGENDA, 'EXTREMA OF QUADRATIC FORMS WITH APPLICA-
- TIONS TO STATISTICS', BIOKA 61, 474 EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO
- STATISTICS, BIOKA 59, 4B3 BUSH, NORMAN A COMPARISON OF THREE DIFFERENT PROCEDURES FOR ESTI-
- MATING VARIANCE COMPONENTS, TECH 63, 421 BUSH, SEYMOUR A PROCEDURE FOR CONSTRUCTING INCOMPLETE BLOCK DESIGNS, TECH 64, 389
- BUTCHER, J. C. TREATMENT VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY CORRELATED OBSERVATIONS, 810KA 56, 208
- BUTLER, CALVIN ASYMPTOTIC JOINT DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM MULTIVARIATE DISTRIBUTI, JASA 69, 300
- BUTLER, CALVIN C. A TEST FOR SYMMETRY USING THE SAMPLE DISTRIBUTION
- FUNCTION, AMS 69, NO.6 CABELLO, OCTAVIO THE USE OF STATISTICS IN THE FORMULATION AND
- EVALUATION OF SOCIAL PROCRAMMES, JASA 60, 454 CACOULLOS, T. ASYMPTOTIC DISTRIBUTION FOR A GENERALIZED BANACH
- MATCH BOX PROBLEM, JASA 67, 1252
- CACOULLOS, T. ON A CLASS OF ADMISSIBLE PARTITIONS. AMS 66, 189 CACOULLOS, T. ON THE 81AS OF FUNCTIONS OF CHARACTERISTIC ROOTS OF A RANDOM MATRIX, 810KA 65, 87
- CACOULLOS, T. ON THE DISTRIBUTION OF THE BIVARIATE RANGE, TECH 67, 476
- CACOULLOS, T. A. A COMBINATORIAL DERIVATION OF THE DISTRIBUTION OF THE TRUNCATED POISSON SUFFICIENT STATI, AMS 61, 904
- CACOULLOS, THEOPHILOS A RELATION BETWEEN T AND F-DISTRIBUTIONS, CORR. 65 1249, JASA 65, 528 CACOULLOS, THEOPHILOS CHARACTERIZATIONS OF NORMALITY BY CONSTANT
- RECRESSION OF LINEAR STATISTICS ON ANOTH, AMS 67, 1894 CADWELL, J. H. AN APPROXIMATION TO THE SYMMETRICAL INCOMPLETE BETA
- FUNCTION, BIOKA 52, 204
- CADWELL, J. H. APPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE, BIOKA 53, 336
- CADWELL, J. H. THE BIVARIATE NORMAL INTEGRAL, BIOKA 51, 475
- CADWELL, J. H. THE DISTRIBUTION OF QUANTILES OF SMALL SAMPLES, BIOKA 52, 207

- CADWELL, J. H. THE STATISTICAL TREATMENT OF MEAN DEVIATION, BIOKA 54, 12
- CACAN, PHILLIP THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERACE SAV-INC, JASA 64, 737 CALINSKI, T. ON THE DISTRIBUTION OF THE F-TYPE STATISTICS IN THE
- ANALYSIS OF A CROUP OF EXPERIMENTS, JRSSB 66, 526
- CAMERON, J. M. THE STATISTICAL CONSULTANT IN A SCIENTIFIC LABORATO-RY, TECH 69, 247
- CAMPBELL, R. C. THE CHICK ASSAY OF LYSINE, BIOCS 66, 58
- CAMPBELL, VINCENT N. A NOTE ON CALCULATING TAU AND AVERAGE TAU AND ON THE SAMPLINC DISTRIBUTION OF AVERAC, JASA 62, 567
- CAMPLING, C. E. C. SERIAL SAMPLING ACCEPTANCE SCHEMES FOR LARGE BATCHES OF ITEMS WHERE THE MEAN QUALITY H, BIOKA 68, 393
- CAMPLING, C. E. C. THE DECISION THEORY APPROACH TO SAMPLING INSPEC-TION (WITH DISCUSSION), JRSSB 66, 381
- CANE, CWENDA LONCEST RUN OF CONSECUTIVE OBSERVATIONS HAVING A SPECIFIED ATTRIBUTE, BIOKA 61, 461
- CANE, VIOLET R. BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS (WITH DISCUSSION), JRSSB 59, 36
- CANE, VIOLET R. ON THE SIZE OF AN EPIDEMIC AND THE NUMBER OF PEOPLE HEARING A RUMOUR, JRSSB 66, 487
- SOME STATISTICAL PROBLEMS IN EXPERIMENTAL CANE, VIOLET R. PSYCHOLOCY (WITHDISCUSSION), JRSSB 56, 177
- CANNINGS, C. A GRAPHICAL METHOD FOR THE STUDY OF COMPLEX GENETICAL SYSTEMS WITH SPECIAL REFERENCE TO EQUI, BIOCS 69, NO. 4
- CANNINGS, C. EQUILIBRIUM UNDER SELECTION AT A MULTI-ALLELIC SEX-LINKED LOCUS (ACKNOWLEDCEMENT 68 1025), BIOCS 68, 187
- CANTEY, WILBERT E. THE OPTIMUM STRATECY IN BLACKJACK, CORR. 59 810. JASA 56, 429
- CAPON. JACK A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-WHITNEY-WILCOXON STATISTIC, JASA 61, 687
- CAPON, JACK ASYMPTOTIC EFFICIENCY OF CERTAIN LOCALLY MOST POWERFUL RANK TESTS, AMS 61, 88
- CAPON, JACK ON THE ASYMPTOTIC EFFICIENCY OF THE KOLMOCOROV-SMIRNOV TEST, JASA 65, 843
- CAPON, JACK RADON-NIKODYM DERIVATIVES OF STATIONARY GAUSSIAN MEA-SURES, AMS 64, 517
- CARLSON, F. D. LINEAR RELATIONSHIPS BETWEEN VARIABLES AFFECTED BY ERRORS, 8IOCS 66, 252
- CARLSON, P.G. A NOTE ON MIDRANGE, AMS 65, 1052
- CARLSSON, SIV SOME PROPERTIES OF STATISTICAL RELIABILITY FUNC-TIONS, AMS 66, B26
- CARLYLE, J. W. IDENTIFICATION OF STATE-CALCULABLE FUNCTIONS OF FINITE MARKOV CHAINS, AMS 67, 201
- CARNEY, EDWARD J. RELATIONSHIP OF GENERALIZED POLYKAYS TO UN-RESTRICTED SUMS FOR BALANCED COMPLETE FINITE, AMS 6B, 643
- CARPENTER, J. A. THE MILLS RATIO AND THE PROBABILITY INTEGRAL FOR A PEARSON TYPE IV DISTRIBUTION., BIOKA 65, 119
- CARTER, CHARLES F. A TEST OF THE ACCURACY OF A PRODUCTION INDEX, JASA 56, 17
- CASAS, EDUARDO SPATIAL RELATIONSHIP AMONG EICHT POPULATIONS ZEA MAYS L. UTILIZING INFORMATION FROM A DIAL, BIOCS 68, B67
- CASLEY, D. J. A QUICK ESTIMATE OF THE RECRESSION COEFFICIENT, BIOKA 58.431
- CATTELL, R. B. FACTOR ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS, BIOCS 65, 190
- CATTELL, RAYMOND B. FACTOR ANALYSIS, AN INTRODUCTION TO ESSEN-TIALS. 2. THE ROLE OF FACTOR ANALYSIS IN RES, BIOCS 65, 405
- CAUSEY, B. D. SOME EXAMPLES OF MULTI-DIMENSIONAL INCOMPLETE BLOCK DESIGNS, AMS 68, 1577
- CAUSTON, D. R. A COMPUTER PROGRAM FOR FITTING THE RICHARDS FUNCTION, BIOCS 69, 401
- CAUSTON, D. R. ADJOINT MATRICES FOR POLYNOMIAL REGRESSION (COR-RECTIONS 68 1025), BIOCS 68, 401
- CAVALLI-SFORZA, L. L. A METHOD FOR CLUSTER ANALYSIS, BIOCS 65, 362
- CELL, JOHN W. THE DISTRIBUTION OF THE PRODUCT OF TWO CENTRAL OR NON-CENTRAL CHI-SQUARE VARIATES, AMS 62, 1016
- CHACKO, V. J. TESTING HOMOGENEITY AGAINST ORDERED ALTERNATIVES, AMS 63, 945
- CHADDHA, R. L. AN EMPIRICAL COMPARISON OF DISTANCE STATISTICS FOR POPULATIONS WITH UNEQUAL COVARIANCE MAT, BIOCS 6B, 683
- CHAKRABARTY, R. P. SAMPLING TECHNIQUES FOR ESTIMATION OF INCIDENCE OF RED SPIDER MITE ON TEACROP IN NORT, BIOCS 66, 385
- CHAKRAVARTI, I. M. ASYMPTOTIC RELATIVE EFFICIENCY OF MOOD'S AND MASSEY'S TWO SAMPLE TESTS AGAINST SOME PA, AMS 62, 1375
- CHAKRAVARTI, I. M. ON METHODS OF CONSTRUCTING SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES USING A COMPUTER, TECH 60, 507
- CHAKRAVARTI, I. M. ON METHODS OF CONSTRUCTING SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES USING A COMPUTER., TECH 61, 111
- CHAKRAVARTI, I. M. ON SOME METHODS OF CONSTRUCTION OF PARTIALLY BALANCED ARRAYS, AMS 61, 1181
- CHAKRAVARTI, I. M. QUERY, SMALL TRIMMED SAMPLES, TECH 66, 193
- CHAMBERS, C. EXTENSION OF TABLES OF PERCENTAGE POINTS OF THE LARGEST VARIANCE RATIO S-SQUARE-MAX-OVER-S-S, 810KA 67, 225
- CHAMBERS, ELIZABETH A. DISCRIMINATION BETWEEN ALTERNATIVE BINARY RESPONSE MODELS, BIOKA 67, 573
- CHAMBERS, J. M. ON METHODS OF ASYMPTOTIC APPROXIMATION FOR MUL-TIVARIATE DISTRIBUTIONS, 810KA 67, 367

- CHAMBERS, M. L. USE OF DOUBLE SAMPLING FOR SELECTING BEST POPULA-TION, BIOKA 64, 49
- CHAMPERNOWNE, D. C. AN ELEMENTARY METHOD OF SOLUTION OF THE QUEUEINC PROBLEM WITH A SINGLE SERVER AND CON. JRSSB 56, 125
- CHAN, L. K. ON CUPTA'S ESTIMATES OF THE PARAMETERS OF THE NORMAL DIS-TRIBUTION, BIOKA 64. 498
- CHAN, L. K. REMARK ON THE LINEARIZED MAXIMUM LIKELIHOOD ESTIMATE, AMS 67. 1B76
- CHAN, LAI K. SOME BOUNDS FOR EXPECTED VALUES OF ORDER STATISTICS, AMS 65, 1055
- CHAN, NAING, ON CIRCULAR FUNCTIONAL RELATIONSHIPS, JRSSB 65, 45
- CHANDA, K. C. A NOTE ON THE CONSISTENCY AND MAXIMA OF THE ROOTS OF LIKELIHOOD EQUATIONS, BIOKA 54, 56
- CHANDA, K. C. ASYMPTOTIC EXPANSIONS FOR A CLASS OF DISTRIBUTION FUNCTIONS, AMS 63, 1302
- CHANDA, K. C. ASYMPTOTIC EXPANSIONS FOR TESTS OF GOODNESS OF FIT FOR LINEAR AUTOREGRESSIVE SCHEMES, BIOKA 64, 459
- CHANDA, K. C. COMPARATIVE EFFICIENCIES OF METHODS OF ESTIMATING PARAMETERS IN LINEAR AUTORECRESSIVE SCHEM, BIOKA 61, 427
- CHANDA, K. C. ON BOUNDS OF SERIAL CORRELATIONS, AMS 62, 1457
- CHANDA, K. C. ON THE EFFICIENCY OF TWO-SAMPLE MANN-WHITNEY TEST FOR DISCRETE POPULATIONS. AMS 63, 612
- CHANDA, K. C. SAMPLING PROPERTIES OF TESTS OF GOODNESS-OF-FIT FOR LINEAR AUTORECRESSIVE SCHEMES, JRSSB 62, 492
- CHANDRASEKHARARAO, K. CUBIC DESICNS, AMS 64.389
- CHANMUGAN. J. THE ESTIMATION OF SLOPE WHEN THE ERRORS ARE AUTOCORRE-LATED, JRSSB 62, 199
- CHAPMAN, D. G. ASYMPTOTIC POWER OF CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS, BIOCS 68, 315
- CHAPMAN, D. G. CORRECTION. 'A COMPARATIVE STUDY OF SEVERAL ONE-SIDED GOODNESS-OF-FIT TESTS', AMS 65, 15B3
- CHAPMAN, D. G. DISCUSSION OF HOEFFDINGS PAPER, AMS 65, 401
- CHAPMAN, D. G. ESTIMATES OF MORALITY AND POPULATION FROM SURVEY-REMOVAL RECORDS, BIOCS 65, 921
- CHAPMAN, D. G. POPULATION ESTIMATION BASED ON CHANGE OF COMPOSITION CAUSED BY A SELECTIVE REMOVAL, BIOKA 55, 279
- CHAPMAN, D. G. THE ESTIMATION OF MORTALITY AND RECRUITMENT FROM A SINCLE TAGGING EXPERIMENT, BIOCS 65, 529
- CHAPMAN, DOUGLAS G. THE POWER OF CHI SQUARE TESTS FOR CONTINCENCY TABLES, JASA 66, 965
- CHARNES, A. CHANGE CONSTRAINTS AND NORMAL DEVIATES, JASA 62, 134 CHASE, G. R. ON THE EFFICIENCY OF MATCHED PAIRS IN BERNOULLI TRIALS,
- BIOKA 68, 365
- CHATFIELD, C. ON ESTIMATING THE PARAMETERS OF THE LOGARITHMIC SE-RIES AND NECATIVE BINOMIAL DISTRIBUTIONS, BIOKA 69, 411
- CHATTERJEE, SAMPRIT MULTIVARIATE STRATIFIED SURVEYS, JASA 68, 530 CHATTERJEE, SHOUTIR KISHORE A BIVARIATE SIGN TEST FOR LOCATION, AMS
- CHATTERJEE, SHOUTIR KISHORE SEQUENTIAL INFERENCE PROCEDURES OF STEIN'S TYPE FOR A CLASS OF MULTIVARIATE R, AMS 62, 1039
- CHATTERJI, S. D. AN L-TO-THE-P CONVERCENCE THEOREM, AMS 69, 106B
- CHAZAN, DAN A NOTE ON CONVERGENCE OF SUB-MARTINGALES, AMS 64, 1B11 CHEN, H. SEQUENTIAL ESTIMATION OF QUANTAL RESPONSE CURVES, A NEW METHOD OF ESTIMATION BIOKA 66 439
- CHEN, MRS. H. J. A COMPARATIVE STUDY OF VARIOUS TESTS FOR NORMALITY, JASA 6B, 1343
- CHENG, M. C. THE ORTHANT PROBABILITIES OF FOUR GAUSSIAN VARIATES. AMS 69, 152
- CHERNOFF, H. A LARCE-SAMPLE BIOASSAY DESIGN WITH RANDOM DOSES AND UNCERTAIN CONCENTRATION, BIOKA 55, 307
- CHERNOFF, H. A NOTE ON RISK AND MAXIMAL REGULAR GENERALIZED SUB-MARTINGALES IN STOPPINC PROBLEMS. AMS 67, 606
- CHERNOFF, H. AN OPTIMAL SEQUENTIAL ACCELERATED LIFE TEST., TECH 62,
- CHERNOFF, H. ESTIMATING THE CURRENT MEAN OF A NORMAL DISTRIBUTION WHICH IS SUBJECTED TO CHANCES IN TIME, AMS 64, 999
- CHERNOFF, H. QUERY, DEGREES OF FREEDOM OF CHI-SQUARE, TECH 67, 489 CHERNOFF, HERMAN A BAYES SEQUENTIAL SAMPLING INSPECTION. AMS 65. 13B7
- CHERNOFF, HERMAN ASYMPTOTIC DISTRIBUTION OF LINEAR COMBINATIONS OF FUNCTIONS OF ORDER STATISTICS WITH APP, AMS 67, 52
- CHERNOFF, HERMAN DISCUSSION OF HOEFFDINGS PAPER, AMS 65, 401
- CHERNOFF, HERMAN OPTIMAL ACCELERATED LIFE DESIGNS FOR ESTIMATION, TECH 62, 381
- CHERNOFF, HERMAN SEQUENTIAL TEST FOR THE MEAN OF A NORMAL DISTRIBU-TION III, SMALL T, AMS 65, 28
- CHERNOFF, HERMAN SEQUENTIAL TESTS FOR THE MEAN OF A NORMAL DISTRIBU-TIONII, LARGE T. AMS 64, 162
- CHERNOFF, HERMAN SEQUENTIAL TESTS FOR THE MEAN OF A NORMAL DISTRIBU-TION IV, DISCRETE CASE, AMS 65, 55
- CHERNOFF, HERMAN THE SCORING OF MULTIPLE CHOICE QUESTIONNARES. AMS
- CHETTY, V. KARUPPAN PREDICTION AND DECISION PROBLEMS IN REGRESSION MODELS FROM THE BAYESIAN POINT OF VIEW, JASA 65, 608
- CHEW JR, MILTON C. A SEQUENTIAL SEARCH PROCEDURE, AMS 67, 494
- CHEW, VECTOR SIMULTANEOUS PREDICTION INTERVALS, TECH 68, 323
- CHEW. VICTOR CONFIDENCE, PREDICTION, AND TOLERANCE REGIONS FOR THE MULTIVARIATE NORMAL DISTRIBUTION, JASA 66, 605

- CHEW, VICTOR DISTRIBUTION OF RADICAL ERROR IN THE BIVARIATE ELLIP-TICAL NORMAL DISTRIBUTION. TECH 62, 13B
 CHILDS, D. R. REDUCTION OF THE MULTIVARIATE NORMAL INTECRAL TO
- CHARACTERISTIC FORM, BIOKA 67, 293
- CHIPMAN, JOHN S. EFFICIENCY OF THE SAMPLE MEAN WHEN RESIDUALS FOLLOW A FIRST-ORDER STATIONARY MARKOFF PRO, JASA 6B, 1237
- CHIPMAN, JOHN S. ON LEAST SQUARES WITH INSUFFICIENT OBSERVATIONS,
- CORR. 65 1249, JASA 64, 1078 CHITTY, DENNIS THE ESTIMATION OF POPULATION PARAMETERS FROM DATA
- OBTAINED BY MEANS OF THE CAPTURE-RECAPTU, BIOKA 51, 269 CHITTY, DENNIS THE ESTIMATION OF POPULATION PARAMETERS FROM DATA
- OBTAINED BY MEANS OF THE CAPTURE-RECAPTU, BIOKA 53, 137
- CHITTY, HELEN THE ESTIMATION OF POPULATION PARAMETERS FROM DATA OB-TAINED BY MEANS OF THE CAPTURE-RECAPTUR, BIOKA 53, 137
- CHOI, K. AN ESTIMATION PROCEDURE FOR MIXTURES OF DISTRIBUTIONS, JRSSB 68, 444
- CHOI, KEEWHAN PROBABILITY BOUNDS FOR A UNION OF HYPERSPHERICAL CONES, JRSSB 65, 57
- CHOI, S. C. MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF THE GAMMA DISTRIBUTION AND THEIR BIAS, TECH 69, NO. 4
- CHOI, S. C. TRUNCATED SEQUENTIAL DESIGNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS, BIOCS 6B, 159
- CHOW, B. THE CURVE THROUGH THE EXPECTED VALUES OF ORDERED VARIATES AND THE SUM OF SQUARES OF NORMAL SCORE, BIOKA 66, 252
- CHOW, GREGORY C. A THEOREM ON LEAST SQUARES AND VECTOR CORRELATION IN MULTIVARIATE LINEAR REGRESSION, JASA 66, 413
- CHOW, GREGORY C. SPECTRAL PROPERTIES OF NON-STATIONARY SYSTEMS OF LINEAR STOCHASTIC DIFFERENCE EQUATIONS, JASA 69, 581
- CHOW, T. R. EQUIVALENCE OF GAUSSIAN STATIONARY PROCESSES, AMS 69,
- CHOW, WEN M. ON THE CALCULATION OF CERTAIN CONSTRAINED MAXIMA, TECH 62, 135
- CHOW, Y. S. A RENEWAL THEOREM FOR RANDOM VARIABLES WHICH ARE DEPEN-DENT OR NON-IDENTICALLY DISTRIBUTED, AMS 63, 390
 CHOW, Y. S. CONVERGENCE OF SUMS OF SQUARES OF MARTINCALE DIF-
- FERENCES, AMS 6B, 123
- CHOW, Y. S. LOCAL CONVERGENCE OF MARTINGALES AND THE LAW OF LARGE NUMBERS, AMS 65, 552
- CHOW, Y. S. MARTINGALE EXTENSIONS OF A THEOREM OF MARCINKIEWICZ AND ZYGMUND, AMS 69, 427
- CHOW, Y. S. MOMENTS OF RANDOMLY STOPPED SUMS, AMS 65, 789
- CHOW, Y.S. MONOTONICITY OF THE VARIANCE UNDER TRUNCATION AND VARIA-TIONS OF HENSEN'S INEQUALITY. AMS 69, 1106
- CHOW, Y.S. ON SECOND MOMENTS OF STOPPING RULES, AMS 66, 388
- CHOW, Y. S. ON THE ASYMPTOTIC THEORY OF FIXED-WIDTH SEQUENTIAL CON-FIDENCE INTERVALS FOR THE MEAN, AMS 65, 457
- CHOW, Y. S. ON THE EXPECTED VALUE OF A STOPPED STOCHASTIC SEQUENCE, AMS 69, 456
- CHOW, Y.S. ON THE EXPECTED VALUE OF A STOPPED SUBMARTINGALE, AMS 67, 60B CHOW, Y.S. ON THE MOMENTS OF SOME ONE-SIDED STOPPING RULES, AMS 66,
- 3B2 CHOW, Y. S. ON THE MONOTONICITY OF E-SUB-P'S-SUB-T-OVER-T', AMS 6B,
- 1755 CHOW, Y. S. ON THE STRONG LAW OF LARGE NUMBERS FOR MARTINGALES, AMS
- 67.610 CHOW, Y. S. SOME CONVERGENCE THEOREMS FOR INDEPENDENT RANDOM VARIA-
- BLES, AMS 66, 14B2 CHOWN, L. N. RAPID METHODS FOR ESTIMATING CORRELATION COEFFI-
- CIENTS, BIOKA 51, 464 CHOYNOWSKI, MIECZYSLAW MAPS BASED ON PROBABILITIES, JASA 59, 385
- CHU, J. T. ON BOUNDS FOR THE NORMAL INTEGRAL, BIOKA 55, 263 CHU, J. T. THE 'INEFFICIENCY' OF THE SAMPLE MEDIAN FOR MANY FAMILIAR
- SYMMETRIC DISTRIBUTIONS, BIOKA 55, 520 CHUN, D. A NOTE ON REGRESSION TRANSFORMATION FOR SMALLER ROUNDOFF
- ERROR, TECH 68, 393 CHUN, D. ON AN EXTREME RANK SUM TEST WITH EARLY DECISION, JASA 65, B59 CHUNG, J. H. RANDOMIZATION TESTS FOR A MULTIVARIATE TWO-SAMPLE
- PROBLEM, JASA 58, 729 CHUNG, K. L. NOTE ON THE ERGODIC THEOREM OF INFORMATION THEORY, AMS
- 61.612 CHURCH JR, ALONZO ANALYSIS OF DATA WHEN THE RESPONSE IS A CURVE, TECH
- 66, 229 CHURCH, B. M. PROBLEMS OF SAMPLE ALLOCATION AND ESTIMATION IN AN
- AGRICULTURAL SURVEY, JRSSB 54, 223 CHURCH, J. D. DECISION PROCEDURES FOR FINITE DECISION PROBLEMS
- UNDER COMPLETE ICNORANCE, AMS 64, 1644 CICCHINELLI, A. L. NOTES. TABLES OF PEARSON-LEE-FISHER FUNCTIONS OF
- SINGLY TRUNCATED NORMAL DISTRIBUTIONS, BIOCS 65, 219 CINLAR, E. ON THE SUPERPOSITION OF POINT PROCESSES, JRSSB 68, 576
- CISLAK, PETER J. ON A GENERAL SYSTEM OF DISTRIBUTIONS, I. ITS CURVE-SHAPE CHARACTERISTICS II. THE SAMPLE, JASA 68, 627
- CLAERBOUT, J. F. SPECTRAL FACTORIZATION OF MULTIPLE TIME SERIES, BIOKA 66, 264
- CLARINCBOLD, P. J. MULTIVARIATE QUANTAL ANALYSIS, JRSSB 5B, 39B
- CLARINGBOLD, P. J. THE WITHIN-ANIMAL BIOASSAY WITH QUANTAL RESPON-SES, JRSSB 56, 133

- CLARK, DR. VIRCINIA CHOICE OF LEVELS OF POLYNOMIAL RECRESSION WITH ONE OR TWO VARIABLES, TECH 65, 325
- CLARK, F. EUGENE TRUNCATION TO MEET REQUIREMENTS ON MEANS, JASA 57, 527
- CLARK, VIRCINIA CORRELATION COEFFICIENTS MEASURED ON THE SAME IN-
- CLARK, VIRCINIA PROPERTIES OF THE MEDIAN AND OTHER STATISTICS OF LO-CISTIC VARIATES, AMS 65, 1779
- CLARKE, C. M. FOUR-WAY BALANCED DESIGNS BASED ON YOUDEN SQUARES WITH 5, 6, OR 7 TREATMENTS, BIOCS 67, 803
- CLARKE, R. T. NOTES. THE STATISTICAL ANALYSIS OF A RADIO-ACTIVE TRACER EXPERIMENT TO DETERMINE ROOT ACTIV, BIOCS 68, 717
- CLATWORTHY, W. H. ON JOHN'S CYCLIC INCOMPLETE BLOCK DESIGNS, JRSSB 67, 243
- CLATWORTHY, W. H. SOME NEW FAMILIES OF PARTIALLY BALANCED DESIGNS OF THE LATIN SQUARE TYPE AND RELATED DE, TECH 67, 229
- CLAWSON, MARION RECENT EFFORTS TO IMPROVE LAND USE INFORMATION, JASA 66, 647
- CLAWSON, MARION STATISTICAL DATA AVAILABLE FOR ECONOMIC RESEARCH ON CERTAINTYPES OF RECREATION, JASA 59, 281
- CLAY, P. P. F. SOME EMPIRICAL DISTRIBUTIONS OF BIVARIATE T-SQUARE AND HOMOSCEDASTICITY CRITERION MUNDER, JASA 63, 104B
- CLEMANS, K. G. CONFIDENCE LIMITS IN THE CASE OF THE GEOMETRIC DIS-TRIBUTION, BIOKA 59, 260
- CLEMMER, B. A. THE USE OF EMPIRICAL BAYES ESTIMATORS IN A LINEAR REGRESSION MODEL, BIOKA 6B, 525
- CLEROUX, ROBERT FIRST AND SECOND MOMENTS OF THE RANDOMIZATION TEST IN TWO ASSOCIATE PBIB DESIGNS, JASA 69, NO.4
- CLUNIES-ROSS, C. W. DISCUSSION OF 'ON THE FOUNDATIONS OF STATISTI-CAL INFERENCE', JASA 62, 307
- CLUNIES-ROSS, C. W. GEOMETRY AND LINEAR DISCRIMINATION, BIOKA 60, 185
- CLUNIES-ROSS, C. W. INTERVAL ESTIMATION FOR THE PARAMETER OF A BINOMIAL DISTRIBUTION, BIOKA 58, 275
- CLUNIES-ROSS, C. W. JOINT ESTIMATION OF THE PARAMETERS OF TWO NORMAL POPULATIONS, JASA 62, 446
- POPULATIONS, JASA 62, 446 CLUNIES-ROSS, C. W. RESIDUAL ANALYSIS, CORR. 61 1005, JASA 61, 98
- CLUTTON-BROCK, M. LIKELIHOOD DISTRIBUTIONS FOR ESTIMATING FUNC-TIONS WHEN BOTH VARIABLES ARE SUBJECT TO ER, TECH 67, 261
- CLUTTON-BROCK, M. USING THE OBSERVATIONS TO ESTIMATE THE PRIOR DISTRIBUTION, JRSSB 65, 17
- COALE, ANSLEY J. CONVERGENCE OF A HUMAN POPULATION TO A STABLE FORM, JASA 68, 395
- COALE, ANSLEY J. THE CASE OF THE INDIANS AND THE TEEN-ACE WIDOWS, JASA 62, 338
- COCHRAN, W.G. A REJECTION CRITERION BASED UPON THE RANGE, BIOKA 56, 418
- COCHRAN, W. G. COMMENTARY ON 'ESTIMATION OF ERROR RATES IN DISCRIMI-NANT ANALYSIS', TECH 6B, 204
- COCHRAN, W. G. ON A SIMPLE PROCEDURE OF UNEQUAL PROBABILITY SAMPLING WITHOUT REPLACEMENT, JRSSB 62, 482
- COCHRAN, W. G. THE EFFECTIVENESS OF ADJUSTMENT BY SUBCLASSIFICA-TION IN REMOVING BIAS IN OBSERVATIONAL STU, BIOCS 68, 295
- COCHRAN, W. C. THE ROBBINS-MONRO METHOD FOR ESTIMATING THE MEDIAN LETHAL DOSE, JRSSB 65, 2B
- COCHRAN, WILLIAM C. ERRORS OF MEASUREMENT IN STATISTICS, TECH 6B, 637
- COCHRAN, WILLIAM G. QUERY, TESTING TWO CORRELATED VARIANCES, TECH 65.447
- COCHRAN, WM. G. ON THE PERFORMANCE OF THE LINEAR DISCRIMINANT FUNC-TION, TECH 64, 179
- COCKERHAM, C. C. SELECTION AMONG DIALLEL CLASSIFIED VARIABLES, BIOCS 69, 49
- COCKERHAM, C. C. SIMULTANEOUS SELFING AND PARTIAL DIALLEL TEST CROSSING 2. AN EVALUATION OF TWO METHODS 0, BIOCS 67, 325
- COCKERHAM, C. C. THE EFFECT OF FIELD BLOCKING ON CAIN FROM SELECTION, BIOCS 66, 843
- COCKERHAM, C. CLARK REFERENCE POPULATIONS FOR DIALLEL EXPERIMENTS, BIOCS 68, 881
- COCCURN, ROBERT CONDITIONAL PROBABILITY OPERATORS, AMS 62, 634
- COGBURN, ROBERT STRINGENT SOLUTIONS TO STATISTICAL DECISION PROBLEMS, AMS 67, 447
 COHEN JR, A CLIFFORD ESTIMATING THE POISSON PARAMETER FROM SAMPLES
- THAT ARE TRUNCATED ON THE RIGHT, TECH 61, 433 COHEN JR, A. C. A NOTE ON CERTAIN DISCRETE MIXED DISTRIBUTIONS,
- BIOCS 66, 566 COHEN JR, A. C. ESTIMATING PARAMETERS IN TRUNCATED PEARSON FREQUEN-
- CY DISTRIBUTIONS WITHOUT RESORT TO HIGH, BIOKA 53, 50 COHEN JR, A. C. ESTIMATION IN MIXTURES OF TWO NORMAL DISTRIBUTIONS,
- TECH 67, 15
 COHEN JR, A. CLIFFORD ERRATA, 'MISCLASSIFIED DATA FROM A BINOMIAL
- POPULATION', TECH 66, 215
 COHEN JR, A. CLIFFORD ESTIMATING THE PARAMETERS OF A MODIFIED POIS—
 SON DISTRIBUTION, JASA 60, 139
- COHEN JR, A. CLIFFORD ESTIMATION IN THE TRUNCATED POISSON DISTRIBU-TION WHEN ZEROS AND SOME ONES ARE MISSI, JASA 60, 342
- COHEN JR, A. CLIFFORD MAXIMUM LIKELIHOOD ESTIMATION IN THE WEIBULL DISTRIBUTION BASED ON COMPLETE AND ON, TECH 65, 579

- COHEN JR, A. CLIFFORD MISCLASSIFIED DATA FROM A BINOMINAL POPULA-TION, TECH 60, 109
- COHEN JR, A. CLIFFORD PROCRESSIVELY CENSORED SAMPLES IN LIFE TEST-INC. TECH 63, 327
- COHEN JR, A. CLIFFORD SIMPLIFIED ESTIMATORS FOR THE NORMAL DISTRIBUTION WHEN SAMPLES ARE SINCLY CENSORED, TECH 59, 217
- COHEN JR, A. CLIFFORD TABLES FOR MAXIMUM LIKELIHOOD ESTIMATES. SINCLY TRUNCATED AND SINCLY CENSORED SAMPL, TECH 61, 535
- COHEN, A.C. CENSORED SAMPLES FROM TRUNCATED NORMAL DISTRIBUTIONS, BIOKA 55, 516
- COHEN, A.C. ON THE SOLUTION OF ESTIMATING EQUATIONS FOR TRUNCATED AND CENSORED SAMPLES FROM NORMAL POPUL, BIOKA 57, 225
- COHEN, A. CLIFFORD DISCUSSION OF 'ESTIMATION OF PARAMETERS FOR A
 MIXTURE OF NORMAL DISTRIBUTIONS' BY VICT, TECH 66, 445
- COHEN. A. CLIFFORD ERRATA, 'MAXIMUM LIKELIHOOD ESTIMATION IN THE WEIBULL DISTRIBUTION BASED ON COMPLETE A, TECH 66, 570
- COHEN, A. CLIFFORD QUERY, LIFE TESTING AND EARLY FAILURE, TECH 66, 539
- COHEN. ARTHUR A HYBRID PROBLEM ON THE EXPONENTIAL FAMILY, AMS 65, 11B5
- COHEN, ARTHUR A NOTE ON THE ADMISSIBILITY OF POOLING IN THE ANALYSIS OF VARIANCE, AMS 68, 1744
- COHEN, ARTHUR ALL ADMISSIBLE LINEAR ESTIMATES OF THE MEAN VECTOR, AMS 66, 458
- COHEN, ARTHUR ESTIMATES OF LINEAR COMBINATIONS OF THE PARAMETERS IN THE MEAN VECTOR OF A MULTIVARIATE DIS, AMS 65, 78
- COHEN, ARTHUR ESTIMATION OF THE LARGER TRANSLATION PARAMETER, AMS $6\mathrm{B.}~502$
- COHEN, ARTHUR ESTIMATION OF THE LARGEST OF TWO NORMAL MEANS, JASA 68,861
- COHEN, ARTHUR ESTIMATION OF TWO ORDERED TRANSLATION PARAMETERS, AMS 68, 517
- COHEN, ARTHUR TABLES FOR THE SICN TEST WHEN OBSERVATIONS ARE ESTI-MATES OF BINOMIAL PARAMETERS, JASA 59, 784
- COHEN, AYALA REGRESSION ON A RANDOM FIELD, JASA 69, NO. 4
- COHEN, J. E. NOTES. ON ESTIMATING THE EQUILIBRIUM AND TRANSITION PROBABILITIES OF A FINITE-STATE MARKOV C, BIOCS 68, 185
- COHN, SAMUEL M. PROBLEMS IN ESTIMATING FEDERAL GOVERNMENT EXPENDITURES, JASA 59, 717
- COLE, J. W. L. APPLICATION OF MULTIVARIATE ANALYSIS OF VARIANCE TO REPEATED MEASUREMENTS EXPERIMENTS, BIOCS 66, B10
- COLLIER JR, R. O. SOME MONTE CARLO RESULTS ON THE POWER OF THE F-TEST UNDER PERMUTATION IN THE SIMPLE RAN, BIOKA 66, 199
- COLLIER JR, RAYMOND O. THE RANDOMIZATION DISTRIBUTION OF F-RATIOS FOR THE SPLIT-PLOT DESIGN, AN EMPIRICAL, BIOKA 63, 431
- COLLIER, RAYMOND O. AN EMPIRICAL STUDY INTO FACTORS AFFECTING THE F-TEST UNDER PERMUTATION FOR THE RANDOM, JASA 6B, 902
- COLLIER, RAYMOND O. SOME EMPIRICAL RESULTS ON VARIANCE RATIOS UNDER PERMUTATION IN THE COMPLETELY RANDOMI, JASA 66, 813
- COLTON, T. A TWO-STACE MODEL FOR SELECTING ONE OR TWO TREATMENTS, RIGGS 65, 169
- COLTON, THEODORE A MODEL FOR SELECTING ONE OF TWO MEDICAL TREAT-MENTS, JASA 63, 3BB
- COLTON, THEODORE A TEST PROCEDURE WITH A SAMPLE FROM A NORMAL POPULATION WHEN AN UPPER BOUND TO THE STAND, JASA 60, 94
- COLTON, THEODORE OPTIMAL DRUG SCREENING PLANS, BIOKA 63, 31
- COMER JR, J. P. APPLICATION OF STOCHASTIC APPROXIMATION TO PROCESS CONTROL, JRSSB 65, 321
- COMER JR, JOHN P. SOME STOCHASTIC APPROXIMATION PROCEDURES FOR USE IN PROCESS CONTROL, AMS 64, 1136
 COMPTON, W. A. FURTHER EVIDENCE ON THE CONSISTENCY OF ESTIMATES OF
- VARIANCE COMPONENTS, BIOCS 65, 395
- CONKLINE, RANDALL M. DECIMAL CORRECTION ERROR, AN EXAMPLE IN STATISTICS, TECH62, 421
- CONLISK, JOHN THE EQUILIBRIUM COVARIANCE MATRIX OF DYNAMIC ECONOMETRIC MODELS, JASA 69, 277
- CONNELL, TERRENCE L. SAMPLE SIZE REQUIRED FOR ESTIMATING THE VARI-ANCE WITIND UNITS OF THE TRUE VALUE, AMS 64, 438
- CONNELL, TERRENCE L. SAMPLE SIZE REQUIRED TO ESTIMATE THE RATIO OF VARIANCES WITH BOUNDED RELATIVE ERROR, JASA 63, 1044
- CONNELL, TERRENCE L. SAMPLE SIZE REQUIRED TO ESTIMATE THE PARAMETER IN THE UNIFORM DENSITY WITHIN DUNITS, JASA 64, 550
- CONNER, JAMES R. USE OF DOMAIN ESTIMATORS WITH UNEQUAL PROBABILITY IN SAMPLE SURVEYS, JASA 6B, 9B4
- CONNOR, ROBERT J. CONCEPTS OF INDEPENDENCE FOR PROPORTIONS WITH A A GENERALIZATION OF THE DIRICHLET DISTR, JASA 69, 194
- CONNOR, ROBERT J. THE SAMPLING DISTRIBUTION OF THE RANGE FROM DISCRETE UNIFORM FINITE POPULATIONS AND A R, JASA 69, NO.4
- CONNOR, W. S. AN EXACT FORMULA FOR THE PROBABILITY THAT TWO SPECIFIED SAMPLING UNITS WILL OCCUR IN A SAMP, JASA 66, 384
- CONNOR, W. S. DISTRIBUTION OF TOTAL SERVICE TIME FOR A FIXED OBSERVATION INTERVAL, JASA 62, 376
- CONNOR, W. S. MEASUREMENTS MADE BY MATCHINC WITH KNOWN STANDARDS, TECH 59, 101
- CONNOR, W. S. STUDENT'S TIN A TWO-WAY CLASSIFICATION WITH UNEQUAL VARIANCES, AMS 65, 1248
- CONNOR, W. S. THE CONDITIONAL DISTRIBUTION OF SETS OF TESTS ON A SYSTEM SIMULATED FROM TESTS ON ITS COMPO, AMS 63, 1585

- CONOLLY, B. W. A DIFFERENCE EQUATION TECHNIQUE APPLIED TO THE SIMPLE QUELLE WITH ARBITRARY ARRIVAL INTERVA. JRSSB 5B. 16B
- CONOLLY, B. W. A DIFFERENCE EQUATION TECHNIQUE APPLIED TO THE SIMPLE QUEUE, JRSSB 5B, 165
- CONOLLY, B. W. QUEUEING AT A SINGLE SERVING POINT WITH GROUP ARRIVAL, JRSSB 60. 2B5
- CONOLLY, B. W. THE BUSY PERIOD IN RELATION TO THE QUEUEING PROCESS GI-M-1, BIOKA 59, 246
- CONOLLY, B. W. THE BUSY PERIOD IN RELATION TO THE SINGLE-SERVER QUEUEING SYSTEM WITH CENERAL INDEPENDENT, JRSSB 60, B9
- CONOVER, W. J. A K-SAMPLE EXTENSION OF THE ONE-SIDED TWO-SAMPLE SMIRNOV TESTS STATISTIC, AMS 67, 1726
- CONOVER, W. J. A K-SAMPLE MODEL IN ORDER STATISTICS, AMS 65, 1223 CONOVER, W. J. SEVERAL K-SAMPLE KOLMOCOROV-SMIROV TESTS, AMS 65.
- CONOVER, W J. THE DISTRIBUTION FUNCTIONS OF TSAO'S TRUNCATED SMIR-NOV STATISTICS, AMS 67, 120B
- NOV STATISTICS, AMS 67, 120B CONOVER, W. J. THE DISTRIBUTION OF SUM-0-TO-M OF F.Y-SUB-T), WHERE (Y-SUB-0, Y-SUB-1,...) IS A REALIZATI, BIOKA 65, 277
- CONOVER, W. J. TWO K-SAMPLE SLIPPAGE TESTS, JASA 6B, 614
- CONSTANTINE, A. G. SOME NON-CENTRAL DISTRIBUTION PROBLEMS IN MULTIVARIATE ANALYSIS, AMS 63, 1270
- CONSTANTINE, A. G. THE DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE OF MULTIVARIATE DISPERSION, AMS 66, 215
- CONSUL, P. C. ON THE EXACT DISTRIBUTIONS OF LIKELIHOOD RATIO CRITERIA FOR TESTINC INDEPENDENCE OF SETS OF, AMS 67, 1160
- CONSUL, P. C. ON THE EXACT DISTRIBUTIONS OF THE CRITERION W FOR TEST-ING SPHERICITY IN A P-VARIATE NORMAL, AMS 67, 1170 CONSUL, P. C. ON THE EXACT DISTRIBUTIONS OF THE LIKELIHOOD RATIO
- CRITERIA FOR TESTING LINEAR HYPOTHESES A, AMS 66, 1319
- CONSUL, P. C. ON THE EXACT DISTRIBUTIONS OF VOTAW'S CRITERIA FOR TESTING COMPOUND SYMMETRY OF A COVARIANC, AMS 69, B36
- COOK, M. B. BIVARIATE K-STATISTICS AND CUMULANTS OF THEIR JOINT SAMPLING DISTRIBUTION, BIOKA 51, 179
- COOK, M $\,$ B. TWO APPLICATIONS OF BIVARIATE K-STATISTICS, BIOKA 51, $\,$ 36B $\,$
- COON, HELEN J. ON THE USE OF PATNAIK TYPE CHI APPROXIMATIONS TO THE RANCE IN SIGNIFICANCE TESTS, BIOKA 66, 24B
- COOPER, B. E. THE EFFECT OF TIES ON THE MOMENTS OF RANK CRITERIA, BIOKA 57, 526
- COOPER, B. E. THE EXTENSION OF YATES' 2-TO-THE-N ALGORITHM TO ANY COMPLETE FACTORIAL EXPERIMENT, TECH 6B, 575
- COOPER, PAUL W. STATISTICAL GLASSIFICATION WITH QUADRATIC FORMS, BIOKA 63, 439
- COOPER, W. W. CHANGE CONSTRAINTS AND NORMAL DEVIATES, JASA 62, 134 COOTE, G. G. THE ESTIMATION OF CONCENTRATION OF VIRUSES AND BACTERIA FROM DILUTION COUNTS, BIOCS 65, 600
- CORMACK, R. M. A TEST FOR EQUAL CATCHABILITY, BIOCS 66, 330
- CORMACK, R. M. ESTIMATES OF SURVIVAL FROM THE SIGHTING OF MARKED ANIMALS, BIOKA 64, 429
- CORNELL, R. G. ESTIMATION FOR A SIMPLE EXPONENTIAL MODEL, BIOCS 67, $717\,$
- CORNELL, R. C. SPEARMAN ESTIMATION FOR A SIMPLE EXPONENTIAL MODEL, BIOCS 65, B5B
- CORNELL, R. G. SPEARMAN SIMULTANEOUS ESTIMATION FOR A COMPARTMENTAL MODEL, TEGH 69, 551
- CORNELL, RICHARD C. ERRATA 'SIMULTANEOUS NONLINEAR ESTIMATION', TECH 67, 353
- CORNELL, RICHARD C. ESTIMATION FOR A ONE-PARAMETER EXPONENTIAL MODEL, JASA 65, 560
- CORNELL, RICHARD G. SIMULTANEOUS ESTIMATION BY PARTIAL TOTALS FOR COMPARTMENTAL MODELS, JASA 6B, 573
- CORNELL, RICHARD G. SIMULTANEOUS NONLINEAR ESTIMATION, TECH 66, 319
- CORNFIELD, J. THE BAYESIAN OUTLOOK AND ITS APPLICATIONS (WITH DISCUSSION), BIOCS 69, NO.4
- DISCUSSION), BIOCS 69, NO. 4

 CORNFIELD, JEROME A BAYESIAN TEST OF SOME CLASSICAL HYPOTHESES.
- WITH APPLICATIONS TO SEQUENTIAL CLINICAL, JASA 66, 577
 CORNFIELD, JEROME AN ADAPTIVE PROCEDURE FOR SEQUENTIAL CLINICAL
 TRIALS, JASA 69, 759
- CORNFIELD, JEROME DISCUSSION OF 'ON THE FOUNDATIONS OF STATISTICAL INFERENCE', JASA 62, 307
- CORNFIELD, JEROME POSTERIOR DISTRIBUTIONS FOR MULTIVARIATE NORMAL
- PARAMETERS, JRSSB 63, 36B CORNISH, E. A. ERRATA, 'THE PERCENTILE POINTS OF DISTRIBUTIONS HAVINC KNOWN CUMULANTS', TECH 60, 523
- CORNISH, E. A. THE PERCENTILE POINTS OF DISTRIBUTIONS HAVING KNOWN CUMULANTS, TECH 60, 209
- COTE, L. ON THE INADMISSIBILITY OF SOME STANDARD ESTIMATES IN THE PRESENCE OF PRIOR INFORMATION, AMS 63, 539
- COULTER, ELIZABETH J. ANALYSIS OF VITAL STATISTICS BY CENSUS TRACT, JASA 59, 730
- COVER, THOMAS M. GEOMETRICAL PROBABILITY AND RANDOM POINTS ON A HYPERSPHERE, AMS 67, 213
- COVER, THOMAS M. HYPOTHESIS TESTING WITH FINITE MEMORY, AMS 69, B2B COVER, THOMAS M. THE PROBABILITY THAT A RANDOM GAME IS UNFAIR, AMS 66, 1796

- COWDEN, DUDLEY J. A PROCEDURE FOR COMPUTING RECRESSION COEFFI-CIENTS, CORR. 59 B11, JASA 5B, 144
- COX, C. P. A CONCISE DERIVATION OF GENERAL ORTHOCONAL POLYNOMIALS, JRSSB 5B, 406
- COX, C. P. THE ANALYSIS OF LATIN SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE DIRECTION, JRSSB 5B, 193
- COX, C. PHILIP A LARGE SAMPLE SEQUENTIAL TEST, USING CONCOMITANT IN-FORMATION FOR DISCRIMINATION BETWEEN T. JASA 66, 357
- COX. C. PHILIP A NOTE ON THE VARIANCE OF THE DISTRIBUTION OF SAMPLE NUMBER IN SEQUENTIAL PROBABILITY RATI, TECH 66, 700
- COX, C. PHILIP SOME OBSERVATIONS ON THE TEACHING OF STATISTICAL CON-SULTING, BIOCS 6B, 7B9
- COX, D. R. A GENERAL DEFINITION OF RESIDUALS (WITH DISCUSSION), JRSSB 6B. 24B
- COX, D. R. A NOTE ON TESTS OF HOMOGENEITY APPLIED AFTER SEQUENTIAL SAMPLING, JRSSB 60, 36B
- COX, D. R. A NOTE ON THE EFFICIENCY OF LEAST-SQUARES ESTIMATES, JRSSB 6B, 2B4
- COX, D. R. A NOTE ON THE GRAPHICAL ANALYSIS OF MULTIDIMENSIONAL CONTINGENCY TABLES, TECH 67, 4B1
- COX, D. R. A NOTE ON THE THEORY OF QUICK TESTS, BIOKA 56, 47B
- COX, D. R. A REMARK ON MULTIPLE COMPARISON METHODS, TECH 65, 223
- COX, D. R. A RENEWAL PROBLEM WITH BULK ORDERING OF COMPONENTS, JRSSB 59, 180
- GOX, D. R. A SIMPLE CONGESTION SYSTEM WITH INCOMPLETE SERVICE, JRSSB 61, 215
- COX, D. R. A SIMPLE EXAMPLE OF A COMPARISON INVOLVING QUANTAL DATA, BIOKA 66, 215 COX, D. R. A TABLE FOR PREDICTING THE PRODUCTION FROM A CROUP OF
- MACHINES UNDER THE CARE OF ONE OPERATIVE, JRSSB 54, 2B5
 COX, D. R. AN ANALYSIS OF TRANSFORMATIONS (WITH DISCUSSION), JRSSB
- 64,211 COX, D. R. CORRIGENDA TO 'THE USE OF A CONCOMITANT VARIABLE IN
- SELECTING AN EXPERIMENTAL DESIGN', BIOKA 57, 534
 COX, D. R. CORRIGENDA, 'THE MEAN AND COEFFIGIENT OF VARIATION OF
- RANGE IN SMALL SAMPLES FROM NON-NORMAL P, BIOKA 55, 277
 COX, D. R. DISCRIMINATION BETWEEN ALTERNATIVE BINARY RESPONSE
- MODELS, BIOKA 67, 573 COX, D. R. ESTIMATION BY DOUBLE SAMPLING, BIOKA 52, 217
- COX, D. R. FIELLER'S THEOREM AND A GENERALIZATION, BIOKA 67, 567
- COX, D. R. FURTHER RESULTS ON TESTS OF SEPARATE FAMILIES OF HYPOTHESES, JRSSB 62, 406
- COX, D. R. NOTE ON GROUPING, JASA 57, 543
- COX, D. R. ON A DISCRIMINATORY PROBLEM CONNECTED WITH THE WORKS OF PLATO, JRSSB 59, 195
- COX, D. R. ON THE DISTRIBUTION OF TRIBOLIUM CONFUSUM IN A CONTAINER, BIOKA 57, 32B
- COX, D. R. ON THE ESTIMATION OF THE INTENSITY FUNCTION OF A STATIONARY POINT PROCESS, JRSSB 65, 332
- COX, D. R. ON THE NUMBER OF RENEWALS IN A RANDOM INTERVAL, BIOKA 60, 449
- COX, D. R. ON THE SUPERPOSITON OF RENEWAL PROCESSES, BIOKA 54, 91
- COX, D. R. PREDICTION BY EXPONENTIALLY WEICHTED MOVING AVERACES AND RELATED METHODS, JRSSB 61, 414
- COX. D. R. QUERY, ANALYSIS OF FACTORIAL EXPERIMENT (PARTIALLY CON-FOUNDED 2-CUBE), TECH 67, 170
- COX, D. R. REGRESSION ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT SUPPLEMENTARY VARIABLES, JRSSB 60, 172
- COX, D. R. SERIAL SAMPLING ACCEPTANCE SCHEMES DERIVED FROM BAYES'S THEOREM, TECH 60, 353
- COX, D. R. SOME APPLICATIONS OF EXPONENTIAL ORDERED SCORES, JRSSB 64.103
- COX, D. R. SOME QUICK SIGN TESTS FOR TREND IN LOCATION AND DISPER-SION, BIOKA 55, BO
- COX, D. R. SOME SIMPLE APPROXIMATE TESTS FOR POISSON VARIATES, BIOKA 53, 354
- COX, D. R. SOME STATISTICAL METHODS CONNECTED WITH SERIES OF EVENTS (WITH DISCUSSION), JRSSB 55, 129
- COX, D. R. SOME SYSTEMATIC EXPERIMENTAL DESIGNS, BIOKA 51, 312
- COX, D. R. SOME SYSTEMATIC SUPERSATURATED DESIGNS, TECH 62, 4B9
- COX, D. R. THE ANALYSIS OF EXPONENTIALLY DISTRIBUTED LIFE-TIMES WITH TWO TYPES OF FAILURE, JRSSB 59, 411
- COX, D.R. THE DESIGN OF AN EXPERIMENT IN WHICH CERTAIN TREATMENT AR-RANCEMENTS ARE INADMISSIBLE, BIOKA 54, 287 COX, D.R. THE INTERPRETATION OF THE EFFECTS OF NON-ADDITIVITY IN
- THE LATIN SQUARE, BIOKA 5B, 69
 COX, D. R. THE MEAN AND COEFFICIENT OF VARIATION OF RANGE IN SMALL
- SAMPLES FROM NON-NORMAL POPULATIONS, BIOKA 54, 469
 COX, D. R. THE NULL DISTRIBUTION OF THE FIRST SERIAL CORRELATION
 COEFFICIENT, BIOKA 66, 623
- COX, D. R. THE REGRESSION ANALYSIS OF BINARY SEQUENCES (WITH DISCUSSION) (CORR. 59 23B). JRSSB 5B, 215
- COX, D. R. THE SUPERPOSITION OF SEVERAL STRICTLY PERIODIC SEQUENCES OF EVENTS, BIOKA 53, 1
- COX, D. R. THE USE OF A CONCOMITANT VARIABLE IN SELECTING AN EXPERI-MENTAL DESIGN, BIOKA 57, 150
- COX, D. R. THE USE OF CONTROL OBSERVATIONS AS AN ALTERNATIVE TO IN-COMPLETE BLOCK DESIGNS, JRSSB 62, 464

- COX, D. R. TWO FURTHER APPLICATIONS OF A MODEL FOR BINARY RECRES-SION, BIOKA 5B, 562
- COX, EDWIN B. CHANCES IN THE SIZE DISTRIBUTION OF DIVIDEND INCOME, JASA 61, 250
- COX, GERTRUDE M. STATISTICAL FRONTIERS, JASA 57, 1
- CRACG, J. G. ON THE SENSITIVITY OF SIMULTANEOUS-EQUATIONS ESTIMATORS TO THE STOCHASTIC ASSUMPTIONS OF THE, JASA 66, 136
- CRAIG, C. C. ON A CLASS OF SIMPLE SEQUENTIAL TESTS ON MEANS, TECH 62,
- CRAIG, C. C. ON A METHOD OF ESTIMATING BIOLOGICAL POPULATIONS IN THE FIELD, BIOKA 53, 216
- CRAIG, C. C. ON THE MEAN AND VARIANCE OF THE SMALLER OF TWO DRAWINGS FROM A BINOMIAL POPULATION, BIOKA 62, 566
- CRAIG, C. C. ON THE UTILIZATION OF MARKED SPECIMENS IN ESTIMATING POPULATIONS OF FLYING INSECTS, BIOKA 53, 170
- CRAIG, C. C. THE AVERAGE SAMPLE NUMBER FOR TRUNCATED SINCLE AND DOUBLE ATTRIBUTES ACCEPTANCE SAMPLING PLA, TECH 68, 685
- CRAMER, E. M. NOTES. EQUIVALENCE OF TWO METHODS OF COMPUTING DIS-CRIMINANT FUNCTION COEFFICIENTS, 810CS 67, 153
- CRAMER, ELLIOT M. SOME COMPARISONS OF METHODS OF FITTING THE DOSAGE RESPONSE CURVE FOR SMALL SAMPLES, JASA 64, 779 CRAMER, HARALD KHINCHIN'S WORK IN MATHEMATICAL PROBABILITY, AMS
- 62, 1227
- CRAMER, HARALD MODEL BUILDING WITH THE AID OF STOCHASTIC PROCESSES, TECH 64, 133 CRAMER, HARALD THE MOMENTS OF THE NUMBER OF CROSSINGS OF A LEVEL BY A
- STATIONARY NORMAL PROCESS, AMS 65, 1656
 CRAMER, J. S. EFFICIENT GROUPING, RECRESSION AND CORRELATION IN
- ENAMER, J. S. EFFICIENT GROUPING, RECRESSION AND CURRELATION IN ENGEL CURVE ANALYSIS, JASA 64, 233
- CRASWELL, K. J. DENSITY ESTIMATION IN A TOPOLOGICAL GROUP, AMS 65, 1047
 CRASWELL, K. J. NONPARAMETRIC UPPER CONFIDENCE BOUNDS, AND CON-
- FIDENCE LIMITS, FOR THE PROBABILITY THAT Y, JASA 64, 906
 CRAWFORD, C, R. LINEAR REGRESSION WITH NON-CONSTANT, UNKNOWN ERROR
- CRAWFORD, C. R. LINEAR REGRESSION WITH NON-CONSTANT, UNKNOWN ERRO VARIANCES, SAMPLING EXPERIMENTS WITH L, BIOCS 6B, 607
- CRAWFORD, GORDON B. CHARACTERIZATION OF GEOMETRIC AND EXPONENTIAL DISTRIBUTIONS, AMS 66, 1790
- CREASY, M. A. ANALYSIS OF VARIANCE AS AN ALTERNATIVE TO FACTOR ANALYSIS, JRSSB 57, 318
- CREASY, MONICA A. CONFIDENCE LIMITS FOR THE CRADIENT IN THE LINEAR FUNCTIONAL RELATIONSHIP, JRSSB 56, 65
- CREASY, MONICA A. LIMITS FOR THE RATIO OF MEANS (WITH DISCUSSION), JRSSB 54.1B6
- CROMARTY, WILLIAM A. AN ECONOMETRIC MODEL FOR UNITED STATES AGRICULTURE, JASA 59, 556
- CRONHOLM, J. N. TWO TABLES CONNECTED WITH GOODNESS-OF-FIT TESTS FOR EQUIPROBABLE ALTERNATIVES, BIOKA 68, 441
- CRONHOLM, JAMES N. A TWO-VARIABLE GENERATING FUNCTION FOR COMPUT-ING THE SAMPLING PROBABILITIES OF A CLASS, JASA 64, 4B7
- CROSETTI, ALBERT H. A METHOD OF ESTIMATING THE INTERCENSAL POPULA-TION OF COUNTIES, JASA 56, 587
- CROUSE, C. F. A CLASS OF DISTRIBUTION-FREE ANALYSIS OF VARIANCE TESTS, SASJ 67, 75
- CROUSE, C. F. A DISTRIBUTION-FREE METHOD OF ANALYZING A 2 TO THE M FACTORIAL EXPERIMENT, SASJ 68, 101
- CROUSE, C. F. A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS, SASJ 69, NO. 2
- CROUSE, C. F. A MULTIPLE COMPARISON RANK PROCEDURE FOR A ONE-WAY
 ANALYSIS OF VARIANCE, SASJ 69, 35
- CROUSE, C. F. A NON-NULL RANKING MODEL FOR A SEQUENCE OF M ALTERNA-TIVES, BIOKA 61, 441
- TIVES, BIOKA 61, 441
 CROUSE, C. F. CORRECTION, 'DISTRIBUTION FREE TESTS BASED ON THE SAM-PLE DISTRIBUTION FUNCTION', BIOKA 67, 333
- CROUSE, C. F. DISTRIBUTION FREE TESTS BASED ON THE SAMPLE DISTRIBUTION FUNCTION, BIOKA 66, 99
- CROUSE, C. F. NOTE ON MOOD'S TEST, AMS 64, 1825
- CROUSE, C. F. ON A POINT ARISING IN POLYNOMIAL REGRESSION FITTING, BIOKA 64, 501
- CROW, E. L. CONFIDENCE INTERVALS FOR A PROPORTION, BIOKA 56, 423
- CROW, E. L. CONFIDENCE INTERVALS FOR THE EXPECTATION OF A POISSON VARIABLE, BIOKA 59, 441
- CROW, E. L. CORRIGENDA TO 'CONFIDENCE INTERVALS FOR A PROPORTION' 810KA 58, 291
- CROW, E. L. THE MEAN DEVIATION OF THE POISSON DISTRIBUTION, BIOKA 5B, 556
- CROW, EDWIN L. A TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBUTIONS, JASA 64, 133
- CROW, EDWIN L. ROBUST ESTIMATION OF LOCATION, JASA 67, 353
- CRUM. W. L. FISCAL-YEAR REPORTING FOR CORPORATE INCOME TAX, JASA 56, 304 $\,$
- CRUMP, P. P. COMPARISONS OF DESIGNS AND ESTIMATION PROCEDURES FOR ESTIMATING PARAMETERS IN A TWO-STAGE NE, TECH 67, 499
- CRYER, J. D. ON THE MEAN NUMBER OF CURVE CROSSINGS BY NON-STATIONARY NORMAL PROCESSES, AMS 65, 509
- CSORGO, M. ON THE EMPTY CELL TEST, TECH 62, 235
- CSORGO, MIKLOS SOME RENYI TYPE LIMIT THEOREMS FOR EMPIRICAL DISTRIBUTION FUNCTIONS, CORR. 65 1069, AMS 65, 322

- CSORGO, MIKLOS SOME SMIRNOV TYPE THEOREMS OF PROBABILITY, AMS 65.
- CUNIA, T. LEAST SQUARES ESTIMATES AND PARABOLIC RECRESSION WITH RESTRICTED LOCATION FOR THE STATIONARY PO. JASA 64, 564
- CUNNINCHAM, E. P. A NOTE ON THE ESTIMATION OF VARIANCE COMPONENTS BY THE METHOD OF FITTING CONSTANTS, BIOKA 69, NO.3
- CUNNINGHAM, E. P. AN ITERATIVE PROCEDURE FOR ESTIMATING FIXED EF-FECTS AND VARIANCE COMPONENTS IN MIXED MO. BIOCS 68, 13
- CUNNINCHAM, E. P. ANALYTICAL TECHNIQUE FOR INCOMPLETE BLOCK EX-PERIMENTS, BIOCS 66, 829
- CUPPENS, ROGER ON FINITE PRODUCTS OF POISSON-TYPE CHARACTERISTIC
- FUNCTIONS OF SEVERAL VARIABLES, AMS 69, 434
 CURETON, EDWARD E. THE NORMAL APPROXIMATION TO THE SIGNED-RANK SAMPLING DISTRIBUTION WHEN ZERO DIFFERENCE, JASA 67, 1068
- CURME, G. L. ESTIMATION OF A PARAMETER IN THE CLASSICAL OCCUPANCY PROBLEM, BIOKA 60, 180
- CURNOW, R. N. A NOTE ON G.S. WATSON'S PAPER 'A STUDY OF THE GROUP SCREENING METHOD', TECH $65,\,444$
- CURNOW, R. N. HETEROGENEOUS ERROR VARIANCES IN SPLIT-PLOT EXPERI-MENTS, BIOKA 57, 378
- CURNOW, R. N. OPTIMAL PROCRAMMERS FOR VARIETAL SELECTION (WITH DISCUSSION), JRSS8 61, 282
- CURNOW, R. N. THE NUMERICAL EVALUATION OF CERTAIN MULTIVARIATE NOR-MAL INTEGRALS, AMS 62, 571
- CURNOW, R. N. THE REGRESSION OF TRUE VALUE ON ESTIMATED VALUE, BIOKA 60, 457
- CURTIS, E. COUNT A POTENTIAL THEORY FOR SUPERMARTINGALES, AMS 68,802 CUTLER, SIDNEY J. PARTITIONING OF A PATIENT POPULATION WITH RESPECT TO DIFFERENT MORTALITY RISKS, JASA 63,701
- DACY, DOUGLAS C. A PRICE AND PRODUCTIVITY INDEX FOR A NONHOMOCENEOUS PRODUCT, JASA 64, 469
- DAGNELIE, P. L'ETUDE DES COMMUNAUTES VEGETALES PAR L'ANALYSE STATISTIQUE DES LIAISONS ENTRE LES ESPECES E, BIOCS 65, 345
- DAGNELIE, P. L'ETUDE DES COMMUNAUTES VECETALES PAR L'ANALYSE STATISTIQUE DES LIAISONS ENTRE LES ESPECES E, BIOCS 65, B90
- DAHIYA, R. C. FUNCTIONS OF THE SAMPLE MEAN AND SAMPLE VARIANCE OF A POISSON VARIATE, BIOCS 69, 171
- DALENIUS, TORE MINIMUM VARIANCE STRATIFICATION, CORR. 63 1161, JASA 59.88
- DALENIUS, TORE RECENT ADVANCES IN SAMPLE SURVEY THEORY AND METHODS, AMS 62, 325
- DALENIUS, TORE SOME THEORY OF SAMPLING WHEN THE STRATIFICATION IS SUBJECT TO ERROR, TECH 67, 1
- DALEY, D. J. QUASI-STATIONARY BEHAVIOUR OF A LEFT-CONTINUOUS RANDOM WALK, AMS 69, 532
- DALEY, D. J. THE CORRELATION STRUCTURE OF THE OUTPUT PROCESS OF SOME SINGLE SERVER SYSTEMS. AMS 6B, 1007
- DALL'ACLIO, GIORGIO PRESENT VALUE OF A RENEWAL PROCESS, AMS 64, 1326
 DALY, JOSEPH F. WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING
 FOR WILLIAM N. HURWITZ, SOME BASIC PRINCI, JASA 69, NO.4
- DALY, REX F. DEMAND FOR FARM PRODUCTS AT RETAIL AND THE FARM LEVEL.
 SOME EMPIRICAL MEASUREMENTS AND RELAT, JASA 58, 656
- DANFORD, M. B. A COMPARISON OF CONTINUOUS DISTRIBUTIONS OF PARAME-TERS OF EXPONENTIAL DECAY CURVES, BIOCS 6B, 117
- DANFORD, M. B. THE NECATIVE EXPONENTIAL WITH CUMULATIVE ERROR, BIOCS 6B, 363
- DANIEL, C. LOCATING OUTLIERS IN FACTORIAL EXPERIMENTS, TECH 60, 149 DANIEL, C. PARALLEL FRACTIONAL REPLICATES, TECH 60, 263
- DANIEL, CUTHBERT FACTORIAL 2-TO-THE-(P-Q) PLANTS ROBUST AGAINST LINEAR AND QUADRATIC TRENDS, TECH 66, 259
- DANIEL, CUTHBERT QUERY, ANALYSIS OF FACTORIAL EXPERIMENT (PARTIALLY CONFOUNDED 2-CUBE), TECH 67, 170
- DANIEL, CUTHBERT SEQUENCES OF FRACTIONAL REPLICATES IN THE 2-TO-THE-(P-Q) SERIES, CORR. 62919, JASA 62, 403
- DANIEL, CUTHBERT SOME CENERAL REMARKS ON CONSULTING IN STATISTICS. TECH 69, 241
- DANIEL, CUTHBERT USE OF HALF-NORMAL PLOTS IN INTERPRETING FACTORI-AL TWO LEVEL EXPERIMENTS, TECH 59, 311
- DANIELS, H. E. AN INEQUALITY RELATING THE SPECTRAL DENSITY AND AU-TOCORRELATION FUNCTION, BIOKA 62, 262
- DANIELS, H. E. APPROXIMATE SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE STOCHASTIC PROCESSES, JRSSB 60, 376
- DANIELS, H. E. MIXTURES OF GEOMETRIC DISTRIBUTIONS, JRSSB 61, 409
- DANIELS, H. E. PROCESSES GENERATING PERMUTATION EXPANSIONS, BIOKA 62, 139
- DANIELS, H. E. ROUND-ROBIN TOURNAMENT SCORES, BIOKA 69. 295
- DANIELS, H. E. SHORT PROOF OF DR HARLEY'S THEOREM ON THE CORRELATION COEFFICIENT, BIOKA 5B, 571
- DANIELS, H. E. THE APPROXIMATE DISTRIBUTION OF SERIAL CORRELATION COEFFICIENTS, BIOKA 56, 169
- DANIELS, H. E. THE COVERING CIRCLE OF A SAMPLE FROM A CIRCULAR NORMAL DISTRIBUTION, BIOKA 52, 137
- DANIELS, H. E. THE ESTIMATION OF SPECTRAL DENSITIES, JRSSB 62, 185
- DANIELS, H. E. THE HAUSA PROBLEM AND SOME APPROXIMATIONS TO THE REQUIRED PROBABILITY. BIOKA 63, 514
- DANNEMILLER, MARY C. THE ROBUSTNESS OF LIFE TESTING PROCEDURES DERIVED FROM THE EXPONENTIAL DISTRIBUTION, TECH 61, 29

- DANZICER, L. TABLES OF DISTRIBUTION-FREE TOLERANCE LIMITS, AMS 64, 1361
- DAR, S. N. ON THE COMPARISON OF THE SENSITIVITIES OF EXPERIMENTS, JRSSB 62, 447
- DARLING, D. A. CORRECTION TO 'ON A CLASS OF PROBLEMS RELATED TO THE RANDOM DIVISION OF AN INTERVAL' 53 23, AMS 62, 812
- DARLINC, D. A. FINDING THE SIZE OF A FINITE POPULATION, AMS 67, 1392 DARROCH, J. N. AN OPTIMAL PROPERTY OF PRINCIPAL COMPONENTS, AMS 65.
- DARROCH, J. N. INTERAGTIONS IN MULTI-FACTOR CONTINGENCY TABLES, JRSSB 62, 251
- DARROCH, J. N. ON TESTING MORE THAN ONE HYPOTHESIS, AMS 63, 555
- DARROCH, J. N. ON THE DISTRIBUTION OF THE NUMBER OF SUCCESSES IN IN-DEPENDENT TRIALS, AMS 64, 1317
- DARROCH, J. N. ON THE TRAFFIC LIGHT QUEUE, AMS 64, 380
- DARROCH, J. N. THE MULTIPLE-RECAPTURE CENSUS II. ESTIMATION WHEN THERE IS IMMIGRATION OR DEATH, BIOKA 59, 336
- DARROCH, J. N. THE MULTIPLE-RECAPTURE CENSUS. I. ESTIMATION OF A GLOSED POPULATION. BIOKA 5B, 343
- DARROCH, J. N. THE TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGING AND SAMPLING ARE STRATIFIED, BIOKA 61, 241
- DARST, R. 8. A PERFECT MEASURABLE SPACE THAT IS NOT A LUSIN SPACE, AMS 67, 1918
- DARWIN, J. H. NOTE ON A THREE-DECISION TEST FOR COMPARING TWO BINOMIAL POPULATIONS, BIOKA 59, 106
- DARWIN, J. H. NOTE ON THE COMPARISON OF SEVERAL REALIZATIONS OF A MARKOFF CHAIN, 810KA 59, 412
- DARWIN, J. H. ON CORRECTIONS TO THE GHI-SQUARED DISTRIBUTION, JRSSB 58.387
- DARWIN, J. H. POPULATION DIFFERENCES BETWEEN SPECIES GROWING AC-CORDING TO SIMPLE BIRTH AND DEATH PROCESSE, 810KA 53, 370
- DARWIN, J. H. THE BEHAVIOUR OF AN ESTIMATOR FOR A SIMPLE BIRTH AND DEATH PROCESS, BIOKA 56, 23
- DARWIN, J. H. THE DIFFERENCE BETWEEN CONSECUTIVE MEMBERS OF A SERIES OF RANDOM VARIABLES ARRANGED IN ORDE, BIOKA 57, 211
- DARWIN, J. H. THE POWER OF THE POISSON INDEX OF DISPERSION, BIOKA 57, 286
- DAS GUPTA, S. MONOTONICITY OF THE POWER FUNCTIONS OF SOME TESTS OF THE MULTIVARIATE LINEAR HYPOTHESIS, AMS 64, 200
- THE MULTIVARIATE LINEAR HYPOTHESIS, AMS 64, 200
 DAS GUPTA, S. MONOTONICITY OF THE POWER FUNCTIONS OF SOME TESTS OF
- INDEPENDENCE BETWEEN TWO SETS OF VARIA. AMS 64, 206 DAS GUPTA, S. MONOTONICITY PROPERTY OF THE POWER FUNCTIONS OF SOME
- TESTS OF THE EQUALITY OF TWO COVARIANG. AMS 64, 1059 DAS CUPTA, S OPTIMUM CLASSIFICATION RULES FOR CLASSIFICATION INTO
- TWO MULTIVARIATE NORMAL POPULATIONS, AMS 65, 1174 DAS, M. N. ASYMMETRICAL ROTATABLE DESIGNS AND ORTHOGONAL TRANSFORMANT OF THE PROPULATION OF THE
- MATIONS, TECH 6B, 313 DAS, M N. CONSTRUCTION AND ANALYSIS OF SOME NEW SERIES OF CON-
- FOUNDED ASYMMETRICAL FACTORIAL DESIGNS, BIOGS 67, B13 DAS, M. N. CONSTRUCTION OF ROTATABLE DESIGNS THROUGH BALANCED IN-
- COMPLETE BLOCK DESIGNS, AMS 62. 1421 DAS. M. N. DESIGN AND ANALYSIS OF EXPERIMENTS WITH MIXTURES, AMS 6B.
- 1517
 DAS, M. N. INCOMPLETE BLOCK DESIGNS FOR BIO-ASSAYS, BIOCS 66, 706
- DAS, M. N. ON THE CONSTRUCTION AND ANALYSIS OF SOME CONFOUNDED ASYM-METRICAL FACTORIAL DESIGNS, BIOCS 65, 94B
- DAVES, HILDA M. THE FITTING OF MARKOFF SERIAL VARIATION CURVES, JRSSB 5B. 120
- DAVID, F. N. A NOTE ON THE EVALUATION OF THE MULTIVARIATE NORMAL IN-TEGRAL, BIOKA 53, 45B
- DAVID, F. N. A NOTE ON WILCOXON'S AND ALLIED TESTS, BIOKA 56, $4\mbox{B5}$
- DAVID, F. N. A PERSISTENCE PROBLEM IN RENEWAL THEORY, ROBERT THE BRUCE'S SPIDER, BIOKA 66, 255
- DAVID, F. N. CONTACIOUS OCCUPANCY, JRSSB 59, 120
- DAVID, F. N. CORRIGENDA TO 'MULTIPLE RUNS', BIOKA 57, 534
- DAVID, F. N. ERRATA IN 'TABLES OF SYMMETRIC FUNCTIONS', BIOKA 5B, 292
- DAVID, F. N. FOUR-LETTER WORDS. THE DISTRIBUTION OF PATTERN FREQUENCIES IN RING PERMUTATIONS, JRSSB 67, 550
- DAVID, F. N. INTERSECTIONS OF RANDOM CHORDS OF A CIRCLE, BIOKA 64, 373
- DAVID, F. N. MULTIPLE RUNS, BIOKA 57, 168
- DAVID, F. N. NON-RANDOMNESS IN A SEQUENCE OF TWO ALTERNATIVES. I. WILCOMON'S AND ALLIED TEST STATISTICS, BIOKA 58, 166
- DAVID, F. N. NON-RANDOMNESS IN A SEQUENCE OF TWO ALTERNATIVES. II. RUNS TEST, BIOKA 58, 253
- DAVID, F. N. PERSISTENCE IN A CHAIN OF MULTIPLE EVENTS WHEN THERE IS SIMPLE DEPENDENCE. BIOKA 62, 351
- DAVID, F. N. RANDOM POINTS IN A CIRCLE AND THE ANALYSIS OF CHROMOSOME PATTERNS, BIOKA 63, 23
- DAVID, F. N. RUNS IN ARING, BIOKA 58, 572
- DAVID, F. N. SEQUENTIAL OCCUPANCY, BIOKA 59, 218
- DAVID, F. N. SEQUENTIAL OCCUPANCY WITH CLASSIFICATION, BIOKA 6B, 229
- DAVID, F. N. SOME NOTES ON ORDERED RANDOM INTERVALS, JRSSB 56, 79
- DAVID, F. N. SOME PROPERTIES OF THE DISTRIBUTION OF THE LOGARITHM OF NON-CENTRAL F, BIOKA 60, 417

- DAVID, F. N. SOME TESTS OF SIGNIFICANCE WITH ORDERED VARIABLES, JRSSB 56, 1
- DAVID, F. N. STATISTICAL TREATMENT OF CENSORED DATA. PART I. FUNDA-MENTAL FORMULAE, BIOKA 54, 22B
- DAVID, F. N. STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS.
 I. DICINC AND GAMINC, A NOTE ON THE HI, 810KA 55, 1
- DAVID, F. N. TABLE FOR THE SOLUTION OF THE EXPONENTIAL EQUATION EXP (B)-B(1-P)=1, BIOKA 63, 177
- DAVID. F. N. TABLES FOR THE SOLUTION OF THE EXPONENTIAL EQUATION, EXP(-A)+KA=1, BIOKA 60, 439
- DAVID, F. N. TABLES OF SYMMETRIG FUNCTIONS, PART IV., BIOKA 53, 427
- DAVID, F. N. TABLES OF SYMMETRIC FUNCTIONS. PART IV., BIOKA 53, 427
 DAVID, F. N. TABLES OF SYMMETRIC FUNCTIONS. PART V., BIOKA 55, 223
- DAVID, F. N. TABLES OF SYMMETRIC FUNCTIONS. PARTS II AND III., BIOKA 51. 435
 DAVID. F. N. TESTS FOR RANDOMNESS OF POINTS ON A LINE. BIOKA 56, 104
- DAVID, F. N. THE CENTRAL SAMPLING MOMENTS OF THE MEAN IN SAMPLES FROM A FINITE POPULATION (ATY'S FORMULAE, BIOKA 61, 199
- DAVID, F. N. THE DISPERSION OF A NUMBER OF SPECIES, JRSSB 59, 190
 DAVID, F. N. THE EFFEGT OF NON-NORMALITY ON THE POWER FUNCTION OF THE
 F-TEST IN THE ANALYSIS OF VARIANCE, BIOKA 51, 43
- DAVID, F. N. THE POLYKAYS OF THE NATURAL NUMBERS, BIOKA 60, 53
- DAVID, F. N. THE VARIANCE OF SPEARMAN'S RHO IN NORMAL SAMPLES, BIOKA 61, 19
- DAVID, F. N. THE Z-TEST AND SYMMETRICALLY DISTRIBUTED RANDOM VARIA-BLES, 810KA 59, 123
- DAVID, H. A. A MULTI-STAGE PROCEDURE FOR THE SELECTION OF THE BEST OF SEVERAL POPULATIONS, JASA 62, 785
- DAVID, H. A. A NOTE ON 'A K-SAMPLE MODEL IN ORDER STATISTICS' BY W. J. CONOVER, AMS 66, 2B7
- DAVID, H. A. A NOTE ON MOVING RANGES, BIOKA 55, 512
- DAVID, H. A. CORRECTION TO 'A CONSERVATIVE PROPERTY OF BINOMIAL TESTS' 60 1205, AMS 61, 1343
- DAVID, H. A. CORRIGENDA, 'SIGNIFICANT TESTS FOR PAIRED-COMPARISON EXPERIMENTS', BIOKA 61, 475 DAVID, H. A. CORRIGENDA, 'THE DISTRIBUTION OF RANGE IN CERTAIN NON-
- DAVID, H. A. CORRICENDA, 'THE DISTRIBUTION OF RANGE IN CERTAIN NON-NORMAL POPULATIONS', BIOKA 55, 277
- DAVID, H. A. CYCLIC DESIGNS, AMS 65, 1526
- DAVID, H. A. ESTIMATION OF MEANS OF NORMAL POPULATIONS FROM OBSERVED MINIMA, BIOKA 57, 282
- DAVID, H. A. EXACT DISTRIBUTION OF THE SUM OF INDEPENDENT IDENTI-CALLY DISTRIBUTED DISGRETE RANDOM VARIABL, JASA 65, B37
- DAVID, H. A. FURTHER APPLICATIONS OF RANGE TO THE ANALYSIS OF VARI-ANCE, 810KA 51, 393
- DAVID, H. A. GINI'S MEAN DIFFERENCE REDISCOVERED, 810KA 6B, 573
 DAVID, H. A. MOMENTS OF NEGATIVE ORDER AND RATIO-STATISTICS, JRSSB
- 55, 122
- DAVID, H. A. ON COMPARING DIFFERENT TESTS OF THE SAME HYPOTHESIS, BIOKA 60, 297
- DAVID, H. A. ON THE APPLICATION TO STATISTICS OF AN ELEMENTARY THEOREM IN PROBABILITY, BIOKA 56, B5
- DAVID, H. A. ORDER STATISTICS FOR DISCRETE POPULATIONS AND FOR GROUPED SAMPLES, JASA 68, 1390
 DAVID, H. A. PAIRED COMPARISONS FOR PAIRED CHARACTERISTICS, AMS 68,
- DAVID, H. A. PAIRED COMPARISONS FOR PAIRED CHARACTERISTICS, AMS 68.
- DAVID, H. A. RECURRENCE RELATIONS SETWEEN MOMENTS OF ORDER STATISTICS FOR EXCHANGEABLE VARIATES, AMS 6B, 272
- DAVID, H. A. REVISED UPPER PERGENTAGE POINTS OF THE EXTREME STU-DENTIZED DEVIATE FROM THE SAMPLE MEAN, BIOKA 56, 449 DAVID, H. A. SELECTION OF THE BEST TREATMENT IN A PAIRED-COMPARISON
- EXPERIMENT, AMS 63, 75
 DAVID, H. A. SIGNIFICANCE TESTS FOR PAIRED-COMPARISON EXPERIMENTS.
- BIOKA 61, 95
- DAVID, H. A. SOME TESTS FOR OUTLIERS, BIOKA 61, 379
- DAVID, H. A. THE DISTRIBUTION OF RANGE IN CERTAIN NON-NORMAL POPULA-TIONS, BIOKA 54, 463
- DAVID, H. A. THE DISTRIBUTION OF THE RATIO, IN A SINGLE NORMAL SAM-PLE, OF RANGE TO STANDARD DEVIATION. BIOKA 54, 4B2 DAVID, H. A. THE IDENTIFICATION OF ANNUAL PEAK PERIODS FOR A DIS-
- EASE. BIOCS 65, 645
 DAVID, H. A. THE PERFORMANCE OF SEVERAL TESTS FOR OUTLIERS, BIOKA
- DAVID, H. A. THE PERFORMANCE OF SEVERAL TESTS FOR OUTLIERS, BIOKA 65, 429
- DAVID, H. A. THE POWER FUNCTION OF SOME TESTS BASED ON RANGE, BIOKA 53, 347
- DAVID, H. A. THE RANKING OF VARIANCES IN NORMAL POPULATIONS, JASA 56. 621
 DAVID, H. A. TOURNAMENTS AND PAIRED COMPARISONS, BIOKA 59, 139
- DAVID, H. A. UPPER 5 AND 1 PERCENT POINTS OF THE MAXIMUM F-RATIO, BIOKA 52, 422
- DAVID. H. T. GAME VALUE DISTRIBUTIONS I. AMS 67, 242
- DAVID, H. T. LIKELIHOOD RATIO COMPUTATIONS OF OPERATING COMPUTA-TIONS, AMS 66, 1704
- DAVID, H. T. POISSON LIMITS OF MULTIVARIATE RUN DISTRIBUTIONS, AMS 65, 215
- DAVID, HERBERT ORDER STATISTICS AND STATISTICS OF STRUCTURE, AMS 65,897
- DAVID, HERBERT A. DISCUSSION OF 'A SUBJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' TEST FOR APPROX, JASA 69, 50

- DAVID. HERBERT T. THE SAMPLE MEAN AMONG THE EXTREME NORMAL ORDER STATISTICS, AMS 63, 33
- DAVID, HERBERT T. THE SAMPLE MEAN AMONG THE MODERATE ORDER STATISTICS, AMS 62, 1160
- DAVID, MARTIN THE VALIDITY OF INCOME REPORTED BY A SAMPLE OF FAMI-LIES WHO RECEIVED WELFARE ASSISTANCE DUR, JASA 62, 680
- DAVID, S. T. CONFIDENCE INTERVALS FOR PARAMETERS IN MARKOV AU-TOREGRESSIVE SCHEMES (WITH DISCUSSION), JRSSB 54, 195
- DAVID, S. T. SOME QUESTIONS OF DISTRIBUTION IN THE THEORY OF RANK CORRELATION, BIOKA 51, 131
- DAVIDSON, R. R. MULTIVARIATE PAIRED COMPARISONS. THE EXTENSION OF A UNIVARIATE MODEL AND ASSOCIATED ESTIM, BIOKA 69, 81
- DAVIDSON, R. R. ON A RELATIONSHIP BETWEEN TWO REPRESENTATIONS OF A MODEL FOR PAIRED COMPARISONS, BIOCS 69, 597
- DAVIES, M. LINEAR APPROXIMATION USING THE CRITERION OF LEAST TOTAL DEVIATIONS (ACKNOWLEDGEMENT 67 587), JRSSB 67, 101
- DAVIES. M. MULTIPLE LINEAR REGRESSION ANALYSIS WITH ADJUSTMENT FOR CLASS DIFFERENCES, JASA 61, 729
- DAVIES, O. L. SOME STATISTICAL ASPECTS OF THE ECONOMICS OF ANALYTI-CAL TESTING, TECH 59, 49
- DAVIES, U. L. THE DESIGN OF SCREENING TESTS, TEGH 63, 481
- A SEQUENTIAL METHOD OF TESTING THE LINEAR TRENDS OF DAVIES. P. RESPONSES IN DOSE TRIALS, 810CS 6B, 663
- DAVIES, P. THE CHOICE OF VARIABLES IN THE DESIGN OF EXPERIMENTS FOR LINEAR REGRESSION, BIOKA 69, 55
- DAVIES, R. B. CANNIBALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN EXPERIMENT AND A STOCHASTIC MODEL, BIOCS 68, 247
- DAVIS. A. W. A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE GENERALIZATIONS OF T AND F, AMS 67, 613
- DAVIS, A. W. A SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS FOR THE DIS-
- TRIBUTION OF HOTELLING'S GENERALIZED T-, AMS 6B, B15 DAVIS, A. W. CYCLIG CHANGE-OVER DESIGNS, BIOKA 69, 283
- DAVIS, A. W. GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER TYPE, AMS 68, 1264
- DAVIS, A. W. ON THE PROBABILITY GENERATING FUNCTIONAL FOR THE CUMU-LATIVE POPULATION IN A SIMPLE BIRTH-AND, BIOKA 64, 245
- DAVIS, BURGESS A COMPARISON TEST FOR MARTINGALE INEQUALITIES, AMS 69,505
- DAVIS. BURGESS GOMPARISON TESTS FOR THE CONVERGENCE OF MARTIN-GALES, AMS 6B, 2141
- DAVIS, BURGESS DIVERGENCE PROPERTIES OF SOME MARTINGALE TRANS-FORMS, AMS 69, 1852
- DAVIS, C. E. ON COMPARING THE CORRELATIONS WITHIN TWO PAIRS OF VARI-ABLES, BIOCS 68, 9B7
- DAVIS, HERBERT T. ESTIMATION OF THE INNOVATION VARIANCE OF A STA-TIONARY TIME SERIES, JASA 68, 141
- DAVIS, JAMES A. A PARTIAL COEFFICIENT FOR GOODMAN AND KRUSKAL'S GAM-MA, JASA 67, 1B9
- DAVIS, JAMES AVERY A GHARACTERIZATION OF THE UPPER AND LOWER CLASSES IN TERMS OF CONVERGENCE RATES, AMS 69, 1120
- DAVIS, JAMES AVERY CONVERGENCE RATES FOR PROBABILITIES OF MODERATE DEVIATIONS, AMS 6B, 2016
- DAVIS, JAMES AVERY CONVERGENCE RATES FOR THE LAW OF THE ITERATED LOGARITHM, AMS 6B, 1479
- DAVIS, M. THE ROBBINS-MONRO METHOD FOR ESTIMATING THE MEDIAN LETHAL DOSE, JRSSB 65, 2B
- DAVIS, MILES DISCUSSION OF 'A SUBJECTIVE EVALUATION OF SODE'S LAW AND AN 'OBJECTIVE' TEST FOR APPROXIMATE, JASA 69, 50
- DAVIS. S. A. TABLES OF DISTRIBUTION-FREE TOLERANCE LIMITS. AMS 64. 1361
- DAWSON, R. B. A SIMPLIFIED EXPRESSION FOR THE VARIANCE OF THE CHI-SQUARE FUNCTION ON A CONTINGENCY TABLE, BIOKA 54, 280
- DAY, N. E. A GOMPARISON OF SOME SEQUENTIAL DESIGNS, BIOKA 69, 301
- DAY, N. E. A GENERAL MAXIMUM LIKELIHOOD DISCRIMINANT, BIOCS 67, 313 DAY, N. E. ESTIMATING THE COMPONENTS OF A MIXTURE OF NORMAL DIS-TRIBUTIONS, BIOKA 69, NO. 3
- DAY, N. E. FITTING CURVES TO LONGITUDINAL DATA, BIOCS 66, 276
- DAY, N. E. TWO-STAGE DESIGNS FOR CLINICAL TRIALS, BIOCS 69, 111
- DAYHOFF, EUGENE GENERALIZED POLYKAYS, AN EXTENTION OF SIMPLE POLYKAYS AND BIPOLYKAYS, CORR. 66746, AMS 66, 226
- DAYHOFF, EUGENE ON THE EQUIVALENCE OF POLYKAYS OF THE SECOND DEGREE AND SIGMA'S, CORR. 65 1069, AMS 64, 1663
- DE BRUYN, C. S. VAN DOSBEN PREDICTION BY PROGRESSIVE CORRECTION, JRSSB 64, 113
- MAXIMUM LIKELIHOOD PAIRED COMPARISON RANKING BY DE GANI. J. S. LINEAR PROGRAMMING, 810KA 69, NO.3
- DE GICCO, HENRY NOTE ON AN APPLICATION OF FOUR MOMENT INEQUALITIES TO A PROBLEM IN QUEUES, TECH 65, 435
- DE GROOT, M. H. OPTIMAL TWO-STAGE STRATIFIED SAMPLING, AMS 69, 575
- DE GROOT, M. H. THE ESSENTIAL COMPLETENESS OF THE CLASS OF GENERAL-IZED SEQUENTIAL PROBABILITY RATIO TESTS, AMS 61, 602
- DE JANOSI, PETER E. A NOTE ON THE RELATIONSHIP BETWEEN EARNING EX-PECTATIONS AND NEW CAR PURCHASES. JASA 59. 575
- DE LA GARZA, A. QUADRATIC EXTRAPOLATION AND A RELATED TEST OF HYPOTHESES, JASA 56, 644
- DE LEEUW, FRANK THE CONCEPT OF CAPACITY, JASA 62, 826
- DE OLIVEIRA, J. TIAGO QUASI-LINEARLY INVARIANT PREDICTION, AMS 66,

- DE ST GROTH, S. FAZEKAS RANDOM CIRCLES ON A SPHERE, BIOKA 62, 389 DE WAAL, D. J. AN ASYMPTOTIC DISTRIBUTION FOR THE DETERMINANT OF A
- NON-CENTRAL B STATISTIC IN MULTIVARIAT, SASJ 6B, 77 DE WAAL, D. J. ON THE NONCENTRAL DISTRIBUTION OF THE LARGEST CANONI-CAL CORRELATION COEFFICIENT, SASJ 69, NO.2
- DE WAAL, D. J. THE NONCENTRAL MULTIVARIATE BETA TYPE TWO DISTRIBU-
- TION, SASJ69, NO.2 DEAN, WILLIAM BEST LINEAR UNBIASED ESTIMATION FOR MULTIVARIATE
- STATIONARY PROCESSES, TECH 6B, 523 DEBAUN, R. RESPONSE SURFACE DESIGNS FOR THREE FACTORS AT THREE LEVELS, TECH 59, 1
- DEBERGHES, HELENE ON THE ERGODICITY FOR NON-STATIONARY MULTIPLE MARKOV PROCESSES, AMS 6B, 1448
- DECELL JR, HENRY P. ON THE FIXED POINT PROBABILITY VECTOR OF REGULAR OR ERGODIC TRANSITION MATRICES, JASA 67, 600
- DECICCO, H. ON THE DISTRIBUTION OF THE BIVARIATE RANGE, TECH 67, 476 DEELY, J. J. CONSTRUCTION OF SEQUENCES ESTIMATING THE MIXING DIS-TRIBUTION, AMS 6B, 286
- DEELY, J. J. THE EXCEEDANCE TEST FOR TRUNCATION OF A SUPPLIER'S DATA, JASA 69, 823
- DEELY, JOHN SHORTER CONFIDENCE INTERVALS USING PRIOR OBSERVATIONS, JASA 69, 37B
- DEEMER, WALTER L. THE JAGOBIANS OF CERTAIN MATRIX TRANSFORMATIONS USEFUL IN MULTIVARIATE ANALYSIS, BASED, BIOKA 51, 345
- DEGRAY, DICK THE ROUND ROBIN (ERRATA, 69 627), TECH 68, B41
- DEGRAY, R. J. DESIGN FOR INTERACTIONS, TECH 6B, 3B9
- DEGROOT, M. H. BAYES ESTIMATION WITH CONVEX LOSS, AMS 63, 839
- DEGROOT, M. H. CORRELATIONS BETWEEN SIMILAR SETS OF MEASUREMENTS. BIOCS 66, 781
- DEGROOT, M. H. SOME ASPECTS OF THE USE OF THE SEQUENTIAL PROBABILITY RATIO TEST, JASA 5B, 1B7
- DEGROOT, M. H. SOME PROBLEMS OF OPTIMAL STOPPING, JRSSB 68, 108
- DEGROOT, M. H. UNCERTAINTY, INFORMATION, AND SEQUENTIAL EXPERI-MENTS, AMS 62, 404
- DEJANOSI, PETER E. ON THE STATISTICAL DISCREPANCY IN THE REVISED UNITED STATES NATIONAL ACCOUNTS, JASA 66, 1219
- DELANGE, E. M. EXACT CRITIGAL VALUES FOR MOOD'S DISTRIBUTION-FREE TEST STATISTIC FOR DISPERSION AND ITS N, TECH 68, 497
- DEMING, W. EDWARDS ON SIMPLIFICATIONS OF SAMPLING DESIGN THROUGH REPLICATION WITH EQUAL PROBABILITIES AND, JASA 56, 24
- DEMING, W. EDWARDS ON THE PROBLEM OF MATCHING LISTS BY SAMPLES, JASA 59.403
- DEMING, W. EDWARDS SPECIAL PAPER, PRINCIPLES OF PROFESSIONAL STATISTICAL PRACTICE, AMS 65, 18B3
- DEMING, W. EDWARDS WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. ON WILLIAM HUR, JASA 69, NO.4
- DEMPSTER, A. P. A GENERALIZATION OF BAYESIAN INFERENCE (WITH DISCUSSION), JRSSB 6B, 205
- DEMPSTER, A. P. DISCUSSION OF 'ON THE FOUNDATIONS OF STATISTICAL IN-FERENCE', JASA 62, 307
- DEMPSTER, A. P. DISTRIBUTIONS DETERMINED BY CUTTING SIMPLEX WITH HYPERPLANES, AMS 6B, 1473
- DEMPSTER, A. P. EXPECTED SIGNIFICANCE LEVEL AS A SENSITIVITY INDEX FOR TEST STATISTICS, JASA 65, 420
- DEMPSTER, A. P. FURTHER EXAMPLES OF INCONSISTENCIES IN THE FIDUCIAL ARGUMENT, AMS 63, B44
- DEMPSTER, A. P. MULTIVARIATE THEORY FOR GENERAL STEPWISE METHODS, AMS 63, 873
- DEMPSTER, A. P. NEW METHODS FOR REASONING TOWARDS POSTERIOR DIS-TRIBUTIONS BASED ON SAMPLE DATA, AMS 66, 355
- DEMPSTER, A. P. ON A PARADOX CONCERNING INFERENCE ABOUT A COVARIANCE MATRIX, AMS 63, 1414
- DEMPSTER, A. P. ONDIRECT PROBABILITIES, JRSSB 63, 100
- DEMPSTER, A. P. ON THE DIFFICULTIES INHERENT IN FISHER'S FIDUCIAL ARGUMENT, JASA 64, 56
- DEMPSTER, A. P. RANDOM ALLOCATION DESIGNS II, APPROXIMATE THEORY FOR SIMPLE RANDOM ALLOCATION, AMS 61, 3B7
- DEMPSTER, A. P. TESTS FOR THE EQUALITY OF TWO COVARIANCE MATRICES IN RELATION TO A BEST LINEAR DISCRIMINA, AMS 64, 191
- DEMPSTER, A. P. UPPER AND LOWER PROBABILITIES GENERATED BY A RANDOM GLOSED INTERVAL, AMS 6B, 957
- DEMPSTER, A. P. UPPER AND LOWER PROBABILITIES INDUCED BY A MUL-TIVALUED MAPPING, AMS 67, 325
 DEMPSTER, A. P. UPPER AND LOWER PROBABILITY INFERENCES BASED ON A
- SAMPLE FROM A FINITE UNIVARIATE POPULAT, BIOKA 67, 515
- DEMPSTER, A. P. UPPER AND LOWER PROBABILITY INFERENCES FOR FAMILIES OF HYPOTHESES WITH MONOTONE DENSITY R, AMS 69, 953 DENARDO, E. V. AN OPTIMALITY CONDITION FOR DISCRETE DYNAMIC PRO-
- GRAMMING WITH NO DISCOUNTING, AMS 6B, 1220 DENNIS, K. E. THE GONDITIONS UNDER WHICH GRAM-CHARLIER AND
- EDGEWORTH CURVES ARE POSITIVE DEFINITE AND UNI, 810KA 52, 425 DENNY, J. L. GONVERGENGE PROPERTIES OF CONVERGENCE WITH PROBABILI-
- TY ONE, AMS 66, 1800 DENNY, J. L. NOTE ON A THEOREM OF DYNKIN ON THE DIMENSION OF SUFFI-CIENTSTATISTICS, AMS 69, 1474
- DENNY, J. L. ON CONTINUOUS SUFFICIENT STATISTICS, AMS 64, 1229
- DENTON, FRANK T. SOME TECHNIQUES FOR ANALYZING A SET OF TIME SERIES SUBJECT TO A LINEAR RESTRICTION, JASA 63, 513

DEO, C. M. A NOTE ON THE WEAK LAW, AMS 6B, 2159

SURVEYS, JASA 65, 270

- DERMAN, C. SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES, BIOKA 56, 2B5
- DERMAN, CYRUS A NOTE ON MEMORYLESS RULES FOR CONTROLLING SEQUENTIAL CONTROL PROCESSES, AMS 66, 276
- DERMAN, CYRUS A SOLUTION TO A COUNTABLE SYSTEM OF EQUALITIES ARISING IN MARKOVIAN DECISION PROCESSES, AMS 67, 5B2
- DERMAN, CYRUS DENUMERABLE STATE MARKOVIAN DECISION PROCESSES, AVERAGE COST CRITERION, AMS 66, 1545
- DERMAN, CYRUS ON SEQUENTIAL CONTROL PROCESSES, AMS 64, 341
- DERMAN, CYRUS REMARK CONCERNING TWO-STATE SEMI-MARKOV PROCESSES, AMS 61, 615
- DES RAJ, A NOTE ON THE VARIANCE OF THE RATIO ESTIMATE, JASA 64, B95 DES RAJ, ON A METHOD OF USING MULTI-AUXILIARY INFORMATION IN SAMPLE
- DES RAJ, ON DOUBLE SAMPLING FOR PROBABILITY PROPORTIONATE TO SOME MEASURE OF SIZE ESTIMATION, AMS 64, 900
 DES RAJ, ON FORMING STRATA OF EQUAL AGGREGATE SIZE, JASA 64, 4B1
- DES RAJ, ON MATCHING LISTS BY SAMPLES, JASA 61, 151
 DES RAJ, ON SAMPLING OVER TWO OCCASIONS WITH PROBABILITY PROPOR-TIONATE TO SIZE, AMS 65, 327
- DES RAJ, ON THE RELATIVE ACCURACY OF SOME SAMPLING TECHNIQUES, JASA 5B.9B
- DES RAJ, SOME ESTIMATORS IN SAMPLING WITH VARYING PROBABILITIES WITHOUT REPLACEMENT, JASA 56, 269
- DES RAJ. SOME REMARKS ON A SIMPLE PROCEDURE OF SAMPLING WITHOUT REPLACEMENT, JASA 66, 391
- DES RAJ, THE USE OF SYSTEMATIC SAMPLING WITH PROBABILITY PROPOR-TIONATE TO SIZE IN A LARGE SCALE SURVEY, JASA 64, 251
- DES RAJ. VARIANCE ESTIMATION IN RANDOMIZED SYSTEMATIC SAMPLING WITH PROBABILITY PROPORTIONATE TO SIZE, JASA 65, 27B
- DESHPANDE, J. V. SOME NONPARAMETRIC TESTS FOR MULTISAMPLE PROBLEMS, TECH 68, 57B
- DESU, M. M. A FIXED SUBSET-SIZE APPROACH TO THE SELECTION PROBLEM,
- BIOKA 68, 401 DESU, M. M. PREDICTIVE ZERO-MEAN UNIFORM DISCRIMINATION, BIOKA 68,
- 519 DEUEL, P. THE LAST RETURN TO EQUILIBRIUM IN A COIN TOSSING GAME, AMS
- 64.1344 DHARMADHIKARI, S. W. A CHARACTERIZATION OF A CLASS OF FUNCTIONS OF
- FINITE MARKOV CHAINS, AMS 65, 524 DHARMADHIKARI, S. W. A NOTE ON EXCHANGEABLE PROCESSES WITH STATES OF
- FINITERANK, AMS 69, NO.6 DHARMADHIKARI, S. W. BOUNDS ON MOMENTS OF MARTINGALES, AMS 6B, 1719
- DHARMADHIKARI, S. W. BOUNDS ON MOMENTS OF SUMS OF RANDOM VARIABLES, AMS 69, 1506
- DHARMADHIKARI, S. W. EXCHANGEABLE PROCESSES WHICH ARE FUNCTIONS OF STATIONARY MARKOV CHAINS, AMS 64, 429
- DHARMADHIKARI, S. W. FUNCTIONS OF FINITE MARKOV CHAINS, AMS 63, 1022 DHARMADHIKARI, S. W. SPLITTING A SINGLE STATE OF A STATIONARY PROCESS INTO MARKOVIAN STATES, AMS 6B, 1069
- DHARMADHIKARI, S. W. SUFFICIENT CONDITIONS FOR A STATIONARY PROCESS TO BE A FUNCTION OF A FINITE MARKOV C, AMS 63, 1033
- DIAMOND, EARL L. THE LIMITING POWER OF CATEGORICAL DATA CHI-SQUARE TESTS ANALOGOUS TO NORMAL ANALYSIS OF, AMS 63, 1432
- DIAMOND, W. J. THREE DIMENSIONAL MODELS OF EXTREME VERTICES DESIGNS FOR FOUR COMPONENT MIXTURES, TECH 67, 472
- DICKEY, JAMES M. EXPANSIONS OF T DENSITIES AND RELATED COMPLETE IN-TEGRALS, AMS 67, 503
- DICKEY, JAMES M. MATRICVARIATE GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AND THE INVERTED MULTIV, AMS 67, 511
- DICKEY, JAMES M. SMOOTHED ESTIMATES FOR MULTINOMIAL CELL PROBA-BILITIES, AMS 6B, 561
- DICKEY, JAMES M. SMOOTHING BY CHEATING, AMS 69, 1477
- DICKEY, JAMES M. THREE MULTIDIMENSIONAL-INTEGRAL IDENTITIES WITH BAYESIAN APPLICATIONS, AMS 6B, 1615
- DINGMAN, H. F. LATENT CLASS ANALYSIS AND DIFFERENTIAL MORTALITY, JASA 62, 430
- DISHON, MENACHEM A COMMUNICATIONS SATELLITE REPLENISHMENT POLICY. TECH 66, 399
- DIXON, W. J. APPROXIMATE BEHAVIOR OF THE DISTRIBUTION OF WINSORIZED
- T (TRIMMING-WINSORIZATION 2), TECH 6B, B3
 DIXON, W. J. QUERY, REJECTION OF OUTLYING VALUES, TECH 64, 22B
- DIXON, W. J. SAMUELS. WILKS, JASA 65, 939
- DIXON, W. J. THE UP-AND-DOWN METHOD FOR SMALL SAMPLES, JASA 65, 967
- ${\tt DODGE,\ H.\ F.\ PROCEDURES\ AND\ TABLES\ FOR\ EVALUATING\ DEPENDENT\ MIXED}$ ACCEPTANCE SAMPLING PLANS, TECH 69, 341
- DOEHLERT, DAVID H. BALANCED SETS OF BALANCED INCOMPLETE BLOCK DESIGNS OF BLOCK SIZE THREE, TECH 65, 561
- DOERFLER, T. E. THE BEHAVIOUR OF SOME SIGNIFICANCE TESTS UNDER EX-PERIMENTAL RANDOMIZATION, BIOKA 69, 231
- DOIG, ALISON A BIBLIOGRAPHY ON THE THEORY OF QUEUES. BIOKA 57, 490 DOKSUM, K. TEST FOR MONOTONE FAILURE RATE BASED ON NORMALIZED SPAC-ING, AMS 69.1216
- DOKSUM. K. A 'OPTIMAL' ONE-SAMPLE DISTRIBUTION-FREE TESTS AND THEIR TWO-SAMPLE EXTENSIONS, AMS 66, 120
- DOKSUM. K. A DISTRIBUTION AND POWER OF THE ABSOLUTE NORMAL SCORES TEST, JASA 67, 966

- DOKSUM. K. A. DISTRIBUTION-FREE TESTS OF INDEPENDENCE, AMS 67, 429 DOKSUM, K. A. SOME NEW DISTRIBUTION-FREE STATISTICS, (ACKNOWLEDGE-MENT OF PRIORITY 65 1901), AMS 65, 203
- DOKSUM. KJELL ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE PROCEDURES, AMS 66, 619
- DOKSUM, KJELL ASYMPTOTICALLY OPTIMAL STATISTICS IN SOME MODELS WITH INCREASING FAILURE RATE AVERAGE, AMS 67. 1731
- DOKSUM, KJELL MINIMAX RESULTS FOR IFRA SCALE ALTERNATIVES, AMS 69
- DOKSUM, KJELL ROBUST PROCEDURES FOR SOME LINEAR MODELS WITH ONE OB-SERVATION PER CELL, AMS 67. B7B
- DOKSUM. KJELL STARSHAPED TRANSFORMATIONS AND THE POWER OF RANK TESTS, AMS 69, 1167
- DOLBY. J. L. GRAPHICAL PROCEDURE FOR FITTING THE BESTLINE TO A SET OF POINTS. TECH 60, 477
- DOLBY, JAMES L. A QUICK METHOD FOR CHOOSING A TRANSFORMATION, TECH 63.317
- DOLEANS, CATHERINE VARIATION QUADRATIQUE DES MARTINGALES CON-TINUES A DROITE, AMS 69, 2B4
- DOMB, C. SOME STATISTICAL PROBLEMS CONNECTED WITH CRYSTAL LATTICES (WITH DISCUSSION), JRSSB 64, 367 DONALDSON, THEODORE S. ROBUSTNESS OF THE F-TEST TO ERRORS OF BOTH
- KINDS AND THE CORRELATION BETWEEN THE N. JASA 68, 660 DOOLITTLE, D. P. MAMMALIAN REPRODUCTIVE DATA FITTED TO A MATHEMATI-
- CAL MODEL, BIOCS 69, 529 SOME EXPERIMENTS IN THE NUMERICAL ANALYSIS OF DORAN, J. E.
- ARCHAEOLOGICAL DATA, BIOKA 66, 311 DORFF, M. ESTIMATION OF THE PARAMETERS OF A LINEAR FUNCTIONAL RELA-
- TION, JRSSB 61, 160 DOSS, D. C. CHARACERTIZATIONS OF THE LINEAR EXPONENTIAL FAMILY IN A PARAMETER BY RECURRENCE RELATIONS FO, AMS 69, 1721
- DOSS, S. A. D. C. ON THE EFFICIENCY OF BAN ESTIMATES OF THE PARAMETERS OF NORMAL POPULATIONS BASED ON SIN, BIOKA 62, 570
- DOUGLAS, J. B TABLES OF POISSON POWER MOMENTS, BIOKA 56, 489
- DOWNS, T. D. SOME RELATIONSHIPS AMONG THE VON MISES DISTRIBUTIONS OF DIFFERENT DIMENSIONS, BIOKA 66, 269
- DOWNS, T. D. SOME RELATIONSHIPS BETWEEN THE NORMAL AND VON MISES DISTRIBUTIONS, BIOKA 67, 684 DOWNTON, F. A NOTE ON ORDERED LEAST-SQUARES ESTIMATION, BIOKA 53.
- 457 DOWNTON. F. A NOTE ON THE ULTIMATE SIZE OF A GENERAL STOCHASTIC
- EPIDEMIC, BIOKA 67, 314
- DOWNTON, F. A NOTE ON VACANCIES ON A LINE, JRSSB 61, 207
 DOWNTON, F. CONGESTION SYSTEMS WITH INCOMPLETE SERVICE (CORR. 64
- 365). JRSSB 62, 107 DOWNTON, F. LINEAR ESTIMATES WITH POLYNOMIAL COEFFICIENTS, BIOKA
- DOWNTON, F.
- ON LIMITING DISTRIBUTIONS ARISING IN BULK SERVICE QUEUES, JRSSB 56. 265 DOWNTON, F. THE RELIABILITY OF MULTIPLEX SYSTEMS WITH REPAIR, JRSSB
- 66.459 DOWNTON, F. THE ULTIMATE SIZE OF CARRIER-BORNE EPIDEMICS, BIOKA 6B.
- DOWNTON, F. WAITING TIME IN BULK SERVICE QUEUES, JRSSB 55, 256
- DOWNTON, FRANK LINEAR ESTIMATES OF PARAMETERS IN THE EXTREME VALUE DISTRIBUTION, TECH 66, 3
- DOWSON. D. C. ON THE LINEAR CONTROL OF A LINEAR SYSTEM HAVING A NORMAL STATIONARY STOCHASTIC INPUT, JRSSB 68, 381
- DOWSON, D. C. OPTIMIZATION OF A HOT ROLLING MILL, JRSSB 67, 300
- DRAPER, J. CORRIGENDA, 'PROPERTIES OF DISTRIBUTIONS RESULTING FROM CERTAIN SIMPLE TRANSFORMATIONS OF THE, BIOKA 53, 236 DRAPER, J. PROPERTIES OF DISTRIBUTIONS RESULTING FROM CERTAIN SIM-
- PLE TRANSFORMATIONS OF THE NORMAL DISTRI. BIOKA 52, 290 DRAPER, N. R. BAYESIAN ANALYSIS OF LINEAR MODELS WITH TWO RANDOM
- COMPONENTS WITH SPECIAL REFERENCE TO THE, BIOKA 68, 101
- DRAPER, N. R. BAYESIAN STRATIFIED TWO-PHASE SAMPLING RESULTS, K CHARACTERISTICS, BIOKA 6B, 5B7 DRAPER, N. R. CORRIGENDA, 'THE CHOICE OF A SECOND ORDER ROTATABLE
- DESIGN', BIOKA 65, 305 DRAPER, N. R. DESIGN OF EXPERIMENTS FOR PARAMETER ESTIMATION IN MUL-
- TIRESPONSE SITUATIONS, BIOKA 66, 525
- DRAPER, N. R. DESIGNS WHICH MINIMIZE MODEL INADEQUACIES. CUBOIDAL REGIONS OF INTEREST, BIOKA 65, 111
- DRAPER, N. R. MIXTURE DESIGNS FOR THREE FACTORS, JRSSB 65, 450
- DRAPER, N. R. SEQUENTIAL DESIGNS FOR SPHERICAL WEIGHT FUNCTIONS. TECH 67, 517 DRAPER. N R. SOME BAYESIAN STRATIFIED TWO-PHASE SAMPLING RESULTS,
- BIOKA 68, 131 DRAPER, N. R. THE BAYESIAN ESTIMATION OF COMMON PARAMETERS FROM
- SEVERAL RESPONSES, BIOKA 65. 355 DRAPER, N. R. THE USE OF PRIOR DISTRIBUTIONS IN THE DESIGN OF EXPERI-
- MENTS FOR PARAMETER ESTIMATION IN NON, BIOKA 67, 147 DRAPER, N. R. THE USE OF PRIOR DISTRIBUTIONS IN THE DESIGN OF EXPERI-MENTS FOR PARAMETER ESTIMATION IN NON, BIOKA 67, 662
- DRAPER, N. R. THE USE OF SECOND-ORDER 'SPHERICAL' AND 'CUBOIDAL' DESIGNS IN THE WRONG REGIONS, BIOKA 66, 596
- DRAPER, N. R. UNEQUAL GROUP VARIANCES IN THE FIXED-EFFECTS ONE-WAY ANALYSIS OF VARIANCE, A BAYESIAN SIDEL, BIOKA 66, 27

- DRAPER, NORMAN 'RIDGE ANALYSIS' OF RESPONSE SURFACES, TECH 63, 469
 DRAPER, NORMAN ISN'T MY PROCESS TOO VARIABLE FOR EVOP., TECH 6B, 439
 DRAPER, NORMAN R THE CHOICE OF A SECOND ORDER ROTATABLE DESIGN,
 810KA 63, 335
- DRAPER, NORMAN R. A BASIS FOR THE SELECTION OF A RESPONSE SURFACE DESIGN, JASA 59. 622
- DRAPER, NORMAN R. CONSTRUCTION OF THE SET OF 256-RUN DESIGNS OF RESOLUTION GREATER THAN OR EQUAL TO 5 AND, AMS 6B, 246
- DRAPER, NORMAN R. FACTOR CHANGES AND LINEAR TRENDS IN EIGHT-RUN TWO LEVEL FACTORIAL DESIGNS, TECH 68, 301
- DRAPER, NORMAN R. FURTHER SECOND ORDER ROTATABLE DESIGNS, AMS 6B, 1995
- DRAPER, NORMAN R. MISSING VALUES IN RESPONSE SURFACE DESIGNS, TECH 61, 389
- DRAPER, NORMAN R. RESPONSE SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS, TECH 68, 177
- DRAPER, NORMAN R. TESTING FOR THE INCLUSION OF VARIABLES IN LINEAR REGRESSION BY A RANDOMISATION TECHNIQU, TECH 66, 695
- DRAPER, NORMAN R. THE CONSTRUCTION OF SATURATED TWO TO THE POWER OF K-P DESIGNS, AMS 67, 1110
- DRAPER, NORMAN R. THIRD ORDER ROTATABLE DESIGNS IN THREE DIMENSIONS, SOME SPECIFIC DESIGNS, AMS 61, 910
- DRAPER, NORMAN R. THIRD ORDER ROTATABLE DESIGNS IN THREE FACTORS. ANALYSIS, TECH 62, 219
- DRAPER, NORMAN R. TRANSFORMATIONS, SOME EXAMPLES REVISITED, TECH 69, 23
- DRONKERS, J. J. APPROXIMATE FORMULAE FOR THE STATISTICAL DISTRIBU-TIONS OF EXTREME VALUES, BIOKA 58, 447
- DU BOIS, N. S. D'ANDREA A SOLUTION TO THE PROBLEM OF LINKING MUL-TIVARIATE DOCUMENTS, JASA 69, 163
- DUBEY, S. D. ON SOME PERMISSIBLE ESTIMATORS OF THE LOCATION PARAMETER OF THE WEISULL AND CERTAIN OTHER DI, TECH 67, 293
- DUBEY, S. D. ON THE DETERMINATION OF CONFIDENCE LIMITS OF AN INDEX, BIOCS 66, 603
- DUSEY, SATYA D. ASYMPTOTIC PROPERTIES OF SEVERAL ESTIMATORS OF WEIBULL PARAMETERS, TECH 65, 423
- DUSEY, SATYA D. SOME PERCENTILE ESTIMATORS FOR WEISULL PARAMETERS,
- TECH 67, 119
 DUBINS, LESTER MERGING OF OPINIONS WITH INCREASING INFORMATION,
- AMS 62, B82
 DUBINS, LESTER E. A NOTE ON UPCROSSINGS OF SEMIMARTINGALES, AMS 66,
- 728
 DUBINS, LESTER E. A SHARPER FORM OF THE BOREL-CANTELLI LEMMA AND THE
- STRONG LAW, AMS 65, 800 DU8INS, LESTER E. A SIMPLER PROOF OF SMITH'S ROULETTE THEOREM, AMS
- 68,390
 DUBINS, LESTER E, INVARIANT PROBABILITIES FOR CERTAIN MARKOV
- PROCESSES, AMS 66, 837
 DUBINS, LESTER E. ON A THEOREM OF SKOROHOD, AMS 68, 2094
- DUSINS, LESTER E. ON THE EXPECTED VALUE OF A STOPPED MARTINGALE, AMS 66, 1505
- DUBINS, LESTER E. OPTIMAL STOPPING WHEN THE FUTURE IS DISCOUNTED, AMS 67, 601
- DUSMAN, M. ESTIMATION OF PARAMETERS IN A TRANSIENT MARKOV CHAIN ARISING IN A RELIABILITY GROWTH MODEL, AMS 69, 1542
- ARTSING IN A RELIABILITI GROWIN MODEL, AMS 69, 1942
 DUDEWICZ, EDWARD J. AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION
 PROBLEMS, AMS 69, 492
- DUDLEY, R. M. DISTANCES OF PROBABILITY MEASURES AND RANDOM VARIA-BLES, AMS 68, 1563
- DUDLEY, R. M. GAUSSIAN PROCESSES ON SEVERAL PARAMETERS, AMS 65, 771 DUDLEY, R. M. THE SPEED OF GLIVENKO-CANTELLI CONVERGENCE, AMS 69, 40 DUDMAN, JACK LOGISTIC ORDER STATISTICS, AMS 63, 658
- DUDZINSKI, M. L. THE USE OF LAMBDA AS AN IGDEX OF PRECISION, BIOCS 69, 174
- DUGUE, D. GEORGES DARMOIS, 1888-1960, AMS 61, 357
- DUNCAN, ACHESON J. BULK SAMPLING. PROBLEMS AND LINES OF ATTACK, TECH 62, 319
- DUNCAN, ACHESON J. CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE OPERATING CHARACTERISTIC CURVES, JASA 57, 345
- DUNCAN, ACHESON J. DESIGN AND OPERATION OF A DOUBLE-LIMIT VARIABLES SAMPLING PLAN, JASA 5B, 543
- DUNCAN, ACHESON J. THE ECONOMIC DESIGN OF MEAN CHARTS USED TO MAIN-TAIN CURRENT CONTROL OF A PROCESS, JASA 56, 22B
- DUNCAN, D. 8. ESTIMATION OF THE PROBABILITY OF AN EVENT AS A FUNCTION OF SEVERAL VARIABLES, BIOKA 67, 167
- DUNCAN, D. B. MULTIPLE REGRESSION COMBINING WITHIN- AND BETWEEN-PLOT INFORMATION, BIOCS 66, 26
- DUNCAN, DAVID B. A BAYES RULE FOR THE SYMMETRIC MULTIPLE COMPARISONS PROBLEM, JASA 69, NO.4
- DUNCAN, DAVID B. A BAYESIAN APPROACH TO MULTIPLE COMPARISONS, TECH 65, 171
- DUNCAN, DAVID B. 8AYES RULES FOR A COMMON MULTIPLE COMPARISONS PROBLEM AND RELATED STUDENT-T PROBLEMS, AMS 61, 1013
- DUNCAN, DAVID 8. MULTIPLE REGRESSION WITH STATIONARY ERRORS, JASA 66, 917
- DUNCAN, OTIS DUDLEY OCCUPATIONAL COMPONENTS OF EDUCATIONAL DIF-FERENCES IN INCOME, JASA 61, 7B3

- DUNCAN, OTIS DUDLEY RESEARCH ON METROPOLITAN POPULATION, EVALUATION OF DATA, JASA 56, 591
- DUNN, JAMES E. A COMPOUNDED MULTIPLE RUNS DISTRIBUTION, JASA 69, NO.4
- DUNN, O. J. ELIMINATION OF VARIATES IN LINEAR DISCRIMINATION PROBLEMS, BIOCS 66, 268
- DUNN, O. J. PROBABILITIES OF CORRECT CLASSIFICATION IN DISCRIMI-NANT ANALYSIS, BIOCS 66, 908
- DUNN, OLIVE J. THE ROBUSTNESS OF HOTELLING'S T-SQUARE, JASA 67, 124 DUNN, OLIVE JEAN A NOTE ON CONFIDENCE BANDS FOR A REGRESSION LINE OVER A FINITE RANGE, JASA 68, 1028
- DUNN, OLIVE JEAN A PROPERTY OF THE MULTIVARIATE T DISTRIBUTION. AMS 65,712
- DUNN, OLIVE JEAN CONFIDENCE INTERVALS FOR THE MEANS OF DEPENDENT NORMALLY DISTRIBUTED VARIABLES, JASA 59, 613
- DUNN, OLIVE JEAN CORRELATION COEFFICIENTS MEASURED ON THE SAME IN-DIVIDUALS, JASA 69, 366
- DUNN, OLIVE JEAN ESTIMATION OF MULTIPLE CONTRASTS USING T-DISTRIBUTIONS, JASA 65,573
- DUNN, OLIVE JEAN MULTIPLE COMPARISIONS USING RANK SUMS, TECH 64, 241 DUNN, OLIVE JEAN MULTIPLE COMPARISONS AMONG MEANS, JASA 61, 52
- DUNNETT, C. W. A BIVARIATE GENERALIZATION OF STUDENT'S T-DISTRIBUTION, WITH TABLES FOR CERTAIN SPECIAL CA, BIOKA 54, 153
- DUNNETT, C. W. A TWO-SAMPLE MULTIPLE DECISION PROCEDURE FOR RANKING MEANS OF NORMAL POPULATIONS WITH A CO, BIOKA 54, 170
- DUNNETT, C. W. APPROXIMATIONS TO THE PROBABILITY INTEGRAL AND CERTAIN PERCENTAGE POINTS OF A MULTIVARIATE, BIOKA 55, 258
- DUNNETT, C. W. ON SELECTING THE LARGEST OF K NORMAL POPULATION MEANS (WITH DISCUSSION), JRSSB 60, 1
- DUNNETT, C. W. THE NUMERICAL EVALUATION OF CERTAIN MULTIVARIATE NORMAL INTEGRALS, AMS 62, 571
- DUNNETT, CHARLES W. A TRIBUTE TO FRANK WILCOXON, TECH 66, 195
- DUNSING, MARILYN EFFECT OF VARYING DEGREES OF TRANSITORY INCOME ON INCOME ELASTICITY OF EXPENDITURES, JASA 5B, 34B
- DUNSMORE, I.R. A BAYESIAN APPROACH TO CALIBRATION, JRSSB 68, 396
- DUNSMORE, I. R. A BAYESIAN APPROACH TO CLASSIFICATION, JRSSB 66, 568
 DUNSMORE, I. R. LINEAR-LOSS INTERVAL ESTIMATION OF LOCATION AND
 SCALE PARAMETERS, BIOKA 68, 141
- DUNSMORE, I.R. REGULATION AND OPTIMIZATION, JRSSB 69, 160
- DUPAC, VACLAV A DYNAMIC STOCHASTIC APPROXIMATION METHOD, AMS 65, 1695
- DUPAC, VACLAV ASYMPTOTIC NORMALITY OF SIMPLE LINEAR RANK STATISTICS UNDER ALTERNATIVES, II, AMS 69, NO.6
- DURAN, BENJAMIN S. ROBUSTNESS OF SUM OF SQUARED RANKS TEST, JASA 6B, 338
- DURAND, D. AIDS FOR FITTING THE GAMMA DISTRIBUTION BY MAXIMUM LIKELIHOOD, TECH 60, 55
- DURAND, DAVID A NOTE ON MATRIX INVERSION 8Y THE SQUARE ROOT METHOD, JASA 56, 288
- DURBIN, EUGENE P. PRICING POLICIES CONTINGENT ON OBSERVED PRODUCT QUALITY, TECH 66, 123 DURBIN, J. A NOTE ON THE APPLICATION OF QUENOUILLE'S METHOD OF BIAS
- REDUCTION TO THE ESTIMATION OF RATIOS, BIOKA 59,477

 DURBIN, J. CORRECTION, 'SOME METHODS OF CONSTRUCTING EXACT
- DURBIN, J. CORRECTION, 'SOME METHODS OF CONSTRUCTING EXACT
 TESTS.', BIOKA 66, 629
 DURBIN, J. EFFICIENT ESTIMATION OF PARAMETERS IN MOVING-AVERAGE
- MODELS, BIOKA 59.306
 DURBIN, J. ESTIMATION OF PARAMETERS IN TIME-SERIES REGRESSION
- DURSIN, J. ESTIMATION OF PARAMETERS IN TIME-SERIES REGRESSION MODELS, JRSSB 60, 139
- DURBIN, J. SOME METHODS OF CONSTRUCTING EXACT TESTS, BIOKA 61, 41
- DURBIN, J. TESTING FOR SERIAL CORRELATION IN LEAST SQUARES REGRES— SION. II., BIOKA 51, 159
- DURBIN, J. TESTING FOR SERIAL CORRELATION IN SYSTEMS OF SIMULTANEOUS REGRESSION EQUATIONS, BIOKA 57, 370
- DURSIN, J. TESTS FOR SERIAL CORRELATION IN REGRESSION ANALYSIS BASED ON THE PERIODOGRAM OF LEAST-SQUARES, BIOKA 69, 1
- DURBIN, J. THE GEOMETRY OF ESTIMATION, BIOKA 51, 150
- DURBIN, J. THE PROBABILITY THAT THE SAMPLE DISTRIBUTION FUNCTION LIES BETWEEN TWO PARALLEL STRAIGHT LINES, AMS 6B, 398
- DUVALL, RICHARD M. TIME SERIES ANALYSIS BY MODIFIED LEAST-SQUARES TECHNIQUES, JASA 66, 152
- DWASS, MEYER A FLUCTUATION THEOREM FOR CYCLIC RANDOM VARIABLES, AMS $62,\,1450$
- DWASS, MEYER CONDITIONED LIMIT THEOREMS, AMS 63, 1147
- DWASS, MEYER EXTREMAL PROCESSES, AMS 64, 1718
- DWASS, MEYER SIMPLE RANDOM WALK AND RANK ORDER STATISTICS, AMS 67,
- DWYER, P. S. A COMBINATORIAL METHOD FOR PRODUCTS OF TWO POLYKAYS WITH SOME GENERAL FORMULAE, AMS 64, 1174
- DWYER, P.S. PROPERTIES OF POLYKAYS OF DEVIATES, AMS 64, 1167
- DWYER, PAUL S. COMPUTATION WITH MULTIPLE K-STATISTICS, JASA 63, 120
- DWYER, PAUL S. MATRIX INVERSION WITH THE SQUARE ROOT METHOD, TECH $64,197\,$
- DWYER, PAUL S. MULTIVARIATE MAXIMA AND MINIMA WITH MATRIX DERIVATIVES, JASA 69, NO.4
- DWYER, PAUL S. SOME APPLICATIONS OF MATRIX DERIVATIVES IN MUL-TIVARIATE ANALYSIS, JASA 67, 607

- DYKSTRA JR. OTTO ERRATA, 'THE ORTHOCONALIZATION OF UNDESIGNED EX-PERIMENTS', TECH 66, 731
- DYKSTRA JR, OTTO FACTORIAL EXPERIMENTATION IN SCHEFFE'S ANALYSIS OF VARIANCE FOR PAIRED COMPARISONS, JASA 58, 529
- DYKSTRA JR. OTTO THE ORTHOCONALIZATION OF UNDESIGNED EXPERIMENTS, TECH 66.279
- DYKSTRA. O. PARTIAL DUPLICATION OF FACTORIAL EXPERIMENTS, TECH 59.
- DYKSTRA, 0. PARTIAL DUPLICATION OF RESPONSE SURFACE DESIGNS, TECH 60, 185
- DYM, HARRY A NOTE ON LIMIT THEOREMS FOR THE ENTROPY OF MARKOV CHAINS, AMS 66, 522
- DYM. HARRY ON THE MEAN DURATION OF A BALL AND CELL GAME. A FIRST PASSAGE PROBLEM. AMS 66, 517
 DYSON, J. A GENERAL SIMULATION PROGRAMME FOR MATERIAL FLOW IN BATCH
- CHEMICAL PLANTS, TECH 61, 497
 EAGLESON, G. K. A NOTE ON LINEAR REGRESSION IN TRIVARIATE DISTRIBU-
- TIONS, JASA 6B, 1042
- EAGLESON, C. K. POLYNOMIAL EXPANSIONS OF BIVARIATE DISTRIBUTIONS, ${\tt AMS}\,64.\,120B$
- EAST, D. A. CORRIGENDA, 'TABLES FOR MAKINC INFERENCES ABOUT THE VARIANCE OF A NORMAL DISTRIBUTION.', BIOKA 61, 230
- EAST, D. A. TABLES FOR MAKING INFERENCES ABOUT THE VARIANCE OF A NOR-MAL DISTRIBUTION, BIOKA 60, 433
- EASTERLING, ROBERT G. DISCRIMINATION INTERVALS FOR PERCENTILES IN RECRESSION, JASA 69, 1031
- EATON, MORRIS L. SOME OPTIMUM PROPERTIES OF RANKING PROCEDURES, AMS $67,\,124$
- EATON, MORRIS L. SOME REMARKS ON SCHEFFE'S SOLUTION TO THE BEHRENS-FISHER PROBLEM, JASA 69, NO.4
- EATON. MORRIS L. THE GENERALIZED VARIANCE, TESTING AND RANKING PROBLEM, ${\tt AMS}\,67,\,941$
- EAVES, D. M. SAMPLE FUNCTIONS OF CAUSSIAN RANDOM HOMOGENEOUS FIELDS ARE EITHER CONTINUOUS OR VERY IRREGUL, AMS 67, 1579
- EAVES, D. M. THE CENTRAL LIMIT THEOREM FOR GENERALIZED RANDOM FIELDS, AMS $69,\,203$
- EBERHARDT, L. L. SOME DEVELOPEMENTS IN 'DISTANCE SAMPLING', BIOCS 67, 207
- EBERHART, S. A. A GENERAL MODEL FOR GENETIC EFFECTS, BIOCS 66, B64 EBERHART, S. A. ANALYSIS AND INTERPRETATION OF THE VARIETY CROSS DI-ALLEL AND RELATED POPULATIONS, BIOCS 66, 439
- ECKLER, A. R. A SURVEY OF COVERAGE PROBLEMS ASSOCIATED WITH POINT AND AREA TARGETS, TECH 69, 561
- EDERER, FRED A PARAMETRIC ESTIMATE OF THE STANDARD ERROR OF THE SUR-VIVAL RATE, CORR. 631161, JASA 61, 111
- EDUCTT, CEORGE L. MULTIPLE REGRESSION WITH MISSING OBSERVATIONS
 AMONG THE INDEPENDENT VARIABLES, JASA 56, 122
- EDGINGTON, EUGENE S. PROBABILITY TABLE FOR NUMBER OF RUNS OF SIGNS OF FIRST DIFFERENCES IN ORDERED SERIES, JASA 61, 156
- EDITORIAL, THE NORMAL PROBABILITY FUNCTION, TABLES OF CERTAIN AREA-
- ORDINATE RATIOS AND OF THEIR RECIPROCAL, BIOKA 55, 217
- EDWARDS, A.W.F. A METHOD FOR CLUSTER ANALYSIS, BIOCS 65, 362 EDWARDS, A.W.F. ESTIMATION OF THE PARAMETERS IN SHORT MARKOV SEQUENCES, JRSSB 63, 206
- EDWARDS, CAROL B. A CLASS OF DISTRIBUTIONS APPLICABLE TO ACCIDENTS, JASA 61, 503
- EFRON. B. THE CONVEX HULL OF A RANDOM SET OF POINTS, BIOKA 65, 331
 EFRON, BRADLEY GEOMETRICAL PROBABILITY AND RANDOM POINTS ON A
 HYPERSPHERE, AMS 67, 213
- EFRON. BRADLEY INCREASING PROPERTIES OF POLYA FREQUENCY FUNCTIONS, AMS 65, 272
- EFRON, BRADLEY LARCE DEVIATIONS THEORY IN EXPONENTIAL FAMILIES, AMS 68.1402
- EFRON. BRADLEY NOTE ON DECISION PROCEDURES FOR FINITE DECISION PROBLEMS UNDER COMPLETE ICNORANCE, AMS 65, 691
- EFRON, BRADLEY STUDENT'S T-TEST UNDER SYMMETRY CONDITIONS, JASA $69\,,\,\text{NO}\,,\,4$
- EFRON, BRADLEY THE POWER OF THE LIKELIHOOD RATIO TEST, AMS 67, 802 EHRENBERG, A. S. C. ON SAMPLING FROM A POPULATION OF RANKERS, BIOKA
- EHRENFELD, S. OPTIMAL STRATEGIES IN FACTORIAL EXPERIMENTS, AMS 63, 780
- EHRENFELD, S. RANDOMIZATION AND FACTORIAL EXPERIMENTS, AMS 61, 270 EHRENFELD, S. TESTING HYPOTHESES IN RANDOMIZED FACTORIAL EXPERI-MENTS, AMS 67, 1494
- EHRENFELD, S. THE EFFICIENCY OF STATISTICAL SIMULATION PROCEDURES, TECH 62, 257
- EHRENFELD, SYLVAIN ON A MINIMAL ESSENTIALLY COMPLETE CLASS OF EX-PERIMENTS, AMS 66, 435
- EHRENFELD, SYLVAIN SOME EXPERIMENTAL DESIGN PROBLEMS IN ATTRIBUTE LIFE TESTING, CORR. 63 1161, JASA 62, 668
- EHRENFELD, SYLVAIN SOME NUMERICAL ASPECTS OF THE USE OF TRANSFORMS IN STATISTICS, JASA 63, 879
- EICKER, F. A MULTIVARIATE CENTRAL LIMIT THEOREM FOR RANDOM LINEAR VECTOR FORMS, AMS 66, 1825
- EICKER, F. ASYMPTOTIC NORMALITY AND CONSISTENCY OF THE LEAST SQUARES ESTIMATORS FOR FAMILIES OF LINEAR RE, AMS 63, 447

- EICKER, F. CENTRAL LIMIT THEOREMS FOR FAMILIES OF SEQUENCES OF RANDOM VARIABLES, AMS 63, 439
- EIDEMILLER, R. L. APPLICATIONS OF THE BIVARIATE NORMAL DISTRIBU-TION TO A STRESS VS. STRENGTH PROBLEM IN R. TECH 64, 325 EILBOTT, JOAN ON PRECEDENCE LIFE TESTING, TECH 65, 359
- EINHORN, HENRY ADLER CHANGES IN CONCENTRATION OF DOMESTIC MANUFACTURING ESTABLISHMENT OUTPUT 1939-195B, JASA 62, 797
- EISEMANN, DORIS M. MANUFACTURERS' INVENTORY CYCLES AND MONETARY POLICY, JASA 5B, 6B0
- EISEN, M. M. EFFECTS OF SLOW-DOWNS AND FAILURE ON STOCHASTIC SERVICE SYSTEMS, TECH 63, 3B5
- EISENBERG, BENNETT THE RELATION OF THE EQUIVALENCE CONDITIONS FOR THE BROWNIAN MOTION TO THE EQUIVALENCE, AMS 69, NO.6
- EISENBERG, H. B. A CENERAL USE OF THE POISSON APPROXIMATION FOR BINOMIAL EVENTS, WITH APPLICATION TO BACT, BIOCS 66, 74
- EISENBERGER, ISIDORE GENESIS OF BIMODAL DISTRIBUTIONS, TECH 64, 357
- EISENBERGER, ISIDORE SYSTEMATIC STATISTICS USED FOR DATA COMPRES-SION IN SPACE TELEMETRY, JASA 65, 97
- EISENBERGER, ISIDORE TESTING THE MEAN AND STANDARD DEVIATION OF A NORMAL DISTRIBUTION USING QUANTILES, TECH 6B, 7B1
- EISENPRESS, HARRY REGRESSION TECHNIQUES APPLIED TO SEASONAL COR-RECTIONS AND ADJUSTMENTS FOR CALENDAR SHIF, JASA 56, 615
- EISENPRESS, HARRY SEASONAL ADJUSTMENTS BY ELECTRONIC COMPUTER METHODS, JASA 57, 415 EISENSTAT, STAN SAMPLING DISTRIBUTIONS OF VARIANCE COMPONENTS II.
- EMPIRICAL STUDIES OF UNBALANCED NESTED, TECH 6B, 719
 EISENSTAT, STANLEY A STUDY OF ROBUST ESTIMATORS, TECH 67, 652
- EISSEN, E. J. NOTE. THE QUASI-F TEST FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HIERARCHAL DESIGN WITH, BIOCS 66, 937
- EL-BADRY, M. A. A SAMPLINC PROCEDURE FOR MAILED QUESTIONNAIRES, JASA 56, 209
- EL-BADRY, M. A. FAILURE OF ENUMERATORS TO MAKE ENTRIES OF ZERO, ER-RORS IN RECORDING CHILDLESS CASES IN PO. JASA 61, 909
- EL-BADRY, M. A. HIGHER FEMALE THAN MALE MORTALITY IN SOME COUNTRIES OF SOUTH ASIA, A DIGEST, JASA 69, NO. 4
- EL-SAYYAD, G. M. ESTIMATION OF THE PARAMETER OF AN EXPONENTIAL DISTRIBUTION, JRSSB 67, 525
- EL-SAYYAD, C. M. INFORMATION AND SAMPLINC FROM THE EXPONENTIAL DISTRIBUTION, TECH 69, 41
- EL-SAYYAD, G. M. THE BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL RELATIONSHIP, JRSSB 6B. 190
 ELANDT-JOHNSON, REGINA SURVEY OF HISTOCOMPATIBILITY TESTING,
- BIOLOCICAL BACKGROUND PROBABILISTIC AND STAT, BIOCS 69, 207
 ELANDT, REGINA C. EXACT AND APPROXIMATE POWER FUNCTION OF THE NON-
- PARAMETRIC TEST OF TENDENCY, AMS 62, 471
- ELANDT, RECINA C. THE FOLDED NORMAL DISTRIBUTION, TWO METHODS OF ESTIMATING PARAMETERS FROM MOMENTS, TECH 61, 551
- ELASHOFF, JANET D. ON THE CHOICE OF VARIABLES IN CLASSIFICATION PROBLEMS WITH DICHOTOMOUS VARIABLES, BIOKA 67, 66B
- ELASHOFF, R. M. AN INVESTIGATION INTO THE SMALL SAMPLE PROPERTIES OF A TWO SAMPLE TEST OF LEHMANN'S, JASA 68, 345
 ELASHOFF, R. M. MISSING OBSERVATIONS IN MULTIVARIATE STATISTICS
- ELASHOFF, R. M. MISSING OBSERVATIONS IN MULTIVARIATE STATISTICS
 II. POINT ESTIMATION IN SIMPLE LINEAR REG, JASA 67, 10
- ELASHOFF, R. M. MULTIVARIATE TWO SAMPLE TESTS WITH DICHOTOMOUS AND CONTINUOUS VARIABLES I. THE LOCATION M, AMS 69, 290
- ELASHOFF, R. M. ON THE CHOICE OF VARIABLES IN CLASSIFICATION PROBLEMS WITH DICHOTOMOUS VARIABLES, BIOKA 67, 668
- ELASHOFF, ROBERT M. MISSING OBSERVATIONS IN MULTIVARIATE STATISTICS, III, JASA 69, 337
- ELASHOFF, ROBERT M. MISSINC OBSERVATIONS IN MULTIVARIATE STATISTICS, IV, JASA 69, 359
- ELASHOFF, ROBERT M. MISSING VALUES IN MULTIVARIATE STATISTICS, I. REVIEW OF THE LITERATURE, JASA 66, 595
- ELDERTON, W. P. BIOMETRIKA, 1901-1951, BIOKA 51, 267
- ELKINS, THOMAS A. CUBICAL AND SPHERICAL ESTIMATION OF MULTIVARIATE PROBABILITY DENSITY, JASA 68, 1495
- ELLISON, BOB E. A CLASSIFICATION PROBLEM IN WHICH INFORMATION ABOUT ALTERNATIVE DISTRIBUTIONS IS BASED ON, AMS 62, 213
- ELLISON, BOB E. MULTIVARIATE-NORMAL CLASSIFICATION WITH COVARIANCE KNOWN, AMS 65, 1787
- ELLISON, BOB E. ON TWO-SIDED TOLERANCE INTERVALS FOR A NORMAL DISTRIBUTION, AMS 64, 762
 ELLISON, BOB E. TWO THEOREMS FOR INFERENCES ABOUT THE NORMAL DIS-
- TRIBUTION WITH APPLICATIONS IN ACCEPTANCE, JASA 64, B9
 ELLNER, HENRY VALIDATING RESULTS OF SAMPLING INSPECTION BY AT-
- TRIBUTES TECH 63, 23
 ELSTON, R. C. A SIMPLE METHOD OF ESTIMATING RELATIVE POTENCY FROM
- TWO PARABOLAS, BIOCS 65, 140

 ELVEBACK, LILA COMPETING EXPONENTIAL RISKS, WITH PARTICULAR
- REFERENCE TO THE STUDY OF SMOKING AND LUNG CA, JASA 60, 415
 ELVEBACK, LILA ESTIMATION OF SURVIVORSHIP IN CHRONIC DISEASE, THE
- 'ACTUARIAL' METHOD, JASA 58, 420
 EMERSON, P. L. NOTES.ORTHOGONAL POLYNOMIALS FOR UNEQUALLY WEIGHED
 MEANS, BIOCS 65, 226
- EMERSON, P. L. NUMERICAL CONSTRUCTION OF ORTHOGONAL POLYNOMIALS FROM A GENERAL RECURRENCE FORMULA, BIOCS 68, 695

- ENDRES, ALLEN C. THE COMPUTATION OF THE UNRESTRICTED AOQL WHEN DE-FECTIVE MATERIAL IS REMOVED BUT NOT REPL, JASA 69, 665
- ENGELMAN, L. PERCENTAGE POINTS OF A TEST FOR CLUSTERS, JASA 69, NO. 4 ENRICK, NORBERT L. VARIATIONS FLOW ANALYSIS, TECH 60, 373
- EPSTEIN. B BACTERIAL EXTINCTION TIME AS AN EXTREME VALUE
- PHENOMENON, BIOCS 67, 835
 EPSTEIN, 8. ELEMENTS OF THE THEORY OF EXTREME VALUES, TECH 60, 27
- EPSTEIN, B. ESTIMATION OF THE PARAMETERS OF TWO PARAMETER EXPONEN-TIAL DISTRIBUTIONS FROM CENSORED SAMPLES, TECH 60, 403
- EPSTEIN, B. TESTS FOR THE VALIDITY OF THE ASSUMPTION THAT THE UNDER-LYING DISTRIBUTION OF LIFE IS EXPONENT, TECH 60, 83
- EPSTEIN, B. TESTS FOR THE VALIDITY OF THE ASSUMPTIONS THAT THE UN-DERLYING DISTRIBUTION OF LIFE IS EXPONEN, TECH 60, 167
- EPSTEIN, BENJAMIN ESTIMATES OF BOUNDED RELATIVE ERROR FOR THE MEAN LIFE OF AN EXPONENTIAL DISTRIBUTION, TECH 61, 107
- EPSTEIN, BENJAMIN ESTIMATION FROM LIFE TEST DATA, TECH 60, 447
- EPSTEIN, BENJAMIN STATISTICAL LIFE TEST ACCEPTANCE PROCEDURES, TECH 60, 435
- ERICSON, RAGNAR ON MOMENTS OF CUMULATIVE SUMS, AMS 66, 1803
- $\tt ERICSON,\,W.\,A.\,$ A NOTE ON THE POSTERIOR MEAN OF A POPULATION MEAN, JRSSB 69, NO.2
- ERICSON, W. A. AN EXAMPLE OF DISCREPANCIES IN INFERENCES UNDER NON-INFORMATIVE STOPPING RULES, BIOKA 67, 329
- ERICSON, W. A. ON THE ECONOMIC CHOICE OF EXPERIMENT SIZES FOR DECI-SION REGARDING CERTAIN LINEAR COMBINATI, JRSSB 67, 503
- ERICSON, W. A. OPTIMAL SAMPLE DESIGN WITH NONRESPONSE, JASA 67, 63
- ERICSON, W. A. OPTIMUM STRATIFIED SAMPLING USING PRIOR INFORMA-TION, JASA 65, 750
- ERICSON. W. A. SUBJECTIVE BAYESIAN MODELS IN SAMPLING FINITE POPU-LATIONS (WITH DISCUSSION), JRSSB 69, NO. 2
- ERICSON, WILLIAM A. OPTIMAL ALLOCATION IN STRATIFIED AND MULTISTAGE SAMPLES USING PRIOR INFORMATION. JASA 6B, 964
- ERNST, HARRY BENJAMIN AN INDEX OF MANUFACTURING PRODUCTION IN NEW ENGLAND, JASA 5B, 336
- ESARY, J. D. A STOCHASTIC CHARACTERIZATION OF WEAR-OUT FOR COM-PONENTS AND SYSTEMS, AMS 66, 816
- ESARY, J. D. ASSOCIATION RANDOM VARIABLES, WITH APPLICATIONS, AMS 67, 1466
- ESARY, J. D. MULTI-COMPONENT SYSTEMS AND STRUCTURES AND THEIR RE-LIABILITY, TECH 61, 55
- ESARY, J. D. SYSTEMS STRUCTURE AND THE EXISTENCE OF A SYSTEM LIFE,
- TECH 64, 459 ESARY, JAMES D. COHERENT STRUCTURES OF NON-IDENTICAL COMPONENTS, TECH 63, 191
- ESARY, JAMES D. RELATIONSHIP BETWEEN SYSTEM FAILURE RATE AND COM-
- PONENT FAILURE RATES, TECH 63, 1B3 ESSEEN, CARL-GUSTAV INEQUALITIES OF THE RTH ABSOLUTE MOMENT OF A SUM
- OF RANDOM VARIABLES, 1 LESS THAN OR, AMS 65, 299 EVANS. D. A. EXPERIMENTAL EVIDENCE CONCERNING CONTAGIOUS DISTRIBU-TIONS IN ECOLOGY, 810KA 53, 1B6
- EVANS, D. ANTHONY SELECTION INDICES FOR QUADRATIC MODELS OF TOTAL
- MERIT. BIOCS 6B. 937 EVANS, DAVIDH. AN APPLICATION OF NUMERICAL INTEGRATION TECHNIQUES
- TO STATISTICAL TOLERANCING, TECH 67, 441
- EVANS, DAVIDH. APPLIED MULTIPLEX SAMPLING, TECH 63, 341 EVANS, DAVIDH. MULTIPLEX SAMPLING, AMS 63, 1322
- EVANS, I. G. BAYESIAN ESTIMATION OF PARAMETERS OF A MULTIVARIATE
- NORMAL DISTRIBUTION, JRSSB 65, 279 EVANS, I. G. 8AYESIAN ESTIMATION OF THE VARIANCE OF A NORMAL DIS-
- TRIBUTION, JRSSB 64, 63 EVANS, MICHAEL K. THE RELATIVE EFFICACY OF INVESTMENT ANTICIPA-
- TIONS, JASA 66, 104 EVEN, M. MINIMUM VARIANCE UNBIASED AND MAXIMUM LIKELIHOOD ESTIMA-
- TORS OF RELIABILITY FUNCTIONS FOR SYSTEMS, JASA 66, 1052 EVEN, M. THE EFFICIENCIES IN SMALL SAMPLES OF THE MAXIMUM LIKELIHOOD
- AND BEST UNBIASED ESTIMATORS OF RELI, JASA 66, 1033 EWAN, W. D. SAMPLING INSPECTION OF CONTINUOUS PROCESSES WITH NO AU-
- TOCORRELATION SETWEEN SUCCESSIVE RESULT, BIOKA 60, 363
- EWAN, W. D. WHEN AND HOW TO USE CU-SUM CHARTS, TECH 63, 1
- EWENS, W. J. A GENERALIZED SINGLE-SERVER QUEUE WITH ERLANG INPUT, BIOKA 62, 242
- EWENS, W. J. DEPARTURES FROM ASSUMPTION IN SEQUENTIAL ANALYSIS, BIOKA 61, 206
- EWENS, W. J. NUMERICAL RESULTS AND DIFFUSION APPROXIMATIONS IN A GENETIC PROCESS, BIOKA 63, 241
- SOME APPLICATIONS OF MULTIPLE-TYPE BRANCHING J. PROCESSES IN POPULATION GENETICS, JRSS8 68, 164 EWENS, W. J. THE ADEQUACY OF THE DIFFUSION APPROXIMATION TO CERTAIN
- DISTRIBUTIONS IN GENETICS, 810CS 65, 3B6 EWENS, W. J. THE DIFFUSION EQUATION AND A PSEUDO-DISTRIBUTION IN
- GENETICS, JRSSB 63, 405 FABENS, A. J. A CORRECTION TO 'THE SOLUTION OF QUEUEING AND INVENTO-
- RY MODELS BY SEMI-MARKOV PROCESSES', JRSSB 63, 455 FABENS, A. J. THE SOLUTION OF QUEUEING AND INVENTORY MODELS BY SEMI-MARKOV PROCESSES, JRSSB 61, 113
- FABIAN, V. BOUNDS ON MOMENTS OF MARTINGALES, AMS 68, 1719
- FABIAN, VACLAV ON ASYMPTOTIC NORMALITY IN STOCHASTIC APPROXIMA-TION, AMS 6B, 1327

- FABIAN, VACLAY ON MULTIPLE DECISION METHODS FOR RANKING POPULATION MEANS, AMS 62, 24B
- FABLAN, VACLAY ON THE CHOICE OF DESIGN IN STOCHASTIC APPROXIMATION METHODS, AMS 68, 457
- FABIAN, VACLAY STOCHASTIC APPROXIMATION FOR SMOOTH FUNCTIONS, AMS 69, 299
- FABIAN, VACLAV STOCHASTIC APPROXIMATION OF MINIMA WITH IMPROVED ASYMPTOTIC SPEED, AMS 67, 191
 FABIUS, J. ASYMPTOTIC 8EHAVIOR OF BAYES' ESTIMATES, AMS 64, 846
- FAIRTHORNE, DAVID THE DISTANCES BETWEEN RANDOM POINTS IN TWO CON-CENTRIC CIRCLES, BIOKA 64, 275
- FAIRWEATHER, W. R. SOME EXTENSIONS OF SOMERVILLE'S PROCEDURE FOR RANKING MEANS OF NORMAL POPULATIONS, BIOKA 68, 411
- FALK, C. T. STABILITY OF SOLUTIONS TO CERTAIN NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS, BIOCS 69, 27
- FALK, H. STABILITY OF SOLUTIONS TO CERTAIN NONLINEAR DIFFERENCE EQUATIONS OF POPULATION GENETICS, BIOCS 69, 27
- FAMA, EUGENE F. DIVIDEND POLICY, AN EMPIRICAL ANALYSIS, JASA 68, 1132
- FAMA, EUGENE F. SOME PROPERTIES OF SYMMETRIC STABLE DISTRIBUTIONS, JASA 6B, B17
- FAN, C. T. DEVELOPMENT OF SAMPLING PLANS BY USING SEQUENTIAL, ITEM BY ITEM, SELECTION TECHNIQUES AND DIGI, JASA 62, 387
- FARLEY, JOHN U. ESTIMATION AND INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE ARE, JASA 68, 1201
- FARLIE, D. J. G. THE ASYMPTOTIC EFFICIENCY OF DANIELS'S GENERALIZED CORRELATION COEFFICIENTS, JRSSB 61, 12B
- FARLIE, D. J. G. THE ASYMPTOTIC EFFICIENCY OF DANIELS'S GENERALIZED CORRELATION COEFFICIENT, BIOKA 63, 499
- FARLIE, D. J. G. THE PERFORMANCE OF SOME CORRELATION COEFFICIENTS FOR A GENERAL BIVARIATE DISTRIBUTION, BIOKA 60, 307
- FARRELL, R. H. ASYMPTOTIC BEHAVIOR OF EXPECTED SAMPLE SIZE IN CER-TAIN ONE-SIDED TESTS, AMS 64, 36
- FARRELL, R. H. BOUNDED LENGTH CONFIDENCE INTERVALS FOR THE P-POINT OF A DISTRIBUTION FUNCTION, II, AMS 66, 581
- FARRELL, R. H. BOUNDED LENGTH CONFIDENCE INTERVALS FOR THE P-POINT OF A DISTRIBUTION FUNCTION, III, AMS 66, 5B6
- FARRELL, R. H. BOUNDED LENGTH CONFIDENCE INTERVALS FOR THE ZERO OF A REGRESSION FUNCTION, AMS 62, 237
- FARRELL, R. H. ESTIMATORS OF A LOCATION PARAMETER IN THE ABSOLUTELY CONTINUOUS CASE, AMS 64, 949
- FARRELL, R. H. LIMIT THEOREMS FOR STOPPED RANDOM WALKS, AMS 64, 1332 FARRELL, R. H. LIMIT THEOREMS FOR STOPPED RANDOM WALKS, II, AMS 66. B60
- FARRELL, R. H. LIMIT THEOREMS FOR STOPPED RANDOM WALKS, III, AMS 66. 1510
- FARRELL, R. H. ON A NECESSARY AND SUFFICIENT CONDITION FOR ADMISSI-BILITY OF ESTIMATORS WHEN STRICTLY CONV. AMS 68. 23
- FARRELL, R. H. ON THE ADMISSIBILITY AT INFINITY, WITHIN THE CLASS OF RANDOMIZED DESIGNS, OF BALANCED DESI, AMS 6B, 197B
- FARRELL, R. H. ON THE ADMISSIBILITY OF A RANDOMIZED SYMMETRICAL DESIGN FOR THE PROBLEM OF A ONE WAY CLASS, AMS 69, 356
- FARRELL, R. H. ON THE BAYES CHARACTER OF A STANDARD MODEL II ANALYSIS OF VARIANCE TEST, AMS 69, 1094
- FARRELL, R. H. ON THE LACK OF A UNIFORMLY CONSISTENT SEQUENCE OF ESTIMATORS OF A DENSITY FUNCTION IN CERT, AMS 67, 471
- FARRELL, R. H. TOWARDS A THEORY OF GENERALIZED SAYES TESTS, AMS 6B,
- FASTEAU, HERMAN H. CONTROL OF QUALITY OF CODING IN THE 1960 CEN-SUSES, JASA 64, 120
- FAULKENBERRY, G. DAVID SAMPLE SIZE DETERMINATION FOR TOLERANCE LIMITS, TECH 68, 343 FAVRET, E. E. A. APPLICATION OF FINITE ABSORBENT MARKOV CHAINS TO
- SIB MATING POPULATIONS WITH SELECTION, BIOCS 69, 17 FEAREY, J. P. ACCURACY REQUIREMENTS FOR ACCEPTANCE TESTING OF COM-
- PLEX SYSTEMS, JASA 59, 447
- FEDDERSEN, A. P. NOTE ON A CONDITIONAL PROPERTY OF STUDENT'S T, AMS 63.1098
- FEDER, PAUL EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS RELATED TO S-SUB-N-OVER-N, AMS 68, 122B
- FEDER, PAUL ON THE DISTRIBUTION OF STATISTICS SUITABLE FOR EVALUAT-ING RAINFALL STIMULATION EXPERIMENTS, TECH 69, 149
- FEDER, PAUL I. ON THE DISTRIBUTION OF THE LOG LIKELIHOOD RATIO TEST STATISTIC WHEN THE TRUE PARAMETER IS, AMS 68, 2044
- FEDERER, W. APPLICATIONS OF THE CALCULUS FOR FACTORIAL ARRANGE-MENTS II. TWO WAY ELIMINATION OF HETEROGENE, AMS 64, 658
- FEDERER, W. T. A UNIFIED APPROACH FOR CONSTRUCTING A USEFUL CLASS OF NON-ORTHOGONAL MAIN EFFECT PLANS IN, JRSS8 68, 371
- ANALYSIS OF MULTIFACTOR CLASSIFICATIONS WITH FEDERER W T. UNEQUAL NUMBERS OF OBSERVATIONS, BIOCS 66, 525
- FEDERER, W. T. ESTIMATES OF EFFECTS FOR FRACTIONAL REPLICATES, AMS 64,711 FEDERER, W. T. GENERAL THEORY OF PRIME-POWER LATTICE DESIGNS, JASA
- 65,891 FEDERER. W. T. ON A SPECIAL SUBSET GIVING AN IRREGULAR FRACTIONAL
- REPLICATE OF A 2 TO THE POWER N FACTORI, JRSSB 67, 292
- FEDERER, W. T. ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL EXPERIMENT AS ORTHOGONAL LINEAR COMBINA, AMS 63, 1068

- FEDERER, W. T. ON ESTIMATION AND CONSTRUCTION IN FRACTIONAL REPLI-CATION, AMS 66, 1033
- FEDERER, W. T. ON THE APPLICATION OF CROUP THEORY TO THE EXISTENCE AND NON-EXISTENCE OF ORTHOCONAL LATIN, BIOKA 69, NO.3
- FEDERER, W. T. ON THE STRUCTURE AND ANALYSIS OF SINCULAR FRACTIONAL REPLICATES, AMS 68, 657
- FEDERER, W. T. QUERY, ERROR RATE BASES, TECH 65, 260
- FEDERER, WALTER T. GENERALIZED LATTICE SQUARE DESIGN, JASA 66, 821
 FEDERIGHI, ENRICO T. EXTENDED TABLES OF THE PERCENTAGE POINTS OF
 STUDENT'S T-DISTRIBUTION, JASA 59, 683
- FEDORV. V. D. EXPERIMENTAL DEVELOPMENT OF NUTRITIVE MEDIA FOR MICRO-ORCANISMS, BIOKA 6B, 43
- FEICL, P. ESTIMATION OF EXPONENTIAL SURVIVAL PROBABILITIES WITH CONCOMITANT INFORMATION, BIOCS 65, B26
- FEINBERG, S. EFFICIENT CALCULATION OF ALL POSSIBLE REGRESSIONS, TECH $68\,,\,769$
- FEINLEIB, F. ON THE THEORY OF SCREENING FOR CHRONIC DISEASES, BIOKA $69\,,\,\text{NO}\,.\,3$
- FEINLEIB, MANNING A METHOD OF ANALYZING LOC-NORMALLY DISTRIBUTED SURVIVAL DATA WITH INCOMPLETE FOLLOW-UP, JASA 60, 534
- FEIVESON, A. H. A NUMERICAL PROCEDURE TO GENERATE A SAMPLE COVARIANCE MATRIX, CORR. 66 124B, JASA 66, 199
- FELDMAN, DORIAN CONTRIBUTIONS TO THE 'TWO-ARMED BANDIT' PROBLEM, AMS 62, 847
- FELDMAN, DORIAN ESTIMATION OF NON-UNIQUE QUANTILES, AMS 66, 451
- FELDMAN, DORIAN ESTIMATION OF THE PARAMETER N IN THE BINOMIAL DISTRIBUTION, JASA 6B. 150 $\,$
- FELDMAN, J. A CLARIFICATION CONCERNING CERTAIN EQUIVALENCE CLASSES OF CAUSSIAN PROCESSES ON AN INTERVAL, AMS 6B, 107B
- FELDMAN, J. INTECRAL KERNELS AND INVARIANT MEASURES FOR MARKOFF TRANSITION FUNCTIONS, AMS 65, 517
- FELDMAN, S. A COMPARISON OF SUCCESSIVE SCREENING AND DISCRIMINANT FUNCTION TECHNIQUES IN MEDICAL TAXONOMY, BIOCS 69, NO. 4
- FELDT, ALLAN G. THE METROPOLITAN AREA CONCEPT, AN EVALUATION OF THE 1950 STANDARD METROPOLITAN AREAS, JASA 65, 617
- FELLEGI, I. P. THE NEW DESIGN OF THE CANADIAN LABOUR FORCE SURVEY, JASA 67, 421
- FELLEGI, IVAN P. A THEORY FOR RECORD LINKAGE, JASA 69, NO. 4
- FELLEGI, IVAN P. RESPONSE VARIANCE AND ITS ESTIMATION, JASA 64, 1016 FELLEGI, IVAN P. SAMPLING WITH VARYINC PROBABILITIES WITHOUT REPLAGEMENT, ROTATING AND NON-ROTATING SAMPL, JASA 63, 183
- FELLINGHAM, S. A. AN APPROXIMATION FOR THE EXACT DISTRIBUTION OF THE WILCOXON TEST FOR SYMMETRY, JASA 64, B99
- FELS, EBERHARD M. SOME SOVIET STATISTICAL BOOKS OF 1957, JASA 59, 12 FELSENSTEIN, J. THE ROBUSTNESS OF HOMOGENEITY TESTS IN 2 BY N TABLES, BIOCS 65, 19
- FERBER, ROBERT THE ACCURACY AND STRUCTURE OF INDUSTRY EXPECTATIONS IN RELATION TO THOSE OF INDIVIDUAL FIR, JASA 5B, 317
- FERBER, ROBERT THE EFFECT OF RESPONDENT IGNORANCE ON SURVEY RESULTS, JASA 56, 576
- FERBER, ROBERT THE RELIABILITY OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS, TIME-DEPOSITS, JASA 65, 14B
- FERBER, ROBERT THE RELIABILITY OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS, DEMAND DEPOSITS, JASA 66, 91
- FERBER, ROBERT VALIDATION OF CONSUMER FINANCIAL CHARACTERISTICS, COMMON STOCK, JASA 69, 415
- FEREDAY, F. MULTIVARIATE LINEAR STRUCTURAL RELATIONS, BIOKA 5B, 136
- FERGUSON, T. S. DISCUSSION OF THE PAPERS OF MESSRS. ANSCOMBE AND DANIEL, TECH 60, 157
- FERGUSON, T. S. THE BIG MATCH, AMS $68\,,\,159$
- FERGUSON, THOMAS S. A CHARACTERIZATION OF THE EXPONENTIAL DISTRIBUTION, AMS 64, 1199
- FERGUSON, THOMAS S. A REPRESENTATION OF THE SYMMETRIC BIVARIATE CAUCHY DISTRIBUTION, AMS 62, 1256
- FERGUSON, THOMAS S. LOCATION AND SCALE PARAMETERS IN EXPONENTIAL FAMILIES OF DISTRIBUTIONS, CORR. 63 1603, AMS 62, 986
- FIELDS, R. I. JOINT ESTIMATION OF THE PARAMETERS OF TWO NORMAL POPULATIONS. JASA 62, $446\,$
- FIELLER, E. C. CORRIGENDA TO 'CORRELATED RANDOM NORMAL DEVIATES'
 PUBLISHED IN TRACTS FOR COMPUTERS, NO. 2, BIOKA 56, 496
- FIELLER, E. C. SAMPLING WITH CONTROL VARIABLES, BIOKA 54, 494
- FIELLER, E. C. SOME PROBLEMS IN INTERVAL ESTIMATION (WITH DISCUSSION), JRSSB 54, 175
- FIELLER, E. C. TESTS FOR RANK CORRELATION COEFFICIENTS. I, BIOKA 57, 470
- FIELLER, E. C. TESTS FOR RANK CORRELATION COEFFICIENTS.II, BIOKA 61, 29
- FIENBERG, S. BAYESIAN ESTIMATION OF LATENT ROOTS AND VECTORS WITH SPECIAL REFERENCE TO THE BIVARIATE NORM, BIOKA 69, 97
- FIENBERG, S. INCOMPLETE TWO-DIMENSIONAL CONTINCENCY TABLES, BIOCS 69, 119
- FIENBERG, STEPHEN E. THE CEOMETRY OF A R-BY-C CONTINGENCY TABLE, AMS 68, 1186
- FIERING, MYRON B. ON THE USE OF CORRELATION TO AUCMENT DATA, JASA 62, $20\,$
- FINCH, P. D. A GENERALIZED SINGLE-SERVER QUEUE WITH ERLANG INPUT. BIOKA 62. 242

- FINCH, P. D. CYCLIC QUEUES WITH FEEDBACK, JRSSB 59, 153
- FINCH, P. D. DETERMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEINC SYSTEM CI-M-1, BIOKA 60, 45
- FINCH, P. D. DETERMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEINC SYSTEM CI-M-1, A CORRECTION, BIOKA 61, 472
- FINCH, P. D. ON THE COVARIANCE DETERMINANTS OF MOVING-AVERACE AND AUTORECRESSIVE MODELS, BIOKA 60, 194
- ACTORECTES IVE MODES, BIORA 60, 194
 FINCH, P. D. ON THE TRANSIENT BEHAVIOR OF A QUEUEING SYSTEM WITH BULK
 SERVICE AND FINITE CAPACITY, AMS 62, 973
- FINCH, P. D. ON THE TRANSIENT BEHAVIOUR OF A SIMPLE QUEUE, JRSSB 60,
- FINCH, P. D. THE EFFECT OF THE SIZE OF THE WAITING ROOM ON A SIMPLE
- QUEUE, JRSSB 5B, 182 FINCH, P. D. THE OUTPUT PROCESS OF THE QUEUEING SYSTEM WITH ONE
- SERVER AND WHICH INTERARRIVAL AND SERVING, JRSSB 59, 375
 FINCH, P. D. THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN
- TELEPHONE TRAFFIC, AMS 61, 230
 FINE, TERRENCE ON THE HODGES AND LEHMANN SHIFT ESTIMATOR IN THE TWO
- SAMPLE PROBLEM, AMS 66, 1814 FINNEY, D. J. A NOTE ON 'THE ESTIMATION OF THE PARAMETERS OF
- TOLERANCE DISTRIBUTIONS', AIOKA 52, 439
 FINNEY, D. J. AN EXPERIMENTAL STUDY OF GERTAIN SCREENING PROCESSES,
- JRSSB 66, B8 FINNEY, D. J. GUMULANTS OF TRUNCATED MULTINORMAL DISTRIBUTIONS,
- JRSSB 62, 535 FINNEY, D. J. ERRATA, 'SOME PROPERTIES OF A DISTRIBUTION SPECIFIED
- BY ITS CUMULANTS', TECH 63, 417 FINNEY, D. J. QUERY, ANALYSIS OF FACTORIAL EXPERIMENT (PARTIALLY
- CONFOUNDED 2-CUBE), TECH 67, 170
 FINNEY, D. J. SOME PROPERTIES OF A DISTRIBUTION SPECIFIED BY ITS CU-
- MULANTS, TECH 63, 63
- FINNEY, D. J. TEACHING BIOMETRY IN THE UNIVERSITY, BIOGS 6B, 1
- FINNEY, D. J. THE EFFICIENGIES OF ALTERNATIVE ESTIMATORS FOR AN ASYMPTOTIC REGRESSION EQUATION, BIOKA 58, 370
- FINNEY, D. J. THE MEANING OF BIOASSAY, BIOCS 65, 785
- FINUCAN, H. M. A NOTE ON KURTOSIS, JRSSB 64, 111
- FINUCAN, H. M. THE MODE OF A MULTINOMIAL DISTRIBUTION, BIOKA 64, 513
 FISCHER, G. R. NOTES. MAXIMUM LIKELIHOOD ESTIMATION FOR THE TRUNCATED POISSON, BIOCS 66, 620
- FISHBURN, PETER C. A GENERAL THEORY OF SUBJECTIVE PROBABILITIES AND EXPECTED UTILITIES, AMS 69, 1419
- FISHBURN, PETER C. BOUNDED EXPECTED UTILITY, AMS 67, 1054
- FISHBURN, PETER C. PREFERENCE-BASED DEFINITIONS OF SUBJECTIVE PROBABILITY, AMS 67, 1605
- FISHBURN, PETER C. WEAK QUALITATIVE PROBABILITY ON FINITE SETS, AMS 69, NO.6
- FISHER, FRANKLIN M. A NOTE ON ESTIMATION FROM A CAUCHY SAMPLE, JASA 64, 460
- FISHER, FRANKLIN M. APPROXIMATE SPECIFICATION AND THE CHOICE OF A K-CLASS ESTIMATOR, JASA 67, 1265
- FISHER, FRANKLIN M. THE RELATIVE SENSITIVITY TO SPECIFICATION ERROR OF DIFFERENT K-CLASS ESTIMATORS, JASA 66, 345
- FISHER, JANET A. CONSUMER DURABLE COODS EXPENDITURES, WITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDITA, JASA 63, 64B
- FISHER, LLOYD AN EXAMPLE IN DUNUMERABLE DECISION PROCESSES, AMS 68, 674
- FISHER, LLOYD AN EXAMPLE OF THE DIFFERENCE BETWEEN THE LEVY AND LEVY-PROKHOROV METRICS, AMS 69, 322
- FISHER, LLOYD DISTINGUISHABILITY OF PROBABILITY MEASURES, AMS 69, 3B1
- FISHER, LLOYD LIMITING SETS AND CONVEX HULLS OF SAMPLES FROM PRODUCT MEASURES, AMS 69, 1824
- FISHER, LLOYD ON RECURRENT DENUMERABLE DECISION PROCESSES, AMS 68,
- FISHER, R. A. ERRATA, 'THE PERCENTILE POINTS OF DISTRIBUTIONS HAV-INC KNOWN CUMULANTS', TECH 60, 523 FISHER, R. A. MATHEMATICAL PROBABILITY IN THE NATURAL SCIENCES,
- TECH 59, 21
- FISHER, R. A. NEW TABLES OF BEHREN'S TEST OF SIGNIFICANCE, JRSSB 56, 212
- FISHER, R. A. ON SOME EXTENSIONS OF BAYESIAN INFERENCE PROPOSED BY MR LINDLEY, JRSSB 60, 299
- FISHER, R. A. THE PERCENTILE POINTS OF DISTRIBUTIONS HAVING KNOWN CUMULANTS, TECH 60, 209
 FISHER, SIR ROLAND SOME EXAMPLES OF BAYES' METHOD OF THE EXPERIMEN-
- TAL DETERMINATION OF PROBABILITIES A PR, JRSSB 62, 118

 FISHER, SIR RONALD COMMENT ON THE NOTES BY NEYMAN, BARTLETT AND WELCH IN THIS JOURNAL, VOL. 18, NO. 2, 19, JRSSB 57, 179
- FISHER, SIR RONALD ON A TEST OF SIGNIFICANCE IN PEARSON'S BIOMETRIKA TABLES (NO. 11), JRSSB 56, 56
- FISHER, SIR RONALD STATISTICAL METHODS AND SCIENTIFIC INDUCTION, JRSSB 55, 69
- FISHER, WALTER D. A NOTE ON CURVE FITTING WITH MINIMUM DEVIATIONS BY LINEAR PROGRAMMING, CORR. 62 917, JASA 61, 359
- FISHER, WALTER D. ON GROUPING FOR MAXIMUM HOMOGENEITY, JASA 58, 789
- FISK, P. R. ESTIMATION OF LOCATION AND SCALE PARAMETERS IN A TRUN-CATED CROUPED SECH SQUARE DISTRIBUTION, JASA 61, 692

- FISK, P. R. MODELS OF THE SECOND KIND IN RECRESSION ANALYSIS, JRSSB 67, 266
- FISZ, MAREK INFINITELY DIVISIBLE DISTRIBUTIONS, RECENT RESULTS AND APPLICATIONS, AMS 62, 68
- FITCH, E. R. A CHART FOR THE INCOMPLETE BETA-FUNCTION AND THE CUMU-LATIVE BINOMIAL DISTRIBUTION, BIOKA 51, 423
- FITZPATRICK, PAUL J. LEADING AMERICAN STATISTICIANS IN THE NINETEENTH CENTURY, JASA 57, 301
- FITZPATRICK, PAUL J. LEADINC AMERICAN STATISTICIANS OF THE NINETEENTH CENTURY II, JASA 58, 689
- FITZPATRICK, PAUL J. LEADING BRITISH STATISTICIANS OF THE NINETEENTH CENTURY, JASA 60, 38
- FIX, E. RANDOM POINTS IN A CIRCLE AND THE ANALYSIS OF CHROMOSOME PAT-TERNS, BIOKA 63, 23
- FIX, EVELYN INTERSECTIONS OF RANDOM CHORDS OF A CIRCLE, BIOKA 64,
- FIX, EVELYN PERSISTENCE IN A CHAIN OF MULTIPLE EVENTS WHEN THERE IS SIMPLE DEPENDENCE, BIOKA-62, 351
- FIX, EVELYN THE POLYKAYS OF THE NATURAL NUMBERS, BIOKA 60, 53
- FLANACAN, P. D. A NUMERICAL INVESTIGATION OF SEVERAL ONE-DIMEN-SIONAL SEARCH PROCEDURES IN NONLINEAR REGRE, TECH 69, 265
- FLEHINGER, B. J. A CENERAL METHOD FOR THE RELIABILITY ANALYSIS OF SYSTEMS UNDER VARIOUS PREVENTIVE MAINTE, AMS 62, 137
- FLEHINGER, BETTY J. A MARKOVIAN MODEL FOR THE ANALYSIS OF THE EF-FECTS OF MARGINAL TESTING ON SYSTEM RELIA, AMS 62, 754
- FLEHINGER, BETTY J. INCENTIVE CONTRACTS AND PRICE DIFFERENTIAL ACCEPTANCE TESTS, JASA 64, 149
- FLEHINGER, BETTY J. PRODUCT TEST PLANNING FOR REPAIRABLE SYSTEMS, TECH 65, 485
- FLEISS, J. L. NOTES. A NOTE ON COCHRAN'S Q TEST, BIOCS 65, 100B
- FLEISS, JOSEPH L. ASSESSING THE ACCURACY OF MULTIVARIATE OBSERVA-TIONS, JASA 66, 403
- FLETCHER, N. T. ESTIMATION OF THE PROBABILITY OF DEFECTIVE FAILURE FROM DESTRUCTIVE TESTS, TECH 63, 459
- FLICK, W. A. A NONPARAMETRIC STATISTICAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE EXPERIMENT, BIOCS 65, 936
- FOLKS, J. L. HETEROGENEITY OF ERROR VARIANCES IN A RANDOMIZED BLOCK DESIGN, BIOKA 57, 275
- FOLKS, J. L. THE EFFICIENCY OF BLOCKING IN INCOMPLETE BLOCK DESIGNS, BIOKA 60. 273
- FOLKS, JOHN L. ESTIMATING THE FRACTION OF ACCEPTABLE PRODUCT, TECH
- 65, 43
 FOLKS, JOHN LEROY A PROPERTY OF THE METHOD OF STEEPEST ASCENT, AMS
- 64, 435
 FOLKS, JOHN LEROY NOTE ON THE MISSING PLOT PROCEDURE IN A RANDOMIZED
- BLOCK DESIGN, JASA 61, 933
 FOLKS, JOHN LERGY OPTIMUM ALLOCATION OF SAMPLING UNITS TO STRATA
- WHEN THERE ARE R RESPONSES OF INTEREST, JASA 65, 225 FOLKS, JOHN LEROY STRAIGHT LINE CONFIDENCE REGIONS OF LINEAR MODELS, JASA 67, 1365
- FONG, CHING SOME CONTRIBUTIONS TO THE AVERACE RANK CORRELATION METHODS AND TO THE DISTRIBUTION OF THE AVE, JASA 63, 756
- FOOTE, RICHARD J. A MODIFIED DOOLITTLE APPROACH FOR MULTIPLE AND PARTIAL CORRELATION AND REGRESSION, JASA 5B, 133
- FORGY, EDWARD W. THE DEVELOPMENT OF NUMERICAL CREDIT EVALUATION SYSTEMS, JASA 63, 799
- FORSYTHE, JOHN VALIDATION OF CONSUMER FINANCIAL CHARACTERISTICS, COMMON STOCK, JASA 69, 415
- FOSS, S. D. A METHOD OF OBTAINING INITIAL ESTIMATES OF THE PARAMETERS IN EXPONENTIAL CURVE FITTING, BIOCS 69, 580
- FOSTER, F. G. A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A GENERAL STOCHASTIC EPIDEMIC, BIOKA 55, 123
- FOSTER, F. G. A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS TESTS FOR TREND IN A TIME SERIES, JRSSB 55, 115
- FOSTER, F. G. DISTRIBUTION-FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF RECORDS (WITH DISCUSSION), JRSSB 54, 1
- FOSTER, F. G. QUEUES WITH BATCH DEPARTURES I, AMS 61, 1324
- FOSTER, F. G. QUEUES WITH BATCH DEPARTURES II, AMS 64, 1147
- FOSTER, F. G. UPPER PERCENTACE POINTS OF THE GENERALIZED BETA DISTRIBUTION, I, BIOKA 57, 237
- FOSTER, F. G. UPPER PERCENTAGE POINTS OF THE GENERALIZED BETA DISTRIBUTION, II, BIOKA 57, 441
- FOSTER, F. G. UPPER PERCENTAGE POINTS OF THE GENERALIZED BETA DISTRIBUTION: III, BIOKA 5B, 492
- FOULKES, H. O. NOTES, FURTHER ANALYSIS OF R. A. FISHER'S ENUMERA-TIONS IN CENETICS, BIOCS 65, 1012
- FOWLKES, E. B. SOME OPERATORS FOR ANALYSIS OF VARIANCE CALCULA-TIONS, TECH 69, 511
- FOX, BENNETT L. GENERATION OF RANDOM SAMPLES FROM THE BETA AND F DISTRIBUTIONS, TECH 63, 269
- FOX. KARL A. CRAPHIC COMPUTATION OF THE MULTIPLE CORRELATION COEF-FICIENT, CORR. 58 1031, JASA 57, 479
- FOX, MARTIN ADMISSIBILITY OF QUANTILE ESTIMATES OF A SINGLE LOCA-TION PARAMETER, AMS 64, 1019
- FOX, MARTIN ESTIMATION OF THE PARAMETER N IN THE BINOMIAL DISTRIBUTION, JASA 68, 150°
- FOX, MARTIN FUNCTIONS OF PROCESSES WITH MARKOVIAN STATES, AMS 68, 938

- FOX, MARTIN FUNCTIONS OF PROCESSES WITH MARKOVIAN STATES, II, AMS $69,865\,$
- FOX, MARTIN INADMISSIBILITY OF THE BEST INVARIANT TEST WHEN THE MO-MENT IS INFINITE UNDER ONE OF THE HYPOT, AMS 69, 1483
- FRANCK, W. E. CENERALIZED MEANS AND ASSOCIATED FAMILIES OF DISTRIBUTIONS. AMS 69, 339
- FRANCK, W. E. MAXIMUM LIKELIHOOD ESTIMATION OF THE DISTRIBUTIONS OF TWO STOCHASTICALLY ORDERED RANDOM VAR, JASA 66, 1067
- FRANK, PETER THE ASYMPTOTIC ERROR OF ITERATIONS, AMS 68, 266
- FRANKEL, LESTER R. WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. COMMENTS, JASA 69, NO. 4
- FRANKLIN, JOEL N. THE COVARIANCE MATRIX OF A CONTINUOUS AUTORECRES— SIVE VECTOR TIME-SERIES, AMS 63, 1259
- FRASER, A. R. STEREOSCOPIC MODELS OF MULTIVARIATE STATISTICAL DATA, BIOCS 66, 358
- FRASER, D. A. S. A BLACK BOX OR A COMPREHENSIVE MODEL, TECH 68, 219
- FRASER, D. A. S. DATA TRANSFORMATIONS AND THE LINEAR MODEL, AMS 67, 1456
- FRASER, D. A. S. FIDUCIAL CONSISTENCY AND GROUP STRUCTURE, BIOKA $65\,,$ $55\,$
- FRASER, D. A. S. FIDUCIAL INFERENCE FOR LOCATION AND SCALE PARAME-TERS. BIOKA 64, 17
- FRASER, D. A. S. LOCAL CONDITIONAL SUFFICIENCY, JRSSB 64, 52
- FRASER, D. A. S. ON FIDUCIAL INFERENCE, AMS 61, 661
- FRASER, D. A. S. ON INFORMATION IN STATISTICS, AMS 65, 890
- FRASER, D. A.S. ON LOCAL INFERENCE AND INFORMATION, JRSSB 64, 253
- FRASER, D. A. S. ON LOCAL UNBIASED ESTIMATION, JRSSB 64, 46
- FRASER, D. A. S. ON SUFFICIENCY AND THE EXPONENTIAL FAMILY, JRSSB 63, 115
 FRASER, D. A. S. ON THE CONSISTENCY OF THE FIDUCIAL METHOD, JRSSB 62.
- 425
- FRASER, D. A.S. ON THE SUFFICIENCY AND LIKELIHOOD PRINCIPLES, JASA 63, 641
- FRASER, D. A. S. RANDOMIZATION TESTS FOR A MULTIVARIATE TWO-SAMPLE PROBLEM, JASA 58, 729
- FRASER, D. A. S. STATISTICAL MODELS AND INVARIANCE, AMS 67, 1061
- FRASER, D. A. S. STRUCTURAL PROBABILITY AND A GENERALIZATION, BIOKA 66, 1
- FRASER, D. A. S. THE CONDITIONAL WISHART, NORMAL AND NONNORMAL, AMS 68, 593
- FRASER, D. A. S. THE FIDUCIAL METHOD AND INVARIANCE, BIOKA 61, 261
- FREE, S. M. A SHORT-CUT RULE FOR A ONE-SIDED TEST OF HYPOTHESIS FOR QUALITATIVE DATA, TECH 69, 197
 - FREEDMAN, D. THE LAST RETURN TO EQUILIBRIUM IN A COIN TOSSING GAME, AMS 64. 1344
 - FREEDMAN, DAVID A REMARK ON THE COIN TOSSING GAME, AMS 64, 1345
- FREEDMAN, DAVID ON THE LOCAL BEHAVIOR OF MARKOV TRANSITION PROBABILITIES, AMS 6B, 2123
- FREEDMAN, DAVID THE TAIL SIGMA-FIELD OF A MARKOV CHAIN AND A THEOREM OF OREY, AMS 64, 1291
- FREEDMAN, DAVID TIMID PLAY IS OPTIMAL, AMS 67, 1281
- FREEDMAN, DAVID TIMID PLAY IS OPTIMAL, II, AMS 67, 1284
- FREEDMAN, DAVID A. A NOTE ON MUTUAL SINGULARITY OF PRIORS, AMS 66,
- FREEDMAN, DAVID A. A REMARK ON SEQUENTIAL DISCRIMINATION, AMS 67, 1666
- FREEDMAN, DAVID A. A REMARK ON THE LAW OF THE ITERATED LOGARITHM, AMS 67.599
- FREEDMAN, DAVID A. A SHARPER FORM OF THE BOREL-CANTELLI LEMMA AND THE STRONG LAW, AMS 65, 800
- FREEDMAN, DAVID A. A THEOREM OF LEVY AND A PECULIAR SEMIGROUP, AMS 67, 1552
- FREEDMAN, DAVID A. AN OSCILLATING SEMICROUP, AMS 67, 924
- FREEDMAN, DAVID A. BAYES' METHOD FOR BOOKIES, AMS 69, 1177
- FREEDMAN, DAVID A. BERNARD FRIEDMAN'S URN, AMS 65, 956
- FREEDMAN, DAVID A. EQUIVALENCE AND SINGULARITY FOR FRIEDMAN URNS, AMS 66, 268
- FREEDMAN, DAVID A. INVARIANT PROBABILITIES FOR CERTAIN MARKOV PROCESSES, AMS 66, 837
- FREEDMAN, DAVID A. INVARIANTS UNDER MIXING WHICH GENERALIZE DE FINETTI'S THEOREM, AMS 62, 916
- FREEDMAN, DAVID A. INVARIANTS UNDER MIXING WHICH GENERALIZE DE FINETTI'S THEOREM. CONTINUOUS TIMES PARAME, AMS 63, 1194
- FREEDMAN, DAVID A. MIXTURES OF MARKOV PROCESSES, AMS 62, 114
- FREEDMAN, DAVID A. ON THE ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE DISCRETE CASE II, AMS 65, 454
- FREEDMAN, DAVID A. ON THE ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES IN THE DISCRETE CASE, AMS 63, 1386
- FREEDMAN, DAVID A. ON THE EXPECTED VALUE OF A STOPPED MARTINGALE, AMS 66, 1505
- FREEDMAN, DAVID A. ON TWO EQUIVALENCE RELATIONS BETWEEN MEASURES, AMS 66, 686
- FREEDMAN, DAVID A. POISSON PROCESSES WITH RANDOM ARRIVAL RATE, AMS $62,924\,$
- FREEDMAN, DAVID A. SOME INVARIANCE PRINCIPLES FOR FUNCTIONALS OF A MARKOV CHAIN, AMS 67, 1
- FREEMAN, A. E. SOME TRANSFORMATIONS OF SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM DAUGHTER-DAMR, BIOCS 67, 823

- FREEMAN, DAVID SAMPLINC PLANS WHICH APPROXIMATELY MINIMIZE THE MAXIMUM EXPECTED SAMPLE SIZE, JASA 64, 67
- FREEMAN, G. H. ESTIMATION OF MEANS AND STANDARD ERRORS IN THE ANALY-SIS OF NON-ORTHOCONAL EXPERIMENTS BY E. JRSSB 62, 435
- FREEMAN, G. H. NOTE ON AN EXACT TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND OTHER PROBLEMS OF SIGNIFICA, BIOKA 51, 141
- FREEMAN, G. H. SOME EXPERIMENTAL DESIGNS OF USE IN CHANGING FROM ONE SET OF TREATMENTS TO ANOTHER, PART 2, JRSSB 57, 163
- FREEMAN. C. H. SOME EXPERIMENTAL DESIGNS OF USE IN CHANGING FROM ONE SET OF TREATMENTS TO ANOTHER, PART 1, JRSSB 57, 154
 FREEMAN, G. H. SOME FURTHER DESIGNS OF TYPE 0-PP, AMS 61, 11B6
- FREEMAN, G. H. SOME NON-ORTHOGONAL PARTITIONS OF 4X4, 5X5, AND 6X6 LATIN SQUARES, AMS 66, 666
- FREEMAN, G. H. SPREAD OF DISEASES IN A RECTANCULAR PLANTATION WITH VACANCIES, BIOKA 53, 2B7
- FREEMAN, G. H. THE USE OF CYCLIC BALANCED INCOMPLETE BLOCK DESIGNS FOR DIRECTIONAL SEED ORCHARDS, BIOCS 67, 761
- FREEMAN, C. H. THE USE OF CYCLIC BALANCED INCOMPLETE BLOCK DESIGNS FOR NON-DIRECTIONAL SEED ORCHARDS, BIOCS 69, 561
- FREEMAN, H. MULTIVARIATE T AND THE RANKING PROBLEM, BIOKA 67, 305 FREENY, ANNE E. ESTIMATION OF ERROR VARIANCE FROM SMALLEST ORDERED CONTRASTS, JASA 63, 152
- FREUND, JOHN E. A BIVARIATE EXTENSION OF THE EXPONENTIAL DISTRIBU-TION, JASA 61, 971
- FREUND, JOHN E. EXPECTED ARC LENCTH OF A GAUSSIAN PROCESS ON A FINITE INTERVAL, JRSSB 56, 257
- FREUND, JOHN E. SOME METHODS OF ESTIMATING THE PARAMETERS OF DIS-CRETE HETEROCENEOUS POPULATIONS, JRSSB 56, 222
- FREUND, R. J. A PROCEDURE FOR AUTOMATIC DATA EDITING, JASA 67, 341
- FREUND, R. J. AN EMPIRICAL EVALUATION OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS. AMS 62, 1413
- FREUND, RUDOLF J. RESIDUAL ANALYSIS, CORR. 61 1005, JASA 61, 98
- FRIARS, G. W. THE EXPECTED MEAN SQUARES IN GENETIC EXPERIMENTS WHEN ONLY ONE PARENT IS IDENTIFIED, BIOCS 65, 436
- FRIEDMAN, H. P. ON SOME INVARIANT CRITERIA FOR CROUPINC DATA, JASA 67.1159
- FRIEDMAN, MILTON THE INTERPOLATION OF TIME SERIES BY RELATED SE-RIES, JASA 62, 729
- FRIEDMAN, SHMUEL ON STOCHASTIC APPROXIMATIONS, AMS 63, 343
- FRIEND, IRWIN THE PREDICTIVE ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLES, JASA 64, 987
- FRISTEDT, BERT A SHORT PROOF OF A KNOWN LIMIT THEOREM FOR SUM OF INDE-PENDENT RANDOM VARIABLES WITH INFINI, AMS 69, 1114
- FROME, E. L. MAXIMUM LIKELIHOOD ESTIMATION OF SURVIVAL CURVE PARAMETERS, BIOCS 68, 595
- FROMM, D. CROSS STATE PRODUCT AND AN ECONOMETRIC MODEL OF A STATE, JASA 69. 787
- FRY, R E. ERRATA, 'FINDING NEW FRACTIONS OF FACTORIAL EXPERIMENTAL DESIGNS', TECH 63, 134
- FRY, R. E FINDING NEW FRACTIONS OF FACTORIAL EXPERIMENTAL DESIGNS. TECH 61. 359
- FRY, THORNTON C. THE AUTOMATIC COMPUTER IN INDUSTRY, JASA 56, 565 FUCHS, CAROL F. POISSON LIMITS OF MULTIVARIATE RUN DISTRIBUTIONS, AMS 65, 215
- FUCKS, W. ON NAHORDNUNG AND FERNORDNUNG IN SAMPLES OF LITERARY TEXTS, BIOKA 54, 116
- FUCKS. WILHELM ON MATHEMATICAL ANALYSIS OF STYLE. BIOKA 52, 122
- FUJIKOSHI, YASUNORI ASYMPTOTIC EXPANSIONS OF THE NON-NULL DIS-TRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA, AMS 69, 942
- FULLER, WAYNE A. ESTIMATION EMPLOYING POST STRATA, JASA 66, 1172 GABRIEL, K. R. ANALYSIS OF VARIANCE OF PROPORTIONS WITH UNEQUAL
- FREQUENCIES, JASA 63, 1133 CABRIEL, K. R. ANTE-DEPENDENCE ANALYSIS OF AN ORDERED SET OF VARIA-BLES. AMS 62. 201
- CABRIEL, K. R. NON-PARAMETRIC ANALYSIS OF VARIANCE IN SMALL SAM-PLES, A MONTE CARLO STUDY OF THE ADEQUACY, BIOCS 69, 593
- CABRIEL. K. R. ON THE DISTRIBUTION OF STATISTICS SUITABLE FOR EVALUATING RAINFALL STIMULATION EXPERIMENTS, TECH 69, 149
- GABRIEL, K. R. SIMULTANEOUS TEST PROCEDURES FOR MULTIPLE COM-PARISONS ON CATEGORICAL DATA. JASA 66, 1081
- GABRIEL, K. R. SIMULTANEOUS TEST PROCEDURES, SOME THEORY OF MULTI-PLE COMPARISONS, AMS 69, 224
- GABRIEL, K. R. SIMULTANEOUS TEST PROCEDURES IN MULTIVARIATE ANALY-SIS OF VARIANCE, BIOKA 68. 4B9
- GABRIEL, K. R. THE DISTRIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS, BIOKA 59, 454
- GAFARIAN, A. V. CONFIDENCE BANDS IN STRAIGHT LINE REGRESSION, JASA
- GAFFEY, WILLIAM R. A MATHEMATICAL MODEL WITH APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMONG CHILD, JASA 65, 1046
- GAINSBRUGH, MARTINR. STATISTICS WE LIVE BY, JASA 62, 1
- GAJJAR, A. V. PROGRESSIVELY CENSORED SAMPLES FROM LOC-NORMAL AND LOGISTIC DISTRIBUTIONS, TECH 69, NO. 4
- CALL, G. A. E. COVARIANCE ANALYSIS WITH UNEQUAL SUBCLASS NUMBERS, COMPONENT ESTIMATION IN CORRELATION STU, BIOCS 68, 49
- GALLANT, A. R. A NOTE ON THE MEASUREMENT OF COST-QUANTITY RELATION-SHIPS IN THE AIRCRAFT INDUSTRY, JASA 68, 1247

- CALLAWAY, LOWELL E. A QUARTERLY ECONOMETRIC MODEL OF THE UNITED STATES, JASA 61, 379
- CANI, J. A NOTE ON SUFFICIENCY IN RECULAR MARKOV CHAINS, BIOKA 60, 452
- GANI, J. CORRICENDA TO 'SOME THEOREMS AND SUFFICIENCY CONDITIONS FOR THE MAXIMUM-LIKELIHOOD ESTIMATOR OF, BIOKA 56, 497
- GANI, J. FIRST EMPTINESS OF TWO DAMS IN PARALLEL, AMS 61, 219
- INEQUALITIES FOR FIRST EMPTINESS PROBABILITIES OF A DAM CANT J WITH ORDERED INPUTS, JRSSB 62, 102
- GANI, J. MODELS FOR A BACTERIAL GROWTH PROCESS WITH REMOVALS, JRSSB 63.140
- GANI, J. ON A PARTIAL DIFFERENTIAL EQUATION OF EPIDEMIC THEORY. I., BIOKA 65, 617
- GANI, J. ON THE STOCHASTIC MATRIX IN A CENETIC MODEL OF MORAN, BIOKA
- 61,203 GANI, J. PROBLEMS IN THE PROBABILITY THEORY OF STORAGE SYSTEMS (WITH
- DISCUSSION), JRSSB 57, 1B1 CANI, J. SOME PROBLEMS IN THE THEORY OF PROVISIONING AND OF DAMS,
- BIOKA 55, 179 GANI, J. SOME THEOREMS AND SUFFICIENCY CONDITIONS FOR THE MAXIMUM-LIKELIHOOD ESTIMATOR OF AN UNKNOWN PARA, BIOKA 55, 342
- CANI, J. STATIONARY DISTRIBUTIONS OF THE NECATIVE EXPERIMENTAL TYPE FOR THE INFINITE DAM. JRSSB 57. 342
- CANI, J. STOCHASTIC PHACE ATTACHMENT TO BACTERIA, BIOCS 65, 134
- GANI, J. SUFFICIENCY CONDITIONS IN RECULAR MARKOV CHAINS AND CER-TAIN RANDOM WALKS, BIOKA 56, 276
- GANI, J. THE EXTINCTION OF A BACTERIAL COLONY BY PHACES, A BRANCHING PROCESS WITH DETERMINISTIC REMOVALS, BIOKA 62, 272
- GANSER, C. C. INFINITELY DIFFERENTIABLE POSITIVE DEFINITE FUNC-TIONS, AMS 66, 504
- GARDINER, DONALD A. AN APPROXIMATION OF STUDENT'S T, TECH 65, 71
- GARDINER, DONALD A. AN APPROXIMATION TO TWO-SIDED TOLERANCE LIMITS FOR NORMAL POPULATIONS, TECH 66, 115
- CARDNER JR, L. A. ON DETECTING CHANGES IN THE MEAN OF NORMAL VARIATES, AMS 69, 116
- GARDNER, C. O. A CENERAL MODEL FOR GENETIC EFFECTS, BIOCS 66, B64 CARDNER, C. O. ANALYSIS AND INTERPRETATION OF THE VARIETY CROSS DI-ALLEL AND RELATED POPULATIONS, BIOCS 66, 439
- CARDNER, C. O. FURTHER EVIDENCE ON THE CONSISTENCY OF ESTIMATES OF VARIANCE COMPONENTS, BIOCS 65, 395
- CARDNER, R. S. CONFIDENCE INTERVALS FOR THE EXPECTATION OF A POISSON VARIABLE, BIOKA 59, 441
- CARC, J. N. ON MODIFIED SYSTEMATIC SAMPLINC, BIOKA 6B, 541
- CARC, M. L. CORRELATION BETWEEN THE SAMPLE VARIANCES IN A SINCLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION, BIOKA 68, 433
- CARNER, NORMANR. CURTAILED SAMPLING FOR VARIABLES, JASA 5B, B62 GARNER, NORMAN R. THE OPERATING CHARACTERISTIC CURVE FOR SEQUEN-
- TIAL SAMPLING BY VARIABLES WHEN THE PRODUC, JASA 56, 10B CART, J. J. ALTERNATIVE ANALYSIS OF CONTINGENCY TABLES. JRSSB 66. 164
- CART, J. J. AN EXACT TEST FOR COMPARINC MATCHED PROPORTIONS IN CROS-SOVER DESIGNS, BIOKA 69, 75
- CART, J. J. APPROXIMATE CONFIDENCE LIMITS FOR THE RELATIVE RISK (CORR. 63 234), JRSSB 62, 454
- GART, J. J. CRAPHICALLY ORIENTED TESTS FOR HOST VARIABILITY IN DILU-TION EXPERIMENTS, BIOCS 67, 269
- GART, J. J ON THE BIAS OF VARIOUS ESTIMATORS OF THE LOCIT AND ITS VARIANCE WITH APPLICATION TO QUANTAL B. BIOKA 67, 181
- CART, J. J. SOME STOCHASTIC MODELS RELATING TIME AND DOSACE IN RESPONSE CURVES, BIOCS 65, 583
- GART, J. J. SUSCEPTIBLES THE MATHEMATICAL ANALYSIS OF AN EPIDEMIC WITH TWO KINDS OF, BIOCS 6B, 557
- GART, JOHN J. A MEDIAN TEST WITH SEQUENTIAL APPLICATION, BIOKA 63, 55
- GART, JOHN J. THE ANALYSIS OF POISSON RECRESSION WITH AN APPLICATION IN VIROLOGY, BIOKA 64, 517
- GART, JOHN J. THE ASYMPTOTIC PROPERTIES OF MAXIMUM LIKELIHOOD ESTI-MATORS WHEN SAMPLING FROM ASSOCIATED PO, BIOKA 62, 205
- GASTWIRTH, J. L. THE FIRST-MEDIAN TEST. A TWO-SIDED VERSION OF THE
- CONTROL MEDIAN TEST, JASA 68, 692 GASTWIRTH, JOSEPH L. AN ELEMENTARY METHOD OF OBTAINING LOWER BOUNDS
- ON THE ASYMPTOTIC POWER OF RANK TESTS, AMS 6B, 212B GASTWIRTH, JOSEPH L. ASYMPTOTIC DISTRIBUTION OF LINEAR COMBINA-TIONS OF FUNCTIONS OF ORDER STATISTICS WITH, AMS 67, 52
- GASTWIRTH, JOSEPH L. ASYMPTOTICALLY MOST POWERFUL RANK TESTS FOR THE TWO-SAMPLE PROBLEM WITH CENSORED DAT, AMS 65, 1243
- CASTWIRTH, JOSEPH L. ON A SIMPLE ESTIMATE OF THE RECIPROCAL OF THE DENSITY FUNCTION, AMS 68, 10B3
- GASTWIRTH, JOSEPH L. ON ROBUST LINEAR ESTIMATORS, AMS 69, 24
- GASTWIRTH, JOSEPH L. ON ROBUST PROCEDURES, JASA 66, 929
- CASTWIRTH, JOSEPH L. PERCENTILE MODIFICATIONS OF TWO-SAMPLE RANK TESTS, JASA 65, 1127
- CATES, C. E. LINE TRANSECT METHOD OF ESTIMATING GROUSE POPULATION DENSITIES, BIOCS 68, 135
- GATES, C. E. SIMULATION STUDY OF ESTIMATORS FOR THE LINE TRANSECT SAMPLINC METHOD, BIOCS 69, 317
- GATES, C. R. ACCURACY REQUIREMENTS FOR ACCEPTANCE TESTING OF COM-PLEX SYSTEMS, JASA 59, 447

- CAVER JR, D. P. A WAITING LINE WITH INTERRUPTED SERVICE, INCLUDING PRIORITIES, JRSS8 62, 73
- CAVER JR. D. P. RANDOM HAZARD IN RELIABILITY PROBLEMS, TECH 63, 211
- GAVER JR, DONALD P. COMPETITIVE QUEUEING, IDLENESS PROBABILITIES UNDER PRIORITY DISCIPLINES. JRSSB 63, 489
- CAYEN, A. K. THE FREQUENCY DISTRIBUTION OF THE PRODUCT-MOMENT COR-RELATION COEFFICIENT IN RANDOM SAMPLES 0, BIOKA 51, 219
- CAYLOR, D. W. AUCMENTING EXISTING DATA IN MULTIPLE RECRESSION, TECH 68.73
- CAYLOR, D. W. DESIGN FOR OPTIMAL PREDICTION IN SIMPLE LINEAR RECRES-SION, JASA 65, 205
- GAYLOR, D. W. EQUIVALENCE OF TWO ESTIMATES OF PRODUCT VARIANCE, JASA 56, 451
- GAYLOR, D. W. ESTIMATING THE DEGREES OF FREEDOM FOR LINEAR COMBINA-TIONS OF MEAN SQUARES BY SATTERTHWAITHE, TECH 69, NO. 4
- GAYLOR, D. W. EXPECTED MEAN SQUARES FOR NESTED GLASSIFIGATIONS, BIOCS 69, 427
- GAYLOR, D. W. SEQUENTIAL COMBINATION CHEMOTHERAPY EXPERIMENTS, BIOCS 66, 730
- GEARY, R. C. EX POST DETERMINATION OF SIGNIFIGANCE IN MULTIVARIATE REGRESSION WHEN THE INDEPENDENT VARIAB, JRSSB 67, 154
- GEARY, R. G. THE AVERAGE CRITICAL VALUE METHOD FOR ADJUDGING RELA-TIVE EFFICIENCY OF STATISTICAL TESTS IN, BIOKA 66, 109
- GEBHARD, RICHARD F. A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A STOGHASTIG PROCESS, AMS 64, 866
- GEBHARDT, F. NOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR DUN-CAN'S MULTIPLE RANCE TEST, BIOCS 66, 179
- GEBHARDT, FRIEDRICH ON THE EFFECT OF STRAGGLERS ON THE RISK OF SOME MEAN ESTIMATORS IN SMALL SAMPLES, AMS 66, 441
- GEBHARDT, FRIEDRICH ON THE RISK OF SOME STRATEGIES FOR OUTLYING OB-SERVATIONS, AMS 64, 1524
- GEBHARDT, FRIEDRICH SOME NUMERICAL COMPARISONS OF SEVERAL APPROXI-MATIONS TO THE BINOMIAL DISTRIBUTION, JASA 69, NO. 4
- GEHAN, E. A. A GENERALIZED TWO-SAMPLE WILCOXON TEST FOR DOUBLY-CEN-
- SORED DATA., BIOKA 65, 650
 GEHAN, E. A. A GENERALIZED WILGOXON TEST FOR GOMPARING ARBITRARILY SINGLY-CENSORED SAMPLES, BIOKA 65, 203
- GEHAN, E. A. THE PERFORMANCE OF SOME TWO-SAMPLE TESTS IN SMALL SAM-PLES WITH AND WITHOUT CENSORING, BIOKA 69, 127
- GEISSER, S. A NECESSARY AND SUFFICIENT CONDITION FOR THE SQUARE OF A RANDOM VARIABLE TO BE GAMMA, BIOKA 66, 275
- GEISSER, S. ESTIMATION IN THE UNIFORM COVARIANCE CASE, JRSSB 64, 477 CEISSER, S. POSTERIOR ODDS FOR MULTIVARIATE NORMAL CLASSIFICATION, JRSSB 64, 69
- GEISSER, S. PREDICTIVE ZERO-MEAN UNIFORM DISCRIMINATION, BIOKA 68, 519
- GEISSER, SEYMOUR A BAYES APPROAGH FOR COMBINING CORRELATED ESTI-MATES, JASA 65, 602
- CEISSER, SEYMOUR 8AYESIAN ESTIMATION IN MULTIVARIATE ANALYSIS, AMS 65, 150
- GEISSER, SEYMOUR ESTIMATION ASSOCIATED WITH LINEAR DISCRIMINANTS, AMS 67, 807
- GEISSER, SEYMOUR MULTIVARIATE ANALYSIS OF VARIANCE FOR A SPECIAL COVARIANGE CASE, CORR, 64 1296, JASA 63, 660
- GEISSER, SEYMOUR PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIA-8LES, AMS 62, 290
- GEISSER, SEYMOUR POSTERIOR DISTRIBUTIONS FOR MULTIVARIATE NORMAL PARAMETERS, JRSSB 63, 36B
- GELZER, JOSEPH THE ASYMPTOTIC RELATIVE EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST SCALAR ALTERNATIVES, JASA 65, 410
- NOTES. OPTIMUM EXPERIMENTAL DESIGNS FOR REALIZED HERITABILITY ESTIMATES, BIOCS 67, 361
- GENIZI, ABRAHAM ON THE PERFORMANCE OF THE TRUNCATED SEQUENTIAL PROBABILITY RATIO TEST, CORR. 66 1247, JASA 65, 979
- GENTLEMAN, W. M. AN APPROXIMATION FOR STUDENT'S T-DISTRIBUTION, BIOKA 68, 571
- GEOGHAGEN, R. R. M. A GENERAL USE OF THE POISSON APPROXIMATION FOR BINOMIAL EVENTS, WITH APPLICATION TO B, 810GS 66, 74
- GERIG, THOMAS M. A MULTIVARIATE EXTENSION OF FRIEDMAN'S CHI-SQUARE-SUB-R-TEST, JASA 69, NO. 4
- GERSCHENKRON, ALEXANDER PROBLEMS IN MEASURING LONG TERM GROWTH IN INCOME AND WEALTH, JASA 57, 450
- GESSAMAN, M. P. NONPARAMETRIC DISCRIMINATION USING TOLERANCE RE-GIONS, AMS 68, 664
- GETOOR, R. K. A THEOREM ON STOPPING TIMES, AMS 64, 1348
- CETOOR, R. K. ADDITIVE FUNCTIONALS AND EXCESSIVE FUNCTIONS, AMS 65, 409
- GETOOR, R. K. SOME REMARKS ON CONTINUOUS ADDITIVE FUNCTIONALS, AMS
- CHIRTIS, G. C. A SYSTEM OF TWO SERVERS WITH LIMITED WAITING ROOMS AND CERTAIN ORDER OF VISITS, BIOKA 68, 223
- GHOSAL, A. QUEUES INSERIES, JRSSB 62, 359
- GHOSAL, A. SOME RESULTS IN THE THEORY OF INVENTORY, BIOKA 64, 487
- GHOSH. B. K. ASYMPTOTIC EXPANSIONS FOR THE MOMENTS OF THE DISTRIBU-TION OF CORRELATION COEFFICIENT, BIOKA 66, 258
- GHOSH, B. K. MOMENTS OF THE DISTRIBUTION OF SAMPLE SIZE IN A SPRT, JASA 69, NO.4

- CHOSH, B. K. ON SEQUENTIAL TESTS OF RATIO OF VARIANCES BASED ON RANCE, BIOKA 63, 419
- GHOSH, B. K. SEQUENTIAL ANALYSIS OF VARIANCE UNDER RANDOM AND MIXED MODELS, JASA 67, 1401
- CHOSH, B. K. SEQUENTIAL RANCE TESTS FOR COMPONENTS OF VARIANCE, CORR. 65 1249, JASA 65, 826
- CHOSH, B. K. SIMULTANEOUS TESTS BY SEQUENTIAL METHODS IN HIERARCHI-CAL CLASSIFICATIONS, BIOKA 64, 439
- CHOSH, J. K. INVARIANT SETS FOR TRANSLATION-PARAMETER FAMILIES OF MEASURES, AMS 69, 162
- GHOSH, J. K. THE RELATIONSHIP BETWEEN SUFFICIENCY AND INVARIANCE WITH APPLICATIONS IN SEQUENTIAL ANALYSIS, AMS 65, 575
- GHOSH, J. K. UNBIASED ESTIMATION OF LOCATION AND SCALE PARAMETERS, AMS 66, 1671
- GHOSH, M. N. BOUNDS FOR THE EXPECTED SAMPLE SIZE IN A SEQUENTIAL PROBABILITY RATIO TEST, JRSSB 60, 360
- GHOSH, M. N. HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVARIATE ANALYSIS OF VARIANCE, JRSSB 63, 35B
- GHOSH, M. N. ON THE ADMISSIBILITY OF SOME TESTS OF MANOVA, AMS 64, 789
- GHOSH, M. N. POWER OF TUKEY'S TEST FOR NON-ADDITIVITY, JRSSB 63, 213 GHOSH, M. N. SIMULTANEOUS TESTS OF LINEAR HYPOTHESES, BIOKA 55, 441
- GHOSH, M. N. UNIFORM APPROXIMATION OF MINIMAX POINT ESTIMATES, AMS 64.1031
- CHOSH, S. P. OPTIMUM STRATIFICATION WITH TWO CHARACTERS, AMS 63, 866 GHOSH, S. P. SOME THEORY OF SAMPLING WHEN THE STRATIFICATION IS SUB-JECT TO ERROR, TECH 67, 1
- GHOSH, SAKTIP, POLYCHOTOMY SAMPLING, AMS 66, 657
- GHOSH, SAKTIP. POST GLUSTER SAMPLING, AMS 63.587 GHURYE, S. G. A CHARACTERIZATION OF THE MULTIVARIATE NORMAL DIS-TRIBUTION AMS 62 533
- GHURYE, S. G. INFORMATION AND SUFFICIENT SUB-FIELDS, AMS 68, 2056
- GHURYE, S. G. TWO-STAGE PROCEDURES FOR ESTIMATING THE DIFFERENCE BETWEEN MEANS, BIOKA 54, 146
- GHURYE, S.G. UNBIASED ESTIMATION OF SOME MULTIVARIATE PROBABILITY DENSITIES, AMS 69, 1261
- GIBBONS. JEAN D. A PROPOSED TWO-SAMPLE RANK TEST, THE PSI TEST AND ITS PROPERTIES, JRSSB 64, 305
- GIBBONS, JEAN D. EFFECT OF NON-NORMALITY ON THE POWER FUNCTION OF THE SIGN TEST, JASA 64, 142
- GIBBONS, JEAN D. ESTIMATION OF THE NUMBER OF CRITICAL SITES IN LIMITED CENOME EXPRESSION DURING VIRAL INF, BIOCS 69, 537
- GIBBONS, JEAN D. ON THE POWER OF TWO-SAMPLE RANK TESTS ON THE EQUALI-TY OF TWO DISTRIBUTION FUNCTIONS, JRSSB 64, 293
- GIBSON, C. H. ESTIMATION OF POWER SPECTRA BY A WAVE ANALYZER, TECH
- GIESBRECHT, F. EXAMINATION OF A REPEAT MATING DESIGN FOR ESTIMATING ENVIRONMENTAL AND GENETIC TRENDS, BIOCS 65, 63
- GIL-PELAEZ, J. (ACKNOWLEDGEMENT OF PRIORITY). 'NOTE ON THE INVER-SION THEOREM'. BIOKA 52, 215
- GIL-PELAEZ, J. NOTE ON THE INVERSION THEOREM, BIOKA 51, 481
- GILBERT, E. N. RANDOM SUBDIVISIONS OF SPACE INTO CRYSTALS, AMS 62. 958
- GILBERT, E. N. THE PROBABILITY OF COVERING A SPHERE WITH N CIRCULAR CAPS., BIOKA 65, 323
- GILBERT, ETHEL S. ON DISCRIMINATION USING QUALITATIVE VARIABLES. JASA 68, 1399
- GILBERT, ETHEL S. THE EFFECT OF UNEQUAL VARIANCE-COVARIANCE MATRICES ON FISHER'S LINEAR DISCRIMINANT FUNC, BIOCS 69, 505
- GILBERT, JOHN P. RECOCNIZING THE MAXIMUM OF A SEQUENCE, JASA 66, 35
- GILBERT, N. ADDITIVE COMBINING ABILITIES FITTED TO PLANT BREEDING DATA, BIOCS 67, 45
- GILBERT, N. ESTIMATION FROM A LINEAR MARKOV PROCESS, BIOKA 60, 4B2 GILBERT, N. E. G. LIKELIHOOD FUNCTION FOR CAPTURE-RECAPTURE SAM-
- PLES, BIOKA 56, 488 GILBERT, R.D. ON THE DISTRIBUTIONS OF THE RANGE AND MEAN RANGE FOR
- SAMPLES FROM A NORMAL DISTRIBUTION, BIOKA 66, 245 GILBERT, ROY F. SMALL SAMPLE PROPERTIES OF ALTERNATIVE ESTIMATORS
- OF SEEMINCLY UNRELATED REGRESSIONS, JASA 6B, 11BO
- GILCHRIST, W. G. METHODS OF ESTIMATION INVOLVING DISCOUNTING, JRSSB 67, 355
- GILCHRIST, W. G. SOME SEQUENTIAL TEST USING RANGE, JRSSB 61, 335
- GILL, J. L. PROBABILITY OF OBTAINING NEGATIVE ESTIMATES OF HERITA-BILITY, BIOCS 68, 517
- GILLILAND, DENNIS APPROXIMATION TO BAYES RISK IN SEQUENCES OF NON-FINITE GAMES, AMS 69, 467
- GILLILAND, DENNIS C. A NOTE ON THE MAXIMIZATION OF A NON-CENTRAL CHI-SQUARE PROBABILITY, AMS 64, 441
- GILLILAND, DENNIS C. INTEGRAL OF THE BIVARIATE NORMAL DISTRIBUTION OVER AN OFFSET CIRCLE, JASA 62. 758
- GILLILAND, DENNIS C. ON AN EXTENDED COMPOUND DECISION PROBLEM, AMS 69 1536
- GILLILAND, DENNIS C. SEQUENTIAL COMPOUND ESTIMATION, AMS 68, 1890
- GIRI, N. LOCAL AND ASYMPTOTIC MINIMAX PROPERTIES OF MULTIVARIATE TESTS, AMS 64, 21
- GIRI, N. LOCALLY AND ASYMPTOTICALLY MINIMAX TESTS OF A MULTIVARIATE PROBLEM, AMS 68, 171
- GIRI, N. MINIMAX CHARACTER OF HOTELLING'S T-SQUARED TEST IN THE SIM-PLEST CASE, AMS 63, 1524

- GIRI, N. MINIMAX CHARACTER OF THE R-SQUARED-TEST IN THE SIMPLEST CASE, AMS 64, 1475
- GIRI, N. ON TESTS OF THE EQUALITY OF TWO COVARIANCE MATRICES, AMS 68, 275
- GIRI, N ON THE COMPLEX ANALOGUES OF T-SQUARED AND R-SQUARED TESTS. AMS 65.664
- GIRI. N. ON THE F-TEST IN THE INTRABLOCK ANALYSIS OF A CLASS OF TWO ASSOCIATE PARTIALLY BALANCED INCOMPLE, JASA 65, 285
- GIRL N. ON THE LIKELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TEST-ING PROBLEM, CORR, 64 1388, AMS 64, 181
- GIRI, N. ON THE LIKELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TEST-ING PROBLEM II. AMS 65, 1061
- GIRSHICK, M A. CORRECTION, 'SOME EXTENSIONS, OF THE WISHART DIS-TRIBUTION', 44 345, AMS 64, 923*
- GLASSER, G. J. AN UNBIASED ESTIMATOR FOR POWERS OF THE ARITHMETIC MEAN, JRSSB 61, 154
- GLASSER, G. J. CRITICAL VALUES OF THE COEFFICIENT OF RANK CORRELA-TION FOR TESTING THE HYPOTHESIS OF INDEP, BIOKA 61. 444
- GLASSER, G. J. ESTIMATORS FOR THE PRODUCT OF ARITHMETIC MEANS, JRSSB 62.180
- GLASSER, GERALD J. A DISTRIBUTION-FREE TEST OF INDEPENDENCE WITH A SAMPLE OF PAIRED OBSERVATIONS, JASA 62, 116
- GLASSER GERALD I MINIMUM VARIANCE UNBLASED ESTIMATORS FOR POIS-SON PROBABILITIES, TECH 62. 409
- GLASSER, GERALD J. ON ESTIMATORS FOR VARIANCES AND COVARIANCES. BIOKA 62. 259
- GLASSER, GERALD J. ON THE PROBLEM OF MATCHING LISTS BY SAMPLES, JASA 59.403
- GLASSER, GERALD J. THE AGE REPLACEMENT PROBLEM, TECH 67, 83
- GLASSER, GERALD J. VARIANCE FORMULAS FOR THE MEAN DIFFERENCE AND COEFFICIENT OF CONCENTRATION, JASA 62, 648
- GLASSER, M. LINEAR REGRESSION ANALYSIS WITH MISSING OBSERVATIONS AMONG THE INDEPENDENT VARIABLES, JASA 59, B34
- CLASSER, M. REGRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED, BIOCS 65, 300
- GLASSER, MARVIN EXPONENTIAL SURVIVAL WITH COVARIANCE, JASA 67, 561 GLEJSER, H. A NEW TEST FOR HETEROSKEDASTICITY, JASA 69, 316
- CLENN, W. A. A COMPARISON OF THE EFFECTIVENESS OF TOURNAMENTS. BIOKA 60. 253
- GLESER, L. J. ON TESTING A SET OF CORRELATION COEFFICIENTS FOR
- EQUALITY. SOME ASYMPTOTIC RESULTS, BIOKA 6B, 513
- GLESER, LEON J. A NOTE ON THE SPHERICITY TEST, AMS 66, 464 GLESER, LEON J. ON A MEASURE OF TEST EFFICIENCY PROPOSED BY R. R.
- BAHADUR, AMS 64, 1537
- GLESER, LEON J. ON THE ASYMPTOTIC THEORY OF FIXED-SIZE SEQUENTIAL CONFIDENCE BOUNDS FOR LINEAR REGRESSION. AMS 65, 463
- GLESER, LEON JAY ON LIMITING DISTRIBUTIONS FOR SUMS OF A RANDOM NUMBER OF INDEPENDENT RANDOM VECTORS, AMS 69, 935
- GNANADESIKAN, M. ESTIMATION OF THE PARAMETERS OF THE LOGISTIC DIS-TRIBUTION, BIOKA 66, 565
- GNANADESIKAN, R. A NOTE ON 'FURTHER CONTRIBUTIONS TO MULTIVARIATE CONFIDENCE BOUNDS', BIOKA 58, 581
- GNANADESIKAN, R. CORRIGENDA, 'ESTIMATION OF PARAMETERS OF THE GAMMA DISTRIBUTION USING ORDER STATISTICS. ', BIOKA 63, 546
- GNANADESIKAN, R. CORRIGENDA, 'FURTHER CONTRIBUTIONS TO MUL-TIVARIATE CONFIDENCE BOUNDS', BIOKA 61, 474 GNANADESIKAN, R. ESTIMATION OF ERROR VARIANCE FROM SMALLEST OR-
- DERED CONTRASTS, JASA 63, 152
- GNANADESIKAN, R. ESTIMATION OF PARAMETERS OF THE GAMMA DISTRIBU-TION USING ORDER STATISTICS, BIOKA 62, 525 GNANADESIKAN, R. FURTHER CONTRIBUTIONS TO MULTIVARIATE CONFIDENCE
- BOUNDS, BIOKA 57, 399 GNANADESIKAN, R. GRAPHICAL METHODS FOR INTERNAL COMPARISONS IN
- MULTIRESPONSE EXPERIMENTS, AMS 64, 613 GNANADESIKAN, R. MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS
- OF THE BETA DISTRIBUTION FROM SMALLEST O. TECH 67, 607 GNANADESIKAN, R. PROBABILITY PLOTS FOR THE GAMMA DISTRIBUTION,
- TECH 62, 1 GNANADESIKAN, R. PROBABILITY PLOTTING METHODS FOR THE ANALYSIS OF
- DATA, BIOKA 68, 1 CNANADESIKAN. R. SCALE PARAMETER ESTIMATION FROM THE ORDER
- STATISTICS OF UNEQUAL GAMMA COMPONENTS, AMS 66, 152 CNANADESIKAN, R. SEPARATE MAXIMUM-LIKELIHOOD ESTIMATION OF SCALE
- OR SHAPE PARAMETERS OF THE GAMMA DISTRIB, BIOKA 63, 217
- CNANADESIKAN, R. TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTERNATIVES OF INTERMEDIATE SPECIFICI, AMS 62, 432 GODAMBE, V. P. A FIDUCIAL ARGUMENT WITH APPLICATION TO SURVEY
- SAMPLING, JRSSB 69, NO. 2 CODAMBE, V. P. A NEW APPROACH TO SAMPLING FROM FINITE POPULATIONS.
- II, JRSSB 66, 320 GODAMBE, V. P. A NEW APPROACH TO SAMPLING FROM FINITE POPULATIONS.
- I. JRSSB 66, 310 GODAMBE, V. P. A UNIFIED THEORY OF SAMPLING FROM FINITE POPULATIONS, JRSSB 55. 269
- GODAMBE, V. P. ACKNOWLEDGEMENT OF PRIORITY FOR 'AN OPTIMUM PROPERTY OF MAXIMUM LIKELIHOOD ESTIMATION' 60, AMS 61, 1343
- ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING GODAMBE, V. P. FINITE POPULATIONS, I, AMS 65, 1707

- GODAMBE, V. P. ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE POPULATIONS, V, AMS 69, 672
- GODAMBE, V. P. ON THE TWO SAMPLE PROBLEM, A HEURISTIC METHOD FOR CON- ${\tt STRUCTING\ TESTS}$, ${\tt AMS\ 61}$, ${\tt 1091}$
- GODWIN, H. J. A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIA-BLES, AMS 61, 677
- GOEL, A. L. AN ALGORITHM FOR THE DETERMINATION OF THE ECONOMIC DESIGN OF X-CHARTS BASED ON DUNCAN'S MODEL, JASA 68, 304
- GOLD, R. Z. NOTES. ON ESTIMATING RECESSIVE FREQUENCIES FROM TRUN-CATED SAMPLES, BIOCS 67, 356
- GOLD, R. Z. ON THE QUESTION OF WHETHER A DISEASE IS FAMILIAL, JASA 67, 409
- GOLD, RUTH Z. TESTS AUXILIARY TO CHI-SQUARED TESTS IN A MARKOV CHAIN, AMS 63, 56
- GOLDBERGER, ARTHUR S BEST LINEAR UNBIASED PREDICTION IN THE GENERALIZED LINEAR REGRESSION MODEL, JASA 62, 369
- GOLDBERGER, ARTHURS. NOTE ON STEPWISE LEAST SQUARES, JASA 61, 105
- GOLDBERGER, ARTHUR S. ON THE EXACT COVARIANCE OF PRODUCTS OF RANDOM VARIABLES, JASA 69, NO.4
 GOLDBERGER, ARTHUR S. STEPWISE LEAST SQUARES, RESIDUAL ANALYSIS
- AND SPECIFICATION ERROR, JASA 61, 998
- GOLDFELD, STEPHEN M. SOME TESTS FOR HOMOSCEDASTICITY, JASA 65, 539 GOLDMAN, AARON S. COMPARISONS OF SOME TWO STAGE SAMPLING METHODS, AMS 66.891
- GOLDMAN, G. E. ON THE CHOICE OF VARIABLES IN CLASSIFICATION PROBLEMS WITH DICHOTOMOUS VARIABLES, BIOKA 67, 66B
- GOLDMAN, JAYR. STOCHASTIC POINT PROCESSES, LIMIT THEOREMS, AMS 67,
- GOLDMAN, THOMAS DISCUSSION OF 'ON THE FOUNDATIONS OF STATISTICAL INFERENCE', JASA 62, 307
- GOLDSMITH, P. L. A CENERAL SIMULATION PROGRAMME FOR MATERIAL FLOW IN BATCH CHEMICAL PLANTS, TECH 61, 497 GOLDSMITH, P. L. AVERAGE RUN LENGTHS IN CUMULATIVE CHART QUALITY
- CONTROL SCHEMES, TECH 61, 11 GOLDSTEIN, NEIL ANALYSIS OF EMPIRICAL BIVARIATE EXTREMAL DISTRIBU-
- TIONS, JASA 64. 794 GOLDSTEIN, SIDNEY THE EXTENT OF REPEATED MIGRATION, AND ANALYSIS
- BASED ON THE DANISH POPULATION REGISTER, JASA 64, 1121 GOLUB, ABRAHAM ANALYSIS OF SENSITIVITY EXPERIMENTS WHEN THE LEVELS
- OF STIMULUS CANNOT BE CONTROLLED, CORR, JASA 56, 257 GOLUB, GENE H. COMPARISON OF THE VARIANCE OF MINIMUM VARIANCE AND
- WEIGHTED LEAST SQUARES REGRESSION COEFF, AMS 63, 9B4 CONIN, H. T. A STUDY OF THE MATRIX OF FITTING OF A SERIES OF DISCRETE FREQUENCY FUNCTIONS ANALOGOUS TO TH, SASJ 67, 55
- GONIN, H. T. CORRIGENDA, 'THE USE OF ORTHOGONAL POLYNOMIALS OF POSI-TIVE AND NEGATIVE BINOMIAL FREQUENCY F, BIOKA 61, 476
- GONIN, H. T. POISSON AND BINOMIAL FREQUENCY SURFACES, BIOKA 66, 617 GONIN, H. T. THE ORTHOGONAL POLYNOMIALS OF POWER SERIES PROBABILITY DISTRIBUTIONS AND THEIR USES, BIOKA 66, 121
- GONIN, H. T. THE ORTHOGONAL POLYNOMIALS OF THE FACTORIAL POWER SE-RIES PROBABILITY DISTRIBUTIONS, SASJ 67, 49
- GONIN, H. T. THE USE OF ORTHOGONAL POLYNOMIALS OF THE POSITIVE AND NEGATIVE BINOMIAL FREQUENCY FUNCTIONS, BIOKA 61, 115
- GOOD, I. J. A BAYESIAN SIGNIFICANCE TEST FOR MULTINOMIAL DISTRIBU-TIONS (WITH DISCUSSION), JRSSB 67, 399 A CLASSIFICATION OF FALLACIOUS ARCUMENTS AND IN-
- TERPRETATIONS, TECH 62, 125 GOOD, I. J. A DERIVATION OF THE PROBABILISTIC EXPLICATION OF INFOR-
- MATION, JRSSB 66, 578 GOOD, I. J. A SUBJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE'
- TEST FOR APPROXIMATE NUMERICAL RATIO, JASA 69, 23 GOOD, I. J. AN ASYMPTOTIC FORMULA FOR THE DIFFERENCES OF THE POWERS
- AT ZERO. AMS 61. 249 GOOD, I. J. CONDITIONS FOR A QUADRATIC FORM TO HAVE A CHI-SQUARED
- DISTRIBUTION, BIOKA 69. 215 GOOD, I. J. CORRECTIONS TO 'SADDLE POINT METHODS FOR THE MULTINOMIAL
- DISTRIBUTIONS' 57 861, AMS 61, 619 GOOD, I. J. CORRIGENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOFF
- CHAINS', BIOKA 57, 301 GOOD, I. J. DISCUSSION OF 'ON THE FOUNDATIONS OF STATISTICAL IN-
- FERENCE', JASA 62, 307
- COOD, I. J. DISCUSSION OF THE PAPERS OF MESSRS. HALD, WETHERILL AND COX, TECH 60, 361
- GOOD, I. J. MAXIMUM ENTROPY FOR HYPOTHESIS FORMULATION, ESPECIALLY FOR MULTIDIMENSIONAL CONTINGENCY TABLE, AMS 63, 911
- GOOD, I. J. NOTES. CHECKS ON YATES'S ALGORITHM, BIOCS 67, 573
- GOOD, I. J. ON THE ESTIMATION OF SMALL FREQUENCIES IN CONTINGENCY TABLES, JRSSB 56, 113 GOOD. I. J. ON THE INDEPENDENCE OF QUADRATIC EXPRESSIONS (CORR. 66
- 584), JRSSB 63, 377 GOOD, I. J. ON THE WEIGHTED COMBINATION OF SIGNIFICANCE TESTS, JRSSB
- 55.264 GOOD, I. J. QUADRATICS IN MARKOV-CHAIN FREQUENCIES, AND THE BINARY CHAIN OF ORDER 2, JRSSB 63, 383
- GOOD, I. J. SIGNIFICANCE TESTS IN PARALLEL AND IN SERIES, JASA 58, 799
- GOOD, I. J. SOME APPLICATIONS OF THE SINGULAR DECOMPOSITION OF A MATRIX, TECH 69, NO.4

- GOOD, I. J. THE FREQUENCY COUNT OF A MARKOV CHAIN AND THE TRANSITION TO CONTINUOUS TIME, AMS 61, 41
- GOOD, I. J. THE INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALY— SIS, AN ADDENDUM, JRSSB 60, 372
- GOOD, I. J. THE INTERACTION ALGORITHM AND PRACTICAL FOURIER ANALY— SIS, JRSSB 58, 361
- GOOD, I. J. THE LIKELIHOOD RATIO TEST FOR MARKOFF CHAINS, BIOKA 55,
- GOOD, I. J. THE MULTIVARIATE SADDLE POINT METHOD AND CHI-SQUARED FOR THE MULTINOMIAL DISTRIBUTION, AMS 61, 535
- GOOD, I. J. THE NUMBER OF NEW SPECIES, AND THE INCREASE IN POPULATION COVERAGE, WHEN A SAMPLE IS INCREASE, BIOKA 56, 45
- GOOD, I. J. THE POPULATION FREQUENCIES OF SPECIES AND THE ESTIMATION OF POPULATION PARAMETERS, BIOKA 53, 237
- GOOD, I. J. THE REAL STABLE CHARACTERISTIC FUNCTIONS AND GHAOTIC AC-CELERATION, JRSSB 61, 1B0
- GOOD, I. J. WEIGHT OF EVIDENCE, CORROBORATION, EXPLANATORY POWER,
 INFORMATION AND THE UTILITY OF EXPERIME, JRSSB 60, 319
- GOODALL, D. W. A NEW SIMILARITY INDEX BASED ON PROBABILITY, BIOCS 66, BB2
- GOODALL, D. W. THE DISTRIBUTION OF THE MATCHING COEFFICIENT, 810CS 67, 647
- GOODGHILD, N. A. NOTES. APPLICATIONS OF NONORTHOGONAL DESIGNS TO SITUATIONS WHERE TREATMENTS OR BLOCKS AR, BIOCS 66, 629
- GOODMAN, L. A. ON PLACKETT'S TEST FOR CONTINGENCY TABLE INTERACTIONS, JRSS8 63, 179
- GOODMAN, L. A. PARTIAL TESTS FOR PARTIAL TAUS, BIOKA 59, 425
- GOODMAN, L. A. SIMPLIFIED RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF GHAINS, BIOKA 5B, 1B1
- GOODMAN, L. A. SIMULTANEOUS CONFIDENCE LIMITS FOR CROSS-PRODUCT RATIOS IN CONTINGENCY TABLES, JRSSB 64, 86
- GOODMAN, L. A. STOCHASTIC MODELS FOR THE POPULATION GROWTH OF THE SEXES, BIOKA 6B, 469
- GOODMAN, L. A. THE ANALYSIS OF POPULATION GROWTH WHEN THE BIRTH AND
- DEATH RATES DEPEND UPON SEVERAL FACTO, BIOCS 69, NO. 4
 GOODMAN, L. A. THE PROBABILITIES OF EXTINCTION FOR BIRTH-AND-DEATH
 BROCESSES THAT ARE ACC. DEPENDENCE OF BUILDING ACC. 570.
- PROGESSES THAT ARE AGE-DEPENDENT OR PH, BIOKA 67, 579
 GODDMAN, LEO A. HOW TO MINIMIZE OR MAXIMIZE THE PROBABILITIES OF EX-
- TINGTION IN A GALTON-WATSON PROCESS AN, AMS 68, 1700
 GOODMAN, LEO A. INTERACTIONS IN MULTIDIMENSIONAL CONTINGENCY TABLES, AMS 64, 632
- GOODMAN, LEO A. MEASURES OF ASSOCIATION FOR CROSS CLASSIFICATIONS, II. FURTHER DISCUSSION AND REFERENCES, JASA 59, 123
- GOODMAN, LEO A. MEASURES OF ASSOCIATION FOR CROSS CLASSIFICATIONS, 111. APPROXIMATE SAMPLING THEORY, JASA 63, 310
- GOODMAN, LEO A. ON SIMULTANEOUS CONFIDENCE INTERVALS FOR MUL-TINOMIAL PROPORTIONS, TECH 65, 247
- GOODMAN, LEO A. ON THE EXACT VARIANGE OF PRODUCTS, CORR. 61917, JASA 60, 708
- GOODMAN, LEO A. PARAMETER-FREE AND NON-PARAMETRIC TOLERANCE LIMITS, THE EXPONENTIAL CASE, TECH 62, 75
- GOODMAN, LEO A. SIMPLE METHODS FOR ANALYZING THREE-FACTOR INTERAC-TION IN CONTINGENCY TABLES, JASA 64, 319
- GOODMAN, LEO A. SIMULTANEOUS CONFIDENCE INTERVALS FOR GONTRASTS
 AMONG MULTINOMIAL POPULATIONS, AMS 64, 716
- GOODMAN, LEO A. SNOWBALL SAMPLING, AMS 61, 14B
- GOODMAN, LEO A. SOME NONPARAMETRIC TESTS FOR COMOVEMENTS BETWEEN TIME SERIES, JASA 61, 11
- GOODMAN, LEO A. STATISTICAL METHODS FOR THE MOVER-STAYER MODEL, JASA 61, B41
- GOODMAN, LEO A. THE ANALYSIS OF CROSS-CLASSIFIED DATA, INDEPENDENCE, QUASI-INDEPENDENCE, AND INTERACTIONS, JASA 6B, 1091
- GOODMAN, LEO A. THE ANALYSIS OF PERSISTENCE IN A CHAIN OF MULTIPLE EVENTS, 810KA 64, 405
- GOODMAN, LEO A. THE PRECISION OF UNBIASED RATIO-TYPE ESTIMATORS, CORR. 63 1162, JASA 5B, 491
- GOODMAN, LEO A. THE VARIANCE OF THE PRODUCT OF K RANDOM VARIABLES, JASA 62, 54
- GOODMAN, M. M. NOTES. A MEASURE OF 'OVERALL VARIABILITY' IN POPULA-TIONS, BIOCS 6B, 1B9
- GOODMAN, N. R. FREQUENCY RESPONSE FROM STATIONARY NOISE, T-O CASE HISTORIES, TECH 61, 245
- GOODMAN, N. R. SOME COMMENTS ON SPECTRAL ANALYSIS OF TIME SERIES, TECH 61, 221 GOODMAN, N. R. STATISTICAL ANALYSIS BASED ON A CERTAIN MULTIVARIATE
- COMPLEX GAUSSIANDISTRIBUTION, AN INT, AMS 63, 152
 GOODMAN, N. R. THE DISTRIBUTION OF THE DETERMINANT OF A COMPLEX
- WISHART DISTRIBUTED MATRIX, AMS 63, 178

 GORDON, MYRON J. THE CONDITION FOR LOT SIZE PRODUCTION, JASA 56, 627
- GORMAN, J. W. DISCUSSION OF 'EXTREME VERTICES DESIGN OF MIXTURE EX-PERIMENTS' BY R.A. MCLEAN AND V.L. ANDE, TECH 66, 455
- GORMAN, J. W. SELECTION OF VARIABLES FOR FITTING EQUATIONS TO DATA, TECH 66, 27
- GORMAN, J. W. SIMPLEX LATTICE DESIGNS FOR MUTICOMPONENT SYSTEMS, TECH 62, 463
- GOSSLEE, D. G. ANALYSIS OF VARIANCE OF DISPROPORTIONATE DATA WHEN INTERACTION IS PRESENT, 810CS 65, 115

- GOULD, A. L. A REGRESSION TECHNIQUE FOR ANGULAR VARIATES, BIOCS 69, NO.4
- GOULD, A. L. SOME RELATIONSHIPS BETWEEN THE NORMAL AND VON MISES DISTRIBUTIONS, BIOKA 67, 684
- GOULD, H. W. NOTE ON TWO BINOMIAL COEFFICIENT SUMS FOUND BY RIORDAN, AMS 63, 333
- GOVIER, L. J. SOME PROPERTIES OF COUNTS OF EVENTS FOR CERTAIN TYPES OF POINT PROCESS, JRSSB 64, 325
- OF POINT PROCESS, JRSSB 64, 325 GOVINDARAJULU, Z. DISTRIBUTION AND POWER OF THE ABSOLUTE NORMAL
- SCORES TEST, JASA 67, 966
 GOVINDARAJULU, Z. RELATIONS AMONG MOMENTS OF ORDER STATISTICS IN
 SAMPLES FROM TWO RELATED POPULATIONS, TECH 63, 514
- GOVINDARAJULU, ZAKKULA A SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE TESTING AND RELATED TOPICS, CORR, JASA 64, 1231
- GOVINDARAJULU, ZAKKULA BEST LINEAR ESTIMATES UNDER SYMMETRIC CEN-SORING OF THE PARAMETERS OF A DOUBLE EXPO, JASA 66, 24B
- GOVINDARAJULU, ZAKKULA CHARACTERIZATION OF NORMAL AND GENERALIZED TRUNCATED NORMAL DISTRIBUTIONS USING OR, AMS 66, 1011
- GOVINDARAJULU, ZAKKULA EXACT LOWER MOMENTS OF ORDER STATISTICS IN SAMPLES FROM THE CHI-DISTRIBUTION, ONE, AMS 62, 1292
- GOVINDARAJULU, ZAKKULA EXACT POWER OF MANN-WHITNEY TEST FOR EX-PONENTIAL AND RECTANGULAR ALTERNATIVES, AMS 66, 945
- GOVINDARAJULU, ZAKKULA ON MOMENTS OF ORDER STATISTICS AND QUASI-RANGES FROM NORMAL POPULATIONS, AMS 63, 633
- GOVINDARAJULU, ZAKKULA RECURRENCE RELATIONS FOR THE INVERSE MO-MENTS OF THE POSITIVE BINOMIAL VARIABLE, JASA 63, 46B
- GOVINDARAJULU, ZAKKULA THE RECIPROCAL OF THE DECAPITATED NEGATIVE BINOMIAL VARIABLE, CORR. 63 1162, JASA 62, 906
- GOWER, J. C. A COMPARISON OF SOME METHODS OF CLUSTER ANALYSIS, BIOCS $67,623\,$
- GOWER, J. C. A COMPARISON OF THEORETICAL AND EMPIRICAL RESULTS FOR SOME STOCHASTIC POPULATION MODELS, BIOKA 60, 1
 GOWER, J. C. A NOTE ON SOME ASYMPTOTIC PROPERTIES OF THE LOGARITHMIC
- SERIES DISTRIBUTION, BIOKA 61, 212
- GOWER, J. C. A NOTE ON THE PERIODOGRAM OF THE BEVERIDGE WHEAT PRICE INDEX, JRSSB 55, 228
- GOWER, J. C. A Q-TECHNIQUE FOR THE CALCULATION OF CANONICAL VARIATES, BIOKA 66, 5B8
- GOWER, J. C. ADDING A POINT TO VECTOR DIAGRAMS IN MULTIVARIATE ANAL-YSIS, BIOKA 68, 5B2 GOWER, J. C. ALIASING IN PARTIALLY CONFOUNDED FACTORIAL EXPERI-
- MENTS, BIOKA 61, 21B GOWER, J. C. CORRIGENDA, 'THE PROPERTIES OF A STOCHASTIC MODEL FOR
- TWO COMPETING SPECIES.', BIOKA 59, 279
 GOWER, J. G. SOME DISTANCE PROPERTIES OF LATENT ROOT AND VECTOR
- METHODS USED IN MULTIVARIATE ANALYSIS, BIOKA 66, 325 GOWER, J. C. THE PROPERTIES OF A STOCHASTIC MODEL FOR THE PREDATOR-
- PREY TYPE OF INTERACTION BETWEEN TWO S, BIOKA 60, 219
 GOWER, J. C. THE PROPERTIES OF A STOCHASTIC MODEL FOR TWO COMPETING
- SPECIES, BIOKA 5B, 316
 GRACE, D. W. APPLICATIONS OF TRUNCATED DISTRIBUTIONS IN PROCESS
 START-UPS AND INVENTORY CONTROL, TECH 61, 429
- GRAHAM, JACK E. ROTATION DESIGNS FOR SAMPLING ON REPEATED OCCA-SIONS, JASA 64, 492
- GRAHAM, R.L. COMBINATORIAL THEOREM FOR PARTIAL SUMS, AMS 63, 1600 GRANGER, C. W. J. A MONTE CARLO STUDY COMPARING VARIOUS TWO-SAMPLE
- TESTS FOR DIFFERENCES IN MEAN, TECH 6B, 509 GRANGER, C. W. J. A QUICK TEST FOR SERIAL CORRELATION SUITABLE FOR
- USE WITH NONSTATIONARY TIME SERIES. JASA 63, 72B GRANT, ALISON M. SOME PROPERTIES OF RUNS IN SMOOTHED RANDOM SERIES, BIORA 52, 19B
- GRANT, ALISON M. TABULAR ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650, JASA 56, 149
- GRASER, D. A.S. STRUCTURAL PROBABILITY AND PREDICTION FOR THE MUL-TIVARIATE MODEL, JRSSB 69, NO. 2
- GRAY JR, K. B. SEQUENTIAL SELECTION OF EXPERIMENTS, AMS 6B, 1953
- GRAY, G, B, SEVERAL METHODS OF RE-DESIGNING AREA SAMPLES UTILIZING PROBABILITIES PROPORTIONAL TO SIZE WHE, JASA 6B, 12B0
- GRAY, ${\tt G}$, ${\tt B}$, THE NEW DESIGN OF THE CANADIAN LABOUR FORCE SURVEY, JASA 67,421
- GRAY, H. L. A CONFIDENCE INTERVAL FOR THE AVAILABILITY RATIO. TECH 67, 465
- GRAY, H. L. ON SUMS AND PRODUCTS OF RECTANGULAR VARIATES, BIOKA 66, 615
- GRAY, H. L. ON THE EVALUATION OF DISTRIBUTION FUNCTIONS, JASA 68, 715
- GRAYBILL, F. A. HETEROGENEITY OF ERROR VARIANCES IN A RANDOMIZED BLOCK DESIGN, BIOKA 57, 275
- GRAYBILL, F. A. LINEAR SEGMENT CONFIDENCE 8ANDS FOR SIMPLE LINEAR MODELS, JASA 67, 403
 GRAY8ILL, F. A. QUADRATIC FORMS AND IDEMPOTENT MATRICES WITH RANDOM
- ELEMENTS, AMS 69, 1430
 GRAYBILL, FRANKLIN A. A NOTE ON UNIFORMLY 8EST UN81ASED ESTIMATORS
- FOR VARIANCE COMPONENTS, JASA 56, 266
 GRAYBILL, FRANKLIN A. CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH FOR LINEAR MODELS, JASA 66, 1B2
- GRAYBILL, FRANKLIN A. MINIMAL SUFFICIENT STATISTICS FOR THE TWO-WAY CLASSIFICATION MIXED MODEL DESIGN, JASA 65, 182

- CRAYBILL, FRANKLIN A. SAMPLE SIZE REQUIRED FOR ESTIMATING THE VARI-ANCE WITHIN D UNITS OF THE TRUE VALUE, AMS 64, 438
- CRAYBILL, FRANKLIN A. SAMPLE SIZE REQUIRED TO ESTIMATE THE RATIO OF VARIANCES WITH BOUNDED RELATIVE ERROR, JASA 63, 1044
- CRAYBILL, FRANKLIN A. SAMPLE SIZE REQUIRED TO ESTIMATE THE PARAME-TER IN THE UNIFORM DENSITY WITHIN DUNIT, JASA 64, 550
- CRAYBILL, FRANKLIN A. THEOREMS CONCERNINC EISENHART'S MODEL II, AMS 61, 261
- CREEN, EDWARD W. THE RELATIVE EFFICACY OF INVESTMENT ANTICIPA-TIONS, JASA 66, 104
- CREEN, J. R. A MODEL FOR RAINFALL OCCURRENCE, JRSSB 64, 345
- CREEN, J. R. A MODIFIED MODEL FOR RAINFALL OCCURRENCE, JRSSB 67, 151 GREEN, J. R. INFERENCE CONCERNING PROBABILITIES AND QUANTILES, JRSSB 69, NO.2
- CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION CREENBERG, B. G. AND SCALE PARAMETERS BY ORDER STATISTIC, AMS 39. 325
- GREENBERG, 8. G. ERRATA, 'MODIFIED SQUARE ROOT METHOD OF MATRIX IN-VERSION', TECH 62, 622
- GREENBERG, B. G. ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE RECTANGULAR POPULATION FROM CENSORED, JRSSB 59, 356
- CREENBERG, B. G. EVALUATION OF DETERMINANTS, CHARACTERISTIC EQUA-TIONS AND THEIR ROOTS FOR A CLASS OF PATT, JRSSB 60, 348 $\,$
- GREENBERC, B. G. MATRIX INVERSION, ITS INTEREST AND APPLICATION IN ANALYSIS OF DATA, JASA 59, 755
- GREENBERC, 8. G. MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION, TECH 62, 282
- GREENBERG, B. G. PROBLEMS OF STATISTICAL INFERENCE IN HEALTH WITH SPECIAL REFERENCE TO THE CIGARETTE SMOK, JASA 69, 739
- GREENBERG, B. G. SIMPLIFIED ESTIMATES FOR THE EXPONENTIAL DIS-TRIBUTION, AMS 63, 102
- GREENBERG, B. G. TABLES FOR BEST LINEAR ESTIMATES BY ORDER STATISTICS OF THE PARAMETERS OF SINGLE EXPONEN, JASA 57, 58
- CREENBERG, BERNARD G. A MULTI-PROPORTIONS RANDOMIZED RESPONSE MODEL, JASA 67, 990
- GREENBERG, BERNARD C. THE UNRELATED QUESTION RANDOMIZED RESPONSE MODEL, THEORETICAL FRAMEWORK, JASA 69, 520
- GREENBERG, EDWARD APPROXIMATIONS DATA AND THE INVESTMENT DECISION, JASA 65. 503
- GREENBERG, RICHARD A. THE DETECTION OF A CORRELATION BETWEEN THE SEXES OF ADJACENT SIBS IN HUMAN FAMILIES, JASA 65. 1035
- CREENSERG, VIDA L. ROBUST ESTIMATION IN INCOMPLETE BLOCK DESIGNS. AMS 66, 1331
- GREENHOUSE, S. W. NOTE ON MULTIPLE COMPARISONS FOR ADJUSTED MEANS IN THE ANALYSIS OF COVARIANCE, BIOKA 5B, 256
- GREENHOUSE, S. W. NOTES. EQUIVALENCE OF MAXIMUM LIKELIHOOD AND THE METHOD OF MOMENTS IN PROBIT ANALYSIS, BIOCS 67. 154
- CREENHOUSE, S. W. ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES, BIOCS 68, 97
- GREENHOUSE, SAMUEL W. AN ADAPTIVE PROCEDURE FOR SEQUENTIAL CLINI-
- CAL TRIALS, JASA 69, 759 CREENWOOD, J. A. AIDS FOR FITTING THE GAMMA DISTRIBUTION BY MAXIMUM LIKELIHOOD, TECH 60, 55
- GREGOR, J. AN ALCORITHM FOR THE DECOMPOSITION OF A DISTRIBUTION INTO CAUSSIAN COMPONENTS. BIOCS 69, 79
- GREGORY, G. A NOTE ON THE QUEUEING SYSTEM M-M-1 WITH BALKING., BIOKA
- 65.643 CLOSED QUEUEING SYSTEMS, A GENERALIZATION OF THE CREGORY, G MACHINE INTERFERENCE MODEL, JRSSB 61, 385
- CREIG, MARGARET EXTREMES IN A RANDOM ASSEMBLY, BIOKA 67, 273
- GRENANDER. U. BANDWIDTH AND VARIANCE IN ESTIMATION OF THE SPECTRUM. JRSSB 5B. 152
- GRENANDER, ULF A LIMIT THEOREM FOR SUMS OF MINIMA OF STOCHASTIC VARIABLES, AMS 65, 1041
- GRENANDER, ULF SOME DIRECT ESTIMATES OF THE MODE, AMS 65, 131
- GRENANDER, ULF SOME PROPERTIES OF STATISTICAL RELIABILITY FUNC-TIONS, AMS 66, B26
- GRIDGEMAN, N. T. THE LADY TASTING TEA, AND ALLIED TOPICS, JASA 59,
- GRIFFIN, HAROLD D. GRAPHIC COMPUTATION OF TAU AS A COEFFICIENT OF DISARRAY, JASA 5B, 441
- CRIFFITHS, R. C. THE CANONICAL CORRELATION COEFFICIENTS OF BIVARIATE GAMMA DISTRIBUTIONS, AMS 69, 1401
- GRILICHES, ZVI ON AN INDEX OF QUALITY CHANGE, JASA 61, 535
- CRILICHES. ZVI SMALL-SAMPLE PROPERTIES OF SEVERAL TWO-STAGE REGRESSIDN METHODS IN THE CONTEXT OF AUTOCORR, JASA 69, 253
- GRILICHES, ZVI THE DEMAND FOR FERTILIZER IN 1954. AN INTER-STATE STUDY, JASA 59, 377
- GRIMINGER, P. RESPONSE CRITERIA FOR THE BIOASSAY OF VITAMIN K, BIOCS
- GRINCORTEN, IRVINC I. ESTIMATING FINITE-TIME MAXIMA AND MINIMA OF A STATIONARY GAUSSIAN ORNSTEIN-UHLENBEC, JASA 6B, 1517
- GRIZZLE, J. E. ANALYSIS OF CATEGORICAL DATA BY LINEAR MODELS, BIDCS 69, 489
- GRIZZLE, J. E. ANALYSIS OF GROWTH AND DOSE RESPONSE CURVES, BIOCS 69.357
- GRIZZLE, J. E. APPLICATION OF MULTIVARIATE ANALYSIS OF VARIANCE TO REPEATED MEASUREMENTS EXPERIMENTS, BIOCS 66, B10
- CRIZZLE, J. E. THE TWO-PERIOD CHANCE-OVER DESIGN AND ITS USE IN CLINICAL TRAILS, BIOCS 65, 467

- CRIZZLE, JAMES E. A BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM CLINICAL TRIALS, JASA 65, 81
- CRIZZLE, JAMES E. ASYMPTOTIC POWER OF TESTS OF LINEAR HYPOTHESES USING THE PROBIT AND LOCIT TRANSFORMATIO, JASA 62, 877
- CROLL, PHYLLIS A. BINOMIAL CROUP-TESTING WITH AN UNKNOWN PROPOR-TION OF DEFECTIVES, TECH 66, 631
- CROLL, PHYLLIS A. CAMMA DISTRIBUTION IN ACCEPTANCE SAMPLING BASED ON LIFE TESTS, JASA 61, 942
- CRONOW, D. G. C. NON-NORMALITY IN TWO-SAMPLE T-TESTS, BIOKA 53, 223 CRONOW, D. G. C. TEST FOR THE SIGNIFICANCE OF THE DIFFERENCE SETWEEN MEANS IN TWO NORMAL POPULATIONS HAVI, BIOKA 51, 252
- GROSENBAUCH, L. R. CENERALIZATION AND REPARAMETERIZATION OF SOME SIGMOID OR OTHER NONLINEAR FUNCTIONS, 810CS 65, 708
- CROSS, A. J. THE EFFECTIVE USE OF BOTH POSITIVE AND NEGATIVE CON-TROLS IN SCREENING EXPERIMENTS, BIOCS 67, 285
- GROSS, SHULAMTH THE DISTRIBUTION OF GALTON'S STATISTICS, AMS 6B, 2114
- GROSSMAN, M. COVARIANCE ANALYSIS WITH UNEQUAL SUBCLASS NUMBERS. COMPONENT ESTIMATION IN CORRELATION STUDI, BIOCS 6B. 49
- GROVES, T. A NOTE ON THE EXPECTED VALUE OF AN INVERSE MATRIX, BIOKA 69. NO.3
- GRUBBS, F. E. ON THE USE OF PATNAIK TYPE CHI APPROXIMATIONS TO THE RANCE IN SIGNIFICANCE TESTS, BIOKA 66, 24B
- GRUBBS, FRANK E. ANALYSIS OF SENSITIVITY EXPERIMENTS WHEN THE LEVELS OF STIMULUS CANNOT BE CONTROLLED, CO, JASA 56, 257
- GRUSBS, FRANKE. PROCEDURES FOR DETECTING OUTLYING OBSERVATIONS IN SAMPLES, TECH 69, 1
- GRUNDY, P. M. A METHOD OF SAMPLING WITH PROBABILITY EXACTLY PROPOR-TIONAL TO SIZE, JRSSB 54, 236
- GRUNDY, P. M. ECONOMIC CHOICE OF THE AMOUNT OF EXPERIMENTATION, JRSSB 56. 32
- GRUNDY, P. M. FIDUCIAL DISTRIBUTIONS AND PRIOR DISTRIBUTIONS, AN EXAMPLE IN WHICH THE FORMER CANNOT BE AS, JRSSB 56, 217
- GRUNDY, P. M. THE EXPECTED FREQUENCIES IN A SAMPLE OF AN ANIMAL POPU-LATION IN WHICH THE ABUNDANCES OF SPE, BIOKA 51, 427
- GRUNDY, P. M. THE FITTING OF CROUPED TRUNCATED AND CROUPED CENSORED NORMAL DISTRIBUTIONS, BIOKA 52, 252
- GRUNFELD, YEHUDA SOME NONPARAMETRIC TESTS FOR COMOVEMENTS SETWEEN TIME SERIES, JASA 61, 11
- GUENTHER, W. C. MODIFIED SAMPLING, BINOMIAL AND HYPERGEOMETRIC CASES, TECH 69, NO. 4
- GUENTHER, WILLAIM C. A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE PROBLEMS, AMS 64, 232 GUENTHER, WILLIAM C. ANOTHER DERIVATION OF THE NON-CENTRAL CHI-
- SQUARE DISTRIBUTION, JASA 64, 957 GUENTHER, WILLIAM C.
- CRITICAL REGIONS FOR TESTS OF INTERVAL HYPOTHESES ABOUT THE VARIANCE, JASA 66, 204
- GUENTHER, WILLIAM C. SOME GRAPHS USEFUL FOR STATISTICAL INFERENCE, JASA 65, 334
- GUEST, P. G. GROUPING METHODS IN THE FITTING OF POLYNOMIALS TO EQUALLY SPACED OBSERVATIONS, BIOKA 54, 62
- GUEST, P. G. GROUPING METHODS IN THE FITTING OF POLYNOMIALS TO UNEQUALLY SPACED OSSERVATIONS, 810KA 56, 149
- GUEST, P. G. THE DOOLITTLE METHOD AND THE FITTING OF POLYNOMIALS TO WEIGHTED DATA, BIOKA 53. 229
- CULLAND, J. A. ON THE ESTIMATION OF POPULATION PARAMETERS FROM MARKED MEMBERS, BIOKA 55, 269
- GUMBEL, E. J. A NOTE ON MIDRANCE, AMS 65, 1052
- CUMBEL, E. J. ANALYSIS OF EMPIRICAL BIVARIATE EXTREMAL DISTRIBU-TIONS, JASA 64, 794
- GUMBEL, E. J. BIVARIATE EXPONENTIAL DISTRIBUTIONS, JASA 60, 698
- GUMBEL, E. J. BIVARIATE LOGISTIC DISTRIBUTIONS, JASA 61, 335
- GUMBEL, E. J. COMMENTS TO, EDWARD C. POSNER, 'THE APPLICATION OF EX-TREME VALUE THEORY TO ERROR FREE COMMU, TECH 66, 363
- GUMBEL, E. J. DISCUSSION OF THE PAPERS OF MESSRS, ANSCOMBE AND DANIEL, TECH 60, 157
- GUMBEL, E. J. PROBABILITY TABLES FOR THE EXTREMAL QUOTIENT, AMS 67,
- GUMBEL, E. J. SOME ANALYTICAL PROPERTIES OF SIVARIATE EXTREMAL DIS-TRIBUTIONS, JASA 67, 569
- CUNDY, RICHARD ON A STOPPING RULE AND THE CENTRAL LIMIT THEOREM, AMS 67. 1915
- GUNDY, RICHARD F. A DECOMPOSITION OF L1-BOUNDED MARTINGALES, AMS 68.134
- GUNDY, RICHARD F. THE MARTINGALE VERSION DF A THEDREM DF MAR-CINKIEWICZ AND ZYGUMD, AMS 67, 725 GUNTHER, PAUL QUERY, COMBINATION OF A NORMAL AND A UNIFORM DISTRIBU-
- TION, TECH 65, 449 GUPTA, A. K. ESTIMATION OF THE MEAN AND STANDARD DEVIATION OF A NOR-
- MAL POPULATION FROM A CENSORED SAMPLE, BIOKA 52, 260 GUPTA, A. K. DN THE EXACT DISTRIBUTION OF WILKS'S CRITERION, BIOKA 69, 1D9
- GUPTA, ARJUN K. ON THE NON-CENTRAL DISTRIBUTION OF THE SECOND ELE-MENTARY SYMMETRIC FUNCTION OF THE ROOTS, AMS 68, 833
- GUPTA, M. K. ASYMPTDTICALLY NONPARAMETRIC TESTS OF SYMMETRY, AMS 67.849
- GUPTA, S. DAS CDRRICENDA, 'SOME INEQUALITIES ON CHARACTERISTIC RDDTS DF MATRICES' BIOKA 65, 669

- GUPTA, S. DAS SOME INEQUALITIES ON CHARACTERISTIC ROOTS OF MATRICES, BIOKA 63, 522
- GUPTA, S. S. ERRATA, 'ORDER STATISTICS FROM THE GAMMA DISTRIBU-TION', TECH 60, 523
- GUPTA, S. S. ESTIMATION OF THE PARAMETERS OF THE LOGISTIC DISTRIBU-TION, BIOKA 66. 565
- GUPTA, S. S. MOMENTS OF ORDER STATISTICS FROM A NORMAL POPULATION. RTOKA 59, 433
- GUPTA, S. S. ON LINEAR FUNCTIONS OF ORDERED CORRELATED NORMAL RANDOM VARIABLES, BIOKA 65, 367
- GUPTA, S. S. ON THE DISTRIBUTION OF THE MAXIMUM AND MINIMUM OF RATIOS OF ORDER STATISTICS. AMS 69, 918
- CUPTA, S. S. ORDER STATISTICS FROM THE GAMMA DISTRIBUTION, TECH 60. 243
- GUPTA, SHANTI S. A SYSTEM OF INEQUALITIES FOR THE INCOMPLETE GAMMA FUNCTIONS AND THE NORMAL INTEGRAL, AMS 65, 139
- GUPTA, SHANTIS. BEST LINEAR UNBIASED ESTIMATORS OF THE PARAMETERS OF THE LOGISTIG DISTRIBUTION USING ORD, TECH 67, 43
- GUPTA, SHANTIS. BIBLIOGRAPHY ON THE MULTIVARIATE NORMAL INTEGRALS AND RELATED TOPICS, AMS 63, B29
- GUPTA, SHANTI S. DISTRIBUTION-FREE LIFE TEST SAMPLING PLANS, TECH 66.591
- GUPTA, SHANTI S. EXACT MOMENTS AND PERCENTAGE POINTS OF THE ORDER STATISTICS AND THE DISTRIBUTION OF THE, AMS 65, 907
- GUPTA, SHANTIS, GAMMA DISTRIBUTION IN ACCEPTANCE SAMPLING BASED ON LIFE TESTS, JASA 61, 942
- GUPTA, SHANTI S. LIFE TEST SAMPLING PLANS FOR NORMAL AND LOGNORMAL DISTRIBUTIONS, TECH 62, 151
- GUPTA, SHANTI S. ON SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SMALLEST VARIANCE, BIOKA 62, 495
- GUPTA, SHANTI S. ON SOME MULTIPLE DECISION (SELECTION AND RANKING) RULES, TECH 65, 225
- GUPTA, SHANTI S. ON THE DISTRIBUTION OF LINEAR FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED CORREL, BIOKA 64, 143
- GUPTA, SHANTIS, ON THE SMALLEST OF SEVERAL CORRELATED F STATISTICS, BIOKA 62, 509
- GUPTA, SHANTI S. PERCENTAGE POINTS AND MODES OF ORDER STATISTICS FROM THE NORMAL DISTRIBUTION, AMS 61, 888
- GUPTA, SHANTI S. PROBABILITY INTEGRALS OF MULTIVARIATE NORMAL AND MULTIVARIATET, AMS 63, 792
- GUPTA, SHANTI S. SELECTION PROCEDURES FOR RESTRICTED FAMILIES OF PROBABILITY DISTRIBUTIONS, AMS 69, 905
- GUPTA, SOMESH DAS PROPERTIES OF POWER FUNCTIONS OF SOME TESTS GON-CERNING DISPERSION MATRICES OF MULTIVARI, AMS 69, 697
- GUPTA, V. P. NOTES. ESTIMATION AFTER PRELIMINARY TESTING IN ANOVA MODELI, BIOCS 65. 752
- GUPTA, Y. P. ASYMPTOTIC VALUES OF THE FIRST TWO MOMENTS IN MARKOV RENEWAL PROGESSES, BIOKA 67, 597
- GURALNICK, LILLIAN ANALYSIS OF VITAL STATISTICS BY CENSUS TRACT, JASA 59. 730
- CONFIDENCE BANDS IN LINEAR REGRESSION WITH CON-GURTAN. JOAN STRAINTS ON THE INDEPENDENT VARIABLES, JASA 6B, 1020
- GURLAND, J. A METHOD OF ANALYSING UNTRANSFORMED DATA FROM THE NEGA-TIVE BINOMIAL AND OTHER CONTAGIOUS DIST, BIOKA 68, 163
- GURLAND. J. A RELATIVELY SIMPLE FORM OF THE DISTRIBUTION OF THE MUL-
- TIPLE CORRELATION COEFFICIENT, JRSSB 68, 276 GURLAND, J. CORRIGENDA, 'SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE HYPOTHESIS OF EQUAL MEANS UNDER V, BIOKA 61, 230
- GURLAND, J. ESTIMATION OF THE PARAMETERS OF A LINEAR FUNCTIONAL RELATION, JRSSB 61, 160
- GURLAND, J. FUNCTIONS OF THE SAMPLE MEAN AND SAMPLE VARIANCE OF A POISSON VARIATE, BIOCS 69, 171
- GURLAND, J. NOTE ON A PAPER BY RAY AND PITMAN + (FISHER-BEHRENS-STATISTIC), JRSSB 62, 537
- GURLAND, J. ON UTILIZING INFORMATION FROM A SECOND SAMPLE IN ESTI-MATING VARIANCE, BIOKA 69, NO.3
- GURLAND, J. SIMPLIFIED TECHNIQUES FOR ESTIMATING PARAMETERS OF SOME GENERALIZED POISSON DISTRIBUTIONS, BIOKA 67, 555
- GURLAND, J. SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE HYPOTHES-IS OF EQUAL MEANS UNDER VARIANCE HETER, BIOKA 60, 345
- GURLAND, J. SOME INTERRELATIONS AMONG COMPOUND AND GENERALIZED DISTRIBUTIONS, BIOKA 57, 265
- GURLAND, J. TESTING EQUALITY OF MEANS IN THE PRESENCE OF CORRELA-TION, BIOKA 69, 119 GURLAND, JOHN A CLASS OF DISTRIBUTIONS APPLICABLE TO ACCIDENTS.
- JASA 61, 503
- GURLAND, JOHN COMBINATIONS OF UNBIASED ESTIMATORS OF THE MEAN WHICH CONSIDER INEQUALITY OF UNKNOWN VARIAN, JASA 69, 1042 GURLAND, JOHN CORRECTION TO 'DISTRIBUTION OF DEFINITE AND OF IN-
- DEFINITE QUADRATIC FORMS' 55 122, AMS 62, 813 GURLAND, JOHN EFFICIENCY OF CERTAIN METHODS OF ESTIMATION FOR THE
- NEGATIVE BINOMIAL AND NEYMAN TYPE A DIS, BIOKA 62, 215 GURLAND, JOHN SOME PROPERTIES AND AN APPLICATION OF A STATISTIC
- ARISING IN TESTING CORRELATION. AMS 69, 1736 GURLAND, JOHN TESTING EQUALITY OF MEANS AFTER A PRELIMINARY TEST OF EQUALITY OF VARIANCES, BIOKA 62, 403
- GUSTAFSON, ROBERT L. PARTIAL CORRELATIONS IN REGRESSION COMPUTA-TIONS, JASA 61, 363

- GUTERMAN, H. E. AN UPPER BOUND FOR THE SAMPLE STANDARD DEVIATION. TECH 62, 134
- GUTERMAN, H. E. ERRATA, DEVIATION', TECH 63, 417 ERRATA, 'AN UPPER BOUND FOR THE SAMPLE STANDARD
- GUTERMAN, H.E. THE USE OF RANDOM WORK SAMPLING FOR COST ANALYSIS AND CONTROL, CORR. 58 1031, JASA 58, 382 GUTHRIE, HAROLD W. CONSUMERS' PROPENSITIES TO HOLD LIQUID ASSETS,
- JASA 60, 469 GUTHRIE, HAROLD W. VALIDATION OF CONSUMER FINANCIAL CHARAC-
- TERISTICS, COMMON STOCK, JASA 69, 415 GUTTMAN, I. A NOTE ON A SERIES SOLUTION OF A PROBLEM IN ESTIMATION,
- BIOKA 58, 565 GUTTMAN, I. BAYESIAN STRATIFIED TWO-PHASE SAMPLING RESULTS, K
- CHARACTERISTICS, BIOKA 68, 587 GUTTMAN, I. INVESTIGATION OF RULES FOR DEALING WITH OUTLIERS IN
- SMALL SAMPLES FROM THE NORMAL DISTRIBUTIO, TECH 69, 527
- GUTTMAN, I. SOME ASPECTS OF RANDOMIZATION, JRSSB 66, 543 GUTTMAN, I.
- SOME BAYESIAN STRATIFIED TWO-PHASE SAMPLING RESULTS. BIOKA 68, 131 GUTTMAN, I. THE USE OF THE CONCEPT OF A FUTURE OBSERVATION IN GOOD-
- NESS-OF-FIT PROBLEMS, JRSSB 67, 83 GUTTMAN, I. UNEQUAL GROUP VARIANCES IN THE FIXED-EFFECTS ONE-WAY
- ANALYSIS OF VARIANCE, A BAYESIAN SIDELIG, BIOKA 66, 27 GUTTMAN, IRWIN A BAYESIAN APPROACH TO SOME BEST POPULATION
- PROBLEMS, AMS 64, B25
- GUTTMAN, IRWIN ANALYSIS OF OUTLIERS WITH ADJUSTED RESIDUALS, TECH 67.541
- GUTTMAN, IRWIN ON BEALE'S MEASURES OF NON-LINEARITY, TECH 65, 623
- GUTTMAN, IRWIN ON THE EMPTY CELL TEST, TECH 62, 235
- GUTTMAN, IRWIN THE INVERTED DIRICHLET DISTRIBUTION WITH APPLICA-TIONS, GORR. 65 1251, JASA 65, 793
- HABERMAN, S. DISTRIBUTIONS OF KENDALL'S TAU BASED ON PARTIALLY OR-DERED SYSTEMS, BIOKA 55, 417
- HACHIGIAN, JACK COLLAPSED MARKOV CHAINS AND THE CHAPMAN-KOLMOGOROV EQUATION, AMS 63, 233
- HACK, H. R. B. AN EMPIRICAL INVESTIGATION INTO THE DISTRIBUTION OF THE F-RATIO IN SAMPLES FROM TWO NON-NO. BIOKA 58, 260
- HACKER, H. P. THE GROWTH, SURVIVAL, WANDERING AND VARIATION OF THE LONG-TAILED FIELD MOUSE, APODEMUS SYLV, BIOKA 52, 389
- HADER, R. J. ESTIMATION OF PARAMETERS OF MIXED EXPONENTIALLY DIS-TRIBUTED FAILURE TIME DISTRIBUTIONS FROM, BIOKA 58, 504
- HADER, R. J. MINIMUM BIAS ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE SURFACES, TECH 69, 461
- HAENSZEL, WILLIAM RESIDENCE HISTORIES AND EXPOSURE RESIDENCES FOR THE UNITED STATES POPULATION, JASA 61, B24
- HAGER, H. THE CHOICE OF THE DEGREE OF A POLYNOMIAL MODEL, JRSSB 68, 469
- HAGGSTROM, GUS W. OPTIMAL SEQUENTIAL PROCEDURES WHEN MORE THAN ONE STOP IS REQUIRED, AMS 67, 1618
- HAGGSTROM, GUS W. OPTIMAL STOPPING AND EXPERIMENTAL DESIGN, AMS 66,
- HAHN. GERALD H. FACTORS FOR CALGULATING TWO-SIDED PREDICTION IN-TERVALS FOR SAMPLES FROM A NORMAL DISTRIBU, JASA 69, 878
- HAIGH, J. AN ENUMERATION PROBLEM IN SELF-STERILITY, BIOCS 69, 39
 HAIGHT, F. A. A DISTRIBUTION ANALOGOUS TO THE BOREL-TANNER, BIOKA 61.167
- HAIGHT, F. A. COUNTING DISTRIBUTIONS FOR RENEWAL PROCESSES., BIOKA 65, 395
- HAIGHT, F. A. NOTES. MAXIMUM LIKELIHOOD ESTIMATION FOR THE TRUN-CATED POISSON, BIOCS 66, 620
- HAIGHT, F. A. ON THE EFFECT OF REMOVING PERSONS WITH N OR MORE AC-CIDENTS FROM AN ACCIDENT PRONE POPULATIO, BIOKA 65, 298
- HAIGHT, F. A. OVERFLOW AT A TRAFFIC LIGHT, BIOKA 59, 420
- HAIGHT, F. A. QUEUEING WITH BALKING, BIOKA 57, 360
- HAIGHT, F. A. QUEUEING WITH BALKING, II., BIOKA 60, 285
- HAIGHT, F.A. THE BOREL-TANNER DISTRIBUTION, BIOKA 60, 143
- HAIGHT, F. A. TWO QUEUES IN PARALLEL, BIOKA 58, 401
- HAIGHT, FRANK A. EXPECTED UTILITY FOR QUEUES SERVICING MESSAGES WITH EXPONENTIALLY DECAYING UTILITY, AMS 61, 587
- HAITOVSKY, Y. MISSING DATA IN REGRESSION ANALYSIS, JRSSB 6B, 67
- HAITOVSKY, YOEL UNBIASED MULTIPLE REGRESSION COEFFICIENTS ESTI-MATED FROM ONE-WAY-CLASSIFICATION TABLES WH, JASA 66, 720
- ASYMPTOTIC NORMALITY OF SIMPLE LINEAR RANK JAROSLAV STATISTICS UNDER ALTERNATIVES, II, AMS 69, NO.6
- HAJEK, JAROSLAV ASYMPTOTIG NORMALITY OF SIMPLE LINEAR RANK STATISTICS UNDER ALTERNATIVES, AMS 6B, 325
- HAJEK, JAROSLAV ASYMPTOTIC THEORY OF REJECTIVE SAMPLING WITH VARY-ING PROBABILITIES FROM A FINITE POPULATI, AMS 64, 1491
- HAJEK, JAROSLAV ASYMPTOTICALLY MOST POWERFUL RANK-ORDER TESTS. AMS 62, 1124
- HAJEK. JAROSLAV SOME EXTENSIONS OF THE WALD-WOLFOWITZ-NOETHER THEOREM, AMS 61, 506
- HAJNAL, J. A TWO-SAMPLE SEQUENTIAL T-TEST. BIOKA 61, 65
- HALD, A. ASYMPTOTIC PROPERTIES OF BAYESIAN SINGLE SAMPLING PLANS (CORR. 67 586), JRSSB 67, 162
- HALD, A. THE COMPOUND HYPERGEOMETRIC DISTRIBUTION AND A SYSTEM OF SINGLE SAMPLING INSPECTION PLANS BASED, TECH 60, 275

- HALD, A. THE DETERMINATION OF SINCLE SAMPLING ATTRIBUTE PLANS WITH CIVEN PRODUCER'S AND CONSUMER'S RISK, TECH 67, 401
- HALD, A. THE MIXED BINOMIAL DISTRIBUTION AND THE POSTERIOR DIS-TRIBUTION OF P FOR A CONTINUOUS PRIOR DISTR JRSSB 68 359
- HALD, ANDERS BAYESIAN SINCLE SAMPLING ATTRIBUTE PLANS FOR CONTINU-
- OUS PRIOR DISTRIBUTIONS, TECH 6B, 667
 HALD, ANDERS SOME LIMIT THEOREMS FOR THE DODCE-ROMIC LTPD SINGLE SAMPLING INSPECTION PLANS, TECH 62. 497
- HALDANE, J. B. S. A PROBLEM IN THE SIGNIFICANCE OF SMALL NUMBERS, BIOKA 55, 266
- HALDANE, J. B. S. CENTENARY LECTURE, KARL PEARSON, 1857-1957, BIOKA 57,303
- HALDANE, J. B. S. SUBSTITUTES FOR CHI-SQUARE, BIOKA 55, 265
- HALDANE, J. B. S. THE DISTRIBUTION OF EXTREMAL AND NEARLY EXTREMAL VALUES IN SAMPLES FROM A NORMAL DISTRI, BIOKA 63, B9
- HALDANE, J. B. S. THE RAPID CALCULATION OF CHI-SQUARE AS A TEST OF HOMOCENEITY FROM A 2-BY-N TABLE, BIOKA 55, 519
- HALDANE, J. B. S. THE SAMPLINC DISTRIBUTION OF A MAXIMUM-LIKELIHOOD ESTIMATE, BIOKA 56, 96
- HALEY, K. D. C. ANALYSIS OF QUANTAL RESPONSE ASSAYS WITH DOSACE ER-RORS, BIOCS 67, 747
- HALL, IRVINC H. ON SLIPPACE TESTS I. A CENERALIZATION OF NEYMAN PEARSON'S LEMMA, AMS 68, 1693
- HALL, IRVINC J. ON SLIPPACE TEST (II) SIMILAR SLIPPACE TESTS, AMS 68, 2029
- HALL, MARSHALL MEASURES OF CONCENTRATION, JASA 67, 162
- HALL, W. B. CYCLIC CHANGE-OVER DESIGNS, BIOKA 69, 283
- HALL, W. J. A BAYESIAN INDIFFERENCE PROCEDURE, JASA 65, 1104
- HALL, W. J. SOME SEQUENTIAL ANALOCS OF STEIN'S TWO-STACE TEST, BIOKA 62, 367
- HALL, W. J. THE RELATIONSHIP BETWEEN SUFFICIENCY AND INVARIANCE WITH APPLICATIONS IN SEQUENTIAL ANALYSIS, AMS 65, 575
- HALLER, H. SMITH BIVARIATE SYMMETRY TESTS, PARAMETRIC AND NON-PARAMETRIC, AMS 69, 259
- HALPERIN, M. A CENERALIZATION OF FIELLER'S THEOREM TO THE RATIO OF COMPLEX PARAMETERS, JRSSB 67, 126
- HALPERIN, M. AN ASYMPTOTIC DISTRIBUTION FOR AN OCCUPANCY PROBLEM WITH STATISTICAL APPLICATIONS. TECH 61.79
- HALPERIN, M. ERRATA, 'THE EFFECT OF SEQUENTIAL BATCHING FOR AC-CEPTANCE-REJECTION SAMPLINC UPON SAMPLE ASS, TECH 61, 131
- HALPERIN, M NOTE ON INTERVAL ESTIMATION IN NON-LINEAR RECRESSION WHEN RESPONSES ARE CORRELATED, JRSSB 64, 267
- HALPERIN, M. NOTE ON MULTIPLE COMPARISONS FOR ADJUSTED MEANS IN THE ANALYSIS OF COVARIANCE, BIOKA 5B, 256
- HALPERIN, M. THE EFFECT OF SEQUENTIAL BATCHING FOR ACCEPTANCE, RE-JECTION SAMPLINC UPON SAMPLE ASSURANCE 0, TECH 60, 19
- HALPERIN, MAX ALMOST LINEARLY-OPTIMUM COMBINATION OF UNBIASED ESTIMATES, JASA 61, 36
- HALPERIN, MAX AN ADAPTIVE PROCEDURE FOR SEQUENTIAL CLINICAL TRI-ALS, JASA 69, 759
- HALPERIN, MAX AN INEQUALITY ON A BIVARIATE STUDENT'S 'T' DISTRIBU-TION, JASA 67, 603
- HALPERIN, MAX APPROXIMATIONS TO THE NON-CENTRAL T, WITH APPLICA-TIONS, TECH 63, 295
- HALPERIN, MAX CONFIDENCE BANDS IN LINEAR REGRESSION WITH CON-STRAINTS ON THE INDEPENDENT VARIABLES, JASA 68, 1020
- HALPERIN, MAX CONFIDENCE INTERVAL ESTIMATION IN NON-LINEAR RECRES-SION, JRSSB 63, 330
- HALPERIN, MAX CONFIDENCE INTERVALS FROM CENSORED SAMPLES, AMS 61,
- HALPERIN, MAX CONFIDENCE INTERVALS FROM CENSORED SAMPLES, II, TECH 66. 291
- HALPERIN, MAX ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T, WITH APPLICATIONS', TECH 64, 482
- HALPERIN, MAX EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAM-PLES CENSORED AT THE SAME FIXED POINT, CO. JASA 60, 125
- HALPERIN, MAX FITTING OF STRAIGHT LINES AND PREDICTION WHEN BOTH VARIABLES ARE SUBJECT TO ERROR, JASA 61, 657
- HALPERIN, MAX INTERVAL ESTIMATION IN LINEAR REGRESSION WHEN BOTH VARIABLES ARE SUBJECT TO ERROR, JASA 64, 1112
- HALPERIN, MAX INTERVAL ESTIMATION OF NON-LINEAR PARAMETRIC FUNC-TIONS, JASA 63, 611
- HALPERIN, MAX INTERVAL ESTIMATION OF NON-LINEAR PARAMETRIC FUNC-TIONS, II, JASA 64, 168
- HALPERIN, MAX INTERVAL ESTIMATION OF NON-LINEAR PARAMETRIC FUNC-TIONS, 111. JASA 65, 1191
- HALPERIN, MAX SHORTER CONFIDENCE BANDS IN LINEAR RECRESSION, JASA 67, 1050
- SOME WAITING TIME DISTRIBUTIONS FOR REDUNDANT HALPERIN. MAX SYSTEMS WITH REPAIR, TECH 64, 27
- HALPIN, ALAN ASYMPTOTIC PROPERTIES OF SOME ESTIMATORS OF QUANTILES OF CIRCULAR ERROR, JASA 66, 618
- HALTON, J. H. NOTE ON AN EXACT TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND OTHER PROBLEMS OF SIGNIFICAN, BIOKA 51, 141
- HAMDAN, M. A. ON THE STRUCTURE OF THE TETRACHORIC SERIES, BIOKA 68,
- HAMDAN, M. A. OPTIMUM CHOICE OF CLASSES FOR CONTINCENCY TABLES, JASA 68, 291

- HAMDAN, M. A. THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST, JASA 63, 67B
- HAMILTON, M. A. UNLIMITED SIMUTANEOUS DISCRIMINATION INTERVALS IN RECRESSION, BIOKA 67, 133
- HAMILTON, P. A. CORRICENDA, 'TABLES FOR MAKING INFERENCES ABOUT THE VARIANCE OF A NORMAL DISTRIBUTION. ', BIOKA 61, 230
- HAMILTON, P. A. TABLES FOR MAKING INFERENCES ABOUT THE VARIANCE OF A NORMAL DISTRIBUTION, BIOKA 60, 433
- HAMMERSLEY, J. M A POOR MAN'S MONTE CARLO (WITH DISCUSSION), JRSSB 54. 23
- HAMMERSLEY, J. M. CAPTURE-RECAPTURE ANALYSIS, BIOKA 53, 265
- HAMMERSLEY, J. M. FIRST-PASSACE PERCOLATION, JRSSB 66, 491
- HAMMERSLEY, J. M. THE ESTIMATION OF LOCATION AND SCALE PARAMETERS FROM CROUPED DATA, BIOKA 54, 296
- HAMMERSLEY, J. M. TRANSPOSED BRANCHING PROCESSES, JRSSB 54, 76
- HAMMOND, E. CUYLER INHALATION IN RELATION TO TYPE AND AMOUNT OF SMOKINC, JASA 59, 35
- HAN, C. TESTING THE HOMOGENEITY OF VARIANCES IN A TWO-WAY CLASSIFI-CATION, BIOCS 69, 153 HAN, CHIEN-PAI A NOTE ON DISCRIMINATION IN THE CASE OF UNEQUAL
- COVARIANCE MATRICES, BIOKA 68, 5B6 HAN, CHIEN-PAI DISTRIBUTION OF DISCRIMINANT FUNCTION WHEN COVARI-
- ANCE MATRICES ARE PROPORTIONAL, AMS 69, 979 HAN, CHIEN-PAI ON POOLING MEANS WHEN VARIANCE IS UNKNOWN, JASA 68,
- 1333 HAN, CHIEN-PAI QUERY, MAXIMUM LIKELIHOOD ESTIMATE IN INTRACLASS
- CORRELATION MODEL, TECH 69, NO.4 HAN, CHIEN-PAI TESTING THE HOMOGENEITY OF A SET OF CORRELATED VARI-
- ANCES, BIOKA 68, 317 HANANI, HAIM A BALANCED INCOMPLETE BLOCK DESIGN, AMS 65, 711
- HANANI, HAIM THE EXISTENCE AND CONSTRUCTION OF BALANCED INCOMPLETE BLOCK DESIGNS, AMS 61, 361
- HANNAN, E. J. AN EXACT TEST FOR CORRELATION BETWEEN TIME SERIES. BIOKA 55, 316
- HANNAN, E. J. EXACT TESTS FOR SERIAL CORRELATION, BIOKA 55, 133
- HANNAN, E. J. LEAST-SQUARES EFFICIENCY FOR VECTOR TIME SERIES. JRSSB 68, 490
- HANNAN, E. J. RECRESSION FOR TIME SERIES WITH ERRORS OF MEASUREMENT, BIOKA 63, 293
- HANNAN, E. J. SERIAL CORRELATION IN RECRESSION ANALYSIS. II, BIOKA 56. 436
- HANNAN, E. J. SYSTEMATIC SAMPLING, BIOKA 62, 281
- HANNAN, E. J. TESTING FOR A JUMP IN THE SPECTRAL FUNCTION, JRSSB 61, 394
- HANNAN, E. J. TESTING FOR SERIAL CORRELATION IN LEAST SQUARES REGRESSION, BIOKA 57, 57 HANNAN E J THE ASYMPTOTIC POWERS OF CERTAIN TESTS BASED ON MULTI-
- PLE CORRELATIONS, JRSSB 56, 227
- HANNAN, E. J. THE ASYMPTOTIC POWERS OF CERTAIN TESTS OF COODNESS OF FIT FOR TIME SERIES, JRSSB 58, 143
- HANNAN, E. J. THE ESTIMATION OF A CHANGING SEASONAL PATTERN, CORR 66 1247, JASA 64, 1063 HANNAN, E. J. THE ESTIMATION OF A LAGCED REGRESSION RELATION, BIOKA
- 67.409
- HANNAN, E. J. THE ESTIMATION OF MIXED MOVING-AVERAGE AUTOREGRES-SIVE SYSTEMS. BIOKA 69, NO. 3
- HANNAN, E. J. THE ESTIMATION OF SEASONAL VARIATION IN ECONOMIC TIME SERIES. CORR. 63 1162, JASA 63, 31 HANNAN, E. J. THE ESTIMATION OF THE SPECTRAL DENSITY AFTER TREND
- REMOVAL, JRSSB 58, 323 THE IDENTIFICATION OF VECTOR MIXED AUTOREGRESSIVE-
- MOVING AVERACE SYSTEMS, BIOKA 69, 223 HANNAN, E. J. THE VARIANCE OF THE MEAN OF A STATIONARY PROCESS, JRSSB
- 57, 282 HANNAN, J. NORMAL APPROXIMATION TO THE DISTRIBUTION OF TWO INDEPEN-
- DENT BINOMIALS, CONDITIONAL ON FIXED SU, AMS 63, 1593 HANNAN. J. F. ESTIMATION OF THE PARAMETERS FOR A MULTIVARIATE NORMAL
- DISTRIBUTION WHEN ONE VARIABLE IS DI, BIOKA 65, 664 HANNAN, J. F. RATES OF CONVERGENCE IN THE COMPOUND DECISION PROBLEM
- FOR TWO COMPLETELY SPECIFIED DISTRIBU, AMS 65, 1743 HANNAN. JAMES F. ON AN EXTENDED COMPOUND DECISION PROBLEM, AMS 69,
- HANSEN, MORRIS H. COOPERATION AMONG STATISTICAL AND OTHER SOCIE-
- TIES, JASA 61. 1
- HANSEN. MORRISH. SAMUELS. WILKS, JASA 65, 939
- HANSEN, MORRIS H. WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. PROFESSOR WILLI, JASA 69, NO. 4
- HANSON, D. L. CONVERGENCE RATES FOR THE LAW OF LARGE NUMBERS FOR THE LINEAR COMBINATIONS OF EXCHANCEABLE, AMS 65, 1840
- HANSON, D. L. DISTRIBUTION FREE TOLERANCE LIMITS. ELIMINATION OF REQUIREMENT THAT CUMULATIVE FUNCTIONS BE, TECH 63, 518 HANSON, D. L. GENERALIZED MEANS AND ASSOCIATED FAMILIES OF DIS-
- TRIBUTIONS, AMS 69, 339 HANSON, D. L NONPARAMETRIC UPPER CONFIDENCE BOUNDS, AND CON-
- FIDENCE LIMITS, FOR THE PROBABILITY THAT Y IS, JASA 64, 906 HANSON, D. L. ON A CLASS OF SIMPLE RANDOM WALKS, AMS 63, 413
- HANSON, D. L. ON THE CONVERGENCE RATE OF THE LAW OF LARGE NUMBERS FOR LINEAR COMBINATIONS OF INDEPENDENT, AMS 65, 559

- HANSON, D. L. SOME RESULTS RELATING MOMENT GENERATING FUNCTIONS AND CONVERCENCE RATES IN THE LAW OF LARGE, AMS 67, 742
- HANSON, D. L. TOLERANCE LIMITS FOR THE CLASS OF DISTRIBUTIONS WITH INCREASING HAZARD RATE, AMS 64, 1561
- THOUSOF TWO STOCHASTICALLY ORDERED RANDOM, JASA 66, 1067
- HANSON, ROBERT H. INFLUENCE OF THE INTERVIEWER ON THE ACCURACY OF SURVEY RESULTS, JASA 58, 635
- HANSON, W. D. EFFECTS OF PARTIAL ISOLATION (DISTANCE), MIGRATION, AND DIFFERENT FITNESS REQUIREMENTS AMON, BIOCS 66, 453
- HANSON, W. D. SPATIAL RELATIONSHIP AMONG EIGHT POPULATIONS ZEA MAYS L. UTILIZING INFORMATION FROM A DIALL, BIOCS 6B, B67
- HANUMARA, R. C. PERCENTAGE POINTS OF THE EXTREME ROOTS OF A WISHART MATRIX, BIOKA 6B. 505
- HANURAV. T. V. HYPER-ADMISSIBILITY AND OPTIMUM ESTIMATORS FOR SAMPLING FINITE POPULATIONS, AMS 68, 621
- HANURAV, T. V. OPTIMUM UTILIZATION OF AUXILIARY INFORMATION. (PI)PS SAMPLING OF TWO UNITS FROM A STRATUM, JRSSB 67, 374
- HAQ, M. S. STRUCTURAL PROBABILITY AND PREDICTION FOR THE MUL-TIVARIATE MODEL, JRSSB 69, NO. 2
- HARBERGER, ARNOLD C. THE ECONOMICS OF THE PRESIDENT'S ECONOMIC RE-PORTS, JASA 56. 454
- HARGOLIN, B. H. ORTHOGONAL MAIN-EFFECT 2-TO-THE-N-TIMES-3-TO-THE-M DESIGNS AND TWO-FACTOR INTERACTION ALI. TECH 68, 559
- HARKNESS, M. L. GENERALIZED HYPERBOLIC SECANT DISTRIBUTIONS, JASA 68, 329
- HARKNESS, W. NORMAL APPROXIMATION TO THE DISTRIBUTION OF TWO INDE-PENDENT BINOMIALS, CONDITIONAL ON FIXED, AMS 63, 1593
- HARKNESS, W. L. ASYMPTOTIC DISTRIBUTION OF DISTANCES BETWEEN ORDER STATISTICS FROM BIVARIATE POPULATIONS, AMS 64, 74B
- HARKNESS, W. L. CHARACTERIZATIONS OF SOME DISTRIBUTIONS BY CONDI-TIONAL MOMENTS, AMS 65, 703
- HARKNESS, W. L. COMPARISON OF THE POWER FUNCTIONS FOR THE TEST OF IN-DEPENDENCE IN 2X2 CONTINGENCY TABLES, AMS 64. 1115
- HARKNESS, W. L. GENERALIZED HYPERBOLIC SECANT DISTRIBUTIONS, JASA 6B. 329
- HARKNESS, W. L. PROPERTIES OF THE EXTENDED HYPERGEOMETRIC DISTRIBUTION, AMS 65, 938
- HARLEY, B. I. A NOTE ON THE PROBABILITY INTEGRAL OF THE CORRELATION COEFFICIENT. BIOKA 54, 27B
- COEFFICIENT, BIOKA 54, 27B HARLEY, B. I. FURTHER PROPERTIES OF AN ANGULAR TRANSFORMATION OF THE
- CORRELATION COEFFICIENT, BIOKA 57, 273
 HARLEY, B. I. RELATION BETWEEN THE DISTRIBUTIONS OF NON-CENTRAL T
- AND OF A TRANSFORMED CORRELATION COEFFI, BIOKA 57, 219
 HARLEY, B. I. SOME PROPERTIES OF AN ANGULAR TRANSFORMATION FOR THE
- CORRELATION COEFFICIENT, BIOKA 56, 219
 HARLEY, B. I. THE DISTRIBUTION OF RANGE IN NORMAL SAMPLES WITH
- N=200, BIOKA 57, 257
 HARPER, L. H. STIRLING BEHAVIOR IS ASYMPTOTICALLY NORMAL, AMS 67,
- 410
 HARPER, LAWRENCE H. A FAMILY OF COMBINATORIAL IDENTITIES, AMS 66,
- HARPER, W. M. THE DISTRIBUTION OF THE MEAN HALF-SQUARE SUCCESSIVE
- DIFFERENCE, BIOKA 67, 419
 HARPER, W. M. THE USE OF INTECRAL TRANSFORMS TO DETERMINE EXPANSIONS
- OF DISTRIBUTION FUNCTIONS, BIOKA 60, 460 HARRIS JR, W. A. APPLICATIONS OF THE PSEUDOINVERSE TO MODELING, TECH
- HARRIS, A. J. A MAXIMUM-MINIMUM PROBLEM RELATED TO STATISTICAL DIS-TRIBUTIONS IN TWO DIMENSIONS, BIOKA 57, 384
- HARRIS, B. DECISION PROCEDURES FOR FINITE DECISION PROBLEMS UNDER COMPLETE ICNORANCE, AMS 64, 1644
- HARRIS, BERNARD DETERMINING BOUNDS ON EXPECTED VALUES OF CERTAIN FUNCTIONS, AMS 62, 1454
- HARRIS, BERNARD STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY PROBLEM, UNBIASED ESTIMATION OF THE NUMB, JASA 68, 837
- HARRISON, J. Y. TESTINC OF MEANS WITH DIFFERENT ALTERNATIVES, TECH
- HARSAAE, E. ON THE COMPUTATION AND USE OF A TABLE OF PERCENTAGE POINTS OF BARTLETT'S M, BIOKA 69, 273
- HARTER, H. L. A NOTE ON ESTIMATION FROM A TYPE I EXTREME-VALUE DIS-TRIBUTION. TECH 67, 325
- HARTER, H. L. EXPECTED VALUES OF NORMAL ORDER STATISTICS, BIOKA 61,
- HARTER, H. L. ITERATIVE MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF NORMAL POPULATIONS FROM SINGLY, BIOKA 66, 205
- HARTER, H. LEON A NEW TABLE OF PERCENTAGE POINTS OF THE CHI-SQUARE DISTRIBUTION, BIOKA 64, 231
- HARTER, H. LEON A NEW TABLE OF PERCENTAGE POINTS OF THE PEARSON TYPE III DISTRIBUTION, TECH 69, 177
- HARTER, H. LEON ASYMPTOTIC VARIANCES AND COVARIANCES OF MAXIMUM-LIKELIHOOD ESTIMATORS, FROM CENSORED SAMP, AMS 67, 557
- HARTER, H. LEON CIRCULAR ERROR PROBABILITIES, JASA 60, 723
- HARTER, H. LEON CONDITIONAL MAXIMUM-LIKELIHOOD ESTIMATION, FROM SINGLY CENSORED SAMPLES, OF THE SCALE PAR, TECH 68, 349
- HARTER, H. LEON CORRIGENDA, 'A NEW TABLE OF PERCENTACE POINTS OF THE CHI-SQUARE DISTRIBUTIONS', BIOKA 65, 305

- HARTER, H. LEON CORRICENDA, 'EXPECTED VALUES OF NORMAL ORDER STATISTICS', BIOKA 61, 476
- HARTER, H. LEON CRITERIA FOR BEST SUBSTITUTE INTERVAL ESTIMATORS, WITH AN APPLICATION TO THE NORMAL DISTR, JASA 64, 1133
- HARTER, H. LEON ERRATA, 'EXACT CONFIDENCE BOUNDS, BASED ON ONE ORDER STATISTIC FOR THE PARAMETER OF A ONE, TECH 64, 483
- HARTER, H. LEON ERRATA, 'MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF GAMMA AND WEIBULL POPULATIONS, TECH 67, 195
- PARAMETERS OF GAMMA AND WEIBOLD FORULATIONS, TECH 67, 195
 HARTER, H. LEON ESTIMATING THE PARAMETERS OF NEGATIVE EXPONENTIAL
 POPULATIONS FROM ONE OR TWO ORDER STATI, AMS 61, 107B
- HARTER, H. LEON EXACT CONFIDENCE BOUNDS, BASED ON ONE ORDER STATISTIC FOR THE PARAMETER OF AN EXPONENTIAL, TECH 64, 301
- STATISTIC FOR THE FARAMETER OF AN EXPONENTIAL, ECH64, 301
 HARTER, H. LEON LOCAL-MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF THREE-PARAMETER LOGNORMAL POPULA, JASA 66, B42
- HARTER, H. LEON MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF GAMMA AND WEIBULL POPULATIONS FROM COM, TECH 65, 639
- GAMMA AND WEIBULL POPULATIONS FROM COM, TECH 65, 639
 HARTER, H. LEON MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF
- A FOUR-PARAMETER GENERALIZED GAMMA PO, TECH 67, 159
 HARTER, H. LEON MAXIMUM-LIKELIHOOD ESTIMATION, FROM CENSORED SAM-PLES, OF THE PARAMETERS OF A LOGISTIC DIS, JASA 67, 675
- HARTER, H. LEON MAXIMUM-LIKELIHOOD ESTIMATION, FROM DOUBLY CEN-SORED SAMPLES. OF THE PARAMETERS OF THE FIR, JASA 6B, BB9
- HARTER, H. LEON PERCENTAGE POINTS OF THE RATIO OF TWO RANCES AND POWER OF THE ASSOCIATED TEST, BIOKA 63, 187
- HARTER, H. LEON POINT AND INTERVAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE SCALE PARAMETER OF A, TECH 65, 405
- HARTER, H. LEON THE USE OF SAMPLE RANCES IN SETTING EXACT CONFIDENCE BOUNDS FOR THE STANDARD DEVIATION OF, JASA 61, 601
- HARTER, H. LEON USE OF TABLES OF PERCENTAGE POINTS OF RANGE AND STU-DENTIZED RANCE, TECH 61, 407
- HARTICAN. J. INVARIANT PRIOR DISTRIBUTIONS, AMS 64, 836
- HARTIGAN, J. A. DISTRIBUTION OF THE RESIDUAL SUM OF SQUARES IN FITTINC INEQUALITIES, BIOKA 67, 69
- HARTIGAN, J. A. ESTIMATION BY RANKING PARAMETERS, JRSSB 66, 32
- HARTIGAN, J. A. INFERENCE FROM A KNOCKOUT TOURNAMENT, AMS 68, 5B3
- HARTIGAN, J. A. NOTE ON DISCORDANT OBSERVATIONS, JRSSB 68, 545
- HARTIGAN, J. A. NOTE ON THE CONFIDENCE-PRIOR OF WELCH AND PEERS, JRSSB 66, 55
- HARTIGAN, J. A. PERCENTAGE POINTS OF A TEST FOR CLUSTERS, JASA 69, NO.4
- HARTIGAN, J. A. PROBABILISTIC COMPLETION OF A KNOCKOUT TOURNAMENT, AMS 66, 495
- HARTIGAN, J. A. REPRESENTATION OF SIMILARITY MATRICES BY TREES, JASA 67, 1140
- HARTIGAN, J. A. THE ASYMPTOTICALLY UNBIASED PRIOR DISTRIBUTION, AMS 65, 1137
- HARTIGAN, J. A. THE LIKELIHOOD AND INVARIANCE PRINCIPLES, JRSSB 67, $533\,$
- HARTIGAN, J. A. USING SUBSAMPLE VALUES AS TYPICAL VALUES, JASA 69. NO .4
- HARTLEY, H. O. A CHART FOR THE INCOMPLETE BETA-FUNCTION AND THE CU-MULATIVE BINOMIAL DISTRIBUTION, BIOKA 51, 423
- HARTLEY, H. O. A DISCONTINUITY IN MIXED MODEL ANALYSIS, BIOCS 69, 573
- HARTLEY, H. O. A NEW ESTIMATION THEORY FOR SAMPLE SURVEYS, BIOKA 6B, 547
- 547
 HARTLEY, H. O. A NOTE ON THE CORRELATION OF RANGES IN CORRELATED NOR-MAL SAMPLES, BIOKA 6B, 595
- HARTLEY, H. O. A PROCEDURE FOR AUTOMATIC DATA EDITING, JASA 67, 341
- HARTLEY, H. O. CHARTS OF THE POWER FUNCTION FOR ANALYSIS OF VARIANCE TESTS, DERIVED FROM THE NON-CENTRAL, BIOKA 51, 112
 HARTLEY, H. O. CORRICENDA, 'TABLES OF PERCENTAGE POINTS OF THE 'STU-
- HARTLEY, H. O. CORRICENDA, 'TABLES OF PERCENTAGE POINTS OF THE 'STU-DENTIZED' RANCE', BIOKA 53, 236
- HARTLEY, H. O. DESIGN AND ESTIMATION IN TWO-WAY STRATIFICATION, JASA 60, 105
- HARTLEY, H. O. DISCUSSION OF 'A SUBJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' TEST FOR APPROXIMA, JASA 69, 50
- HARTLEY, H. O. EXACT CONFIDENCE REGIONS FOR THE PARAMETERS IN NON-LINEAR RECRESSION LAWS, BIOKA 64, 347
- HARTLEY, H. O. EXPECTATIONS, VARIANCES AND COVARIANCES OF 'ANOVA' MEAN SQUARES BY 'SYNTHESIS', BIOCS 67, 105
- HARTLEY, H. O. MAXIMUM-LIKELIHOOD ESTIMATION FOR THE MIXED ANALY— SIS OF VARIANCE MODEL, BIOKA 67, 93
- HARTLEY, H. O. MOMENT CONSTANTS FOR THE DISTRIBUTION OF RANCE IN NORMAL SAMPLES, BIOKA 51, 463
- HARTLEY, H. O. NONLINEAR LEAST SQUARES ESTIMATION. AMS 65. 638
- HARTLEY, H. O. ON A SIMPLE PROCEDURE OF UNEQUAL PROBABILITY SAMPLING WITHOUT REPLACEMENT, JRSSB 62, 482
- HARTLEY, H. O. QUERY, JOINT CONFIDENCE LIMITS FOR RANKED OBSERVA-TIONS, TECH 66, 368
- HARTLEY, H. O. SAMPLINC WITH CONTROL VARIABLES, BIOKA 54, 494
- HARTLEY, H. O. SAMPLING WITH UNEQUAL PROBABILITIES AND WITHOUT REPLACEMENT, AMS 62, 350
- HARTLEY, H. O. SYSTEMATIC SAMPLING WITH UNEQUAL PROBABILITY AND WITHOUT REPLACEMENT, JASA 66, 739
- HARTLEY, H. O. TESTS FOR RANK CORRELATION COEFFICIENTS. I, BIOKA 57, 470
- HARTLEY, H. O. THE DISTRIBUTION OF THE RATIO, IN A SINCLE NORMAL SAM-PLE, OF RANGE TO STANDARD DEVIATION, BIOKA 54, 4B2

- HARTLEY, H. O. THE EFFICIENCY OF INTERNAL RECRESSION FOR THE FITTING OF THE EXPONENTIAL RECRESSION, BIOKA 59, 293
- HARTLEY, H. O. THE FITTING OF POLYNOMIALS TO EQUIDISTANT DATA WITH MISSINC VALUES, BIOKA 51, 410
- HARTLEY, H. O. THE MODIFIED GAUSS-NEWTON METHOD FOR THE FITTING OF NON-LINEAR REGRESSION FUNCTIONS BY LEA, TECH 61, 269
- HARTLEY, H. O. THE PRECISION OF UNBIASED RATIO-TYPE ESTIMATORS. CORR. 63 1162, JASA 5B, 491
- HARTLEY, H. O. VARIANCE ESTIMATION WITH ONE UNIT PER STRATUM, JASA 69.841
- HARTWELL, T. D. EXPECTED MEAN SQUARES FOR NESTED CLASSIFICATIONS. BIOCS 69, 427
- HARVEY, J.R. UNIFIED LEAST SQUARES ANALYSIS, JASA 65, 523
- HARVILLE, D. A. QUADRATIC UNBIASED ESTIMATION OF VARIANCE COM-PONENTS OF THE ONE-WAY CLASSIFICATION, BIOKA 69, 313
- HARVILLE, DAVID A. ESTIMABILITY OF VARIANCE COMPONENTS FOR THE TWO-WAY CLASSIFICATION WITH ITERATION, AMS 67, 150B
- HARVILLE, DAVID A. EXPRESSION OF VARIANCE-COMPONENT ESTIMATORS AS LINEAR COMBINATIONS OF INDEPENDENT NONC, AMS 69, NO.6
- HARVILLE, DAVID A. STATISTICAL DEPENDENCE BETWEEN RANDOM EFFECTS AND THE NUMBERS OF OBSERVATIONS ON THE E, JASA 67, 1375
- HARVILLE, DAVID A. STATISTICAL DEPENDENCE BETWEEN SUBCLASS MEANS AND THE NUMBERS OF OBSERVATIONS IN THE S. JASA 6B, 14B4
- HARVILLE, DAVID A VARIANCES OF VARIANCE-COMPONENT ESTIMATORS FOR THE UNBALANCED TWO-WAY CROSS CLASSIFICA, AMS 69, 40B HASHIGUCHI, S. ESTIMATION OF GENETIC CONTRIBUTION OF PRINCIPAL
- COMPONENTS TO INDIVIDUAL VARIATES CONCERNE, BIOCS 69, 9 HASKEY, H. W. A GENERAL EXPRESSION FOR THE MEAN IN A SIMPLE
- STOCHASTIC EPIDEMIC, BIOKA 54, 272
- HASKEY, H. W. STOCHASTIC CROSS-INFECTION BETWEEN TWO OTHERWISE ISOLATED CROUPS, BIOKA 57, 193
- HASOFER, A. M ON THE INTEGRABILITY, CONTINUITY AND DIFFERENTIA-BILITY OF A FAMILY ON FUNCTIONS INTRODUCED, AMS 63, 1045
- HASOFER, A. M. STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS XVI. RANDOM RANDOM MECHANISMS IN TALM, BIOKA 67, 316
- HASOFER, A. M. THE ALMOST FULL DAM WITH POISSON INPUT, JRSSB 66, 329 HASOFER, A. M. THE ALMOST FULL DAM WITH POISSON INPUT, FURTHER RESULTS, JRSSB 66, 44B
- HASSANEIN, K. M. ESTIMATION OF THE PARAMETERS OF THE LOGISTIC DIS-TRIBUTION BY SAMPLE QUANTILES, BIOKA 69, NO. 3
- HASSANEIN, KHATAB M. ESTIMATION OF THE PARAMETERS OF THE EXTREME VALUE DISTRIBUTION BY USE OF TWO OR THRE, BIOKA 69, 429
- HASSELBLAD, VICTOR ESTIMATION OF FINITE MIXTURES OF DISTRIBUTIONS FROM THE EXPONENTIAL FAMILY, JASA 69, NO. 4
- HASSELBLAD, VICTOR ESTIMATION OF PARAMETERS FOR A MIXTURE OR NORMAL DISTRIBUTIONS, TECH 66, 431
- HASSINEIN. KHATAB M. ANALYSIS OF EXTREME-VALUE DATA BY SAMPLE QUAN-TILES FOR VERY LARCE SAMPLES, JASA 6B, 877
- HAUSER, PHILIPM STATISTICS AND SOCIETY, JASA 63, 1
- HAWKES, A.G. DELAY AT TRAFFIC INTERSECTIONS, JRSSB 66, 202
- HAWKES, A. C. QUEUEINC FOR CAPS IN TRAFFIC., BIOKA 65, 79
- HAWKINS, D. M. ON THE DISTRIBUTION AND POWER OF A TEST FOR A SINGLE OUTLIER, SASJ 69, 9
- HAYBITTLE, J. L. A TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF TREATED CANCER PATIENTS, JASA 65, 16
 HAYNAM, G.E. ANALYSIS OF CATEGORICAL DATA, BIOKA 65, 654
- HAYNAM, GEORGE E. EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND RECTANCULAR ALTERNATIVES. AMS 66, 945
- HAYS, WILLIAM L. A NOTE ON AVERAGE TAU AS A MEASURE OF CONCORDANCE, JASA 60, 331
- HEALY JR, W. C LIMITS FOR A VARIANCE COMPONENT WITH AN EXACT CON-FIDENCE COEFFICIENT, AMS 61, 466
 HEALY, M J. R. A PROPERTY OF THE MULTINOMIAL DISTRIBUTION AND THE
- DETERMINATION OF APPROPRIATE SCORES, BIOKA 64, 265
- HEALY, M. J. R A SIGNIFICANCE TEST FOR THE DIFFERENCE IN EFFICIENCY BETWEEN TWO PREDICTORS, JRSSB 55, 266
- HEALY, M J. R. ALIASING IN PARTIALLY CONFOUNDED FACTORIAL EXPERI-MENTS, BIOKA 61, 218
- HEALY, M. J. R. ECONOMIC CHOICE OF THE AMOUNT OF EXPERIMENTATION, JRSSB 56, 32
- HEALY, M J. R EXACT TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES, TECH 69, 393
- HEALY, M J. R. FIDUCIAL LIMITS FOR A VARIANCE COMPONENT, JRSSB 63, 12B
- HEALY, M J. R. NEW TABLES OF BEHREN'S TEST OF SIGNIFICANCE, JRSSB 56,212
- HEALY, M J. R. NOTES.COMPUTING A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSIONS, BIOCS 65, 1011
- HEALY, M J. R. RAO'S PARADOX CONCERNING MULTIVARIATE TESTS OF SIG-NIFICANCE, BIOCS 69, 411
- HEALY, M J. R. ROUTINE ANALYSIS OF REPLICATED EXPERIMENTS ON AN ELECTRONIC COMPUTER (WITH DISCUSSION), JRSSB 57, 234
- HEALY. M J. R. TABLES FOR POWER-LAW TRANSFORMATIONS, BIOKA 62, 557 HEALY, M. J. R. WEIGHTED PROBITS ALLOWING FOR A NON-ZERO RESPONSE IN THE CONTROLS, BIOKA 56, 207
- HEATHCOTE, C. R. A BRANCHING PROCESS ALLOWING IMMIGRATION, JRSSB
- HEATHCOTE, C. R. CORRECTIONS AND COMMENTS ON THE PAPER 'A BRANCHING PROCESS ALLOWING IMMIGRATION', JRSSB 66, 213

- HEATHCOTE, C. R. ON THE QUEUEING PROCESS, MARKOV OR POISSON INPUT, GENERAL SERVICE TIME DISTRIBUTION, ONE, AMS 61, 770
- HEATHCOTE, C. R. PREEMPTIVE PRIORITY QUEUEING, BIOKA 61, 57
- HEATHCOTE, C. R. THE RANDOM WALK (IN CONTINUOUS TIME) AND ITS APPLI-CATION TO THE THEORY OF QUEUES, BIOKA 59, 400
- HEBERT, C. N. COMPARATIVE SAMPLING ACCEPTANCE SCHEMES IN TESTING ANTIGENICITY OF VACCINES, BIOCS 66, 684
- HEDAYAT, A. ON THE APPLICATION OF CROUP THEORY TO THE EXISTENCE AND NON-EXISTENCE OF ORTHOGONAL LATIN SQU, BIOKA 69, NO. 3
- HEDCES, A. J. NOTES. ON THE DILUTION ERRORS INVOLVED IN ESTIMATING BACTERIAL NUMBERS BY THE PLATING METHO, BIOCS 67, 15B
- HEGE, VIJAYA S. AN OPTIMUM PROPERTY OF THE HORVITZ-THOMSON ESTI-MATE, JASA 67, 1013
- HEIEN, DALEM. A NOTE ON LOG-LINEAR REGRESSION, JASA 68, 1034
- MODELS FOR TWO-DIMENSIONAL STATIONARY STOCHASTIC HEINE. V PROCESSES, BIOKA 55, 170
- HELLER, ALEX ON STOCHASTIC PROCESSES DERIVED FROM MARKOV CHAINS, AMS 65, 12B6
- HELLER, R. A. DEVELOPMENT OF RANDOMIZED LOAD SEQUENCES WITH TRANSI-TION PROBABILITIES BASED ON A MARKOV PR, TECH 66, 107
- HELVIG, T. N APPLICATIONS OF THE PSEUDOINVERSE TO MODELING, TECH 66,351
- HENDERSON, C. R AN ITERATIVE PROCEDURE FOR ESTIMATING FIXED EF-FECTS AND VARIANCE COMPONENTS IN MIXED MOD, BIOCS 6B, 13 HENDERSON. C. R. ANALYTICAL TECHNIQUE FOR INCOMPLETE BLOCK EXPERI-
- MENTS, BIOCS 66, B29 HENDRICKS, WALTER A ESTIMATION OF THE PROBABILITY THAT AN OBSERVA-
- TION WILL FALL IN A SPECIFIED CLASS, JASA 64, 225
 HENRICHON, E. G. UNIFORM CONSISTENCY OF SOME ESTIMATES OF A DENSITY
- FUNCTION, AMS 69, 1499
 HENSLEY, CARLTON THE LOGISTIC PROCESS, TABLES OF THE STOCHASTIC EPIDEMIC CURVE AND APPLICATIONS, JRSSB 60, 332
- HERBST, L. SPECTRAL ANALYSIS IN THE PRESENCE OF VARIANCE FLUCTUA-TIONS, JRSSB 64, 354
- HERBST, L. STATIONARY AMPLITUDE FLUCTUATIONS IN A RANDOM SERIES, JRSSB 64, 361
- HERBST, L J. FOURIER METHODS IN THE STUDY OF VARIANCE FLUCTUATIONS IN TIME SERIES ANALYSIS, TECH 69, 103
- HERBST, L. J. THE STATISTICAL FOURIER ANALYSIS OF VARIANCES, JRSSB 65, 159
- HERBST, LAURENCE ALMOST PERIODIC VARIANCES, AMS 63, 1549
- HERBST, LAURENCE J. PERIODOGRAM ANALYSIS AND VARIANCE FLUCTUA-TIONS, JRSSB 63, 442
- HERBST, LAURENCE N. A TEST FOR VARIANCE HETEROGENEITY IN THE RESIDUALS OF A GAUSSIAN MOVING AVERAGE, JRSSB 63, 451
- HERDAN, G. THE MATHEMATICAL RELATION BETWEEN GREENBERG'S INDEX OF LINGUISTIC DIVERSITY AND YULE'S CHARACT, BIOKA 5B, 26B
- HERDAN, C. THE RELATION BETWEEN THE DICTIONARY DISTRIBUTION AND THE OCCURRENCE DISTRIBUTION OF WORD LENGT, BIOKA 58, 222
- HERR, DAVID G. ASYMPTOTICALLY OPTIMAL TESTS FOR MULTIVARIATE NOR-MAI DISTRIBUTIONS, AMS 67, 1829
- HERREY, ERNA M. J CONFIDENCE INTERVALS BASED ON THE MEAN ABSOLUTE DEVIATION OF A NORMAL SAMPLE, JASA 65, 257
- HERTZ, ELLENS, ON CONVERGENCE RATES IN THE CENTRAL LIMIT THEOREM, AMS 69, 475 HERZBERG, AGNES M A METHOD FOR THE CONSTRUCTION OF SECOND ORDER
- ROTATABLE DESIGNS IN K DIMENSIONS, AMS 67, 177
- HERZBERG, AGNES M. CYLINDRICALLY ROTATABLE DESIGNS OF TYPES 1, 2, AND 3, AMS 67, 167 HERZBERC, A. THE BEHAVIOUR OF THE VARIANCE FUNCTION OF THE DIF-
- FERENCE BETWEEN TWO ESTIMATED RESPONSES, JRSSB 67, 174
- HERZBERC, AGNES QUERY, ANALYSIS OF FACTORIAL EXPERIMENT (PARTIALLY CONFOUNDED 2-CUBE), TECH 67, 170
- HERZBERG, ACNES M. CYLINDRICALLY ROTATABLE DESIGNS, AMS 66, 242 HERZBERG, AGNES M. FURTHER SECOND ORDER ROTATABLE DESIGNS, AMS 6B,
- 1995 HERZBERG, AGNES M. TWO THIRD ORDER ROTATABLE DESIGNS IN FOUR DIMEN-SIONS, AMS 64, 445
- HESS, IRENE ON NONCOVERACE OF SAMPLE DWELLINGS, JASA 58, 509
- HESS, IRENE ON VARIANCES OF RATIOS AND THEIR DIFFERENCES IN MULTI-STAGE SAMPLES, CORR. 63 1162, JASA 59, 416
- HESS, IRENE STRATIFICATION, A PRACTICAL INVESTIGATION, JASA 66, 74 HETTMANSPERCER, THOMAS P. ON THE TRIMMED MANN-WHITNEY STATISTIC, AMS 68, 1610
- HEWETT, JOHN E. A NOTE ON A DOUBLE SAMPLE TEST, JASA 69, NO.4
- HEWETT, JOHN E. A NOTE ON PREDICTION INTERVALS BASED ON PARTIAL OB-SERVATIONS IN CERTAIN LIFE TEST EXPERIM, TECH 6B, B50
- HEWLETT, P. S. A COMPARISON OF TWO APPROACHES TO THE CONSTRUCTION OF MODELS FOR QUANTAL RESPONSES TO MIXT, BIOCS 67, 27
- HEWLETT, P. S. MEASUREMENT OF THE POTENCIES OF DRUG MIXTURES, BIOCS 69,477
- HEXT, G. R. SEQUENTIAL APPLICATION OF SIMPLEX DESIGNS IN OPTIMISA-TION AND EVOLUTIONARY OPERATION, TECH 62, 441
- HEXT, GEORGE R. THE ESTIMATION OF SECOND-ORDER TENSORS, WITH RE-LATED TESTS AND DESIGNS, BIOKA 63, 353
- HEYDE, G. C. ASYMPTOTIC RENEWAL RESULTS FOR A NATURAL GENERALIZA-TION OF CLASSICAL RENEWAL THEORY, JRSSB 67, 141
- HEYDE, C.C. ON A FLUCTUATION THEOREM FOR PROCESSES WITH INDEPENDENT INCREMENTS, II. AMS 69, 688

- HEYDE, C. C. ON A PROPERTY OF THE LOCNORMAL DISTRIBUTION, JRSSB 63, 392
- HEYDE, C. C. ON EXTENDED RATE OF CONVERCENCE RESULTS FOR THE INVARI-ANCE PRINCIPLE, AMS 69, NO. 6
- HEYDE, C. C. ON EXTREMAL FACTORIZATION AND RECURRENT EVENTS, JRSSB 69.72
- HEYDE, C. C. ON LARCE DEVIATION PROBLEMS FOR SUMS OF RANDOM VARIA-BLES WHICH ARE NOT ATTRACTED TO THE NORM, AMS 67, 1575
- HEYDE, C. C. SOME RENEWAL THEOREMS WITH APPLICATION TO A FIRST PASSAGE PROBLEM, AMS 66, 699
- HEYDE, C. C. VARIATIONS ON A RENEWAL THEOREM OF SMITH, AMS 6B, 155
- HICKMAN, BERT G. AN EXPERIMENT WITH WEIGHTED INDEXES OF CYCLICAL DIFFUSION, JASA 5B, 39
- HICKMAN, BERT C. ON A NEW METHOD OF CAPACITY ESTIMATION, JASA 64, 529 HICKMAN, JAMES C. PRELIMINARY REGIONAL FORECASTS FOR THE OUTCOME OF AN ESTIMATION PROBLEM, JASA 63, 1104
- HILDEBRAND, DAVID K. DOMAINS OF OPTIMALITY OF TESTS IN SIMPLE RANDOM SAMPLINC, AMS 69, 308
- HILDRETH, CLIFFORD ASYMPTOTIC DISTRIBUTION OF MAXIMUM LIKELIHOOD ESTIMATORS IN A LINEAR MODEL WITH AUTORE, AMS 69, 583
- HILDRETH, CLIFFORD SOME ESTIMATORS FOR A LINEAR MODEL WITH RANDOM COEFFICIENTS, JASA 6B, 5B4
- HILL, B. DISCUSSION OF THE PAPERS OF MESSRS. HALD, WETHERILL AND COX. TECH 60. 361
- HILL, B. M. FOUNDATIONS FOR THE THEORY OF LEAST SQUARES, JRSSB 69, B9 HILL, BRUCE M. CORRECTIONS TO 'A RELATIONSHIP BETWEEN HODGES' BIVARIATE SIGN TEST AND A NON-PARAMETRIC TE, AMS 61, 619
- HILL, BRUCE M. CORRELATED ERRORS IN THE RANDOM MODEL, JASA 67, 13B7 HILL, BRUCE M. INFERENCE ABOUT VARIANCE COMPONENTS IN THE ONE-WAY
- MODEL, JASA 65, BO6 HILL, BRUCE M. INFORMATION FOR ESTIMATING THE PROPORTIONS IN MIX-
- TURES OF EXPONENTIAL AND NORMAL DISTRIBUT, JASA 63, 91B HILL, BRUCE M. POSTERIOR DISTRIBUTION OF PERCENTILES. BAYES' THEOREM FOR SAMPLING FROM A POPULATION, JASA 68, 677
- HILL, SRUCE M. THE THREE-PARAMETER LOGNORMAL DISTRIBUTION AND
- BAYESIAN ANALYSIS OF A POINT-SOURCE EPIDEMI, JASA 63, 72 HILL, BRUCE MARVIN A TEST OF LINEARITY VERSUS CONVEXITY OF A MEDIAN REGRESSION CURVE, AMS 62, 1096
- HILL, G. W. GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER TYPE, AMS 6B, 1264
- HILL, HUBERT M. EXPERIMENTAL DESIGNS TO ADJUST FOR TIME TRENDS, TECH 60,67
- HILL, I. D. THE DISTRIBUTION OF THE REGRESSION COEFFICIENT IN SAM-PLES FROM A NON-NORMAL POPULATION, BIOKA 54, 54B
- HILL, R. T. THE SIMPLE STOCHASTIC EPIDEMIC FOR SMALL POPULATIONS WITH ONE OR MORE INITIAL INFECTIVES, BIOKA 69, 183
- HILL, WILLIAM J. A JOINT DESIGN CRITERION FOR THE DUAL PROBLEM OF MODEL DISCRIMINATION AND PARAMETER ESTI, TECH 6B, 145
- HILL, WILLIAM J. A NOTE ON DESIGNS FOR MODEL DISCRIMINATION, VARI-ANCE UNKNOWN CASE, TECH 69, 396
- HILL, WILLIAM J. A REVIEW OF RESPONSE SURFACE METHODOLOGY. A LITERA-TURE SURVEY, TECH 66, 571
- HILL, WILLIAM J. DISCRIMINATION AMONG MECHANISTIC MODELS, TECH 67, 57
- HILLIER, F. S. NEW CRITERIA FOR SELECTING CONTINUOUS SAMPLINC PLANS, TECH 64, 161
- HILLIER, FREDERICKS CONTINUOUS SAMPLING PLANS UNDER DESTRUCTIVE TESTING, JASA 64, 376
- HILLIER, FREDERICKS. SMALL SAMPLE PROBABILITY LIMITS FOR THE RANGE CHART (CORR. 68 1549), JASA 67, 1488
- HILLIER, FREDERICK S. SURVEILLANCE PROGRAMS FOR LOTS IN STORAGE. TECH 62, 515
- HILLS. M. ALLOCATION RULES AND THEIR ERROR RATES (WITH DISCUSSION). JRSSB 66, 1
- HILLS, M. NOTES. A NOTE ON THE ANALYSIS OF CROWTH CURVES, BIOCS 6B. 192
- HILLS, M. ON LOOKING AT LARCE CORRELATION MATRICES, BIOKA 69, 249 HIMSWORTH, F. R. SEQUENTIAL APPLICATION OF SIMPLEX DESIGNS IN OP-TIMISATION AND EVOLUTIONARY OPERATION, TECH 62, 441
- HINCHEN, JOHN D. MULTIPLE REGRESSION IN PROCESS DEVELOPMENT, TECH 6B. 257
- HINICH, MELVIN ESTIMATION OF SPECTRA AFTER HARD CLIPPING OF GAUS-SIAN TIME PROCESSES, TECH 67, 391
- HINICH, MELVIN LARGE SAMPLE ESTIMATION OF AN UNKNOWN DISCRETE WAVEFORM WHICH IS RANDOMLY REPEATING IN GAU, AMS 65, 489
- HINKELMANN, K. ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH RELATED DAMS, BIOCS 69, NO.4
- HINKELMANN, K. TWO CLASSES OF CROUP DIVISIBLE PARTIAL DIALLEL CROSSES, BIOKA 63, 2B1
- HINKELMANN, KLAUS EXTENDED GROUP DIVISIBLE PARTIALLY BALANCED IN-COMPLETE BLOCK DESIGNS, AMS 64, 681
- HINKELMANN, KLAUS MISSING VALUES IN PARTIAL DIALLEL CROSS EXPERI-MENTS, BIOCS 68, 903
- HINKLEY, D. V. A NOTE ON THE EFFICIENCY OF LEAST-SQUARES ESTIMATES, JRSSB 68, 284
- HINKLEY, D. V. INFERENCE ABOUT THE INTERSECTION IN TWO-PHASE REGRESSION, BIOKA 69, NO.3

- HINKLEY, D. V. ON THE RATIO OF TWO CORRELATED NORMAL RANDOM VARIA-BLES, BIOKA 69, NO. 3
- HINMAN, J. E. SIMPLEX LATTICE DESIGNS FOR MUTICOMPONENT SYSTEMS, TECH 62, 463
- HINZ, P. A METHOD OF ANALYSINC UNTRANSFORMED DATA FROM THE NEGATIVE BINOMIAL AND OTHER CONTACIOUS DISTRIB, BIOKA 68, 163
- HINZ, P. SIMPLIFIED TECHNIQUES FOR ESTIMATING PARAMETERS OF SOME GENERALIZED POISSON DISTRIBUTIONS, BIOKA 67, 555
- HIRSCH, WERNER Z. STATISTICIAN AND POLICY MAKER, A PARTNERSHIP IN THE MAKING, JASA 56, 12
- HIST, BARTHOLOMEW P. THE MULTIPLE SAMPLE UP-AND-DOWN METHOD IN BIOASSAY, JASA 69, 147
- HITCHCOCK, SHIRLEY E. A NOTE ON THE ESTIMATION OF THE PARAMETERS OF THE LOGISTIC FUNCTION, USING THE MINI, BIOKA 62, 250
- HITCHCOCK, SHIRLEY E. TESTS OF HYPOTHESES ABOUT THE PARAMETERS OF THE LOGISTIC FUNCTION, BIOKA 66, 535
- HO, IRWIN SHORTER CONFIDENCE BANDS IN LINEAR REGRESSION, JASA 67, 1050
- HOADLEY JR, WALTER E. STATISTICIANS, TODAY AND TOMORROW, JASA 59, 1 HOADLEY, A. B. USE OF THE PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRS, BIOKA 68, 559
- HOADLEY, A. BRUCE ON THE PROBABILITY OF LARGE DEVIATIONS OF FUNC-TIONS OF SEVERAL EMPIRICAL CUMULATIVE DIS, AMS 67, 360
- HOADLEY, A. BRUCE THE COMPOUND MULTINOMIAL DISTRIBUTION AND BAYE-SIAN ANALYSIS OF CATERGORICAL DATA FROM F, JASA 69, 216
- HO8BY, CHARLES COMBINATORIAL RESULTS IN FLUCTUATION THEORY, AMS 63.1233
- HOBBY, CHARLES COMBINATORIAL RESULTS IN MULTI-DIMENSIONAL FLUC-TUATION THEORY, CORR. 64 924, AMS 63, 402
- HOBBY, CHARLES SOME STRUCTURE THEOREMS FOR STATIONARY PROBABILITY MEASURES ON FINITE STATE SEQUENCES, AMS 64, 550
- HOCHSTIM, JOSEPH R. A CRITICAL COMPARISON OF THREE STRATECIES OF COLLECTING DATA FROM HOUSEHOLDS, JASA 67, 976
- HOCKING, R. R. ESTIMATION OF PARAMETERS IN THE MULTIVARIATE NORMAL DISTRIBUTION WITH MISSING OBSERVATIONS, JASA 6B, 159
- HOCKING, R. R. QUADRATIC REGRESSION WITH INEQUALITY RESTRAINTS ON THE PARAMETERS JASA 65 914
- HOCKING, R. R. SELECTION OF THE BEST SUBSET IN REGRESSION ANALYSIS, TECH 67, 531
- HODGES JR, J. L. A COMPACT TABLE FOR POWER OF THE T-TEST, AMS 68, 1629 HODGES JR, J. L. ESTIMATES OF LOCATION BASED ON RANK TESTS, AMS 63,
- HODCES JR, J. L. ON MEDIANS AND QUASI-MEDIANS, JASA 67, 926
- HODGES JR, J. L. RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERI-MENTS IN THE ANALYSIS OF VARIANCE, AMS 62, 4B2
- HODCES JR, J. L. TESTING THE APPROXIMATE VALIDITY OF STATISTICAL HYPOTHESES, JRSS8 54, 261
- HODGES JR, J. L. THE ASYMPTOTIC THEORY OF GALTON'S TEST AND A RELATED SIMPLE ESTIMATE OF LOCATION, AMS 67, 73
- HODGES JR, JOSEPH L. MINIMUM VARIANCE STRATIFICATION, CORR. 63 1161, JASA 59, BB
- HODGES, J. L. CALTON'S RANK-ORDER TEST, BIOKA 55, 261
- HODSON, F. R. SOME EXPERIMENTS IN THE NUMERICAL ANALYSIS OF ARCHAEOLOCICAL DATA, BIOKA 66, 311
- HOEFFDING, WASSILY ASYMPTOTICALLY OPTIMUM TESTS FOR MULTINOMIAL DISTRIBUTIONS, AMS 65, 369
- HOEFFDING, WASSILY PROBABILITY INEQUALITIES FOR SUMS OF BOUNDED RANDOM VARIABLES, JASA 63, 13
- HOEL, D. G. A CLASS OF SEQUENTIAL TESTS FOR AN EXPONENTIAL PARAME-TER, JASA 69, NO.4 HOEL, D. G. AN EXTENSION OF PAULSON'S SELECTION PROCEDURE, AMS 68,
- 2067 HOEL, D. G. CLOSED SEQUENTIAL TESTS FOR AN EXPONENTIAL PARAMETER,
- BIOKA 6B, 3B7
- HOEL, DAVID C. SEQUENTIAL TESTING OF SAMPLE SIZE, TECH 68, 331
- HOEL, P. G. A TEST FOR MARKOFF CHAINS, BIOKA 54, 430
- HOEL, P. G. CONFIDENCE SETS FOR MULTIVARIATE MEDIANS, AMS 61, 477
- HOEL, P. G. OPTIMAL SPACING AND WEIGHTING IN POLYNOMIAL PREDICTION, AMS 64. 1553
- HOEL, PAUL C. ON TESTING FOR THE DEGREE OF A POLYNOMIAL, TECH 6B, 757 HOEL, PAUL G. A SIMPLE SOLUTION FOR OPTIMAL CHEBYSHEV REGRESSION EX-TRAPOLATION, AMS 66, 720
- HOEL, PAUL G. ASYMPTOTIC EFFICIENCY IN POLYNOMIAL ESTIMATION, AMS 61, 1042
- HOEL, PAUL C. MINIMAX DESIGNS IN TWO DIMENSIONAL RECRESSION, AMS 65. 1097
- HOEL, PAUL G. OPTIMUM DESIGNS FOR POLYNOMIAL EXTRAPOLATION, AMS 65. 1483 HOEM, JAN M. THE SAMPLING DISTRIBUTION OF AN ESTIMATOR ARISING IN
- CONNECTION WITH THE TRUNCATED EXPONENTI, AMS 69, 702 HOFFMAN, A. J. ON THE DUALS OF SYMMETRIC PARTIALLY-BALANCED IN-COMPLETE BLOCK DESIGNS, AMS 63, 52B
- HOFFMAN, A. J. ON THE LINE GRAPH OF THE COMPLETE BIPARTITE GRAPH, AMS 64.883
- HOFLUND, OLLE SIMULATED DISTRIBUTIONS FOR SMALL N OF KENDALL'S PAR-TIAL RANK CORRELATION COEFFICIENT, BIOKA 63, 520
- HOCBEN, D. AN APPROXIMATION TO THE DISTRIBUTION OF Q. A VARIATE RE-LATED TO THE NON-CENTRAL T, AMS 64, 315

- HOGBEN, D. THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T, AMS 64 298
- HOGBEN, D. THE MOMENTS OF THE NON-CENTRAL T-DISTRIBUTION, BIOKA 61, 465
- HOGG. ROBERT V. AN ITERATED PROCEDURE FOR TESTING THE EQUALITY OF SEVERAL EXPONENTIAL DISTRIBUTIONS, JASA 63, 435
- HOCC, ROBERT V. CERTAIN UNCORRELATED STATISTICS, JASA 60, 265
- ${\tt HOGG}$, ROBERT V . ITERATED TESTS OF THE EQUALITY OF SEVERAL DISTRIBUTIONS , JASA 62, 579
- HOGG, ROBERT V. MAXIMUM LIKELIHOOD ESTIMATION OF THE DISTRIBUTIONS OF TWO STOCHASTICALLY ORDERED RANDOM V. JASA 66. 1067
- HOGG, ROBERT V. ON CONDITIONAL EXPECTATIONS OF LOCATION STATISTICS, JASA 60, 714
 HOCC, ROBERT V. ON MODELS AND HYPOTHESES WITH RESTRICTED ALTERNA-
- TIVES, JASA 65, 1153
 HOGG, ROBERT V. ON THE INDEPENDENCE OF CERTAIN WISHART VARIABLES,
- AMS 63, 935 HOGG, ROBERT V. ON THE RESOLUTION OF STATISTICAL HYPOTHESES, JASA
- 61,97B HOGG, ROBERT V SOME OBSERVATIONS ON ROBUST ESTIMATION, JASA 67,
- HOLEWIJN, P. J. NOTE ON WEYL'S CRITERION AND THE UNIFORM DISTRIBU-
- TION OF INDEPENDENT RANDOM VARIABLES, AMS 69, 1124
 HOLGATE, P. BIVARIATE GENERALIZATIONS OF NEYMAN'S TYPE A DISTRIBU-TION, BIOKA 66, 241
- HOLCATE, P. CONTRIBUTIONS TO THE MATHEMATICS OF ANIMAL TRAPPING, BIOCS 66, 925
- HOLGATE, P. ESTIMATION FOR THE BIVARIATE POISSON DISTRIBUTION, BIOKA 64, 241
- BIOKA 64, 241
 HOLGATE, P. FITTING A STRAIGHT LINE TO DATA FROM A TRUNCATED POPULATION. BIOCS 65, 715
- HOLGATE, P. MAJORANTS OF THE CHROMATIC NUMBER OF A RANDOM GRAPH, JRSSB $69\,,\,\text{NO}\,.\,2$
- HOLGATE. P. SPECIES FREQUENCY DISTRIBUTIONS, BIOKA 69, NO.3
- HOLGATE, P. TESTS OF RANDOMNESS BASED ON DISTANCE METHODS., BIOKA $65\,,345$
- HOLCATE, P. THE ANCLE-COUNT METHOD, BIOKA 67, 615

1179

- HOLGATE, P. THE DISTANCE FROM A RANDOM POINT TO THE NEAREST POINT OF A CLOSELY PACKED LATTICE., BIOKA 65, 261 HOLLA, M. S. ON A DISCRETE DISTRIBUTION WITH SPECIAL REFERENCE TO
- THE THEORY OF ACCIDENT PRONENESS, JASA 65, 1060
 HOLLA, M. S. RELIABILITY ESTIMATION OF THE TRUNCATED EXPONENTIAL
- HOLLA, M. S. RELIABILITY ESTIMATION OF THE TRUNCATED EXPONENTIAL MODEL, TECH 67, 332
- HOLLAND, D. A. SAMPLING ERRORS IN AN ORCHARD SURVEY INVOLVING UNEQUAL NUMBERS OF ORCHARDS OF DISTINCT TYP, BIOCS 65, 55
- HOLLAND, PAUL W SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF STOCHASTIC PROCESSES. AMS 68, 164
- HOLLAND, PAUL W. THE DISTRIBUTION OF GALTON'S STATISTICS, AMS $68\,,$ $2114\,$
- HOLLANDER, MYLES AN ASYMPTOTICALLY DISTRIBUTION-FREE MULTIPLE COMPARISON PROCEDURE, TREATMENT VERSUS CONT. AMS 66, 735
- HOLLANDER, MYLES ASYMPTOTIC EFFICIENCY OF TWO NONPARAMETRIC COM-PETITORS OF WILCOXON'S TWO SAMPLE TEST, JASA 67, 939
- HOLLANDER, MYLES CERTAIN UNCORRELATED NONPARAMETRIC TEST STATISTICS. JASA 68, 707
- HOLLANDER, MYLES RANK TESTS FOR RANDOMIZED BLOCKS WHEN THE ALTERNATIVES HAVE AN 'A PRIORI' ORDERING, AMS 67, 867
- HOLLOWAY JR, CLARK A SYSTEMATIC METHOD OF FINDING DEFINING CONTRASTS, JASA 57, 46
- HOLLOWAY, LOIS N THE ROBUSTNESS OF HOTELLING'S T-SQUARE, JASA 67 124 HOLMS, A G. CHAIN-POOLING ANALYSIS OF VARIANCE FOR TWO-LEVEL FAC-
- TORIAL REPLICATION-FREE EXPERIMENTS, TECH 69, NO.4
 HONIGFELD, G. A COMPARISON OF SUCCESSIVE SCREENING AND DISCRIMI-
- NANT FUNCTION TECHNIQUES IN MEDICAL TAXONO, BIOCS 69, NO. 4
- HOOKE, ROBERT USE OF RANDOMIZATION IN THE INVESTIGATION OF UNKNOWN FUNCTIONS, JASA 5B, 176
- HOOPEN, M. TEN ON MEASURES OF CORRELATION IN TIME SERIES OF EVENTS, BIOCS $69\,,\,73$
- HOOPER, J. W. THE SAMPLING VARIANCE OF CORRELATION COEFFICIENTS UNDER ASSUMPTIONS OF FIXED AND MIXED VARI, BIOKA 5B, 471
- HOPE, ADERY C. A. A SIMPLIFIED MONTE CARLO SIGNIFICANCE TEST PROCEDURE, JRSSB 68, 582
- HOPKINS, J. W. SOME CONSIDERATIONS IN MULTIVARIATE ALLOMETRY, BIOCS 66, 747
- HOPKINS, J. W. SOME EMPIRICAL DISTRIBUTIONS OF BIVARIATE T-SQUARE AND HOMOSCEDASTICITY CRITERION MUNDER, JASA 63, 104B
- HOPPER, F. N. ESTIMATING THE DECREES OF FREEDOM FOR LINEAR COMBINATIONS OF MEAN SQUARES BY SATTERTHWAITHE, TECH 69, NO.4
- $\mbox{HORA, R.B. FIDUCIAL\, THEORY\, AND\, INVARIANT\, ESTIMATION,\, AMS\, 66,\, 643}$
- HORA, R. B. FIDUCIAL THEORY AND INVARIANT PREDICTION, AMS 67, 795
- HORNER, T. W. MATHEMATICAL REPRESENTATION OF THE BIOLOGICAL AND PHYSICAL DECAY OF CHAMBER AEROSOLS, BIOCS 65, 551
- HOROWITZ, IRA THE VARYINC QUALITY OF INVESTMENT TRUST MANAGEMENT, JASA 63, 1011
- HORSNELL, G. DISCUSSION OF THE PAPERS OF MESSRS. HALD, WETHERILL AND COX, TECH 60, 361

- HORSNELL, C. THE EFFECT OF UNEQUAL GROUP VARIANCES ON THE F-TEST FOR THE HOMOCENEITY OF GROUP MEANS, BIOKA 53, 12B
- HORTON, I. F. MULTIVARIATE-COVARIANCE AND CANONICAL ANALYSIS, A METHOD FOR SELECTING THE MOST EFFECTIVE D. BIOCS 6B, 845
- HORVITZ, DANIEL G. A MULTI-PROPORTIONS RANDOMIZED RESPONSE MODEL, JASA 67, 990
- HORVITZ, DANIEL C. THE UNRELATED QUESTION RANDOMIZED RESPONSE MODEL, THEORETICAL FRAMEWORK, JASA 69, 520
- HOU. TEIN-FANG WEAK APPROACHABILITY IN A TWO-PERSON CAME, AMS 69, 789
- HOUCK, JAMES P. SOME ESTIMATORS FOR A LINEAR MODEL WITH RANDOM COEF-FICIENTS, JASA 68, 584
- HOUSTON, TOM R. SEQUENTIAL COUNTERBALANCING IN LATIN SQUARES, AMS 66.741
- HOWE, R. B. ON THE PERCENTAGE POINTS OF THE SAMPLE COEFFICIENT OF VARIATION, BIOKA 6B, 580
- HOWE, W. G. TWO-SIDED TOLERANCE LIMITS FOR NORMAL POPULATIONS, SOME IMPROVEMENTS, JASA 69, 610
- HOWIE, A. J. THE EFFICIENCY OF AUTOMATIC WINDING MACHINES WITH CONSTANT PATROLLING TIME, JRSSB 59, 3B1
- HOYLAND, ARNLJOT ROBUSTNESS OF THE HODGES-LEHMANN ESTIMATES FOR SHIFT, AMS 65, 174
- HOYLAND, ARNLJOT ROBUSTNESS OF THE WILCOXON ESTIMATE OF LOCATION AGAINST A CERTAIN DEPENDENCE, AMS 6B, 1196
- HOYLE, M. H. THE ESTIMATION OF VARIANCES AFTER USING A GAUSSIANATING TRANSFORMATION, AMS 68, 1125
 HSI, BARTHOLOMEW P. OPTIMIZATION OF QUALITY CONTROL IN THE CHEMICAL
- LABORATORY, TECH 66, 519
 HSU, P. CORRICENDA, 'ON THE POWER FUNCTION OF THE EXACT TEST FOR THE
- 2-BY-2 CONTINGENCY TABLE', BIOKA 61, 475

 HSU. P. ON THE POWER FUNCTION OF THE EXACT TEST FOR THE 2-BY-2 CONTIN-
- HSU, P. ON THE POWER FUNCTION OF THE EXACT TEST FOR THE 2-BY-2 CONTIN-GENCY TABLE, BIOKA 60, 393
- HUANG, DAVID S. INITIAL STOCK AND CONSUMER INVESTMENT IN AUTOMO-BILES, JASA 63, 789
- HUBER, PETER PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS, AMS 63,501
- HUBER, PETER J. A REMARK ON A PAPER OF TRAWINSKI AND DAVID ENTITLED 'SELECTION OF THE BEST TREATMENT IN A, AMS 63, 92
- HUBER, PETER J. A ROBUST VERSION OF THE PROBABILITY RATIO TEST, AMS 65,1753

 HUBER, PETER J. PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPER-
- TIES OF THE ROW SUM PROCEDURE, AMS 63, 511
 HUBER, PETER J. ROBUST ESTIMATION OF A LOCATION PARAMETER, AMS 64,
- HUDSON JR, J. D. A MONTE CARLO INVESTIGATION OF THE SIZE AND POWER OF TESTS EMPLOYING SATTERTHWAITE'S SYN, BIOKA 68, 431
- HUDSON, D. J. LEAST-SQUARES FITTING OF A POLYNOMIAL CONSTRAINED TO BE EITHER NON-NEGATIVE, NON-DECREASING, JRSSB 69, 113
- HUDSON, DEREK J. FITTINC SECMENTED CURVES WHOSE JOIN FOINTS HAVE TO BE ESTIMATED, JASA 66, 1097
 HUFF, BARTHEL W. THE LOOSE SUBORDINATION OF DIFFERENTIAL PROCESSES
- TO BROWNIAN MOTION, AMS 69, 1603
- HUGHES, H. M. THE NEGATIVE EXPONENTIAL WITH CUMULATIVE ERROR, BIOCS 68, 363
- HUGHES, J. R. T. THE FIRST 1,945 BRITISH STEAMSHIPS, JASA 58, 360 HUCHES, L. P. MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF THE
- BETA DISTRIBUTION FROM SMALLEST ORDE, TECH 67, 607
 HUI, Y Y. LIMITING DISTRIBUTIONS ASSOCIATED WITH CERTAIN
- HUI, 14 Y. LIMITING DISTRIBUTIONS ASSOCIATED WITH CERTAIN STOCHASTIC LEARNING MODELS, AMS 62, 1281
- HUITSON, A. A METHOD OF ASSIGNING CONFIDENCE LIMITS TO LINEAR COM-BINATIONS OF VARIANCES, BIOKA 55, 471
- HUITSON, A. FURTHER CRITICAL VALUES FOR THE SUM OF TWO VARIANCES, BIOKA 5B, 279
- HULL, NORMA C. AN APPROXIMATION TO TWO-SIDED TOLERANCE LIMITS FOR NORMAL POPULATIONS, TECH 66, 115
 HULTQUIST, R. A. A BIVARIATE WARNING-TIME, FAILURE-TIME DISTRIBU-
- TION, JASA 67, 589
 HULTQUIST, ROBERT A. CONSTRUCTION OF CONFOUNDING PLANS FOR MIXED
- FACTORIAL DESIGNS, AMS 65, 1256
 HULTQUIST, ROBERT A. MINIMAL SUFFICIENT STATISTICS FOR THE TWO-WAY
- CLASSIFICATION MIXED MODEL DESIGN, JASA 65, 1B2 HULTQUIST, ROBERT A. THEOREMS CONCERNINC EISENHART'S MODEL II, AMS
- HULTQUIST, ROBERT A. THEOREMS CONCERNING EISENHART'S MODEL II, AMS
 61, 261
- HUME, M. W. CORRELATION IN A SINGLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION. II. RANK CORRELATION, BIOKA 65, 639
- HUME, M. W. CORRELATION IN A SINGLY TRUNCATED BIVARIATE NORMAL DIS-TRIBUTION. III. CORRELATION BETWEEN RAN, BIOKA 66, 27B
- HUME, M. W. CORRELATION IN A SINCLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION IV. EMPIRICAL VARIANCES OF RA, BIOKA 68, 437
- HUNTER, J. S. A CONFIDENCE REGION FOR THE SOLUTION OF A SET OF SIMUL-TANEOUS EQUATIONS WITH AN APPLICATION, BIOKA 54, 190 HUNTER, J. S. CONDENSED CALCULATIONS FOR EVOLUTIONARY OPERATION
- PROGRAMS, TECH 59, 77
 HUNTER, J. S. DISCUSSION OF THE PAPERS OF MESSRS. SATTERTHWAITE AND
- BUDNE, TECH 59, 157
- HUNTER, J. S. ERRATA, 'SEQUENTIAL FACTORIAL ESTIMATION', TECH 65, 93

- HUNTER, J. S. ERRATA. 'THE 2-TO-THE-(K-P) FACTIONAL FACTORIAL DESIGNS', TECH 63, 417
- HUNTER, J. S. SEQUENTIAL FACTORIAL ESTIMATION, TECH 64, 41
- HUNTER, J. S. THE INVERSE YATES ALGORITHM, TECH 66, 177
- HUNTER, J. S. THE 2-TO-THE-,(K-P) FRACTIONAL FACTORIAL DESIGNS. TECH 61. 311
- HUNTER, J. S. THE 2-TO-THE-(K-P) FRACTIONAL FACTORIAL DESIGNS, TECH 61, 449
- HUNTER, L. C. SYSTEM EFFICIENCY AND RELIABILITY, TECH 60, 43
- HUNTER, W. G. DESIGN OF EXPERIMENTS FOR PARAMETER ESTIMATION IN MUL-TIRESPONSE SITUATIONS, BIOKA 66, 525
- HUNTER, W. G. THE USE OF PRIOR DISTRIBUTIONS IN THE DESIGN OF EXPERI-MENTS FOR PARAMETER ESTIMATION IN NON, BIOKA 67, 147
- HUNTER, W. G. THE USE OF PRIOR DISTRIBUTIONS IN THE DESIGN OF EXPERI-MENTS FOR PARAMETER ESTIMATION IN NON, BIOKA 67, 662
- HUNTER, W. G. TRANSFORMATIONS, SOME EXAMPLES REVISITED, TECH 69, 23 HUNTER, WILLIAM G. A JOINT DESIGN CRITERION FOR THE DUAL PROBLEM OF MODEL DISCRIMINATION AND PARAMETER ES, TECH 68, 145
- HUNTER, WILLIAM G. A NOTE ON DESIGNS FOR MODEL DISCRIMINATION, VARI-ANCE UNKNOWN CASE, TECH 69, 396
- HUNTER, WILLIAM G. A REVIEW OF RESPONSE SURFACE METHODOLOGY. A LITERATURE SURVEY, TECH 66, 571
- HUNTER, WILLIAM G. A USEFUL METHOD FOR MODEL BUILDING, TECH 62, 301 HUNTER, WILLIAM G. DESIGNS FOR DISCRIMINATING BETWEEN TWO RIVAL
- MODELS, TECH 65, 307 HUNTER, WILLIAMG. EVOLUTIONARY OPERATION. A REVIEW, TECH 66, 389
- HUNTER, WILLIAM G. THE DESIGN OF EXPERIMENTS FOR PARAMETER ESTIMA-TION, TECH 68, 271
- HUNTER, WILLIAM G. THE EXPERIMENTAL STUDY OF PHYSICAL MECHANISMS. TECH 65 23
- HUNTER, WILLIAMG, WHICH PRODUCT IS BETTER, TECH 69, 309
- HUNTSBERGER, D. V. ESTIMATION OF A MEAN WHEN ONE OBSERVATION MAY BE SPURIOUS, TECH 69, 331
- HURST, D. C. A PROBABILITY STRUCTURE FOR GROWTH CURVES, BIOCS 67, 217
- HURST, D. C. LARGE SAMPLE SIMULTANEOUS CONFIDENCE INTERVALS FOR MULTINOMIAL PROPORTIONS, TECH 64, 191
- HURWITZ, ABNER CONSTANTS AND COMPROMISE IN THE CONSUMER PRICE IN-DEX. JASA 62, 813
- HUSSIAN, A. A MIXED MODEL OF REGRESSIONS, BIOKA 69, 327
- HUTCHINSON, D. W. TABLE OF NEYMAN-SHORTEST UNBIASED CONFIDENCE IN-TERVALS FOR THE BINOMIAL PARAMETER, BIOKA 60, 3B1
- HUTCHINSON, D. W. TABLES OF NZYMAN-SHORTEST UNBIASED CONFIDENCE INTERVALS FOR THE POISSON PARAMETER, BIOKA 61, 191
- HUTCHINSON, E. P. NOTES ON IMMIGRATION STATISTICS OF THE UNITED STATES, JASA 58, 963
- HUTTLY, N. A. THE FITTING OF REGRESSION CURVES WITH AUTOCORRELATED DATA, BIOKA 56, 468
- HUYETT, M. J. CORRIGENDA, 'ESTIMATION OF PARAMETERS OF THE GAMMA DISTRIBUTION USING ORDER STATISTICS. ', BIOKA 63, 546
- HUYETT, MARILYN J. ESTIMATION OF PARAMETERS OF THE GAMMA DISTRIBU-TION USING ORDER STATISTICS, BIOKA 62, 525
- HUYETT, MARILYN J. SEPARATE MAXIMUM-LIKELIHOOD ESTIMATION OF SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTR, BIOKA 63, 217
- HUYETT, MISS M. J. PROBABILITY PLOTS FOR THE GAMMA DISTRIBUTION. TECH 62, 1
- HUZURBAZAR, V. S. CONFIDENCE INTERVALS FOR THE PARAMETER OF A DIS-TRIBUTION ADMITTING A SUFFICIENT STATIST, JRSSB 55, 86
- HUZURBAZAR, V. S. EXACT FORMS OF SOME INVARIANTS FOR DISTRIBUTIONS ADMITTING SUFFICIENT STATISTICS, BIOKA 55, 533
- HYRENIUS, HANNES SAMPLING FROM BIVARIATE NON-NORMAL UNIVERSES BY MEANS OF COMPOUND NORMAL DISTRIBUTIONS, BIOKA 52, 238
- IFRAM, ADNAN ON THE ASYMPTOTIC BEHAVIOR OF DENSITIES WITH APPLICA-TIONS TO SEQUENTIAL ANALYSIS, AMS 65, 615
- IFRAM, ADNAN F. HYPERGEOMETRIC FUNCTIONS IN SEQUENTIAL ANALYSIS, AMS 65. 1B70
- IFRAM, ADNAN F. ON THE SAMPLE SIZE AND SIMPLIFICATION OF A CLASS OF SEQUENTIAL PROBABILITY RATIO TESTS, AMS 66, 425
- IGLEHART, DONALD L. LIMIT THEOREMS FOR QUEUES WITH TRAFFIC INTENSI-TY ONE, AMS 65, 1437
- IGLEHART, DONALD L. LIMIT THEOREMS FOR THE MULTI-URN EHREFEST MODEL, AMS 68, B64
- IGLEHART, DONALD L. WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DE-TECTION PROBLEMS, AMS 68, 2149 IGLEWICZ, B. ON THE PERCENTAGE POINTS OF THE SAMPLE COEFFICIENT OF
- VARIATION, BIOKA 68, 580 IMHOF, J. P. COMPUTING THE DISTRIBUTION OF QUADRATIC FORMS IN NORMAL
- VARIABLES, BIOKA 61, 419
- IMHOF, J. P. CORRIGENDA, 'COMPUTING THE DISTRIBUTION OF QUADRATIC FORMS IN NORMAL VARIABLES', BIOKA 62, 284
- IMHOF, J. P. SOME INVARIANT LAWS RELATED TO THE ARC SINE LAW, AMS 68, P. TESTING THE HYPOTHESIS OF NO FIXED MAIN-EFFECTS IN
- SCHEFFE'S MIXED MODEL, AMS 62, 1085
- INGLEHART, DONALD L. MULTIVARIATE COMPETITION PROCESSES, AMS 64,
- INGRAM, J. JACK CONTROL OF QUALITY OF CODING IN THE 1960 CENSUSES, JASA 64, 120

- IOSIFESCU. MARIUS SAMPLING ENTROPY FOR RANDOM HOMOGENEOUS SYSTEMS WITH COMPLETE CONNECTIONS , CORR . 69 NO . , AMS 65 , 1433
- IRELAND, C. T. CONTINGENCY TABLES WITH GIVEN MARGINALS, BIOKA 68.
- IRELAND, C. T. NOTES. MINIMUM DISCRIMINATION INFORMATION ESTIMA-TION, BIOCS 68, 707 IRELAND, C. T. SYMMETRY AND MARGINAL HOMOGENEITY OF AN R-BY-R CON-
- TINGENCY TABLE, JASA 69, NO. 4
- IRWIN, J. O. A DISTRIBUTION ARISING IN THE STUDY OF INFECTIOUS DIS-EASES, BIOKA 54, 266
- ISAAC, RICHARD A GENERAL VERSION OF DOEBLIN'S CONDITION, AMS 63, 668 ISAAC, RICHARD A UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ER-GODIC MARKOV PROCESSES, AMS 64, 1781
- ISAAC, RICHARD NON-SINGULAR RECURRENT MARKOV PROCESSES HAVE STA-TIONARY MEASURES, AMS 64, 869
- ISAAC, RICHARD ON STATIONARY MARKOV PROCESSES, AMS 67, 588
- ISAACSON, DEAN NOTE ON THE THREE SERIES THEOREM, AMS 69, 1844
- ISAACSON, DEAN STOCHASTIC INTEGRALS AND DERIVATIVES, AMS 69, 1610 ISHII, G. CORRIGENDA, 'TEST OF INDEPENDENCE IN INTRACLASS 2-BY-2 TABLES', BIOKA 61, 476
- ISHII, G. TESTS OF INDEPENDENCE IN INTRACLASS 2-BY-2 TABLES, BIOKA
- ISHII, GORO THE RELATIONSHIP ALGEBRA AND THE ANALYSIS OF VARIANCE OF A PARTIALLY BALANCED INCOMPLETE BLOC, AMS 65, 1B15
- ITO, KOICHI A COMPARISON OF THE POWERS OF TWO MULTIVARIATE ANALYSIS OF VARIANCE TESTS, BIOKA 62, 455
- ITO, KOICHI CORRIGENDA, 'A COMPARISON OF THE POWERS OF TWO MUL-TIVARIATE ANALYSIS OF VARIANCE TESTS. ', BIOKA 63, 546
- ITO, KOICHI ON THE ROBUSTNESS OF THE T-SQUARE-SUB-O TEST IN MUL-TIVARIATE ANALYSIS OF VARIANCE WHEN VARIAN, BIOKA 64, 71
- IYER, P. V. KRISHNA PROBABILITY DISTRIBUTIONS ARISING FROM POINTS ON A LINE, BIOKA 54, 553
- JACKSON, ESTHER C. MISSING VALUES IN LINEAR MULTIPLE DISCRIMINANT ANALYSIS, BIOCS 68, 835
- JACKSON, J. E. QUERY, RESIDUAL ANALYSIS, TECH 67, 339
- JACKSON, J. E. SEQUENTIAL CHI-SQUARE AND T-SQUARE TESTS AND THEIR APPLICATION TO AN ACCEPTANCE SAMPLING P, TECH 61, 519
- JACKSON, J. EDWARD AN APPLICATION OF MULTIVARIATE QUALITY CONTROL TO PHOTOGRAPHIC PROCESSING, JASA 57, 186
- JACKSON. J. EDWARD BIBLIOGRAPHY ON SEQUENTIAL ANALYSIS, JASA 60. 561
- JACKSON, J. EDWARD COMMENTS ON PAPER BY KURTZ, LINK, TUKEY AND WAL-LACE, TECH 65, 163
- JACKSON, J. EDWARD COMPARISON OF ANOVA AND HARMONIC COMPONENTS OF VARIANCE, TECH 69, 75
- JACKSON, J. EDWARD QUALITY CONTROL METHODS FOR SEVERAL RELATED VARIABLES, TECH 59, 359
- JACKSON, J. EDWARD SEQUENTIAL CHI-SQUARED AND T-SQUARED TESTS. AMS 61.1063
- JACKSON, J. EDWARD THE SPECTRUM OF A MODEL II NESTED ANOVA AND ITS AP-PLICATIONS, TECH 69,91
- JACKSON, J. T. R. A DYNAMIC PROGRAMMING APPLICATION IN PRODUCTION LINE INSPECTION, TECH 67, 73
- JACKSON, O. A. Y. AN ANALYSIS OF DEPARTURES FROM THE EXPONENTIAL DISTRIBUTION, JRSSB 67, 540
- JACKSON, O. A. Y. SOME RESULTS ON TESTS OF SEPARATE FAMILIES OF HYPOTHESES, BIOKA 68, 355
- JACKSON, R. R. P. RANDOM QUEUEING PROCESSES WITH PHASE-TYPE SER-V1CE. JRSSB 56, 129
- JACKSON, R. R. P. SOME EQUILIBRIUM RESULTS FOR THE QUEUEING PROCESS E-SUB-K-M-1, JRSSB 56, 275 JACOBSON, HAROLD I. THE MAXIMUM VARIANCE OF RESTRICTED UNIMODAL
- DISTRIBUTIONS, AMS 69, 1746 JACOBSON, JAMES E. THE WILCOXON TWO-SAMPLE STATISTIC, TABLES AND
- BIBLIOGRAPHY, JASA 63, 10B6 JACQUEZ. J. A. LINEAR REGRESSION WITH NON-CONSTANT, UNKNOWN ERROR
- VARIANCES, SAMPLING EXPERIMENTS WITH LE, BIOCS 68, 607 JAECH, J. L. A NOTE ON THE EQUIVALENCE OF TWO METHODS OF FITTING A
- STRAIGHT LINE THROUGH CUMULATIVE DATA, JASA 64, 863
 JAECH, J. L. A PROGRAM TO ESTIMATE MEASUREMENT ERROR IN NONDESTRUC-
- TIVE EVALUATION OF REACTOR FUEL ELEMENT, TECH 64, 293 JAECH, J. L. ESTIMATION OF PARTICLE SIZE DISTRIBUTION BASED ON OB-
- SERVED WEIGHTS OF GROUPS OF PARTICLES, TECH 65, 505 JAECH, J. L. ESTIMATION OF WEIBULL DISTRIBUTION SHAPE PARAMETER
- WHEN NO MORE THAN TWO FAILURES OCCUR PER, TECH 64, 415 JAECH, J. L. INTERFERENCE IN THE MANUFACTURE OF NUCLEPORE FILTERS,
- TECH 67, 319 JAEGER, CAROL M. AN ANALYSIS OF CONSISTENCY OF RESPONSE IN HOUSEHOLD
- SURVEYS, JASA 61, 320 JAEGER, CAROL M. ESTIMATING THE SERVICE LIFE OF HOUSEHOLD GOODS BY
- ACTUARIAL METHODS, CORR. 57 578, JASA 57, 175 JAGERMAN, DAVID L. THE AUTOCORRELATION FUNCTION OF A SEQUENCE
- UNIFORMLY DISTRIBUTED MODULO 1, AMS 63, 1243

 JAGERS, P. INTEGRALS OF BRANCHING PROCESSES, BIOKA 67, 263
- JAIN, A. K. A STATISTICAL MODEL OF BOOK USE AND ITS APPLICATION TO THE BOOK STORAGE PROBLEM, JASA 69, NO.4
- JAIN, N. C. A NOTE ON INVARIANT MEASURES, AMS 66, 729
- JAIN, NARESH C. THE STRONG RATIO LIMIT PROPERTY FOR SOME GENERAL MARKOV PROCESSES, AMS 69, 986

- JAIN, S. C. AN ALGORITHM FOR THE DETERMINATION OF THE ECONOMIC DESIGN OF X-CHARTS BASED ON DUNCAN'S MODEL, JASA 68, 304
- JAISWAL, M. C. ESTIMATION OF PARAMETERS OF A TRUNCATED BIVARIATE NORMAL DISTRIBUTION. JASA 63, 519
- JAISWAL, N. K. A BULK-SERVICE QUEUEING PROBLEM WITH VARIABLE CAPACITY, JRSSB 61, 143
- JAISWAL, N. K. TIME-DEPENDENT SOLUTION OF THE 'HEAD-OF-THE-LINE' PRIORITY QUEUE, JRSSB 62, 91
- JAMES, A. T. CALCULATION OF ZONAL POLYNOMIAL COEFFICIENTS BY THE USE OF THE LAPLACE-BELTRAMI OPERATOR, AMS 68, 1711
- JAMES, A. T. FITTING THE RECTANGULAR HYPERBOLA, BIOCS 66, 573
- JAMES, ALAN T. DISTRIBUTIONS OF MATRIX VARIATES AND LATENT ROOTS DERIVED FROM NORMAL SAMPLES, AMS 64, 475
- JAMES, ALAN T. THE DISTRIBUTION OF NONCENTRAL MEANS WITH KNOWN COVARIANCE, AMS 61, B74
- JAMES, G. S. CUMULANTS OF A TRANSFORMED VARIATE, BIOKA 55, 529
- JAMES, G. S. FURTHER CRITICAL VALUES FOR THE TWO-MEANS PROBLEM, 8TOKA 56, 203
- JAMES, G. S. ON THE ACCURACY OF WEIGHTED MEANS AND RATIOS, BIOKA 56, 304
- JAMES, G. S. TESTS OF LINEAR HYPOTHESES IN UNIVARIATE AND MUL-TIVARIATE ANALYSIS WHEN THE RATIOS OF THE PO. BIOKA 54, 19
- JAMES, C. S. THE BEHRENS-FISHER DISTRIBUTION AND WEIGHTED MEANS, JRSSB $59,\,73$
- JAMES, G. S. THE COMPARISON OF SEVERAL GROUPS OF OBSERVATIONS WHEN THE RATIOS OF THE POPULATION VARIANCES, BIOKA 51, 324
- JAMES, J. W. INDEX SELECTION WITH RESTRICTIONS, BIOCS 68, 1015
- JAMISON, BENTON AN OPTIMAL STOPPING THEOREM, AMS 69, 677
- JARDINE, R. RANKING METHODS AND THE MEASUREMENT OF ATTITUDES, JASA $58,720\,$
- JARRATT, P. USE OF DOUBLE SAMPLING FOR SELECTING BEST POPULATION, 8IOKA 64.49
- JASPEN, NATHAN MACHINE COMPUTATION OF HIGHER MOMENTS, JASA 56, 489
 JAYACHANDRAN, K. POWER COMPARISIONS OF TESTS OF EQUALITY OF TWO
 COVARIANCE MATRICES BASED ON FOUR CRITERI, BIOKA 68, 335
- JAYACHANDRAN, K. POWER COMPARISONS OF TESTS OF TWO MULTIVARIATE HYPOTHESES BASED ON FOUR CRITERIA, BIOKA 67, 195
- JAYACHANDRAN, TOKE A STUDY OF ROBUST ESTIMATORS, TECH 67, 652
- JAYAKAR, S. D. THE DISTRIBUTION OF EXTREMAL AND NEARLY EXTREMAL VALUES IN SAMPLES FROM A NORMAL DISTRIBUT, BIOKA 63, B9
- JEBE, EMIL H. A NOTE ON THE GAIN IN PRECISION FOR OPTIMAL ALLOCATION IN RECRESSION AS APPLIED TO EXTRAPOL, TECH 69, 389
- JEFFERS, J. N. R. ESTIMATION OF MEANS AND STANDARD ERRORS IN THE ANALYSIS OF NON-ORTHOGONAL EXPERIMENTS B. JRSSB 62, 435
- JENKINS, G. M. AN ANGULAR TRANSFORMATION FOR THE SERIAL CORRELATION COEFFICIENT, BIOKA 54, 261
- JENKINS. G. M. AN EXAMPLE OF THE ESTIMATION OF LINEAR OPEN LOOP TRANSFER FUNCTION, TECH 63, 227
- JENKINS, G. M. COMMENTS ON THE DISCUSSIONS OF MESSRS. TUKEY AND GOODMAN, TECH 61, 229
- JENKINS, G. M. GENERAL CONSIDERATIONS IN THE ANALYSIS OF SPECTRA, TECH 61, 133
- TECHOI, 133

 JENKINS, C. M. SOME STATISTICAL ASPECTS OF ADAPTIVE OPTIMIZATION AND CONTROL (WITH DISCUSSION), JRSSB 62, 297
- JENKINS, G. M. TESTS OF HYPOTHESES IN THE LINEAR AUTO-REGRESSIVE MODEL. II. NULL DISTRIBUTIONS FOR HIGHER, BIOKA 56, 186
- JENKINS, G. M. TESTS OF HYPOTHESES IN THE LINEAR AUTOREGRESSIVE MODEL. PARTI., BIOKA 54. 405
- JENKINS, G. M. THE ESTIMATION OF SLOPE WHEN THE ERRORS ARE AUTOCOR-RELATED, JRSSB 62, 199
- JENKINS, G. M. THE SPECTRAL ANALYSIS OF TIME SERIES (WITH DISCUSSION), JRSSB 57, 1
- JENKINS, J. H. ON THE CORRELATION STRUCTURE OF THE DEPARTURE PROCESS OF THE QUEUE WITH ONE SERVER, WHILE, JRSSB 66, 336
- JENKINS, M. A. AN APPROXIMATION FOR STUDENT'S T-DISTRIBUTION, BIOKA 68, 571
- JENNRICH, ROBERT I. AN APPLICATION OF STEPWISE REGRESSION TO NON-LINEAR ESTIMATION. TECH 68, 63
- JENNRICH, ROBERT I. ASYMPTOTIC PROPERTIES OF NON-LINEAR LEAST SQUARES ESTIMATORS, AMS 69, 633
- JENSEN, DONALD R. AN INEQUALITY FOR A CLASS OF BIVARIATE CHI-SQUARE DISTRIBUTIONS, JASA 69, 333
- JENSEN, DONALD R. SIMULTANEOUS CONFIDENCE INTERVALS FOR VARIANCES, JASA 69, 324
- JENSEN. E L. PROBABILITY OF OBTAINING NEGATIVE ESTIMATES OF HERITABILITY, BIOCS 68, 517
- JESSEN, R. J. DESICN AND ESTIMATION IN TWO-WAY STRATIFICATION, JASA 60, 105
- JESSEN, RAYMOND J. SOME METHODS OF PROBABILITY NON-REPLACEMENT SAMPLING, JASA 69, 175
- JINDAL, K. K. ON MODIFIED SYSTEMATIC SAMPLING, BIOKA 6B, 541
- JOFFE. A CONVERGENCE THEOREMS FOR MULTIPLE CHANNEL LOSS PROBABILITIES, AMS 63, 260
- JOFFE. A. NULL DISTRIBUTION AND BAHADUR EFFICIENCY OF THE HODGES BIVARIATE SIGN TEST. AMS 62, 803
- JOFFE, A. ON THE GALTON-WATSON BRANCHING PROCESS WITH MEAN LESS THAN ONE, AMS 67, 264

- JOFFE, A. D. A CHART FOR SEQUENTIALLY TESTING OBSERVED ARITHMETIC MEANS FROM LOGNORMAL POPULATIONS AGAINS, TECH 6B, 605
- JOFFE, A. D. MINIMUM CHI-SQUARED ESTIMATION USING INDEPENDENT STATISTICS, AMS 67, 267
- JOGDEO, K. BOUNDS ON MOMENTS OF MARTINGALES, AMS 68, 1719
- JOGDEO, KUMAR ASYMPTOTIC NORMALITY IN NONPARAMETRIC METHODS, AMS 68.905
- JOGDEO, KUMAR BOUNDS ON MOMENTS OF SUMS OF RANDOM VARIABLES, AMS 69, 1506
- JOGDEO, KUMAR CHARACTERIZATIONS OF INDEPENDENCE IN CERTAIN FAMILIES OF BIVARIATE AND MULTIVARIATE DISTRIB, AMS 6B, 433
- JOGDEO, KUMAR MONOTONE CONVERGENCE OF BINOMIAL PROBABILITIES WITH AN APPLICATION TO MAXIMUM LIKELIHOOD ES, AMS 67, 15B3
- JOGDEO, KUMAR MONOTONE CONVERCENCE OF BINOMIAL PROBABILITIES AND A GENERALIZATION OF RAMANUJAN'S EQUATION, AMS 6B, 1191
- JOGDEO, KUMAR ON RANDOMIZED RANK SCORE PROCEDURE OF BELL AND DOKSUM, AMS 66, 1697
- JOHANSEN, S. ON THE SEMIMARTINGALE CONVERGENCE THEOREM, AMS 66,690 JOHN, J. A. A NOTE ON THE ANALYSIS OF INCOMPLETE BLOCK EXPERIMENTS... BIOKA 65,633
- JOHN, J. A. CYCLIC INCOMPLETE BLOCK DESIGNS, JRSSB 66, 345
- JOHN, J. A. REDUCED GROUP DIVISIBLE PAIRED COMPARISON DESIGNS, AMS 67, 1887
- JOHN, P. W. M. AN EXTENSION OF THE TRIANGULAR ASSOCIATION SCHEME TO THREE ASSOCIATE CLASSES, JRSSB 66, 361
- JOHN, P. W. M. SOME NONORTHOGONAL FRACTIONS OF 2-TO-THE-N DESIGNS, JRSSB 69, NO. 2
- JOHN, PETER W. M AN APPLICATION OF A BALANCED INCOMPLETE BLOCK DESIGN. TECH 61, 51
- JOHN, PETER W M. AUGMENTING 2-TO-THE-(N-1) DESIGNS, TECH 66, 469 JOHN, PETER W M. BALANCED DESIGNS WITH UNEQUAL NUMBERS OF REPLICATES, AMS 64, 897
- JOHN, PETER W. M BLOCKING OF 3-TIMES-2-TO-THE-(N-K), TECH 64, 371 JOHN, PETER W. M. ON IDENTITY RELATIONSHIPS FOR TWO TO THE POWER OF N-R DESIGNS HAVING WORDS OF EQUAL LEN, AMS 66, 1842
- JOHN, PETER W. M. ON OBTAINING BALANCED INCOMPLETE BLOCK DESIGNS FROM PARTIALLY BALANCED ASSOCIATION SCHE, AMS 67, 61B
- JOHN, PETER W. M. PSEUDO-INVERSES IN THE ANALYSIS OF VARIANCE, AMS 64,895
- JOHN, S. A CENTRAL TOLERANCE REGION FOR THE MULTIVARIATE NORMAL DISTRIBUTION, JRSSB 6B, 599
- JOHN, S. ERRORS IN DISCRIMINATION, AMS 61, 1125
- JOHN, S. ON MULTIVARIATE RATIO AND PRODUCT ESTIMATORS, BIOKA 69, NO.3
- JOHN, S. ON THE EVALUATION OF PROBABILITIES OF CONVEX POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DISTRIBUT, JRSSB 66, 366
- JOHN, S. ON THE EVALUATION OF THE PROBABILITY INTEGRAL OF THE MUL-TIVARIATE T DISTRIBUTION, BIOKA 61, 409
- JOHNS JR, M. V. AN EXACT ASYMPTOTICALLY EFFICIENT CONFIDENCE BOUND FOR RELIABILITY IN THE CASE OF THE WEI, TECH 66, 135
- JOHNS JR, M. V. AVERAGE RENEWAL LOSS RATES, AMS 63, 396
- JOHNSON, ARTHUR F. QUERY, ANALYSIS OF FACTORIAL EXPERIMENT (PARTIALLY CONFOUNDED 2-CUBE), TECH 67, 490
- JOHNSON, BRUCE MCK, THE ERGODICITY OF SERIES OF QUEUES WITH GENERAL PRIORITIES, AMS 65, 1664
- JOHNSON, CHARLES HENRY A PROPERTY OF THE METHOD OF STEEPEST ASCENT, AMS 64, 435
- JOHNSON, ELLIS L. COMPUTATION AND STRUCTURE OF OPTIMAL RESET POLICIES, JASA 67, 1462
- JOHNSON, N. L. A MINIMAX-REGRET PROCEOURE FOR CHOOSING BETWEEN TWO POPULATIONS USING SEQUENTIAL SAMPLING, JRSSB 63, 297
- JOHNSON, N. L. A NOTE ON THE MEAN DEVIATION OF THE BINOMIAL DISTRIBUTION, BIOKA 57, 532
- JOHNSON, N. L. A SIMPLE THEORETICAL APPROACH TO CUMULATIVE SUM CONTROL CHARTS, JASA 61, 835
- JOHNSON, N. L. AN APPROXIMATION TO THE MULTINOMIAL DISTRIBUTION, SOME PROPERTIES AND APPLICATIONS, BIOKA 60, 93
- JOHNSON, N. L. APPROXIMATIONS TO THE PROBABILITY INTEGRAL OF THE DISTRIBUTION OF RANGE, BIOKA 52, 417
- JOHNSON, N. L. COMPARISON OF ANALYSIS OF VARIANCE POWER FUNCTION IN THE PARAMETRIC AND RANDOM MODELS, BIOKA 52, 427
- JOHNSON, N L. CORRECTION TO 'A PROOF OF WALD'S THEOREM ON CUMULA-
- TIVE SUMS' 59 1245, AMS 61, 1344 JOHNSON, N. L. CORRICENDA TO 'A NOTE ON THE MEAN DEVIATION OF THE BINOMIAL DISTRIBUTION', BIOKA 5B, 5B7
- JOHNSON, N. L. CORRIGENDA, 'TABLE OF PERCENTAGE POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA, BIOKA 65, 669

 JOHNSON, N. L. CUMULATIVE SUM CHARTS FOR THE FOLDED NORMAL DISTRIBU-
- TION, TECH 63, 451
 JOHNSON, N. L. CUMULATIVE SUM CONTROL CHARTS AND THE WEIBULL DIS-
- TRIBUTION, TECH 66, 4B1
 JOHNSON, N.L. ESTIMATION OF SAMPLE SIZE, TECH 62, 59
- JOHNSON, N. L. NOTE ON A UNIQUENESS RELATION IN CERTAIN ACCIDENT PRONENESS MODELS, JASA 67, 288
- JOHNSON, N. L. ON AN EXTENSION OF THE CONNEXION BETWEEN POISSON AND CHI-SQUARE DISTRIBUTIONS, BIOKA 59, 352
- JOHNSON, N. L. OPTIMAL SAMPLING FOR QUOTA FULFILMENT, BIOKA 57, 518

- JOHNSON, N. L. SAMPLING DISTRIBUTIONS OF VARIANCE COMPONENTS II. EMPIRICAL STUDIES OF UNBALANCED NESTED D, TECH 68, 719
- JOHNSON, N. L. SEQUENTIALLY DETERMINED CONFIDENCE INTERVALS, 810KA 57.279
- JOHNSON, N. L. SERIES REPRESENTATIONS OF DISTRIBUTIONS OF QUADRATIG FORMS IN NORMAL VARIABLES, I, CENTRAL, AMS 67, 823
- JOHNSON, N. L. SERIES REPRESENTATIONS OF DISTRIBUTIONS OF QUADRATIC FORMS IN NORMAL VARIABLES, II, NON-CE, AMS 67, B3B
- JOHNSON, N. L. SOME APPLICATIONS OF TWO APPROXIMATIONS TO THE MUL-TINOMIAL DISTRIBUTION, BIOKA 60, 463
- JOHNSON, N. L. SOME TESTS OF SIGNIFICANCE WITH ORDERED VARIABLES, JRSSB 56, 1
- JOHNSON, N. L. STATISTICAL TREATMENT OF CENSORED DATA . PART I. FUN-DAMENTAL FORMULAE, BIOKA 54, 22B
- JOHNSON, N. L. TABLE OF PERCENTAGE POINTS OF NON-CENTRAL CHI. BIOKA 69.255
- JOHNSON, N. L. TABLE OF PERCENTACE POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2 EXPRESSED, BIOKA 63, 459
- JOHNSON, N. L. TABLES TO FACILITATE FITTING S-SUB-U FREQUENCY CURVES. BIOKA 65. 547
- JOHNSON, N. L. THE DISTRIBUTION OF THE COEFFICIENT OF VARIATION, COMMENT ON A CRITICISM MADE BY KOOPMANS, BIOKA 65, 303
- JOHNSON, N. L. THE EFFECT OF NON-NORMALITY ON THE POWER FUNCTION OF THE F-TEST IN THE ANALYSIS OF VARIANC, BIOKA 51, 43
- JOHNSON, N. L. THE FOLDED NORMAL DISTRIBUTION, III. ACCURACY OF ESTIMATION BY MAXIMUM LIKELIHOOD, TECH 62, 249
- JOHNSON, N. L. THE MEAN DEVIATION, WITH SPECIAL REFERENCE TO SAMPLES
- FROM A PEARSON TYPE III POPULATION, BIOKA 58, 47B JOHNSON, N. L. THEORETICAL CONSIDERATIONS REGARDING H. R. B. HACK'S
- SYSTEM OF RANDOMIZATION FOR CROSS-CLA, BIOKA 5B, 265
 JOHNSON, N. L. UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT
- PRONENESS, BIOKA 57, 530 JOHNSON, NORMAN L. PATHS AND CHAINS OF RANDOM STRAIGHT-LINE SEG-
- MENTS, TECH 66, 303

 JOHNSON, NORMAN L. QUERY, DISTRIBUTION OF A RANKED OBSERVATION,
- TECH 64, 329

 JOHNSON, R. A. AN ASYMPTOTIC EXPANSION FOR POSTERIOR DISTRIBU-
- TIONS, AMS 67, 1899

 JOHNSON, R. A. ASYMPTOTIC EXPANSIONS ASSOCIATED WITH THE N'TH POWER
- OF A DENSITY, AMS 67, 1266
- JOHNSON, R. A. ON HODCES'S BIVARIATE SICN TEST AND A TEST FOR UNIFORMITY OF A CIRCULAR DISTRIBUTION, BIOKA 69, 446
- JOHNSON, RICHARD A. APPROACH TO DEGENERACY AND THE EFFICIENCY OF SOME MULTIVARIATE TESTS, AMS 6B. 1654
- JOHNSON, RICHARD A. ASYMPTOTICALLY MOST POWERFUL TESTS IN MARKOV PROCESSES, AMS 69, 1207
- JOHNSON, RICHARD A. NONPARAMETRIG TESTS FOR SHIFT AT UNKNOWN TIME POINT, AMS 68, 1731
- JOHNSON, W. L. MOMENTS OF A SERIAL CORRELATION COEFFICIENT, JRSSB 65.30B
- JOHNSTON, J. A REVISED TEST FOR SYSTEMATIC OSCILLATION, JRSSB 54.
- JOINER, BRIAN L. THE MEDIAN SIGNIFICANCE LEVEL AND OTHER SMALL SAM-
- PLE MEASURES OF TEST EFFICIENCY, JASA 69, 971 JOLICOEUR, P. INTERVAL ESTIMATION OF THE SLOPE OF THE MAJOR AXIS OF
- A BIVARIATE NORMAL DISTRIBUTION IN TH. SLOVE OF THE MAJOR AXIS OF JOLLY, G. M. ESTIMATES OF POPULATION PARAMETERS FROM MULTIPLE
- RECAPTURE DATA WITH BOTH DEATH AND DILUTION, BIOKA 63, 113

 JOLLY, G. M. EXPLICIT ESTIMATES FROM CAPTURE-RECAPTURE DATA WITH
- BOTH DEATH AND IMMIGRATION-STOCHASTIC MO, BIOKA 65, 225

 JONCKHEERE, A. R. A DISTRIBUTION-FREE K-SAMPLE TEST AGAINST ORDERED ALTERNATIVES, BIOKA 54, 133
- JONES, HOWARD L. HOW MANY OF A CROUP OF RANDOM NUMBERS WILL BE USABLE
- IN SELECTING A PARTICULAR SAMPLE, JASA 59, 102

 JONES, HOWARD L. INADMISSIBLE SAMPLES AND CONFIDENCE LIMITS, JASA
- 5B, 482

 JONES, HOWARD L. INVESTIGATING THE PROPERTIES OF A SAMPLE MEAN BY
- EMPLOYING RANDOM SUBSAMPLE MEANS, JASA 56, 54
 JONES, HOWARD L. THE ANALYSIS OF VARIANCE OF DATA FROM STRATIFIED
- SUBSAMPLES, JASA 68, 64
 JONES, LYLE V. THE RATIONAL ORICIN FOR MEASURING SUBJECTIVE VALUES,
- JASA 57, 458

 JONES, M. B. NOTES. ON THE EVALUATION OF VARIABILITY IN ISOCENIC HYBRIDS, BIOCS 66, 623
- JONES, M. Q. SIMULTANEOUS CONFIDENCE INTERVALS FOR VARIANCES, JASA 69,324
- JONES, M. V. ASYMPTOTIC DISTRIBUTION OF LINEAR COMBINATIONS OF FUNCTIONS OF ORDER STATISTICS WITH APPLICA. AMS 67, 52
- JONES, R. H. EXPONENTIAL SMOOTHING FOR MULTIVARIATE TIME SERIES, JRSSB 66, 241
- JONES, R. H. TIME SERIES WITH PERIODIC STRUCTURE, BIOKA 67, 403
- JONES, R. MORLEY ON A PROPERTY OF INCOMPLETE BLOCKS, JRSSB 59, 172
- JONES, RICHARD H. A REAPPRAISAL OF THE PERIODOCRAM IN SPECTRAL ANAL-YSIS, TECH 65, 531
- JONES, RICHARD H. ESTIMATION OF THE INNOVATION VARIANCE OF A STA-TIONARY TIME SERIES, JASA 6B, 141
- JONES, RICHARD H. MULTIPLE REGRESSION WITH STATIONARY ERRORS, JASA 66,917

- JONES, RICHARD H. PHASE FREE ESTIMATION OF COHERENCE, AMS 69, 540 JONES, RICHARD H. REGRESSION ON A RANDOM FIELD, JASA 69, NO.4
- JONES, RICHARD H. SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVA-TIONS, AMS 62, 455
- JONES, RICHARD H. STOCHASTIC PROCESSES ON A SPHERE, AMS 63, 213
- JORGENSON, DALE W. ANTICIPATIONS AND INVESTMENT BEHAVIOR IN UNITED STATES MANUFACTURING 1947-1960, JASA 69, 67
- JORGENSON, DALE W. MINIMUM VARIANCE, LINEAR, UNBIASED SEASONAL ADJUSTMENT OF ECONOMIC TIME SERIES, CORR., JASA 64, 6B1
- JORCENSON, DALE W. MULTIPLE REGRESSION ANALYSIS OF A POISSON PROCESS, JASA 61, 235
- JORGENSON, DALE W. SEASONAL ADJUSTMENT OF DATA FOR ECONOMETRIC ANALYSIS, JASA 67, 137
- JOSEPH, A. W. SUBSIDIARY SEQUENCES FOR SOLVING LESER'S LEAST-SQUARES GRADUATION EQUATIONS. JRSSB 62, 112
- JOSEPH, A. W. THE TWO-PACK MATCHING PROBLEM, JRSSB 60, 114
- JOSHI, P. C. RECURRENCE RELATIONS BETWEEN MOMENTS OF ORDER STATISTICS FOR EXCHANGEABLE VARIATES, AMS 6B, 272
- JOSHI, PRAKASH C. BOUNDS AND APPROXIMATIONS FOR THE MOMENTS OF ORDER STATISTICS. JASA 69, NO. 4
- JOSHI, V. M. ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE POPULATIONS, I, AMS 65, 1707
- JOSHI, V. M. ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE POPULATIONS, II, AMS 65, 1723
- JOSHI, V. M. ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE POPULATIONS, III, AMS 65, 1730
- JOSHI, V. M. ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE
 POPULATIONS IV AMS 66, 1658
- JOSHI, V. M. ADMISSIBILITY OF CONFIDENCE INTERVALS, AMS 66, 629
- JOSHI, V. M. ADMISSIBILITY OF THE SAMPLE MEAN AS ESTIMATE OF THE MEAN OF A FINITE POPULATION, AMS 68, 606
- JOSHI, V. M. ADMISSIBILITY OF THE USUAL CONFIDENCE SETS FOR THE MEAN OF A UNIVARIATE OR BIVARIATE NORMAL, AMS 69, 1042
- JOSHI, V. M. CONFIDENCE INTERVALS FOR THE MEAN OF A FINITE POPULATION, AMS 67, 11B0
- JOSHI, V. M. DISTRIBUTION-FREE SUFFICIENCY IN SAMPLING FINITE
- POPULATIONS, JRSSB 6B, 551 JOSHI, V. M. INADMISSIBILITY OF THE USUAL CONFIDENCE SETS FOR THE
- MEAN OF A MULTIVARIATE NORMAL POPULATIO. AMS 67, 186B JOSHI, V. M. NOTE ON A MINIMAX DESIGN FOR CLUSTER SAMPLING, AMS 6B,
- 27B JOSHI, V. M. ON A THEOREM OF KARLIN REGARDING ADMISSIBLE ESTIMATES FOR EXPONENTIAL POPULATIONS, AMS 69, 216
- JOURIS, G. M. ON THE DISTRIBUTIONS OF THE RATIOS OF THE ROOTS OF A COVARIANCE MATRIX AND WILKS' CRITERION, AMS 69, NO.6
- JOWETT, G. H. APPLICATIONS OF JORDAN'S PROCEDURE FOR MATRIX INVER-SION IN MULTIPLE REGRESSION AND MULTIVAR, JRSSB 63, 352
- JOWETT, G. H. JUMP ANALYSIS, BIOKA 59, 3B6
- JOWETT, G. H. LEAST SQUARES REGRESSION ANALYSIS FOR TREND-REDUCED TIME SERIES, JRSSB 55, 91
- JOWETT, C. H. SAMPLING PROPERTIES OF LOCAL STATISTICS IN STATIONARY STOCHASTIC SERIES, BIOKA 55, 160
- STOCHASTIC SERIES, BIOKA 55, 160

 JOWETT, G. H. STATISTICAL ANALYSIS USING LOCAL PROPERTIES OF
- SMOOTHLY HETEROMORPHIC STOCHASTIC SERIES, BIOKA 57, 454
 JOWETT, C. H. THE COMPARISON OF MEANS OF SETS OF OBSERVATIONS FROM
- SECTIONS OF INDEPENDENT STOCHASTIC SER, JRSSB 55, 20B JOWETT, G. H. THE FITTING OF MARKOFF SERIAL VARIATION CURVES, JRSSB
- 5B, 120 JUDCE, G. G. INEQUALITY RESTRICTIONS IN REGRESSION ANALYSIS, JASA
- 66, 166 JUDGE, C. G. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION OF TRANSI-
- TION PROBABILITIES., JASA 6B, 1162 JURECKOVA, JANA ASYMPTOTIC LINEARITY OF A RANK STATISTIC IN RECRES-
- SION PARAMETER, AMS 69, NO.6 JUSTER, F. THOMAS CONSUMER BUYING INTENTIONS AND PURCHASE PROBA-BILITY, AN EXPERIMENT IN SURVEY DESICN, JASA 66, 658
- KABE, D. G. A NOTE ON THE BARTLETT DECOMPOSITION OF A WISHART MATRIX, JRSSB 64, 270
- KABE, D. C. A NOTE ON THE EXACT DISTRIBUTIONS OF THE GENERALIZED CLASSICAL LINEAR ESTIMATORS IN TWO LEADI, JASA 63, 535
- KABE, D. G. DECOMPOSITION OF WISHART DISTRIBUTION, BIOKA 64, 267
- KABE, D. C. EXTENSION OF COCHRAN'S FORMULAE FOR ADDITION OR OMISSION OF A VARIATE IN MULTIPLE REGRESSION, JASA 63, 527
- KABE, D. C. CENERALIZATION OF SVERDRUP'S LEMMA AND ITS APPLICATIONS TO MULTIVARIATE DISTRIBUTION THEORY. AMS 65, 671
- KABE, D. G. MULTIVARIATE LINEAR HYPOTHESIS WITH LINEAR RESTRIC-TIONS, JRSSB 63, 348
- KABE, D. G. ON MULTIVARIATE PREDICTION INTERVALS FOR SAMPLE MEAN AND COVARIANCE BASED ON PARTIAL OBSERVAT, JASA 67.634
- KABE, D. G. ON THE DISTRIBUTIONS OF DIRECTION AND COLLINEARITY FACTORS IN DISCRIMINANT ANALYSIS, AMS 68, B55
- KABE, D. G. ON THE EXACT DISTRIBUTION OF A CLASS OF MULTIVARIATE TEST CRITERIA, AMS 62, 1197
- KABE, D. G. ON THE EXACT DISTRIBUTIONS OF THE GENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING THREE-, JASA 64, BB1
- KABE, D. G. SOME APPLICATIONS OF MEIJER-G FUNGTIONS TO DISTRIBUTION PROBLEMS IN STATISTIGS, BIOKA 58, 57B

- KABE, D. C. SOME RESULTS ON THE DISTRIBUTION OF TWO RANDOM MATRICES USED IN CLASSIFACATION PROCEDURES, CO, AMS 63, 181
- KABE, D. C. STEPWISE MULTIVARIATE LINEAR RECRESSION, JASA 63, 770
- KABIR, A. B. M. L. ESTIMATION OF PARAMETERS OF A FINITE MIXTURE OF DISTRIBUTIONS, JRSSB 6B, 472
- KADANE, JOSEPH B. SOME EQUIVALENCE CLASSES IN PAIRED COMPARISONS, AMS 66, 488
- KADIYALA, KOTESWARA RAO AN INEQUALITY FOR THE RATIO OF TWO QUADRATIC FORMS IN NORMAL VARIATES, AMS 68, 1762
- KADIYALA, KOTESWARA RAO EFFICIENCY OF THE SAMPLE MEAN WHEN
- RESIDUALS FOLLOW A FIRST-ORDER STATIONARY MARK, JASA 68, 1237
- KAHN, LOUIS B. A STATISTICAL MODEL OF EVALUATING THE RELIABILITY OF SAFETY SYSTEMS FOR PLANTS MANUFACTURI, TECH 59, 293 KAILATH, THOMAS ON MEASURES EQUIVALENT TO WIENER MEASURE, AMS 67,
- 261 KAITZ, HYMAN B. A CHECK ON GROSS ERRORS IN CERTAIN VARIANCE COMPUTA-
- TIONS, JASA 59, 741 KAKWANI, N. C. THE UNBIASEDNESS OF ZELLNER'S SEEMINCLY UNRELATED
- RECRESSION EQUATIONS ESTIMATORS, JASA 67, 141 KALBFLEISCH. JOHN D. EXAMPLES OF LIKELIHOODS AND COMPARISON WITH
- POINT ESTIMATES AND LARGE SAMPLE APPROXI, JASA 69, 46B
- KALE, B. K. A NOTE ON A PROBLEM IN ESTIMATION, BIOKA 62, 553
- KALE, B K A NOTE ON THE LOSS OF INFORMATION DUE TO CROUPING OF OB-SERVATIONS, BIOKA 64, 495
- KALE, B. K. APPROXIMATIONS TO THE MAXIMUM-LIKELIHOOD ESTIMATOR USINC CROUPED DATA, BIOKA 66, 282
- KALE, B. K. CORRICENDA, 'ON THE SOLUTION OF THE LIKELIHOOD EQUATION BY ITERATION PROCESSES', BIOKA 62, 284
- KALE, B. K. INFERENCE FOR SOME INCOMPLETELY SPECIFIED MODELS IN-VOLVINC NORMAL APPROXIMATIONS TO DISCRETE, BIOCS 67, 335
- KALE, B. K. ON THE SOLUTION OF LIKELIHOOD EQUATIONS BY ITERATION PROCESSES MULTIPARAMETRIC CASE, BIOKA 62. 479
- KALE, B. K. ON THE SOLUTION OF THE LIKELIHOOD EQUATION BY ITERATION
- PROCESSES, BIOKA 61, 452 KALE, B. K. SOME REMARKS ON A METHOD OF A MAXIMUM-LIKELIHOOD ESTIMA-
- TION PROPOSED BY RICHARDS, JRSSB 63, 209 KALLIANPUR, G. ESTIMATION OF STOCHASTIC SYSTEMS, ARBITRARY SYSTEM
- PROCESS WITH ADDITIVE WHITE NOISE OBSER, AMS 6B, 785 KAMAT, A. R. (ACKNOWLEDCEMENT OF PRIORITY), 'A PROPERTY OF THE MEAN
- DEVIATION FOR THE PEARSON TYPE DISTRI, BIOKA 67, 333 KAMAT, A. R. A CENERALIZATION OF JOHNSON'S PROPERTY OF THE MEAN DEVIATION FOR A CLASS OF DISCRETE DISTRIB, BIOKA 66, 2B5
- KAMAT, A R A PROPERTY OF THE MEAN DEVIATION FOR A CLASS OF CONTINU-OUS DISTRIBUTIONS., BIOKA 65, 288
- KAMAT, A. R. A PROPERTY OF THE MEAN DEVIATION FOR THE PEARSON TYPE DISTRIBUTIONS, BIOKA 66, 2B7
- KAMAT, A.R. A TWO-SAMPLE DISTRIBUTION-FREE TEST, BIOKA 56, 377
- KAMAT, A R. APPROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFE, BIOKA 57, 349
- KAMAT, A R. ASYMPTOTIC POWER OF CERTAIN TEST CRITERIA, BASED ON FIRST AND SECOND DIFFERENCES, FOR SERIAL, AMS 62, 1B6
- KAMAT, A. R. CORRIGENDA TO 'ON THE MEAN SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARE', BIOKA 5B. 587
- DISTRIBUTION THEORY OF TWO ESTIMATES FOR STANDARD KAMAT, A. R
- DEVIATION BASED ON SECOND VARIATE DIFFEREN, BIOKA 54, 1 KAMAT, A. R. INCOMPLETE AND ABSOLUTE MOMENTS OF THE MULTIVARIATE
- NORMAL DISTRIBUTION WITH SOME APPLICATIO, BIOKA 53, 20 KAMAT, A.R. MOMENTS OF THE MEAN DEVIATION, BIOKA 54, 541
- KAMAT, A. R. ON THE MEAN SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARE, BIOKA 53, 116
- KAMAT, A. R. SOME MORE ESTIMATES OF CIRCULAR PROBABLE ERROR, JASA 62.191
- KAMAT, A.R. THE THIRD MOMENT OF GINI'S MEAN DIFFERENCE, BIOKA 53,
- KAMERSCHEN, DAVID R. MARKET GROWTH AND INDUSTRY CONCENTRATION,
- KANAZAWA, MITSUYO MINIMIZATION OF EICENVALUES OF A MATRIX AND OP-
- TIMALITY OF PRINCIPAL COMPONENTS, AMS 68, 859 KANDER, Z. TEST PROCEDURES FOR POSSIBLE CHANCES IN PARAMETERS OF
- STATISTICAL DISTRIBUTIONS OCCURING AT UN. AMS 66, 1196 KANTER, MAREK ON DISTINGUISHING TRANSLATES OF MEASURES, AMS 69,
- 1773
- KAO, EDWARD P. C. A NOTE ON A NON-PARAMETRIC APPROACH TO THE 2-CUBE FACTORIAL DESIGN, TECH 69, 193
- KAO, JOHN H. K. A GRAPHICAL ESTIMATION OF MIXED WEIBULL PARAMETERS IN LIFE TESTING ELECTRON TUBES, TECH 59, 3B9
- KAO, JOHN H. K. QUERY, SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE PARAMETERS, TECH 64, 471
- KAPADAI, C. H. ON THE BLOCK STRUCTURE OF SINGULAR GROUP DIVISIBLE DESIGNS, AMS 66, 139B
- KAPADIA, C. H COMBINING INTRA AND INTER BLOCK ANALYSIS OF GROUP DIVISIBLE DESIGNS, TECH 66, 18B
- KAPADIA, C. H. ON THE ANALYSIS OF GROUP DIVISIBLE DESIGNS, JASA 64.
- KAPADIA, C. H. ON THE DISTRIBUTIONS OF THE RANGE AND MEAN RANCE FOR SAMPLES FROM A NORMAL DISTRIBUTION, BIOKA 66, 245

- KAPADIA, C. H. VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH INTERACTION, BIOKA 63, 327
- KAPLAN, E. L. NONPARAMETRIC ESTIMATION FROM INCOMPLETE OBSERVA-TIONS, JASA 5B, 457
- KAPLAN, E. L. TENSOR NOTATION AND THE SAMPLING CUMULANTS OF K-STATISTICS, BIOKA 52, 319
- KAPLAN, NORMAN M. SOME METHODOLOCICAL NOTES ON THE DEFLATION OF CON-STRUCTION, JASA 59, 535
- KAPUR, M. N. PROBABILITY DISTRIBUTIONS ARISING FROM POINTS ON A LINE, BIOKA 54, 553
- KARAS, J. PUBLICATIONS OF FRANK WILCOXON (1892-1965), BIOCS 67, 1 KARLIN, SAMUEL CONDITIONED LIMIT THEOREMS, AMS 63, 1147
- KARLIN, SAMUEL DISTRIBUTIONS POSSESSING A MONOTONE LIKELIHOOD RATIO, JASA 56, 637
- KARLIN, SAMUEL EMBEDDING OF URN SCHEMES INTO CONTINUOUS TIME MARKOV BRANCHING PROCESSES AND RELATED LIMIT, AMS 68, 1801
- KARLIN, SAMUEL OPTIMAL EXPERIMENTAL DESIGNS, AMS 66, 7B3
- KARLIN, SAMUEL PROPERTIES OF THE STATIONARY MEASURE OF THE CRITICAL CASE SIMPLE BRANCHINC PROCESS, AMS 67, 977
- KARPINOS, BERNARD D. CURRENT WEICHT-HEICHT RELATIONSHIPS OF YOUTHS OF MILITARY AGE, JASA 62, B95
- KARPINOS, BERNARD D. WEICHT-HEICHT STANDARDS BASED ON WORLD WAR II EXPERIENCE, JAS 58, 408
- KARSON, M. J. MINIMUM BIAS ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE SURFACES. TECH 69, 461
- KARST, OTTO J. LINEAR CURVE FITTING USING LEAST DEVIATIONS, JASA 5B,
- KARUSH, J. ON THE SEMIMARTINCALE CONVERCENCE THEOREM, AMS 66, 690 KARUSH, JACK ON THE CHAPMAN-KOLMOCOROV EQUATION, AMS 61, 1333
- KASTEMBAUM, M A. THE SEPARATION OF MOLECULAR COMPOUNDS BY COUNTER-CURRENT DIALYSIS, A STOCHASTIC PROCESS, BIOKA 60, 69
- KASTEN, ETHELL. RAPID ANALYSIS OF 2X2 TABLES, JASA 57, 18 KATHIRGAMATAMBY, N NOTE ON THE POISSON INDEX OF DISPERSION, BIOKA
- 53, 225
- KATTI, S. K. BIOLOGICAL EXAMPLES OF SMALL EXPECTED FREQUENCIES, BIOCS 65, 49 KATTI, S. K. DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTING MUL-
- TIVARIATE LINEAR HYPOTHESES, AMS 61, 333 KATTI, S. K EFFICIENCY OF CERTAIN METHODS OF ESTIMATION FOR THE
- NECATIVE BINOMIAL AND NEYMAN TYPE A DIST, BIOKA 62, 215 KATTI, S. K. FITTING OF SOME CONTACIOUS DISTRIBUTIONS TO SOME
- AVAILABLE DATA BY THE MAXIMUM LIKELIHOOD ME, BIOCS 65, 34 KATTI, S. K. INFINITE DIVISIVILITY OF INTECER-VALUED RANDOM VARIA-
- BLES, AMS 67, 1306 KATTI, S. K. INTERRELATIONS AMONG GENERALIZED DISTRIBUTIONS AND
- THEIR COMPONENTS, BIOCS 66, 44 KATTI, S. K. MULTIPLY COVARIATE ANALYSIS (CORR. 66 962), BIOCS 65,
- KATZ JR. MELVIN A BOUND FOR THE LAW OF LARGE NUMBERS FOR DISCRETE MAR-
- KOV PROCESSES, AMS 61, 336 KATZ, L. COMPARISON OF THE POWER FUNCTIONS FOR THE TEST OF INDEPEN-
- DENCE IN 2X2 CONTINGENCY TABLES, AMS 64, 1115 KATZ, MELVIN A NOTE ON THE WEAK LAW OF LARGE NUMBERS, AMS 6B, 1348
- KATZ, MELVIN L. NOTE ON THE BERRY-ESSEN THEOREM, AMS 63, 1107
- KATZ, MELVIN L. ON THE INFLUENCE OF MOMENTS ON THE ASYMPTOTIC DIS-
- TRIBUTION OF SUMS OF RANDOM VARIABLES, AMS 63, 1042 KATZ, MELVIN L. THE PROBABILITY IN THE TAIL OF A DISTRIBUTION, AMS
- 63, 312
- KATZ, MORRIS W ADMISSIBLE AND MINIMAX ESTIMATES OF PARAMETERS IN TRUNCATED SPACES, AMS 61, 136
- KATZ, MORRIS W. ESTIMATING ORDERED PROBABILITIES, AMS 63, 967 KATZ, S. FREQUENCY RESPONSE FROM STATIONARY NOISE, TWO CASE HISTO-
- RIES, TECH 61, 245
- BAYESIAN ANALYSIS OF THE INDEPENDENT MULTINORMAL KAUFMAN. C. M PROCESS, NEITHER MEAN NOR PRECISION KNOWN, JASA 65, 347 KAUFMAN, CORDON M. OPTIMAL SAMPLE SIZE IN TWO-ACTION PROBLEMS WHEN
- THE SAMPLE OBSERVATIONS ARE LOCNORMAL, JASA 6B, 653 KAUFMAN, H. DISTRIBUTIONS OF RANDOM VARIABLES WITH RANDOM PARAME-
- TERS, SASJ 69. 1 KAWATA, T SOME INTEGRAL TRANSFORMS OF CHARACTERISTIC FUNCTIONS,
- AMS 68, 1923
- KEIFER, J. OPTIMUM EXPERIMENTAL DESIGNS (WITH DISCUSSION), JRSSB 59. 272
- KEILSON, J. A TECHNIQUE FOR DISCUSSING THE PASSAGE TIME DISTRIBU-TION FOR STABLE SYSTEMS, JRSSB 66, 477
- KEILSON, J. ON THE ASYMPTOTIC BEHAVIOUR OF QUEUES, JRSSB 63, 464
- KEILSON, J. ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINGLE SERVER, AMS 62, 767
- KEILSON, J. ON THE MATRIX RENEWAL FUNCTION FOR MARKOV RENEWAL PROCESSES, AMS 69, NO.6
- KEILSON, J. THE ERGODIC QUEUE LENGTH DISTRIBUTION FOR QUEUEING SYSTEMS WITH FINITE CAPACITY, JRSSB 66, 190
- KEILSON, J. THE GENERAL BULK QUEUE AS A HILBERT PROBLEM (CORR. 64 487), JRSSB 62, 344
- KEILSON, JULIAN A LIMIT THEOREM FOR PASSAGE TIMES IN ERGODIC RECENERATIVE PROCESSES, AMS 66, B66

- KEILSON. JULIAN QUEUES SUBJECT TO SERVICE INTERRUPTION, AMS 62,
- KEILSON, JULIAN THE FIRST PASSAGE TIME DENSITY FOR HOMOGENEOUS SKIP-FREE WALKS ON THE CONTINUUM, AMS 63, 1003
- SELECTION, H. H. MISSING OBSERVATIONS IN MULTIVARIATE REGRESSION, EFFICIENCY OF A FIRST ORDER METHOD, JASA 69, NO. 4
- KELLER, JOSEPH B. FACTORIZATION OF MATRICES BY LEAST-SQUARES, BIOKA 62, 239
- KEMENY, JOHN G. ON MARKOV CHAIN POTENTIALS, AMS 61, 709
- KEMP JR, L.F. CONSTRUCTION OF JOINT PROBABILITY DISTRIBUTIONS, AMS 6B. 1354
- KEMP, A. W. GENERALIZED HYPERGEOMETRIC DISTRIBUTIONS, JRSSB 56, 202
- KEMP, A. W. ON A DISTRIBUTION ASSOCIATED WITH CERTAIN STOCHASTIC PROCESSES, JRSSB 68, 160
- KEMP, ADRIENNE SOME PROPERTIES OF THE 'HERMITE' DISTRIBUTION, BIOKA 65, 381
- KEMP, ADRIENNE W. AN ALTERNATIVE DERIVATION OF THE HERMITE DISTRIBUTION, BIOKA 66, 627
- KEMP, C.D. AN ALTERNATIVE DERIVATION OF THE HERMITE DISTRIBUTION, BIOKA 66, 627
- KEMP, C. D. GENERALIZED HYPERGEOMETRIC DISTRIBUTIONS, JRSSB 56, 202
- KEMP, C. D. ON A CONTAGIOUS DISTRIBUTION SUGGESTED FOR ACCIDENT DATA, BIOCS 67, 241
- KEMP, C. D. ON A DISTRIBUTION ASSOCIATED WITH CERTAIN STOCHASTIC PROCESSES, JRSSB 68, 160
- KEMP, C.D. SOME PROPERTIES OF THE 'HERMITE' DISTRIBUTION, BIOKA 65, 3B1
- KEMP, K. W. A SIMPLE PROCEDURE FOR DETERMINING UPPER AND LOWER LIMITS FOR THE AVERAGE SAMPLE RUN LENGTH 0, JRSSB 67, 263
- KEMP, K. W. FORMAL EXPRESSIONS WHICH CAN BE USED FOR THE DETERMINA-TION OF THE OPERATING CHARACTERISTIC AN, JRSSB 67, 24B
- TION OF THE OPERATING CHARACTERISTIC AN, JRSSB 67, 24B
 KEMP, K. W. FORMULAE FOR CALCULATING THE OPERATING CHARACTERISTIC
 AND THE AVERAGE SAMPLE NUMBER OF SOME S, JRSSB 58, 379
- KEMP, K. W. SAMPLING INSPECTION OF CONTINUOUS PROCESSES WITH NO AU-TOCORRELATION BETWEEN SUCCESSIVE RESULT, BIOKA 60, 363
- KEMP, K. W. THE AVERAGE RUN LENGTH OF THE CUMULATIVE SUM CHART WHEN A
- V-MASK IS USED, JRSSB 61, 149 KEMP, KENNETH W. AN EXAMPLE OF ERRORS INCURRED BY ERRONEOUSLY ASSUM-
- ING NORMALITY FOR CUSUM SCHEMES, TECH 67, 457

 KEMPERMAN, J. H. B. A WIENER-HOPF TYPE METHOD FOR A GENERAL RANDOM
- WALK WITH A TWO-SIDED BOUNDARY, AMS 63, 116B KEMPERMAN, J. H. B. ON THE OPTIMUM RATE OF TRANSMITTING INFORMATION,
- KEMPERMAN, J. H. B. ON THE OPTIMUM RATE OF TRANSMITTING INFORMATION AMS 69, NO.6
- KEMPERMAN, J. H. B. THE GENERAL MOMENT PROBLEM, A GEOMETRIC AP-PROACH, AMS 68, 93 KEMPTHORNE, O. EXAMINATION OF A REPEAT MATING DESIGN FOR ESTIMATING
- ENVIRONMENTAL AND GENETIC TRENDS, BIOCS 65, 63
- KEMPTHORNE, O. THE BEHAVIOUR OF SOME SIGNIFICANCE TESTS UNDER EX-PERIMENTAL RANDOMIZATION, BIOKA 69, 231
- KEMPTHORNE, O. THE EFFICIENCY OF BLOCKING IN INCOMPLETE BLOCK DESIGNS, BIOKA 60, 273
- KEMPTHORNE, O. TWO CLASSES OF GROUP DIVISIBLE PARTIAL DIALLEL CROSSES, BIOKA 63, 281
- KEMPTHORNE, OSCAR DISCUSSION OF 'ON THE FOUNDATIONS OF STATISTICAL INFERENCE', JASA 62, 307
 KEMPTHORNE, OSCAR DISCUSSION OF THE PAPERS OF MESSRS. SAT-
- TERTHWAITE AND BUDNE, TECH 59, 157
 KEMPTHORNE, OSCAR NON-ADDITIVITIES IN A LATIN SQUARE DESIGN, JASA
- 57,218
 KEMPTHORNE, OSCAR SOME ASPECTS OF EXPERIMENTAL INFERENCE, JASA 66.
- 11 KEMPTHORNE, OSCAR SOME MAIN-EFFECT PLANS AND ORTHOGONAL ARRAYS OF
- STRENGTH TWO, AMS 61.1167 KENDALL, D. G. BIRTH-AND-DEATH PROCESSES, AND THE THEORY OF CAR-
- CINOGENESIS, BIOKA 60, 13
 KENDALL, D. G. SOME PROBLEMS IN THE THEORY OF DAMS (WITH DISCUS-
- SION), JRSSB 57, 207
- KENDALL, M. G. A THEOREM IN TREND ANALYSIS, BIOKA 61, 224
- KENDALL, M. G. ERRATA IN 'TABLES OF SYMMETRIC FUNCTIONS', BIOKA 58, 292
- KENDALL, M. G. MOMENT-STATISTICS IN SAMPLES FROM A FINITE POPULA-TION, BIOKA 52, 14 KENDALL, M. G. NOTE ON BIAS IN THE ESTIMATION OF AUTOCORRELATION,
- RENDALL, M. G. NOTE ON BIAS IN THE ESTIMATION OF AUTOCORRELATION, BIOKA 54, 403
- KENDALL, M. G. RANKS AND MEASURES, BIOKA 62, 133
- KENDALL, M. G. REGRESSION, STRUCTURE AND FUNCTIONAL RELATIONSHIP, BIOKA 51, 11
- KENDALL, M. G. REGRESSION, STRUCTURE AND FUNCTIONAL RELATION— SHIPS.II., BIOKA 52, 96
- KENDALL, M. G. RONALD AYLMER FISHER, 1890-1962, BIOKA 63, 1
- KENDALL, M.G. SHORT PROOF OF DR HARLEY'S THEOREM ON THE CORRELATION COEFFICIENT, BIOKA 58, 571
- KENDALL, M. G. SOME QUESTIONS OF DISTRIBUTION IN THE THEORY OF RANK CORRELATION, BIOKA 51, 131

- KENDALL, M. G. STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. X. WHERE SHALL THE HISTORY OF STATIS, BIOKA 60, 447
- KENDALL, M. G. STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS.
 II. THE BEGINNINGS OF A PROBABILITY, BIOKA 56, 1
 KENDALL, M. G. STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS.
- XI. DANIEL BERNOULLI ON MAXIMUM LIKE, BIOKA 61, 1
 KENDALL, M. G. STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS.
- V.A NOTE ON PLAYING CARDS, BIOKA 57, 260

 KENDALL, M. G. STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS.
- KENDALL, M. G. STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS XII. THE BOOK OF FATE, BIOKA 61, 220
- KENDALL, M. G. STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. XIII. ISAAC TODHUNTER'S HISTORY OF T, BIOKA 63, 204
- KENDALL, M. G. STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS.
 XVIII. THOMAS YOUNG ON COINCIDENCES, BIOKA 6B, 249
- KENDALL, M. G. STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. XIX. FRANCIS YSIDRO EDGEWORTH (1845-, BIOKA 6B, 269
- KENDALL, M. G. TABLES OF SYMMETRIC FUNCTIONS. PART IV., BIOKA 53, $427\,$
- KENDALL, M. G. TABLES OF SYMMETRIC FUNCTIONS. PART V., BIOKA 55, 223 KENDALL, M. G. TABLES OF SYMMETRIC FUNCTIONS. PARTS II AND III., BIOKA 51, 435
- KENDALL, M. G. THE DISCARDING OF VARIABLES IN MULTIVARIATE ANALY-SIS, BIOKA 67. 357
- KENDALL, M. G. THE GEOMETRY OF ESTIMATION, BIOKA 51, 150
- KENDALL, M. G. THE MOMENTS OF THE LEIPNIK DISTRIBUTION, BIOKA 57, 270
- KENDALL, M. G. TWO PROBLEMS IN SETS OF MEASUREMENTS, BIOKA 54, 560
- KENNARD, R. W. COMPUTER AIDED DESIGN OF EXPERIMENTS, TECH 69, 137
- KERR, J. D. THE ESTIMATION OF THE 'SHORT' DISTRIBUTION, BIOCS 69, $417\,$
- KERRICH, J. E. NOTE ON A DISCONTINUOUS PROBABILITY DENSITY, BIOKA 5B, 270
- KERRICH, J. E. STATISTICS IN SOUTH AFRICA, SASJ 68, 109
- KERRICH, J. E. THE SOUTH AFRICAN STATISTICAL ASSOCIATION, A SKETCH OF ITS ORIGINS AND GROWTH, SASJ 67, 1
- KERRIDGE, D. BOUNDS FOR THE FREQUENCY OF MISLEADING BAYES IN-FERENCE, AMS 63, 1109
- KERRIDGE, D. ERRORS OF PREDICTION IN MULTIPLE REGRESSION, TECH 67, 309
- KERRIDGE, D. PROBABILISTIC SOLUTION OF THE SIMPLE BIRTH PROCESS, BIOKA 64, 258
- KERRIDGE, D. F. A GENERAL MAXIMUM LIKELIHOOD DISCRIMINANT, BIOCS 67, 313
- KERRIDGE, D. F. INACCURACY AND INFERENCE, JRSSB 61, 184
- KESTEN, H. A LIMIT THEOREM FOR MULTIDIMENSIONAL GALTON-WATSON PROCESSES, AMS 66, 1211
- KESTEN, H. ADDITIONAL LIMIT THEOREMS FOR INDECOMPOSABLE MUL-TIDIMENSIONAL GALTON-WATSON PROCESSES, AMS 66, 1463
- KEYFITZ, N. MATRIX AND MULTIPLE DECREMENT IN POPULATION ANALYSIS, BIOCS 67, 485
- KEYFITZ, NATHAN A LIFE TABLE THAT AGREES WITH THE DATA. JASA 66, 305 KEYFITZ, NATHAN A LIFE TABLE THAT AGREES WITH THE DATA. II, JASA 6B. 1253
- KEYFITZ, NATHAN ESTIMATES OF SAMPLING VARIANCE WHERE TWO UNITS ARE SELECTED FROM EACH STRATUM, JASA 57, 503
- KEYFITZ, NATHAN ON THE INTERPRETATION OF AGE DISTRIBUTIONS, JASA 67,862
- KHAIRAT, M. A. A NOTE ON MINIMUM DISCRIMINATION INFORMATION, AMS 66,
- KHAMIS. S. H. SOME BASIC PROPERTIES OF THE INCOMPLETE GAMMA FUNCTION RATIO, CORR. 65 1584, AMS 65, 926
- KHAN, RASUAL A. A GENERAL METHOD OF DETERMINING FIXED-WIDTH CON-FIDENCE INTERVALS, AMS 69, 704
- KHAN, RASUL A. A NOTE ON ESTIMATING THE MEAN OF A NORMAL DISTRIBUTION WITH KNOWN COEFFICIENT OF VARIATION, JASA 68, 1039
- KHAN, S. OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS, AN ANALYTICAL SOLUTION, JRSSB 67, 115
- KHATRI, C. G. A METHOD OF FITTING THE REGRESSION CURVE E(Y)=A+DX+BC-TO-X, TECH 65, 59
- KHATRI, C. G. A TEST FOR REALITY OF A COVARIANCE MATRIX IN A CERTAIN COMPLEX GAUSSIAN DISTRIBUTION, AMS 65, 115
- KHATRI, C. G. A THEOREM ON LEAST SQUARES IN MULTIVARIATE LINEAR REGRESSION, JASA 67, 1494
- KHATRI, C. G. CHARACTERIZATION OF THE INVERSE GAUSSIAN DISTRIBUTION, AMS 62, 800
- KHATRI, C. G. CLASSICAL STATISTICAL ANALYSIS BASED ON A CERTAIN MUL-TIVARIATE COMPLEX GAUSSIAN DISTRIBUTIO, AMS 65, 98
- KHATRI, C. G. CONDITIONS FOR WISHARTNESS AND INDEPENDENCE OF SECOND DEGREE POLYNOMIALS IN NORMAL VECTOR, AMS 62, 1002
- KHATRI, C. G. CORRECTION TO 'ON THE MUTUAL INDEPENDENCE OF CERTAIN STATISTICS' 59 1258, AMS 61, 1344
- KHATRI, C.G. DISTRIBUTION OF A DEFINITE QUADRATIC FORM FOR NON-CEN-TRAL NORMAL VARIATES, CORR. 63 673, AMS 61, 883
- KHATRI, C. G. DISTRIBUTION OF DEFINITE AND OF INDEFINITE QUADRATIC FORMS FROM A NON-CENTRAL NORMAL DISTRI, AMS 63, 186
- KHATRI, C. G. DISTRIBUTION OF THE 'GENERALIZED' MULTIPLE CORRELA-TION MATRIX IN THE DUAL CASE, AMS 64, 1801
- KHATRI, C. G. DISTRIBUTION OF THE LARGEST OR THE SMALLEST CHARAC-TERISTIC ROOT UNDER NULL HYPOTHESIS CONCE, AMS 64, 1807

- KHATRI, C. G. ESTIMATION OF PARAMETERS OF A TRUNCATED BIVARIATE NOR-MAL DISTRIBUTION, JASA 63, 519
- KHATRI, C. C. ON CERTAIN DISTRIBUTION PROBLEMS BASED ON POSITIVE DEFINITE QUADRATIC FUNCTIONS IN NORMAL V, AMS 66, 46B
- KHATRI, C. G. ON CERTAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR APPLICATIONS TO SIMULTANEOUS CON. AMS 67, 1853
- KHATRI, C.C. ON CERTAIN PROPERTIES OF POWER-SERIES DISTRIBUTIONS, BIOKA 59, 486
- KHATRI, C. C. ON MOMENTS OF ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF TWO MATRICES AND APPROXIMATION. AMS 6B, 1274
- KHATRI, C. C. ON TESTING THE EQUALITY OF PARAMETERS IN K RECTANCULAR POPULATIONS, JASA 60, 144
- KHATRI, C.C. ON THE MOMENTS OF THE TRACE OF A MATRIX AND APPROXIMA-TIONS TO ITS NON-CENTRAL DISTRIBUTION, AMS 66, 1312
- KHATRI, C. G. ON THE NON-CENTRAL DISTRIBUTIONS OF TWO TEST CRITERIA IN MULTIVARIATE ANALYSIS OF VARIANCE, AMS 6B, 215
- KHATRI, C. C PROCRESSIVELY CENSORED SAMPLES FROM LOC-NORMAL AND LOCISTIC DISTRIBUTIONS, TECH 69, NO.4
- KHATRI, C. C. SOME DISTRIBUTION PROBLEMS CONNECTED WITH THE CHARAC-TERISTIC ROOTS OF THE PRODUCT OF A WISH, AMS 67, 944
- KHATRI, C.C. SOME RESULTS ON THE NON-CENTRAL MULTIVARIATE BETA DISTRIBUTION AND MOMENTS OF TRACES OF TWO. AMS 65, 1511
- KHAZANIE, R.C. A MENDELIAN MARKOV PROCESS WITH BINOMIAL TRANSITION PROBABILITIES. BIOKA 66, 37
 KIEFER, CRACE VARIANCE ESTIMATION WITH ONE UNIT PER STRATUM, JASA
- 69.841
 KIEFER, J. ADMISSIBLE BAYES CHARACTER OF T-SQUARED, R-SQUARED AND
- OTHER FULLY INVARIANT TESTS FOR CLASSIC. AMS 65, 747

 KIEFER, J. ASYMPTOTICALLY OPTIMUM SEQUENTIAL INFERENCE AND DESICN,
- AMS 63, 705
- KIEFER. J. DISTRIBUTION FREE TESTS OF INDEPENDENCE BASED ON THE SAMPLE DISTRIBUTION FUNCTION, AMS 61.485
- $\tt KIEFER$, J. LOCAL AND ASYMPTOTIC MINIMAX PROPERTIES OF MULTIVARIATE TESTS, $\tt AMS\,64$, 21
- KIEFER, J. MINIMAX CHARACTER OF HOTELLING'S T-SQUARED TEST IN THE SIMPLEST CASE, AMS 63, 1524
- KIEFER, J. MINIMAX CHARACTER OF THE R-SQUARED-TEST IN THE SIMPLEST CASE, AMS $64.\ 1475$
- KIEFER, J. ON A THEOREM OF HOEL AND LEVINE ON EXTRAPOLATION, AMS 65, 1627
- KIEFER. J. ON BAHADUR'S REPRESENTATION OF SAMPLE QUANTILES, AMS 67,
- KIEFER, J. OPTIMUM DESICNS IN RECRESSION PROBLEMS, II, AMS 61, 29B
- KIEFER, J. TWO MORE CRITERIA EQUIVALENT TO D-OPTIMALITY OF DESIGNS,
- KIM. CHOO-WHAN A CENERALIZATION OF ITO'S THEOREM CONCERNING THE POINTWISE ERGODIC THEOREM, AMS 6B, 2145
- KIM. P. J. ON THE EXACT AND APPROXIMATE SAMPLING DISTRIBUTION OF THE TWO SAMPLE KOLMOGOROV-SMIRNOV CRITER, JASA 69, NO. 4
- KIMBALL, A W A MODEL TOR CHEMICAL MUTAGENESIS IN BACTERIOPHAGE, BIOCS 65, 875
- KIMBALL, A. W APPROXIMATE LINEARIZATION OF THE INCOMPLETE BETA-FUNCTION, BIOKA 59, 214
- KIMBALL, A. W ERRORS OF THE THIRD KIND IN STATISTICAL CONSULTING. JASA 57. 133
- KIMBALL, A. W MODELS FOR THE ESTIMATION OF COMPETING RISKS FROM GROUPED DATA, BIOCS 69, 329
- KIMBALL, BRADFORD F. ON THE CHOICE OF PLOTTING POSITIONS ON PROBA-BILITY PAPER, JASA 60.546
- MILLITERER, JASA 60, 546
 KIMBLETON, STEPHEN R. A CHARACTERIZATION OF CERTAIN SEQUENCES OF NORMING CONSTANTS, AMS 68, 391
- KIMBLETON, STEPHEN R. A STABLE LIMIT THEOREM FOR MARKOV TESTS, AMS 69, 1467
- KINCAID, W. M. THE COMBINATION OF TESTS BASED ON DISCRETE DISTRIBUTIONS, JASA 62, 10
- KINDAHL, JAMES K. ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULA-TIONS OF UNKNOWN SIZE, CORR. 64 1297, JASA 62, 61
- KING. BENJAMIN STEP-WISE CLUSTERING PROCEDURES, JASA 67, 86
- KING, E. P. GROUP SCREENING UTILIZING BALANCED AND PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS, BIOCS 65, 865
- KING, E. P. OPTIMAL REPLICATION IN SEQUENTIAL DRUG SCREENING, BIOKA $64.\ 1$
- O4. I KINGMAN, J. F. C. AN APPROACH TO THE STUDY OF MARKOV PROCESSES (WITH DISCUSSION), JRSSB 66, 4X7
- KINGMAN. J. F. C. ON QUEUES IN HEAVY TRAFFIC, JRSSB 62, 383
- KINGMAN, J. F. C. POISSON COUNTS FOR RANDOM SEQUENCES OF EVENTS, AMS 63, 1217
- KINGMAN. J. F. C. SOME INEQUALITIES FOR THE QUEUE GI/G1, BIOKA 62, 315
- KINGMAN, J. F. C. THE ERCODIC BEHAVIOUR OF RANDOM WALKS, BIOKA 61, 391
- KINGMAN. J. F. C. THE ERGODIC THEORY OF SUBADDITIVE STOCHASTIC PROCESSES, JRSSB 68, 499
- KINGMAN, J. F. C. TWO SIMILAR QUEUES IN PARALLEL, AMS 61, 1314
- KINGSTON, CHARLES R. APPLICATIONS OF PROBABILITY THEORY IN CRIMINALISTICS, II. JASA 65, 1028
- KINGSTON, CHARLES R. APPLICATIONS OF PROBABILITY THEORY IN CRIMINALISTICS, JASA 65, 70

- KINNEY. J. R. DIMENSIONAL PROPERTIES OF A RANDOM DISTRIBUTION FUNC-TION ON THE SQUARE. AMS 66, B49
- KINNEY, J. R. THE CONVEX HULL OF PLANE BROWNIAN MOTION, AMS 63, 327 KINNEY, JOHN R. A TRANSIENT DISCRETE TIME QUEUE WITH FINITE STORAGE, AMS 62, 130
- KINNEY. JOHA R. FIRST PASSACE TIMES OF A CENERALIZED RANDOM WALK, CORR. AND ACKNOWLEDCEMENT OF PRIORITY 6, AMS 61, 235
- KISH, LESLIE ON NONCOVERAGE OF SAMPLE DWELLINGS, JASA 5B, 509
- KISH, LESLIE ON VARIANCES OF RATIOS AND THEIR DIFFERENCES IN MULTI-STACE SAMPLES, CORR. 631162, JASA 59, 416
- KISH, LESLIE STANDARD ERRORS FOR INDEXES FROM COMPLEX SAMPLES, JASA 6B, 512 KISH, LESLIE STUDIES OF INTERVIEWER VARIANCE FOR ATTITUDINAL VARI-
- KISH, LESLIE STUDIES OF INTERVIEWER VARIANCE FOR ATTITUDINAL VARI-ABLES, JASA 62, 92
- KISH. LESLIE THE RATIO BIAS INSURVEYS, JASA 62, B63
- KITTRELL, J. R. EVOLUTIONARY OPERATION. A REVIEW, TECH 66, 389
- KLEIN, D. F A COMPARISON OF SUCCESSIVE SCREENING AND DISCRIMINANT FUNCTION TECHNIQUES IN MEDICAL TAXONOM, BIOCS 69, NO. 4
- KLEINDORFER, CEORGE B. CONSISTENT ESTIMATES OF THE PARAMETERS OF A LINEAR SYSTEM, AMS 69, NO.6
- KLEINDORFER, PAUL R. CONSISTENT ESTIMATES OF THE PARAMETERS OF A LINEAR SYSTEM, AMS 69, NO.6
- KLETT, C. W OPTIMAL CONFIDENCE INTERVALS FOR THE VARIANCE OF A NOR-MAL DISTRIBUTION, JASA 59, 674
 KLEYLE, ROBERT M. DISTRIBUTIONS DETERMINED BY CUTTINC SIMPLEX WITH
- HYPERPLANES, AMS 68, 1473
- KLIMKO, E. M. A UNIFORM OPERATOR ERCODIC THEOREM. AMS 69. 1126 KLIMKO, EUCENE M. ON THE CLIVENKO-CANTELLI THEOREM FOR INFINITE IN-VARIANT MEASURES. AMS 67. 1273
- KLOTZ, J. H. MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE COM-PONENTS, JASA 69, NO. 4
- KLOTZ, J. H. ON THE NORMAL SCORES TWO-SAMPLE RANK TEST, JASA 64, 652 KLOTZ, JEROME ALTERNATIVE EFFICIENCIES FOR SIGNED RANK TESTS, AMS 65, 1759
- KLOTZ, JEROME ASYMPTOTIC EFFICIENCY OF THE TWO SAMPLE KOLMOCOROV-SMIRNOV TEST, JASA 67, 932
- KLOTZ, JEROME MAXIMUM LIKELIHOOD ESTIMATION OF MULTIVARIATE COVARIANCE COMPONENTS FOR THE BALANCED ONE-WA. AMS 69, 1100
- KLOTZ, JEROME NON-PARAMETRIC TESTS FOR SCALE, AMS 62, 49B KLOTZ, JEROME NULL DISTRIBUTION AND BAHADUR EFFICIENCY OF THE
- HODGES BIVARIATE SIGN TEST, AMS 62, BO3
 KLOTZ, JEROME SMALL SAMPLE POWER AND EFFICIENCY FOR THE ONE SAMPLE
 WILCOXON AND NORMAL SCORES TESTS, AMS 63, 624
- KLOTZ, JEROME SMALL SAMPLE POWER OF THE BIVARIATE SICN TEST OF BLU-MEN AND HODGES. AMS 64, 1576
- MEN AND HOUSES, AMS 64, 1576
 KLOTZ, JEROME THE WILCOXON, TIES, AND THE COMPUTER, JASA 66, 772
- KMENTA, JAN SMALL SAMPLE PROPERTIES OF ALTERNATIVE ESTIMATORS OF SEEMINGLY UNRELATED REGRESSIONS, JASA 68, 1180
- KNIGHT, FRANK B. DISTRIBUTION OF THE ABSOLUTE MAXIMUM FOR CERTAIN BROWNIAN MOTIONS. AMS 65, 311
- KNIGHT, WILLIAM A LEMMA FOR MULTIPLE INFERENCE, AMS 65, 1873
- KNIGHT, WILLIAM A METHOD OF SEQUENTIAL ESTIMATION APPLICABLE TO THE HYPERGEOMETRIC, BINOMIAL, POISSON, AN, AMS 65, 1494
- KNIGHT, WILLIAM THE USE OF THE RANGE IN PLACE OF THE STANDARD DEVIATION IN STEIN'S TEST, AMS 63, 346
- KNIGHT, WILLIAM R. A COMPUTER METHOD FOR CALCULATING KENDALL'S TAU WITH UNGROUPED DATA, JASA 66, 436
- KNOTT, MARTIN MODELS FOR CATALOGUING PROBLEMS, AMS 67, 1255
- KNOTT, MARTIN SAMPLING MIXTURES OF PARTICLES, TECH 67, 365
- KNUTH, D. E. ON METHODS OF CONSTRUCTING SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES USING A COMPUTER, TECH 60, 507
- KNUTH, D. E. ON METHODS OF CONSTRUCTING SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES USING A COMPUTER. II, TECH 61, 111
- KOCH, G. G. A PROCEDURE TO ESTIMATE THE POPULATION MEAN IN RANDOM EF-FECTS MODELS, TECH 67, 577
- KOCH, C. C. ANALYSIS OF CATECORICAL DATA BY LINEAR MODELS, BIOCS 69, 489
- KOCH, G. G. ON THE HYPOTHESES OF 'NO INTERACTION' IN CONTINCENCY TA-BLES, BIOCS 6B, 567
- KOCH, G. G. SOME ASPECTS OF THE STATISTICAL ANALYSIS OF THE 'MIXED MODEL', BIOCS 6B, 27
- KOCH, GARY G. A GENERAL APPROACH TO THE ESTIMATION OF VARIANCE COM-PONENTS, TECH 67, 93
- KOCH, GARY G. A USEFUL LEMMA FOR PROVING THE EQUALITY OF TWO MATRICES WITH APPLICATIONS TO LEAST SQUARES, JASA 69, 969
- KOCH, GARY C. HYPOTHESES OF 'NO INTERACTION' IN MULTI-DIMENSIONAL CONTINCENCY TABLES, TECH 6B, 107 KOCH, CARY G. SOME ASPECTS OF THE STATISTICAL ANALYSIS OF 'SPLIT
- PLOT EXPERIMENTS IN COMPLETELY RANDOMIZ, JASA 69, 4B5
 KOCH, CARY G. SOME FURTHER REMARKS CONCERNING 'A GENERAL APPROACH TO
- THE ESTIMATION OF VARIANCE COMPONENT, TECH 68 551
 KOCH, CARY G. THE EFFECT OF NON-SAMPLING ERRORS ON MEASURES OF AS-
- SOCIATION IN 2-BY-2 CONTINCENCY TABLES, JASA 69. B52
 KODLIN, D. A NEW RESPONSE TIME DISTRIBUTION, BIOCS 67, 227
- KODLIN, D. A NOTE ON FOLLOW-UP FOR SURVIVAL IN THE PRESENCE OF MOVE-MENT, JASA 61, 119
- KOERTS, J. A COMPARISON BETWEEN THE POWER OF THE DURBIN-WATSON TEST AND THE POWER OF THE BLUS TEST, JASA 69, 93B
- KOERTS, J. ON THE POWER OF THE BLUS PROCEDURE, JASA 6B, 1227

- KOERTS, JOHAN SOME FURTHER NOTES ON DISTURBANCE ESTIMATES IN REGRESSION ANALYSIS, JASA 67, 169
- KOJIMA, K. SURVIVAL PROBABILITIES OF NEW INVERSIONS IN LARGE POPU-LATIONS, BIOCS 6B, 501
- KOKAN, A. R. OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS, AN ANALYTICAL SOLUTION, JRSSB 67, 115
- KONIJN, H. S. REGRESSION ANALYSIS IN SAMPLE SURVEYS, CORR. 63 1162, JASA 62, 590
- KONIJN, H. S. STATISTICAL REPRODUCTION OF ORDERINGS AND TRANSLATION SUBFAMILIES, AMS 66, 196
- KOOHARIAN, A. ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINGLE SERVER, AMS 62, 767
- KOOP, J. C. ON AN IDENTITY FOR THE VARIANCE OF A RATIO OF TWO RANDOM VARIABLES, JRSSB 64, 4B4
- KOOP, J. C. REPLICATED, OR INTERPENETRATING, SAMPLES OF UNEQUAL SIZES, AMS 67, 1142
- KOOPMANS, L. H. A NOTE ON THE ESTIMATION OF AMPLITUDE SPECTRA FOR STOCHASTIC PROCESSES WITH QUASI-LINEAR, JASA 66, 397
- KOOPMANS, L. H. AN EXPONENTIAL BOUND ON THE STRONG LAW OF LARGE NUM-
- KOOPMANS, L. H. AN EXTENSION OF ROSEN'S THEOREM TO NON-IDENTICALLY DISTRIBUTED RANDOM VARIABLES, AMS 6B, B97
- KOOPMANS, L. H. CONFIDENCE INTERVALS FOR THE COEFFICIENT OF VARIA-
- TION FOR THE NORMAL AND LOG NORMAL DISTR, BIOKA 64, 25 KOOPMANS, L. H. CONVERGENCE RATES FOR THE LAW OF LARGE NUMBERS FOR
- THE LINEAR COMBINATIONS OF EXCHANGEABL, AMS 65, 1840
 KOOPMANS, L. H. CONVERGENCE RATES FOR THE LAW OF LARGE NUMBERS FOR
- LINEAR COMBINATIONS OF MARKOV PROCESSE, AMS 66,711
 KOOPMANS, L. H. ON THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONA-
- RY STOCHASTIC PROCESSES, AMS 64, 532
 KOOPMANS, L. H. ON THE CONVERGENCE RATE OF THE LAW OF LARGE NUMBERS
- FOR LINEAR COMBINATIONS OF INDEPENDEN, AMS 65,559
 KOOPMANS, L. H. ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY
- STOCHASTIC PROCESSES, AMS 64, 1765 KOOPMANS, L. H. TOLERANCE LIMITS FOR THE CLASS OF DISTRIBUTIONS WITH
- INCREASING HAZARD RATE, AMS 64, 1561
 KORBEL, JOHN LABOR FORCE ENTRY AND ATTACHMENT OF YOUNG PEOPLE, CORR.
- 66 1248, JASA 66, 117 KORIN, B. P. ON TESTING THE EQUALITY OF K COVARIANCE MATRICES, BIOKA
- 69, 216
- KORIN, B. P. ON THE DISTRIBUTION OF A STATISTIC USED FOR TESTING A COVARIANCE MATRIX, BIOKA 68, 171
- KOTLARSKI, I. ON CHARACTERIZING THE NORMAL DISTRIBUTION BY STU-DENT'S LAW, BIOKA 66, 603
- KOTLARSKI, I. ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE PRODUCT FOLLOWS THE GAMMA DISTRIBUTION., BIOKA 65, 289
- KOTLARSKI, IGNACY ON BIVARIATE RANDOM VARIABLES WHERE THE QUOTIENT OF THEIR COORDINATES FOLLOWS SOME KNOW, AMS 64, 1673
- KOTLARSKI, IGNACY ON CHARACTERIZING THE CHI SQUARE DISTRIBUTION BY THE STUDENT LAW, JASA 66, 976
- KOTLARSKI, IGNACY ON THE GENERALIZED MELLIN TRANSFORM OF A COMPLEX RANDOM VARIABLE AND ITS APPLICATIONS, AMS 65, 1459
- KOTZ, SAMEUL SERIES REPRESENTATIONS OF DISTRIBUTIONS OF QUADRATIC FORMS IN NORMAL VARIABLES, I, CENTRAL C, AMS 67, B23
- KOTZ, SAMEUL SERIES REPRESENTATIONS OF DISTRIBUTIONS OF QUADRATIC FORMS IN NORMAL VARIABLES, II, NON-CENT, AMS 67, B3B
- KOTZ, SAMUEL DISTRIBUTION OF SUM OF IDENTICALLY DISTRIBUTED EX-PONENTIALLY CORRELATED GAMMA-VARIABLES, AC, AMS 64, 277
- KOTZ, SAMUEL EXPONENTIAL BOUNDS ON THE PROBABILITY OF ERROR FOR A DISCRETE MEMORYLESS CHANNEL, AMS 61,577
- KOUL, HIRA LAL ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE REGIONS IN MULTIPLE LINEAR REGRESSION, AMS 69, NO.6
- KOUNIAS, E. CONSIDERING STATISTICAL AND TIME AVERAGES IN A REGULATION PROBLEM, JRSSB 67, 475
- KOUNIAS, EUSTRATIOS G. AN INEQUALITY AND ALMOST SURE CONVERGENCE, AMS 69.1091
- KOUNIAS, EUSTRATIOS G. BOUNDS OF THE PROBABILITY OF A UNION OF EVENTS, WITH APPLICATIONS, AMS 68, 2154
- KOVATS, M. STEREOSCOPIC MODELS OF MULTIVARIATE STATISTICAL DATA, BIOCS 66, 35B
- KOWALSKI, C. J. CO-ORDINATE TRANSFORMATIONS TO NORMALITY AND THE POWER OF NORMAL TESTS FOR INDEPENDENCE, BIOKA 69, 139
- KOWMAN, K. O. REMARKS ON LARGE SAMPLE ESTIMATORS FOR SOME DISCRETE DISTRIBUTIONS, TECH 67, 587
- KPEDEKPO, G. M. K. WORKING LIFE TABLES FOR MALES IN GHANA 1960, JASA 69, 102
- KRAEMER, HELEN CHMURA ONE-SIDED CONFIDENCE INTERVALS FOR THE QUALITY INDICES OF A COMPLEX ITEM, TECH 63, 400
- KRAFFT, O. A NOTE ON HOEFFDING'S INEQUALITY, JASA 69, 907
- KRAFT, C. H. AN APPROXIMATION TO THE WILCOXON-MANN-WHITNEY DISTRIBUTION, JASA 69, 591
- KRAFT, CHARLES H. BAYESIAN BIO-ASSAY, AMS 64, 886
- KRAFT, CHARLES H. FLUCTUATION THEOREM AND A DISTRIBUTION-FREE TEST, AMS 64, 1359
- KRAMER, B. H. FREQUENCY RESPONSE FROM STATIONARY NOISE, TWO CASE HISTORIES, TECH 61, 245

- KRAMER, C. Y. JOINT ESTIMATION OF THE PARAMETERS OF TWO NORMAL POPULATIONS, JASA 62, 446
- KRAMER, CLYDE Y. APPROXIMATION TO THE CUMULATIVE T-DISTRIBUTION, TECH 66, 358
- KRAMER, CLYDE YOUNG FACTORIAL TREATMENTS IN RECTANGULAR LATTICE DESIGNS, JASA 61, 36B
- KRAMER, K. H. TABLES FOR CONSTRUCTING CONFIDENCE LIMITS ON THE MULTIPLE CORRELATION COEFFICIENT, JASA 63, 1082
- KRAMER, KENNETH H. USE OF MEAN DEVIATION IN THE ANALYSIS OF INTER-LABORATORY TESTS, TECH 67, 149
- KRANE, SCOTT A. ANALYSIS OF SURVIVAL DATA BY REGRESSION TECHNIQUES, TECH 63, 161
- KRAUSE, G. F. A PROBABILITY STRUCTURE FOR GROWTH CURVES, BIOCS 67, 217
- KRENGEL, U. NOTE ON SHIFT-INVARIANT SETS, AMS 69, 694
- KREYBERG, H. J. A. EMPERICAL RELATIONSHIP OF LUNG CANCER INCIDENCE TO CIGARETTE SMOKING AND A STOCHASTIC, BIOCS 65, 839
- KRICHNAJI, N. THE JOINT DISTRIBUTION OF ASCENDING PAIRS AND ASCENDING RUNS IN A RANDOM SEQUENCE, BIOKA 67, 330
- KRISHNA, IYER, P. V. CORRECTIONS TO 'A THEOREM ON FACTORIAL MOMENTS AND ITS APPLICATIONS' 50 206, AMS 61, 620
- KRISHNA IYER, P. V. CORRECTIONS TO 'THE THEORY OF PROBABILITY DIS-TRIBUTIONS OF POINTS ON A LATTICE' 58 25, AMS 61, 619
- KRISHNAIAH, P. R. A NOTE ON MOMENTS OF GAMMA ORDER STATISTICS, TECH $67,\,315$
- KRISHNAIAH, P. R. A NOTE ON RECURRENCE RELATIONS BETWEEN EXPECTED VALUES OF FUNCTIONS OF ORDER STATISTICS, AMS 66, 733
- KRISHNAIAH, P. R. SIMULTANEOUS TESTS FOR THE EQUALITY OF COVARIANCE MATRICES AGAINST CERTAIN ALTERNATIVES, AMS 68, 1303
- KRISHNAIAH, P. R. TESTS FOR THE EQUALITY OF COVARIANCE MATRICES UNDER THE INTRACLASS CORRELATION MODEL, AMS 67, 1286
- KRISHNAN, M. LOCALLY UNBIASED TYPE M TEST, JRSSB 66, 298
- KRISHNAN, MARAKATHA SERIES REPRESENTATIONS OF THE DOUBLY NONCENTRAL T-DISTRIBUTION, JASA 6B, 1004
- KRISHNAN, MARAKATHA THE MOMENTS OF A DOUBLY NONCENTRAL T-DISTRIBUTION, JASA 67, 278
- KRISHNASWAMI, P. BIAS IN MULTINOMIAL CLASSIFICATION, JASA 6B, 29B
- KRONMAL, R. THE ESTIMATION OF PROBABILITY DENSITIES AND CUMULATIVES BY FOURIER SERIES METHODS, JASA 68, 925
- KRUSE, R. L. CONSTRUCTION OF SEQUENCES ESTIMATING THE MIXING DISTRIBUTION, AMS 68, 2B6
- KRUSKAL, J. B. ANALYSIS OF FACTORIAL EXPERIMENTS BY ESTIMATING MONOTONE TRANSFORMATIONS OF THE DATA, JRSSB 65, 251
- KRUSKAL, W. H. DISCUSSION OF THE PAPERS OF MESSRS. ANSCOMBE AND DANIEL, TECH 60, 157
- KRUSKAL, W. H. SOME REMARKS ON WILD OBSERVATIONS, TECH 60, 1
- KRUSKAL, WILLIAM WHEN ARE GAUSS-MARKOV AND LEAST SQUARES ESTIMATORS IDENTICAL. A COORDINATE-FREE APPROACH, AMS 6B, 70
- KRUSKAL, WILLIAM H. HISTORICAL NOTES ON THE WILCOXON UNPAIRED TWO-SAMPLE TEST, JASA 57, 356
- KRUSKAL, WILLIAM H. MEASURES OF ASSOCIATION FOR CROSS CLASSIFICA-TIONS, II. FURTHER DISCUSSION AND REFEREN, JASA 59, 123
- KRUSKAL, WILLIAM H. MEASURES OF ASSOCIATION FOR CROSS CLASSIFICA-TIONS, 111. APPROXIMATE SAMPLING THEORY, JASA 63, 310
- TIONS, III. APPROXIMATE SAMPLING THEORY, JASA 63, 510
 KRUSKAL, WILLIAM H. ORDINAL MEASURES OF ASSOCIATION, JASA 58, B14
 KRUTCHKOFF, R. G. A MONTE CARLO INVESTIGATION OF THE SIZE AND POWER
- OF TESTS EMPLOYING SATTERTHWAITE'S SY, BIOKA 68, 431
 KRUTCHKOFF, R. G. A SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL
- BAYES APPROACH TO SOME STATISTICAL DECI, BIOKA 67, 451
 KRUTCHKOFF, R. G. AN EMPIRICAL BAYES SMOOTHING TECHNIQUE, BIOKA 69,
- 361
- KRUTCHKOFF, R. G. CLASSICAL AND INVERSE REGRESSION METHODS OF CALIBRATION IN EXTRAPOLATION, TECH 69, 605 KRUTCHKOFF, R. G. EMPIRICAL BAYES ESTIMATORS IN A MULTIPLE LINEAR
- REGRESSION MODEL, BIOKA 69, 367
- KRUTCHKOFF, R.G. EPSILON ASYMPTOTIC OPTIMALITY OF EMPIRICAL BAYES ESTIMATORS, BIOKA 69, 220
- KRUTCHKOFF, R. G. SOME EMPIRICAL BAYES TECHNIQUES IN POINT ESTIMATION, BIOKA 69, 133
- KRUTCHKOFF, R. G. THE EMPIRICAL BAYES APPROACH, ESTIMATING THE PRIOR DISTRIBUTION, BIOKA 67, 326
- KRUTCHKOFF, R. G. THE USE OF EMPIRICAL BAYES ESTIMATORS IN A LINEAR REGRESSION MODEL, BIOKA 68, 525
- KRUTCHKOFF, RICHARD G. CLASSICAL AND INVERSE RECRESSION METHODS OF CALIBRATION, TECH 67, 425
- KRUTCHKOFF, RICHARD G. THE CORRECT USE OF THE SAMPLE MEAN ABSOLUTE DEVIATION IN CONFIDENCE INTERVALS FOR, TECH 66, 663
 KSHIRSAGAR. A. M. A NOTE ON DIRECTION AND COLLINEARITY FACTORS IN
- CANONICAL ANALYSIS, BIOKA 62, 255
 KSHIRSAGAR, A. M. A NOTE ON THE DERIVATION OF SOME EXACT MUL-
- TIVARIATE TESTS, BIOKA 60, 4B0 KSHIRSAGAR, A. M. ASYMPTOTIC VALUES OF THE FIRST TWO MOMENTS IN MAR-
- KSHIRSAGAR, A. M. ASYMPTOTIC VALUES OF THE FIRST TWO MOMENTS IN MAR-KOV RENEWAL PROCESSES, BIOKA 67, 597
- KSHIRSACAR, A. M. BALANCED FACTORIAL DESIGNS, JRSSB 66, 559
- KSHIRSAGAR, A. M. THE GOODNESS-OF-FIT OF A SINGLE (NON-ISOTROPIC)
 HYPOTHETICAL PRINCIPAL COMPONENT, BIOKA 61, 397

- KSHIRSACAR, A. M. THE NON-CENTRAL MULTIVARIATE BETA DISTRIBUTION, AMS 61.104
- KSHIRSACAR, A. M THE NON-NULL DISTRIBUTION OF A STATISTIC IN PRIN-CIPAL COMPONENTS ANALYSIS, BIOKA 66, 590
- KU, H. H. A NOTE ON CONTINCENCY TABLES INVOLVING ZERO FREQUENCIES AND THE 21 TEST, TECH 63, 398
- KU, H. H. SYMMETRY AND MARCINAL HOMOCENEITY OF AN R-BY-R CONTINGENCY TABLE, JASA 69, NO.4
- KU. H. H. TESTS FOR CONTINGENCY TABLES AND MARKOV CHAINS, TECH 62, 573
- KUDO, AKIO A MULTIVARIATE ANALOGUE OF THE ONE-SIDED TEST, BIOKA 63,
- KUDO, AKIO ON SLIPPAGE TEST (II) SIMILAR SLIPPAGE TESTS, AMS 6B, 2029
- KUDO, AKIO ON SLIPPAGE TESTS I. A GENERALIZATION OF NEYMAN PEARSON'S LEMMA, AMS 68, 1693
- LERINGR, AND 68, 1693 KUDO, HIROKICHI ON THE PROPERTY, W. OF THE CLASS OF STATISTICAL DECISION FUNCTIONS, AMS 66, 1631
- KUEHL, R. O. REFERENCE POPULATIONS FOR DIALLEL EXPERIMENTS, BIOCS 68, BB1
- KUELBS, J. THE INVARIANCE PRINCIPLE FOR A LATTICE OF RANDOM VARIA-BLES, AMS 6B, 382
- KULKARNI, G. A. INCOMPLETE BLOCK DESIGNS FOR 810-ASSAYS, BIOCS 66, 706
- KULKARNI, N.V. ON EFFICIENT MULTINOMIAL ESTIMATION, JRSSB 66, 45 KULKARNI, S. R. LAMP TESTS OF LINEAR AND LOGLINEAR HYPOTHESES IN
- MULTINOMIAL EXPERIMENTS, CORR. 66 1246, JASA 66, 236
 KULLBACK, S. A BOUND FOR THE VARIATION OF GAUSSIAN DENSITIES, AMS
 69. NO. 6
- KULLBACK, S. A NOTE ON MINIMUM DISCRIMINATION INFORMATION, AMS 66, 279
- KULLBACK, S. CONTINGENCY TABLES WITH GIVEN MARGINALS, BIOKA 68, 179 KULLBACK, S. NOTES. MINIMUM DISCRIMINATION INFORMATION ESTIMA-TION, 810CS 68, 707
- KULLBACK, S. ON THE ANALYSIS OF MULTIPLE REGRESSION IN K CATEGORIES, BIOKA 57, 67
- KULLBACK, S. PROBABILITY DENSITIES WITH GIVEN MARCINALS, AMS 68, 1236
- 1230 KULLBACK, S. SYMMETRY AND MARCINAL HOMOGENEITY OF AN R-BY-R CONTIN-GENCY TABLE, JASA 69, NO.4
- KULLBACK, S. TESTS FOR CONTINCENCY TABLES AND MARKOV CHAINS, TECH 62, 573
- KULL8ACK, S. THE TWO CONCEPTS OF INFORMATION, JASA 67, 685
- KULLDORFF, GUNNAR ESTIMATION OF ONE OF TWO PARAMETERS OF THE EX-PONENTIAL DISTRIBUTION ON THE BASIS OF SUI, AMS 63, 1419
- KULSHRESHTHA, A. C. ON THE EFFICIENCY OF MODIFIED BALANCED IN-COMPLETE BLOCK DESIGNS FOR BIO-ASSAYS, BIOCS 69, 591
- KUMAR, JOCINDER METHOD OF CONSTRUCTION OF ATTRITION LIFE TABLES FOR THE SINGLE POPULATION BASED ON TWO SU, JASA 67, 1433
- KUMAR, PRANAB A CLASS OF RANK ORDER TESTS FOR A GENERAL LINEAR HYPOTHESIS.AMS 69, 1325
- KUMAR, PRANAB ON A CLASS OF ALIGNED RANK ORDER TESTS IN TWO-WAY LAYOUTS. AMS 68, 1115
- KUNITA, HIROSHI NOTE ON DYNKIN'S 'ALPHA, XI' SUBPROCESS OF STANDARD MARKOV PROCESS, AMS 67, 1647
- KUO, M. T. FREQUENCY RESPONSE FROM STATIONARY NOISE, TWO CASE HISTO-RIES, TECH 61, 245
- KUPPER, L. L. TIES IN PAIRED-COMPARISON EXPERIMENTS. A GENERALIZA-TION OF THE SRADLEY-TERRY MODEL, CORR. 6, JASA 67, 194 KUPPERMAN, M. TESTS FOR CONTINCENCY TABLES AND MARKOV CHAINS. TECH
- 62,573
 KUPPERMAN, MORTON ON EXACT GROUPING CORRECTIONS TO MOMENTS AND CU-
- MULANTS, BIOKA 52, 429
- KURKJIAN, B. A CALCULUS FOR FACTORIAL ARRANGEMENTS, AMS 62, 600 KURKJIAN, 8. APPLICATIONS OF THE CALCULUS OF FACTORIAL ARRANGE-
- MENTS. I. BLOCK AND DIRECT PRODUCT DESIGN, BIOKA 63, 63
- KURKJIAN, BAKRIG M. EXACT OPERATING CHARACTERISTIC FOR TRUNCATED SEQUENTIAL LIFE TESTS IN THE EXPONENTIAL, AMS 62, 1403
- KURTZ, T. E. AUTHOR'S REPLY TO ANSCOMBE'S COMMENTS, TECH 65, 169 KURTZ, T. E. CORRELATION OF RANGES OF CORRELATED DEVIATES, BIOKA 66,
- KURTZ, T. E. CORRELATION OF RANGES OF CORRELATED DEVIATES, BIOKAGE, 191

 KURTZ, T. E. SHORT-CUT MULTIPLE COMPARISONS FOR BALANCED SINCLE AND
- DOUBLE CLASSIFICATIONS. PART 2. DERIV, BIOKA 65, 4B5
 KURTZ, T. E. SHORT-CUT MULTIPLE COMPARISONS FOR BALANCED SINCLE AND
- DOUBLE CLASSIFICATIONS. PART 1, RESUL, TECH 65, 95
 KURTZ, THOMAS C. A NOTE ON SEQUENCES OF CONTINUOUS PARAMETER MARKOV
- CHAINS, AMS 69, 1078
 KURZ, LUDWIK SEQUENTIAL NONPARAMETRIC TWO-WAY CLASSIFICATION WITH
- PRESCRIBED MAXIMUM ASYMPTOTIC ERROR PRO, AMS 69, 445
 KUSHNER, HAROLD J. A NOTE ON THE MAXIMUM SAMPLE EXCURSIONS OF
- STOCHASTIC APPROXIMATION PROCESSES, AMS 66, 513
 KUSHNER, HAROLD J. AN APPLICATION FOR THE SOBOLEV IMBEDDING
- THEOREMS TO CRITERIA FOR THE CONTINUITY OF PR, AMS 69, 517
 KUSSMAUL, K. PROTECTION ACAINST ASSUMING THE WRONG DEGREE IN
- POLYNOMIAL REGRESSION, TECH 69, NO. 4
- KUSSMAUL, K. L. A STUDY OF THE VARIABILITY DUE TO COINCIDENT PASSAGE IN AN ELECTRONIC BLOOD CELL COUNTER, BIOCS 67, 671

- KUSSMAUL, KEITH ESTIMATION OF VARIANCE COMPONENTS IN TWO-STACE NESTED DESICNS WITH COMPOSITE SAMPLES, TECH 67, 373
- KUZMA, J. W. A COMPARISON OF TWO LIFE TABLE METHODS, BIOCS 67, 51
- KUZMACK, A. MULTIVARIATE T AND THE RANKINC PROBLEM, BIOKA 67, 305 L'ESPERANCE, W. L. CROSS STATE PRODUCT AND AN ECONOMETRIC MODEL OF A STATE, JASA 69, 787
- LACHENBRUCH, P. A. AN ALMOST UNBIASED METHOD OF OBTAINING CON-FIDENCE INTERVALS FOR THE PROBABILITY OF MIS, BIOCS 67, 639
- LACHENBRUCH, P. A. NON-PARAMETRIC ANALYSIS OF VARIANCE IN SMALL SAMPLES, A MONTE CARLO STUDY OF THE ADEQU, BIOCS 69, 593
- LACHENBRUCH, P. A. TABLES OF SIMULTANEOUS CONFIDENCE LIMITS FOR THE BINOMIAL AND AND POISSON DISTRIBUTION, BIOKA 69, 452
- LACHENBRUCH, PETER A. DISCRIMINANT ANALYSIS WHEN THE INITIAL SAM-PLES ARE MISCLASSIFIED, TECH 66, 657
- LACHENBRUCH, PETER A. ESTIMATION OF ERROR RATES IN DISCRIMINANT ANALYSIS, TECH6B, 1
- ANALYSIS, TECH 6B, 1
 LACHENBRUCH, PETER A. ON EXPECTED PROBABILITIES OF MISCLASSIFICATION IN DISCRIMINANT ANALYSIS, NECESSARY, BIOCS 68, 823
- LADD, GEORGE W. ON SOME MEASURES OF FOOD MARKETING SERVICES, JASA 61.65
- LADD, GEORGE W. REGRESSION ANALYSIS OF SEASONAL DATA, JASA 64, 402
 LAH, IVO ANALYTICAL GRADUATION OF FERTILITY RATES, JASA 56, 461
- LAHA, R. G. ON A PROBLEM CONNECTED WITH QUADRATIC REGRESSION, BIOKA 60, 335
- LAHA, R.G. ON AN EXTENSION OF GEARY'S THEOREM, BIOKA 53, 22B
- LAHA, R. G. ON CERTAIN FUNCTIONS OF NORMAL VARIATES WHICH ARE UNCOR-RELATED OF A HIGHER ORDER, BIOKA 60, 175
- LAMBRAKIS, D. P. AN ALTERNATIVE TO THE SIMPLEX-LATTICE DESIGN FOR EXPERIMENTS WITH MIXTURES, JRSSB 69, NO. 2
- LAMBRAKIS, D. P. ESTIMATED REGRESSION FUNCTION OF THE Q-SUB-1 TO Q-SUB-N BY M-SUB-1 TO M-SUB-N MULTIPLE-L, JRSSB 69, NO. 2
- LAMBRAKIS, D. P. EXPERIMENTS WITH MIXTURES, A GENERALIZATION OF THE SIMPLEX-LATTICE DESIGN, JRSSB 6B, 123

 LAMBRAKIS, D. P. EXPERIMENTS WITH P-COMPONENT MIXTURES, JRSSB 68,
- LAMBERTI, JOHN AN INVARIANCE PRINCIPLE IN RENEWAL THEORY, AMS 62,
- 685
- LAMPERTI, JOHN ON A CLASS OF STOCHASTIC PROCESSES, AMS 63, 206
- LAMPERTI, JOHN ON EXTREME ORDER STATISTICS, AMS 64, 1726
- LAMPERTI, JOHN ON LIMIT THEOREMS FOR GAUSSIAN PROCESSES, AMS 65, 304
 LANCASTER, H. O. CORRECTION. 'THE STRUCTURE OF BIVARIATE DISTRIBUTIONS', 58 719, AMS 64, 13BB
- LANCASTER, H. O. CORRELATION AND COMPLETE DEPENDENCE OF RANDOM VARIABLES, AMS 63, 1315
- LANCASTER, H. O. CORRELATIONS AND CANONICAL FORMS OF BIVARIATE DIS-TRIBUTIONS. AMS 63, 532
- LANCASTER, H. O. KOLMOCOROV'S REMARK ON THE HOTELLING CANONICAL CORRELATIONS, BIOKA 66, 585
- LANCASTER, H. O. OUERY. THE COMBINATION OF PROBABILITIES. BIOCS 67.
- 840
 LANCASTER, H. O. SIGNIFICANCE TESTS IN DISCRETE DISTRIBUTIONS,
- CORR. 62 919, JASA 61, 223 LANCASTER, H. O. SOME PROPERTIES OF THE BIVARIATE NORMAL DISTRIBU-
- TION CONSIDERED IN THE FORM OF A CONTING, BIOKA 57, 289

 LANCASTER, H. O. STATISTICAL CONTROL OF COUNTING EXPERIMENTS,
 BIOKA 52, 419
- LANCASTER, H. O. TRACES AND CUMULANTS OF QUADRATIC FORMS IN NORMAL VARIABLES, JRSSB 54, 247
- LANCASTER, TONY A NOTE ON AN 'ERRORS IN VARIABLES' MODEL, JASA 66,
- LANCASTER, TONY GROUPING ESTIMATORS IN HETEROSCEDASTIC DATA (CORR. 6B 1550), JASA 6B, 182
- LAND, A. H. A CONTRIBUTION TO THE 'TRAVELLING-SALESMAN' PROBLEM, (WITH DISCUSSION), JRSSB 55, 185
- LAND, R.O.D. A CLASS OF SITUATIONS IN WHICH A SEQUENTIAL ESTIMATION PROCEDURE IS NON-SEQUENTIAL, BIOKA 67, 229
- LANDIS, BENSON Y. A GUIDE TO THE LITERATURE ON STATISTICS OF RELI-GIOUS AFFILIATION WITH REFERENCES TO REL, JASA 59, 335
- LANCFORD, E. THE PROBABILITY THAT A RANDOM TRIANGLE IS OBTUSE, BIOKA 69, NO.3
- LANGLEY, P. G. AN INVESTIGATION INTO THE SMALL SAMPLE PROPERTIES OF A TWO SAMPLE TEST OF LEHMANN'S, JASA 68, 345
- LANSING, JOHN B. A CROSS-SECTION ANALYSIS OF NON-BUSINESS AIR TRAVEL, JASA 5B, 92B
- LARSEN, W. A. THE ANALYSIS OF VARIANCE FOR THE TWO-WAY CLASSIFICA-TION FIXED EFFECTS MODEL WITH OBSERVATIO, BIOKA 69, NO.3
- LARSON, HAROLD J. BIASES IN PREDICTION BY REGRESSION FOR CERTAIN IN-COMPLETELY SPECIFIED MODELS, BIOKA 63, 391 LARSON, HAROLD J. LEAST SQUARES ESTIMATION OF THE COMPONENTS OF A
- SYMMETRIC MATRIX, TECH 66, 360 .

 LARSON, HAROLD J. SEQUENTIAL MODEL BUILDING FOR PREDICTION IN
- REGRESSION ANALYSIS, I, AMS 63, 462
- LASKA, EUGENE EFFICIENCY ROBUST TWO-SAMPLE RANK TESTS, JASA 67, 1241

- LASKA, EUGENE OPTIMAL ROBUSTNESS, A GENERAL METHOD, WITH APPLICA-TIONS TO LINEAR ESTIMATORS OF LOCATION. JASA 67, 1230
- LATSCHA, R. TESTS OF SIGNIFICANCE IN A 2-BY-2 CONTINGENCY TABLE, EX-TENSION OF FINNEY'S TABLE, BIOKA 53, 74
- LAUBSCHER, N. F. EXACT CRITICAL VALUES FOR MOOD'S DISTRIBUTION-FREE TEST STATISTIC FOR DISPERSION AND ITS, TECH 68, 497
- LAUBSCHER, F. NOTE ON FISHER'S TRANSFORMATION OF THE CORRELATION COEFFICIENT, JRSSB 59, 409
- LAUBSCHER, N. F. SINGLE AND MULTIPLE DISCRIMINATION REGIONS IN MUL-TIPLE LINEAR REGRESSION, SASJ 6B. 67
- LAUBSCHER, NICO F. ON STABILIZING THE BINOMIAL AND NEGATIVE BINOMI-AL VARIANCES, JASA 61, 143
- LAUH, ELIZABETH A NOTE ON THE GRAPHICAL ANALYSIS OF MULTIDIMEN-SIONAL CONTINGENCY TABLES, TECH 67, 481
- LAUH. ELIZABETH SCALE PARAMETER ESTIMATION FROM THE ORDER STATISTICS OF UNEQUAL GAMMA COMPONENTS, AMS 66, 152
- LAURENT, ANDRE G. CONDITIONAL DISTRIBUTION OF ORDER STATISTICS AND DISTRIBUTION OF THE REDUCED ITH ORDER, AMS 63, 652
- LAURENT, ANDRE G. THE LOGNORMAL DISTRIBUTION AND THE TRANSLATION METHOD, DESCRIPTION AND ESTIMATION PROBL, JASA 63, 231
- LAVALLE, IRVING H. ON CASH EQUIVALENTS AND INFORMATION EVALUATION IN DECISIONS UNDER UNCERTAINTY, PARTS I, JASA 68, 252
- LAWING, WILLIAM D. LIKELIHOOD RATIO COMPUTATIONS OF OPERATING COM-PUTATIONS, AMS 66, 1704
- LAWLEY, D N A GENERAL METHOD FOR APPROXIMATING TO THE DISTRIBUTION OF LIKELIHOOD RATIO CRITERIA, BIOKA 56. 295
- LAWLEY, D. N. ON TESTING A SET OF CORRELATION COEFFICIENTS FOR EQUALITY, AMS 63, 149
- LAWLEY. D. N. TESTS OF SIGNIFICANCE FOR THE LATENT ROOTS OF COVARI-ANCE AND CORRELATION MATRICES, BIOKA 56, 12B
- LAWLEY, D. N. TESTS OF SIGNIFICANCE IN CANONICAL ANALYSIS, BIOKA 59,
- LAWRENCE, M. J. AN INVESTIGATION OF THE BURN-IN PROBLEM, TECH 66, 61 LAWRENCE, N. R. DRAPER. W. MIXTURE DESIGNS FOR FOUR FACTORS, JRSSB
- 65.473
- LAWRENCE, W. MIXTURE DESIGNS FOR THREE FACTORS, JRSSB 65, 450 LAWRENCE, W. E. DESIGNS WHICH MINIMIZE MODEL INADEQUACIES. CU-BOIDAL REGIONS OF INTEREST, BIOKA 65, 111
- LAWRENCE, W. E. SEQUENTIAL DESIGNS FOR SPHERICAL WEIGHT FUNCTIONS, TECH 67, 517
- LAWRENCE, W. E. THE USE OF SECOND-ORDER 'SPHERICAL' AND 'CUBOIDAL' DESIGNS IN THE WRONG REGIONS, BIOKA 66, 596
- LAWTON W H COMPARISON OF ANOVA AND HARMONIC COMPONENTS OF VARI-ANCE, TECH 69, 75
- LAWTON, W. H. QUERY, RESIDUAL ANALYSIS, TECH 67, 339
- LAWTON, W. H. THE SPECTRUM OF A MODEL II NESTED ANOVA AND ITS APPLICA-TIONS, TECH 69, 91
- LAWTON, WILLIAMH. CONCENTRATION OF RANDOM QUOTIENTS, AMS 68, 466 LAWTON, WILLIAM H. SOME INEQUALITIES FOR CENTRAL AND NON-CENTRAL
- DISTRIBUTIONS, AMS 65, 1521 LAYCOCK, P. J. OPTIMAL DESIGNS IN REGRESSION PROBLEMS WITH A GENERAL CONVEX LOSS FUNCTION, BIOKA 68, 53
- LAZERWITZ, BERNARD A COMPARISON OF MAJOR UNITED STATES RELIGIOUS GROUPS, JASA 61, 568
- LEACH, E. APPROXIMATE LINEARIZATION OF THE INCOMPLETE BETA-FUNC-TION, BIOKA 59, 214
- LEADBETTER, M. R. BOUNDS ON THE ERROR IN THE LINEAR APPROXIMATION TO THE RENEWAL FUNCTION, BIOKA 64, 355
- LEADBETTER, M. R. HAZARD ANALYSIS. I, BIOKA 64, 175
- LEADBETTER, M. R. ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF STOCHASTIC PROCESSES, AMS 66, 260
- LEADBETTER, M. R. ON SERIES EXPANSIONS FOR THE RENEWAL MOMENTS. BIOKA 63, 75
- LEADBETTER, M. R. ON STREAMS OF EVENTS AND MIXTURES OF STREAMS, JRSSB 66, 218
- LEADBETTER, M. R. ON THE ESTIMATION OF THE PROBABILITY DENSITY, I, LEADBETTER, M. R. ON THE MEAN NUMBER OF CURVE CROSSINGS BY NON-STA-
- TIONARY NORMAL PROCESSES, AMS 65, 509
- LEADBETTER, M. R. ON THE NORMAL STATIONARY PROCESS, AREAS OUTSIDE GIVEN LEVELS, JRSSB 63, 1B9
- LEADBETTER, M. R. ON THE RENEWAL FUNCTION FOR THE WEIBULL DISTRIBU-TION, TECH 63, 393
- LEADBETTER, M. R. THE MOMENTS OF THE NUMBER OF CROSSINGS OF A LEVEL BY A STATIONARY NORMAL PROCESS, AMS 65, 1656 LEADBETTER, R. ON THE DISTRIBUTIONS OF THE TIMES BETWEEN EVENTS IN A
- STATIONARY STREAM OF EVENTS, JRSSB 69, NO.2
- LEAVERTON, PAUL SMALL SAMPLE POWER CURVES FOR THE TWO SAMPLE LOCA-TION PROBLEM, TECH 69, 299
- LECAM, L. SUFFICIENCY AND APPROXIMATE SUFFICIENCY, AMS 64, 1419
- LECAM, LUCIEN CONSISTENT ESTIMATES AND ZERO-ONE SETS, AMS 64, 157
- LECHNER, J. A. OPTIMUM DECISION PROCEDURES FOR A POISSON PROCESS PARAMETER, AMS 62, 1384
- LECHNER, JAMES A. OPTIMALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY R, JASA 64, 464

- LEE, ANNE S. INTERNAL MIGRATION STATISTICS FOR THE UNITED STATES. JASA 60, 664
- LEE. EVERETT S. INTERNAL MIGRATION STATISTICS FOR THE UNITED STATES, JASA 60, 664
- LEE, MAW LIN INCOME, INCOME CHANGE, AND DURABLE GOODS DEMAND, JASA 64.1194
- LEE, P.M. ON THE AXIOMS OF INFORMATION THEORY, AMS 64, 415
- LEE, T. C. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION OF TRANSITION PROBABILITIES., JASA 68, 1162
- LEE. TONG HUN INCOME, WEALTH, AND THE DEMAND FOR MONEY, SOME EVIDENCE FROM CROSS-SECTION DATA, JASA 64, 746
- LEES, RUTH W. A NOMOGRAPH FOR COMPUTING PARTIAL CORRELATION COEFFI-CIENTS, CORR. 62917, JASA 61, 995
- LEFKOVITCH, L. P. THE STUDY OF POPULATION GROWTH IN ORGANISMS GROUPED BY STAGES, BIOCS 65, 1
- LEHMAN JR, E. H. AN APPROXIMATION OF THE NEGATIVE MOMENTS OF THE POSITIVE BINOMIAL USEFUL IN LIFE TESTING, TECH 60, 227
- LEHMAN, SHIRLEY YOUNG EXACT AND APPROXIMATE DISTRIBUTIONS FOR THE WILCOXON STATISTIC WITH TIES, JASA 61, 293
- LEHMANN, E. L. A COMPACT TABLE FOR POWER OF THE T-TEST, AMS 6B, 1629 LEHMANN, E. L. ASYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME LINEAR MODELS WITH ONE OBSERVATION PER CELL, AMS 64,726
- LEHMANN, E. L. ASYMPTOTICALLY NONPARAMETRIC INFERENCE, AN ALTERNA-TIVE APPROACH TO LINEAR MODELS. AMS 63, 1494
- LEHMANN, E. L. ESTIMATES OF LOCATION BASED ON RANK TESTS, AMS 63, 598 LEHMANN, E. L. NONPARAMETRIC CONFIDENCE INTERVALS FOR A SHIFT PARAMETER, AMS 63, 1507
- LEHMANN, E. L. ON A THEOREM OF BAHADUR AND GOODMAN, AMS 66, 1
- LEHMANN, E. L. ON MEDIANS AND QUASI-MEDIANS, JASA 67, 926
- LEHMANN, E. L. RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERI-MENTS IN THE ANALYSIS OF VARIANCE. AMS 62, 482
- LEHMANN, E. L. ROBUST ESTIMATION IN ANALYSIS OF VARIANCE, AMS 63. 957
- LEHMANN, E. L. SOME CONCEPTS OF DEPENDENCE, AMS 66, 1137
- LEHMANN, E. L. SOME MODEL I PROBLEMS OF SELECTION, AMS 61, 990 LEHMANN, E. L. TESTING THE APPROXIMATE VALIDITY OF STATISTICAL HYPOTHESES, JRSSB 54, 261
- LEHMANN, E. L. UNBIASED ESTIMATION IN CONVEX FAMILIES, AMS 69, 1523 LEHNER, G. ONE DIMENSIONAL RANDOM WALK WITH A PARTIALLY REFLECTING BARRIER. AMS 63, 405
- LEIGH-DUGMORE, C. H. A RAPID METHOD FOR ESTIMATING THE CORRELATION COEFFICIENT FROM THE RANGE OF THE DEVI. BIOKA 53, 218
- LEIMKUHLER, F. F. A STATISTICAL MODEL OF BOOK USE AND ITS APPLICA-TION TO THE BOOK STORAGE PROBLEM, JASA 69, NO.4
- LEIPNIK, R. MOMENT GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERI-ALLY CORRELATED NORMAL VARIABLES, BIOKA 5B, 19B
- LEIPNIK, R. NOTE ON THE CHARACTERISTIC FUNCTION OF A SERIAL-COR-RELATION DISTRIBUTION, BIOKA 5B. 559
- LELLOUCH, J. ESTIMATION PAR LA METHODE DU MAXIMUM DE VRAISEMBLANCE DES COURBES DE SURVIE DE MICROORGANISM. BIOCS 66, 673
- LELLOUCH, J. LES MANQUANTS DANS L'ESSAI THERAPEUTIQUE, BIOCS 67.
- LEMMER, H. H. A DISTRIBUTION-FREE ANALYSIS OF VARIANCE TECHNIQUE FOR BLOCK DESIGNS, SASJ 68. 9
- LEMMER, H. H. DISTRIBUTION-FREE ANALYSIS OF VARIANCE FOR THE TWO-WAY CLASSIFICATION, SASJ 67, 67
- LEMON, G. H. AN EMPIRICAL BAYES SMOOTHING TECHNIQUE, BIOKA 69, 361 LENTNER. M. LISTING EXPECTED MEAN SQUARE COMPONENTS, BIOCS 65, 459
- LENTNER, M. M. GENERALIZED LEAST-SQUARES ESTIMATION OF A SUBVECTOR OF PARAMETERS IN RANDOMIZED FRACTIONAL, AMS 69, 1344
- LENTNER, M. M. SOME INFERENCES ABOUT GAMMA PARAMETERS WITH AN APPLI-CATION TO A RELIABILITY PROBLEM, JASA 63, 670
- LEONARD, WILLIAM R. AN OUTLOOK REPORT, JASA 5B. 1
- LEONE, F. C. ANALYSIS OF CATEGORICAL DATA., BIOKA 65, 654
- LEONE, F. C. ASYMPTOTIC RELATIVE EFFICIENCY OF MOOD'S AND MASSEY'S TWO SAMPLE TESTS AGAINST SOME PARAMETR, AMS 62, 1375
- LEONE, F. C. THE FOLDED NORMAL DISTRIBUTION, TECH 61, 543
- LEONE, F. C. THE USE OF SAMPLE QUASI-RANGES IN SETTING CONFIDENCE INTERVALS FOR THE POPULATION STANDARD D, JASA 61, 260
- LEONE, FRED C. A STUDY OF ROBUST ESTIMATORS, TECH 67, 652
- LEONE, FRED C. EDITORIAL, TECH 66, 1
- LEONE, FRED C. SAMPLING DISTRIBUTIONS OF VARIANCE COMPONENTS I. EM-PIRICAL STUDIES OF BALANCED NESTED DESI, TECH 66, 457
- LEONE, FRED C. SAMPLING DISTRIBUTIONS OF VARIANCE COMPONENTS II. EMPIRICAL STUDIES OF UNBALANCED NESTED D. TECH 68, 719
- LEONG, Y. S. THE USE OF AN ITERATED MOVING AVERAGE IN MEASURING SEASONAL VARIATIONS, JASA 62, 149 LERWICK, TRYGVE R. MAXIMUM LIKELIHOOD ESTIMATORS OF REGRESSION
- COEFFICIENTS FOR THE CASE OF AUTOCORRELATE, TECH 65, 51 LESER, C. E. V. A SIMPLE METHOD OF TREND CONSTRUCTION, JRSSB 61, 91
- LESER, C. E. V. ESTIMATION OF QUASI-LINEAR TREND AND SEASONAL VARIA-TION, JASA 63, 1033
- LESLIE, D. C. M. DETERMINATION OF PARAMETERS IN THE JOHNSON SYSTEM OF PROBABILITY DISTRIBUTIONS, BIOKA 59, 229
- LESLIE, P. H. A COMPARISON OF THEORETICAL AND EMPIRICAL RESULTS FOR SOME STOCHASTIC POPULATION MODELS, BIOKA 60, 1
- LESLIE, P. H. A NOTE ON SOME APPROXIMATIONS TO THE VARIANCE IN DIS-CRETE-TIME STOCHASTIC MODELS FOR BIOLOG, BIOKA 60, 196

- LESLIE, P. H. A SIMPLE METHOD OF CALCULATING THE EXACT PROBABILITY IN 2-BY-2 CONTINGENCY TABLES WITH SMAL, BIOKA 55, 522
- LESLIE, P. H. A STOCHASTIC MODEL FOR STUDYING THE PROPERTIES OF CER-TAIN BIOLOGICAL SYSTEMS BY NUMERICAL M, BIOKA 5B, 16
- LESLIE, P. H. A STOCHASTIC MODEL FOR TWO COMPETING SPECIES OF TRIBOLIUM AND ITS APPLICATION TO SOME EXPER, BIOKA 62, 1
- LESLIE, P. H. AN ANALYSIS OF THE DATA FOR SOME EXPERIMENTS CARRIED OUT BY GAUSE WITH POPULATIONS OF THE P, BIOKA 57, 314
- LESLIE, P. H. CORRIGENDA, 'THE PROPERTIES OF A STOCHASTIC MODEL FOR TWO COMPETING SPECIES.', BIOKA 59, 279
- LESLIE, P. H. THE ESTIMATION OF POPULATION PARAMETERS FROM DATA OB-TAINED BY MEANS OF THE CAPTURE-RECAPTUR, BIOKA 51, 269
- LESLIE, P. H. THE ESTIMATION OF POPULATION PARAMETERS FROM DATA OB-TAINED BY MEANS OF THE CAPTURE-RECAPTUR, BIOKA 52, 363
- LESLIE, P. H. THE ESTIMATION OF POPULATION PARAMETERS FROM DATA OB-TAINED BY MEANS OF THE CAPTURE-RECAPTUR, BIOKA 53, 137 LESLIE, P. H. THE PROPERTIES OF A STOCHASTIC MODEL FOR THE PREDATOR-
- PREY TYPE OF INTERACTION BETWEEN TWO, BIOKA 60, 219 LESLIE, P. H. THE PROPERTIES OF A STOCHASTIC MODEL FOR TWO COMPETING
- SPECIES, BIOKA 5B, 316 LESLIE, R. N. SELECTION OF THE BEST SUBSET IN REGRESSION ANALYSIS.
- TECH 67. 531 LESLIE, R. T. USE OF RANGE IN TESTING HETEROGENEITY OF VARIANCE,
- BTOKA 66, 221 LEVENE, HOWARD DISCUSSION OF 'ON THE FOUNDATIONS OF STATISTICAL IN-
- FERENCE', JASA 62, 307 LEVER, W. E. CONFIDENCE LIMITS FOR QUANTILES OF MORTALITY DISTRIBU-
- TIONS, BIOCS 69, 176 LEVINE, A. A PROBLEM IN MINIMAX VARIANCE POLYNOMIAL EXTRAPOLATION,
- AMS 66. B9B LEVINE, A. OPTIMAL SPACING AND WEIGHTING IN POLYNOMIAL PREDICTION,
- AMS 64, 1553 LEVINE, J. MONOMIAL-MONOMIAL SYMMETRIC FUNCTION TABLES, BIOKA 59,
- LEVITAN, RICHARD E. SPECTRAL PROPERTIES OF NON-STATIONARY SYSTEMS OF LINEAR STOCHASTIC DIFFERENCE EQUATIO, JASA 69, 581
- LEWIS, P. A. W. A BRANCHING POISSON PROCESS MODEL FOR THE ANALYSIS OF COMPUTER FAILURE PATTERNS (WITH DIS) JRSSB 64, 398
- LEWIS, P. A. W. NON-HOMOGENEOUS BRANCHING POISSON PROCESSES, JRSSB
- LEWIS, P. A W. SOME RESULTS ON TESTS FOR POISSON PROCESSES. BIOKA
- LEWIS, PETER A. W DISTRIBUTION OF THE ANDERSON-DARLING STATISTIC. AMS 61, 1118
- CORRIGENDA TO 'CORRELATED RANDOM NORMAL DEVIATES' PUBLISHED IN TRACTS FOR COMPUTERS, NO. 26. BIOKA 56, 496
- LEWIS, T. SOME PROPERTIES OF COUNTS OF EVENTS FOR CERTAIN TYPES OF POINT PROCESS, JRSSB 64, 325
- LEWIS, T. THE INTERVALS BETWEEN REGULAR EVENTS DISPLACED IN TIME BY INDEPENDENT RANDOM DEVIATIONS OF LARG, JRSSB 61, 476
- LEWIS, T. 99.9 PERCENT AND 0.1 PERCENT POINTS OF THE CHI-SQUARE DIS-TRIBUTION. BIOKA 53, 421
- LEWIS, T. O. A GENERALIZATION OF THE GAUSS-MARKOV THEOREM, JASA 66, 1063
- LEWIS, TRUMAN A CONFIDENCE INTERVAL FOR THE AVAILABILITY RATIO, TECH 67, 465
- LEWONTIN, R C. THE ROBUSTNESS OF HOMOGENEITY TESTS IN 2 BY N TABLES. BIOCS 65. 19
- LEYSIEFFER, FREDERICK W. FUNCTIONS OF FINITE MARKOV CHAINS, AMS 67, 206
- LEYTON, M. K. NOTES. RAPID CALCULATION OF EXACT PROBABILITIES FOR 2-BY-3 CONTINGENCY TABLES, BIOCS 68, 714
- LI, C C. CORRELATION BETWEEN THE SAMPLE VARIANCES IN A SINGLY TRUN-CATED BIVARIATE NORMAL DISTRIBUTION, BIOKA 68, 433
- LI, C. C. CORRELATIONS BETWEEN SIMILAR SETS OF MEASUREMENTS, BIOCS 66.781
- LI. C. C. FISHER, WRIGHT, AND PATH COEFFICIENTS, BIOCS 68, 471
- LI, C. C. GENETIC EQUILIBRIUM UNDER SELECTION (INVITED PAPER), BIOCS 67. 397
- LI, CHOU HSIUNG A SEQUENTIAL METHOD FOR SCREENING EXPERIMENTAL VARIABLES, JASA 62, 455
- LIEBERMAN, G. J. AN EXACT ASYMPTOTICALLY EFFICIENT CONFIDENCE BOUND FOR RELIABILITY IN THE CASE OF THE WE, TECH 66, 135
- LIEBERMAN, G. J. UNLIMITED SIMULTANEOUS DISCRIMINATION INTERVALS IN REGRESSION, BIOKA 67, 133
- LIEBERMAN. GERALD J. PREDICTION REGIONS FOR SEVERAL PREDICTIONS FROM A SINGLE REGRESSION LINE, TECH 61, 21
- LIEBERMAN, GERALD J. SIMULTANEOUS TOLERANCE INTERVALS IN REGRES-SION, BIOKA 63, 155
- LIEBERMAN, GERALD J. STATISTICAL PROCESS CONTROL AND THE IMPACT OF AUTOMATIC PROCESS CONTROL, TECH 65, 283
- LIEBERMAN, MILTON D. PHILIPPINE STATISTICAL PROGRAM DEVELOPMENT AND THE SURVEY OF HOUSEHOLDS, JASA 58, 78
- LIEBLEIN, J. TWO EARLY PAPERS ON THE RELATION BETWEEN EXTREME VALUES AND TENSILE STRENGTH, BIOKA 54, 559
- TABLES OF CRITICAL VALUES OF SOME RENYI TYPE LIENTZ, B. P. STATISTICS FOR FINITE SAMPLE SIZES, JASA 69, 870
- LIEU. BUI-TRONG ON THE ERGODICITY FOR NON-STATIONARY MULTIPLE MAR-KOV PROCESSES, AMS 68, 1448

- LIGHT, R. THE USE OF FRACTIONAL MOMENTS FOR ESTIMATING THE PARAME-TERS OF A MIXED EXPONENTIAL DISTRIBUTION, TECH 68, 161
- LIKERT, RENSIS THE DUAL FUNCTION OF STATISTICS, JASA 60, 1
- LIKES, J. NOTES. SAMPLE SIZE FOR THE ESTIMATION OF MEANS OF NORMAL POPULATIONS, BIOCS 67, 846
- LIKES, JIRI DISTRIBUTION OF SOME STATISTICS IN SAMPLES FROM EX-PONENTIAL AND POWER-FUNCTION POPULATIONS, JASA 67, 259
- LILLIEFORS, H. W. ON THE KOLMOGOROV-SMIRNOV TEST FOR THE EXPONEN-TIAL DISTRIBUTION WITH MEAN UNKNOWN, JASA 69, 3B7
- LILLIEFORS, HUBERT W. ON THE KOLMOGOROV-SMIRNOV TEST FOR NORMALITY WITH MEAN AND VARIANCE UNKNOWN, JASA 67, 399
- LINDLEY, D. V. A STATISTICAL PARADOX, BIOKA 57, 1B7
- LINDLEY, D. V. BINOMIAL SAMPLING SCHEMES AND THE CONCEPT OF INFORMA-
- TION, BIOKA 57, 179
 LINDLEY, D. V. CORRIGENDA, 'TABLES FOR MAKING INFERENCES ABOUT THE VARIANCE OF A NORMAL DISTRIBUTION. ', BIOKA 61, 230
- LINDLEY, D. V. DISCUSSION OF 'ON THE FOUNDATIONS OF STATISTICAL IN-FERENCE', JASA 62, 307
- LINDLEY, D. V. DISCUSSION OF THE PAPERS OF MESSRS, HALD, WETHERILL AND COX, TECH 60, 361
- LINDLEY, D. V. ESTIMATION OF A FUNCTIONAL RELATIONSHIP, BIOKA 53, 47 LINDLEY. D. V. FIDUCIAL DISTRIBUTIONS AND BAYES' THEOREM, JRSSB 5B,
- LINDLEY, D. V. SEQUENTIAL SAMPLING, TWO DECISION PROBLEMS WITH LINEAR LOSSES FOR BINOMIAL AND NORMAL RAND, BIOKA 65, 507
- LINDLEY, D. V. TABLES FOR MAKING INFERENCES ABOUT THE VARIANCE OF A NORMAL DISTRIBUTION, BIOKA 60, 433
- LINDLEY, D. V. THE BAYESIAN ANALYSIS OF CONTINGENCY TABLES, AMS 64. 1622
- LINDLEY, D. V. THE CHOICE OF VARIABLES IN MULTIPLE REGRESSION (WITH DISCUSSION), JRSSB 68, 31
- LINDSEY, G.R. THE PROGRESS OF THE SCORE DURING A BASEBALL GAME, JASA 61,703
- LINHART, H. APPROXIMATE CONFIDENCE LIMITS FOR THE COEFFICIENT OF VARIATION IN GAMMA DISTRIBUTIONS, BIOCS 65, 733
- LINHART, H. APPROXIMATE TESTS FOR M RANKINGS. BIOKA 60, 476
- LINHART. H. ON SOME BILHARZIA INFECTION AND IMMUNISATION MODELS, SASJ 6B, 61
- LINHART, H. ON THE DISTRIBUTION OF THE FIRST SAMPLE MOMENTS OF SHOT NOISE, TECH 64, 2B7
- LINK, B. F. AUTHOR'S REPLY TO ANSCOMBE'S COMMENTS, TECH 65, 169
- LINK, B. F. SHORT-CUT MULTIPLE COMPARISONS FOR BALANCED SINGLE AND DOUBLE CLASSIFICATIONS. PART 1, RESULT, TECH 65, 95
- LINK, R. F. CORRELATION OF RANGES OF CORRELATED DEVIATES, BIOKA 66, 191
- LINK, R. F. SHORT-CUT MULTIPLE COMPARISONS FOR BALANCED SINGLE AND DOUBLE CLASSIFICATIONS. PART 2. DERIVA, BIOKA 65, 4B5
- LIPOW, M. APPLICATIONS OF THE BIVARIATE NORMAL DISTRIBUTION TO A STRESS VS. STRENGTH PROBLEM IN RELIABILI, TECH 64, 325
- LIPOW, M. QUERY, THE SUM OF VALUES FROM A NORMAL AND A TRUNCATED NOR-MAL DISTRIBUTION (CONTD), TECH 64, 469
- LIPTON. S. AN INVESTIGATION OF HARTLEY'S METHOD FOR FITTING AN EX-PONENTIAL CURVE, BIOKA 59, 2B1
- LIPTON, S. ROUTINE ANALYSIS OF REPLICATED EXPERIMENTS ON AN ELEC-TRONIC COMPUTER (WITH DISCUSSION), JRSSB 57, 234
- LIPTON. S. THE DERIVATION OF METHODS FOR FITTING EXPONENTIAL REGRESSION CURVES, BIOKA 64, 504
- LITTLE, R. E. A NOTE ON ESTIMATION FOR QUANTAL RESPONSE DATA, BIOKA 68 578
- LITTLE, R. E. A NOTE ON THE GAIN IN PRECISION FOR OPTIMAL ALLOCATION IN REGRESSION AS APPLIED TO EXTRAPOL, TECH 69, 389
- LITWIN, S. ESTIMATION OF THE NUMBER OF CRITICAL SITES IN LIMITED GENOME EXPRESSION DURING VIRAL INFECTION, BIOCS 69, 537
- LIUZZI, A. SOME EXPERIMENTAL SAMPLING RESULTS FOR REGRESSION ANAL-YSIS APPLIED TO GAMA RAY SPECTROMETER DA, BIOCS 68, 353
- LIUZZI, A. SOME EXPERIMENTAL SAMPLING RESULTS FOR REGRESSION ANAL-YSIS APPLIED TO GAMMA RAY SPECTROMETER D, BIOCS 67, 11
- LIUZZI, ANTHONY PATTERNS IN RESIDUALS, A TEST FOR REGRESSION MODEL
- ADEQUACY IN RADIONUCLIDE ASSAY, TECH 65, 603
 LLEWELYN, F. W. M. THE LOG (-LOG) TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION RECORDS, BIOCS 68, 627
- LLOYD, D. E. NOTE ON A PROBLEM OF ESTIMATION, BIOKA 59, 231
- LLOYD, E. H. A NOTE ON THE SOLUTION OF DAM EQUATIONS, JRSSB 64, 338 LLOYD, E. H. LEAST SQUARES ESTIMATION OF LOCATION AND SCALE PARAME-TERS USING ORDER STATISTICS, BIOKA 52, 88
- LLOYD, E. H. ON THE RANGE OF PARTIAL SUMS OF A FINITE NUMBER OF INDE-PENDENT NORMAL VARIATES, BIOKA 53, 35
- LLOYD, E. H. RESERVOIRS WITH SERIALLY CORRELATED INPUTS, TECH 63, 85 LLOYD, E. H. THE EPOCHS OF EMPTINESS OF A SEMI-INFINITE DISCRETE RESERVOIR, JRSSB 63, 131
- LO YANG, GRACE CONTAGION IN STOCHASTIC MODELS FOR EPIDEMICS, AMS 68, 1863
- LOCHNER, R. H. A NOTE ON TABLES FOR THE COMPARISION OF THE SPREAD OF TWO NORMAL DISTRIBUTIONS, BIOKA 67, 683
- LOCKS, MITCHELL O. AUTOMATIC PROGRAMMING FOR AUTOMATIC COMPUTERS, JASA 59, 744
- LOFTSGAARDEN, D. O. A NONPARAMETRIC ESTIMATE OF A MULTIVARIATE DEN-SITY FUNCTION, AMS 65, 1049

- LOHRDING, R. K. A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS AS-SUMING HOMOGENEOUS COEFFICIENTS OF VA, AMS 69, 1374
- LOMNICKI, Z. A. A NOTE ON THE WEIBULL RENEWAL PROCESS, BIOKA 66, 375 LOMNICKI, Z. A. BANDWIDTH AND RESOLVABILITY IN STATISTICAL SPEC-TRAL ANALYSIS, JRSSB 59, 169
- LOMNICKI, Z. A. ON ESTIMATING THE SPECTRAL DENSITY FUNCTION OF A STOCHASTRIC PROCESS (WITH DISCUSSION), JRSSB 57, 13
- LOMNICKI, Z. A. ON THE DISTRIBUTION OF PRODUCTS OF RANDOM VARIABLES. JRSSB 67. 513
- LOMNICKI, Z. A. SOME APPLICATIONS OF ZERO-ONE PROCESSES, JRSSB 55. 243
- LONG, W. M. ESTIMATION PROBLEMS WHEN A SIMPLE TYPE OF HETEROGENEITY IS PRESENT IN THE SAMPLE, BIOKA 51, 90
- LONG, W. M. QUALITY CONTROL SYSTEMS BASED ON INACCURATELY MEASURED VARIABLES, BIOKA 51, 472 LONGLEY, JAMES W. AN APPRAISAL OF LEAST SQUARES PROGRAMS FOR THE
- ELECTRONIC COMPUTER FROM THE POINT OF VI, JASA 67, 819
- LONNQUIST, J. H. FURTHER EVIDENCE ON THE CONSISTENCY OF ESTIMATES OF
- VARIANCE COMPONENTS, BIOCS 65, 395 LORD, E. CORRIGENDA, 'THE USE OF RANGE IN PLACE OF STANDARD DEVIA-TION IN THE T-TEST.', BIOKA 52, 442
- LORD, FREDERIC M. A NOMOGRAPH FOR COMPUTING PARTIAL CORRELATION COEFFICIENTS, CORR. 62 917, JASA 61, 995
- LORD, FREDERIC M. LARGE-SAMPLE COVARIANCE ANALYSIS WHEN THE CON-TROL VARIABLE IS FALLIBLE, JASA 60, 307
- LORD, FREDERIC M. PROBLEMS IN MENTAL TEST THEORY ARISING FROM ERRORS OF MEASUREMENT, JASA 59, 472
- LORD, R. D. STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. VIII. DE MORGAN AND THE STATISTICAL STU, BIOKA 5B, 2B2
- LORD, R. D. THE USE OF THE HANKEL TRANSFORM IN STATISTICS. I. GENERAL THEORY AND EXAMPLES, BIOKA 54, 44
- LORD, R. D. THE USE OF THE HANKEL TRANSFORM IN STATISTICS. II METHODS OF COMPUTATION, BIOKA 54, 344 LORDEN, GARY INTEGRATED RISK OF ASYMPTOTICALLY BAYES SEQUENTIAL
- TESTS, AMS 67, 1399 LOVELL, MICHAEL C. ALTERNATIVE AXIOMATIZATIONS OF SEASONAL ADJUST-
- MENT, JASA 66, BOO
- LOVELL, MICHAEL C. SEASONAL ADJUSTMENT OF ECONOMIC TIME SERIES AND MULTIPLE REGRESSION ANALYSIS, JASA 63, 993
- LOVNES, R. M. ON COX AND SNELL'S DEFINITION OF RESIDUALS, JRSSB 69, 103
- LOW, LEONE Y. ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED IN-COMPLETE BLOCK, JASA 69, 1014
- LOW, LEONE Y. SAMPLING VARIANCES OF ESTIMATES OF COMPONENTS OF VARI-ANCE FROM A NON-ORTHOGONAL TWO-WAY CLA, BIOKA 64, 491
- LOWE, J. R. A TABLE OF THE INTEGRAL OF THE BIVARIATE NORMAL DISTRIBU-TION OVER AN OFSET CIRCLE, JRSSB 60, 177
- EXTREME VALUES IN UNIFORMLY MIXING STATIONARY LOYNES, R. M. STOCHASTIC PROCESSES, AMS 65, 993
- LOYNES, R. M. ON A PROPERTY OF THE RANDOM WALKS DESCRIBING SIMPLE QUEUES AND DAMS, JRSSB 65, 125
- LOYNES, R. M. ON IDEMPOTENT MATRICES, AMS 66, 295
- LOYNES, R. M. ON THE CONCEPT OF THE SPECTRUM FOR NON-STATIONARY PROCESSES (WITH DISCUSSION), JRSSB 6B, 1
- LOYNES, R. M. ON THE WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES, JRSSB 65, 491
- LOYNES, R. M. SOME ASPECTS OF THE ESTIMATION OF QUANTILES, JRSSB 66,
- LOYNES, R. M. STATIONARY WAITING-TIME DISTRIBUTIONS FOR SINGLE-SERVER QUEUES, AMS 62, 1323 LOYNES, R. M. THE CONSISTENCY OF CERTAIN SEQUENTIAL ESTIMATORS, AMS
- 69,568 LU, K. H. A PATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV CHAINS
- WITH AN APPLICATION IN STUDYING THED, BIOCS 66, 791
- LU, K. H. HARMONIC ANALYSIS OF THE HUMAN FACE, BIOCS 65, 491
- LUBINSKA, L. A STOCHASTIC MODEL OF ACHE TRANSPORTATION IN THE PERIPHERAL NERVE TRUNKS, BIOKA 62, 447
- LUCAS JR, ROBERT E. ESTIMATION AND INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE, JASA 68, 1201
- LUCAS, H. L. ANALYSIS OF VARIANCE OF DISPROPORTIONATE DATA WHEN IN-TERACTION IS PRESENT, BIOCS 65, 115
- LUCAS, H. L. DESIGN OF EXPERIMENTS IN NON-LINEAR SITUATIONS, BIOKA
- LUCE, R. DUNCAN ON THE NUMERICAL REPRESENTATION OF QUALITATIVE CON-DITION PROBABILITY, AMS 6B, 4B1
- LUCE, R. DUNCAN SUFFICIENT CONDITIONS FOR THE EXISTENCE OF A FINITE-LY ADDITIVE PROBABILITY MEASURE, AMS 67, 780
- LUCHAK, G. THE CONTINUOUS TIME SOLUTION OF THE EQUATIONS OF THE SIN-GLE CHANNEL QUEUE WITH A GENERAL CLASS, JRSSB 5B, 176 LUKACS, E. ON A PROBLEM CONNECTED WITH QUADRATIC REGRESSION, BIOKA
- LUKACS, E. ON CERTAIN FUNCTIONS OF NORMAL VARIATES WHICH ARE UNCOR-
- RELATED OF A HIGHER ORDER, BIOKA 60, 175 LUKS, EUGENE M. ON THE MEAN DURATION OF A BALL AND CELL GAME, A FIRST PASSAGE PROBLEM, AMS 66, 517
- LURIE, SANDRA APPLICATION OF AN ESTIMATOR OF HIGH EFFICIENCY IN BIVARIATE EXTREME VALUE THEORY, JASA 69, NO. 4
- LUTHER, NORMAN Y. DECOMPOSITION OF SYMMETRIC MATRICES AND DIS-TRIBUTIONS OF QUADRATIC FORMS, AMS 65, 6B3

- MAAG, U. R. A K-SAMPLE ANALOGUE OF WATSON'S U-SQUARE STATISTIC, BIOKA 66, 579
- MAAG, U. R. FURTHER PERCENTAGE POINTS FOR W-SQUARE-SUB-N+(CRAMER-VON MISES GOODNESS-OF-FIT STATISTIC), BIOKA 68, 42B
- MAAG, URS. R. THE V-SUB-NM TWO-SAMPLE TEST, AMS 6B, 923
- MACCALL JR, CHESTER H. A METHOD OF ADJUSTMENT FOR DEFECTIVE DATA, JASA 58, 736
- MACCARTHY, PHILIP J. STRATIFIED SAMPLINC AND DISTRIBUTION-FREE CONFIDENCE INTERVALS FOR A MEDIAN, JASA 65, 772
- MACCORNACK, ROBERT L. EXTENDED TABLES OF THE WILCOXON MATCHED PAIR SIGNED RANK STATISTIC, JASA 65, B64
- MACDERMOTT, JAMES P. THE OPTIMUM STRATEGY IN BLACKJACK, CORR. 59 B10, JASA 56, 429
- MACDONALD, J. A. THE USE OF INTEGRAL TRANSFORMS TO DETERMINE EXPAN-SIONS OF DISTRIBUTION FUNCTIONS, BIOKA 60, 460
- MACHIN, D. THE PREDICTION OF RESPONSE TO SELECTION IN BREEDING PRO-GRAMMES WHEN ALL DAUGHTERS OF SELECTED, BIOCS 69, 553
- MACIMOV, V. N. EXPERIMENTAL DEVELOPMENT OF NUTRITIVE MEDIA FOR MICRO-ORGANISMS, BIOKA 6B, 43
- MACIVER, R. M. THE PREDICTION OF RESPONSE TO SELECTION IN BREEDING PROGRAMMES WHEN ALL DAUCHTERS OF SELEC, BIOCS 69, 553
- MACK, C. QUERY, TOLERANCE LIMITS FOR A BINOMIAL DISTRIBUTION, TECH 69.201
- MACK, C. THE EFFECT OF OVERLAPPINC IN BACTERIAL COUNTS OF INCUBATED COLONIES, BIOKA 53, 220
- MACK, C. THE EFFICIENCY OF N MACHINES UNI-DIRECTIONALLY PATROLLED BY ONE OPERATOR WHEN WALKING TIME AND R, JRSSB 57, 166
- MACK, C. THE EFFICIENCY OF N MACHINES UNI-DIRECTIONALLY PATROLLED BY ONE OPERATOR WHEN WALKING TIME IS CO, JRSSB 57, 173
- MACKENZIE, J. K. SECOND PAPER ON STATISTICS ASSOCIATED WITH THE RAN-DOM DISOREINTATION OF CUBES, BIOKA 58, 229
- MACKENZIE, J. K. SOME STATISTICS ASSOCIATED WITH THE RANDOM DIS-ORIENTATION OF CUBES, BIOKA 57, 205
- MACKEON. A. J. THE USE OF RANDOM WORK SAMPLING FOR COST ANALYSIS AND CONTROL, CORR. 5B 1031, JASA 5B, 3B2
- MACKINNON, WILLIAM J. COMPACT TABLE OF TWELVE PROBABILITY LEVELS OF
- THE SYMMETRIC BINOMIAL CUMULATIVE DIS, JASA 59, 164 MACKINNON, WILLIAM J. TABLE FOR BOTH THE SIGN TEST AND DISTRIBUTION-
- FREE CONFIDENCE INTERVALS OF THE MEDI, JASA 64, 935 MACQUEEN, J. AN INTRINSICALLY DETERMINED MARKOV CHAIN, AMS 67, 934
- MACQUEEN, J. SOME APPLICATIONS OF MONOTONE OPERATORS IN MARKOV PROCESSES, AMS 65, 1421
- MACQUEEN, JAMES B. A PROBLEM IN SURVIVAL, AMS 61, 605
- MADANSKY, ALBERT APPROXIMATE CONFIDENCE LIMITS FOR THE RELIABILITY OF SERIES AND PARALLEL SYSTEMS, TECH 65, 495
- MADANSKY, ALBERT EFFICIENCY OF THE SAMPLE MEAN WHEN RESIDUALS FOL-LOW A FIRST-ORDER STATIONARY MARKOFF PRO, JASA 68, 1237
- MADANSKY, ALBERT MORE ON LENGTH OF CONFIDENCE INTERVALS, JASA 62,
- MADANSKY, ALBERT PARAMETER-FREE AND NON-PARAMETRIC TOLERANCE LIMITS, THE EXPONENTIAL CASE, TECH 62, 75
- MADANSKY, ALBERT STATISTICAL ESTIMATION PROCEDURES FOR THE 'BURN-IN' PROCESS, TECH 6B, 51
- MADANSKY, ALBERT TESTS OF HOMOCENEITY FOR CORRELATED SAMPLES, JASA 63,97
- MADANSKY, ALBERT THE FITTING OF STRAIGHT LINES WHEN BOTH VARIABLES ARE SUBJECT TO ERROR, CORR. 59812, JASA 59, 173
- MAESHIRO, ASATOSHI A SIMPLE MATHEMATICAL RELATIONSHIP AMONG K-CLASS ESTIMATORS, JASA 66, 368
- MAGNESS, T. A. COMPARISON OF LEAST SQUARES AND MINIMUM VARIANCE ESTIMATES OF RECRESSION PARAMETERS, (ACKN, AMS 62, 462
- MAGUIRE, B. A. FURTHER NOTES ON THE ANALYSIS OF ACCIDENT DATA, BIOKA 53.214
- MAGUIRE, B. A. THE TIME INTERVALS BETWEEN INDUSTRIAL ACCIDENTS, BIOKA 52, 168
- MAHALANOBIS, B. REGIONAL DISPARITIES IN HOUSEHOLD COMSUMPTION IN INDIA, JASA 67, 143
- MAHAMUNULU, D. M. A NOTE ON REGRESSION IN THE MULTIVARIATE POISSON DISTRIBUTION, JASA 67, 251
- MAHAMUNULU, D. M. SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COMPONENTS IN THE UNBALANCED THREE-WAY, AMS 63, 521
- SOME FIXED-SAMPLE RANKING AND SELECTION MAHAMUNULU, D. M. PROBLEMS, AMS 67, 1079
- MAHMOUD, M. W. ON THE PROBLEM OF ESTIMATION FOR THE BIVARIATE LOG-NORMAL DISTRIBUTION, BIOKA 64, 522
- MAISEL, HERBERT BEST K OF 2K-1 COMPARISONS, JASA 66, 329
- MAISEL, HERBERT THE OPTIMUM STRATEGY IN BLACKJACK, CORR. 59 B10, JASA 56, 429
- MAISEL, SHERMAN J. CHANGES IN THE RATE AND COMPONENTS OF HOUSEHOLD FORMATION, JASA 60, 268
- MAITRA, ASHOK A NOTE ON POSITIVE DYNAMIC PROGRAMMING, AMS 69, 316
- MAITRA, ASHOK A NOTE ON UNDISCOUNTED DYNAMIC PROGRAMMING, AMS 66, 1042
- MAJINDAR, KULENDRA N. IMPROVED BOUNDS ON A MEASURE OF SKEWNESS, AMS 62.1192
- MAJINDAR, KULENDRA N. ON THE PARAMETERS AND INTERSECTION OF BLOCKS OF BALANCED INCOMPLETE BLOCK DESIGNS, AMS 62, 1200

- MALIK, HENRICK JOHN EXACT DISTRIBUTION OF THE PRODUCT OF INDEPEN-DENT CENERALIZED CAMMA VARIABLES WITH THE AMS 6B. 1751
- MALLIOS, WILLIAM S. A CENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE ESTIMATION OF STRAIGHT-LINE RELATI, TECH 69, 255
- MALLIOS, WILLIAMS. A STRUCTURAL RECRESSION APPROACH TO COVARIANCE ANALYSIS WHEN THE COVARIABLE IS UNCONT. JASA 67, 1037
- MALLOWS, C. L. AN INEQUALITY IN CONSTRAINED RANDOM VARIABLES, AMS 68, 1080
- MALLOWS, C. L. AN INEQUALITY INVOLVING MULTINOMIAL PROBABILITIES, BIOKA 68, 422
- MALLOWS, C. L. CENERALIZATIONS OF TCHEBYCHEFF'S INEQUALITIES (WITH DISCUSSION), JRSSB 56, 139
- MALLOWS, C. L. INEQUALITIES OF CHEBYSHEV TYPE INVOLVING CONDITIONAL EXPECTATIONS, AMS 69, NO.6
- MALLOWS, C. L. LATENT VECTORS OF RANDOM SYMMETRIC MATRICES, BIOKA 61, 133
- MALLOWS, C. L. NON-NULL RANKINC MODELS. I, BIOKA 57, 114
- MALLOWS, C. L. NON-RANDOMNESS IN A SEQUENCE OF TWO ALTERNATIVES. I. WILCOXON'S AND ALLIED TEST STATISTICS, BIOKA 58, 166
- MALLOWS, C. L. NOTE ON THE MOMENT-PROBLEM FOR UNIMODAL DISTRIBU-TIONS WHEN ONE OR BOTH TERMINALS ARE KNOWN, BIOKA 56, 224
- MALLOWS, C. L. ON THE PROBABILITY INTECRAL TRANSFORMATION, BIOKA 59,481
- MALLOWS, C. L. SOME ASPECTS OF THE RANDOM SEQUENCE, AMS 65, 236
- MALLOWS, C. L. THE INFORMATION IN AN EXPERIMENT, JRSSB 59, 67
- MALLOWS, C. L. THE RANDOMIZATION BASES OF THE PROBLEM OF THE AMALCA-MATION OF WEICHTED MEANS, JRSSB 61, 423
- MALLOWS, C. L. THE VARIANCE OF SPEARMAN'S RHO IN NORMAL SAMPLES, BIOKA 61, 19
- MANDEL, J. A METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND CHEMICAL DATA. TECH 69, 411
- MANDEL, JOHN ANALYSIS OF LATIN SQUARES WITHIN A CERTAIN TYPE OF ROW-COLUMN INTERACTION, TECH 59, 379
- MANDEL, JOHN ESTIMATION OF WEIGHTING FACTORS IN LINEAR RECRESSION AND ANALYSIS OF VARIANCE, TECH 64, 1
- AND ANALYSIS OF VARIANCE, TECH 64, 1
 MANDEL, JOHN FITTING A STRAICHT LINE TO CERTAIN TYPES OF CUMULATIVE
- DATA, JASA 57, 552 MANDEL, JOHN NON-ADDITIVITY IN TWO-WAY ANALYSIS OF VARIANCE, JASA 61, 878
- MANDEL, JOHN QUERY, RECRESSION ANALYSIS OF CUMULATIVE DATA, TECH
- MANDEL, JOHN THE MEASURING PROCESS, TECH 59, 251
- MANDEL, L. CRADINC WITH A CAUCE SUBJECT TO RANDOM OUTPUT FLUCTUA-TIONS, JRSSB 54, 118
- MANDELBROT, BENOIT THE ROLE OF SUFFICIENCY AND OF ESTIMATION IN THERMODYNAMICS, AMS 62, 1021
- MANHEIMER, DEAN I. A MATHEMATICAL MODEL WITH APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMONC CHILD, JASA 65, 1046
- MANLY, B. F. J. APPROXIMATIONS TO THE CHARACTERISTICS OF SOME SEQUENTIAL TESTS, BIOKA 69, 203
- MANLY, B. F. J. SOME PROPERTIES OF A METHOD OF ESTIMATING THE SIZE OF MOBILE ANIMAL POPULATIONS, BIOKA 69, 407
- MANN, D. W. THE DISCARDING OF VARIABLES IN MULTIVARIATE ANALYSIS, BIOKA 67.357
- MANN, HENRY B. A NOTE ON BALANCED INCOMPLETE BLOCK DESIGNS, AMS 69, 679
- MANN, N. R. ON EVALUATION OF WARRANTY ASSURANCE WHEN LIFE HAS A WEIBULL DISTRIBUTION. BIOKA 69, NO. 3
- MANN, NANCY R. EXACT THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON RE-LIABLE LIFE FOR A WEIBULL MODEL WITH P. JASA 69, 306
- MANN, NANCY R. OPTIMUM ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND SCALE PARAMETERS, AMS 69, NO.6
- MANN, NANCY R. POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TWO-PARAMETER WEIBULL AND EXTREME-VALUE D, TECH 6B, 231
- MANN, NANCY R. TABLES FOR OBTAINING THE BEST LINEAR INVARIANT ESTI-MATES OF PARAMETERS OF THE WEIBULL DIST, TECH 67, 629
- MANSFIELD, EDWIN POWER FUNCTIONS FOR COX'S TEST OF RANDOMNESS AGAINST TREND, TECH 62, 430
- MANSFIELD, EDWIN THE LOCISTIC PROCESS, TABLES OF THE STOCHASTIC EPIDEMIC CURVE AND APPLICATIONS, JRSSB 60, 332
- MANSON, A. R. MINIMUM BIAS ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE SURFACES, TECH 69, 461
- MANTEL, N. ADAPTATION OF KARBER'S METHOD FOR ESTIMATING THE EXPONENTIAL PARAMETER FROM QUANTAL DATA, AND, BIOCS 67, 739
- MANTEL, N. KOLMOGOROV-SMIRNOV TESTS AND RENYI'S MODIFICATION, BIOCS 6B, 1019
- MANTEL, N. MODELS FOR COMPLEX CONTINGENCY TABLES AND POLYCHOTOMOUS DOSACE RESPONSE CURVES, BIOCS 66, B3
- MANTEL. N. NOTES. A DEFICIENCY IN THE SUMMATION OF CHI PROCEDURE. BIOCS 66, 407
- MANTEL, N. NOTES. ASSUMPTION-FREE ESTIMATORS USING U STATISTICS AND A RELATIONSHIP TO THE JACKKNIFE METHO, BIOCS 67, 567
- MANTEL, N. NOTES. CORRECTED CORRELATION COEFFICIENTS WHEN OBSERVATION ON ONE VARIABLE IS RESTRICTED, BIOCS 66, 1B2
- MANTEL, N. NOTES. EQUIVALENCE OF MAXIMUM LIKELIHOOD AND THE METHOD OF MOMENTS IN PROBIT ANALYSIS, BIOCS 67, 154

- MANTEL, N. NOTES. F-RATIO PROBABILITIES FROM BINOMIAL TABLES, BIOCS 66, 404
- MANTEL, N. NOTES. SIMULTANEOUS CONFIDENCE INTERVALS AND EXPERIMEN-TAL DESIGN WITH NORMAL CORRELATION, BIOCS 68, 434
- MANTEL, N. QUERY, THE SUM OF VALUES FROM A NORMAL AND A TRUNCATED NOR-MAL DISTRIBUTION (CONTD), TECH 64, 469
- MANTEL, N. RANKINC PROCEDURES FOR ARBITRARILY RESTRICTED OBSERVA-TION, BIOCS 67, 65
- MANTEL, N. RESTRICTED LEAST SQUARES REGRESSION AND CONVEX QUADRATIC PROCRAMMING, TECH 69, NO. 4
- MANTEL, N. THE EFFECTIVE USE OF BOTH POSITIVE AND NECATIVE CONTROLS IN SCREENING EXPERIMENTS, BIOCS 67, 285
- MANTEL, NATHAN CHI-SQUARE TESTS WITH ONE DEGREE OF FREEDOM, EXTENSIONS OF THE MANTEL-HAENSZEL PROCEDURE, JASA 63, 690
- MANTEL, NATHAN COMPUTATION OF INDIRECT-ADJUSTED RATES IN THE PRESENCE OF CONFOUNDING, BIOCS 68, 997
- MANTEL, NATHAN INTERVAL ESTIMATION OF NON-LINEAR PARAMETRIC FUNC-TIONS, JASA 63, 611
- MANTEL, NATHAN LICHT BULB STATISTICS, CORR. 66 1248, JASA 66, 633
- MARCUS, A. H. A MULTIVARIATE IMMIGRATION WITH MULTIPLE DEATH PROCESS AND APPLICATIONS TO LUNAR CRATERS, BIOKA 67, 251
 MARCUS, ALLENH, STOCHASTIC COALESCENCE, TECH 68, 133
- MARCUS, L. F. AN EMPIRICAL COMPARISON OF DISTANCE STATISTICS FOR POPULATIONS WITH UNEQUAL COVARIANCE MATR, BIOCS 68, 683
- MARCUS, L. F. BOUNDS IN A MINIMAX CLASSIFICATION PROCEDURE, BIOKA 65,653
- MARDIA, K. V. A NON-PARAMETRIC TEST FOR THE BIVARIATE TWO-SAMPLE LO-CATION PROBLEM, JRSSB 67, 320
- MARDIA, K. V. CORRELATION OF THE RANCES OF CORRELATED SAMPLES, BIOKA 67, 529
- MARDIA. K. V. MULTIVARIATE PARETO DISTRIBUTIONS, CORR. 63 1603, AMS 62, 1008
- MARDIA, K. V. ON THE NULL DISTRIBUTION OF A NON-PARAMETRIC TEST FOR THE BIVARIATE TWO-SAMPLE PROBLEM, JRSSB 69, 98
- MARDIA, K. V. SMALL SAMPLE POWER OF A NON-PARAMETRIC TEST FOR THE.
 BIVARIATETWO-SAMPLE LOCATION PROBLEM I, JRSSB 68, 83
- MARDIA, K. V. SOME CONTRIBUTIONS TO CONTINCENCY-TYPE BIVARIATE DISTRIBUTIONS (CORR. 6B 597), BIOKA 67, 235
- MARDIA, K. V. SOME RESULTS ON THE ORDER STATISTICS OF THE MUL-TIVARIATE NORMAL AND PARETO TYPE 1 POPULATIO, AMS 64, 1815
- MARDIA, K. V. THE PERFORMANCE OF SOME TESTS OF INDEPENDENCE FOR CONTINGENCY-TYPE BIVARIATE DISTRIBUTIONS, BIOKA 69, 449
- MARCOLIN, B. H. ORTHOCONAL MAIN-EFFECT PLANS PERMITTINC ESTIMATION OF ALL TWO-FACTOR INTERACTIONS FOR THE, TECH 69, NO.4 MARCOLIN, B. H. RESULTS ON FACTORIAL DESIGNS OF RESOLUTION IV FOR
- MARCOLIN, B. H. RESULTS ON FACTORIAL DESIGNS OF RESULUTION IV FOR THE 2-TO-THE-N AND 2-TO-THE-N TIMES 3-T, TECH 69, 431

 MARCOLIN, B. H. SYSTEMATIC METHODS FOR ANALYZING 2-TO-THE-N-TIMES-
- 3-TO-THE-M FACTORIAL EXPERIMENTS WITH A. TECH 67, 245
 MARCOLIN, BARRY H. EXACT MOMENTS OF THE ORDER STATISTICS OF THE
- CEOMETRIC DISTRIBUTION AND THEIR RELATION, JASA 67, 915
 MARCOLIN, BARRY H. THE EXPECTED COVERACE TO THE LEFT OF THE I'TH
- ORDER STATISTIC FOR ARBITRARY DISTRIBUTI, AMS 69, 644
 MARITZ, J. S. EMPIRICAL BAYES ESTIMATION FOR THE POISSON DISTRIBU-
- TION, BIOKA 69, 349

 MARITZ, J. S. NOTE ON A CERTAIN FAMILY OF DISCRETE DISTRIBUTIONS,
- BIOKA 52, 196 MARITZ, J. S. ON THE SMOOTH EMPIRICAL BAYES APPROACH TO TESTING OF
- HYPOTHESES AND THE COMPOUND DECISION P, BIOKA 68, 83 MARITZ, J. S. ON THE USE OF THE GENERALIZED EXTREME-VALUE DISTRIBU-
- TION IN ESTIMATING EXTREME PERCENTILES, BIOCS 67, 79
 MARITZ, J.S. SMOOTH EMPIRICAL BAYES ESTIMATION FOR CONTINUOUS DIS-
- TRIBUTIONS (CORR. 68 597), BIOKA 67, 435
 MARITZ, J. S. SMOOTH EMPIRICAL BAYES ESTIMATION FOR ONE-PARAMETER
- DISCRETE DISTRIBUTIONS, BIOKA 66, 417
 MARKS, B. L. SOME OPTIMAL SEQUENTIAL SCHEMES FOR ESTIMATING THE MEAN
- OF A CUMULATIVE NORMAL QUANTAL RESPO, JRSSB 62, 393
 MARKS, ELI S. INFLUENCE OF THE INTERVIEWER ON THE ACCURACY OF SURVEY
 RESULTS, JASA 5B, 635
- MARLOW, W. H. FACTORIAL DISTRIBUTIONS, AMS 65, 1066
- MARRIOTT, F. H. C. ASSOCIATED DIRECTIONS, BIOCS 69, NO. 4
- MARRIOTT, F. H. C. BIAS IN THE ESTIMATION OF AUTOCORRELATIONS, BIOKA $54,\,390$
- MARRIOTT, F. H. C. TESTS OF SICNIFICANCE IN CANONICAL ANALYSIS, BIOKA 52, 5B
- MARSAGLIA, G. EXPRESSINC A RANDOM VARIABLE IN TERMS OF UNIFORM RANDOM VARIABLES, AMS 61, 894
- MARSACLIA, G. GENERATING A VARIABLE FROM THE TAIL OF THE NORMAL DISTRIBUTION, TECH 64, 101
- MARSAGLIA, G. GENERATING EXPONENTIAL RANDOM VARIABLES, AMS 61, B99
 MARSAGLIA, G. MOMENT CROSSINGS AS RELATED TO DENSITY CROSSINGS,
 JRSSB 65, 91
- MARSAGLIA, GEORGE CONDITIONAL MEANS AND COVARIANCES OF NORMAL VARIABLES WITH SINGULAR COVARIANCE MATRIX, JASA 64, 1203
- MARSAGLIA, GEORCE EXPRESSING THE NORMAL DISTRIBUTION WITH COVARI-ANCE MATRIX A+B IN TERMS OF ONE WITH COVA, BIOKA 63, 535
- MARSAGLIA, GEORCE QUERY, PSEUDO RANDOM NORMAL NUMBERS, TECH 6B, 401
 MARSAGLIA, GEORCE RATIOS OF NORMAL VARIABLES AND RATIOS OF SUMS OF
 UNIFORM VARIABLES, JASA 65, 193

- MARSHALL, A. W. A GENERAL APPROACH TO SOME SCREENING AND CLASSIFICA-TION PROBLEMS (WITH DISCUSSION), JRSSB 68, 407
- MARSHALL, A. W. A STOCHASTIG CHARACTERIZATION OF WEAR-OUT FOR COM-PONENTS AND SYSTEMS, AMS 66, 816
- MARSHALL, A. W. AN OPTIMAL SEQUENTIAL ACGELERATED LIFE TEST., TECH 62.367
- MARSHALL, A. W. MOMENT CROSSINGS AS RELATED TO DENSITY CROSSINGS, JRSSB 65, 91
- SYSTEMS STRUCTURE AND THE EXISTENCE OF A SYSTEM MARSHALL, A. W. LIFE, TEGH 64, 459
- MARSHALL, ALBERT W. A MULTIVARIATE EXPONENTIAL DISTRIBUTION, JASA 67, 30
- MARSHALL, ALBERT W. BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE, I, AMS 64, 1234
- MARSHALL, ALBERT W. BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE, II, AMS 64, 125B
- MARSHALL, ALBERT W. PROPERTIES OF PROBABILITY DISTRIBUTIONS WITH MONOTONE HAZARD RATE, AMS 63, 375
- MARSHALL, ALBERT W. SOME MULTIVARIATE CHEBYSHEV INEQUALITIES WITH-EXTENSIONS TO CONTINUOUS PARAMETER PRO, AMS 61, 6B7
- MARSHALL, ALBERT W. TABLES OF BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE, JASA 65, 872
- MARSHALL, ALBERT. W. MAXIMUM LIKELIHOOD ESTIMATION FOR DISTRIBU-TIONS WITH MONOTONE FAILURE RATE, AMS 65, 69
- MARSHALL, W. H. LINE TRANSECT METHOD OF ESTIMATING GROUSE POPULA-TION DENSITIES, BIOCS 6B, 135
- MARTIN, D. C. FITTING OF SOME CONTAGIOUS DISTRIBUTIONS TO SOME AVAILABLE DATA BY THE MAXIMUM LIKELIHOOD M, BIOCS 65, 34
- MARTIN, DONALD C. SEQUENTIAL RANK TESTS I. MONTE CARLO STUDIES OF THE TWO-SAMPLE PROCEDURE, TECH 65, 463
- MARTIN, FRANK B. ON COMBINABILITY OF INFORMATION FROM UNCORRELATED LINEAR MODELS BY SIMPLE WEIGHTING, AMS 66, 1338
- MARTIN, N. F. G. UNIFORM CONVERGENCE OF FAMILIES OF MARTINGALES, AMS 69, 1071
- MARTINEZ, CHARLES A METHOD TO DETERMINE THE RELIABILITY OF
- TELEMETRY SYSTEMS REPORTS, JASA 62, 6B6 MARTZ, H. F. EMPIRICAL BAYES ESTIMATORS IN A MULTIPLE LINEAR REGRES-
- SION MODEL, BIOKA 69, 367 MASSEY JR, FRANK J. ESTIMATION OF MULTIPLE GONTRASTS USING T-DIS-
- TRIBUTIONS, JASA 65, 573 MASSY, WILLIAM F. PRINCIPAL GOMPONENTS REGRESSION IN EXPLORATORY
- MASSI, WILLIAM F. FRINCIPAL GUMPUNENTS REGRESSION. STATISTICAL RESEARCH, JASA 65, 234 MASTERSON, GREGORY E. ON QUEUES IN TANDEM, AMS 63, 300
- MATHAI, A. M. AN APPROXIMATE METHOD OF ANALYSIS FOR A TWO-WAY LAYOUT, BIOGS 65, 376
- MATHAI, A. M. APPLICATION OF SPECIAL FUNCTIONS IN THE CHARACTERIZA-TION OF PROBABILITY DISTRIBUTIONS, SASJ 69, 27
- MATHAI, A. M. DISTRIBUTION OF A PRODUCT AND THE STRUCTURAL SETUP OF DENSITIES, AMS 69, 1439
- MATHAI, A. M. DISTRIBUTIONS OF RANDOM VARIABLES WITH RANDOM PARAME-TERS, SASJ 69, 1
- MATHAI, A. M. ON A PROBLEM OF REGRESSION, SASJ 67, 43
- MATHER, F. J. LINEAR REGRESSION WITH NON-CONSTANT, UNKNOWN ERROR VARIANCES, SAMPLING EXPERIMENTS WITH LEA, BIOCS 6B, 607
- MATTHES, T. K. OPTIMAL INVARIANT RANK TESTS FOR THE K-SAMPLE PROBLEM, AMS 65, 1207
- MATTHES, T. K. TESTS OF COMPOSITE HYPOTHESES FOR THE MULTIVARIATE EXPONENTIAL FAMILY, CORR. 67 192B, AMS 67, 681
- MATTHES, THEODORE K. ON THE OPTIMALITY OF SEQUENTIAL PROBABILITY RATIOTESTS, AMS 63, 18
- MATUSZEWSKI, T. I. SOME PROPERTIES OF PASCAL DISTRIBUTION FOR FINITE POPULATION, CORR. 62919, JASA 62, 172
- MATZINGER, D. F. SIMULTANEOUS SELFING AND PARTIAL DIALLEL TEST CROSSING 2. AN EVALUATION OF TWO METHODS 0, BIOCS 67, 325
- MAULDON, J. G. PIVOTAL QUANTITIES FOR WISHART'S AND RELATED DIS-TRIBUTIONS, AND A PARADOX IN FIDUCIAL THEO, JRSSB 55, 79
- MAURICE, R. J. A MINIMAX PROCEDURE FOR CHOOSING BETWEEN TWO POPULA-TIONS USING SEQUENTIAL SAMPLING, JRSSB 57, 255
- MAURICE, RITA MULTIVARIATE T AND THE RANKING PROBLEM, BIOKA 67, 305 MAURIGE, RITA RANKING MEANS OF TWO NORMAL POPULATIONS WITH UNKNOWN VARIANCES, BIOKA 5B, 250
- MAURICE, RITA SELECTION OF THE POPULATION WITH THE LARGEST MEAN WHEN COMPARISONS CAN BE MADE ONLY IN PAIR, BIOKA 58, 5B1
- MAURICE, RITA J. A DIFFERENT LOSS FUNCTION FOR THE CHOICE BETWEEN TWO POPULATIONS, JRSSB 59, 203
- MAURICE, RITA J. A MINIMAX-REGRET PROCEDURE FOR CHOOSING BETWEEN TWO POPULATIONS USING SEQUENTIAL SAMPLIN, JRSSB 63, 297
- MAUTNER, A. J. THE DETERMINISTIC MODEL OF A SIMPLE EPIDEMIC FOR MORE THAN ONE COMMUNITY, BIOKA 55, 126
- MAWAZINY, A. H. EL CONFIDENCE LIMITS FOR THE RELIABILITY OF SERIES SYSTEMS, JASA 67, 1452
- MAY, JOYCE M. EXTENDED AND CORRECTED TABLES OF THE UPPER PERCENTAGE POINTS OF THE 'STUDENTIZED' RANGE, BIOKA 52, 192
- MAYNE, A. J. CORRIGENDA TO 'SOME FURTHER RESULTS IN THE THEORY OF PEDESTRIANS AND ROAD TRAFFIC', BIOKA 58, 291
- MAYNE, A. J. SOME FURTHER RESULTS IN THE THEORY OF PEDESTRIANS AND ROAD TRAFFIC, BIOKA 54, 375
- MAYNES, E. SCOTT THE EFFECT OF MIS-MATCHING ON THE MEASUREMENT OF RESPONSE ERRORS, JASA 65, 1005

- MAYNES, E. SCOTT VALIDATION OF CONSUMER FINANCIAL CHARACTERISTICS, COMMON STOCK, JASA 69, 415
- MAYO, O. ON THE PROBLEM OF SELF-INCOMPATABILITY ALLELES, BIOCS 66, 111
- MAZUMDAR, M. A CLASS OF SEQUENTIAL TESTS FOR AN EXPONENTIAL PARAME-TER JASA 69, NO 4
- MAZUMDAR, M. A STUDY OF THE VARIABILITY DUE TO COINCIDENT PASSAGE IN AN ELECTRONIC BLOOD CELL COUNTER, BIOCS 67, 671
- MAZUMDAR, M. AN EXTENSION OF PAULSON'S SELECTION PROCEDURE, AMS 6B. 2067
- MAZUMDAR, SATI ON THE CONSTRUCTION OF CYCLIC COLLINEATIONS FOR OB-TAINING A BALANCED SET OF L-RESTRICTIONA, AMS 67, 1293
- MAZUR, D. PETER A DEMOGRAPHIC MODEL FOR ESTIMATING AGE-ORDER SPECIFIC FERTILITY RATES, JASA 63, 774
- MAZUY, KAY KNIGHT STUDENT'S T IN A TWO-WAY CLASSIFICATION WITH UNEQUAL VARIANCES, AMS 65, 124B
- MC COOL, JOHN I. THE CONSTRUCTION OF GOOD LINEAR UNBIASED ESTIMATES FROM THE BEST LINEAR ESTIMATES FOR A. TECH 65, 543
- MC LEAN, R. A. EXTREME VERTICES DESIGN OF MIXTURE EXPERIMENTS, TECH 66.447
- MCCABE, B. J. THE ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN, AMS 69.665
- MCCORD, JAMES R. ON ASYMPTOTIC MOMENTS OF EXTREME STATISTICS, AMS 64. 1738
- MCCREA. J. M. THE HALF-TABLE RATIO ESTIMATOR FOR A SIMPLE EXPONEN-TIAL MODEL, BIOCS 69, 420
- MCCULLOCH, A. J. LIFE-TESTING RESULTS BASED ON A FEW HETEROGENEOUS LOGNORMAL OBSERVAITONS, JASA 67, 45
- MCCULLOUGH, R. S. CORRIGENDA, 'SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE HYPOTHESIS OF EQUAL MEANS U, BIOKA 61, 230
- MCCULLOUGH, R. S. SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE HYPOTHESIS OF EQUAL MEANS UNDER VARIANCE, BIOKA 60, 345
- MCCULLOUGH, ROGER S. TESTING EQUALITY OF MEANS AFTER A PRELIMINARY TEST OF EQUALITY OF VARIANCES, BIOKA 62, 403
- MCDONALD, B. J. RANK SUM MULTIPLE COMPARISIONS IN ONE AND TWO-WAY CLASSIFICATIONS, BIOKA 67, 4B7
- MCFADDEN, J. A. AN APPROXIMATION FOR THE SYMMETRIC, QUADRIVARIATE NORMAL INTEGRAL, BIOKA 56, 206
- MCFADDEN, J. A. CERTAIN PROPERTIES OF GAUSSIAN PROCESSES AND THEIR FIRST PASSAGE TIMES, JRSSB 65, 505
- MCFADDEN, J. A. HIGHER-ORDER PROPERTIES OF A STATIONARY POINT PROCESS, JRSSB 63, 413
- MCFADDEN, J. A. ON A CLASS OF GAUSSIAN PROCESSES FOR WHICH THE MEAN RATE OF CROSSINGS IS INFINITE, JRSSB 67, 4B9
- MCFADDEN, J. A. ON THE LENGTHS OF INTERVALS IN A STATIONARY POINT PROCESS CORR. 63 500), JRSSB 62, 364
- MCFADDEN, J. A. TWO EXPANSIONS FOR THE QUADRIVARIATE NORMAL IN-TEGRAL, BIOKA 60, 325
- MCFLROY, F. W. A NECESSARY AND SUFFICIENT CONDITION THAT ORDINARY LEAST-SQUARES ESTIMATORS BE BEST LINEAR, JASA 67, 1302
- MCGILCHRIST. C. ANALYSIS OF PLANT COMPETITION EXPERIMENTS FOR DIF-FERENT RATIOS OF SPECIES, BIOKA 67, 471
- MCGILCHRIST, C. A. ANALYSIS OF COMPETITION EXPERIMENTS, BIOCS 65, 975
- MCGILCHRIST, C. A. DISCRETE DISTRIBUTION ESTIMATORS FROM THE RECURRENCE EQUATION FOR PROBABILITIES, JASA 69, 602
- MCGILCHRIST, C. A. EFFICIENT DIFFERENCE EQUATION ESTIMATORS IN EX-PONENTIAL REGRESSION, AMS 6B, 1638
- MCGILCHRIST, C. A. PLANT COMPETITION, THREE SPECIES PER POT, JRSSB 68.93
- MCGILCHRIST, C. A. TESTING OF MEANS WITH DIFFERENT ALTERNATIVES. TECH 6B, 195
- MCGILCHRIST, C. A. THE DERIVATION OF METHODS FOR FITTING EXPONEN-TIAL REGRESSION CURVES, BIOKA 64, 504
- MCGREGOR, J. R. AN APPROXIMATE TEST FOR SERIAL CORRELATION IN POLYNOMIAL REGRESSION, BIOKA 60, 111
- MCGREGOR, J. R. LIMITING DISTRIBUTIONS ASSOCIATED WITH CERTAIN STOCHASTIC LEARNING MODELS, AMS 62, 12B1
- MCGREGOR, J. R. LIMITING DISTRIBUTIONS OF RESPONSE PROBABILITIES, AMS 65, 706
- MCGREGOR, J. R. THE APPROXIMATE DISTRIBUTION OF THE CORRELATION BETWEEN TWO STATIONARY LINEAR MARKOV SERI, BIOKA 62, 379
- MCGREGOR, J. R. THE APPROXIMATE DISTRIBUTION OF THE CORRELATION BETWEEN TWO STATIONARY LINEAR MARKOV SERI, BIOKA 65, 301
- MCGREGOR, JAMES PROPERTIES OF THE STATIONARY MEASURE OF THE CRITI-CAL CASE SIMPLE BRANCHING PROCESS, AMS 67, 977
- MCGUIRE, J. B. COMPARISON OF LEAST SQUARES AND MINIMUM VARIANCE ESTIMATES OF REGRESSION PARAMETERS, (ACKN, AMS 62, 462
- MCGUIRE, TIMOTHY W. ESTIMATION AND INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE, JASA 68, 1201
- MCHUGH, R. B. TWO-WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE SUBCLASS FREQUENCIES, BIOCS 65, 308
- MCHUGH, RICHARD B. NEGATIVE VARIANCE ESTIMATES AND STATISTICAL DE-PENDENCE IN NESTED SAMPLING, JASA 68, 1000
- MCKEAN, H. E. A MENDELIAN MARKOV PROCESS WITH BINOMIAL TRANSITION PROBABILITIES, BIOKA 66, 37
- MCKEAN, H. E. THE EXPECTED MEAN SQUARES IN GENETIC EXPERIMENTS WHEN ONLY ONE PARENT IS IDENTIFIED, BIOCS 65, 436

- MCKINLAY, P. L. MAJOR GREENWOOD, 1880-1949, BIOKA 51, 1
- MCNEIL, D. R. CONSISTENT STATISTICS FOR ESTIMATING AND TESTING HYPOTHESES FROM GROUPED SAMPLES, BIOKA 66, 545
- MCNEIL, D. R. EFFICIENCY LOSS DUE TO GROUPING IN DISTRIBUTION-FREE TESTS, JASA 67, 954
- MCNEIL, D. R. ESTIMATING THE COVARIANCE AND SPECTRAL DENSITY FUNC-TIONS FROM A CLIPPED STATIONARY TIME SER, JRSSB 67, 180
- MCNEIL, D. R. QUICK POWERFUL TESTS WITH CROUPED DATA, BIOKA 68, 264 MCNEIL, D. R. THE ASYMPTOTIC POWERS OF MULTIVARIATE TESTS WITH GROUPED DATA, JRSSB 68, 338
- MCNOLTY, FRANK A CONTOUR-INTECRAL DERIVATION OF THE NON-CENTRAL CHI-SQUARE DISTRIBUTION. AMS 62, 796
- MEAD, R. A GENERALISED LOGIT-NORMAL DISTRIBUTION, BIOCS 65, 721
- MEAD, R. A MATHEMATICAL MODEL FOR THE ESTIMATION OF INTER-PLANT COM-PETITION (CORRECTION TO REFERENCE 68 1, BIOCS 67, 189
- MEAD, R. A. A QUICK METHOD OF ESTIMATING THE STANDARD DEVIATION. BIOKA 66, 559
- MEDHI, J. A NOTE ON THE RISKS OF ERROR INVOLVED IN THE SEQUENTIAL RATIO TEST, BIOKA 56, 231
- MEDHI, J. ON THE EFFICIENCY OF PROCEDURES FOR SMOOTHING PERIODO-GRAMS FROM TIME SERIES WITH CONTINUOUS SPE, BIOKA 55, 143
- MEETER, DUANE A ON BEALE'S MEASURES OF NON-LINEARITY, TECH 65, 623 MEHR, C. B. AN APPLICATION OF BIORTHONORMAL EXPANSIONS IN THEORY OF
- STOCHASTIC PROCESSES, JRSSB 68, 334 MEHR, C. B. CERTAIN PROPERTIES OF CAUSSIAN PROCESSES AND THEIR FIRST
- PASSAGE TIMES, JRSSB 65, 505
- MEHRA. K. L. ASYMPTOTIC EFFICIENCY OF CERTAIN RANK TESTS FOR COM-PARATIVE EXPERIMENT. AMS 67, 90
- MEHRA, K. L. MULTI-SAMPLE ANALOGUES OF SOME ONE-SAMPLE TESTS, AMS 67.523
- MEHRA, K. L. ON A CLASS OF CONDITIONALLY DISTRIBUTION-FREE TESTS FOR INTERACTIONS IN FACTORIAL EXPERIMENT, AMS 69, 658
- MEHRA, K. L. RANK TESTS FOR PAIRED-COMPARISON EXPERIMENTS INVOLV-INC SEVERAL TREATMENTS, AMS 64, 122
- MEHTA, J. A. COMBINATIONS OF UNBIASED ESTIMATORS OF THE MEAN WHICH CONSIDER INEQUALITY OF UNKNOWN VARIANC, JASA 69, 1042
- MEHTA, J. S. ASYMMETRICAL ROTATABLE DESIGNS AND ORTHOCONAL TRANS-FORMATIONS, TECH 68, 313
- MEHTA, J. S. ON THEIL'S MIXED REGRESSION ESTIMATOR, JASA 69, 273
- MEHTA, J. S. ON UTILIZING INFORMATION FROM A SECOND SAMPLE IN ESTI-MATING VARIANCE, BIOKA 69, NO.3
- MEHTA, J. S. SOME PROPERTIES AND AN APPLICATION OF A STATISTIC ARIS-ING IN TESTING CORRELATION, AMS 69, 1736
- MEHTA, J. S. TESTING EQUALITY OF MEANS IN THE PRESENCE OF CORRELA-TION, BIOKA 69, 119
- MEIER, PAUL NONPARAMETRIC ESTIMATION FROM INCOMPLETE OBSERVA-TIONS, JASA 58, 457
- MEILIJSON, ISAAC A NOTE ON SEQUENTIAL MULTIPLE DECISION
- PROCEDURES, AMS 69, 653 MEJZLER, D ON SOME RESULTS OF N. V SMIRNOV CONCERNING LIMIT DIS-
- TRIBUTIONS FOR VARIATIONAL SERIES, AMS 69, 480 MELLINGER, GLEN D. A MATHEMATICAL MODEL WITH APPLICATIONS TO A STUDY
- OF ACCIDENT REPEATEDNESS AMONG CHILD, JASA 65, 1046 MENDELSOHN. J. A NUMERICAL INVESTIGATION OF SEVERAL ONE-DIMEN-
- SIONAL SEARCH PROCEDURES IN NONLINEAR RECRES, TECH 69, 265 MENDENHALL, W. A BIBLIOCRAPHY ON LIFE TESTING AND RELATED TOPICS.
- BIOKA 58, 521
- MENDENHALL, W. AN APPROXIMATION OF THE NEGATIVE MOMENTS OF THE POSI-TIVE BINOMIAL USEFUL IN LIFE TESTING, TECH 60, 227
- MENDENHALL, W. ESTIMATION OF PARAMETERS OF MIXED EXPONENTIALLY DISTRIBUTED FAILURE TIME DISTRIBUTIONS FRO, BIOKA 58, 504
- MENG, ROSA C THE POWER OF CHI SQUARE TESTS FOR CONTINGENCY TABLES, JASA 66, 965
- MENON, M. V. A CHARACTERIZATION OF THE CAUCHY DISTRIBUTION, AMS 62, 1267
- MENON, M. V. ANOTHER CHARACTERISTIC PROPERTY OF THE CAUCHY DIS-TRIBUTION, AMS 66, 289
- MENON, M. V. CHARACTERIZATION THEOREMS FOR SOME UNIVARIATE PROBA-BILITY DISTRIBUTIONS, JRSSB 66, 143 MENON, M. V. ESTIMATION OF THE SHAPE AND SCALE PARAMETERS OF THE
- WEIBULL DISTRIBUTION, TECH 63, 175
- MERAT, P DISTRIBUTIONS DE FREQUENCES, INTERPRETATION DU DETERMIN-ISME CENETIQUE DES CARACTERES QUANTITATI. BIOCS 68, 277
- MERCER, A A QUEUE WITH RANDOM ARRIVALS AND SCHEDULED BULK DEPAR-TURES, JRSSB 68, 185
- MERCER, A. A QUEUEINC PROBLEM IN WHICH THE ARRIVAL TIMES OF THE CUSTOMERS ARE SCHEDULED, JRSSB 60, 108
- MERCER, A. A RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN TIME. BIOKA 59, 30
- MERCER, A. SOME SIMPLE DURATION-DEPENDENT STOCHASTIC PROCESSES. JRSSB 59, 144
- MERCER, A SOME SIMPLE WEAR-DEPENDENT RENEWAL PROCESSES, JRSSB 61.
- MERCHANT, SARLA D. SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE PROCEDURES, TECH 66, 615
- MERCKX, K. R. UNFOLDING PARTICLE SIZE DISTRIBUTIONS, TECH 69, NO.4 MERRILL, J. A. AUGMENTING EXISTING DATA IN MULTIPLE REGRESSION. TEC'168, 73

- MERRILL, J. A MINIMUM RISK SPECIFICATION LIMITS, JASA 59, 260 MERRINGTON, M. TABLE FOR THE SOLUTION OF THE EXPONENTIAL EQUATION
- EXP (B)-B(1-P)=1. BIOKA 63, 177 MERRINGTON, M. TABLES FOR THE SOLUTION OF THE EXPONENTIAL EQUATION,
- EXP(-A)+KA=1, BIOKA 60, 439
- MERRINGTON, MAXINE AN APPROXIMATION TO THE DISTRIBUTION OF NON-CENTRALT, BIOKA 58, 484
- MERRINGTON, MAXINE TABLES OF THE 5 PERCENT AND 0.5 PERCENT POINTS OF PEARSON CURVES (WITH ARGUMENT BETA-1, BIOKA 51, 4
- MERTZ, D. B. CANNIBALISM OF THE PUPAL STAGE BY ADULT FLOUR BEETLES, AN EXPERIMENT AND A STOCHASTIC MODEL, BIOCS 68, 247
- MERTZ, D. B. MORTALITY PATTERNS IN EIGHT STRAINS OF FLOUR BEETLE. BIOCS 65, 99
- MESHALKIN. L. K. ON THE ROBUSTNESS OF SOME CHARACTERIZATIONS OF THE NORMAL DISTRIBUTION, AMS 68, 1747
- MESNER, DALE M. A NEW FAMILY OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH SOME LATIN SQUARE DESIGN, AMS 67, 571
- MESNER, DALE M A NOTE ON THE PARAMETERS OF PARTIALLY BALANCED IN-COMPLETE BLOCK ASSOCIATION SCHEMES, AMS 65, 331
- METAKIDES, THEOCHARIS ORTHOGONAL POLYNOMIAL FITTING, BIOKA 53, 361 METIVIER, MICHEL EXISTENCE OF AN INVARIANT MEASURE AND AN ORN-STEIN'S ERCODIC THEOREM, AMS 69, 79
- MEYER, DONALD L. ERRATA, ' AN UPPER BOUND FOR THE SAMPLE STANDARD
- DEVIATION', TECH 62, 440
 MEYER, PAUL L. THE MAXIMUM LIKELIHOOD ESTIMATE OF THE NON-CENTRALI-TY PARAMETER OF A NONCENTRAL CHI-SQUARE, JASA 67, 1258
- MEYER, RICHARD M. NOTE ON A 'MULTIVARIATE' FORM OF BONFERRONI'S IN-EQUALITIES, AMS 69, 692
- MICKEY. M. R. SOME FINITE POPULATION UNBAISED RATIO AND REGRESSION ESTIMATORS, CORR. 60 755, JASA 59, 594
- MICKEY, M. RAY BOUNDS ON THE DISTRIBUTION FUNCTIONS OF THE BEHRENS-FISHER STATISTIC, AMS 66, 639
- MICKEY, M. RAY ESTIMATION OF ERROR RATES IN DISCRIMINANT ANALYSIS, TECH 68. 1
- MIELKE JR, P. W. NOTE ON SOME SQUARED RANK TESTS WITH EXISTING TIES, TECH 67, 312
- MIELKE JR, PAUL W. A COMBINATORIAL TEST FOR INDEPENDENCE OF DICHOTOMOUS RESPONSES, JASA 65, 437
- MIELKE JR, PAUL W. NEGATIVE VARIANCE ESTIMATES AND STATISTICAL DE-PENDENCE IN NESTED SAMPLING, JASA 68, 1000
- MIELKE JR, PAUL W. ROBUSTNESS OF SUM OF SQUARED RANKS TEST, JASA 68, 338
- MIELKE, P. TWO-WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE SUBCLASS FREQUENCIES, BIOCS 65, 308
- MIETTINEN, O.S. INDIVIDUAL MATCHING WITH MULTIPLE CONTROLS IN THE CASE OF ALL-OR-NONE RESPONSES, BIOCS 69, 339
- MIETTINEN, O. S. THE MATCHED PAIRS DESIGN IN THE CASE OF ALL-OR-NONE RESPONSES, BIOCS 68, 339
- MIHRAM, G. A. A BIVARIATE WARNING-TIME, FAILURE-TIME DISTRIBUTION,
- JASA 67, 589 MIHRAM, G. A. PARAMETER ESTIMATION FOR A GENERALIZED GAMMA DIS-TRIBUTION, TECH 65, 349
- MIJARES, TITO A. ON ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF A MULTIVARIATE MATRIX. DISTRIBUTIONS, AMS 64, 1186
- MIJARES, TITO A. THE MOMENTS OF ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF A MATRIX IN MULTIVARIATE A, AMS 61, 1152
- MIKHAIL, N. N. A COMPARISON OF TESTS OF THE WILKS-LAWLEY HYPOTHESIS IN MULTIVARIATE ANALYSIS., BIOKA 65, 149
- MIKHAIL, W. F. ON THE MONOTONIC CHARACTER OF THE POWER FUNCTIONS OF TWO MULTIVARIATE TESTS, AMS 61, 1145
- MIKHAIL, WADIE F. ON A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NOR-MAL DISPERSION MATRICES ACAINST ONE-, AMS 62, 1463
- MIKULSKI, PIOTR WITOLD ON THE EFFICIENCY OF OPTIMAL NON-PARAMETRIC PROCEDURES IN THE TWO SAMPLE CASE, AMS 63, 22
- MILCH, PAUL R. A MULTI-DIMENSIONAL LINEAR GROWTH BIRTH AND DEATH PROCESS, AMS 68, 727
- MILDER, D. MICHAEL REGRESSION WITH SYSTEMATIC NOISE, JASA 64, 422 MILES, R. E. ON RANDOM ROTATIONS IN R-CUBE., BIOKA 65, 636
- THE ASYMPTOTIC VALUES OF CERTAIN COVERAGE PROBABILI-MILES. R. E. TIES, BIOKA 69, NO.3 MILES, R. E. THE COMPLETE AMALGAMATION INTO BLOCKS, BY WEIGHTED
- MEANS, OF A FINITE SET OF REAL NUMBERS, BIOKA 59, 317 MILLAR, P. WARWICK MARTINGALES WITH INDEPENDENT INCREMENTS, AMS
- 69.1033 MILLAR, P. WARWICK TRANSFORMS OF STOCHASTIC PROCESSES, AMS 68, 372
- MILLER JR, R.G. AVERAGE RENEWAL LOSS RATES, AMS 63, 396 MILLER JR, R. G. UNLIMITED SIMUTANEOUS DISCRIMINATION INTERVALS IN
- REGRESSION, BIOKA 67, 133 MILLER JR, RUPERT G. A CONTRIBUTION TO THE THEORY OF BULK QUEUES, JRSSB 59.320
- MILLER JR, RUPERT G. A TRUSTWORTHY JACKKNIFE, AMS 64, 1594
- MILLER JR, RUPERT G. EARLY FAILURES IN LIFE TESTING, JASA 60, 491
- MILLER JR, RUPERT G. JACKNIFING VARIANCES, AMS 68, 567
- MILLER JR, RUPERT G. SIMULTANEOUS TOLERANCE INTERVALS IN REGRES-SION, BIOKA 63, 155
- MILLER, A. J. A QUEUEING MODEL FOR ROAD TRAFFIC FLOW (WITH DISCUS-SION), JRSSB 61, 64

- MILLER, ANN R. THE MIGRATION OF EMPLOYED PERSONS TO AND FROM METROPOLITAN AREAS OF THE UNITED STATES, JASA 67, 1418
- MILLER, B. L. AN OPTIMALITY CONDITION FOR DISCRETE DYNAMIC PRO-GRAMMING WITH NO DISCOUNTING, AMS 68, 1220
- MILLER, BRUCE L. DISCRETE DYNAMIC PROGRAMMING WITH A SMALL INTEREST RATE, AMS 69, 366
- MILLER, C. R. LATENT CLASS ANALYSIS AND DIFFERENTIAL MORTALITY, JASA 62, 430
- MILLER, D. L. NOTES. ESTIMATION OF NON-LINEAR PARAMETERS FOR A NON-ASYMPTOTIC FUNCTION, BIOCS 68, 439
- MILLER, H. D. A CONVEXITY PROPERTY IN THE THEORY OF RANDOM VARIABLES DEFINED ON A FINITE MARKOV CHAIN, AMS 61, 1260
- MILLER, H. D. A GENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS TO RANDOM WALKS, AMS 61, 549
- MILLER, H. D. A NOTE ON SUMS OF INDEPENDENT RANDOM VARIABLES WITH IN-FINITE FIRST MOMENT, AMS 67, 751
- MILLER, H. D. INTER-PLANT STORAGE IN CONTINUOUS MANUFACTURING. TECH 60. 393 MILLER, IRWIN EXPECTED ARC LENGTH OF A GAUSSIAN PROCESS ON A FINITE
- INTERVAL, JRSSB 56, 257 MILLER, JAMES INCENTIVE CONTRACTS AND PRICE DIFFERENTIAL AC-
- CEPTANCE TESTS, JASA 64, 149
- MILLER, K. S. A NOTE ON STOCHASTIC DIFFERENCE EQUATIONS, AMS 68, 270
 MILLER, K. S. PROPERTIES OF GENERALIZED RAYLEIGH DISTRIBUTIONS. AMS 63, 903
- MILLER, K. S. SOME MULTIVARIATE DENSITY FUNCTIONS OF PRODUCTS OF GAUSSIAN VARIATES., BIOKA 65, 645
- MILLER, K.S. SOME MULTIVARIATE T-DISTRIBUTIONS, AMS 68, 1605
- MILLER, LESLIE H. TABLE OF PERCENTAGE POINTS OF KOLMOGOROV STATISTICS, JASA 56, 111
- MILLER, R. R. STATISTICAL ESTIMATION OF THE GASOLINE OCTANE NUMBER REQUIREMENT OF NEW MODEL AUTOMOBILES, TECH 60, 5
- MILLIKEN, GEORGE QUADRATIC FORMS AND IDEMPOTENT MATRICES WITH RAN-
- DOM ELEMENTS, AMS 69, 1430 MILTON, R. C. COMPUTER EVALUATION OF THE NORMAL AND INVERSE NORMAL
- DISTRIBUTION FUNCTIONS, TECH 69, NO.4 MILTON, R. C. MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE COM-
- PONENTS, JASA 69, NO.4 MILTON, ROY C. AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-
- WHITNEY-WILCOXON TWO-SAMPLE STATISTIC, JASA 64, 925
 MILTON, ROY C. ON EXACT PROBABILITIES OF RANK ORDERS FOR TWO WIDELY
- SEPARATED NORMAL DISTRIBUTIONS, AMS 67, 1491 MINCER, JACOB APPLICATIONS OF A NEW GRAPHIC METHOD IN STATISTICAL
- MEASUREMENT, JASA 57, 472 MINEKA, J. A MIXTURE OF TWO RECURRENT RANDOM WALKS NEED NOT BE RECUR-
- RENT, AMS 68, 1753 MINTON, GEORGE CONTROL OF QUALITY OF CODING IN THE 1960 CENSUSES.
- JASA 64. 120 MINTON, GEORGE INSPECTION AND CORRECTION ERROR IN DATA PROCESSING.
- JASA 69, NO. 4 MISHRA, R. ESTIMATING MACHINING ERRORS IN SET-UPS WITH AUTOMATIC
- RESETTING, TECH 64, 423 MISHRIKY, R. S. ORDER STATISTICS FOR DISCRETE POPULATIONS AND FOR
- GROUPED SAMPLES, JASA 68, 1390 MISRA, R. K. NOTES. STATISTICAL TESTS OF HYPOTHESES CONCERNING THE DEGREE OF DOMINANCE IN MONOFACTORIAL I, BIOCS 68, 429
- MISRA, R. K. VECTORIAL ANALYSIS FOR GENETIC CLINES IN BODY DIMEN-SIONS IN POPULATIONS OF 'DROSOPHILIA SUBO. BIOCS 66, 469
- MITCHELL, ANN F. S. EXPONENTIAL REGRESSION WITH CORRELATED OBSER-VATIONS, BIOKA 68, 149
- MITCHELL, ANN F. S. FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH CORRELATED OBSERVATIONS, BIOKA 68, 575
- MITCHELL, TOBY J. CONSTRUCTION OF THE SET OF 256-RUN DESIGNS OF
- RESOLUTION GREATER THAN OR EQUAL TO 5 AND, AMS 68, 246 MITCHELL, TOBY J. THE CONSTRUCTION OF SATURATED TWO TO THE POWER OF K-P DESIGNS, AMS 67, 1110
- MITRA, S. K. AN INTRODUCTION TO SOME NON-PARAMETRIC GENERALIZA-TIONS OF ANALYSIS OF VARIANCE AND MULTIVARI, BIOKA 56, 361
- MITRA, SUJIT KUMAR CONDITIONS FOR OPTIMALITY AND VALIDITY AND SIM-PLE LEAST SQUARES THEORY, AMS 69, 1617
- MITTEN, L. G. DESIGN OF AN OPTIMAL SEQUENCE OF INTERRELATED SAMPLING
- PLANS, JASA 64, 96 MITTON, R. G. THE DESIGN OF FACTORIAL EXPERIMENTS, A SURVEY OF SOME SCHEMES REQUIRING NOT MORE THAN 256 T, BIOKA 59, 251
- MODE. ELMER B. PROBABILITY AND CRIMINALISTICS, JASA 63, 628
- MODER, JOSEPH J. A SEQUENTIAL SEARCH PROCEDURE FOR LOCATING A RESPONSE JUMP, TECH 62, 610
- MOHAN, C. THE GAMBLER'S RUIN PROBLEM WITH CORRELATION, BIOKA 55, 486 MOHAN, R. CONTROLLING DIMENSION IN CENTERLESS-GRINDING WITH AUTO-MATIC RESET DEVICE, TECH 69, 115
- MOHAN, R. DIMENSIONAL CHAINS INVOLVING RECTANGULAR AND NORMAL ERROR-DISTRIBUTIONS, TECH 63, 404
- MOHAN, R. ESTIMATING MACHINING ERRORS IN SET-UPS WITH AUTOMATIC RESETTING, TECH 64, 423
- MOHAN, RAMESH DIAMOND-PIN LOCATION, TECH 67, 131
- MOHAN, RAMESH ERRATA, 'DIAMOND-PINLOCATION', TECH 67, 498
- MOHLER, W. C. A RAPID TEST FOR THE POISSON DISTRIBUTION USING THE RANGE, BIOCS 67, 685

- MOHN, E. THE JOINT DISTRIBUTION OF THE STUDENTIZED REGRESSION COEF-FICIENTS, BIOKA 68, 424
- MOLENAAR, W. HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS, AMS 67, 1278 MOLENAAR, W ON MIXTURES OF DISTRIBUTIONS, AMS 66, 281
- MOOD, ALEX M. SAMUELS, WILKS, JASA 65, 939
- MOON, J. W. A TREE COUNTING PROBLEM, AMS 68, 242
- MOON, J. W. ON THE LINE, GRAPH OF THE COMPLETE BIGRAPH, AMS 63, 664 MOONAN, WILLIAM J. LINEAR TRANSFORMATION TO A SET OF STOCHASTICALLY DEPENDENT NORMAL VARIABLES, JASA 57, 247
- MOORE, A. H. A NOTE ON ESTIMATION FROM A TYPE I EXTREME-VALUE DIS-TRIBUTION, TECH 67, 325
- ITERATIVE MAXIMUM-LIKELIHOOD ESTIMATION OF THE MOORE, A. H. PARAMETERS OF NORMAL POPULATIONS FROM SINGLY, BIOKA 66, 205
- MOORE, A. W. MULTIVARIATE-COVARIANCE AND CANONICAL ANALYSIS, A METHOD FOR SELECTING THE MOST EFFECTIVE DI, BIOCS 68, 845
- MOORE, ALBERT H. ASYMPTOTIC VARIANCES AND COVARIANCES OF MAXIMUM-LIKELTHOOD ESTIMATORS FROM CENSORED SAM, AMS 67, 557
- MOORE, ALBERT H. CONDITIONAL MAXIMUM-LIKELIHOOD ESTIMATION, FROM SINGLY CENSORED SAMPLES, OF THE SCALE PA, TECH 68, 349 MOORE, ALBERT H. ERRATA, 'MAXIMUM-LIKELIHOOD ESTIMATION OF THE
- PARAMETERS OF GAMMA AND WEIBULL POPULATION, TECH 67, 195 MOORE, ALBERT H. LOCAL-MAXIMUM-LIKELIHOOD ESTIMATION OF THE
- PARAMETERS OF THREE-PARAMETER LOGNORMAL POPUL, JASA 66, 842
- MOORE, ALBERT H. MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF GAMMA AND WEIBULL POPULATIONS FROM CO. TECH 65, 639
- MOORE. ALBERT H. MAXIMUM-LIKELIHOOD ESTIMATION, FROM CENSORED SAM-PLES, OF THE PARAMETERS OF A LOGISTIC DI, JASA 67, 675 MOORE, ALBERT H. MAXIMUM-LIKELIHOOD ESTIMATION, FROM DOUBLY CEN-
- SORED SAMPLES, OF THE PARAMETERS OF THE FI, JASA 68. 889 MOORE, ALBERT H. POINT AND INTERVAL ESTIMATORS, BASED ON M ORDER
- STATISTICS, FOR THE SCALE PARAMETER OF A. TECH 65, 405 MOORE, CALVIN C. THE DEGREE OF RANDOMNESS IN A STATIONARY TIME SE-
- RIES. AMS 63. 1253 MOORE, D. S. AN ELEMENTARY PROOF OF ASYMPTOTIC NORMALITY OF LINEAR
- FUNCTIONS OF ORDER STATISTICS. AMS 68. 263 MOORE, D. S. ASYMPTOTICALLY NEARLY EFFICIENT ESTIMATORS OF MUL-
- TIVARIATE LOCATION PARAMETERS, AMS 69, 1809 MOORE, DAVID S. UNIFORM CONSISTENCY OF SOME ESTIMATES OF A DENSITY
- FUNCTION, AMS 69, 1499
- MOORE, GEOFFREY H. FORECASTING SHORT-TERM ECONOMIC CHANGE, JASA 69, 1 MOORE, GEOFFREYH. MEASURING RECESSIONS, JASA 58, 259
- MOORE, JAMES R. NON-NEGATIVE ESTIMATES OF VARIANCE COMPONENTS.
- TECH 63, 441
- MOORE, P. G. A SEQUENTIAL TEST FOR RANDOMNESS, BIOKA 53, 111
- MOORE, P. G. CORRIGENDA. 'SOME PROPERTIES OF RUNS IN QUALITY CONTROL PROCEDURES', BIOKA 59, 279
- MOORE, P. G. INTERVAL ANALYSIS AND THE LOGARITHMIC TRANSFORMATION. JRSSB 58, 187
- MOORE, P. G. SOME PROPERTIES OF RUNS IN QUALITY CONTROL PROCEDURES, BIOKA 58, 89
- MOORE, P. G. THE ESTIMATION OF THE MEAN OF A CENSORED NORMAL DIS-TRIBUTION BY ORDERED VARIABLES, BIOKA 56, 482
- MOORE, P. G. THE ESTIMATION OF THE POISSON PARAMETER FROM A TRUN-CATED DISTRIBUTION, BIOKA 52, 247
- MOORE, P.G. THE TWO-SAMPLE T-TEST BASED ON RANGE, BIOKA 57, 482
- MOORE, P. G. TRANSFORMATIONS TO NORMALITY USING FRACTIONAL POWERS OF THE VARIABLE, JASA 57, 237
- MOORE, R. H. NOTES. ON TESTING SIGNIFICANCE OF COMPONENTS OF VARI-ANCE IN THE UNBALANCED NESTED ANALYSIS 0, BIOCS 68, 423
- MOORE, R. H. THE USE OF NON-LINEAR REGRESSION METHODS FOR ANALYSING SENSITIVITY AND QUANTAL RESPONSE DATA, BIOCS 67, 563
- MORAN, P. A. P. A MATEMATICAL THEORY OF ANIMAL TRAPPING, BIOKA 51, 307 MORAN, P. A. P. A TEST OF SIGNIFICANCE FOR AN UNIDENTIFIABLE RELA-TION, JRSSB 56, 61
- MORAN, P. A. P. MEASURING THE LENGTH OF A CURVE, BIOKA 66, 359
- MORAN, P. A. P. PARTIAL AND MULTIPLE RANK CORRELATION, BIOKA 51, 26
- MORAN, P. A. P. RANDOM CIRCLES ON A SPHERE, BIOKA 62, 389
- MORAN, P. A. P. RAPID METHODS FOR ESTIMATING CORRELATION COEFFI-CIENTS, BIOKA 51, 464
- MORAN, P. A. P. SOME EXPERIMENTS ON THE PREDICTION OF SUNSPOT NUM-BERS, JRSSB 54, 112
- MORAN, P. A. P. STATISTICAL INFERENCE WITH BIVARIATE GAMMA DIS-TRIBUTIONS, BIOKA 69, NO.3
- MORAN, P. A. P. STATISTICAL THEORY OF A HIGH-SPEED PHOTOELECTRIC PLANIMETER, BIOKA 68, 419
- MORAN, P. A. P. TESTING FOR CORRELATION BETWEEN NON-NEGATIVE VARIATES, BIOKA 67, 385
- MORAN, P. A. P. TESTING FOR SERIAL CORRELATION WITH EXPONENTIALLY DISTRIBUTED VARIATES, BIOKA 67, 395
- MORAN, P. A. P. THE ESTIMATION OF DEATH-RATES FROM CAPTURE-MARK-RECAPTURE SAMPLING, BIOKA 52, 181
- MORANDA, P. B. COMPARISON OF ESTIMATES OF CIRCULAR PROBABLE ERROR, CORR. 60 755, JASA 59, 794 MORANDA, P.B. EFFECTS OF BIAS ON ESTIMATES OF THE CIRCULAR PROBABLE
- MORBEY, G. K. REDUCED DESIGNS OF RESOLUTION FIVE, TECH 61, 459

ERROR. JASA 60. 732

- MORGAN, F. R. THE DESIGN OF FACTORIAL EXPERIMENTS, A SURVEY OF SOME SCHEMES REQUIRING NOT MORE THAN 256 T. BIOKA 59, 251
- MORGAN, JAMES N. PROBLEMS IN THE ANALYSIS OF SURVEY DATA, AND A PROPOSAL, JASA 63, 415
- MORGAN, R. W. A TWO-DIMENSIONAL POISSON GROWTH PROCESS, JRSSB 65. 497
- MORGAN, R. W. THE ESTIMATION OF PARAMETERS FROM THE SPREAD OF A DIS-EASE BY CONSIDERING HOUSEHOLDS OF TWO., BIOKA 65, 271
- MORCAN, THEODORE THE ACCURACY OF INTERNATIONAL TRADEDATA, THE CASE OF SOUTHEAST ASIAN COUNTRIES, JASA 69. 452
- MORGENTHALER, G. W. SOME CIRCULAR COVERAGE PROBLEMS, BIOKA 61, 313 MORISHIMA. H. ESTIMATION OF GENETIC CONTRIBUTION OF PRINCIPAL COM-PONENTS TO INDIVIDUAL VARIATES CONCERNED, BIOCS 69, 9
- MORRIS, K. W. A NOTE ON DIRECT AND INVERSE BINOMIAL SAMPLING, BIOKA
- MORRIS, ROBERT H. AN APPLICATION OF MULTIVARIATE QUALITY CONTROL TO PHOTOGRAPHIC PROCESSINC, JASA 57, 186
- MORRISON, DONALD F. EXPECTATIONS AND COVARIANCES OF SERIAL AND CROSS-CORRELATION COEFFICIENTS IN A COMPLE, BIOKA 63, 213
- MORRISON, DONALD F. ON THE DISTRIBUTION OF SUMS OF SQUARES AND CROSS PRODUCTS OF NORMAL VARIATES IN THE P, AMS 62, 1461
- MORRISON, DONALD F. THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN SYSTEMS, TECH 61, 399
- MORRISON, MILTON SOME STATISTICAL CHARACTERISTICS OF A PEAK TO AVERACE RATIO, TECH 65, 379
- MORSE, NORMAN STATISTICAL ISOMORPHISM, AMS 66, 203
- MORSE, PAMELA M. THE COMBINATION OF ESTIMATES FROM SIMILAR EXPERI-MENTS, ALLOWING FOR INTER-EXPERIMENT VAR, JASA 67, 241
- MORTON, G. A CONTRIBUTION TO THE 'TRAVELLING-SALESMAN' PROBLEM (WITH DISCUSSION), JRSSB 55, 185
- MORTON, K. W. A POOR MAN'S MONTE CARLO (WITH DISCUSSION), JRSSB 54, 23
- MORTON, K. W. THE ESTIMATION OF LOCATION AND SCALE PARAMETERS FROM GROUPED DATA, BIOKA 54, 296
- MORTON, K. W. TRANSPOSED BRANCHING PROCESSES, JRSSB 54, 76
- MORTON, RICHARD ON A THEOREM OF KARLIN REGARDING ADMISSIBILITY OF LINEAR ESTIMATES IN EXPONENTIAL POPULAT, AMS 66, 1809
- MOSER, J. M. GOODNESS CRITERIA FOR TWO-SAMPLE DISTRIBUTION-FREE TESTS, AMS 66, 133
- MOSER, W. O. J. PERMUTATION WITHOUT RISING OR FALLING OMEGA-SEQUENCES, AMS 67, 1245
- MOSES, LINCOLN E. ONE SAMPLE LIMITS OF SOME TWO-SAMPLE RANK TESTS, JASA 64, 645
- MOSES, LINCOLN E. QUERY, CONFIDENCE LIMITS FROM RANK TESTS, TECH 65,
- MOSES, LINCOLN E. RANK TESTS OF DISPERSION, AMS 63, 973
- MOSES, LINCOLN E. SOME THEORETICAL ASPECTS OF THE LOT PLOT SAMPLING INSPECTION PLAN, JASA 56, 84
- MOSES, LINCOLN E. USE OF WILCOXON TEST THEORY IN ESTIMATING THE DIS-TRIBUTION OF A RATIO BY MONTE CARLO ME, AMS 62, 1194
- MOSIMANN, JAMES E. CONCEPTS OF INDEPENDENCE FOR PROPORTIONS WITH A A GENERALIZATION OF THE DIRICHLET DIST, JASA 69, 194
- MOSIMANN, JAMES E. ON THE COMPOUND MULTINOMIAL DISTRIBUTION, THE MULTIVARIATE BETA-DISTRIBUTION, AND CORR, BIOKA 62, 65
- MOSIMANN, JAMES E. ON THE COMPOUND NEGATIVE MULTINOMIAL DISTRIBU-TION AND CORRELATIONS AMONG INVERSELY SAM, BIOKA 63, 47
- MOSTAFA, M. D. ON THE PROBLEM OF ESTIMATION FOR THE BIVARIATE LOG-NORMAL DISTRIBUTION, BIOKA 64, 522
- MOSTAFA, M. G. DESIGNS FOR THE SIMULTANEOUS ESTIMATION OF FUNCTIONS OF VARIANCE COMPONENTS FROM TWO-WAY CR, BIOKA 67, 127
- MOSTAFA, M G. NOTE ON TESTING HYPOTHESES IN AN UNBALANCED RANDOM EFFECTS MODEL, BIOKA 67, 659
 MOSTELLER, F. TABLES OF THE FREEMAN-TUKEY TRANSFORMATIONS FOR THE
- BINOMIAL AND POISSON DISTRIBUTIONS, BIOKA 61, 433
- MOSTELLER, FREDERICK ASSOCIATION AND ESTIMATION IN CONTINCENCY TA-BLES, JASA 68, 1
- MOSTELLER, FREDERICK INFERENCE IN AN AUTHORSHIP PROBLEM, JASA 63, 275
- MOSTELLER, FREDERICK RECOCNIZING THE MAXIMUM OF A SEQUENCE, JASA 66,35
- MOSTELLER, FREDERICK SAMUELS. WILKS, JASA 65, 939
- MOSTELLER, FREDERICK THE EXPECTED COVERACE TO THE LEFT OF THE I'TH ORDER STATISTIC FOR ARBITRARY DISTRIBU, AMS 69, 644
- MOTE, V. L. AN INVESTICATION OF THE EFFECT OF MISCLASSIFICATION ON THE PROPERTIES OF CHI-SQUARE-TESTS IN, BIOKA 65, 95
- MOTT-SMITH, J. C. TWO ESTIMATES OF THE BINOMIAL DISTRIBUTION, (CORR. 64 1B2). AMS 64, 809
- MOTT, J. L. THE DISTRIBUTION OF THE TIME-TO-EMPTINESS OF A DISCRETE DAM UNDER STEADY DEMAND, JRSSB 63, 137
- MOTT, J. L. THE LATENT ROOTS OF CERTAIN STOCHASTIC MATRICES, BIOKA 62,264
- MOY, SHK-TEH C. EXTENSIONS OF A LIMIT THEOREM OF EVERETT, ULAM AND HARRIS ON MULTITYPE BRANCHING PROGESSE, AMS 67, 992
- MOYAL, J. E. THE RANDOM WALK (IN CONTINUOUS TIME) AND ITS APPLICA-TION TO THE THEORY OF QUEUES, BIOKA 59, 400
- MUDHOLKAR, G. S. MONOTONIGITY OF THE POWER FUNGTIONS OF SOME TESTS OF THE MULTIVARIATE LINEAR HYPOTHESIS, AMS 64, 200
- MUDHOLKAR, GOVIND S. A CLASS OF TESTS WITH MONOTONE POWER FUNGTIONS FOR TWO PROBLEMS IN MULTIVARIATE STAT, AMS 65, 1794

- MUDHOLKAR, GOVIND S. GENERALIZED MULTIVARIATE ESTIMATOR FOR THE MEAN OF FINITE POPULATIONS, JASA 67, 1009
- MUDHOLKAR, GOVIND S. ON CONFIDENCE BOUNDS ASSOCIATED WITH MUL-TIVARIATE ANALYSIS OF VARIANCE AND NONINDEPE, AMS 66, 1736
- MUDHOLKAR, GOVIND S. SOME SHARP MULTIVARIATE TCHEBYCHEFF INEQUALI-TIES, AMS 67, 393
- MUELLER, EVA TEN YEARS OF CONSUMER ATTITUDE SURVEYS, THEIR FORECASTING RECORD, JASA 63, 899
- MULHOLLAND, H. P. ON DISTRIBUTIONS FOR WHICH THE HARTLEY-KHAMIS SOLUTION OF THE MOMENT-PROBLEM IS EXACT, BIOKA 51, 74
- MULLEN, K. LINEAR ESTIMATES OF A POPULATION SCALE PARAMETER, BIOKA 67,551
- MULLER, E. R. A METHOD OF CONSTRUCTING BALANCED INCOMPLETE DESIGNS., BIOKA 65, 285
- MULLER, E. R. BALANCED CONFOUNDING OF FACTORIAL EXPERIMENTS, BIOKA 66,507
- MULLER, MERVIN E. DEVELOPMENT OF SAMPLING PLANS BY USING SEQUEN-TIAL, ITEM BY ITEM, SELECTION TECHNIQUES A, JASA 62, 387
- MULLIN, R. C. CONSTRUCTION OF ROOM SQUARES, AMS 68, 1540 MULLIN, R. C. INDUCTIVE METHODS FOR BALANCED INCOMPLETE BLOCK
- DESIGNS, AMS 66, 1348 MUNDLE, P. B. ON NON-REGULAR ESTIMATION, I. VARIANCE BOUNDS FOR ESTIMATORS OF LOCATION PARAMETERS, JASA 69, 1056
- MUNRO, A. H. ON THE USE OF THE GENERALIZED EXTREME-VALUE DISTRIBU-TION IN ESTIMATING EXTREME PERCENTILES, BIOCS 67, 79
- MURPHY, B. P. SOME TWO-SAMPLE TESTS WHEN THE VARIANCES ARE UNEQUAL. A SIMULATION STUDY, BIOKA 67, 679
- MURPHY, E. M. MATRIX AND MULTIPLE DECREMENT IN POPULATION ANALYSIS. BIOCS 67, 485
- MURPHY, G. I. ESTIMATES OF MORALITY AND POPULATION FROM SURVEY-
- REMOVAL RECORDS, BIOCS 65, 921 URPHY, T. THE EFFICIENCY OF N MACHINES UNI-DIRECTIONALLY MURPHY. T. PATROLLED BY ONE OPERATOR WHEN WALKING TIME AND, JRSSB 57, 166
- MURTEIRA, BENTO NOTE ON THE VARIATE DIFFERENCES OF AUTOREGRESSIVE SERIES, BIOKA 51, 479
- MURTHY, M. N. RANDOMIZED ROUNDED-OFF MULTIPLIERS IN SAMPLING THEORY, JASA 61, 328
- MURTHY, M. N. SOME RECENT ADVANCES IN SAMPLING THEORY, JASA 63, 737 MURTHY, V. K. ESTIMATION OF JUMPS, RELIABILITY AND HAZARD RATE, AMS 65.1032
- MURTHY, V. K. ESTIMATION OF PROBABILITY DENSITY, AMS 65, 1027
- MURTHY, V. K. ESTIMATION OF THE CROSS-SPECTRUM, AMS 63, 1012
- MURTHY, V. K. ESTIMATION OF THE SPECTRUM, AMS 61, 730
- MURTY, J. S. DESIGN AND ANALYSIS OF EXPERIMENTS WITH MIXTURES, AMS 68, 1517
- MURTY, V. N. AN INEQUALITY FOR BALANCED INCOMPLETE BLOCK DESIGNS, AMS 61, 908
- MUSGRAVE, JOHN C. THE MEASUREMENT OF PRICE CHANGES IN CONSTRUCTION,
- MUSTAFI, C. K. A NOTE ON MIDRANGE, AMS 65, 1052
- MUSTAFI, C. K. COMMENTS TO, EDWARD C. POSNER, 'THE APPLICATION OF EXTREME VALUE THEORY TO ERROR FREE COMM, TECH 66, 363
- MUSTAFI, C. K. SOME ANALYTICAL PROPERTIES OF BIVARIATE EXTREMAL DISTRIBUTIONS. JASA 67, 569
- MUSTAFI, CHANDAN INFERENCE PROBLEMS ABOUT PARAMETERS WHICH ARE SUBJECTED TO CHANCES OVER TIME, AMS 6B, 840
- MUSTAFI, CHANDAN K. ON ITERATED TESTS OF HYPOTHESES, JASA 67, 520
- MUSTAFI, CHANDAN K. ON THE PROPORTION OF OBSERVATIONS ABOVE SAMPLE MEANS IN A BIVARIATE NORMAL DISTRIBUTI, AMS 68, 1350
- MUSTAFI, CHANDAN K. THE INVERSE OF A CERTAIN MATRIX, WITH APPLICA-TION, AMS 67, 1289
- MUSTAFI, CHANDAN KUMAR A RECURRENCE RELATION FOR DISTRIBUTION FUNCTIONS OF ORDER STATISTICS FROM BIVARIAT, JASA 69, 600
- MUTH, JOHN F. OPTIMAL PROPERTIES OF EXPONENTIALLY WEIGHTED FORECASTS, CORR. 62919, JASA 60, 299
- MUTH, RICHARD F. A REGRESSION METHOD FOR REAL ESTATE PRICE INDEX CONSTRUCTION, JASA 63, 933
- MYERS, JAMES H. THE DEVELOPMENT OF NUMERICAL CREDIT EVALUATION SYSTEMS, JASA 63, 799
- MYERS, M. H BOUNDARIES FOR CLOSED (WEDGE) SEQUENTIAL TIEST PLANS, BIOKA 66, 431
- MYERS, R. H. ON THE PERCENTAGE POINTS OF THE SAMPLE COEFFICIENT OF VARIATION, BIOKA 68, 580
- MYERS, RAYMOND H. METHODS FOR ESTIMATING THE COMPOSITION OF A THREE COMPONENT LIQUID MIXTURE, TECH 64, 343 MYERS, RAYMOND H. OPTIMAL EXPERIMENTAL DESIGNS FOR ESTIMATING THE
- INDEPENDENT VARIABLE IN REGRESSION, TECH 68, 811 MYERS, RAYMOND H. RESPONSE SURFACE DESIGNS FOR MIXTURE PROBLEMS,
- TECH 68, 739 MYERS, ROBERT G. SCHOOLING, EXPERIENCE, AND GAINS AND LOSSES IN
- HUMAN CAPITAL THROUGH MIGRATION, JASA 67, 875 MYHRE, J. M. COMPARISON OF TWO METHODS OF OBTAINING APPROXIMATE CON-
- FIDENGE INTERVALS FOR SYSTEM RELIABILI, TEGH 6B, 37 MYRE, JANET M. ON CONFIDENCE LIMITS FOR THE RELIABILITY OF SYSTEMS, AMS 68, 1463
- NA, HWA SUNG A FORMULA FOR THE PROBABILITY OF OBTAINING A TREE FROM A GRAPH GONSTRUCTED RANDOMLY EXCEPT F, AMS 67, 226
- NABAVIAN, K. J. SAMPLING INSPECTION PLANS FOR DISCRIMINATING BETWEEN TWO WEIBULL PROGESSES, TECH 65, 589

- NABEYA, S. ABSOLUTE AND INCOMPLETE MOMENTS OF THE MULTIVARIATE NOR-MAL DISTRIBUTION, BIOKA 61, 77
- NADAS, ARTHUR A CONFIDENCE RECION FOR THE LOC-NORMAL HAZARD FUNC-TION, TECH 69, 387
- NADAS, ARTHUR AN EXTENSION OF A THEOREM OF CHOW AND ROBBINS ON SEQUENTIAL CONFIDENCE INTERVALS FOR THE ME, AMS 69, 667
- NADLER, JACK ON PRECEDENCE LIFE TESTING, TECH 65, 359
- NADLER, JACK QUERY, BIVARIATE SAMPLES WITH MISSING VALUES, TECH 67, 679
- NADLER, JACK SOME ASPECTS OF THE USE OF THE SEQUENTIAL PROBABILITY RATIO TEST, JASA 58, 187
- NACAO, HISAO ON BARTLETT'S TEST AND LEHMANN'S TEST FOR HOMOCENEITY OF VARIANCES, AMS 69, NO.6
 NACAO. HISAO UNBIASEDNESS OF SOME TEXT CRITERIA FOR THE EQUALITY OF
- ONE OR TWO COVARIANCE MATRICES, AMS 68, 1686
 NAGAR, A. L. TESTING THE INDEPENDENCE OF REGRESSION DISTURBANCES,
- JASA 61, 793 NAGENDRA, Y. EFFECT OF NON-NORMALITY ON A SEQUENTIAL TEST FOR MEAN,
- BIOKA 64, 281 NAGNUR, B. N. LAMST AND THE HYPOTHESES OF NO THREE FACTOR INTERAG-
- TION IN CONTINGENCY TABLES, JASA 69, 207
 NAGNUR, B. N. LOCALLY ASYMPTOTICALLY MOST STRINGENT TESTS AND
- LACRANGIAN MULTIPLIER TESTS OF LINEAR HYPOT, BIOKA 65, 459
 NAGNUR, DHRUVA ON THE INTERPRETATION OF AGE DISTRIBUTIONS, JASA 67,
 862
- NAIK, UMESH D. THE EQUAL PROBABILITY TEST AND ITS APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS, JASA 69, 986
- SOME SIMULTANEOUS INFERENCE PROBLEMS, JASA 69, 986
 NAIR, C. RAMANKUTTY A NEW CLASS OF DESIGNS, CORR. 65 1250, JASA 64,
- NAIR, G. RAMANKUTTY ON PARTIALLY LINKED BLOCK DESIGNS, AMS 66, 1401 NAIR, C. RAMANKUTTY PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITHTWO-WAY CLASSIFICATION OF TREATMENTS, AMS 69, 175
- NAIR, C. RAMANKUTTY SEQUENCES BALANCED FOR PAIRS OF RESIDUAL EF-FECTS, JASA 67, 205
- NAIR, K. R. TABLES OF PERCENTAGE POINTS OF THE 'STUDENTIZED' EXTREME DEVIATE FROM THE SAMPLE MEAN, BIOKA 52, 189
- NAKAMURA, E. PERCENTAGE POINTS OF THE RANGE FROM A SYMMETRIC MUL-TINOMIAL DISTRIBUTION, BIOKA 68, 377
- NAKAMURA, E. TABLES FOR TESTING SIGNIFICANCE IN A 2-BY-3 CONTINGEN-CY TABLE, TECH 63, 501
- NAKAMURA, E. THE POWER FUNCTION OF THE EXACT TEST FOR THE 2-BY-3 CON-
- TINGENCY TABLE, TECH 64, 439
 NAM, CHARLES B. ILLUSTRATIVE TABLES OF SCHOOL LIFE, CORR. 64 1299,
- JASA 63, 1113 NAM, J. ASYMPTOTIC POWER OF CHI SQUARE TESTS FOR LINEAR TRENDS IN
- PROPORTIONS, BIOCS 68, 315 NAMBOODIRI, N. KRISHNAN THE RATIO BIAS IN SURVEYS, JASA 62, 863
- NAMKOONG, C. NOTES. ESTIMATION OF NON-LINEAR PARAMETERS FOR A NON-ASYMPTOTIC FUNCTION BLOCS 68 439
- NAMKOONG, G. STATISTICAL ANALYSIS OF INTROGRESSION, BIOCS 66, 488
- NAOR, P. A PROBLEM OF DELAYED SERVICE, 1, JRSSB 60, 245
- NAOR, P. A PROBLEM OF DELAYED SERVICE, 2, JRSSB 60, 270
- NAOR, P. NORMAL APPROXIMATION TO MACHINE INTERFERENCE WITH MANY REPAIRMEN, JRSSB 57, 334
- NAOR, P. ON MACHINE INTERFERENCE, JRSSB 56, 280
- NARASIMHAM, V. L. CONSTRUCTION OF ROTATABLE DESIGNS THROUGH BALANCED INCOMPLETE BLOCK DESIGNS, AMS 62, 1421
- NARAYANA, T. V. A NOTE ON SIMPLE BINOMIAL SAMPLING PLANS, AMS 61, 906 NASOETION, A. H. SIMULTANEOUS SELFING AND PARTIAL DIALLEL TEST CROSSING 2. AN EVALUATION OF TWO METHODS 0, BIOGS 67, 325
- NASR, S. K. ON SOME PROBLEMS OF MACHINE INTERFERENCE, JRSSB 59, 106
 NASS, G. A. G. THE CHI-SQUARE TEST FOR SMALL EXPECTATIONS IN GONTINGENCY TABLES, WITH SPECIAL REFERENCE T, BIOKA 59, 365
- NATH, REJESHWAR BIAS IN MULTINOMIAL CLASSIFICATION, JASA 68, 298 NATH, S. N. MORE RESULTS ON PRODUCT MOMENTS FROM A FINITE UNIVERSE,
- JASA 69, 864
 NATH, S. N. ON PRODUCT MOMENTS FROM A FINITE UNIVERSE, JASA 68, 535
 NATHAN, GAD OUTCOME PROBABILITIES FOR A RECORD MATCHING PROCESS
- WITH COMPLETE INVARIANT INFORMATION, JASA 67, 454
 NATHAN, MANTEL PAIRWISE INDEPENDENCE OF JOINTLY DEPENDENT VARIA-
- BLES, AMS 62, 290
 NAUS, J. I. GLUSTERING OF RANDOM POINTS IN TWO DIMENSIONS., BIOKA
- 65, 263
 NAUS, J. I. SOME PROBABILITIES, EXPEGTATIONS AND VARIANCES FOR THE SIZE OF LARGEST CLUSTERS AND SMALLEST, JASA 66, 1191
- NAUS, J. I. THE DISTRIBUTION OF THE LOGARITHM OF THE SUM OF TWO LOG-NORMAL VARIATES, JASA 69, 655
- NAUS, JOSEPH I. A POWER COMPARISON OF TWO TESTS OF NON-RANDOW CLUSTERING, TECH 66, 493
- NAUS, JOSEPH I. THE DISTRIBUTION OF THE SIZE OF THE MAXIMUM CLUSTER OF POINTS ON A LINE, JASA 65, 532
- NAYA, SEIJI THE ACCURACY OF INTERNATIONAL TRADE DATA, THE CASE OF SOUTHEAST ASIAN COUNTRIES, JASA 69, 452
- NAYLOR, A. F. NOTES. SMALL SAMPLE CONSIDERATIONS IN COMBINING 2 BY 2 TABLES, BIOCS 67, 349
- NAYLOR, THOMAL H. COMPUTER SIMULATION EXPERIMENTS WITH ECONOMIC SYSTEMS. THE PROBLEM OF EXPERIMENTAL DESI, JASA 67, 1315

- NAYLOR, THOMAS H. A COMPUTER SIMULATION MODEL OF THE TEXTILE INDUSTRY, JASA 67, 1338
- NEAVE, HENRY R. A DEVELOPMENT OF TUKEY'S QUICK TEST OF LOCATION, JASA 66, 949
- NEAVE, HENRY R. A MONTE CARLO STUDY COMPARINC VARIOUS TWO-SAMPLE TESTS FOR DIFFERENCES IN MEAN, TECH 68, 509
- NEISWANCER, W. A. PARAMETER ESTIMATES AND AUTONOMOUS CROWTH, CORR. 59 812, JASA 59, 389
- NELDER, J. A. A NOTE ON THE STATISTICAL INDEPENDENCE OF QUADRATIC FORMS IN THE ANALYSIS OF VARIANCE, BIOKA 51, 482
- NELDER, J. A. INVERSE POLYNOMIALS, A USEFUL CROUP OF MULTI-FACTOR RESPONSE FUNCTIONS, BIOCS 66, 128 NELDER, J. A. THE COMBINATION OF INFORMATION IN CENERALLY BALANCED
- DESIGNS, JRSSB 68, 303 NELDER, J. A. THE INTERPRETATION OF NEGATIVE COMPONENTS OF VARI-
- NELDER, J. A. THE INTERPRETATION OF NEGATIVE COMPONENTS OF VARI-ANCE, BIOKA 54, 544 NELDER, J. A. WEIGHTED REGRESSION, QUANTAL RESPONSE DATA, AND IN-
- VERSE POLYNOMIALS, BIOCS 68, 979
 NELSON JR, A. C. ESTIMATION OF THE PROBABILITY OF DEFECTIVE FAILURE
- NELSON JR, A. C. ESTIMATION OF THE PROBABILITY OF DEFECTIVE FAILURE FROM DESTRUCTIVE TESTS, TECH 63, 459 NELSON, A. C. QUERY +(ON FORMULA FOR DETERMINING THE INCIDENCE OF
- MUTANT GENES), BIOCS 65, 750
- NELSON, L.S. SAMPLING DISTRIBUTIONS OF VARIANCE COMPONENTS II. EM-PIRICAL STUDIES OF UNBALANCED NESTED DE, TECH 68, 719
- NELSON, L.S. THE FOLDED NORMAL DISTRIBUTION, TECH 61, 543
- NELSON, LLOYD S. QUERY, GOMBINING VALUES OF OBSERVED CHI-SQUARE'S, TECH 66.709
- NELSON, LLOYD S. SAMPLING DISTRIBUTIONS OF VARIANCE COMPONENTS I. EMPIRICAL STUDIES OF BALANCED NESTED DE, TECH 66, 457
- NELSON, LLOYD S. TABLES FOR A PRECEDENCE LIFE TEST, TECH 63, 491
- NELSON, RALPH L. MARKET GROWTH, COMPANY DIVERSIFICATION AND PRODUCT CONCENTRATION 1947-1954, JASA 60, 640
- NELSON, W. C. TESTS FOR CORRELATION MATRICES, BIOKA 68, 327
- NELSON, WAYNE MINIMAX SOLUTION OF STATISTICAL DECISION PROBLEMS BY ITERATION, AMS 66, 1643
- NELSON, WAYNE B. A STATISTICAL TEST FOR EQUALITY OF TWO AVAILABILI-TIES, TECH 68, 594
- NERLOVE, MARC A COMPARISON OF A MODIFIED 'HANNAN' AND THE BUREAU OF LABOR STATISTICS, JASA 65, 442
- NESTEL, G. CROSS STATE PRODUCT AND AN ECONOMETRIC MODEL OF A STATE, JASA 69, 787
- NETER, JOHN A STUDY OF RESPONSE ERRORS IN EXPENDITURES DATA FROM HOUSEHOLD INTERVIEWS, JASA 64, 18
- NETER, JOHN POTENTIALS IN APPLYING LINEAR PROGRAMMING TO THE CON-SUMER PRICE INDEX, JASA 66, 982
- NETER, JOHN THE EFFEGT OF MIS-MATCHING ON THE MEASUREMENT OF RESPONSE ERRORS, JASA 65, 1005
- NETTHEIM, NIGEL F. FOURIER METHODS FOR EVOLVING SEASONAL PATTERNS, JASA 65, 492
- NEUDECKER, H. A NOTE ON BLUS ESTIMATION, JASA 69, 949
- NEUDECKER, H. SOME THEOREMS ON MATRIX DIFFERENTIATION WITH SPECIAL REFERENCE TO KRONECKER MATRIX PRODUCTS, JASA 69, 953
- NEUTS, MARCEL F. A GENERAL CLASS OF BULK QUEUES WITH POISSON INPUT, AMS 67, 759
- NEUTS, MARCEL F. CENERATINC FUNCTIONS FOR MARKOV RENEWAL PROCESSES, AMS 64, 431
- NEW, MARY L. MAMMALIAN REPRODUCTIVE DATA FITTED TO A MATHEMATICAL MODEL, BIOGS 69, 529
- NEWELL, D. J. THE IDENTIFICATION OF ANNUAL PEAK PERIODS FOR A DIS-EASE, BIOCS 65, 645
 - NEWELL, D. J. UNUSUAL FREQUENCY DISTRIBUTIONS, BIOCS 65, 159
- NEWELL, G. F. ASYMPTOTIC EXTREMES FOR M-DEPENDENT RANDOM VARIA-BLES, AMS 64, 1322
- NEWELL, G. F. ZERO CROSSING PROBABILITIES FOR GAUSSIAN STATIONARY PROCESSES, AMS 62, 1306
- NEWMAN, DAVID S. ON THE PROBABILITY DISTRIBUTION OF A FILTERED RANDOM TELEGRAPH SIGNAL, AMS 68, 890
- NEWTON, D. ON A FACTOR AUTOMORPHISM OF A NORMAL DYNAMICAL SYSTEM, AMS 66, 1528
- NEY, P.E. A RANDOM INTERVAL FILLING PROBLEM, AMS 62, 702
- NEY, P. E. GONVERCENCE THEOREMS FOR MULTIPLE CHANNEL LOSS PROBA-BILITIES, AMS 63, 260
- NEY, P. E. THE LIMIT OF A RATIO OF CONVOLUTIONS, AMS 63, 457
- NEYMAN, J. STATISTICAL APPROACH TO PROBLEMS OF COSMOLOGY (WITH DISCUSSION), JRSSB 58, 1
- NEYMAN, JERZY ASYMPTOTICALLY OPTIMAL TESTS OF COMPOSITE HYPOTHESES FOR RANDOMIZED EXPERIMENTS WITH NONCON, JASA 65, 699
- NEYMAN, JERZY DISCUSSION OF HOEFFDINGS PAPER, AMS 65, 401
- NEYMAN, JERZY FURTHER COMMENTS ON THE 'FINAL REPORT OF THE ADVISORY COMMITTEE ON WEATHER CONTROL', JASA 61, 580
- NEYMAN, JERZY INDETERMINISM IN SCIENCE AND NEW DEMANDS ON STATISTI-CIANS, JASA 60, 625
- NEYMAN, JERZY NOTE ON AN ARTICLE BY SIR RONALD FISHER, JRSSB 56, 288
 NEYMAN, JERZY STATISTICAL PROBLEMS IN SCIENCE. THE SYMMETRIC TEST
 OF A COMPLETE HYPOTHESIS, JASA 69, NO. 4
- NICHOLSON JR, GEORGE E. ESTIMATION OF PARAMETERS FROM INCOMPLETE MULTIVARIATE SAMPLES. JASA 57. 523

- NICHOLSON, W. L. OCCUPANCY PROBABILITY DISTRIBUTION CRITICAL POINTS, BIOKA 61, 175
- NICHOLSON, W. L. UNFOLDING PARTICLE SIZE DISTRIBUTIONS, TECH 69.
- NICKOLS, D. C. SOME EQUILIBRIUM RESULTS FOR THE QUEUEINC PROCESS E-SUB-K-M-1, JRSSB 56, 275
- NIEDERHOFFER, VICTOR MARKET MAKING AND REVERSAL OF THE STOCK EXCHANGE, JASA 66, B97
- NIERMIERKO, S. A. A STOCHASTIC MODEL OF ACHE TRANSPORTATION IN THE PERIPHERAL NERVE TRUNKS, BIOKA 62, 447
- NIETO DE PASCUAL, JOSE UNBIASED RATIO ESTIMATORS IN STATIFIED SAMPLING, CORR. 641298, JASA 61, 70
- NISSELSON, HAROLD SOME PROBLEMS OF THE HOUSEHOLD INTERVIEW DESIGN FOR THE NATIONAL HEALTH SURVEY, JASA 59, 69
- NISSEN-MEYER, S. ANALYSIS OF EFFECTS OF ANTIBIOTICS ON BACTERIA BY MEANS OF STOCHASTIC MODELS, BIOCS 66, 761
- NITRA, SUJIT KUMAR TABLES FOR TOLERANCE LIMITS FOR A NORMAL POPULA-TION BASED ON SAMPLE MEAN AND RANGE OR, JASA 57, BB
- NIXON, ERIC CORRIGENDA, 'TABLE OF PERCENTAGE POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2, BIOKA 65, 669
- NIXON, ERIC TABLE OF PERCENTACE POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA-2 EXPRESSED IN, BIOKA 63, 459
- NOE, MARC AN INEQUALITY CONCERNING TESTS OF FIT OF THE KOLMOCOROV-SMIRNOV TYPE, AMS 67, 1240
- NOE, MARC THE CALCULATION OF DISTRIBUTIONS OF KOLMOGOROV-SMIRNOV TYPE STATISTICS INCLUDING A TABLE OF SIG, AMS 6B, 233
- NOETHER, G. E. THE ASYMPTOTIC EFFICIENCY OF THE CHI-SQUARE-SUB-R-TEST FOR A BALANCED INCOMPLETE BLOCK DES, BIOKA 59, 475
- NOETHER, GOTTFRIED E. EFFICIENCY OF THE WILCOXON TWO-SAMPLE STATISTIC FOR RANDOMIZED BLOCKS, JASA 63, 894
- NOETHER, COTTFRIED E. TWO CONFIDENCE INTERVALS FOR THE RATIO OF TWO PROBABILITIES AND SOME MEASURES OF EF, JASA 57, 36
- NOETHER, GOTTFRIED E. TWO SEQUENTIAL TESTS AGAINST TREND, JASA 56, $440\,$
- NOETHER, GOTTFRIED E. WILCOXON CONFIDENCE INTERVALS FOR LOCATION
 PARAMETERS IN THE DISCRETE CASE LASA 67 184
- PARAMETERS IN THE DISCRETE CASE, JASA 67, 184
 NORMAN JR, J. E. EXACT DISTRIBUTION OF THE SUM OF INDEPENDENT
- IDENTICALLY DISTRIBUTED DISCRETE RANDOM VAR, JASA 65, B37 NORMAN, M. FRANK LIMITING DISTRIBUTIONS FOR SOME RANDOM WALKS ARIS-INC IN LEARNING MODELS, AMS 66, 393
- NORVIG, TORSTEN CONSENSUS OF SUBJECTIVE PROBABILITIES, A CONVERGENCE THEOREM, AMS 67, 221
- NOTTINGHAM, R. B. THE FOLDED NORMAL DISTRIBUTION, TECH 61, 543
- NOURSE, HUGH O. A REGRESSION METHOD FOR REAL ESTATE PRICE INDEX CON-STRUCTION, JASA 63, 933
- NOVICK, M. R. MULTIPARAMETER BAYESIAN INDIFFERENCE PROCEDURES (WITH DISCUSSION), JRSSB 69, 29
- NOVICK, MELVIN R. A BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM CLINICAL TRIALS, JASA 65, B1
- NOVICK, MELVIN R. A BAYESIAN INDIFFERENCE PROCEDURE, JASA 65, 1104 NUESCH, PETER E. ON THE PROBLEM OF TESTING LOCATION IN MULTIVARIATE POPULATIONS FOR RESTRICTED ALTERNATIV, AMS 66, 113
- NURI, WALID A. FOURIER METHODS IN THE STUDY OF VARIANCE FLUCTUATIONS IN TIME SERIES ANALYSIS. TECH 69, 103
- NYUNT, K. M. QUEUES WITH BATCH DEPARTURES I, AMS 61, 1324
- O'NEILL, ANNE F. SOME PROPERTIES OF THE DISTRIBUTION OF THE LOGARITHM OF NON-CENTRAL F, BIOKA 60, 417
- O'REAGAN, ROBERT T. RELATIVE COSTS OF COMPUTERIZED ERROR INSPEC-TION PLANS, JASA 69, NO. 4
- ODEH, R. E. THE DISTRIBUTION OF THE MAXIMUM SUM OF RANKS, TECH 67, 271 ODELL, P. L. A GENERALIZATION OF THE GAUSS-MARKOV THEOREM, JASA 66, 1063
- ODELL, P. L. A NUMERICAL PROCEDURE TO CENERATE A SAMPLE COVARIANCE MATRIX, CORR. 661248, JASA 66, 199
- ODELL, P. L. ON SUMS AND PRODUCTS OF RECTANCULAR VARIATES, BIOKA 66,
- ODELL, P. L. ON THE FIXED POINT PROBABILITY VECTOR OF REGULAR OR ERGODIC TRANSITION MATRICES, JASA 67, 600
- ODOOM, S. A NOTE ON THE SOLUTION OF DAM EQUATIONS, JRSSB 64, 33B
- OGAWA, JUNJIRO ON THE NULL-DISTRIBUTION OF THE F-STATISTIC IN A RAN-DOMIZED BALANCED INCOMPLETE BLOCK DESI, AMS 63, 155B
- OGAWA, JUNJIRO SIMPLIFIED ESTIMATES FOR THE EXPONENTIAL DISTRIBU-TION, AMS 63, 102
- OCAWA, JUNJIRO THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST PROCEDURE, WHEN DATA ARE INCOMPLETE, JASA 61, 125
- OGAWA, JUNJIRO THE RELATIONSHIP ALGEBRA AND THE ANALYSIS OF VARI-ANCE OF A PARTIALLY BALANCED INCOMPLETE B, AMS 65, 1815
- OGILIVIE, J. THE PERFORMANCE OF SOME SEQUENTIAL PROCEDURES FOR A RANKINC PROBLEM, AMS 68, 1040
- OCILVIE, J. C. PAIRED COMPARISON MODELS WITH TESTS FOR INTERACTION, BIOCS $65,\,651$
- OGUS, JACK L. A NOTE ON THE 'NECESSARY BEST ESTIMATOR', JASA 69, NO.4 OHLSEN, SALLY ON ESTIMATING EPIDEMIC PARAMETERS FROM HOUSEHOLD DATA, BIOKA 64, 511
- OHTA, T. SURVIVAL PROBABILITIES OF NEW INVERSIONS IN LARCE POPULA-TIONS, BIOCS 6B, 501
- OKAMOTO, M. CORRIGENDA, 'TEST OF INDEPENDENCE IN INTRACLASS 2-BY-2
 TABLES', BIOKA 61, 476

- OKAMOTO, M. TESTS OF INDEPENDENCE IN INTRACLASS 2-BY-2 TABLES, BIOKA 61, 181
- OKAMOTO, MASASHI AN ASYMPTOTIC EXPANSION FOR THE DISTRIBUTION OF THE LINEAR DISCRIMINANT FUNCTION, AMS 63, 1286
- OKAMOTO, MASASHI CHI-SQUARE STATISTIC BASED ON THE POOLED FREQUENCIES OF SEVERAL OBSERVATIONS, BIOKA 63, 524
- OKAMOTO, MASASHI MINIMIZATION OF EIGENVALUES OF A MATRIX AND OP-TIMALITY OF PRINCIPAL COMPONENTS, AMS 68, 859
- OLDHAM, P. D. NOTES ON ESTIMATING THE ARITHMETIC MEANS OF LOGNOR-MALLY-DISTRIBUTED POPULATIONS, BIOCS 65, 235
- OLIVER, F. R. ASPECTS OF MAXIMUM LIKELIHOOD ESTIMATION OF THE LO-GISTIC GROWTH FUNCTION, JASA 66, 697
- OLKIN, I. A GENERAL APPROACH TO SOME SCREENING AND CLASSIFICATION PROBLEMS, WITH DISCUSSION), JRSSB 68, 407
- OLKIN, I. CORRICENDA, 'EXTREMA OF QUADRATIC FORMS WITH APPLICA-TIONS TO STATISTICS', BIOKA 61, 474 OLKIN, I. EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO
- STATISTICS, BIOKA 59, 483
 OLKIN, I. INTEGRAL EXPRESSIONS FOR TAIL PROBABILITIES OF THE MUL-
- TINOMIAL AND NEGATIVE MULTINOMIAL DISTRIB, BIOKA 65, 167
 OLKIN, I. MULTIVARIATE CORRELATION MODELS WITH MIXED DISCRETE AND
- CONTINUOUS VARIABLES, CORR. 65 343, AMS 61, 44B
 OLKIN, I. MULTIVARIATE RATIO ESTIMATION FOR FINITE POPULATIONS,
- BIOKA 58, 154

 OLKIN, I. ON THE BIAS OF FUNCTIONS OF CHARACTERISTIC ROOTS OF A RANDOM MATRIX, BIOKA 65, 87
- OLKIN, INGRAM A CHARACTERIZATION OF THE MULTIVARIATE NORMAL DISTRIBUTION, AMS 62, 533
- OLKIN, INCRAM A CHARACTERIZATION OF THE WISHART DISTRIBUTION, AMS 62, 1272
- OLKIN, INCRAM A MULTIVARIATE EXPONENTIAL DISTRIBUTION, JASA 67, 30 OLKIN, INGRAM MULTIVARIATE BETA DISTRIBUTIONS AND INDEPENDENCE PROPERTIES OF THE WISHART DISTRIBUTIONS, C, AMS 64, 261
- OLKIN, INGRAM NOTE ON 'THE JACOBIANS OF CERTAIN MATRIX TRANSFORMATION USEFULL IN MULTIVARIATE ANALYSIS', BIOKA 53, 43
- OLKIN, INGRAM TESTING AND ESTIMATION FOR A CIRCULAR STATIONARY MODEL, AMS 69, 1358
- OLKIN, INGRAM THE JACOBIANS OF CERTAIN MATRIX TRANSFORMATIONS USE-FUL IN MULTIVARIATE ANALYSIS, BASED ON L, BIOKA 51, 345 OLKIN, INGRAM UNBIASED ESTIMATION OF SOME MULTIVARIATE PROBABILITY
- DENSITIES, AMS 69, 1261

 OLSHEN, R. A. SOME FIRST PASSAGE PROBLEMS FOR S-SUB-N-OVER-ROOT-N,
- AMS 69, 64B
 OLSHEN, RICHARD A. REPRESENTING FINITELY ADDITIVE INVARIANT PROBA-
- BILITIES, AMS 68, 2131 OLSHEN, RICHARD A. SIGN AND WILCOXON TESTS FOR LINEARITY, AMS 67, 1759
- OLSON, D. P. LINE TRANSECT METHOD OF ESTIMATING GROUSE POPULATION DENSITIES, BIOCS 68, 135
- OLSON, MILTON PHILIP THE THEORY OF EXPERIMENT, OPERATIONAL DEFINITION OF THE PROBABILITY SPACE, AMS 67, 401
- OOSTERHOFF, J. ON THE COMBINATION OF INDEPENDENT TEST STATISTICS,
 AMS 67, 659
- ORD, J. K. APPROXIMATIONS TO DISTRIBUTION FUNCTIONS WHICH ARE HYPERCEOMETRIC SERIES, BIOKA 6B, 243
- ORD, J. K. ON A SYSTEM OF DISCRETE DISTRIBUTIONS, BIOKA 67, 649 ORD, J. K. THE DISCRETE STUDENT'S DISTRIBUTION, AMS 6B, 1513
- OREY, STEVEN AN OPTIMAL STOPPING THEOREM, AMS 69, 677
- OREY, STEVEN ON CONTINUITY PROPERTIES OF INFINITELY DIVISIBLE DISTRIBUTION FUNCTIONS, AMS 68, 936
- OSBORNE, M. F. M. MARKET MAKING AND REVERSAL OF THE STOCK EXCHANGE, JASA 66, 897
- OSBORNE, M. F. M. SOME QUANTITATIVE TESTS FOR STOCK PRICE GENERATING MODELS AND TRADINC FOLKLORE, JASA 67, 321
- OSHIMA, HARRY T. NATIONAL INCOME STATISTICS OF UNDERDEVELOPED COUNTRIES, JASA 57, 162
- OSTLE, B. AN ANALYSIS OF SOME RELAY FAILURE DATA FROM A COMPOSITE EX-PONENTIAL POPULATION, TECH 61, 423 OSTLE, BERNARD CORRELATION BETWEEN SAMPLE MEANS AND SAMPLE RANGES,
- JASA 59, 465
 OTT, R. L. A SHORT-CUT RULE FOR A ONE-SIDED TEST OF HYPOTHESIS FOR
- QUALITATIVE DATA, TECH 69, 197
 OTT, R. LYMAN OPTIMAL EXPERIMENTAL DESIGNS FOR ESTIMATING THE INDE-
- PENDENT VARIABLE IN REGRESSION, TECH 68, 811
 OWEN, A. R. G. NEGATIVE BINOMIAL DISTRIBUTIONS WITH A COMMON K,
- OWEN, A. R. G. NEGATIVE BINOMIAL DISTRIBUTIONS WITH A COMMON K, BIOKA 58, 37 OWEN, D. B. A NOTE ON THE EQUICORRELATED MULTIVARIATE NORMAL DIS-
- TRIBUTION, BIOKA 62, 269
 OWEN, D. B. A SPECIAL CASE OF A BIVARIATE NON-CENTRAL T-DISTRIBU-
- TION, BIOKA 65, 437
 OWEN, D. B. CONFIDENCE INTERVALS FOR THE COEFFICIENT OF VARIATION
- FOR THE NORMAL AND LOG NORMAL DISTRIBUT, BIOKA 64, 25
 OWEN, D. B. CONTROL OF PERCENTACES IN BOTH TAILS OF THE NORMAL DISTRIBUTION, TECH 64, 377
- OWEN, D. B. DISTRIBUTION FREE TOLERANCE LIMITS. ELIMINATION OF REQUIREMENT THAT CUMULATIVE FUNCTIONS BE C. TECH 63, 51B
- OWEN, D. B. ERRATA, 'CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NOR-MAL DISTRIBUTIONS', TECH 66, 570

- OWEN, D. B. MOMENTS OF ORDER STATISTICS FROM THE EQUICORRELATED MUL-TIVARIATE NORMAL DISTRIBUTION, AMS 62, 1286
- OWEN, D. B. NONPARAMETRIC UPPER CONFIDENCE BOUNDS, AND CONFIDENCE LIMITS, FOR THE PROBABILITY THAT Y IS L, JASA 64, 906
- OWEN, D. B. ON THE DISTRIBUTIONS OF THE RANGE AND MEAN RANGE FOR SAM-PLES FROM A NORMAL DISTRIBUTION, BIOKA 66, 245
- OWEN, D. B. PERCENTAGE POINTS FOR THE DISTRIBUTION OF OUTCOINC QUALITY, JASA 59, 689
- OWEN, D. B. SUMMARY OF RECENT WORK ON VARIABLES ACCEPTANCE SAMPLINC WITH EMPHASIS ON NON-NORMALITY, TECH 69, NO. 4
- OWEN, D. B. THE POWER OF STUDENT'S T-TEST, CORR. 65 1251, JASA 65, 320 OWEN, D. B. VARIABLES SAMPLING PLANS BASED ON THE NORMAL DISTRIBU-TION, TECH 67, 417
- OWEN, DON B. A SURVEY OF PROPERTIES AND APPLICATIONS OF THE NONCEN-TRALT-DISTRIBUTION, TECH 68, 445
- PAGHARES, J. TABLE OF THE UPPER 10 PERCENT POINTS OF THE 'STU-DENTIZED' RANGE, BIOKA 59, 461
- PACHARES, JAMES TABLES FOR UNBIASED TESTS ON THE VARIANCE OF A NOR-MAL POPULATION, AMS 61, B4
- PACHARES, JAMES TABLES OF CONFIDENCE LIMITS FOR THE BINOMIAL DISTRIBUTION, JASA 60, 521
- PAGE, E. S. A MODIFIED CONTROL CHART WITH WARNING LINES, BIOKA 62, 171
- PACE, E. S. A TEST FOR A CHANCE IN A PARAMETER OCCURRING AT AN UNKNOWN POINT, BIOKA 55, 523
- PAGE, E. S. AN APPROACH TO THE SCHEDULING OF JOBS ON MACHINES, JRSSB 61, 484
- PAGE, E. S. AN IMPROVEMENT TO WALD'S APPROXIMATION FOR SOME PROPER-TIES OF SEQUENTIAL TESTS, JRSSB 54, 136
- PAGE, E.S. CONTINUOUS INSPECTION SCHEMES, BIOKA 54, 100
- PAGE, E. S. CONTROL CHARTS FOR THE MEAN OF A NORMAL POPULATION, JRSSB 54, 131
- PAGE, E.S. CONTROL CHARTS WITH WARNING LINES, BIOKA 55, 243
- PAGE, E. S. CONTROLLING THE STANDARD DEVIATION BY CUSUMS AND WARNING LINES, TECH 63, 307
- PAGE, E.S. CUMULATIVE SUM CHARTS, TECH 61, 1
- PACE, E. S. CUMULATIVE SUM SCHEMES USING GAUGING, TECH 62, 97
- PAGE, E.S. ON PROBLEMS IN WHICH A CHANGE IN A PARAMETER OCCURS AT AN UNKNOWN POINT, BIOKA 57, 248
- PAGE, E.S. SEQUENTIAL TESTS FOR BINOMIAL AND EXPONENTIAL POPULA-TIONS, BIOKA 54, 252
- PACE, E. S. TABLES FOR WALD TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION, BIOKA 59, 169
- PAGE, E.S. THE DISTRIBUTION OF VACANCIES ON A LINE, JRSSB 59, 364
- PAGE, ELLIS BATTEN ORDERED HYPOTHESES FOR MULTIPLE TREATMENTS, A SIGNIFICANCE TEST FOR LINEAR RANKS, JASA 63, 216
- PAHL, P. J. ON TESTING FOR GOODNESS-OF-FIT OF THE NEGATIVE BINOMIAL WHEN EXPECTATIONS ARE SMALL, BIOCS 69, 143
- PALMER, D.S. THE DISTRIBUTION OF INTERVALS BETWEEN SUCCESSIVE MAX-IMAIN A SERIES OF RANDOM NUMBERS, BIOKA 57, 524
- PANCHAPAKESAN, S. ON THE DISTRIBUTION OF THE MAXIMUM AND MINIMUM OF RATIOS OF ORDER STATISTICS, AMS 69, 918
- PANDIT, S. N. N. DIMENSIONAL CHAINS INVOLVING RECTANGULAR AND NOR-MAL ERROR-DISTRIBUTIONS, TECH 63, 404

 PANSE, V. P. ESTIMATION OF CROP YIELDS FOR SMALL AREAS, BIOCS 66, 374
- PANSE, V. P. ESTIMATION OF CROP YIELDS FOR SMALL AREAS, BIOCS 66, 374
 PANZONE, RAFAEL ALTERNATIVE PROOFS FOR CERTAIN UPCROSSING INEQUALITIES, AMS 67, 735
- PARK JR, JOHN H. VARIATIONS OF THE NON-CENTRAL T AND BETA DISTRIBU-TIONS, AMS 64, 15B3
- PARK, T. MORTALITY PATTERNS IN EIGHT STRAINS OF FLOUR BEETLE, BIOCS 65, 99
- PARKER, RICHARD A. SIMULATION OF AN AQUATIC ECOSYSTEM, BIOCS 6B, BO3
 PARKS, RICHARD W. EFFICIENT ESTIMATION OF A SYSTEM OF RECRESSION
 EQUATIONS WHEN DISTURBANCES ARE BOTH SER, JASA 67, 500
- PARR, VAN B. A METHOD FOR DISCRIMINATING BETWEEN FAILURE DENSITY
 FUNCTIONS USED IN RELIABILITY PREDICTION, TECH 65, 1
 PARRY W ON A FACTOR AUTOMORPHISM OF A NORMAL DYNAMICAL SYSTEM AMS
- PARRY, W. ON A FACTOR AUTOMORPHISM OF A NORMAL DYNAMICAL SYSTEM, AMS 66, 1528
- PARRY, WILLIAM ERGODIC PROPERTIES OF SOME PERMUTATION PROCESSES, BIOKA 62, 151
- PARTER, S. V. ON A CLASS OF SIMPLE RANDOM WALKS, AMS 63, 413
- PARZEN, EMANUEL AN APPROACH TO TIME SERIES ANALYSIS, AMS 61, 951
- PARZEN, EMANUEL COMMENTS ON THE DISCUSSIONS OF MESSRS. TUKEY AND GOODMAN, TECH 61, 229
- PARZEN, EMANUEL MATHEMATICAL CONSIDERATIONS IN THE ESTIMATION OF SPECTRA, TECH 61, 167
- PARZEN, EMANUEL ON ASYMPTOTICALLY EFFICIENT CONSISTENT ESTIMATES OF THE SPECTRAL DENSITY FUNCTION OF A ST, JRSSB 58, 303
- PARZEN, EMANUEL ON ESTIMATION OF A PROBABILITY DENSITY FUNCTION AND MODE, AMS 62, 1065
- PASTERNACK, B. NOTES. A DEFICIENCY IN THE SUMMATION OF CHI PROCEDURE, BIOCS 66, 407
- PASTERNACK, B. S. SOME EXPERIMENTAL SAMPLING RESULTS FOR REGRES— SION ANALYSIS APPLIED TO GAMMA RAY SPECTRO, BIOCS 67, 11
- PASTERNACK, B. S. SOME EXPERIMENTAL SAMPLING RESULTS FOR REGRES-SION ANALYSIS APPLIED TO GAMA RAY SPECTROM, BIOCS 68, 353
- PASTERNACK, BERNARD LIGHT BULB STATISTICS, CORR. 66 1248, JASA 66, 633

- PASTERNACK, BERNARD PATTERNS IN RESIDUALS, A TEST FOR RECRESSION MODEL ADEQUACY IN RADIONUCLIDE ASSAY, TECH 65, 603
- PASTERNACK, BERNARD S. LINEAR ESTIMATION AND THE ANALYSIS OF GAMMA RAY PULSE-HEIGHT SPECTRA, TECH 62, 565
- PASTERNACK, BERNARD S. THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST PROCEDURE, WHEN DATA ARE INCOMP, JASA 61, 125
- PATANKAR, V. N. THE GOODNESS OF FIT OF FREQUENCY DISTRIBUTIONS OB-TAINED FROM STOCHASTIG PROCESSES, BIOKA 54, 450
- PATEL, M. S. A NOTE ON 'A STUDY OF THE CROUP SCREENING EXPERIMENT', TECH 63, 397
- PATEL, M. S. GROUP SCREENING WITH MORE THAN TWO STAGES, TECH 62, 209
 PATEL, M. S. ON CONSTRUCTING THE FACTORIAL REPLICATES OF THE TWO TO
 THE POWER OF M DESIGNS WITH BLOCKS, AMS 62, 1440
- PATEL, M. S. PARTIALLY DUPLICATED FRACTIONAL FACTORIAL DESIGNS, TECH 63.71
- PATEL, R. M. SELECTION AMONG DIALLEL CLASSIFIED VARIABLES, BIOCS 69.49
- PATHAK, P. K. ON INVERSE SAMPLING WITH UNEQUAL PROBABILITIES, BIOKA 64, 185
- PATHAK, P. K. ON SAMPLING SCHEMES PROVIDING UNBIASED RATIO ESTIMA-TORS, AMS 64, 222
- PATHAK, P. K. SUFFICIENCY IN SAMPLING THEORY, AMS 64, 795
- PATHAK, P. K. TESTS FOR THE EQUALITY OF COVARIANCE MATRICES UNDER THE INTRACLASS CORRELATION MODEL, AMS 67, 1286
- PATIL, G. P. A CHARACTERIZATION OF THE EXPONENTIAL-TYPE DISTRIBU-TION, BIOKA 63, 205
- PATIL, G. P. CHARACTERIZATION THEOREMS FOR SOME UNIVARIATE PROBABILITY DISTRIBUTIONS, JRSSB 64, 2B6
- PATIL, G. P. MAXIMUM LIKELIHOOD ESTIMATION FOR CENERALIZED POWER SERIES DISTRIBUTIONS AND ITS APPLICATION, BIOKA 62, 227
- PATIL, G. P. MINIMUM VARIANCE UNBIASED ESTIMATION AND CERTAIN PROBLEMS OF ADDITIVE NUMBER THEORY, AMS 63, 1050
- PATIL, G. P. MULTIVARIATE EXPONENTIAL-TYPE DISTRIBUTIONS, AMS 68, 1316
- PATIL, G. P. MULTIVARIATE LOGARITHMIC SERIES DISTRIBUTION AS A PROBABILITY MODEL IN POPULATION AND COMMUN, JASA 67, 655
- PATIL, G. P. ON CERTAIN PROPERTIES OF THE EXPONENTIAL-TYPE FAMI-LIES, JRSSB 65, 94
- PATIL, G. P. ON THE EQUIVALENCE OF BINOMIAL AND INVERSE BINOMIAL AC-CEPTANCE SAMPLING PLANS AND AN ACKNOWL, TECH 63, 119
- PATIL, G. P. ON THE EVALUATION OF THE NEGATIVE BINOMIAL DISTRIBUTION WITH EXAMPLES, TECH 60, 501
- PATIL, V. H. APPROXIMATION TO THE BEHRENS-FISHER DISTRIBUTIONS., BIOKA 65, 267
- PATIL, V. H. APPROXIMATION TO THE GENERALIZED BEHRENS-FISHER DISTRIBUTION INVOLVING THREE VARIATES, BIOKA 69, NO. 3
- PATIL, V. T. THE CONSISTENCY AND ADEQUACY OF THE POISSON-MARKOFF MODEL FOR DENSITY FLUGTUATIONS, BIOKA 57, 43
- PATLAK, C. S. ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES, BIOGS 68, 97 $\,$
- PATNAIK, P. B. CORRIGENDA, 'THE POWER FUNCTION OF THE TEST FOR THE DIFFERENCE BETWEEN TWO PROPORTIONS IN, BIOKA 59, 502
- PATTERSON, H. D. A FURTHER NOTE ON A SIMPLE METHOD FOR FITTING AN EX-PONENTIAL CURVE, BIOKA 60, 177
- PATTERSON, H. D. AN INVESTIGATION OF HARTLEY'S METHOD FOR FITTING AN EXPONENTIAL CURVE, BIOKA 59, 2B1
- PATTERSON, H. D. QUERY, BAULE'S EQUATION+(LEAST SQUARES ESTIMATE OF SOIL CONTENT), BIOCS 69, 159
- PATTERSON, H. D. SERIAL FACTORIAL DESIGN, BIOKA 6B, 67
- PATTERSON, H. D. THE CONSTRUCTION OF BALANCED DESIGNS FOR EXPERIMENTS INVOLVING SEQUENCES OF TREATMENTS, BIOKA 52, 32
- PATTERSON, H. D. THE ERRORS OF LATTICE SAMPLING, JRSSB 54, 140
- PATTERSON, H. D. THE USE OF AUTORECRESSION IN FITTING AN EXPONENTIAL CURVE, BIOKA 58, 389
- PATTERSON, H. D. THEORY OF CYCLIC ROTATION EXPERIMENTS (WITH DISCUSSION), JRSSB 64, 1
- PATTERSON, R. L. DIFFICULTIES INVOLVED IN THE ESTIMATION OF A POPULATION MEAN USING TRANSFORMED SAMPLE DA, TECH 66, 535
- PATWARY, K. M. ANALYSIS OF QUANTAL RESPONSE ASSAYS WITH DOSAGE ER-RORS, BIOCS 67, 747
- PAULSON, A. S. THE PERFORMANCE OF SEVERAL TESTS FOR OUTLIERS, BIOKA
- 65, 429
 PAULSON, EDWARD A SEQUENTIAL DECISION PROCEDURE FOR CHOOSING ONE OF
- K HYPOTHESES CONCERNING THE UNKNOWN M, AMS 63, 549
 PAULSON, EDWARD A SEQUENTIAL PROCEDURE FOR COMPARING SEVERAL EX-
- PERIMENTAL CATEGORIES WITH A STANDARD OR C. AMS 62, 438 PAULSON, EDWARD A SEQUENTIAL PROCEDURE FOR SELECTING THE POPULA-
- TION WITH THE LARGEST MEAN FROM K NORMAL P, AMS 64.174
 PAULSON, EDWARD SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION PROCEDURES, AMS 64, 1048
- PAULSON. EDWARD SEQUENTIAL INTERVAL ESTIMATION FOR THE MEANS OF NORMAL POPULATIONS, AMS 69, 509
- PAULSON, EDWARD SEQUENTIAL PROCEDURES FOR SELECTION OF THE BEST ONE OF SEVERAL BINOMIAL POPULATIONS, AMS 67, 117
- PEACH, PAUL BIAS IN PSEUDO-RANDOM NUMBERS, JASA 61, 610
- PEARCE, S. C. ALTERNATIVES TO A LATIN SQUARE, BIOCS 68, 657
- PEARCE, S. C. CORRIGENDA, 'SUPPLEMENTED BALANCE', BIOKA 61, 475
- PEARCE, S. C. EXPERIMENTING WITH ORGANISMS AS BLOCKS, BIOKA 57, 141

- PEARCE, S. C. SUPPLEMENTED BALANCE, BIOKA 60, 263
- PEARCE, S. C. THE MEAN EFFICIENCY OF EQUI-REPLICATE DESIGNS, BIOKA 68. 251
- ALTERNATIVE TESTS FOR HETEROGENEITY OF VARIANCE. PEARSON, E. S. SOME MONTE CARLO RESULTS, BIOKA 66, 229
- PEARSON, E. S. AN APPROXIMATION TO THE DISTRIBUTION OF NON-CENTRAL T, BIOKA 5B, 4B4
- PEARSON, E. S. APPROXIMATE MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETWEEN PERCENTAGE POINTS OF, BIOKA 65, 533
- PEARSON, E. S CHARTS OF THE POWER FUNCTION FOR ANALYSIS OF VARIANCE TESTS, DERIVED FROM THE NON-CENTRAL, BIOKA 51, 112
- PEARSON, E S. COMPARISON OF TESTS FOR RANDOMNESS OF POINTS ON A LINE, BIOKA 63, 315
- PEARSON, E. S. COMPARISON OF TWO APPROXIMATIONS TO THE DISTRIBUTION OF THE RANGE IN SMALL SAMPLES FROM NO, BIOKA 52, 130
- PEARSON, E. S. CORRIGENDA TO 'CORRELATED RANDOM NORMAL DEVIATES' PUBLISHED IN TRACTS FOR COMPUTERS, NO. 2, BIOKA 56, 496
- PEARSON, E. S. CORRIGENDA, 'ON QUESTIONS RAISED BY THE COMBINATION OF TESTS BASED ON DISCONTINUOUS DISTRI, BIOKA 51, 265
- PEARSON, E. S. CORRIGENDA, 'TABLE OF PERCENTAGE POINTS OF PEARSON CURVES, FOR GIVEN ROOT (BETA-1) AND BETA, BIOKA 65, 669
- PEARSON, E. S. EDITORIAL, JOHN WISHART, 1898-1956, BIOKA 57, 1
- PEARSON, E.S. FURTHER NOTES ON THE ANALYSIS OF ACCIDENT DATA, BIOKA 53, 214
- PEARSON, E. S. LAGRANGIAN COEFFICIENTS FOR INTERPOLATION BETWEEN TABLED PERCENTAGE POINTS, BICKA 68, 19
- PEARSON, E. S. MOMENT CONSTANTS FOR THE DISTRIBUTION OF RANGE IN NORMAL SAMPLES, BIOKA 51, 463
- PEARSON, E.S. NOTE ON AN APPROXIMATION TO THE DISTRIBUTION OF NON-CENTRAL CHI-SQUARE, BIOKA 59, 364
- PEARSON, E.S. NOTE ON MR QUENOUILLE'S EDGEWORTH TYPE A TRANSFORMA-TION, BIOKA 59, 203
- PEARSON, E.S. NOTE ON MR SRIVASTAVA'S PAPER ON THE POWER FUNCTION OF STUDENT'S TEST, BIOKA 5B, 429
- PEARSON, E.S. ON THE USE OF PATNAIK TYPE CHI APPROXIMATIONS TO THE RANGE IN SIGNIFICANCE TESTS, BIOKA 66, 248
- PEARSON, E. S. SOME COMMENTS ON THE ACCURACY OF BOX'S APPROXIMATIONS TO THE DISTRIBUTION OF M. BIOKA 69, 219
- PEARSON, E. S. SOME PROBLEMS ARISING IN APPROXIMATING TO PROBABILI-TY DISTRIBUTIONS USING MOMENTS, BIOKA 63, 95
- PEARSON. E. S. SOME THOUGHTS ON STATISTICAL INFERENCE, AMS 62, 294 PEARSON, E. S. STATISTICAL CONCEPTS IN THEIR RELATION TO REALITY. JRSSB 55. 204
- PEARSON, E. S. STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS XX.SOME EARLY CORRESPONDENCE BETWEEN, BIOKA 6B, 445
- PEARSON, E. S. STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. XIV SOME INCIDENTS IN THE EARLY HIS. BIOKA 65. 3
- PEARSON, E. S. STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS XVII. SOME REFLEXIONS ON CONTINUITY, BIOKA 67, 341
- PEARSON, E. S. TABLE OF PERCENTAGE POINTS OF NON-CENTRAL CHI. BIOKA 69, 255
- PEARSON, E. S. TABLE OF PERCENTAGE POINTS OF PEARSON CURVES, FOR GIVEN ROOT, BETA-1) AND BETA-2 EXPRESSED, BIOKA 63, 459
- PEARSON, E.S. TABLES OF PERCENTAGE POINTS OF ROOT 'B1' AND B2 IN NOR-MAL SAMPLES, A ROUNDING OFF. BIOKA 65, 282
- PEARSON, E.S. TABLES OF THE 5 PERCENT AND 0.5 PERCENT POINTS OF PEAR-SON CURVES, WITH ARGUMENT BETA-1 AND, BIOKA 51, 4
- PEARSON, E.S. TESTS FOR RANK CORRELATION COEFFICIENTS. I, BIOKA 57,
- PEARSON, E. S. TESTS FOR RANK CORRELATION COEFFICIENTS. III. DIS-TRIBUTION OF THE TRANSFORMED KENDALL COEF, BIOKA 62, 1B5
- PEARSON. E. S. TESTS FOR RANK CORRELATION COEFFICIENTS.II, BIOKA
- PEARSON, E. S. THE DISTRIBUTION OF RANGE IN NORMAL SAMPLES WITH N=200, BIOKA 57, 257
- PEARSON, E.S. THE DISTRIBUTION OF THE RATIO, IN A SINGLE NORMAL SAM-PLE, OF RANGE TO STANDARD DEVIATION, BIOKA 54, 482
- PEARSON, E. S. THE GOODNESS-OF-FIT TESTS BASED ON W-SQUARE-SUB-NAAD-U-SQUARE-SUB-N, BIOKA 62, 397
- PEARSON, E. S. THE RATIO OF RANGE TO STANDARD DEVIATION IN THE SAME
- NORMAL SAMPLE, BIOKA 64, 4B4 PEARSON, E. S. THE TIME INTERVALS BETWEEN INDUSTRIAL ACCIDENTS,
- BIOKA 52, 16B
- PEARSON, E.S. WILLIAM PALIN ELDERTON, 1877-1962, BIOKA 62, 297
- PEARSON, H. S. THE GROWTH, SURVIVAL, WANDERING AND VARIATION OF THE LONG-TAILED FIELD MOUSE, APODEMUS SYL, BIOKA 52. 3B9
- PEERS, H. W. CONFIDENCE PROPERTIES OF BAYESIAN INTERVAL ESTIMATES, JRSSB 68. 535
- PEERS, H. W. ON CONFIDENCE POINTS AND BAYESIAN PROBABILITY POINTS IN THE CASE OF SEVERAL PARAMETERS, JRSSB 65, 9
- PEERS, H. W. ON FORMULAE FOR CONFIDENCE POINTS BASED ON INTEGRALS OF WEIGHTED LIKELIHOODS, JRSSB 63, 31B
- PEIZER, DAVID B. A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER GOMMON, RELATED TAIL PROBABILITI, JASA 68, 1416
- PELTO, C. R. ADAPTIVE NONPARAMETRIG GLASSIFIGATION, TEGH 69, NO.4

- PENNOCK, JEAN L. AN ANALYSIS OF CONSISTENCY OF RESPONSE INHOUSEHOLD SURVEYS, JASA 61, 320
- PENNOCK, JEAN L. ESTIMATING THE SERVICE LIFE OF HOUSEHOLD GOODS BY ACTUARIAL METHODS, CORR. 57 578, JASA 57, 175
- PERERA, A. F. A. D. QUEUES WITH BATCH DEPARTURES II, AMS 64, 1147
- PERERA, A. G. A. D. A CORRECTION TO 'THE SOLUTION OF QUEUEING AND IN-VENTORY MODELS BY SEMI-MARKOV PROCESS, JRSSB 63, 455
- PEREZ, CARMEN A. ON COMPARING DIFFERENT TESTS OF THE SAME HYPOTHES-IS, BIOKA 60, 297
- PERITZ, E. ON INFERRING ORDER RELATIONS IN ANALYSIS OF VARIANCE, BIOCS 65, 337
- PERITZ, E. TESTING FOR LINEAR CONTAGION, INVERSE SAMPLING, JRSSB 69.NO.2
- PERLMAN, MICHAEL D. ONE SIDED PROBLEMS IN MULTIVARIATE ANALYSIS, AMS 69.549
- PERNG, S. K. A COMPARISON OF THE ASYMPTOTIC EXPECTED SAMPLE SIZES OF TWO SEQUENTIAL PROCEDURES FOR RANKIN, AMS 69, NO.6
- PERNG, S. K. INADMISSIBILITY OF THE BEST INVARIANT TEST WHEN THE MO-MENT IS INFINITE UNDER ONE OF THE HYPO, AMS 69, 14B3
- PETRIE, T. PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS, AMS 69, 97
- PETRIE, TED STATISTICAL INFERENCE FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS, AMS 66, 1554
- PETTIGREW, H. M. A RAPID TEST FOR THE POISSONDISTRIBUTION USING THE RANGE, BIOCS 67, 6B5
- PFANZAGL, J. A TECHNICAL LEMMA FOR MONOTONE LIKELIHOOD RATIO FAMI-LIES, AMS 67, 611
- PFANZAGL, J. CHARACTERIZATIONS OF CONDITIONAL EXPECTATIONS, AMS 67,415
- PFANZAGL, J. FURTHER REMARKS ON TOPOLOGY AND CONVERGENCE IN SOME OR-DERED FAMILIES OF DISTRIBUTION, AMS 69, 51
- PFANZAGL, J. ON THE TOPOLOGICAL STRUCTURE OF SOME ORDERED FAMILIES OF DISTRIBUTIONS, AMS 64, 1216 PFANZAGL, J. ONE-PARAMETER EXPONENTIAL FAMILIES GENERATED BY
- TRANSFORMATION GROUPS, AMS 65, 261 PFANZAGL, J. SAMPLING PROCEDURES BASED ON PRIOR DISTRIBUTIONS AND
- COSTS, TECH 63, 47 PFANZAGL, J. CONSISTENT ESTIMATION OF A LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL SCALE PARAMETE, AMS 69, 1353
- PHATAK, A. G. CENSORED SAMPLING IN CURTAILED SAMPLING PLANS BY AT-TRIBUTES, TECH 68, B54
- PHATAK, A. G. ESTIMATION OF FRACTION DEFEGTIVE IN CURTAILED SAM-PLING PLANS BY ATTRIBUTES, TECH 67. 219 PHATAK, A. G. MISGLASSIFIED DATA FROM CURTAILED SAMPLING PLANS,
- TECH 68, 4B9 PHATARFOD, R. M. APPLICATION OF METHODS IN SEQUENTIAL ANALYSIS TO
- DAM THEORY, AMS 63, 1588 PHATARFOD, R. M. SEQUENTIAL ANALYSIS OF DEPENDENT OBSERVATIONS. I,
- BIOKA 65, 157 PHILIP, J. R. SOME INTEGRAL EQUATIONS IN GEOMETRICAL PROBABILITY, BIOKA 66, 365
- PHILIPP, WALTER THE LAW OF THE ITERATED LOGARITHM FOR MIXING STOCHASTIC PROCESSES, AMS 69, NO. 6
- PHILIPP, WALTER THE REMAINDER IN THE CENTRAL LIMIT THEOREM FOR MIX-ING STOCHASTIG PROCESSES, AMS 69, 601
- THE ESTIMATION OF PARAMETERS IN SYSTEMS OF PHILLIPS. A. W. STOCHASTIC DIFFERENTIAL EQUATIONS, BIOKA 59, 67
- PICKANDS III. JAMES EFFICIENT ESTIMATION OF A PROBABILITY DENSITY FUNCTION, AMS 69, B54
- PICKANDS III. JAMES MOMENT CONVERGENCE OF SAMPLE EXTREMES, AMS 6B, RR1
- PICKANDS III, JAMES PROBABILITY TABLES FOR THE EXTREMAL QUOTIENT, AMS 67, 1541
- PICKANDS III, JAMES SAMPLE SEQUENCES OF MAXIMA, AMS 67, 1570
- PIELOU, E. C. A TEST FOR RANDOM MINGLING OF THE PHASES OF A MOSAIC, BIOCS 67, 657
- PIELOU, E. C. THE CONCEPT OF RANDOMNESS IN THE PATTERNS OF MOSAICS, BIOCS 65, 908 PIERCE, DONALD A. ESTIMATING THE FRACTION OF ACCEPTABLE PRODUCT,
- TECH 65, 43
- PIERRE, PERCY A. NEW CONDITIONS FOR CENTRAL LIMIT THEOREMS (CORR. 69 1B55), AMS 69, 319
- PIKE, EUGENE W. A NOTE ON 'LEARNING CURVES', JASA 69, NO.4
- PIKE, M. C. A SUGGESTED METHOD OF ANALYSIS OF A GERTAIN CLASS OF EX-PERIMENTS IN CARCINOGENESIS, BIOCS 66, 142 PIKE, M. C. DISEASE CLUSTERING, A GENERALIZATION OF KNOX'S APPROACH
- TO THE DETECTION OF SPACE-TIME INTERA, BIOCS 68, 541 PIKE, M. C. SOME NUMERICAL RESULTS FOR THE QUEUEING SYSTEM WITH ONE
- SERVER, WHILE THE INTERARRIVAL AND SE, JRSSB 63, 477 PILLAI, K. C. S. ON THE EXACT DISTRIBUTION OF WILKS'S CRITERION,
- BIOKA 69, 109 PILLAI, K. C. S. UPPER PERCENTAGE POINTS OF THE LARGEST ROOT OF A
- MATRIX IN MULTIVARIATE ANALYSIS, BIOKA 67, 1B9 PILLAI, K. C. S. ON ELEMENTARY SYMMETRIG FUNGTIONS OF THE ROOTS OF TWO MATRIGES IN MULTIVARIATE ANALYSIS., BIOKA 65, 499
- PILLAI, K. G. S. ON HOTELLING'S GENERALIZATION T-SQUARE, BIOKA 59, 160

- PILLAI, K. C. S. ON LINEAR FUNCTIONS OF ORDERED CORRELATED NORMAL RANDOM VARIABLES, BIOKA 65, 367
- PILLAI, K. C. S. ON MOMENTS OF ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF TWO MATRICES AND APPROXIMAT, AMS 68, 1274
- PILLAI, K. C. S. ON THE DISTRIBUTION OF 'STUDENTIZED' RANGE, BIOKA 52, 194
- DEVIATE FROM THE SAMPLE MEAN, BIOKA 59, 467
- PILLAI, K. C. S. ON THE DISTRIBUTION OF THE LARGEST CHARACTERISTIC ROOT OF A MATRIX IN MULTIVARIATE ANALY, BIOKA 65, 405
- PILLAI, K. C. S. ON THE DISTRIBUTION OF THE LARGEST OF SIX ROOTS OF A MATRIX IN MULTIVARIATE ANALYSIS, BIOKA 59, 237
- PILLAI, K. C. S. ON THE DISTRIBUTION OF THE LARGEST OR THE SMALLEST ROOT OF A MATRIX IN MULTIVARIATE ANAL, BIOKA 56, 122
- PILLAI, K. C. S. ON THE DISTRIBUTIONS OF THE RATIOS OF THE ROOTS OF A COVARIANCE MATRIX AND WILKS' CRITER, AMS 69, NO.6
- PILLAI, K. C. S. ON THE MOMENTS OF THE TRACE OF A MATRIX AND APPROXI-MATIONS TO ITS NON-CENTRAL DISTRIBUTI, AMS 66, 1312
- PILLAI, K. C. S. ON THE NON-CENTRAL DISTRIBUTIONS OF TWO TEST CRITERIA IN MULTIVARIATE ANALYSIS OF VARIAN, AMS 68, 215
- PILLAI, K. C. S. POWER COMPARISIONS OF TESTS OF EQUALITY OF TWO COVARIANCE MATRICES BASED ON FOUR CRITERI, BIOKA 6B, 335
- PILLAI, K. C. S. POWER COMPARISONS OF TESTS OF TWO MULTIVARIATE HYPOTHESES BASED ON FOUR CRITERIA, BIOKA 67, 195
- PILLAI, K. C. S. SOME RESULTS ON THE NON-CENTRAL MULTIVARIATE BETA DISTRIBUTION AND MOMENTS OF TRACES OF, AMS 65, 1511
- PILLAI, K. C. S. UPPER PERCENTAGE POINTS OF A SUBSTITUTE F-RATIO USINC RANCES, BIOKA 61, 195
- USING KARGES, BIDNA 61, 195
 PILLAI, K. C. S. UPPER PERCENTAGE POINTS OF THE EXTREME STUDENTIZED
 DEVIATE FROM THE SAMPLE MEAN, BIDNA 59, 473
- PILLAI, K. C. SREEDHARAN ON THE DISTRIBUTION OF LINEAR FUNCTIONS AND
- RATIOS OF LINEAR FUNCTIONS OF ORDERE, BIOKA 64, 143 PILLAI, K. C. SREEDHARAN ON THE DISTRIBUTION OF THE LARGEST OF SEVEN
- ROOTS OF A MATRIX IN MULTIVARIATE AN, BIOKA 64, 270
 PILLAI, K. C. SREEDHARAN ON THE DISTRIBUTION OF THE LARGEST ROOT OF
- A MATRIX IN MULTIVARIATE ANALYSIS, AMS 67, 616
- PILLAI, K. C. SREEDHARAN ON THE MOMENT GENERATING FUNCTION OF PILLAI'S V-SUPER-S CRITERION, AMS 68, 877
- PILLAI, K. C. SREEDHARAN ON THE MOMENTS OF ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF TWO MATRICES, AMS 64, 1704
- PILLAI, K. C. SREEDHARAN ON THE NON-CENTRAL DISTRIBUTION OF THE SECOND ELEMENTARY SYMMETRIC FUNCTION OF T, AMS 68, 833
- PILLAI, R. KRISHNA THE RATIO BIAS IN SURVEYS, JASA 62, B63
- PILLAI, S. S. ESTIMATION OF CROP YIELDS FOR SMALL AREAS, BIOCS 66, 374
- PINKHAM, R. S. AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RELATED TO THE NON-CENTRAL T, AMS 64, 315
- PINKHAM, R. S. AN APPROXIMATION TO THE PROBABILITY INTEGRAL OF THE GAMMA DISTRIBUTION FOR SMALL VALUES OF, BIOKA 62, 276
- PINKHAM, R. S. MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF THE BETA DISTRIBUTION FROM SMALLEST ORD, TECH 67, 607
- PINKHAM, R.S. ON A FIDUCIAL EXAMPLE OF C. STEIN, JRSSB 66, 53
- PINKHAM, R. S. TAIL AREAS OF THE T-DISTRIBUTION FROM A MILLS' RATIO-LIKE EXPANSION, AMS 63, 335
- PINKHAM, R.S. THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRALT, AMS 64, 298
- PINKHAM, R. S. THE MOMENTS OF THE NON-CENTRAL T-DISTRIBUTION, BIOKA 61, 465
- PINKHAM, ROGER S. ON THE DISTRIBUTION OF FIRST SIGNIFICANT DICITS.

 AMS 61, 1223
 PITCHER, T. S. DIMENSIONAL PROPERTIES OF A RANDOM DISTRIBUTION
- FUNCTION ON THE SQUARE, AMS 66, 849
- PITCHER, T. S. ON THE SAMPLE FUNCTIONS OF PROCESSES WHICH CAN BE ADDED TO A CAUSSIAN PROCESS, AMS 63, 329
 PITCHER, T. S. ON THE EPSILON ENTROPY ON CERTAIN MEASURES ON (0.1),
- AMS 68, 1310
 PITCHER, TOM S. ON ADDING INDEPENDENT STOCHASTIC PROCESSES, AMS 64,
- 872
 PITCHER, TOM S. THE BEHAVIOR OF LIKELIHOOD RATIOS OF STOCHASTIC
- PROCESSES RELATED BY CROUPS OF TRANSFORMA, AMS 65, 529
 PITMAN, A. E. N. T. AN EXACT DISTRIBUTION OF THE BEHRENS-FISHER-
- WELCH STATISTIC FOR TESTING THE DIFFERENC, JRSSB 61, 377
 PITMAN, A. E. N. T. CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMA-
- TIONS TO MILLS' RATIO, AMS 63, 892
 PITMAN. E. J. G. CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES,
 AMS 67. 916
- PITMAN, E. J. G. STATISTICS AND SCIENCE, JASA 57, 322
- PLACKETT, R. L. A CLASS OF BIVARIATE DISTRIBUTIONS, JASA 65, 516
- PLACKETT, R. L. A COMPARISON OF TWO APPROACHES TO THE CONSTRUCTION OF MODELS FOR QUANTAL RESPONSES TO MIX, BIOCS 67, 27
- PLACKETT, R. L. A NOTE ON INTERACTIONS IN CONTINGENCY TABLES, JRSSB 62, 162
- PLACKETT, R. L. A REDUCTION FORMULA FOR NORMAL MULTIVARIATE INTEGRALS, BIOKA 54, 351
- PLACKETT, R. L. MODELS IN THE ANALYSIS OF VARIANCE (WITH DISCUSSION), JRSSB 60. 195
- PLACKETT, R. L. RANDOM PERMUTATIONS, JRSSB 68, 517

- PLACKETT, R. L. STOCHASTIC MODELS OF CAPITAL INVESTMENT (WITH DISCUSSION), JRSSB 69, 1
- PLACKETT, R. L. STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. VII. THE PRINCIPLE OF THE ARITHMETI, BIOKA 58, 130 PLACKETT, R. L. THE ANALYSIS OF LIFE TEST DATA, TECH 59, 9
- PLACKETT, R. L. THE CONTINUITY CORRECTION IN 2-BY-2 TABLES, BIOKA 64.327
- PLATEK, R. SEVERAL METHODS OF RE-DESIGNING AREA SAMPLES UTILIZING PROBABILITIES PROPORTIONAL TO SIZE WHEN, JASA 68, 1280
- PLATEK, R. THE NEW DESIGN OF THE CANADIAN LABOUR FORCE SURVEY, JASA $67,421\,$
- PLEASE, N. W. DISCRIMINATION IN THE CASE OF ZERO MEAN DIFFERENCES, BIOKA 63, 17
- POLLAK, E. SOME EFFECTS OF FLUCTUATING OFFSPRING DISTRIBUTIONS ON THE SURVIVAL OF A CENE, BIOKA 66, 391
- POLLARD, J. H. A NOTE ON MULTI-TYPE GALTON-WATSON PROCESSES WITH RANDOM BRANCHING PROBABILITIES, BIOKA 6B, 5B9
- POLLARD, J. H. ON THE USE OF THE DIRECT MATRIX PRODUCT IN ANALYSING CERTAIN STOCHASTIC POPULATION MODELS, BIOKA 66, 397
- POLLARD, J. H. THE MULTI-TYPE GALTON-WATSON PROCESS IN A GENETICAL CONTEXT, BIOCS 68, 147
 POPE, J. A. BIAS IN THE ESTIMATION OF AUTOCORRELATIONS, BIOKA 54,
- 390
- PORT, S. C. A SYSTEM OF DENUMERABLY MANY TRANSIENT MARKOV CHAINS, AMS $66,\,406$
- PORT, S. C. THE ASYMMETRIC CAUCHY PROCESSES ON THE LINE, AMS 69, 137 PORT, SIDNEY C. A LARGE SAMPLE TEST FOR THE INDEPENDENCE OF TWO RENEWAL PROCESSES, AMS 67, 1037
- PORT, SIDNEY C. A REMARK ON HITTING PLACES FOR TRANSIENT STABLE PROCESS, AMS 68, 365
- PORT, SIDNEY C. A SIMPLE PROBABILISTIC PROOF OF THE DISCRETE GENERALIZED RENEWAL THEOREM, AMS 65, 1294
- PORT, SIDNEY C. ESCAPE PROBABILITY FOR A HALF LINE, AMS 64, 1351
- PORT, SIDNEY C. ON HITTING FOR STABLE PROCESSES, AMS 67, 1021
- PORT, SIDNEY C. SOME THEOREMS ON FUNCTIONALS OF MARKOV CHAINS, AMS 64, 1275
- POSNER, EDWARD C. APPLICATION OF AN ESTIMATOR OF HIGH EFFICIENCY IN BIVARIATE EXTREME VALUE THEORY, JASA 69, NO. 4
- POSNER, EDWARD C. EPSILON ENTROPY OF GAUSSIAN PROCESSES, AMS 69. $1272\,$.
- POSNER, EDWARD C. EPSILON ENTROPY OF STOCHASTIC PROCESSES, AMS $67,\,1000$
- POSNER, EDWARD C. JOINT DISTRIBUTIONS WITH PRESCRIBED MOMENTS, AMS 65, 286
- POSNER, EDWARD C. PRODUCT ENTROPY TO GAUSSIAN DISTRIBUTIONS, AMS 69, B70
- POSNER, EDWARD C. SYSTEMATIC STATISTICS USED FOR DATA COMPRESSION IN SPACE TELEMETRY, JASA 65, 97
- POSNER, EDWARD C. THE APPLICATION OF EXTREME VALUE THEORY TO ERROR-FREE COMMUNICATION, TECH 65, 517
- POSTEN, H. O. POWER OF THE LIKELIHOOD-RATIO TEST OF THE GENERAL LINEAR HYPOTHESIS IN MULTIVARIATE ANALYSI, BIOKA 64, 467
- POSTEN, H. O. ROBUSTNESS OF UNIFORM BAYESIAN ENCODING, TECH 63, 121 POTTHOFF, R. F. TESTING FOR HOMOCENEITY. I. THE BINOMIAL AND MUL-TINOMIAL DISTRIBUTIONS, BIOKA 66, 167
- POTTHOFF, R. F. TESTING FOR HOMOGENEITY. II. THE POISSON DISTRIBU-TION, BIOKA 66, 183
- POTTHOFF, RICHARD F. A CENERALIZED MULTIVARIATE ANALYSIS OF VARI-ANCE MODEL USEFULL ESPECIALLY FOR GROWTH, BIOKA 64, 313
- POTTHOFF, RICHARD F. FOUR FACTOR ADDITIVE DESIGNS MORE GENERAL THAN THE CRECO-LATIN SQUARE, TECH 62, 361
- POTTHOFF, RICHARD F. SOME SCHEFFE-TYPE TESTS FOR SOME BEHRENS-FISHER-TYPE REGRESSION PROBLEMS, JASA 65, 1163
- POTTHOFF, RICHARD F. THREE FACTOR ADDITIVE DESIGNS MORE GENERAL THAN THE LATIN SQUARE, TECH 62, 187
 POTTHOFF, RICHARD F. USE OF THE WILCOXON STATISTIC FOR A GENERALIZED
- BEHRENS-FISHER PROBLEM, AMS 63, 1596
 POWELL, ALAN AITKEN ESTIMATORS AS A TOOL IN ALLOCATING PREDETER-
- MINED AGGREGATES, JASA 69, 913
 POWELL, E. O. SOME FEATURES OF THE GENERATION TIMES OF INDIVIDUAL
- POWELL, E. O. SOME FEATURES OF THE GENERATION TIMES OF INDIVIDUAL BACTERIA, BIOKA 55, 16
- PRABHU, N. U. ON THE RUIN PROBLEM OF COLLECTIVE RISK THEORY, AMS 61,
- PRABHU, N. U. SOME RESULTS FOR THE QUEUE WITH POISSON ARRIVALS, JRSSB 60, 104
- PRABHU, N. U. STATIONARY DISTRIBUTIONS OF THE NEGATIVE EXPERIMEN-TAL TYPE FOR THE INFINITE DAM, JRSSB 57, 342
- PRAIRIE, R. R. AN ANALYSIS OF SOME RELAY FAILURE DATA FROM A COM-POSITE EXPONENTIAL POPULATION, TECH 61, 423
- PRAIRIE, R. R. FRACTIONAL REPLICATION OF 2-TO-THE-P FACTORIAL EX-PERIMENTS WITH THE FACTORS APPLIED SEQUEN, JASA 68, 644
- PRAIRIE, R. R. PROBIT ANALYSIS AS A TECHNIQUE FOR ESTIMATING THE RE-LIABILITY OF A SIMPLE SYSTEM, TECH 67, 197
- PRAIRIE, R. R. SOME ACCEPTANCE SAMPLING PLANS BASED ON THE THEORY OF RUNS, TECH 62, 177
- PRAIRIE, R.R. 2 TO THE POWER OF P FACTORIAL EXPERIMENTS WITH THE FACTORS APPLIED SEQUENTIALLY, JASA 64, 1205

- PRAKASA, B. L. S. ESTIMATION OF THE LOCATION OF THE CUSP OF A CONTINUOUS DENSITY, AMS 68,76
- PRATT, J. W. THE OUTER NEEDLE OF SOME BAYES SEQUENTIAL CONTINUATION REGIONS, BIOKA 66, 455
- PRATT. JOHN W. A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, RELATED TAIL PROBABILITIES, JASA 68, 1416
- PRATT, JOHN W. A NORMAL APPROXIMATION FOR BINOMIAL, F. BETA, AND OTHER COMMON, RELATED TAIL PROBABILITIES, JASA 6B, 1457
- PRATT, JOHN W. A NOTE ON UNBIASED TESTS, AMS 62, 292
 PRATT, JOHN W. ACKNOWLEDCEMENT OF PRIORITY ON 'ON INTERCHANGING
- LIMITS AND INTEGRALS', 60 74, AMS 66, 1407
 PRATT, JOHN W. BAYESIAN INTERPRETATION OF STANDARD INFERENCE
- STATEMENTS (WITH DISCUSSION), JRSSB 65, 169
 PRATT, JOHN W. DISCUSSION OF 'ON THE FOUNDATIONS OF STATISTICAL IN-
- PRATT, JOHN W. DISCUSSION OF 'ON THE FOUNDATIONS OF STATISTICAL IN-FERENCE', JASA 62, 307
 PRATT, JOHN W. EFFICIENCY OF THE SAMPLE MEAN WHEN RESIDUALS FOLLOW A
- FIRST-ORDER STATIONARY MARKOFF PROCE, JASA 6B, 1237
 PRATT, JOHN W. LENCTH OF CONFIDENCE INTERVALS, JASA 61, 549
- PRATT, JOHN W. REMARKS ON ZEROS AND TIES IN THE WILCOXON SIGNED RANK PROCEDURE, JASA 59, 655
- PRATT, JOHN W. ROBUSTNESS OF SOME PROCEDURES FOR THE TWO-SAMPLE LO-CATION PROBLEM, JASA 64, 665
- PRATT, JOHN W. SHORTER CONFIDENCE INTERVALS FOR THE MEAN OF A NORMAL DISTRIBUTION WITH KNOWN VARIANCE, AMS 63, 574
- PRATT, JOHN W. THE FOUNDATIONS OF DECISION UNDER UNCERTAINTY, AN ELEMENTARY EXPOSITION, JASA 64, 353
- PREECE, D. A. BALANCED INCOMPLETE BLOCK DESIGNS WITH SETS OF IDENTICAL BLOCKS. TECH 69, 613
- PREECE, D. A. CLASSIFYING YOUDEN RECTANGLES, JRSSB 66, 118
- PREECE, D. A. NEAR-CYCLIC REPRESENTATIONS FOR SOME RESOLUTION VI FRACTIONAL FACTORIAL PLANS, AMS 69, 1840
- PREECE, D. A. NESTED BALANCED INCOMPLETE BLOCK DESIGNS, BIOKA 67, 479
- PREECE, D. A. NOTES. CYCLIC GENERATION OF ROBINSON'S BALANCED IN-COMPLETE BLOCK DESIGNS, BIOCS 67, 574
- PREECE, D. A. ON ADDELMAN'S 2-TO-THE-(17-9) RESOLUTION V PLAN, TECH 66,705
- PREECE, D. A. SOME BALANCED INCOMPLETE BLOCK DESIGNS FOR TWO SETS OF TREATMENTS, BIOKA 66, 497
- PREECE, D. A. SOME ROW AND COLUMN DESIGNS FOR TWO SETS OF TREATMENTS, BIOCS 66, 1
- PRESS, S. J. TESTING AND ESTIMATION FOR A CIRCULAR STATIONARY MODEL, AMS 69, 1358
- PRESS, S. JAMES A CONFIDENCE INTERVAL COMPARISON OF TWO TEST PROCEDURES PROPOSED FOR THE BEHRENS-FISHER P, JASA 66, 454
- PRESS, S. JAMES A MODIFIED COMPOUND POISSON PROCESS WITH NORMAL COM-POUNDINC, JASA 6B, 637
- PRESS, S. JAMES ESTIMATING FROM MISCLASSIFIED DATA, JASA 6B, 123
- PRESS, S. JAMES ON SERIAL CORRELATION, AMS 69, 18B
- PRESS, S. JAMES THE T-RATIO DISTRIBUTION, JASA 69, 242
- PRESS, SHELDON JAMES LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES, AMS 66, 480
- PRESTON, ERIC J. A GRAPHICAL METHOD FOR THE ANALYSIS OF STATISTICAL DISTRIBUTIONS INTO TWO NORMAL COMPONE, BIOKA 53, 460
- PRESTON, LEE E. THE STATISTICAL ANALYSIS OF INDUSTRY STRUCTURE, AN APPLICATION TO FOOD INDUSTRIES, JASA 61, 925
 PRICE, ROBERT SOME NON-CENTRAL F-DISTRIBUTIONS EXPRESSED IN CLOSED
- PRICE, ROBERT SOME NON-CENTRAL F-DISTRIBUTIONS EXPRESSED IN CLOSE FORM, BIOKA 64, 107
- PRIESTLEY, M. B. A TEST FOR NON-STATIONARITY OF TIME-SERIES, JRSSB 69, 140
- PRIESTLEY, M. B. ANALYSIS OF STATIONARY PROCESSES WITH MIXED SPEC-TRA, 2, JRSSB 62, 511
- PRIESTLEY, M. B. BASIC CONSIDERATIONS IN THE ESTIMATION OF SPECTRA, TECH 62, 551
- PRIESTLEY, M. B. DESIGN RELATIONS FOR NON-STATIONARY PROCESSES,
- JRSSB 66, 228
- PRIESTLEY, M. B. ESTIMATION OF THE SPECTRAL DENSITY FUNCTION IN THE PRESENCE OF HARMONIC COMPONENTS, JRSSB 64, 123
- PRIESTLEY, M. B. EVOLUTIONARY SPECTRAL AND NON-STATIONARY PROCESSES (WITH DISCUSSION), JRSSB 65, 204
- PRIESTLEY, M. B. FILTERING NON-STATIONARY SICNALS, JRSSB 69, 150
- PRIESTLEY, M. B. ON THE PREDICTION OF NON-STATIONARY PROCESSES, JRSSB 67, 570 $\,$
- PRIESTLEY, M. B. THE ANALYSIS OF STATIONARY PROCESSES WITH MIXED SPECTRA, 1, JRSSB 62, 215
- PRIESTLEY, M. B. THE ANALYSIS OF TWO-DIMENSIONAL STATIONARY PROCESSES WITH DISCONTINUOUS SPECTRA, BIOKA 64, 195
- PRIESTLEY, M. B. THE SPECTRAL ANALYSIS OF TIME SERIES (WITH DISCUSSION), JRSSB 57, 1
- PRIESTLEY, M. B. THE SPECTRUM OF A CONTINUOUS PROCESS DERIVED FROM A DISCRETE PROCESS, BIOKA 63, 517
- PRIESTLEY, MAURICE ESTIMATION OF POWER SPECTRA BY A WAVE ANALYZER, TECH 65, 553
- PRINGLE, R. M. A NOTE ON CENERALIZED INVERSES IN THE LINEAR HYPOTHE-SIS NOT OF FULL RANK, AMS 67, 271
- PRITZKER, LEON WASHINGTON STATISTICAL SCOLLTY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. CHANCES IN CENSUS, JASA 69, NO. 4

- PROSCHAN, F. A NOTE ON TESTS FOR MONOTONE FAILURE HATE BASED ON IN-COMPLETE DATA, AMS 69, 595
- PROSCHAN, F. ASSOCIATION RANDOM VARIABLES, WITH APPLICATIONS, AMS 67, 1466
- PROSCHAN, F. MOMENT CROSSINCS AS RELATED TO DENSITY CROSSINGS, JRSSB 65, 91
- PROSCHAN, FRANK ASYMPTOTIC NORMALITY OF CERTAIN TEST STATISTICS OF EXPONENTIALITY, BIOKA 64, 253
- PROSCHAN, FRANK COHERENT STRUCTURES OF NON-IDENTICAL COMPONENTS, TECH 63, 191
- PROSCHAN, FRANK COMPARISON OF REPLACEMENT POLICIES, AND RENEWAL THEORY IMPLICATIONS, AMS 64, 577
- PROSCHAN, FRANK EXPONENTIAL LIFE TEST PROCEDURES WHEN THE DISTRIBUTION HAS MONOTONE FAILURE RATE, JASA 67, 54B
- PROSCHAN, FRANK INEQUALITIES FOR LINEAR COMBINATIONS OF ORDER STATISTICS FROM RESTRICTED FAMILIES, AMS 66, 1574
- PROSCHAN, FRANK MAXIMUM LIKELIHOOD ESTIMATION FOR DISTRIBUTIONS WITH MONOTONE FAILURE RATE, AMS 65, 69
- PROSCHAN, FRANK PEAKEDNESS OF DISTRIBUTIONS OF CONVEX COMBINA-TIONS, AMS 65, 1703
- PROSCHAN, FRANK PROPERTIES OF PROBABILITY DISTRIBUTIONS WITH MONOTONE HAZARD RATE, AMS 63, 375
- PROSCHAN, FRANK RELATIONSHIP BETWEEN SYSTEM FAILURE RATE AND COM-PONENT FAILURE RATES, TECH 63, 183
- PROSCHAN, FRANK STATISTICAL ESTIMATION PROCEDURES FOR THE 'BURN-IN' PROCESS, TECH 6B, 51 PROSCHAN, FRANK THEORETICAL EXPLANATION OF OBSERVED DECREASE
- FAILURE RATE, TECH 63, 375
 PROSCHAN, FRANK TOLERANCE AND CONFIDENCE LIMITS FOR CLASSES OF DIS-
- TRIBUTIONS BASED ON FAILURE RATE, CORR., AMS 66, 1593
 PRUITT, WILLIAM E. EIGENVALUES OF NON-NEGATIVE MATRICES, AMS 64,
- 1797
 PRUZAN, PETER M. A DYNAMIC PROGRAMMING APPLICATION IN PRODUCTION
- PROZAN, PETER M. A DYNAMIC PROGRAMMING APPLICATION IN PRODUCTION LINE INSPECTION, TECH 67, 73 PURI, M. L. MULTI-SAMPLE ANALOGUES OF SOME ONE-SAMPLE TESTS, AMS 67,
- 523
 PURI, MADAN L. MULTIPLE DECISION PROCEDURES BASED ON RANKS FOR CER-
- TAIN PROBLEMS IN ANALYSIS OF VARIANCES, AMS 69, 619
 PURI, MADAN L. ON THE ESTIMATION OF CONTRASTS IN LINEAR MODELS, AMS
- 65,198
 PURI, MADAN L. RANK ORDER TESTS FOR MULTIVARIATE PAIRED COM-PARISONS, AMS 69, NO.6
- PURI, MADAN LAL A CLASS OF RANK ORDER TESTS FOR A GENERAL LINEAR HYPOTHESIS, AMS 69, 1325
- PURI, MADAN LAL ANALYSIS OF COVARIANCE BASED ON GENERAL RANK SCORES, AMS 69, 610
- PURI, MADAN LAL ASYMPTOTIC EFFICIENCY OF CLASS OF C-SAMPLE TESTS, AMS 64, 102
- PURI, MADAN LAL NONPARAMETRIC CONFIDENCE REGIONS FOR SOME MUL-TIVARIATE LOCATION PROBLEMS, JASA 6B, 1373
- PURI, MADAN LAL ON CHERNOFF-SAVAGE TESTS FOR ORDERED ALTERNATIVES IN RANDOMIZED BLOCKS, AMS 6B, 967
- PURI, MADAN LAL ON ROBUST ESTIMATION IN INCOMPLETE BLOCK DESIGNS, AMS 67, 1587 PURI, MADAN LAL ON SOME OPTIMUM NONPARAMETRIC PROCEDURES IN TWO-WAY
- LAYOUTS, JASA 67, 1214
 PURI, MADAN LAL ON THE THEORY OF RANK ORDER TESTS FOR LOCATION IN THE
- MULTIVARIATE ONE SAMPLE PROBLEM, AMS 67, 1216
- PURI, P. S. ON THE HOMOGENEOUS BIRTH-AND-DEATH PROCESS AND ITS INTEGRAL, BIOKA 66, 61
- PURI, PREM S. MULTIPLE DECISION PROCEDURES BASED ON RANKS FOR CER-TAIN PROBLEMS IN ANALYSIS OF VARIANCES, AMS 69, 619
- PURI, PREM S. ON OPTIMAL ASYMPTOTIC TESTS OF COMPOSITE STATISTICAL HYPOTHESES, AMS 67, 1845
- PURVES, ROCER TIMID PLAY IS OPTIMAL, II, AMS 67, 1284
- PURVES, ROGER A. BAYES' METHOD FOR BOOKIES, AMS 69, 1177
- PUTTER, JOSEPH MAXIMUM LIKELIHOOD ESTIMATION OF MULTIVARIATE COVARIANCE COMPONENTS FOR THE BALANCED ONE-W, AMS 69, 1100
 PUTTER, JOSEPH ORTHONORMAL BASES OF ERROR SPACES AND THEIR USE FOR
- PUTTER, JOSEPH ORTHONORMAL BASES OF ERROR SPACES AND THEIR USE FOR INVESTIGATING THE NORMALITY AND VARIAN, JASA 67, 1022
 PUTTER, JOSEPH THE CHI-SQUARE GOODNESS-OF-FIT TEST FOR A CLASS OF
- CASES OF DEPENDENT OBSERVATIONS, BIOKA 64, 250
 PYKE, R. INEQUALITIES FOR FIRST EMPTINESS PROBABILITIES OF A DAM
- WITH ORDERED INPUTS, JRSSB 62, 102
 PYKE, R. SPACINGS (WITH DISCUSSION), JRSSB 65, 395
- PYKE, RONALD A NOTE ON CHERNOFF-SAVAGE THEOREMS, AMS 69, 1116
- PYKE, RONALD ASYMPTOTIC NORMALITY OF CERTAIN TEST STATISTICS OF EX-
- PYKE, RONALD COMBINATORIAL RESULTS IN FLUCTUATION THEORY, AMS 63, 1233
- PYKE, RONALD COMBINATORIAL RESULTS IN MULTI-DIMENSIONAL FLUCTUA-TION THEORY, CORR. 64 924, AMS 63, 402
- PYKE, RONALD LIMIT THEOREMS FOR MARKOV RENEWAL PROCESSES, AMS 64, 1746
 PYKE, RONALD MARKOV RENEWAL PROCESSES WITH FINITELY MANY STATES,
- AMS 61, 1243
 PYKE, RONALD MARKOV RENEWAL PROCESSES, DEFINITIONS AND PRELIMINARY
- PYKE, RONALD MARKOV RENEWAL PROCESSES, DEFINITIONS AND PRELIMINARY PROPERTIES, AMS 61, 1231

- PYKE. RONALD ON CONVERGENCE IN R-MEAN OF NORMALIZED PARTIAL SUMS, AMS 6B. 379
- PYKE, RONALD THE ASYMPTOTIC RELATIVE EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST SCALAR ALTERNATIVES, JASA 65, 410
- PYKE, RONALD THE EXISTENCE AND UNIQUENESS OF STATIONARY MEASURES FOR MARKOV RENEWAL PROCESSES, AMS 66, 1439
- PYKE, RONALD THE ROBBINS-ISBELL TWO-ARMED-BANDIT PROBLEM WITH FINITE MEMORY, AMS 65, 1375
- PYKE, RONALD WEAK CONVERGENCE AND A CHERNOFF-SAVAGE THEOREM FOR RANDOM SAMPLE SIZES, AMS 6B. 1675
- PYKE, RONALD WEAK CONVERGENCE OF A TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO CHERNOFF-SAVAGE THE, AMS 6B, 755
- QUADE, DANA ON ANALYSIS OF VARIANCE FOR THE K-SAMPLE PROBLEM. AMS 66, 1747
- QUADE, DANA ON COMPARING THE CORRELATIONS WITHIN TWO PAIRS OF VARIA-BLES, BIOCS 6B, 9B7
- QUADE, DANA ON THE ASYMPTOTIC POWER OF THE ONE-SAMPLE KOLMOGOROV-SMIRNOV TESTS, AMS 65, 1000
- QUADE, DANA RANK ANALYSIS OF COVARIANCE, JASA 67, 11B7
- QUALLS, CLIFFORD ON A LIMIT DISTRIBUTION OF HIGH LEVEL CROSSINGS OF A STATIONARY GAUSSIAN PROCESS, AMS 68. 210B
- QUANDT, RICHARD E. SOME TESTS FOR HOMOSCEDASTICITY, JASA 65, 539
- QUANDT, RICHARD E. TESTS OF THE HYPOTHESIS THAT A LINEAR REGRESSION SYSTEM OBEYS TWO SEPARATE REGIMES, JASA 60, 324
- QUANDT, RICHARD E. THE ESTIMATION OF THE PARAMETER OF A LINEAR REGRESSION SYSTEM OBEYING TWO SEPARATE REG, JASA 5B, B73
- QUARTERMAIN, A. R. SOME TRANSFORMATIONS OF SCALE AND THE ESTIMATION OF GENETIC PARAMETERS FROM DAUGHTER-D, BIOCS 67, B23
- QUENOUILLE, M. H. EXPERIMENTS WITH MIXTURES, JRSSB 59, 201
- QUENOUILLE, M. H. MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD, BIOKA 53, 3B3
- QUENOUILLE, M. H. NOTES ON BIAS IN ESTIMATION, BIOKA 56, 353
- QUENOUILLE, M. H. TABLES OF RANDOM OBSERVATIONS FROM STANDARD DISTRIBUTIONS, BIOKA 59, 178
- QUENOUILLE, M. H. THE COMPARISON OF CORRELATIONS IN TIME-SERIES, JRSSB 58, 158
- QUENOUILLE, M. H. THÉ EFFECT OF TRANSFORMATIONS OF VARIABLES UPON THEIR CORRELATION COEFFICIENTS, BIOKA 57, 272
- THEIR CORRELATION COEFFICIENTS, BIOKA 57, 272
 QUESENBERRY, C. P. A NONPARAMETRIC ESTIMATE OF A MULTIVARIATE DEN-
- SITY FUNCTION. AMS 65, 1049 QUESENBERRY, C. P. CONTROLLING THE PROPORTION DEFECTIVE FROM CLAS-
- SIFICATION DATA, TECH 64.99 QUESENBERRY, C. P. LARGE SAMPLE SIMULTANEOUS CONFIDENCE INTERVALS
- FOR MULTINOMIAL PROPORTIONS, TECH 64, 191
 QUESENBERRY, C. P. NONPARAMETRIC DISCRIMINATION USING TOLERANCE
- REGIONS, AMS 6B, 664
- QUESENBERRY, C. P. SOME TESTS FOR OUTLIERS, BIOKA 61, 379 QUREISHI, A. S. BEST LINEAR UNBIASED ESTIMATORS OF THE PARAMETERS OF
- THE LOGISTIC DISTRIBUTION USING ORDE, TECH 67, 43

 QUREISHI, A. S. ERRATA, 'THE DISCRIMINATION BETWEEN TWO WEIBULL PROCESSES', TECH 64, 240
- QUREISHI, A. S. SAMPLING INSPECTION PLANS FOR DISCRIMINATING BETWEEN TWO WEIBULL PROCESSES, TECH 65, 589
- QUREISHI, A. S. THE DISCRIMINATION BETWEEN TWO WEIBULL PROCESSES, TECH 64, 57
- RABINOVITCH, N. L. STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. XXII. PROBABILITY IN THE TALMUD, BIOKA 69, 437
- RABINOWITZ, PHILIP NEW CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS' RATIO, JASA 69, 647
- RADCLIFFE, J. A NOTE ON AN APPROXIMATE FACTORIZATION IN DISCRIMI-NANT ANALYSIS, BIOKA 67, 665
- RADCLIFFE, J. THE CONSTRUCTION OF A MATRIX USED IN DERIVING TESTS OF SIGNIFICANCE IN MULTIVARIATE ANALYSI, BIOKA 64, 503
- RADHAKRISHNA, S. COMBINATION OF RESULTS FROM SEVERAL 2 BY 2 CONTINGENCY TABLES, BIOCS 65, B6
- RADNER, ROY TEAM DECISION PROBLEMS, AMS 62, B57
- RADOK, U. TABULAR ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE OF PUNCH CARDS, CORR. 56 650, JASA 56, 149
- RAFF, MORTON S. ON APPROXIMATING THE POINT BINOMIAL, CORR. 56 651, JASA 56, 293
- RAGHAVACHARI, M. ON A THEOREM OF KARLIN REGARDING ADMISSIBILITY OF LINEAR ESTIMATES IN EXPONENTIAL POPULA, AMS 66, 1809
- RAGHAVACHARI, M. ON THE EFFICIENCY OF THE NORMAL SCORES TEST RELA-TIVE TO THE F-TEST, AMS 65, 1306
- RAGHAVACHARI, M. THE TWO-SAMPLE SCALE PROBLEM WHEN LOCATIONS ARE UNKNOWN, AMS 65, 1236
- RAGHAVARAO, D. A NOTE ON FRACTIONS OF 3-TO-THE-(4N+1) DESIGNS, TECH 65, 69
- RAGHAVARAO, D. CUBIC DESIGNS, AMS 64, 3B9
- RAGHAVARAO, DAMARAJU DUALS OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS AND SOME NONEXISTENCE THEOREMS, AMS 66, 104B
- RAGHAVARAO, DAMARAJU ON BALANCED UNEQUAL BLOCK DESIGNS, BIOKA 62, 561
- RAGHAVARAO, DAMARAJU SINGULAR WEIGHING DESIGNS, AMS 64, 673
- RAGHAVARAO, DAMARAJU SYMMETRICAL UNEQUAL BLOCK ARRANGEMENTS WITH TWO UNEQUAL BLOCK SIZES, AMS 62, 620
- RACHUNANDANAN, K. ASYMPTOTICALLY ROBUST ESTIMATORS OF LOCATION, JASA 67, 950

- RAHMAN, N. A. SOME GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT STATISTICS ARISING FROM RECTANGULAR PO, JASA 64, 557
- RAIFFA, HOWARD THE FOUNDATIONS OF DECISION UNDER UNCERTAINTY, AN ELEMENTARY EXPOSITION, JASA 64.353
- RAJAGOPALAN, M. ESTIMATION OF CROP YIELDS FOR SMALL AREAS, BIOCS 66,
- RAKTOE, B. L. A UNIFIED APPROACH FOR CONSTRUCTING A USEFUL CLASS OF NON-ORTHOGONAL MAIN EFFECT PLANS IN K, JRSSB 6B, 371
- RAKTOE, B. L. APPLICATION OF CYCLIC COLLINEATIONS TO THE CONSTRUC-TION OF BALANCED L-RESTRICTIONAL PRIME POWERED LATTICE DESIGNS. AMS 67, 1127
- RAKTOE, B. L. COMBINING ELEMENTS FROM DISTINCT FINITE FIELDS IN MIXED FACTORIALS, AMS 69, 49B
- RAKTOE, B. L. GENERAL THEORY OF PRIME-POWER LATTICE DESIGNS, JASA 65. B91
- RAKTOE, B. L. GENERALIZED LATTICE SQUARE DESIGN, JASA 66, B21
- RAMACHANDRAMURTY, P. V. ERRATA TO INDEX TO TECHNOMETRICS, VOLUMES 1-7, TECH 66, 3B7
- RAMACHANDRAMURTY, P. V. INDEX TO TECHNOMETRICS, VOLUMES 1-7, TECH 66, 216
- RAMACHANDRAMURTY, P. V. ON SOME NONPARAMETRIC ESTIMATES FOR SHIFT IN THE BEHRENS-FISHER SITUATION, AMS 66, 593
- RAMACHANDRAMURTY, P. V. ON THE PITMAN EFFICIENCY OF ONE-SIDED KOL-MOGOROV AND SMIRNOV TESTS FOR NORMAL ALT, AMS 66, 940
- RAMACHANDRAN, K. V. A TEST OF VARIANCES, JASA 5B, 741
- RAMACHANDRAN, K. V. ON THE STUDENTIZED SMALLEST CHI-SQUARE, CORR \cdot 59 B12, JASA 5B, B6B
- RAMACHANDRAW, B. ON THE ORDER AND THE TYPE OF ENTIRE CHARACTERISTIC FUNCTIONS, AMS 62, 123B
 RAMANATHAN, R. ECONOMETRIC EXPLORATION OF INDIAN SAVING BEHAVIOR.
- JASA 69, 90
 RAMANATHAN, R. THE EFFECT OF MIS-MATCHING ON THE MEASUREMENT OF
- RESPONSE ERRORS, JASA 65, 1005

 RAMASUBBAN, T. A. CORRIGENDA, 'SOME DISTRIBUTIONS ARISING IN THE
- RAMASUBBAN, T. A. CORNIGENDA, 'SOME DISTRIBUTIONS ARISING IN THE STUDY OF GENERALIZED MEAN DIFFERENCES', BIOKA 61, 230
- RAMASUBBAN, T. A. SOME DISTRIBUTIONS ARISING IN THE STUDY OF GENERALIZED MEAN DIFFERENCES, BIOKA 60, 469
- RAMASUBBAN, T. A. THE GENERALIZED MEAN DIFFERENCES OF THE BINOMIAL AND POISSON DISTRIBUTIONS, BIOKA 59, 223
- RAMASUBBAN, T. A. THE MEAN DIFFERENCE AND THE MEAN DEVIATION OF SOME DISCONTINUOUS DISTRIBUTIONS, BIOKA 5B, 549
- RAMSEY, J. B. TESTS FOR SPECIFICATION ERRORS IN CLASSICAL LINEAR LEAST-SQUARES REGRESSION ANALYSIS, JRSSB 69, NO. 2
- RAO, B. L. S. PRAKASA ON A CHARACTERIZATION OF SYMMETRIC STABLE PROCESSES WITH FINITE MEAN, AMS 6B, 149B
- RAO, B. R. A FORMULA FOR THE CURVATURE OF THE LIKELIHOOD SURFACE OF A SAMPLE DRAWN FROM A DISTRIBUTION AD, BIOKA 60, 203
- RAO, B. R. CORRELATION BETWEEN THE SAMPLE VARIANCES IN A SINGLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION, BIOKA 6B, 433
- RAO, B. RAJA A FURTHER NOTE ON THE GEOMETRY OF LINEAR ESTIMATION, ${\tt BIOKA\,63,\,540}$
- $\mbox{RAO},\mbox{ B. RAJA}$ A NOTE ON THE GEOMETRY OF LINEAR ESTIMATION, BIOKA 62, 560
- RAO, C. R. A NOTE ON A GENERALIZED INVERSE OF A MATRIX WITH APPLICATIONS TO PROBLEMS IN MATHEMATICAL STAT, JRSSB 62, 152
- RAO, C. R. DISCRIMINANT FUNCTION BETWEEN COMPOSITE HYPOTHESES AND RELATED PROBLEMS, BIOKA 66, 339
- RAO, C. R. EFFICIENT ESTIMATES AND OPTIMUM INFERENCE PROCEDURES IN LARGE SAMPLES (WITH DISCUSSION), JRSSB 62, 46
- RAO, C. R. PROBLEMS OF SELECTION WITH RESTRICTIONS, JRSSB 62, 401
- RAO, C. R. SOME PROBLEMS INVOLVING LINEAR HYPOTHESES IN MUL-TIVARIATE ANALYSIS, BIOKA 59, 49
- RAO, C. R. THE THEORY OF LEAST SQUARES WHEN THE PARAMETERS ARE STOCHASTIC AND ITS APPLICATION TO THE ANAL, BIOKA 65, 447
- RAO, C. RADHAKRISHNA A DECOMPOSITION THEOREM FOR VECTOR VARIABLES WITH A LINEAR STRUCTURE, AMS 69. 1845
- RAO, C. RADHAKRISHNA ANALYSIS OF DISPERSION WITH INCOMPLETE OBSER-VATIONS ON ONE OF THE CHARACTERS, JRSSB 56, 259
- RAO, C. RADHAKRISHNA CONDITIONS FOR OPTIMALITY AND VALIDITY AND SIMPLE LEAST SQUARES THEORY, AMS 69. 1617
- RAO, J. N. K. A NEW ESTIMATION THEORY FOR SAMPLE SURVEYS, BIOKA 6B,
- RAO, J. N. K. A NOTE ON ESTIMATION OF RATIOS BY QUENOUILLE'S METHOD., BIOKA 65, 647
- RAO, J. N. K. A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCES, JASA 59, 801
- 801, J. N. K. AN EMPIRICAL STUDY OF THE STABILITIES OF ESTIMATORS AND VARIANCE ESTIMATORS IN UNEQUAL PROB. JASA 69, 540
- RAO, J. N. K. MAXIMUM-LIKELIHOOD ESTIMATION FOR THE MIXED ANALYSIS OF VARIANCE MODEL, BIOKA 67, 93
- RAO, J. N. K. ON A SIMPLE PROCEDURE OF UNEQUAL PROBABILITY SAMPLING WITHOUT REPLACEMENT, JRSSB 62, 482
- RAO, J. N. K. ON EXPECTATIONS, VARIANCES, AND CONVARIANCES OF ANOVA
 MEAN SQUARES BY 'SYNTHESIS', BIOCS 6B, 963
 RAO, J. N. K. ON THREE PROCEDURES OF UNEQUAL PROBABILITY SAMPLING
- WITHOUT REPLACEMENT, JASA 63, 202
 RAO, J. N. K. ON TWO METHODS OF BIAS REDUCTION IN THE ESTIMATION OF RATIOS, BIOKA 66, 571

- RAO, J. N. K. ROTATION DESIGNS FOR SAMPLING ON REPEATED OCCASIONS, JASA 64, 492
- RAO, J. N. K. SAMPLING WITH UNEQUAL PROBABILITIES AND WITHOUT REPLACEMENT, AMS 62, 350
- RAO, J. N. K. SOME NONRESPONSE SAMPLING THEORY WHEN THE FRAME CON-TAINS AN UNKNOWN AMOUNT OF DUPLICATION, JASA 6B, 87
- RAO, J. N. K. THE PRECISION OF MICHEY'S UNBIASED RATIO ESTIMATOR, BIOKA 67, 321
- RAO, J. N. K. VARIANCE ESTIMATION WITH ONE UNIT PER STRATUM, JASA 69, 841
- RAO, K.S. A SIMPLE METHOD OF DERIVING BEST CRITICAL RECIONS SIMILAR TO THE SAMPLE SPACE IN TESTS OF AN I, BIOKA 53, 231
- RAO, M. BHASKAR A NOTE ON INCOMPLETE BLOCK DESIGNS WITH THE NUMBER OF BLOCKS EQUAL TO THE NUMBER OF TREAT, AMS 65, 1877
- RAO, M. BHASKAR APPLICATION OF GREENBERG AND SARHAN'S METHOD OF IN-VERSION OF PARTITIONED MATRICES IN THE, JASA 65, 1200
- RAO, M. BHASKAR WEIGHING DESIGNS WHEN N IS ODD, AMS 66, 1371
- RAO, M. M. BAYES ESTIMATION WITH CONVEX LOSS, AMS 63, 839
- RAO, M. M. CONSISTENCY AND LIMIT DISTRIBUTIONS OF ESTIMATORS OF PARAMETERS IN EXPLOSIVE STOCHASTIC DIFFER, AMS 61, 195
- RAO, P. S. CONSTRUCTION AND ANALYSIS OF SOME NEW SERIES OF CON-FOUNDED ASYMMETRICAL FACTORIAL DESIGNS, BIOCS 67, 813
- RAO, P. S. R. S. ON THREE PROCEDURES OF SAMPLING FROM FINITE POPULA-TIONS, BIOKA 68, 438
- RAO, P. V. A ROBUST POINT ESTIMATOR IN A GENERALIZED REGRESSION MODEL, AMS 69, 1784
- RAO, P. V. ANALYSIS OF A CLASS OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH MORE THAN TWO ASSOCIAT, AMS 61, 800
- RAO, P. V. TIES IN PAIRED-COMPARISON EXPERIMENTS. A GENERALIZATION OF THE BRADLEY-TERRY MODEL, CORR. 681, JASA 67, 194
- RAO, PODURIS. R. S. COMPARISON OF FOUR RATIO-TYPE ESTIMATES UNDER A MODEL, JASA 69, 574
- RAO, PODURIS. R.S. GENERALIZED MULTIVARIATE ESTIMATOR FOR THE MEAN OF FINITE POPULATIONS, JASA 67, 1009
- RAO, PODURI S. R. S. SOME SHARP MULTIVARIATE TCHEBYCHEFF INEQUALI-TIES. AMS 67. 393
- RAO, POTLURI SMALL-SAMPLE PROPERTIES OF SEVERAL TWO-STAGE RECRES-SIGN METHODS IN THE CONTEXT OF AUTOCORREL, JASA 69, 253
- RAO, R. RANGA RELATIONS BETWEEN WEAK AND UNIFORM CONVERGENCE OF MEA-SURES WITH APPLICATIONS, AMS 62, 659
- RAO, R. SUBBA A NOTE ON THE ASYMPTOTIC RELATIVE EFFICIENCIES OF COX AND STUART'S TESTS FOR TESTING TREND, BIOKA 68, 381
- RAO, T. J. ON THE CHOICE OF A STRATECY FOR A RATIO METHOD OF ESTIMA-TION, JRSSB 67, 392
- RAO, T. SUBBA A TEST FOR NON-STATIONARITY OF TIME-SERIES, JRSSB 69,
- 140 RAO, T. SUBBA CROSS SPECTRAL ANALYSIS OF GAUSSIAN VECTOR PROCESS IN
- THE PRESENCE OF VARIANCE FLUCTUATIONS, AMS 68, 1507 RAO, T. SUBBA ON THE CROSS PERIODOGRAM OF A STATIONARY GAUSSIAN VEC-
- TOR PROCESS, AMS 67, 593 RAPOPORT, ANATOL A FORMULA FOR THE PROBABILITY OF OBTAINING A TREE
- FROM A GRAPH CONSTRUCTED RANDOMLY EXCE, AMS 67, 226 RASTOCI, SURESH C. SHORTER CONFIDENCE BANDS IN LINEAR RECRESSION, JASA 67, 1050
- RAWLINGS, J. O. REFERENCE POPULATIONS FOR DIALLEL EXPERIMENTS, BIOCS 6B, B81
- RAWLINGS, J. O. SELECTION AMONG DIALLEL CLASSIFIED VARIABLES, BIOCS 69.49
- RAY-CHAUDHURI, D. K. APPLICATION OF THE GEOMETRY OF QUADRICS FOR
- CONSTRUCTING PARTIALLY BALANCED INCOMPLE, AMS 62, 1175 RAY, S. N. A BAYES SEQUENTIAL SAMPLING INSPECTION, AMS 65, 1387
- RAY, S. N. BOUNDS ON THE MAXIMUM SAMPLE SIZE OF A BAYES SEQUENTIAL PROCEDURE, AMS 65, 859
- RAY, W. D. AN EXACT DISTRIBUTION OF THE BEHRENS-FISHER-WELCH STATISTIC FOR TESTING THE DIFFERENCE BETWEEN, JRSSB 61, 377
- RAY, W. D. CHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO MILLS' RATIO, AMS 63, 892
- RAY, W. D. POLYNOMIAL PROJECTING PROPERTIES OF MULTI-TERM PREDIC-TORS OR CONTROLLERS IN NON-STATIONARY TIM, JRSSB 65, 144
- RAY, W. D. SEQUENTIAL ANALYSIS APPLIED TO CERTAIN EXPERIMENTAL DESIGNS IN THE ANALYSIS OF VARIANCE, BIOKA 56, 38B
- RAY, W. D. SEQUENTIAL CONFIDENCE INTERVALS FOR THE MEAN OF A NORMAL POPULATION WITH UNKNOWN VARIANCE, JRSSB 57, 133
- RAYNER, A. A. A NOTE ON GENERALIZED INVERSES IN THE LINEAR HYPOTHES-IS NOT OF FULL RANK, AMS 67, 271
- RAYNER, A. A NOTES. THE SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO THE POWER N, BIOCS 67, 571
- READ, K. L. Q. A SYSTEM OF MODELS FOR THE LIFE CYCLE OF A BIOLOGICAL ORGANISM, BIOKA 6B, 211
- READ, R. R. ON QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR UNBALANCED DESIGNS, JRSSB 61, 493
- RECHTSCHAFFNER, R. L. SATURATED FRACTIONS OF 2-TO-THE-N AND 3-TO-THE-N FACTORIAL DESIGNS, TECH 67, 569
- REDHEFFER, R. M. SOME APPLICATIONS OF MONOTONE OPERATORS IN MARKOV PROCESSES, AMS 65, 1421
- REDMAN, C. E. GROUP SCREENING UTILIZING BALANCED AND PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS, BIOCS 65, 865

- REES, D. H. ECONOMIC CHOICE OF THE AMOUNT OF EXPERIMENTATION, JRSSB 56.32
- REES, D. H. SOME DESIGNS OF USE IN SEROLOGY, BIOCS 67, 779
- REES, D. H. SOME OBSERVATIONS ON CHANGE-OVER TRIALS, BIOCS 69, 413 REES, D. H. THE ANALYSIS OF VARIANCE OF DESIGNS WITH MANY NON-ORTHOGONAL CLASSIFICATIONS, JRSSB 66, 110
- REES, D. H. THE ANALYSIS OF VARIANCE OF SOME NON-ORTHOGONAL DESIGNS WITH SPLIT PLOTS, BIOKA 69, 43
- REES, D. H. UPPER PERCENTAGE POINTS OF THE GENERALIZED BETA DIS-TRIBUTION. I, BIOKA 57, 237
- RECIER, MARY H. A TWO-STATE MARKOV MODEL FOR BEHAVIORAL CHANGE, JASA
- REICH, EDGAR NOTES ON QUEUES IN TANDEM, AMS 63, 338
- REID, MARCARET G. EFFECT OF VARYING DEGREES OF TRANSITORY INCOME ON INCOME ELASTICITY OF EXPENDITURES, JASA 58, 348
- REID, MARCARET G. INCREASE IN RENT OF DWELLING UNITS FROM 1940 TO 1950, JASA 59, 358
- REIERSOL, O. A NOTE ON THE SIGNS OF GROSS CORRELATION COEFFICIENTS AND PARTIAL CORRELATION COEFFICIENTS, BIOKA 56, 480
- REIERSOL, O. LINEAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT ANALYSIS, BIOKA 61, 359
- REIERSOL, OLAV CORRIGENDA, 'LINEAR AND NON-LINEAR MULTIPLE COM-PARISONS IN LOGIT ANALYSIS', BIOKA 62, 284
- REINACH, S. G. A DISTRIBUTION-FREE ANALYSIS OF VARIANCE TECHNIQUE FOR BLOCK DESIGNS, SASJ 68, 9
- REINER, ALBEY M. DESIGNS FOR DISCRIMINATING BETWEEN TWO RIVAL MODELS, TECH 65, 307 REINFURT, KARENH. TESTS FOR CORRELATION MATRICES, BIOKA 68, 327
- REINHARDT, H. E. NOTES. CHARACTERIZING THE EXPONENTIAL DISTRIBU-TION, BIOCS 68, 437
- REINHARDT, H. E. THE USE OF LEAST FAVORABLE DISTRIBUTIONS IN TESTING COMPOSITE HYPOTHESES, AMS 61, 1034 REISCH, JOANS. THE POWER OF A TEST IN COVARIANCE ANALYSIS, BIOCS 69,
- REITER. STANLEY DISTRIBUTIONS OF CORRELATION COEFFICIENTS IN
- ECONOMIC TIME SERIES, JASA 61, 637 REITER, STANLEY ESTIMATES OF BOUNDED RELATIVE ERROR FOR THE RATIO OF
- VARIANCES OF NORMAL DISTRIBUTIONS, JASA 56, 481 REITER, STANLEY THE FIRST 1,945 BRITISH STEAMSHIPS, JASA 58, 360
- REITSMA, A. ON APPROXIMATIONS TO SAMPLING DISTRIBUTIONS OF THE MEAN FOR SAMPLES FROM NON-NORMAL POPULATIO, AMS 63, 1308
- REITSMA, A. THE DETERMINATION OF SAMPLING DISTRIBUTIONS AND MOMENT CENERATING FUNCTIONS BY SOLVING DIFFER, JRSSB 65, 86
- REMAGE JR, R. MAXIMUM-LIKELIHOOD PAIRED COMPARISON RANKINGS, BIOKA 66.143
- REMAGE JR, RUSSEL RANKINGS FROM PAIRED COMPARISONS, AMS 64, 739
- RENNER, MAYNARD S. A CRAPHICAL METHOD FOR MAKING MULTIPLE COM-PARISONS OF FREQUENCIES, TECH 69, 321
- RESNIKOFF, GEORGE J. TABLES TO FACILITATE THE COMPUTATION OF PER-CENTAGE POINTS OF THE NON-CENTRAL T-DISTR, AMS 62, 580
- REUVER, H. A. ON MEASURES OF CORRELATION IN TIME SERIES OF EVENTS, BIOCS 69, 73
- REUVER, H. A. THE SUPERPOSITION OF RANDOM SEQUENCES OF EVENTS, BIOKA 66,3B3 REYMENT, R. A. A MULTIVARIATE PALEONTOLOGICAL GROWTH PROBLEM,
- BIOCS 69, 1 REZUCHA, IVAN DEVELOPMENT OF SAMPLING PLANS BY USING SEQUENTIAL,
- ITEM BY ITEM, SELECTION TECHNIQUES AND D, JASA 62, 387 RHYNE, A. L. A MULTIPLE COMPARISONS SICN TEST, ALL PAIRS OF TREAT-
- MENTS, BIOCS 67, 539 RHYNE, A. L. TABLES FOR A TREATMENTS VERSUS CONTROL MULTIPLE COM-
- PARISONS SIGN TEST, TECH 65, 293 RICH, R. N. A STATISTICAL BASIS FOR APPROXIMATION AND OPTIMIZATION,
- AMS 66, 59 RICHARDS, F. S. G. A METHOD OF MAXIMUM-LIKELIHOOD ESTIMATION, JRSSB
- 61, 469 RICHARDS, F. S. G. ON FINDING LOCAL MAXIMA OF FUNCTIONS OF A REAL
- VARIABLE, BIOKA 67, 310 RICHARDSON, DAVID H. THE EXACT DISTRIBUTION OF A STRUCTURAL COEFFI-
- CIENT ESTIMATOR, JASA 6B, 1214 RICHTER, DONALD A TABLE FOR RANK SUM MULTIPLE PAIRED COMPARISONS,
- TECH 67, 561 RICHTER, DONALD INEQUALITIES OF CHEBYSHEV TYPE INVOLVING CONDI-
- TIONAL EXPECTATIONS, AMS 69, NO.6 RIDER, PAUL R. DISTRIBUTION OF PRODUCT AND OF QUOTIENT OF MAXIMUM
- VALUES IN SAMPLES FROM A POWER-FUNCTION, JASA 64, 877 RIDER PAUL R EXPECTED VALUES AND STANDARD DEVIATIONS OF THE RECIPROCAL OF A VARIABLE FROM A DECAPITATED, JASA 62, 439
- RIDER, PAULR. SAMPLING FROM A TRIANGULAR POPULATION, JASA 63, 509 RIDER, PAUL R. THE METHOD OF MOMENTS APPLIED TO A MIXTURE OF TWO EX-
- PONENTIAL DISTRIBUTIONS. AMS 61, 143 RIDER, PAUL R. THE MIDRANGE OF A SAMPLE AS AN ESTIMATOR OF THE POPULA-TION MIDRANGE, JASA 57, 537
- RIDER, PAUL R. VARIANCE OF THE MEDIAN OF SAMPLES FROM A CAUCHY DIS-TRIBUTION, JASA 60, 322
- RIDER, PAUL R. VARIANCE OF THE MEDIAN OF SMALL SAMPLES FROM SEVERAL SPECIAL POPULATIONS, JASA 60, 14B
- RIEDWYL, HANS GOODNESS OF FIT, JASA 67, 390

- RIFFENBURGH, R. H. GEOMETRY AND LINEAR DISCRIMINATION, BIOKA 60, 185
- RIFFENBURGH, R. H. ON GROWTH PARAMETER ESTIMATION FOR EARLY LIFE STAGES, BIOCS 66, 162
- RIFFENBURGH, ROBERT H. HALF-RECTIFIED TRUNCATED DISTRIBUTIONS. SAMPLING THEORY AND HYPOTHESIS TESTING, TECH 69, 47
- RILEY, H. E. SOME ASPECTS OF SEASONALITY IN THE CONSUMER PRICE IN-DEX, JASA 61, 27
- RILEY, JAMES D. COMPARATIVE COST OF TWO LIFE TEST PROCEDURES, TECH 62,140
- RING, L. WINSTON ESTIMATION AND INFERENCE FOR LINEAR MODELS IN WHICH SUBSETS OF THE DEPENDENT VARIABLE AR, JASA 68, 1201
- RIORDAN, JOHN A RECURRENCE FOR PERMUTATIONS WITHOUT RISING OR FALLING SUCCESSIONS, AMS 65, 70B
- RIORDAN, JOHN ENUMERATION OF LINEAR GRAPHS FOR MAPPINGS OF FINITE SETS, AMS 62, 17B
- RIORDAN, JOHN THE ENUMERATION OF ELECTION RETURNS BY NUMBER OF LEAD POSITIONS, AMS 64, 369 RIZVI, M. AN INTRODUCTION TO RANKING AND SELECTION PROCEDURES, JASA
- 66,640
- RIZVI, M. H. A NOTE ON MOMENTS OF GAMMA ORDER STATISTICS, TECH 67, 315 RIZVI, M. HASEEB A NOTE ON RECURRENCE RELATIONS BETWEEN EXPECTED VALUES OF FUNCTIONS OF ORDER STATISTICS, AMS 66, 733
- RIZVI, M. HASEEB NONPARAMETRIC PROCEDURES FOR SELECTING A SUBSET CONTAINING THE POPULATION WITH THE LARGE, AMS 67, 1788
- RIZVI, M. HASEEB NONPARAMETRIC RANKING PROCEDURES FOR COMPARISON WITH A CONTROL, AMS 6B, 2075
- ROACH, S. A. THE FREQUENCY DISTRIBUTION OF THE SAMPLE MEAN WHERE EACH MEMBER OF THE SAMPLE IS DRAWN FROM, BIOKA 63, 50B
- ROBB, MARGARET A. FURTHER REMARKS ON EXPONENTIAL REGRESSION WITH CORRELATED OBSERVATIONS, BIOKA 6B, 575
- ROBBINS, H. A SEQUENTIAL ANALOGUE OF THE BEHRENS-FISHER PROBLEM, AMS 67, 1384
- ROBBINS, H. A SEQUENTIAL PROCEDURE FOR SELECTING THE LARGEST OF K MEANS, AMS 68, 88
- ROBBINS, H. FINDING THE SIZE OF A FINITE POPULATION, AMS 67, 1392
- ROBBINS, H. TWO-STAGE PROCEDURES FOR ESTIMATING THE DIFFERENCE BETWEEN MEANS, BIOKA 54, 146
- ROBBINS, HERBERT A RENEWAL THEOREM FOR RANDOM VARIABLES WHICH ARE DEPENDENT OR NON-IDENTICALLY DISTRIBUTE, AMS 63, 390
- ROBBINS, HERBERT MOMENTS OF RANDOMLY STOPPED SUMS, AMS 65, 789
- ROBBINS, HERBERT ON THE ASYMPTOTIC THEORY OF FIXED-WIDTH SEQUEN-TIAL CONFIDENCE INTERVALS FOR THE MEAN, AMS 65, 457
- ROBBINS, HERBERT RECURRENT GAMES AND THE PETERSBURG PARADOX, AMS 61.187
- ROBBINS, HERBERT THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECI-SION PROBLEMS, AMS 64, 1
- ROBBINS, HERBERT E. ESTIMATING THE TOTAL PROBABILITY OF THE UNOB-SERVED OUTGOMES OF AN EXPERIMENT, AMS 68, 256
- ROBERTS, C. A NECESSARY AND SUFFICIENT GONDITION FOR THE SQUARE OF A
- RANDOM VARIABLE TO BE GAMMA, BIOKA 66, 275 ROBERTS, C. FILL WEIGHT VARIATION RELEASE AND CONTROL OF CAPSULES,
- TABLETS, AND STERILE SOLIDS, TEGH 69, 161 ROBERTS, CHARLES A. A CORRELATION MODEL USEFUL IN THE STUDY OF TWINS, JASA 66, 1184
- ROBERTS, CHARLES DEWITT AN ASYMPTOTICALLY OPTIMAL FIXED SAMPLE SIZE PROCEDURE FOR COMPARING SEVERAL EXPER, AMS 64, 1571
- ROBERTS, CHARLES DEWITT AN ASYMPTOTICALLY OPTIMAL SEQUENTIAL DESIGN FOR GOMPARING SEVERAL EXPERIMENTAL CA, AMS 63, 1486
- ROBERTS, E. A. THE ESTIMATION OF CONCENTRATION OF VIRUSES AND BAC-TERIA FROM DILUTION COUNTS, BIOCS 65, 600
- ROBERTS, ELEANOR ERRATA, 'MODIFIED SQUARE ROOT METHOD OF MATRIX IN-VERSION', TECH 62, 622
- ROBERTS, ELEANOR MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION, TECH 62, 2B2
- ROBERTS, F. D. K. A MONTE CARLO SOLUTION OF A TWO-DIMENSIONAL UN-STRUCTURED CLUSTER PROBLEM, BIOKA 67, 625
- ROBERTS, F. D. K. ATHREE-DIMENSIONAL CLUSTER PROBLEM, BIOKA 68, 258 ROBERTS, F. D. K. NEAREST NEIGHBOURS IN A POISSON ENSEMBLE, BIOKA
- ROBERTS, F. D. K. RANDOM MINIMAL TREES, BIOKA 6B, 255
- ROBERTS, HARRY V. INFORMATIVE STOPPING RULES AND INFERENCES ABOUT POPULATION SIZE, JASA 67, 763
- ROBERTS, HARRY V. PROBABILISTIC PREDICTION, JASA 65, 50
- ROBERTS, S. W. A COMPARISON OF SOME GONTROL CHART PROCEDURES, TECH 66, 411
- ROBERTS, S. W. CONTROL CHART TESTS BASED ON GEOMETRIC MOVING AVERAGES, TECH 59, 239
- ROBERTSON, H. H. APPROXIMATE DESIGN OF DIGITAL FILTERS, TECH 65, 387 ROBERTSON, J. S. M. A GENERAL SIMULATION PROGRAMME FOR MATERIAL FLOW IN BATCH CHEMIGAL PLANTS, TECH 61, 497
- ROBERTSON, JAMES B. ON A PROBLEM IN NON-LINEAR PREDICTION THEORY, AMS 65, 1554
- ROBERTSON, TIM A NOTE ON THE RECIPROCAL OF THE GONDITIONAL EXPECTA-TION OF A POSITIVE RANDOM VARIABLE, AMS 65, 1302
- ROBERTSON, TIM A REPRESENTATION FOR CONDITIONAL EXPECTATIONS GIVEN SIGMA-LATTICES, AMS 66, 1279

- ROBERTSON, TIM ON ESTIMATING A DENSITY WHICH IS MEASURABLE WITH RESPECT TO A SIGMA-LATTICE, AMS 67, 482
- ROBERTSON, TIM ON ESTIMATING MONOTONE PARAMETERS, AMS 6B, 1030
- ROBERTSON, W. H. PROGRAMMING FISHER'S EXACT METHOD OF COMPARING TWO PERCENTAGES, TECH 60, 103
- ROBINSON, J. BALANCED INCOMPLETE BLOCK DESIGNS WITH DOUBLE GROUP-ING OF BLOCKS INTO REPLICATIONS, BIOCS 66, 368
- ROBINSON, J. INCOMPLETE SPLIT PLOT DESIGNS, BIOCS 67, 793
- ROBINSON, P. EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR METHODS OF REPR, BIOCS 65, 447
- ROBINSON, P. NOTES, THE ANALYSIS OF A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING, BIOCS 65, 216
- ROBISON, D. E. DIRECT METHODS FOR EXACT TRUNCATED SEQUENTIAL TESTS OF THE MEAN OF A NORMAL DISTRIBUTION, TECH 69, NO. 4
- ROBISON, D. E. ESTIMATES FOR THE POINTS OF INTERSECTION OF TWO POLYNOMIAL REGRESSIONS, JASA 64, 214
- ROBISON, D. E. SEQUENTIAL LIFE FOR THE EXPONENTIAL DISTRIBUTION WITH CHANGING PARAMETER, TECH 66, 217
 ROBSON, D. S. A NONPARAMETRIC STATISTICAL METHOD FOR CULLING
- RECRUITS FROM A MARK-RECAPTURE EXPERIMENT, BIOCS 65, 936
- ROBSON, D. S. APPLICATIONS OF MULTIVARIATE POLYKAYS TO THE THEORY OF UNBIASED RATIO-TYPE ESTIMATION, JASA 57, 511
- ROBSON, D.S. ESTIMATION OF A TRUNCATION POINT, BIOKA 64, 33
- ROBSON, D. S. MULTIPLE COMPARISIONS WITH A CONTROL IN BALANCED IN-COMPLETE BLOCK DESIGNS, TECH 61, 103
- ROBSON, D. S. UNBIASED COMPONENTWISE RATIO ESTIMATION, CORR. 63 1163, JASA 61, 350
- ROBSON, MARY A TEST OF THE ACCURACY OF A PRODUCTION INDEX, JASA 56, 17 RODEMICH, EUGENE R. APPLICATION OF AN ESTIMATOR OF HIGH EFFICIENCY IN BIVARIATE EXTREME VALUE THEORY, JASA 69, NO. 4
- RODEMICH, EUGENE R. EPSILON ENTROPY OF GAUSSIAN PROCESSES, AMS 69, 1272
- RODEMICH, EUGENE R. EPSILON ENTROPY OF STOCHASTIC PROCESSES. AMS 67,1000
- RODEMICH, EUGENER. PRODUCT ENTROPY TO GAUSSIAN DISTRIBUTIONS, AMS 69, B70
- RODEMICH, EUGENE R. SPECTRAL ESTIMATES USING NONLINEAR FUNCTIONS, AMS 66, 1237
- RODINE, ROBERT H. PERFECT PROBABILITY MEASURES AND REGULAR CONDI-TIONAL PROBABILITIES, AMS 66, 1273
- ROGERS, ANDREI A STOGHASTIC ANALYSIS OF THE SPATIAL CLUSTERING OF RETAIL ESTABLISHMENTS, JASA 65, 1094
- ROGERS, GERALD S. AN APPLICATION OF A GENERALIZED GAMMA DISTRIBU-TION, AMS 64, 1368
- ROGOT, EUGENE A NOTE ON MEASUREMENT ERRORS AND DETECTING REAL DIF-FERENCES, JASA 61, 314
- ROHATGI, M. S. ON THE ASYMPTOTIC SUFFICIENCY OF CERTAIN ORDER STATISTICS, JRSSB 62, 167
- ROHDE, C. A. EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF GOVARIANCE, BIOKA 69, NO. 3
- ROHDE, C. A. UNIFIED LEAST SQUARES ANALYSIS, JASA 65, 523
- ROJAS, B. THE MODIFIED LATIN SQUARE, JRSSB 57, 305
 ROLL, RICHARD SOME PROPERTIES OF SYMMETRIC STABLE DISTRIBUTIONS. JASA 6B. 817
- ROLPH, JOHN E. BAYESIAN ESTIMATION OF MIXING DISTRIBUTIONS, AMS 68. 1289
- ROOT, D. H. THE EXISTENCE OF CERTAIN STOPPING TIMES ON BROWNIAN MO-TION AMS 69 715
- ROOT, DAVID ON CONVERGENCE IN R-MEAN OF NORMALIZED PARTIAL SUMS, AMS 6B, 379
- ROOT, W. L. ON DOMINATING AN AVERAGE ASSOCIATED WITH DEPENDENT GAUS-SIAN VECTORS, AMS 68, 1844
- ROSANDER, A. G. THE USE OF RANDOM WORK SAMPLING FOR COST ANALYSIS AND CONTROL, CORR. 58 1031, JASA 5B, 3B2
- ROSE, GEORGE A TABLE FOR RANK SUM MULTIPLE PAIRED COMPARISONS, TECH 67,561
- ROSEBERRY, THOMAS D. A LARGE SAMPLE SEQUENTIAL TEST, USING CONCOMI-TANT INFORMATION FOR DISCRIMINATION BET, JASA 66, 357
- ROSEBERRY, THOMAS D. A NOTE ON THE VARIANCE OF THE DISTRIBUTION OF SAMPLE NUMBER IN SEQUENTIAL PROBABILIT, TECH 66, 700
- ROSEN, BENGT ON AN INEQUALITY OF HOEFFDING, AMS 67, 3B2
- ROSENBAUM, S. MOMENTS OF A TRUNCATED BIVARIATE NORMAL DISTRIBU-TION, JRSSB 61, 405
- ROSENBAUM, S. ON SOME TWO-SAMPLE NON-PARAMETRIC TESTS, CORR. 66 1249, JASA 65, 1118
- ROSENBERG, L. CORRIGENDA, 'SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE HYPOTHESIS OF EQUAL MEANS UNDER, BIOKA 61, 230
- ROSENBERG, L. SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE HYPOTHESIS OF EQUAL MEANS UNDER VARIANCE HET, BIOKA 60, 345
- ROSENBLATT-ROTH, M. QUANTILES AND MEDIANS, AMS 65, 921
- ROSENBLATT-ROTH, M. SOME THEOREMS CONCERNING THE STRONG LAW OF LARGE NUMBERS FOR NON-HOMOGENEOUS MARKOV C, AMS 64, 566
- ROSENBLATT-ROTH, MILLU SOME LIMIT THEOREMS FOR NON-HOMOGENEOUS MARKOV CHAINS, AMS 66, 1224
- ROSENBLATT, H. M. ON THE ANALYSIS OF MULTIPLE REGRESSION IN K CATEGORIES, BIOKA 57, 67
- ROSENBLATT, HARRY M. SPECTRAL EVALUATION OF BLS AND CENSUS REVISED SEASONAL ADJUSTMENT PROCEDURES, JASA 68, 472

- ROSENBLATT, J. I. CONFIDENCE INTERVALS FOR THE COEFFICIENT OF VARIATION FOR THE NORMAL AND LOC NORMAL DIS, BIOKA 64, 25
- ROSENBLATT, JUDAH NOTE ON MULTIVARIATE COODNESS-OF-FIT TESTS, AMS 62.807
- ROSENBLATT, JUDAH ON FIXED PRECISION ESTIMATION IN TIME SERIES, AMS 69 1021
- ROSENBLATT, JUDAH ON MULTISTACE ESTIMATION. AMS 63. 1452
- ROSENBLATT, JUDAH ON PARTIAL 'A PRIORI' INFORMATION IN STATISTICAL INFERENCE, AMS 67, 1671
- ROSENBLATT, JUDAH ON RANDOM SAMPLINC FROM A STOCHASTIC PROCESS, AMS 64, 1713
- ROSENBLATT, JUDAH QUERY, CONFIDENCE INTERVAL FOR STANDARD DEVIA-TION FROM A SINCLE OBSERVATION, TECH 66, 367
- ROSENBLATT, JUDAH SOME MODIFIED KOLMOGOROV-SMIRNOV TESTS OF AP-PROXIMATE HYPOTHESES AND THEIR PROPERTIES, AMS 62, 513 ROSENBLATT, JUDAH TESTING APPROXIMATE HYPOTHESES IN THE COMPOSITE
- ROSENBLATT, JUDAH TESTS AND CONFIDENCE INTERVALS BASED ON THE MET-
- RIC D2, AMS 63, 61B ROSENBLATT, M. DISTRIBUTION FREE TESTS OF INDEPENDENCE BASED ON THE
- SAMPLE DISTRIBUTION FUNCTION, AMS 61, 4B5
 ROSENBLATT, M. ESTIMATION OF THE BISPECTRUM, AMS 65, 1120
- ROSENBLATT, M. ZERO GROSSING PROBABILITIES FOR GAUSSIAN STATIONARY
- PROCESSES, AMS 62, 1306
- ROSENHEAD. J. AN EXTENSION OF QUENOUILLE'S TEST FOR THE COMPATI-BILITY OF CORRELATION STRUCTURES IN TIME S, JRSSB 68, 180
- ROSENKRANTZ, WALTER A. A LOCAL LIMIT THEOREM FOR A CERTAIN CLASS OF RANDOM WALKS, AMS 66, 855
- ROSENTHAL, IRENE DISTRIBUTION OF THE SAMPLE VERSION OF THE MEASURE OF ASSOCIATION, GAMMA, JASA 66, 440
- ROSENWAIKE, IRA ON MEASURING THE EXTREME AGED IN THE POPULATION, JASA 68, 29
- ROSENWALKE, IRA SEASONAL VARIATION OF DEATHS IN THE UNITED STATES, 1951–1960, JASA 66, 706
- ROSS, A. S. G. THE HAUSA PROBLEM AND SOME APPROXIMATIONS TO THE REQUIRED PROBABILITY, BIOKA 63, 514
- REQUIRED PROBABILITY, BLOKA 63, 514
 ROSS, ALAN VARIANCE ESTIMATES IN 'OPTIMUM' SAMPLE DESIGNS, JASA 61,
 135
- ROSS, JOHN THE TWENTY-SEVEN PER CENT RULE, AMS 64, 214
- ROSS, SHELDON NON-DISCOUNTED DENUMERABLE MARKOVIAN DECISION MODELS, AMS 68, 412
- ROSS, SHELDON M. AN EXAMPLE IN DUNUMERABLE DECISION PROCESSES, AMS 68, 674
- ROSS, SHELDON M ARBITRARY STATE MARKOVIAN DECISION PROCESSES, AMS 68, 2118
- ROSSINC, R. C. A COMPARISON OF CONTINUOUS DISTRIBUTIONS OF PARAME-TERS OF EXPONENTIAL DECAY CURVES, BIOCS 68, 117
- ROTH, ROBERT CURVE FITTING BY SECMENTED STRAIGHT LINES, JASA 69, 1079
- ROTHENBERG, T. A NOTE ON THE EXPECTED VALUE OF AN INVERSE MATRIX, 810KA 69, NO.3
- ROTHENBERG, THOMAS J. A NOTE ON ESTIMATION FROM A CAUCHY SAMPLE, JASA 64, 460
- ROTHWELL, DORIS P. USE OF VARYING SEASONAL WEICHTS IN PRICE INDEX CONSTRUCTION, JASA 5B, 66
- ROUSSAS, G. G. ASYMPTOTIC INFLAENCE IN MARKOV PROCESSES, AMS 65, 978
 ROUSSAS, GEORGE NONPARAMETRIG ESTIMATION OF THE TRANSITION DISTRIBUTION FUNCTION OF A MARKOV PROCESS, AMS 69, 13B6
- ROUSSAS, GEORGE G. ASYMPTOTICALLY MOST POWERFUL TESTS IN MARKOV PROCESSES, AMS 69, 1207
- ROUVIER, R. L'ANALYSE EN COMPOSANTES PRINCIPALES, SON UTILISATION EN GENETIQUE ET SES RAPPORTS AVEC L'ANA, BIOCS 66, 343
- ROUVIER, R. PONDERATION DES VALEURS GENOTYPIQUES DANS LA SELECTION PAR INDEX SUR PLUSIEURS CARACTERES, BIOCS 69, 295
- ROWELL, J. G. THE ANALYSIS OF A FACTORIAL EXPERIMENT (WITH CONFOUND-ING) ON AN ELECTRONIC CALCULATOR, JRSSB 54, 242
- ROY, A. D. A NOTE ON PREDICTION FROM AN AUTOREGRESSIVE PROCESS USING PISTIMETRIC PROBABILITY, JRSSB 60, 97
- ROY, A.D. SOME NOTES ON PISTIMETRIC INFERENCE, JRSS8 60, 33B ROY, L. K. TABLES OF INVERSE GAUSSIAN PERCENTAGE POINTS, TECH 69,
- ROY, S. N. A GENERALIZED MULTIVARIATE ANALYSIS OF VARIANCE MODEL
- USEFULL ESPECIALLY FOR GROWTH CURVE PROB. BIOKA 64, 313 ROY, S. N. A NOTE ON 'FURTHER CONTRIBUTIONS TO MULTIVARIATE CON-
- FIDENCE BOUNDS', BIOKA 5B, 5B1
 ROY, S. N. AN INTRODUCTION TO SOME NON-PARAMETRIC GENERALIZATIONS
- OF ANALYSIS OF VARIANCE AND MULTIVARIAT, BIOKA 56, 361
 ROY, S. N. CORRIGENDA, 'FURTHER CONTRIBUTIONS TO MULTIVARIATE CONFIDENCE BOUNDS', BIOKA 61, 474
- ROY, S. N. EVALUATION OF DETERMINANTS, CHARACTERISTIC EQUATIONS AND THEIR ROOTS FOR A CLASS OF PATTERNED, JRSSB 60, 348
- ROY, S. N. FURTHER CONTRIBUTIONS TO MULTIVARIATE CONFIDENCE BOUNDS, BIOKA 57, 399
- ROY, S. N. ON INVERTING A CLASS OF PATTERNED MATRICES, 810KA 56, 227 ROY, S. N. ON THE MONOTONIC CHARACTER OF THE POWER FUNCTIONS OF TWO MULTIVARIATE TESTS, AMS 61, 1145
- ROY, S. N. TWO-SAMPLE COMPARISONS OF DISPERSION MATRICES FOR ALTER-NATIVES OF INTERMEDIATE SPECIFICITY, AMS 62, 432

- ROYALL, RICHARD AN OLD APPROACH TO FINITE POPULATION SAMPLING THEORY, JASA 68, 1269
- ROYSTON, ERICA STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. III. A NOTE ON THE HISTORY OF THE CR, BIOKA 56, 241
- RUBEN, H. A NEW ASYMPTOTIC EXPANSION FOR THE NORMAL PROBABILITY IN-TECRAL AND MILL'S RATIO, JRSSB 62, 177
- RUBEN, H. CORRICENDA, 'ON THE MOMENTS OF ORDER STATISTICS IN SAMPLES FROM NORMAL POPULATIONS', BIOKA 54, 56B
- RUBEN, H. CORRICENDA, 'ON THE SUM OF SQUARES OF NORMAL SCORES', BIOKA 65, 669
- RUBEN, H. ON THE DISTRIBUTION OF THE WEICHTED DIFFERENCE OF TWO IN-DEPENDENT STUDENT VARIABLES, JRSSB 60, 188
- RUBEN, H. ON THE MOMENTS OF ORDER STATISTICS IN SAMPLES FROM NORMAL POPULATIONS, BIOKA 54, 200
- RUSEN, H. ON THE MOMENTS OF THE RANGE AND PRODUCT MOMENTS OF EXTREME ORDER STATISTICS IN NORMAL SAMPLES, BIOKA 56, 45B
- RUBEN, H. ON THE SUM OF SQUARES OF NORMAL SCORES, BIOKA 56, 456
- RUBEN, H. SOME NEW RESULTS ON THE DISTRIBUTION OF THE SAMPLE COR-RELATION COEFFICIENT, JRSSB 66, 513
- RUBEN, HAROLD A NEW RESULT ON THE DISTRIBUTION OF QUADRATIC FORMS, AMS 63, 15B2
- RUBEN, HAROLD CORRECTION. THE TITLE SHOULD READ 'PROBABILITY CON-TENT OF RECIONS UNDER SPHERICAL NORMAL DI, AMS 61, 620
- RUBEN, HAROLD IRRATIONAL FRACTION APPROXIMATIONS TO MILLS' RATIO, BIOKA 64, 339
- RUSEN, HAROLD PROBABILITY CONTENT OF REGIONS UNDER SPERICAL NORMAL DISTRIBUTIONS, IV, THE DISTRIBUTION OF, AMS 62, 542
- RUBEN, HAROLD PROBABILITY CONTENT OF REGIONS UNDER SPHERICAL NOR-MAL DISTRIBUTIONS, III. THE BIVARIATE NOR, AMS 61, 171
- RUBEN, HAROLD SOME ASPECTS OF THE EMIGRATION-IMMIGRATION PROCESS, AMS 62, 119
- RUSEN, HAROLD THE ESTIMATION OF A FUNDAMENTAL INTERACTION PARAMETER IN AN EMIGRATION-IMMIGRATION PROCESS, AMS 63, 238
- RUBIN, H. DISTRIBUTIONS POSSESSING A MONOTONE LIKELIHOOD RATIO, JASA 56, 637
- RUBIN, HERMAN A CHARACTERIZATION OF THE WISHART DISTRIBUTION, AMS 62,1272
 RUBIN, HERMAN ADMISSIBILITY OF QUANTILE ESTIMATES OF A SINGLE LOCA-
- TION PARAMETER, AMS 64, 1019
 RUBIN, HERMAN FUNCTIONS OF PROCESSES WITH MARKOVIAN STATES, II, AMS
- 69, 865
 RUBIN, HERMAN FUNCTIONS OF PROCESSES WITH MARKOVIAN STATES, AMS 68.
- 938
 RUBIN, HERMAN MULTIVARIATE BETA DISTRIBUTIONS AND INDEPENDENCE
- RUSIN, HERMAN MULTIVARIATE BETA DISTRIBUTIONS AND INDEPENDENCE PROPERTIES OF THE WISHART DISTRIBUTIONS, C. AMS 64, 261 RUSIN, HERMAN ON ROBUST LINEAR ESTIMATORS, AMS 69, 24
- RUBIN. J. ON SOME INVARIANT CRITERIA FOR GROUPING DATA, JASA 67, 1159
- RUDOLPH, G. J. A QUASI-MULTINOMIAL TYPE OF CONTINCENCY TABLE, SASJ 67,59
- RUDOLPH, G. J. ON THE USE AND MISUSE OF GORRECTIONS FOR CONTINUITY, SASJ 6B, B5
- RUDRA, A. DISCRIMINATION IN TIME-SERIES ANALYSIS, BIOKA 52, 434
 RUIZ-MONCAYO, ALBERTO OPTIMAL STOPPING FOR FUNCTIONS OF MARKOV
 CHAINS, AMS 68, 1905
- RUMSEY JR, HOWARD EPSILON ENTROPY OF GAUSSIAN PROCESSES, AMS 69, 1272
- RUMSEY JR, HOWARD JOINT DISTRIBUTIONS WITH PRESCRIBED MOMENTS, AMS 65.286
- RUMSEY JR, HOWARD PRODUCT ENTROPY TO GAUSSIAN DISTRIBUTIONS, AMS 69,870
- RUMSEY JR, HOWARD J. EPSILON ENTROPY OF STOCHASTIC PROCESSES, AMS 67, 1000
- RUSHTON, S. CORRICENDA, 'ON A TWO-SIDED SEQUENTIAL T-TEST', BIOKA 54,568
- RUSHTON, S. ON A TWO-SIDED SEQUENTIAL T-TEST, BIOKA 52, 302
- RUSHTON, S. THE DETERMINISTIC MODEL OF A SIMPLE EPIDEMIC FOR MORE THAN ONE COMMUNITY, BIOKA 55, 126
- RUSSELL, ARCH THE PRESIDENT'S ECONOMIC REPORT, JASA 57, 257
- RUSSELL, J. S. MULTIVARIATE-COVARIANCE AND CANONICAL ANALYSIS, A METHOD FOR SELECTING THE MOST EFFECTIVE, BIOCS 6B, B45
- RUSSELL, T. S. ONE-WAY VARIANCES IN A TWO-WAY CLASSIFICATION, BIOKA 58, 111
- RUTEMILLER, HERBERT C. ESTIMATION IN A HETEROSCEDASTIC REGRESSION MODEL, JASA 6B, 552
 RUTEMILLER, HERBERT C. ESTIMATION OF THE PROBABILITY OF ZERO
- FAILURES IN M BINOMIAL TRIALS, JASA 67, 272
 RUTEMILLER, HERBERT C. POINT ESTIMATION OF RELIABILITY OF A SYSTEM
- COMPRISED OF K ELEMENTS FROM THE SAME, JASA 66, 1029
 RUTENBERG, Y. H. THE USE OF SAMPLE QUASI-RANGES IN SETTING CON-
- FIDENCE INTERVALS FOR THE POPULATION STANDA, JASA 61, 260
 RUTHERFORD, J. R. EPSILON ASYMPTOTIC OPTIMALITY OF EMPIRICAL BAYES
- ESTIMATORS, BIOKA 69, 220

 RUTHERFORD, J. R. SOME EMPIRICAL BAYES TECHNIQUES IN POINT ESTIMATION, BIOKA 69, 133
- RUTHERFORD, J. R. THE EMPIRICAL BAYES APPROACH ESTIMATING POSTERI-OR QUANTILES, BIOKA 67, 672

- RUTHERFORD, J. R. THE EMPIRICAL BAYES APPROACH, ESTIMATING THE PRIOR DISTRIBUTION, BIOKA 67, 326
- RYLL-MARDZEWSKI, C. NON-EXISTENCE OF EVERYWHERE PROPER CONDITIONAL DISTRIBUTIONS, AMS 63, 223
- SAATY, T. L. SOME STOCHASTIC PROCESSES WITH ABSORBING BARRIERS, JRSSB 61, 319
- SABAGH, G. LATENT CLASS ANALYSIS AND DIFFERENTIAL MORTALITY, JASA 62, 430
- SACK, R. A. TREATMENT OF THE NON-EQUILIBRIUM THEORY OF SIMPLE QUEUES BY MEANS OF CUMULATIVE PROBABILITIES, JRSSB 63, 457
- SACKS, J. ASYMPTOTICALLY OPTIMUM SEQUENTIAL INFERENCE AND DESIGN, AMS 63, 705
- SACKS, JEROME A NOTE ON THE SEQUENTIAL T-TEST, AMS 65, 1867
- SACKS, JEROME DESIGNS FOR REGRESSION PROBLEMS WITH CORRELATED ER-RORS, AMS 66, 66
- SACKS, JEROME DESIGNS FOR REGRESSION PROBLEMS WITH CORRELATED ERRORS MANY PARAMETERS, AMS 6B, 49
- SACKS, JEROME GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS, AMS 63.751
- SACKSTEDER, RICHARD A NOTE ON STATISTICAL EQUIVALENCE, AMS 67, 7B7 SACKSTEDER, RICHARD STATISTICAL ISOMORPHISM, AMS 66, 203
- SACKRISON, DAVID J. A CONTINUOUS KIEFER-WOLFOWITZ PROCEDURE FOR RANDOM PROCESSES, CORR. 66 745, AMS 64, 590
- SALEH, A. K. DETERMINATION OF THE EXACT OPTIMUM ORDER STATISTICS FOR ESTIMATING THE PARAMETERS OF EXPONEN, TECH 67, 279
- SALEH. A. K. MD. EHSANES ASYMPTOTIC OPTIMUM QUANTILES FOR THE ESTI-MATION OF THE PARAMETERS OF THE NECATIV, AMS 66, 143
- MATION OF THE PARAMETERS OF THE NECETIVE, AND 65, 143

 SALEH, A K. MD. EHSANES ESTIMATION OF THE PARAMETERS OF THE EXPONENTIAL DISTRIBUTION BASED ON OPTIMUM OR. AMS 66, 1717
- FORENTIAL DISTRIBUTION BASED ON OFTEN ON THE OWN ON, AMS 60, 1717
 SAMPFORD, M. R. CENSORED OBSERVATIONS IN RANDOMIZED BLOCK EXPERIMENTS, JRSSB 59, 214
- SAMPFORD, M. R. METHODS OF CLUSTER SAMPLING WITH AND WITHOUT REPLACEMENT FOR CLUSTERS OF UNEQUAL SIZES, BIOKA 62, 27
- SAMPFORD, M. R. METHODS OF CONSTRUCTION AND ANALYSIS OF SERIALLY BALANCED SEQUENCES, JRSSB 57, 286
- SAMPFORD, M.R. ON SAMPLING WITHOUT REPLACEMENT WITH UNEQUAL PROBABILITIES OF SELECTION, BIOKA 67, 499
- SAMPFORD, M. R. THE TRUNCATED NEGATIVE BINOMIAL DISTRIBUTION, BIOKA 55, 5B
- SAMPSON JR, P. ON HOTELLING'S GENERALIZATION T-SQUARE, BIOKA 59, 160
- SAMPSON, P. F. AN APPLICATION OF STEPWISE REGRESSION TO NON-LINEAR ESTIMATION, TECH 6B, 63
- SAMUEL, ESTER AN EMPIRICAL BAYES APPROACH TO THE TESTING OF CERTAIN PARAMETRIC HYPOTHESES, AMS 63, 1370
- SAMUEL. ESTER ASYMPTOTIC SOLUTIONS OF THE SEQUENTIAL COMPOUND DECISION PROBLEM, AMS 63, 1079
- SAMUEL, ESTER COMPARISON OF SEQUENTIAL RULES FOR ESTIMATION OF THE
- SIZE OF A POPULATION, BIOCS 69, 517
 SAMUEL, ESTER CONVERGENCE OF THE LOSSES OF CERTAIN DECISION RULES
- FOR THE SEQUENTIAL COMPOUND DECISION PR. AMS 64, 1606
 SAMUEL, ESTER ESTIMATORS WITH PRESCRIBED BOUND ON THE VARIANCE FOR
- THE PARAMETERS IN THE BINOMIAL AND POI, JASA 66, 220 SAMUEL, ESTER NOTE ON A SEQUENTIAL CLASSIFICATION PROBLEM, AMS 63, 1095
- SAMUEL, ESTER NOTE ON ESTIMATING ORDERED PARAMETERS, AMS 65, 698
- SAMUEL, ESTER NOTE ON ESTIMATING ORDERED PARAMETERS, AMS 65, 698
 SAMUEL, ESTER ON SIMPLE RULES FOR THE COMPOUND DECISION PROBLEM,
 JRSSB 65, 23B
- SAMUEL, ESTER SEQUENTIAL COMPOUND ESTIMATORS, AMS 65, 879
- SAMUEL, ESTER SEQUENTIAL COMPOUND RULES FOR THE FINITE DECISION PROBLEM. JRSSB 66.63
- SAMUEL, ESTER SEQUENTIAL MAXIMUM LIKELIHOOD ESTIMATION OF THE SIZE OF A POPULATION, AMS 68, 1057

 SAMUELS, S. M. MONOTONE CONVERGENCE OF BINOMIAL PROBABILITIES AND
- A GENERALIZATION OF RAMANUJAN'S EQUATIO, AMS 68, 1191
 SAMUELS, S. M. ON A CHEBYSHEV-TYPE INEQUALITY FOR SUMS OF INDEPEN-
- SAMUELS, S. M. ON A CHEBYSHEV-TYPE INEQUALITY FOR SUMS OF INDEPEN-DENT RANDOM VARIABLES, AMS 66, 248 SAMUELS, S. M., RANDOMIZED RULES FOR THE TWO-ARMED BANDIT WITH FINITE
- MEMORY, AMS 68, 2103
 SAMUELS, S. M. THE MARKOV INEQUALITY FOR SUMS OF INDEPENDENT RANDOM
- VARIABLES, AMS 69, NO.6
- SAMUELS, STEPHEN M. ON THE NUMBER OF SUCCESSES IN INDEPENDENT TRI-ALS, AMS 65, 1272
- SAMUELSON, PAUL A. CONSTRUCTING AN UNBIASED RANDOM SEQUENCE, JASA 6B, 1526
- SAMUELSON, PAULA. HOW DEVIANT CAN YOU BE., JASA 68, 1522
- SANDELIUS, M. A SIMPLE RANDOMIZATION PROCEDURE, JRSSB 62, 472
- SANDELIUS, MARTIN A GRAPHICAL VERSION OF TUKEY'S CONFIDENCE INTER-VAL FOR SLIPPAGE, TECH 68, 193
- SANDIFORD, PETER J. A NEW BINOMIAL APPROXIMATION FOR USE IN SAMPLING FROM FINITE POPULATIONS, JASA 60, 718
- SANDVED, ELSE ANCILLARY STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION PROBLEMS, AMS 68, 1756
- SANGHVI, L. D. DISTANCE BETWEEN POPULATIONS ON THE BASIS OF ATTRIBUTE DATA, BIOCS 68, 859
- SANKARAN, M. ON NAIR'S TRANSFORMATION OF THE CORRELATION COEFFI-CIENT, BIOKA 58, 567

- SANKARAN, M. ON THE NON-CENTRAL CHI-SQUARE DISTRIBUTION, BIOKA 59, 235
- SANKARAN, MUNUSWAMY APPROXIMATIONS TO THE NON-CENTRAL CHI-SQUARE DISTRIBUTION, BIOKA 63. 199
- SANKARAN, MUNUSWAMY ON AN ANALOGUE OF BHATTACHARYA BOUND, BIOKA 64. 268
- SANKARANARAYANAN, G. LIMIT DISTRIBUTION IN THE THEORY OF COUNTERS, CORR. 62 1466, AMS 61, 1271
- SARANGI, J. ASYMPTOTIC EFFICIENCY OF CERTAIN RANK TESTS FOR COM-PARATIVE EXPERIMENT, AMS 67, 90
- SARDANA, M. G. ON THE CONSTRUCTION AND ANALYSIS OF SOME CONFOUNDED ASYMMETRICAL FACTORIAL DESIGNS, BIOCS 65, 94B
 SARGAN, J. D. THE ESTIMATION OF RELATIONSHIPS WITH AUTOCORRELATED
- RESIDUALS BY THE USE OF INSTRUMENTAL VA. JRSSB 59. 91
 SARHAN. A. E. CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND
- SARHAN, A. E. CORRECTION TO AMS 36 427 ESTIMATION OF LOCATION AND SCALE PARAMETERS BY ORDER STATISTICS F, AMS 39, 325
 SARHAN, A. E. ERRATA, 'MODIFIED SQUARE ROOT METHOD OF MATRIX INVER-
- SION', TECH 62, 622 SARHAN, A. E. ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE
- RECTANGULAR POPULATION FROM CENSORED SA, JRSSB 59, 356
 SARHAN, A. E. EVALUATION OF DETERMINANTS, CHARACTERISTIC EQUATIONS
- SANDAN, A. E. EVALUATION OF DETERMINANTS, CHARACTERISTIC EQUATIONS AND THEIR ROOTS FOR A CLASS OF PATTERN, JRSSB 60, 348
 SARHAN, A. E. MATRIX INVERSION, ITS INTEREST AND APPLICATION IN
- ANALYSIS OF DATA, JASA 59.755 SARHAN, A. E. MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION, TECH
- 62, 282
- SARHAN, A. E. ON INVERTING A CLASS OF PATTERNED MATRICES, BIOKA 56, $227\,$
- SARHAN, A. E. SIMPLIFIED ESTIMATES FOR THE EXPONENTIAL DISTRIBUTION. AMS 63, 102
- SARHAN, A. E. TABLES FOR BEST LINEAR ESTIMATES BY ORDER STATISTICS OF THE PARAMETERS OF SINGLE EXPONENTIA, JASA 57, 5B
 SARKAR, A. R. SAMPLING TECHNIQUES FOR ESTIMATION OF INCIDENCE OF RED
- SPIDER MITE ON TEA CROP IN NORTH—EAS, BIOCS 66, 3B5
- SARNDAL, CARL ERIK ESTIMATION OF THE PARAMETERS OF THE GAMMA DISTRIBUTION BY SAMPLE QUANTILES, TECH 64, 405

 SARNDAL, CARL-ERIK A THEOREM ON RANK ORDERS FOR TWO CENSORED SAM-
- PLES, AMS65, 316
 SARNDAL, CARL-ERIK A UNIFIED DERIVATION OF SOME NONPARAMETRIC DIS-
- SARNDAL, CARL-ERIK A UNIFIED DERIVATION OF SOME NONPARAMETRIC DIS-TRIBUTIONS, JASA 64, 1042
- SARNDAL, CARL-ERIK DERIVATION OF A CLASS OF FREQUENCY DISTRIBU-TIONS VIA BAYES'S THEOREM, JRSSB 65, 290
- SARNDAL, CARL-ERIK THE USE OF A STRATIFICATION VARIABLE IN ESTIMATION BY PROPORTIONAL STRATIFIED SAMPLING, JASA 68, 1310
- SASSER, W. EARL A COMPUTER SIMULATION MODEL OF THE TEXTILE INDUSTRY, JASA 67, 133B
- SASSER, W. EARL COMPUTER SIMULATION EXPERIMENTS WITH ECONOMIC SYSTEMS. THE PROBLEM OF EXPERIMENTAL DESIGN, JASA 67, 1315
- SASTRY, A. N. BIOLOGICAL EXAMPLES OF SMALL EXPECTED FREQUENCIES, BIOCS 65, 49
- SATHE, Y. S. APPROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES OF DISPERSION BASED ON SUCCESSIVE DIFFE, BIOKA 57, 349
- SATHE, Y. S. ASYMPTOTIC POWER OF CERTAIN TEST CRITERIA, BASED ON FIRST AND SECOND DIFFERENCES, FOR SERIAL, AMS 62, 186
- SATHE, Y. S. MINIMUM VARIANCE UNBIASED ESTIMATION OF RELIABILITY FOR THE TRUNCATED EXPONENTIAL DISTRIBUTI, TECH 69, 609
- SATHE, Y. S. ON MINIMUM VARIANCE UNBIASED ESTIMATION OF RELIABILI-TY. AMS 69, 710
- SATTERTHWAITE, F. E. QUERY, THE MEAN OF THE TAIL OF A DISTRIBUTION, TECH 64, 331
- TECH 64, 331
 SATTERTHWAITE, F.E. RANDOM BALANCE EXPERIMENTATION, TECH 59, 111
- SATYAMURTY, P. R. A NOTE ON THE QUEUEING SYSTEM M-M-1 WITH BALKING., BIOKA 65. 643
- SAUNDERS, S. C. A STATISTICAL MODEL FOR LIFE-LENGTH OF MATERIALS, JASA 5B, 151
- SAUNDERS, S. C. MULTI-COMPONENT SYSTEMS AND STRUCTURES AND THEIR RELIABILITY, TECH 61, 55
- SAUNDERS, S. C. ON EVALUATION OF WARRANTY ASSURANCE WHEN LIFE HAS A WEIBULL DISTRIBUTION, BIOKA 69, NO. 3
- SAUNDERS, SAM C. COMPARISON OF TWO METHODS OF OBTAINING APPROXIMATE CONFIDENCE INTERVALS FOR SYSTEM RELIA, TECH 68, 37
- SAUNDERS, SAM C. ON CONFIDENCE LIMITS FOR THE RELIABILITY OF SYSTEMS, AMS 68, 1463
- SAUNDERS, SAM C. ON THE DETERMINATION OF A SAFE LIFE FOR CLASSES OF DISTRIBUTIONS CLASSIFIED BY FAILURE R, TECH 68, 361
- SAUNDERS, SAM C. ON THE SAMPLE SIZE AND COVERAGE FOR THE JIRINA SEQUENTIAL PROCEDURE, AMS 63, 847
- SAUNDERS, SAM C. SOME APPLICATIONS OF THE JIRINA SEQUENTIAL PROCEDURE TO OBSERVATIONS WITH TREND, AMS 63, B57
- SAVACE, I. R. A BRANCHING PROCESS WITHOUT REBRANCHING, AMS 69, 1850 SAVACE, I. R. FINE STRUCTURE OF THE ORDERING OF PROBABILITIES OF RANK ORDERS IN THE TWO SAMPLE CASE, AMS 66, 98
- SAVAGE, I. R. FINITE STOPPING TIME AND FINITE EXPECTED STOPPING TIME, JRSSB 65, 284
- SAVAGE, I.R. PUBLICATIONS OF FRANK WILCOXON (1892-1965), BIOCS 67,
- SAVAGE, I. RICHARD A PRODUCTION MODEL AND CONTINUOUS SAMPLING PLAN. JASA 59, 231

- SAVAGE, I. RICHARD NONPARAMETRIC STATISTICS, JASA 57, 331
- SAVAGE, I. RICHARD ON THE INDEPENDENCE OF TESTS OF RANDOMNESS AND OTHER HYPOTHESES, JASA 57, 53
- SAVAGE, I RICHARD STOPPING TIME OF A RANK-ORDER SEQUENTIAL PROBA-BILITY RATIO TEST ON LEHMANN ALTERNATIVE, AMS 66, 1154
- SAVAGE. I RICHARD THE INFORMATION IN A RANK-ORDER AND THE STOPPING TIME OF SOME ASSOCIATED SPRT'S, AMS 68, 1661
- SAVAGE, L. J. DISCUSSION OF 'ON THE FOUNDATIONS OF STATISTICAL IN-FERENCE'. JASA 62. 307
- SAVAGE, L J. FINITE STOPPING TIME AND FINITE EXPECTED STOPPING TIME, JRSSB 65, 284
- SAW. J. G A CONSERVATIVE TEST FOR THE CONCURRENCE OF SEVERAL REGRESSION LINES AND RELATED PROBLEMS, BIOKA 66, 272
- SAW, J. G. A NON-PARAMETRIC COMPARISON OF TWO SAMPLES ONE OF WHICH IS CENSORED, BIOKA 66, 599
- SAW, J. G. A NOTE ON THE ERROR AFTER A NUMBER OF TERMS OF THE DAVID-JOHNSON SERIES FOR THE EXPECTED VALUE. BIOKA 60, 79
- SAW, J. C. CORRIGENDA TO 'MOMENTS OF SAMPLE MOMENTS OF CENSORED SAM-PLES FROM A NORMAL POPULATION', BIOKA 58, 587
- SAW, J. G. EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE DEPEN-DENT WITH SPECIAL REFERENCE TO TYPE II. BIOKA 62, 155
- SAW, J G ESTIMATION OF THE NORMAL POPULATION PARAMETERS GIVEN A TYPE I CENSORED SAMPLE, BIOKA 61, 367
- SAW, J. G ESTIMATION OF THE NORMAL POPULATION PARAMETERS GIVEN A SINGLY CENSORED SAMPLE. BIOKA 59, 150
- SAW, J. C. LINEAR ESTIMATES OF A POPULATION SCALE PARAMETER, BIOKA 67,551
- SAW, J. G. MOMENTS OF SAMPLE MOMENTS OF CENSORED SAMPLES FROM A NOR-
- MAL POPULATION, BIOKA 5B, 211 SAW, J. C. THE BIAS OF THE MAXIMUM LIKELIHOOD ESTIMATES OF THE LOCA-
- TION AND SCALE PARAMETERS GIVEN A TYPE, BIOKA 61, 44B SAW. J. G. THE CURVE THROUGH THE EXPECTED VALUES OF ORDERED VARIATES
- AND THE SUM OF SQUARES OF NORMAL SCO, BIOKA 66, 252 SAW, JOHN G. SOME NOTES ON VARIANCE-RATIO TESTS OF THE GENERAL
- LINEAR HYPOTHESIS, BIOKA 64, 508 SAWA, TAKAMITSU THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST
- SQUARES AND TWO-STAGE LEAST SQUARES EST. JASA 69, 923
- SAXENA, ASHOKK. A NOTE ON CLASSIFICATION, AMS 67, 1592
- SAXENA, K. M LAL INTERVAL ESTIMATION OF THE LARGEST MEAN OF K NORMAL POPULATIONS WITH KNOWN VARIANCES, JASA 69, 296
- SAXENA, R. K. APPLICATION OF SPECIAL FUNCTIONS IN THE CHARACTERIZA-TION OF PROBABILITY DISTRIBUTIONS. SASJ 69, 27
- SAXENA, R. K. DISTRIBUTION OF A PRODUCT AND THE STRUCTURAL SETUP OF DENSITIES, AMS 69, 1439
- SAXENA, R. K. DISTRIBUTIONS OF RANDOM VARIABLES WITH RANDOM PARAME-TERS. SASJ 69. 1
- THE SAMPLING VARIANCE OF THE CORRELATION COEFFI-CIENTS ESTIMATED IN GENETIC EXPERIMENTS, BIOCS 66, 187
- SCHAAFSMA, W. A COMPARISON OF THE MOST STRINCENT AND THE MOST STRIN-GENT SOMEWHERE MOST POWERFUL TEST FOR, AMS 68, 531
- SCHAAFSMA, W. MOST STRINGENT SOMEWHERE MOST POWERFUL TESTS AGAINST ALTERNATIVE RESTRICTED 8Y A NUMBER OF, AMS 66, 1161
- SCHAAFSMA, WILLEM MINIMAX RISK AND UNBIASEDNESS FOR MULTIPLE DECI-SION PROBLEMS OF TYPE I. AMS 69, 1684
- SCHACH, S. NONPARAMETRIC SYMMETRY TESTS FOR CIRCULAR DISTRIBU-
- TIONS, 8IOKA 69, NO.3 SCHACH, SIEGFRIED ON A CLASS OF NONPARAMETRIC TWO-SAMPLE TESTS FOR CIRCULAR DISTRIBUTIONS, AMS 69, 1791
- SCHACH, SIEGFRIED THE ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNCTIONS OF THE TWO-SAMPLE RANK VECTOR, AMS 69, 1011
- SCHAEFFER, ESTHER COMPUTATION WITH MULTIPLE K-STATISTICS, JASA 63.
- SCHATZOFF. M EXACT DISTRIBUTIONS OF WILKS'S LIKELIHOOD RATIO CRITERION, 810KA 66, 347
- SCHATZOFF, M. EXPECTED SIGNIFICANCE LEVEL AS A SENSITIVITY INDEX FOR TEST STATISTICS, JASA 65, 420
- SCHATZOFF, MARTIN APPLICATIONS OF TIME-SHARED COMPUTERS IN A STATISTICS CURRICULUM, JASA 68, 192
- SCHATZOFF, MARTIN EFFICIENT CALCULATION OF ALL POSSIBLE REGRES-SIONS, TECH 68, 769
- SCHATZOFF, MARTIN SENSITIVITY COMPARISONS AMONG TESTS OF THE GENERAL LINEAR HYPOTHESIS, JASA 66, 415
- SCHAUFELE, RONALD LIMIT THEOREMS FOR MARKOV RENEWAL PROCESSES, AMS
- SCHAUFELE, RONALD THE EXISTENCE AND UNIQUENESS OF STATIONARY MEA-SURES FOR MARKOV RENEWAL PROCESSES, AMS 66, 1439
- SCHAUFELE, RONALD A. A POTENTIAL THEORETIC PROOF OF A THEOREM OF DERMAN AND VEINOTT, AMS 67, 585
- SCHEAFFER, RICHARD L. SAMPLING MIXTURES OF MULTI-SIZED PARTICLES. AN APPLICATION OF RENEWAL THEORY, TECH 69, 285
- SCHEFFE, H. REPLY TO MR QUENOUILLE'S COMMENTS ABOUT MY PAPER ON MIX-TURES, JRSSB 61, 171
- SCHEFFE, HENRY A METHOD FOR JUDGING ALL CONTRASTS IN THE ANALYSIS OF VARIANCE (CORR. 69 229). CORR. 69 22, BIOKA 53, 87
- SCHEFFE, HENRY EXPERIMENTS WITH MIXTURES (CORR. 59 238), JRSS8 58,
- SCHEFFE, HENRY FITTING STRAIGHT LINES WHEN ONE VARIABLE IS CON-TROLLED, JASA 58, 106

- SCHEFFE, HENRY THE SIMPLEX-CENTROID DESIGN FOR EXPERIMENTS WITH MIXTURES (WITH DISCUSSION), JRSSB 63, 235
- SCHEINOK, P. ESTIMATION OF A COMPONENT OF A CONVOLUTION, WHEN THE OTHER COMPONENT IS OF EXPONENTIAL TYPE, TECH 64, 222
- SCHEINOK, PERRY A. ERRATA, 'ESTIMATION OF A COMPONENT OF A CONVOLU-TION, WHEN THE OTHER COMPONENT IS OF EX, TECH 65, 462
- SCHEINOK, PERRY A. SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVA-TIONS, THE BINOMIAL CASE, AMS 65, 971
- SCHEUER, E. M. CONFIDENCE SETS FOR MULTIVARIATE MEDIANS, AMS 61, 477 SCHEUER, E. M. ON THE GENERATION OF NORMAL RANDOM VECTORS, TECH 62,
- SCHEUER, E. M. STATISTICAL ESTIMATION PROCEDURES FOR THE 'BURN-IN' PROCESS, TECH 6B, 51
- SCHEUER, ERNEST M. MOMENTS OF THE RADIAL ERROR, CORR. 65 1251, JASA 62, 187
- SCHEUER, ERNEST M. RELIABILITY CROWTH DURING A DEVELOPMENT TESTING PROCRAM, TECH 66, 53
- SCHEUER, ERNEST M. SOME PERCENTACE POINTS OF THE NON-CENTRAL T-DIS-TRIBUTION, CORR. 63 1163, JASA 63, 176
- SCHILLING, E. G. PROCEDURES AND TABLES FOR EVALUATING DEPENDENT MIXED ACCEPTANCE SAMPLINC PLANS, TECH 69, 341
- SCHLAIFER, ROBERT THE FOUNDATIONS OF DECISION UNDER UNCERTAINTY, AN ELEMENTARY EXPOSITION, JASA 64, 353
- SCHLEIFER JR, ARTHUR S. TWO-STACE NORMAL SAMPLING IN TWO-ACTION PROBLEMS WITH LINEAR ECONOMICS, JASA 69, NO.4
- SCHMITT, ROBERT C. A METHOD OF ESTIMATING THE INTERCENSAL POPULA-TION OF COUNTIES, JASA 56, 587
- SCHMITZ, N. A NOTE ON HOEFFDING'S INEQUALITY, JASA 69, 907
- SCHNEIDER, B. A SCREENING SYSTEM FOR ANTI-CANCER ACENTS BASED ON THE THERAPEUTIC INDEX, BIOCS 65, 150
- SCHNEIDERMAN, M. A A FAMILY OF CLOSED SEQUENTIAL PROCEDURES (CORR. 69 457), BIOKA 62, 41
- SCHNEIDERMAN, M. A. BOUNDARIES FOR CLOSED (WEDGE) SEQUENTIAL TIEST PLANS, BIOKA 66, 431
- SCHNEIDERMAN, M. A. CLOSED SEQUENTIAL T-TESTS, BIOKA 62, 359
- SCHNORE, LEO F. THREE SOURCES OF DATA ON COMMUTING, PROBLEMS AND POSSIBILITIES, JASA 60, 8
- SCHOEMAN, A. COMPARISON OF THE SENSITIVITIES OF SIMILAR INDEPEN-DENT AND NON-INDEPENDENT EXPERIMENTS, BIOKA 69, 17
- SCHUCANY, W. R. ON THE EVALUATION OF DISTRIBUTION FUNCTIONS, JASA 6B,715 SCHULER, W. MULTISTAGE SAMPLINC PROCEDURES BASED ON PRIOR DIS-
- TRIBUTIONS AND COSTS, AMS 67, 464 SCHULL, WILLIAM J. ON THE ROBUSTNESS OF THE T-SQUARE-SUB-O TEST IN
- MULTIVARIATE ANALYSIS OF VARIANCE WHEN, BIOKA 64, 71 SCHULZER, M. CONTRIBUTIONS TO THE K-SAMPLE PROBLEM, A SYMMETRIC
- STATISTIC, AMS 69, NO.6 SCHUMANN, D. E. W. COMPARISON OF THE SENSITIVITIES OF SIMILAR INDE-
- PENDENT AND NON-INDEPENDENT EXPERIMENTS, BIOKA 69, 17 SCHUSTER, EUCENE F. ESTIMATION OF A PROBABILITY DENSITY FUNCTION
- AND ITS DERIVATIVES, AMS 69, 1187 SCHUTZ, W. M. THE EFFECT OF FIELD BLOCKING ON GAIN FROM SELECTION,
- BIOCS 66 843 SCHUTZENBERGER, M. P. ON A SPECIAL CLASS OF RECURRENT EVENTS, AMS
- 61.1201 SCHWARTZ, D. LES MANQUANTS DANS L'ESSAI THERAPEUTIQUE, BIOCS 67.
- 145 SCHWARTZ, GIDEON ASYMPTOTIC SHAPES OF SAYES SEQUENTIAL TESTING RE-
- GIONS, AMS 62, 224 SCHWARTZ, LORRAINE CONSISTENT ESTIMATES AND ZERO-ONE SETS, AMS 64,
- SCHWARTZ, R. ADMISSIBLE BAYES CHARACTER OF T-SQUARED, R-SQUARED AND OTHER FULLY INVARIANT TESTS FOR CLASS, AMS 65, 747
- SCHWARTZ, RICHARD ADMISSIBLE TESTS IN MULTIVARIATE ANALYSIS OF VARIANCE, AMS 67, 698
- SCHWARTZ, RICHARD E. INVARIANT PROPER BAYES TESTS FOR EXPONENTIAL FAMILIES, AMS 69, 270
- SCHWARTZ, RICHARD E. LOCALLY MINIMAX TESTS, AMS 67, 340
- SCHWARTZ, S. C. ON DOMINATING AN AVERAGE ASSOCIATED WITH DEPENDENT GAUSSIAN VECTORS, AMS 68, 1844
- SCHWARTZ, STUART C. ESTIMATION OF PROBABILITY DENSITY 8Y AN ORTHOGONAL SERIES, AMS 67, 1261
- SCHWARZ, GIDEON A SECOND-ORDER APPROXIMATION TO OPTIMAL SAMPLING REGIONS, AMS 69, 313
- SCHWARZ, GIDEON ASYMPTOTIC SHAPES FOR SEQUENTIAL TESTING OF TRUN-CATION PARAMETERS, AMS 68, 2038
- SCLOVE, S. L. ESTIMATING THE PARAMETERS OF A CONVOLUTION, JRSSB 69,
- SCLOVE, STANLEY L. IMPROVED ESTIMATORS FOR COEFFICIENTS IN LINEAR REGRESSION, JASA 68, 596
- SCOTT, A. A MULTI-STACE TEST FOR A NORMAL MEAN, JRSS8 68, 461
- SCOTT, A. J. A NOTE ON AN ALLOCATION PROBLEM, JRSS8 69, 119
- SCOTT, ALAST IR A NOTE ON CONSERVATIVE CONFIDENCE RECIONS FOR THE MEAN OF A MULTIVARIATE NORMAL, AMS 67, 278
- SCOTT, ALASTAIR ESTIMATION IN MULTI-STAGE SURVEYS, JASA 69, 830 SCOTT, ELIZABETH L. ASYMPTOTICALLY OPTIMAL TESTS OF COMPOSITE
- HYPOTHESES FOR RANDOMIZED EXPERIMENTS WITH, JASA 65, 699 SCOTT, ELIZABETH L. FURTHER COMMENTS ON THE 'FINAL REPORT OF THE AD-

- SCOTT, ELIZABETH L. STATISTICAL APPROACH TO PROBLEMS OF COSMOLOCY (WITH DISCUSSION), JRSSB 5B. 1
- SCOTT, J. F. A NUMERICAL INVESTIGATION OF LEAST SQUARES REGRESSION INVOLVING TREND-REDUCED MARKOFF SERIES, JRSSB 55, 105
- SCOTTMAYNES, E. MINIMIZING RESPONSE ERRORS IN FINANCIAL DATA. THE POSSIBILITIES, JASA 6B, 217
- SCULTHORPE, DIANE SOME PROBLEMS OF STATISTICAL PREDICTION, BIOKA 65, 469
- SEAL, H. L. STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS.
 XV. THE HISTORICAL DEVELOPMENT OF THE C, BIOKA 67, 1
- SEAL, K. C. A SINGLE SAMPLING PLAN FOR CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATION LIMIT, JASA 59, 248
- SEAL, K. C. ON RANKINC PARAMETERS OF SCALE IN TYPE III POPULATIONS, JASA 5B, 164
- SEAL, K. E. SERIAL DESIGNS FOR ROUTINE QUALITY CONTROL AND EXPERI-MENTATION, TECH 64, 77
- SEARLE, S. R. A DISCONTINUITY IN MIXED MODEL ANALYSIS, BIOCS 69, 573
 SEARLE, S. R. A REMARK ON SOLVINC EQUATIONS IN SUMS OF POWERS, JRSSB
 6R. 567
- SEARLE, S. R. ADDITIONAL RESULTS CONCERNING ESTIMABLE FUNCTIONS
 AND GENERALIZED INVERSE MATRICES. JRSSB 65, 486
- SEARLE, S. R. ANOTHER LOOK AT HENDERSON'S METHODS OF ESTIMATING VARIANCE COMPONENTS (WITH DISCUSSION), BIOCS 68, 749
- SEARLE, S. R. THE VALUE OF INDIRECT SELECTION, 1. MASS SELECTION, BIOCS 65, 682
- SEARLE, S. R. VARIANCE COMPONENTS IN THE UNBALANCED TWO-WAY NESTED CLASSIFICATION, AMS 61, 1161
- SEARLS, DONALD T. AN ESTIMATOR FOR A POPULATION MEAN WHICH REDUCES THE EFFECT OF LARGE TRUE OBSERVATIONS, JASA 66, 1200
- SEARLS, DONALD T. ON THE PROBABILITY OF WINNING WITH DIFFERENT TOUR-NAMENT PROCEDURES, JASA 63, 1064
- SEARLS, DONALD T. THE UTILIZATION OF A KNOWN COEFFICIENT OF VARIA-TION IN THE ESTIMATION PROCEDURE, JASA 64, 1225
- SEBAUGH, JEANNE L. A GENERALIZATION OF THE LOGISTIC LAW OF CROWTH, BIOCS 69, 577
- SEBER, G. A. F. A NOTE ON THE MULTIPLE-RECAPTURE CENSUS., BIOKA 65, 249
- SEBER, G. A. F. LINEAR HYPOTHESES AND INDUCED TESTS, BIOKA 64, 41
- SEBER, G. A. F. ORTHOCONALITY IN ANALYSIS OF VARIANCE, AMS 64, 705 SEBER, G. A. F. THE LINEAR HYPOTHESIS AND IDEMPOTENT MATRICES, JRSSB
- SEBER, G. A. F. THE LINEAR HYPOTHESIS AND IDEMPOTENT MATRICES, JRSSE 64, 261
- SEBER, G. A. F. THE LINEAR HYPOTHESIS AND LARCE SAMPLE THEORY, AMS 64,773
- SEBER, G. A. F. THE MULTI-SAMPLE SINGLE RECAPTURE CENSUS, BIOKA 62, 339
- SEBER, G. A. F. THE NON-CENTRAL CHI-SQUARED AND BETA DISTRIBUTIONS, BIOKA 63, 542
- SEDRANSK, J. A DOUBLE SAMPLING SCHEME FOR ANALYTICAL SURVEYS, JASA 65, 985
- SEDRANSK, J. AN APPLICATION OF SEQUENTIAL SAMPLING TO ANALYTICAL SURVEYS, BIOKA 66, B5
- SEDRANSK, J. ANALYTICAL SURVEYS WITH CLUSTER SAMPLING, JRSSB 65.
- SEDRANSK, J. DESIGNING SOME MULTI-FACTOR ANALYTICAL STUDIES, JASA
- 67,1121 SEDRANSK, J. PLANNING SOME TWO-FACTOR COMPARATIVE SURVEYS, JASA
- 69, 560 SEEGER, PAUL A NOTE ON A METHOD FOR THE ANALYSIS OF SIGNIFICANCE EN MASSE, TECH 68, 586
- SEIDEN, ESTHER A NOTE ON CONSTRUCTION OF PARTIALLY BALANCED IN-COMPLETE BLOCK DESIGNS WITH PARAMETERS V=28, AMS 66, 17B3
- SEIDEN, ESTHER ON A CEOMETRICAL METHOD OF CONSTRUCTION OF PARTIALLY BALANCED DESIGNS WITH TWO ASSOCIATE C, AMS 61, 1177
- SEIDEN, ESTHER ON NECESSARY CONDITIONS FOR THE EXISTENCE OF SOME SYMMETRICAL AND UNSYMMETRICAL TRIANCULAR, AMS 63, 34B
- SEIDEN, ESTHER ON ORTHOGONAL ARRAYS, AMS 66, 1355
- SEIGMUND, DAVID EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS RELATED TO S-SUB-N-OVER-N, AMS 6B, 1228
- SELBY, B. GIRDLE DISTRIBUTIONS ON A SPHERE, BIOKA 64, 381
- SELBY, B. THE INDEX OF DISPERSION AS A TEST STATISTIC.. BIOKA 65, 627
 SEN, A. R. SAMPLING TECHNIQUES FOR ESTIMATION OF INCIDENCE OF RED
 SPIDER MITE ON TEA CROP IN NORTH-EAST 1, BIOCS 66, 3B5
- SEN, P. K. A GENERALIZATION OF THE T-METHOD OF MULTIPLE COMPARISONS, JASA 69, 290
- SEN, P. K. A NOTE ON THE ASYMPTOTIC EFFICIENCY OF FRIEDMAN'S CHI-SQUARE-SUB-R-TEST, BIOKA 67, 677
- SEN, P. K. ASYMPTOTICALLY EFFICIENT TESTS BY THE METHOD OF N RANKINGS, JRSSB 68, 312
- SEN, P. K. ON A CLASS OF CONDITIONALLY DISTRIBUTION-FREE TESTS FOR INTERACTIONS IN FACTORIAL EXPERIMENTS, AMS 69, 658
- SEN, P. K. ON SOME PROPERTIES OF THE ASYMPTOTIC VARIANCE OF THE SAM-PLE QUANTILES AND MID-RANGES, JRSSB 61, 453
- SEN, P. K. PAIRED COMPARISONS FOR PAIRED CHARACTERISTICS, AMS 6B, 200
- SEN, P. K. SOME ASPECTS OF THE STATISTICAL ANALYSIS OF THE 'MIXED MODEL', BIOCS 68, 27
- SEN, P. K. SOME FURTHER APPLICATIONS OF NON-PARAMETRIC METHODS IN DILUTION (-DIRECT) ASSAYS, BIOCS 65, 799

- SEN, PRANAB KUMAR ANALYSIS OF COVARIANCE BASED ON CENERAL RANK SCORES. AMS 69. 610
- SEN, PRANAB KUMAR ASYMPTOTIC NORMALITY OF SAMPLE QUANTILES FOR M-DEPENDENT PROCESSES, AMS 68, 1724 SEN, PRANAB KUMAR ASYMPTOTICALLY MOST POWERFUL RANK ORDER TESTS FOR
- CROUPED DATA, AMS 67, 1229
- SEN, PRANAB KUMAR ESTIMATES OF THE RECRESSION COEFFICIENT BASED ON KENDALL'S TAU, JASA 68, 1379
- SEN, PRANAB KUMAR NONPARAMETRIC CONFIDENCE REGIONS FOR SOME MUL-TIVARIATE LOCATION PROBLEMS, JASA 68, 1373 SEN, PRANAB KUMAR ON A CLASS OF RANK ORDER TESTS FOR THE PARALLELISM
- SEN, PRANAB KUMAR ON A CLASS OF RANK ORDER TESTS FOR THE PARALLELISM OF SEVERAL REGRESSION LINES, AMS 69, 166B
- SEN, PRANAB KUMAR ON A DISTRIBUTION-FREE METHOD OF ESTIMATING ASYMPTOTIC EFFICIENCY OF A CLASS OF NONPARA, AMS 66, 1759
- SEN. PRANAB KUMAR ON A FURTHER ROBUSTNESS PROPERTY OF THE TEST AND ESTIMATOR BASED ON WILCOXON'S SIGNED R, AMS 68, 2B2
- SEN, PRANAB KUMAR ON CHERNOFF-SAVACE TESTS FOR ORDERED ALTERNATIVES IN RANDOMIZED BLOCKS, AMS 68, 967
- SEN, PRANAB KUMAR ON ROBUST ESTIMATION IN INCOMPLETE BLOCK DESIGNS, AMS 67, 1587
- SEN, PRANAB KUMAR ON SOME OPTIMUM NONPARAMETRIC PROCEDURES IN TWO-WAY LAYOUTS, JASA 67, 1214
- SEN, PRANAB KUMAR ON THE THEORY OF RANK ORDER TESTS FOR LOCATION IN THE MULTIVARIATE ONE SAMPLE PROBLEM, AMS 67, 1216
- SEN, PRANAB KUMAR ROBUSTNESS OF SOME NONPARAMETRIC PROCEDURES IN LINEAR MODELS, AMS 68. 1913
- SEN, PRANAB KUMAR SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT TIME SERIES, JASA 65, 134
- SEN. PRANEA KUMAR ON SOME MULTISAMPLE PERMUTATION TESTS BASED ON A CLASS OF U-STATISTICS, JASA 67, 1201
- SENETA, E. ON RECENT THEOREMS CONCERNING THE SUPERCRITICAL CALTON-WATSON PROCESS, AMS 68, 209B
- SENETA, E. QUASI-STATIONARY DISTRIBUTIONS AND TIME-REVERSION IN GENETICS (WITH DISCUSSION), JRSSB 66, 253
- SENETA, E. THE STATIONARY DISTRIBUTION OF A BRANCHING PROCESS AL-LOWING IMMIGRATION, A REMARK ON THE CRITI, JRSSB 6B, 176
- SERFLING, R. J. APPROXIMATELY OPTIMAL STRATIFICATION, JASA 6B,
- SERFLING, R. J. CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES, AMS 6B, 115B
- VARIABLES, AMS 6B, 110B SERFLING, R. J. THE WILCOXON TWO-SAMPLE STATISTIC ON STRONGLY MIX-ING PROCESSES, AMS 6B, 1202
- SESHADRI, V. A CHARACTERISTIC PROPERTY OF THE MULTIVARIATE NORMAL DISTRIBUTION, AMS 66, 1829
- SESHADRI, V. CHARACTERIZATION THEOREMS FOR SOME UNIVARIATE PROBA-BILITY DISTRIBUTIONS, JRSSB 64, 2B6
- SESHADRI, V. COMPARISON OF COMBINED ESTIMATORS IN BALANCED IN-COMPLETE BLOCKS, AMS 66, 1832
- SESHADRI, VANAMAMALAI CONSTRUCTING UNIFORMLY BETTER ESTIMATORS, JASA 63, 172
- SETH, ASHA THE CORRELATED UNRESTRICTED RANDOM WALK, JRSSB 63, 394
- SETHI, V. K. RANDOMIZED ROUNDED-OFF MULTIPLIERS IN SAMPLING THEORY, JASA 61, 328
- SETHI. V. K. STRATIFICATION, A PRACTICAL INVESTICATION, JASA 66, 74 SETHURAMAN, J. ON THE PROBABILITY OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS, AMS 64, 1304
- SETHURAMAN, J. ON THE PROBABILITY OF LARGE DEVIATIONS OF THE MEAN FOR RANDOM VARIABLES IN AN INTERVAL OF. AMS 65, 2B0
- SETHURAMAN, J. STOPPING TIME OF A RANK-ORDER SEQUENTIAL PROBABILI-TY RATIO TEST ON LEHMANN ALTERNATIVES, C, AMS 66, 1154
- SEVERO, N. C. MEASUREMENTS MADE BY MATCHING WITH KNOWN STANDARDS, TECH 59, 101
- SEVERO, N. C. NORMAL APPROXIMATION TO THE CHI-SQUARE AND NON-CEN-TRALF PROBABILITY FUNCTIONS, BIOKA 60, 411
- SEVERO, N. C. THE PROBABILITIES OF SOME EPIDEMIC MODELS, BIOKA 69, 197
- SEVERO, N. C. THE SIMPLE STOCHASTIC EPIDEMIC FOR SMALL POPULATIONS WITH ONE OR MORE INITIAL INFECTIVES, BIOKA 69, 183
- SEVERO, NORMAN C. DISTRIBUTION OF TOTAL SERVICE TIME FOR A FIXED OB-SERVATION INTERVAL, JASA 62, 376
- SHAH, B. DISTRIBUTION OF DEFINITE AND OF INDEFINITE QUADRATIC FORMS FROM A NON-CENTRAL NORMAL DISTRIBUTIO, AMS 63, 1B6
- SHAH, B. NOTE. A METHOD OF FITTING A NON-LINEAR CURVE CONTAINING A SINGLE NON-LINEARITY, BIOCS 65, 506
- SHAH, B. K. A METHOD OF FITTING THE RECRESSION CURVE E(Y)=A+DX+BC-TO-X, TECH 65, 59
- SHAH, B. K. A NOTE ON CRAIC'S PAPER ON THE MINIMUM OF BINOMIAL VARIATES, BIOKA 66, 614
- SHAH, B. K. BEST LINEAR UNBIASED ESTIMATORS OF THE PARAMETERS OF THE LOGISTIC DISTRIBUTION USING ORDER ST, TECH 67, 43
- SHAH, B. K. DISTRIBUTION OF A DEFINITE QUADRATIC FORM FOR NON-CEN-TRAL NORMAL VARIATES, CORR. 63 673, AMS 61, 883 SHAH, B. K. ON THE BIVARIATE MOMENTS OF ORDER STATISTICS FROM A LO-
- GISTIC DISTRIBUTION, AMS 66, 1002
- SHAH, BHUPENDRA K. EXACT MOMENTS AND PERCENTAGE POINTS OF THE ORDER STATISTICS AND THE DISTRIBUTION OF TH, AMS 65, 907
- SHAH, K. R. UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL AR-RANGEMENTS WITH CONFOUNDINC, JASA 67, 638

- SHAH, K. R. USE OF INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY BETTER ESTIMATORS, AMS 64, 1064
- SHAH, S. M. A NOTE ON CRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF TAU AS A COEFFICIENT OF DISARRAY', JASA 61, 736
- SHAH, S. M. AN UPPER BOUND FOR THE NUMBER OF DISJOINT BLOCKS IN CER-TAIN PARTIALLY BALANCED INCOMPLETE BLO, AMS 64, 398
- SHAH, S. M. BOUNDS FOR THE NUMBER OF COMMON TREATMENTS BETWEEN ANY
- TWO BLOCKS OF CERTAIN PARTIALLY BALANC, AMS 65, 337 SHAH, S. M. ON ESTIMATING THE PARAMETER OF A DOUBLY TRUNCATED
- BINOMIAL DISTRIBUTION, JASA 66, 259 SHAH, S. M. ON THE BLOCK STRUCTURES OF CERTAIN PARTIALLY BALANCED
- INCOMPLETE BLOCK DESIGNS, CORR. 67 624, AMS 66, 1016 SHAH, S. M. THE ASYMPTOTIC VARIANCES OF METHOD OF MOMENTS ESTIMATES
- OF THE PARAMETERS OF THE TRUNCATED BI, JASA 61, 990 SHAKKUN, MELVIN F. MULTIVARIATE ACCEPTANCE SAMPLING PROCEDURES FOR
- GENERAL SPECIFICATION ELLIPSOIDS, JASA 65, 905 SHAMAN, P. ON THE INVERSE OF THE COVARIANCE MATRIX OF A FIRST ORDER
- MOVING AVERACE, BIOKA 69, NO.3 SHAMAN, PAUL SAMPLING RATES AND APPEARANCE OF STATIONARY GAUSSIAN
- PROCESSES, TECH 66, 91 SHANBHAG, D. N. A NOTE ON QUEUEINC SYSTEMS WITH ERLANCIAN SERVICE
- TIME DISTRIBUTIONS, AMS 65, 1574 SHANBHAG, D. N. ON A CENERALIZED QUEUEING SYSTEM WITH POISSON AR-
- RIVALS, JRSSB 66, 456 SHANBHAG, D. N. ON THE INDEPENDENCE OF QUADRATIC FORMS, JRSSB 66,
- SHANBHAC. D. N. SOME REMARKS CONCERNING KHATRI'S RESULT ON
- QUADRATIC FORMS, BIOKA 68, 593 SHANE, HAROLD D. RANK ORDER TESTS FOR MULTIVARIATE PAIRED COM-
- PARISONS, AMS 69, NO.6 SHAPIRO, S. S. A COMPARATIVE STUDY OF VARIOUS TESTS FOR NORMALITY,
- JASA 68, 1343 SHAPIRO, S. S. AN ANALYSIS OF VARIANCE TEST FOR NORMALITY (COMPLETE
- SAMPLES), BIOKA 65, 591 SHAPIRO, S. S. APPROXIMATIONS FOR THE NULL DISTRIBUTION OF THE W-
- STATISTIC+ (TEST FOR NORMALITY), TECH 68, 861 SHAPIRO, S. S. THE JOINT ASSESSMENT OF NORMALITY OF SEVERAL INDEPEN-
- DENT SAMPLES, TECH 68, 825 SHARMA, D. POWER OF TUKEY'S TEST FOR NON-ADDITIVITY, JRSSB 63, 213 SHARMA, DIVAKAR ON THE INTERPRETATION OF ACE DISTRIBUTIONS, JASA
- 67.862 SHARPE, MICHAEL SAMPLE PATH VARIATIONS OF HOMOGENEOUS PROCESSES.
- AMS 69. 399 SHARPE, MICHAEL J. ZEROES OF INFINITELY DIVISIBLE DENSITIES, AMS
- 69,1503 SHENTON, L. R. CORRIGENDA, 'MOMENT ESTIMATORS AND MAXIMUM
- LIKELIHOOD.', BIOKA 59, 502 SHENTON. L. R. CORRICENDA, 'MOMENT ESTIMATORS AND MAXIMUM
- LIKELIHOOD', 810KA 61, 474 SHENTON, L. R. DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RECUR-
- RENTS EVENTS (WITH DISCUSSION), JRSSB 57, 64 SHENTON, L. R. EFFICIENCY OF THE METHOD OF MOMENTS AND THE CRAM-
- CHARLIER TYPE ADISTRIBUTION, 810KA51, 58 SHENTON, L. R. HICHER MOMENTS OF A MAXIMUM-LIKELIHOOD ESTIMATE,
- JRSSB 63, 305 SHENTON, L. R. INEQUALITIES FOR THE NORMAL INTEGRAL INCLUDING A NEW
- CONTINUED FRACTION, 810KA 54, 177 SHENTON, L. R. MOMENT ESTIMATORS AND MAXIMUM LIKELIHOOD, BIOKA 58,
- 411 SHENTON, L. R. MOMENTS OF A SERIAL CORRELATION COEFFICIENT, JRSSB 65.308
- SHENTON, L. R. REMARKS ON LARCE SAMPLE ESTIMATORS FOR SOME DISCRETE DISTRIBUTIONS, TECH 67, 587
- SHENTON, L. R. THE BIAS OF MOMENT ESTIMATORS WITH AN APPLICATION TO THE NECATIVE BINOMIAL DISTRIBUTION, BIOKA 62, 193
- SHENTON, L. R. THE DISTRIBUTION OF MOMENT ESTIMATORS, BIOKA 59, 296 SHENTON, L. R. THE EFFICIENCY OF AUTOMATIC WINDING MACHINES WITH CONSTANT PATROLLING TIME, JRSSB 59, 381
- SHENTON, L. R. THE MILLS RATIO AND THE PROBABILITY INTEGRAL FOR A PEARSON TYPE IV DISTRIBUTION., 810KA 65, 119
- SHEPP, L. A. A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS, AMS 67, 1912
- SHEPP, L. A. ALIMITLAW CONCERNING MOVING AVERAGES, AMS 64, 424
- SHEPP, L. A. A LOCAL LIMIT THEOREM. AMS 64, 419 SHEPP, L. A. DISTINCUISHING A SEQUENCE OF RANDOM VARIABLES FROM A TRANSLATE ITSELF, AMS 65, 1107
- EXPLICIT SOLUTIONS TO SOME PROBLEMS OF OPTIMAL SHEPP, L. A. STOPPING, AMS 69, 993
- SHEPP, L. A. RADON-NIKODYM DERIVATIVES OF GAUSSIAN MEASURES, AMS
- SHEPS, M. C. GHARAGTERISTIGS OF A RATIO USED TO ESTIMATE FAILURE RATES, OGGURRENCES PER PERSON YEAR OF EX, 810GS 66, 310
- SHEPS, MINDEL C. MAMMALIAN REPRODUCTIVE DATA FITTED TO A MATHEMATI-CAL MODEL, 810GS 69, 529
- SHERMAN, 8. ESTIMATION OF PARAMETERS IN A TRANSIENT MARKOV GHAIN ARISING IN A RELIABILITY GROWTH MODEL, AMS 69, 1542
- SHERMAN, ELLEN A NOTE ON MULTIPLE GOMPARISONS USING RANK SUMS, TEGH 65.255

- SHERMAN, ROBERT E. DESIGN AND EVALUATION OF A REPETITIVE CROUP SAM-PLINC PLAN. TECH 65. 11
- SHERMAN, SEYMOUR ON QUEUES IN TANDEM, AMS 63, 300
- SHETH, JAGDISH N. USINC FACTOR ANALYSIS TO ESTIMATE PARAMETERS, JASA 69. B08
- SHEYNIN, O.B. STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. XXI. ON THE EARLY HISTORY OF THE LAW, BIOKA 6B, 459
- SHIKATA, M. A CENERALIZATION OF THE INBREEDING COEFFICIENT, BIOCS 65.665
- SHIMI, I. N. A BRANCHING PROCESS WITHOUT REBRANCHING, AMS 69, 1850 SHINOZUKA, MASANOBU DEVELOPMENT OF RANDOMIZED LOAD SEQUENCES WITH TRANSITION PROBABILITIES BASED ON A MAR, TECH 66, 107
- SHISHIDO, SHUNTARO PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF INTER-INDUSTRY TABLES, CORR. 64 1299, JASA 64, 256
- SHISKIN, JULIUS SEASONAL ADJUSTMENTS BY ELECTRONIC COMPUTER METHODS, JASA 57, 415
- SHLOM, E. TESTING FOR LINEAR CONTACION, INVERSE SAMPLING, JRSSB 69,
- SHORACK, G. R. GRAPHICAL PROCEDURES FOR USING DISTRIBUTION-FREE METHODS IN THE ESTIMATION OF RELATIVE POT, BIOCS 66, 610
- SHORACK, CALENR. A NOTE ON CHERNOFF-SAVAGE THEOREMS, AMS 69, 1116 SHORACK, GALEN R. ASYMPTOTIC NORMALITY OF LINEAR COMBINATIONS OF FUNCTIONS OF ORDER STATISTICS, AMS 69, NO.6
- SHORACK, CALEN R. TESTING ACAINST ORDERED ALTERNATIVES IN MODEL I ANALYSIS OF VARIANCE, NORMAL THEORY AND, AMS 67, 1740
- SHORACK, GALENR, TESTING AND ESTIMATING OF SCALE PAREMENTERS, JASA 69.999
- SHORACK, GALEN R. WEAK CONVERGENCE AND A CHERNOFF-SAVAGE THEOREM FOR RANDOM SAMPLE SIZES, AMS 68, 1675
- SHORACK, GALEN R. WEAK CONVERCENCE OF A TWO-SAMPLE EMPIRICAL PROCESS AND A NEW APPROACH TO CHERNOFF-SAVAC, AMS 68, 755
- SHORACK, ROCER A. ON THE POWER OF PRECEDENCE LIFE TESTS, TECH 67, 154 SHORACK, ROGER A. RECURSIVE GENERATION OF THE DISTRIBUTION OF SEVERAL NON-PARAMETRIC TEST STATISTICS UNDE, JASA 6B, 353
- SHORACK, ROGER A RECURSIVE CENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN, AMS 66, 284
- SHORACK, ROGER A. TABLES OF THE DISTRIBUTION OF THE MANN-WHITNEY-WILCOXON U-STATISTIC UNDER LEHMANN ALTER, TECH 67. 666
- SHORROCK, R. ON CERTAIN PROPERTIES OF THE EXPONENTIAL-TYPE FAMI-LIES, JRSSB 65.94
- SHORTLEY, G. A STOCHASTIC MODEL FOR DISTRIBUTIONS OF BIOLOGICAL RESPONCE TIMES, BIOCS 65, 562
- SHRIKHANDE, S. S. ON A CLASS OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS, AMS 65, 1807
- SHRIVASTAVA, J. N. ON A GENERAL CLASS OF DESIGNS FOR MULTIRESPONSE EXPERIMENTS, AMS 68, 1B25
- SHUBERT, BRUNO O. BAYESIAN MODEL OF DECISION-MAKING AS A RESULT OF LEARNING FROM EXPERIENCE, AMS 69, NO.6 SHUBIK, MARTIN 818LIOGRAPHY ON SIMULATION, GAMING, ARTIFICIAL IN-
- TELLIGENCE AND ALLIED TOPICS, JASA 60, 736 SHUMWAY, ROBERT H. BEST LINEAR UNBIASED ESTIMATION FOR MUL-
- TIVARIATE STATIONARY PROCESSES, TECH 68, 523
- SHUSTER. JONATHAN ON THE INVERSE CAUSSIAN DISTRIBUTION FUNCTION, JASA 68, 1514
- SICHEL, H. S. A CHART FOR SEQUENTIALLY TESTING OBSERVED ARITHMETIC MEANS FROM LOGNORMAL POPULATIONS AGAIN, TECH 68, 605
- SICHEL, H. S. NEW TECHNIQUES FOR THE ANALYSIS OF ABSENTEEISM DATA. 8IOKA 54, 77
- SIDAK, ZBYNEK ON MULTIVARIATE NORMAL PROBABILITIES OF RECTANGLES. AMS 68, 1425
- SIDAK, ZBYNEK RECTANCULAR CONFIDENCE REGIONS FOR THE MEANS OF MUL-TIVARIATE NORMAL DISTRIBUTIONS, JASA 67, 626
- SIDDIOUI. M. M. A COMBINATORIAL TEST FOR INDEPENDENCE OF DICHOTOMOUS RESPONSES. JASA 65, 437
- SIDDIQUI, M. M. A BIVARIATE T DISTRIBUTION, CORR. 67 1594, AMS 67, 162
- SIDDIQUI, M M APPROXIMATIONS TO THE DISTRIBUTION OF QUADRATIC FORMS, AMS 65, 677
- SIDDIQUI. M. M. APPROXIMATIONS TO THE MOMENTS OF THE SAMPLE MEDIAN. AMS 62. 157
- SIDDIQUI, M. M. ASYMPTOTIC JOINT DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM MULTIVARIATE DISTRIBUT, JASA 69, 300
- SIDDIQUI, M M. ASYMPTOTICALLY ROBUST ESTIMATORS OF LOCATION. JASA 67,950
- SIDDIQUI. M. M. GAMES ASSOCIATED WITH A RENEWAL PROCESS, AMS 62, 697 SIDDIQUI. M. M. OPTIMUM ESTIMATORS OF THE PARAMETERS OF NEGATIVE EX-PONENTIAL DISTRIBUTIONS FROM ONE OR TW. AMS 63, 117
- SIDDIQUI, M. M ROSUST ESTIMATION OF LOCATION, JASA 67, 353
- SIDDIQUI, M. M. SOME CRITERIA FOR ACING, JASA 69. NO.4
- SIEGEL, P. 8. A PROSASILITY STRUCTURE FOR GROWTH CURVES, BIOCS 67,
- SIEGEL, SIDNEY A NONPARAMETRIG SUM OF RANKS PROGEDURE FOR RELATIVE SPREAD IN UNPAIRED SAMPLES, CORR. 611, JASA 60, 429
- SIEGMUND, D. ON THE ASYMPTOTIC NORMALITY OF ONE-SIDED STOPPING RULES, AMS 68, 1493
- SIEGMUND, D. O. SOME FIRST PASSAGE PROBLEMS FOR S-SUB-N-OVER-ROOT-N, AMS 69, 648

- SIEGMUND, DAVID ON A STOPPING RULE AND THE CENTRAL LIMIT THEOREM,
- SIEGMUND, DAVID ON MOMENTS OF THE MAXIMUM OF NORMED PARTIAL SUMS, AMS 69, 527
- SIEGMUND, DAVID THE VARIANCE OF THE ONE-SIDED STOPPING RULES, AMS
- SIEGMUND, DAVID OLIVER SOME ONE-SIDED STOPPING RULES, AMS 67, 1641 SIEGMUND, DAVID OLIVER SOME PROBLEMS IN THE THEORY OF OPTIMAL STOPPING RULES, AMS 67, 1627
- SIEVERS, GERALD L. ON THE PROBABILITY OF LARGE DEVIATIONS AND EXACT SLOPES, AMS 69. NO.6
- SILLITTO, C. P. AN EXTENSION PROPERTY OF A CLASS OF BALANCED IN-COMPLETE BLOCK DESICNS, BIOKA 57, 278
- SILLITTO, G. P. DERIVATION OF APPROXIMANTS TO THE INVERSE DISTRIBUTION FUNCTION OF A CONTINUOUS UNIVARIAT, BIOKA 69, NO. 3
- SILLITTO, G. P. INTERRELATIONS BETWEEN CERTAIN LINEAR SYSTEMATIC STATISTICS OF SAMPLES FROM ANY CONTINUOU, BIOKA 51, 377
- SILLITTO, G. P. SOME RELATIONS BETWEEN EXPECTATIONS OF ORDER STATISTICS IN SAMPLES OF DIFFERENT SIZES. BIOKA 64, 259
- SILVERSTONE, H. ESTIMATING THE LOGISTIC CURVE, JASA 57, 567
- SILVEY, S. D. A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION OF A RADON-NIKODYM DERIVATIVE TO THE PR. JRSSB 65, 10B
- SILVEY, S. D. A GENERAL CLASS OF COEFFICIENTS OF DIVERGENCE OF ONE DISTRIBUTION FROM ANOTHER, JRSSB 66, 131
- SILVEY, S. D. A NOTE ON MAXIMUM-LIKELIHOOD IN THE CASE OF DEPENDENT RANDOM VARIABLES, JRSSB 61, 444
- SILVEY, S. D. ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPER-SION OF A RADON-NIKODYM DERIVATIVE .CORR. JRSSB 65.100
- SILVEY, S. D. MAXIMUM-LIKELTHOOD ESTIMATION PROCEDURES AND AS-SOCIATED TESTS OF SIGNIFICANCE, JRSSB 60, 154
- SILVEY, S. D. ON A MEASURE OF ASSOCIATION. AMS 64, 1157
- SILVEY, S. D. ON TESTING MORE THAN ONE HYPOTHESIS, AMS 63, 555
- SILVEY, S. D. OPTIMAL DESIGNS IN REGRESSION PROBLEMS WITH A GENERAL GONVEX LOSS FUNCTION. BIOKA 6B. 53
- SILVEY, S. D. THE GENERALIZATION OF PROBIT ANALYSIS TO THE CASE OF MULTIPLE RESPONSES, BIOKA 57, 131
- SILVEY, S. D. THE LINDISFARNE SCRIBES' PROBLEM, JRSSB 5B, 93
- SIMMONS, WALTR. THE UNRELATED QUESTION RANDOMIZED RESPONSE MODEL, THEORETICAL FRAMEWORK, JASA 69, 520
- SIMON, H. A. ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS, BIOKA 55, 425 SIMON, LESLIE E. SAMUEL S. WILKS, JASA 65, 939
- SIMONS, G. A SEQUENTIAL ANALOGUE OF THE BEHRENS-FISHER PROBLEM, AMS 67. 1384
- SIMONS, CORDON A CLASS OF SEQUENTIAL PROCEDURES FOR CHOOSING ONE OF KHYPOTHESES CONCERNING THE UNKNOWND, AMS 67, 1376
- SIMONS, GORDON A SEQUENTIAL THREE HYPOTHESIS TEST FOR DETERMINING THE MEAN OF A NORMAL POPULATION WITH KN, AMS 67, 1365
- SIMONS, GORDON EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS RE-LATED TO S-SUB-N-OVER-N, AMS 6B, 122B
- SIMONS, CORDON LOWER BOUNDS FOR AVERAGE SAMPLE NUMBER OF SEQUENTIAL MULTIHYPOTHESIS TESTS, AMS 67, 1343
- SIMONS. CORDON ON THE COST OF NOT KNOWING THE VARIANCE WHEN MAKINC A
 FIXED WIDTH CONFIDENCE INTERVAL FOR, AMS 6B, 1946
- SIMPSON, J. A. TABLE OF THE BOUNDS OF THE PROBABILITY INTEGRAL WHEN THE FIRST FOUR MOMENTS ARE GIVEN, BIOKA 60, 399
- SIMPSON, PAUL B. APPROACHES TO NATIONAL OUTPUT MEASUREMENT, JASA
- 58, 948
 SINGH, B. D. DOUBLE SAMPLING FOR STRATIFICATION ON SUCCESSIVE OCCA-
- SIONS, JASA 65, 784
 SINGH, B. D. SOME REMARKS ON DOUBLE SAMPLING FOR STRATIFICATION.,
 BIOKA 65, 587
- SINCH, G. ON THE EXTREME VALUES AND RANGE OF SAMPLES FROM NON-NORMAL
- POPULATIONS, BIOKA 67, 541 SINCH, D. DOUBLE SAMPLING FOR STRATIFICATION ON SUCCESSIVE OCCA-
- SIONS, JASA 65, 784 SINCH, D. ESTIMATES IN SUCCESSIVE SAMPLING USING A MULTI-STAGE
- DESICH, D. ESTIMATES IN SUCCESSIVE SAMPLING USING A MULTI-STAGE DESICH, JASA 68, 99
- SINGH, D. ON MODIFIED SYSTEMATIC SAMPLING, BIOKA 68, 541
- SINGH, D. SOME REMARKS ON DOUBLE SAMPLING FOR STRATIFICATION., BIOKA 65, 587
- SINGH, H. R. PRODUCER AND CONSUMER RISKS FOR ASYMMETRICAL TESTS AND SPECIFICATION LIMITS, JASA 66, 505
- SINGH, H. R. PRODUCER AND CONSUMER RISKS IN NON-NORMAL POPULATION, TECH 66, 335
- SINGH, JAGBIR A TREATMENT OF TIES IN PAIRED COMPARISONS, AMS 6B, 2002 SINGH, M. P. THE RELATIVE EFFICIENCY OF SOME TWO-PHASE SAMPLING
- SCHEMES, AMS 67, 937
 SINGH, NAUNIHAL ESTIMATION OF PARAMETERS OF A MULTIVARIATE NORMAL
- SINGH, NAUNIHAL ESTIMATION OF PARAMETERS OF A MULTIVARIATE NORMAL POPULATION FROM TRUNCATED AND CENSORED, JRSSB 60, 307
- SINGH, RAJINDER EXISTENCE OF BOUNDED LENGTH CONFIDENCE INTERVALS, AMS 63, 1474
- SINCH, RAJINDER UNBIASED ESTIMATION OF LOCATION AND SCALE PARAMETERS, AMS 66, 1671
- SINCH, S. N. A CHANCE MECHANISM OF THE VARIATION IN THE NUMBER OF BIRTHS PER COUPLE, JASA 6B, 209
- SINCH, S. N. PROBABILITY MODELS FOR THE VARIATION IN THE NUMBER OF BIRTHS PER COUPLE, JASA 63, 721

- SINKHORN, RICHARD A RELATIONSHIP BETWEEN ARBITRARY POSITIVE MATRICES AND DOUBLY STOCHASTIC MATRICES, AMS 64, 876
- SIOTANI, MINORU INTERVAL ESTIMATION FOR LINEAR COMBINATIONS OF MEANS, JASA 64, 1141
- SIRKEN, MONROE G. RESIDENCE HISTORIES AND EXPOSURE RESIDENCES FOR THE UNITED STATES POPULATION, JASA 61, 824
- SISKIND, V. A SOLUTION OF THE CENERAL STOCHASTIC EPIDEMIC., BIOKA 65,613
- SISKIND, V. MULTIVARIATE STOCHASTIC PROCESSES WITH PERIODIC COEF-FICIENTS, JRSSB 69, 171
- SISKIND, V. ON CERTAIN SUGGESTED FORMULAE APPLIED TO THE SEQUENTIAL T-TEST, BIOKA 64, 97
- SISKIND, V. ON USINC AN INCORRECT VALUE OF SIGMA-SQUARE-SUB-B-OVER-SIGMA-SQUARE IN BALANCED INGOMPLETE BL, BIOKA 68, 254
 SIVAMURTHY, M. ERRORS IN THE ESTIMATION OF NET MIGRATION IN THE STU-
- DIES OF INTERNAL MICRATION, JASA 69, NO.4

 SKELLAM, J. G. DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RECURRENT EVENTS (WITH DISCUSSION), JRSSB 57, 64
- SKELLAM, J. G. MODELS, INFERENCE, AND STRATEGY, BIOCS 69, 457
- SKELLAM, J. G. ON THE DERIVATION AND APPLICABILITY OF NEYMAN'S TYPE A DISTRIBUTION, BIOKA 5B, 32
- SKELLAM, J. G. RANDOM DISPERSAL IN THEORETICAL POPULATIONS, BIOKA 51.196
- SKELLAM, J. G. STUDIES IN STATISTICAL ECOLOGY. I. SPATIAL PATTERN, BIOKA 52, 346
- SKIBINSKY, M. ON THE INADMISSIBILITY OF SOME STANDARD ESTIMATES IN THE PRESENCE OF PRIOR INFORMATION, AMS 63, 539
- SKIBINSKY, MORRIS ADEQUATE SUBFIELDS AND SUFFICIENCY, AMS 67, 155
- SKIBINSKY, MORRIS MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN, AMS 68, 492
- SKIBINSKY. MORRIS SOME STRIKING PROPERTIES OF BINOMIAL AND BETA MO-MENTS, AMS 69, 1753
- SLAKTER, M. J. COMPARATIVE VALIDITY OF THE CHI-SQUARE AND TWO MODIFIED CHI-SQUARE GOODNESS-OF-FIT TESTS F, BIOKA 66, 619
- SLAKTER, MALCOLM J. A GOMPARISON OF THE PEARSON CHI-SQUARE AND KOL-MOGOROV COODNESS-OF-FIT TESTS WITH RESP, JASA 65, 854
- SLAKTER, MALCOLM J. ACCURACY OF AN APPROXIMATION TO THE POWER OF THE CHI-SQUARE GOODNESS OF FIT TEST WITH, JASA 6B, 912
- SLATER, P. INCONSISTENCIES IN A SCHEDULE OF PAIRED COMPARISONS, BIOKA 61, 303
- SLEPLAN, D. FIRST PASSACE TIME FOR A PARTICULAR GAUSSIAN PROCESS, AMS 61, 610
- SLONIM, MORRIS JAMES A METHOD OF ADJUSTMENT FOR DEFECTIVE DATA, JASA 5B.736
- SLONIM, MORRIS JAMES SAMPLING IN A NUTSHELL, JASA 57, 143
- SLONIM, MORRIS JAMES THE TRENTILE DEVIATION METHOD OF WEATHER FORECAST EVALUATION, JASA 58, 398
- SMALL, V. J. A NUMERICAL INVESTICATION OF LEAST SQUARES REGRESSION INVOLVING TREND-REDUCED MARKOFF SERIES, JRSSB 55, 105
- SMID, L. J. MOST STRINGENT SOMEWHERE MOST POWERFUL TESTS AGAINST ALTERNATIVE RESTRIGTED BY A NUMBER OF LI, AMS 66, 1161
- SMILEY, M. F. THE SPECTRAL THEOREM FOR FINITE MATRIGES AND COCHRAN'S THEOREM, AMS 64, 443
- SMITH, BARNARD E. A LEARNING MODEL FOR PROCESSES WITH TOOL WEAR, TECH 6B. 379
- SMITH, C. A. B. CONSISTENCY IN STATISTICAL INFERENCE AND DECISION (WITH DISCUSSION) (CORR. 66 252), JRSSB 61, 1
- SMITH, C. A. B. QUERY+(ON FORMULA FOR DETERMINING THE INCIDENCE OF MUTANT GENES), BIOCS 65, 750
- SMITH, C.S. A RANDOM WALK IN WHICH THE STEPS OCGUR RANDOMLY IN TIME, BIOKA 59, 30
- SMITH, C. S. AN ALTERNATIVE SYSTEM FOR THE CLASSIFICATION OF MATHE-MATICAL MODELS FOR QUANTAL RESPONSES TO, BIOCS 65, 1B1
- SMITH, G. S. AN ANALYSIS OF QUANTAL RESPONSE DATA IN WHICH THE MEA-SUREMENT OF RESPONSE IS SUBJECT TO ERRO, BIOCS 65, 811
- SMITH, C.S. GENERAL MODELS FOR QUANTAL RESPONSE TO THE JOINT ACTION OF A MIXTURE OF DRUGS, BIOKA 64, 413
- SMITH, C. S. MODELS FOR THE NON-INTERACTIVE JOINT ACTION OF A MIX-TURE OF STIMULI IN BIOLOGICAL ASSAY, BIOKA 66, 49
- SMITH, C. S. THE QUANTAL RESPONSE ANALYSIS OF A SERIES OF BIOLOGICAL ASSAYS ON THE SAME SUBJECTS, BIOKA 60, 23
- ASSAYS ON THE SAME SUBJECTS, BIOKA 60, 23
 SMITH, CARTER VINCENT THE ROBBINS-ISBELL TWO-ARMED-BANDIT PROBLEM
- WITH FINITE MEMORY. AMS 65, 1375 SMITH, D. E. INVESTIGATION OF RULES FOR DEALING WITH OUTLIERS IN
- SMALL SAMPLES FROM THE NORMAL DISTRIBUTI, TECH 69, 527
 SMITH, H. APPLICATIONS OF TRUNCATED DISTRIBUTIONS IN PROCESS
 START-UPS AND INVENTORY CONTROL, TECH 61, 429
- SMITH, H. FAIRFIELD QUERY, PREFERENCE SCORES (REVISITED), TECH 6B, 612
- SMITH, MARK A TABLE FOR RANK SUM MULTIPLE PAIRED COMPARISONS, TECH $67,\,561$
- SMITH, P. G. DISEASE CLUSTERING, A CENERALIZATION OF KNOX'S AP-PROACH TO THE DETECTION OF SPACE-TIME INTER, BIOCS 68, 541
- SMITH, PAUL E. A QUARTERLY ECONOMETRIC MODEL OF THE UNITED STATES, JASA 61, 379
 SMITH, SHEILA M. THE SAMPLING DISTRIBUTION OF A MAXIMUM-LIKELIHOOD
- ESTIMATE, BIOKA 56, 96
 SMITH, T. M. F. ESTIMATION IN MULTI-STAGE SURVEYS, JASA 69, 830

- SMITH, W. B. A NOTE ON THE CORRELATION OF RANGES IN CORRELATED NORMAL SAMPLES, BIOKA 68, 595
- SMITH, W. L. A NOTE ON THE RENEWAL FUNCTION WHEN THE MEAN RENEWAL LIFETIME IS INFINITE, JRSSB 61, 230
- SMITH, W. L. CORRICENDA, 'ON THE CUMULANTS OF RENEWAL PROCESSES.', BIOKA 59, 502
- SMITH, W L. ON THE CUMULANTS OF RENEWAL PROCESSES, BIOKA 59, 1
- SMITH, W. L. ON THE DISTRIBUTION OF TRIBOLIUM CONFUSUM IN A CONTAINER, BIOKA 57, 328
- SMITH, W. L. ON THE RENEWAL FUNCTION FOR THE WEIBULL DISTRIBUTION, TECH 63, 393
- SMITH, W. L. ON THE SUPERPOSITON OF RENEWAL PROCESSES, BIOKA 54, 91
- SMITH, W. L. THE SUPERPOSITION OF SEVERAL STRICTLY PERIODIC SEQUENCES OF EVENTS, BIOKA 53, 1
- SMITH, W. N. THE USE OF LACRANCE MULTIPLIERS WITH RESPONSE SURFACES, TECH 59, 289
- SMITH, WALTER L. NECESSARY CONDITIONS FOR ALMOST SURE EXTINCTION OF BRANCHING PROCESS WITH RANDOM ENVIRON, AMS 68, 2136
- SMITH, WALTER L. ON BRANCHING PROCESSES IN RANDOM ENVIRONMENTS, AMS 69,814
- SMITH, WALTER L. ON INFINITELY DIVISIBLE LAWS AND A RENEWAL THEOREM FOR NON-NEGATIVE RANDOM VARIABLES, AMS 6B, 139
- SMITH. WALTER L. RENEWAL THEORY AND ITS RAMIFICATIONS (WITH DISCUSSION), JRSSB 58, 243
- SMITH, WAYNE E. AN A POSTERIORI PROBABILITY METHOD FOR SOLVING AN OVERDETERMINED SYSTEM OF EQUATIONS, TECH 66, 675
- SMITH, WILLIAM B. ESTIMATION OF PARAMETERS IN THE MULTIVARIATE NOR-MAL DISTRIBUTION WITH MISSING OBSERVATI, JASA 68, 159
- SMITH, WILLIAM B. QUERY, BIVARIATE SAMPLES WITH MISSING VALUES, II. TECH 6B, B67
- SMUTS, ROBERT W. THE FEMALE LABOR FORCE, A CASE STUDY IN THE IN-TERPRETATION OF HISTORICAL STATISTICS, JASA 60, 71
- SNEATH, P. H. A. SOME EXPERIMENTS IN THE NUMERICAL ANALYSIS OF ARCHAEOLOGICAL DATA, BIOKA 66, 311
- SNELL, E. J. A DESICN BALANCED FOR TREND, BIOKA 68, 535
- SNELL, E. J. A GENERAL DEFINITION OF RESIDUALS (WITH DISCUSSION). JRSSB 6B, 248
- SNELL, J. LAURIE ON MARKOV CHAIN POTENTIALS, AMS 61, 709
- SNOW, BARBARA A S. THE THIRD MOMENT OF KENDALL'S TAU IN NORMAL SAMPLES, BIOKA 62, 177
- SNOW, BARBARA A. S. TESTS FOR RANK CORRELATION COEFFICIENTS. III. DISTRIBUTION OF THE TRANSFORMED KENDALL, BIOKA 62, 185
- SNOW, BARBARA A. S. THE DISTRIBUTION OF KENDALL'S TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPULAT, BIOKA 63, 538
- SOBEL, E. LINEAR RELATIONSHIPS BETWEEN VARIABLES AFFECTED BY ERRORS, BIOCS 66, 252
- SOBEL, M. A BIVARIATE CENERALIZATION OF STUDENT'S T-DISTRIBUTION, WITH TABLES FOR CERTAIN SPECIAL CASES, BIOKA 54, 153
- SOBEL, M. A FIXED SUBSET-SIZE APPROACH TO THE SELECTION PROBLEM, BIOKA 6B, 401
- SOBEL, M. A SEQUENTIAL PROCEDURE FOR SELECTING THE LARGEST OF K MEANS. AMS 68.88
- SOBEL, M. A TWO-SAMPLE MULTIPLE DECISION PROCEDURE FOR RANKING
- MEANS OF NORMAL POPULATIONS WITH A COMMON, BIOKA 54, 170 SOBEL, M. APPROXIMATIONS TO THE PROBABILITY INTEGRAL AND CERTAIN
- PERCENTACE POINTS OF A MULTIVARIATE ANAL, BIOKA 55, 258
 SOBEL, M. INTEGRAL EXPRESSIONS FOR TAIL PROBABILITIES OF THE MULTINOMIAL AND NEGATIVE MULTINOMIAL DISTRIB, BIOKA 65, 167
- SOBEL, MILTON BINOMIAL CROUP-TESTING WITH AN UNKNOWN PROPORTION OF DEFECTIVES, TECH 66, 631
- SOBEL, MILTON FINE STRUCTURE OF THE ORDERING OF PROBABILITIES OF RANK ORDERS IN THE TWO SAMPLE CASE, AMS 66, 9B
- SOBEL, MILTON NONPARAMETRIC PROCEDURES FOR SELECTING A SUBSET CONTAINING THE POPULATION WITH THE LARGEST, AMS 67, 17BB
- SOBEL, MILTON NONPARAMETRIC PROCEDURES FOR SELECTING THE T POPULA-TION WITH THE LARGEST ALPHA-QUANTILE, AMS 67, 1804
- SOBEL, MILTON NONPARAMETRIC RANKING PROCEDURES FOR COMPARISON WITH A CONTROL, AMS 68, 2075
- SOBEL, MILTON ON SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SMALLEST VARIANCE, BIOKA 62, 495
- SOBEL, MILTON ON THE SMALLEST OF SEVERAL CORRELATED F STATISTICS,
- SUBBL, MILLION ON THE SMALLEST OF SEVERAL CORRELATED F STATISTICS, BIOKA 62, 509 SOBOL, MARION GROSS PANEL MORTALITY AND PANEL BIAS, JASA 59, 52
- SOLARI, MARY E. THE MAXIMUM LIKELIHOOD SOLUTION TO THE PROBLEM OF ESTIMATING A LINEAR FUNCTIONAL RELATION, JRSSB 69, NO.2
- SOLLER, M. NOTES. OPTIMUM EXPERIMENTAL DESIGNS FOR REALIZED HERITABILITY ESTIMATES, BIOCS 67, 361
- SOMERS, R.H. THE RANK ANALOGUE OF PRODUCT-MOMENT PARTIAL CORRELA-TION AND REGRESSION, WITH APPLICATION TO, BIOKA 59, 241
- SOMERS, ROBERT H. A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S TAU AND KENDALL'S TAU, WITH A PARTIAL INTERP, JASA 62, BO4
- SOMERVILLE, P.N. SOME PROBLEMS OF OPTIMUM SAMPLING, BIOKA 54, 420 SOMERVILLE, PAUL N. OPTIMUM SAMPLING IN BINOMIAL POPULATIONS, JASA 57, 494
- SONDHI, M. M. A NOTE ON THE QUADRIVARIATE NORMAL INTEGRAL, BIOKA 61, 201
- SONQUIST, JOHN A. PROBLEMS IN THE ANALYSIS OF SURVEY DATA, AND A PROPOSAL, JASA 63. 415

- SPARGINS, JOHN D. ON THE IDENTIFIABILITY OF FINITE MIXTURES, AMS 68, 209
- SPECKMAN, JANACE A. ESTIMATION FOR A ONE-PARAMETER EXPONENTIAL MODEL, JASA 65, 560
- SPECKMAN, JANACE A. ESTIMATION FOR A SIMPLE EXPONENTIAL MODEL, BIOCS 67, 717
- SPENDLEY, W. SEQUENTIAL APPLICATION OF SIMPLEX DESIGNS IN OPTIMISATION AND EVOLUTIONARY OPERATION, TECH 62, 441
- SPIECELGLAS, STEPHEN A STATISTICAL INVESTIGATION OF THE INDUSTRI-ALIZATION CONTROVERSY, JASA 60, 284
- SPJOTVOLL, EMIL A NOTE ON ROBUST ESTIMATION IN ANALYSIS OF VARIANCE,
 AMS 68. 1486
- SPJOTVOLL, EMIL MOST POWERFUL TESTS FOR SOME NON-EXPONENTIAL FAMI-
- SPJOTVOLL, EMIL OPTIMUM INVARIANT TESTS IN UNBALANCED VARIANCE COMPONENTS MODELS, AMS 67, 422
- SPRENT, P. A GENERALIZED LEAST-SQUARES APPROACH TO LINEAR FUNC-TIONAL RELATIONSHIPS (WITH DISCUSSION), JRSSB 66, 27B
- SPRENT, P. FITTING A POLYNOMIAL TO CORRELATED EQUALLY SPACED OBSER-VATIONS., BIOKA 65, 275
- SPRENT, P. LINEAR RELATIONSHIPS IN GROWTH AND SIZE STUDIES, BIOCS 6B. 639
- SPRINCER, B. G. F. A PARADOX INVOLVING QUASI PRIOR DISTRIBUTIONS, BIOKA 65, 623
- SPRINGER, B. C. F. NUMERICAL OPTIMIZATION IN THE PRESENCE OF RANDOM VARIABILITY. THE SINCLE FACTOR CASE, BIOKA 69, 65
- SPRINGER, M. D. BAYESIAN CONFIDENCE LIMITS FOR THE PRODUCT OF N BINOMIAL PARAMETERS, BIOKA 66, 611 SPRINGER, MELVIN D. BAYESIAN CONFIDENCE LIMITS FOR RELIABILITY OF
- REDUNDANT SYSTEMS WHEN TESTS ARE TERMIN, TECH 6B, 29
 SPROTT, D. A. AN EXAMPLE OF AN ANCILLARY STATISTIC AND THE COMBINA-
- SPROTT, D. A. AN EXAMPLE OF AN ANCILLARY STATISTIC AND THE COMBINA-TION OF TWO SAMPLES BY BAYES' THEOREM, AMS 61, 616
- SPROTT, D. A. EXAMPLES OF LIKELIHOODS AND COMPARISON WITH POINT ESTIMATES AND LARGE SAMPLE APPROXIMATIONS, JASA 69, 46B
- SPROTT, D. A. NECESSARY RESTRICTIONS FOR DISTRIBUTIONS A POSTERI-ORI, JRSSB 60, 312
- SPROTT, D. A. SIMILARITIES BETWEEN LIKELIHOODS AND ASSOCIATED DISTRIBUTIONS A POSTERIORI, JRSSB 61, 460
- SPROTT, D. A. TRANSFORMATIONS AND SUFFICIENCY, JRSSB 65, 479
- SPURCEON, ROBERT A. SOME PERCENTAGE POINTS OF THE NON-CENTRAL T-DISTRIBUTION, CORR. 63 1163, JASA 63, 176
- SRIKANTAN, K. S. RECURRENCE RELATIONS BETWEEN THE PROBABILITY DEN-SITY FUNCTIONS OF ORDER STATISTICS, AND, AMS 62, 169
- SRIVASTAVA, A. B. L. EFFECT OF NON-NORMALITY ON THE POWER FUNCTION OF T-TEST. BIOKA 58, 421
- SRIVASTAVA, A. B. L. EFFECT OF NON-NORMALITY ON THE POWER OF THE ANALYSIS OF VARIANCE TEST, BIOKA 59, 114
- SRIVASTAVA, A. B. L. THE DISTRIBUTION OF RECRESSION COEFFICIENTS IN SAMPLES FROM BIVARIATE NON-NORMAL POP, BIOKA 60, 61
- SRIVASTAVA. J. N. ON A BOUND USEFUL IN THE THEORY OF FACTORIAL DESIGNS AND ERROR CORRECTING CODES, AMS 64, 408
 SRIVASTAVA, J. N. ON THE MONOTONICITY PROPERTY OF THE THREE MAIN
- SRIVASTAVA, J. N. ON THE MUNOTURICITY PROPERTY OF THE THREE WAIN TESTS FOR MULTIVARIATE ANALYSIS OF VARIA, JRSSB 64, 77 SRIVASTAVA, M.S. COMPARINC DISTANCES BETWEEN MULTIVARIATE POPULA-
- TIONS, THE PROBLEM OF MINIMUM DISTANCES, AMS 67, 550
 SRIVASTAVA, M. S. ON FIXED-WIDTH CONFIDENCE BOUNDS FOR REGRESSION
- SRIVASTAVA, M. S. ON FIXED-WIDTH CONFIDENCE BOUNDS FOR REGRESSION PARAMETERS AND MEAN VECTOR, JRSSB 67, 132
- SRIVASTAVA, M.S. ON THE COMPLEX WISHART DISTRIBUTION, AMS 65, 313 SRIVASTAVA, M.S. ON THE DISTRIBUTION OF A MULTIPLE CORRELATION
- MATRIX, NON-CENTRAL MULTIVARIATE BETA DIS, AMS 68, 227 SRIVASTAVA, M S. SOME ASYMPTOTICALLY EXTINCT SEQUENTIAL
- PROCEDURES FOR RANKING AND SLIPPAGE PROBLEMS, JRSSB 66, 370 SRIVASTAVA, M. S. SOME TESTS FOR THE INTRACLASS CORRELATION MODEL,
- AMS 65, 1B02 SRIVASTAVA, M. S. THE PERFORMANCE OF SOME SEQUENTIAL PROCEDURES FOR A RANKING PROBLEM, AMS 6B, 1040
- SRIVASTAVA, O. P. ASYMPTOTIC DISTRIBUTION OF DISTANCES BETWEEN ORDER STATISTICS FROM BIVARIATE POPULATION, AMS 64, 74B
- SRIVASTAVA. R. C. ESTIMATION OF THE PARAMETER IN THE STOCHASTIC MODEL FOR PHACE ATTACHMENT TO BACTERIA, AMS 68, 1B3
- SRIVASTAVA, S. R. INFERENCES CONCERNING A POPULATION CORRELATION COEFFICIENT FROM ONE OR POSSIBLY TWO SAM, JRSSB 67, 282
- SRIVASTAVA, S. R. NOTES. ESTIMATION AFTER PRELIMINARY TESTING IN ANOVA MODEL I, BIOCS 65, 752
- ST-PIERRE, J. ON THE CHOICE OF THE BEST AMONGST THREE NORMAL POPULA-TIONS WITH KNOWN VARIANCES, BIOKA 5B, 436
- STACY, E. W. A GENERALIZATION OF THE GAMMA DISTRIBUTION, AMS 62, 11B7
 STACY, E. W. PARAMETER ESTIMATION FOR A GENERALIZED GAMMA DISTRIBU-
- TION, TECH 65, 349
 STAFF, P. L. THE DISPLACED POISSON DISTRIBUTION-REGION B, JASA 67,
- 643 STANTON, R. G. CONSTRUCTION OF ROOM SQUARES, AMS 6B, 1540
- STANTON, R. G. INDUCTIVE METHODS FOR BALANCED INCOMPLETE BLOCK DESIGNS, AMS 66, 1348
- STAPLETON, JAMES H. A CHARACTERIZATION OF THE UNIFORM DISTRIBUTION ON A COMPACT TOPOLOCICAL GROUP, AMS 63, 319

- STARK, CHARLES R. COMPUTATION OF INDIRECT-ADJUSTED RATES IN THE PRESENCE OF CONFOUNDING, BIOCS 6B, 997
- STARKS, T. H. CORRICENDA, 'SICNIFICANT TESTS FOR PAIRED-COMPARISON EXPERIMENTS', BIOKA 61, 475
- STARKS, T. H. SIGNIFICANCE TESTS FOR PAIRED-COMPARISON EXPERI-MENTS, BIOKA 61, 95
- STARKS, THOMAS H. A NOTE ON SMALL ORTHOCONAL MAIN EFFECT PLANS FOR FACTORIAL EXPERIMENTS, TECH 64. 220
- STARMER, C. F. ANALYSIS OF CATEGORICAL DATA BY LINEAR MODELS, BIOCS 69, 489
- STARR, N. A SEQUENTIAL PROCEDURE FOR SELECTING THE LARGEST OF K MEANS, AMS 68, 8B
- STARR, N. OPTIMAL TWO-STAGE STRATIFIED SAMPLING, AMS 69, 575
- STARR, NORMAN ON THE ASYMPTOTIC EFFICIENCY OF A SEQUENTIAL PROCEDURE FOR ESTIMATING THE MEAN, AMS 66, 1173
- STARR, NORMAN THE PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE FIXED-WIDTH INTERVALESTIMATION OF THE ME, AMS 66, 36
- STARR, NORMANN A SEQUENTIAL ANALOQUE OF THE BEHRENS-FISHER PROBLEM, AMS 67, 13B4
- STARR, NORTON ON AN OPERATOR LIMIT THEOREM OF ROTA, AMS 65, 1864
- STECH, G. P. ON THE DISTRIBUTION OF LINEAR FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED CORRELATED, BIOKA 64, 143
- STECK, G. P. A NOTE ON CONTINGENCY-TYPE BIVARIATE DISTRIBUTIONS, BIOKA 68, 262
- STECK, G. P. A NOTE ON THE EQUICORRELATED MULTIVARIATE NORMAL DISTRIBUTION, BIOKA 62, 269
- STECK, C. P. MOMENTS OF ORDER STATISTICS FROM THE EQUICORRELATED MULTIVARIATE NORMAL DISTRIBUTION, AMS 62, 1286
- STECK, C. P. ORTHANT PROBABILITIES FOR THE EQUICORRELATED MUL-TIVARIATE NORMAL DISTRIBUTION, BIOKA 62, 433
- STECK, G. P. PERCENTACE POINTS FOR THE DISTRIBUTION OF OUTGOINC QUALITY, JASA 59, 689
- QUALITY, SASA 39, 689 STECK, G. P. THE EXCEEDANCE TEST FOR TRUNCATION OF A SUPPLIER'S DATA, JASA 69, B23
- STECK, G. P. THE RELATIONSHIP BETWEEN NEYMAN AND BAYES CONFIDENCE INTERVALS FOR THE HYPERGEOMETRIC PARAME, TECH 6B, 199
- STECK, G. P. THE SMIRNOV TWO SAMPLE TESTS AS RANK TESTS, AMS 69. 1449 STECK, GEORGE P. CORRELATION BETWEEN SAMPLE MEANS AND SAMPLE RANGES, JASA 59, 465
- STEEL, R. G. D. A MULTIPLE GOMPARISONS SIGN TEST, ALL PAIRS OF TREAT-MENTS. BIOCS 67, 539
- STEEL, R. G. D. A RANK SUM TEST FOR COMPARING ALL PAIRS OF TREATMENTS.
 TECH 60, 197
- STEEL, ROBERT G. D. A MULTIPLE COMPARISON SIGN TEST, TREATMENTS VERSUS GONTROL, JASA 59, 767
- VERSUS GONTROL, JASA 59, 767 STEEL, ROBERT G. D. TABLES FOR A TREATMENTS VERSUS CONTROL MULTIPLE GOMPARISONS SIGN TEST, TECH 65, 293
- STEFFENS, F. E. A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION FOR SYMMETRICAL DISTRIBUTIONS, SASJ 69, NO. 2
- STEFFENS, F. E. A STEPWISE MULTIVARIATE T-DISTRIBUTION, SASJ 69, 17
 STEFFENS, F. E. CRITICAL VALUES FOR BIVARIATE STUDENT T-TESTS, JASA
 69, 637
- STEFFENS, F. E. EXACT CRITICAL VALUES FOR MOOD'S DISTRIBUTION-FREE TEST STATISTIC FOR DISPERSION AND ITS, TECH 6B, 497
- STEFFENS, F. E. ON COMPARING TWO SIMPLE LINEAR REGRESSION LINES.
 SASJ 68, 33
- SASJOB, 33
 STEIGER, W. L. A BEST POSSIBLE KOLMOCOROFF-TYPE INEQUALITY FOR MARTINGALES AND A CHARACTERISTIC PROPERTY, AMS 69, 764
- STEIGER, W. L. SOME KOLMOCOROFF-TYPE INEQUALITIES FOR BOUNDED RANDOM VARIABLES, BIOKA 67, 641
- STEIN, C. MINIMAX CHARACTER OF HOTELLING'S T-SQUARED TEST IN THE SIMPLEST CASE, AMS 63, 1524
- STEIN, C. M. CONFIDENCE SETS FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION (WITH DISCUSSION), JRSSB 62, 265
- STEINKAMP, STANLEY W. THE IDENTIFICATION OF EFFECTIVE INTER-VIEWERS, JASA 64, 1165
- STEKLER, H. O. FORECASTINC INDUSTRIAL PRODUCTION, JASA 61, B69
- STEKLER, H. O. SELECTED ECONOMIC DATA, ACCURACY VS. REPORTING SPEED, JASA 68, 436
- STEKLER, H. O. THE FORECASTINC ACCURACY OF CONSUMER ATTITUDE DATA, JASA 69, NO.4
- STEKLER, H. O. THE VARIABILITY OF PROFITIBILATY WITH SIZE OF FIRM. 1947-1958, JASA 64, 1183
- STEPHAN, FREDERICK F. SAMUELS. WILKS, JASA 65, 939
- STEPHAN, FREDERICK F. THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS, JASA 62, 338
- STEPHAN, FREDERICK F. THE QUALITY OF STATISTICAL INFORMATION AND STATISTICAL INFERENCE IN A RAPIDLY CHANC, JASA 67, 1
- STEPHENS, M. A. A GOODNESS-OF-FIT STATISTIC FOR THE CIRCLE, WITH SOME COMPARISONS, BIOKA 69, 161
- STEPHENS, M. A. APPENDIX TO 'EQUATORIAL DISTRIBUTIONS ON A SPHERE', BIOKA 65, 200
- STEPHENS, M. A. EXACT AND APPROXIMATE TESTS FOR DIRECTIONS. I, BIOKA 62, 463
- STEPHENS, M. A. EXACT AND APPROXIMATE TESTS FOR DIRECTIONS. II, BIOKA 62, 547

- STEPHENS, M. A. FURTHER PERCENTACE POINTS FOR W-SQUARE-SUB-N +(CRAMER-VON MISES COODNESS-OF-FIT STATISTIC, BIOKA 6B, 428
- STEPHENS, M. A. MULTI-SAMPLE TESTS FOR THE FISHER DISTRIBUTION FOR DIRECTIONS, BIOKA 69, 169
- STEPHENS, M. A. RANDOM WALK ON A CIRCLE, BIOKA 63, 385
- STEPHENS, M. A. RESULTS FROM THE RELATION BETWEEN TWO STATISTICS OF THE KOLOMOCOROV-SMIRNOV TYPE, AMS $69\,,\,1833$
- STEPHENS, M. A. SICNIFICANCE POINTS FOR THE TWO-SAMPLE STATISTIC U-SQUARE-SUB-M, N. BIOKA 65, 661
- STEPHENS, M. A. STATISTICS CONNECTED WITH THE UNIFORM DISTRIBU-TION, PERCENTAGE POINTS AND APPLICATION TO, BIOKA 66, 235
- STEPHENS, M. A. TESTS FOR THE DISPERSION AND FOR THE MODAL VECTOR OF A DISTRIBUTION ON A SPHERE, BIOKA 67, 211
- STEPHENS, M. A. TESTS FOR THE VON MISES DISTRIBUTION, BIOKA 69, 149
- STEPHENS, M. A. THE DISTRIBUTION OF THE GOODNESS-OF-FIT STATISTIC U-SQUARE-SUB-N.II, BIOKA 64, 393
- STEPHENS, M. A. THE DISTRIBUTION OF THE COODNESS-OF-FIT STATISTIC, U-SQUARE-SUB-N. I., BIOKA 63, 303
- STEPHENS, M. A. THE COODNESS OF FIT STATISTIC V-SUB-N, DISTRIBUTION AND SIGNIFICANCE POINTS, BIOKA 65, 309
 STEPHENS, M. A. THE COODNESS-OF-FIT TESTS BASED ON W-SQUARE-SUB-N
- AND U-SQUARE-SUB-N, BIOKA 62, 397
 STEPHENS, M. A. THE RATIO OF RANCE TO STANDARD DEVIATION IN THE SAME
- NORMAL SAMPLE, BIOKA 64, 484
- STEPHENS, M. A. THE TESTING OF UNIT VECTORS FOR RANDOMNESS, JASA 64. 160
- STEPHENS, M. A. THE V-SUB-NM TWO-SAMPLE TEST, AMS 68, 923
- STEPHENS, MICHAEL A. TESTS FOR RANDOMNESS OF DIRECTIONS AGAINST TWO CIRCULAR ALTERNATIVES, JASA 69, 280
- STEPHENSON. JAMES A. ANTICIPATIONS AND INVESTMENT BEHAVIOR IN UNITED STATES MANUFACTURING 1947-1960, JASA 69, 67
- STERLING, THEODORE D. PUBLICATION DECISIONS AND THEIR POSSIBLE EF-FECTS ON INFERENCES DRAWN FROM TESTS OF, JASA 59, 30
- STERN, F. ESTIMATION FROM QUANTILES IN DESTRUCTIVE TESTING, JRSSB 61,434
- STERNE, T. E. SOME REMARKS ON CONFIDENCE OF FIDUCIAL LIMITS, BIOKA 54, 275
- STEUTEL, F. W. A GLASS GF INFINITELY DIVISIBLE MIXTURES, AMS 6B,
- STEUTEL, F. W. INFINITELY DIVISIBLE RENEWAL DISTRIBUTIONS, AMS 69, 1109
- STEUTEL, F. W. NOTE ON COMPLETELY MONOTONE DENSITIES, AMS 69, 1130
- STEUTEL, F. W. NOTE ON THE INFINITE DIVISIVILITY OF EXPONENTIAL MIXTURES, AMS 67, 1303
- STEVENS, W. L. DILUTION SERIES, A STATISTICAL TEST OF TECHNIQUE (CORR. 59 238), JRSSB 5B, 205
- STEVENS, W. L. MEAN AND VARIANGE OF AN ENTRY IN A CONTINGENCY TABLE, BIOKA 51, 46B
- STEVENS, W. L. SAMPLES WITH THE SAME NUMBER IN EACH STRATUM, BIOKA 52,414
- STEVENS, W. L. SAMPLINC WITHOUT REPLACEMENT WITH PROBABILITY PRO-PORTIONAL TO SIZE, JRSSB 5B, 393
- STEVENS, W. L. SHORTER INTERVALS FOR THE PARAMETER OF THE BINOMIAL AND POISSON DISTRIBUTIONS, BIOKA 57, 436
- STEVENS, W. L. TABLES OF THE ANGULAR TRANSFORMATION, BIOKA 53, 70 STEWART, CHARLES ESTIMATING THE FRACTION OF ACCEPTABLE PRODUCT, TECH 65, 43
- STEYN, H. S. EIENSKAPPE VAN WAARSKYNLIKHEIDSVERDELINGS DEUR DIE CEBRUIK VAN DIFFERENSIAALVERGELYKINGE, SASJ 6B, 1
- STEYN, H. S. THE WISHART DISTRIBUTION DERIVED BY SOLVING SIMULTANE-OUS LINEAR DIFFERENTIAL EQUATIONS, BIOKA 51, 470
- STICLER, S. M. THE USE OF RANDOM ALLOCATION FOR THE CONTROL OF SELECTION BIAS, BIOKA 69, NO. 3
- STICLER, STEPHEN MACK LINEAR FUNCTIONS OF ORDER STATISTICS, AMS 69,
- STIGUM, B. P. A LIMIT THEOREM FOR MULTIDIMENSIONAL GALTON-WATSON PROCESSES, AMS 66, 1211
- STIGUM, B. P. ADDITIONAL LIMIT THEOREMS FOR INDECOMPOSABLE MUL-TIDIMENSIONAL GALTON-WATSON PROCESSES, AMS 66, 1463
- STIGUM, BERNT P. A THEOREM ON THE GALTON-WATSON PROCESS, AMS 66, 695
- STIGUM, BERNT P. DYNAMIC STOCHASTIC PROCESSES, AMS 63, 274 STILSON, DONALD W. A NOTE ON CALCULATING TAU AND AVERAGE TAU AND ON
- THE SAMPLINC DISTRIBUTION OF AVERAGE, JASA 62, 567
 STOCKWELL, EDWARD C. ILLUSTRATIVE TABLES OF SCHOOL LIFE, CORR. 64
 1299, JASA 63, 1113
- STOKER, D. J. A DISTRIBUTION-FREE ANALYSIS OF VARIANCE TECHNIQUE FOR BLOCK DESIGNS, SASJ 68, 9
- STOKER, D. J. AN APPROXIMATION FOR THE EXACT DISTRIBUTION OF THE WILCOXON TEST FOR SYMMETRY, JASA 64, 899
- STOKER, D. J. DISTRIBUTION-FREE ANALYSIS OF VARIANCE FOR THE TWO-WAY CLASSIFICATION, SASJ 67, 67
- STOLLER, D. S. ON THE GENERATION OF NORMAL RANDOM VECTORS, TECH 62, $278\,$
- STONE, C. J. THE ASYMMETRIC CAUCHY PROCESSES ON THE LINE. AMS 69, 137 STONE, CHARLES A LOCAL LIMIT THEOREM FOR NONLATTICE MULTI-DIMEN-SIONAL DISTRIBUTION FUNCTIONS, AMS 65, 546
- STONE, CHARLES ON A THEOREM OF DOBRUSHIN, AMS 68, 1391

- STONE, CHARLES ON ABSOLUTELY CONTINUOUS COMPONENTS AND RENEWAL THEORY, AMS 66, 271
- STONE. CHARLES ON MOMENT GENERATING FUNCTIONS AND RENEWAL THEORY, AMS 65, 1298
- STONE, CHARLES THE GROWTH OF A RECURRENT RANDOM WALK, AMS 66, 1040 STONE, CHARLES J. A LARGE SAMPLE TEST FOR THE INDEPENDENCE OF TWO
- RENEWAL PROCESSES, AMS 67, 1037 STONE, CHARLES J. THE GROWTH OF A RANDOM WALK, AMS 69, NO.6
- STONE, L. A. COMPUTER AIDED DESIGN OF EXPERIMENTS, TECH 69, 137
- STONE, LAWRENCE D. ON THE DISTRIBUTION OF THE SUPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CONTINUO. AMS 69.844
- STONE, LAWRENCE D. THE DISTRIBUTION OF THE MAXIMUM OF A SEMI-MARKOV PROCESS, AMS $68,\,947$
- STONE, M. A PARADOX INVOLVING QUASI PRIOR DISTRIBUTIONS, BIOKA 65, 623
- STONE, M. COMMENTS ON A POSTERIOR DISTRIBUTION OF GEISSER AND CORN-FIELD, JRSSB 64, 274
- STONE, M. EXTREME TAIL PROBABILITIES FOR SAMPLING WITHOUT REPLACE-MENT AND EXACT BAHADUR EFFICIENCY OF THE, BIOKA 6B, 371
- STONE, M. EXTREME TAIL PROBABILITIES FOR THE NULL DISTRIBUTION OF THE TWO-SAMPLE WILCOXON STATISTIC, BIOKA 67, 629
- STONE. M. GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY AND THE EXPONENTIAL FAMILY, AMS 67, 818
- STONE, M. NON-EQUIVALENT COMPARISONS OF EXPERIMENTS AND THEIR USE FOR EXPERIMENTS INVOLVING LOCATION PARA, AMS 61, 326
- STONE, M. RIGHT HAAR MEASURE FOR CONVERGENCE IN PROBABILITY TO QUASI POSTERIOR DISTRIBUTIONS, AMS 65.440
- STONE, M. THE OPINION POOL, AMS 61, 1339
- STONE, M. THE POSTERIOR T DISTRIBUTION, AMS 63, 56B
- STONE, M. THE ROLE OF EXPERIMENTAL RANDOMIZATION IN BAYESIAN STATISTICS, FINITE SAMPLING AND TWO BAYESIAN, BIOKA 69, NO. 3
- STONE, M. THE ROLE OF SIGNIFICANCE TESTING, SOME DATA WITH A MESSAGE, BIOKA 69, NO.3
- STONE, MERVYN ROBUSTNESS OF NON-IDEAL DECISION PROCEDURES, JASA 63, 480
- STONEMAN, DAVID M. RESPONSE SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS, TECH 68, 177
- STONEMAN, DAVID M. TESTING FOR THE INCLUSION OF VARIABLES IN LINEAR
- REGRESSION BY A RANDOMISATION TECHNIQ, TECH 66, 695 STONEMAN, DAVID S. FACTOR CHANGES AND LINEAR TRENDS IN EIGHT-RUN TWO LEVEL FACTORIAL DESIGNS, TECH 68, 301
- STOREY, S. H. A THREE-DIMENSIONAL CLUSTER PROBLEM, BIOKA 6B, 25B
- STOUFFER, SAMUEL A. KARL PEARSON, AN APPRECIATION ON THE HUNDREDTH ANNIVERSARY OF HIS BIRTH, JASA 58, 23
- STOUT, H. P. ESTIMATION FROM QUANTILES IN DESTRUCTIVE TESTING, JRSSB 61, $434\,$
- STOUT, WILLIAM F. SOME RESULTS ON THE COMPLETE AND ALMOST SURE CON-VERGENCE OF LINEAR COMBINATIONS OF INDE, AMS 68, 1549
- STRASSEN, V. THE EXISTENCE OF PROBABILITY MEASURES WITH GIVEN MAR-GINALS, AMS 65, 423
- STRATTON JR, HOWARD H. LIMIT DISTRIBUTIONS OF A BRANCHING STOCHASTIC PROCESS, AMS 64, 557
- STRATTON, H. H. A NOTE ON CHARACTERISTIC FUNCTIONS, AMS 69, 303
- STRAUCH, R. E. CONDITIONAL EXPECTATIONS OF RANDOM VARIABLES WITHOUT EXPECTATIONS, AMS 65, 1556
- STRAUCH, RALPH E. A NOTE ON MEMORYLESS RULES FOR CONTROLLING SEQUEN-TIAL CONTROL PROCESSES, AMS 66, 276
- STRAUCH, RALPHE. NEGATIVE DYNAMIC PROGRAMMING, AMS 66, 871
- STRIEBEL, C. ESTIMATION OF STOCHASTIC SYSTEMS, ARBITRARY SYSTEM PROCESS WITH ADDITIVE WHITE NOISE OBSERVA, AMS 6B, 785
- STRIEBEL, CHARLOTTE T. EFFICIENT ESTIMATION OF A REGRESSION PARAMETER FOR CERTAIN SECOND ORDER PROCESSES, AMS 61, 1299
- STROUT, WILLIAM F. ON THE EXPECTED VALUE OF A STOPPED STOCHASTIC SEQUENCE, AMS 69, 456
- STUART, A. A PARADOX IN STATISTICAL ESTIMATION, BIOKA 55, 527
- STUART, A. A SIMPLE PRESENTATION OF OPTIMUM SAMPLING RESULTS, JRSSB 54,239
- STUART, A. A SINGULARITY IN THE ESTIMATION OF BINOMIAL VARIANCE, BIOKA 57, 262
- STUART, A. A TEST FOR HOMOGENEITY OF THE MARGINAL DISTRIBUTIONS IN A TWO-WAY CLASSIFICATION, BIOKA 55, 412
- STUART, A. AN APPLICATION OF THE DISTRIBUTION OF THE RANKING CON-CORDANCE COEFFICIENT, BIOKA 51, 33
- STUART, A. BOUNDS FOR THE VARIANCE OF KENDALL'S RANK CORRELATION STATISTIC, BIOKA 56, 474
- STUART, A. DISTRIBUTION-FREE TESTS IN TIME-SERIES BASED ON THE BREAKING OF RECORDS (WITH DISCUSSION), JRSSB 54, 1
- STUART, A. SOME QUESTIONS OF DISTRIBUTION IN THE THEORY OF RANK CORRELATION, BIOKA 51, 131
- STUART, A. SOME QUICK SIGN TESTS FOR TREND IN LOCATION AND DISPERSION, BIOKA 55, 80 $\,$
- STUART. A. THE AVERAGE CRITICAL VALUE METHOD AND THE ASYMPTOTIC RELATIVE EFFICIENCY OF TESTS, BIOKA 67, 30B
- STUART, A. THE EFFICIENCY OF THE RECORDS TEST FOR TREND IN NORMAL REGRESSION, JRSSB $57\,,\,149$
- STUART, A. THE ESTIMATION AND COMPARISON OF STRENGTHS OF ASSOCIA-TION IN CONTINGENCY TABLES, BIOKA 53, 105

- STUART, ALAN EQUALLY CORRELATED VARIATES AND THE MULTINORMAL IN-TEGRAL, JRSSB 58, 373
- STUART, ALAN GAMMA-DISTRIBUTED PRODUCTS OF INDEPENDENT RANDOM VARIABLES, BIOKA 62, 564
- STUART, ALAN THE EFFICIENCIES OF TESTS OF RANDOMNESS AGAINST NORMAL REGRESSION, JASA 56, 285
- STUART, WALTER J. COMPUTER EDITING OF SURVEY DATA, FIVE YEARS OF EX-PERIENCE IN BLS MANPOWER SURVEYS, JASA 66, 375
- STUDDEN, W. J. MONOTONICITY OF THE VARIANCE UNDER TRUNCATION AND
- VARIATIONS OF HENSEN'S INEQUALITY, AMS 69, 1106 STUDDEN, W. J. ON SELECTING A SUBSET OF K POPULATIONS CONTAINING THE
- BEST, AMS 67, 1072 STUDDEN, W. J. ON THE MONOTONICITY OF E-SUB-P'S-SUB-T-OVER-T', AMS
- 68, 1755 STUDDEN, W. J. OPTIMAL DESIGNS ON TCHEBYSCHEFF POINTS, AMS 68, 1435 STUDDEN, WILLIAM J. ADMISSIBLE DESIGNS FOR POLYNOMIAL SPLINE
- REGRESSION, AMS 69, 1557 STUDDEN, WILLIAM J. OPTIMAL EXPERIMENTAL DESIGNS, AMS 66, 783
- SUBRAHAMANIAM, K. A. A NOTE ON ESTIMATION IN THE TRUNCATED POISSON, BIOKA 65, 279
- SUBRAHMANIAM, K. A TEST FOR 'INTRINSIC CORRELATION' IN THE THEORY OF ACCIDENT PRONENESS (ACKNOWLEDGEMENT, JRSSB 66, 180
- SUBRAHMANIAM, K. ORDER STATISTICS FROM A CLASS OF NON-NORMAL DIS-TRIBUTIONS, BIOKA 69, 415
- SUBRAHMANYA, M. T. A NOTE ON A BIASED ESTIMATOR IN SAMPLING WITH PROBABILITY PROPORTIONAL TO SIZE WITH RE, AMS 66, 1045
- SUCHESTON, L. NOTE ON SHIFT-INVARIANT SETS, AMS 69, 694
 SUDDERTH, WILLIAM D. A NOTE ON THRIFTY STRATEGIES AND MARTINGALES IN
 A FINITELY ADDITIVE SETTING WILLIAM, AMS 69, NO.6
- SUDDERTH, WILLIAM D. ON MEASURABLE, NONLEAVABLE GAMBLING HOUSES WITH A GOAL, AMS 69, 66
- SUDMAN, SEYMOUR PROBABILITY SAMPLING WITH QUOTAS, JASA 66, 749
- SUGIURA, NARIAKI ASYMPTOTIC EXPANSIONS OF THE DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR COVARIAN, AMS 69, NO. 6
- SUGIURA, NARIAKI ASYMPTOTIC EXPANSIONS OF THE NON-NULL DISTRIBU-TIONS OF THE LIKELIHOOD RATIO CRITERIA FOR, AMS 69, 942
- SUGIURA, NARIAKI ON BARTLETT'S TEST AND LEHMANN'S TEST FOR HOMOGENEITY OF VARIANCES, AMS 69, NO. 6
- SUGIURA, NARIAKI UNBIASEDNESS OF SOME TEXT CRITERIA FOR THE EQUALITY OF ONE OR TWO COVARIANCE MATRICES, AMS 68, 1686
 SUGIYAMA, T. DISTRIBUTION OF THE LARGEST LATENT ROOT AND THE SMAL-
- SUGIYAMA, T. DISTRIBUTION OF THE LARGEST LATENT ROUT AND THE SMAL-LEST LATENT ROOT OF THE GENERALIZED B ST, AMS 67, 1152 SUGIYAMA, T. ON THE DISTRIBUTION OF THE LARGEST LATENT ROOT AND THE
- CORRESPONDING LATENT VECTOR FOR PRINCI, AMS 66, 995 SUGIYAMA, T. ON THE DISTRIBUTION OF THE LARGEST LATENT ROOT OF THE
- COVARIANCE MATRIX, AMS 67, 1148 SUGIYAMA, T. ON THE DISTRIBUTION OF THE LATENT VECTORS FOR PRINCIPAL
- COMPONENTS ANALYSIS, AMS 65, 1875 SUITS, DANIEL B. USE OF DUMMY VARIABLES IN REGRESSION EQUATIONS,
- JASA 57, 548
 SUKHATME, B. V. A TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING VARIANCES, BIOKA 58, 544
- SUKHATME, B. V. JOINT ASYMPTOTIC DISTRIBUTION OF THE MEDIAN AND A U-STATISTIC, JRSSB 57, 144
- SUKHATME, B. V. POWER OF SOME TWO-SAMPLE NON-PARAMETRIC TESTS, BIOKA 60, 355
- SUKHATME, BALKRISHNA V. SOME RATIO-TYPE ESTIMATORS IN TWO-PHASE SAMPLING, JASA 62, 62B
- SUMMERS, ROBERT D. AN INEQUALITY FOR THE SAMPLE COEFFICIENT OF VARIATION AND AN APPLICATION OF VARIABLES, TECH 65, 67
- SUN. TZE-CHIEN A NOTE ON THE UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L, AMS 67, 1296
- SUNDRUM, R. M. A FURTHER APPROXIMATION TO THE DISTRIBUTION OF WIL-COXON'S STATISTIC IN THE GENERAL CASE, JRSSB 54, 255 SUNDRUM, R. M. A METHOD OF SYSTEMATIC SAMPLING BASED ON ORDER PRO-
- PERTIES, BIOKA 53, 452
 SUNDRUM, R. M. MOMENTS OF THE RANK CORRELATION COEFFICIENT TAU IN
- THE GENERAL CASE, BIOKA 53, 409
 SUNDRUM, R. M. ON THE RELATION BETWEEN ESTIMATING EFFICIENCY AND THE
- POWER OF TESTS, BIOKA 54. 542 SUNTER, ALAN B. A THEORY FOR RECORD LINKAGE, JASA 69, NO. 4
- SURENDRAN, P. U. ASSOCIATION MATRICES AND THE KRONECKER PRODUCT OF DESIGNS, AMS 68, 676
- SURENDRAN, P. U. COMMON TREATMENTS BETWEEN BLOCKS OF CERTAIN PAR-TIALLY BALANCED INCOMPLETE BLOCK DESIGNS, AMS 68, 999
- SUTHERLAND, T. M. THE CORRELATION BETWEEN FEED EFFICIENCY AND RATE OF GAIN, A RATIO AND ITS DENOMINATOR, BIOCS 65, 739
- SUZUKI, GIITIRO KOLMOGOROV-SMIRNOV TESTS OF FIT BASED ON SOME GENERAL BOUNDS, JASA 6B. 919
- SWAMY, P. S. ON THE AMOUNT OF INFORMATION SUPPLIED BY CENSORED SAM-PLES OF GROUPED OBSERVATIONS IN THE EST, BIOKA 62, 245
- SWAMY, P.S. ON THE AMOUNT OF INFORMATION SUPPLIED BY TRUNCATED SAM-PLES OF GROUPED OBSERVATIONS IN THE ES. BIOKA 63, 207
- SWAMY, P. S. ON THE JOINT EFFICIENCY OF THE ESTIMATES OF THE PARAMETERS OF NORMAL POPULATIONS BASED ON SI, JASA 62, 46
- SWAMY, R. A. V. B. ON THEIL'S MIXED REGRESSION ESTIMATOR, JASA 69, 273

- SWEENY, H. C. DESIGN FOR OPTIMAL PREDICTION IN SIMPLE LINEAR RECRESSION, JASA 65, 205
- SWINDEL, B. F. ON THE BIAS OF SOME LEAST-SQUARES ESTIMATORS OF VARIANCE IN A GENERAL LINEAR MODEL, BIOKA 68, 313
- SWITZER, PAUL A RANDOM SET PROCESS IN THE PLANE WITH A MARKOVIAN PRO-
- SWITZER, PAUL RECONSTRUCTING PATTERNS FROM SAMPLE DATA, AMS 67, 138
 SWITZER, PAUL SIGNIFICANCE PROBABILITY BOUNDS FOR RANK ORDERINGS,
 AMS 64, 891
- SYKES, Z.M. ON DISCRETE STABLE POPULATION THEORY, BIOCS 69, 285
- SYKES, Z. M. SOME STOCHASTIC VERSIONS OF THE MATRIX MODEL FOR POPU-LATION DYNAMICS, JASA 69, 111
- SYLWESTER, D. A QUANTITATIVE DISCUSSION OF THE EFFECTIVENESS OF VOIDING AS A DEFENCE AGAINST BLADDER INFE, BIOCS 66, 53
- SYLWESTER, DAVID L. A MATHEMATICAL MODEL WITH APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMONG CHIL, JASA 65, 1046
- TABUBER, KARL E. RESIDENCE HISTORIES AND EXPOSURE RESIDENCES FOR THE UNITED STATES POPULATION. JASA 61, B24
- TAINITER, M. SEQUENTIAL HYPOTHESIS TESTS FOR THE R-DEPENDENT MAR-GINALLY STATIONARY PROCESSES, AMS 66, 90
- TAKACS, L. APPLICATIONS OF A BALLOT THEOREM IN PHYSICS AND IN ORDER STATISTICS, JRSSB 65, 130
- TAKACS, L. CHARLES JORDAN, 1B71-1959, AMS 61, 1
- TAKACS, LAJOS A GENERALIZATION OF THE BALLOT PROBLEM AND ITS APPLI-CATION IN THE THEORY OF QUEUES, JASA 62, 327
- TAKACS, LAJOS AN APPLICATION OF A BALLOT THEOREM IN ORDER STATISTICS, AMS 64, 1356
- TAKACS, LAJOS ON A COINCIDENCE PROBLEM CONCERNING PARTICLE COUNTERS, AMS 61, 739
- TAKACS, LAJOS ON ERLANG'S FORMULA, AMS 69, 71
- TAKACS, LAJOS ON THE CLASSICAL RUIN PROBLEMS, JASA 69, BB9
- TAKACS, LAJOS ON THE METHOD OF INCLUSION AND EXCLUSION, JASA 67, 102
 TAKACS, LAJOS THE TIME DEPENDENCE OF A SINGLE-SERVER QUEUE WITH
 POISSON INPUT AND GENERAL SERVICE TIMES, AMS 62, 1340
- TAKACS, LAJOS THE TRANSIENT BEHAVIOR OF A SINGLE SERVER QUEUING PROCESS WITH RECURRENT INPUT AND GAMMA SE, AMS 61, 1286
- PROCESS WITH RECURRENT INPUT AND GAMMA SE, AMS 61, 1286
 TAKAYAMA, T. INEQUALITY RESTRICTIONS IN REGRESSION ANALYSIS, JASA
- 66.166
 TAKEUCHI, KEI A NOTE ON THE TEST FOR THE LOCATION PARAMETER OF AN EX-
- PONENTIAL DISTRIBUTION, AMS 69, 1B3B
 TALLIS, G. M. APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATES FROM
- GROUPED DATA, TECH 67, 599
 TALLIS, G. M. ELLIPTICAL AND RADIAL TRUNCATION IN NORMAL POPULA-
- TIONS, AMS 63, 940
 TALLIS, G. M. EQUILIBRIA UNDER SELECTION FOR K ALLELES, BIOCS 66.
- 121
 TALLIS, G. M. EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF
- COMPONENTS OF COVARIANCE, BIOKA 69, NO.3
 TALLIS, G. M. FORMULAE TO IMPROVE WALD'S APPROXIMATION FOR SOME PRO-
- PERTIES OF SEQUENTIAL TESTS, JRSSB 65, 74

 TALLIS, G. M. FURTHER MODELS FOR ESTIMATING CORRELATION IN DISCRETE DATA, JRSSB 64, 82
- TALLIS, G. M. NOTE ON A CALIBRATION PROBLEM, BIOKA 69, NO.3
- TALLIS, G. M. NOTES. A MIGRATION MODEL, BIOCS 66, 409
- TALLIS, G. M. PLANE TRUNCATION IN NORMAL POPULATIONS, JRSSB 65, 301
 TALLIS, G. M. SELECTION FOR AN OPTIMUM GROWTH CURVE, BIOCS 6B, 169
- TALLIS, G. M. THE MOMENT GENERATING FUNCTION OF THE TRUNCATED MULTI-NORMAL DISTRIBUTION, JRSSB 61, 223
- TALLIS, G. M. THE USE OF A GENERALIZED MULTINOMIAL DISTRIBUTION IN THE ESTIMATION OF CORRELATION IN DISCR, JRSSB 62, 530
- TALLIS, G. M. THE USE OF FRACTIONAL MOMENTS FOR ESTIMATING THE PARAMETERS OF A MIXED EXPONENTIAL DISTRIBU, TECH 68, 161
- TAMHANKAR, M. V. A CHARACTERIZATION OF NORMALITY, AMS 67, 1924
- TAMURA, RYOJI MULTIVARIATE NONPARAMETRIC SEVERAL-SAMPLE TESTS, AMS 66, 611
- TAMURA, RYOJI ON A MODIFICATION OF CERTAIN RANK TESTS, AMS 63, 1101
 TAMURA, RYOJI SOME DISTRIBUTION-FREE MULTIVARIATE COMPARISON
 PROCEDURES, AMS 69, 1486
- TAN, W. Y. BAYESIAN ANALYSIS OF RANDOM-EFFECT MODELS IN THE ANALYSIS OF VARIANCE. I. POSTERIOR DISTRIBUTI, BIOKA 65, 37
- TAN, W. Y. BAYESIAN ANALYSIS OF RANDOM-EFFECT MODELS IN THE ANALYSIS OF VARIANCE. II. EFFECT OF AUTOCORRE, BIOKA 66, 477
- TAN, WAI-YUAN NOTE ON THE MULTIVARIATE AND THE GENERALIZED MUL-TIVARIATE BETA DISTRIBUTIONS, JASA 69, 230
- TANIS, ELLIOT A. AN ITERATED PROCEDURE FOR TESTING THE EQUALITY OF SEVERAL EXPONENTIAL DISTRIBUTIONS, JASA 63, 435
- TANIS, ELLIOT A. LINEAR FORMS IN THE ORDER STATISTICS FROM AN EX-PONENTIAL DISTRIBUTION, AMS 64, 270
- TANNER, J. C. A DERIVATION OF THE BOREL DISTRIBUTION, BIOKA 61, 222
- TANNER, J. C. A PROBLEM IN THE COMBINATION OF ACCIDENT FREQUENCIES, BIOKA 58, 331
- TANNER, J. C. A PROBLEM OF INTERFERENCE BETWEEN TWO QUEUES, BIOKA 53, 58
- TANNER, J. C. A SIMPLIFIED MODEL FOR DELAYS IN OVERTAKING ON A TWO-LANE ROAD, JRSSB 58, 408
- TANNER, J. C. A THEORETICAL ANALYSIS OF DELAYS AT AN UNCONTROLLED INTERSECTION, BIOKA 62, 163

- TANNER, J. C. DELAYS ON A TWO-LANE ROAD , WITH DISCUSSION), JRSSB 61. 38
- TANNER, J. C. THE CAPACITY OF AN UNCONTROLLED INTERSECTION, BIOKA 67.657
- TANNER, J. C. THE DELAY TO PEDESTRIANS CROSSING A ROAD, 810KA 51, 383 TARTER, M. THE ESTIMATION OF PROBABILITY DENSITIES AND CUMULATIVES BY FOURIER SERIES METHODS, JASA 6B, 925
- TARTER, M. E. CO-ORDINATE TRANSFORMATIONS TO NORMALITY AND THE POWER OF NORMAL TESTS FOR INDEPENDENCE, BIOKA 69, 139
- TARTER, M. E. INVERSE CUMULATIVE APPROXIMATION AND APPLICATIONS, BIOKA 68, 29
- TARTER, MICHAEL E. EXACT MOMENTS AND PRODUCT MOMENTS OF THE ORDER STATISTICS FROM THE TRUNCATED LOGISTIC, JASA 66, 514
- TARTER, MICHAEL E. PROPERTIES OF THE MEDIAN AND OTHER STATISTICS OF LOCISTIC VARIATES, AMS 65, 1779
- TARVER, JAMES D. EVALUATION OF CENSUS SURVIVAL RATES IN ESTIMATING INTERCENSAL STATE NET MIGRATION, JASA 62, B41
- TATE, R. F. ESTIMATION OF THE PARAMETERS FOR A MULTIVARIATE NORMAL DISTRIBUTION WHEN ONE VARIABLE IS DICH, BIOKA 65, 664
- TATE, R. F. MULTIVARIATE CORRELATION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, CORR. 65 343, AMS 61, 448
 TATE, R. F. ON THE USE OF PARTIALLY ORDERED OBSERVATIONS IN MEASUR—
- TATE, R. F. ON THE USE OF PARTIALLY ORDERED OBSERVATIONS IN MEASUR-ING THE SUPPORT FOR A COMPLETE ORDER, JASA 61, 299
- TATE, R. F. OPTIMAL CONFIDENCE INTERVALS FOR THE VARIANCE OF A NOR-MAL DISTRIBUTION, JASA 59, 674
- TATE, R. F. THE THEORY OF CORRELATION BETWEEN TWO CONTINUOUS VARIABLES WHEN ONE IS DICHOTOMIZED, BIOKA 55, 205
- TATE, ROBERT F. CONDITIONAL-NORMAL REGRESSION MODELS, JASA 66, 477
 TAUBMAN, PAUL A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND
 SERVICES, JASA 62, 633
- TAYLOR III, HOWARD M. MARKOVIAN SEQUENTIAL REPLACEMENT PROCESSES, AMS 65, 1677
- TAYLOR, G. APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO NON-LINEAR REGRESSION PROBLEMS. TECH 6B. 843
- TAYLOR, HOWARD STATISTICAL CONTROL OF A CAUSSIAN PROCESS, TECH 67,
- TAYLOR, HOWARD THE ECONOMIC DESIGN OF CUMULATIVE SUM CONTROL CHARTS, TECH 68, 479
- TAYLOR, HOWARD M. OPTIMAL STOPPING IN A MARKOV PROCESS, AMS 68, 1333
 TAYLOR, HOWARD M. WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION PROBLEMS, AMS 68, 2149
- TAYLOR, J. CENSORED OBSERVATIONS IN RANDOMIZED BLOCK EXPERIMENTS, JRSS8 59, 214
- TAYLOR, J. EXACT LINEAR SEQUENTIAL TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION, BIOKA 56, 452
- TAYLOR, J. THE VALUE OF ORTHOGONAL POLYNOMIALS IN THE ANALYSIS OF CHANGE-OVER TRIALS WITH DAIRY COWS, BIOCS 67, 297
- TAYLOR, L. R. TABLES FOR POWER-LAW TRANSFORMATIONS, BIOKA 62, 557
- TAYLOR, R. J. A MULTI-STAGE PROCEDURE FOR THE SELECTION OF THE BEST OF SEVERAL POPULATIONS, JASA 62, 7B5
- TAYLOR, WILLIAM J. THE CONDITION FOR LOT SIZE PRODUCTION, JASA 56, $627\,$
- TAYLOR, WILSON L. CORRECTING THE AVERACE RANK CORRELATION COEFFI-CIENT FOR TIES IN RANKINGS, JASA 64, 872
- TAYLOR, WILSON L. SOME CONTRIBUTIONS TO THE AVERAGE RANK CORRELA-TION METHODS AND TO THE DISTRIBUTION OF T, JASA 63, 756
- TEICHER, H. ON SECOND MOMENTS OF STOPPINC RULES, AMS 66, 388
- TEICHER, HENRY IDENTIFIABILITY OF FINITE MIXTURES, AMS 63, 1265
- TEICHER, HENRY IDENTIFIABILITY OF MIXTURES, AMS 61, 244 TEICHER, HENRY IDENTIFIABILITY OF MIXTURES OF PRODUCT MEASURES.
- AMS 67, 1300
 TEICHER, HENRY MAXIMUM LIKELIHOOD CHARACTERIZATION OF DISTRIBU-
- TIONS, AMS 61, 1214
 TEICHER, HENRY MOMENTS OF RANDOMLY STOPPED SUMS, AMS 65, 789
- TEICHER, HENRY ON RANDOM SUMS OF RANDOM VECTORS, AMS 65, 1450
- TEICHER, HENRY OPTIMAL STOPPING WHEN THE FUTURE IS DISCOUNTED, AMS 67,601
- TEICHROEW, D. A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS TESTS FOR TREND IN A TIME SERIES, JRSSB 55, 115
- TEICHROEW, D. CORRECTION TO 'TABLES OF EXPECTED VALUES OF ORDER STATISTICS AND PRODUCTS OF ORDER STATISTI, AMS 61, 1345
- TEICHROEW, DANIEL A HISTORY OF DISTRIBUTION SAMPLING PRIOR TO THE ERA OF THE COMPUTER AND ITS RELEVANCE T, JASA 65, 27
- TELSER, LESTER G. DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCHASTIC PROCESSES, JASA 67, 484
- TELSER, LESTER G. ITERATIVE ESTIMATION OF A SET OF LINEAR REGRESSION EQUATIONS, JASA 64, 845
- TEN HOOPEN, M. THE SUPERPOSITION OF RANDOM SEQUENCES OF EVENTS, BIOKA 66, 383
- TEPPING, BENJAMIN J. A MODEL FOR OPTIMUM LINKAGE OF RECORDS, JASA 68, 1321
- TEPPING, BENJAMIN J. WASHINGTON STATISTICAL SOCIETY MEMORIAL MEET-ING FOR WILLIAM N. HURWITZ. THE DEVELOPM, JASA 69, NO.4
- TERRAGNO, PAUL J. A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE PROBLEMS, AMS 64. 232
- TERRY, MILTON E. RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. I. THE METHOD OF PAIRED COMPARISONS., BIOKA 52, 324

- TEUGELS, JOZEF L. RENEWAL THEOREMS WHEN THE FIRST OR THE SECOND MO-MENT IS INFINITE, AMS 6B, 1210
- THARTHARE, SURESH K. GENERALIZED RIGHT ANCULAR DESIGNS, AMS 65, 1535
- THARTHARE, SURESH K. RIGHT ANGULAR DESIGNS, AMS 63, 1057
- THATCHER, A. R. RELATIONSHIPS BETWEEN BAYESIAN AND CONFIDENCE LIMITS FOR PREDICTIONS (WITH DISCUSSION), JRSSB 64, 176
- THATCHER, A. R. SOME RESULTS ON INVENTORY PROBLEMS (WITH DISCUSSION), JRSSB 62, 1
- THATCHER, A. R. STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. VI. A NOTE ON THE EARLY SOLUTIONS 0, BIOKA 57, 515
- THEDEEN, TORBJORN A NOTE ON THE POISSON TENDENCY IN TRAFFIC DISTRIBUTION, AMS 64, 1823
- THEIL, H. ON THE USE OF INCOMPLETE PRIOR INFORMATION IN REGRESSION ANALYSIS, JASA 63, 401
- THEIL, H. TESTING THE INDEPENDENCE OF REGRESSION DISTURBANCES, JASA 61, 793
- THEIL, H. THE ANALYSIS OF DISTURBANCES IN REGRESSION ANALYSIS, JASA $65,\,1067$
- THEIL, HENRI A SIMPLIFICATION OF THE BLUS PROCEDURE FOR ANALYZINC RECRESSION DISTURBANCES, JASA 68, 242
 THIEBAUX, J. TESTING A MARKOV HYPOTHESIS WITH INDEPENDENCE OF IN-
- TERMEDIATE STATES AND RESTRICTED ORDER, BIOKA 67, 605
 THOMAN, D. R. INFERENCES ON THE PARAMETERS OF THE WEIBULL DISTRIBU-
- TION, TECH 69, 445 THOMAN, D.R. TWO SAMPLE TESTS IN THE WEIBULL DISTRIBUTION, TECH 69, NO.4
- THOMAN, DARREL R. SOME TESTS OF HYPOTHESES CONCERNING THE THREE-PARAMETER WEIBULL DISTRIBUTION, JASA 68, 853
- THOMAS, D. G. THE PERFORMANCE OF SOME TWO-SAMPLE TESTS IN SMALL SAMPLES WITH AND WITHOUT CENSORING, BIOKA 69, 127
- THOMAS, DAVIDR. GAME VALUE DISTRIBUTIONS I, AMS 67, 242
- THOMAS, DAVIDR. GAME VALUE DISTRIBUTIONS II, AMS 67, 251
- THOMAS, E. A. C. DISTRIBUTION FREE TESTS FOR MIXED PROBABILITY DISTRIBUTIONS, BIOKA 69, NO. 3
- THOMAS, MARJORIE SOME TESTS FOR RANDOMNESS IN PLANT POPULATIONS, BIOKA 51, 102
- THOMAS, P. O. SOME GRAPHS USEFUL FOR STATISTICAL INFERENCE, JASA 65, $334\,$
- THOMASIAN, A. J. A BOUND FOR THE LAW OF LARGE NUMBERS FOR DISCRETE MARKOV PROCESSES, AMS 61, 336
- THOMASIAN, A. J. A FINITE CRITERION FOR INDECOMPOSABLE CHANNELS, AMS 63, 337
- THOMLINSON, RALPH A MODEL FOR MICRATION ANALYSIS, JASA 61, 675
- THOMPSON JR. W. A. A TREATMENT OF TIES IN PAIRED COMPARISONS, AMS 68, 2002
- THOMPSON JR, W. A. MAXIMUM-LIKELIHOOD PAIRED COMPARISON RANKINGS, BIOKA 66, 143
- THOMPSON JR. W. A. NON-NEGATIVE ESTIMATES OF VARIANCE COMPONENTS, TECH 63.441
- THOMPSON JR, W. A. ON AN EXTREME RANK SUM TEST FOR OUTLIERS, BIOKA 63, $375\,$
- THOMPSON JR, W. A. PRECISION OF SIMULTANEOUS MEASUREMENT PROCEDURES, JASA 63, 474
- THOMPSON JR, W. A RANKINGS FROM PAIRED COMPARISONS, AMS 64, 739
- THOMPSON JR, W. A. THE PROBLEM OF NEGATIVE ESTIMATES OF VARIANCE COMPONENTS, ${\tt AMS}\,62,\,273$
- THOMPSON, D. J. A NOTE ON FOLLOW-UP FOR SURVIVAL IN THE PRESENCE OF MOVEMENT, JASA 61, 119
- THOMPSON, H. R. A NOTE ON CONTAGIOUS DISTRIBUTIONS, 810KA 54, 268 THOMPSON, H. R. SERIAL DESIGNS FOR ROUTINE QUALITY CONTROL AND EX-
- THOMPSON, H. K. SERIAL DESIGNS FOR ROUTINE QUALITY CONTROL AND EX-PERIMENTATION, TECH 64. 77 THOMPSON, H. R. SPATIAL POINT PROCESSES, WITH APPLICATIONS TO
- THOMPSON, H. R. SPATIAL POINT PROCESSES, WITH APPLICATIONS TO ECOLOCY, 8IOKA 55, 102 THOMPSON, H. R. TRUNCATED LOCNORMAL DISTRIBUTIONS. I. SOLUTION BY
- MOMENTS, BIOKA 51, 414
 THOMPSON, J. W. A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL
- THOMPSON, J. W. A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL PROCEDURES, AMS 64, 755
- THOMPSON, JAMES R. ACCURACY BORROWING IN THE ESTIMATION OF THE MEAN BY SHRINKACE TO AN INTERVAL, JASA 68, 953
- THOMPSON, JAMES R. SOME SHRINKACE TECHNIQUES FOR ESTIMATING THE MEAN, JASA 68, 113
- THOMPSON, R. ITERATIVE ESTIMATION OF VARIANCE COMPONENTS FOR NON-ORTHOGONAL DATA, BIOCS 69, NO.4
- THOMPSON, RORY BIAS OF THE ONE-SAMPLE CRAMER-VON MISES TEST, JASA 66, 246
- THOMPSON, RORY DISTRIBUTION AND POWER OF THE ASSOLUTE NORMAL SCORES
- TEST, JASA 67, 966 THOMPSON, RORY GOODNESS CRITERIA FOR TWO-SAMPLE DISTRIBUTION-FREE TESTS, AMS 66, 133
- THOMPSON, W. A. RANK SUM MULTIPLE COMPARISIONS IN ONE AND TWO-WAY CLASSIFICATIONS, 810KA 67, 487
- THOMPSON, W. E. BAYESIAN CONFIDENCE LIMITS FOR RELIABILITY OF REDUNDANT SYSTEMS WHEN TESTS ARE TERMINATED, TECH 68, 29
- THOMPSON, W. E. BAYESIAN CONFIDENCE LIMITS FOR THE PRODUCT OF N BINOMIAL PARAMETERS, 810KA 66, 611
- THOMPSON, W. S. PERCENTAGE POINTS OF THE EXTREME ROOTS OF A WISHART MATRIX, 810KA 68, 505

- THOMPSON, WILLIAM O. RESPONSE SURFACE DESIGNS FOR MIXTURE PROBLEMS, TECH 68, 739
- THOMSON, G. W. BOUNDS FOR THE RATIO OF RANGE TO STANDARD DEVIATION, BIOKA 55, 268
- THOMSON, GEORGE WM. SCALE FACTORS AND DEGREES OF FREEDOM FOR SMALL SAMPLE SIZES FOR CHI APPROXIMATION TO, BIOKA 53, 449
- THOMSON, M. J. SOME STATISTICS ASSOCIATED WITH THE RANDOM DISORIEN-TATION OF CUBES, BIOKA 57, 205
- THONI, HANSPETER A TABLE FOR ESTIMATING THE MEAN OF A LOGNORMAL DISTRIBUTION, JASA 69, 632
- TRIBUTION, JASA 69, 632
 THORNBER, HODSON FINITE SAMPLE MONTE CARLO STUDIES. AND AU-
- TOREGRESSIVE ILLUSTRATION, JASA 67, 801
 THORNBY, J. I. A ROBUST POINT ESTIMATOR IN A GENERALIZED RECRESSION
- THORNBY, J. I. A ROBUST POINT ESTIMATOR IN A GENERALIZED RECRESSION MODEL, AMS 69, 17B4
 THORP, EDWARD O. A FAVORABLE SIDE BET IN NEVADA BACCARAT, JASA 66,
- 313
 THURSTONE, L. L. THE RATIONAL ORIGIN FOR MEASURING SUBJECTIVE
- VALUES, JASA 57, 458
 TIAO, G. C. A BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS, BIOKA 68,
- 119
 TIAO, G. C. A CHANGE IN LEVEL OF A NON-STATIONARY TIME SERIES, BIOKA
- 65, 181
 TIAO, G. C. A FURTHER LOOK AT ROBUSTNESS VIA BAYES'S THEOREM, BIOKA
- 62, 419 TIAO, G. C. A NOTE ON TABLES FOR THE COMPARISION OF THE SPREAD OF TWO
- NORMAL DISTRIBUTIONS, BIOKA 67, 6B3 TIAO, G. C. ANALYSIS OF OUTLIERS WITH ADJUSTED RESIDUALS, TECH 67, 541
- TIAO, C. C. BAYESIAN ANALYSIS OF A THREE-COMPONENT HIERARCHICAL DESIGN MODEL, BIOKA 67, 109
- TIAO, G. C. BAYESIAN ANALYSIS OF LINEAR MODELS WITH TWO RANDOM COM-PONENTS WITH SPECIAL REFERENCE TO THE B, BIOKA 68, 101
- TIAO, G. C. BAYESIAN ANALYSIS OF RANDOM-EFFECT MODELS IN THE ANALY-SIS OF VARIANCE, I. POSTERIOR DISTRIBUT, BIOKA 65, 37
- TIAO, G. C. BAYESIAN ANALYSIS OF RANDOM-EFFECT MODELS IN THE ANALY-SIS OF VARIANCE. II. EFFECT OF AUTOCORR, BIOKA 66, 477
- TIAO, G. C. BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH APPLI-CATION TO RECRESSION ANALYSIS, BIOKA 66, 11
- TIAO, G. C. BAYESIAN ESTIMATION OF LATENT ROOTS AND VECTORS WITH SPECIAL REFERENCE TO THE BIVARIATE NORMA, BIOKA 69, 97
- TIAO, C. C. BAYESIAN ESTIMATION OF MEANS FOR THE RANDOM EFFECT MODEL, JASA 6B, 174
- TIAO, G. C. CORRIGENDA, 'A FURTHER LOOK AT ROBUSTNESS VIA BAYES'S THEOREM.', BIOKA 63, 546
- TIAO, GEORCE C. A BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS, AMS 64. B25
 TIAO, CEORCE C. A BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS
- APPLIED TO THE COMPARISON OF VARIANC, BIOKA 64, 153
 TIAO, GEORCE C. A NOTE ON CRITERION ROBUSTNESS AND INFERENCE ROBUST-
- NESS, BIOKA 64, 169
 TIAO, GEORGE C. BAYES'S THEOREM AND THE USE OF PRIOR KNOWLEDGE IN
- REGRESSION ANALYSIS, BIOKA 64, 219
 TIAO, GEORGE C. BAYESIAN ANALYSIS OF THE REGRESSION MODEL WITH AUTO-
- CORRELATED ERRORS, JASA 64, 763
 TIAO, CEORGE C. MULTIPARAMETER PROBLEMS FROM A BAYESIAN POINT OF
- VIEW, AMS 65, 1468
 TIAO, CEORGE C. ON THE BAYESIAN ESTIMATION OF MULTIVARIATE REGRES—
- SION, JRSSB 64, 277
 TIAO, CEORGE C. THE INVERTED DIRICHLET DISTRIBUTION WITH APPLICA-
- TIONS, CORR. 65 1251, JASA 65, 793
 TICK, LEO J. THE ESTIMATION OF 'TRANSFER FUNCTIONS' OF QUADRATIC
- SYSTEMS, TECH 61, 563
- TICK, LEO JOSEPH SAMPLING RATES AND APPEARANCE OF STATIONARY GAUS-SIAN PROCESSES, TECH 66, 91
- TIDEMAN, NICOLAUS MEASURES OF CONCENTRATION, JASA 67, 162
- TIDWELL, PAUL W. TRANSFORMATION OF THE INDEPENDENT VARIABLES, TECH $62,531\,$
- TIENZO, B. P. ON THE DISTRIBUTION OF THE EXTREME STUDENTIZED DEVIATE FROM THE SAMPLE MEAN, BIOKA 59, 467
- TIERNEY, DAVID E. WHICH PRODUCT IS BETTER, TECH 69, 309
- TIETJEN, G. L. DOUBLE SAMPLING PLANS WHERE THE ACCEPTANCE CRITERION IS THE VARIANCE, TECH 68, 99
- TIETJEN, G. L. NOTES. ON TESTING SIGNIFICANCE OF COMPONENTS OF VARIANCE IN THE UNBALANCED NESTED ANALYSIS, BIOCS 68, 423
- TIKKIWAL, B. D. ON THE THEORY OF CLASSICAL REGRESSION AND DOUBLE SAMPLING ESTIMATION, JRSS8 60, 131
- TIKU, M L. A NOTE ON APPROXIMATING TO THE NON-CENTRAL F DISTRIBUTION, BIOKA 66, 606

 TIKU, M. L. A NOTE ON THE NEGATIVE MOMENTS OF A TRUNCATED POISSON
- VARIATE, JASA 64, 1220
 TIKU, M. L. APPROXIMATING THE CENERAL NON-NORMAL VARIANCE-RATIO
- SAMPLING DISTRIBUTIONS, BIOKA 64, 83
 TIKU, M. L. CHI-SQUARE APPROXIMATIONS FOR THE DISTRIBUTIONS OF
 GOODNESS-OF-FIT STATISTICS, U-SQUARE-SU8-N, 810KA 65, 630
- TIKU, M. L. ESTIMATING THE MEAN AND STANDARD DEVIATION FROM A CEN-SORED NORMAL SAMPLE, BIOKA 67, 155
- TIKU, M. L. ESTIMATING THE PARAMETERS OF LOG-NORMAL DISTRIBUTION FROM CENSORED SAMPLES, JASA 68, 134

- TIKU, M. L. LACUERRE SERIES FORMS OF NON-CENTRAL CHI-SQUARE AND F DISTRIBUTIONS, BIOKA 65, 415
- TIKU, M. L. TABLES OF THE POWER OF THE F-TEST (CORR. 68 1551), JASA 67, 525
- TILANUS, C.B. A NOTE ON ESTIMATION FROM A CAUCHY SAMPLE, JASA 64, 460
 TIMCEY, FRED H. STATISTICAL EVALUATION OF SPLITTING LIMIT CRITERIA
 IN MEASUREMENT DISPUTES, TECH 63, 263
- TIN, MYINT COMPARISON OF SOME RATIO ESTIMATORS, JASA 65, 294
- TINCEY, F. H. MINIMUM RISK SPECIFICATION LIMITS, JASA 59, 260
- TINSLEY, P. A. AN APPLICATION OF VARIABLE WEICHT DISTRIBUTED LACS, JASA 67, 1277
- TINTNER, CERHARD THE STATISTICAL WORK OF OSKAR ANDERSON, JASA 61,
- TIPLITZ, C. APPROXIMATIONS TO THE MEAN AND STANDARD DEVIATION OF RECIPROCALS OF OBSERVATIONS, TECH 63, 522
- TIPPETT, L. H. C. EDITORIAL ARRANCEMENTS, BIOKA 65, 1
- TJOE-TIE, TEH MINIMAX THEOREMS ON CONDITIONALLY COMPACT SETS, AMS 63, 1536
- TOBACH, ETHEL A TABLE FOR RANK SUM MULTIPLE PAIRED COMPARISONS, TECH 67.561
- TOBIAS, FILBERT SOME STATISTICAL CHARACTERISTICS OF A PEAK TO AVERACE RATIO, TECH 65, 379
- TOCHER, K.D. A NOTE ON THE DESIGN PROBLEM, BIOKA 52, 189
- TOCHER, K. D. ON THE CONCURRENCE OF A SET OF RECRESSION LINES., BIOKA $52,109\,$
- TOCHER, K. D. THE APPLICATION OF AUTOMATIC COMPUTERS TO SAMPLINC EX-PERIMENTS (WITH DISCUSSION), JRSSB 54, 39
- TOMAN, R. J. SELECTION OF VARIABLES FOR FITTING EQUATIONS TO DATA, TECH 66, 27
- TOMASSON, RICHARD F. BIAS IN ESTIMATES OF THE UNITED STATES NONWHITE POPULATION AS INDICATED BY TRENDS IN, JASA 61, 44
- TONC, Y. L. INTERVAL ESTIMATION OF THE LARCEST MEAN OF K NORMAL POPU-
- LATIONS WITH KNOWN VARIANCES, JASA 69, 296
 TONG, YUNG LIANG ON PARTITIONING A SET OF NORMAL POPULATIONS BY
- THEIR LOCATIONS WITH RESPECT TO A CONTROL, AMS 69, 1300
 TOOTILL, J. P. R. COMPARATIVE SAMPLING ACCEPTANCE SCHEMES IN TEST-
- INC ANTICENICITY OF VACCINES, BIOCS 66, 684
 TOOTILL, J. P. R. ON COMBINING THE RESULTS FROM CLINICAL TRIALS OF A
- VACCINE, BIOCS 65, 616
- TOPP, C. W. THE USE OF SAMPLE QUASI-RANCES IN SETTING CONFIDENCE IN-TERVALS FOR THE POPULATION STANDARD DE, JASA 61, 260
- TOPSOE, FLEMMINC PRESERVATION OF WEAK CONVERGENCE UNDER MAPPINCS, AMS 67, 1661
- TORNHEIM, TEONARD CONVERCENCE IN NON-LINEAR RECRESSION, TECH 63, 513
- TORO-VIZCARRONDO, C. E. TABLES FOR THE MEAN SQUARE ERROR TEST FOR EXACT LINEAR RESTRICTIONS IN RECRESSION, JASA 69, NO. 4
- TORO-VIZCARRONDO, CARLOS A TEST OF THE MEAN SQUARE ERROR CRITERION FOR RESTRICTIONS IN LINEAR RECRESSION, JASA 6B, 55B
- TOULMIN, G. H. THE NUMBER OF NEW SPECIES, AND THE INCREASE IN POPULA-TION COVERACE, WHEN A SAMPLE IS INCRE, BIOKA 56, 45
- TRACY, D. S. A COMBINATORIAL METHOD FOR PRODUCTS OF TWO POLYKAYS WITH SOME CENERAL FORMULAE, AMS 64, 1174
- TRACY, DERRICK S. MULTIVARIATE MAXIMA AND MINIMA WITH MATRIX DERIVATIVES, JASA 69, NO. 4
- TRACY, DERRICKS. SOME MULTIPLE PRODUCTS OF POLYKAYS, AMS 69, 1297
 TRACY, DERRICKS. SOME RULES FOR A COMBINATORIAL METHOD FOR MULTIPLE
- TRACY, DERRICK S. SOME RULES FOR A COMBINATORIAL METHOD FOR MULTIPLE PRODUCTS OF GENERALIZED K-STATISTICS, AMS 68, 983
- TRAPPL, R. NOTES. EIN EINFACHES VERFAHREN ZUR ERZEUCUNG VON SYMBOL-FOLGEN MIT VORCEGEBENER RELATIVER DYADE, BIOCS 68, 703 TRAWINSKI, B. J. AN EXACT PROBABILITY DISTRIBUTION OVER SAMPLE
- SPACES OF PAIRED COMPARISONS, BIOCS 65, 986
 TRAWINSKI, B. J. ASYMPTOTIC APPROXIMATION TO THE EXPECTED SIZE OF A
- SELECTED SUBSET, BIOKA 69, 207
 TRAWINSKI, B. J. SELECTION OF THE BEST TREATMENT IN A PAIRED-COM-
- PARISON EXPERIMENT, AMS 63, 75
 TRAWINSKI, IRENE M. AN ALGORITHM FOR OBTAINING THE ZERO OF A FUNC-
- TION OF THE DISPERSION MATRIX IN MULTIVA, JASA 67, 114
 TRAWINSKI, IRENE MONAHAN MAXIMUM LIKELIHOOD ESTIMATION WITH IN-
- COMPLETE MULTIVARIATE DATA, AMS 64, 647
 TRENCH, WILLIAM F. ON THE EXTRAPOLATION OF A SPECIAL CLASS OF STA-
- TRENCH, WILLIAM F. ON THE EXTRAPOLATION OF A SPECIAL CLASS OF STA-TIONARY TIME SERIES, AMS 65, 1426
- TRICKETT, W. H. FURTHER CRITICAL VALUES FOR THE TWO-MEANS PROBLEM, BIOKA 56, 203
- TRICKETT, W. H. ON THE COMPARISON OF TWO MEANS, FURTHER DISCUSSION OF ITERATIVE METHODS FOR CALCULATING T, BIOKA 54, 361
- TROSKIE, C. G. NONCENTRAL MULTIVARIATE DIRICHLET DISTRIBUTIONS, SASJ 67, 21
- TROSKIE, C. C. THE GENERALIZED MULTIPLE CORRELATION MATRIX, SASJ $69\,, \text{NO}\,.\,2$
- TRUAX, D. R. A NOTE ON THE WEAK LAW, AMS 68, 2159
- TRUAX, D. R. OPTIMAL INVARIANT RANK TESTS FOR THE K-SAMPLE PROBLEM, AMS 65, 1207
- TRUAX, D. R. TESTS OF COMPOSITE HYPOTHESES FOR THE MULTIVARIATE EX-PONENTIAL FAMILY, CORR. 67 1928, AMS 67, 6B1
- TRUAX, DONALD LARGE DEVIATIONS THEORY IN EXPONENTIAL FAMILIES, AMS 6B, 1402

- TRULOVE, A. J. ON NON-RECULAR ESTIMATION. I. VARIANCE BOUNDS FOR ESTIMATORS OF LOCATION PARAMETERS, JASA 69, 1056
- TSAO, CHIA KUEI ADMISSIBILITY AND DISTRIBUTION OF SOME PROBABILISTIC FUNCTIONS OF DISCRETE FINITE STATE M, AMS 6B, 1646
- TSAO, R. EFFICIENT CALCULATION OF ALL POSSIBLE RECRESSIONS, TECH 6B,769
- TSUTAKAWA, R. K. AN EXAMPLE OF LARCE DISCREPANCY BETWEEN MEASURES OF ASYMPTOTIC EFFICIENCY OF TESTS, AMS 6B, 179
- TSUTAKAWA, R. K. ASYMPTOTIC PROPERTIES OF THE BLOCK UP-AND-DOWN METHOD IN BIO-ASSAY, AMS 67, 1822
- TSUTAKAWA, R. K. RANDOM WALK DESICN IN BIO-ASSAY, JASA 67, 842
- TUCKER, HOWARD C. CONVOLUTIONS OF DISTRIBUTIONS ATTRACTED TO STA-BLE LAWS, AMS 6B, 13B1 TUCKER, HOWARD C. ESTIMATION OF NON-UNIQUE QUANTILES, AMS 66, 451
- TUCKER, HOWARD C. LIMIT DISTRIBUTIONS OF A BRANCHING STOCHASTIC PROCESS, AMS 64, 557
 TUCKER, HOWARD C. ON CONTINUOUS SINCULAR INFINITELY DIVISIBLE DIS-
- TRIBUTION FUNCTIONS, AMS 64, 330
 TUKEY, J. W. A QUICK COMPACT TWO SAMPLE TEST TO DUCKWORTH'S SPECIFI-
- CATIONS, TECH 59, 31 TUKEY, J. W. A REJECTION CRITERION BASED UPON THE RANCE, BIOKA 56,
- 418
 TUKEY. J. W. APPROXIMATE MEANS AND STANDARD DEVIATIONS BASED ON
- DISTANCES BETWEEN PERCENTACE POINTS OF FR, BIOKA 65, 533
 TUKEY, J. W. APPROXIMATIONS TO THE UPPER 5 PERCENT POINTS OF
- FISHER'S B DISTRIBUTION AND NON-CENTRAL CHI-, BIOKA 57, 528
- TUKEY, J. W. AUTHOR'S REPLY TO ANSCOMBE'S COMMENTS, TECH 65, 169
- TUKEY, J. W. CONCLUSIONS VS DECISIONS, TECH 60, 423
- TUKEY, J. W. CORRELATION OF RANCES OF CORRELATED DEVIATES, BIOKA 66, 191
- TUKEY, J. W. DISCUSSION OF THE PAPERS OF MESSRS. ANSCOMBE AND DANIEL, TECH 60, 157
- TUKEY, J. W. DISCUSSION OF THE PAPERS OF MESSRS. SATTERTHWAITE AND BUDNE, TECH 59, 157
- TUKEY, J. W. INTERPOLATIONS AND APPROXIMATIONS RELATED TO THE NOR-MALRANCE, BIOKA 55, 4B0
- TUKEY, J. W. SHORT-CUT MULTIPLE COMPARISONS FOR BALANCED SINCLE AND DOUBLE CLASSIFICATIONS. PART 2. DERIV, BIOKA 65, 485
- TUKEY, J. W. SHORT-CUT MULTIPLE COMPARISONS FOR BALANCED SINCLE AND DOUBLE CLASSIFICATIONS. PART 1, RESUL, TECH 65, 95
- TUKEY, JOHN W. A NONPARAMETRIC SUM OF RANKS PROCEDURE FOR RELATIVE
- SPREAD IN UNPAIRED SAMPLES, CORR. 61 1, JASA 60, 429
 TUKEY, JOHN W. APPROXIMATE BEHAVIOR OF THE DISTRIBUTION OF WINSORIZED T (TRIMMING-WINSORIZATION 2). TECH 6B. B3
- SORIZED T (TRIMMING-WINSORIZATION 2). TECH 6B, B3
 TUKEY, JOHN W. DISCUSSION, EMPHASIZING THE CONNECTION BETWEEN
 ANALYSIS OF VARIANCE AND SPECTRUM ANALYSIS, TECH 61, 191
- TUKEY, JOHN W. EFFICIENT UTILIZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE ANALYSIS. CENERAL THEOR, AMS 63, 1347
- TUKEY, JOHN W. SAMUELS. WILKS, JASA 65, 939
- TUKEY, JOHN W. THE EXAMINATION AND ANALYSIS OF RESIDUALS, TECH 63, 141
- TUKEY, JOHN W. THE FUTURE OF DATA ANALYSIS, CORR. 62812, AMS 62, 1
- TUKEY, JOHN W. WHERE DO WE GO FROM HERE, JASA 60, BO
- TULCEA, A IONESCU ON THE LIFTING PROPERTY, V, AMS 65, 819
 TULLOCK, CORDON PUBLICATION DECISIONS AND TESTS OF SIGNIFICANCE, A
 GOMMENT, JASA 59, 593
- TURIN, G. L. THE CHARACTERISTIC FUNCTION OF HERMITIAN QUADRATIC FORMS IN COMPLEX NORMAL VARIABLES, BIOKA 60, 199
- TURNER JR, M. E. A GENERALIZATION OF THE LOCISTIC LAW OF GROWTH, BIOCS 69, 577
- TWEEDIE, M. C. K. A MEAN-SQUARE-ERROR CHARACTERIZATION OF BINOMIAL-TYPE DISTRIBUTIONS, AMS 67, 620
- TWEEDIE, M. C. K. THE INVERSION OF CUMULANT OPERATORS FOR POWER-SE-RIES DISTRIBUTIONS, AND THE APPROXIMATE, JASA 6B, 321
- UMLAND, A. W. THE USE OF LAGRANGE MULTIPLIERS WITH RESPONSE SUR-FACES, TECH 59, 289
- URBAKH, V. YU. STATISTICAL TESTING OF DIFFERENCES IN CASUAL BEHAVIOUR OF TWO MORPHOLOGICALLY INDISTINCUIS, BIOCS 67, 137
- URY, H. K. LARCE-SAMPLE SIGN TESTS FOR TREND IN DISPERSION, BIOKA
- 66, 2B9
 URY, HANS K. A NOTE ON TAKING A COVARIABLE INTO ACCOUNT, JASA 66, 490
- USHER, M. B. A MATRIX MODEL FOR FOREST MANACEMENT, BIOCS 69, 309
- USISKIN, ZALMAN PROBABILITIES IN THE VOTING PARADOX, AMS 64, 857
 VAGHOLKAR, M. K. A SEQUENTIAL PROCEDURE FOR TESTING A NULL HYPOTHES—
 IS ACAINST A TWO SIDED ALTERNATIVE HYP, JRSSB 69, NO. 2
- IS ACAINSI A TWO SIDED ALTERNATIVE HIP, JRSSB 69, NO.2
 VACHOLKAR, M. K. FORMULAE TO IMPROVE WALD'S APPROXIMATION FOR SOME
 PROPERTIES OF SEQUENTIAL TESTS, JRSSB 65, 74
- VACHOLKAR, M. K. THE MOST ECONOMICAL BINOMIAL SEQUENTIAL PROBA-BILITY RATIO TEST, BIOKA 60, 103
- VACHOLKAR, M. K. THE PROCESS CURVE AND THE EQUIVALENT MIXED BINOMIAL WITH TWO COMPONENTS, JRSSB 59, 63
- VAIL, RICHARD W. RESIDUAL ANALYSIS, CORR. 61 1005, JASA 61, 98
- VAJDA, S. AN OUTLINE OF LINEAR PROCRAMMING AN OUTLINE OF LINEAR PROGRAMMING (WITH DISCUSSION), JRSSB 55, 165
- VALAND, R. S. INVARIANT INTERVAL ESTIMATION OF A LOCATION PARAME-TER, AMS 6B, 193
- VAN ARMAN, D. J. ADMISSIBLE DESIGNS FOR POLYNOMIAL SPLINE RECRESSION, AMS 69, 1557

- VAN DER HEIDEN, J. A. ON A CORRECTION TERM IN THE METHOD OF PAIRED COMPARISONS, BIOKA 52, 211
- VAN DER VAART, H. R. ON CERTAIN CHARACTERISTICS OF THE DISTRIBUTION OF THE LATENT ROOTS OF A SYMMETRIC RA, AMS 61, B64
- VAN DER VAART, H. R. SOME EXTENSIONS OF THE IDEA OF BIAS, AMS 61, 436 VAN DER VAART, H. ROBERT A NOTE ON WILKS' INTERNAL SCATTER, AMS 65, 1308
- VAN DER VELDE, E. A. HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS, AMS 67, 1278
- VAN DER WATT, P. A COMPARISON OF CERTAIN TESTS OF NORMALITY, SASJ 69, NO. 2
- VAN EEDEN, C. AN APPROXIMATION TO THE WILCOXON-MANN-WHITNEY DISTRIBUTION, JASA 69, 591
- VANEEDEN, CONSTANCE 8AYESIAN BIO-ASSAY, AMS 64, 886
- VAN EEDEN, CONSTANCE FLUCTUATION THEOREM AND A DISTRIBUTION-FREE TEST, AMS 64, 1359
- VAN EEDEN, CONSTANCE NOTE ON THE CONSISTENCY OF SOME DISTRIBUTION-FREE TESTS FOR DISPERSION, JASA 64, 105
- VAN EEDEN, CONSTANCE THE RELATION SETWEEN PITMAN'S ASYMPTOTIC RELATIVE EFFICIENCY OF TWO TESTS AND THE CO, AMS 63, 1442
- VAN ELTEREN, PH. THE ASYMPTOTIC EFFICIENCY OF THE CHI-SQUARE-SU8-R-TEST FOR A BALANCED INCOMPLETE 8LOCK D, 810KA 59, 475 VAN HEERDEN, D. F. I. THE ORTHOGONAL POLYNOMIALS OF THE FACTORIAL
- POWER SERIES PROBABILITY DISTRIBUTIONS, SASJ 67, 49
 VAN HERRDEN, D. F. I. THE ORTHOGONAL POLYNOMIALS OF POWER SERIES
- VAN HERRDEN, D. F. I. THE ORTHOGONAL POLYNOMIALS OF POWER SERIES PROBABILITY DISTRIBUTIONS AND THEIR USES, 810KA 66, 121 VAN NESS, J.S. ESTIMATION OF THE BISPECTRUM, AMS 65, 1120
- VAN NESS, J. S. ESTIMATION OF THE 81SPECTRUM, AMS 65, 1120
 VAN NESS, JOHN W ASYMPTOTIC NORMALITY OF BISPECTRAL ESTIMATES, AMS
- 66, 1257
 VAN NESS, JOHN W DISTINGUISHABILITY OF PROBABILITY MEASURES, AMS
- 69.381 VAN NESS, JOHN W. THE MAXIMUM DEVIATION OF SAMPLE SPECTRAL DENSI-
- TIES, AMS 67, 1558 VAN RENSBURG, G. J. J. 'N BENADERING VIR 'N MAGREEKS WAARSKYNLIK-
- HEIDSVERDELING, SASJ 69, NO.2

 VAN RYZIN, J. ESTIMATING THE PARAMETERS OF A CONVOLUTION, JRSS8 69,
- 181
 VAN RYZIN, J. ON STRONG CONSISTENCY OF DENSITY ESTIMATES, AMS 69,
- 1765
- VAN RYZIN, J. REPETITIVE PLAY IN FINITE STATISTICAL GAMES WITH UNK-NOWN DISTRIBUTIONS, AMS 66, 976
- VAN RYZIN, J. THE SEQUENTIAL COMPOUND DECISION PROBLEMS WITH M-8Y-N FINITE LOSS MATRIX, AMS 66, 954
- VAN RYZIN, J. R. RATES OF CONVERGENCE IN THE COMPOUND DECISION PROBLEM FOR TWO COMPLETELY SPECIFIED DISTR, AMS 65, 1743
- VAN RYZIN, J. R. THE COMPOUND DECISION PROBLEM WITH M-8Y-N FINITE LOSS MATRIX, AMS 66, 412
- VAN VLECK, L. D. SELECTION BASIS IN ESTIMATION OF THE GENETIC COR-RELATION. BIOCS 68, 951
- VAN VLECK, L. D. SELECTION INDICES FOR QUADRATIC MODELS OF TOTAL MERIT, 810CS 68, 937
- VAN ZWET, W. R. AN INEQUALITY FOR EXPECTED VALUES OF SAMPLE QUANTILES, AMS 67, 1817
- VAN ZWET, W. R. ON MIXTURES OF DISTRIBUTIONS, AMS 66, 281
- VAN ZWET, W. R. ON THE COMBINATION OF INDEPENDENT TEST STATISTICS, AMS 67, 659
- VANDEWIELE, GEORGES AN INEQUALITY CONCERNING TESTS OF FIT OF THE KOLMOGOROV-SMIRNOV TYPE, AMS 67, 1240
- VANDEWIELE, GEORGES THE CALCULATION OF DISTRIBUTIONS OF KOLMOGOROV-SMIRNOV TYPE STATISTICS INCLUDING A TA, AMS 68, 233
- VARADY, P. D. PROBABILITIES OF CORRECT CLASSIFICATION IN DISCRIMI-NANT ANALYSIS, 810CS 66, 908
- VARSERG, DALE E. ALMOST SURE CONVERGENCE OF QUADRATIC FORMS IN INDE-PENDENT RANDOM VARIABLES, AMS 68, 1502
- VARSERG, DALE E. CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT RANDOM VARIABLES, AMS 66, 567
- VARBERG, DALE E. EQUIVALENT GAUSSIAN MEASURES WITH A PARTICULARLY SIMPLE RADON-NIKODYM DERIVATIVE, AMS 67, 1027
- VARDE, S. D. LIFE TESTING AND RELIABILITY ESTIMATION FOR THE TWO PARAMETER EXPONENTIAL DISTRIBUTION, JASA 69, 621
- VARDE, S. D. MINIMUM VARIANCE UNBIASED ESTIMATION OF RELIABILITY FOR THE TRUNCATED EXPONENTIAL DISTRIBUTI, TECH 69, 609
- VARDE, S. D. ON MINIMUM VARIANCE UNBIASED ESTIMATION OF RELIABILITY. AMS 69,710
- VASUDEVA, R. B. SEQUENTIAL ESTIMATION OF QUANTAL RESPONSE CURVES, A NEW METHOD OF ESTIMATION, BIOKA 66, 439
- VEALE, JAMES R. ESTIMATION OF A MEAN WHEN ONE OBSERVATION MAY BE SPU-RIOUS, TECH 69, 331
- VEEVERS, A. THE INVERSION OF CUMULANT OPERATORS FOR POWER-SERIES DISTRIBUTIONS, AND THE APPROXIMATE STABI, JASA 68, 321
- VEINOTT JR, ARTHUR F. A SOLUTION TO A COUNTABLE SYSTEM OF EQUALITIES ARISING IN MARKOVIAN DECISION PROCES. AMS 67, 5B2
- VEINOTT JR, ARTHUR F. DISCRETE DYNAMIC PROGRAMMING WITH A SMALL INTEREST RATE, AMS 69, 366
- VEINOTT JR, ARTHUR F. DISCRETE DYNAMIC PROGRAMMING WITH SENSITIVE DISCOUNT OPTIMALITY CRITERIA, AMS 69, 1635
- VEINOTT JR, ARTHUR F. ON FINDING OPTIMAL POLICIES IN DISCRETE DYNAM-IC PROGRAMMING WITH NO DISCOUNTING, AMS 66, 12B4

- VEMUGANTI, R. R. A LEARNING MODEL FOR PROCESSES WITH TOOL WEAR, TECH 68, 379
- VENTER, J. H. AN EXTENSION OF THE ROBBINS-MONRO PROCEDURE, AMS 67, 181
- VENTER, J. H. ON CONVERGENCE OF THE KIEFER-WOLFOWITZ APPROXIMATION PROCEDURE, AMS 67, 1031
- VENTER, J. H. ON DVORETZKY STOCHASTIC APPROXIMATION THEOREMS, AMS 66.1534
- VENTER, J. H. ON ESTIMATION OF THE MODE, AMS 67, 1446
- VENTER, J. H. PROBABILITY MEASURES ON PRODUCT SPACES, SASJ 67, 3
 VERDOOREN, L. R. CORRIGENDA, 'EXTENDED TABLES OF CRITICAL VALUES
 FOR WILCOXON'S TEST STATISTIC.', BIOKA 64, 527
- VERDOOREN, L. R. EXTENDED TABLE OF CRITICAL VALUES FOR WILCOXON'S TEST STATISTIC, 810KA 63, 177
- VERE-JONES, D. NOTE ON A THEOREM OF KINGMAN AND A THEOREM OF CHUNG, AMS 66, 1844
- VERE-JONES, D. SOME APPLICATIONS OF PROBABILITY GENERATING FUNC-TIONALS TO THE STUDY OF INPUT- OUTPUT STREA, JRSS8 68, 321
- VERHAGEN, A. M. W. THE ESTIMATION OF REGRESSION AND ERROR-SCALE PARAMETERS. WHEN THE JOINT DISTRIBUTION 0, 810KA 61, 125
- VIDWANS, SUDHAKAR M. A NOTE ON THE NEGATIVE BINOMIAL DISTRIBUTION, BIOKA 64, 264
- VIJAYAN, K. AN EXACT (PI)PS SAMPLING SCHEME, A GENERALIZATION OF A METHOD OF HANURAV, JRSS8 68, 556
- VILLEGAS, C. CONFIDENCE REGION FOR A LINEAR RELATION, AMS 64, 7BO
- VILLEGAS, C. MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR FUNCTIONAL RELATIONSHIP, AMS 61, 1048
- VILLEGAS, C. ON QUALITATIVE PROBABILITY SIGMA-ALGEBRAS, AMS 64. 1787
- VILLEGAS, C. ON THE A PRIORI DISTRIBUTION OF THE COVARIANCE MATRIX, AMS 69. 1098
- VILLEGAS, C. ON THE ASYMPTOTIC EFFICIENCY OF LEAST SQUARES ESTIMA-TORS, AMS 66, 1676 VILLEGAS, C. ON THE LEAST SQUARES ESTIMATION OF NON-LINEAR RELA-
- VILLEGAS, C. ON THE LEAST SQUARES ESTIMATION OF NON-LINEAR RELA-TIONS. AMS 69, 462 VINCENT, S. E. A TEST OF HOMOGENEITY FOR ORDERED VARIANCES, JRSSB
- 61, 195
 VINOD, HRISHIKESH D. INTEGER PROGRAMMING AND THE THEORY OF GROUP-
- ING, JASA 69, 506
 VITALE, P. A. A NUMERICAL INVESTIGATION OF SEVERAL ONE-DIMENSIONAL
- SEARCH PROCEDURES IN NONLINEAR REGRESS, TECH 69, 265
 VITALE, PATRICK A. APPLICATION OF A MODIFICATION OF DAVIDON'S
 METHOD TO NONLINEAR REGRESSION PROBLEMS, TECH 68, 843
- VITHAYASAI, C. UN8IASED COMPONENTWISE RATIO ESTIMATION, CORR. 63 1163, JASA 61, 350
- VON 8AHR, 8ENGT INEQUALITIES OF THE RTH ASSOLUTE MOMENT OF A SUM OF RANDOM VARIABLES, 1 LESS THAN OR EQUA, AMS 65, 299
- VON 8AHR, 8ENGT ON THE CONVERGENCE OF MOMENTS IN THE CENTRAL LIMIT THEOREM, AMS 65, 808
- WAGLE, 8. MULTIVARIATE SETA DISTRIBUTION AND A TEST FOR MUL-TIVARIATE NORMALITY, JRSSS 68, 511
- WAGNER, HARVEY M. LINEAR PROGRAMMING TECHNIQUES FOR REGRESSION ANALYSIS, JASA 59, 206 WAGNER, HARVEY M. NON-LINEAR REGRESSION WITH MINIMAL ASSUMPTIONS,
- JASA 62, 572 WAGNER, HARVEY M. ON THE DISTRIBUTION OF SOLUTIONS IN LINEAR PRO-
- GRAMMING PROBLEMS, JASA 58, 161
 WAGNER, TERRY J. ON THE RATE OF CONVERGENCE FOR THE LAW OF LARGE NUM-
- 8ERS, AMS 69, NO.6 WAHBA, GRACE ON THE DISTRIBUTION OF SOME STATISTICS USEFUL IN THE
- ANALYSIS OF JOINTLY STATIONARY TIME SER, AMS 68, 1849
 WAKNIS, MRUDULLA N. A SYSTEM OF INEQUALITIES FOR THE INCOMPLETE
- GAMMA FUNCTIONS AND THE NORMAL INTEGRAL, AMS 65, 139
 WAKSBERG, JOSEPH A STUDY OF RESPONSE ERRORS IN EXPENDITURES DATA
- FROM HOUSEHOLD INTERVIEWS, JASA 64, 18
 WAKSBERG, JOSEPH WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING
- FOR WILLIAM N. HURWITZ. CHANGES IN CENSU, JASA 69, NO.4 WALDEN, WILLIAM E. A FAVORABLE SIDE BET IN NEVADA BACCARAT, JASA 66,
- 313
 WALDORF, WILLIAM H. DEMAND FOR MANUFACTURERS' SERVICES FOR BAKERY
- PRODUCTS AND FRUITS AND VEGETABLES, JASA 65, 740
 WALES, TERENCE J. ESTIMATION OF AN ACCELERATED DEPRECIATION LEARN-
- ING FUNCTION, JASA 66, 995
 WALKER, A. M. A GOODNESS OF FIT TEST FOR SPECTRAL DISTRIBUTION FUNCTIONS OF STATIONARY TIME SERIES WITH N. BIOKA 56, 257
- WALKER, A. M. A NOTE ON THE ASYMPTOTIC DISTRIBUTION OF SAMPLE QUANTILES, JRSSB 6B, 570
- WALKER, A. M. A NOTE ON THE ASYMPTOTIC EFFICIENCY OF AN ASYMPTOTI-CALLY NORMAL ESTIMATOR SEQUENCE, CORR. 6, JRSSB 63, 195
- WALKER, A. M. CORRIGENDA, 'ON DURBIN'S FORMULA FOR THE LIMITING GENERALIZED VARIANCE OF A SAMPLE OF CONSE, BIOKA 61, 476 WALKER, A. M. LARGE-SAMPLE ESTIMATION OF PARAMETERS FOR AU-
- WALKER, A. M. LARGE-SAMPLE ESTIMATION OF PARAMETERS FOR AU-TOREGRESSIVE PROCESSES WITH MOVING-AVERAGE RESI, BIOKA 62, 117 WALKER, A. M. LARGE-SAMPLE ESTIMATION OF PARAMETERS FOR MOVING-
- AVERAGE MODELS, BIOKA 61, 343
 WALKER, A. M. ON DURBIN'S FORMULA FOR THE LIMITING GENERALIZED VARIANCE OF A SAMPLE OF CONSECUTIVE OBSERV. BIOKA 61, 197
- WALKER, A. M. ON THE ASYMPTOTIC BEHAVIOUR OF POSTERIOR DISTRIBU-TIONS, JRSSB 69, 80

- WALKER, A. M. ON THE ASYMPTOTIC DISTRIBUTION OF THE AUTOCORRELA-TIONS OF A SAMPLE FROM A LINEAR STOCHASTIC, AMS 64, 1296
- WALKER, A. M. SOME CONSEQUENCES OF SUPERIMPOSED ERROR IN TIME SERIES ANALYSIS, BIOKA 60, 33
- WALKER, A. M. SOME TESTS OF SEPARATE FAMILIES OF HYPOTHESES IN TIME SERIES ANALYSIS, BIOKA 67, 39
- WALKER, HELEN M. THE CONTRIBUTIONS OF KARL PEARSON, JASA 58, 11
- WALKER, S. H. ESTIMATION OF THE PROBABILITY OF AN EVENT AS A FUNCTION OF SEVERAL VARIABLES, BIOKA 67, 167
- WALKUP, D. W. AN EXAMPLE OF THE DIFFERENCE BETWEEN THE LEVY AND LEVY-PROKHOROV METRICS, AMS 69, 322
- WALKUP, D. W. ASSOCIATION RANDOM VARIABLES, WITH APPLICATIONS, AMS 67, 1466
- WALLACE, D. L. AUTHOR'S REPLY TO ANSCOMBE'S COMMENTS, TECH 65, 169
 WALLACE, D. L. CORRELATION OF RANCES OF CORRELATED DEVIATES, BIOKA
- WALLACE, D. L. SHORT-CUT MULTIPLE COMPARISONS FOR BALANCED SINCLE AND DOUBLE CLASSIFICATIONS. PART 2. DER, BIOKA 65, 485
- WALLACE, D. L. SHORT-CUT MULTIPLE COMPARISONS FOR BALANCED SINGLE
- AND DOUBLE CLASSIFICATIONS. PART 1, RES, TECH 65, 95
 WALLACE, DAVID L. INFERENCE IN AN AUTHORSHIP PROBLEM, JASA 63, 275
 WALLACE, DAVID L. SIMPLIFIED BETA-APPROXIMATIONS TO THE KRUSKAL-
- WALLISHTEST, JASA 59, 225
 WALLACE, T. D. A TEST OF THE MEAN SQUARE ERROR CRITERION FOR RESTRIC-
- TIONS IN LINEAR REGRESSION, JASA 6B, 558
 WALLACE, T. D. EFFICIENCIES FOR STEPWISE REGRESSIONS, JASA 64, 1179
- WALLACE, T. D. EFFICIENCIES FOR STEPWISE REGRESSIONS, JASA 64, 1179 WALLAGE, T. D. TABLES FOR THE MEAN SQUARE ERROR TEST FOR EXACT LINEAR RESTRICTIONS IN REGRESSION, JASA 69, NO. 4
- WALLACE, WILLIAM H. A COMPUTER SIMULATION MODEL OF THE TEXTILE IN-DUSTRY, JASA 67, 1338
- WALLENIUS, K. T. SAMPLING FOR CONFIDENCE, JASA 67, 540
- WALLENIUS, K. T. SEQUENTIAL RELIABILITY ASSURANCE IN FINITE LOTS, TECH 69, 61
- WALLER, RAY A. A BAYES RULE FOR THE SYMMETRIC MULTIPLE COMPARISONS PROBLEM, JASA 69, NO.4
- WALLINGTON, P. A. THE BIAS OF MOMENT ESTIMATORS WITH AN APPLICATION TO THE NEGATIVE BINOMIAL DISTRIBUTION, BIOKA 62, 193
- WALLIS, W. ALLEN PRESIDENTIAL ADDRESS, JASA 66, 1
- WALSER, M. MULTIPLE REGRESSION COMBINING WITHIN- AND BETWEEN-PLOT INFORMATION, BIOCS 66, 26
- WALSH, J. E. A CENERAL USE OF THE POISSON APPROXIMATION FOR BINOMIAL EVENTS, WITH APPLICATION TO BACTERIA, BIOCS 66, 74
- WALSH, J. E. APPROXIMATE DISTRIBUTION FOR LARGEST AND FOR SMALLEST OF A SET OF INDEPENDENT OBSERVATIONS, SASJ 69, NO. 2
- WALSH, JOHN E. APPROXIMATE DISTRIBUTION OF EXTREMES FOR NONSAMPLE GASES, JASA 64, 429
- WALSH, JOHN E. ASYMPTOTIC EFFICIENCIES OF A NONPARAMETRIC LIFE TEST
- FOR SMALLER PERCENTILES OF A GAMMA DI, JASA 56, 467 WALSH, JOHN E. COMMENTS ON 'THE SIMPLEST SIGNED-RANK TESTS', JASA
- 59, 213
 WALSH, JOHN E. DISTRIBUTION-FREE TOLERANCE INTERVALS FOR CONTINUOUS SYMMETRICAL POPULATIONS, AMS 62, 1167
- WALSH, JOHN E. LIFE-TESTING RESULTS BASED ON A FEW HETEROGENEOUS
- LOGNORMAL OBSERVAITONS, JASA 67, 45
 WALSH, JOHN E. SOME TWO-SIDED DISTRIBUTION-FREE TOLERANCE INTERVALS OF A GENERAL NATURE, JASA 62, 775
- WALTMAN, PAUL ON ESTIMATING MONOTONE PARAMETERS, AMS 6B, 1030
- WAMBERSIE, A. ESTIMATION PAR LA METHODE DU MAXIMUM DE VRAISEMBLANCE DES COURBES DE SURVIE DE MICROORGANIS, BIOCS 66, 673
- WANG, Y. Y. A COMPARISON OF SEVERAL VARIANCE COMPONENT ESTIMATORS, BIOKA 67, 301
- WARD JR, JOE H. HIERARGHICAL GROUPING TO OPTIMIZE AN OBJECTIVE FUNC-TION, JASA 63, 236
- WARNER, STANLEY L. ASYMPTOTIC VARIANCES FOR DUMMY VARIATE RECRESSION UNDER NORMALITY ASSUMPTIONS, JASA 67, 1305
- WARNER, STANLEY L. MULTIVARIATE RECRESSION OF DUMMY VARIATES UNDER NORMALITY ASSUMPTIONS, JASA 63, 1054
- WARNER, STANLEY L. RANDOMIZED RESPONSE, A SURVEY TECHNIQUE FOR ELIMINATING EVASIVE ANSWER BIAS, JASA 65, 63
- WARNTZ, WILLIAM MEASURING SPATIAL ASSOCIATION WITH SPECIAL CON-SIDERATION OF THE CASE OF MARKET ORIENTATIO, JASA 56, 597
- WASAN, M. T. SEQUENTIAL OPTIMUM PROCEDURES FOR UNBIASED ESTIMATION
 OF A BINOMIAL PARAMETER. TEGH 64, 259
- WASAN, M. T. TABLES OF INVERSE GAUSSIAN PERCENTAGE POINTS, TECH 69,
- WASSERMAN, WILLIAM POTENTIALS IN APPLYING LINEAR PROGRAMMING TO THE CONSUMER PRICE INDEX, JASA 66, 982
- WATKINS, R. GENETIC COMPONENTS FOR NON-INBRED DIPLOID SPECIES HAV-INC ALL DIGENIC EPISTATIC VARIANCES OF E, BIOCS 69, 545
- WATKINS, RALPH J. CONFESSION OF FAITH, 1955, JASA 56, 1
- WATSON, G. S. A DISTRIBUTION-FREE TWO-SAMPLE TEST ON A CIRCLE, BIOKA 64, 256
- WATSON, G. S. A NOTE ON THE CIRCULAR MULTIVARIATE DISTRIBUTION, BIOKA 56, 467
- WATSON, G. S. A STUDY OF THE GROUP SCREENING METHOD, TECH 61, 371
- WATSON, G. S. ALGEBRAIC THEORY OF THE COMPUTING ROUTINE FOR TESTS OF SIGNIFICANCE ON THE DIMENSIONALITY 0, JRSSB 56, 70

- WATSON, C. S. ANOTHER TEST FOR THE UNIFORMITY OF A CIRCULAR DIS-TRIBUTION, BIOKA 67, 675
- WATSON, C.S. CORRICENDA, 'ROBUSTNESS TO NON-NORMALITY OF RECRES-SION TESTS', BIOKA 65, 669
- WATSON, C.S. EQUATORIAL DISTRIBUTIONS ON A SPHERE., BIOKA 65, 193
- WATSON, C. S. COODNESS-OF-FIT TESTS ON A CIRCLE, BIOKA 61, 109
- WATSON, C.S. COODNESS-OF-FIT TESTS ON A CIRCLE, BIOKA 61, 109
- WATSON, G. S. HAZARD ANALYSIS. I, BIOKA 64, 175
- WATSON, G. S. LINEAR RECRESSION ON PROPORTIONS, BIOCS 69, 585
- WATSON, G. S. LINEAR RELATIONSHIPS BETWEEN VARIABLES AFFECTED BY ERRORS, BIOCS 66, 252
- WATSON, C. S. MORE SIGNIFICANCE TESTS ON THE SPHERE, BIOKA 60, 87
- WATSON, C. S. ON CHI-SQUARE GOODNESS-OF-FIT TESTS FOR CONTINUOUS DISTRIBUTIONS (WITH DISCUSSION), JRSSB 58, 44
- WATSON, G. S. ON THE CONSTRUCTION OF SIGNIFICANCE TESTS ON THE CIR-CLE AND THE SPHERE, BIOKA 56, 344
- WATSON, C. S. ON THE ESTIMATION OF THE PROBABILITY DENSITY, I, AMS $63,\,480$
- WATSON, C.S. ON THE JOINT DISTRIBUTION OF THE CIRCULAR SERIAL CORRELATION COEFFICIENTS, BIOKA 56, 161
- WATSON, G. S. ON THE POSSIBILITY OF IMPROVING THE MEAN USEFUL LIFE OF ITEMS BY ELIMINATING THOSE WITH SHO, TECH 61, 281
 WATSON, C. S. ROBUSTNESS TO NON-NORMALITY OF REGRESSION TESTS,
- BIOKA 62, 93
 WATSON, G. S. SERIAL CORRELATION IN RECRESSION ANALYSIS. I., BIOKA
- warson, G. S. Serial correlation in recression analysis. I., bior; 55, 327
- WATSON, C. S. SERIAL CORRELATION IN RECRESSION ANALYSIS. II, BIOKA 56, 436
- WATSON, G. S. SUFFICIENT STATISTICS, SIMILAR REGIONS AND DISTRIBU-TION-FREE TESTS, JRSSB 57, 262
- WATSON, C. S. TESTING FOR SERIAL CORRELATION IN LEAST SQUARES REGRESON II., BIOKA 51, 159
- WATSON, G. S. THE CHI-SQUARE GOODNESS-OF-FIT TEST FOR NORMAL DIS-TRIBUTIONS, BIOKA 57, 336
- WATSON, G. S. THE DISTRIBUTION OF ORGANISMS, BIOCS 65, 543
- WATSON, GEOFFREY S. A BAYESIAN STUDY OF THE MULTINOMIAL DISTRIBU-TION, AMS 67, 1423
- WATSON, GEOFFREY S. DENSITY ESTIMATION OF ORTHOCONAL SERIES, AMS 69, 1496
- WATSON, GEOFFREYS. LINEAR LEAST SQUARES REGRESSION, AMS 67, 1679 WATTERSON, G. A. MARKOV CHAINS WITH ABSORBING STATES, A GENETIC EX-
- AMPLE, AMS 61, 716
 WATTERSON, G. A. SOME PROBLEMS OF STATISTICAL INFERENCE IN ABSORB-ING MARKOV CHAINS., BIOKA 65, 127
- MATTERSON, G. A. SOME THEORETICAL ASPECTS OF DIFFUSION THEORY IN POPULATION CENETICS, CORR. 63 352, AMS 62, 939
- WATTERSON, GEOFFREY A INFERENCE ON A CENETIC MODEL OF THE MARKOV CHAIN TYPE, BIOKA 63, 251
- WAUD, ROGER N. SMALL SAMPLE BIAS DUE TO MISSPECIFICATION IN THE 'PARTIAL ADJUSTMENT' AND 'ADAPTIVE EXPECT, JASA 66, 1130
- WAUGH, FREDERICK V. CRAPHIC COMPUTATION OF THE MULTIPLE CORRELA-TION GOEFFICIENT, GORR. 58 1031, JASA 57, 479
- WAUGH, FREDERICK V. ON FRACTIONAL POWERS OF A MATRIX, JASA 67, 1018
 WAUGH, W. A. O'N. AGE-DEPENDENT BRANCHINC PROCESSES UNDER A CONDITION OF ULTIMATE EXTINCTION, BIOKA 68, 291
- WAUGH, W. A. O'N. AN AGE-DEPENDENT BIRTH AND DEATH PROCESS, BIOKA
- WAUGH, W. A. O'N. CONDITIONED MARKOV PROCESSES, BIOKA 58, 241
- WAUGH, W. A. O'N. CORRIGENDA, 'CONDITIONED MARKOFF PROCESSES.', BIOKA 59, 279
- WAUGH, W. A. O'N. INDICES OF SYNCHRONY IN CELLULAR CULTURES, BIOCS 67, 693
- WEBB, N. L. THE EFFICIENCY OF N MACHINES UNI-DIRECTIONALLY PATROLLED BY ONE OPERATOR WHEN WALKING TIME AN, JRSSB 57, 166
- WEBB, S. R. NON-ORTHOGONAL DESIGNS OF EVEN RESOLUTION, TECH 68, 291
 WEBB, STEVE R. SATURATED SEQUENTIAL FACTORIAL DESIGNS, TECH 68, 535
 WEBSTEP 1 T. A METION FOR DISCRIPTINATING PETIPEPINATING PROTORED FOR DISCRIPTINATING PETIPEPINATING PROTORED FOR DISCRIPTINATING PETIPEPINATING PET
- WEBSTER, J. T. A METHOD FOR DISCRIMINATING BETWEEN FAILURE DENSITY FUNCTIONS USED IN RELIABILITY PREDICTI, TECH 65, 1
- WEBSTER, J. T. ON DEPENDENT TESTS FROM A NON-ORTHOGONAL DESIGN, JASA 66, B03
- WEBSTER, J. T. ON TWO METHODS OF BIAS REDUCTION IN THE ESTIMATION OF RATIOS, BIOKA 66, 571
- WEBSTER, J. T. THE POWER OF A TEST IN COVARIANCE ANALYSIS, BIOCS 69, NO.4
 WEEKS. D. L. ON THE ANALYSIS OF GROUP DIVISIBLE DESIGNS. JASA 64.
- 1217
 WEEKS DAVID I. A NOTE ON THE DETERMINATION OF CONNECTEDNESS IN AN N-
- WAY CROSS CLASSIFICATION, TECH 64, 319 WEEKS, DAVID L. A NOTE ON THE TRUNCATED EXPONENTIAL DISTRIBUTION,
- AMS 64, 1366
 WEEKS, DAVID L. ERRATA, 'A NOTE ON THE DETERMINATION OF CONNECTED-
- NESS IN AN N-WAY CROSS CLASSIFICATION', TECH 65, 281 WEEKS, DAVID L. SAMPLE SIZE DETERMINATION FOR TOLERANCE LIMITS,
- TECH 68, 343
 WEEKS, DAVID L. TOLERANCE LIMITS FOR THE GENERALIZED GAMMA DIS-
- TRIBUTION, JASA 65, 1142
 WEEKS, DAVID L. VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION
- WEEKS, DAVID L. VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH INTERACTION, BIOKA 63, 327

- WEESAKUL, B. FIRST EMPTINESS IN A FINITE DAM, JRSSB 61, 343
- WEESAKUL, B. THE RANDOM WALK BETWEEN A REFLECTING AND AN ABSORBING BARRIER, AMS 61, 765
- WECMAN, EDWARD J. A NOTE ON ESTIMATING A UNIMODAL DENSITY, AMS 69, 1661
- WEILER, H. A COEFFICIENT MEASURING THE COODNESS OF FIT, TECH 66, 327 A PROBLEM OF OPTIMUM ALLOCATION ARISING IN CHEMICAL WEILER. H. ANALYSES BY MULTIPLE ISOTOPE DILUTION, TECH 61, 509
- WEILER, H. A SICNIFICANCE TEST FOR SIMULTANEOUS QUANTAL AND QUAN-TITATIVE RESPONSES, TECH 64, 273
- WEILER, H. ERRATA, 'A COEFFICIENT MEASURING THE GOODNESS OF FIT', TECH 67. 195 -
- WEILER, H. THE USE OF INCOMPLETE BETA FUNCTIONS FOR PRIOR DISTRIBU-TIONS IN BINOMIAL SAMPLING, ATECH 65, 335
- WEINER, H. J. AN INTECRAL EQUATION IN AGE DEPENDENT BRANCHING PROCESSES, AMS 65, 1569
- WEINER, H. J. ASYMPTOTIC PROPERTIES OF AN AGE DEPENDENT BRANCHING PROCESS, AMS 65, 1565
- WEINER, HOWARD J. MONOTONE CONVERGENCE OF MOMENTS IN AGE DEPENDENT BRANCHING PROCESSES, AMS 66, 1806
- WEINER, J. M. ELIMINATION OF VARIATES IN LINEAR DISCRIMINATION PROBLEMS, BIOCS 66, 26B
- WEINSTEIN, ABBOTT S. ALTERNATIVE DEFINITIONS OF THE SERIAL COR-RELATION COEFFICIENT IN SHORT AUTOREGRESSIV. JASA 58, BB1
- WEINSTEIN, M. A. QUERY, THE SUM OF VALUES FROM A NORMAL AND A TRUN-CATED NORMAL DISTRIBUTION, TECH 64, 104
- WEIR, J. B. DE V. TABLE OF 0.1 PERCENTAGE POINTS OF BEHRENS'S D, BIOKA 66. 267
- WEISS, G. H. A MODEL FOR THE SPREAD OF EPIDEMICS BY CARRIERS, BIOCS 65.481
- WEISS, G. H. GRAPHICALLY ORIENTED TESTS FOR HOST VARIABILITY IN DILUTION EXPERIMENTS, BIOCS 67, 269
- WEISS, GEORGE ON CERTAIN REDUNDANT SYSTEMS WHICH OPERATE AT DIS-CRETE TIMES, TECH 62, 69
- WEISS, GEORCE H. A COMMUNICATIONS SATELLITE REPLENISHMENT POLICY, TECH 66. 399
- WEISS, CEORGE H. THE RELIABILITY OF COMPONENTS EXHIBITING CUMULA-TIVE DAMAGE EFFECTS, TECH 61, 413
- WEISS, LIONEL A SEQUENTIAL TEST OF THE EQUALITY OF PROBABILITIES IN A MULTINOMIAL DISTRIBUTION, JASA 62, 769
- WEISS, LIONEL ON ESTIMATING SCALE AND LOCATION PARAMETERS, JASA 63, 65B
- WEISS, LIONEL ON SEQUENTIAL TESTS WHICH MINIMIZE THE MAXIMUM EX-PECTED SAMPLE SIZE, JASA 62, 551
- WEISS, LIONEL SAMPLING PLANS WHICH APPROXIMATELY MINIMIZE THE MAX-
- IMUMEXPECTED SAMPLE SIZE, JASA 64, 67
 WEISS, LIONEL TESTS OF FIT BASED ON THE NUMBER OF OBSERVATIONS FALLING IN THE SHORTEST SAMPLE SPACINGS DE, AMS 61, B3B
- WEISSBERG, ALFRED ERRATA, 'TABLES OF TOLERANCE-LIMIT FACTORS FOR NORMAL DISTRIBUTIONS', TECH 61, 576
- WEISSBERG, ALFRED TABLES OF TOLERANCE-LIMIT FACTORS FOR NORMAL DISTRIBUTIONS, TECH 60, 4B3
- WEISSBLUM, WALTER HIGHER-ORDER PROPERTIES OF A STATIONARY POINT PROCESS, JRSSB 63, 413
- WEISSMAN, I. ON SOME RESULTS OF N. V. SMIRNOV CONCERNING LIMIT DIS-TRIBUTIONS FOR VARIATIONAL SERIES, AMS 69. 480
- WEITZMAN, R. A. THE TWENTY-SEVEN PER CENT RULE, AMS 64, 214
- WELCH, B. L. 'STUDENT' AND SMALL SAMPLE THEORY, JASA 58, 777
- WELCH, B. L. FURTHER CRITICAL VALUES FOR THE TWO-MEANS PROBLEM. BIOKA 56, 203
- WELCH, B. L. NOTE ON SOME CRTICISMS MADE BY SIR RONALD FISHER, JRSSB 56. 297 WELCH, B. I. ON COMPARTSONS BETWEEN CONFIDENCE POINT PROCEDURES IN
- THE CASE OF A SINGLE PARAMETER, JRSSB 65, 1 WELCH, B. L. ON FORMULAE FOR CONFIDENCE POINTS BASED ON INTECRALS OF
- WEIGHTED LIKELIHOODS, JRSSB 63, 31B
- WELCH, B. L. ON LINEAR COMBINATIONS OF SEVERAL VARIANCES, JASA 56, 1.32
- WELCH, B. L. ON THE COMPARISON OF SEVERAL MEAN VALUES, AN ALTERNA-
- TIVE APPROACH, BIOKA 51, 330 WELCH, B. L. ON THE COMPARISON OF TWO MEANS, FURTHER DISCUSSION OF
- ITERATIVE METHODS FOR CALCULATING TABL, BIOKA 54, 361 WELCH, B. L. TABLE OF THE BOUNDS OF THE PROBABILITY INTECRAL WHEN THE FIRST FOUR MOMENTS ARE GIVEN, BIOKA 60, 399
- WELCH, B. L. THE DISTRIBUTION OF THE COEFFICIENT OF VARIATION, COM-MENT ON A CRITICISM MADE BY KOOPMANS, O, BIOKA 65, 303
- WELCH, P. D. ON THE BUSY PERIOD OF A FACILITY WHICH SERVES CUSTOMERS OF SEVERAL TYPES, JRSSB 65, 361
- WELCH, PETER D. ON PRE-EMPTIVE RESUME PRIORITY QUEUES, AMS 64, 600
- WELFORD, W. P. NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND PRODUCTS, TECH 62, 419
- WELLS, W. R. ON THE POSSIBILITY OF IMPROVING THE MEAN USEFUL LIFE OF ITEMS BY ELIMINATING THOSE WITH SHOR, TECH 61, 2B1
- WELLS, W. T. THE DISTRIBUTION OF THE PRODUCT OF TWO CENTRAL OR NON-CENTRAL CHI-SQUARE VARIATES. AMS 62, 1016
- WELSCH, DELANE E. USE OF DOMAIN ESTIMATORS WITH UNEQUAL PROBABILITY IN SAMPLE SURVEYS, JASA 6B, 9B4

- WELSH, D. J. A. A TWO-DIMENSIONAL POISSON CROWTH PROCESS, JRSSB 65,
- WENDEL, J. G. THE NON-ABSOLUTE CONVERCENCE OF CIL-PELAEZ' INVER-SION INTECRAL, AMS 61, 338
- WENC, TENC-SHAN AN INEQUALITY AND ALMOST SURE CONVERCENCE, AMS 69, 1091
- WEST, DEL LON NOTE ON THE MISSING PLOT PROCEDURE IN A RANDOMIZED BLOCK DESIGN, JASA 61, 933
- ESTLAKE, W. J. A NUMERICAL ANALYSIS PROBLEM IN CONSTRAINED QUADRATIC REGRESSION ANALYSIS, TECH 62, 426 WESTLAKE, W. J.
- WESTLAKE, W. J. COMPOSITE DESIGNS BASED ON IRREGULAR FRACTIONS OF FACTORIALS (CORR. 65 1036), BIOCS 65, 324
- WETHERILL, G. B. BAYESIAN SEQUENTIAL ANALYSIS, BIOKA 61, 2B1
- WETHERILL, G. B. SEQUENTIAL ESTIMATION OF QUANTAL RESPONSE CURVES, A NEW METHOD OF ESTIMATION, BIOKA 66, 439
- WETHERILL, G. B. SEQUENTIAL ESTIMATION OF QUANTAL RESPONSE CURVES (WITH DISCUSSION), JRSSB 63, 1
- WETHERILL, G. B. SOME REMARKS ON THE BAYESIAN SOLUTION OF THE SINCLE SAMPLINC INSPECTION SCHEME, TECH 60, 341
- WETHERILL, G. B. THE DECISION THEORY APPROACH TO SAMPLING INSPEC-TION (WITH DISCUSSION), JRSSB 66, 3B1
- WETHERILL, G. B. THE MOST ECONOMICAL BINOMIAL SEQUENTIAL PROBA-BILITY RATIO TEST, BIOKA 60, 103
- WETHERILL, C. B. THE MOST ECONOMICAL SEQUENTIAL SAMPLING SCHEME FOR INSPECTION BY VARIABLES, JRSSB 59, 400
- WETHERILL, G. B. THE WILCOXON TEST AND NON-NULL HYPOTHESES, JRSSB 60.402
- WETTE, R. MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF THE CAMMA DISTRIBUTION AND THEIR BIAS, TECH 69, NO. 4
- WHARTON JR, CLIFTON R. PROCESSING UNDERDEVELOPED DATA FROM AN UN-DERDEVELOPED AREA, JASA 60, 23
- WHEELER, R. C. SOME RESULTS FOR FIXED-TIME TRAFFIC SIGNALS, JRSSB 64. 133
- WHEELER, STANLEY A DISTRIBUTION-FREE TWO-SAMPLE TEST ON A CIRCLE, BIOKA 64, 256
- WHITCOMB, MARY G. CRITICAL REGIONS FOR TESTS OF INTERVAL HYPOTHESES ABOUT THE VARIANCE, JASA 66, 204
- WHITE, C. ESTIMATION OF PARAMETERS OF A TRUNCATED POISSONIAN BINOMIAL, BIOCS 6B, 377
- WHITE, COLIN THE DETECTION OF A CORRELATION BETWEEN THE SEXES OF AD-JACENT SIBS IN HUMAN FAMILIES, JASA 65, 1035 WHITE, DAVID CONSTRUCTION OF CONFOUNDING PLANS FOR MIXED FACTORIAL
- DESIGNS, AMS 65, 1256 WHITE, J. S. ASYMPTOTIC EXPANSIONS FOR THE MEAN AND VARIANCE OF THE
- SERIAL CORRELATION COEFFICIENT, BIOKA 61, B5 WHITE, JOHN S. THE MOMENTS OF LOG-WEIBULL ORDER STATISTICS, TECH 69,
- 373 WHITE, JOHN S. THE NONPARAMETRIC ORDERING, 1001 TO 0110, AMS 61, 101 WHITE, LEON S. MARKOVIAN DECISION MODELS FOR THE EVALUATION OF A LARCE CLASS OF CONTINUOUS SAMPLING INSPE. AMS 65, 1408
- WHITE, LEON S. THE EVALUATION OF H 106 CONTINUOUS SAMPLING PLANS
- UNDER THE ASSUMPTION OF WORST CONDITIONS, JASA 66, 833 WHITE, R. F. THE MODIFIED LATIN SQUARE, JRSSB 57, 305
- WHITFIELD, H. AVERAGE RUN LENCTHS IN CUMULATIVE CHART QUALITY CON-TROL SCHEMES, TECH 61, 11
- WHITLOCK, J. H. ESTIMATION OF A TRUNCATION POINT, BIOKA 64, 33
- WHITMAN, S. S. A TABLE FOR COMPUTING WORKING ANGLES, BIOCS 68, 413 WHITTINGHILL, M. TESTING FOR HOMOGENEITY. I. THE BINOMIAL AND MUL-
- TINOMIAL DISTRIBUTIONS, BIOKA 66, 167 WHITTINGHILL, M. TESTING FOR HOMOCENEITY. II. THE POISSON DIS-TRIBUTION, BIOKA 66, 183
- WHITTLE, P. A BRANCHINC PROCESS IN WHICH INDIVIDUALS HAVE VARIABLE LIFETIMES, BIOKA 64, 262
- WHITTLE, P. A CLASS OF SITUATIONS IN WHICH A SEQUENTIAL ESTIMATION PROCEDURE IS NON-SEQUENTIAL, BIOKA 67, 229
- WHITTLE, P. CORRICENDA, 'ON STATIONARY PROCESSES IN THE PLANE', BIOKA 55, 277
- WHITTLE, P. CURVE AND PERIODOGRAM SMOOTHING (WITH DISCUSSION), JRSSB 57, 3B
- WHITTLE, P. ON STATIONARY PROCESSES IN THE PLANE, BIOKA 54, 434
- WHITTLE, P. ON THE FITTING OF MULTIVARIATE AUTOREGRESSIONS, AND THE APPROXIMATE CANONICAL FACTORIZATION 0, BIOKA 63, 129
- WHITTLE, P. ON THE SMOOTHING OF PROBABILITY DENSITY FUNCTIONS, JRSSB 58, 334
- WHITTLE, P. ON THE USE OF THE NORMAL APPROXIMATION IN THE TREATMENT OF STOCHASTIC PROCESSES, JRSSB 57, 26B WHITTLE, P. ON THE VARIATION OF YIELD VARIANCE WITH PLOT SIZE, BIOKA
- 56, 337 WHITTLE, P. RECURSIVE RELATIONS FOR PREDICTORS OF NON-STATIONARY PROCESSES, JRSSB 65, 523
- SOME DISTRIBUTION AND MOMENT FORMULAE FOR THE MARKOV WHITTLE, P. CHAIN, JRSSB 55, 235
- WHITTLE, P. SOME EXACT RESULTS FOR ONE-SIDED DISTRIBUTION TESTS OF THE KOLMOGOROV-SMIRNOV TYPE, AMS 61, 499
- WHITTLE, P. SOME GENERAL RESULTS IN SEQUENTIAL ANALYSIS, BIOKA 64,
- WHITTLE, P. SOME GENERAL RESULTS IN SEQUENTIAL DESIGN (WITH DISCUS-SION), JRSSB 65, 371

WHITTLE, P. TESTS OF FIT IN TIME SERIES, BIOKA 52, 309

- WHITTLE, P. THE OUTCOME OF A STOCHASTIC EPIDEMIC, A NOTE ON BAILEY'S PAPER, BIOKA 55, 116
- WHITTLE, P. TOPOCRAPHIC CORRELATION, POWER-LAW COVARIANCE FUNC-TIONS, AND DIFFUSION, BIOKA 62, 305
- WHITWELL, JOHN C. REDUCED DESIGNS OF RESOLUTION FIVE, TECH 61, 459 WICHERN, DEAN W. A JOINT DESIGN CRITERION FOR THE DUAL PROBLEM OF MODEL DISCRIMINATION AND PARAMETER ESTI, TECH 68, 145
- WICHURA, MICHAEL J. INEQUALITIES WITH APPLICATIONS TO THE WEAK CON-VERGENCE OF RANDOM PROCESSES WITH MULTI, AMS 69, 6B1
- WIGGINS, ALVIN D. A MINIMUM COST MODEL OF SPARE PARTS INVENTORY CON-TROL, TECH 67, 661
- WIJSMAN, R. A. BOUNDS ON THE SAMPLE SIZE DISTRIBUTION FOR A CLASS OF INVARIANT SEQUENTIAL PROBABILITY RAT, AMS 6B, 104B
- WIJSMAN, R. A. EXISTENCE, UNIQUENESS AND MONOTONICITY OF SEQUEN-TIAL PROBABILITY RATIO TESTS, AMS 63, 1541
- WIJSMAN, R. A. GENERAL PROOF OF TERMINATION WITH PROBABILITY ONE OF INVARIANT SEQUENTIAL PROBABILITY RATI, AMS 67, 8
- WIJSMAN, R. A. OPTIMUM PROPERTIES AND ADMISSIBILITY OF SEQUENTIAL TESTS, AMS 63, 1
- WIJSMAN, R. A. THE RELATIONSHIP BETWEEN SUFFICIENCY AND INVARIANCE WITH APPLICATIONS IN SEQUENTIAL ANALYS, AMS 65, 575
- WILBER, GEORGE L. MIGRATION EXPECTANCY IN THE UNITED STATES, JASA 63.444
- WILCOXON, FRANK FACTORIAL 2-TO-THE-(P-Q) PLANS ROBUST AGAINST LINEAR AND QUADRATIC TRENDS, TECH 66, 259
- WILCOXON, FRANK SEQUENTIAL RANK TESTS I. MONTE CARLO STUDIES OF THE TWO-SAMPLE PROCEDURE, TECH 65, 463
- WILCOXON, FRANK SEQUENTIAL RANK TESTS II. MODIFIED TWO-SAMPLE PROCEDURES, TECH 66, 615
- WILK, M. 8. A COMPARATIVE STUDY OF VARIOUS TESTS FOR NORMALITY, JASA 6B, 1343
- WILK, M. B. AN ANALYSIS OF VARIANCE TEST FOR NORMALITY (COMPLETE SAMPLES), BIOKA 65, 591
- WILK, M. B. AN APPROXIMATION TO THE DISTRIBUTION OF Q, A VARIATE RE-LATED TO THE NON-CENTRAL T, AMS 64, 315
- WILK, M. B. APPROXIMATIONS FOR THE NULL DISTRIBUTION OF THE W-STATISTIC+ (TEST FOR NORMALITY), TECH 68, 861
- WILK, M. B. CORRIGENDA, 'ESTIMATION OF PARAMETERS OF THE GAMMA DIS-TRIBUTION USING ORDER STATISTICS. ', BIOKA 63, 546
- WILK, M. B. CORRIGENDA, 'THE RANDOMIZATION ANALYSIS OF A GENERAL-IZED RANDOMIZED BLOCK DESIGN', BIOKA 56, 235
- WILK, M. B. ESTIMATION OF ERROR VARIANCE FROM SMALLEST ORDERED CON-TRASTS, JASA 63, 152
- WILK, M. B. ESTIMATION OF PARAMETERS OF THE GAMMA DISTRIBUTION USING ORDER STATISTICS, BIOKA 62, 525
- WILK, M. B. GRAPHICAL METHODS FOR INTERNAL COMPARISONS IN MUL-TIRESPONSE EXPERIMENTS, AMS 64, 613
- WILK, M.B. NON-ADDITIVITIES IN A LATIN SQUARE DESIGN, JASA 57, 21B WILK, M. 8. PROBABILITY PLOTS FOR THE GAMMA DISTRIBUTION, TECH 62,
- WILK, M. B. PROBABILITY PLOTTING METHODS FOR THE ANALYSIS OF DATA,
- BIOKA 6B, 1 WILK, M. B. SCALE PARAMETER ESTIMATION FROM THE ORDER STATISTICS OF UNEQUAL GAMMA COMPONENTS, AMS 66, 152
- WILK, M. B. SEPARATE MAXIMUM-LIKELIHOOD ESTIMATION OF SCALE OR SHAPE PARAMETERS OF THE GAMMA DISTRIBUTION, BIOKA 63, 217
- WILK, M. B. TAIL AREAS OF THE T-DISTRIBUTION FROM A MILLS' RATIO-LIKE EXPANSION, AMS 63, 335
- WILK, M. B. THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T, AMS 64, 298
- WILK, M. B. THE MOMENTS OF THE NON-CENTRAL T-DISTRIBUTION, BIOKA 61, 465
- WILK, M. B. THE RANDOMIZATION ANALYSIS OF A GENERALIZED RANDOMIZED BLOCK DESIGN, BIOKA 55, 70
- WILK, MARTIN B. THE JOINT ASSESSMENT OF NORMALITY OF SEVERAL INDE-PENDENT SAMPLES, TECH 68, 825
- WILKERSON, MARVIN SAMPLING ERROR IN THE CONSUMER PRICE INDEX, JASA 67, 899
- COMPLETE SET OF LEADING COEFFICIENTS FOR ORTHOCONAL WILKIE. D. POLYNOMIALS UP TO N = 26, TECH 65, 644
- WILKINS, C. A. ON TWO QUEUES IN PARALLEL, BIOKA 60, 198
- WILKINS, COLERIDGE A. A PROBLEM CONCERNED WITH WEIGHTING OF DIS-TRIBUTIONS, JASA 61, 281
- WILKINSON, J. W. AN ANALYSIS OF PAIRED COMPARISON DESIGNS WITH IN-COMPLETE REPETITIONS, BIOKA 57, 97
- WILKINSON, J. W. QUERY, THE SUM OF VALUES FROM A NORMAL AND A TRUNCATED NORMAL DISTRIBUTION (CONTD), TECH 64, 469
 WILKINSON, WILLIAM E. ON BRANCHING PROCESSES IN RANDOM ENVIRON-
- MENTS, AMS 69, 814
- WILLIAMS, BRITAIN J. THE EFFECT OF TRUNCATION ON TESTS OF HYPOTHESES FOR NORMAL POPULATIONS, AMS 65, 1504
- STUDIES IN THE HISTORY OF PROBABILITY AND WILLIAMS, G. B. STATISTICS. IV. A NOTE ON AN EARLY STATISTICAL, BIOKA 56, 248
- WILLIAMS, D. A. NOTES. ERRORS OF TREATMENT COMPARISONS WHEN OBSER-VATIONS ARE MISSING FROM A RANDOMISED BL, BIOCS 66, 632
- WILLIAMS, DONALD R. A NOTE ON THE DETERMINATION OF CONNECTEDNESS IN AN N-WAY CROSS CLASSIFICATION, TECH 64, 319

- WILLIAMS, DONALD R. ERRATA, 'A NOTE ON THE DETERMINATION OF CON-NECTEDNESS IN AN N-WAY CROSS CLASSIFICATI, TECH 65, 281
- WILLIAMS, E. J. A COMPARISON OF THE DIRECT AND FIDUCIAL ARCUMENTS IN THE ESTIMATION OF A PARAMETER, JRSSB 63, 95
- WILLIAMS, E. J. A NOTE ON RECRESSION METHODS IN CALIBRATION, TECH 69.189
- WILLIAMS, E. J. CAUCHY-DISTRIBUTED FUNCTIONS AND A CHARACTERIZA-TION OF THE CAUCHY DISTRIBUTION. AMS 69, 1083
- WILLIAMS, E. J. CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES, AMS 67, 916
- WILLIAMS, E. J. EXACT FIDUCIAL LIMITS IN NON-LINEAR ESTIMATION, JRSSB 62, 125
- WILLIAMS, E. J. ON THE CONSTRUCTION OF SIGNIFICANCE TESTS ON THE CIRCLE AND THE SPHERE, BIOKA 56, 344
- WILLIAMS, E. J. SICNIFICANCE TESTS FOR DISCRIMINANT FUNCTIONS AND LINEAR FUNCTIONAL RELATIONSHIPS, BIOKA 55, 360
- WILLIAMS, E. J. SIMULTANEOUS REGRESSION EQUATIONS IN EXPERIMENTA-TION, BIOKA 5B, 96
- WILLIAMS, E. J. SOME EXACT TESTS IN MULTIVARIATE ANALYSIS, BIOKA 52.
- WILLIAMS, E. J. TESTS OF SIGNIFICANCE FOR CONCURRENT RECRESSION LINES, BIOKA 53, 297
- WILLIAMS, E. J. THE ANALYSIS OF ASSOCIATION AMONG MANY VARIABLES (WITH DISCUSSION), JRSSB 67, 199
- WILLIAMS, E. J. THE COMPARISON OF RECRESSION VARIABLES, JRSSB 59, 396
- WILLIAMS, E. J. THE INTERPRETATION OF INTERACTIONS IN FACTORIAL EX-PERIMENTS, BIOKA 52, 65
 WILLIAMS, E. J. USE OF SCORES FOR THE ANALYSIS OF ASSOCIATION IN CON-
- TINCENCY TABLES, BIOKA 52, 274
- WILLIAMS, J. S. A CONFIDENCE INTERVAL FOR VARIANCE COMPONENTS. BIOKA 62, 278
- WILLIAMS, J. S. ESTIMATION OF THE PROBABILITY OF DEFECTIVE FAILURE FROM DESTRUCTIVE TESTS, TECH 63, 459
- WILLIAMS, J. S. INDEX SELECTION AND ESTIMATION FROM A SINGLE SAMPLE, BIOKA 63, 195
- WILLIAMS, J. S. SOME STATISTICAL PROPERTIES OF A GENETIC SELECTION INDEX, BIOKA 62, 325
- WILLIAMS, J. S. VARIANCE OF WEICHTED REGRESSION ESTIMATORS WHEN SAMPLING ERRORS ARE INDEPENDENT AND HETER, JASA 69, NO.4
- WILLIAMS, JAMES S. THE VARIANCE OF WEIGHTED REGRESSION ESTIMATORS, JASA 67, 1290
- WILLIAMS, R. M. EXPERIMENTAL DESIGNS FOR SERIALLY CORRELATED OB-SERVATIONS, BIOKA 52, 151
- WILLIAMS, R. M. THE VARIANCE OF THE MEAN OF SYSTEMATIC SAMPLES, BIOKA 56, 137
- WILLIAMS, T. THE BASIC BIRTH-DEATH MODEL FOR MICROBIAL INFECTIONS, JRSSB 65, 338
- WILLIAMS, T. THE DISTRIBUTION OF INANIMATE MARKS OVER A NON-HOMOCENEOUS BIRTH-DEATH PROCESS, BIOKA 69, 225
- WILLIAMS, T. THE DISTRIBUTION OF RESPONSE TIMES IN A BIRTH-DEATH PROCESS, BIOKA 65, 581
- WILLIAMS, T. THE SIMPLE STOCHASTIC EPIDEMIC CURVE FOR LARCE POPULA-TIONS OF SUSCEPTIBLES, BIOKA 65, 571
- WILLIAMS, THEODORE J. THE PRESENT STATUS OF AUTOMATIC PRODUCTION AND CONTROL DEVICES AND EXPECTED FUTURE, TECH 66, 73
- WILLIAMS, W. H. ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY VARIATES, JASA 62, 1B4
- WILLIAMS, W. H. SAMPLE SELECTION AND THE CHOICE OF ESTIMATOR IN TWO-WAY STRATIFIED POPULATIONS, JASA 64, 1054
- WILLIAMS, W. H. THE VARIANCE OF AN ESTIMATOR WITH POST-STRATIFIED WEIGHTING, JASA 62, 622
- WILLIAMSON, E. TABLES OF THE LOCARITHMIC SERIES DISTRIBUTION, AMS 64 284
- WILLIS, D. M. THE STATISTICS OF A PARTICULAR NON-HOMOCENEOUS POIS-SON PROCESS, BIOKA 64, 399
- WILLIS, RICHARD H. LOWER BOUND FORMULAS FOR THE MEAN INTERCORRELA-TION COEFFICIENT, JASA 59, 275
- WILLKE, T. A. ON AN EXTREME RANK SUM TEST FOR OUTLIERS, BIOKA 63, 375 WILSON, A. L. AN APPROACH TO SIMULTANEOUS TOLERANCE INTERVALS IN RECRESSION, AMS 67, 1536
- WILTON, J. W. SELECTION INDICES FOR QUADRATIC MODELS OF TOTAL MERIT, BIOCS 68, 937
- WINDLE, CHARLES THE ACCURACY OF CENSUS LITERACY STATISTICS IN IRAN. JASA 59, 578
- WINKLER, ROBERT L. SCORING RULES AND THE EVALUATION OF PROBABILITY ASSESSORS, JASA 69, 1073
- WINKLER, ROBERT L. THE ASSESSMENT OF PRIOR DISTRIBUTIONS IN BAYE-SIAN ANALYSIS, JASA 67, 776
- WINKLER, ROBERT L. THE QUANTIFICATION OF JUDGMENT. SOME METHODOLOGICAL SUGGESTIONS, JASA 67, 1105
- WINOKUR JR, HERBERT S. EXACT MOMENTS OF THE ORDER STATISTICS OF THE GEOMETRIC DISTRIBUTION AND THEIR RELA, JASA 67, 915 WINSTEN, G. B. GEOMETRIC DISTRIBUTIONS IN THE THEORY OF QUEUES (WITH
- DISCUSSION), JRSS859, 1 WINTER, R. F. CRITICAL VALUES OF THE COEFFIGIENT OF RANK CORRELATION FOR TESTING THE HYPOTHESIS OF INDEPE, BIOKA 61, 444

- WINTHER STUDENT'S DISTRIBUTION AND RIEMANN'S ELLIPTIC CEOMETRY, BIOKA 57, 264
- WISE, J. RECRESSION ANALYSIS OF RELATIONSHIPS BETWEEN AUTOCORRE-LATED TIME SERIES, JRSSB 56, 240
- WISE, J. STATIONARITY CONDITIONS FOR STOCHASTIC PROCESSES OF THE AUTOREGRESSIVE AND MOVINC-AVERACE TYPE, BIOKA 56, 215
- WISE, J. THE AUTOCORRELATION FUNCTION AND THE SPECTRAL DENSITY FUNCTION, BIOKA 55, 151
- WISE, J. THE RELATIONSHIP BETWEEN THE MEAN AND VARIANCE OF A STA-TIONARY BIRTH-DEATH PROCESS, AND ITS ECON, BIOKA 62, 253 WISE, M. E. A COMPLETE MULTINOMIAL DISTRIBUTION COMPARED WITH THE X-
- SQUARE APPROXIMATION AND AN IMPROVEME, BIOKA 64, 277 WISE, M. E. A QUICKLY CONVERGENT EXPANSION FOR CUMULATIVE HYPER-
- GEOMETRIC PROBABILITIES, DIRECT AND INVERS, BIOKA 54, 317 WISE, M. E. CORRIGENDA, 'A QUICKLY CONVERCENT EXPANSION FOR CUMULA-
- TIVE HYPERGEOMETRIC PROBABILITIES, DIRE, BIOKA 55, 277 WISE, M. E. CORRICENDA, 'MULTINOMIAL PROBABILITIES AND THE CHI-
- SQUARE AND X-SQUARE DISTRIBUTIONS. ', BIOKA 63, 546 WISE, M. E. MULTINOMIAL PROBABILITIES AND THE CHI-SQUARE AND X-SQUARE DISTRIBUTIONS, BIOKA 63, 145
- WISE, M. E. ON NORMALIZING THE INCOMPLETE BETA-FUNCTION FOR FITTING TO DOSE-RESPONSE CURVES, BIOKA 60, 173
- WISHART, D. AN ALGORITHM FOR HIERARCHICAL CLASSIFICATIONS, BIOCS 69,165
- WISHART, J. CHI-SQUARE PROBABILITIES FOR LARCE NUMBERS OF DEGREES OF FREEDOM, BIOKA 56, 92
- WISHART, J. THE FACTORIAL MOMENTS OF THE DISTRIBUTION OF JOINS BETWEEN LINE SEGMENTS, 810KA 54, 555
- WISHART, JOHN MOMENT COEFFICIENTS OF THE K-STATISTICS IN SAMPLES FROM A FINITE POPULATION, BIOKA 52, 1
- WISHART, JOHN ORTHOGONAL POLYNOMIAL FITTING, BIOKA 53, 361
- WISNIEWSKI, T. K. M. TESTING FOR HOMOGENEITY OF A BINOMIAL SERIES, BIOKA 68, 426
- WOINSKY, MELVIN N. SEQUENTIAL NONPARAMETRIC TWO-WAY CLASSIFICA-TION WITH PRESCRIBED MAXIMUM ASYMPTOTIC ERR, AMS 69, 445
- WOLD, HERMAN OSKAR ANDERSON, 1BB7-1960, AMS 61, 651 WOLFF, STEPHEN AN ELEMENTARY METHOD OF OBTAINING LOWER BOUNDS ON THE
- ASYMPTOTIC POWER OF RANK TESTS, AMS 68, 212B WOLFOWITZ, J. ON A THEOREM OF HOEL AND LEVINE ON EXTRAPOLATION, AMS
- 65.1627 WOLFOWITZ, J. REMARK ON THE OPTIMUM CHARACTER OF THE SEQUENTIAL PROBABILITY RATIO TEST, AMS 66, 726
- WOLOCK, F. W. CYCLIC DESIGNS, AMS 65, 1526
- WONG, EUGENE HOMOGENEOUS GAUSS-MARKOV RANDOM FIELDS, AMS 69, 1625
- WONG, EUGENE ON THE CONVERCENCE OF ORDINARY INTEGRALS TO STOCHASTIC INTEGRALS, AMS 65, 1560
- WONG, SEOK PIN ASYMPTOTIC OPTIMUM PROPERTIES OF CERTAIN SEQUENTIAL TESTS, AMS 68, 1244
- WONNACOTT, THOMAS A. SPECTRAL ANALYSIS COMBINING A BARTLETT WINDOW WITH AN ASSOCIATED INNER WINDOW, TECH 61, 235
- WOODALL, ROSALIE C. EXACT OPERATING CHARACTERISTIC FOR TRUNCATED SEQUENTIAL LIFE TESTS IN THE EXPONENTIAL, AMS 62, 1403
- WOODING, R. A. THE MULTIVARIATE DISTRIBUTION OF COMPLEX NORMAL VARIABLES, BIOKA 56, 212
- WOODROOFE, MICHAEL ON THE MAXIMUM DEVIATION OF THE SAMPLE DENSITY. AMS 67, 475
- WOODROOFE, MICHAEL STATISTICAL PROPERTIES OF THE NUMBER OF POSI-TIVE SUMS, AMS 66, 1295
- WOODROOFE, MICHAEL B. CONSISTENT ESTIMATES OF THE PARAMETERS OF A LINEAR SYSTEM, AMS 69, NO.6
- WOODROOFE, MICHAEL B. THE MAXIMUM DEVIATION OF SAMPLE SPECTRAL DEN-SITIES, AMS 67, 1558
- WOODRUFF, RALPH S. THE USE OF ROTATING SAMPLES IN THE CENSUS BU-REAU'S MONTHLY SURVEYS, JASA 63, 454
- WOODRUFF, RALPH S. USE OF A REGRESSION TECHNIQUE TO PRODUCE AREA 8REAKDOWNS OF THE MONTHLY NATIONAL ESTIM, JASA 66, 496
- WOODWORTH, GEORGE A NOTE ON NONPARAMETRIC TESTS FOR SCALE, AMS 67,
- WOODWORTH, GEORGE FINE STRUCTURE OF THE ORDERING OF PROBABILITIES OF RANK ORDERS IN THE TWO SAMPLE CASE, AMS 66, 98
- WOODWORTH, GEORCE C. NONPARAMETRIC RANKING PROCEDURES FOR COM-PARISON WITH A CONTROL, AMS 68, 2075
- WOOLSEY, THEODORE D. SOME PROBLEMS OF THE HOUSEHOLD INTERVIEW DESIGN FOR THE NATIONAL HEALTH SURVEY, JASA 59, 69
- WORTHAM, A. W. A NOTE ON UNIFORMLY BEST UNBIASED ESTIMATORS FOR VARIANCE COMPONENTS, JASA 56, 266 WORTHAM, A. W. QUERY. JOINT CONFIDENCE LIMITS FOR RANKED OBSERVA-
- TIONS, TECH 66, 368
- WOUK, ARTHUR STATISTICAL PROPERTIES OF A CERTAIN PERIODIC BINARY PROCESS, TECH 66, 247
- WRICHT, WINDY M. JUMP ANALYSIS, BIOKA 59. 386
- WU, S. M. AN ALGORITHM FOR THE DETERMINATION OF THE ECONOMIC DESIGN OF X-CHARTS BASED ON DUNCAN'S MODEL, JASA 68, 304
- WURTELE, ZIVIAS. A RECTIFYING INSPECTION PLAN, JRSSB 55, 124
- WURTELE, ZIVIA S. CONVERCENCE PROPERTIES OF A LEARNING ALGORITHM, AMS 64, 1819
- WYLD, C. POLYNOMIAL PROJECTING PROPERTIES OF MULTI-TERM PREDICTORS OR CONTROLLERS IN NON-STATIONARY TIME, JRSSB 65, 144

- WYNER, A. D. ON THE ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS, AMS 69, 1409
- WYNN, A. H. A. FURTHER NOTES ON THE ANALYSIS OF ACCIDENT DATA, BIOKA 53, 214
- WYNN, A. H. A. THE TIME INTERVALS BETWEEN INDUSTRIAL ACCIDENTS. BIOKA 52, 16B
- WYSHAK, C. ESTIMATION OF PARAMETERS OF A TRUNCATED POISSONIAN BINOMIAL, BIOCS 68, 377
- WYSHAK, CRACE NOTES. DISTRIBUTION AMONG RELATIVES OF GENOTYPES FOR TWINNING, BIOCS 6B, 179
- YACKEL, JAMES A RANDOM TIME CHANCE RELATING SEMI-MARKOV AND MARKOV PROCESSES, AMS 68, 358
- YAHAV, JOSEPH A. ASYMPTOTICALLY OPTIMAL BAYES AND MINIMAX PROCEDURES IN SEQUENTIAL ESTIMATION, AMS 68, 422
- YAHAV, JOSEPH A. ON AN A.P.O. RULE IN SEQUENTIAL ESTIMATION WITH QUADRATIC LOSS, AMS 69, 417
- YAHAV, JOSEPH A. ON OPTIMAL STOPPING, AMS 66, 30
- YAHAV, JOSEPH A. RENEWAL THEORY IN THE PLANE, AMS 65, 946
- YAKOWITZ, S. A CONSISTENT ESTIMATOR FOR THE IDENTIFICATION OF FINITE MIXTURES, AMS 69, 1728
- YAKOWITZ, SIDNEY J. ON THE IDENTIFIABILITY OF FINITE MIXTURES, AMS
- YALAVIGI, C. C. A SERIES OF BALANCED INCOMPLETE BLOCK DESIGNS, AMS 68.6B1
- YANCEY, T. A. PARAMETER ESTIMATES AND AUTONOMOUS GROWTH, CORR. 59 812. JASA 59. 389
- YANC, Y. Y. SHORTER CONFIDENCE BANDS IN LINEAR REGRESSION, JASA 67. 1050
- YAO, YING AN APPROXIMATE DECREES OF FREEDOM SOLUTION TO THE MUL-TIVARIATE BEHRENS-FISHER PROBLEM, BIOKA 65, 139
- YASUDA, NORIKAZU ESTIMATION OF THE INBREEDING COEFFICIENT FROM PHENOTYPE FREQUENCIES BY A METHOD OF MAXIM, BIOCS 68, 915 YATES, F. A GENERAL COMPUTER PROGRAMME FOR THE ANALYSIS OF FACTORIAL
- EXPERIMENTS, BIOCS 66, 503 YATES, F. A NOTE ON THE APPLICATION OF THE COMBINATION OF PROBABILI-
- TIES TEST TO A SET OF 2-BY-2 TABLES, BIOKA 55, 404 YATES, F. COMPUTERS, THE SECOND REVOLUTION IN STATISTICS (THE FIRST
- FISHER MEMORIAL LECTURE), BIOCS 66, 233 YATES, F. ROUTINE ANALYSIS OF REPLICATED EXPERIMENTS ON AN ELEC-
- TRONIC COMPUTER (WITH DISCUSSION), JRSSB 57, 234 YATES, F. THE USE OF TRANSFORMATIONS AND MAXIMUM LIKELIHOOD IN THE
- ANALYSIS OF QUANTAL EXPERIMENTS INVOLV, BIOKA 55, 382 YEH, NENG-CHE ON SLIPPAGE TEST (II) SIMILAR SLIPPACE TESTS, AMS 68, 2029
- YEN, E. H. ON TWO-STAGE NON-PARAMETRIC ESTIMATION, AMS 64, 1099
- YEO, G. F. THE TIME-DEPENDENT SOLUTION FOR AN INFINITE DAM WITH DIS-CRETE ADDITIVE INPUTS, JRSSB 61, 173
- YEO, G. F. TRAFFIC DELAYS ON A TWO-LANE ROAD, BIOKA 64, 11
- YLVISAKER, DONALD A NOTE ON THE ABSENCE OF TANGENCIES IN CAUSSIAN SAMPLE PATHS, AMS 68, 261
- YLVISAKER, DONALD DESIGNS FOR REGRESSION PROBLEMS WITH CORRELATED ERRORS MANY PARAMETERS, AMS 6B, 49
- YLVISAKER, DONALD DESIGNS
- ON TIME SERIES, AMS 62, 1077
- YLVISAKER, N. DONALD SOME STRUCTURE THEOREMS FOR STATIONARY PROBA-8ILITY MEASURES ON FINITE STATE SEQUENCE, AMS 64, 550
- YLVISAKER, N. DONALD THE EXPECTED NUMBER OF ZEROS OF A STATIONARY GAUSSIAN PROCESS, AMS 65, 1043
- YOUDEN, W. J. DISCUSSION OF THE PAPERS OF MESSRS. SATTERTHWAITE AND BUDNE, TECH 59, 157
- YOUDEN, W. J. EVALUATION OF CHEMICAL ANALYSES ON TWO ROCKS, TECH 59, 409
- YOUDEN, W. J. MEASUREMENTS MADE BY MATCHING WITH KNOWN STANDARDS. TECH 59, 101
- YOUDEN, W. J. MEMORIAL TO SIR RONALD AYLMER FISHER, 1890-1962, JASA 62.727
- YOUDEN, W. J. MORTALITY PATTERNS IN EIGHT STRAINS OF FLOUR BEETLE, BIOCS 65, 99
- YOUDEN, W. J. PARTIAL CONFOUNDING IN FRACTIONAL REPLICATION, TECH 61.353
- YOUDEN, W. J. QUERY, INADMISSIBLE RANDOM ASSIGNMENTS, TECH 64, 103 YOUDEN, W. J. SYSTEMATIC ERRORS IN PHYSICAL CONSTANTS, TECH 62, 111 YOUNC, ALLAN H. LINEAR APPROXIMATIONS TO THE CENSUS AND BLS SEASONAL ADJUSTMENT METHODS, JASA 68, 445
- YOUNG, D. H. A NOTE ON A SEQUENTIAL OCCUPANCY PROBLEM, BIOKA 68, 591 YOUNG, D. H. A NOTE ON THE FIRST TWO MOMENTS OF THE MEAN DEVIATION OF THE SYMMETRICAL MULTINOMIAL DISTRIB, BIOKA 67, 312
- YOUNG, D. H. QUOTA FULFILMENT USING UNRESTRICTED RANDOM SAMPLING, BIOKA 61, 333
- YOUNG, D. H. RECURRENCE RELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES, AND SO, BIOKA 67, 283
- YOUNG, D. H. SOME APPLICATIONS OF TWO APPROXIMATIONS TO THE MUL-TINOMIAL DISTRIBUTION, BIOKA 60, 463
- YOUNG, D. H. TWO ALTERNATIVES TO THE STANDARD CHI-SQUARE-TEST OF THE HYPOTHESIS OF EQUAL CELL FREQUENCIES, BIOKA 62, 107
- YOUTZ, CLEO TABLES OF THE FREEMAN-TUKEY TRANSFORMATIONS FOR THE BINOMIAL AND POISSON DISTRIBUTIONS, BIOKA 61, 433

- ZACHARIAH, K. C. A NOTE ON THE CENSUS SURVIVAL RATIO METHOD OF ESTI-MATINC NET MICRATION, JASA 62, 175
- ZACKS, S. BAYES SEQUENTIAL DESIGN OF FRACTIONAL FACTORIAL EXPERI-MENTS FOR THE ESTIMATION OF A SUBCROUP OF, AMS 6B, 973
- ZACKS, S. ESTIMATING THE CURRENT MEAN OF A NORMAL DISTRIBUTION WHICH IS SUBJECTED TO CHANCES IN TIME, AMS 64, 999
- ZACKS, S. GENERALIZED LEAST SQUARES ESTIMATORS FOR RANDOMIZED FRACTIONAL REPLICATION DESIGNS, AMS 64, 696
- ZACKS, S. MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE COM-PONENTS, JASA 69, NO. 4
- ZACKS, S. MINIMUM VARIANCE UNBIASED AND MAXIMUM LIKELIHOOD ESTIMA-TORS OF RELIABILITY FUNCTIONS FOR SYSTEM, JASA 66, 1052
- ZACKS, S. ON A COMPLETE CLASS OF LINEAR UNBIASED ESTIMATORS FOR RANDOMIZED FACTORIAL EXPERIMENT, AMS 63, 769
- ZACKS, S. ON THE NON-EXISTENCE OF A FIXED SAMPLE ESTIMATOR OF THE MEAN OF A LOG-NORMAL DISTRIBUTION HAVIN, AMS 67, 949
- ZACKS, S. OPTIMAL STRATEGIES IN FACTORIAL EXPERIMENTS, AMS 63, 7B0 ZACKS, S. RANDOMIZATION AND FACTORIAL EXPERIMENTS, AMS 61, 270
- ZACKS, S. RANDOMIZED FRACTIONAL WEIGHING DESIGNS, AMS 66, 1382
- ZACKS, S. SEQUENTIAL ESTIMATION OF THE MEAN OF A LOC-NORMAL DIS-TRIBUTION HAVING A PRESCRIBED PROPORTIONAL, AMS 66, 16B8
- ZACKS, S. TEST PROCEDURES FOR POSSIBLE CHANGES IN PARAMETERS OF STATISTICAL DISTRIBUTIONS OCCURRING AT UNK, AMS 66, 1196
- ZACKS, S. TESTING HYPOTHESES IN RANDOMIZED FACTORIAL EXPERIMENTS, AMS 67, 1494
- ZACKS, S. THE EFFICIENCIES IN SMALL SAMPLES OF THE MAXIMUM LIKELIHOOD AND BEST UNBIASED ESTIMATORS OF REL, JASA 66, 1033
- ZACKS, S. UNBAISED ESTIMATION OF THE COMMON MEAN OF TWO NORMAL DISTRIBUTIONS BASED ON SMALL SAMPLES OF EQ. JASA 66, 467
- ZACKS, SHELLEY BAYES SEQUENTIAL DESIGNS OF FIXED SIZE SAMPLES FROM FINITE POPULATIONS, JASA 69, NO. 4
- ZAHL, S. A DEFORMATION METHOD FOR QUADRATIC PROGRAMMING, JRSSB 64, 141
- ZAHL, S. SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC PRO-CRAMMINC', JRSSB 65, 166 ZAKAI, MOSHE ON THE CONVERGENCE OF ORDINARY INTECRALS TO STOCHASTIC
- ZAKAI, MOSHE ON THE CONVERGENCE OF ORDINARY INTECRALS TO STOCHASTIC INTEGRALS, AMS 65, 1560
- ZAKRZEWSKI, GUSTAVE PRACTICAL VALUE OF INTERNATIONAL EDUCATIONAL STATISTICS, JASA 56, 605
- ZAREMBA, S. K. A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIABLES, AMS 61, 677
- ZAREMBA, S. K. BANDWIDTH AND RESOLVABILITY IN STATISTICAL SPECTRAL ANALYSIS, JRSSB 59, 169
- ZAREMBA, S. K. NOTE ON THE WILCOXON-MANN-WHITNEY STATISTIC, AMS 65, 105B
- ZAREMBA, S. K. ON ESTIMATING THE SPECTRAL DENSITY FUNCTION OF A STOCHASTIC PROCESS (WITH DISCUSSION), JRSSB 57, 13
- ZAREMBA, S. K. SOME APPLICATIONS OF ZERO-ONE PROCESSES, JRSSB 55, 243
- ZARRMBKA, PAUL FUNCTIONAL FORM IN THE DEMAND FOR MONEY, JASA 6B, 502 ZEHNA, PETER W. INVARIANCE OF MAXIMUM LIKELIHOOD ESTIMATIONS, AMS 66,744
- ZEIGLER, R. K. A UNIQUENESS THEOREM CONCERNING MOMENT DISTRIBUTIONS, JASA 65, 1203
- ZEIGLER, R. K. COMPARISONS OF SOME TWO STACE SAMPLING METHODS, AMS 66, B91
- ZEICLER, R. K. DOUBLE SAMPLING PLANS WHERE THE ACCEPTANCE CRITERION IS THE VARIANCE, TECH 6B, 99
- ZEIGLER, R. K. THE USE OF NON-LINEAR RECRESSION METHODS FOR ANALYS-ING SENSITIVITY AND QUANTAL RESPONSE DA, BIOCS 67, 563
- ZELEN, M. A CALCULUS FOR FACTORIAL ARRANCEMENTS, AMS 62, 600
- ZELEN, M. ANALYSIS OF MULTIFACTOR CLASSIFICATIONS WITH UNEQUAL NUMBERS OF OBSERVATIONS, BIOCS 66, 525
- ZELEN, M. APPLICATIONS OF THE CALCULUS FOR FACTORIAL ARRANGEMENTS II. TWO WAY ELIMINATION OF HETEROGENEIT, AMS 64, 65B
- ZELEN, M. APPLICATIONS OF THE CALCULUS OF FACTORIAL ARRANGEMENTS.

 I. BLOCK AND DIRECT PRODUCT DESICN, BIOKA 63, 63
- ZELEN, M. ESTIMATION OF EXPONENTIAL SURVIVAL PROBABILITIES WITH CONCOMITANT INFORMATION, BIOCS 65, B26
- ZELEN, M. NORMAL APPROXIMATION TO THE CHI-SQUARE AND NON-CENTRAL F PROBABILITY FUNCTIONS, BIOKA 60, 411

- ZELEN, M. ON THE THEORY OF SCREENING FOR CHRONIC DISEASES, BIOKA 69, NO. 3
- ZELEN, MARVIN DISCUSSION OF 'A SUBJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJECTIVE' TEST FOR APPROXIMAT, JASA 69, 50
- ZELEN, MARVIN ERRATA, 'FACTORIAL EXPERIMENTS IN LIFE TESTINC',
- ZELEN, MARVIN FACTORIAL EXPERIMENTS IN LIFE TESTING, TECH 59, 269
- ZELEN, MARVIN PLAY THE WINNER RULE AND THE CONTROLLED CLINICAL TRI-AL, JASA 69, 131
- ZELEN, MARVIN THE ANALYSIS OF INCOMPLETE BLOCK DESIGNS, JASA 57, 204
 ZELEN, MARVIN THE ROBUSTNESS OF LIFE TESTING PROCEDURES DERIVED
 FROM THE EXPONENTIAL DISTRIBUTION, TECH 61, 29
- ZELLNER, A. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION OF TRANSI-TION PROBABILITIES., JASA 6B, 1162
- ZELLNER, ARNOLD A STATISTICAL ANALYSIS OF PROVISIONAL ESTIMATES OF GROSS NATIONAL PRODUCT AND ITS COMPONE, JASA 5B, 54
- ZELLNER, ARNOLD AN EFFICIENT METHOD OF ESTIMATING SEEMINGLY UNRE-LATED RECRESSIONS AND TESTS FOR AGCREGATI, JASA 62, 348
- ZELLNER, ARNOLD BAYES'S THEOREM AND THE USE OF PRIOR KNOWLEDGE IN RECRESSION ANALYSIS, BIOKA 64, 219
- ZELLNER, ARNOLD BAYESIAN ANALYSIS OF THE REGRESSION MODEL WITH AUTO-CORRELATED ERRORS, JASA 64, 763
- ZELLNER, ARNOLD ESTIMATORS FOR SEEMINGLY UNRELATED REGRESSION EQUATIONS, SOME EXACT FINITE SAMPLE RESULTS, JASA 63, 977
- ZELLNER, ARNOLD ON THE BAYESIAN ESTIMATION OF MULTIVARIATE REGRES-SION, JRSSB 64, 277
- ZELLNER, ARNOLD PREDICTION AND DECISION PROBLEMS IN RECRESSION MODELS FROM THE BAYESIAN POINT OF VIEW, CO, JASA 65, 60B
- ZELNIK, MARVIN ACE PATTERNS OF MORTALITY OF AMERICAN NEGROES, 1900-02 TO 1959-61, JASA 69, 433
- ZELNIK, MELVIN ERRORS IN THE 1960 CENSUS ENUMERATION OF NATIVE WHITES, JASA 64, 437
- ZEMACH, RITA ON ORTHOCONAL ARRAYS, AMS 66, 1355
- ZIDEK, J. V. INADMISSIBILITY OF THE BEST INVARIATE ESTIMATOR OF EXTREME QUANTILES OF THE NORMAL DISTRIBUT, AMS 69, 1801
- ZIDEK, J. V. LIMITING DISTRIBUTIONS OF RESPONSE PROBABILITIES, AMS
- ZIMMER, W. J. FRACTIONAL REPLICATION OF 2-TO-THE-P FACTORIAL EX-PERIMENTS WITH THE FACTORS APPLIED SEQUENT, JASA 68, 644
- ZIMMER, W. J. SHORTER CONFIDENCE INTERVALS USINC PRIOR OBSERVATIONS, JASA 69, 378
- ZIMMER, W. J. SOME ACCEPTANCE SAMPLING PLANS BASED ON THE THEORY OF RUNS, TECH 62, $177\,$
- ZIMMER, W. J. THE RELATIONSHIP BETWEEN NEYMAN AND BAYES CONFIDENCE INTERVALS FOR THE HYPERGEOMETRIC PARAM, TECH 6B, 199
- ZIMMER, W. J. 2 TO THE POWER OF P FACTORIAL EXPERIMENTS WITH THE FACTORS APPLIED SEQUENTIALLY, JASA 64, 1205
- ZINGER, A. A NOTE ON OPTIMUM ALLOCATION FOR A ONE-WAY LAYOUT, BIOKA 62, 563
- ZINGER, A. DETECTION OF BEST AND OUTLYING NORMAL POPULATIONS WITH KNOWN VARIANCES, BIOKA 61, 457
- ZINGER, A. ON THE CHOICE OF THE BEST AMONGST THREE NORMAL POPULA-TIONS WITH KNOWN VARIANCES, BIOKA 5B. 436
- ZINK, R. E. A PERFECT MEASURABLE SPACE THAT IS NOT A LUSIN SPACE, AMS $67\,,1918$
- ZIPPEN, C. USE OF CONCOMITANT VARIABLES AND INCOMPLETE SURVIVAL IN-FORMATION IN THE ESTIMATION OF AN EXPON, BIOCS 66, 665
- ZOUTENDIJK, C. MAXIMIZING A FUNCTION IN A CONVEX REGION. JRSSB 59, 338
- ZWEIFEL, J. R. ON THE BIAS OF VARIOUS ESTIMATORS OF THE LOGIT AND ITS VARIANCE WITH APPLICATION TO QUANTA, BIOKA 67, 181
- ZYSKIND, CEORGE A NOTE ON RESIDUAL ANALYSIS, JASA 63, 1125
- ZYSKIND, CEORGE ON CANONICAL FORMS, NON-NECATIVE COVARIANCE MATRICES AND BEST AND SIMPLE LEAST SQUARES LI, AMS 67. 1092
- ZYSKIND, GEORCE ON COMBINABILITY OF INFORMATION FROM UNCORRELATED LINEAR MODELS BY SIMPLE WEICHTING, AMS 66, 133B
- ZYSKIND, CEORGE PARAMETRIC AUCMENTATIONS AND ERROR STRUCTURES UNDER WHICH CERTAIN SIMPLE LEAST SQUARES AN, JASA 69. NO. 4
- ZYSKIND, GEORCE QUERY, MISSING VALUES IN FACTORIAL EXPERIMENTS, TECH 65, 649
- ZYSKIND, CEORGE SOME CONSEQUENCES OF RANDOMIZATION IN A CENERALIZATION OF THE BALANCED INCOMPLETE BLOCK D, AMS 63,

BIBLIOGRAPHY

ANNALS OF MATHEMATICAL STATISTICS VOLUME 32, 1961

- 1 CHARLES JORDAN, 1871-1959 * L. TAKACS AMS 61
- 12 STATISTICAL METHODS IN MARKOV CHAINS, CORR. 61 1343 * AMS 61 PATRICKBILLINGSLEY
- 41 THE FREQUENCY COUNT OF A MARKOV CHAIN AND THE TRANSI-AMS 61 TION TO CONTINUOUS TIME * I. J. GOOD
- 49 ON THE ASYMPTOTIC DISTRIBUTION OF THE 'PSI-SQUARED' AMS 61 GOODNESS OF FIT CRITERIA FOR MARKOV CHAINS AND MAR-KOV SEQUENCES * B . R . BHAT
- 59 SOME PROPERTIES OF RECULAR MARKOV CHAINS * B. R. BHAT AMS 61
- 72 SOME TESTS FOR CATECORICAL DATA * V. P. BHAPKAR AMS 61
- 84 TABLES FOR UNBIASED TESTS ON THE VARIANCE OF A NORMAL AMS 61 POPULATION * JAMES PACHARES
- ASYMPTOTIC EFFICIENCY OF CERTAIN LOCALLY MOST POWER-AMS 61 FUL RANK TESTS * JACK CAPON
- AMS 61 101 THE NONPARAMETRIC ORDERING, 1001 TO 0110 * JOHN S WHITE
- AMS 61 104 THE NON-CENTRAL MULTIVARIATE BETA DISTRIBUTION * A M. KSHIRSAGAR
- AMS 61 112 AUNIFIED THEORY OF ESTIMATION, I * ALLAN BIRNBAUM
- AMS 61 136 ADMISSIBLE AND MINIMAX ESTIMATES OF PARAMETERS IN TRUNCATED SPACES * MORRIS W. KATZ
- 143 THE METHOD OF MOMENTS APPLIED TO A MIXTURE OF TWO EX-AMS 61 PONENTIAL DISTRIBUTIONS * PAUL R. RIDER
- 148 SNOWBALL SAMPLINC * LEO A. GOODMAN AMS 61
- AMS 61 171 PROBABILITY CONTENT OF REGIONS UNDER SPHERICAL NORMAL DISTRIBUTIONS, III. THE BIVARIATE NORMAL INTEGRAL * HAROLD RUBEN
- 187 RECURRENT GAMES AND THE PETERSBURG PARADOX * HERBERT AMS 61 ROBBINS
- 195 CONSISTENCY AND LIMIT DISTRIBUTIONS OF ESTIMATORS OF PARAMETERS IN EXPLOSIVE STOCHASTIC DIFFERENCE EQUATIONS * M. M. RAO
- 219 FIRST EMPTINESS OF TWO DAMS IN PARALLEL * J. GANI AMS 61
- AMS 61 230 THE TRANSIENT BEHAVIOR OF A COINCIDENCE VARIATE IN TELEPHONE TRAFFIC * P. D. FINCH
- 235 FIRST PASSAGE TIMES OF A CENERALIZED RANDOM WALK, CORR. AND ACKNOWLEDGEMENT OF PRIORITY 61 1345 * JOHN R. KINNEY
- AMS 61 244 IDENTIFIABILITY OF MIXTURES * HENRY TEICHER
- 249 AN ASYMPTOTIC FORMULA FOR THE DIFFERENCES OF THE AMS 61 POWERS AT ZERO * I . J . GOOD
- 257 ON A THEOREM OF RENYI CONCERNING MIXING SEQUENCES OF AMS 61
- SETS* J. H. ABBOTT, J. R. BLUM 261 THEOREMS CONCERNING EISENHART'S MODEL II * FRANKLIN AMS 61 A. GRAYBILL, ROBERT A. HULTQUIST
- 270 RANDOMIZATION AND FACTORIAL EXPERIMENTS * S. AMS 61 EHRENFELD, S. ZACKS
- 29B OPTIMUM DESIGNS IN REGRESSION PROBLEMS, II * J. KIEFER AMS 61 AMS 61 326 NON-EQUIVALENT COMPARISONS OF EXPERIMENTS AND THEIR
- USE FOR EXPERIMENTS INVOLVING LOCATION PARAMETERS * M STONE
- 333 DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTING MUL-AMS 61 TIVARIATE LINEAR HYPOTHESES * S. K. KATTI
- 336 A BOUND FOR THE LAW OF LARGE NUMBERS FOR DISCRETE MAR-AMS 61 KOV PROCESSES * MELVIN KATZ JR, A. J. THOMASIAN
- 33B THE NON-ABSOLUTE CONVERGENCE OF GIL-PELAEZ' INVER-AMS 61 SION INTEGRAL * J. G. WENDEL 357 GEORGES DARMOIS, 1888-1960 * D. DUGUE
- AMS 61
- 361 THE EXISTENCE AND CONSTRUCTION OF BALANCED INCOMPLETE AMS 61 BLOCK DESIGNS * HAIM HANANI
- 3B7 RANDOM ALLOCATION DESIGNS II, APPROXIMATE THEORY FOR SIMPLE RANDOM ALLOCATION * A. P. DEMPSTER AMS 61
- 406 SAMPLING MOMENTS OF MEANS FROM FINITE MULTIVARIATE AMS 61 POPULATIONS * D. W. BEHNKEN
- 414 ON THE FOUNDATIONS OF STATISTICAL INFERENCE, BINARY AMS 61 EXPERIMENTS * ALLAN BIRNBAUM
- AMS 61 436 SOME EXTENSIONS OF THE IDEA OF BIAS * H. R. VAN DER VAART
- AMS 61 448 MULTIVARIATE CORRELATION MODELS WITH MIXED DISCRETE AND CONTINUOUS VARIABLES, CORR, 65.343 * I. OLKIN, R. F TATE
- 466 LIMITS FOR A VARIANCE COMPONENT WITH AN EXACT CON-MS 61 FIDENCE COEFFICIENT * W. C. HEALY JR
- 477 CONFIDENCE SETS FOR MULTIVARIATE MEDIANS * P. G. HOEL. AMS 61 E M SCHELLER
- AMS 61 485 DISTRIBUTION FREE TESTS OF INDEPENDENCE BASED ON THE SAMPLE DISTRIBUTION FUNCTION * J. R. BLUM, J. KIEFER, M. ROSENBLATT
- AMS 61 499 SOME EXACT RESULTS FOR ONE-SIDED DISTRIBUTION TESTS OF THE KOLMOGOROV-SMIRNOV TYPE * P. WHITTLE
- AMS 61 506 SOME EXTENSIONS OF THE WALD-WOLFOWITZ-NOETHER THEOREM * JAROSLAV HAJEK
- AMS 61 524 THE GAP TEST FOR RANDOM SEQUENCES * EVE BOFINGER, V. J. BOFINGER

- AMS 61 535 THE MULTIVARIATE SADDLE POINT METHOD AND CHI-SQUARED FOR THE MULTINOMIAL DISTRIBUTION * I. J. GOOD
- AMS 61 549 A CENERALIZATION OF WALD'S IDENTITY WITH APPLICATIONS
- TO RANDOM WALKS* H. D. MILLER
 561 A CHARACTERIZATION OF THE WEAK CONVERCENCE OF MEA-AMS 61 SURES * ROBERT BARTOSZYNSKI
- EXPONENTIAL BOUNDS ON THE PROBABILITY OF ERROR FOR A AMS 61 DISCRETE MEMORYLESS CHANNEL * SAMUEL KOTZ
- 583 AN EXPONENTIAL BOUND ON THE STRONG LAW OF LARGE NUM-AMS 61 BERS FOR LINEAR STOCHASTIC PROCESSES WITH ABSOLUTE-LY CONVERCENT COEFFICIENTS * L . H . koopmans
- 5B7 EXPECTED UTILITY FOR QUEUES SERVICING MESSAGES WITH AMS 61 EXPONENTIALLY DECAYING UTILITY * FRANK A. HAIGHT
- AMS 61 594 ON THE GODING THEOREM FOR NOISELESS CHANNEL * PATRICK BILLINGSLEY
- AMS 61 602 THE ESSENTIAL COMPLETENESS OF THE CLASS OF GENERAL-IZED SEQUENTIAL PROBABILITY RATIO TESTS * M. H. DE CROOT
- AMS 61 605 A PROBLEM IN SURVIVAL* JAMES B. MACQUEEN
- AMS 61 610 FIRST PASSAGE TIME FOR A PARTICULAR GAUSSIAN PROCESS * D. SLEPLAN
- AMS 61 612 NOTE ON THE ERCODIC THEOREM OF INFORMATION THEORY * K. L. CHUNG
- 615 REMARK CONCERNING TWO-STATE SEMI-MARKOV PROCESSES * AMS 61 CYRUS DERMAN
- 616 AN EXAMPLE OF AN ANCILLARY STATISTIC AND THE COMBINA-AMS 61 TION OF TWO SAMPLES BY BAYES' THEOREM* D. A. SPROTT
- AMS 61 619 CORRECTIONS TO 'SADDLE POINT METHODS FOR THE MUL-TINOMIAL DISTRIBUTIONS ' 57 B61 * I. J. GOOD
- AMS 61 619 CORRECTIONS TO 'A RELATIONSHIP BETWEEN HODCES' BIVARIATE SIGN TEST AND A NON-PARAMETRIC TEST OF DANIELS ' 60 1190 * BRUCE M. HILL
- 619 CORRECTIONS TO 'THE THEORY OF PROBABILITY DISTRIBU-AMS 61 TIONS OF POINTS ON A LATTICE' 5B 256 * P. V. KRISHNA
- 620 CORRECTIONS TO 'A THEOREM ON FACTORIAL MOMENTS AND ITS AMS 61 APPLICATIONS ' 50 206 * P. V. KRISHNA IYER
- CORRECTION. THE TITLE SHOULD READ 'PROBABILITY CON-AMS 61 TENT OF RECIONS UNDER SPHERICAL NORMAL DISTRIBU-TIONS, II. THE DISTRIBUTION OF THE RANGE IN NORMAL SAMPLES ' 60 1113 * HAROLD RUBEN
- AMS 61 651 OSKAR ANDERSON, 1887-1960 * HERMAN WOLD
- 661 ON FIDUCIAL INFERENCE * D. A. S. FRASER
- 677 A CENTRAL LIMIT THEOREM FOR PARTLY DEPENDENT VARIA-AMS 61 BLES * H. J. GODWIN, S. K. ZAREMBA
- SOME MULTIVARIATE CHEBYSHEV INEQUALITIES WITH EX-AMS 61 TENSIONS TO CONTINUOUS PARAMETER PROCESSES * Z. W BIRNBAUM, ALBERT W. MARSHALL
- 704 MAXIMAL INDEPENDENT STOCHASTIC PROCESSES * C. B. BELL AMS 61
- 709 ON MARKOV CHAIN POTENTIALS * JOHN G. KEMENY, J. LAURIE AMS 61 SNELL.
- AMS 61 716 MARKOV CHAINS WITH ABSORBING STATES, A GENETIC EXAM-PLE * C . A . WATTERSON
- AMS 61 730 ESTIMATION OF THE SPECTRUM * V. K. MURTHY
- 739 ON A COINCIDENCE PROBLEM CONCERNING PARTICLE COUNTERS AMS 61 * LAJOS TAKACS
- 757 ON THE RUIN PROBLEM OF COLLECTIVE RISK THEORY * N. U. AMS 61 PRABHU
- 765 THE RANDOM WALK BETWEEN A REFLECTING AND AN ABSORBING AMS 61 BARRIER * B. WEESAKUL
- 770 ON THE QUEUEINC PROCESS. MARKOV OR POISSON INPUT. AMS 61 GENERAL SERVICE TIME DISTRIBUTION. ONE SERVER * C. R. HEATHCOTE
- AMS 61 771 THE SEQUENTIAL DESIGN OF EXPERIMENTS FOR INFINITELY MANY STATES OF NATURE* ARTHUR E. ALBERT
- BOO ANALYSIS OF A CLASS OF PARTIALLY BALANCED INCOMPLETE AMS 61 BLOCK DESIGNS WITH MORE THAN TWO ASSOCIATE CLASSES P. V. RAO
- 809 ON A LOCALLY MOST POWERFUL BOUNDARY RANDOMIZED AMS 61 SIMILAR TEST FOR THE INDEPENDENCE OF TWO POISSON VARIABLES * MOHAMAD SALAHUDDIN AHMED
- 82B CONFIDENCE INTERVALS FROM CENSORED SAMPLES * MAX HAL-AMS 61 PERIN
- AMS 61 838 TESTS OF FIT BASED ON THE NUMBER OF OBSERVATIONS FALLING IN THE SHORTEST SAMPLE SPACINGS DETERMINED BY EARLIER OBSERVATIONS * LIONEL WEISS
- AMS 61 846 SOME NONPARAMETRIC MEDIAN PROCEDURES * V. P. BHAPKAR
- B64 ON CERTAIN CHARACTERISTICS OF THE DISTRIBUTION OF THE AMS 61 LATENT ROOTS OF A SYMMETRIC RANDOM MATRIX UNDER GENERAL CONDITIONS * H. R. VAN DER VAART
- AMS 61 B74 THE DISTRIBUTION OF NONCENTRAL MEANS WITH KNOWN COVARIANCE * ALAN T. JAMES

- AMS 61 BB3 DISTRIBUTION OF A DEFINITE QUADRATIC FORM FOR NON-GENTRAL NORMAL VARIATES, CORR. 63 673 * B. K. SHAH, G. G. KHATRI
- AMS 61 88B PERGENTAGE POINTS AND MODES OF ORDER STATISTIGS FROM THE NORMAL DISTRIBUTION * SHANTIS. GUPTA
- MS 61 B94 EXPRESSING A RANDOM VARIABLE IN TERMS OF UNIFORM RAN-DOM VARIABLES * G. MARSAGLIA
- AMS 61 B99 GENERATING EXPONENTIAL RANDOM VARIABLES * G. MAR-SAGLIA
- AMS 61 901 A GOMBINATORIAL LEMMA FOR GOMPLEX NUMBERS * GLEN BAXTER
- AMS 61 904 A GOMBINATORIAL DERIVATION OF THE DISTRIBUTION OF THE TRUNCATED POISSON SUFFIGIENT STATISTIG * T. A. GAGOULLOS
- AMS 61 906 A NOTE ON SIMPLE BINOMIAL SAMPLING PLANS * B BRAINERD, T. V. NARAYANA
- AMS 61 908 AN INEQUALITY FOR BALANGED INCOMPLETE BLOCK DESIGNS * V. N. MURTY
- AMS 61 910 THIRD ORDER ROTATABLE DESIGNS IN THREE DIMENSIONS, SOME SPECIFIC DESIGNS * NORMAN R. DRAPER
- SOME SPECIFIC DESIGNS * NORMAN R. DRAPER
 AMS 61 951 AN APPROACH TO TIME SERIES ANALYSIS * EMANUEL PARZEN
- AMS 61 990 SOME MODEL I PROBLEMS OF SELECTION * E. L. LEHMANN AMS 61 1013 BAYES RULES FOR A GOMMON MULTIPLE GOMPARISONS PROBLEM
- AND RELATED STUDENT-T PROBLEMS * DAVID B. DUNGAN
 AMS 61 1034 THE USE OF LEAST FAVORABLE DISTRIBUTIONS IN TESTING
 COMPOSITE HYPOTHESES * H. E. REINHARDT
- AMS 61 1042 ASYMPTOTIC EFFIGIENCY IN POLYNOMIAL ESTIMATION * PAUL
 G. HOEL
- AMS 61 1048 MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR FUNCTIONAL RELATIONSHIP * C. VILLEGAS
- AMS 61 1063 SEQUENTIAL CHI-SQUARED AND T-SQUARED TESTS * J. ED-WARD JAGKSON, RALPH A. BRADLEY
- AMS 61 1078 ESTIMATING THE PARAMETERS OF NEGATIVE EXPONENTIAL POPULATIONS FROM ONE OR TWO ORDER STATISTICS, GORR. TO THIS PAPER PRINTED IN 63 1421 AND 1423* H LEON HARTER
- AMS 61 1091 ON THE TWO SAMPLE PROBLEM, A HEURISTIG METHOD FOR GON-STRUCTING TESTS* V. P. GODAMBE
- AMS 61 110B A NONPARAMETRIG TEST FOR THE PROBLEM OF SEVERAL SAM-PLES * V . P . 8HAPKAR
- AMS 61 111B DISTRIBUTION OF THE ANDERSON-DARLING STATISTIC *
 PETER A. W LEWIS
- AMS 61 1125 ERRORS IN DISGRIMINATION * S. JOHN
- AMS 61 1145 ON THE MONOTONIG GHARACTER OF THE POWER FUNCTIONS OF TWO MULTIVARIATE TESTS * S. N. ROY, W. F. MIKHAIL
- AMS 61 1152 THE MOMENTS OF ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF A MATRIX IN MULTIVARIATE ANALYSIS * TITO A . MIJARES
- AMS 61 1161 VARIANGE GOMPONENTS IN THE UNBALANGED TWO-WAY NESTED GLASSIFIGATION * S.R. SEARLE

- AMS 61 1167 SOME MAIN-EFFEGT PLANS AND ORTHOGONAL ARRAYS OF STRENGTH TWO* SIDNEY ADDELMAN. OSGAR KEMPTHORNE
- AMS 61 1177 ON A GEOMETRIGAL METHOD OF GONSTRUGTION OF PARTIALLY
 BALANGED DESIGNS WITH TWO ASSOCIATE CLASSES * ESTHER
 SEIDEN
- AMS 61 11B1 ON SOME METHODS OF CONSTRUCTION OF PARTIALLY BALANGED ARRAYS * I. M. CHAKRAVARTI
- AMS 61 1186 SOME FURTHER DESIGNS OF TYPE 0-PP * G. H. FREEMAN
- AMS 61 1191 THE SUFFIGIENCY IN THE UNDOMINATED GASE* D. L. BURK-HOLDER
- AMS 61 1201 ON A SPECIAL CLASS OF REGURRENT EVENTS * M. P. SGHUT-ZENBERGER
- AMS 61 1214 MAXIMUM LIKELIHOOD GHARAGTERIZATION OF DISTRIBU-TIONS*HENRYTEIGHER
- AMS 61 1223 ON THE DISTRIBUTION OF FIRST SIGNIFICANT DIGITS *
- AMS 61 1231 MARKOV RENEWAL PROCESSES, DEFINITIONS AND PRELIMINA-RY PROPERTIES * RONALD PYKE
- AMS 61 1243 MARKOV RENEWAL PROCESSES WITH FINITELY MANY STATES *
 RONALD PYKE

 AMS 61 1260 A CONVEXITY PROPERTY IN THE THEORY OF RANDOM VARIABLES
- DEFINED ON A FINITE MARKOV CHAIN*H. D. MILLER
 AMS 61 1271 LIMIT DISTRIBUTION IN THE THEORY OF GOUNTERS, CORR. 62
- 1466* G. SANKARANAKAYANAN

 AMS 61 1286 THE TRANSIENT BEHAVIOR OF A SINGLE SERVER QUEUING
 PROCESS WITH RECURRENT INPUT AND GAMMA SERVICE TIME
- *LAJOSTAKACS

 AMS 61 1299 EFFICIENT ESTIMATION OF A REGRESSION PARAMETER FOR

 GERTAIN SEGOND ORDER PROGESSES * GHARLOTTE T.
- STRIEBEL
 AMS 61 1314 TWO SIMILAR QUEUES IN PARALLEL * J. F. G. KINGMAN
- AMS 61 1324 QUEUES WITH BATCH DEPARTURES I * F. G. FOSTER, K. M. NYUNT
- AMS 61 1333 ON THE CHAPMAN-KOLMOGOROV EQUATION * JACK KARUSH
- AMS 61 1337 A GENERALIZATION OF A THEOREM OF BALAKRISHNAN * N. DONALD YLVISAKER
- AMS 61 1339 THE OPINION POOL * M. STONE
- AMS 61 1343 CORRECTION TO 'A GONSERVATIVE PROPERTY OF BINOMIAL TESTS' 60 1205 * H. A. DAVID
- AMS 61 1343 ACKNOWLEDGEMENT OF PRIORITY FOR 'AN OPTIMUM PROPERTY
 OF MAXIMUM LIKELIHOOD ESTIMATION' 60 120B * V. P.
 GODAMBE
- AMS 61 1344 GORREGTION TO 'A PROOF OF WALD'S THEOREM ON GUMULATIVE SUMS' 59 1245* N L. JOHNSON
- AMS 61 1344 CORRECTION TO 'ON THE MUTUAL INDEPENDENCE OF CERTAIN STATISTICS' 59 125B * G. G. KHATRI
- AMS 61 1345 CORRECTION TO 'TABLES OF EXPECTED VALUES OF ORDER STATISTICS AND PRODUCTS OF ORDER STATISTICS FOR SAMPLES OF SIZE TWENTY AND LESS FROM THE NORMAL DISFIBUTION' 56 410* D. TEICHROEW

ANNALS OF MATHEMATICAL STATISTIGS VOLUME 33, 1962

- AMS 62 1 THE FUTURE OF DATA ANALYSIS, GORR. 62 812 * JOHN W
- AMS 62 68 INFINITELY DIVISIBLE DISTRIBUTIONS, REGENT RESULTS
 AND APPLICATIONS * MAREK FISZ
- AMS 62 85 LIMIT THEOREMS FOR RANDOMLY SELECTED PARTIAL SUMS *
 PATRICK BILLINGSLEY
- AMS 62 93 A LAW OF LARGE NUMBERS FOR THE MAXIMUM IN A STATIONARY
 GAUSSIAN SEQUENCE * SIMEON M. BERMAN
- AMS 62 9B A 'RENEWAL' LIMIT THEOREM FOR GENERAL STOCHASTIG PROCESSES * V.E. BENES
- AMS 62 114 MIXTURES OF MARKOV PROCESSES * DAVID A. FREEDMAN
- AMS 62 119 SOME ASPECTS OF THE EMIGRATION-IMMIGRATION PROCESS *
 HAROLD RUBEN
- AMS 62 130 A TRANSIENT DISCRETE TIME QUEUE WITH FINITE STORAGE *
 JOHN R. KINNEY
- AMS 62 137 A GENERAL METHOD FOR THE RELIABILITY ANALYSIS OF SYSTEMS UNDER VARIOUS PREVENTIVE MAINTENANGE POLIGIES * B. J. FLEHINGER
- AMS 62 157 APPROXIMATIONS TO THE MOMENTS OF THE SAMPLE MEDIAN ' $\texttt{M.\,M.\,SIDDIQUI}$
- AMS 62 169 REGURRENGE RELATIONS BETWEEN THE PROBABILITY DENSITY
 FUNGTIONS OF ORDER STATISTIGS, AND SOME APPLICATIONS * K. S. SRIKANTAN
- AMS 62 17B ENUMERATION OF LINEAR GRAPHS FOR MAPPINGS OF FINITE SETS* JOHN RIORDAN
- AMS 62 1B6 ASYMPTOTIG POWER OF CERTAIN TEST GRITERIA, BASED ON FIRST AND SECOND DIFFERENCES, FOR SERIAL GORRELATION BETWEEN SUGGESSIVE OBSERVATIONS * A. R. KAMAT, Y. S. SATHE
- AMS 62 201 ANTE-DEPENDENGE ANALYSIS OF AN ORDERED SET OF VARIA-BLES * K. R. GABRIEL
- AMS 62 213 A GLASSIFIGATION PROBLEM IN WHICH INFORMATION ABOUT
 ALTERNATIVE DISTRIBUTIONS IS BASED ON SAMPLES * BOB
 E. ELLISON

- AMS 62 224 ASYMPTOTIC SHAPES OF BAYES SEQUENTIAL TESTING REGIONS
 * GIDEON SCHWARTZ
- AMS 62 237 BOUNDED LENGTH CONFIDENCE INTERVALS FOR THE ZERO OF A
 REGRESSION FUNCTION * R. H. FARRELL
 AMS 62 24B ON MULTIPLE DECISION METHODS FOR RANKING POPULATION
- MEANS * VACLAY FABIAN
- AMS 62 255 THE GHOIGE OF THE DEGREE OF A POLYNOMIAL REGRESSION AS A MULTIPLE DEGISION PROBLEM * T. W. ANDERSON AMS 62 266 LEAST SOUARES AND BEST UNBIASED ESTIMATES * T. W. AN-
- DERSON

 AMS 62 273 THE PROBLEM OF NEGATIVE ESTIMATES OF VARIANCE GOM-
- AMS 62 273 THE PROBLEM OF NEGATIVE ESTIMATES OF VARIANCE GOM-PONENTS * W. A. THOMPSON JR
- AMS 62 290 PAIRWISE INDEPENDENGE OF JOINTLY DEPENDENT VARIABLES
 * SEYMOUR GEISSER, MANTEL NATHAN
- AMS 62 292 ANOTEON UNBIASED TESTS * JOHN W. PRATT
- AMS 62 294 SOME THOUGHTS ON STATISTICAL INFERENCE * E. S. PEARSON
 AMS 62 325 RECENT ADVANCES IN SAMPLE SURVEY THEORY AND METHODS *
 - 62 325 REGENT ADVANCES IN SAMPLE SURVEY THEORY AND METHODS *
 TORE DALENIUS
- AMS 62 350 SAMPLING WITH UNEQUAL PROBABILITIES AND WITHOUT REPLACEMENT * H. O. HARTLEY, J. N. K. RAO
- AMS 62 375 THE SGORING OF MULTIPLE CHOICE QUESTIONNARES * HERMAN CHERNOFF
- AMS 62 404 UNGERTAINTY, INFORMATION, AND SEQUENTIAL EXPERI-MENTS * M. H. DEGROOT
- AMS 62 420 CLASSIFICATION INTO TWO MULTIVARIATE NORMAL DIS-TRIBUTIONS WITH DIFFERENT COVARIANGE MATRICES * T. W. ANDERSON, R. R. BAHADUR
- AMS 62 432 TWO-SAMPLE GOMPARISONS OF DISPERSION MATRIGES FOR ALTERNATIVES OF INTERMEDIATE SPEGIFIGITY * S. N ROY, R. GNANADESIKAN
- AMS 62 438 A SEQUENTIAL PROCEDURE FOR COMPARING SEVERAL EXPERI-MENTAL GATEGORIES WITH A STANDARD OR CONTROL * ED-WARD PAULSON

- AMS 62 444 MOMENT ESTIMATORS FOR THE PARAMETERS OF A MIXTURE OF TWO BINOMIAL DISTRIBUTIONS * W. R. BLISCHKE
- AMS 62 455 SPECTRAL ANALYSIS WITH REGULARLY MISSED OBSERVATIONS
 * RICHARD H. JONES
- AMS 62 462 COMPARISON OF LEAST SQUARES AND MINIMUM VARIANCE
 ESTIMATES OF REGRESSION PARAMETERS, (ACKNOWLEDGEMENT OF PRIORITY 63 352) * T. A. MAGNESS, J. B. MCGUIRE
- AMS 62 471 EXACT AND APPROXIMATE POWER FUNCTION OF THE NON-PARAMETRIC TEST OF TENDENCY * REGINA C. ELANDT
- AMS 62 482 RANK METHODS FOR COMBINATION OF INDEPENDENT EXPERI-MENTS IN THE ANALYSIS OF VARIANCE * J. L. HODGES JR, E. L. LEHMANN
- AMS 62 498 NON-PARAMETRIC TESTS FOR SCALE * JEROME KLOTZ
- AMS 62 513 SOME MODIFIED KOLMOGOROV-SMIRNOV TESTS OF APPROXI-MATE HYPOTHESES AND THEIR PROPERTIES * JUDAH ROSEN-
- AMS 62 525 ON THE RANGE OF THE DIFFERENCE BETWEEN HYPOTHETICAL
 DISTRIBUTION FUNCTION AND PYKE'S MODIFIED EMPIRICAL DISTRIBUTION FUNCTION * H. D. BRUNK
- AMS 62 533 A CHARACTERIZATION OF THE MULTIVARIATE NORMAL DISTRIBUTION* S. G. GHURYE. INGRAM OLKIN
- AMS 62 542 PROBABILITY CONTENT OF REGIONS UNDER SPERICAL NORMAL
 DISTRIBUTIONS, IV. THE DISTRIBUTION OF HOMOGENEOUS
 AND NON-HOMOGENEOUS QUADRATIG FUNCTIONS OF NORMAL
 VARIABLES* HAROLD RUBEN
- AMS 62 571 THE NUMERICAL EVALUATION OF CERTAIN MULTIVARIATE NOR-MAL INTEGRALS * R. N. CURNOW, G. W. DUNNETT
- AMS 62 580 TABLES TO FACILITATE THE COMPUTATION OF PERCENTAGE
 POINTS OF THE NON-CENTRAL T-DISTRIBUTION * GEORGE J.
 RESNIKOFF
- AMS 62 587 MUTUAL INFORMATION AND MAXIMAL CORRELATION AS MEA-SURES OF DEPENDENCE * C. B. BELL
- AMS 62 596 ON THE ORDER STRUCTURE OF THE SET OF SUFFICIENT SUB-FIELDS * D. L. BURKHOLDER
- AMS 62 600 A CALCULUS FOR FACTORIAL ARRANGEMENTS * B. KURKJIAN,
 M. ZELEN
- AMS 62 620 SYMMETRICAL UNEQUAL BLOCK ARRANGEMENTS WITH TWO UNEQUAL BLOCK SIZES * DAMARAJU RAGHAVARAO
- AMS 62 634 CONDITIONAL PROBABILITY OPERATORS * ROBERT COGBURN
- AMS 62 659 RELATIONS BETWEEN WEAK AND UNIFORM CONVERGENCE OF MEASURES WITH APPLICATIONS * R. RANGA RAO
- AMS 62 681 AN EXTENSION OF THE ARC SINE LAW * SIME ON M. BERMAN
- AMS 62 685 AN INVARIANCE PRINCIPLE IN RENEWAL THEORY * JOHN LAM-PERTI
- AMS 62 697 GAMES ASSOCIATED WITH A RENEWAL PROCESS * M. M. SID-DIQUI
- AMS 62 702 A RANDOM INTERVAL FILLING PROBLEM * P. E. NEY
- AMS 62 719 DISCRETE DYNAMIC PROGRAMMING * DAVID BLACKWELL
- AMS 62 727 ESTIMATING THE INFINITESIMAL GENERATOR OF A CONTINU-OUS TIME, FINITE STATE MARKOV PROGESS * ARTHUR AL-BERT
- AMS 62 754 A MARKOVIAN MODEL FOR THE ANALYSIS OF THE EFFECTS OF MARGINAL TESTING ON SYSTEM RELIABILITY * BETTY J. FLEHINGER
- AMS 62 767 ON THE GENERAL TIME DEPENDENT QUEUE WITH A SINGLE SERVER * J. KEILSON, A. KOOHARIAN
- AMS 62 792 TWO MORE GRITERIA EQUIVALENT TO D-OPTIMALITY OF DESIGNS * J. KIEFER
- AMS 62 796 A CONTOUR-INTEGRAL DERIVATION OF THE NON-CENTRAL CHI-SQUARE DISTRIBUTION * FRANK MCNOLTY
- AMS 62 800 CHARACTERIZATION OF THE INVERSE GAUSSIAN DISTRIBU-TION * C. G. KHATRI
- AMS 62 803 NULL DISTRIBUTION AND BAHADUR EFFICIENCY OF THE HODGES BIVARIATE SIGN TEST * A. JOFFE, JEROME KLOTZ
- AMS 62 807 NOTE ON MULTIVARIATE GOODNESS-OF-FIT TESTS * JUDAH ROSENBLATT
- AMS 62 810 THE UNIQUENESS OF THE SPACING OF OBSERVATIONS IN
 POLYNOMIAL REGRESSION FOR MINIMAX VARIANCE OF THE
 FITTED VALUES * CHARLES E. ANTLE
- AMS 62 B12 CORRECTION TO 'ON A CLASS OF PROBLEMS RELATED TO THE RANDOM DIVISION OF AN INTERVAL' 53 239 * D. A. DARLING
- AMS 62 813 CORRECTION TO 'DISTRIBUTION OF DEFINITE AND OF IN-DEFINITE QUADRATIG FORMS' 55 122 * JOHN GURLAND
- AMS 62 847 CONTRIBUTIONS TO THE 'TWO-ARMED BANDIT' PROBLEM *
- AMS 62 857 TEAM DECISION PROBLEMS * ROY RADNER
 - S 62 882 MERGING OF OPINIONS WITH INCREASING INFORMATION *
 DAVID BLACKWELL, LESTER DUBINS
- AMS 62 887 SUCCESSIVE CONDITIONAL EXPECTATIONS OF AN INTEGRABLE FUNCTION * D. L. BURKHOLDER
- AMS 62 894 LIMITING DISTRIBUTION OF THE MAXIMUM TERM IN SEQUENCES OF DEPENDENT RANDOM VARIABLES * SIMEON M.
 BERMAN
- AMS 62 909 ON A GENERALIZATION OF THE FINITE ARC-SINE LAW * GLEN BAXTER
- AMS 62 916 INVARIANTS UNDER MIXING WHICH GENERALIZE DE FINETTI'S
 THEOREM * DAVID A. FREEDMAN

- AMS 62 924 POISSON PROCESSES WITH RANDOM ARRIVAL RATE * DAVID A. FREEDMAN
- AMS 62 930 APPROXIMATIONS FOR THE ENTROPY FOR FUNCTIONS 0 FMAR-KOV CHAINS * JOHN J: BIRCH
- AMS 62 939 SOME THEORETICAL ASPECTS OF DIFFUSION THEORY IN POPU-LATION GENETICS, CORR. 63 352 * G. A. WATTERSON
- AMS 62 95B RANDOM SUBDIVISIONS OF SPACE INTO CRYSTALS * E. N.
- AMS 62 973 ON THE TRANSIENT BEHAVIOR OF A QUEUEING SYSTEM WITH BULK SERVICE AND FINITE CAPACITY * P. D. FINCH
- AMS 62 986 LOCATION AND SCALE PARAMETERS IN EXPONENTIAL FAMILIES OF DISTRIBUTIONS, CORR. 63 1603 * THOMAS S. FERGUSON
- AMS 62 1002 CONDITIONS FOR WISHARTNESS AND INDEPENDENCE OF SECOND DEGREE POLYNOMIALS IN NORMAL VECTOR * C. G. KHATRI
- AMS 62 100B MULTIVARIATE PARETO DISTRIBUTIONS, CORR. 63 1603 * K.
- AMS 62 1016 THE DISTRIBUTION OF THE PRODUCT OF TWO CENTRAL OR NON-CENTRAL CHI-SQUARE VARIATES * W. T. WELLS, R. L. AN-DERSON, JOHN W. CELL
- AMS 62 1021 THE ROLE OF SUFFICIENCY AND OF ESTIMATION IN THER-MODYNAMICS * BENOIT MANDELBROT
- AMS 62 1039 SEQUENTIAL INFERENCE PROCEDURES OF STEIN'S TYPE FOR A
 GLASS OF MULTIVARIATE REGRESSION PROBLEMS * SHOUTIR
 KISHORE CHATTERJEE
- AMS 62 1065 ON ESTIMATION OF A PROBABILITY DENSITY FUNCTION AND MODE * EMANUEL PARZEN
- AMS 62 1077 ON LINEAR ESTIMATION FOR REGRESSION PROBLEMS ON TIME SERIES * N. DONALD YLVISAKER
- AMS 62 1085 TESTING THE HYPOTHESIS OF NO FIXED MAIN-EFFECTS IN SCHEFFE'S MIXED MODEL * J. P. IMHOF
- AMS 62 1096 A TEST OF LINEARITY VERSUS CONVEXITY OF A MEDIAN REGRESSION CURVE * BRUCE MARVIN HILL
- AMS 62 1124 ASYMPTOTICALLY MOST POWERFUL RANK-ORDER TESTS *
 JAROSLAV HAJEK
- AMS 62 1148 ON THE DISTRIBUTION OF THE TWO SAMPLE CRAMER-VON MISES GRITERION * T. W. ANDERSON

 AMS 62 1160 THE SAMPLE MEAN AMONG THE MODERATE ORDER STATISTICS *
- AMS 62 1160 THE SAMPLE MEAN AMONG THE MODERATE ORDER STATISTICS.

 HERBERT T. DAVID
- AMS 62 1167 DISTRIBUTION-FREE TOLERANCE INTERVALS FOR CONTINU-OUS SYMMETRICAL POPULATIONS * JOHN E. WALSH AMS 62 1175 APPLICATION OF THE GEOMETRY OF QUADRICS FOR CON-
- AMS 62 1175 APPLICATION OF THE GEOMETRY OF QUADRICS FOR CON-STRUCTING PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS*D.K.RAY-CHAUDHURI
- AMS 62 1187 A GENERALIZATION OF THE GAMMA DISTRIBUTION* E. W. STACY
- AMS 62 1192 IMPROVED BOUNDS ON A MEASURE OF SKEWNESS * KULENDRA N.
 MAJINDAR
- AMS 62 1194 USE OF WILCOXON TEST THEORY IN ESTIMATING THE DISTRIBUTION OF A RATIO BY MONTE CARLO METHODS * LINCOLN E. MOSES
- AMS 62 1197 ON THE EXACT DISTRIBUTION OF A CLASS OF MULTIVARIATE TEST GRITERIA * D. G. KABE
- AMS 62 1200 ON THE PARAMETERS AND INTERSECTION OF BLOCKS OF
 BALANCED INCOMPLETE BLOCK DESIGNS * KULENDRA N.
 MAJINDAR
- AMS 62 1227 KHINCHIN'S WORK IN MATHEMATICAL PROBABILITY * HARALD CRAMER
- AMS 62 123B ON THE ORDER AND THE TYPE OF ENTIRE CHARACTERISTIC FUNCTIONS * B. RAMACHANDRAW
- AMS 62 1256 A REPRESENTATION OF THE SYMMETRIC BIVARIATE CAUCHY DISTRIBUTION * THOMASS. FERGUSON
- AMS 62 1267 A CHARACTERIZATION OF THE CAUCHY DISTRIBUTION * M. V. MENON
- AMS 62 1272 A CHARACTERIZATION OF THE WISHART DISTRIBUTION * IN-GRAMOLKIN, HERMANRUBIN
- AMS 62 1281 LIMITING DISTRIBUTIONS ASSOCIATED WITH GERTAIN STOCHASTIC LEARNING MODELS * J. R. MCGREGOR, Y. Y. HUI
- AMS 62 1286 MOMENTS OF ORDER STATISTICS FROM THE EQUIGORRELATED MULTIVARIATE NORMAL DISTRIBUTION* D. B. OWEN, G. P. STECK
- AMS 62 1292 EXACT LOWER MOMENTS OF ORDER STATISTICS IN SAMPLES
 FROM THE CHI-DISTRIBUTION, ONE DEGREE OF FREEDOM *
 ZAKKULA GOVINDARAJULU
- AMS 62 1306 ZERO CROSSING PROBABILITIES FOR GAUSSIAN STATIONARY PROCESSES * G. F. NEWELL, M. ROSENBLATT
- AMS 62 1314 QUEUES SUBJECT TO SERVICE INTERRUPTION * JULIAN KEIL-SON
- AMS 62 1323 STATIONARY WAITING-TIME DISTRIBUTIONS FOR SINGLE-SERVER QUEUES * R. M. LOYNES
- AMS 62 1340 THE TIME DEPENDENCE OF A SINGLE-SERVER QUEUE WITH POISSON INPUT AND GENERAL SERVICE TIMES * LAJOS TAKACS
- AMS 62 1349 EXAMPLES BEARING ON THE DEFINITION OF FIDUGIAL PROBA-BILITY WITH A BIBLIOGRAPHY * DAVID R. BRILLINGER
- AMS 62 1356 TESTING APPROXIMATE HYPOTHESES IN THE COMPOSITE CASE. CORR. 63 * JUDAH ROSENBLATT

- AMS 62 1365 SOME PROPERTIES OF THE LEAST SQUARES ESTIMATOR IN
 RECRESSION ANALYSIS WHEN THE 'PREDICTOR' VARIABLES
 ARE STOCHASTIC * P. K. BHATTACHARYA
- AMS 62 1375 ASYMPTOTIC RELATIVE EFFICIENCY OF MOOD'S AND MASSEY'S
 TWO SAMPLE TESTS ACAINST SOME PARAMETRIC ALTERNATIVES' I M. CHAKRAVARTI, F. C. LEONE, J. D. ALANEN
- AMS 62 1384 OPTIMUM DECISION PROCEDURES FOR A POISSON PROCESS PARAMETER* J. A. LECHNER
- AMS 62 1403 EXACT OPERATINC CHARACTERISTIC FOR TRUNCATED SEQUENTIAL LIFE TESTS IN THE EXPONENTIAL CASE * ROSALIE C. WOODALL. BAKRIG M. KURKJIAN
- AMS 62 1413 AN EMPIRICAL EVALUATION OF MULTIVARIATE SEQUENTIAL PROCEDURE FOR TESTING MEANS * R. H. APPLEBY, R. J. FREUND

- AMS 62 1421 CONSTRUCTION OF ROTATABLE DESIGNS THROUGH BALANCED
 INCOMPLETE BLOCK DESIGNS * M. N. DAS, V. L. NARASIMHAM
- AMS 62 1440 ON CONSTRUCTING THE FACTORIAL REPLICATES OF THE TWO TO
 THE POWER OF M DESIGNS WITH BLOCKS * M. S. PATEL
- AMS 62 1450 A FLUCTUATION THEOREM FOR CYCLIC RANDOM VARIABLES *
 MEYER DWASS
- AMS 62 1454 DETERMINING BOUNDS ON EXPECTED VALUES OF CERTAIN FUNCTIONS * BERNARD HARRIS
- AMS 62 1457 ON BOUNDS OF SERIAL CORRELATIONS * K. C. CHANDA
- AMS 62 1461 ON THE DISTRIBUTION OF SUMS OF SQUARES AND CROSS
 PRODUCTS OF NORMAL VARIATES IN THE PRESENCE OF
 INTRA-CLASS CORRELATION * DONALD F. MORRISON
- AMS 62 1463 ON A PROPERTY OF A TEST FOR THE EQUALITY OF TWO NORMAL DISPERSION MATRICES AGAINST ONE-SIDED ALTERNATIVES

 * WADIE F. MIKHAIL

ANNALS OF MATHEMATICAL STATISTICS VOLUME 34, 1963

- AMS 63 1 OPTIMUM PROPERTIES AND ADMISSIBILITY OF SEQUENTIAL TESTS * D. L. BURKHOLDER, R. A. WIJSMAN
- AMS 63 1B ON THE OPTIMALITY OF SEQUENTIAL PROBABILITY RATIO TESTS * THEODORE K. MATTHES
- AMS 63 22 ON THE EFFICIENCY OF OPTIMAL NONPARAMETRIC PROCEDURES
 IN THE TWO SAMPLE CASE* PIOTR WITOLD MIKULSKI
- AMS 63 33 THE SAMPLE MEAN AMONG THE EXTREME NORMAL ORDER STATISTICS * HERBERT T. DAVID
- AMS 63 56 TESTS AUXILIARY TO CHI-SQUARED TESTS IN A MARKOV CHAIN * RUTH Z. COLD
- AMS 63 75 SELECTION OF THE BEST TREATMENT IN A PAIRED-COM-PARISON EXPERIMENT* B. J. TRAWINSKI, H. A. DAVID
- AMS 63 92 A REMARK ON A PAPER OF TRAWINSKI AND DAVID ENTITLED 'SELECTION OF THE BEST TREATMENT IN A PAIRED-COM-PARISON EXPERIMENT' * PETER J. HUBER
- AMS 63 95 DISTRIBUTION OF THE TWO-SAMPLE CRAMER-VON MISES CRITERION FOR SMALL EQUAL SAMPLES * E. J. BURR
- AMS 63 102 SIMPLIFIED ESTIMATES FOR THE EXPONENTIAL DISTRIBU-TION * A. E. SARHAN, B. C. GREENBERG, JUNJIRO OCAWA
- AMS 63 117 OPTIMUM ESTIMATORS OF THE PARAMETERS OF NEGATIVE EX-PONENTIAL DISTRIBUTIONS FROM ONE OR TWO ORDER STATISTICS * M. M. SIDDIQUI
- AMS 63 122 ASYMPTOTIC THEORY FOR PRINCIPAL COMPONENT ANALYSIS *
 T. W. ANDERSON
- AMS 63 149 ON TESTING A SET OF CORRELATION COEFFICIENTS FOR EQUALITY* D. N. LAWLEY
- AMS 63 152 STATISTICAL ANALYSIS BASED ON A CERTAIN MULTIVARIATE COMPLEX CAUSSIAN DISTRIBUTION, AN INTRODUCTION * N. R. GOODMAN
- AMS 63 178 THE DISTRIBUTION OF THE DETERMINANT OF A COMPLEX WISHART DISTRIBUTED MATRIX * N. R. COODMAN
- AMS 63 1B1 SOME RESULTS ON THE DISTRIBUTION OF TWO RANDOM
 MATRICES USED IN CLASSIFICATION PROCEDURES, CORR.
 64924*D.G.KABE
- AMS 63 1B6 DISTRIBUTION OF DEFINITE AND OF INDEFINITE QUADRATIC FORMS FROM A NON-CENTRAL NORMAL DISTRIBUTION * B. SHAH, C.G. KHATRI
- AMS 63 191 APPROXIMATIONS TO MULTIVARIATE NORMAL ORTHANT PROBA-BILITIES * RALPH HOYT BACON
- AMS 63 199 A DEFINITION OF SUBJECTIVE PROBABILITY * F. J. AN-SCOMBE, R. J. AUMANN
- AMS 63 206 ON A CLASS OF STOCHASTIC PROCESSES * JOHN LAMPERTI
 AMS 63 213 STOCHASTIC PROCESSES ON A SPHERE* RICHARD H. JON
- AMS 63 213 STOCHASTIC PROCESSES ON A SPHERE* RICHARD H, JONES
 AMS 63 219 ON CONVERGENCE TO INFINITY IN THE LAW OF LARCE NUM-BERS, (ACKNOWLEDGEMENT OF PRIORITY 63 1111) *
 LEONARD E. BAUM
- AMS 63 223 NON-EXISTENCE OF EVERYWHERE PROPER CONDITIONAL DIS-TRIBUTIONS * D. BLACKWELL, C. RYLL-MARDZEWSKI
- AMS 63 226 ENTROPY AND CONJUGACY* THOMAS A BROWN
- AMS 63 233 COLLAPSED MARKOV CHAINS AND THE CHAPMAN-KOLMOCOROV EQUATION * JACK HACHIGIAN
- AMS 63 238 THE ESTIMATION OF A FUNDAMENTAL INTERACTION PARAMETER
 IN AN EMIGRATION-IMMICRATION PROCESS * HAROLD RUBEN
 AMS 63 260 CONVERGENCE THEOREMS FOR MULTIPLE CHANNEL LOSS PROBA-
- BILITIES * A. JOFFE, P. E. NEY
 AMS 63 274 DYNAMIC STOCHASTIC PROCESSES * BERNT P. STIGUM
- AMS 63 284 A MATHEMATICAL THEORY OF PATTERN RECOGNITION * ARTHUR ALBERT
- AMS 63 300 ON QUEUES IN TANDEM * GRECORY E. MASTERSON, SEYMOUR SHERMAN
- AMS 63 308 THE POISSON TENDENCY IN TRAFFIC DISTRIBUTION * LEO BREIMAN
- AMS 63 312 THE PROBABILITY IN THE TAIL OF A DISTRIBUTION * MELVIN L . KATZ
- AMS 63 319 A CHARACTERIZATION OF THE UNIFORM DISTRIBUTION ON A COMPACT TOPOLOGICAL GROUP * JAMES H. STAPLETON
- AMS 63 327 THE CONVEX HULL OF PLANE BROWNIAN MOTION * J. R. KINNEY

- AMS 63 329 ON THE SAMPLE FUNCTIONS OF PROCESSES WHICH CAN BE ADDED TO A GAUSSIAN PROCESS * T. S. PITCHER
- AMS 63 333 NOTE ON TWO BINOMIAL COEFFICIENT SUMS FOUND BY RIORDAN
 * H. W. GOULD
- AMS 63 335 TAIL AREAS OF THE T-DISTRIBUTION FROM A MILLS' RATIO-LIKE EXPANSION * R. S. PINKHAM, M. B. WILK
- AMS 63 337 A FINITE CRITERION FOR INDECOMPOSABLE CHANNELS * A. J. THOMASIAN
- AMS 63 338 NOTES ON QUEUES IN TANDEM * EDGAR REICH
- AMS 63 341 A NOTE ON THE RE-USE OF SAMPLES * DAVID R. BRILLINGER
- AMS 63 343 ON STOCHASTIC APPROXIMATIONS * SHMUEL FRIEDMAN
- AMS 63 346 THE USE OF THE RANGE IN PLACE OF THE STANDARD DEVIATION
 IN STEIN'S TEST * WILLIAM KNIGHT
- AMS 63 348 ON NECESSARY CONDITIONS FOR THE EXISTENCE OF SOME SYMMETRICAL AND UNSYMMETRICAL TRIANGULAR PARTIALLY
 BALANCED INCOMPLETE BLOCK DESIGNS AND BALANCED INCOMPLETE BLOCK DESIGNS * ESTHER SEIDEN
- AMS 63 375 PROPERTIES OF PROBABILITY DISTRIBUTIONS WITH
 MONOTONE HAZARD RATE* RICHARD E. BARLOW, ALBERT W.
 MARSHALL, FRANK PROSCHAN
- AMS 63 390 A RENEWAL THEOREM FOR RANDOM VARIABLES WHICH ARE DE-PENDENT OR NON-IDENTICALLY DISTRIBUTED * Y.S.CHOW, HERBERT ROBBINS
- AMS 63 396 AVERAGE RENEWAL LOSS RATES * M. V. JOHNS JR, R. G. MILLER JR
- AMS 63 402 COMBINATORIAL RESULTS IN MULTI-DIMENSIONAL FLUCTUA-TION THEORY, CORR. 64 924 * CHARLES HOBBY, RONALD PYKE
- AMS 63 405 ONE DIMENSIONAL RANDOM WALK WITH A PARTIALLY REFLECT-ING BARRIER * G. LEHNER
- AMS 63 413 ON A CLASS OF SIMPLE RANDOM WALKS * J. R. BLUM, D. L HANSON, S. V. PARTER
- AMS 63 416 A MARKOV PROCESS ON BINARY NUMBERS * SIMEON M. BERMAN
- AMS 63 424 MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND PREDIC-TION THEORY* FREDERICK J. BEUTLER
- AMS 63 439 CENTRAL LIMIT THEOREMS FOR FAMILIES OF SEQUENCES OF RANDOM VARIABLES * F. EICKER
- AMS 63 447 ASYMPTOTIC NORMALITY AND CONSISTENCY OF THE LEAST
 SQUARES ESTIMATORS FOR FAMILIES OF LINEAR REGRESSIONS * F. EICKER
- AMS 63 457 THE LIMIT OF A RATIO OF CONVOLUTIONS * P. E. NEY
- AMS 63 462 SEQUENTIAL MODEL BUILDING FOR PREDICTION IN REGRES-SION ANALYSIS, I* HAROLD J. LARSON. T. A. BANCROFT
- AMS 63 4B0 ON THE ESTIMATION OF THE PROBABILITY DENSITY, I *G.S. WATSON, M.R. LEADBETTER
- AMS 63 492 NECESSARY AND SUFFICIENT CONDITIONS FOR A STATISTICAL PROBLEM TO BE INVARIANT UNDER A LIE GROUP * DAVID R. BRILLINGER
- AMS 63 501 PAIRWISE COMPARISON AND RANKING IN TOURNAMENTS * HANS BUHLMANN, PETER HUBER
- AMS 63 511 PAIRWISE COMPARISON AND RANKING, OPTIMUM PROPERTIES
 OF THE ROW SUM PROCEDURE * PETER J. HUBER
- AMS 63 521 SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE COM-PONENTS IN THE UNBALANCED THREE-WAY NESTED CLAS-
- SIFICATION *D. M. MAHAMUNULU

 AMS 63 528 ON THE DUALS OF SYMMETRIC PARTIALLY-BALANCED INCOMPLETE BLOCK DESIGNS * A. J. HOFFMAN
- AMS 63 532 CORRELATIONS AND CANONICAL FORMS OF BIVARIATE DISTRIBUTIONS * H. O. LANCASTER
- AMS 63 539 ON THE INADMISSIBILITY OF SOME STANDARD ESTIMATES IN THE PRESENCE OF PRIOR INFORMATION * M. SKIBINSKY, L. COTE
- AMS 63 549 A SEQUENTIAL DECISION PROCEDURE FOR CHOOSING ONE OF K
 HYPOTHESES CONCERNING THE UNKNOWN MEAN OF A NORMAL
 DISTRIBUTION * EDWARD PAULSON
- AMS 63 555 ON TESTING MORE THAN ONE HYPOTHESIS * J. N. DARROCH, S. D. SILVEY
- AMS 63 568 THE POSTERIOR T DISTRIBUTION * M. STONE

- 574 SHORTER CONFIDENCE INTERVALS FOR THE MEAN OF A NORMAL AMS 63 DISTRIBUTION WITH KNOWN VARIANCE * JOHN W. PRATT
- 5B7 POST CLUSTER SAMPLINC * SAKTIP. CHOSH AMS 63
- AMS 63 59B ESTIMATES OF LOCATION BASED ON RANK TESTS * J. L. HODGES JR, E. L. LEHMANN
- 612 ON THE EFFICIENCY OF TWO-SAMPLE MANN-WHITNEY TEST FOR AMS 63 DISCRETE POPULATIONS * K. C. CHANDA
- AMS 63 618 TESTS AND CONFIDENCE INTERVALS BASED ON THE METRIC D2 * JUDAH ROSENBI ATT
- AMS 63 624 SMALL SAMPLE POWER AND EFFICIENCY FOR THE ONE SAMPLE WILGOXON AND NORMAL SCORES TESTS * JEROME KLOTZ
- AMS 63 633 ON MOMENTS OF ORDER STATISTICS AND QUASI-RANCES FROM NORMAL POPULATIONS * ZAKKULA GOVINDARAJULU
- 652 CONDITIONAL DISTRIBUTION OF ORDER STATISTICS AND DIS-AMS 63 TRIBUTION OF THE REDUCED ITH ORDER STATISTIC OF THE EXPONENTIAL MODEL * ANDRE G. LAURENT
- AMS 63 658 LOGISTIC ORDER STATISTICS * ALLAN BIRNBAUM, JACK DUD-MAN
- AMS 63 664 ON THE LINE, GRAPH OF THE COMPLETE BIGRAPH * J. W. MOON AMS 63 668 A GENERAL VERSION OF DOEBLIN'S CONDITION * RICHARD ISAAC
- AMS 63 671 A TEST FOR EQUALITY OF MEANS WHEN COVARIANCE MATRICES ARE UNEQUAL * T. W. ANDERSON
- AMS 63 705 ASYMPTOTICALLY OPTIMUM SEQUENTIAL INFERENCE AND DESIGN * J. KIEFER, J. SACKS
- 751 GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS * AMS 63 JEROME SACKS
- 769 ON A COMPLETE CLASS OF LINEAR UNBIASED ESTIMATORS FOR AMS 63 RANDOMIZED FACTORIAL EXPERIMENT * S. ZACKS
- 780 OPTIMAL STRATEGIES IN FACTORIAL EXPERIMENTS * S AMS 63 EHRENFELD, S. ZACKS
- 792 PROBABILITY INTEGRALS OF MULTIVARIATE NORMAL AND MUL-AMS 63 TIVARIATE T * SHANTI S. GUPTA
- 829 BIBLIOCRAPHY ON THE MULTIVARIATE NORMAL INTEGRALS AND AMS 63 RELATED TOPICS * SHANTI S. GUPTA
- 839 BAYES ESTIMATION WITH CONVEX LOSS* M. H. DEGROOT, M. AMS 63 M. RAO
- 844 FURTHER EXAMPLES OF INCONSISTENCIES IN THE FIDUCIAL AMS 63 ARGUMENT * A. P. DEMPSTER
- B47 ON THE SAMPLE SIZE AND COVERAGE FOR THE JIRINA SEQUEN-AMS 63 TIAL PROCEDURE * SAM C . SAUNDERS
- B57 SOME APPLICATIONS OF THE JIRINA SEQUENTIAL PROCEDURE AMS 63 TO OBSERVATIONS WITH TREND * SAM C . SAUNDERS
- B66 OPTIMUM STRATIFICATION WITH TWO CHARACTERS * S. P. AMS 63 GHOSH
- 873 MULTIVARIATE THEORY FOR GENERAL STEPWISE METHODS * A. AMS 63 P DEMPSTER
- 892 GHEBYSHEV POLYNOMIAL AND OTHER NEW APPROXIMATIONS TO AMS 63 MILLS' RATIO * W. D. RAY, A. E. N. T. PITMAN
- 903 PROPERTIES OF CENERALIZED RAYLEIGH DISTRIBUTIONS * L. AMS 63 E. BLUMENSON, K. S. MILLER
- AMS 63 911 MAXIMUM ENTROPY FOR HYPOTHESIS FORMULATION, ESPE-CIALLY FOR MULTIDIMENSIONAL CONTINGENCY TABLES * I. J. GOOD
- AMS 63 935 ON THE INDEPENDENCE OF CERTAIN WISHART VARIABLES * ROBERT V . HOCG
- AMS 63 940 ELLIPTICAL AND RADIAL TRUNCATION IN NORMAL POPULA-TIONS * G. M. TALLIS
- 945 TESTING HOMOGENEITY AGAINST ORDERED ALTERNATIVES * V. AMS 63 J. CHACKO
- AMS 63 957 ROBUST ESTIMATION IN ANALYSIS OF VARIANCE * E. L. LEH-MANN
- AMS 63 967 ESTIMATING ORDERED PROBABILITIES * MORRIS W. KATZ
- 973 RANK TESTS OF DISPERSION * LINCOLN E. MOSES AMS 63 984 COMPARISON OF THE VARIANCE OF MINIMUM VARIANCE AND AMS 63
- WEIGHTED LEAST SQUARES REGRESSION COEFFICIENTS * GENEH, GOLUB
- AMS 63 992 ON THE LIMIT BEHAVIOUR OF EXTREME ORDER STATISTICS * OLEBARNDOFF-NIELSEN
- AMS 63 1003 THE FIRST PASSAGE TIME DENSITY FOR HOMOCENEOUS SKIP-FREE WALKS ON THE CONTINUUM * JULIAN KEILSON
- AMS 63 1012 ESTIMATION OF THE CROSS-SPECTRUM * V . K . MURTHY
- AMS 63 1022 FUNCTIONS OF FINITE MARKOV CHAINS * S. W. DHARMAD-HIKART
- AMS 63 1033 SUFFICIENT CONDITIONS FOR A STATIONARY PROCESS TO BE A FUNCTION OF A FINITE MARKOV HAIN* S. W. DHARMAD-HIKARI
- AMS 63 1042 ON THE INFLUENCE OF MOMENTS ON THE ASYMPTOTIC DIS-TRIBUTION OF SUMS OF RANDOM VARIABLES * LEONARD E. BAUM, MELVINL. KATZ
- AMS 63 1045 ON THE INTEGRABILITY, CONTINUITY AND DIFFERENTIA-BILITY OF A FAMILY ON FUNCTIONS INTRODUCED BY L. TACAKS * A. M. HASOFER
- AMS 63 1050 MINIMUM VARIANCE UNBIASED ESTIMATION AND CERTAIN PROBLEMS OF ADDITIVE NUMBER THEORY * G . P . PATIL
- AMS 63 1057 RIGHT ANGULAR DESIGNS * SURESH K. THARTHARE

- AMS 63 1068 ON ESTIMATES FOR FRACTIONS OF A COMPLETE FACTORIAL EX-PERIMENT AS ORTHOCONAL LINEAR COMBINATIONS OF THE OBSERVATIONS * K. S. BANERJEE, W. T. FEDERER
 AMS 63 1079 ASYMPTOTIC SOLUTIONS OF THE SEQUENTIAL COMPOUND DECI-
- SION PROBLEM * ESTER SAMUEL
- AMS 63 1095 NOTE ON A SEQUENTIAL CLASSIFICATION PROBLEM * ESTER SAMUEL
- AMS 63 109B NOTE ON A CONDITIONAL PROPERTY OF STUDENT'S T * R. J. BUEHLER, A. P. FEDDERSEN
- AMS 63 1101 ON A MODIFICATION OF CERTAIN RANK TESTS * RYOJI TAMURA
- AMS 63 1104 NOTE ON EXTREME VALUES, COMPETING RISKS AND SEMI-MAR-KOV PROCESSES * SIMEON M. BERMAN
- AMS 63 1107 NOTE ON THE BERRY-ESSEN THEOREM * MELVIN L . KATZ
- AMS 63 1109 BOUNDS FOR THE FREQUENCY OF MISLEADING BAYES IN-FERENCE * D . KERRIDGE
- AMS 63 1147 CONDITIONED LIMIT THEOREMS * MEYER DWASS, SAMUEL KAR-I.TN
- AMS 63 1168 A WIENER-HOPF TYPE METHOD FOR A GENERAL RANDOM WALK WITH A TWO-SIDED BOUNDARY * J. H. B. KEMPERMAN
- AMS 63 1194 INVARIANTS UNDER MIXING WHICH GENERALIZE DE FINETTI'S THEOREM. CONTINUOUS TIMES PARAMETER* DAVID A FREEDMAN
- AMS 63 1217 POISSON COUNTS FOR RANDOM SEQUENCES OF EVENTS * J. F. C. KINCMAN
- AMS 63 1233 COMBINATORIAL RESULTS IN FLUCTUATION THEORY * CHARLES HOBBY, RONALD PYKE
- AMS 63 1243 THE AUTOCORRELATION FUNCTION OF A SEQUENCE UNIFORMLY DISTRIBUTED MODULO 1 * DAVID L . JACERMAN
- AMS 63 1253 THE DEGREE OF RANDOMNESS IN A STATIONARY TIME SERIES * CALVINC. MOORE
- AMS 63 1259 THE COVARIANCE MATRIX OF A CONTINUOUS AUTORECRESSIVE VECTOR TIME-SERIES * JOEL N. FRANKLIN
- AMS 63 1265 IDENTIFIABILITY OF FINITE MIXTURES * HENRY TEICHER
- AMS 63 1270 SOME NON-CENTRAL DISTRIBUTION PROBLEMS IN MUL-TIVARIATE ANALYSIS * A. G. CONSTANTINE
- AMS 63 1286 AN ASYMPTOTIC EXPANSION FOR THE DISTRIBUTION OF THE LINEAR DISCRIMINANT FUNCTION * MASASHI OKAMOTO
- AMS 63 1302 ASYMPTOTIC EXPANSIONS FOR A CLASS OF DISTRIBUTION FUNCTIONS * K. C. CHANDA
- AMS 63 130B ON APPROXIMATIONS TO SAMPLING DISTRIBUTIONS OF THE MEAN FOR SAMPLES FROM NON-NORMAL POPULATIONS * A. REITSMA
- AMS 63 1315 CORRELATION AND COMPLETE DEPENDENCE OF RANDOM VARIA-BLES* H. O. LANCASTER
- AMS 63 1322 MULTIPLEX SAMPLING * DAVIDH. EVANS
- AMS 63 1347 EFFICIENT UTILIZATION OF NON-NUMERICAL INFORMATION IN QUANTITATIVE ANALYSIS. GENERAL THEORY AND THE CASE OF SIMPLE ORDER * ROBERT P. ABELSON, JOHN W. TUKEY
- AMS 63 1370 AN EMPIRICAL BAYES APPROACH TO THE TESTING OF CERTAIN PARAMETRIC HYPOTHESES * ESTER SAMUEL
- AMS 63 1386 ON THE ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES IN THE DISCRETE CASE * DAVID A. FREEDMAN
- AMS 63 1404 A MODIFIED BAYES STOPPING RULE * SIGMUND J. AMSTER
- AMS 63 1414 ON A PARADOX CONCERNING INFERENCE ABOUT A COVARIANCE MATRIX * A. P. DEMPSTER
- AMS 63 1419 ESTIMATION OF ONE OF TWO PARAMETERS OF THE EXPONENTIAL DISTRIBUTION ON THE BASIS OF SUITABLY CHOSEN ORDER STATISTICS * GUNNAR KULLDORFF
- AMS 63 1432 THE LIMITING POWER OF CATEGORIGAL DATA CHI-SQUARE TESTS ANALOCOUS TO NORMAL ANALYSIS OF VARIANCE * EARL L. DIAMOND
- AMS 63 1442 THE RELATION BETWEEN PITMAN'S ASYMPTOTIC RELATIVE EF-FICIENCY OF TWO TESTS AND THE CORRELATION COEFFI-CIENT BETWEEN THEIR TEST STATISTICS * CONSTANCE VAN EEDEN
- AMS 63 1452 ON MULTISTAGE ESTIMATION * J. R. BLUM. JUDAH ROSEN-BLATT
- AMS 63 1459 ON AN ANALOG OF REGRESSION ANALYSIS * P. K. BHATTACHA-RYA
- AMS 63 1474 EXISTENCE OF BOUNDED LENGTH CONFIDENCE INTERVALS * RAJINDER STUCH
- AMS 63 1486 AN ASYMPTOTICALLY OPTIMAL SEQUENTIAL DESIGN FOR COM-PARINC SEVERAL EXPERIMENTAL CATEGORIES WITH A CON-TROL * CHARLES DEWITT ROBERTS
- AMS 63 1494 ASYMPTOTICALLY NONPARAMETRIC INFERENCE, AN ALTERNA-TIVE APPROACH TO LINEAR MODELS * E. L. LEHMANN
- AMS 63 1507 NONPARAMETRIC CONFIDENCE INTERVALS FOR A SHIFT PARAMETER * E. L. LEHMANN
- AMS 63 1513 THE ASYMPTOTIC NORMALITY OF TWO TEST STATISTICS AS-SOCIATED WITH THE TWO-SAMPLE PROBLEM * SAUL BLU-MENTHAL.
- AMS 63 1524 MINIMAX CHARACTER OF HOTELLING'S T-SQUARED TEST IN THE SIMPLEST CASE* N. GIRI. J. KIEFER. C. STEIN
- AMS 63 1536 MINIMAX THEOREMS ON CONDITIONALLY COMPACT SETS * TEH T.IOE-TIE
- AMS 63 1541 EXISTENCE, UNIQUENESS AND MONOTONICITY OF SEQUENTIAL PROBABILITY RATIO TESTS * R. A. WIJSMAN

- AMS 63 1549 ALMOST PERIODIC VARIANCES * LAURENCE HERBST
- AMS 63 1558 ON THE NULL-DISTRIBUTION OF THE F-STATISTIC IN A RAN-DOMIZED BALANCED INCOMPLETE BLOCK DESIGN UNDER THE NEYMAN MODEL * JUNJIRO OCAWA
- AMS 63 1569 SOME CONSEQUENCES OF RANDOMIZATION IN A CENERALIZATION OF THE BALANCED INCOMPLETE BLOCK DESIGN *
- AMS 63 1582 A NEW RESULT ON THE DISTRIBUTION OF QUADRATIC FORMS *
- AMS 63 1585 THE CONDITIONAL DISTRIBUTION OF SETS OF TESTS ON A SYSTEM SIMULATED FROM TESTS ON ITS COMPONENTS * W S. CONNOR
- AMS 63 1588 APPLICATION OF METHODS IN SEQUENTIAL ANALYSIS TO DAM
 THEORY * R. M. PHATARFOD
- AMS 63 1593 NORMAL APPROXIMATION TO THE DISTRIBUTION OF TWO INDE-PENDENT BINOMIALS, CONDITIONAL ON FIXED SUM * J. HANNAN, W. HARKNESS
- AMS 63 1596 USE OF THE WILCOXON STATISTIC FOR A CENERALIZED BEHRENS-FISHER PROBLEM * RICHARD F. POTTHOFF
- AMS 63 1600 COMBINATORIAL THEOREM FOR PARTIAL SUMS * R. L. CRAHAM

ANNALS OF MATHEMATICAL STATISTICS VOLUME 35, 1964

- AMS 64 1 THE EMPIRICAL BAYES APPROACH TO STATISTICAL DECISION PROBLEMS * HERBERT ROBBINS
- AMS 64 21 LOCAL AND ASYMPTOTIC MINIMAX PROPERTIES OF MUL-TIVARIATE TESTS * N. CIRI, J. KIEFER
- AMS 64 36 ASYMPTOTIC BEHAVIOR OF EXPECTED SAMPLE SIZE IN CER-TAIN ONE-SIDED TESTS* R. H. FARRELL
- AMS 64 73 ROBUST ESTIMATION OF A LOCATION PARAMETER * PETER J . HUBER
- AMS 64 102 ASYMPTOTIC EFFICIENCY OF CLASS OF C-SAMPLE TESTS * MADAN LAL PURI
- AMS 64 122 RANK TESTS FOR PAIRED-COMPARISON EXPERIMENTS INVOLV-INC SEVERAL TREATMENTS * K. L. MEHRA
- AMS 64 138 A CLASS OF NONPARAMETRIC TESTS FOR INDEPENDENCE IN BIVARIATE POPULATIONS' SI BHUCHONGKUL AMS 64 150 SOME BASIC THEOREMS OF DISTRIBUTION-PREE STATISTICS
- *C.B. BELL AMS 64 157 CONSISTENT ESTIMATES AND ZERO-ONE SETS * LEO BREIMAN,
- LUCIEN LECAM. LORRAINE SCHWARTZ
 AMS 64 162 SEQUENTIAL TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION
- AMS 64 162 SEQUENTIAL LESIS FOR THE MEAN OF A NORMAL DISTRIBUTION

 II, LARCE T * JOHN BREAKWELL, HERMAN CHERNOFF

 AMS 64 174 A SEQUENTIAL PROCEDURE FOR SELECTING THE POPULATION
- AMS 64 174 A SEQUENTIAL PROCEDURE FOR SELECTING THE POPULATION
 WITH THE LARGEST MEAN FROM K NORMAL POPULATIONS * EDWARD PAULSON
- AMS 64 181 ON THE LIKELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE TESTING PROBLEM, CORR. 34 1388 * N. GIRI
- AMS 64 191 TESTS FOR THE EQUALITY OF TWO COVARIANCE MATRICES IN RELATION TO A BEST LINEAR DISCRIMINATOR ANALYSIS *
 A P. DEMPSTER
- AMS 64 200 MONOTONICITY OF THE POWER FUNCTIONS OF SOME TESTS OF THE MULTIVARIATE LINEAR HYPOTHESIS * S. DAS GUPTA, T. W. ANDERSON, G. S. MUDHOLKAR
- AMS 64 206 MONOTONICITY OF THE POWER FUNCTIONS OF SOME TESTS OF INDEPENDENCE BETWEEN TWO SETS OF VARIATES * T. W. ANDERSON, S. DASGUPTA
- AMS 64 209 EFFECT OF TRUNCATION ON A TEST FOR THE SCALE PARAMETER OF THE EXPONENTIAL DISTRIBUTION * A. P. BASU
- AMS 64 214 THE TWENTY-SEVEN PER CENT RULE * JOHN ROSS, R. A. WEITZMAN
- AMS 64 222 ON SAMPLINC SCHEMES PROVIDING UNBIASED RATIO ESTIMA-TORS * P. K. PATHAK
- AMS 64 232 A REVIEW OF THE LITERATURE ON A CLASS OF COVERAGE PROBLEMS* WILLAIM C. GUENTHER, PAUL J. TERRAGNO
- AMS 64 261 MULTIVARIATE BETA DISTRIBUTIONS AND INDEPENDENCE
 PROPERTIES OF THE WISHART DISTRIBUTIONS, CORR. 66
 297 * INGRAM OLKIN, HERMAN RUBIN
- AMS 64 270 LINEAR FORMS IN THE ORDER STATISTICS FROM AN EXPONENTIAL DISTRIBUTION * ELLIOT A. TANIS
- AMS 64 277 DISTRIBUTION OF SUM OF IDENTICALLY DISTRIBUTED EX-PONENTIALLY CORRELATED CAMMA-VARIABLES, (ACKNOWLEDGEMENT OF PRIORITY 64 925) * SAMUEL KOTZ, JOHN W. ADAMS
- AMS 64 284 TABLES OF THE LOGARITHMIC SERIES DISTRIBUTION * E. WILLIAMSON, M. H. BRETHERTON
- AMS 64 298 THE MOMENTS OF A VARIATE RELATED TO THE NON-CENTRAL T
 * D. HOGBEN, R. S. PINKHAM, M. B. WILK
- AMS 64 315 AN APPROXIMATION TO THE DISTRIBUTION OF Q. A VARIATE
 RELATED TO THE NON-CENTRAL T * D. HOCBEN, R. S. PINKHAM. M. B. WILK
- AMS 64 319 LIMITING DISTRIBUTION OF THE MAXIMUM OF A DIFFUSION PROCESS' SIMEON M. BERMAN
- AMS 64 330 ON CONTINUOUS SINGULAR INFINITELY DIVISIBLE DISTRIBUTION FUNCTIONS * HOWARD C. TUCKER
- AMS 64 336 AN EVALUATION OF A FUNCTIONAL ON INFINITELY DIVISIBLE STOCHASTIC PROCESSES * KENNETH 8ERK
- AMS 64 341 ON SEQUENTIAL CONTROL PROCESSES * CYRUS DERMAN
- AMS 64 350 MULTIVARIATE COMPETITION PROCESSES * DONALD L. IN-
- AMS 64 362 LOWER 80UNDS FOR MINIMUM COVARIANCE MATRICES IN TIME SERIES REGRESSION PROBLEMS * N . DONALD YLVISAKER
- AMS 64 369 THE ENUMERATION OF ELECTION RETURNS 8Y NUMBER OF LEAD POSITIONS * JOHN RIORDAN
- AMS 64 380 ON THE TRAFFIC LIGHT QUEUE * J. N. DARROCH

- AMS 64 389 CUBIC DESIGNS * D. RACHAVARAO, K. CHANDRASEKHARARAO
- AMS 64 398 AN UPPER BOUND FOR THE NUMBER OF DISJOINT BLOCKS IN

 CERTAIN PARTIALLY BALANCED INCOMPLETE BLOCK
 DESIGNS * S. M. SHAH
- AMS 64 408 ON A BOUND USEFUL IN THE THEORY OF FACTORIAL DESICNS
 AND ERROR CORRECTINC CODES * R. C. BOSE, J. N.
 SRIVASTAVA
- AMS 64 415 ON THE AXIOMS OF INFORMATION THEORY * P. M. LEE
- AMS 64 419 A LOCAL LIMIT THEOREM * L. A. SHEPP
- AMS 64 424 A LIMIT LAW CONCERNINC MOVINC AVERAGES* L. A. SHEPP
- AMS 64 429 EXCHANGEABLE PROCESSES WHICH ARE FUNCTIONS OF STA-TIONARY MARKOV CHAINS * S. W. DHARMADHIKARI
- AMS 64 431 GENERATING FUNCTIONS FOR MARKOV RENEWAL PROCESSES * MARCEL F. NEUTS
- AMS 64 435 A PROPERTY OF THE METHOD OF STEEPEST ASCENT * CHARLES HENRY JOHNSON, JOHN LEROY FOLKS
- AMS 64 43B SAMPLE SIZE REQUIRED FOR ESTIMATING THE VARIANCE
 WITHIN D UNITS OF THE TRUE VALUE* FRANKLIN A. CRAYBILL. TERRENCE L. CONNELL
- AMS 64 441 A NOTE ON THE MAXIMIZATION OF A NON-CENTRAL CHI-SQUARE PROBABILITY * DENNIS C. GILLILAND
- AMS 64 443 THE SPECTRAL THEOREM FOR FINITE MATRICES AND COCHRAN'S THEOREM * M. F. SMILEY
- AMS 64 445 TWO THIRD ORDER ROTATABLE DESIGNS IN FOUR DIMENSIONS
 * AGNES M. HERZBERG

 AMS 64 475 DISTRIBUTIONS OF MATRIX VARIATES AND LATENT ROOTS
- AMS 64 475 DISTRIBUTIONS OF MAIRIA VARIATES AND LATENT ROOTS

 DERIVED FROM NORMAL SAMPLES * ALAN T. JAMES

 AMS 64 502 LIMIT THEOREMS FOR THE MAXIMUM TERM IN STATIONARY
- SEQUENCES * SIMEON M. BERMAN
 AMS 64 517 RADON-NIKODYM DERIVATIVES OF STATIONARY GAUSSIAN
- MEASURES * JACK CAPON
- AMS 64 532 ON THE COEFFICIENT OF COHERENCE FOR WEAKLY STATIONARY
 STOCHASTIC PROCESSES* L. H. KOOPMANS

 AMS 64 550 SOME STRUCTURE THEOREMS FOR STATIONARY PROBABILITY
- AMS 64 550 SOME STRUCTURE THEOREMS FOR STATIONARY PROBABILITY
 MEASURES ON FINITE STATE SEQUENCES * CHARLES HOBBY.
 N. DONALD YLVISAKER
- AMS 64 557 LIMIT DISTRIBUTIONS OF A BRANCHING STOCHASTIC PROCESS
 * HOWARD H. STRATTON JR, HOWARD C. TUCKER
- AMS 64 566 SOME THEOREMS CONCERNING THE STRONC LAW OF LARGE NUM-BER FOR NON-HOMOGENEOUS MARKOV CHAINS* M. ROSEN-BLATT-ROTH
- AMS 64 577 COMPARISON OF REPLACEMENT POLICIES, AND RENEWAL THEORY IMPLICATIONS * RICHARD E. BARLOW, FRANK PROSCHAN
- AMS 64 590 A CONTINUOUS KIEFER-WOLFOWITZ PROCEDURE FOR RANDOM PROCESSES, CORR. 66 745 * DAVID J. SAKRISON
- AMS 64 600 ON PRE-EMPTIVE RESUME PRIORITY QUEUES * PETER D. WELCH AMS 64 613 CRAPHICAL METHODS FOR INTERNAL COMPARISONS IN MUL-
- AMS 64 613 CRAPHICAL METHODS FOR INTERNAL COMPARISONS IN MOL-TIRESPONSE EXPERIMENTS * M. B. WILK, R. CNANADESIKAN AMS 64 632 INTERACTIONS IN MULTIDIMENSIONAL CONTINCENCY TABLES
- AMS 64 632 INTERACTIONS IN MOLTIDIMENSIONAL CONTINCENCY TABLES

 *LEO A. GOODMAN

 AMS 64 647 MAXIMUM LIKELIHOOD ESTIMATION WITH INCOMPLETE MUL-
- TIVARIATE DATA * IRENE MONAHAN TRAWINSKI, R. E.
 BARGMANN
 AMS 64 658 APPLICATIONS OF THE CALCULUS FOR FACTORIAL ARRANGE-
- AMS 64 658 AFFILTATIONS OF THE CALCULOS FOR FACTORIAL ARRANGE—
 MENTS II. TWO WAY ELIMINATION OF HETEROGENEITY * M.
 ZELEN, W. FEDERER
- AMS 64 673 SINGULAR WEIGHING DESIGNS * DAMARAJURAGHAVARAO
- AMS 64 681 EXTENDED CROUP DIVISIBLE PARTIALLY BALANCED IN-COMPLETE BLOCK DESICNS * KLAUS HINKELMANN
- AMS 64 696 GENERALIZED LEAST SQUARES ESTIMATORS FOR RANDOMIZED
 FRACTIONAL REPLICATION DESIGNS * S. ZACKS
 AMS 64 705 ORTHOGONALITY IN ANALYSIS OF VARIANCE * G. A. F. SEBER
- AMS 64 711 ESTIMATES OF EFFECTS FOR FRACTIONAL REPLICATES * K. S.

 8ANERJEE, W. T. FEDERER
- AMS 64 716 SIMULTANEOUS CONFIDENCE INTERVALS FOR CONTRASTS

 AMONG MULTINOMIAL POPULATIONS * LEO A. GOODMAN
- AMS 64 726 ASYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME
 LINEAR MODELS WITH ONE OBSERVATION PER CELL * E. L.
 LEHMANN
- AMS 64 735 CHARACTERIZATION OF MULTISAMPLE DISTRIBUTION-FREE STATISTICS * C. 8. 8ELL

- AMS 64 739 RANKINGS FROM PAIRED COMPARISONS * W. A. THOMPSON JR, RUSSEL REMAGE JR
- AMS 64 748 ASYMPTOTIC DISTRIBUTION OF DISTANCES BETWEEN ORDER
 STATISTICS FROM BIVARIATE POPULATIONS * 0. P.
 SRIVASTAVA, W. L. HARKNESS, J. B. BARTOO
- AMS 64 755 A PROPERTY OF SOME SYMMETRIC TWO-STAGE SEQUENTIAL PROCEDURES* J. W. THOMPSON
- AMS 64 762 ON TWO-SIDED TOLERANCE INTERVALS FOR A NORMAL DIS-TRIBUTION * BOB E. ELLISON
- AMS 64 773 THE LINEAR HYPOTHESIS AND LARGE SAMPLE THEORY * G. A. F. SEBER
- AMS 64 780 CONFIDENCE RECION FOR A LINEAR RELATION * C. VILLEGAS
 AMS 64 789 ON THE ADMISSIBILITY OF SOME TESTS OF MANOVA * M. N.
 GHOSH
- AMS 64 795 SUFFICIENCY IN SAMPLING THEORY* P. K. PATHAK
- AMS 64 809 TWO ESTIMATES OF THE BINOMIAL DISTRIBUTION, (CORR. 64 182) * J. C. MOTT-SMITH
- AMS 64 817 A NEW PROOF OF THE PEARSON-FISHER THEOREM.
 (ACKNOWLEDGEMENT OF PRIORITY, 65 344) * M. W. BIRCH
- AMS 64 825 A BAYESIAN APPROACH TO SOME BEST POPULATION PROBLEMS
 + IRWIN GUTTMAN, GEORGE C. TIAO
- AMS 64 B36 INVARIANT PRIOR DISTRIBUTIONS* J. HARTIGAN
- AMS 64 846 ASYMPTOTIC BEHAVIOR OF BAYES' ESTIMATES * J. FABIUS
- AMS 64 857 PROBABILITIES IN THE VOTING PARADOX * ZALMAN USISKIN
- AMS 64 863 MEMORYLESS STRATEGIES IN FINITE-STAGE DYNAMIC PRO-GRAMMING * DAVID BLACKWELL
- AMS 64 866 A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A STOCHASTIG PROCESS * RICHARD F. GEBHARD
- AMS 64 869 NON-SINGULAR RECURRENT MARKOV PROCESSES HAVE STA-TIONARY MEASURES* RICHARD ISAAC
- AMS 64 872 ON ADDING INDEPENDENT STOCHASTIC PROCESSES * TOM S. PITCHER
- AMS 64 874 THE DEPENDENCE OF DELAYS IN TANDEM QUEUES * P. J. BURKE
- AMS 64 876 A RELATIONSHIP BETWEEN ARBITRARY POSITIVE MATRICES
 AND DOUBLY STOCHASTIC MATRICES * RICHARD SINKHORN
- AMS 64 8BO A NOTE ON IDEMPOTENT MATRICES * K. S. BANERJEE
- AMS 64 883 ON THE LINE GRAPH OF THE COMPLETE BIPARTITE GRAPH * A. J. HOFFMAN
- AMS 64 886 BAYESIAN BIO-ASSAY * CHARLES H. KRAFT, CONSTANCE VAN EEDEN
- AMS 64 891 SIGNIFICANCE PROBABILITY BOUNDS FOR RANK ORDERINGS * PAUL SWITZER
- AMS 64 895 PSEUDO-INVERSES IN THE ANALYSIS OF VARIANCE * PETER W M. JOHN
- AMS 64 897 BALANCED DESIGNS WITH UNEQUAL NUMBERS OF REPLICATES * PETER W. M. JOHN
- AMS 64 900 ON DOUBLE SAMPLING FOR PROBABILITY PROPORTIONATE TO SOME MEASURE OF SIZE ESTIMATION * DES RAJ
- AMS 64 923 CORRECTION. 'SOME EXTENSIONS OF THE WISHART DISTRIBU-TION', 44 345 * T. W. ANDERSON, M. A. GIRSHICK
- AMS 64 923 GORRECTION. 'THE NON-CENTRAL WISHART DISTRIBUTION
 AND CERTAIN PROBLEMS OF MULTIVARIATE STATISTICS',
 46 409 T. W. ANDERSON
- AMS 64 949 ESTIMATORS OF A LOCATION PARAMETER IN THE ABSOLUTELY
 CONTINUOUS CASE * R. H. FARRELL
- AMS 64 999 ESTIMATING THE GURRENT MEAN OF A NORMAL DISTRIBUTION
 WHICH IS SUBJECTED TO CHANGES IN TIME * H. CHERNOFF,
 S. ZACKS
- AMS 64 1019 ADMISSIBILITY OF QUANTILE ESTIMATES OF A SINGLE LOCA-TION PARAMETER * MARTIN FOX, HERMAN RUBIN
- AMS 64 1031 UNIFORM APPROXIMATION OF MINIMAX POINT ESTIMATES * M. N. GHOSH
- AMS 64 104B SEQUENTIAL ESTIMATION AND CLOSED SEQUENTIAL DECISION PROCEDURES * EDWARD PAULSON
- AMS 64 1059 MONOTONICITY PROPERTY OF THE POWER FUNCTIONS OF SOME
 TESTS OF THE EQUALITY OF TWO COVARIANCE MATRICES,
 CORR. 65 1318 * T. W. ANDERSON, S. DASGUPTA
- AMS 64 1064 USE OF INTER-BLOCK INFORMATION TO OBTAIN UNIFORMLY
 BETTER ESTIMATORS * K. R. SHAH
- AMS 64 1079 ON SOME ALTERNATIVE ESTIMATES FOR SHIFT IN THE P-VARIATE ONE SAMPLE PROBLEM * PETER J. BICKEL
- AMS 64 1091 SMALL-SAMPLE DISTRIBUTIONS OF THE TWO-SAMPLE CRAMER-VON MISES' W-SQUARED AND WATSON'S U-SQUARED * E. J. BURR
- AMS 64 1099 ON TWO-STAGE NON-PARAMETRIG ESTIMATION * E. H. YEN
- AMS 64 1115 COMPARISON OF THE POWER FUNCTIONS FOR THE TEST OF IN-DEPENDENCE IN 2X2 CONTINGENCY TABLES * W. L. HARK-NESS, L. KATZ
- AMS 64 1128 ON BAYES PROCEDURES FOR A PROBLEM WITH CHOICE OF OB-SERVATIONS * T. W. ANDERSON
- AMS 64 1136 SOME STOCHASTIC APPROXIMATION PROCEDURES FOR USE IN PROCESS CONTROL * JOHN P. GOMER JR
- AMS 64 1147 QUEUES WITH BATCH DEPARTURES II * F. G. FOSTER, A. F. A. D. PERERA
- AMS 64 1157 ON A MEASURE OF ASSOCIATION * S. D. SILVEY
- AMS 64 1167 PROPERTIES OF POLYKAYS OF DEVIATES * P. S. DWYER
- AMS 64 1174 A COMBINATORIAL METHOD FOR PRODUCTS OF TWO POLYKAYS
 WITH SOME GENERAL FORMULAE * P. S. DWYER, D. S. TRACY

- AMS 64 11B6 ON ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF A MULTIVARIATE MATRIX. DISTRIBUTIONS * TITO A. MIJARES
- AMS 64 1199 A CHARACTERIZATION OF THE EXPONENTIAL DISTRIBUTION * THOMAS S. FERGUSON
- AMS 64 1208 POLYNOMIAL EXPANSIONS OF BIVARIATE DISTRIBUTIONS * G. K. EAGLESON
- AMS 64 1216 ON THE TOPOLOGICAL STRUCTURE OF SOME ORDERED FAMILIES OF DISTRIBUTIONS * J. PFANZAGL
- AMS 64 1229 ON CONTINUOUS SUFFICIENT STATISTICS * J. L. DENNY
- AMS 64 1234 BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE, I
 * RICHARD E. BARLOW, ALBERT W. MARSHALL
- AMS 64 125B BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE, II*RICHARDE.BARLOW, ALBERT W. MARSHALL
- AMS 64 1275 SOME THEOREMS ON FUNCTIONALS OF MARKOV CHAINS * SIDNEY C. PORT
- AMS 64 1291 THE TAIL SIGMA-FIELD OF A MARKOV CHAIN AND A THEOREM OF OREY* DAVID BLACKWELL. DAVID FREEDMAN
- AMS 64 1296 ON THE ASYMPTOTIC DISTRIBUTION OF THE AUTOCORRELA-TIONS OF A SAMPLE FROM A LINEAR STOCHASTIC PROCESS * T. W. ANDERSON, A. M. WALKER
- AMS 64 1304 ON THE PROBABILITY OF LARGE DEVIATIONS OF FAMILIES OF SAMPLE MEANS * J. SETHURAMAN
- AMS 64 1317 ON THE DISTRIBUTION OF THE NUMBER OF SUCCESSES IN IN-DEPENDENT TRIALS J. N. DARROCH
- AMS 64 1322 ASYMPTOTIC EXTREMES FOR M-DEPENDENT RANDOM VARIABLES
 * G. F. NEWELL
- AMS 64 1326 PRESENT VALUE OF A RENEWAL PROCESS * GIORGIO DALL'AGLIO
- AMS 64 1332 LIMIT THEOREMS FOR STOPPED RANDOM WALKS * R. H. FAR-RELL
- AMS 64 1344 THE LAST RETURN TO EQUILIBRIUM IN A COIN TOSSING GAME * D. BLACKWELL, P. DEUEL, D. FREEDMAN
- AMS 64 1345 A REMARK ON THE COIN TOSSING GAME * DAVID BLACKWELL, DAVID FREEDMAN
- AMS 64 134B A THEOREM ON STOPPING TIMES * R. M. BLUMENTHAL, R. K. GETOOR
- AMS 64 1351 ESCAPE PROBABILITY FOR A HALF LINE * SIDNEY C. PORT
- AMS 64 1356 AN APPLICATION OF A BALLOT THEOREM IN ORDER STATISTICS
 * LAJOS TAKACS
- AMS 64 1359 FLUCTUATION THEOREM AND A DISTRIBUTION-FREE TEST * CHARLES H. KRAFT, CONSTANCE VAN EEDEN
- AMS 64 1361 TABLES OF DISTRIBUTION-FREE TOLERANCE LIMITS * L. DANZIGER, S. A. DAVIS
- DANZIGER, S. A. DAVIS

 AMS 64 1366 A NOTE ON THE TRUNCATED EXPONENTIAL DISTRIBUTION * LEE

 J. BAIN. DAVID L. WEEKS
- J. BAIN, DAVID L. WEEKS

 AMS 64 1368 AN APPLICATION OF A GENERALIZED GAMMA DISTRIBUTION *

 GERALD S. ROGERS
- AMS 64 13BB CORRECTION. 'THE STRUGTURE OF BIVARIATE DISTRIBU-TIONS', 58 719 * H. O. LANCASTER
- AMS 64 1419 SUFFICIENCY AND APPROXIMATE SUFFICIENCY * L. LECAM
- AMS 64 1456 SUFFICIENT STATISTICS IN THE CASE OF INDEPENDENT RAN-DOM VARIABLES * L. BROWN AMS 64 1475 MINIMAX CHARACTER OF THE R-SQUARED-TEST IN THE SIM-
- AMS 64 1475 MINIMAX CHARACTER OF THE R-SQUARED-TEST IN THE SIM PLEST CASE * N. GIRI, J. KIEFER
- AMS 64 1491 ASYMPTOTIC THEORY OF REJECTIVE SAMPLING WITH VARYING
 PROBABILITIES FROM A FINITE POPULATION * JAROSLAV
 HAJEK
- AMS 64 1524 ON THE RISK OF SOME STRATEGIES FOR OUTLYING OBSERVA-TIONS* FRIEDRICH GEBHARDT
- AMS 64 1537 ON A MEASURE OF TEST EFFICIENCY PROPOSED BY R. R. 8AHADUR*LEONJ.GLESER
- AMS 64 1545 ON FISHER'S BOUND FOR ASYMPTOTIC VARIANCES * R. R. BAHADUR
- AMS 64 1553 OPTIMAL SPACING AND WEIGHTING IN POLYNOMIAL PREDIC-TION*P.G.HOEL, A.LEVINE
- AMS 64 1561 TOLERANCE LIMITS FOR THE CLASS OF DISTRIBUTIONS WITH INCREASING HAZARD RATE * D. L. HANSON, L. H. KOOPMANS
- AMS 64 1571 AN ASYMPTOTICALLY OPTIMAL FIXED SAMPLE SIZE PROCEDURE
 FOR COMPARING SEVERAL EXPERIMENTAL GATEGORIES WITH
 A CONTROL * CHARLES DEWITT ROBERTS
- AMS 64 1576 SMALL SAMPLE POWER OF THE BIVARIATE SIGN TEST OF BLU-MEN AND HODGES * JEROME KLOTZ
- AMS 64 1583 VARIATIONS OF THE NON-CENTRAL T AND BETA DISTRIBU-TIONS* JOHN H. PARK JR
- AMS 64 1594 A TRUSTWORTHY JACKKNIFE * RUPERT G. MILLER JR
- AMS 64 1606 CONVERGENCE OF THE LOSSES OF CERTAIN DECISION RULES FOR THE SEQUENTIAL COMPOUND DECISION PROBLEM * ESTER SAMIEL
- AMS 64 1622 THE BAYESIAN ANALYSIS OF CONTINGENCY TABLES* D. V. LINDLEY
- AMS 64 1644 DECISION PROGEDURES FOR FINITE DECISION PROBLEMS
 UNDER COMPLETE IGNORANCE * F. V. ATKINSON, J. D. CHURCH, B. HARRIS
- AMS 64 1656 BAYES SOLUTION OF SEQUENTIAL DECISION PROBLEM FOR MARKOV DEPENDENT OBSERVATIONS * R. R. BHAT
- AMS 64 1663 ON THE EQUIVALENCE OF POLYKAYS OF THE SECOND DEGREE AND SIGMA'S, CORR. 65 1069 * EUGENE DAYHOFF

- AMS 64 1673 ON BIVARIATE RANDOM VARIABLES WHERE THE QUOTIENT OF THEIR COORDINATES FOLLOWS SOME KNOWN DISTRIBUTION * TONACY KOTLARSKT
- AMS 64 1685 ORTHANT PROBABILITIES FOR THE QUADRIVARIATE NORMAL DISTRIBUTION * I. C. ABRAHAMSON
- AMS 64 1704 ON THE MOMENTS OF ELEMENTARY SYMMETRIC FUNCTIONS OF THE ROOTS OF TWO MATRICES * K. C. SREEDHARAN PILLAI
- AMS 64 1713 ON RANDOM SAMPLING FROM A STOCHASTIC PROCESS * J. R. BLUM, JUDAHROSENBLATTT
- AMS 64 171B EXTREMAL PROCESSES * MEYER DWASS
- AMS 64 1726 ON EXTREME ORDER STATISTICS * JOHN LAMPERTI
- AMS 64 173B ON ASYMPTOTIC MOMENTS OF EXTREME STATISTICS * JAMES R. MCCORD
- AMS 64 1746 LIMIT THEOREMS FOR MARKOV RENEWAL PROCESSES * RONALD PYKE, RONALD SCHAUFELE
- AMS 64 1765 ON THE MULTIVARIATE ANALYSIS OF WEAKLY STATIONARY STOCHASTIC PROCESSES * L. H. KOOPMANS
- AMS 64 17B1 A UNIQUENESS THEOREM FOR STATIONARY MEASURES OF ER-GODIC MARKOV PROCESSES * RICHARD ISAAC

160 ON SOME ASYMPTOTICALLY NONPARAMETRIC COMPETITORS OF

174 ROBUSTNESS OF THE HODCES-LEHMANN ESTIMATES FOR SHIFT

19B ON THE ESTIMATION OF CONTRASTS IN LINEAR MODELS *

215 POISSON LIMITS OF MULTIVARIATE RUN DISTRIBUTIONS 1

236 SOME ASPECTS OF THE RANDOM SEQUENCE * D. E. BARTON, C.

261 ONE-PARAMETER EXPONENTIAL FAMILIES GENERATED BY

272 INCREASING PROPERTIES OF POLYA FREQUENCY FUNCTIONS *

280 ON THE PROBABILITY OF LARGE DEVIATIONS OF THE MEAN FOR

286 JOINT DISTRIBUTIONS WITH PRESCRIBED MOMENTS * HOWARD

299 INEQUALITIES OF THE RTH ABSOLUTE MOMENT OF A SUM OF RANDOM VARIABLES, 1 LESS THAN OR EQUAL TO R, R LESS

304 ON LIMIT THEOREMS FOR CAUSSIAN PROCESSES * JOHN LAM-

311 DISTRIBUTION OF THE ABSOLUTE MAXIMUM FOR CERTAIN

313 ON THE COMPLEX WISHART DISTRIBUTION * M. S. SRIVASTAVA

316 A THEOREM ON RANK ORDERS FOR TWO CENSORED SAMPLES *

322 SOME RENYI TYPE LIMIT THEOREMS FOR EMPIRICAL DIS-

TRIBUTION FUNCTIONS, CORR. 65 1069 * MIKLOS CSORGO

BROWNIAN MOTIONS * FRANK B. KNICHT

RANDOM VARIABLES IN AN INTERVAL OF LENCTH ONE * J.

THAN OR EQUAL TO 2 * BENGT VON BAHR, CARL-GUSTAV ES-

TRANSFORMATION GROUPS* R. BORGES, J. PFANZAGL

226 DISCOUNTED DYNAMIC PROCRAMMINC * DAVID BLACKWELL

SUBHA BHUCHONGKUL, MADAN L. PURI

CAROLE FUCHS H T DAVID

RUMSEY JR, EDWARD C. POSNER

HOTELLINC'S T-SQUARE, CORR. 65 15B3 * PETER J.

DISTRIBUTION-FREE

(ACKNOWLEDCEMENT OF PRIORITY 65 1901) * C. B. BELL,

- AMS 64 1787 ON QUALITATIVE PROBABILITY SICMA-ALCEBRAS * C. VIL-LECAS
- AMS 64 1797 EICENVALUES OF NON-NECATIVE MATRICES * WILLIAM E PRUITT
- AMS 64 1801 DISTRIBUTION OF THE 'CENERALIZED' MULTIPLE CORRELA-TION MATRIX IN THE DUAL CASE * C.G. KHATRI
- AMS 64 1807 DISTRIBUTION OF THE LARGEST OR THE SMALLEST CHARAC-TERISTIC ROOT UNDER NULL HYPOTHESIS CONCERNING COM-PLEX MULTIVARIATE NORMAL POPULATIONS * C. G. KHATRI
- AMS 64 1811 A NOTE ON CONVERGENCE OF SUB-MARTINGALES * DAN CHAZAN
- AMS 64 1B15 SOME RESULTS ON THE ORDER STATISTICS OF THE MUL-TIVARIATE NORMAL AND PARETO TYPE 1 POPULATIONS * K. V. MARDIA
- AMS 64 1819 CONVERGENCE PROPERTIES OF A LEARNING ALGORITHM * LEO BREIMAN, ZIVIAS. WURTELE
- AMS 64 1823 A NOTE ON THE POISSON TENDENCY IN TRAFFIC DISTRIBUTION * TORBJORN THEDEEN
- AMS 64 1825 NOTE ON MOOD'S TEST * C. F. CROUSE

ANNALS OF MATHEMATICAL STATISTICS VOLUME 36, 1965

- AMS 65 1 SAMUEL STANLEY WILKS 1906-1964 * T. W. ANDERSON AMS 65 327 ON SAMPLINC OVER TWO OCCASIONS WITH PROBABILITY PRO-24 PUBLICATIONS OF S. S. WILKS * T. W. ANDERSON AMS 65 PORTIONATE TO SIZE * DES RAJ 2B SEQUENTIAL TEST FOR THE MEAN OF A NORMAL DISTRIBUTION AMS 65 AMS 65 331 A NOTE ON THE PARAMETERS OF PARTIALLY BALANCED IN-III. SMALL T * HERMAN CHERNOFF COMPLETE BLOCK ASSOCIATION SCHEMES * DALE M. MESNER 55 SEQUENTIAL TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION AMS 65 AMS 65 337 BOUNDS FOR THE NUMBER OF COMMON TREATMENTS BETWEEN ANY IV. DISCRETE CASE * HERMAN CHERNOFF TWO BLOCKS OF CERTAIN PARTIALLY BALANCED INCOMPLETE AMS 65 69 MAXIMUM LIKELIHOOD ESTIMATION FOR DISTRIBUTIONS WITH BLOCK DESIGNS * S. M. SHAH MONOTONE FAILURE RATE * ALBERT. W. MARSHALL, FRANK AMS 65 369 ASYMPTOTICALLY OPTIMUM TESTS FOR MULTINOMIAL DIS-PROSCHAN TRIBUTIONS * WASSILY HOEFFDING AMS 65 78 ESTIMATES OF LINEAR COMBINATIONS OF THE PARAMETERS IN AMS 65 401 DISCUSSION OF HOEFFDINGS PAPER * JERZY NEYMAN, HERMAN THE MEAN VECTOR OF A MULTIVARIATE DISTRIBUTION * CHERNOFF, D. G. CHAPMAN 409 ADDITIVE FUNCTIONALS AND EXCESSIVE FUNCTIONS * R. K. ARTHUR COHEN AMS 65 AMS 65 8B MAIN-EFFECT ANALYSIS OF THE CENERAL NON-ORTHOCONAL GETOOR LAYOUT WITH ANY NUMBER OF FACTORS * DAN BRADU AMS 65 423 THE EXISTENCE OF PROBABILITY MEASURES WITH GIVEN MAR-9B CLASSICAL STATISTICAL ANALYSIS BASED ON A CERTAIN GINALS* V. STRASSEN AMS 65 440 RIGHT HAAR MEASURE FOR CONVERGENCE IN PROBABILITY TO MULTIVARIATE COMPLEX GAUSSIAN DISTRIBUTION * C. G. AMS 65 KHATRI QUASI POSTERIOR DISTRIBUTIONS * M. STONE 115 A TEST FOR REALITY OF A COVARIANCE MATRIX IN A CERTAIN AMS 65 454 ON THE ASYMPTOTIC BEHAVIOR OF BAYES ESTIMATES IN THE AMS 65 COMPLEX GAUSSIAN DISTRIBUTION * C. G. KHATRI DISCRETE CASE II * DAVID A . FREEDMAN 457 ON THE ASYMPTOTIC THEORY OF FIXED-WIDTH SEQUENTIAL 120 THE DISTRIBUTION OF THE GENERALIZED VARIANCE * O. P. AMS 65 AMS 65 CONFIDENCE INTERVALS FOR THE MEAN * Y. S. CHOW, HER-RACAT 131 SOME DIRECT ESTIMATES OF THE MODE * ULF CRENANDER AMS 65 BERT ROBBINS AMS 65 139 A SYSTEM OF INEQUALITIES FOR THE INCOMPLETE CAMMA 463 ON THE ASYMPTOTIC THEORY OF FIXED-SIZE SEQUENTIAL. AMS 65 FUNCTIONS AND THE NORMAL INTEGRAL * SHANTIS. GUPTA, CONFIDENCE BOUNDS FOR LINEAR REGRESSION PARAMETERS * LEON J. CLESER
- MRUDULLA N. WAKNIS AMS 65 150 BAYESIAN ESTIMATION IN MULTIVARIATE ANALYSIS * AMS 65 468 SOME OPTIMUM CONFIDENCE BOUNDS FOR ROOTS OF DETERMI-SEYMOUR GEISSER NANTAL EQUATIONS * T. W. ANDERSON

STATISTICS.

- AMS 65 4B9 LARGE SAMPLE ESTIMATION OF AN UNKNOWN DISCRETE WAVEFORM WHICH IS RANDOMLY REPEATING IN GAUSSIAN NOISE * MELVIN HINICH
 - AMS 65 509 ON THE MEAN NUMBER OF CURVE CROSSINGS BY NON-STATIONA-RY NORMAL PROCESSES * M. R. LEADBETTER, J. D. CRYER
 - 517 INTECRAL KERNELS AND INVARIANT MEASURES FOR MARKOFF AMS 65 TRANSITION FUNCTIONS * J. FELDMAN
 - AMS 65 A CHARACTERIZATION OF A CLASS OF FUNCTIONS OF FINITE MARKOV CHAINS * S. W. DHARMADHIKARI
 - AMS 65 529 THE BEHAVIOR OF LIKELIHOOD RATIOS OF STOCHASTIC PROCESSES RELATED BY GROUPS OF TRANSFORMATIONS * TOM S. PITCHER
 - AMS 65 535 RECURRENT SETS * R. S. BUCY
 - 546 A LOCAL LIMIT THEOREM FOR NONLATTICE MULTI-DIMEN-AMS 65 SIONAL DISTRIBUTION FUNCTIONS * CHARLES STONE
 - 552 LOCAL CONVERGENCE OF MARTINCALES AND THE LAW OF LARGE AMS 65 NUMBERS * Y. S. CHOW
 - 559 ON THE CONVERCENCE RATE OF THE LAW OF LARGE NUMBERS FOR AMS 65 LINEAR COMBINATIONS OF INDEPENDENT RANDOM VARIA-BLES * D. L. HANSON, L. H. KOOPMANS
 - 565 BOUNDS ON INTEGRALS WITH APPLICATIONS TO RELIABILITY AMS 65 PROBLEMS * RICHARD E. BARLOW
 - 575 THE RELATIONSHIP BETWEEN SUFFICIENCY AND INVARIANCE AMS 65 WITH APPLICATIONS IN SEQUENTIAL ANALYSIS * W. J. HALL, R. A. WIJSMAN, J. K. GHOSH
 - 615 ON THE ASYMPTOTIC BEHAVIOR OF DENSITIES WITH APPLICA-AMS 65 TIONS TO SEQUENTIAL ANALYSIS * ADNAN IFRAM
 - AMS 65 638 NONLINEAR LEAST SQUARES ESTIMATION * H. O. HARTLEY, AARON BOOKER
 - 651 EFFECT ON NON-NORMALITY ON STEIN'S TWO SAMPLE TEST* G AMS 65 P. BHATTACHARJEE
 - 664 ON THE COMPLEX ANALOGUES OF T-SQUARED AND R-SQUARED AMS 65 TESTS * N. GIRI
 - 671 GENERALIZATION OF SVERDRUP'S LEMMA AND ITS APPLICA-AMS 65 TIONS TO MULTIVARIATE DISTRIBUTION THEORY * D. G. KABE
- 677 APPROXIMATIONS TO THE DISTRIBUTION OF QUADRATIC FORMS AMS 65 * M. M. SIDDIQUI

AMS 65

BICKEL.

203 SOME

* ARNLJOT HOYLAND

NEW

K. A. DOKSUM

L. MALLOWS

BRADLEY EFRON

SETHURAMAN

SEEN

PERTI

CARL-ERIK SARNDAL

- AMS 65 683 DECOMPOSITION OF SYMMETRIC MATRICES AND DISTRIBU-TIONS OF QUADRATIC FORMS * NORMAN Y . LUTHER
- AMS 65 691 NOTE ON DECISION PROCEDURES FOR FINITE DECISION PROBLEMS UNDER COMPLETE ICNORANCE * BRADLEY EFRON
- AMS 65 698 NOTE ON ESTIMATING ORDERED PARAMETERS * ESTER SAMUEL AMS 65 703 CHARACTERIZATIONS OF SOME DISTRIBUTIONS BY CONDI-
- TIONAL MOMENTS * E. M. BOLGER, W. L. HARKNESS

 AMS 65 706 LIMITING DISTRIBUTIONS OF RESPONSE PROBABILITIES * J.

 R. MCGREGOR, J. V. ZIDEK
- AMS 65 708 A RECURRENCE FOR PERMUTATIONS WITHOUT RISING OR FALLING SUCCESSIONS * JOHN RIORDAN
- AMS 65 711 A BALANCED INCOMPLETE BLOCK DESIGN* HAIM HANANI
- AMS 65 712 A PROPERTY OF THE MULTIVARIATE T DISTRIBUTION * OLIVE JEAN DUNN
- AMS 65 747 ADMISSIBLE BAYES CHARACTER OF T-SQUARED, R-SQUARED
 AND OTHER FULLY INVARIANT TESTS FOR CLASSICAL MULTIVARIATE NORMAL PROBLEMS * J. KIEFER, R. SCHWARTZ
- AMS 65 771 GAUSSIAN PROCESSES ON SEVERAL PARAMETERS * R. M. DUDLEY
- AMS 65 789 MOMENTS OF RANDOMLY STOPPED SUMS * Y. S. CHOW, HERBERT ROBBINS, HENRY TEICHER
- AMS 65 800 A SHARPER FORM OF THE BOREL-CANTELLI LEMMA AND THE STRONG LAW * LESTER E. DUBINS, DAVID A. FREEDMAN
- AMS 65 80B ON THE CONVERGENCE OF MOMENTS IN THE CENTRAL LIMIT THEOREM * BENGT VON BAHR
- AMS 65 B19 ON THE LIFTING PROPERTY, V * A. IONESCU TULCEA
- AMS 65 B29 INVARIANT CONDITIONAL DISTRIBUTIONS * J. A. BATHER
 AMS 65 B47 ON SOME ROBUST ESTIMATES OF LOCATION * PETER J. BICKEL
- AMS 65 859 BOUNDS ON THE MAXIMUM SAMPLE SIZE OF A BAYES SEQUEN-TIAL PROCEDURE * S. N. RAY
- AMS 65 B79 SEQUENTIAL COMPOUND ESTIMATORS * ESTER SAMUEL
- AMS 65 890 ON INFORMATION IN STATISTICS * D. A. S. FRASER
- AMS 65 897 ORDER STATISTICS AND STATISTICS OF STRUCTURE * HER-BERT DAVID
- AMS 65 907 EXACT MOMENTS AND PERCENTACE POINTS OF THE ORDER STATISTICS AND THE DISTRIBUTION OF THE RANGE FROM THE LOGISTIC DISTRIBUTION * SHANTIS. GUPTA. BHUPENDRA K. SHAH
- AMS 65 921 QUANTILES AND MEDIANS * M. ROSENBLATT-ROTH
- AMS 65 926 SOME BASIC PROPERTIES OF THE INCOMPLETE GAMMA FUNC-TION RATIO, CORR. 65 15B4* S. H. KHAMIS
- AMS 65 93B PROPERTIES OF THE EXTENDED HYPERGEOMETRIC DISTRIBU-TION * W. L. HARKNESS
- AMS 65 946 RENEWAL THEORY IN THE PLANE * PETER J. BICKEL, JOSEPH A. YAHAV
- AMS 65 956 BERNARD FRIEDMAN'S URN * DAVID A. FREEDMAN
- AMS 65 971 SPECTRAL ANALYSIS WITH RANDOMLY MISSED OBSERVATIONS, THE BINOMIAL CASE* PERRY A. SCHEINOK
- AMS 65 978 ASYMPTOTIC INFERENCE IN MARKOV PROCESSES * G. C. ROUS-SAS
- AMS 65 993 EXTREME VALUES IN UNIFORMLY MIXING STATIONARY STOCHASTIC PROCESSES * R. M. LOYNES
- AMS 65 1000 ON THE ASYMPTOTIC POWER OF THE ONE-SAMPLE KOLMOGOROV-SMIRNOV TESTS * DANA QUADE
- AMS 65 1019 SEVERAL K-SAMPLE KOLMOCOROV-SMIROV TESTS * W. J. CONOVER
- AMS 65 1027 ESTIMATION OF PROBABILITY DENSITY* V. K. MURTHY
- AMS 65 1032 ESTIMATION OF JUMPS, RELIABILITY AND HAZARD RATE * V. K. MURTHY
- AMS 65 1041 A LIMITTHEOREM FOR SUMS OF MINIMA OF STOCHASTIC VARI-ABLES * ULF GRENANDER
- AMS 65 1043 THE EXPECTED NUMBER OF ZEROS OF A STATIONARY GAUSSIAN PROCESS * N. DONALD YLVISAKER
- AMS 65 1047 DENSITY ESTIMATION IN A TOPOLOGICAL GROUP * K. J. CRASWELL
- AMS 65 1049 A NONPARAMETRIC ESTIMATE OF A MULTIVARIATE DENSITY FUNCTION * D. O. LOFTSGAARDEN, C. P. QUESENBERRY
- AMS 65 1052 A NOTE ON MIDRANGE * E. J. GUMBEL, P. G. CARLSON, C. K.
 MUSTAFI

 AMS 65 1055 SOME BOUNDS FOR EXPECTED VALUES OF ORDER STATISTICS *
- MIR M. ALI, LAIK. CHAN
- AMS 65 1058 NOTE ON THE WILCOXON-MANN-WHITNEY STATISTIC * S. K. ZAREMBA
- AMS 65 1061 ON THE LIKELIHOOD RATIO TEST OF A NORMAL MULTIVARIATE
 TESTING PROBLEM II * N. GIRI
- AMS 65 1066 FACTORIAL DISTRIBUTIONS * W. H. MARLOW
- AMS 65 1097 MINIMAX DESIGNS IN TWO DIMENSIONAL REGRESSION * PAUL G. HOEL
- AMS 65 1107 DISTINGUISHING A SEQUENCE OF RANDOM VARIABLES FROM A
 TRANSLATE ITSELF * L. A. SHEPP
- AMS 65 1113 SOME SMIRNOV TYPE THEOREMS OF PROBABILITY * MIKLOS CSORGO
- AMS 65 1120 ESTIMATION OF THE BISPECTRUM * M. ROSENBLATT, J. S. VANNESS
- AMS 65 1137 THE ASYMPTOTICALLY UNBIASED PRIOR DISTRIBUTION * J.

- AMS 65 1153 AN ASYMPTOTIC EXPANSION FOR THE DISTRIBUTION OF THE LATENT ROOTS OF THE ESTIMATED COVARIANCE MATRIX * GEORGE A. ANDERSON
- AMS 65 1174 OPTIMUM CLASSIFICATION RULES FOR CLASSIFICATION INTO
 TWO MULTIVARIATE NORMAL POPULATIONS * S. DAS CUPTA
- AMS 65 1185 A HYBRID PROBLEM ON THE EXPONENTIAL FAMILY * ARTHUR COHEN
- AMS 65 1207 OPTIMAL INVARIANT RANK TESTS FOR THE K-SAMPLE PROBLEM
 * T. K. MATTHES, D. R. TRUAX
- AMS 65 1223 A K-SAMPLE MODEL IN ORDER STATISTICS* W. J. CONOVER
- AMS 65 1236 THE TWO-SAMPLE SCALE PROBLEM WHEN LOCATIONS ARE UN-KNOWN* M. RAGHAVACHARI
- AMS 65 1243 ASYMPTOTICALLY MOST POWERFUL RANK TESTS FOR THE TWO-SAMPLE PROBLEM WITH CENSORED DATA * JOSEPH L. GAST-WIRTH
- AMS 65 124B STUDENT'S T IN A TWO-WAY CLASSIFICATION WITH UNEQUAL VARIANCES * KAY KNIGHT MAZUY, W. S. CONNOR
- AMS 65 1256 CONSTRUCTION OF CONFOUNDING PLANS FOR MIXED FACTORIAL DESIGNS * DAVID WHITE, ROBERT A. HULTQUIST
- AMS 65 1272 ON THE NUMBER OF SUCCESSES IN INDEPENDENT TRIALS * STEPHEN M. SAMUELS
- AMS 65 1279 ON THE ITERATIVE METHOD OF DYNAMIC PROGRAMMING ON A FINITE SPACE DISCRETE TIME MARKOV PROCESS * BARRY W. BROWN
- AMS 65 1286 ON STOCHASTIC PROCESSES DERIVED FROM MARKOV CHAINS * ALEXHELLER
- AMS 65 1292 GENERALIZATIONS OF THE MAXIMAL ERGODIC THEOREM * CLEN BAXTER
- AMS 65 1294 A SIMPLE PROBABILISTIC PROOF OF THE DISCRETE CENERAL-IZED RENEWAL THEOREM * SIDNEY C. PORT
- AMS 65 129B ON MOMENT CENERATING FUNCTIONS AND RENEWAL THEORY * GHARLES STONE
- AMS 65 1302 A NOTE ON THE RECIPROCAL OF THE CONDITIONAL EXPECTA-TION OF A POSITIVE RANDOM VARIABLE * TIM ROBERTSON
- AMS 65 1306 ON THE EFFICIENCY OF THE NORMAL SCORES TEST RELATIVE TO THE F-TEST * M. RACHAVACHARI
- AMS 65 130B A NOTE ON WILKS' INTERNAL SCATTER * H. ROBERT VAN DER VAART
- AMS 65 1313 PAIRWISE STATISTICAL INDEPENDENCE * H. O. LANCASTER
- AMS 65 1339 CONDITIONAL EXPECTATION CIVEN A SICMA-LATTICE AND AP-PLICATIONS * H. D. BRUNK
- AMS 65 1351 AN INTRODUCTION TO POLYSPECTRA * DAVID BRILLINGER
- AMS 65 1375 THE ROBBINS-ISBELL TWO-ARMED-BANDIT PROBLEM WITH FINITE MEMORY * CARTER VINCENT SMITH, RONALD PYKE
- AMS 65 1387 A BAYES SEQUENTIAL SAMPLING INSPECTION * HERMAN CHER-NOFF, S. N. RAY
- AMS 65 140B MARKOVIAN DECISION MODELS FOR THE EVALUATION OF A LARCE CLASS OF CONTINUOUS SAMPLING INSPECTION PLANS * LEON S. WHITE
- AMS 65 1421 SOME APPLICATIONS OF MONOTONE OPERATORS IN MARKOV PROCESSES* J. MACQUEEN, R. M. REDHEFFER
- AMS 65 1426 ON THE EXTRAPOLATION OF A SPECIAL CLASS OF STATIONARY
 TIME SERIES * WILLIAM F. TRENCH
- AMS 65 1433 SAMPLING ENTROPY FOR RANDOM HOMOCENEOUS SYSTEMS WITH COMPLETE CONNECTIONS (CORR. 69 NO.6) * MARIUS IOSIFESCU
- AMS 65 1437 LIMIT THEOREMS FOR QUEUES WITH TRAFFIC INTENSITY ONE * DONALD L, ICLEHART
- AMS 65 1450 ON RANDOM SUMS OF RANDOM VECTORS * HENRY TEICHER
- AMS 65 1459 ON THE GENERALIZED MELLIN TRANSFORM OF A COMPLEX RAN-DOM VARIABLE AND ITS APPLICATIONS * ICNACY KOTLARSKI
- AMS 65 1468 MULTIPARAMETER PROBLEMS FROM A BAYESIAN POINT OF VIEW * G. E. P. BOX, CEORCE C. TIAO
- AMS 65 1483 OPTIMUM DESIGNS FOR POLYNOMIAL EXTRAPOLATION * PAUL G. HOEL
- AMS 65 1494 A METHOD OF SEQUENTIAL ESTIMATION APPLICABLE TO THE HYPERGEOMETRIC, BINOMIAL, POISSON, AND EXPONENTIAL DISTRIBUTIONS * WILLIAM KNIGHT
- AMS 65 1504 THE EFFECT OF TRUNCATION ON TESTS OF HYPOTHESES FOR NORMAL POPULATIONS * BRITAIN J. WILLIAMS
- AMS 65 1511 SOME RESULTS ON THE NON-CENTRAL MULTIVARIATE BETA
 DISTRIBUTION AND MOMENTS OF TRACES OF TWO MATRICES *
 C. G. KHATRI. K. C. S. PILLAI
 AMS 65 1521 SOME INEQUALITIES FOR CENTRAL AND NON-CENTRAL DIS-
- AMS 65 1521 SOME INEQUALITIES FOR CENTRAL AND NON-CENTRAL DISTRIBUTIONS * WILLIAM H. LAWTON
- AMS 65 1526 CYCLIC DESIGNS * H. A. DAVID, F. W. WOLOCK
- AMS 65 1535 GENERALIZED RICHT ANCULAR DESIGNS * SURESH K.
 THARTHARE
- AMS 65 1554 ON A PROBLEM IN NON-LINEAR PREDICTION THEORY * JAMES B. ROBERTSON
- AMS 65 1556 CONDITIONAL EXPECTATIONS OF RANDOM VARIABLES WITHOUT EXPECTATIONS * R. E. STRAUCH
- AMS 65 1560 ON THE CONVERGENCE OF ORDINARY INTEGRALS TO STOCHASTIC INTEGRALS * EUGENE WONG, MOSHE ZAKAI

 AMS 65 1565 ASYMPTOTIC PROPERTIES OF AN AGE DEPENDENT BRANCHING
- PROCESS* H. J. WEINER

 AMS 65 1569 AN INTEGRAL EQUATION IN AGE DEPENDENT BRANCHING
 - PROCESSES * H. J. WEINER

- AMS 65 1574 A NOTE ON QUEUEINC SYSTEMS WITH ERLANCIAN SERVICE TIME DISTRIBUTIONS * D. N. SHANBHAG AMS 65 1579 AN OPTIMAL PROPERTY OF PRINCIPAL COMPONENTS * J. N DARROCH AMS 65 1583 CORRECTION. 'A COMPARATIVE STUDY OF SEVERAL ONE-SIDED COODNESS-OF-FIT TESTS' * D. G. CHAPMAN AMS 65 1627 ON A THEOREM OF HOEL AND LEVINE ON EXTRAPOLATION * J KIEFER, J. WOLFOWITZ AMS 65 1656 THE MOMENTS OF THE NUMBER OF CROSSINGS OF A LEVEL BY A STATIONARY NORMAL PROCESS * HARALD CRAMER, M. R. LEADSETTER AMS 65 1664 THE ERGODICITY OF SERIES OF QUEUES WITH GENERAL PRI-ORITIES * SRUCE MCK. JOHNSON AMS 65 1677 MARKOVIAN SEQUENTIAL REPLACEMENT PROCESSES * HOWARD M. TAYLOR III AMS 65 1695 A DYNAMIC STOCHASTIC APPROXIMATION METHOD * VACLAV DUPAC FRANK PROSCHAN
 - AMS 65 1703 PEAKEDNESS OF DISTRIBUTIONS OF CONVEX COMBINATIONS * AMS 65 1707 ADMISSIBILITY AND SAYES ESTIMATION IN SAMPLING FINITE POPULATIONS, I * V. P. GODAMBE, V. M. JOSHI AMS 65 1723 ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE POPULATIONS, II * V. M. JOSHI AMS 65 1730 ADMISSIBILITY AND SAYES ESTIMATION IN SAMPLING FINITE
 - POPULATIONS, III * V . M . JOSHI AMS 65 1743 RATES OF CONVERGENCE IN THE COMPOUND DECISION PROBLEM FOR TWO COMPLETELY SPECIFIED DISTRIBUTIONS * J. F. HANNAN, J. R. VAN RYZIN AMS 65 1753 A ROBUST VERSION OF THE PROBABILITY RATIO TEST * PETER
 - J. HUSER AMS 65 1759 ALTERNATIVE EFFICIENCIES FOR SIGNED RANK TESTS * JEROME KLOTZ AMS 65 1767 SMALL SAMPLE POWER FOR THE ONE SAMPLE WILCOXON TEST
 - FOR NON-NORMAL SHIFT ALTERNATIVES * HARVEY J. ARNOLD AMS 65 1779 PROPERTIES OF THE MEDIAN AND OTHER STATISTICS OF LO-GISTIC VARIATES * MICHAEL E. TARTER, VIRGINIA CLARK

- AMS 65 1787 MULTIVARIATE-NORMAL CLASSIFICATION WITH COVARIANCE KNOWN * BOBE. ELLISON
- AMS 65 1794 A CLASS OF TESTS WITH MONOTONE POWER FUNCTIONS FOR TWO PROBLEMS IN MULTIVARIATE STATISTICAL ANALYSIS COVINDS. MUDHOLKAR
- AMS 65 1B02 SOME TESTS FOR THE INTRACLASS CORRELATION MODEL * M S. SRIVASTAVA
- AMS 65 1B07 ON A CLASS OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS * S. S. SHRIKHANDE
- AMS 65 1815 THE RELATIONSHIP ALGEBRA AND THE ANALYSIS OF VARIANCE OF A PARTIALLY SALANCED INCOMPLETE BLOCK DESIGN * JUNJIRO OGAWA, GORO ISHII
- AMS 65 1829 ON HOTELLING'S WEIGHING DESIGNS UNDER AUTO-CORRELA-TION OF ERRORS * K. S. SANERJEE
- AMS 65 1835 ASYMPTOTIC DISTRIBUTORS FOR THE COUPON COLLECTOR'S PROSLEM * LEONARD E. BAUM. PATRICK SILLINGSLEY
- AMS 65 1840 CONVERGENCE RATES FOR THE LAW OF LARGE NUMBERS FOR THE LINEAR COMBINATIONS OF EXCHANGEABLE AND MIXING STOCHASTIC PROCESSES* D. L. HANSON, L. H. KOOPMANS
- AMS 65 1B53 A UNIFORM ERGODIC THEOREM * GEORCE SURKE
- AMS 65 1859 A RANDOM SET PROCESS IN THE PLANE WITH A MARKOVIAN PRO-PERTY * PAUL SWITZER
- AMS 65 1864 ON AN OPERATOR LIMIT THEOREM OF ROTA * NORTON STARR
- AMS 65 1867 A NOTE ON THE SEQUENTIAL T-TEST * JEROME SACKS AMS 65 1870 HYPERCEOMETRIC FUNCTIONS IN SEQUENTIAL ANALYSIS *
- ADNAN F. IFRAM AMS 65 1873 A LEMMA FOR MULTIPLE INFERENCE * WILLIAM KNIGHT
- AMS 65 1875 ON THE DISTRIBUTION OF THE LATENT VECTORS FOR PRIN-CIPAL COMPONENTS ANALYSIS * T. SUCIYAMA
- AMS 65 1877 A NOTE ON INCOMPLETE BLOCK DESIGNS WITH THE NUMBER OF BLOCKS EQUAL TO THE NUMBER OF TREATMENTS * M. BHASKAR RAO
- AMS 65 1878 THE LIMIT OF THE NTH POWER OF A DENSITY* ROSERT J. SUE-HLER
- AMS 65 1883 SPECIAL PAPER, PRINCIPLES OF PROFESSIONAL STATISTI-CAL PRACTICE * W. EDWARDS DEMING

ANNALS OF MATHEMATICAL STATISTICS VOLUME 37. 1966

- 1 ON A THEOREM OF SAHADUR AND GOODMAN * E . L . LEHMANN AMS 66 AMS 66 7 OPTIMAL STOPPING AND EXPERIMENTAL DESIGN * GUS W HAGCSTROM 30 ON OPTIMAL STOPPINC * JOSEPH A. YAHAV AMS 66 36 THE PERFORMANCE OF A SEQUENTIAL PROCEDURE FOR THE AMS 66 FIXED-WIDTH INTERVAL ESTIMATION OF THE MEAN * NORMAN STARR AMS 66 51 LIMITING SEHAVIOR OF POSTERIOR DISTRIBUTIONS WHEN THE MODEL IS INCORRECT, CORR. 66745 * ROBERT H. BERK 59 A STATISTICAL BASIS FOR APPROXIMATION AND OPTIMIZA-AMS 66 TION * R. N. RICH 66 DESIGNS FOR RECRESSION PROBLEMS WITH CORRELATED ER-AMS 66
- RORS * JEROME SACKS, DONALD YLVISAKER 90 SEQUENTIAL HYPOTHESIS TESTS FOR THE R-DEPENDENT MAR-AMS 66
- GINALLY STATIONARY PROCESSES * M. TAINITER 98 FINE STRUCTURE OF THE ORDERING OF PROBABILITIES OF AMS 66 RANK ORDERS IN THE TWO SAMPLE CASE * I. R. SAVAGE,
- MILTON SOSEL, GEORGE WOODWORTH 113 ON THE PROBLEM OF TESTING LOCATION IN MULTIVARIATE AMS 66 POPULATIONS FOR RESTRICTED ALTERNATIVES * PETER E.
- NUESCH AMS 66 120 'OPTIMAL' ONE-SAMPLE DISTRIBUTION-FREE TESTS AND THEIR TWO-SAMPLE EXTENSIONS * C. 8. 8ELL, K. A. DOK-
- SUM 133 GOODNESS CRITERIA FOR TWO-SAMPLE DISTRIBUTION-FREE AMS 66 TESTS * C. 8. SELL, J. M. MOSER, RORY THOMPSON
- 143 ASYMPTOTIC OPTIMUM QUANTILES FOR THE ESTIMATION OF THE PARAMETERS OF THE NEGATIVE EXPONENTIAL DIS-TRISUTION * A. K. MD. EHSANES SALEH, MIR M. ALI
- 152 SCALE PARAMETER ESTIMATION FROM THE ORDER STATISTICS AMS 66 OF UNEQUAL CAMMA COMPONENTS * M. B. WILK, R. GNANADESIKAN, ELIZABETH LAUH
- AMS 66 177 ON THE ESTIMATION OF MIXING DISTRIBUTIONS * D. C. BOES 189 ON A CLASS OF ADMISSIBLE PARTITIONS* T. CACOULLOS AMS 66
- AMS 66 196 STATISTICAL REPRODUCTION OF ORDERINGS AND TRANSLA-TION SUBFAMILIES * H. S. KONIJN
- 203 STATISTICAL ISOMORPHISM * NORMAN MORSE, RICHARD AMS 66 SACKSTEDER
- 215 THE DISTRIBUTION OF HOTELLING'S GENERALIZED MEASURE AMS 66 OF MULTIVARIATE DISPERSION * A. G. CONSTANTINE
- 226 GENERALIZED POLYKAYS, AN EXTENTION OF SIMPLE POLYKAYS AMS 66 AND BIPOLYKAYS, CORR. 66 746* EUGENE DAYHOFF
- 242 CYLINDRICALLY ROTATABLE DESIGNS * AGNES M. HERZBERG AMS 66 24B ON A CHEBYSHEV-TYPE INEQUALITY FOR SUMS OF INDEPEN-AMS 66
- DENT RANDOM VARIABLES * S. M. SAMUELS 260 ON CROSSINGS OF LEVELS AND CURVES BY A WIDE CLASS OF AMS 66 STOCHASTIC PROCESSES * M R. LEADBETTER

- AMS 66 268 EQUIVALENCE AND SINGULARITY FOR FRIEDMAN URNS * DAVID A. FREEDMAN
- 271 ON ASSOLUTELY CONTINUOUS COMPONENTS AND RENEWAL AMS 66 THEORY * CHARLES STONE
- 276 A NOTE ON MEMORYLESS RULES FOR CONTROLLING SEQUENTIAL AMS 66 CONTROL PROCESSES * CYRUS DERMAN, RALPH E. STRAUCH
- 279 A NOTE ON MINIMUM DISCRIMINATION INFORMATION * S. KULL8ACK, M. A. KHAIRAT
- AMS 66 281 ON MIXTURES OF DISTRIBUTIONS* W. MOLENAAR, W. R. VAN AMS 66
- 284 RECURSIVE GENERATION OF THE DISTRIBUTION OF THE MANN-WHITNEY U-STATISTICS UNDER LEHMANN ALTERNATIVES * ROGER A. SHORACK
- 287 A NOTE ON 'A K-SAMPLE MODEL IN ORDER STATISTICS' 8Y W AMS 66 J. CONOVER * H. A. DAVID
- 289 ANOTHER CHARACTERISTIC PROPERTY OF THE CAUCHY DIS-AMS 66 TRISUTION * M. V. MENON
- ON IDEMPOTENT MATRICES * R. M. LOYNES AMS 66
- AMS 66 321 RADON-NIKODYM DERIVATIVES OF GAUSSIAN MEASURES * L A. SHEPP
- AMS 66 NEW METHODS FOR REASONING TOWARDS POSTERIOR DISTRIBU-TIONS BASED ON SAMPLE DATA * A. P. DEMPSTER
- AMS 66 375 A NOTE ON MUTUAL SINGULARITY OF PRIORS * DAVID A FREEDMAN
- ON THE MOMENTS OF SOME ONE-SIDED STOPPING RULES * Y . S AMS 66 CHOW
- 388 ON SECOND MOMENTS OF STOPPING RULES * Y. S. CHOW, H AMS 66 TEICHER
- AMS 66 LIMITING DISTRIBUTIONS FOR SOME RANDOM WALKS ARISING IN LEARNING MODELS * M. FRANK NORMAN
- 406 A SYSTEM OF DENUMERABLY MANY TRANSIENT MARKOV CHAINS AMS 66 * S. C. PORT
- AMS 66 412 THE COMPOUND DECISION PROBLEM WITH M-BY-N FINITE LOSS MATRIX * J. R. VANRYZIN
- AMS 66 425 ON THE SAMPLE SIZE AND SIMPLIFICATION OF A CLASS OF SEQUENTIAL PROBABILITY RATIO TESTS * ADNAN F. IFRAM AMS 66 435 ON A MINIMAL ESSENTIALLY COMPLETE CLASS OF EXPERI-
- MENTS * SYLVAIN EHRENFELD 441 ON THE EFFECT OF STRAGGLERS ON THE RISK OF SOME MEAN AMS 66 ESTIMATORS IN SMALL SAMPLES * FRIEDRICH GEBHARDT
- 451 ESTIMATION OF NON-UNIQUE QUANTILES * DORIAN FELDMAN, AMS 66 HOWARD C. TUCKER
- 45B ALL ADMISSIBLE LINEAR ESTIMATES OF THE MEAN VECTOR * AMS 66 ARTHUR COHEN
- 464 A NOTE ON THE SPHERICITY TEST * LEON J. GLESER AMS 66
- AMS 66 46B ON CERTAIN DISTRIBUTION PROBLEMS BASED ON POSITIVE DEFINITE QUADRATIC FUNCTIONS IN NORMAL VECTORS * C. . KHATRI

- 4BO LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES * SHELDON JAMES PRESS
- 488 SOME EQUIVALENCE CLASSES IN PAIRED COMPARISONS * JOSEPH B . KADANE
- 495 PROBABILISTIC COMPLETION OF A KNOCKOUT TOURNAMENT * J. A. HARTIGAN
- 504 INFINITELY DIFFERENTIABLE POSITIVE DEFINITE FUNC-AMS 66 TIONS * C. C. GANSER
- 509 A FAMILY OF COMBINATORIAL IDENTITIES * LAWRENCE H. HARPER
- 513 A NOTE ON THE MAXIMUM SAMPLE EXCURSIONS OF STOCHASTIC AMS 66 APPROXIMATION PROCESSES * HAROLD J. KUSHNER
- 517 ON THE MEAN DURATION OF A BALL AND CELL GAME, A FIRST PASSAGE PROBLEM * HARRY DYM, EUGENE M. LUKS
- 522 A NOTE ON LIMIT THEOREMS FOR THE ENTROPY OF MARKOV AMS 66 CHAINS * HARRY DYM
- 525 SOME GENERALIZATIONS OF DISTINCT REPRESENTATIVES WITH APPLICATIONS TO STATISTICAL DESIGNS * HIRALAL AGRAWAL
- 567 CONVERGENCE OF QUADRATIC FORMS IN INDEPENDENT RANDOM AMS 66 VARIABLES * DALE E. VARBERG
- A NOTE ON QUANTILES IN LARGE SAMPLES * R. R. BAHADUR AMS 66 AMS 66 581 BOUNDED LENGTH CONFIDENCE INTERVALS FOR THE P-POINT
- OF A DISTRIBUTION FUNCTION, II * R. H. FARRELL
- AMS 66 5B6 BOUNDED LENGTH CONFIDENCE INTERVALS FOR THE P-POINT OF A DISTRIBUTION FUNCTION, III * R. H. FARRELL
- 593 ON SOME NONPARAMETRIC ESTIMATES FOR SHIFT IN THE AMS 66 BEHRENS-FISHER SITUATION * P. V. RAMACHANDRAMURTY
- AMS 66 611 MULTIVARIATE NONPARAMETRIC SEVERAL-SAMPLE TESTS * RYOJI TAMURA
- 619 ASYMPTOTICALLY MINIMAX DISTRIBUTION-FREE PROCEDURES AMS 66 * KJELL DOKSUM
- 629 ADMISSIBILITY OF CONFIDENCE INTERVALS * V. M. JOSHI AMS 66
- 639 BOUNDS ON THE DISTRIBUTION FUNCTIONS OF THE BEHRENS-AMS 66 FISHER STATISTIC * M. RAY MICKEY, MORTON B. BROWN
- 643 FIDUCIAL THEORY AND INVARIANT ESTIMATION * R. B. HORA, AMS 66 R. J. BUEHLER
- 657 POLYCHOTOMY SAMPLING * SAKTIP, GHOSH AMS 66
- 666 SOME NON-ORTHOGONAL PARTITIONS OF 4X4, 5X5, AND 6X6 AMS 66 LATIN SQUARES* G H FREEMAN
- 682 ON A THEOREM OF CRAMER AND LEADBETTER * N. DONALD YL-AMS 66 VISAKER
- 686 ON TWO EQUIVALENCE RELATIONS BETWEEN MEASURES * DAVID AMS 66 A FREEDMAN
- 690 ON THE SEMIMARTINGALE CONVERGENCE THEOREM * S. JOHAN-AMS 66 SEN, J. KARUSH
- 695 A THEOREM ON THE GALTON-WATSON PROCESS * BERNT P. AMS 66 STIGUM
- AMS 66 699 SOME RENEWAL THEOREMS WITH APPLICATION TO A FIRST PASSAGE PROBLEM * C. C. HEYDE
- 711 CONVERGENCE RATES FOR THE LAW OF LARGE NUMBERS FOR AMS 66 LINEAR COMBINATIONS OF MARKOV PROCESSES * L. H. KOOPMANS
- AMS 66 720 A SIMPLE SOLUTION FOR OPTIMAL CHEBYSHEV REGRESSION EXTRAPOLATION * PAULG . HOEL
- 726 REMARK ON THE OPTIMUM CHARACTER OF THE SEQUENTIAL PROBABILITY RATIO TEST * J. WOLFOWITZ
- 728 A NOTE ON UPCROSSINGS OF SEMIMARTINGALES * LESTER E. DUBINS
- 729 A NOTE ON INVARIANT MEASURES * N. C. JAIN AMS 66
- 733 A NOTE ON RECURRENCE RELATIONS BETWEEN EXPECTED AMS 66 VALUES OF FUNCTIONS OF ORDER STATISTICS * P. R. KRISHNAIAH, M. HASEEB RIZVI
- AMS 66 735 AN ASYMPTOTICALLY DISTRIBUTION-FREE MULTIPLE COM-PARISON PROCEDURE, TREATMENT VERSUS CONTROL * MYLES HOLLANDER
- AMS 66 739 COMPARISON OF THE BOUNDS OF THE NUMBER OF COMMON TREATMENTS BETWEEN BLOCKS OF CERTAIN PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS* HIRALAL AGRAWAL
- 741 SEQUENTIAL COUNTERBALANCING IN LATIN SQUARES * TOM R. HOUSTON
- AMS 66 744 INVARIANCE OF MAXIMUM LIKELIHOOD ESTIMATIONS * PETER W. ZEHNA
- AMS 66 783 OPTIMAL EXPERIMENTAL DESIGNS * SAMUEL KARLIN, WILLIAM J. STUDDEN
- AMS 66 816 A STOCHASTIC CHARACTERIZATION OF WEAR-OUT FOR COM-PONENTS AND SYSTEMS * Z. W. BIRNBAUM, J. D. ESARY, A. W. MARSHALL
- AMS 66 826 SOME PROPERTIES OF STATISTICAL RELIABILITY FUNCTIONS * SIV CARLSSON, ULF GRENANDER
- B37 INVARIANT PROBABILITIES FOR CERTAIN MARKOV PROCESSES AMS 66 LESTER E. DUBINS, DAVID A. FREEDMAN 849 DIMENSIONAL PROPERTIES OF A RANDOM DISTRIBUTION FUNC-AMS 66
- TION ON THE SQUARE * J. R. KINNEY, T. S. PITCHER AMS 66 B55 A LOCAL LIMIT THEOREM FOR A CERTAIN CLASS OF RANDOM
- WALKS * WALTER A . ROSENKRANTZ AMS 66 860 LIMIT THEOREMS FOR STOPPED RANDOM WALKS, II * R. H. FARRELL.

- AMS 66 866 A LIMIT THEOREM FOR PASSAGE TIMES IN ERGODIC REGENERA-TIVE PROCESSES * JULIAN KEILSON
- AMS 66 871 NEGATIVE DYNAMIC PROGRAMMING * RALPHE. STRAUCH
- B91 COMPARISONS OF SOME TWO STAGE SAMPLING METHODS * AARON AMS 66 S. GOLDMAN, R. K. ZEIGLER
- A PROBLEM IN MINIMAX VARIANCE POLYNOMIAL EXTRAPOLA AMS 66 TION * A. LEVINE
- 904 CONTRIBUTIONS TO SAMPLE SPACINGS THEORY, I. LIMIT AMS 66 DISTRIBUTIONS OF SUMS OF RATIOS OF SPACINGS * SAUL BLUMENTHAL
- 925 CONTRIBUTIONS TO SAMPLE SPACINGS THEORY, II. TESTS OF AMS 66 THE PARAMETRIC GOODNESS OF FIT AND TWO-SAMPLE PROBLEMS * SAUL BLUMENTHAL
- AMS 66 940 ON THE PITMAN EFFICIENCY OF ONE-SIDED KOLMOGOROV AND SMIRNOV TESTS FOR NORMAL ALTERNATIONS * P. V. RAMACHANDRAMURTY
- 945 EXACT POWER OF MANN-WHITNEY TEST FOR EXPONENTIAL AND AMS 66 RECTANGULAR ALTERNATIVES * GEORGE E. HAYNAM, ZAKKU-LAGOVINDARAJULU
- 954 THE SEQUENTIAL COMPOUND DECISION PROBLEMS WITH M-BY-N AMS 66 FINITE LOSS MATRIX * J. VAN RYZIN
- 976 REPETITIVE PLAY IN FINITE STATISTICAL GAMES WITH UN-AMS 66 KNOWN DISTRIBUTIONS* J. VAN RYZIN
- 995 ON THE DISTRIBUTION OF THE LARGEST LATENT ROOT AND THE CORRESPONDING LATENT VECTOR FOR PRINCIPAL COM-PONENT ANALYSIS* T. SUGIYAMA
- AMS 66 1002 ON THE BIVARIATE MOMENTS OF ORDER STATISTICS FROM A LOGISTIC DISTRIBUTION * B. K. SHAH
- AMS 66 1011 CHARACTERIZATION OF NORMAL AND GENERALIZED TRUNCATED NORMAL DISTRIBUTIONS USING ORDER STATISTICS * ZAK-KULA GOVINDARAJULU
- AMS 66 1016 ON THE BLOCK STRUCTURES OF CERTAIN PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS, CORR. 67 624 * S. M. shah
- AMS 66 1021 SINGULARITY IN HOTELLING'S WEIGHING DESIGNS AND A GENERALIZED INVERSE (CORR. 69719) * K.S. BANERJEE
- AMS 66 1033 ON ESTIMATION AND CONSTRUCTION IN FRACTIONAL REPLICA-TION * K. S. BANERJEE, W. T. FEDERER
- AMS 66 1040 THE GROWTH OF A RECURRENT RANDOM WALK * CHARLES STONE
- AMS 66 1042 A NOTE ON UNDISCOUNTED DYNAMIC PROGRAMMING * ASHOK MAITRA
- AMS 66 1045 A NOTE ON A BIASED ESTIMATOR IN SAMPLING WITH PROBA-BILITY PROPORTIONAL TO SIZE WITH REPLACEMENT * M. T. SUBRAHMANYA
- AMS 66 1048 DUALS OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS AND SOME NONEXISTENCE THEOREMS * DAMARAJU RAGHAVARAO
- AMS 66 10B7 ON THE ADMISSIBILITY OF INVARIANT ESTIMATORS OF ONE OR MORE LOCATION PARAMETERS * LAWRENCE DAVID BROWN
 AMS 66 1137 SOME CONCEPTS OF DEPENDENCE * E. L. LEHMANN
- AMS 66 1154 STOPPING TIME OF A RANK-ORDER SEQUENTIAL PROBABILITY RATIO TEST ON LEHMANN ALTERNATIVES, CORR. 67 1309 * I. RICHARD SAVAGE, J. SETHURAMAN
- AMS 66 1161 MOST STRINGENT SOMEWHERE MOST POWERFUL TESTS AGAINST ALTERNATIVE RESTRICTED BY A NUMBER OF LINEAR IN-EQUALITIES* W. SCHAAFSMA, L. J. SMID
- AMS 66 1173 ON THE ASYMPTOTIC EFFICIENCY OF A SEQUENTIAL PROCEDURE FOR ESTIMATING THE MEAN * NORMAN STARR
- AMS 66 1186 BAYES AND MINIMAX PROCEDURES FOR ESTIMATING THE ARITHMETIC MEAN OF A POPULATION WITH TWO-STAGE SAM-PLING * OM P. AGGARWAL
- AMS 66 1196 TEST PROCEDURES FOR POSSIBLE CHANGES IN PARAMETERS OF STATISTICAL DISTRIBUTIONS OCCURRING AT UNKNOWN TIME POINTS* Z. KANDER, S. ZACKS
- AMS 66 1211 A LIMIT THEOREM FOR MULTIDIMENSIONAL GALTON-WATSON PROCESSES * H. KESTEN, B. P. STIGUM
- AMS 66 1224 SOME LIMIT THEOREMS FOR NON-HOMOGENEOUS MARKOV CHAINS * MILLU ROSENBLATT-ROTH
- NMS 66 1237 SPECTRAL ESTIMATES USING NONLINEAR FUNCTIONS * EUGENE R. RODEMICH
- AMS 66 1257 ASYMPTOTIC NORMALITY OF BISPECTRAL ESTIMATES * JOHN W. VAN NESS
- AMS 66 1273 PERFECT PROBABILITY MEASURES AND REGULAR CONDITIONAL PROBABILITIES * ROBERT H. RODINE
- AMS 66 1279 A REPRESENTATION FOR CONDITIONAL EXPECTATIONS GIVEN SIGMA-LATTICES * TIM ROBERTSON AMS 66 1284 ON FINDING OPTIMAL POLICIES IN DISCRETE DYNAMIC PRO-
- GRAMMING WITH NO DISCOUNTING * ARTHUR F. VEINOTT JR AMS 66 1295 STATISTICAL PROPERTIES OF THE NUMBER OF POSITIVE SUMS
- * MICHAEL WOODROOFE AMS 66 1305 A STATISTICAL TEST INVOLVING A RANDOM NUMBER OF RANDOM VARIABLES * J. L. ALLEN, J. A. BEEKMAN
- AMS 66 1312 ON THE MOMENTS OF THE TRACE OF A MATRIX AND APPROXIMA-TIONS TO ITS NON-CENTRAL DISTRIBUTION * C. G. KHATRI, K. C. S. PILLAI
- AMS 66 1319 ON THE EXACT DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR TESTING LINEAR HYPOTHESES ABOUT REGRESSION COEFFICIENTS * P. C. CONSUL

- AMS 66 1331 ROBUST ESTIMATION IN INCOMPLETE BLOCK DESIGNS * VIDA L. CREENBERC
- AMS 66 1338 ON COMBINABILITY OF INFORMATION FROM UNCORRELATED LINEAR MODELS BY SIMPLE WEIGHTING * FRANK B. MARTIN, CEORCE ZYSKIND
- AMS 66 1348 INDUCTIVE METHODS FOR BALANCED INCOMPLETE BLOCK DESIGNS* R G STANTON, R C MULLIN
- AMS 66 1355 ON ORTHOGONAL ARRAYS * ESTHER SEIDEN, RITA ZEMACH
- AMS 66 1371 WEIGHING DESIGNS WHEN N IS ODD * M. BHASKAR RAO
- AMS 66 13B2 RANDOMIZED FRACTIONAL WEIGHING DESIGNS * S. ZACKS
- AMS 66 1396 A SAMPLE FUNCTION PROPERTY OF MARTINGALES * D. G. AUSTIN
- AMS 66 139B ON THE BLOCK STRUCTURE OF SINGULAR GROUP DIVISIBLE DESIGNS* C. H. KAPADAI
- AMS 66 1401 ON PARTIALLY LINKED BLOCK DESIGNS * C. RAMANKUTTY NAIR AMS 66 1407 ACKNOWLEDCEMENT OF PRIORITY ON 'ON INTERCHANGINC LIMITS AND INTEGRALS', 60 74 * JOHN W. PRATT
- AMS 66 1439 THE EXISTENCE AND UNIQUENESS OF STATIONARY MEASURES FOR MARKOV RENEWAL PROCESSES * RONALD PYKE, RONALD SCHAUFELE
- AMS 66 1463 ADDITIONAL LIMIT THEOREMS FOR INDECOMPOSABLE MUL-TIDIMENSIONAL GALTON-WATSON PROCESSES * H. KESTEN, B. P. STIGUM
- AMS 66 1482 SOME CONVERCENCE THEOREMS FOR INDEPENDENT RANDOM VARIABLES * Y . S . CHOW
- AMS 66 1494 MARTINGALE TRANSFORMS * D. L. BURKHOLDER
- AMS 66 1505 ON THE EXPECTED VALUE OF A STOPPED MARTINGALE * LESTER E. DUBINS, DAVIDA. FREEDMAN
- AMS 66 1510 LIMIT THEOREMS FOR STOPPED RANDOM WALKS, III * R. H. FARRELLL
- AMS 66 1528 ON A FACTOR AUTOMORPHISM OF A NORMAL DYNAMICAL SYSTEM * D. NEWTON, W PARRY
- AMS 66 1534 ON DVORETZKY STOCHASTIC APPROXIMATION THEOREMS * J. H VENTER
- AMS 66 1545 DENUMERABLE STATE MARKOVIAN DECISION PROCESSES, AVERAGE COST CRITERION * CYRUS DERMAN
- AMS 66 1554 STATISTICAL INFERENCE FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS * LEONARD E. BAUM, TED PETRIE
- AMS 66 1564 ESTIMATING AND TESTING TREND IN A STOCHASTIC PROCESS OF POISSON TYPE * M. T. BOSWELL
- AMS 66 1574 INEQUALITIES FOR LINEAR COMBINATIONS OF ORDER STATISTICS FROM RESTRICTED FAMILIES * RICHARD E. BARLOW, FRANK PROSCHAN
- AMS 66 1593 TOLERANCE AND CONFIDENCE LIMITS FOR CLASSES OF DIS-TRIBUTIONS BASED ON FAILURE RATE, CORR. 67 950 4 RICHARD E. BARLOW, FRANK PROSCHAN
- AMS 66 1602 FIXED SIZE CONFIDENCE ELLIPSOIDS FOR LINEAR REGRES-SION PARAMETERS * ARTHUR ALBERT
- AMS 66 1631 ON THE PROPERTY. W, OF THE CLASS OF STATISTICAL DECI-SION FUNCTIONS * HIROKICHI KUDO NMS 66 1643 MINIMAX SOLUTION OF STATISTICAL DECISION PROBLEMS BY
- TTERATION * WAYNE NELSON AMS 66 1658 ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE POPULATIONS, IV * V. M JOSHI
- AMS 66 1671 UNBIASED ESTIMATION OF LOCATION AND SCALE PARAMETERS J. K. GHOSH, RAJINDER SINGH

- AMS 66 1676 ON THE ASYMPTOTIC EFFICIENCY OF LEAST SQUARES ESTIMA-TORS * C. VILLECAS
- AMS 66 1684 QUASI-LINEARLY INVARIANT PREDICTION * J. TIACO DE OLIVEIRA
- AMS 66 1688 SEQUENTIAL ESTIMATION OF THE MEAN OF A LOC-NORMAL DIS-TRIBUTION HAVING A PRESCRIBED PROPORTIONAL CLOSE-NESS * S. ZACKS
- AMS 66 1697 ON RANDOMIZED RANK SCORE PROCEDURE OF BELL AND DOKSUM * KUMAR JOGDEO
- AMS 66 1704 LIKELIHOOD RATIO COMPUTATIONS OF OPERATING COMPUTA-TIONS * WILLIAMD. LAWING, H. T. DAVID

 AMS 66 1717 ESTIMATION OF THE PARAMETERS OF THE EXPONENTIAL DIS-
- TRIBUTION BASED ON OPTIMUM ORDER STATISTICS IN CEN-
- SORED SAMPLES * A. K. MD. EHSANES SALEH
 AMS 66 1736 ON CONFIDENCE BOUNDS ASSOCIATED WITH MULTIVARIATE ANALYSIS OF VARIANCE AND NONINDEPENDENCE BETWEEN TWO SETS OF VARIATES * GOVINDS. MUDHOLKAR
- AMS 66 1747 ON ANALYSIS OF VARIANCE FOR THE K-SAMPLE PROBLEM * DANA QUADE
- AMS 66 1759 ON A DISTRIBUTION-FREE METHOD OF ESTIMATING ASYMP-TOTIC EFFICIENCY OF A CLASS OF NONPARAMETRIC TESTS * PRANAB KUMAR SEN
- AMS 66 1771 A BIVARIATE SICN TEST FOR LOCATION * SHOUTIR KISHORE CHATTERJEE
- AMS 66 1783 A NOTE ON CONSTRUCTION OF PARTIALLY BALANCED IN-COMPLETE BLOCK DESIGNS WITH PARAMETERS V=2B, N1=12, N2=15 AND P2 (1, 1)=4* ESTHER SEIDEN
 AMS 66 1790 CHARACTERIZATION OF GEOMETRIC AND EXPONENTIAL DIS-
- TRIBUTIONS * GORDON B. CRAWFORD
- AMS 66 1796 THE PROBABILITY THAT A RANDOM GAME IS UNFAIR * THOMAS M. COVER
- AMS 66 1B00 CONVERCENCE PROPERTIES OF CONVERGENCE WITH PROBA-BILITY ONE * J. L. DENNY
- AMS 66 1803 ON MOMENTS OF CUMULATIVE SUMS * RAGNAR ERICSON
- AMS 66 1806 MONOTONE CONVERGENCE OF MOMENTS IN AGE DEPENDENT BRANCHING PROCESSES * HOWARD J. WEINER
- AMS 66 1809 ON A THEOREM OF KARLIN REGARDING ADMISSIBILITY OF LINEAR ESTIMATES IN EXPONENTIAL POPULATIONS * RICHARD MORTON, M. RAGHAVACHARI
- AMS 66 1814 ON THE HODGES AND LEHMANN SHIFT ESTIMATOR IN THE TWO SAMPLE PROBLEM * TERRENCE FINE
- AMS 66 1819 ESTIMATING THE MEAN OF A MULTIVARIATE NORMAL POPULA-TION WITH GENERAL QUADRATIC LOSS FUNCTION * P. K. BHATTACHARYA
- AMS 66 1825 A MULTIVARIATE CENTRAL LIMIT THEOREM FOR RANDOM LINEAR VECTOR FORMS * F. EICKER
- AMS 66 1829 A CHARACTERISTIC PROPERTY OF THE MULTIVARIATE NORMAL DISTRIBUTION * V . SESHADRI
- AMS 66 1832 COMPARISON OF COMBINED ESTIMATORS IN BALANCED IN-COMPLETE BLOCKS * V . SESHADRI
- AMS 66 1836 ON NON-RANDOMIZED FRACTIONAL WEIGHING DESIGNS * K. S BANERJEE
- AMS 66 1842 ON IDENTITY RELATIONSHIPS FOR TWO TO THE POWER OF N-R DESIGNS HAVING WORDS OF EQUAL LENGTHS * PETER W. M. JOHN
- AMS 66 1844 NOTE ON A THEOREM OF KINGMAN AND A THEOREM OF CHUNG * D VERE-JONES

ANNALS OF MATHEMATICAL STATISTICS VOLUME 3B, 1967

- AMS 67 1 SOME INVARIANCE PRINCIPLES FOR FUNCTIONALS OF A MAR-KOV CHAIN* DAVID A FREEDMAN
- B GENERAL PROOF OF TERMINATION WITH PROBABILITY ONE OF AMS 67 INVARIANT SEQUENTIAL PROBABILITY RATIO TESTS BASED ON MULTIVARIATE NORMAL OBSERVATIONS * R. A. WIJSMAN
- AMS 67 25 AN OCCUPATION TIME THEOREM FOR THE ANCULAR COMPONENT OF PLANE BROWNIAN MOTION * SIMEON M BERMAN
- AMS 67 32 LIPSCHITZ BEHAVIOR AND INTEGRABILITY OF CHARAC-TERISTIC FUNCTIONS* R. P. BOAS AMS 67 37 RANDOM HYDRODYNAMIC FORCES ON OBJECTS * LEON E. BORC-
- MAN AMS 67 52 ASYMPTOTIC DISTRIBUTION OF LINEAR COMBINATIONS OF FUNCTIONS OF ORDER STATISTICS WITH APPLICATIONS TO
- ESTIMATION * HERMAN CHERNOFF, JOSEPH L. GASTWIRTH. M. V. JONES 73 THE ASYMPTOTIC THEORY OF CALTON'S TEST AND A RELATED AMS 67 SIMPLE ESTIMATE OF LOCATION * P. J. BICKEL, J. L.
- HODGES JR AMS 67 90 ASYMPTOTIC EFFICIENCY OF CERTAIN RANK TESTS FOR COM-PARATIVE EXPERIMENT * K. L. MEHRA, J. SARANGI
- 108 LIMIT THEOREMS FOR FUNCTIONS OF SHORTEST TWO-SAMPLE AMS 67 SPACINGS AND A RELATED TEST * SAUL BLUMENTHAL
- 117 SEQUENTIAL PROCEDURES FOR SELECTION OF THE BEST ONE OF AMS 67 SEVERAL BINOMIAL POPULATIONS * EDWARD PAULSON
- 124 SOME OPTIMUM PROPERTIES OF RANKING PROCEDURES * MOR-RISL. EATON

- 138 RECONSTRUCTING PATTERNS FROM SAMPLE DATA * PAUL AMS 67 SWITZER
- AMS 67 155 ADEQUATE SUBFIELDS AND SUFFICIENCY * MORRIS SKIBINSKY
- 162 A BIVARIATE T DISTRIBUTION, CORR. 67 1594 * M. M. SID-AMS 67 DIQUI
- AMS 67 167 CYLINDRICALLY ROTATABLE DESIGNS OF TYPES 1, 2, AND 3 * AGNES M HERZBERG
- 177 A METHOD FOR THE CONSTRUCTION OF SECOND ORDER ROTATA-AMS 67 BLE DESIGNS IN K DIMENSIONS* AGNES M. HERZERG
- 181 AN EXTENSION OF THE ROBBINS-MONRO PROCEDURE * J. H. AMS 67 VENTER
- 191 STOCHASTIC APPROXIMATION OF MINIMA WITH IMPROVED AMS 67 ASYMPTOTIC SPEED * VACLAV FABIAN
 201 IDENTIFICATION OF STATE-CALCULABLE FUNCTIONS OF AMS 67
- FINITE MARKOV CHAINS* J. W CARLYLE FUNCTIONS OF FINITE MARKOV CHAINS * FREDERICK W. AMS 67
- LEYSIEFFER 213 GEOMETRICAL PROBABILITY AND RANDOM POINTS ON A HYPERSPHERE * THOMAS M. COVER, BRADLEY EFRON AMS 67
- AMS 67 CONSENSUS OF SUBJECTIVE PROBABILITIES, A CONVERGENCE THEOREM * TORSTEN NORVIG
- AMS 67 226 A FORMULA FOR THE PROBABILITY OF OBTAINING A TREE FROM A GRAPH CONSTRUCTED RANDOMLY EXCEPT FOR 'EXOCAMOUS BIAS' * HWA SUNG NA, ANATOL RAPOPORT
- 242 GAME VALUE DISTRIBUTIONS I * DAVID R. THOMAS, H. T. AMS 67
- 251 GAME VALUE DISTRIBUTIONS II * DAVID R. THOMAS AMS 67

- 261 ON MEASURES EQUIVALENT TO WIENER MEASURE * THOMAS AMS 67 KAILATH
- 264 ON THE GALTON-WATSON BRANCHING PROCESS WITH MEAN LESS AMS 67 THAN ONE* A. JOFFE
- 267 MINIMUM CHI-SQUARED ESTIMATION USING INDEPENDENT AMS 67 STATISTICS * A. D. JOFFE
- AMS 67 271 A NOTE ON GENERALIZED INVERSES IN THE LINEAR HYPOTHES-IS NOT OF FULL RANK * A. A. RAYNER, R. M. PRINGLE
- 274 A NOTE ON NONPARAMETRIC TESTS FOR SCALE * A. P. BASU. AMS 67 GEORGE WOODWORTH
- 278 A NOTE ON CONSERVATIVE CONFIDENCE REGIONS FOR THE MEAN AMS 67 OF A MULTIVARIATE NORMAL * ALASTAIR SCOTT
- 280 CORRECTION, 'CALCULATION OF EXACT SAMPLING DISTRIBU-AMS 67 TION OF RANGES.FROM A DISCRETE POPULATION' * IRVING W BURR
- 303 RATES OF CONVERGENCE OF ESTIMATES AND TEST STATISTICS AMS 67 * R. R. BAHAOUR
- AMS 67 325 UPPER AND LOWER PROBABILITIES INDUCEO BY A MUL-TIVALUED MAPPING * A. P. DEMPSTER
- 340 LOCALLY MINIMAX TESTS * RICHARD E. SCHWARTZ AMS 67
- AMS 67 360 ON THE PROBABILITY OF LARGE DEVIATIONS OF FUNCTIONS OF SEVERAL EMPIRICAL CUMULATIVE DISTRIBUTION FUNC-TIONS * A. BRUCE HOADLEY
- AMS 67 3B2 ON AN INEQUALITY OF HOEFFDING * BENGT ROSEN
- AMS 67 393 SOME SHARP MULTIVARIATE TCHEBYCHEFF INEQUALITIES * GOVINDS, MUDHOLKAR, PODURIS, R.S. RAO
- 401 THE THEORY OF EXPERIMENT, OPERATIONAL DEFINITION OF THE PROBABILITY SPACE * MILTON PHILIP OLSON
- 410 STIRLING BEHAVIOR IS ASYMPTOTICALLY NORMAL * L. H. AMS 67 HARPER
- AMS 67 415 CHARACTERIZATIONS OF CONDITIONAL EXPECTATIONS * J. PFANZAGL
- AMS 67 422 OPTIMUM INVARIANT TESTS IN UNBALANCEO VARIANCE COM-PONENTS MOOELS * EMIL SPJOTVOLL
- AMS 67 429 OISTRIBUTION-FREE TESTS OF INDEPENDENCE * C. B. BELL, K. A. DOKSUM
- 447 STRINGENT SOLUTIONS TO STATISTICAL DECISION PROBLEMS AMS 67 * ROBERT COGBURN
- AMS 67 464 MULTISTAGE SAMPLING PROCEDURES BASEO ON PRIOR OIS-TRIBUTIONS AND COSTS * W. SCHULER
- 471 ON THE LACK OF A UNIFORMLY CONSISTENT SEQUENCE OF AMS 67 ESTIMATORS OF A DENSITY FUNCTION IN CERTAIN CASES * R. H. FARRELL
- 475 ON THE MAXIMUM DEVIATION OF THE SAMPLE DENSITY * AMS 67 MICHAEL WOODROOFE
- 482 ON ESTIMATING A DENSITY WHICH IS MEASURABLE WITH AMS 67 RESPECT TO A SIGMA-LATTICE * TIM ROBERTSON
- 494 A SEQUENTIAL SEARCH PROCEOURE * MILTON C . CHEW JR AMS 67
- 503 EXPANSIONS OF T OENSITIES AND RELATED COMPLETE IN-AMS 67 TEGRALS * JAMES M. DICKEY
- AMS 67 511 MATRICVARIATE GENERALIZATIONS OF THE MULTIVARIATE T DISTRIBUTION AND THE INVERTED MULTIVARIATE T DIS-TRIBUTION * JAMES M. DICKEY
- AMS 67 519 THE TREATMENT OF TIES IN THE WILCOXON TEST * WOLFGANG J. BUHLER
- AMS 67 523 MULTI-SAMPLE ANALOGUES OF SOME ONE-SAMPLE TESTS * K. L. MEHRA, M. L. PURI
- AMS 67 550 COMPARING DISTANCES BETWEEN MULTIVARIATE POPULA-TIONS, THE PROBLEM OF MINIMUM DISTANCES * M. S. SRIVASTAVA
- AMS 67 557 ASYMPTOTIC VARIANCES AND COVARIANCES OF MAXIMUM-LIKELIHOOD ESTIMATORS, FROM CENSOREO SAMPLES, OF THE PARAMETERS OF WEIBULL AND GAMMA POPULATIONS * H. LEON HARTER, ALBERT H. MOORE
- 571 A NEW FAMILY OF PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH SOME LATIN SQUARE DESIGN PROPERTIES * DALEM. MESNER
- AMS 67 582 A SOLUTION TO A COUNTABLE SYSTEM OF EQUALITIES ARISING IN MARKOVIAN OECISION PROCESSES * CYRUS DERMAN, ARTHURF. VEINOTT JR
- 585 A POTENTIAL THEORETIC PROOF OF A THEOREM OF DERMAN AND AMS 67 VEINOTT * RONALD A. SCHAUFELE
- AMS 67 588 ON STATIONARY MARKOV PROCESSES * RICHARD ISAAC
- AMS 67 593 ON THE CROSS PERIODOGRAM OF A STATIONARY GAUSSIAN VEC-TOR PROCESS * T. SUBBARAO
- AMS 67 599 A REMARK ON THE LAW OF THE ITERATED LOGARITHM * DAVID A. FREEDMAN
- AMS 67 601 OPTIMAL STOPPING WHEN THE FUTURE IS DISCOUNTED * LESTER E . DUBINS , HENRY TEICHER
- AMS 67 606 A NOTE ON RISK AND MAXIMAL REGULAR GENERALIZED SUB-MARTINGALES IN STOPPING PROBLEMS * H. CHERNOFF
- AMS 67 608 ON THE EXPECTED VALUE OF A STOPPED SUBMARTINGALE * Y S. CHOW
- AMS 67 610 ON THE STRONG LAW OF LARGE NUMBERS FOR MARTINGALES * Y S. CHOW
- AMS 67 611 A TECHNICAL LEMMA FOR MONOTONE LIKELIHOOD RATIO FAMI-LIES * J. PFANZAGL 613 A COUNTER-EXAMPLE RELATING TO CERTAIN MULTIVARIATE GENERALIZATIONS OF T AND F * A . W. DAVIS AMS 67

- AMS 67 616 ON THE DISTRIBUTION OF THE LARGEST ROOT OF A MATRIX IN MULTIVARIATE ANALYSIS * K. C. SREEDHARAN PILLAI
- 618 ON OBTAINING BALANCED INCOMPLETE BLOCK DESIGNS FROM AMS 67 PARTIALLY BALANCED ASSOCIATION SCHEMES * PETER W. M. JOHN.
- AMS 67 620 A MEAN-SQUARE-ERROR CHARACTERIZATION OF BINOMIAL-TYPE DISTRIBUTIONS * M. C. K. TWEEDIE

 659 ON THE COMBINATION OF INDEPENDENT TEST STATISTICS * W.
- AMS 67 R. VAN ZWET, J. OOSTERHOFF
- 681 TESTS OF COMPOSITE HYPOTHESES FOR THE MULTIVARIATE AMS 67 EXPONENTIAL FAMILY, CORR. 67 1928 * T. K. MATTHES, D. R TRIIAY
- 698 AOMISSIBLE TESTS IN MULTIVARIATE ANALYSIS OF VARIANCE AMS 67 * RICHARD SCHWARTZ
- AMS 67 711 ON A QUICKEST DETECTION PROBLEM * J. A. BATHER
- AMS 67 725 THE MARTINGALE VERSION OF A THEOREM OF MARCINKIEWICZ AND ZYGUMD * RICHARD F. GUNOY
- AMS 67 735 ALTERNATIVE PROOFS FOR CERTAIN UPCROSSING INEQUALI-TIES * RAFAEL PANZONE AMS 67 742 SOME RESULTS RELATING MOMENT GENERATING FUNCTIONS AND
- CONVERGENCE RATES IN THE LAW OF LARGE NUMBERS * O. L. HANSON
- AMS 67 751 A NOTE ON SUMS OF INCEPENDENT RANDOM VARIABLES WITH INFINITE FIRST MOMENT * H. O. MILLER
- AMS 67 759 A GENERAL CLASS OF BULK QUEUES WITH POISSON INPUT * MARCEL F. NEUTS
- 771 STOCHASTIC POINT PROCESSES, LIMIT THEOREMS * JAY R NMS 67 GOLDMAN
- 780 SUFFICIENT CONOITIONS FOR THE EXISTENCE OF A FINITELY AMS 67 ADDITIVE PROBABILITY MEASURE * R. DUNCAN LUCE
- AMS 67 NOTE ON STATISTICAL EQUIVALENCE SACKSTEOER
- AMS 67 795 FIOUCIAL THEORY AND INVARIANT PREDICTION * R. B. HORA, R. J. BUEHLER
- AMS 67 802 THE POWER OF THE LIKELIHOOO RATIO TEST * BRAOLEY EFRON AMS 67 BO7 ESTIMATION ASSOCIATED WITH LINEAR DISCRIMINANTS SEYMOUR GEISSER
- AMS 67 B18 GENERALIZED BAYES DECISION FUNCTIONS, ADMISSIBILITY ANO THE EXPONENTIAL FAMILY * M . STONE
- AMS 67 823 SERIES REPRESENTATIONS OF DISTRIBUTIONS OF QUADRATIC FORMS IN NORMAL VARIABLES, I, CENTRAL CASE * SAMEUL KOTZ, N. L. JOHNSON, D. W. BOYO
- AMS 67 B3B SERIES REPRESENTATIONS OF DISTRIBUTIONS OF QUAORATIC FORMS IN NORMAL VARIABLES, II, NON-CENTRAL CASE SAMEUL KOTZ, N. L. JOHNSON, O. W. BOYO
- B49 ASYMPTOTICALLY NONPARAMETRIC TESTS OF SYMMETRY * M. AMS 67 K. GUPTA
- 867 RANK TESTS FOR RANDOMIZEO BLOCKS WHEN THE ALTERNA-AMS 67 TIVES HAVE AN 'A PRIORI' OROERING * MYLES HOLLANDER
- 878 ROBUST PROCEOURES FOR SOME LINEAR MODELS WITH ONE OB-AMS 67 SERVATION PER CELL * KJELL OOKSUM
- B84 ASYMPTOTIC EFFICIENCY OF A CLASS OF NON-PARAMETRIC AMS 67 TESTS FOR REGRESSION PARAMETERS * J. N. ADICHIE
- B94 ESTIMATES OF REGRESSION PARAMETERS BASED ON RANK AMS 67 TESTS * J. N. ADICHIE
- 905 ON THE LARGE SAMPLE PROPERTIES OF A GENERALIZED WIL-AMS 67 COXON-MANN-WHITNEY STATISTIC * A . P . BASU
- 916 CAUCHY-DISTRIBUTED FUNCTIONS OF CAUCHY VARIATES * E. AMS 67 J.G. PITMAN, E.J. WILLIAMS
 919 SLOWLY BRANCHING PROCESSES * WOLFGANG J. BUHLER
- AMS 67
- 922 A NOTE ON THE BIRKHOFF ERGOOIC THEOREM * D. G. AUSTIN AMS 67 924 AN OSCILLATING SEMIGROUP * DAVID A. FREEOMAN AMS 67
- 927 REALIZATION OF STOCHASTIC SYSTEMS * MICHAEL ARBIB AMS 67
- 934 AN INTRINSICALLY DETERMINED MARKOV CHAIN AMS 67 MACQUEEN
- 937 THE RELATIVE EFFICIENCY OF SOME TWO-PHASE SAMPLING AMS 67 SCHEMES * M. P. SINGH
- 941 THE GENERALIZED VARIANCE, TESTING AND RANKING PROBLEM AMS 67 * MORRISI EATON
- AMS 67 944 SOME DISTRIBUTION PROBLEMS CONNECTED WITH THE CHARAC-TERISTIC ROOTS OF THE PRODUCT OF A WISHART VARIATE WITH THE INVERSE OF ANOTHER INDEPENDENT WISHART VARIATE * C. G. KHATRI
- 949 ON THE NON-EXISTENCE OF A FIXED SAMPLE ESTIMATOR OF AMS 67 THE MEAN OF A LOG-NORMAL DISTRIBUTION HAVING A PRESCRIBED PROPORTIONAL CLOSENESS * S. ZACKS
- 977 PROPERTIES OF THE STATIONARY MEASURE OF THE CRITICAL AMS 67 CASE SIMPLE BRANCHING PROCESS * SAMUEL KARLIN, JAMES MCGREGOR
- 992 EXTENSIONS OF A LIMIT THEOREM OF EVERETT, ULAM AND AMS 67 HARRIS ON MULTITYPE BRANCHING PROCESSES TO A BRANCHING PROCESS WITH COUNTABLY MANY TYPES * SHK-TEHC MOY
- AMS 67 1000 EPSILON ENTROPY OF STOCHASTIC PROCESSES * EDWARD C POSNER, EUGENER, RODEMICH, HOWARD J. RUMSEY JR
- AMS 67 1021 ONHITTING FOR STABLE PROCESSES * SIDNEY C. PORT
- AMS 67 1027 EQUIVALENT GAUSSIAN MEASURES WITH A PARTICULARLY SIM-PLE RADON-NIKODYM DERIVATIVE * DALE E. VARBERG

- AMS 67 1031 ON CONVERCENCE OF THE KIEFER-WOLFOWITZ APPROXIMATION PROCEDURE * J. H. VENTER
- AMS 67 1037 A LARCE SAMPLE TEST FOR THE INDEPENDENCE OF TWO RENEWAL PROCESSES * SIDNEY C. PORT, CHARLES J. STONE
- AMS 67 1042 SIMPLE RANDOM WALK AND RANK ORDER STATISTICS * MEYER DWASS
- AMS 67 1054 BOUNDED EXPECTED UTILITY * PETER C. FISHBURN
- AMS 67 1061 STATISTICAL MODELS AND INVARIANCE * D. A. S. FRASER AMS 67 1068 THE CONDITIONAL LEVEL OF STUDENT'S T TEST * L. BROWN
- AMS 67 1072 ON SELECTING A SUBSET OF K POPULATIONS CONTAINING THE BEST * W. J. STUDDEN
- AMS 67 1079 SOME FIXED-SAMPLE RANKING AND SELECTION PROBLEMS * D. M. MAHAMUNULU
- AMS 67 1092 ON CANONICAL FORMS, NON-NEGATIVE COVARIANCE MATRICES AND BEST AND SIMPLE LEAST SQUARES LINEAR ESTIMATORS IN LINEAR MODELS * GEORGE ZYSKIND
- AMS 67 1110 THE CONSTRUCTION OF SATURATED TWO TO THE POWER OF K-P DESIGNS * NORMANR. DRAPER, TOBY J. MITCHELL
- AMS 67 1127 APPLICATION OF CYCLIC COLLINEATIONS TO THE CONSTRUC-TION OF BALANCED L-RESTRICTIONAL PRIME POWERED LATTICE DESIGNS* B. L. RAKTOE
- AMS 67 1142 REPLICATED, OR INTERPENETRATING, SAMPLES OF UNEQUAL SIZES * J. C. KOOP
- AMS 67 1148 ON THE DISTRIBUTION OF THE LARGEST LATENT ROOT OF THE COVARIANCE MATRIX * T . SUGIYAMA
- AMS 67 1152 DISTRIBUTION OF THE LARCEST LATENT ROOT AND THE SMAL-LEST LATENT ROOT OF THE GENERALIZED B STATISTIC AND F STATISTICS AND IN MULTIVARIATE ANALYSIS * T. SU-GIYAMA
- AMS 67 1160 ON THE EXACT DISTRIBUTIONS OF LIKELIHOOD RATIO CRITERIA FOR TESTING INDEPENDENCE OF SETS OF VARIATES UNDER THE HULL HYPOTHESIS * P. C. CONSUL
- AMS 67 1170 ON THE EXACT DISTRIBUTIONS OF THE CRITERION W FOR TESTING SPHERICITY IN A P-VARIATE NORMAL DISTRIBU-TION * P. C. CONSUL
- AMS 67 1175 CONFIDENCE INTERVAL OF PREASSICNED LENGTH FOR THE BEHRENS-FISHER PROBLEM * SAIBAL BANERJEE
- AMS 67 1180 CONFIDENCE INTERVALS FOR THE MEAN OF A FINITE POPULA-TION * V. M. JOSHI
- AMS 67 120B THE DISTRIBUTION FUNCTIONS OF TSAO'S TRUNCATED SMIR-NOV STATISTICS * W. J. CONOVER
- AMS 67 1216 ON THE THEORY OF RANK ORDER TESTS FOR LOCATION IN THE MULTIVARIATE ONE SAMPLE PROBLEM * PRANAB KUMAR SEN, MADAN LAL PURI
- AMS 67 1229 ASYMPTOTICALLY MOST POWERFUL RANK ORDER TESTS FOR
- GROUPED DATA * PRANAB KUMAR SEN
 AMS 67 1240 AN INEQUALITY CONCERNING TESTS OF FIT OF THE KOL-
- MOCOROV-SMIRNOV TYPE * GEORCES VANDEWIELE, MARC NOE
 AMS 67 1245 PERMUTATION WITHOUT RISING OR FALLINC OMECA-SEQUENCES * MORTON ABRAMSON, W. O. J. MOSER
- AMS 67 1255 MODELS FOR CATALOGUING PROBLEMS * MARTIN KNOTT
- AMS 67 1261 ESTIMATION OF PROBABILITY DENSITY BY AN ORTHOGONAL SERIES * STUART C. SCHWARTZ
- AMS 67 1266 ASYMPTOTIC EXPANSIONS ASSOCIATED WITH THE N'TH POWER OF A DENSITY * R. A. JOHNSON
- AMS 67 1273 ON THE GLIVENKO-CANTELLI THEOREM FOR INFINITE INVARI-ANT MEASURES * EUCENE M. KLIMKO
- AMS 67 127B HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS * W. MOLENAAR, E. A. VAN DER VELDE
- AMS 67 1281 TIMID PLAY IS OPTIMAL * DAVID FREEDMAN
- AMS 67 1284 TIMID PLAY IS OPTIMAL, II * DAVID FREEDMAN. ROGER PURVES
- AMS 67 1286 TESTS FOR THE EQUALITY OF COVARIANCE MATRICES UNDER THE INTRACLASS CORRELATION MODEL * P. R. KRISHNAIAH. P. K. PATHAK
- AMS 67 1289 THE INVERSE OF A CERTAIN MATRIX, WITH APPLICATION * CHANDAN K. MUSTAFI
- AMS 67 1293 ON THE CONSTRUCTION OF CYCLIC COLLINEATIONS FOR OB-TAINING A SALANCED SET OF L-RESTRICTIONAL PRIME-POWERED LATTICE DESIGNS * SATIMAZUMDAR
- AMS 67 1296 A NOTE ON THE UNIMODALITY OF DISTRIBUTION FUNCTIONS OF CLASS L * TZE-CHIEN SUN
- AMS 67 1300 IDENTIFIABILITY OF MIXTURES OF PRODUCT MEASURES * HENRY TEICHER
- AMS 67 1303 NOTE ON THE INFINITE DIVISIVILITY OF EXPONENTIAL MIX-TURES * F . W . STEUTEL
- AMS 67 1306 INFINITE DIVISIVILITY OF INTEGER-VALUED RANDOM VARI-ABLES * S. K. KATTI
- AMS 67 1323 ON 8AHADUR'S REPRESENTATION OF SAMPLE QUANTILES * J. KIEFER AMS 67 1343 LOWER BOUNDS FOR AVERAGE SAMPLE NUMBER OF SEQUENTIAL
- MULTIHYPOTHESIS TESTS * GORDON SIMONS AMS 67 1365 A SEQUENTIAL THREE HYPOTHESIS TEST FOR DETERMINING
- THE MEAN OF A NORMAL POPULATION WITH KNOWN VARIANCE * GORDON SIMONS
- AMS 67 1376 A CLASS OF SEQUENTIAL PROCEDURES FOR CHOOSING ONE OF K HYPOTHESES CONCERNING THE UNKNOWN DRIFT PARAMETER OF THE WIENER PROCESS * GORDON SIMONS

- AMS 67 1384 A SEQUENTIAL ANALOGUE OF THE BEHRENS-FISHER PROBLEM* H. ROBBINS, C. SIMONS, NORMANN STARR
- AMS 67 1392 FINDING THE SIZE OF A FINITE POPULATION * D. A. DARLINC, H. ROBBINS
- AMS 67 1399 INTECRATED RISK OF ASYMPTOTICALLY BAYES SEQUENTIAL TESTS * GARY LORDEN
- AMS 67 1423 A BAYESIAN STUDY OF THE MULTINOMIAL DISTRIBUTION * DANIEL A. BLOCH, GEOFFREY S. WATSON
- AMS 67 1436 A SPECIAL STRUCTURE AND EQUIVARIANT ESTIMATION * ROBERT H. BERK
- AMS 67 1446 ON ESTIMATION OF THE MODE * J. H. VENTER
- AMS 67 1456 DATA TRANSFORMATIONS AND THE LINEAR MODEL * D. A. S. FRASER
- AMS 67 1466 ASSOCIATION RANDOM VARIABLES, WITH APPLICATIONS * J. D. ESARY, F. PROSCHAN, D. W. WALKUP
- AMS 67 1475 EXACT BAHADUR EFFICIENCIES FOR THE KOLMOGOROV-SMIR-NOV AND KUIPER ONE-SAMPLE AND TWO-SAMPLE STATISTICS * INNISG. ABRAHAMSON
- AMS 67 1491 ON EXACT PROBABILITIES OF RANK ORDERS FOR TWO WIDELY SEPARATED NORMAL DISTRIBUTIONS * ROY C. MILTON
- AMS 67 1494 TESTING HYPOTHESES IN RANDOMIZED FACTORIAL EXPERI-MENTS * S. EHRENFELD, S. ZACKS
- AMS 67 1508 ESTIMABILITY OF VARIANCE COMPONENTS FOR THE TWO-WAY CLASSIFICATION WITH ITERATION * DAVID A . HARVILLE
- AMS 67 1520 ON TWO K-SAMPLE RANK TESTS FOR CENSORED DATA * A. P. BASU
- AMS 67 1536 AN APPROACH TO SIMULTANEOUS TOLERANCE INTERVALS IN REGRESSION * A. L. WILSON
- AMS 67 1541 PROBABILITY TABLES FOR THE EXTREMAL QUOTIENT * E. J. GUMBEL, JAMES PICKANDS III
- AMS 67 1552 A THEOREM OF LEVY AND A PECULIAR SEMICROUP * DAVID A. FREEDMAN
- AMS 67 1558 THE MAXIMUM DEVIATION OF SAMPLE SPECTRAL DENSITIES * MICHAEL B. WOODROOFE, JOHN W. VAN NESS
- AMS 67 1570 SAMPLE SEQUENCES OF MAXIMA * JAMES PICKANDS III
- AMS 67 1575 ON LARGE DEVIATION PROBLEMS FOR SUMS OF RANDOM VARIA-BLES WHICH ARE NOT ATTRACTED TO THE NORMAL LAW * C. C.
- AMS 67 1579 SAMPLE FUNCTIONS OF CAUSSIAN RANDOM HOMOGENEOUS FIELDS ARE EITHER CONTINUOUS OR VERY IRREGULAR * D. M. EAVES
- AMS 67 15B3 MONOTONE CONVERGENCE OF BINOMIAL PROBABILITIES WITH AN APPLICATION TO MAXIMUM LIKELIHOOD ESTIMATION * KUMAR JOGDEO
- AMS 67 1587 ON ROBUST ESTIMATION IN INCOMPLETE BLOCK DESIGNS * MADAN LAL PURI, PRANAB KUMAR SEN AMS 67 1592 A NOTE ON CLASSIFICATION * ASHOK K. SAXENA
- AMS 67 1605 PREFERENCE-BASED DEFINITIONS OF SUBJECTIVE PROBA-BILITY* PETER C. FISHBURN
- AMS 67 1618 OPTIMAL SEQUENTIAL PROCEDURES WHEN MORE THAN ONE STOP IS REQUIRED * GUS W. HAGGSTROM
- AMS 67 1627 SOME PROBLEMS IN THE THEORY OF OPTIMAL STOPPING RULES * DAVID OLIVER SIEGMUND
- AMS 67 1641 SOME ONE-SIDED STOPPING RULES * DAVID OLIVER SIECMUND AMS 67 1647 NOTE ON DYNKIN'S 'ALPHA, XI' SUBPROCESS OF STANDARD
- MARKOV PROCESS * HIROSHI KUNITA AMS 67 1655 SOME REMARKS ON CONTINUOUS ADDITIVE FUNCTIONALS * R. K. GETOOR
- AMS 67 1661 PRESERVATION OF WEAK CONVERGENCE UNDER MAPPINGS * FLEMMING TOPSOE
- AMS 67 1666 A REMARK ON SEQUENTIAL DISCRIMINATION * DAVID A. FREEDMAN
- AMS 67 1671 ON PARTIAL 'A PRIORI' INFORMATION IN STATISTICAL IN-FERENCE * J. R. SLUM, JUDAH ROSENBLATT
- AMS 67 1679 LINEAR LEAST SQUARES RECRESSION * GEOFFREY S. watson AMS 67 1700 THE DISTRIBUTION OF A QUADRATIC FORM OF NORMAL RANDOM
- VARIABLES * BRUNO BALDESSARI AMS 67 1705 LOCAL ASYMPTOTIC POWER AND EFFICIENCY OF TESTS OF KOL-MOGOROV-SMIRNOV TYPE * JIRI ANDEL
- AMS 67 1726 A K-SAMPLE EXTENSION OF THE ONE-SIDED TWO-SAMPLE SMIRNOV TESTS STATISTIC * W. J. CONOVER
- AMS 67 1731 ASYMPTOTICALLY OPTIMAL STATISTICS IN SOME MODELS WITH INCREASING FAILURE RATE AVERAGE * KJELL DOKSUM
- AMS 67 1740 TESTING AGAINST ORDERED ALTERNATIVES IN MODEL I ANAL-YSIS OF VARIANCE, NORMAL THEORY AND NONPARAMETRIC * GALEN R. SHORACK
- AMS 67 1753 ASYMPTOTIC EFFICIENCY OF MULTIVARIATE NORMAL SCORE TEST* G. K. BHATTACHARYA
- AMS 67 1759 SIGN AND WILCOXON TESTS FOR LINEARITY* RICHARD A. OLSHEN AMS 67 1770 EFFICIENT ESTIMATION OF A SHIFT PARAMETER FROM
- CROUPED DATA * P. K. BHATTACHARYA AMS 67 1788 NONPARAMETRIC PROCEDURES FOR SELECTING A SUBSET CON-
- TAINING THE POPULATION WITH THE LARGEST ALPHA-QUANTILE * M. HASEEB RIZVI, MILTON SOBEL

 AMS 67 1804 NONPARAMETRIC PROCEDURES FOR SELECTING THE T POPULATION WITH THE LARGEST ALPHA-QUANTILE * MILTON SOBEL
- AMS 67 1817 AN INEQUALITY FOR EXPECTED VALUES OF SAMPLE QUANTILES W. R. VAN ZWET

- AMS 67 1822 ASYMPTOTIC PROPERTIES OF THE BLOCK UP-AND-DOWN METHOD IN 810-ASSAY * R. K. TSUTAKAWA
- AMS 67 1829 ASYMPTOTICALLY OPTIMAL TESTS FOR MULTIVARIATE NORMAL DISTRIBUTIONS * DAVID G . HERR
- AMS 67 1845 ON OPTIMAL ASYMPTOTIC TESTS OF COMPOSITE STATISTICAL HYPOTHESES* JAMES 8. BARTOO, PREMS PURI
- AMS 67 1853 ON CERTAIN INEQUALITIES FOR NORMAL DISTRIBUTIONS AND THEIR APPLICATIONS TO SIMULTANEOUS CONFIDENCE BOUNDS * C. G. KHATRI
- AMS 67 1868 INADMISSIBILITY OF THE USUAL CONFIDENCE SETS FOR THE MEAN OF A MULTIVARIATE NORMAL POPULATION * V. M. JOSHI
- AMS 67 1876 REMARK ON THE LINEARIZED MAXIMUM LIKELIHOOD ESTIMATE * L. K. CHAN
- AMS 67 1882 ON HOROVITZ AND THOMPSON'S T-ONE CLASS OF LINEAR ESTI-MATION * S. G. PRASHU AJGAONKAR
- AMS 67 1887 REDUCED GROUP DIVISIBLE PAIRED COMPARISON DESIGNS * J.A.JOHN

- AMS 67 1694 CHARACTERIZATIONS OF NORMALITY BY CONSTANT REGRES-SION OF LINEAR STATISTICS ON ANOTHER LINEAR STATISTIC * THEOPHILOS CACOULLOS
- AMS 67 1899 AN ASYMPTOTIC EXPANSION FOR POSTERIOR DISTRIBUTIONS * R. A. JOHNSON
- AMS 67 1907 A NOTE ON BAYES ESTIMATES * PETER J. 8ICKEL, DAVID 8LACKWELL
- AMS 67 1912 A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS * L. A SHEPP
- AMS 67 1915 ON A STOPPING RULE AND THE CENTRAL LIMIT THEOREM * RICHARD GUNDY, DAVID SIEGMUND
- AMS 67 1918 A PERFECT MEASURABLE SPACE THAT IS NOT A LUSIN SPACE * R. B. DARST, R. E. ZINK
- AMS 67 1919 DISTRIBUTIONS OF A M. KAC STATISTIC * J. L. ALLEN, J. A. BEEKMAN
- AMS 67 1924 A CHARACTERIZATION OF NORMALITY * M. V. TAMHANKAR

ANNALS OF MATHEMATICAL STATISTICS VOLUME 39, 1968

- AMS 68 1 TOWARDS A THEORY OF GENERALIZED SAYES TESTS * R. H. FARRELL
- AMS 68 23 ON A NECESSARY AND SUFFICIENT CONDITION FOR ADMISSI-BILITY OF ESTIMATORS WHEN STRICTLY CONVEX LOSS IS USED * R. H. FARRELL
- 29 INADMISSIBILITY OF THE USUAL ESTIMATORS OF SCALE AMS 68 PARAMETERS IN PROBLEMS WITH UNKNOWN LOCATION AND SCALE PARAMETERS * L . 8ROWN
- 49 DESIGNS FOR REGRESSION PROBLEMS WITH CORRELATED ER-AMS 68 RORS MANY PARAMETERS * JEROME SACKS, DONALD YL-VISAKER
- 70 WHEN ARE GAUSS-MARKOV AND LEAST SQUARES ESTIMATORS AMS 68 IDENTICAL. A COORDINATE-FREE APPROACH * WILLIAM KRUSKAL
- 76 ESTIMATION OF THE LOCATION OF THE CUSP OF A CONTINUOUS AMS 68 DENSITY * 8. L. S. PRAKASA
- 88 A SEQUENTIAL PROCEDURE FOR SELECTING THE LARGEST OF K AMS 68 MEANS * H. ROSSINS, M. SOSEL, N. STARR
- 93 THE GENERAL MOMENT PROBLEM, A GEOMETRIC APPROACH * J. AMS 68
- H. 8 KEMPERMAN 123 CONVERGENCE OF SUMS OF SQUARES OF MARTINGALE DIF-AMS 68
- FERENCES * Y. S. CHOW 134 A DECOMPOSITION OF L1-BOUNDED MARTINGALES * RICHARD AMS 68
- F GUNDY 139 ON INFINITELY DIVISIBLE LAWS AND A RENEWAL THEOREM FOR AMS 68
- NON-NEGATIVE RANDOM VARIABLES * WALTER L . SMITH AMS 68 VARIATIONS ON A RENEWAL THEOREM OF SMITH* C. C. HEYDE
- 159 THE 8IG MATCH * DAVID 8LACKWELL, T. S. FERGUSON AMS 68
- 164 SOME PROPERTIES OF AN ALGEBRAIC REPRESENTATION OF AMS 68 STOCHASTIC PROCESSES * PAUL W. HOLLAND
- AMS 68 171 LOCALLY AND ASYMPTOTICALLY MINIMAX TESTS OF A MUL-TIVARIATE PROSLEM * N. GIRI
- 179 AN EXAMPLE OF LARGE DISCREPANCY SETWEEN MEASURES OF AMS 68 ASYMPTOTIC EFFICIENCY OF TESTS* R. K. TSUTAKAWA
- AMS 68 183 ESTIMATION OF THE PARAMETER IN THE STOCHASTIC MODEL FOR PHAGE ATTACHMENT TO SACTERIA * R. C. SRIVASTAVA
- 193 INVARIANT INTERVAL ESTIMATION OF A LOCATION PARAMETER AMS 68 * R. S. VALAND
- 200 PAIRED COMPARISONS FOR PAIRED CHARACTERISTICS * P. K. AMS 68 SEN, H. A. DAVID
- 209 ON THE IDENTIFIABILITY OF FINITE MIXTURES * SIDNEY J AMS 68 YAKOWITZ, JOHN D. SPARGINS
- 215 ON THE NON-CENTRAL DISTRIBUTIONS OF TWO TEST CRITERIA AMS 68 IN MULTIVARIATE ANALYSIS OF VARIANCE * C. G. KHATRI, K. C. S. PILLAI
- AMS 68 227 ON THE DISTRIBUTION OF A MULTIPLE CORRELATION MATRIX, NON-CENTRAL MULTIVARIATE SETA DISTRIBUTIONS * M.S. SRIVASTAVA
- 233 THE CALCULATION OF DISTRIBUTIONS OF KOLMOGOROV-SMIR-AMS 68 NOV TYPE STATISTICS INCLUDING A TABLE OF SIG-NIFICANCE POINTS FOR A PARTICULAR CASE * MARC NOE, GEORGES VANDEWIELE
- AMS 68 242 A TREE COUNTING PROSLEM * J. W. MOON
- 246 CONSTRUCTION OF THE SET OF 256-RUN DESIGNS OF RESOLU-AMS 68 TION GREATER THAN OR EQUAL TO 5 AND THE SET OF EVEN 512-RUN DESIGNS OF RESOLUTION GREATER THAN OR EQUAL TO 6 WITH SPECIAL REFERENCE TO THE UNIQUE SATURATED DESIGNS * NORMAN R. DRAPER, TOSY J. MITCHELL
- 256 ESTIMATING THE TOTAL PROBABILITY OF THE UNO8SERVED OUTCOMES OF AN EXPERIMENT * HERSERT E . ROBSINS
- AMS 68 258 SOME INVARIANT LAWS RELATED TO THE ARC SINE LAW * J. P.
- AMS 68 261 A NOTE ON THE ABSENCE OF TANGENCIES IN GAUSSIAN SAMPLE PATHS * DONALD YLVISAKER

- 263 AN ELEMENTARY PROOF OF ASYMPTOTIC NORMALITY OF LINEAR AMS 68 FUNCTIONS OF ORDER STATISTICS * D. S. MOORE
- 266 THE ASYMPTOTIC ERROR OF ITERATIONS * PETER FRANK AMS 68
- 270 A NOTE ON STOCHASTIC DIFFERENCE EQUATIONS * K. S. AMS 68 MILLER
- 272 RECURRENCE RELATIONS SETWEEN MOMENTS OF ORDER AMS 68 STATISTICS FOR EXCHANGEABLE VARIATES * H. A. DAVID, P. C. JOSHI
- AMS 68 275 ON TESTS OF THE EQUALITY OF TWO COVARIANCE MATRICES * N GIRI
- 278 NOTE ON A MINIMAX DESIGN FOR CLUSTER SAMPLING * V. M. AMS 68 JOSHI
- 282 ON A FURTHER ROBUSTNESS PROPERTY OF THE TEST AND ESTI-AMS 68 MATOR 8ASED ON WILCOXON'S SIGNED RANK STATISTIC * PRANAS KIIMAR SEN
- 286 CONSTRUCTION OF SEQUENCES ESTIMATING THE MIXING DIS-AMS 68 TRISUTION * J. J. DEELY, R. L. KRUSE
- AMS 68 325 ASYMPTOTIC NORMALITY OF SIMPLELINEAR RANK STATISTICS UNDER ALTERNATIVES * JAROSLAV HAJEK
- 347 SOME RESULTS ON MULTITYPE CONTINUOUS TIME MARKOV AMS 68 8RANCHING PROCESSES * KRISHNA 8ALASUNDARAM ATHREYA
 358 A RANDOM TIME CHANGE RELATING SEMI-MARKOV AND MARKOV
- AMS 68 PROCESSES * JAMES YACKEL
- 365 A REMARK ON HITTING PLACES FOR TRANSIENT STABLE AMS 68 PROCESS * SIDNEY C . PORT
- 372 TRANSFORMS OF STOCHASTIC PROCESSES * P. WARWICK MIL-AMS 68 LAR
- 377 SUBSTITUTION IN CONDITIONAL EXPECTATION * R. R. AMS 68 8AHADUR, P. J. BICKEL
- ON CONVERGENCE IN R-MEAN OF NORMALIZED PARTIAL SUMS * AMS 68 RONALD PYKE, DAVID ROOT
- AMS 68 382 THE INVARIANCE PRINCIPLE FOR A LATTICE OF RANDOM VARI-ABLES * J. KUEL8S
- AMS 68 390 A SIMPLER PROOF OF SMITH'S ROULETTE THEOREM * LESTER E. DUSINS
- 391 A CHARACTERIZATION OF CERTAIN SEQUENCES OF NORMING AMS 68 CONSTANTS * STEPHENR. KIM8LETON
- AMS 68 THE PROBABILITY THAT THE SAMPLE DISTRIBUTION FUNCTION LIES 8ETWEEN TWO PARALLEL STRAIGHT LINES * J. DURBIN
- AMS 68 412 NON-DISCOUNTED DENUMERABLE MARKOVIAN DECISION MODELS * SHELDON ROSS
- 424 ON RECURRENT DENUMERABLE DECISION PROCESSES* LLOYD AMS 68 FISHER
- 433 CHARACTERIZATIONS OF INDEPENDENCE IN CERTAIN FAMI-AMS 68 LIES OF 8IVARIATE AND MULTIVARIATE DISTRIBUTIONS * KUMAR JOGDEO
- AMS 68 442 ASYMPTOTICALLY OPTIMAL 8AYES AND MINIMAX PROCEDURES IN SEQUENTIAL ESTIMATION* PETER J. 8ICKEL, JOSEPH A. YAHAV
- 457 ON THE CHOICE OF DESIGN IN STOCHASTIC APPROXIMATION AMS 68 METHODS * VACLAV FASIAN
- 466 CONCENTRATION OF RANDOM QUOTIENTS * WILLIAM H. LAWTON AMS 68 AMS 68
 - 481 ON THE NUMERICAL REPRESENTATION OF QUALITATIVE CONDI-TION PROSASILITY * R. DUNCAN LUCE
- 492 MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE FIRST N MOMENTS ARE KNOWN * MORRIS SKIBINSKY AMS 68 502 ESTIMATION OF THE LARGER TRANSLATION PARAMETER * SAUL
- AMS 68 BLUMENTHAL, ARTHUR COHEN
- ESTIMATION OF TWO ORDERED TRANSLATION PARAMETERS * AMS 68 SAUL SLUMENTHAL, ARTHUR COHEN
- 531 A COMPARISON OF THE MOST STRINGENT AND THE MOST STRIN-GENT SOMEWHERE MOST POWERFUL TEST FOR CERTAIN AMS 68 PROBLEMS WITH RESTRICTED ALTERNATIVE* W. SCHAAFSMA
- AMS 68 547 LIKELIHOOD RATIO TESTS FOR RESTRICTED FAMILITES OF PROBABILITY DISTRIBUTIONS * RICHARD E . BARLOW

- AMS 68 561 SMOOTHED ESTIMATES FOR MULTINOMIAL CELL PROBABILI-TIES * JAMES M. DICKEY
- AMS 68 567 JACKNIFING VARIANCES * RUPERT G. MILLER JR
- AMS 68 583 INFERENCE FROM A KNOCKOUT TOURNAMENT * J. A. HARTIGAN
- AMS 68 593 THE CONDITIONAL WISHART, NORMAL AND NONNORMAL * D. A. S. FRASER
- AMS 68 606 ADMISSIBILITY OF THE SAMPLE MEAN AS ESTIMATE OF THE MEAN OF A FINITE POPULATION * V. M. JOSHI
- AMS 68 621 HYPER-ADMISSIBILITY AND OPTIMUM ESTIMATORS FOR SAM-PLING FINITE POPULATIONS * T. V. HANURAV
- AMS 68 643 RELATIONSHIP OF GENERALIZEO POLYKAYS TO UNRESTRICTED
 SUMS FOR BALANCED COMPLETE FINITE POPULATIONS * EDWARD J CARREY
- AMS 68 657 ON THE STRUCTURE AND ANALYSIS OF SINGULAR FRACTIONAL REPLICATES * K.S. 8ANERJEE, W.T. FEOERER
- AMS 68 664 NONPARAMETRIC DISCRIMINATION USING TOLERANCE RE-CIONS * C. P. QUESENBERRY, M. P. GESSAMAN
- AMS 68 674 AN EXAMPLE IN DUNUMERABLE OECISION PROCESSES * LLOYO FISHER, SHELDONM. ROSS
- AMS 68 676 ASSOCIATION MATRICES AND THE KRONECKER PRODUCT OF OESIGNS*P.U.SURENDRAN
- AMS 68 681 A SERIES OF BALANCED INCOMPLETE BLOCK DESIGNS * C. C. YALAVIGI
- AMS 68 727 A MULTI-OIMENSIONAL LINEAR GROWTH BIRTH AND OEATH PROCESS*PAULR.MILCH
- AMS 68 755 WEAK CONVERGENCE OF A TWO-SAMPLE EMPIRICAL PROCESS
 AND A NEW APPROACH TO CHERNOFF-SAVAGE THEOREM *
 RONALO PYKE, GALEN R. SHORACK
- AMS 68 772 MOST POWERFUL TESTS FOR SOME NON-EXPONENTIAL FAMILIES
 * EMIL SPJOTVOLL
- AMS 68 785 ESTIMATION OF STOCHASTIC SYSTEMS, ARBITRARY SYSTEM
 PROCESS WITH AOOITIVE WHITE NOISE OBSERVATIONS
 ERROR*G.KALLIANPUR, C. STRIEBEL
- AMS 68 802 A POTENTIAL THEORY FOR SUPERMARTINCALES * E. COUNT CURTIS
- AMS 68 815 A SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS FOR THE DIS-TRIBUTION OF HOTELLING'S GENERALIZEO T-SQUARE-SUB-ZERO * A. W. DAVIS
- AMS 68 833 ON THE NON-CENTRAL DISTRIBUTION OF THE SECOND ELEMEN-TARY SYMMETRIC FUNCTION OF THE ROOTS OF A MATRIX * K. C. SREEOHARAN PILLAI, ARJUN K. GUPTA
- AMS 68 840 INFERENCE PROBLEMS ABOUT PARAMETERS WHICH ARE SUBJECTEO TO CHANGES OVER TIME * CHANOAN MUSTAFI
- AMS 68 855 ON THE OISTRIBUTIONS OF DIRECTION AND COLLINEARITY FACTORS IN DISCRIMINANT ANALYSIS * D. G. KABE
- AMS 68 859 MINIMIZATION OF EIGENVALUES OF A MATRIX ANO OPTIMALI-TY OF PRINCIPAL COMPONENTS * MASASHI OKAMOTO, MIT-SUYO KANAZAWA
- AMS 68 864 LIMIT THEOREMS FOR THE MULTI-URN EHREFEST MODEL DONALD L. IGLEHART
- AMS 68 877 ON THE MOMENT GENERATING FUNCTION OF PILLAI'S V-SUPER-S CRITERION * K. C. SREEDHARAN PILLAI
- AMS 68 881 MOMENT CONVERGENCE OF SAMPLE EXTREMES * JAMES PICKANDSIII
- AMS 68 890 ON THE PROBABILITY DISTRIBUTION OF A FILTERED RANDOM TELEGRAPH SIGNAL * DAVIDS. NEWMAN
- AMS 68 897 AN EXTENSION OF ROSEN'S THEOREM TO NON-IDENTICALLY
 OISTRIBUTED RANDOM VARIABLES * L, H, KOOPMANS
- AMS 68 905 ASYMPTOTIC NORMALITY IN NONPARAMETRIC METHODS * KUMAR JOGDEO
- AMS 68 923 THE V-SUB-NM TWO-SAMPLE TEST * URS. R. MAAG, M. A. STEPHENS
- AMS 68 936 ON CONTINUITY PROPERTIES OF INFINITELY DIVISIBLE DISTRIBUTION FUNCTIONS * STEVEN OREY
- AMS 68 938 FUNCTIONS OF PROCESSES WITH MARKOVIAN STATES * MARTIN FOX. HERMAN RUBIN
- AMS 68 947 THE DISTRIBUTION OF THE MAXIMUM OF A SEMI-MARKOV PROCESS * LAWRENCE D. STONE
- AMS 68 957 UPPER AND LOWER PROBABILITIES GENERATED 8Y A RANDOM CLOSED INTERVAL * A.P. DEMPSTER
- AMS 68 967 ON CHERNOFF-SAVAGE TESTS FOR ORDERED ALTERNATIVES IN RANDOMIZED BLOCKS * MADAN LAL PURI, PRANAB KUMAR SEN
- AMS 68 973 8AYES SEQUENTIAL DESIGN OF FRACTIONAL FACTORIAL EX-PERIMENTS FOR THE ESTIMATION OF A SUBGROUP OF PRE-ASSIGNED PARAMETERS * S. ZACKS
- AMS 68 983 SOME RULES FOR A COMBINATORIAL METHOD FOR MULTIPLE PRODUCTS OF GENERALIZED K-STATISTICS * DERRICK S. TRACY
- AMS 68 999 COMMON TREATMENTS BETWEEN BLOCKS OF CERTAIN PARTIALLY
 BALANCED INCOMPLETE BLOCK DESIGNS * P. U. SURENDRAN
- AMS 68 1007 THE CORRELATION STRUCTURE OF THE OUTPUT PROCESS OF SOME SINGLE SERVER SYSTEMS * D. J. DALEY
- AMS 68 1020 FUNCTIONS OF FINITE MARKOV CHAINS AND EXPONENTIAL TYPE PROCESSES * PAUL E. BOUDREAU
- AMS 68 1030 ON ESTIMATING MONOTONE PARAMETERS * TIM ROBERTSON, PAUL WALTMAN
- AMS 68 1040 THE PERFORMANCE OF SOME SEQUENTIAL PROCEDURES FOR A RANKING PROBLEM* M.S. SRIVASTAVA, J. OGILIVIE

- AMS 68 1048 BOUNDS ON THE SAMPLE SIZE DISTRIBUTION FOR A CLASS OF INVARIANT SEQUENTIAL PROBABILITY RATIO TESTS * R. A. WIJSMAN
- AMS 68 1057 SEQUENTIAL MAXIMUM LIKELIHOOD ESTIMATION OF THE SIZE OF A POPULATION * ESTER SAMUEL
- AMS 68 1069 SPLITTINC A SINGLE STATE OF A STATIONARY PROCESS INTO
 MARKOVIAN STATES * S. W. DHARMADHIKARI
- AMS 68 1078 A CLARIFICATION CONCERNING CERTAIN EQUIVALENCE CLASSES OF GAUSSIAN PROCESSES ON AN INTERVAL * J. FELDMAN
- AMS 68 1080 AN INEQUALITY IN CONSTRAINED RANDOM VARIABLES * C. L. MALLOWS
- AMS 68 1083 ON A SIMPLE ESTIMATE OF THE RECIPROCAL OF THE DENSITY
 FUNCTION * DANIEL A. BLOCH, JOSEPH L. GASTWIRTH
- AMS 68 1107 ERGOOIC THEORY WITH RECURRENT WEIGHTS * KENNETH N
- AMS 68 1115 ON A CLASS OF ALIGNED RANK ORDER TESTS IN TWO-WAY
 LAYOUTS * PRANAB KUMAR
- AMS 68 1125 THE ESTIMATION OF VARIANCES AFTER USING A GAUSSIANAT-ING TRANSFORMATION * M. H. HOYLE
- AMS 68 1144 THE OUTPUT PROCESS OF A STATIONARY M/M/S QUEUEING SYSTEM* P. J. BURKE
- AMS 68 1153 A CLASS OF INFINITELY DIVISIBLE MIXTURES * F. W. STEUTEL
- AMS 68 1158 CONTRIBUTIONS TO CENTRAL LIMIT THEORY FOR DEPENDENT VARIABLES * R. J. SERFLING
- AMS 68 1176 OPERATING CHARACTERISTICS OF SOME SEQUENTIAL DESIGN RULES * ROBERT BOHRER
- AMS 68 1186 THE CEOMETRY OF A R-8Y-C CONTINGENCY TABLE * STEPHEN E.FIENBERC
- AMS 68 1191 MONOTONE CONVERGENCE OF SINOMIAL PROBABILITIES AND A
 GENERALIZATION OF RAMANUJAN'S EQUATION * KUMAR JOGOEO, S. M. SAMUELS
- AMS 68 1196 ROBUSTNESS OF THE WILCOXON ESTIMATE OF LOCATION
 AGAINST A CERTAIN OEPENOENCE * ARNLJOT HOYLANO
- AMS 68 1202 THE WILCOXON TWO-SAMPLE STATISTIC ON STRONGLY MIXING
 PROCESSES * R. J. SERFLING
- AMS 68 1210 RENEWAL THEOREMS WHEN THE FIRST OR THE SECOND MOMENT
 IS INFINITE * JOZEF L. TEUGELS
- AMS 68 1220 AN OPTIMALITY CONDITION FOR OISCRETE DYNAMIC PRO-GRAMMING WITH NO OISCOUNTING * E. V. DENARDO, B. L. MILLER
- AMS 68 1228 EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS RE-LATEO TO S-SUB-N-OVER-N * DAVIO SEIGMUND, GOROON SIMONS, PAUL FEOER
- AMS 68 1236 PROBABILITY OENSITIES WITH GIVEN MARGINALS * S. KULL-BACK
- AMS 68 1244 ASYMPTOTIC OPTIMUM PROPERTIES OF CERTAIN SEQUENTIAL TESTS * SEOK PIN WONG
- AMS 68 1264 GENERALIZED ASYMPTOTIC EXPANSIONS OF CORNISH-FISHER TYPE * G. W. HILL, A. W. DAVIS
- AMS 68 1274 ON MOMENTS OF ELEMENTARY SYMMETRIC FUNCTIONS OF THE
 ROOTS OF TWO MATRICES AND APPROXIMATIONS TO A DISTRIBUTION * C. C. KHATRI, K. C. S. PILLAI
- AMS 68 1282 INDEPENDENT SEQUENCES WITH THE STEIN PROPERTY * D. L. 8URKHOLOER
- AMS 68 1289 8AYESIAN ESTIMATION OF MIXING DISTRIBUTIONS * JOHN E.
 ROLPH
- AMS 68 1303 SIMULTANEOUS TESTS FOR THE EQUALITY OF COVARIANCE
 MATRICES AGAINST CERTAIN ALTERNATIVES * P. R. KRISHNAIAH
- AMS 68 1310 THE EPSILON ENTROPY ON CERTAIN MEASURES ON (0,1) * T. S. PITCHER
- AMS 68 1316 MULTIVARIATE EXPONENTIAL-TYPE DISTRIBUTIONS *
 SHEELA BILOIKAR, G, P, PATIL
- AMS 68 1327 ON ASYMPTOTIC NORMALITY IN STOCHASTIC APPROXIMATION
 * VACLAV FABIAN
- AMS 68 1333 OPTIMAL STOPPING IN A MARKOV PROCESS * HOWARD M.
 TAYLOR
- AMS 68 1345 A 80REL SET NOT CONTAINING A GRAPH * DAVID 8LACKWELL AMS 68 1348 A NOTE ON THE WEAK LAW OF LARGE NUMBERS * MELVIN KATZ
- AMS 68 1350 ON THE PROPORTION OF OBSERVATIONS ABOVE SAMPLE MEANS
 IN A BIVARIATE NORMAL DISTRIBUTION * CHANDAN K.
 MUSTAFI
- AMS 68 1354 CONSTRUCTION OF JOINT PROBABILITY DISTRIBUTIONS * L. F. KEMP JR
- AMS 68 1381 CONVOLUTIONS OF DISTRIBUTIONS ATTRACTED TO STABLE LAWS * HOWARD G. TUCKER
- AMS 68 1391 ON A THEOREM OF DOBRUSHIN * CHARLES STONE
- AMS 68 1402 LARGE DEVIATIONS THEORY IN EXPONENTIAL FAMILIES *
 BRADLEY EFRON, DONALD TRUAX
- AMS 68 1425 ON MULTIVARIATE NORMAL PROBABILITIES OF RECTANGLES *
 ZBYNEK SIDAK
- AMS 68 1435 OPTIMAL DESIGNS ON TCHE8YSCHEFF POINTS * W. J. STUDDEN
- AMS 68 1448 ON THE ERCODICITY FOR NON-STATIONARY MULTIPLE MARKOV
 PROCESSES * BUI-TRONG LIEU, HELENE DESERGHES
- AMS 68 1463 ON CONFIDENCE LIMITS FOR THE RELIABILITY OF SYSTEMS * JANET M. MYRE, SAM C. SAUNDERS

- AMS 68 1473 DISTRIBUTIONS DETERMINED BY CUTTING SIMPLEX WITH HYPERPLANES * A. P. DEMPSTER, ROBERT M. KLEYLE
- AMS 68 1479 CONVERGENCE RATES FOR THE LAW OF THE ITERATED LOCARITHM * JAMES AVERY DAVIS
- AMS 68 1486 A NOTE ON ROBUST ESTIMATION IN ANALYSIS OF VARIANCE *
- AMS 68 1493 ON THE ASYMPTOTIC NORMALITY OF ONE-SIDED STOPPING RULES * D. SIECMUND
- AMS 6B 1498 ON A CHARACTERIZATION OF SYMMETRIC STABLE PROCESSES
 WITH FINITE MEAN * B. L. S. PRAKASA RAO
- AMS 68 1502 ALMOST SURE CONVERCENCE OF QUADRATIC FORMS IN INDE-PENDENT RANDOM VARIABLES * DALE E. VARBERG
- AMS 6B 1507 CROSS SPECTRAL ANALYSIS OF CAUSSIAN VECTOR PROCESS IN
 THE PRESENCE OF VARIANCE FLUCTUATIONS * T. SUBBA RAO
- AMS 68 1513 THE DISCRETE STUDENT'S DISTRIBUTION * J. K. ORD
- AMS 68 1517 DESIGN AND ANALYSIS OF EXPERIMENTS WITH MIXTURES * J. S. MURTY, M. N. DAS
- AMS 6B 1540 CONSTRUCTION OF ROOM SQUARES * R. G. STANTON, R. C. MULLIN
- AMS 6B 1549 SOME RESULTS ON THE COMPLETE AND ALMOST SURE CONVERGENCE OF LINEAR COMBINATIONS OF INDEPENDENT AND RANDOM VARIABLES AND MARTINCALE DIFFERENCES * WILLIAM F. STOUT
- AMS 68 1563 DISTANCES OF PROBABILITY MEASURES AND RANDOM VARIA-
- AMS 6B 1573 ON INVARIANCE AND ALMOST INVARIANCE * ROBERT H. BERK,
- AMS 68 1577 SOME EXAMPLES OF MULTI-DIMENSIONAL INCOMPLETE BLOCK DESIGNS * B. D. CAUSEY
- AMS 68 1591 ON A GENERALIZED SAVAGE STATISTIC WITH APPLICATIONS TO LIFE TESTING * A. P. BASU
- AMS 6B 1605 SOME MULTIVARIATE T-DISTRIBUTIONS * K. S. MILLER
- AMS 68 1610 ON THE TRIMMED MANN-WHITNEY STATISTIC * THOMAS P.
 HETTMANSPERGER
- AMS 68 1615 THREE MULTIDIMENSIONAL-INTEGRAL IDENTITIES WITH BAYESIAN APPLICATIONS * JAMES M. DICKEY
- AMS 68 1629 A COMPACT TABLE FOR POWER OF THE T-TEST * J. L. HODGES JR, E. L. LEHMANN
- JR, E. L. LEHMANN

 AMS 68 1638 EFFICIENT DIFFERENCE EQUATION ESTIMATORS IN EXPONEN—
- TIAL REGRESSION * C. A. MCGILCHRIST

 AMS 68 1646 ADMISSIBILITY AND DISTRIBUTION OF SOME PROBABILISTIC
 FUNCTIONS OF DISCRETE FINITE STATE MARKOV CHAINS *
 CHIA KURI TSAO
- AMS 68 1654 APPROACH TO DEGENERACY AND THE EFFICIENCY OF SOME MUL-TIVARIATE TESTS * G. K. BHATTACHARYYA, RICHARD A. JOHNSON
- AMS 6B 1661 THE INFORMATION IN A RANK-ORDER AND THE STOPPING TIME
 OF SOME ASSOCIATED SPRT'S * ROBERT H. BERK, I.
 RICHARD SAVAGE
- AMS 68 1675 WEAK GONVERGENCE AND A CHERNOFF-SAVACE THEOREM FOR RANDOM SAMPLE SIZES * RONALD PYKE, GALENR. SHORACK
- AMS 68 1686 UNBIASEDNESS OF SOME TEXT CRITERIA FOR THE EQUALITY OF ONE OR TWO COVARIANCE MATRICES * NARIAKI SUCIURA, HISAO NAGAO
- AMS 68 1693 ON SLIPPAGE TESTS I. A GENERALIZATION OF NEYMAN PEAR-SON'S LEMMA * IRVINC H. HALL, AKIO KUDO
- AMS 68 1700 HOW TO MINIMIZE OR MAXIMIZE THE PROBABILITIES OF EXTINCTION IN A GALTON-WATSON PROCESS AND IN SOME RELATED MULTIPLIGATIVE POPULATION PROCESSES * LEO A . GOODMAN
- AMS 68 1711 GALCULATION OF ZONAL POLYNOMIAL COEFFICIENTS BY THE USE OF THE LAPLACE-BELTRAMI OPERATOR * A. T. JAMES
- AMS 6B 1719 BOUNDS ON MOMENTS OF MARTINGALES * S. W. DHARMAD-HIKARI, V. FASIAN, K. JOGDEO
- AMS 68 1724 ASYMPTOTIC NORMALITY OF SAMPLE QUANTILES FOR M-DEPEN-DENT PROCESSES * PRANAB KUMAR SEN
- AMS 68 1731 NONPARAMETRIC TESTS FOR SHIFT AT UNKNOWN TIME POINT *
 G. K. BHATTACHARYYA, RICHARD A. JOHNSON
- AMS 68 1744 A NOTE ON THE ADMISSIBILITY OF POOLING IN THE ANALYSIS OF VARIANCE * ARTHUR COHEN
- AMS 6B 1747 ON THE ROBUSTNESS OF SOME CHARACTERIZATIONS OF THE NORMAL DISTRIBUTION * L. K. MESHALKIN
- AMS 6B 1751 EXACT DISTRIBUTION OF THE PRODUCT OF INDEPENDENT

 GENERALIZED GAMMA VARIABLES WITH THE SAME SHAPE
 PARAMETER * HENRICK JOHN MALIK
- AMS 68 1753 A MIXTURE OF TWO RECURRENT RANDOM WALKS NEED NOT BE RECURRENT * J. MINEKA
- AMS 6B 1755 ON THE MONOTONICITY OF E-SUB-P(S-SUB-T-OVER-T) * Y. S. CHOW, W. J. STUDDEN
- AMS 68 1756 ANCILLARY STATISTICS AND PREDICTION OF THE LOSS IN ESTIMATION PROBLEMS * ELSE SANDVED
- AMS 6B 1759 SOME RESULTS ON POLYA TYPE 2 DISTRIBUTIONS * KHURSHEED

- AMS 68 1762 AN INEQUALITY FOR THE RATIO OF TWO QUADRATIC FORMS IN NORMAL VARIATES * KOTESWARA RAO KADIYALA
- AMS 68 1801 EMBEDDINC OF URN SCHEMES INTO CONTINUOUS TIME MARKOV
 BRANCHING PROCESSES AND RELATED LIMIT THEOREMS *
 KRISHNA B. ATHREYA, SAMUEL KARLIN
- AMS 68 1818 A DELICATE LAW OF THE ITERATED LOCARITHM FOR NON-DECREASINC STABLE PROCESSES (ADDENDUM, 69 1855) * LEO BREIMAN
- AMS 68 1825 ON A CENERAL CLASS OF DESIGNS FOR MULTIRESPONSE EX-PERIMENTS * J. N. SHRIVASTAVA
- AMS 6B 1844 ON DOMINATING AN AVERAGE ASSOCIATED WITH DEPENDENT GAUSSIAN VECTORS * S. C. SCHWARTZ, W. L. ROOT
- AMS 6B 1B49 ON THE DISTRIBUTION OF SOME STATISTICS USEFUL IN THE ANALYSIS OF JOINTLY STATIONARY TIME SERIES * GRACE WAHBA
- AMS 68 1863 CONTACION IN STOCHASTIC MODELS FOR EPIDEMICS * GRACE LO YANC
- AMS 6B 1B90 SEQUENTIAL COMPOUND ESTIMATION * DENNIS C. GILLILAND
- AMS 6B 1905 OPTIMAL STOPPINC FOR FUNCTIONS OF MARKOV CHAINS * AL-BERTO RUIZ-MONCAYO
- AMS 68 1913 ROBUSTNESS OF SOME NONPARAMETRIC PROCEDURES IN LINEAR MODELS * PRANAB KUMAR SEN
- AMS 68 1923 SOME INTEGRAL TRANSFORMS OF CHARACTERISTIC FUNCTIONS * G. ANDERSEN, T. KAWATA
- AMS 6B 1932 ON PSEUDO-GAMES * ALFREDO BANOS
- AMS 6B 1946 ON THE COST OF NOT KNOWING THE VARIANCE WHEN MAKING A FIXED WIDTH CONFIDENCE INTERVAL FOR THE MEAN * GORDON SIMONS
- AMS 6B 1953 SEQUENTIAL SELECTION OF EXPERIMENTS * K. B. GRAY JR
- AMS 68 1978 ON THE ADMISSIBILITY AT INFINITY, WITHIN THE CLASS OF RANDOMIZED DESIGNS, OF BALANCED DESIGNS * R. H. FAR-
- AMS 68 1995 FURTHER SECOND ORDER ROTATABLE DESIGNS * NORMAN R. DRAPER, AGNES M. HERZBERC
- AMS 6B 2002 A TREATMENT OF TIES IN PAIRED COMPARISONS * JAGBIR SINCH, W. A. THOMPSON JR
- AMS 6B 2016 CONVERCENCE RATES FOR PROBABILITIES OF MODERATE DEVIATIONS * JAMES AVERY DAVIS
- AMS 68 2029 ON SLIPPAGE TEST (II) SIMILAR SLIPPAGE TESTS * IRVING
 J. HALL, AKIO KUDO, NENG-CHE YEH
- AMS 6B 2038 ASYMPTOTIC SHAPES FOR SEQUENTIAL TESTING OF TRUNCA-TION PARAMETERS * GIDEON SCHWARZ
- AMS 68 2044 ON THE DISTRIBUTION OF THE LOG LIKELIHOOD RATIO TEST STATISTIC WHEN THE TRUE PARAMETER IS 'NEAR' THE BOUNDARIES OF THE HYPOTHESIS REGIONS * PAUL I. FEDER
- AMS 6B 2056 INFORMATION AND SUFFICIENT SUB-FIELDS * S. G. GHURYE
- AMS 68 2067 AN EXTENSION OF PAULSON'S SELECTION PROCEDURE * D. G. HOEL, M. MAZUMDAR
- AMS 6B 2075 NONPARAMETRIC RANKINC PROCEDURES FOR COMPARISON WITH A CONTROL * M. HASEEB RIZVI, MILTON SOBEL, GEORGE G.
- AMS 6B 2094 ON A THEOREM OF SKOROHOD * LESTER E. DUBINS
- AMS 6B 2098 ON RECENT THEOREMS CONCERNING THE SUPERCRITICAL GALTON-WATSON PROCESS * E. SENETA
- AMS 6B 2103 RANDOMIZED RULES FOR THE TWO-ARMED BANDIT WITH FINITE MEMORY * S. M. SAMUELS
- AMS 68 210B ON A LIMIT DISTRIBUTION OF HIGH LEVEL CROSSINGS OF A STATIONARY GAUSSIAN PROCESS * CLIFFORD QUALLS
- AMS 6B 2114 THE DISTRIBUTION OF GALTON'S STATISTICS * SHULAMTH GROSS, PAUL W. HOLLAND
- AMS 68 211B ARBITRARY STATE MARKOVIAN DECISION PROCESSES * SHEL-DON M. ROSS
- AMS 68 2123 ON THE LOCAL BEHAVIOR OF MARKOV TRANSITION PROBABILI-TIES * DAVID BLACKWELL, DAVID FREEDMAN
- AMS 68 212B AN ELEMENTARY METHOD OF OBTAINING LOWER BOUNDS ON THE ASYMPTOTIC POWER OF RANK TESTS * JOSEPH L. GAST-WIRTH, STEPHEN WOLFF
- AMS 68 2131 REPRESENTINC FINITELY ADDITIVE INVARIANT PROBABILI-TIES * RICHARD A. OLSHEN
- AMS 68 2136 NECESSARY CONDITIONS FOR ALMOST SURE EXTINCTION OF
 BRANCHING PROCESS WITH RANDOM ENVIRONMENT * WALTER
 L. SMITH
- AMS 6B 2141 COMPARISON TESTS FOR THE CONVERCENCE OF MARTINGALES * BURGESS DAVIS
- AMS 68 2145 A GENERALIZATION OF ITO'S THEOREM CONCERNING THE POINTWISE ERGODIC THEOREM * CHOO-WHAN KIM
- AMS 6B 2149 WEAK CONVERGENCE OF A SEQUENCE OF QUICKEST DETECTION PROBLEMS * DONALD L. IGLEHART, HOWARD M. TAYLOR
- AMS 6B 2154 BOUNDS OF THE PROBABILITY OF A UNION OF EVENTS, WITH APPLICATIONS * EUSTRATIOS G. KOUNIAS
- AMS 6B 2159 A NOTE ON THE WEAK LAW * C. M. DEO, D. R. TRUAX

- 1 A DISTRIBUTION FREE VERSION OF THE SMIRNOV TWO SAMPLE AMS 69 TEST IN THE P-VARIATE CASE * P. J. BICKEL 24 ON ROBUST LINEAR ESTIMATORS * JOSEPH L. CASTWIRTH,
- AMS 69 HERMAN RUBIN
- 40 THE SPEED OF CLIVENKO-CANTELLI CONVERCENCE * R. M. AMS 69 DUDLEY
- 51 FURTHER REMARKS ON TOPOLOCY AND CONVERCENCE IN SOME AMS 69 ORDERED FAMILIES OF DISTRIBUTION * J. PFANZACI
- 66 ON MEASURABLE, NONLEAVABLE CAMBLING HOUSES WITH A AMS 69 GOAL * WILLIAM D. SUDDERTH
- AMS 69 71 ON ERLANG'S FORMULA * LAJOS TAKACS
- AMS 69 79 EXISTENCE OF AN INVARIANT MEASURE AND AN ORNSTEIN'S ERGODIC THEOREM * MICHEL METIVIER
- AMS 69 97 PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS * T. PETRIE
- 116 ON DETECTING CHANGES IN THE MEAN OF NORMAL VARIATES * AMS 69 L. A. GARDNER JR
- 127 THE TAIL FIELD OF A MARKOV CHAIN * ALLAN F ABRAHAMSE AMS 69
- 137 THE ASYMMETRIC CAUCHY PROCESSES ON THE LINE * S. C. AMS 69 PORT, C. J. STONE
- 144 A CENTRAL LIMIT THEOREM FOR THE NUMBER OF EDGES IN THE AMS 69 RANDOM INTERSECTION OF TWO GRAPHS (CORR. 69 1510) * O ABE
- AMS 69 152 THE ORTHANT PROBABILITIES OF FOUR GAUSSIAN VARIATES * M. C. CHENC
- AMS 69 162 INVARIANT SETS FOR TRANSLATION-PARAMETER FAMILIES OF MEASURES * D. BASU, J. K. GHOSH
- AMS 69 175 PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS WITH TWO-WAY CLASSIFICATION OF TREATMENTS * C. RAMANKUTTY NATR
- 188 ON SERIAL CORRELATION * S. JAMES PRESS AMS 69
- 197 EQUIVALENCE OF GAUSSIAN STATIONARY PROCESSES * T. R. AMS 69 CHOW
- 203 THE CENTRAL LIMIT THEOREM FOR CENERALIZED RANDOM AMS 69 FIELDS * D. M. EAVES
- 216 ON A THEOREM OF KARLIN REGARDING ADMISSIBLE ESTIMATES AMS 69 FOR EXPONENTIAL POPULATIONS * V. M. JOSHI
- AMS 69 224 SIMULTANEOUS TEST PROCEDURES, SOME THEORY OF MULTIPLE GOMPARISONS * K. R. GABRIEL
- AMS 69 251 INTERPOLATION OF HOMOGENEOUS RANDOM FIELDS ON DIS-CRETE GROUPS * L . BRUCKNER
- AMS 69 259 BIVARIATE SYMMETRY TESTS, PARAMETRIC AND NONPARAMET-
- RIC * C. B. BELL, H. SMITH HALLER 270 INVARIANT PROPER BAYES TESTS FOR EXPONENTIAL FAMILIES AMS 69
- * RICHARD E . SCHWARTZ 2B4 VARIATION QUADRATIQUE DES MARTINGALES CONTINUES A AMS 69 DROITE * CATHERINE DOLEANS
- 290 MULTIVARIATE TWO SAMPLE TESTS WITH DICHOTOMOUS AND AMS 69 CONTINUOUS VARIABLES I. THE LOCATION MODEL * A A. AFIFI, R. M ELASHOFF
- 299 STOCHASTIC APPROXIMATION FOR SMOOTH FUNCTIONS * AMS 69 VACLAV FABIAN
- AMS 69 303 A NOTE ON CHARACTERISTIC FUNCTIONS * K. G. BINMORE, H H. STRATTON
- AMS 69 30B DOMAINS OF OPTIMALITY OF TESTS IN SIMPLE RANDOM SAM-PLINC * DAVID K. HILDEBRAND
- 313 A SECOND-ORDER APPROXIMATION TO OPTIMAL SAMPLING RE-AMS 69 GIONS * GIDEON SCHWARZ
- 316 A NOTE ON POSITIVE DYNAMIC PROGRAMMING * ASHOK MAITRA AMS 69 319 NEW CONDITIONS FOR CENTRAL LIMIT THEOREMS (CORR. 69 AMS 69
- 1855) * PERCY A. PIERRE
- 322 AN EXAMPLE OF THE DIFFERENCE BETWEEN THE LEVY AND AMS 69 LEVY-PROKHOROV METRICS * LLOYD FISHER, D. W. WALKUP
- 325 CORRECTION TO AMS 56 427 'ESTIMATION OF LOCATION AND AMS 39 SCALE PARAMETERS BY ORDER STATISTICS FROM SINCLY AND DOUBLY CENSORED SAMPLES, PART I. THE NORMAL DISTRIBUTION UP TO SAMPLES OF SIZE 10' * A. E. SARHAN, B. G. GREENBERG
- AMS 69 339 GENERALIZED MEANS AND ASSOCIATED FAMILIES OF DIS-TRIBUTIONS * H. K. BRONS, H. D. BRUNK, W. E. FRANCK, D. L. HANSON
- AMS 69 356 ON THE ADMISSIBILITY OF A RANDOMIZED SYMMETRICAL DESIGN FOR THE PROBLEM OF A ONE WAY CLASSIFICATION * R. H. FARRELL
- 366 DISCRETE DYNAMIC PROCRAMMING WITH A SMALL INTEREST AMS 69 RATE * SRUCE L. MILLER, ARTHUR F. VEINOTT JR
- 371 DISTRIBUTION OF LIKELIHOOD RATIO IN TESTING AGAINST AMS 69 TREND * M T. BOSWELL, H. D. BRUNK
- 381 DISTINGUISHABILITY OF PROBABILITY MEASURES * LLOYD AMS 69 FISHER, JOHN W. VAN NESS
- 393 BIORTHOCONAL AND DUAL CONFIGURATIONS AND THE RECIPRO-AMS 69 CAL NORMAL DISTRIBUTION * ROBERT H. BERK
- 399 SAMPLE PATH VARIATIONS OF HOMOCENEOUS PROCESSES * AMS 69 MICHAEL SHARPE

- AMS 69 408 VARIANCES OF VARIANCE-COMPONENT ESTIMATORS FOR THE UNBALANCED TWO-WAY CROSS CLASSIFICATION WITH AP-PLICATION TO BALANCED INCOMPLETE BLOCK DESIGNS * DAVID A. HARVILLE
- 417 ON AN A.P.O. RULE IN SEQUENTIAL ESTIMATION WITH AMS 69 QUADRATIC LOSS * PETER J. BICKEL, JOSEPH A. YAHAV
- 427 MARTINCALE EXTENSIONS OF A THEOREM OF MARCINKIEWICZ AMS 69 AND ZYCMUND * Y . S . CHOW
- 434 ON FINITE PRODUCTS OF POISSON-TYPE CHARACTERISTIC AMS 69 FUNCTIONS OF SEVERAL VARIABLES * ROGER CUPPENS
- 445 SEQUENTIAL NONPARAMETRIC TWO-WAY CLASSIFICATION AMS 69 WITH PRESCRIBED MAXIMUM ASYMPTOTIC ERROR PROBA-BILITY * MELVIN N. WOINSKY, LUDWIK KURZ
- 456. ON THE EXPECTED VALUE OF A STOPPED STOCHASTIC SEQUENCE AMS 69
- * WILLIAM F. STROUT, Y. S. CHOW 462 ON THE LEAST SQUARES ESTIMATION OF NON-LINEAR RELA-AMS 69 TIONS * C. VILLECAS
- 467 APPROXIMATION TO BAYES RISK IN SEQUENCES OF NON-AMS 69 FINITE GAMES * DENNIS GILLILAND
- AMS 69 475 ON CONVERGENCE RATES IN THE CENTRAL LIMIT THEOREM * ELLENS. HERTZ
- AMS 69 4BO ON SOME RESULTS OF N. V. SMIRNOV CONGERNING LIMIT DIS-TRIBUTIONS FOR VARIATIONAL SERIES * D. MEJZLER, I. WEISSMAN
- 492 AN APPROXIMATION TO THE SAMPLE SIZE IN SELECTION AMS 69 PROBLEMS * EDWARD J. DUDEWICZ
- AMS 69 COMBINING ELEMENTS FROM DISTINCT FINITE FIELDS IN MIXED FACTORIALS * B. L. RAKTOE
- 505 A COMPARISON TEST FOR MARTINGALE INEQUALITIES * BUR-AMS 69 CESS DAVIS
- 509 SEQUENTIAL INTERVAL ESTIMATION FOR THE MEANS OF NOR-AMS 69 MAL POPULATIONS * EDWARD PAULSON
- 517 AN APPLICATION FOR THE SOBOLEV IMBEDDING THEOREMS TO AMS 69 CRITERIA FOR THE CONTINUITY OF PROCESSES WITH A VEC-TOR PARAMETER * HAROLD J. KUSHNER
- 527 ON MOMENTS OF THE MAXIMUM OF NORMED PARTIAL SUMS * AMS 69 DAVIDSIEGMUND
- AMS 69 532 QUASI-STATIONARY BEHAVIOUR OF A LEFT-CONTINUOUS RAN-DOM WALK * D. J. DALEY
- AMS 69 540 PHASE FREE ESTIMATION OF COHERENCE * RICHARD H. JONES 549 ONE SIDED PROBLEMS IN MULTIVARIATE ANALYSIS * MICHAEL AMS 69
- D. PERLMAN AMS 69 THE CONSISTENCY OF CERTAIN SEQUENTIAL ESTIMATORS * R
- M. LOYNES
- AMS 69 OPTIMAL TWO-STAGE STRATIFIED SAMPLINC * M. H. DE CROOT, N. STARR
- 583 ASYMPTOTIC DISTRIBUTION OF MAXIMUM LIKELIHOOD ESTI-MATORS IN A LINEAR MODEL WITH AUTOREGRESSIVE DISTURBANCES * GLIFFORD HILDRETH
- AMS 69 595 A NOTE ON TESTS FOR MONOTONE FAILURE RATE BASED ON IN-COMPLETE DATA * R. E. BARLOW, F. PROSCHAN
- 601 THE REMAINDER IN THE CENTRAL LIMIT THEOREM FOR MIXINC AMS 69 STOCHASTIC PROCESSES * WALTER PHILIPP
- 610 ANALYSIS OF COVARIANCE BASED ON GENERAL RANK SCORES * AMS 69 MADAN LAL PURI, PRANAB KUMAR SEN
- 619 MULTIPLE DECISION PROCEDURES BASED ON RANKS FOR CER-AMS 69 TAIN PROBLEMS IN ANALYSIS OF VARIANCES * MADAN L. PURI, PREMS, PURI
- 633 ASYMPTOTIC PROPERTIES OF NON-LINEAR LEAST SQUARES AMS 69 ESTIMATORS * ROBERT I. JENNRICH
- 644 THE EXPECTED COVERACE TO THE LEFT OF THE I'TH ORDER AMS 69 STATISTIC FOR ARBITRARY DISTRIBUTIONS * BARRY H. MARGOLIN, FREDERICK MOSTELLER
- 64B SOME FIRST PASSAGE PROBLEMS FOR S-SUB-N-OVER-ROOT-N AMS 69 * R. A. OLSHEN, D. O. SIECMUND
- 653 A NOTE ON SEQUENTIAL MULTIPLE DECISION PROCEDURES * AMS 69 ISAAC MEILIJSON
- 658 ON A CLASS OF CONDITIONALLY DISTRIBUTION-FREE TESTS AMS 69 FOR INTERACTIONS IN FACTORIAL EXPERIMENTS * K. L. MEHRA, P. K. SEN
- 665 THE ASYMPTOTIC BEHAVIOR OF A CERTAIN MARKOV CHAIN * 8 AMS 69 J. MCCASE
- 667 AN EXTENSION OF A THEOREM OF CHOW AND ROBBINS ON AMS 69 SEQUENTIAL CONFIDENCE INTERVALS FOR THE MEAN ARTHUR NADAS
- 672 ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING FINITE AMS 69 POPULATIONS, V * V. P. GODAMBE 677 AN OPTIMAL STOPPING THEOREM * BENTON JAMISON, STEVEN AMS 69
- OREY AMS 69 679 A NOTE ON BALANCED INCOMPLETE BLOCK DESIGNS * HENRY 8.
- MANN INEQUALITIES WITH APPLICATIONS TO THE WEAK CONVER-AMS 69 681 GENCE OF RANDOM PROCESSES WITH MULTI-DIMENSIONAL
- TIME PARAMETERS * MICHAEL J. WICHURA 688 ON A FLUCTUATION THEOREM FOR PROCESSES WITH INDEPEN-DENT INCREMENTS, II * C. C. HEYDE

- AMS 69 692 NOTE ON A 'MULTIVARIATE' FORM OF BONFERRONI'S IN-EQUALITIES * RICHARD M. MEYER
- AMS 69 694 NOTE ON SHIFT-INVARIANT SETS * U. KRENCEL. L. SUCHESTON
- PROPERTIES OF POWER FUNCTIONS OF SOME TESTS CONCERN-AMS 69 ING DISPERSION MATRICES OF MULTIVARIATE NORMAL DIS-TRIBUTIONS . * SOMESH DAS CUPTA
- 702 THE SAMPLINC DISTRIBUTION OF AN ESTIMATOR ARISING IN AMS 69 CONNECTION WITH THE TRUNCATED EXPONENTIAL DIS-TRIBUTION * JAN M . HOEM
- 704 A CENERAL METHOD OF DETERMINING FIXED-WIDTH CON-AMS 69 FIDENCE INTERVALS * RASUAL A . KHAN
- 710 ON MINIMUM VARIANCE UNBIASED ESTIMATION OF RELIABILI-AMS 69 TY * Y . S . SATHE, S . D . VARDE
- 715 THE EXISTENCE OF CERTAIN STOPPING TIMES ON BROWNIAN AMS 69 MOTION * D. H. ROOT
- 743 ON THE SUPERCRITICAL ONE DIMENSIONAL ACE DEPENDENT AMS 69 BRANCHING PROCESSES * KRISHNAB. ATHREYA
- AMS 69 BEST POSSIBLE KOLMOGOROFF-TYPE INEQUALITY FOR MARTINGALES AND A CHARACTERISTIC PROPERTY * W. L. STEIGER
- 770 LINEAR FUNCTIONS OF ORDER STATISTICS * STEPHEN MACK AMS 69 STIGLER
- AMS 69 789 WEAK APPROACHABILITY IN A TWO-PERSON GAME * TEIN-FANC HOU
- B14 ON BRANCHING PROCESSES IN RANDOM ENVIRONMENTS * AMS 69 WALTER L. SMITH. WILLIAM E. WILKINSONN
- AMS 69 828 HYPOTHESIS TESTING WITH FINITE MEMORY * THOMAS M COVER
- B36 ON THE EXACT DISTRIBUTIONS OF VOTAW'S CRITERIA FOR AMS 69 TESTING COMPOUND SYMMETRY OF A COVARIANCE MATRIX * P. C. CONSUL
- AMS 69 B44 ON THE DISTRIBUTION OF THE SUPREMUM FUNCTIONAL FOR SEMI-MARKOV PROCESSES WITH CONTINUOUS STATE SPACES * LAWRENCE D. STONE
- AMS 69 B54 EFFICIENT ESTIMATION OF A PROBABILITY DENSITY FUNC-TION * JAMES PICKANDS III
- AMS 69 B65 FUNCTIONS OF PROCESSES WITH MARKOVIAN STATES, II * MARTIN FOX, HERMAN RUBIN
- 870 PRODUCT ENTROPY TO GAUSSIAN DISTRIBUTIONS * EDWARD C POSNER, EUGENER. RODEMICH, HOWARD RUMSEY JR
- 905 SELECTION PROCEDURES FOR RESTRICTED FAMILIES OF AMS 69 PROBABILITY DISTRIBUTIONS * RICHARD E. BARLOW, SHANTIS. GUPTA
- AMS 69 918 ON THE DISTRIBUTION OF THE MAXIMUM AND MINIMUM OF RATIOS OF ORDER STATISTICS * R. E. BARLOW, S. S. GUP-TA. S. PANCHAPAKESAN
- AMS 69 935 ON LIMITING DISTRIBUTIONS FOR SUMS OF A RANDOM NUMBER OF INDEPENDENT RANDOM VECTORS * LEON JAY GLESER
- 942 ASYMPTOTIC EXPANSIONS OF THE NON-NULL DISTRIBUTIONS AMS 69 OF THE LIKELIHOOD RATIO CRITERIA FOR MULTIVARIATE LINEAR HYPOTHESIS AND INDEPENDENCE * NARIAKI SUCIU-RA, YASUNORI FUJIKOSHI
- 953 UPPER AND LOWER PROBABILITY INFERENCES FOR FAMILIES AMS 69 OF HYPOTHESES WITH MONOTONE DENSITY RATIOS * A. P. DEMPSTER
- 970 CONDITIONAL PROBABILITY ON SICMA-COMPLETE BOOLEAN AMS 69 ALGEBRAS * ARDEL J . BOES
- 979 DISTRIBUTION OF DISCRIMINANT FUNCTION WHEN COVARI-AMS 69 ANCE MATRICES ARE PROPORTIONAL * CHIEN-PAI HAN
- 9B6 THE STRONG RATIO LIMIT PROPERTY FOR SOME GENERAL MAR-AMS 69 KOV PROCESSES * NARESH C. JAIN
- 993 EXPLICIT SOLUTIONS TO SOME PROBLEMS OF OPTIMAL AMS 69 STOPPINC * L. A. SHEPP
- AMS 69 1011 THE ASYMPTOTIC DISTRIBUTION OF SOME NON-LINEAR FUNC-TIONS OF THE TWO-SAMPLE RANK VECTOR * SIEGFRIED SCHACH
- AMS 69 1021 ON FIXED PRECISION ESTIMATION IN TIME SERIES * J. R. BLUM, JUDAHROSENBLATT
- AMS 69 1033 MARTINGALES WITH INDEPENDENT INCREMENTS * P. WARWICK MTLLAR.
- AMS 69 1042 ADMISSIBILITY OF THE USUAL CONFIDENCE SETS FOR THE MEAN OF A UNIVARIATE OR BIVARIATE NORMAL POPULATION * V. M. JOSHI
- AMS 69 1068 ANI.-TO-THE-P CONVERGENCE THEOREM * S. D. CHATTER II
- AMS 69 1071 UNIFORM CONVERGENCE OF FAMILIES OF MARTINGALES * N. F. G. MARTIN
- AMS 69 1074 THE VARIANCE OF THE ONE-SIDED STOPPING RULES * DAVID SIEGMUND
- AMS 69 107B A NOTE ON SEQUENCES OF CONTINUOUS PARAMETER MARKOV CHAINS * THOMAS G. KURTZ
- AMS 69 1083 CAUCHY-DISTRIBUTED FUNCTIONS AND A CHARACTERIZATION OF THE CAUCHY DISTRIBUTION * E. J. WILLIAMS
- AMS 69 1086 A REMARK ON THE KOLMOGOROFF~PETROVSKII CRITERION * P. J. BICKEL
- AMS 69 1091 AN INEQUALITY AND ALMOST SURE CONVERGENCE * EUS-TRATIOS G. KOUNIAS, TENG-SHAN WENG

- AMS 69 1094 ON THE BAYES CHARACTER OF A STANDARD MODEL II ANALYSIS OF VARIANCE TEST * R. H. FARRELL
- AMS 69 109B ON THE A PRIORI DISTRIBUTION OF THE COVARIANCE MATRIX * C. VILLEGAS
- AMS 69 1100 MAXIMUM LIKELIHOOD ESTIMATION OF MULTIVARIATE COVARIANCE COMPONENTS FOR THE BALANCED ONE-WAY LAYOUT * JEROME KLOTZ, JOSEPH PUTTER
- AMS 69 1106 MONOTONICITY OF THE VARIANCE UNDER TRUNCATION AND VARIATIONS OF HENSEN'S INEQUALITY * Y. S. CHOW, W. J. STUDDEN
- AMS 69 1109 INFINITELY DIVISIBLE RENEWAL DISTRIBUTIONS * F. W STEUTEL.
- AMS 69 1114 A SHORT PROOF OF A KNOWN LIMIT THEOREM FOR SUM OF INDE-PENDENT RANDOM VARIABLES WITH INFINITE EXPECTA-TIONS * BERT FRISTEDT
- AMS 69 1116 A NOTE ON CHERNOFF-SAVACE THEOREMS * RONALD PYKE, GALENR, SHORACK
- AMS 69 1120 A CHARACTERIZATION OF THE UPPER AND LOWER CLASSES IN TERMS OF CONVERGENCE RATES * JAMES AVERY DAVIS
- AMS 69 1124 NOTE ON WEYL'S CRITERION AND THE UNIFORM DISTRIBUTION OF INDEPENDENT RANDOM VARIABLES * P. J. HOLEWIJN
- AMS 69 1126 A UNIFORM OPERATOR ERGODIC THEOREM * E. M. KLIMKO
- AMS 69 1130 NOTE ON COMPLETELY MONOTONE DENSITIES * F. W. STEUTEL AMS 69 1167 STARSHAPED TRANSFORMATIONS AND THE POWER OF RANK TESTS * KJELL DOKSUM
- AMS 69 1177 BAYES' METHOD FOR BOOKIES * ROGER A. PURVES, DAVID A FREEDMAN
- AMS 69 1187 ESTIMATION OF A PROBABILITY DENSITY FUNCTION AND ITS DERIVATIVES * EUGENE F. SCHUSTER
- AMS 69 1196 ASYMPTOTIC THEORY OF A CLASS OF TESTS FOR UNIFORMITY
- OF A CIRCULAR DISTRIBUTION * R. J. BERAN AMS 69 1207 ASYMPTOTICALLY MOST POWERFUL TESTS IN MARKOV PROCESSES * GEORGE C . ROUSSAS , RICHARD A . JOHNSON
- AMS 69 1216 TEST FOR MONOTONE FAILURE RATE BASED ON NORMALIZED SPACINC * K. DOKSUM, PETER BICKEL
- AMS 69 1236 MOMENTS OF A STOPPING RULE RELATED TO THE CENTRAL LIMIT THEOREM * BRUCE M . BROWN
- AMS 69 1250 TESTS FOR MONOTONE FAILURE RATE, II * P. J. BICKEL
- AMS 69 1261 UNBIASED ESTIMATION OF SOME MULTIVARIATE PROBABILITY DENSITIES * S. G. GHURYE, INGRAMOLKIN
- AMS 69 1272 EPSILON ENTROPY OF GAUSSIAN PROCESSES EDWARD C. POSNER, EUGENER. RODEMICH, HOWARD RUMSEY JR
- AMS 69 1297 SOME MULTIPLE PRODUCTS OF POLYKAYS * DERRICKS. TRACY AMS 69 1300 ON PARTITIONING A SET OF NORMAL POPULATIONS BY THEIR
- LOCATIONS WITH RESPECT TO A CONTROL * YUNG LIANG TONG AMS 69 1325 A CLASS OF RANK ORDER TESTS FOR A GENERAL LINEAR HYPOTHESIS * MADAN LAL PURI, PRANAB KUMAR
- AMS 69 1344 GENERALIZED LEAST-SQUARES ESTIMATION OF A SUBVECTOR OF PARAMETERS IN RANDOMIZED FRACTIONAL FACTORIAL EXPERIMENTS * M. M. LENTNER
- AMS 69 1353 CONSISTENT ESTIMATION OF A LOCATION PARAMETER IN THE PRESENCE OF AN INCIDENTAL SCALE PARAMETER * J. PFANZGL
- AMS 69 135B TESTING AND ESTIMATION FOR A CIRCULAR STATIONARY MODEL * INCRAM OLKIN, S. J. PRESS
- AMS 69 1374 A TEST OF EQUALITY OF TWO NORMAL POPULATION MEANS AS-SUMING HOMOGENEOUS COEFFICIENTS OF VARIATION * R. K. LOHRDING
- AMS 69 13B6 NONPARAMETRIC ESTIMATION OF THE TRANSITION DISTRIBU-TION FUNCTION OF A MARKOV PROCESS * GEORGE ROUSSAS
- AMS 69 1401 THE CANONICAL CORRELATION COEFFICIENTS OF BIVARIATE GAMMA DISTRIBUTIONS * R. C. GRIFFITHS
- AMS 69 1409 ON THE ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNC-TIONAL OF THE WIENER PROCESS * A. D. WYNER
- AMS 69 1419 A GENERAL THEORY OF SUBJECTIVE PROBABILITIES AND EX-PECTED UTILITIES * PETER C . FISHBURN
- AMS 69 1430 QUADRATIC FORMS AND IDEMPOTENT MATRICES WITH RANDOM ELEMENTS * F. A. GRAYBILL, GEORGE MILLIKEN
- AMS 69 1439 DISTRIBUTION OF A PRODUCT AND THE STRUCTURAL SETUP OF DENSITIES * R. K. SAXENA, A. M. MATHAI
- AMS 69 1449 THE SMIRNOV TWO SAMPLE TESTS AS RANK TESTS * C. P. STECK
- AMS 69 1467 A STABLE LIMIT THEOREM FOR MARKOV TESTS * STEPHEN R KIMBLETON
- AMS 69 1474 NOTE ON A THEOREM OF DYNKIN ON THE DIMENSION OF SUFFI-CIENT STATISTICS * J . L . DENNY
- AMS 69 1477 SMOOTHING BY CHEATING * JAMES M. DICKEY
- AMS 69 14B3 INADMISSIBILITY OF THE BEST INVARIANT TEST WHEN THE MOMENT IS INFINITE UNDER ONE OF THE HYPOTHESES * MAR-TIN FOX. S. K. PERNG
- AMS 69 14B6 SOME DISTRIBUTION-FREE MULTIVARIATE COMPARISON PROCEDURES * RYOJI TAMURA
- AMS 69 1492 STRONG CONSISTENCY OF CERTAIN SEQUENTIAL ESTIMATORS * ROBERT H . BERK
- AMS 69 1496 DENSITY ESTIMATION OF ORTHOGONAL SERIES * GEOFFREY S WATSON
- AMS 69 1499 UNIFORM CONSISTENCY OF SOME ESTIMATES OF A DENSITY FUNCTION * DAVIDS. MOORE, E.G. HENRICHON

- AMS 69 1503 ZEROES OF INFINITELY DIVISIBLE DENSITIES * MICHAEL J. SHARPE
- AMS 69 1506 BOUNDS ON MOMENTS OF SUMS OF RANDOM VARIABLES * KUMAR JOCDEO, S. W. DHARMADHIKARI
- AMS 69 1523 UNBIASED ESTIMATION IN CONVEX FAMILIES * P. J. BICKEL, E. L. LEHMANN
- AMS 69 1536 ON AN EXTENDED COMPOUND DECISION PROBLEM * DENNIS C. GILLILAND, JAMES F. HANNAN
- AMS 69 1542 ESTIMATION OF PARAMETERS IN A TRANSIENT MARKOV CHAIN ARISINC IN A RELIABILITY CROWTH MODEL * M. DUBMAN, B. SHERMAN
- AMS 69 1557 ADMISSIBLE DESIGNS FOR POLYNOMIAL SPLINE REGRESSION
 * WILLIAM J. STUDDEN, D. J. VAN ARMAN
- AMS 69 1570 OPTIMAL AND EFFICIENT DESIGNS OF EXPERIMENTS * CORWIN L. ATWOOD
- AMS 69 1603 THE LOOSE SUBORDINATION OF DIFFERENTIAL PROCESSES TO BROWNIAN MOTION * BARTHEL W. HUFF
- AMS 69 1610 STOCHASTIC INTEGRALS AND DERIVATIVES * DEAN ISAACSON AMS 69 1617 CONDITIONS FOR OPTIMALITY AND VALIDITY AND SIMPLE
- LEAST SQUARES THEORY * SUJIT KUMAR MITRA, C. RADHAK-RISHNARAO
- AMS 69 1625 HOMOCENEOUS GAUSS-MARKOV RANDOM FIELDS * EUGENE WONC AMS 69 1635 DISCRETE DYNAMIC PROGRAMMINC WITH SENSITIVE DISCOUNT
- OPTIMALITY CRITERIA * ARTHUR F. VEINOTT JR

 AMS 69 1661 A NOTE ON ESTIMATING A UNIMODAL DENSITY * EDWARD J.

 WECMAN
- AMS 69 1668 ON A CLASS OF RANK ORDER TESTS FOR THE PARALLELISM OF SEVERAL RECRESSION LINES * PRANAB KUMAR SEN
- SEVERAL RECRESSION LINES: PRANAB RUMAR SEN
 AMS 69 1684 MINIMAX RISK AND UNBIASEDNESS FOR MULTIPLE DECISION
 PROBLEMS OF TYPE 1 * WILLEM SCHAAFSMA
- AMS 69 1721 CHARACTERIZATIONS OF THE LINEAR EXPONENTIAL FAMILTY
 IN A PARAMETER BY RECURRENCE RELATIONS FOR FUNCTIONS
 OF CUMULANTS * D. C. DOSS
- AMS 69 1728 A CONSISTENT ESTIMATOR FOR THE IDENTIFICATION OF FINITE MIXTURES * S. YAKOWITZ
- AMS 69 1736 SOME PROPERTIES AND AN APPLICATION OF A STATISTIC ARISINC IN TESTING CORRELATION * J. S. MEHTA, JOHN GURLAND
- AMS 69 1746 THE MAXIMUM VARIANCE OF RESTRICTED UNIMODAL DISTRIBU-TIONS * HAROLD I. JACOBSON
- AMS 69 1753 SOME STRIKING PROPERTIES OF BINOMIAL AND BETA MOMENTS * MORRIS SKIBINSKY
- AMS 69 1765 ON STRONG CONSISTENCY OF DENSITY ESTIMATES * J. VAN RYZIN
- AMS 69 1773 ON DISTINCUISHING TRANSLATES OF MEASURES * MAREK KANTER
- AMS 69 1778 MINIMAX RESULTS FOR IFRA SCALE ALTERNATIVES * KJELL DOKSUM
- AMS 69 1784 A ROBUST POINT ESTIMATOR IN A GENERALIZED REGRESSION MODEL * P. V. RAO, J. I. THORNBY
- AMS 69 1791 ON A CLASS OF NONPARAMETRIC TWO-SAMPLE TESTS FOR CIR-CULAR DISTRIBUTIONS * SIEGFRIED SCHACH
- AMS 69 1801 INADMISSIBILITY OF THE BEST INVARIATE ESTIMATOR OF EXTREME QUANTILES OF THE NORMAL DISTRIBUTION UNDER SQUARED ERROR LOSS * J. V. ZIDEK
- AMS 69 1809 ASYMPTOTICALLY NEARLY EFFICIENT ESTIMATORS OF MUL-TIVARIATE LOCATION PARAMETERS * D.S. MOORE
- AMS 69 1824 LIMITING SETS AND CONVEX HULLS OF SAMPLES FROM PRODUCT MEASURES * LLOYD FISHER
- AMS 69 1833 RESULTS FROM THE RELATION BETWEEN TWO STATISTICS OF THE KOLOMOGOROV-SMIRNOV TYPE * M. A. STEPHENS
- AMS 69 1838 A NOTE ON THE TEST FOR THE LOCATION PARAMETER OF AN EX-PONENTIAL DISTRIBUTION * KEI TAKEUCHI
- AMS 69 1840 NEAR-CYCLIC REPRESENTATIONS FOR SOME RESOLUTION VI FRACTIONAL FACTORIAL PLANS * D. A. PREECE
- AMS 69 1844 NOTE ON THE THREE SERIES THEOREM * DEAN ISAACSON
- AMS 69 1845 A DECOMPOSITION THEOREM FOR VECTOR VARIABLES WITH A LINEAR STRUCTURE * C. RADHAKRISHNA RAO
- AMS 69 1850 A BRANCHING PROCESS WITHOUT REBRANCHING * I. R. SAVAGE, I. N. SHIMI

- AMS 69 1852 DIVERCENCE PROPERTIES OF SOME MARTINCALE TRANSFORMS
 * BURGESS DAVIS
- AMS 69 NO.6 ASYMPTOTIC LINEARITY OF A RANK STATISTIC IN RECRES-SION PARAMETER * JANA JURECKOVA
- AMS 69 NO.6 ON THE MATRIX RENEWAL FUNCTION FOR MARKOV RENEWAL PROCESSES * J. KEILSON
- AMS 69 NO.6 ON THE PROBABILITY OF LARCE DEVIATIONS AND EXACT
 SLOPES*CERALD L. SIEVERS
 AMS 69 NO.6 INEQUALITIES OF CHEBYSHEV TYPE INVOLVING CONDITIONAL
- EXPECTATIONS * C. L. MALLOWS. DONALD RICHTER

 AMS 69 NO.6 CONTRIBUTIONS TO THE K-SAMPLE PROBLEM, A SYMMETRIC
- AMS 69 NO.6 CONTRIBUTIONS TO THE K-SAMPLE PROBLEM, A SYMMETRIC STATISTIC * M. SCHULZER
- AMS 69 NO.6 ASYMPTOTIC BEHAVIOR OF WILCOXON TYPE CONFIDENCE RE-CIONS IN MULTIPLE LINEAR RECRESSION * HIRA LAL KOUL
- AMS 69 NO.6 THE MARKOV INEQUALITY FOR SUMS OF INDEPENDENT RANDOM
- VARIABLES * S. M. SAMUELS

 AMS 69 NO.6 THE LAW OF THE ITERATED LOCARITHM FOR MIXINC
 STOCHASTIC PROCESSES * WALTER PHILIPP
- AMS 69 NO.6 ASYMPTOTIC NORMALITY OF SIMPLE LINEAR RANK STATISTICS
 UNDER ALTERNATIVES, II * VACLAV DUPAC, JAROSLAV
 HAJEK
- AMS 69 NO.6 ON BARTLETT'S TEST AND LEHMANN'S TEST FOR HOMOCENEITY
 OF VARIANCES * NARIAKI SUGIURA, HISAO NACAO
- AMS 69 NO.6 ON THE DISTRIBUTIONS OF THE RATIOS OF THE ROOTS OF A COVARIANCE MATRIX AND WILKS' CRITERION FOR TESTS OF THREE HYPOTHESES * K. C. S. PILLAI, S. AL-ANI, G. M. JOHRTS
- AMS 69 NO.6 ASYMPTOTIC NORMALITY OF LINEAR COMBINATIONS OF FUNC-TIONS OF ORDER STATISTICS * GALEN R. SHORACK
- AMS 69 NO.6 ASYMPTOTIC EXPANSIONS OF THE DISTRIBUTIONS OF THE LIKELIHOOD RATIO CRITERIA FOR COVARIANCE MATRIX * NARIAKI SUGIURA
- AMS 69 NO.6 CONSISTENT ESTIMATES OF THE PARAMETERS OF A LINEAR
 SYSTEM * WILLIAM N. ANDERSON JR, GEORGE B. KLEINDORFER, PAULR. KLEINDORFER, MICHAEL B. WOODROOFE
- AMS 69 NO.6 JACKKNIFINGU-STATISTICS * JAMES N. ARVESEN
- AMS 69 NO.6 RANK ORDER TESTS FÖR MULTIVARIATE PAIRED COMPARISONS
 * HAROLD D. SHANE, MADAN L. PURI
- AMS 69 NO.6 WEAK QUALITATIVE PROBABILITY ON FINITE SETS * PETER C. FISHBURN
- AMS 69 NO.6 BAYESIAN MODEL OF DECISION-MAKING AS A RESULT OF
 LEARNING FROM EXPERIENCE * BRUNO O. SHUBERT
 AMS 69 NO.6 THE RELATION OF THE EQUIVALENCE CONDITIONS FOR THE
- BROWNIAN MOTION TO THE EQUIVALENCE CONDITIONS FOR CERTAIN STATIONARY PROCESSES * BENNETT EISENBERG
- AMS 69 NO.6 OPTIMUM ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION AND SCALE PARAMETERS * NANCY R. MANN
- AMS 69 NO.6 ON THE OPTIMUM RATE OF TRANSMITTING INFORMATION * J.

 H. B. KEMPERMAN

 AMS 69 NO.6 ON EXTENDED RATE OF CONVERGENCE RESULTS FOR THE IN-
- VARIANCE PRINCIPLE * C. C. HEYDE

 AMS 69 NO.6 A BOUND FOR THE VARIATION OF GAUSSIAN DENSITIES * S.
- AMS 69 NO.6 SUFFICIENT CONDITION FOR THE MIXTURE OF EXPONENTIALS

 TO BE A PROBABILITY DENSITY FUNCTION * D. J.
- BARTHOLOMEW

 AMS 69 NO.6 EXPRESSION OF VARIANCE-COMPONENT ESTIMATORS AS
 LINEAR COMBINATIONS OF INDEPENDENT NONCENTRAL CHI-
- SQUARE VARIATES * DAVID A . HARVILLE
 AMS 69 NO .6 ON THE RATE OF CONVERCENCE FOR THE LAW OF LARGE NUMBERS
- * TERRY J. WACNER

 AMS 69 NO.6 A COMPARISON OF THE ASYMPTOTIC EXPECTED SAMPLE SIZES
 OF TWO SEQUENTIAL PROCEDURES FOR RANKING PROBLEM *
 S. K. PERNG
- AMS 69 NO.6 THE GROWTH OF A RANDOM WALK * CHARLES J. STONE
- AMS 69 NO.6 A NOTE ON EXCHANCEABLE PROCESSES WITH STATES OF FINITE RANK * S. W. DHARMADHIKARI
- AMS 69 NO.6 A TEST FOR SYMMETRY USING THE SAMPLE DISTRIBUTION FUNCTION * CALVIN C. BUTLER
- AMS 69 NO.6 A NOTE ON THRIFTY STRATEGIES AND MARTINGALES IN A FINITELY ADDITIVE SETTING WILLIAM D. SUDDERTH * WILLIAM D. SUDDERTH

- BIOCS65 1 THE STUDY OF POPULATION CROWTH IN ORCANISMS CROUPED BY STACES * L. P. LEFKOVITCH
- 19 THE ROBUSTNESS OF HOMOGENEITY TESTS IN 2 BY N TABLES * BIOCS65 R. C. LEWONTIN, J. FELSENSTEIN
- 34 FITTING OF SOME CONTAGIOUS DISTRIBUTIONS TO SOME BIOCS65 AVAILABLE DATA BY THE MAXIMUM LIKELIHOOD METHOD (CORR. 65 514) * D. C. MARTIN, S. K. KATTI
- BIOCS65 49 BIOLOGICAL EXAMPLES OF SMALL EXPECTED FREQUENCIES * S. K. KATTI, A. N. SASTRY
- 55 SAMPLINC ERRORS IN AN ORCHARD SURVEY INVOLVING BIOCS65 UNEQUAL NUMBERS OF ORCHARDS OF DISTINCT TYPE * D. A. HOLLAND.
- BIOCS65 63 EXAMINATION OF A REPEAT MATING DESIGN FOR ESTIMATING ENVIRONMENTAL AND GENETIC TRENDS * F. GIESBRECHT, O. KEMPTHORNE
- BTOCS65 B6 COMBINATION OF RESULTS FROM SEVERAL 2 BY 2 CONTINGENCY TABLES * S. RADHAKRISHNA
- 99 MORTALITY PATTERNS IN EIGHT STRAINS OF FLOUR BEETLE * BIOCS65 D. B. MERTZ, T. PARK, W. J. YOUDEN
- 115 ANALYSIS OF VARIANCE OF DISPROPORTIONATE DATA WHEN BIOCS65
- INTERACTION IS PRESENT * D. G. GOSSLEE, H. L. LUCAS
 134 STOCHASTIC PHAGE ATTACHMENT TO BACTERIA * J. GANI BIOCS65
- 140 A SIMPLE METHOD OF ESTIMATING RELATIVE POTENCY FROM BIOCS65 TWO PARABOLAS * R. C. ELSTON
- 150 A SCREENING SYSTEM FOR ANTI-CANCER AGENTS BASED ON THE BTOCS65 THERAPEUTIC INDEX * N. BROCK, B. SCHNEIDER
- BTOCS65 159 UNUSUAL FREQUENCY DISTRIBUTIONS * D. J. NEWELL
- 169 A TWO-STACE MODEL FOR SELECTING ONE OR TWO TREATMENTS BIOCS65 * T COLTON
- BTOCS65 1B1 AN ALTERNATIVE SYSTEM FOR THE CLASSIFICATION OF MATHEMATICAL MODELS FOR QUANTAL RESPONSES TO MIX-TURES OF DRUGS IN BIOLOCICAL ASSAY * J. R. ASHFORD, C. S. SMITH
- BIOCS65 190 FACTOR ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 1. THE PURPOSE AND UNDERLYING MODELS * R. B. CATTELL
- BTOCS65 216 NOTES. THE ANALYSIS OF A DIALLEL CROSSING EXPERIMENT WITH CERTAIN CROSSES MISSING * P. ROBINSON
- BIOCS65 219 NOTES.TABLES OF PEARSON-LEE-FISHER FUNCTIONS OF SINGLY TRUNCATED NORMAL DISTRIBUTIONS * A. L. CICCHINELLI
- BIOCS65 226 NOTES.ORTHOGONAL POLYNOMIALS FOR UNEQUALLY WEIGHED MEANS * P. L. EMERSON
- BIOCS65 231 NOTES. CONFIDENCE LIMITS FOR A RATIO USING WILCOXON'S SIGNED RANK TEST * B. M. BENNETT
- BIOCS65 235 NOTES. ON ESTIMATING THE ARITHMETIC MEANS OF LOGNOR-MALLY-DISTRIBUTED POPULATIONS * P. D. OLDHAM
- 265 CORRECTION TO 'COEFFICIENTS OF VARIATION OF HERITA-BIOCS65 BILITY ESTIMATES OBTAINED FROM VARIANCE ANALYSES' * THOMAS P. BOGYO
- 291 ON THE CONSTRUCTION OF AN INDEX FOR INDIRECT SELECTION BIOCS65 * F. E. BINET
- BIOCS65 300 REGRESSION ANALYSIS WITH DEPENDENT VARIABLE CENSORED * M. glasser
- BIOCS65 308 TWO-WAY ANALYSIS OF VARIANCE FOR THE MIXED MODEL WITH DISPROPORTIONATE SUBCLASS FREQUENCIES * P. MIELKE, R. B. MCHUGH
- BIOCS65 324 COMPOSITE DESIGNS BASED ON IRREGULAR FRACTIONS OF FACTORIALS (CORR. 65 1036) * W. J. WESTLAKE
- 337 ON INFERRING ORDER RELATIONS IN ANALYSIS OF VARIANCE BIOCS65 * E. PERITZ
- BIOCS65 345 L'ETUDE DES COMMUNAUTES VEGETALES PAR L'ANALYSE STATISTIQUE DES LIAISONS ENTRE LES ESPECES ET LES VARIABLES ECOLOGIQUES, PRINCIPES FONDAMENTAUX * P. DAGNELIE
- 362 A METHOD FOR CLUSTER ANALYSIS * A. W. F. EDWARDS, L. L. BIOCS65 CAVALLT-SFORZA
- BIOCS65 376 AN APPROXIMATE METHOD OF ANALYSIS FOR A TWO-WAY LAYOUT * A. M. MATHAI
- BIOCS65 386 THE ADEQUACY OF THE DIFFUSION APPROXIMATION TO CER-TAIN DISTRIBUTIONS IN GENETICS * W. J. EWENS
- BIOGS65 395 FURTHER EVIDENCE ON THE CONSISTENCY OF ESTIMATES OF VARIANCE COMPONENTS * W. A. GOMPTON, G. O. GARDNER, J. H. LONNQUIST
- 405 FACTOR ANALYSIS, AN INTRODUCTION TO ESSENTIALS. 2. BIOCS65 THE ROLE OF FACTOR ANALYSIS IN RESEARCH * RAYMOND B. CATTELL.
- 436 THE EXPECTED MEAN SQUARES IN GENETIC EXPERIMENTS WHEN BIOCS65 ONLY ONE PARENT IS IDENTIFIED * B. B. BOHREN, H. E. MCKEAN, G. W. FRIARS
- BIOCS65 447 EXPECTED EFFECTS ON THE INBREEDING COEFFICIENT AND RATE OF GENE LOSS OF FOUR METHODS OF REPRODUCING FINITE DIPLOID POPULATIONS * P. ROBINSON, D. F. BRAY
- BIOCS65 459 LISTING EXPECTED MEAN SQUARE COMPONENTS * M. LENTNER
- 467 THE TWO-PERIOD CHANGE-OVER DESIGN AND ITS USE IN CLINICAL TRAILS * J. E. GRIZZLE

- BIOCS65 481 A MODEL FOR THE SPREAD OF EPIDEMICS BY CARRIERS * G. H. WEISS
- BIOCS65 491 HARMONIC ANALYSIS OF THE HUMAN FACE * K. H. LU
- BIOCS65 506 NOTE. A METHOD OF FITTING A NON-LINEAR CURVE CONTAIN-INC A SINCLE NON-LINEARITY * B . SHAH
- BIOCS65 529 THE ESTIMATION OF MORTALITY AND RECRUITMENT FROM A SINGLE TAGGINC EXPERIMENT * D. G. CHAPMAN
- BIOCS65
- 543 THE DISTRIBUTION OF ORGANISMS * G. S. WATSON
 551 MATHEMATICAL REPRESENTATION OF THE BIOLOGICAL AND
 PHYSICAL DECAY OF CHAMBER AEROSOLS * T. W. HORNER BIOCS65
- BTOCS65 562 A STOCHASTIC MODEL FOR DISTRIBUTIONS OF BIOLOGICAL RESPONCE TIMES * G . SHORTLEY
- 583 SOME STOCHASTIC MODELS RELATING TIME AND DOSAGE IN BTOCS65 RESPONSE CURVES * J. J. CART 600 THE ESTIMATION OF CONCENTRATION OF VIRUSES AND BAC-
- BIOCS65 TERIA FROM DILUTION COUNTS * E. A. ROBERTS, G. G. COOTE
- BIOCS65 616 ON COMBINING THE RESULTS FROM CLINICAL TRIALS OF A VACCINE * J. P. R. TOOTILL
- BTOCS65 623 THE EFFICIENCY OF MATCHED SAMPLES * W. Z. BILLEWICZ
- 645 THE IDENTIFICATION OF ANNUAL PEAK PERIODS FOR A DIS-BIOCS65 EASE * H. A. DAVID, D. J. NEWELL
- BIOCS65 651 PAIRED COMPARISON MODELS WITH TESTS FOR INTERACTION * J. C. OCILVIE
- BTOCS65 665 A GENERALIZATION OF THE INBREEDING COEFFICIENT * M SHIKATA
- 682 THE VALUE OF INDIRECT SELECTION, 1. MASS SELECTION * BIOCS65 S. R. SEARLE
- BIOCS65 70B GENERALIZATION AND REPARAMETERIZATION OF SOME SIG-MOID OR OTHER NONLINEAR FUNCTIONS * L. R. CROSEN-RAHCH
- BTOCS65 715 FITTING A STRAIGHT LINE TO DATA FROM A TRUNCATED POPU-LATION * P HOLGATE
- BIOCS65 721 A GENERALISED LOGIT-NORMAL DISTRIBUTION * R. MEAD
- BIOCS65 733 APPROXIMATE CONFIDENCE LIMITS FOR THE COEFFICIENT OF VARIATION IN CAMMA DISTRIBUTIONS * H. LINHART
- BIOCS65 739 THE CORRELATION BETWEEN FEED EFFICIENCY AND RATE OF GAIN, A RATIO AND ITS DENOMINATOR * T. M. SUTHERLAND
- BIOCS65 750 QUERY + (ON FORMULA FOR DETERMINING THE INCIDENCE OF MUTANT GENES) * A. C. NELSON, C. A. B. SMITH
- BIOCS65 752 NOTES. ESTIMATION AFTER PRELIMINARY TESTING IN ANOVA MODELI*S.R.SRIVASTAVA, V.P.GUPTA
- BIOCS65 785 THE MEANING OF BIOASSAY * D. J. FINNEY
- BIOCS65 799 SOME FURTHER APPLICATIONS OF NON-PARAMETRIC METHODS INDILUTION (-DIRECT) ASSAYS * P. K. SEN BTOCS65
- B11 AN ANALYSIS OF QUANTAL RESPONSE DATA IN WHICH THE MEA-SUREMENT OF RESPONSE IS SUBJECT TO ERROR * J. R. ASH-FORD, C. S. SMITH
- B26 ESTIMATION OF EXPONENTIAL SURVIVAL PROBABILITIES BIOCS65 WITH CONCOMITANT INFORMATION * P. FEICL, M. ZELEN
- 839 EMPERICAL RELATIONSHIP OF LUNG CANCER INCIDENCE TO BIOCS65 CIGARETTE SMOKING AND A STOCHASTIC MODEL FOR THE MODE OF ACTION OF CARCINOGENS * H. J. A. KREYBERG
- 858 SPEARMAN ESTIMATION FOR A SIMPLE EXPONENTIAL MODEL * BIOCS65 R. G. CORNELL
- BIOCS65 865 GROUP SCREENING UTILIZING BALANCED AND PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS * C. E. REDMAN, E. P. KING
- BIOCS65 875 A MODEL FOR CHEMICAL MUTAGENESIS IN BACTERIOPHAGE * A W. KIMBALL
- BIOCS65 890 L'ETUDE DES COMMUNAUTES VECETALES PAR L'ANALYSE STATISTIQUE DES LIAISONS ENTRE LES ESPECES ET LES VARIABLES ECOLOGIQUES, UN EXEMPLE * P. DAGNELIE
- 908 THE CONCEPT OF RANDOMNESS IN THE PATTERNS OF MOSAICS * BTOCS65 E. C. PIELOU
- BTOCS65 921 ESTIMATES OF MORALITY AND POPULATION FROM SURVEY-REMOVAL RECORDS * D. G. CHAPMAN, G. I. MURPHY
- BIOCS65 NONPARAMETRIC STATISTICAL METHOD FOR CULLING RECRUITS FROM A MARK-RECAPTURE EXPERIMENT * D. S. ROBSON, W. A. FLICK
- BIOCS65 948 ON THE CONSTRUCTION AND ANALYSIS OF SOME CONFOUNDED ASYMMETRICAL FACTORIAL DESIGNS * M. C. SARDANA, M. N. DAS
- BIOCS65 957 MULTIPLE COVARIATE ANALYSIS (CORR. 66 962) * S. K. KATTT
- BIOCS65 975 ANALYSIS OF COMPETITION EXPERIMENTS * C. A. MC-GILCHRIST
- BIOGS65 986 AN EXACT PROBABILITY DISTRIBUTION OVER SAMPLE SPACES OF PAIRED COMPARISONS * B. J. TRAWINSKI
- BIOCS65 1001 ESTIMATES OF HERITABILITY FROM TRANSFORMED PERCENT-ACE SIB DATA WITH UNEQUAL SUBCLASS NUMBERS * T. PBOGYO, W. A. BECKER
- BIOCS65 1008 NOTES. A NOTE ON COCHRAN'S Q TEST * J. L. FLEISS
- BIOCS65 1011 NOTES.GOMPUTINC A DISCRIMINANT FUNCTION FROM WITHIN-SAMPLE DISPERSIONS * M. J. R. HEALY
- BIOCS65 1012 NOTES. FURTHER ANALYSIS OF R. A. FISHER'S ENUMERA-TIONS IN CENETICS * H. O. FOULKES

BIOCS66

- BIOCS66 1 SOME ROW AND COLUMN DESIGNS FOR TWO SETS OF TREATMENTS
 * D . A . PREECE
- BIOCS66 26 MULTIPLE REGRESSION COMBINING WITHIN- AND BETWEEN-PLOTINFORMATION * D. B. DUNCAN, M. WALSER
- BIOCS66 44 INTERRELATIONS AMONC CENERALIZED DISTRIBUTIONS AND THEIR COMPONENTS * S. K. KATTI
- BIOCS66 53 A QUANTITATIVE DISCUSSION OF THE EFFECTIVENESS OF VOIDING AS A DEFENCE AGAINST BLADDER INFECTION * J. R. BOEN, D. SYLWESTER
- BIOCS66 58 THE CHICK ASSAY OF LYSINE * R. C. CAMPBELL
- BIOCS66 74 A GENERAL USE OF THE POISSON APPROXIMATION FOR BINOMI-AL EVENTS, WITH APPLICATION TO BACTERIAL ENDOCAR-DITIS DATA * H. B. EISENBERC, R. R. M. CEOCHAGEN, J. E. WALSH
- BIOCS66 83 MODELS FOR COMPLEX CONTINGENCY TABLES AND POLYCHOTOMOUS DOSAGE RESPONSE CURVES * N. MANTEL
- 810CS66 96 GROWTH-INVARIANT DISCRIMINANT FUNCTIONS AND GENERALIZED DISTANCES * T. P. BURNABY
- BIOCS66 111 ON THE PROBLEM OF SELF-INCOMPATABILITY ALLELES * O MAYO
- BIOCS66 121 EQUILIBRIA UNDER SELECTION FOR K ALLELES * G. M. TAL-LIS
- BIOCS66 128 INVERSE POLYNOMIALS, A USEFUL GROUP OF MULTI-FACTOR RESPONSE FUNCTIONS * J. A. NELDER
- BIOCS66 142 A SUGGESTED METHOD OF ANALYSIS OF A CERTAIN CLASS OF EXPERIMENTS IN CARCINOGENESIS * M. C. PIKE
- BIOCS66 162 ON GROWTH PARAMETER ESTIMATION FOR EARLY LIFE STAGES
 * R. H. RIFFENBURGH
- BIOCS66 179 NOTES. APPROXIMATIONS TO THE CRITICAL VALUES FOR DUN-CAN'S MULTIPLE RANGE TEST * F. GEBHARDT
- BIOCS66 182 NOTES. CORRECTED CORRELATION COEFFICIENTS WHEN OB-SERVATION ON ONE VARIABLE IS RESTRICTED * N. MANTEL
- BIOCS66 1B7 THE SAMPLING VARIANCE OF THE CORRELATION COEFFICIENTS
 ESTIMATED IN GENETIC EXPERIMENTS * E. SCEINBERG
- BIOCS66 192 OBITUARY, FRANKWILCOXON
- BIOCS66 195 APPRECIATION, OTTOKAR HEINISCH (70TH BIRTHDAY, 23RD APRIL, 1966)
- BIOCSG6 233 COMPUTERS, THE SECOND REVOLUTION IN STATISTICS (THE FIRST FISHER MEMORIAL LECTURE) * F. YATES
- BIOCS66 252 LINEAR RELATIONSHIPS BETWEEN VARIABLES AFFECTED BY ERRORS * F. D. CARLSON, E. SOBEL, C. S. WATSON
- BIOCS66 26B ELIMINATION OF VARIATES IN LINEAR DISCRIMINATION PROBLEMS * J. M. WEINER, O. J. DUNN
- BIOCS66 276 FITTING CURVES TO LONGITUDINAL DATA * N. E. DAY
- BIOCS66 292 DESIGNS FOR SEQUENCES OF TREATMENTS WITH CARRY-OVER EFFECTS * G . F . ATKINSON
- BIOCS66 310 CHARACTERISTICS OF A RATIO USED TO ESTIMATE FAILURE
 RATES, OCCURRENCES PER PERSON YEAR OF EXPOSURE * M.
 C. SHEPS
- BIOCS66 322 PLANNING A QUANTAL ASSAY OF POTENCY * B. W. BROWN JR
- BIOCS66 330 A TEST FOR EQUAL CATCHABILITY * R. M. CORMACK
- BIOCS66 343 L'ANALYSE EN COMPOSANTES PRINCIPALES, SON UTILISA-TION EN GENETIQUE ET SES RAPPORTS AVEC L'ANALYSE DISCRIMINATOIRE*R.ROUVIER
- BIOCS66 358 STEREOSCOPIC MODELS OF MULTIVARIATE STATISTICAL DATA
 * A. R. FRASER, M. KOVATS
- BIOCS66 36B BALANCED INCOMPLETE BLOCK DESIGNS WITH DOUBLE GROUP-ING OF BLOCKS INTO REPLICATIONS * J. ROBINSON
- BIOCS66 374 ESTIMATION OF CROP YIELDS FOR SMALL AREAS * V. P PANSE, M. RAJAGOPALAN, S. S. PILLAI
- BIOCS66 3B5 SAMPLING TECHNIQUES FOR ESTIMATION OF INCIDENCE OF RED SPIDER MITE ON TEA CROP IN NORTH-EAST INDIA * A. R. SEN, R. P. CHAKRABARTY, A. R. SARKAR
- BIOCS66 404 NOTES. F-RATIO PROBABILITIES FROM BINOMIAL TABLES 'N. MANTEL
- BIOCS66 407 NOTES. A DEFICIENCY IN THE SUMMATION OF CHI PROCEDURE * B. PASTERNACK, N. MANTEL
- BIOCS66 409 NOTES. A MIGRATION MODEL * G. M. TALLIS
- BIOCS66 413 OBITUARY, O. HEINISCH
- BIOCSG6 439 ANALYSIS AND INTERPRETATION OF THE VARIETY CROSS DI-ALLEL AND RELATED POPULATIONS * C. O. GARDNER, S. A. EBERHART
- BIOCS66 453 EFFECTS OF PARTIAL ISOLATION (DISTANCE), MIGRATION,
 AND DIFFERENT FITNESS REQUIREMENTS AMONG ENVIRONMENTAL POCKETS UPON STEADY STATE GENE FREQUENCIES *
 W. D. HANSON

- BIOCS66 469 VECTORIAL ANALYSIS FOR CENETIC CLINES IN BODY DIMEN-SIONS IN POPULATIONS OF 'DROSOPHILIA SUBOBSCURA' COLL. AND A COMPARISON WITH THOSE OF 'D. ROBUSTA' STURT * R. K. MISRA
- BIOCS66 488 STATISTICAL ANALYSIS OF INTROCRESSION * C. NAMKOONC
 - 503 A CENERAL COMPUTER PROGRAMME FOR THE ANALYSIS OF FAC-TORIAL EXPERIMENTS * F. YATES, A. J. B. ANDERSON
- BIOCS66 525 ANALYSIS OF MULTIFACTOR CLASSIFICATIONS WITH UNEQUAL NUMBERS OF OBSERVATIONS * W. T. FEDERER, M. ZELEN
 BIOCS66 553 VARIANCES OF ESTIMATES OF VARIANCE COMPONENTS IN A
- THREE-WAY CLASSIFICATION * W. R. BLISCHKE
 BIOCS66 566 A NOTE ON CERTAIN DISCRETE MIXED DISTRIBUTIONS * A. C.
- COHEN JR
 BIOCS66 573 FITTINC THE RECTANCULAR HYPERBOLA * C. I. BLISS, A. T.
- JAMES
 BIOCS66 603 ON THE DETERMINATION OF CONFIDENCE LIMITS OF AN INDEX
 *S.D.DUBEY
- BIOCS66 610 CRAPHICAL PROCEDURES FOR USING DISTRIBUTION-FREE
 METHODS IN THE ESTIMATION OF RELATIVE POTENCY IN
 DILUTION (-DIRECT) ASSAYS * C. R. SHORACK
- BIOCS66 620 NOTES. MAXIMUM LIKELIHOOD ESTIMATION FOR THE TRUN-CATED POISSON * F. A. HAIGHT, G. R. FISCHER
- BIOCS66 623 NOTES. ON THE EVALUATION OF VARIABILITY IN ISOCENIC HYBRIDS * M. B. JONES
- BIOCS66 629 NOTES. APPLICATIONS OF NONORTHOGONAL DESIGNS TO SITUATIONS WHERE TREATMENTS OR BLOCKS ARE OF UNEQUAL STATUS OR SIZE * N. A. GOODCHILD
- BIOCS66 632 NOTES. ERRORS OF TREATMENT COMPARISONS WHEN OBSERVA-TIONS ARE MISSING FROM A RANDOMISED BLOCK EXPERIMENT WITH ADDITIONAL REPLICATION OF A CONTROL TREATMENT * D. A. WILLIAMS
- BIOCS66 634 OBITUARY, C. G. FRAGA, JR.
- BIOCS66 665 USE OF CONCOMITANT VARIABLES AND INCOMPLETE SURVIVAL
 INFORMATION IN THE ESTIMATION OF AN EXPONENTIAL SURVIVAL PARAMETER * C. ZIPPEN, P. ARMITACE
- 810CS66 673 ESTIMATION PAR LA METHODE DU MAXIMUM DE VRAISEMBLANCE
 DES COURBES DE SURVIE DE MICROORGANISMES IRRADIES *
 J. LELLOUCH, A. WAMBERSIE
- BIOCS66 6B4 COMPARATIVE SAMPLINC ACCEPTANCE SCHEMES IN TESTING
 ANTIGENICITY OF VACCINES * J. P. R. TOOTILL, C. N.
 HEBERT, A. ADAMS
- BIOCS66 706 INCOMPLETE BLOCK DESIGNS FOR BIO-ASSAYS * M. N. DAS, G. A. KULKARNI
- BIOCS66 730 SEQUENTIAL COMBINATION CHEMOTHERAPY EXPERIMENTS * S.
 ADDELMAN, D. W. GAYLOR, R. E. BOHRER
- BIOCS66 747 SOME CONSIDERATIONS IN MULTIVARIATE ALLOMETRY * J. W HOPKINS
- BIOCS66 761 ANALYSIS OF EFFECTS OF ANTIBIOTICS ON BACTERIA BY
 MEANS OF STOCHASTIC MODELS * S. NISSEN-MEYER
- BIOCS66 781 CORRELATIONS BETWEEN SIMILAR SETS OF MEASUREMENTS * M.H. DEGROOT, C.C.LI
- BIOCS66 791 A PATH-PROBABILITY APPROACH TO IRREVERSIBLE MARKOV
 CHAINS WITH AN APPLICATION IN STUDYING THE DENTAL
 CARIES PROCESS * K. H. LU
- BIOCS66 810 APPLICATION OF MULTIVARIATE ANALYSIS OF VARIANCE TO REPEATED MEASUREMENTS EXPERIMENTS * J. W. L. COLE, J. E. GRIZZLE
- BIOCS66 829 ANALYTICAL TECHNIQUE FOR INCOMPLETE BLOCK EXPERI-MENTS * E. P. CUNNINCHAM, C. R. HENDERSONN
- BIOCS66 843 THE EFFECT OF FIELD BLOCKING ON GAIN FROM SELECTION * W.M. SCHUTZ, C. C. COCKERHAM
- BIOCS66 864 A GENERAL MODEL FOR GENETIC EFFECTS * S. A. EBERHART, C.O.GARDNER
- BIOCS66 882 A NEW SIMILARITY INDEX BASED ON PROBABILITY * D. W. GOODALL
- BIOCS66 90B PROBABILITIES OF CORRECT CLASSIFICATION IN DISCRIMI-NANT ANALYSIS * O. J. DUNN, P. D. VARADY
- BIOCS66 925 CONTRIBUTIONS TO THE MATHEMATICS OF ANIMAL TRAPPING *
 P. HOLGATE
 BIOCS66 937 NOTE. THE QUASI-F TEST FOR AN UNNESTED FIXED FACTOR IN
- BIOCS66 937 NOTE. THE QUASI-F TEST FOR AN UNNESTED FIXED FACTOR IN AN UNBALANCED HIERARCHAL DESIGN WITH A MIXED MODEL * E. J. EISSEN

BIOMETRICS VOLUME 23, 1967

- BIOCS67 1 PUBLICATIONS OF FRANK WILCOXON (1892-1965) * J KARAS, I.R. SAVAGE
- BIOCS67 11 SOME EXPERIMENTAL SAMPLING RESULTS FOR REGRESSION
 ANALYSIS APPLIED TO GAMMA RAY SPECTROMETER DATA, 1 *
 B. S. PASTERNACK, A. LIUZZI
- BIOCS67 27 A COMPARISON OF TWO APPROACHES TO THE CONSTRUCTION OF
 MODELS FOR QUANTAL RESPONSES TO MIXTURES OF DRUGS *
 R. L. PLACKETT, P. S. HEWLETT
- BIOCS67 45 ADDITIVE COMBINING ABILITIES FITTED TO PLANT BREEDING
 DATA * N. GILBERT
- BIOCS67 51 A COMPARISON OF TWO LIFE TABLE METHODS * J. W. KUZMA

B100261	65	VATION * N. MANTEL	B100367	539	MENTS * A. L. RHYNE, R. C. D. STEEL
BIOCS67	79	ON THE USE OF THE CENERALIZED EXTREME-VALUE DISTRIBU-	BIOCS67	551	THE USE OF CORRELATED VARIABLES FOR PRELIMINARY
		TION IN ESTIMATING EXTREME PERCENTILES * J. S. MARITZ, A. H. MUNRO	BIOCS67	563	CULLINC * C. H. BROWN THE USE OF NON-LINEAR RECRESSION METHODS FOR ANALYS-
BIOCS67	105	EXPECTATIONS, VARIANCES AND COVARIANCES OF 'ANOVA'	22000,	000	INC SENSITIVITY AND QUANTAL RESPONSE DATA * R. H.
BT0000	115	MEAN SQUARES BY 'SYNTHESIS' * H. O. HARTLEY	BIOGS67	507	MOORE, R. K. ZEICLER
B100367	115	A SIMPLE METHOD OF RESOLUTION OF A DISTRIBUTION INTO CAUSSIAN COMPONENTS * C. C. BHATTACHARYA	BIOCS67	261	NOTES. ASSUMPTION-FREE ESTIMATORS USING USTATISTICS AND A RELATIONSHIP TO THE JACKKNIFE METHOD. * N. MAN-
BIOCS67	137	STATISTICAL TESTING OF DIFFERENCES IN CASUAL			TEL
		BEHAVIOUR OF TWO MORPHOLOCICALLY INDISTINCUISHABLE OBJECTS * V. YU. URBAKH	BIOCS67	571	NOTES. THE SQUARE-SUMMING CHECK ON THE MAIN EFFECTS AND INTERACTIONS IN A 2 TO THE POWER N FACTORIAL EX-
BIOCS67	145	LES MANQUANTS DANS L'ESSAI THERAPEUTIQUE * D.			PERIMENT AS CALCULATED BY YATES'S ALGORITHM * A. A.
2700000		SCHWARTZ, J. LELLOUCH	2700000		RAYNER
BIOC264	153	NOTES. EQUIVALENCE OF TWO METHODS OF COMPUTING DIS- CRIMINANT FUNCTION COEFFICIENTS * E. M. CRAMER	BIOCS67 BIOCS67		NOTES. CHECKS ON YATES'S ALGORITHM * I. J. COOD NOTES. CYCLIC GENERATION OF ROBINSON'S BALANCED IN-
BIOCS67	154	NOTES. EQUIVALENCE OF MAXIMUM LIKELIHOOD AND THE			COMPLETE BLOCK DESIGNS * D. A. PREECE
		METHOD OF MOMENTS IN PROBIT ANALYSIS * N. MANTEL, S. W. GREENHOUSE	BIOCS67	578	THE ANALYSIS OF CHANGEOVER DESIGNS WITH COMPLETE BALANCE FOR FIRST RESIDUAL EFFECTS * I. I. BERENBLUT
BIOCS67	158	NOTES. ON THE DILUTION ERRORS INVOLVED IN ESTIMATING	BIOCS67	581	FRENCH SUMMARIES OF PAPERS IN JUNE 1967 ISSUE
		BACTERIAL NUMBERS BY THE PLATING METHOD * A. J.	BIOCS67	623	A COMPARISON OF SOME METHODS OF CLUSTER ANALYSIS * J.
BIOCS67	189	HEDGES A MATHEMATICAL MODEL FOR THE ESTIMATION OF INTER-	BIOCS67	639	C. GOWER AN ALMOST UNBIASED METHOD OF OBTAINING CONFIDENCE IN-
		PLANT COMPETITION (CORRECTION TO REFERENCE 68 1025)			TERVALS FOR THE PROBABILITY OF MISCLASSIFICATION IN
BIOCS67	207	*R. MEAD SOME DEVELOPEMENTS IN 'DISTANCE SAMPLING' * L. L.	BIOCS67	647	DISCRIMINANT ANALYSIS * P. A. LACHENBRUCH THE DISTRIBUTION OF THE MATCHING COEFFICIENT * D. W.
D100301	201	EBERHARDT	D100501	041	GOODALL
BIOCS67	217	A PROBABILITY STRUCTURE FOR GROWTH CURVES * G. F.	BIOCS67	657	A TEST FOR RANDOM MINCLING OF THE PHASES OF A MOSAIC *
BIOCS67	227	KRAUSE, P. B. SIEGEL, D. C. HURST A NEW RESPONSE TIME DISTRIBUTION * D. KODLIN	BIOCS67	671	E.C. PIELOU A STUDY OF THE VARIABILITY DUE TO COINCIDENT PASSACE
BIOCS67		ON A CONTAGIOUS DISTRIBUTION SUGGESTED FOR ACCIDENT			IN AN ELECTRONIC BLOOD CELL COUNTER * M. MAZUMDAR, K.
BIOCS67	257	DATA * C. D. KEMP USE OF PRIOR INFORMATION TO DESIGN A ROUTINE PARALLEL	BIOCS67	695	L. KUSSMAUL A RAPID TEST FOR THE POISSON DISTRIBUTION USING THE
D100361	201	LINE ASSAY * J. R. BOEN, B. W. BROWN JR	B100367	000	RANGE * J. M. PETTIGREW, W. C. MOHLER
BIOCS67	269	GRAPHICALLY ORIENTED TESTS FOR HOST VARIABILITY IN	BIOCS67	693	INDICES OF SYNCHRONY IN CELLULAR CULTURES * D. G. BUR-
BIOCS67	285	DILUTION EXPERIMENTS * J. J. GART, G. H. WEISS THE EFFECTIVE USE OF BOTH POSITIVE AND NEGATIVE CON-	BIOCS67	717	NETT-HALL, W. A. O'N. WAUCH ESTIMATION FOR A SIMPLE EXPONENTIAL MODEL * R. G. COR-
		TROLS IN SCREENING EXPERIMENTS * A. J. GROSS, N. MAN-			NELL, JANACE A. SPECKMAN
BIOCS67	297	TEL THE VALUE OF ORTHOGONAL POLYNOMIALS IN THE ANALYSIS OF	BIOCS67	739	ADAPTATION OF KARBER'S METHOD FOR ESTIMATING THE EX- PONENTIAL PARAMETER FROM QUANTAL DATA, AND ITS RELA-
DIOCOCI	201	CHANGE-OVER TRIALS WITH DAIRY COWS * J. TAYLOR			TIONSHIP TO BIRTH, DEATH, AND BRANCHING PROCESSES *
BIOCS67	313	A GENERAL MAXIMUM LIKELIHOOD DISCRIMINANT * N. E. DAY, D. F. KERRIDGE	PTOCSCT	7.47	N. MANTEL
BIOCS67	325	SIMULTANEOUS SELFING AND PARTIAL DIALLEL TEST	BIOCS67	141	ANALYSIS OF QUANTAL RESPONSE ASSAYS WITH DOSAGE ER- RORS * K. M. PATWARY, K. D. C. HALEY
		CROSSING 2. AN EVALUATION OF TWO METHODS OF ESTIMA-	BIOCS67	761	THE USE OF CYCLIC BALANCED INCOMPLETE BLOCK DESIGNS
		TION OF GENETIC AND ENVIRONMENTAL VARIANCE * A. H. NASOETION, C. C. COCKERHAM, D. F. MATZINGER	EIOCS67	779	FOR DIRECTIONAL SEED ORCHARDS * G . H . FREEMAN SOME DESIGNS OF USE IN SEROLOCY * D . H . REES
BIOCS67	335	INFERENCE FOR SOME INCOMPLETELY SPECIFIED MODELS IN-	BIOCS67	793	INCOMPLETE SPLIT PLOT DESIGNS * J. ROBINSON
		VOLVING NORMAL APPROXIMATIONS TO DISCRETE DATA * B. K. KALE, T. A. BANCROFT	BIOCS67	803	FOUR-WAY BALANCED DESIGNS BASED ON YOUDEN SQUARES WITH 5, 6, OR 7 TREATMENTS * G. M. CLARKE
BIOCS67	349	NOTES. SMALL SAMPLE CONSIDERATIONS IN COMBINING 2 BY	BIOCS67	B13	CONSTRUCTION AND ANALYSIS OF SOME NEW SERIES OF CON-
RTOGGGG	750	2 TABLES * A . F . NAYLOR			FOUNDED ASYMMETRICAL FACTORIAL DESIGNS * M. N. DAS,
BIOCS67	336	NOTES. ON ESTIMATING RECESSIVE FREQUENCIES FROM TRUN- CATED SAMPLES * A. BERGER, R. Z. GOLD	BIOCS67	823	P.S.RAO SOME TRANSFORMATIONS OF SCALE AND THE ESTIMATION OF
BIOCS67	361	NOTES. OPTIMUM EXPERIMENTAL DESIGNS FOR REALIZED			GENETIC PARAMETERS FROM DAUGHTER-DAM REGRESSION *
BIOCS67	366	HERITABILITY ESTIMATES * M. SOLLER, A. GENIZI OBITUARY, SULLY LEDERMANN	BIOCS67	835	A.R. QUARTERMAIN, A.E. FREEMAN BACTERIAL EXTINCTION TIME AS AN EXTREME VALUE
BIOCS67		GENETIC EQUILIBRIUM UNDER SELECTION (INVITED PAPER)			PHENOMENON * B. EPSTEIN
		* C. C. LI	BIOCS67	840	QUERY, THE COMBINATION OF PROBABILITIES * H. O. LAN- CASTER
BIOCS67	4B5	MATRIX AND MULTIPLE DECREMENT IN POPULATION ANALYSIS	BIOCS67	842	NOTES. EXPECTED SELECTION DIFFERENTIAL FOR POSITIVE
BIOCSET	505	*N. KEYFITZ, E. M. MURPHY A MATHEMATICAL MODEL RELATINC PLANT YIELD WITH AR-			DIRECTIONAL SELECTION ON NORMAL VARIABLES WITHIN
220001	500	RANGEMENT FOR REGULARLY SPACED CROPS * G. BERRY	BIOCS67	B46	SETS OF FINITE SUBPOPULATIONS * F. R. ALLAIRE NOTES. SAMPLE SIZE FOR THE ESTIMATION OF MEANS OF NOR-
BIOCS67	517	A GENERAL CLASS OF ENUMERATIONS ARISING IN GENETICS *	PTOGGOG	050	MAL POPULATIONS * J. LIKES
		J. H. BENNETT	B100S67	850	OBITUARY, GORDON M. L. HASKELL
		PTOWERDTOG	WOLLINE D	4 10	CD.
		BIOMETRICS	VOLUME 24	1, 19	6B
BIOCS6B BIOCS6B		TEACHING BIOMETRY IN THE UNIVERSITY * D. J. FINNEY	BIOCS6B	117	A COMPARISON OF CONTINUOUS DISTRIBUTIONS OF PARAME— TERS OF EXPONENTIAL DECAY CURVES * R. G. ROSSING, M.
D10000D	13	AN ITERATIVE PROCEDURE FOR ESTIMATING FIXED EFFECTS AND VARIANCE COMPONENTS IN MIXED MODEL SITUATIONS *			B. DANFORD
PTOGGOO		E.P. CUNNINCHAM, C.R. HENDERSON	BIOCS6B	135	LINE TRANSECT METHOD OF ESTIMATING CROUSE POPULATION
BIOCS68	27	SOME ASPECTS OF THE STATISTICAL ANALYSIS OF THE 'MIXED MODEL' * G. G. KOCH, P. K. SEN	BIOCS68	147	DENSITIES * C. E. GATES, W. H. MARSHALL, D. P. OLSON THE MULTI-TYPE GALTON-WATSON PROCESS IN A GENETICAL
BIOCS68	49	COVARIANCE ANALYSIS WITH UNEQUAL SUBCLASS NUMBERS,			CONTEXT * J. H. POLLARD
		COMPONENT ESTIMATION IN CORRELATION STUDIES * M. CROSSMAN, G. A. E. GALL	BIOCS68	159	TRUNCATED SEQUENTIAL DESIGNS FOR CLINICAL TRIALS BASED ON MARKOV CHAINS * S. C. CHOI
BIOCS6B	61	A TWO-PERIOD DESIGN WITH T-SQUARE EXPERIMENTAL UNITS	BIOCS68		SELECTION FOR AN OPTIMUM GROWTH CURVE * C. M. TALLIS
BIOCS68	75	* L. N. BALAAM APPLICATION OF MINIMUM LOGIT CHI-SQUARE ESTIMATE TO A	BIOCS68	179	NOTES. DISTRIBUTION AMONG RELATIVES OF GENOTYPES FOR TWINNING * CRACE WYSHAK
220000	13	PROBLEM OF GRIZZLE WITH A NOTATION ON THE PROBLEM OF	BIOCS6B	185	NOTES. ON ESTIMATING THE EQUILIBRIUM AND TRANSITION
BIOCS68	O.C.	NO INTERACTION * J. BERKSON			PROBABILITIES OF A FINITE-STATE MARKOV CHAIN FROM THE SAME DATA * J. E. COHEN
D100308	97	ON EXPECTATIONS OF SOME FUNCTIONS OF POISSON VARIATES * J. J. BARTKO, S. W. GREENHOUSE, C. S. PATLAK	BIOCS68	187	THE SAME DATA * J. E. COHEN EQUILIBRIUM UNDER SELECTION AT A MULTI-ALLELIC SEX-
BIOCS6B	103	A COMPARISON OF STATISTICAL TECHNIQUES IN THE DIF-	PTOCOCC	100	LINKED LOCUS (ACKNOWLEDGEMENT 6B 1025) * C. CANNINGS
		FERENTIAL DIAGNOSIS OF NONTOXIC GOITRE * J. A. AN- DERSON, J. A. BOYLE	EIOCS68	TR9	NOTES. A MEASURE OF 'OVERALL VARIABILITY' IN POPULA- TIONS * M. M. GOODMAN

BIOCS67 65 RANKINC PROCEDURES FUR ARBITRARILY RESTRICTED OBSER- BIOCS67 539 A MULTIPLE COMPARISONS SIGN TEST, ALL PAIRS OF TREAT-

BIOCS6B	192	NOTES. A NOTE ON THE ANALYSIS OF CROWTH CURVES * M. HILLS	BIOCS6B	639	LINEAR RELATIONSHIPS IN CROWTH AND SIZE STUDIES * P. SPRENT
BIOCS6B	247	CANNIBALISM OF THE PUPAL STACE BY ADULT FLOUR BEETLES, AN EXPERIMENT AND A STOCHASTIC MODEL * D. B. MERTZ, R. B. DAVIES	BIOCS6B BIOCS6B		ALTERNATIVES TO A LATIN SQUARE * S. C. PEARCE A SEQUENTIAL METHOD OF TESTING THE LINEAR TRENDS OF RESPONSES IN DOSE TRIALS * P. DAVIES
BIOCS6B	277	DISTRIBUTIONS DE FREQUENCES, INTERPRETATION DU DETERMINISME GENETIQUE DES CARACTERES QUANTITATIFS ET RECHERCHE DE 'GENES MAJEURS' * P. MERAT	BIOCS6B	679	INTERVAL ESTIMATION OF THE SLOPE OF THE MAJOR AXIS OF A BIVARIATE NORMAL DISTRIBUTION IN THE CASE OF A SMALL SAMPLE * P. JOLICOEUR
BIOCS6B	295	THE EFFECTIVENESS OF ADJUSTMENT BY SUBCLASSIFICATION IN REMOVING BIAS IN OBSERVATIONAL STUDIES * W. C. COCHRAN	BIOCS6B	6B3	AN EMPIRICAL COMPARISON OF DISTANCE STATISTICS FOR POPULATIONS WITH UNEQUAL COVARIANCE MATRICES * R. L. CHADDHA, L. F. MARCUS
BIOCS6B	315	ASYMPTOTIC POWER OF CHI SQUARE TESTS FOR LINEAR TRENDS IN PROPORTIONS * D. G. CHAPMAN, J. NAM	BIOCS6B	695	NUMERICAL CONSTRUCTION OF ORTHOGONAL POLYNOMIALS FROM A GENERAL RECURRENCE FORMULA * P. L. EMERSON
8I0CS68		ON THE ANALYSIS OF CONTINCENCY TABLES WITH A QUANTITA- TIVE RESPONSE * V. P. BHAPKAR	BIOCS68	70.3	NOTES. EIN EINFACHES VERFAHREN ZUR ERZEUGUNG VON SYMBOLFOLGEN MIT VORGECEBENER RELATIVER DYADENKONTEX
BIOCS68		THE MATCHED PAIRS DESIGN IN THE CASE OF ALL-OR-NONE RESPONSES * O. S. MIETTINEN	BIOCS6B	707	TREDUNDANZ * R. TRAPPL NOTES. MINIMUM DISCRIMINATION INFORMATION ESTIMA-
BIOCS68	353	SOME EXPERIMENTAL SAMPLING RESULTS FOR REGRESSION ANALYSIS APPLIED TO GAMA RAY SPECTROMETER DATA, 2 * B.S. PASTERNACK, A LIUZZI	BIOCS6B	714	TION * C. T. IRELAND, S. KULLBACK NOTES. RAPID CALCULATION OF EXACT PROBABILITIES FOR
BIOCS68	363	THE NECATIVE EXPONENTIAL WITH CUMULATIVE ERROR * M. B. DANFORD, H. M. HUGHES	BIOCS6B	717	2-BY-3 CONTINGENCY TABLES * M. K. LEYTON NOTES. THE STATISTICAL ANALYSIS OF A RADIO-ACTIVE TRACER EXPERIMENT TO DETERMINE ROOT ACTIVITY IN
BIOCS6B	377	ESTIMATION OF PARAMETERS OF A TRUNCATED POISSONIAN BINOMIAL * G. WYSHAK, C. WHITE	BIOCS68	726	POTATO PLANTS * R. T. CLARKE OBITUARY, ADOLPHE FRANCESCHETTI
8I0CS68	3B9	ANALYSIS OF A GROUP OF BALANCED BLOCK EXPERIMENTS HAV- ING ERROR VARIANCE AND SOME TREATMENTS IN COMMON * B.	BIOCS6B	749	ANOTHER LOOK AT HENDERSON'S METHODS OF ESTIMATING VARIANCE COMPONENTS (WITH DISCUSSION) * S. R. SEARLE
BIOCS68	401	AFONJA ADJOINT MATRICES FOR POLYNOMIAL RECRESSION (COR-	BIOCS6B		SOME OBSERVATIONS ON THE TEACHING OF STATISTICAL CON- SULTING * C. PHILIP COX
BIOCS68	413	RECTIONS 6B 1025) * D. R. CAUSTON A TABLE FOR COMPUTING WORKING ANGLES * C. I. BLISS, S. S. WHITMAN	BIOCS6B BIOCS6B		SIMULATION OF AN AQUATIC ECOSYSTEM * RICHARD A. PARKER ON EXPECTED PROBABILITIES OF MISCLASSIFICATION IN DISCRIPTIONAL AND ACCURATE AND
BIOCS68	423	NOTES. ON TESTING SIGNIFICANCE OF COMPONENTS OF VARIANCE IN THE UNBALANCED NESTED ANALYSIS OF VARIANCE			DISCRIMINANT ANALYSIS, NECESSARY SAMPLE SIZE, AND A RELATION WITH THE MULTIPLE CORRELATION COEFFI- CIENT* PETER A. LACHENBRUCH
BIOCS68	429	(CORRECTION 68 1025) * C. L. TIETJEN, R. H. MOORE NOTES. STATISTICAL TESTS OF HYPOTHESES CONCERNING THE DEGREE OF DOMINANCE IN MONOFACTORIAL INHERITANCE *	BIOCS68		MISSING VALUES IN LINEAR MULTIPLE DISCRIMINANT ANALY— SIS * ESTHER C. JACKSON
BIOCS6B	434	R. K MISRA NOTES. SIMULTANEOUS CONFIDENCE INTERVALS AND EXPERI-	BIOCS6B	B45	MULTIVARIATE-COVARIANCE AND CANONICAL ANALYSIS, A METHOD FOR SELECTING THE MOST EFFECTIVE DISCRIMINA- TORS IN A MULTIVARIATE SITUATION * I. F. HORTON. J.
BIOCS6B	437	MENTAL DESIGN WITH NORMAL CORRELATION * N. MANTEL NOTES. CHARACTERIZING THE EXPONENTIAL DISTRIBUTION	BIOCS68	B59	S.RUSSELL, A.W. MOORE DISTANCE BETWEEN POPULATIONS ON THE BASIS OF AT-
810CS6B	439	* H. E. REINHARDT NOTES. ESTIMATION OF NON-LINEAR PARAMETERS FOR A NON-ASYMPTOTIC FUNCTION * G. NAMKOONG, D. L. MILLER	BIOCS6B	B67	TRIBUTE DATA * V. BALAKRISHNAN, L. D. SANCHVI SPATIAL RELATIONSHIP AMONG EICHT POPULATIONS ZEA MAYS L. UTILIZING INFORMATION FROM A DIALLEL MATINC
BIOCS6B BIOCS6B		FISHER, WRIGHT, AND PATH COEFFICIENTS * C. C. LI MIXED SELF- AND CROSS-FERTILIZATION IN A TETRASOMIC SPECIES * J. H. BENNETT	BIOCS6B	881	DESIGN * W. D. HANSON, EDUARDO CASAS REFERENCE POPULATIONS FOR DIALLEL EXPERIMENTS * R. O.
BIOCS6B	501	SURVIVAL PROBABILITIES OF NEW INVERSIONS IN LARGE POPULATIONS * T. OHTA, K. KOJIMA	BIOCS68	903	KUEHL, J. O. RAWLINCS, C. CLARK COCKERHAM MISSING VALUES IN PARTIAL DIALLEL CROSS EXPERIMENTS *
BIOCS6B	517	PROBABILITY OF OBTAINING NEGATIVE ESTIMATES OF HERITABILITY * J. L. GILL, E. L. JENSEN	BIOCS6B	915	KLAUSHINKELMANN ESTIMATION OF THE INBREEDING COEFFICIENT FROM PHENO- TYPE FREQUENCIES BY A METHOD OF MAXIMUM LIKELIHOOD
BIOCS68	527	VARIANCES OF MOMENT ESTIMATORS OF VARIANCE COMPONENTS IN THE UNBALANCED R-WAY CLASSIFICATION * W. R.	BIOCS68	937	SCORING * NORIKAZU YASUDA SELECTION INDICES FOR QUADRATIC MODELS OF TOTAL MERIT
BIOCS6B	541	BLISCHKE DISEASE CLUSTERING, A GENERALIZATION OF KNOX'S AP- PROACH TO THE DETECTION OF SPACE-TIME INTERACTIONS	BIOCS68	951	* J. W. WILTON, D. ANTHONY EVANS, L. D. VAN VLECK SELECTION BASIS IN ESTIMATION OF THE GENETIC CORRELA-
BIOCS68	557	* M. C. PIKE, P. G. SMITH SUSCEPTIBLES THE MATHEMATICAL ANALYSIS OF AN EPIDEMIC	BIOCS68	963	TION * L. D. VAN VLECK ON EXPECTATIONS, VARIANCES, AND CONVARIANCES OF ANOVA
BIOCS6B		WITH TWO KINDS OF * J. J. GART ON THE HYPOTHESES OF 'NO INTERACTION' IN CONTINGENCY	BIOCS6B	979	MEAN SQUARES BY 'SYNTHESIS' * J. N. K. RAO WEIGHTED REGRESSION. QUANTAL RESPONSE DATA, AND IN- VERSE POLYNOMIALS * J. A. NELDER
BIOCS6B		TABLES * V. P. BHAPKAR, G. G. KOCH MAXIMUM LIKELIHOOD ESTIMATION OF SURVIVAL CURVE	BIOCS6B	987	VERSE FUTIONMENTS - S. A. NEDDER ON COMPARING THE CORRELATIONS WITHIN TWO PAIRS OF VARIABLES * C. E. DAVIS, DANA QUADE
BIOCS68	607	PARAMETERS * E. L. FROME, J. J. BEAUCHAMP LINEAR RECRESSION WITH NON-CONSTANT, UNKNOWN ERROR	BIOCS6B	997	COMPUTATION OF INDIRECT-ADJUSTED RATES IN THE PRESENCE OF CONFOUNDINC * NATHAN MANTEL, CHARLES R.
		VARIANCES. SAMPLINC EXPERIMENTS WITH LEAST SQUARES, WEIGHTED LEAST SQUARES AND MAXIMUM LIKELIHOOD ESTIMATORS * J. A. JACQUEZ, F. J. MATHER,	BIOCS6B	1007	STARK THE SPREAD OF AN EPIDEMIC TO FIXED GROUPS WITHIN THE POPULATION * N. G. BECKER
BIOCS6B	627	C.R.CRAWFORD THE LOG (-LOG) TRANSFORMATION IN THE ANALYSIS OF FRUIT RETENTION RECORDS * F. W. M. LLEWELYN			INDEX SELECTION WITH RESTRICTIONS * J. W. JAMES KOLMOGOROV-SMIRNOV TESTS AND RENYI'S MODIFICATION * N. MANTEL
		TELEVISION IN THE BEHRBIN			
		BIOMETRICS VO	LUME 25,	1969	
BIOCS69	1	A MULTIVARIATE PALEONTOLOCICAL GROWTH PROBLEM * R. A. REYMENT	BIOCS69	63	AN EMPIRICAL STUDY OF THE DISTRIBUTION OF THE SAMPLE CENETIC CORRELATION COEFFICIENT * G. H. BROWN
BIOCS69	9	ESTIMATION OF CENETIC CONTRIBUTION OF PRINCIPAL COM- PONENTS TO INDIVIDUAL VARIATES CONCERNED * S. HASHICUCHI, H. MORISHIMA	BIOCS69	73	ON MEASURES OF CORRELATION IN TIME SERIES OF EVENTS * M. TENHOOPEN, H. A. REUVER
BIOCS69	17	APPLICATION OF FINITE ABSORBENT MARKOV CHAINS TO SIB MATINC POPULATIONS WITH SELECTION * J. A. BOSSO, O.	BIOCS69	79	AN ALGORITHM FOR THE DECOMPOSITION OF A DISTRIBUTION INTO GAUSSIAN COMPONENTS * J. GREGOR

BIOCS69	1 A MULTIVARIATE PALEONTOLOCICAL GROWTH PROBLEM * R. A. REYMENT	BIOCS69 63 AN EMPIRICAL STUDY OF THE DISTRIBUTION OF THE SAMPLE CENETIC CORRELATION COEFFICIENT * G. H. BROWN	
BIOCS69	9 ESTIMATION OF CENETIC CONTRIBUTION OF PRINCIPAL COM- PONENTS TO INDIVIDUAL VARIATES CONCERNED * S. HASHICUCHI. H. MORISHIMA	BIOCS69 73 ON MEASURES OF CORRELATION IN TIME SERIES OF EVENTS * M. TEN HOOPEN, H. A. REUVER	
BIOCS69	17 APPLICATION OF FINITE ABSORBENT MARKOV CHAINS TO SIB MATINC POPULATIONS WITH SELECTION * J. A. BOSSO, O.	BIOCS69 79 AN ALGORITHM FOR THE DECOMPOSITION OF A DISTRIBUTION INTO GAUSSIAN COMPONENTS * J. GREGOR	
BIOCS69	M. BORARRAIN, E.E.A. FAVRET 27 STABILITY OF SOLUTIONS TO CERTAIN NONLINEAR DIF-	BIOCS69 95 A MATHEMATICAL ANALYSIS OF THE CROWTH AND SPREAD OF BREAST CANCER * L. E. BLUMENSON, I. D. J. BROSS	
	FERENCE EQUATIONS OF POPULATION GENETICS * H. FALK, C. T. FALK	BIOCS69 111 TWO-STAGE DESIGNS FOR CLINICAL TRIALS * N. E. DAY BIOCS69 119 INCOMPLETE TWO-DIMENSIONAL CONTINGENCY TABLES * Y. M.	
BIOCS69	39 AN ENUMERATION PROBLEM IN SELF-STERILITY * J. HAICH	M. BISHOP, S. FIENBERC	
BIOCS69	49 SELECTION AMONC DIALLEL CLASSIFIED VARIABLES * R. M. PATEL, C. C. COCKERHAM, J. O. RAWLINGS	BIOCS69 129 SIMULTANEOUS PAIRWISE LINEAR STRUCTURAL RELATION- SHIPS * V. D. BARNETT	

- BIOCS69 143 ON TESTING FOR GOODNESS-OF-FIT OF THE NECATIVE BINOMIAL WHEN EXPECTATIONS ARE SMALL * P. J. PAHL
- BIOCS69 153 TESTINC THE HOMOCENEITY OF VARIANCES IN A TWO-WAY
 CLASSIFICATION * C. HAN
- BIOCS69 159 QUERY, BAULE'S EQUATION + (LEAST SQUARES ESTIMATE OF
- BIOCS69 165 AN ALCORITHM FOR HIERARCHICAL CLASSIFICATIONS * D.
- BIOCS69 171 FUNCTIONS OF THE SAMPLE MEAN AND SAMPLE VARIANCE OF A
- POISSON VARIATE * R. C. DAHIYA, J. CURLAND
 BIOCS69 174 THE USE OF LAMBDA AS AN INDEX OF PRECISION * M. L. DUDZINSKI, D. BENNETTT
- BIOCS69 176 CONFIDENCE LIMITS FOR QUANTILES OF MORTALITY DIS-
- BIOCS69 207 SURVEY OF HISTOCOMPATIBILITY TESTINC, BIOLOCICAL
 BACKCROUND PROBABILISTIC AND STATISTICAL MODELS
 AND PROBLEMS (INVITED PAPER) * RECINA ELANDT-JOHNSON
- BIOCS69 285 ON DISCRETE STABLE POPULATION THEORY * Z. M. SYKES
- BIOCS69 295 PONDERATION DES VALEURS CENOTYPIQUES DANS LA SELEC-TION PAR INDEX SUR PLUSIEURS CARACTERES * R. ROUVIER
- BIOCS69 309 A MATRIX MODEL FOR FOREST MANAGEMENT * M. B. USHER
- BIOCS69 317 SIMULATION STUDY OF ESTIMATORS FOR THE LINE TRANSECT SAMPLING METHOD * C. E. CATES
- BIOCS69 329 MODELS FOR THE ESTIMATION OF COMPETING RISKS FROM GROUPED DATA * A. W. KIMBALL
- BIOCS69 339 INDIVIDUAL MATCHING WITH MULTIPLE CONTROLS IN THE CASE OF ALL-OR-NONE RESPONSES * O. S. MIETTINEN
- BIOCS69 357 ANALYSIS OF GROWTH AND DOSE RESPONSE CURVES * J. E. GRIZZLE, D. M. ALLEN
- BIOCS69 3B3 FULL CONTINGENCY TABLES, LOGITS, AND SPLIT CONTINCENCY TABLES * YVONNE M. M. BISHOP
- BIOCS69 401 A COMPUTER PROGRAM FOR FITTING THE RICHARDS FUNCTION
 * D. R. CAUSTON
- BIOCS69 411 RAO'S PARADOX CONCERNING MULTIVARIATE TESTS OF SIG-NIFICANCE * M. J. R. HEALY
- BIOCS69 413 SOME OBSERVATIONS ON CHANGE-OVER TRIALS * D. H. REES
- BIOCS69 417 THE ESTIMATION OF THE 'SHORT' DISTRIBUTION * J. D. KERR
- BIOCS69 420 THE HALF-TABLE RATIO ESTIMATOR FOR A SIMPLE EXPONEN-TIAL MODEL * J. M. MCCREA
- BIOCS69 424 CONFIDENCE INTERVALS FOR MEASURES OF HERITABILITY *
- BIOCS69 427 EXPECTED MEAN SQUARES FOR NESTED CLASSIFICATIONS * D. W. GAYLOR, T. D. HARTWELL
- BIOCS69 457 MODELS, INFERENCE, AND STRATEGY * J. G. SKELLAM
- BIOCS69 477 MEASUREMENT OF THE POTENCIES OF DRUG MIXTURES * P. S. HEWLETT
- BIOCS69 489 ANALYSIS OF CATEGORICAL DATA BY LINEAR MODELS * J. E. GRIZZLE, C. F. STARMER, G. C. KOCH
- BIOCS69 505 THE EFFECT OF UNEQUAL VARIANCE—COVARIANCE MATRICES ON FISHER'S LINEAR DISCRIMINANT FUNCTION * ETHEL S. GILBERT

- BIOCS69 517 COMPARISON OF SEQUENTIAL RULES FOR ESTIMATION OF THE SIZE OF A POPULATION * ESTER SAMUEL
- BIOCS69 529 MAMMALIAN REPRODUCTIVE DATA FITTED TO A MATHEMATICAL
 MODEL * MINDEL C. SHEPS, D. P. DOOLITTLE, MARY L. NEW
- BIOCS69 537 ESTIMATION OF THE NUMBER OF CRITICAL SITES IN LIMITED GENOME EXPRESSION DURING VIRAL INFECTION OF BACTERIA * JEAN D. GIBBONS, S. LITWIN
- BIOCS69 545 CENETIC COMPONENTS FOR NON-INBRED DIPLOID SPECIES
 HAVING ALL DICENIC EPISTATIC VARIANCES OF EQUAL MACNITUDE * R. WATKINS
- BIOCS69 553 THE PREDICTION OF RESPONSE TO SELECTION IN BREEDINC
 PROCRAMMES WHEN ALL DAUCHTERS OF SELECTED PARENTS
 ARE RETAINED * D. MACHIN, R. M. MACIVER
- BIOCS69 561 THE USE OF CYCLIC BALANCED INCOMPLETE BLOCK DESIGNS FOR NON-DIRECTIONAL SEED ORCHARDS * C . H . FREEMAN
- BIOCS69 573 A DISCONTINUITY IN MIXED MODEL ANALYSIS * H. O. HART-LEY, S. R. SEARLE
- BIOCS69 577 A CENERALIZATION OF THE LOGISTIC LAW OF CROWTH * M. E. TURNER JR, B. A. BLUMENSTEIN, JEANNE L. SEBAUGH
- BIOCS69 580 A METHOD OF OBTAININC INITIAL ESTIMATES OF THE PARAME-TERS IN EXPONENTIAL CURVE FITTING * S. D. FOSS
- BIOCS69 585 LINEAR RECRESSION ON PROPORTIONS * G. S. WATSON
- BIOCS69 588 A MODIFIED TECHNIQUE FOR IMPROVINC AN ESTIMATE OF THE MEAN * J. C. ARNOLD
- BIOCS69 591 ON THE EFFICIENCY OF MODIFIED BALANCED INCOMPLETE BLOCK DESIGNS FOR BIO-ASSAYS * A. C. KULSHRESHTHA
- BIOCS69 593 NON-PARAMETRIC ANALYSIS OF VARIANCE IN SMALL SAMPLES,
 A MONTE CARLO STUDY OF THE ADEQUACY OF THE ASYMPTOTIC
 APPROXIMATION * K. R. GABRIEL, P. A. LACHENBRUCH
- BIOCS69 597 ON A RELATIONSHIP BETWEEN TWO REPRESENTATIONS OF A MODEL FOR PAIRED COMPARISONS * R. R. DAVIDSON
- BIOCS69 NO.4 THE BAYESIAN OUTLOOK AND ITS APPLICATIONS (WITH DISCUSSION) * J. CORNFIELD
- BIOCS69 NO.4 THE ANALYSIS OF POPULATION GROWTH WHEN THE BIRTH AND DEATH RATES DEPEND UPON SEVERAL FACTORS * L. A. COOD-
- BIOCS69 NO.4 A REGRESSION TECHNIQUE FOR ANCULAR VARIATES * A. L. GOULD
- BIOCS69 NO.4 THE POWER OF A TEST IN COVARIANCE ANALYSIS * JOAN S. REISCH, J. T. WEBSTER
- BIOCS69 NO.4 CENERALISED COVARIANCE ANALYSIS WITH UNEQUAL ERROR * J. R. ASHFORD, SUSANNAH BROWN
- BIOCS69 NO.4 A COMPARISON OF SUCCESSIVE SCREENING AND DISCRIMINANT FUNCTION TECHNIQUES IN MEDICAL TAXONOMY * S. FELD-MAN, D. F. KLEIN, G. HONICFELD
- BIOCS69 NO.4 RESPONSE CRITERIA FOR THE BIOASSAY OF VITAMINK*C.I.BLISS, P. GRIMINGER
- BIOCS69 NO.4 A GRAPHICAL METHOD FOR THE STUDY OF COMPLEX GENETICAL
 SYSTEMS WITH SPECIAL REFERENCE TO EQUILIBRIA * C.
 CANNINGS
- BIOCS69 NO.4 ESTIMATION OF HERITABILITY FROM EXPERIMENTS WITH RE-LATED DAMS * K. HINKELMANN
- BIOCS69 NO.4 ITERATIVE ESTIMATION OF VARIANCE COMPONENTS FOR NON-ORTHOGONAL DATA * R. thompson
- BIOCS69 NO.4 ASSOCIATED DIRECTIONS * F. H. C. MARRIOTT

	BIOMETRIKA	VOLUME 3B,	1951
BIOKA51 BIOKA51	1 MAJOR GREENWOOD, 1BBO-1949 * P. L. MCKINLAY 4 TABLES OF THE 5 PERCENT AND 0.5 PERCENT POINTS OF PEAR-	BIOKA51	293 ON ESTIMATING THE SIZE OF MOSILE POPULATIONS FROM RECAPTURE DATA * NORMAN T. J. BAILEY
	SON CURVES (WITH ARGUMENT BETA-1 AND BETA-2) EX- PRESSED IN STANDARD MEASURE * E. S. PEARSON, MAXINE		307 A MATHEMATICAL THEORY OF ANIMAL TRAPPING * P. A. P. MORAN
BIOKA51	MERRINGTON 11 REGRESSION, STRUCTURE AND FUNCTIONAL RELATIONSHIP * M.G.KENDALL		312 SOME SYSTEMATIC EXPERIMENTAL DESIGNS * D. R. COX 324 THE COMPARISON OF SEVERAL GROUPS OF OBSERVATIONS WHEN THE RATIOS OF THE POPULATION VARIANCES ARE UNKNOWN *
BIOKA51	26 PARTIAL AND MULTIPLE RANK CORRELATION * P. A. P. MORAN	OTOVAEI	G. S. JAMES 330 ON THE COMPARISON OF SEVERAL MEAN VALUES, AN ALTERNA-
BIOKA51	33 AN APPLICATION OF THE DISTRIBUTION OF THE RANKING CON- CORDANCE COEFFICIENT * A. STUART	BIOKA51	TIVE APPROACH * B. L. WELCH 337 THE EFFECT OF STANDARDIZATION ON AN APPROXIMATION IN
BIOKA51	43 THE EFFECT OF NON-NORMALITY ON THE POWER FUNCTION OF THE F-TEST IN THE ANALYSIS OF VARIANCE * F. N. DAVID.		FACTOR ANALYSIS * M. S. BARTLETT 345 THE JACOBIANS OF CERTAIN MATRIX TRANSFORMATIONS USE—
BIOKA51	N. L. JOHNSON 5B EFFICIENCY OF THE METHOD OF MOMENTS AND THE GRAM—	DIUKASI	FUL IN MULTIVARIATE ANALYSIS, BASED ON LECTURES BY P.L. HSU * WALTER L. DEEMER, INGRAM OLKIN
	CHARLIER TYPE A DISTRIBUTION * L. R. SHENTON 74 ON DISTRIBUTIONS FOR WHICH THE HARTLEY-KHAMIS SOLU-	BIOKA51	368 TWO APPLICATIONS OF BIVARIATE K-STATISTICS * M. B.
BIOKA51	TION OF THE MOMENT-PROBLEM IS EXACT * H. P. MULHOL- LAND	BIOKA51	377 INTERRELATIONS BETWEEN CERTAIN LINEAR SYSTEMATIC STATISTICS OF SAMPLES FROM ANY CONTINUOUS POPULA-
BIOKA51	90 ESTIMATION PROBLEMS WHEN A SIMPLE TYPE OF HETEROGENEITY IS PRESENT IN THE SAMPLE * W. M. LONG	BIOKA51	TION * G. P. SILLITTO 3B3 THE DELAY TO PEDESTRIANS CROSSING A ROAD * J. C. TANNER
BIOKA51	102 SOME TESTS FOR RANDOMNESS IN PLANT POPULATIONS * MAR- JORIE THOMAS		393 FURTHER APPLICATIONS OF RANGE TO THE ANALYSIS OF VARI- ANCE * H. A. DAVID
BIOKA51	112 CHARTS OF THE POWER FUNCTION FOR ANALYSIS OF VARIANCE TESTS, DERIVED FROM THE NON-CENTRAL F-DISTRIBUTION	BIOKA51	410 THE FITTING OF POLYNOMIALS TO EQUIDISTANT DATA WITH MISSING VALUES * H. O. HARTLEY
BIOKA51	* E. S. PEARSON, H. O. HARTLEY 131 SOME QUESTIONS OF DISTRIBUTION IN THE THEORY OF RANK		414 TRUNCATED LOGNORMAL DISTRIBUTIONS. I. SOLUTION BY MO- MENTS * H. R. THOMPSON
BIOKA51	CORRELATION * S. T DAYID, M. G. KENDALL, A. STUART 141 NOTE ON AN EXACT TREATMENT OF CONTINGENCY, GOODNESS OF FIT AND OTHER PROBLEMS OF SIGNIFICANCE * G. H.		423 A CHART FOR THE INCOMPLETE BETA-FUNCTION AND THE CUMU- LATIVE BINOMIAL DISTRIBUTION * H. O. HARTLEY, E. R. FITCH
	FREEMAN, J.H. HALTON 150 THE GEOMETRY OF ESTIMATION * J. DURBIN, M.G. KENDALL 159 TESTING FOR SERIAL CORRELATION IN LEAST SQUARES REGRESSION, II. * J DURBIN.G.S. WATSON		427 THE EXPECTED FREQUENCIES IN A SAMPLE OF AN ANIMAL POPULATION IN WHICH THE ABUNDANCES OF SPECIES ARE LOG-NORMALLY DISTRIBUTED * P. M. GRUNDY
BIOKA51	179 8IVARIATE K-STATISTICS AND CUMULANTS OF THEIR JOINT SAMPLING DISTRIBUTION * M. B. COOK	BIOKA51	435 TABLES OF SYMMETRIC FUNCTIONS. PARTS II AND III. * F. N. DAVID, M. G. KENDALL
	196 RANDOM DISPERSAL IN THEORETICAL POPULATIONS * J. G. SKELLAM	BIOKA51	463 MOMENT CONSTANTS FOR THE DISTRIBUTION OF RANGE IN NOR- MAL SAMPLES * H. O. HARTLEY, E. S. PEARSON
BIOKA51	219 THE FREQUENCY DISTRIBUTION OF THE PRODUCT-MOMENT COR- RELATION COEFFICIENT IN RANDOM SAMPLES OF ANY SIZE	BIOKA51	464 RAPID METHODS FOR ESTIMATING CORRELATION COEFFI- CIENTS*L.N.CHOWN, P.A.P.MORAN
BIOKA51	DRAWN FROM NON-NORMAL UNIVERSES * A. K. GAYEN 248 SOME OBSERVATIONS ON THE PRACTICAL ASPECTS OF WEIGHTING DESIGNS * K. S. BANERJEE	BIOKA51	468 MEAN AND VARIANCE OF AN ENTRY IN A CONTINGENCY TABLE * W. L. STEVENS
BIOKA51	252 TEST FOR THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN MEANS IN TWO NORMAL POPULATIONS HAVING UNEQUAL VARI-	BIOKA51	470 THE WISHART DISTRIBUTION DERIVED BY SOLVING SIMUL- TANEOUS LINEAR DIFFERENTIAL EQUATIONS * H. S. STEYN
BIOKA51	ANCES * D. G. C. GRONOW 265 CORRIGENDA, 'ON QUESTIONS RAISED BY THE COMBINATION		472 QUALITY CONTROL SYSTEMS BASED ON INACCURATELY MEA- SURED VARIABLES * W. M. LONG
	OF TESTS BASED ON DISCONTINUOUS DISTRIBUTIONS.'* E. S. PEARSON	BIOKA51	
BIOKA51	267 BIOMETRIKA. 1901-1951 * W. P. ELDERTON 269 THE ESTIMATION OF POPULATION PARAMETERS FROM DATA OB-		479 NOTE ON THE VARIATE DIFFERENCES OF AUTOREGRESSIVE SE- RIES * BENTO MURTEIRA
DIOVAGI	TAINED BY MEANS OF THE CAPTURE-RECAPTURE METHOD. I.	BIOKA51	4B1 NOTE ON THE INVERSION THEOREM * J. GIL-PELAEZ
	THE MAXIMUM LIKELIHOOD EQUATIONS FOR ESTIMATING THE DEATH-RATE * P . H . LESLIE , DENNIS CHITTY	BIOKA51	4B2 A NOTE ON THE STATISTICAL INDEPENDENCE OF QUADRATIC FORMS IN THE ANALYSIS OF VARIANCE * J. A. NELDER

	THE MAXIMUM LIKELIHOOD EQUATIONS FOR ESTIMATING THE DEATH-RATE * P . H . LESLIE , DENNIS CHITTY	BIOKA51	4B2 A NOTE ON THE STATISTICAL INDEPENDENCE OF QUADRATIC FORMS IN THE ANALYSIS OF VARIANCE * J. A. NELDER
	BIOMETRIKA	VOLUME 39,	1952
BIOKA52	1 MOMENT COEFFICIENTS OF THE K-STATISTICS IN SAMPLES FROM A FINITE POPULATION * JOHN WISHART	BIOKA52	137 THE COVERING CIRCLE OF A SAMPLE FROM A CIRCULAR NORMAL DISTRIBUTION * H. E. DANIELS
BIOKA52	14 MOMENT-STATISTICS IN SAMPLES FROM A FINITE POPULATION * M. G. KENDALL	BIOKA52	144 THE FREQUENCY JUSTIFICATION OF CERTAIN SEQUENTIAL TESTS * G. A. BARNARD
BIOKA52	17 SOME EXACT TESTS IN MULTIVARIATE ANALYSIS * E. J. WIL- LIAMS	BIOKA52	151 EXPERIMENTAL DESIGNS FOR SERIALLY CORRELATED OBSER- VATIONS*R.M.WILLIAMS
BIOKA52	32 THE CONSTRUCTION OF BALANCED DESIGNS FOR EXPERIMENTS INVOLVING SEQUENCES OF TREATMENTS * H. D. PATTERSON		168 THE TIME INTERVALS SETWEEN INDUSTRIAL ACCIDENTS * B. A. MAGUIRE, E. S. PEARSON, A. H. A. WYNN
BIOKA52	49 MULTI-FACTOR DESIGNS OF FIRST ORDER * G. E. P. BOX	BIOKA52	181 THE ESTIMATION OF DEATH-RATES FROM CAPTURE-MARK-
BIOKA52	5B TESTS OF SIGNIFICANCE IN CANONICAL ANALYSIS * F. H. C.		* RECAPTURE SAMPLING * P. A. P. MORAN
	MARRIOTT		1B9 A NOTE ON THE DESIGN PROBLEM * K. D. TOCHER
BIOKA52	65 THE INTERPRETATION OF INTERACTIONS IN FACTORIAL EX- PERIMENTS * E. J. WILLIAMS	BIOKA52	1B9 TABLES OF PERCENTAGE POINTS OF THE 'STUDENTIZED' EX- TREME DEVIATE FROM THE SAMPLE MEAN * K. R. NAIR
BIOKA52	82 ON SAMPLING FROM A POPULATION OF RANKERS * A. S. C. EHRENBERG	BIOKA52	192 EXTENDED AND CORRECTED TABLES OF THE UPPER PERCENTAGE POINTS OF THE 'STUDENTIZED' RANGE * JOYCE M. MAY
BIOKA52	BB LEAST SQUARES ESTIMATION OF LOCATION AND SCALE PARAMETERS USING ORDER STATISTICS * E. H. LLOYD	BIOKA52	194 ON THE DISTRIBUTION OF 'STUDENTIZED' RANGE * K. C. S. PILLAI
BIOKA52	96 REGRESSION, STRUCTURE AND FUNCTIONAL RELATION- SHIPS.II.*M.G.KENDALL	BIOKA52	196 NOTE ON A CERTAIN FAMILY OF DISCRETE DISTRIBUTIONS * J. S. MARITZ
8I0KA52	109 ON THE CONCURRENCE OF A SET OF REGRESSION LINES. * K. D. TOCHER	BICKA52	198 SOME PROPERTIES OF RUNS IN SMOOTHED RANDOM SERIES * ALISON M. GRANT
BIOKA52	118 A SAMPLING TEST OF THE CHI-SQUARE THEORY FOR PROBA- BILITY CHAINS * M. S. BARTLETT	BIOKA52	204 AN APPROXIMATION TO THE SYMMETRICAL INCOMPLETE BETA FUNCTION* J. H. CADWELL
BIOKA52	122 ON MATHEMATICAL ANALYSIS OF STYLE * WILHELM FUCKS	BIOKA52	207 THE DISTRIBUTION OF QUANTILES OF SMALL SAMPLES * J. H.
BIOKA52	130 COMPARISON OF TWO APPROXIMATIONS TO THE DISTRIBUTION		CADWELL
	OF THE RANGE IN SMALL SAMPLES FROM NORMAL POPULATIONS* E.S. PEARSON		211 ON A CORRECTION TERM IN THE METHOD OF PAIRED COM- PARISONS * J. A. VAN DER HEIDEN

BIOKA52	215 (ACKNOWLEDCEMENT OF PRIORITY), 'NOTE ON THE INVERSION THEOREM'* J. CIL-PELAEZ	BIOKA52	363 THE ESTIMATION OF POPULATION PARAMETERS FROM DATA OBTAINED BY MEANS OF THE CAPTURE-RECAPTURE METHOD . II.
BIOKA52	217 ESTIMATION BY DOUBLE SAMPLINC * D. R. COX		THE ESTIMATION OF TOTAL NUMBERS * P. H. LESLIE
BIOKA52	22B THE STATISTICAL SICNIFICANCE OF ODD BITS OF INFORMA- TION * M. S. BARTLETT	BIOKA52	3B9 THE GROWTH, SURVIVAL, WANDERING AND VARIATION OF THE LONG-TAILED FIELD MOUSE, APODEMUS SYLVATICUS. III.
BIOKA52	OF COMPOUND NORMAL DISTRIBUTIONS * HANNES HYRENIUS		WANDERING POWER AND DISTRIBUTION. * H. P. HACKER, H. S. PEARSON
BIOKA52	247 THE ESTIMATION OF THE POISSON PARAMETER FROM A TR'IN- CATED DISTRIBUTION * P. G. MOORE	BIOKA52	414 SAMPLES WITH THE SAME NUMBER IN EACH STRATUM * W. L. STEVENS
BIOKA52	252 THE FITTING OF GROUPED TRUNCATED AND CROUPED CENSORED NORMAL DISTRIBUTIONS * P. M. CRUNDY	BIOKA52	417 APPROXIMATIONS TO THE PROBABILITY INTECRAL OF THE DISTRIBUTION OF RANGE * N. L. JOHNSON
BIOKA52	260 ESTIMATION OF THE MEAN AND STANDARD DEVIATION OF A NORMAL POPULATION FROM A CENSORED SAMPLE * A. K.	BIOKA52	419 STATISTICAL CONTROL OF COUNTING EXPERIMENTS * H. O. LANCASTER
	GUPTA	BIOKA52	422 UPPER 5 AND 1 PERCENT POINTS OF THE MAXIMUM F-RATIO * H.
BIOKA52	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		A. DAVID
	TINGENCY TABLES * E. J. WILLIAMS	BIOKA52	425 THE CONDITIONS UNDER WHICH GRAM-CHARLIER AND
BIOKA52	290 PROPERTIES OF DISTRIBUTIONS RESULTING FROM CERTAIN		EDGEWORTH CURVES ARE POSITIVE DEFINITE AND UNIMODAL
	SIMPLE TRANSFORMATIONS OF THE NORMAL DISTRIBUTION		* D. E. BARTON, K. E. DENNIS
BIOKA52	* J. DRAPER 302 ON A TWO-SIDED SEQUENTIAL T-TEST * S. RUSHTON	BIOKA52	427 COMPARISON OF ANALYSIS OF VARIANCE POWER FUNCTION IN
BIOKA52	309 TESTS OF FIT IN TIME SERIES * P. WHITTLE		THE PARAMETRIC AND RANDOM MODELS * N. L. JOHNSON
BIOKA52	319 TENSOR NOTATION AND THE SAMPLING CUMULANTS OF K- STATISTICS * E. L. KAPLAN	BIOKA52	429 ON EXACT GROUPING CORRECTIONS TO MOMENTS AND CUMU- LANTS * MORTON KUPPERMAN
BIOKA52	324 RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. I. THE	BIOKA52	434 DISCRIMINATION IN TIME-SERIES ANALYSIS * A. RUDRA
	METHOD OF PAIRED COMPARISONS. * RALPH ALLAN BRADLEY, MILTON E. TERRY	BIOKA52	439 A NOTE ON 'THE ESTIMATION OF THE PARAMETERS OF TOLERANCE DISTRIBUTIONS' * D. J. FINNEY
BIOKA52	346 STUDIES IN STATISTICAL ECOLOGY. I. SPATIAL PATTERN * J. G. SKELLAM	BIOKA52	442 CORRIGENDA, 'THE USE OF RANCE IN PLACE OF STANDARD DEVIATION IN THE T-TEST.' * E. LORD

1	DIORNOL	340	J. G. SKELLAM	DIONAGE	442	DEVIATION IN THE T-TEST. ' * E. LORD
			BIOMETRIKA	VOLUME 40,	1953	
	BIOKA53	1	THE SUPERPOSITION OF SEVERAL STRICTLY PERIODIC SEQUENCES OF EVENTS * D. R. COX, W. L. SMITH	BIOKA53	229	THE DOOLITTLE METHOD AND THE FITTING OF POLYNOMIALS TO WEIGHTED DATA * P. G. CUEST
	BIOKA53 BIOKA53		APPROXIMATE CONFIDENCE INTERVALS * M. S. BARTLETT INCOMPLETE AND ABSOLUTE MOMENTS OF THE MULTIVARIATE NORMAL DISTRIBUTION WITH SOME APPLICATIONS * A. R.		231	A SIMPLE METHOD OF DERIVING BEST CRITICAL REGIONS SIMILAR TO THE SAMPLE SPACE IN TESTS OF AN IMPORTANT CLASS OF COMPOSITE HYPOTHESES * K. S. RAO
	BIOKA53	3 5	KAMAT ON THE RANGE OF PARTIAL SUMS OF A FINITE NUMBER OF INDE-	BIOKA53	236	CORRIGENDA, 'TABLES OF PERCENTACE POINTS OF THE 'STU- DENTIZED' RANGE' * H. O. HARTLEY
- Indiana	BIOKA53	43	PENDENT NORMAL VARIATES * A. A. ANIS, E. H. LLOYD NOTE ON 'THE JACOBIANS OF CERTAIN MATRIX TRANSFORMA- TION USEFULL IN MULTIVARIATE ANALYSIS' * INGRAM	BIOKA53	236	CORRICENDA, 'PROPERTIES OF DISTRIBUTIONS RESULTINC FROM CERTAIN SIMPLE TRANSFORMATIONS OF THE NORMAL DISTRIBUTION' * J. DRAPER
	BIOKA53	457	OLKIN ESTIMATION OF A FUNCTIONAL RELATIONSHIP * D. V.	BIOKA53	237	THE POPULATION FREQUENCIES OF SPECIES AND THE ESTIMA- TION OF POPULATION PARAMETERS * I. J. COOD
	DIONAGO	-4.1		DIOMAGG	005	
	DIONAES		LINDLEY	BIOKA53		CAPTURE-RECAPTURE ANALYSIS * J. M. HAMMERSLEY
	BIOKA53		ESTIMATING PARAMETERS IN TRUNCATED PEARSON FREQUENCY DISTRIBUTIONS WITHOUT RESORT TO HIGHER MOMENTS * A. C. COHEN JR	BIOKA53		THE USE OF CHAIN-BINOMIALS WITH A VARIABLE CHANCE OF INFECTION FOR THE ANALYSIS OF INTRA-HOUSEHOLD EPIDEMICS * NORMAN T. J. BAILEY
	BIOKA53	5B	A PROBLEM OF INTERFERENCE BETWEEN TWO QUEUES * J. C. TANNER	BIOKA53	2B7	SPREAD OF DISEASES IN A RECTANGULAR PLANTATION WITH VACANCIES * G. H. FREEMAN
	BIOKA53	70	TABLES OF THE ANGULAR TRANSFORMATION * W. L. STEVENS	BIOKA53	297	TESTS OF SIGNIFICANCE FOR CONCURRENT REGRESSION LINES
	BIOKA53	74	TESTS OF SIGNIFICANCE IN A 2-BY-2 CONTINGENCY TABLE, EXTENSION OF FINNEY'S TABLE * R. LATSCHA	BIOKA53	306	* E. J. WILLIAMS APPROXIMATE CONFIDENCE INTERVALS. II. MORE THAN ONE
	BIOKA53	В7	A METHOD FOR JUDGING ALL CONTRASTS IN THE ANALYSIS OF			UNKNOWN PARAMETER * M.S. BARTLETT
			VARIANCE (CORR. 69 229) * HENRY SCHEFFE	BIOKA53		NON-NORMALITY AND TESTS ON VARIANCES. * G. E. P. BOX
	BIOKA53	105	THE ESTIMATION AND COMPARISON OF STRENGTHS OF AS- SOCIATION IN CONTINGENCY TABLES * A. STUART	BIOKA53	336	APPROXIMATING TO THE DISTRIBUTIONS OF MEASURES OF DISPERSION BY A POWER OF CHI-SQUARE * J. H. CADWELL
	BIOKA53	111	A SEQUENTIAL TEST FOR RANDOMNESS * P. C. MOORE	BIOKA53	347	THE POWER FUNCTION OF SOME TESTS BASED ON RANGE * H. A.
	BIOKA53		ON THE MEAN SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE			DAVID
			ROOT MEAN SQUARE * A. R. KAMAT		354	SOME SIMPLE APPROXIMATE TESTS FOR POISSON VARIATES *
1	BIOKA53	12B	THE EFFECT OF UNEQUAL GROUP VARIANCES ON THE F-TEST	20000		D, R. COX
			FOR THE HOMOGENEITY OF GROUP MEANS * G. HORSNELL	BIOKA53	361	ORTHOGONAL POLYNOMIAL FITTING * JOHN WISHART,
1	PIOKA23	137	THE ESTIMATION OF POPULATION PARAMETERS FROM DATA OB-		an-	THEOCHARIS METAKIDES
			TAINED BY MEANS OF THE CAPTURE-RECAPTURE METHOD. III.AN EXAMPLE OF THE PRACTICAL APPLICATIONS OF THE METHOD * P. H. LESLIE, DENNIS CHITTY, HELEN CHITTY		370	POPULATION DIFFERENCES BETWEEN SPECIES GROWING AC- CORDING TO SIMPLE BIRTH AND DEATH PROCESSES * J. H. DARWIN
1	BIOKA53	170	ON THE UTILIZATION OF MARKED SPECIMENS IN ESTIMATING POPULATIONS OF FLYING INSECTS * C. C. CRAIG	BIOKA53	3B3	MODIFICATIONS TO THE VARIATE-DIFFERENCE METHOD * M. H. QUENOUILLE
	BIOKA53	177	THE TOTAL SIZE OF A GENERAL STOCHASTIC EPIDEMIC * NOR- MAN T. J. BAILEY	BIOKA53	409	MOMENTS OF THE RANK CORRELATION COEFFICIENT TAU IN THE GENERAL CASE * R. M. SUNDRUM
	BIOKA53	186	EXPERIMENTAL EVIDENCE CONCERNING CONTAGIOUS DISTRIBUTIONS IN ECOLOGY * D. A. EVANS	BIOKA53	421	99.9 PERCENT AND 0.1 PERCENT POINTS OF THE CHI-SQUARE DISTRIBUTION * T. LEWIS
	BIOKA53	212	TIME INTERVALS BETWEEN ACCIDENTS, A NOTE ON MAGUIRE,	BIOKA53	427	TABLES OF SYMMETRIC FUNCTIONS. PART IV. * F. N. DAVID,
	BIOKA53	214	PEARSON AND WYNN'S PAPER * G. A. BARNARD FURTHER NOTES ON THE ANALYSIS OF ACCIDENT DATA * B. A.	BIOKA53	447	M.G.KENDALL SOME PROCEDURES FOR COMPARING POISSON PROCESSES OR
	BIOKA53	216	MAGUIRE, E. S. PEARSON, A. H. A. WYNN ON A METHOD OF ESTIMATING BIOLOGICAL POPULATIONS IN THE FIELD * C. C. CRAIG	BIOKA53	449	POPULATIONS * ALLAN BIRNBAUM SCALE FACTORS AND DECREES OF FREEDOM FOR SMALL SAMPLE SIZES FOR CHI APPROXIMATION TO THE RANGE * GEORGE WM.
	BIOKA53	218	A RAPID METHOD FOR ESTIMATING THE CORRELATION COEFFI- CIENT FROM THE RANGE OF THE DEVIATIONS ABOUT THE		451	THOMSON THE THIRD MOMENT OF GINI'S MEAN DIFFERENCE * A. R.
	BIOKA53	220	REDUCED MAJOR AXIS * C. H. LEIGH-DUCMORE THE EFFECT OF OVERLAPPING IN BACTERIAL COUNTS OF INCU- BATED COLONIES * C. MACK	BIOKA53	452	KAMAT KA
	BIOKA53	223	NON-NORMALITY IN TWO-SAMPLE T-TESTS * D. G. C. GRONOW NOTE ON THE POISSON INDEX OF DISPERSION * N. KATHIRCA-		457	A NOTE ON ORDERED LEAST-SQUARES ESTIMATION * F. DOWNTON
	-2011100	220	MATAMBY		45R	A NOTE ON THE EVALUATION OF THE MULTIVARIATE NORMAL

MATAMBY

BIOKA53 22B ON AN EXTENSION OF GEARY'S THEOREM * R. C. LAHA

BIOKA53 45B A NOTE ON THE EVALUATION OF THE MULTIVARIATE NORMAL INTEGRAL* F. N. DAVID

BIOMETRIKA VOLUME 41, 1954

BIOKA54	1	DISTRIBUTION THEORY OF TWO ESTIMATES FOR STANOARD OEVIATION BASED ON SECOND VARIATE DIFFERENCES * A. R. KAMAT	BIOKA54	317 A QUICKLY CONVERCENT EXPANSION FOR CUMULATIVE HYP GEOMETRIC PROBABILITIES, DIRECT AND INVERSE * M WISE	
BIOKA54	12	THE STATISTICAL TREATMENT OF MEAN OEVIATION * J. H. CADWELL	BIOKA54	WISE 330 THE QUOTIENT OF A RECTANGULAR OR TRIANGULAR AN CENERAL VARIATE * S. R. BROADBENT	10 A
BIOKA54	19	TESTS OF LINEAR HYPOTHESES IN UNIVARIATE AND MUL- TIVARIATE ANALYSIS WHEN THE RATIOS OF THE POPULATION	BIOKA54	33B AN ESTIMATION PROBLEM IN QUANTITATIVE ASSAY * AITCHISON, J. A. C. BROWN	J.
BIOKA54	44	VARIANCES ARE UNKNOWN * G.S. JAMES THE USE OF THE HANKEL TRANSFORM IN STATISTICS. I.	BIOKA54	344 THE USE OF THE HANKEL TRANSFORM IN STATISTICS. METHODS OF COMPUTATION * R. D. LORD	II.
BIOKA54	56	CENERAL THEORY AND EXAMPLES * R. D. LORD A NOTE ON THE CONSISTENCY AND MAXIMA OF THE ROOTS CF	BIOKA54	351 A REDUCTION FORMULA FOR NORMAL MULTIVARIATE INTEGR * R. L. PLACKETT	RALS
BIOKA54		LIKELIHOOD EQUATIONS * K. C. CHANDA CROUPING METHODS IN THE FITTINC OF POLYNOMIALS TO	BIOKA54	361 ON THE COMPARISON OF TWO MEANS, FURTHER DISCUSSIO ITERATIVE METHODS FOR CALCULATING TABLES * W.	
DIONADA		EQUALLY SPACED OBSERVATIONS * P. C. CUEST		TRICKETT, B. L. WELCH	
BIOKA54		NEW TECHNIQUES FOR THE ANALYSIS OF ABSENTEEISM DATA * A G. ARBOUS, H. S. SICHEL		375 SOME FURTHER RESULTS IN THE THEORY OF PEDESTRIANS ROAD TRAFFIC * A. J. MAYNE	
BIOKA54		ON THE SUPERPOSITON OF RENEWAL PROCESSES * D. R. COX, W.L.SMITH		390 BIAS IN THE ESTIMATION OF AUTOCORRELATIONS * F. H MARRIOTT, J. A. POPE	
BIOKA54 BIOKA54		CONTINUOUS INSPECTION SCHEMES * E. S. PACE ON NAHORDNUNG AND FERNORDNUNC IN SAMPLES OF LITERARY	BIOKA54	403 NOTE ON BIAS IN THE ESTIMATION OF AUTOCORRELATION G. KENDALL	
BIOKA54	177	TEXTS * W. FUCKS A DISTRIBUTION-FREE K-SAMPLE TEST ACAINST ORDERED AL-	BIOKA54	405 TESTS OF HYPOTHESES IN THE LINEAR AUTORECRESS MODEL. PART I. * G. M. JENKINS	SIVE
DIUNA34	100	TERNATIVES * A. R. JONCKHEERE	BIOKA54	420 SOME PROBLEMS OF OPTIMUM SAMPLING * P. N. SOMERVILL	E
BIOKA54	146	TWO-STAGE PROCEDURES FOR ESTIMATING THE DIFFERENCE	BIOKA54	430 A TEST FOR MARKOFF CHAINS * P. C. HOEL	
		BETWEEN MEANS * S. C. CHURYE, H. ROBBINS	BIOKA54	434 ON STATIONARY PROCESSES IN THE PLANE * P. WHITTLE	
BIOKA54	153	A BIVARIATE GENERALIZATION OF STUDENT'S T-DISTRIBU-	BIOKA54	450 THE COODNESS OF FIT OF FREQUENCY DISTRIBUTIONS	
		TION, WITH TABLES FOR CERTAIN SPECIAL CASES * C. W. DUNNETT, M. SOBEL	BIOKA54	TAINED FROM STOCHASTIC PROCESSES * V. N. PATANKAF 463 THE DISTRIBUTION OF RANGE IN CERTAIN NON-NORMAL PO	
BIOKASA	170	A TWO-SAMPLE MULTIPLE DECISION PROCEDURE FOR RANKING	DIUNASA	LATIONS * H. A. DAVID)FU=
DIONAJ4	110	MEANS OF NORMAL POPULATIONS WITH A COMMON UNKNOWN	BIOKA54	469 THE MEAN AND COEFFICIENT OF VARIATION OF RANCE	E IN
		VARIANCE * R. E. BECHHOFER, C. W DUNNETT, M. SOBEL		SMALL SAMPLES FROM NON-NORMAL POPULATIONS * D	
BIOKA54	177	INEQUALITIES FOR THE NORMAL INTECRAL INCLUDING A NEW		COX	
070745	100	CONTINUED FRACTION * L. R. SHENTON	BIOKA54	482 THE DISTRIBUTION OF THE RATIO, IN A SINCLE NORMAL S	
BIOKA54	190	A CONFIDENCE RECION FOR THE SOLUTION OF A SET OF SIMUL- TANEOUS EQUATIONS WITH AN APPLICATION TO EXPERIMEN-		PLE, OF RANCE TO STANDARD DEVIATION * H. A. DAVID O. HARTLEY, E. S. PEARSON	, н.
		TAL DESIGN * C. E. P. BOX, J. S. HUNTER	BIOKA54	494 SAMPLINC WITH CONTROL VARIABLES * E. C. FIELLER, H	. 0.
BIOKA54	200	ON THE MOMENTS OF ORDER STATISTICS IN SAMPLES FROM		HARTLEY	
		NORMAL POPULATIONS * H. RUBEN	BIOKA54	502 RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. II. AL	
BIOKA54	228	STATISTICAL TREATMENT OF CENSORED DATA . PART I . FUN-		TIONAL TABLES FOR THE METHOD OF PAIRED COMPARISO	NS *
DIONAEA	0.41	DAMENTAL FORMULAE * F. N. DAVID, N L. JOHNSON SIMPLIFIED DECISION FUNCTIONS * C. A. BARNARD	BIOKA54	R.A. BRADLEY 538 APPROXIMATE FORMULAE FOR THE PERCENTAGE POINTS	AND
BIOKA54 BIOKA54		SEQUENTIAL TESTS FOR BINOMIAL AND EXPONENTIAL POPULA-	DIONASA	THE PROBABILITY INTECRAL OF THE NON-CENTRAL O	
DIOMACA	LUL	TIONS * F. J. ANSCOMBE, E. S. PAGE		SQUARE DISTRIBUTION * S. H. ABDEL ATY	
BIOKA54	253	TABLES OF GENERALIZED K-STATISTICS * S. H. ABDEL ATY	BIOKA54	541 MOMENTS OF THE MEAN DEVIATION * A. R. KAMAT	
BIOKA54	261	AN ANCULAR TRANSFORMATION FOR THE SERIAL CORRELATION	BIOKA54	542 ON THE RELATION BETWEEN ESTIMATING EFFICIENCY AND	THE
		COEFFICIENT * C. M. JENKINS	DIOKAEA	POWER OF TESTS * R. M. SUNDRUM	MOE
BIOKA54	266	A DISTRIBUTION ARISING IN THE STUDY OF INFECTIOUS DIS- EASES * J. O. IRWIN	BIOKA54	544 THE INTERPRETATION OF NEGATIVE COMPONENTS OF VARIA * J. A. NELDER	INCE
BIOKA54	268	A NOTE ON CONTACIOUS DISTRIBUTIONS * H. R. THOMPSON	BIOKA54	54B THE DISTRIBUTION OF THE RECRESSION COEFFICIENT	r IN
BIOKA54		A CENERAL EXPRESSION FOR THE MEAN IN A SIMPLE		SAMPLES FROM A NON-NORMAL POPULATION * I. D. HILL	
		STOCHASTIC EPIDEMIC * H. W. HASKEY	BIOKA54	553 PROBABILITY DISTRIBUTIONS ARISING FROM POINTS (A NC
BIOKA54	275	SOME REMARKS ON CONFIDENCE OF FIDUCIAL LIMITS * T. E.		LINE * P. V. KRISHNA IYER, M. N. KAPUR	
		STERNE	BIOKA54	555 THE FACTORIAL MOMENTS OF THE DISTRIBUTION OF JOBETWEEN LINE SECMENTS * J. WISHART	INS
BIOKA54	27B	A NOTE ON THE PROBABILITY INTECRAL OF THE CORRELATION COEFFICIENT * B. I. HARLEY	BIOKA54	556 NOTE ON THE USE OF SHERMAN'S STATISTIC AS A TEST OF F	RAN-
BIOKA54	2B0	A SIMPLIFIED EXPRESSION FOR THE VARIANCE OF THE CHI- SQUARE FUNCTION ON A CONTINCENCY TABLE * R. B. DAWSON	BIOKA54	DOMNESS * D. J. BARTHOLOMEW 559 TWO EARLY PAPERS ON THE RELATION BETWEEN EXTR	REME
BIOKA54	287	THE DESIGN OF AN EXPERIMENT IN WHICH CERTAIN TREATMENT		VALUES AND TENSILE STRENGTH * J. LIEBLEIN	
		ARRANGEMENTS ARE INADMISSIBLE * D. R. COX	BIOKA54	560 TWO PROBLEMS IN SETS OF MEASUREMENTS * M. G. KENDALI	
BIOKA54	296	THE ESTIMATION OF LOCATION AND SCALE PARAMETERS FROM CROUPED DATA * J. M. HAMMERSLEY, K. W. MORTON	BIOKA54	56B CORRIGENDA, 'ON A TWO-SIDED SEQUENTIAL T-TEST' (RUSHTON	· S.
BIOKA54	302	TRANSFORMATIONS OF THE BINOMIAL, NEGATIVE BINOMIAL, POISSON AND CHI-SQUARE DISTRIBUTIONS * G . BLOM	BIOKA54	568 CORRIGENDA, 'ON THE MOMENTS OF ORDER STATISTICS SAMPLES FROM NORMAL POPULATIONS' * H. RUBEN	3 IN
		. 51555H AND SHIT SECTION STREET STREET			

	BIOMETRIKA	OLUME 42,	1955
BIOKA55	1 STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. I. DICING AND GAMING (A NOTE ON THE HISTORY OF PROBA-	BIOKA55	102 SPATIAL POINT PROCESSES, WITH APPLICATIONS TO ECOLOGY *H.R. THOMPSON
	BILITY) * F. N. DAVID	BIOKA55	116 THE OUTCOME OF A STOCHASTIC EPIDEMIC, A NOTE ON
BIOKA55	16 SOME FEATURES OF THE GENERATION TIMES OF INDIVIDUAL		BAILEY'S PAPER * P. WHITTLE
	BACTERIA * E. O. POWELL	BIOKA55	123 A NOTE ON BAILEY'S AND WHITTLE'S TREATMENT OF A
BIOKA55	45 QUANTUM HYPOTHESES * S. R. BROADBENT		GENERAL STOCHASTIC EPIDEMIC * F. G. FOSTER
BIOKA55	5B THE TRUNCATED NEGATIVE BINOMIAL DISTRIBUTION * M. R.	BIOKA55	126 THE DETERMINISTIC MODEL OF A SIMPLE EPIDEMIC FOR MORE
	SAMPFORD		THAN ONE COMMUNITY * S. RUSHTON, A. J. MAUTNER
BIOKA55	70 THE RANDOMIZATION ANALYSIS OF A GENERALIZED RAN-	BIOKA55	133 EXACT TESTS FOR SERIAL CORRELATION * E. J. HANNAN
	DOMIZED BLOCK DESIGN * M. B. WILK	BIOKA55	143 ON THE EFFICIENCY OF PROCEDURES FOR SMOOTHING
BIOKA55	BO SOME QUICK SIGN TESTS FOR TREND IN LOCATION AND		PERIODOGRAMS FROM TIME SERIES WITH CONTINUOUS SPEC-
	DISPERSION * D. R. COX, A. STUART		TRA * M. S. BARTLETT, J. MEDHI
BIOKA55	96 THE VARIANCE OF THE MAXIMUM OF PARTIAL SUMS OF A FINITE	BIOKA55	151 THE AUTOCORRELATION FUNCTION AND THE SPECTRAL DENSITY
	NUMBER OF INDEPENDENT NORMAL VARIATES * A. A. ANIS		FUNCTION * J, WISE

BI	0KA55	5 160 SAMPLINC PROPERTIES OF LOCAL STATISTICS IN STATIONARY STOCHASTIC SERIES * C. H. JOWETT	BIOKA55	327 SERIAL CORRELATION IN RECRESSION ANALYSIS. I. * C. S. WATSON
BI	0KA55	5 170 MODELS FOR TWO-DIMENSIONAL STATIONARY STOCHASTIC PROCESSES * V. HEINE	BIOKA55	342 SOME THEOREMS AND SUFFICIENCY CONDITIONS FOR THE MAX— IMUM-LIKELIHOOD ESTIMATOR OF AN UNKNOWN PARAMETER
BI	OKA55		BIOKA55	IN A SIMPLE MARKOV CHAIN * J. CANI 360 SICNIFICANCE TESTS FOR DISCRIMINANT FUNCTIONS AND
BI	OKA55			LINEAR FUNCTIONAL RELATIONSHIPS * E. J. WILLIAMS
BI	0KA55		BIOKA55	382 THE USE OF TRANSFORMATIONS AND MAXIMUM LIKELIHOOD IN THE ANALYSIS OF QUANTAL EXPERIMENTS INVOLVING TWO TREATMENTS * F. YATES
BI	OKA55	AREA-ORDINATE RATIOS AND OF THEIR RECIPROCALS * EDI-		404 A NOTE ON THE APPLICATION OF THE COMBINATION OF PROBA- BILITIES TEST TO A SET OF 2-BY-2 TABLES * F. YATES
BI	OKA55	TORIAL 5 223 TABLES OF SYMMETRIC FUNCTIONS. PART V. * F. N. DAVID,	BIOKA55	412 A TEST FOR HOMOCENEITY OF THE MARGINAL DISTRIBUTIONS IN A TWO-WAY CLASSIFICATION * A . STUART
BI	OKA55	M. G. KENDALL 5 243 CONTROL CHARTS WITH WARNING LINES * E. S. PAGE	BIOKA55	417 DISTRIBUTIONS OF KENDALL'S TAU BASED ON PARTIALLY OR- DERED SYSTEMS * S. HABERMAN
BI	OKA55	5 25B APPROXIMATIONS TO THE PROBABILITY INTEGRAL AND CER- TAIN PERCENTACE POINTS OF A MULTIVARIATE ANALOGUE OF		425 ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS * H. A. SIMON 441 SIMULTANEOUS TESTS OF LINEAR HYPOTHESES * M. N. GHOSH
BTO	OKA55	STUDENT'S T-DISTRIBUTION * C. W. DUNNETT, M. SOBEL 261 GALTON'S RANK-ORDER TEST * J. L. HODGES		450 RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS. III. SOME LARGE-SAMPLE RESULTS ON ESTIMATION AND POWER FOR A
BI		263 ON BOUNDS FOR THE NORMAL INTECRAL * J. T. CHU	BIOKA55	METHOD OF PAIRED COMPARISONS * R. A. BRADLEY 471 A METHOD OF ASSIGNING CONFIDENCE LIMITS TO LINEAR COM-
	OKA55	266 A PROBLEM IN THE SIGNIFICANCE OF SMALL NUMBERS * J. B.		BINATIONS OF VARIANCES * A. HUITSON
BI	OKA55			480 INTERPOLATIONS AND APPROXIMATIONS RELATED TO THE NOR- MAL RANGE * J. W. TUKEY
BI	OKA55	G.W.THOMSON 5 269 ON THE ESTIMATION OF POPULATION PARAMETERS FROM	BIOKA55 BIOKA55	486 THE GAMBLER'S RUIN PROBLEM WITH CORRELATION * C. MOHAN 494 TABLES FOR SIGNIFICANCE TESTS OF 2-BY-2 CONTINGENCY
D.T.	OKA55	MARKED MEMBERS * J. A. GÜLLAND		TABLES * P. ARMSEN 512 A NOTE ON MOVING RANGES * H. A. DAVID
DI	JNAJS	LATIVE HYPERGEOMETRIC PROBABILITIES, DIRECT AND		516 CENSORED SAMPLES FROM TRUNCATED NORMAL DISTRIBUTIONS
BI	OKA55		BIOKA55	* A.C. COHEN 519 THE RAPID CALCULATION OF CHI-SQUARE AS A TEST OF
BIO	OKA55	P. WHITTLE 277 CORRIGENDA, 'THE DISTRIBUTION OF RANGE IN CERTAIN NON-NORMAL POPULATIONS' * H. A. DAVID	BIOKA55	HOMOGENEITY FROM A 2-BY-N TABLE * J. B. S. HALDANE 520 THE 'INEFFICIENCY' OF THE SAMPLE MEDIAN FOR MANY FAMILIAR SYMMETRIC DISTRIBUTIONS * J. T. CHU
BI	OKA55		BIOKA55	522 A SIMPLE METHOD OF CALCULATING THE EXACT PROBABILITY IN 2-BY-2 CONTINGENCY TABLES WITH SMALL MARGINAL TOTALS * P. H. LESLIE
BIO	OKA55		BIOKA55	523 A TEST FOR A CHANGE IN A PARAMETER OCCURRING AT AN UNK- NOWN POINT * E. S. PAGE
BIG	OKA55			527 A PARADOX IN STATISTICAL ESTIMATION * A. STUART
BIO	OKA55	307 A LARGE-SAMPLE BIOASSAY DESIGN WITH RANDOM DOSES AND		529 CUMULANTS OF A TRANSFORMED VARIATE * G. S. JAMES 531 THE LIKELIHOOD RATIO TEST FOR MARKOFF CHAINS * I. J.

	WAUGH	BIOKA55	529 CUMULANTS OF A TRANSFORMED VARIATE * G. S. JAMES
	307 A LARGE-SAMPLE BIOASSAY DESIGN WITH RANDOM DOSES AND UNCERTAIN CONCENTRATION * F. C. ANDREWS, H. CHERNOFF	BIOKA55	531 THE LIKELIHOOD RATIO TEST FOR MARKOFF CHAINS * I. J. GOOD
BIOKA55	316 AN EXACT TEST FOR CORRELATION BETWEEN TIME SERIES * E. J. HANNAN	BIOKA55	533 EXACT FORMS OF SOME INVARIANTS FOR DISTRIBUTIONS AD- MITTING SUFFICIENT STATISTICS * V. S. HUZURBAZAR
	BIOMETRIKA VO	UNE 47	056
	DIOMETIVITA VOI	JUME 40, I	.536
BIOKA56	1 STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. II. THE BEGINNINGS OF A PROBABILITY CALCULUS * M. C.		161 ON THE JOINT DISTRIBUTION OF THE CIRCULAR SERIAL COR- RELATION COEFFICIENTS * G. S. WATSON
BIOKA56	KENDALL 15 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF	BIOKA56	169 THE APPROXIMATE DISTRIBUTION OF SERIAL CORRELATION COEFFICIENTS * H. E. DANIELS
	MEASLES, I. FAMILIES WITH TWO SUSCEPTIBLES ONLY. * N. T. J. BAILEY	BIOKA56	186 TESTS OF HYPOTHESES IN THE LINEAR AUTO-RECRESSIVE MODEL. II. NULL DISTRIBUTIONS FOR HICHER ORDER
BIOKA56	23 THE BEHAVIOUR OF AN ESTIMATOR FOR A SIMPLE BIRTH AND DEATH PROCESS * J. H. DARWIN	BIOKA56	SCHEMES, NON-NULL DISTRIBUTIONS * G. M. JENKINS 200 A CLASS OF DISTRIBUTIONS FOR WHICH THE MAXIMUM-
BIOKA56	32 EXAMINATION OF A QUANTUM HYPOTHESIS BASED ON A SINGLE SET OF DATA * S. R. BROADBENT		LIKELIHOOD ESTIMATOR IS UNBIASED AND OF MINIMUM VARIANCE FOR ALL SAMPLE SIZES * D. E. BARTON
BIOKA56	45 THE NUMBER OF NEW SPECIES, AND THE INCREASE IN POPULA- TION COVERAGE, WHEN A SAMPLE IS INCREASED * I. J.		203 FURTHER CRITICAL VALUES FOR THE TWO-MEANS PROBLEM * W. H. TRICKETT, B. L. WELCH, G. S. JAMES
BIOKA56	GOOD, G. H. TOULMIN 64 A SEQUENTIAL TEST OF RANDOMNESS FOR EVENTS OCCURRING	BIOKA56	206 AN APPROXIMATION FOR THE SYMMETRIC, QUADRIVARIATE NORMAL INTEGRAL * J. A. MCFADDEN
BIOKA56	INTIME OR SPACE * D. J. BARTHOLOMEW 79 ON THE MOMENTS OF THE MAXIMUM OF PARTIAL SUMS OF A	BIOKA56	207 WEIGHTED PROBITS ALLOWING FOR A NON-ZERO RESPONSE IN THE CONTROLS * M. J. R. HEALY
	FINITE NUMBER OF INDEPENDENT NORMAL VARIATES * A. A. ANIS	BIOKA56	208 TREATMENT VARIANCES FOR EXPERIMENTAL DESIGNS WITH SERIALLY CORRELATED OBSERVATIONS * J. C. BUTCHER
BIOKA56	85 ON THE APPLICATION TO STATISTICS OF AN ELEMENTARY THEOREM IN PROBABILITY * H. A. DAVID	BIOKA56	212 THE MULTIVARIATE DISTRIBUTION OF COMPLEX NORMAL VARI- ABLES * R. A. WOODING
BIOKA56	92 CHI-SQUARE PROBABILITIES FOR LARGE NUMBERS OF DEGREES OF FREEDOM * J. WISHART	BIOKA56	215 STATIONARITY CONDITIONS FOR STOCHASTIC PROCESSES OF THE AUTOREGRESSIVE AND MOVING-AVERACE TYPE * J. WISE
BIOKA56	96 THE SAMPLING DISTRIBUTION OF A MAXIMUM-LIKELIHOOD ESTIMATE* J. B. S. HALDANE, SHEILA M. SMITH	BIOKA56	219 SOME PROPERTIES OF AN ANCULAR TRANSFORMATION FOR THE
BIOKA56	104 TESTS FOR RANDOMNESS OF POINTS ON A LINE * D. E. BARTON, F. N. DAVID	DIOVAGO	CORRELATION COEFFICIENT * B. I. HARLEY 224 NOTE ON THE MOMENT-PROBLEM FOR UNIMODAL DISTRIBUTIONS
BIOKA56	113 PAIRED COMPARISON DESIGNS FOR TESTING CONCORDANCE	DIUNASO	WHEN ONE OR BOTH TERMINALS ARE KNOWN * C. L. MALLOWS
BIOKA56	BETWEEN JUDGES * R. C. BOSE 122 ON THE DISTRIBUTION OF THE LARGEST OR THE SMALLEST	BIOKA56	227 ON INVERTING A CLASS OF PATTERNED MATRICES * S. N. ROY, A. E. SARHAN
	ROOT OF A MATRIX IN MULTIVARIATE ANALYSIS * K. C. S.		

BIOKA56 231 A NOTE ON THE RISKS OF ERROR INVOLVED IN THE SEQUENTIAL

BIOKA56 235 CORRICENDATO 'TRANSFORMATIONS OF THE BINOMIAL, NEGA-

BIOKA56 235 CORRICENDA, 'THE RANDOMIZATION ANALYSIS OF A GENERAL-IZED RANDOMIZED BLOCK DESIGN' * M. B. WILK

TIVE BINOMIAL, POISSON AND CHI-SQUARE DISTRIBUTIONS'*G.BLOM

RATIO TEST * J. MEDHI

PILLAI

WILLIAMS

ROOT OF A MATRIX IN MULTIVARIATE ANALYSIS * K. C. S.

BIOKA56 128 TESTS OF SIGNIFICANCE FOR THE LATENT ROOTS OF COVARI-

ANCE AND CORRELATION MATRICES * D. N. LAWLEY
BIOKA56 137 THE VARIANCE OF THE MEAN OF SYSTEMATIC SAMPLES * R. M.

BIOKA56 149 GROUPING METHODS IN THE FITTING OF POLYNOMIALS TO UNEQUALLY SPACED OBSERVATIONS * P. G. GUEST

BIOKAS6 241 STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. III. A NOTE ON THE HISTORY OF THE CRAPHICAL PRESENTATION OF DATA * ERICA ROYSTON BIOKAS6 24B STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. IV. A NOTE ON AN EARLY STATISTICAL STUDY OF LITERARY STYLE* C. B. WILLIAMS BIOKAS6 257 A COODNESS OF FIT TEST FOR SPECTRAL DISTRIBUTION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL RESIDUALS * A. M. WALKER BIOKAS6 276 SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS AND CERTAIN RANDOM WALKS * J. CANI BIOKAS6 295 A GENERAL METHOD.FOR APPROXIMATING TO THE DISTRIBUTION * G. S. S. JAMES BIOKAS6 304 ON THE ACCURACY OF WEICHTED MEANS AND RATIOS * G. S. JAMES BIOKAS6 322 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF BIOKAS6 322 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF BIOKAS6 324 ON THE CIRCULAR MULTIVARIATE DISTRIBUTION * G. C. S. BLISS., W. C. COCHRAN, J. W. TUKEY BLINCH SCHOOL AND STORMAL SCORES * C. COMFIDENCE INTERVALS FOR A PROPORTION * E. L. CROW BLISS., W. C. COCHRAN, J. W. TUKEY 423 COMFIDENCE INTERVALS FOR A PROPORTION * E. L. CROW 436 SERIAL CORRELATION IN RECRESSION ANALYSIS. II * C. S. WATSON, E. J. HANNAN 449 REVISED UPPER PERCENTACE POINTS OF THE EXTREME STUDENTIZED DEVITIZED DEVITIZED DEVITATE FROM THE SAMPLE MEAN * A. A. DEVISED UPPER PERCENTACE POINTS OF THE EXTREME STUDENTIAL TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION * J. TAYLOR 452 EXACT LINEAR SEQUENTIAL TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION * J. TAYLOR 50 NT THE MOMENTS OF TEXTS TO THE MEAN OF A NORMAL SAMPLES * H. RUBEN SCOMES
BIOKAS6 24B STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. IV. A NOTE ON AN EARLY STATISTICAL STUDY OF LITERARY STYLE * C. B. WILLIAMS BIOKAS6 257 A COODNESS OF FIT TEST FOR SPECTRAL DISTRIBUTION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL RESIDUALS * A. M. WALKER BIOKAS6 276 SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS AND CERTAIN RANDOM WALKS * J. CANI BIOKAS6 285 SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DENUMBER OF STATES * C. DERMAN BIOKAS6 295 A GENERAL METHOD_FOR APPROXIMATING TO THE DISTRIBUTION * G. S. JAMES BIOKAS6 302 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF BIOKAS6 322 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF BIOKAS6 328 SERIAL CORRELATION IN RECRESSION ANALYSIS. II * C. S. WATSON, E. J. HANNAN 436 SERIAL CORRELATION IN RECRESSION ANALYSIS. II * C. S. WATSON, E. J. HANNAN 449 REVISED UPPER PERCENTACE POINTS OF THE EXTREME STU-DENTIZED DEVIATE FROM THE SAMPLE MEAN * H. A. DAVID DENTIZED DEVIATE FROM THE SAMPLE MEAN * H
IV. A NOTE ON AN EARLY STATISTICAL STUDY OF LITERARY STYLE* C. B. WILLIAMS BIOKAS6 257 A COODNESS OF FIT TEST FOR SPECTRAL DISTRIBUTION FUNCTIONS OF STATIONARY TIME SERIES WITH NORMAL RESIDUALS *A. M. WALKER BIOKAS6 276 SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS AND CERTAIN RANDOM WALKS *J. CANI BIOKAS6 285 SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES *C. DERMAN BIOKAS6 295 A GENERAL METHOD_FOR APPROXIMATING TO THE DISTRIBUTION *DING LIKELTHOOD RATIO CRITERIA *D. N. LAWLEY BIOKAS6 304 ON THE ACCURACY OF WEICHTED MEANS AND RATIOS *G. S. BIOKAS6 322 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF WATSON, E. J. HANNAN 449 REVISED UPPER PERCENTACE POINTS OF THE EXTREME STUDENTIAL TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION *J. TAYLOR BIOKAS6 452 EXACT LINEAR SEQUENTIAL TESTS FOR THE MEAN OF A NORMAL DISTRIBUTION *J. TAYLOR BIOKAS6 450 NO THE MOMENTS OF THE RANGE AND FRODUCT MOMENTS OF EX- TREME ORDER STATISTICS IN NORMAL SAMPLES *H. RUBEN BIOKAS6 467 NOTE ON THE CIRCULAR MULTIVARIATE DISTRIBUTION *G.
BIOKAS6 257 A COODNESS OF FIT TEST FOR SPECTRAL DISTRIBUTION FUNC— TIONS OF STATIONARY TIME SERIES WITH NORMAL RESIDUALS *A. M. WALKER BIOKAS6 276 SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS AND CERTAIN RANDOM WALKS * J. CANI BIOKAS6 285 SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES * C. DERMAN BIOKAS6 295 A GENERAL METHOD_FOR APPROXIMATING TO THE DISTRIBU— TION OF LIKELTHOOD RATIO CRITERIA *D. N. LAWLEY BIOKAS6 304 ON THE ACCURACY OF WEICHTED MEANS AND RATIOS * G. S. JAMES BIOKAS6 322 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF DENTIZED DEVIATE FROM THE SAMPLE MEAN * H. A. DAVID DISTRIBUTION *J. TAYLOR 452 EXACT LINEAR SEQUENTIAL TESTS FOR THE MEAN OF A NORMAL BIOKAS6 456 ON THE SUM OF SQUARES OF NORMAL SCORES * H. RUBEN TREME ORDER STATISTICS IN NORMAL SAMPLES * H. RUBEN SCOMBE BIOKAS6 465 EXISTENCE AND UNIQUENESS OF A UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR THE BINOMIAL * A. A. BLANK BIOKAS6 467 A NOTE ON THE CIRCULAR MULTIVARIATE DISTRIBUTION * G.
RESIDUALS * A. M. WALKER BIOKAS6 276 SUFFICIENCY CONDITIONS IN REGULAR MARKOV CHAINS AND CERTAIN RANDOM WALKS * J. CANI BIOKAS6 285 SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES * C. DERMAN BIOKAS6 295 A GENERAL METHOD FOR APPROXIMATING TO THE DISTRIBUTION THE DISTRIBUTION OF LIKELIHOOD RATIO CRITERIA * D. N. LAWLEY BIOKAS6 304 ON THE ACCURACY OF WEICHTED MEANS AND RATIOS * G. S. JAMES BIOKAS6 322 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF BIOKAS6 467 A NOTE ON THE CIRCULAR MULTIVARIATE DISTRIBUTION * G.
CERTAIN RANDOM WALKS * J. CANI BIOKA56 285 SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DENUMBER OF STATES * C. DERMAN BIOKA56 295 A GENERAL METHOD_FOR APPROXIMATING TO THE DISTRIBUTION OF LIKELIHOOD RATIO CRITERIA * D. N. LAWLEY BIOKA56 304 ON THE ACCURACY OF WEICHTED MEANS AND RATIOS * G. S. JAMES BIOKA56 322 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF BIOKA56 322 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF BIOKA56 328 ON THE MOMENTS OF THE RANGE AND PRODUCT MOMENTS OF EX- TREME ORDER STATISTICS IN NORMAL SAMPLES * H. RUBEN BIOKA56 465 EXISTENCE AND UNIQUENESS OF A UNIFORMLY MOST POWERFUL RANDOMIZED UNBIASED TEST FOR THE BINOMIAL * A. A. BLANK BIOKA56 467 A NOTE ON THE CIRCULAR MULTIVARIATE DISTRIBUTION * G.
BIOKAS6 285 SOME ASYMPTOTIC DISTRIBUTION THEORY FOR MARKOV CHAINS WITH A DENUMERABLE NUMBER OF STATES * C. DERMAN BIOKAS6 295 A GENERAL METHOD_FOR APPROXIMATING TO THE DISTRIBU- TION OF LIKELIHOOD RATIO CRITERIA * D. N. LAWLEY BIOKAS6 304 ON THE ACCURACY OF WEICHTED MEANS AND RATIOS * G. S. JAMES BIOKAS6 322 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF BIOKAS6 322 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF BIOKAS6 328 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF BIOKAS6 329 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF BIOKAS6 320 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF BIOKAS6 320 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF
WITH A DENUMERABLE NUMBER OF STATES * C. DERMAN BIOKAS6 295 A GENERAL METHOD FOR APPROXIMATING TO THE DISTRIBU- TION OF LIKELIHOOD RATIO CRITERIA * D. N. LAWLEY BIOKAS6 304 ON THE ACCURACY OF WEICHTED MEANS AND RATIOS * G. S. JAMES BIOKAS6 322 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF BIOKAS6 322 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF BIOKAS6 467 A NOTE ON THE CIRCULAR MULTIVARIATE DISTRIBUTION * G.
BIOKAS6 295 A GENERAL METHOD_FOR APPROXIMATING TO THE DISTRIBU- TION OF LIKELTHOOD RATIO CRITERIA * D. N. LAWLEY BIOKAS6 304 ON THE ACCURACY OF WEICHTED MEANS AND RATIOS * G. S. JAMES BIOKAS6 322 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF BIOKAS6 322 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF BIOKAS6 467 A NOTE ON THE CIRCULAR MULTIVARIATE DISTRIBUTION * G.
TION OF LIKELIHOOD RATIO CRITERIA * D. N. LAWLEY BIOKA56 304 ON THE ACCURACY OF WEICHTED MEANS AND RATIOS * G. S. JAMES BIOKA56 322 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF BIOKA56 322 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF BIOKA56 320 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF BIOKA56 467 A NOTE ON THE CIRCULAR MULTIVARIATE DISTRIBUTION * G.
BIOKAS6 304 ON THE ACCURACY OF WEICHTED MEANS AND RATIOS * G. S. JAMES BIOKAS6 322 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF BIOKAS6 467 A NOTE ON THE CIRCULAR MULTIVARIATE DISTRIBUTION * G.
JAMES BIOKAS6 322 ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF BIOKAS6 467 A NOTE ON THE CIRCULAR MULTIVARIATE DISTRIBUTION • G.
DIGING TO RECEIVE BEEN SUBBLIFIED TO SECOND STATE OF THE CHICAGO SUBBLIFIED TO SECOND SUBBLIFIED TO SECOND SUBBLIFIED SUB
MEACURE II DANTI TRE WITHI MUDER OF MORE CHECKROMI
MEASLES, II. FAMILIES WITH THREE OR MORE SUSCEPTI- S. WATSON
BLES * N. T. J. BAILEY BIOKA56 468 THE FITTING OF RECRESSION CURVES WITH AUTOCORRELATED
BIOKA56 332 SIGNIFICANCE TESTS FOR A VARIABLE CHANCE OF INFECTION DATA * N. A. HUTTLY
IN CHAIN-BINOMIAL THEORY * N. T. J. BAILEY BIOKAS6 474 BOUNDS FOR THE VARIANCE OF KENDALL'S RANK CORRELATION
BIOKAS6 337 ON THE VARIATION OF YIELD VARIANCE WITH PLOT SIZE * P. STATISTIC * A. STUART
WHITTLE BIOKASG 478 A NOTE ON THE THEORY OF QUICK TESTS * D. R. COX
BIOKAS6 344 ON THE CONSTRUCTION OF SIGNIFICANCE TESTS ON THE CIR- CLE AND THE SPHERE * C. S. WATSON, E. J. WILLIAMS BIOKAS6 480 A NOTE ON THE SIGNS OF GROSS CORRELATION COEFFICIENTS * O. REIERSOL AND PARTIAL CORRELATION COEFFICIENTS * O. REIERSOL
810KA56 353 NOTES ON BIAS IN ESTIMATION * M. H. QUENOUILLE BIOKA56 4B2 THE ESTIMATION OF THE MEAN OF A CENSORED NORMAL DIS-
BIOKA56 361 AN INTRODUCTION TO SOME NON-PARAMETRIC CENERALIZA- TRIBUTION BY ORDERED VARIABLES * P. C. MOORE
TIONS OF ANALYSIS OF VARIANCE AND MULTIVARIATE ANAL— 810KA56 4B5 A NOTE ON WILCOXON'S AND ALLIED TESTS * F. N. DAVID
YSIS * S. N. ROY, S. K. MITRA 810KA56 4BB LIKELIHOOD FUNCTION FOR CAPTURE-RECAPTURE SAMPLES *
BIOKAS6 377 A TWO-SAMPLE DISTRIBUTION-FREE TEST * A. R. KAMAT N. E. C. CILBERT
BIOKAS6 3B6 ADDENDUM, THE LIMITING DISTRIBUTION OF KAMAT'S TEST
STATISTIC * D. E. BARTON BIOKAS6 496 CORRICENDA TO 'CORRELATED RANDOM NORMAL DEVIATES' PUBLISHED IN TRACTS FOR COMPUTERS, NO. 26. * E. C.
BIOKAS6 3B8 SEQUENTIAL ANALYSIS APPLIED TO CERTAIN EXPERIMENTAL DESIGNS IN THE ANALYSIS OF VARIANCE * W. D. RAY BIOKAS6 497 CORRIGENDA TO 'SOME THEOREMS AND SUFFICIENCY CONDI-
BIOKAS6 404 LOCNORMAL APPROXIMATION TO PRODUCTS AND QUOTIENTS * TIONS FOR THE MAXIMUM-LIKELIHOOD ESTIMATOR OF AN
S. R. BROADBENT UNKNOWN PARAMETER IN A SIMPLE MARKOV CHAIN' * J. GANI
RIGHTERIA JOHNE AA 1057

BIOMETRIKA VOLUME 44, 1957

		DIOMEILIKA	VULUME 44,	1957	
BIOKA57		EDITORIAL, JOHN WISHART, 1898-1956 * E. S. PEARSON	BIOKA57	260	STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS.
BIOKA57		RESTRICTED SEQUENTIAL PROCEDURES * P. ARMITAGE			V.A NOTE ON PLAYING CARDS * M.G. KENDALL
BIOKA57	27	ON THEORETICAL MODELS FOR COMPETITIVE AND PREDATORY BIOLOGICAL SYSTEMS * M. S. BARTLETT	BIOKA57	262	A SINGULARITY IN THE ESTIMATION OF BINOMIAL VARIANCE * A . STUART
BIOKA57	43	THE CONSISTENCY AND ADEQUACY OF THE POISSON-MARKOFF MODEL FOR DENSITY FLUCTUATIONS * V. T. PATIL	BIOKA57	264	STUDENT'S DISTRIBUTION AND RIEMANN'S ELLIPTIC CEOMETRY * A. WINTNER
BIOKA57	57	TESTING FOR SERIAL CORRELATION IN LEAST SQUARES RECRESSION * E. J. HANNAN	BIOKA57	265	SOME INTERRELATIONS AMONG COMPOUND AND CENERALIZED DISTRIBUTIONS * J. GURLAND
BIOKA57	67	ON THE ANALYSIS OF MULTIPLE REGRESSION IN K CATEGORIES * S. KULLBACK, H. M. ROSENBLATT	BIOKA57	268	A NOTE ON TESTS OF SIGNIFICANCE FOR LINEAR FUNCTIONAL RELATIONSHIPS * M. S. BARTLETT
BIOKA57	B4	BIV*RIATE STRUCTURAL RELATION * R. L. BROWN	BIOKA57	270	THE MOMENTS OF THE LEIPNIK DISTRIBUTION * M. G. KEN-
BIOKA57		AN ANALYSIS OF PAIRED COMPARISON DESIGNS WITH IN-	DIOMAGI	210	DALL
	,	COMPLETE REPETITIONS * J. W. WILKINSON	8IOKA57	272	THE EFFECT OF TRANSFORMATIONS OF VARIABLES UPON THEIR
8I0KA57	114	NON-NULL RANKING MODELS . I * C . L . MALLOWS	OIOMAO,	212	CORRELATION COEFFICIENTS * M. H. QUENOUILLE
BIOKA57	131	THE CENERALIZATION OF PROBIT ANALYSIS TO THE CASE OF MULTIPLE RESPONSES * J. AITCHISON, S. D. SILVEY	BIOKA57	273	FURTHER PROPERTIES OF AN ANCULAR TRANSFORMATION OF THE CORRELATION COEFFICIENT * B. I. HARLEY
BIOKA57	141	EXPERIMENTING WITH ORGANISMS AS BLOCKS * S. C. PEARCE	BIOKA57	275	HETEROCENEITY OF ERROR VARIANCES IN A RANDOMIZED
BIOKAS7		THE USE OF A CONCOMITANT VARIABLE IN SELECTING AN EX-	DIOWASI	215	BLOCK DESIGN * F. A. GRAYBILL, J. L. FOLKS
220111101	100	PERIMENTAL DESIGN * D. R. COX	BIOKA57	27B	AN EXTENSION PROPERTY OF A CLASS OF BALANCED IN-
BIOKA57	159	APPROXIMATE CONFIDENCE LIMITS FOR COMPONENTS OF VARI-	DIONAGI	210	COMPLETE BLOCK DESIGNS * G. P. SILLITTO
52011101	200	ANCE * M. G. BULMER	BIOKA57	279	SEQUENTIALLY DETERMINED CONFIDENCE INTERVALS * N. L.
BIOKA57	168	MULTIPLERUNS * D. E. BARTON, F. N. DAVID	DIOMAGI	215	JOHNSON
BIOKA57		BINOMIAL SAMPLING SCHEMES AND THE CONCEPT OF INFORMA-	BIOKA57	282	ESTIMATION OF MEANS OF NORMAL POPULATIONS FROM OB-
		TION * D. V, LINDLEY	22011101	-02	SERVED MINIMA * H. A. DAVID
BIOKA57	187	A STATISTICAL PARADOX * D. V. LINDLEY	BIOKA57	286	THE POWER OF THE POISSON INDEX OF DISPERSION * J. H.
BIOKA57	193	STOCHASTIC CROSS-INFECTION BETWEEN TWO OTHERWISE			DARWIN
		ISOLATED CROUPS * H. W. HASKEY	BIOKA57	2B9	SOME PROPERTIES OF THE BIVARIATE NORMAL DISTRIBUTION
BIOKA57	205	SOME STATISTICS ASSOCIATED WITH THE RANDOM DISORIEN-			CONSIDERED IN THE FORM OF A CONTINGENCY TABLE * H. O.
		TATION OF CUBES * J. K. MACKENZIE, M. J. THOMSON			LANCASTER
BIOKA57	211	THE DIFFERENCE BETWEEN CONSECUTIVE MEMBERS OF A SE-	BIOKA57	301	CORRIGENDA TO 'THE LIKELIHOOD RATIO TEST FOR MARKOFF
		RIES OF RANDOM VARIABLES ARRANCED IN ORDER OF SIZE *			CHAINS'*I.J.GOOD
		J. H. DARWIN	BIOKA57	303	CENTENARY LECTURE, KARL PEARSON, 1B57-1957 * J. B. S.
BIOKA57	219	RELATION BETWEEN THE DISTRIBUTIONS OF NON-CENTRAL T			HALDANE
		AND OF A TRANSFORMED CORRELATION COEFFICIENT * B. I.	BIOKA57	314	AN ANALYSIS OF THE DATA FOR SOME EXPERIMENTS CARRIED
		HARLEY			OUT BY GAUSE WITH POPULATIONS OF THE PROTOZOA
BIOKA57	225	ON THE SOLUTION OF ESTIMATING EQUATIONS FOR TRUNCATED			PARAMECIUM AURELIA AND PARAMECIUM CAUDATUM * P. H.
		AND CENSORED SAMPLES FROM NORMAL POPULATIONS * A. C.	4		LESLIE
		COHEN	BIOKA57	32B	ON THE DISTRIBUTION OF TRIBOLIUM CONFUSUM IN A CON-
BIOKA57	237	UPPER PERCENTACE POINTS OF THE CENERALIZED BETA DIS-			TAINER * D. R. COX, W. L. SMITH
DIOVACO	0.40	TRIBUTION. I * F. G. FOSTER, D. H. REES	BIOKA57	336	THE CHI-SQUARE GOODNESS-OF-FIT TEST FOR NORMAL DIS-
BIOKA57	Z4B	ON PROBLEMS IN WHICH A CHANCE IN A PARAMETER OCCURS AT AN UNKNOWN POINT * E.S. PACE			TRIBUTIONS * C. S. WATSON
BIOKA57	257	TESTING FOR DEPARTURE FROM THE EXPONENTIAL DISTRIBU-	BIOKA57	349	APPROXIMATIONS TO THE DISTRIBUTIONS OF SOME MEASURES
DIUNASY	200	TION * D. J. SARTHOLOMEW			OF DISPERSION BASED ON SUCCESSIVE DIFFERENCES * Y.
BIOKA57	257	THE DISTRIBUTION OF RANGE IN NORMAL SAMPLES WITH N=200			S. SATHE, A. R. KAMAT
DIGHAUI	201	* B. I. HARLEY, E. S. PEARSON	BIOKA57	360	QUEUEING WITH BALKING * F. A. HAICHT

- 810KA57 370 TESTING FOR SERIAL CORRELATION IN SYSTEMS OF SIMUL-TANEOUS REGRESSION EQUATIONS * J. DURBIN
- 378 HETEROGENEOUS ERROR VARIANCES IN SPLIT-PLOT EXPERI-BIOKA57 MENTS * R. N. CURNOW
- 384 A MAXIMUM-MINIMUM PROBLEM RELATED TO STATISTICAL DIS BIOKA57 TRIBUTIONS IN TWO DIMENSIONS * A . J . HARRIS
- 399 FURTHER CONTRIBUTIONS TO MULTIVARIATE CONFIDENCE EIOKA57 BOUNDS * S. N. ROY, R. GNANADESIKAN
- 411 TABLES FOR USE IN ESTIMATING THE NORMAL DISTRIBUTION BIOKA57 FUNCTION BY NORMIT ANALYSIS. PART I DESCRIPTION AND USE OF TABLES. PART II. COMPARISON BETWEEN MINIMUM NORMIT CHI-SQUARE ESTIMATE AND THE MAXIMUM LIKELIHOOD ESTIMATE * J. BERKSON
- BIOKA57 436 SHORTER INTERVALS FOR THE PARAMETER OF THE BINOMIAL AND POISSON DISTRIBUTIONS * W. L. STEVENS
- BIOKA57 441 UPPER PERCENTAGE POINTS OF THE GENERALIZED BETA DIS-TRIBUTION. II * F. G. FOSTER
- 454 STATISTICAL ANALYSIS USING LOCAL PROPERTIES OF BIOKA57 SMOOTHLY HETEROMORPHIC STOCHASTIC SERIES * G. H. JOWETT
- 464 DEPENDENCE OF THE FIDUCIAL ARGUMENT ON THE SAMPLING BIOKA57 RULE * F. J. ANSCOMBE
- 470 TESTS FOR RANK CORRELATION COEFFICIENTS. I * E. C. BIOKA57 FIELLER, H. O. HARTLEY, E. S. PEARSON

BIOKA57 482 THE TWO-SAMPLET-TEST BASED ON RANGE * P. G. MOORE

- 490 A BIBLIOGRAPHY ON THE THEORY OF QUEUES * ALISON DOIG 3IOKA57
- 515 STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS 3IOKA57 VI. A NOTE ON THE EARLY SOLUTIONS OF THE PROBLEM OF THE DURATION OF PLAY * A . R . THATCHER
- BIOKA57 518 OPTIMAL SAMPLING FOR QUOTA FULFILMENT * N. L. JOHNSON BIOKA57 524 THE DISTRIBUTION OF INTERVALS BETWEEN SUCCESSIVE MAX-IMA IN A SERIES OF RANDOM NUMBERS * D. S. PALMER
- BIOKA57 526 THE EFFECT OF TIES ON THE MOMENTS OF RANK CRITERIA * B E. COOPER
- BIOKA57 52B APPROXIMATIONS TO THE UPPER 5 PERCENT POINTS OF FISHER'S B DISTRIBUTION AND NON-CENTRAL CHI-SQUARE * J. W. THKEY
- BIOKA57 530 UNIQUENESS OF A RESULT IN THE THEORY OF ACCIDENT PRONENESS * N. L. JOHNSON
- 532 A NOTE ON THE MEAN DEVIATION OF THE BINOMIAL DISTRIBU-BIOKA57 TION * N. L. JOHNSON
- BIOKA57 533 A COMMENT ON D. V. LINDLEY'S STATISTICAL PARADOX * M. S. BARTLETT
- 534 CORRIGENDA TO 'THE USE OF A CONCOMITANT VARIABLE IN BIOKA57 SELECTING AN EXPERIMENTAL DESIGN' * D. R. COX
- BIOKA57 534 CORRIGENDA TO 'MULTIPLE RUNS' * D. E. BARTON, F. N.

BIOMETRIKA VOLUME 45, 195B

- 1 NUMERIGAL STUDIES IN THE SEQUENTIAL ESTIMATION OF A **BIOKA5B** BINOMIAL PARAMETER * P. ARMITAGE
- BIOKA58 16 A STOCHASTIC MODEL FOR STUDYING THE PROPERTIES OF CER-TAIN 810LOGICAL SYSTEMS BY NUMERICAL METHODS * P. H. LESLIE
- 32 ON THE DERIVATION AND APPLICABILITY OF NEYMAN'S TYPE BIOKA58 A DISTRIBUTION * J. G. SKELLAM
- 37 NEGATIVE SINOMIAL DISTRIBUTIONS WITH A COMMON K * C. BIOKA58 I. BLISS, A. R. G. OWEN
- 59 SIMPLIFIED METHODS OF FITTING THE TRUNCATED NEGATIVE BTOKA58 BINOMIAL DISTRIBUTION * W. BRASS
- 69 THE INTERPRETATION OF THE EFFECTS OF NON-ADDITIVITY BIOKA58 IN THE LATIN SQUARE * D. R. COX
- QUANTAL RESPONSES TO MIXTURES OF POISONS UNDER GONDI-BIOKA58 TIONS OF SIMPLE SIMILAR ACTION, THE ANALYSIS OF UN-CONTROLLED DATA * J. R. ASHFORD
- B9 SOME PROPERTIES OF RUNS IN QUALITY CONTROL PROCEDURES BTOKA58 * P. G. MOORE
- 96 SIMULTANEOUS REGRESSION EQUATIONS IN EXPERIMENTA-BTOKA5B TION * E. J. WILLIAMS
- 111 ONE-WAY VARIANCES IN A TWO-WAY CLASSIFICATION * T. S. **BIOKA5B** RUSSELL, R. A. BRADLEY
- BIOKA5B 130 STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. VII. THE PRINCIPLE OF THE ARITHMETIC MEAN * R. L PLACKETT
- BTOKA58 136 MULTIVARIATE LINEAR STRUCTURAL RELATIONS * R. L BROWN, F. FEREDAY
- BIOKA58 154 MULTIVARIATE RATIO ESTIMATION FOR FINITE POPULATIONS * I. OLKIN
- BIOKA58 166 NON-RANDOMNESS IN A SEQUENCE OF TWO ALTERNATIVES. I WILCOXON'S AND ALLIED TEST STATISTICS * D. E. BAR-TON, F. N. DAVID, C. L. MALLOWS
- BIOKA58 181 SIMPLIFIED RUNS TESTS AND LIKELIHOOD RATIO TESTS FOR MARKOFF CHAINS * L. A. GOODMAN
- BTOKA5B 198 MOMENT GENERATING FUNCTIONS OF QUADRATIC FORMS IN SERIALLY CORRELATED NORMAL VARIABLES * R. LEIPNIK
- 211 MOMENTS OF SAMPLE MOMENTS OF CENSORED SAMPLES FROM A BIOKA58 NORMAL POPULATION * J. G. SAW
- 222 THE RELATION BETWEEN THE DICTIONARY DISTRIBUTION AND 8IOKA58 THE OCCURRENCE DISTRIBUTION OF WORD LENGTH AND ITS IMPORTANCE FOR THE STUDY OF QUANTITATIVE LIN-GUISTICS * G. HERDAN
- 229 SECOND PAPER ON STATISTICS ASSOCIATED WITH THE RANDOM BTOKA58 DISORIENTATION OF CUBES * J. K. MACKENZIE
- BIOKA58 241 GONDITIONED MARKOV PROCESSES * W. A. O'N. WAUGH
- BIOKA5B 250 RANKING MEANS OF TWO NORMAL POPULATIONS WITH UNKNOWN VARIANCES * RITA MAURICE
- 253 NON-RANDOMNESS IN A SEQUENCE OF TWO ALTERNATIVES. II. RUNS TEST * D. E. BARTON, F. N. DAVID
- BIOKA5B 256 NOTE ON MULTIPLE COMPARISONS FOR ADJUSTED MEANS IN THE ANALYSIS OF COVARIANCE * M. HALPERIN, S. W. GREEN-HOUSE
- 260 AN EMPIRICAL INVESTIGATION INTO THE DISTRIBUTION OF BIOKA58 THE F-RATIO IN SAMPLES FROM TWO NON-NORMAL POPULA-TIONS * H. R. 8. HACK
- STOKA58 265 THEORETICAL CONSIDERATIONS REGARDING H. R. 8. HACK'S SYSTEM OF RANDOMIZATION FOR CROSS-CLASSIFICATIONS * N. L. JOHNSON

- BIOKA58 267 ON THE EQUIVALENCE OF TWO TESTS OF EQUALITY OF RATE OF OCCURRENCE IN TWO SERIES OF EVENTS OCCURRING RAN-DOMLY IN TIME * D. E. BARTON
- BIOKA58 268 THE MATHEMATIGAL RELATION BETWEEN GREENBERG'S INDEX OF LINGUISTIC DIVERSITY AND YULE'S CHARACTERISTIC * G. HERDAN
- BIOKA58 270 NOTE ON A DISCONTINUOUS PROBABILITY DENSITY * J. E. KERRICH
- BIOKA5B 273 A REMARK ON SPEARMAN'S RANK CORRELATION COEFFICIENT * H. BERGSTROM
- 275 INTERVAL ESTIMATION FOR THE PARAMETER OF A SINOMIAL BIOKA58 DISTRIBUTION * C. W. CLUNIES-ROSS
- 279 FURTHER CRITICAL VALUES FOR THE SUM OF TWO VARIANCES * BIOKA58 A. HUITSON
- 282 STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. BIOKA58 VIII. DE MORGAN AND THE STATISTICAL STUDY OF LITERA-RY STYLE * R. D. LORD
- BIOKA58 291 CORRIGENDA TO 'SOME FURTHER RESULTS IN THE THEORY OF PEDESTRIANS AND ROAD TRAFFIC' * A. J. MAYNE
- 291 CORRIGENDA TO 'CONFIDENCE INTERVALS FOR A PROPORTION' BIOKA5B * E. L. CROW
- 292 ERRATA IN 'TABLES OF SYMMETRIC FUNCTIONS' * F. N. BIOKA5B DAVID, M. G. KENDALL
- BIOKA58 293 STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. IX. BIOGRAPHICAL NOTE FOR T. BAYES' ESSAY TOWARDS SOLVING A PROBLEM IN THE DOCTRINE OF CHANCES. * G. A. BARNARD
- 296 ESSAY TOWARDS SOLVING A PROBLEM IN THE DOCTRINE OF BIOKA58 CHANCES. (REPRODUCED FROM PHIL. TRANS. ROY. SOG. 1763, 53, 370-41B.) * THOMAS BAYES
- 316 THE PROPERTIES OF A STOCHASTIC MODEL FOR TWO COMPETING 8TOKA58 SPECIES * P. H. LESLIE, J. C. GOWER
- BIOKA5B 331 A PROBLEM IN THE COMBINATION OF ACCIDENT FREQUENCIES * J. C. TANNER
- BIOKA58 343 THE MULTIPLE-RECAPTURE CENSUS. I. ESTIMATION OF A CLOSED POPULATION * J. N. DARROCH
- 360 CONFIDENCE INTERVALS FOR DISTANCE IN THE ANALYSIS OF BIOKA58 VARIANCE * M. G. BULMER
- 370 THE EFFIGIENCIES OF ALTERNATIVE ESTIMATORS FOR AN BIOKA58 ASYMPTOTIC REGRESSION EQUATION * D. J. FINNEY
- 389 THE USE OF AUTOREGRESSION IN FITTING AN EXPONENTIAL STOKA58 CURVE * H. D. PATTERSON
- 401 TWO QUEUES IN PARALLEL * F. A. HAIGHT BTOKA58
- 411 MOMENT ESTIMATORS AND MAXIMUM LIKELIHOOD * L. R. SHEN-BIOKA58 TON
- BTOKA5B 421 EFFECT OF NON-NORMALITY ON THE POWER FUNCTION OF T-TEST * A. B. L. SRIVASTAVA
- 429 NOTE ON MR SRIVASTAVA'S PAPER ON THE POWER FUNCTION OF BIOKA58 STUDENT'S TEST * E. S. PEARSON
- 431 A QUICK ESTIMATE OF THE REGRESSION GOEFFICIENT * D. E. BIOKA5B BARTON, D. J. CASLEY BIOKA58 436 ON THE CHOICE OF THE BEST AMONGST THREE NORMAL POPULA-
- TIONS WITH KNOWN VARIANCES * A. ZINGER, J. ST-PIERRE BIOKA58 447 APPROXIMATE FORMULAE FOR THE STATISTICAL DISTRIBU-
- TIONS OF EXTREME VALUES * J. J. DRONKERS 8IOKA58 471 THE SAMPLING VARIANCE OF CORRELATION COEFFICIENTS UNDER ASSUMPTIONS OF FIXED AND MIXED VARIATES * J. W.
- HOOPER BIOKA58 478 THE MEAN DEVIATION, WITH SPECIAL REFERENCE TO SAMPLES FROM A PEARSON TYPE III POPULATION * N. L. JOHNSONN

BIOKA58	484 AN APPROXIMATION TO THE DISTRIBUTION OF NON-CENTRAL T * MAXINE MERRINCTON, E. S. PEARSON	BIOKA58 565 A NOTE ON A SERIES SOLUTION OF A PROBLEM IN ESTIMATION * I.CUTTMAN
BIOKA58	492 UPPER PERCENTACE POINTS OF THE CENERALIZED BETA DIS- TRIBUTION.III * F. C. FOSTER	BIOKA58 567 ON NAIR'S TRANSFORMATION OF THE CORRELATION COEFFI- CIENT * M. SANKARAN
BIOKA58	504 ESTIMATION OF PARAMETERS OF MIXED EXPONENTIALLY DIS- TRIBUTED FAILURE TIME DISTRIBUTIONS FROM CENSORED	BIOKA58 571 SHORT PROOF OF DR HARLEY'S THEOREM ON THE CORRELATION COEFFICIENT * H. E. DANIELS, M. G. KENDALL
	LIFE TEST DATA * W. MENDENHALL, R. J. HADER	BIOKA58 572 RUNS IN A RING * D. E. BARTON, F. N. DAVID
BIOKA5B	521 A BIBLIOGRAPHY ON LIFE TESTING AND RELATED TOPICS * W. MENDENHALL	BIOKASB 57B SOME APPLICATIONS OF MEIJER-G FUNCTIONS TO DISTRIBU- TION PROBLEMS IN STATISTICS * D. G. KABE
BIOKA58	544 A TWO-SAMPLE DISTRIBUTION FREE TEST FOR COMPARING VARIANCES * B. V. SUKHATME	BIOKA5B 581 SELECTION OF THE POPULATION WITH THE LARGEST MEAN WHEN COMPARISONS CAN BE MADE ONLY IN PAIRS * RITA MAURICE
BIOKA5B	549 THE MEAN DIFFERENCE AND THE MEAN DEVIATION OF SOME DISCONTINUOUS DISTRIBUTIONS * T. A. RAMASUBBAN	BIOKA5B 5B1 A NOTE ON 'FURTHER CONTRIBUTIONS TO MULTIVARIATE CON- FIDENCE BOUNDS' * S. N. ROY, R. GNANADESIKAN
BIOKA5B	556 THE MEAN DEVIATION OF THE POISSON DISTRIBUTION * E. L. CROW	BIOKA58 587 CORRIGENDA TO 'A NOTE ON THE MEAN DEVIATION OF THE BINOMIAL DISTRIBUTION'*N. L. JOHNSON
BIOKA5B	559 NOTE ON THE CHARACTERISTIC FUNCTION OF A SERIAL-COR- RELATION DISTRIBUTION * R. LEIPNIK	BIOKASS 587 GORRIGENDA TO 'ON THE MEAN SUCCESSIVE DIFFERENCE AND ITS RATIO TO THE ROOT MEAN SQUARE' * A. R. KAMAT

BIOKASB 5B7 CORRIGENDA TO 'MOMENTS OF SAMPLE MOMENTS OF CENSORED

BIOKA59 502 CORRIGENDA, 'MOMENT ESTIMATORS AND MAXIMUM LIKELIHOOD. ' * L. R. SHENTON

BIOKA59 502 CORRIGENDA, 'ON THE CUMULANTS OF RENEWAL PROCESSES.'

BLE. '* P. B. PATNAIK

* W. L. SMITH

DIFFERENCE BETWEEN TWO PROPORTIONS IN A 2-BY-2 TA-

SAMPLES FROM A NORMAL POPULATION ' * J. G. SAW

BIOKA58 562 TWO FURTHER APPLICATIONS OF A MODEL FOR BINARY REGRES-

BIOKA59 260 CONFIDENCE LIMITS IN THE CASE OF THE GEOMETRIC DIS-

BIOKA59 279 CORRIGENDA, 'ON THE STATISTICAL INDEPENDENCE OF QUADRATIC FORMS IN NORMAL VARIATES.' * A. C. AITKEN

BIOKA59 279 CORRIGENDA, 'SOME PROPERTIES OF RUNS IN QUALITY CON-

TROL PROCEDURES ' * P. G. MOORE

TRIBUTION * K. G. CLEMANS

SION * D. R. COX

		BIOMETRIKA	VOLUME 46,	1959	
BIOKA59 BIOKA59		ON THE CUMULANTS OF RENEWAL PROCESSES * W. L. SMITH A RANDOM WALK IN WHICH THE STEPS OCCUR RANDOMLY IN TIME	BIOKA59	279	CORRIGENDA, 'CONDITIONED MARKOFF PROCESSES.' * W. A. O'N. WAUGH
BIOKA59	36	* A. MERCER, C.S. SMITH A TEST OF HOMOGENEITY FOR ORDERED ALTERNATIVES * D.J.	BIOKA59		CORRICENDA, 'THE PROPERTIES OF A STOCHASTIC MODEL FOR TWO COMPETING SPECIES.' * P. H. LESLIE, J. C. GOWER
BIOKA59	49	BARTHOLOMEW SOME PROBLEMS INVOLVING LINEAR HYPOTHESES IN MUL-	BIOKA59		AN INVESTIGATION OF HARTLEY'S METHOD FOR FITTING AN EXPONENTIAL CURVE * H. D. PATTERSON, S. LIPTON
BIOKA59	59	TIVARIATE ANALYSIS * C. R. RAO TESTS OF SIGNIFICANCE IN CANONICAL ANALYSIS * D. N.	BIOKA59		THE EFFICIENCY OF INTERNAL REGRESSION FOR THE FITTING OF THE EXPONENTIAL REGRESSION * H. O. HARTLEY
BIOKA59	67	LAWLEY THE ESTIMATION OF PARAMETERS IN SYSTEMS OF STOCHASTIC DIFFERENTIAL EQUATIONS * A. W. PHILLIPS	BIOKA59 BIOKA59		THE DISTRIBUTION OF MOMENT ESTIMATORS * L. R. SHENTON EFFICIENT ESTIMATION OF PARAMETERS IN MOVING—AVERAGE
BIOKA59	77	DESIGN OF EXPERIMENTS IN NON-LINEAR SITUATIONS * G. E. P. BOX, H. L. LUCAS	BIOKA59	317	MODELS * J. DURBIN THE COMPLETE AMALGAMATION INTO BLOCKS, BY WEIGHTED MEANS, OF A FINITE SET OF REAL NUMBERS * R. E. MILES
BIOKA59	91	THE ESTIMATION OF MISSINC AND MIXED-UP OBSERVATIONS IN SEVERAL EXPERIMENTAL DESIGNS * J. D. BIGCERS	BIOKA59	328	A TEST OF HOMOGENEITY FOR ORDERED ALTERNATIVES. II * D.J. BARTHOLOMEW
BIOKA59		NOTE ON A THREE-DECISION TEST FOR COMPARING TWO BINOMIAL POPULATIONS * J. H. DARWIN	BIOKA59	336	THE MULTIPLE-RECAPTURE CENSUS II. ESTIMATION WHEN THERE IS IMMICRATION OR DEATH * J. N. DARROCH
BIOKA59		EFFECT OF NON-NORMALITY ON THE POWER OF THE ANALYSIS OF VARIANCE TEST * A. B. L. SRIVASTAVA	BIOKA59		ON AN EXTENSION OF THE CONNEXION BETWEEN POISSON AND CHI-SQUARE DISTRIBUTIONS * N. L. JOHNSON
BIOKA59		THE Z-TEST AND SYMMETRICALLY DISTRIBUTED RANDOM VARI- ABLES * F. N. DAVID APPROXIMATION TO THE DISTRIBUTION OF SAMPLE SIZE FOR	BIOKA59		NOTE ON AN APPROXIMATION TO THE DISTRIBUTION OF NON- CENTRAL CHI-SQUARE * E. S. PEARSON
DIONASS	100	SEQUENTIAL TESTS. I. TESTS FOR SIMPLE HYPOTHESES * D. H. BHATE	BIOKA59	265	THE CHI-SQUARE TEST FOR SMALL EXPECTATIONS IN CONTIN- GENCY TABLES, WITH SPECIAL REFERENCE TO ACCIDENTS AND ABSENTERISM * C. A. G. NASS
BIOKA59	139	TOURNAMENTS AND PAIRED COMPARISONS * H. A. DAVID	BIOKA59	386	JUMP ANALYSIS * G. H. JOWETT, WINDY M. WRIGHT
BIOKA59		ESTIMATION OF THE NORMAL POPULATION PARAMETERS GIVEN A SINCLY CENSORED SAMPLE * J. G. SAW	BIOKA59	400	THE RANDOM WALK (IN CONTINUOUS TIME) AND ITS APPLICATION TO THE THEORY OF QUEUES * C.R. HEATHCOTE, J.E.
BIOKA59		ON HOTELLING'S GENERALIZATION T-SQUARE * K. C. S. PIL- LAI, P. SAMPSON JR	BIOKA59	412	MOYAL NOTE ON THE GOMPARISON OF SEVERAL REALIZATIONS OF A MARKOFF CHAIN * J. H. DARWIN
DIUNASS	109	TABLES FOR WALD TESTS FOR THE MEAN OF A NORMAL DIS- TRIBUTION * ELIZABETH D. BARRACLOUCH, E. S. PAGE	BIOKA59	420	OVERFLOW AT A TRAFFIC LICHT * F. A. HAIGHT
BIOKA59	17B	TABLES OF RANDOM OBSERVATIONS FROM STANDARD DISTRIBU-	BIOKA59		PARTIAL TESTS FOR PARTIAL TAUS * L. A. GOODMAN
BIOKA59		TIONS * M. H. QUENOUILLE NOTE ON MR QUENOUILLE'S EDCEWORTH TYPE A TRANSFORMA-	BIOKA59	433	MOMENTS OF ORDER STATISTICS FROM A NORMAL POPULATION * R. C. BOSE, S. S. GUPTA
BIOKA59		TION* E. S. PEARSON MONOMIAL-MONOMIAL SYMMETRIC FUNCTION TABLES * J.	BIOKA59	441	CONFIDENCE INTERVALS FOR THE EXPECTATION OF A POISSON VARIABLE * E. L. CROW, R. S. GARDNER
BIOKA59		LEVINE APPROXIMATE LINEARIZATION OF THE INCOMPLETE BETA-	BIOKA59	454	THE DISTRIBUTION OF THE NUMBER OF SUCCESSES IN A SEQUENCE OF DEPENDENT TRIALS * K. R. GABRIEL
		FUNCTION * A. W. KIMBALL, E. LEACH	BIOKA59	461	TABLE OF THE UPPER 10 PERCENT POINTS OF THE 'STU- DENTIZED' RANGE * J. PACHARES
BIOKA59 BIOKA59		SEQUENTIAL OCCUPANCY * D. E. BARTON, F. N. DAVID THE GENERALIZED MEAN DIFFERENCES OF THE BINOMIAL AND	BIOKA59	467	ON THE DISTRIBUTION OF THE EXTREME STUDENTIZED
BIOKA59	220	POISSON DISTRIBUTIONS * T. A. RAMASUBBAN DETERMINATION OF PARAMETERS IN THE JOHNSON SYSTEM OF			DEVIATE FROM THE SAMPLE MEAN * K. C. S. PILLAI, B. P. TIENZO
PIONAGS	229	PROBABILITY DISTRIBUTIONS * D. C. M. LESLIE	BIOKA59	473	UPPER PERCENTAGE POINTS OF THE EXTREME STUDENTIZED
BIOKA59		NOTE ON A PROBLEM OF ESTIMATION * D. E. LLOYD			DEVIATE FROM THE SAMPLE MEAN * K. C. S. PILLAI
BIOKA59		ON THE NON-CENTRAL CHI-SQUARE DISTRIBUTION * M. SAN-KARAN	BIOKA59	475	THE ASYMPTOTIC EFFICIENCY OF THE CHI-SQUARE-SUB-R- TEST FOR A BALANCED INCOMPLETE BLOCK DESIGN * PH. VAN
BIOKA59	237	ON THE DISTRIBUTION OF THE LARGEST OF SIX ROOTS OF A MATRIX IN MULTIVARIATE ANALYSIS * K. C. S. PILLAI, CELIAG. BANTEGUI	BIOKA59	477	ELITEREN, G. E. NOETHER A NOTE ON THE APPLICATION OF QUENOUILLE'S METHOD OF BIAS REDUCTION TO THE ESTIMATION OF RATIOS * J. DUR-
BIOKA59	241	THE RANK ANALOCUE OF PRODUCT-MOMENT PARTIAL CORRELATION AND REGRESSION, WITH APPLICATION TO MANIFOLD,	BIOKA59	481	BIN ON THE PROBABILITY INTEGRAL TRANSFORMATION * C. L.
DIOVAGO	240	ORDERED CONTINGENCY TABLES * R. H. SOMERS			MALLOWS
BIOKA59		THE BUSY PERIOD IN RELATION TO THE QUEUEINC PROCESS CI-M-1 * B. W. CONOLLY	BIOKA59		EXTREMA OF QUADRATIC FORMS WITH APPLICATIONS TO STATISTICS * K. A. BUSH, I. OLKIN
BIOKA59	251	THE DESIGN OF FACTORIAL EXPERIMENTS, A SURVEY OF SOME SCHEMES REQUIRING NOT MORE THAN 256 TREATMENT COMBINATIONS * R. G. MITTON, F. R. MORGAN	BIOKA59		ON CERTAIN PROPERTIES OF POWER-SERIES DISTRIBUTIONS * C. G. KHATRI
D.T.O.V.1.E.O.		The state of the s	BIOKA59	502	CORRIGENDA, 'THE POWER FUNCTION OF THE TEST FOR THE

- BIOKAGO 1 A COMPARISON OF THEORETICAL AND EMPIRICAL RESULTS FOR SOME STOCHASTIC POPULATION MODELS * M. S. BARTLETT J. C. COWER, P. H. LESLIE
- BIOKAGO 13 BIRTH-AND-DEATH PROCESSES, AND THE THEORY OF CAR-CINOCENESIS * D. C. KENDALL
- BIOKAGO 23 THE QUANTAL RESPONSE ANALYSIS OF A SERIES OF BIOLOCI-CAL ASSAYS ON THE SAME SUBJECTS * J. R. ASHFORD, C. S. SMITH. SUSANNAH BROWN
- BIOKAGO 33 SOME CONSEQUENCES OF SUPERIMPOSED ERROR IN TIME SE-RIES ANALYSIS * A. M. WALKER
- BIOKAGO 45 DETERMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEINC SYSTEM GI-M-1 * P. D. FINCH
- BIOKAGO 53 THE POLYKAYS OF THE NATURAL NUMBERS * D. E. BARTON, F. N. DAVID, EVELYN FIX
- BIOKAGO 61 THE DISTRIBUTION OF REGRESSION COEFFICIENTS IN SAM-PLES FROM BIVARIATE NON-NORMAL POPULATIONS. I. THEORETICAL INVESTIGATION * A. B. L. SRIVASTAVA
- BIOKAGO 69 THE SEPARATION OF MOLECULAR COMPOUNDS BY COUNTERCUR-RENT DIALYSIS, A STOCHASTIC PROCESS * M. A. KASTEM-BAUM
- BIOKAGO 79 A NOTE ON THE ERROR AFTER A NUMBER OF TERMS OF THE

 DAVID-JOHNSON SERIES FOR THE EXPECTED VALUES OF NORMAL ORDER STATISTICS * J. G. SAW
- BIOKAGO 87 MORE SIGNIFICANCE TESTS ON THE SPHERE * G. S. WATSON
- BIOKAGO 93 AN APPROXIMATION TO THE MULTINOMIAL DISTRIBUTION, SOME PROPERTIES AND APPLICATIONS * N. L. JOHNSON
- BIOKAGO 103 THE MOST ECONOMICAL BINOMIAL SEQUENTIAL PROBABILITY RATIO TEST * M. K. VAGHOLKAR, G. B. WETHERILL
- BIOKAGO 111 AN APPROXIMATE TEST FOR SERIAL CORRELATION IN POLYNOMIAL REGRESSION * J. R. MCGREGOR
- BIOKAGO 121 NOMOGRAMS FOR FITTING THE LOGISTIC FUNCTION BY MAX-IMUM LIKELIHOOD * J. BERKSON
- BIOKAGO 143 THE BOREL-TANNER DISTRIBUTION * F. A. HAIGHT, M. A. BREUER
- BIOKA60 151 THE DISTRIBUTION OF KENDALL'S SCORE S FOR A PAIR OF
- TIED RANKINGS * E. J. BURR
 BIOKAGO 173 ON NORMALIZING THE INCOMPLETE BETA-FUNCTION FOR
- FITTING TO DOSE-RESPONSE CURVES * M. E. WISE
 BIOKAGO 175 ON CERTAIN FUNCTIONS OF NORMAL VARIATES WHICH ARE UN-
- BIOKAGO 177 A FURTHER NOTE ON A SIMPLE METHOD FOR FITTING AN EXPONENTIAL CURVE * H. D. PATTERSON
- BIOKAGO 1BO ESTIMATION OF A PARAMETER IN THE CLASSICAL OCCUPANCY PROBLEM * C. R. BLYTH, G. L. CURMEE
- BIOKAGO 185 GEOMETRY AND LINEAR DISCRIMINATION * C. W. CLUNIES-ROSS, R. H. RIFFENBURGH
- BIOKAGO 190 APPROXIMATION TO THE DISTRIBUTION OF THE SAMPLE SIZE
 FOR SEQUENTIAL TEST. II. TESTS OF COMPOSITE
 HYPOTHESES * D. H. BHATE
- BIOKAGO 194 ON THE COVARIANCE DETERMINANTS OF MOVING-AVERACE AND AUTOREGRESSIVE MODELS * P. D. FINCH
- BIOKAGO 196 A NOTE ON SOME APPROXIMATIONS TO THE VARIANCE IN DIS-CRETE-TIME STOCHASTIC MODELS FOR BIOLOGICAL SYSTEMS * P. H. LESLIE
- BIOKAGO 19B ON TWO QUEUES IN PARALLEL * C. A. WILKINS
- BIOKAGO 199 THE CHARACTERISTIC FUNCTION OF HERMITIAN QUADRATIC FORMS IN COMPLEX NORMAL VARIABLES * G. L. TURIN
- BIOKA60 202 SOME NUMERICAL RESULTS FOR WAITING TIMES IN THE QUEUE E-SUB-K-M-1 * C. BURROWS
- BIOKAGO 203 A FORMULA FOR THE CURVATURE OF THE LIKELIHOOD SURFACE
 OF A SAMPLE DRAWN FROM A DISTRIBUTION ADMITTING SUFFIGIENT STATISTICS * B. R. RAO
- BIOKA60 219 THE PROPERTIES OF A STOCHASTIC MODEL FOR THE PREDATOR-PREY TYPE OF INTERACTION BETWEEN TWO SPECIES * P. H. LESLIE, J. C. GOWER
- BIOKAGO 235 HIERARCHICAL BIRTH AND DEATH PROCESSES. I. THEORY * G. BLOM

- BIOKAGO 245 HIERARCHICAL BIRTH AND DEATH PROCESSES. II. APPLICA-TIONS * C. BLOM
- BIOKAGO 253 A COMPARISON OF THE EFFECTIVENESS OF TOURNAMENTS * W.
- BIOKAGO 263 SUPPLEMENTED BALANCE * S. C. PEARCE
- BIOKAGO 273 THE EFFICIENCY OF BLOCKING IN INCOMPLETE BLOCK DESICNS* J. L. FOLKS, O. KEMPTHORNE
- BIOKA60 285 QUEUEINC WITH BALKINC. II. * F. A. HAICHT
- BIOKAGO 297 ON COMPARINC DIFFERENT TESTS OF THE SAME HYPOTHESIS * H. A. DAVID, CARMEN A. PEREZ
- BIOKAGO 307 THE PERFORMANCE OF SOME CORRELATION COEFFICIENTS FOR A GENERAL BIVARIATE DISTRIBUTION * D. J. G. FARLIE
- BIOKAGO 325 TWO EXPANSIONS FOR THE QUADRIVARIATE NORMAL INTEGRAL

 * J. A. MCFADDEN
- BIOKAGO 335 ON A PROBLEM CONNECTED WITH QUADRATIC REGRESSION * R. G. LAHA, E. LUKACS
- BIOKAGO 345 SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS OF THE HYPOTHESIS OF EQUAL MEANS UNDER VARIANCE HETEROGENEITY * R. S. MCCULLOUGH, J. CURLAND, L. ROSENBERC
- BIOKAGO 355 POWER OF SOME TWO-SAMPLE NON-PARAMETRIC TESTS * B. V SUKHATME
- BIOKAGO 363 SAMPLING INSPECTION OF CONTINUOUS PROCESSES WITH NO AUTOCORRELATION BETWEEN SUCCESSIVE RESULTS * W. D. EWAN, K. W. KEMP
- BIOKAGO 381 TABLE OF NEYMAN-SHORTEST UNBIASED CONFIDENCE INTER-VALS FOR THE BINOMIAL PARAMETER * C. R. BLYTH, D. W. HUTCHINSON
- EIOKAGO 393 ON THE POWER FUNCTION OF THE EXACT TEST FOR THE 2-BY-2 CONTINGENCY TABLE * B. M. BENNETT, P. HSU
- BIOKAGO 399 TABLE OF THE BOUNDS OF THE PROBABILITY INTECRAL WHEN
 THE FIRST FOUR MOMENTS ARE GIVEN * J. A. SIMPSON, B.
 L. WELCH
- BIOKAGO 411 NORMAL APPROXIMATION TO THE CHI-SQUARE AND NON-CEN-TRAL F PROBABILITY FUNCTIONS * N. C. SEVERO, M. ZELEN
- BIOKAGO 417 SOME PROPERTIES OF THE DISTRIBUTION OF THE LOGARITHM

 OF NON-CENTRAL F * D. E. BARTON, F. N. DAVID, ANNE F.

 O'NEILL
- BIOKAGO 433 TABLES FOR MAKING INFERENCES ABOUT THE VARIANCE OF A
 NORMAL DISTRIBUTION * D. V. LINDLEY, D. A. EAST, P.
 A. HAMILTON
- BIOKAGO 439 TABLES FOR THE SOLUTION OF THE EXPONENTIAL EQUATION, EXP(-A)+KA=1 * D. E. BARTON, F. N. DAVID, M. MERRING-TON
- BIOKAGO 447 STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. X. WHERE SHALL THE HISTORY OF STATISTICS BECIN * M. G. KENDALL
- BIOKAGO 449 ON THE NUMBER OF RENEWALS IN A RANDOM INTERVAL * D. R. COX
- BIOKAGO 452 A NOTE ON SUFFICIENCY IN REGULAR MARKOV CHAINS * B. R. BHAT, J. GANI
- BIOKAGO 457 THE RECRESSION OF TRUE VALUE ON ESTIMATED VALUE * R. N. CURNOW
- BIOKAGO 460 THE USE OF INTEGRAL TRANSFORMS TO DETERMINE EXPAN-SIONS OF DISTRIBUTION FUNCTIONS * W. M. HARPER, J. A. MACDONALD
- BIOKAGO 463 SOME APPLICATIONS OF TWO APPROXIMATIONS TO THE MUL-TINOMIAL DISTRIBUTION * N. L. JOHNSON, D. H. YOUNG
- BIOKAGO 469 SOME DISTRIBUTIONS ARISING IN THE STUDY OF CENERAL-IZED MEAN DIFFERENCES * T . A . RAMASUBBAN
- BIOKAGO 473 ON CERTAIN CHARACTERISTICS OF SOME DISCRETE DISTRIBU-TIONS * G. E. BARDWELL
- BIOKAGO 476 APPROXIMATE TESTS FOR M RANKINGS * H. LINHART
- BIOKAGO 4BO A NOTE ON THE DERIVATION OF SOME EXACT MULTIVARIATE TESTS * A. M. KSHIRSAGAR
- BIOKAGO 4B2 ESTIMATION FROM A LINEAR MARKOV PROCESS * N. GILBERT
- BIOKA60 484 CORRIGENDA, 'SOME NUMERICAL RESULTS FOR WAITING TIMES IN THE QUEUE E-SUB-K-M-1.'* C. BURROWS

BIOMETRIKA VOLUME 4B, 1961

- BIOKA61 1 STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS
 XI. DANIEL BERNOULLI ON MAXIMUM LIKELIHOOD * M. C
 KENDALL
- BIOKA61 19 THE VARIANCE OF SPEARMAN'S RHO IN NORMAL SAMPLES * F.
 N. DAVID, C. L. MALLOWS
- BIOKA61 29 TESTS FOR RANK CORRELATION COEFFICIENTS.II * E. C FIELLER, E. S. PEARSON
- BIOKA61 41 SOME METHODS OF CONSTRUCTING EXACT TESTS * J. DURBIN
- BIOKA61 57 PREEMPTIVE PRIORITY QUEUEING * C. R. HEATHCOTE
- BIOKA61 65 A TWO-SAMPLE SEQUENTIAL T-TEST * J. HAJNAL
- BIOKAG1 77 ABSOLUTE AND INCOMPLETE MOMENTS OF THE MULTIVARIATE NORMAL DISTRIBUTION * S. NABEYA
- BIOKA61 85 ASYMPTOTIC EXPANSIONS FOR THE MEAN AND VARIANCE OF THE SERIAL CORRELATION COEFFICIENT * J. S. WHITE

- BIOKA61 95 SIGNIFICANCE TESTS FOR PAIRED-COMPARISON EXPERI-MENTS * T. H. STARKS, H. A. DAVID
- BIOKA61 109 GOODNESS-OF-FIT TESTS ON A CIRCLE * G. S. WATSON
 BIOKA61 115 THE USE OF ORTHOGONAL POLYNOMIALS OF THE POSITIVE AND
- BIOKA61 115 THE USE OF ORTHOGONAL POLYNOMIALS OF THE POSITIVE AND
 NEGATIVE BINOMIAL FREQUENCY FUNCTIONS IN CURVE
 FITTING BY AITKEN'S METHOD * H. T. GONIN
- BIOKA61 125 THE ESTIMATION OF REGRESSION AND ERROR-SCALE PARAMETERS, WHEN THE JOINT DISTRIBUTION OF THE ERRORS IS OF ANY CONTINUOUS FORM AND KNOWN APART FROM A SCALE PARAMETER* A. M. W. VERHAGEN
- BIOKA61 133 LATENT VECTORS OF RANDOM SYMMETRIC MATRICES * C. L. MALLOWS
- BIOKAG1 151 EXPECTED VALUES OF NORMAL ORDER STATISTICS * H. L.

BIOKA61		ISTRIBUTION ANALOCOUS TO THE BOREL-TANNER * F. A. ICHT	BIOKA61	367	ESTIMATION OF THE NORMAL POPULATION PARAMETERS CIVEN A TYPE I CENSORED SAMPLE * J. C. SAW
BIOKA61		UPANCY PROBABILITY DISTRIBUTION CRITICAL POINTS W.L.NICHOLSON	BIOKA61	379	SOME TESTS FOR OUTLIERS * C. P. QUESENBERRY, H. A. DAVID
BIOKA61	181 TES	TS OF INDEPENDENCE IN INTRACLASS 2-BY-2 TABLES * M. KAMOTO, C. ISHII	BIOKA61	391	THE ERCODIC BEHAVIOUR OF RANDOM WALKS * J. F. C. KINC-MAN
BIOKA61	191 TABI	LES OF NEYMAN-SHORTEST UNBIASED CONFIDENCE INTER- ALS FOR THE POISSON PARAMETER * C. R. BLYTH, D. W.	BIOKA61		THE COODNESS-OF-FIT OF A SINCLE (NON-ISOTROPIC) HYPOTHETICAL PRINCIPAL COMPONENT * A. M. KSHIRSACAR
BIOKA61		UTCHINSON ER PERCENTACE POINTS OF A SUBSTITUTE F-RATIO USINC	BIOKA61	409	ON THE EVALUATION OF THE PROBABILITY INTEGRAL OF THE MULTIVARIATE T DISTRIBUTION * S. JOHN
BIOKA61		ANCES*K.C.S.PILLAI, ANCELESR.BUENAVENTURA DURBIN'S FORMULA FOR THE LIMITING CENERALIZED	BIOKA61	419	COMPUTING THE DISTRIBUTION OF QUADRATIC FORMS IN NOR- MAL VARIABLES* J. P. IMHOF
	V A FF	ARIANCE OF A SAMPLE OF CONSECUTIVE OBSERVATIONS ROM A MOVING-AVERAGE PROCESS * A. M. WALKER GENTRAL SAMPLINC MOMENTS OF THE MEAN IN SAMPLES	BIOKA61	427	COMPARATIVE EFFICIENCIES OF METHODS OF ESTIMATING PARAMETERS IN LINEAR AUTOREGRESSIVE SCHEMES * K. C. CHANDA
	FF CE	ROM A FINITE POPULATION (ATY'S FORMULAE AND MADOW'S ENTRAL LIMIT) * D. E. BARTON, F. N. DAVID	BIOKA61	433	TABLES OF THE FREEMAN-TUKEY TRANSFORMATIONS FOR THE BINOMIAL AND POISSON DISTRIBUTIONS * F. MOSTELLER,
BIOKA61		OTE ON THE QUADRIVARIATE NORMAL INTEGRAL * M. M. ONDHI	BIOKA61	441	CLEO YOUTZ A NON-NULL RANKING MODEL FOR A SEQUENCE OF M ALTERNA-
BIOKA61		THE STOCHASTIC MATRIX IN A GENETIC MODEL OF MORAN *	BIOKA61		TIVES * C. F. CROUSE CRITICAL VALUES OF THE COEFFICIENT OF RANK CORRELA-
BIOKA61	206 DEP	ARTURES FROM ASSUMPTION IN SEQUENTIAL ANALYSIS * . J. EWENS	DIONAGI	777	TION FOR TESTING THE HYPOTHESIS OF INDEPENDENCE * C. J. GLASSER, R. F. WINTER
BIOKA61		NOTE ON SOME ASYMPTOTIC PROPERTIES OF THE DGARITHMIC SERIES DISTRIBUTION * J. C. GOWER	BIOKA61	448	THE BIAS OF THE MAXIMUM LIKELIHOOD ESTIMATES OF THE LOCATION AND SCALE PARAMETERS GIVEN A TYPE II CEN-
		PROPERTY OF BALANCED DESIGNS * M. ATIQULLAH	DIOKAGI	450	SORED NORMAL SAMPLE * J. G. SAW
BIOKA61		ASING IN PARTIALLY CONFOUNDED FACTORIAL EXPERI- ENTS * M. J. R. HEALY, J. C. GOWER	BIOKA61	452	ON THE SOLUTION OF THE LIKELIHOOD EQUATION BY ITERA- TION PROCESSES * B. K. KALE
BIOKA61	220 STUI	DIES IN THE HISTORY OF PROBABILITY AND STATISTICS. II. THE BOOK OF FATE * M. G. KENDALL	BIOKA61	457	DETECTION OF BEST AND OUTLYING NORMAL POPULATIONS WITH KNOWN VARIANCES * A. ZINGER
BIOKA61		RIVATION OF THE BOREL DISTRIBUTION * J. C. TANNER	BIOKA61	461	LONGEST RUN OF CONSECUTIVE OBSERVATIONS HAVING A
BIOKA61	227 UNB	IEOREMINTREND ANALYSIS * M.G. KENDALL IASED ESTIMATION OF A SET OF PROBABILITIES * D.E. ARTON	BIOKA61	465	SPECIFIED ATTRIBUTE * E. J. BURR, GWENDA CANE THE MOMENTS OF THE NON-CENTRAL T-DISTRIBUTION * D. HOGBEN, R. S. FINKHAM, M. B. WILK
BIOKA61	230 GORI OF HE	RIGENDA, 'SMALL SAMPLE BEHAVIOUR OF CERTAIN TESTS F THE HYPOTHESIS OF EQUAL MEANS UNDER VARIANCE ETEROCENEITY' * R. S. MCCULLOUGH, J. GURLAND, L.	BIOKA61		ESTIMATION OF MISSINC OBSERVATIONS IN SPLIT-PLOT EX- PERIMENTS WHERE WHOLE-PLOTS ARE MISSING OR MIXED UP * J. D. BIGGERS
BIOKA61		OSENBERG RIGENDA, 'SOME DISTRIBUTIONS ARISING IN THE STUDY	BIOKA61	472	DETERMINISTIC CUSTOMER IMPATIENCE IN THE QUEUEING SYSTEM GI-M-1, A CORRECTION * P. D. FINCH
BIOKA61	OF	F GENERALIZED MEAN DIFFERENCES' * T. A. RAMASUBBAN RIGENDA, 'TABLES FOR MAKING INFERENCES ABOUT THE	BIOKA61	474	CORRIGENDA, 'FURTHER CONTRIBUTIONS TO MULTIVARIATE CONFIDENCE BOUNDS' * S. N. ROY, R. GNANADESIKAN
	V A	ARIANCE OF A NORMAL DISTRIBUTION.'* D. V. LINDLEY, . A. EAST, P. A. HAMILTON	BIOKA61	474	CORRIGENDA, 'MOMENT ESTIMATORS AND MAXIMUM LIKELIHOOD'*L.R.SHENTON
BIOKA61	241 THE	TWO-SAMPLE CAPTURE-RECAPTURE CENSUS WHEN TAGGINC ND SAMPLING ARE STRATIFIED * J. N. DARROCHH	BIOKA61	474	CORRIGENDA, 'EXTREMA OF QUADRATIC FORMS WITH APPLICA- TIONS TO STATISTICS' * K. A. BUSH, I. OLKIN
BIOKA61		FIDUCIAL METHOD AND INVARIANCE * D. A. S. FRASER	BIOKA61 BIOKA61		CORRICENDA, 'SUPPLEMENTED BALANCE' * S. C. PEARCE
BIOKA61 BIOKA61		ESIAN SEQUENTIAL ANALYSIS * G.B. WETHERILL E PROPERTIES OF THE SPEARMAN ESTIMATOR IN BIOASSAY	PIONAGI	4/5	CORRIGENDA, 'ON THE POWER FUNCTION OF THE EXACT TEST FOR THE 2-BY-2 CONTINGENCY TABLE' * B. M. BENNETT, P.
DIONAGI		B. WM. BROWN JR	BIOKA61	475	HSU CORRIGENDA, 'SIGNIFICANT TESTS FOR PAIRED-COM-
BIOKA61		ONSISTENCIES IN A SCHEDULE OF PAIRED COMPARISONS *	BIOKA61		PARISON EXPERIMENTS' * T. H. STARKS, H. A. DAVID GORRIGENDA, 'THE USE OF ORTHOGONAL POLYNOMIALS OF
BIOKA61	313 SOM	E CIRCULAR COVERACE PROBLEMS * G. W. MORCENTHALER	DIONAGI	410	POSITIVE AND NECATIVE BINOMIAL FREQUENCY FUNCTIONS
BIOKA61		ERED TESTS IN THE ANALYSIS OF VARIANCE * D. J. ARTHOLOMEW	BIOKA61	476	IN CURVE FITTING BY AITKEN'S METHOD'* H. T. GONIN CORRICENDA, 'EXPECTED VALUES OF NORMAL ORDER
BIOKA61		TA FULFILMENT USING UNRESTRICTED RANDOM SAMPLING D. H. YOUNG	BIOKA61	476	STATISTICS'* H. LEON HARTER CORRIGENDA, 'TEST OF INDEPENDENCE IN INTRACLASS 2-BY-
BIOKA61		GE-SAMPLE ESTIMATION OF PARAMETERS FOR MOVING- /ERAGEMODELS*A.M.WALKER	BIOKA61	476	2 TABLES' * M. OKAMOTO, C. ISHII CORRIGENDA, 'ON DURBIN'S FORMULA FOR THE LIMITING GENERALIZED VARIANCE OF A SAMPLE OF CONSECUTIVE OB-
BIOKA61	359 LINE	EAR AND NON-LINEAR MULTIPLE COMPARISONS IN LOGIT VALYSIS * 0. REIERSOL			SERVATIONS FROM A MOVINC-AVERACE PROCESS' * A. M. WALKER

BIOMETRIKA VOLUME 49, 1962

BIOKA62	1 A STOCHASTIG MODEL FOR TWO COMPETING SPECIES OF	BIOKA62 133 RANKS AND MEASURES * M. G. KENDALL
	TRIBOLIUM AND ITS APPLICATION TO SOME EXPERIMENTAL	BIOKA62 139 PROCESSES GENERATING PERMUTATION EXPANSIONS * H. E.
	DATA * P. H. LESLIE	DANIELS
BIOKA62	27 METHODS OF CLUSTER SAMPLING WITH AND WITHOUT REPLACE-	BIOKA62 151 ERGODIC PROPERTIES OF SOME PERMUTATION PROCESSES *
	MENT FOR CLUSTERS OF UNEQUAL SIZES * M. R. SAMPFORD	WILLIAMPARRY
BIOKA62	41 A FAMILY OF CLOSED SEQUENTIAL PROCEDURES (CORR. 69	BIOKA62 155 EFFICIENT MOMENT ESTIMATORS WHEN THE VARIABLES ARE
	457) * M. A. SCHNEIDERMAN, P. A. ARMITAGE	DEPENDENT WITH SPECIAL REFERENCE TO TYPE II CENSORED
BIOKA62	57 GOODNESS-OF-FIT TESTS ON A CIRCLE.II * G. S. WATSON	NORMAL DATA * J. G. SAW
BIOKA62	65 ON THE COMPOUND MULTINOMIAL DISTRIBUTION, THE MUL-	BIOKA62 163 A THEORETICAL ANALYSIS OF DELAYS AT AN UNCONTROLLED
	TIVARIATE BETA-DISTRIBUTION, AND CORRELATIONS	INTERSECTION * J. C. TANNER
	AMONG PROPORTIONS * JAMES E. MOSIMANN	
RIOKA62	83 THE ESTIMATION OF RESIDUAL VARIANCE IN QUADRATICALLY	BIOKA62 171 A MODIFIED CONTROL CHART WITH WARNING LINES * E. S.
	BALANCED LEAST-SQUARES PROBLEMS AND THE ROBUSTNESS	PACE
	OF THE F-TEST * M. ATIQULLAH	BIOKA62 177 THE THIRD MOMENT OF KENDALL'S TAU IN NORMAL SAMPLES *
BIOKA62	93 ROBUSTNESS TO NON-NORMALITY OF REGRESSION TESTS * G.	BARBARA A. S. SNOW
	E.P.BOX, G.S. WATSON	BIOKA62 185 TESTS FOR RANK CORRELATION COEFFICIENTS. III. DIS-
BIOKA62	107 TWO ALTERNATIVES TO THE STANDARD CHI-SQUARE-TEST OF	TRIBUTION OF THE TRANSFORMED KENDALL COEFFICIENT *
	THE HYPOTHESIS OF EQUAL CELL FREQUENCIES * D. H.	E.S. PEARSON, BARBARA A.S. SNOW
	YOUNG	E. S. LEMISON, DANDANA A. S. SNUN

BIOKA62 193 THE BIAS OF MOMENT ESTIMATORS WITH AN APPLICATION TO

P. A. WALLINGTON

THE NEGATIVE BINOMIAL DISTRIBUTION * L. R. SHENTON,

BIOKA62 117 LARCE-SAMPLE ESTIMATION OF PARAMETERS FOR AU-TOREGRESSIVE PROCESSES WITH MOVING-AVERACE RESIDUALS * A. M. WALKER

BIOKA62	205 THE ASYMPTOTIC PROPERTIES OF MAXIMUM LIKELIHOOD ESTI- MATORS WHEN SAMPLING FROM ASSOCIATED POPULATIONS *	BIOKA62 3	59 CLOSED SEQUENTIAL T-TESTS * M. A. SCHNEIDERMAN, P. AR- MITAGE
BIORVES	RALPH A. BRADLEY, JOHN J. GART 215 EFFICIENCY OF CERTAIN METHODS OF ESTIMATION FOR THE	BIOKA62 36	67 SOME SEQUENTIAL ANALOGS OF STEIN'S TWO-STAGE TEST * W. J. HALL
	NEGATIVE BINOMIAL AND NEYMAN TYPE A DISTRIBUTIONS * S. K. KATTI, JOHN GURLAND	BIOKA62 3	79 THE APPROXIMATE DISTRIBUTION OF THE CORRELATION BETWEEN TWO STATIONARY LINEAR MARKOV SERIES * J. R.
BIOKA62	227 MAXIMUM LIKELIHOOD ESTIMATION FOR GENERALIZED POWER SERIES DISTRIBUTIONS AND ITS APPLICATION TO A TRUN- CATED BINOMIAL DISTRIBUTION * G. P. PATIL	BIOKA62 38	MCGREGOR B9 RANDOM CIRCLES ON A SPHERE * P. A. P. MORAN, S. FAZEKAS DE ST GROTH
BIOKA62	239 FACTORIZATION OF MATRICES BY LEAST-SQUARES * JOSEPH B. KELLER	BIOKA62 39	97 THE GOODNESS-OF-FIT TESTS BASED ON W-SQUARE-SUB-N AND U-SQUARE-SUB-N * E. S. PEARSON, M. A. STEPHENS
BIOKA62	242 A GENERALIZED SINGLE-SERVER QUEUE WITH ERLANG INPUT * W. J. EWENS, P. D. FINCH	BIOKA62 40	03 TESTING EQUALITY OF MEANS AFTER A PRELIMINARY TEST OF EQUALITY OF VARIANCES * JOHN GURLAND, ROGER S. MC-
BIOKA62	245 ON THE AMOUNT OF INFORMATION SUPPLIED BY CENSORED SAM- PLES OF GROUPED OBSERVATIONS IN THE ESTIMATION OF STATISTICAL PARAMETERS * P. S. SWAMY	BIOKA62 4	CULLOUCH 19 A FURTHER LOOK AT ROBUSTNESS VIA BAYES'S THEOREM * G . E. P. BOX, G. C. TIAO
BIOKA62	250 A NOTE ON THE ESTIMATION OF THE PARAMETERS OF THE LO- GISTIC FUNCTION, USING THE MINIMUM LOGIT CHI-SQUARE	BIOKA62 4	33 ORTHANT PROBABILITIES FOR THE EQUICORRELATED MUL- TIVARIATE NORMAL DISTRIBUTION * G. P. STECK
BIOKA62	METHOD * SHIRLEY E. HITCHCOCK 253 THE RELATIONSHIP BETWEEN THE MEAN AND VARIANCE OF A STATIONARY BIRTH-DEATH PROCESS, AND ITS ECONOMIC	BIOKA62 4	47 A STOCHASTIC MODEL OF ACHE TRANSPORTATION IN THE PERIPHERAL NERVETRUNKS * R. BARTOSZYNSKI, L. LUBIN-SKA, S. A. NIERMIERKO
BIOKA62	APPLICATION * J. WISE	BIOKA62 4	55 A COMPARISON OF THE POWERS OF TWO MULTIVARIATE ANALY— SIS OF VARIANCE TESTS * KOICHI ITO
BIOKA62	CANONICAL ANALYSIS * A. M. KSHIRSAGAR	BIOKA62 4	63 EXACT AND APPROXIMATE TESTS FOR DIRECTIONS. I * M. A. STEPHENS
BIOKA62	J. GLASSER 262 AN INEQUALITY RELATING THE SPECTRAL DENSITY AND AU-	BIOKA62 4	79 ON THE SOLUTION OF LIKELIHOOD EQUATIONS BY ITERATION PROCESSES MULTIPARAMETRIC CASE * B. K. KALE
BIOKA62	TOCORRELATION FUNCTION * H. E. DANIELS 264 THE LATENT ROOTS OF CERTAIN STOCHASTIC MATRICES * J. L. MOTT	BIOKA62 4	B7 LARGE SAMPLE TABLES OF PERCENTAGE POINTS FOR HART- LEY'S CORRECTION TO BARTLETT'S CRITERION FOR TEST- ING THE HOMOGENEITY OF A SET OF VARIANCES * V. D. BAR-
BIOKA62	265 THE DISTRIBUTION OF THE NUMBER OF CIRCULAR TRIADS IN	DTOVACO 4	NETT
BIOKA62	PAIRED COMPARISONS * G. G. ALWAY 269 A NOTE ON THE EQUICORRELATED MULTIVARIATE NORMAL DIS- TRIBUTION * G. P. STECK, D. B. OWEN	BIOKA62 49	95 ON SELECTING A SUBSET CONTAINING THE POPULATION WITH THE SMALLEST VARIANCE * SHANTI S. GUPTA, MILTON SOBEL
BIOKA62	BRANCHING PROCESS WITH DETERMINISTIC REMOVALS * J.		09 ON THE SMALLEST OF SEVERAL CORRELATED F STATISTICS * SHANTIS. GUPTA, MILTON SOBEL
BIOKA62	GANI 276 AN APPROXIMATION TO THE PROBABILITY INTEGRAL OF THE GAMMA DISTRIBUTION FOR SMALL VALUES OF THE SHAPE		25 ESTIMATION OF PARAMETERS OF THE GAMMA DISTRIBUTION USING ORDER STATISTICS * M. B. WILK, R. GNANADESIKAN, MARILYN J. HUYETT
BIOKA62			447 EXACT AND APPROXIMATE TESTS FOR DIRECTIONS. II * M. A. STEPHENS
BIOKA62	WILLIAMS 281 SYSTEMATIC SAMPLING * E. J. HANNAN		53 A NOTE ON A PROBLEM IN ESTIMATION * B. K. KALE 557 TABLES FOR POWER-LAW TRANSFORMATIONS * M. J. R. HEALY,
BIOKA62	2B4 CORRIGENDA, 'COMPUTING THE DISTRIBUTION OF QUADRATIC FORMS IN NORMAL VARIABLES' * J. P. IMHOF		L.R. TAYLOR
BIOKA62			660 A NOTE ON THE GEOMETRY OF LINEAR ESTIMATION * B. RAJA RAO
BIOKA62		BIOKA62 5	561 ON BALANCED UNEQUAL BLOCK DESIGNS * DAMARAJU RAGHAVARAO
BIOKA62 BIOKA62	297 WILLIAM PALIN ELDERTON, 1B77-1962 * E. S. PEARSON	BIOKA62 5	563 A NOTE ON OPTIMUM ALLOCATION FOR A ONE-WAY LAYOUT * A. ZINGER
BIOKA62		BIOKA62 5	664 GAMMA-DISTRIBUTED PRODUCTS OF INDEPENDENT RANDOM VARIABLES * ALAN STUART
BIOKA62	MAN 325 SOME STATISTICAL PROPERTIES OF A GENETIC SELECTION INDEX*J.S. WILLIAMS	BIOKA62 5	566 ON THE MEAN AND VARIANCE OF THE SMALLER OF TWO DRAWINGS FROM A BINOMIAL POPULATION * C. C. CRAIG
BIOKA62	339 THE MULTI-SAMPLE SINGLE RECAPTURE CENSUS * G. A. F. SEBER	BIOKA62 5	070 ON THE EFFICIENCY OF BAN ESTIMATES OF THE PARAMETERS OF NORMAL POPULATIONS BASED ON SINGLY CENSORED SAM- PLES * S. A. D. C. DOSS
BIOKA62	351 PERSISTENCE IN A CHAIN OF MULTIPLE EVENTS WHEN THERE IS SIMPLE DEPENDENCE * D. E. BARTON, F. N. DAVID, EVELYN FIX	BIOKA62 5	674 A NOTE ON THE RATE OF CONVERGENCE OF A MEAN * DAVID R. BRILLINGER
	DIONETRIVA	TOT TIME SO 10	200

BIOKA62	TORMS IN NURMAL VARIABLES ' J. P. IMHOF 284 CORRIGENDA, 'ON THE SOLUTION OF THE LIKELIHOOD EQUA- TION BY ITERATION PROCESSES' * B. K. KALE	BIOKA62 560 A NOTE ON THE GEOMETRY OF LINEAR ESTIMATION * B. RAJA RAO	A
BIOKA62	TIUN BY ITERATION PROCESSES 'B. K. KALE 284 CORRIGENDA, 'LINEAR AND NON-LINEAR MULTIPLE COM- PARISONS IN LOGIT ANALYSIS' * OLAV RETERSOL	BIOKA62 561 ON BALANCED UNEQUAL BLOCK DESIGNS * DAMARAJU RAGHAVARAO	U
	297 WILLIAM PALIN ELDERTON, 1B77-1962* E. S. PEARSON 305 TOPOGRAPHIC CORRELATION, POWER-LAW COVARIANCE FUNC-	BIOKA62 563 A NOTE ON OPTIMUM ALLOCATION FOR A ONE-WAY LAYOUT * A. ZINGER	
BIOKA62	TIONS, AND DIFFUSION * P. WHITTLE 315 SOME INEQUALITIES FOR THE QUEUE GI/G/1 * J. F. C. KING-	BIOKAG2 564 GAMMA-DISTRIBUTED PRODUCTS OF INDEPENDENT RANDOM VARIABLES* ALAN STUART	М
BIOKA62	MAN 325 SOME STATISTICAL PROPERTIES OF A GENETIC SELECTION INDEX * J. S. WILLIAMS	BIOKAG2 566 ON THE MEAN AND VARIANCE OF THE SMALLER OF TWO DRAWINGS FROM A BINOMIAL POPULATION * C.C. CRAIG	S
	339 THE MULTI-SAMPLE SINGLE RECAPTURE CENSUS * G. A. F. SEBER	BIOKA62 570 ON THE EFFICIENCY OF BAN ESTIMATES OF THE PARAMETERS OF NORMAL POPULATIONS BASED ON SINGLY CENSORED SAMPLES * S. A. D. C. DOSS	
BIOKA62	351 PERSISTENCE IN A CHAIN OF MULTIPLE EVENTS WHEN THERE IS SIMPLE DEPENDENCE * D. E. BARTON, F. N. DAVID, EVELYN FIX	BIOKA62 574 A NOTE ON THE RATE OF CONVERGENCE OF A MEAN * DAVID R. BRILLINGER	
	DIANEMBIVA V	VOLUME 50. 1963	
	DIOMETATIVA	VULUME 50, 1395	
BIOKA63 BIOKA63	1 RONALD AYLMER FISHER, 1890-1962 * M. G. KENDALL 17 DISCRIMINATION IN THE CASE OF ZERO MEAN DIFFERENCES *	BIOKA63 95 SOME PROBLEMS ARISING IN APPROXIMATING TO PROBABILITY DISTRIBUTIONS USING MOMENTS * E. S. PEARSON	
BIOKA63	M. S. BARTLETT, N. W. PLEASE 23 RANDOM POINTS IN A CIRCLE AND THE ANALYSIS OF CHROMOSOME PATTERNS * D. E. BARTON, F. N. DAVID, E.	BIOKAG3 113 ESTIMATES OF POPULATION PARAMETERS FROM MULTIPLE RECAPTURE DATA WITH BOTH DEATH AND DILUTION-DETER- MINISTIC MODEL * G. M. JOLLY	
BIOKA63	FIX 31 OPTIMAL DRUG SCREENING PLANS * THEODORE COLTON	BIOKAG3 129 ON THE FITTING OF MULTIVARIATE AUTOREGRESSIONS, AND THE APPROXIMATE CANONICAL FACTORIZATION OF A SPEC-	
BIOKA63	47 ON THE COMPOUND NEGATIVE MULTINOMIAL DISTRIBUTION AND CORRELATIONS AMONG INVERSELY SAMPLED POLLEN COUNTS * JAMES E. MOSTMANN	TRAL DENSITY MATRIX *P. WHITTLE BIOKAG3 135 SOME CONTRIBUTIONS TO THE THEORY OF MACHINE INTER- FERENCE * GUNNAR BLOM	-
BIOKA63	55 A MEDIAN TEST WITH SEQUENTIAL APPLICATION * JOHN J. GART	BIOKA63 145 MULTINOMIAL PROBABILITIES AND THE CHI-SQUARE AND X- SQUARE DISTRIBUTIONS * M. E. WISE	-
BIOKA63	63 APPLICATIONS OF THE CALCULUS OF FACTORIAL ARRANGE-	BIOKAG3 155 SIMULTANEOUS TOLERANCE INTERVALS IN REGRESSION * GERALD J. LIEBERMAN, RUPERT G. MILLER JR	*
DIOMAGO	MENTS, I. BLOCK AND DIRECT PRODUCT DESIGN * B. KURK-		
	JIAN, M. ZELEN	BIOKA63 169 TABLE FOR THE SOLUTION OF THE EXPONENTIAL EQUATION $ EXP(B) - B/(1-P) = 1 * D. E. BARTON, F. N. DAVID, M. MER-$	
BIOKA63		BIOKA63 169 TABLE FOR THE SOLUTION OF THE EXPONENTIAL EQUATION	_
	JIAN, M. ZELEN 75 ON SERIES EXPANSIONS FOR THE RENEWAL MOMENTS * M. R.	BIOKAG3 169 TABLE FOR THE SOLUTION OF THE EXPONENTIAL EQUATION EXP(B)-B/(1-P)=1 * D. E. BARTON, F. N. DAVID, M. MER- RINGTON BIOKAG3 177 EXTENDED TABLE OF CRITICAL VALUES FOR WILCOXON'S TEST STATISTIC * L. R. VERDOOREN	T
BIOKA63	JIAN, M. ZELEN 75 ON SERIES EXPANSIONS FOR THE RENEWAL MOMENTS * M. R. LEADBETTER 81 ANALOGUES OF THE NORMAL DISTRIBUTION ON THE CIRCLE AND	BIOKAG3 169 TABLE FOR THE SOLUTION OF THE EXPONENTIAL EQUATION EXP(B)-B/(1-P)=1 * D. E. BARTON, F. N. DAVID, M. MERRINGTON BIOKAG3 177 EXTENDED TABLE OF CRITICAL VALUES FOR WILCOXON'S TEST	T R

DIOMAC-	100	ADDROVIMATIONS TO THE NON SENTEN OUT SOULDS DIS	DIOWAGE	455	CHARTCHICAL CLASSIFICATION WITH CURPORTS
BIOKA63	199	APPROXIMATIONS TO THE NON-CENTRAL CHI-SQUARE DIS- TRIBUTION * MUNUSWAMY SANKARAN	BIOKA63	439	STATISTICAL CLASSIFICATION WITH QUADRATIC FORMS * PAUL W. COOPER
BIOKA63	204	STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. XIII. ISAAC TODHUNTER'S HISTORY OF THE MATHEMATICAL	BIOKA63	449	ADDITIONAL PERCENTAGE POINTS FOR THE INCOMPLETE BETA DISTRIBUTION * D. E. AMOS
BIOKA63	205	THEORY OF PROBABILITY * M. C. KENDALL A CHARACTERIZATION OF THE EXPONENTIAL—TYPE DISTRIBU—	BIOKA63	4 59	TABLE OF PERCENTAGE POINTS OF PEARSON CURVES, FOR GIVEN ROOT(BETA-1) AND BETA-2 EXPRESSED IN STANDARD
BIOKA63	207	TION*G.P.PATIL ON THE AMOUNT OF INFORMATION SUPPLIED BY TRUNCATED			MEASURE * N. L. JOHNSON, ERIC NIXON, D. E. AMOS, E. S. PEARSON
		SAMPLES OF GROUPED OBSERVATIONS IN THE ESTIMATION OF THE PARAMETERS OF NORMAL POPULATIONS * P. S. SWAMY	BIOKA63	499	THE ASYMPTOTIC EFFICIENCY OF DANIELS'S GENERALIZED CORRELATION COEFFICIENT * D. J. G. FARLIE
BIOKA63	213	EXPECTATIONS AND COVARIANCES OF SERIAL AND CROSS-COR- RELATION COEFFICIENTS IN A COMPLEX STATIONARY TIME	BIOKA63	505	INVERSE DISTRIBUTIONS AND INDEPENDENT GAMMA-DIS- TRIBUTED PRODUCTS OF RANDOM VARIABLES * J. AITCHISON
BIOK463	217	SERIES * DONALD F. MORRISON SEPARATE MAXIMUM-LIKELIHOOD ESTIMATION OF SCALE OR	BIOKA63	508	THE FREQUENCY DISTRIBUTION OF THE SAMPLE MEAN WHERE EACH MEMBER OF THE SAMPLE IS DRAWN FROM A DIFFERENT
DIONAGO	211	SHAPE PARAMETERS OF THE CAMMA DISTRIBUTION USING			RECTANGULAR DISTRIBUTION * S. A. ROACH
		ORDER STATISTICS * M. B. WILK, R. CNANADESIKAN, MARILYN J. HUYETT	BIOKA63		THE HAUSA PROBLEM AND SOME APPROXIMATIONS TO THE REQUIRED PROBABILITY * H. E. DANIELS, A. S. C. ROSS
BIOKA63	235	THE SIMPLE STOCHASTIC EPIDEMIC, A COMPLETE SOLUTION IN TERMS OF KNOWN FUNCTIONS * NORMAN T. J. BAILEY	BIOKA63	517	THE SPECTRUM OF A CONTINUOUS PROCESS DERIVED FROM A DISCRETE PROCESS * M. B. PRIESTLEY
BIOKA63	241	NUMERICAL RESULTS AND DIFFUSION APPROXIMATIONS IN A CENETIC PROCESS * W. J EWENS	BIOKA63	520	SIMULATED DISTRIBUTIONS FOR SMALL N OF KENDALL'S PAR- TIAL RANK CORRELATION COEFFICIENT * OLLE HOFLUND
BIOKA63	251	INFERENCE ON A CENETIC MODEL OF THE MARKOV CHAIN TYPE * JOHN J BARTKO, GEOFFREY A WATTERSON	BIOKA63	522	SOME INEQUALITIES ON CHARACTERISTIC ROOTS OF MATRICES * T. W. ANDERSON, S. DAS GUPTA
BIOKA63	265	TESTINCHYPOTHESES AND ESTIMATING PARAMETERS IN HUMAN CENETICS IF THE AGE OF ONSET IS RANDOM * EDWARD	BIOKA63	524	CHI-SQUARE STATISTIC BASED ON THE POOLED FREQUENCIES OF SEVERAL OBSERVATIONS * MASASHI OKAMOTO
BIOKA63	281	BATSCHELET TWO CLASSES OF CROUP DIVISIBLE PARTIAL DIALLEL	BIOKA63	52B	ON THE PROBABILITY OF LARCE DEVIATIONS FROM THE EXPECTATION FOR SUMS OF BOUNDED, INDEPENDENT RANDOM VARI-
BIOKA63	293	CROSSES * K. HINKELMANN, O. KEMPTHORNE REGRESSION FOR TIME SERIES WITH ERRORS OF MEASUREMENT			ABLES * G. BENNETT
BIOKA63	30.3	* E. J. HANNAN THE DISTRIBUTION OF THE GOODNESS-OF-FIT STATISTIC, U-	BIOKA63	535	EXPRESSING THE NORMAL DISTRIBUTION WITH COVARIANCE MATRIX A+B IN TERMS OF ONE WITH COVARIANCE MATRIX A *
BIOKA63		SQUARE-SUB-N. I. * M. A. STEPHENS COMPARISON OF TESTS FOR RANDOMNESS OF POINTS ON A LINE			CEORCE MARSACLIA .
		* E. S. PEARSON	BIOKA63	53B	THE DISTRIBUTION OF KENDALL'S TAU FOR SAMPLES OF FOUR FROM A NORMAL BIVARIATE POPULATION WITH CORRELATION
BIOKA63		VARIANCE COMPONENTS IN TWO-WAY CLASSIFICATION MODELS WITH INTERACTION * C. H. KAPADIA, DAVIDL. WEEKS	BIOKA63	E40	RHO * BARBARA A . S . SNOW
BIOKA63	335	THE CHOICE OF A SECOND ORDER ROTATABLE DESIGN * GEORGE E . P . BOX , NORMANR . DRAPER	DIONAGS	540	A FURTHER NOTE ON THE GEOMETRY OF LINEAR ESTIMATION * B. RAJA RAO
BIOKA63	353	THE ESTIMATION OF SECOND-ORDER TENSORS, WITH RELATED TESTS AND DESIGNS * CEORGE R. HEXT	BIOKA63	542	THE NON-CENTRAL CHI-SQUARED AND BETA DISTRIBUTIONS * G. A. F. SEBER
BIOKA63	375	ON AN EXTREME RANK SUM TEST FOR OUTLIERS * W. A. THOMP- SON JR, T. A. WILLKE	BIOKA63	544	A NOTE ON DIRECT AND INVERSE EINOMIAL SAMPLING * K. W.
BIOKA63		RANDOM WALK ON A CIRCLE * M. A. STEPHENS BIASES IN PREDICTION BY REGRESSION FOR CERTAIN IN-	BIOKA63	546	MORRIS CORRIGENDA, 'A FURTHER LOOK AT ROBUSTNESS VIA BAYES'S
		COMPLETELY SPECIFIED MODELS * HAROLD J. LARSON, T. A. BANCROFT	BIOKA63	546	THEOREM.'*G.E.P.BOX,G.C.TIAO CORRICENDA, 'A COMPARISON OF THE POWERS OF TWO MUL-
BIOKA63	403	A MULTIVARIATE ANALOGUE OF THE ONE-SIDED TEST * AKIO KUDO	DIONACA	5.46	TIVARIATE ANALYSIS OF VARIANCE TESTS. ' * KOICHI ITO
BIOKA63		ON SEQUENTIAL TESTS OF RATIO OF VARIANCES BASED ON RANGE * B. K. CHOSH THE RANDOMIZATION DISTRIBUTION OF F-RATIOS FOR THE	BIOKA63	546	CORRIGENDA, 'ESTIMATION OF PARAMETERS OF THE GAMMA DISTRIBUTION USING ORDER STATISTICS.' * M. B. WILK, R. GNANADESIKAN, M. J. HUYETT
PIONAGS	431	SPLIT-PLOT DESIGN, AN EMPIRICAL INVESTIGATION * RAYMOND O. COLLIER JR, FRANK B. BAKER	BIOKA63	546	CORRIGENDA, 'MULTINOMIAL PROBABILITIES AND THE CHI- SQUARE AND X-SQUARE DISTRIBUTIONS.'* M.E. WISE
		BIOMETRIKA VOL	UME 51, 1	1964	
BIOKA64	1	OPTIMAL REPLICATION IN SEQUENTIAL DRUG SCREENINC * E.	BIOKA64	153	A BAYESIAN APPROACH TO THE IMPORTANCE OF ASSUMPTIONS
BIOKA64	11	P. KING TRAFFIC DELAYS ON A TWO-LANE ROAD * C. F. YEO			APPLIED TO THE COMPARISON OF VARIANCES * G. E. P. BOX, GEORGE C. TIAO
BIOKA64		FIDUCIAL INFERENCE FOR LOCATION AND SCALE PARAMETERS * D. A. S. FRASER	BIOKA64	169	A NOTE ON CRITERION ROBUSTNESS AND INFERENCE ROBUST- NESS * G. E. P. BOX, CEORGE C. TIAO
BIOKA64	25	CONFIDENCE INTERVALS FOR THE COEFFICIENT OF VARIATION FOR THE NORMAL AND LOG NORMAL DISTRIBUTIONS * L. H.			HAZARD ANALYSIS. I * C.S. WATSON, M.R. LEADBETTER ON INVERSE SAMPLINC WITH UNEQUAL PROBABILITIES * P.K.
BIOKA64	33	KOOPMANS, D. B. OWEN, J. I. ROSENBLATT ESTIMATION OF A TRUNCATION POINT * D. S. ROBSON, J. H.			PATHAK THE ANALYSIS OF TWO-DIMENSIONAL STATIONARY PROCESSES
BIOKA64		WHITLOCK LINEAR HYPOTHESES AND INDUCED TESTS * G. A. F. SEBER			WITH DISCONTINUOUS SPECTRA * M. B. PRIESTLEY BAYES'S THEOREM AND THE USE OF PRIOR KNOWLEDGE IN
BIOKA64		USE OF DOUBLE SAMPLING FOR SELECTING BEST POPULATION			REGRESSION ANALYSIS * CEORGE C. TIAO, ARNOLD ZELLNER
BIOKA64	65	* M. L. CHAMBERS, P. JARRATT PERMUTATION SUPPORT FOR MULTIVARIATE TECHNIQUES * H.	BIOKA64		A NEW TABLE OF PERCENTAGE POINTS OF THE CHI-SQUARE DISTRIBUTION * H. LEON HARTER
BIOKA64	71	J. ARNOLD ON THE ROBUSTNESS OF THE T-SQUARE-SUB-0 TEST IN MUL-			ESTIMATION FOR THE BIVARIATE POISSON DISTRIBUTION * P. HOLGATE
		TIVARIATE ANALYSIS OF VARIANCE WHEN VARIANCE- COVARIANCE MATRICES ARE NOT EQUAL * KOICHI ITO, WIL- LIAM J. SCHULL	BIOKA64	245	ON THE PROBABILITY CENERATINC FUNCTIONAL FOR THE CU- MULATIVE POPULATION IN A SIMPLE BIRTH-AND-DEATH PROCESS * A. W. DAVIS
BIOKA64	83	APPROXIMATING THE GENERAL NON-NORMAL VARIANCE-RATIO	BIOKA64	250	THE CHI-SQUARE GOODNESS-OF-FIT TEST FOR A CLASS OF CASES OF DEPENDENT OBSERVATIONS * JOSEPH PUTTER
BIOKA64	97	SAMPLING DISTRIBUTIONS * M. L. TIKU ON CERTAIN SUGCESTED FORMULAE APPLIED TO THE SEQUEN-	BIOKA64	253	ASYMPTOTIC NORMALITY OF CERTAIN TEST STATISTICS OF EXPONENTIALITY * FRANK PROSCHAN, RONALD PYKE
BTOKA64	107	TIALT-TEST * V. SISKIND SOME NON-CENTRAL F-DISTRIBUTIONS EXPRESSED IN CLOSED	BIOKA64	256	A DISTRIBUTION-FREE TWO-SAMPLE TEST ON A CIRCLE * STANLEY WHEELER, G. S. WATSON
		FORM * ROBERT PRICE	BIOKA64	258	PROBABILISTIC SOLUTION OF THE SIMPLE BIRTH PROCESS *
BIOKA64		SOME GENERAL RESULTS IN SEQUENTIAL ANALYSIS * P. WHIT- TLE	BIOKA64	259	D. KERRIDGE SOME RELATIONS BETWEEN EXPECTATIONS OF ORDER
BIOKA64	143	ON THE DISTRIBUTION OF LINEAR FUNCTIONS AND RATIOS OF LINEAR FUNCTIONS OF ORDERED CORRELATED NORMAL RAN-			STATISTICS IN SAMPLES OF DIFFERENT SIZES * G. P. SIL- LITTO
		DOM VARIABLES WITH EMPHASIS ON RANGE * SHANTIS, GUP- TA, K. C. SREEDHARAN PILLAI, G. P. STECH	BIOKA64	262	A BRANCHINC PROCESS IN WHIGH INDIVIDUALS HAVE VARIA- BLE LIFETIMES * P. WHITTLE

- BIOKA64 264 A NOTE ON THE NECATIVE BINOMIAL DISTRIBUTION * SUD-HAKAR M. VIDWANS BTOKA64 265 A PROPERTY OF THE MULTINOMIAL DISTRIBUTION AND THE DETERMINATION OF APPROPRIATE SCORES * M. J. R. HEALY BIOKA64 267 DECOMPOSITION OF WISHART DISTRIBUTION * D. C. KABE 268 ON AN ANALOGUE OF BHATTACHARYA BOUND * MUNUSWAMY SAN-BIOKA64 KARAN BIOKA64 270 ON THE DISTRIBUTION OF THE LARGEST OF SEVEN ROOTS OF A MATRIX IN MULTIVARIATE ANALYSIS * K. C. SREEDHARAN PTLLAT 275 THE DISTANCES BETWEEN RANDOM POINTS IN TWO CONCENTRIC BIOKA64 CIRCLES * DAVID FAIRTHORNE 277 A COMPLETE MULTINOMIAL DISTRIBUTION COMPARED WITH THE BIOKA64 X-SQUARE APPROXIMATION AND AN IMPROVEMENT TO IT * M. E. WISE BIOKA64 281 EFFECT OF NON-NORMALITY ON A SEQUENTIAL TEST FOR MEAN * G. P. BHATTACHARJEE, Y. NAGENDRA 2BB CORRIGENDA, 'THE RANK ANALYSIS OF INCOMPLETE BLOCK
 DESIGNS, II. ADDITIONAL TABLES FOR THE METHOD OF BIOKA64 PAIRED COMPARISONS. ' * R. A. BRADLEY 299 THE SPECTRAL ANALYSIS OF TWO-DIMENSIONAL POINT BIOKA64 PROCESSES * M. S. BARTLETT
 - 313 A GENERALIZED MULTIVARIATE ANALYSIS OF VARIANCE MODEL BIOKA64 USEFULL ESPECIALLY FOR GROWTH CURVE PROBLEMS *
 - RICHARD F. POTTHOFF, S. N. ROY BIOKA64 327 THE CONTINUITY CORRECTION IN 2-BY-2 TABLES * R. L. PLACKETT. BIOKA64 339 IRRATIONAL FRACTION APPROXIMATIONS TO MILLS' RATIO *
 - HAROLD RUBEN BIOKA64 347 EXACT CONFIDENCE REGIONS FOR THE PARAMETERS IN NON-LINEAR RECRESSION LAWS * H. O. HARTLEY
 - 355 BOUNDS ON THE ERROR IN THE LINEAR APPROXIMATION TO THE BIOKA64 RENEWAL FUNCTION * M . R . LEADBETTER BIOKA64 365 THE ROBUSTNESS OF THE GOVARIANCE ANALYSIS OF A ONE-WAY
 - CLASSIFICATION * M. ATIQULLAH 373 INTERSECTIONS OF RANDOM CHORDS OF A CIRCLE * F. N. BIOKA64
 - DAVID, EVELYN FIX BIOKA64 3B1 GIRDLE DISTRIBUTIONS ON A SPHERE * B. SELBY
 - 393 THE DISTRIBUTION OF THE GOODNESS-OF-FIT STATISTIC U-BIOKA64
 - SQUARE-SUB-N.II * M. A. STEPHENS 399 THE STATISTICS OF A PARTICULAR NON-HOMOCENEOUS POIS-BIOKA64
 - SON PROCESS * D. M. WILLIS BIOKA64 405 THE ANALYSIS OF PERSISTENCE IN A CHAIN OF MULTIPLE EVENTS * LEO A. GOODMAN

- BIOKA64 413 CENERAL MODELS FOR QUANTAL RESPONSE TO THE JOINT AC-TION OF A MIXTURE OF DRUCS * J. R. ASHFORD, C. S. SMITH
- 429 ESTIMATES OF SURVIVAL FROM THE SICHTING OF MARKED BIOKA64 ANIMALS * R. M. CORMACK
- 439 SIMULTANEOUS TESTS BY SEQUENTIAL METHODS IN BIOKA64 HIERARCHICAL GLASSIFICATIONS * B. K. CHOSH
- 451 REPRESENTATIONS OF THE CENTRAL AND NON-CENTRAL T DIS-BIOKA64 TRIBUTIONS * D. E. AMOS
- 459 ASYMPTOTIC EXPANSIONS FOR TESTS OF GOODNESS OF FIT FOR BIOKA64 LINEAR AUTORECRESSIVE SCHEMES * K. C. CHANDA
- POWER OF THE LIKELIHOOD-RATIO TEST OF THE GENERAL BIOKA64 LINEAR HYPOTHESIS IN MULTIVARIATE ANALYSIS * H. O. POSTEN, R. E. BARCMANN
- 4B1 ON THE DISTINCTION BETWEEN THE CONDITIONAL PROBABILI-BTOKA64 TY AND THE JOINT PROBABILITY APPROACHES IN THE SPECIFICATION OF NEAREST-NEIGHBOUR SYSTEMS * D. BROOK
- BIOKA64 4B4 THE RATIO OF RANCE TO STANDARD DEVIATION IN THE SAME NORMAL SAMPLE * E. S. PEARSON, M. A. STEPHENS
- SOME RESULTS IN THE THEORY OF INVENTORY * A. CHOSAL 4B7 BIOKA64
- 491 SAMPLING VARIANCES OF ESTIMATES OF COMPONENTS OF BIOKA64 VARIANCE FROM A NON-ORTHOGONAL TWO-WAY GLASSIFICA-TION * LEONE Y LOW
- 495 A NOTE ON THE LOSS OF INFORMATION DUE TO CROUPING OF OB-BIOKA64 SERVATIONS * B. K. KALE
- 49B ON CUPTA'S ESTIMATES OF THE PARAMETERS OF THE NORMAL BIOKA64 DISTRIBUTION * MIR M. ALI, L. K. CHAN
- 501 ON A POINT ARISING IN POLYNOMIAL REGRESSION FITTING * BIOKA64 C. F. CROUSE
- BTOKA64 503 THE CONSTRUCTION OF A MATRIX USED IN DERIVING TESTS OF SIGNIFICANCE IN MULTIVARIATE ANALYSIS * J. RAD-CLIFFE
- BIOKA64 504 THE DERIVATION OF METHODS FOR FITTING EXPONENTIAL RECRESSION CURVES * S. LIPTON, C. A. MCGILCHRIST
- BIOKA64 SOME NOTES ON VARIANCE-RATIO TESTS OF THE GENERAL LINEAR HYPOTHESIS * JOHN G . SAW
- BIOKA64 511 ON ESTIMATING EPIDEMIC PARAMETERS FROM HOUSEHOLD DATA * SALLY OHLSEN
- 513 THE MODE OF A MULTINOMIAL DISTRIBUTION * H. M. FINUCAN BIOKA64
- 517 THE ANALYSIS OF POISSON REGRESSION WITH AN APPLICA-BIOKA64 TION IN VIROLOGY * JOHN J. GART
- BIOKA64 ON THE PROBLEM OF ESTIMATION FOR THE BIVARIATE LOCNOR-MALDISTRIBUTION * M. D. MOSTAFA, M. W. MAHMOUD
- BIOKA64 527 CORRIGENDA, 'EXTENDED TABLES OF CRITICAL VALUES FOR WILCOXON'S TEST STATISTIC. ' * L. R. VERDOOREN

BIOMETRIKA VOLUME 52,

- BIOKA65 1 EDITORIAL ARRANGEMENTS * L. H. C. TIPPETT BIOKA65 3 STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS XIV. SOME INCIDENTS IN THE EARLY HISTORY OF BIOMETRY AND STATISTICS, 1890-1894 * E.S. PEARSON
- BIOKA65 19 A COMPARISON OF SOME BAYESIAN AND FREQUENTIST IN-FERENCES. * D. J. BARTHOLOMEW BIOKA65 37 BAYESIAN ANALYSIS OF RANDOM-EFFEGT MODELS IN THE
- ANALYSIS OF VARIANCE. I. POSTERIOR DISTRIBUTION OF VARIANCE-COMPONENTS * G. C. TIAO, W. Y. TAN BIOKA65 55 FIDUCIAL CONSISTENCY AND GROUP STRUCTURE * D. A. S.
- FRASER BIOKA65 67 SOME RESULTS ON TESTS FOR POISSON PROCESSES. * P. A. W.
- LEWIS
- 79 QUEUEING FOR GAPS IN TRAFFIC. * A. G. HAWKES BIOKA65
- BIOKA65 B7 ON THE BIAS OF FUNCTIONS OF CHARACTERISTIC ROOTS OF A RANDOM MATRIX * T. CACOULLOS, I. OLKIN
- 95 AN INVESTIGATION OF THE EFFECT OF MISCLASSIFICATION BIOKA65 ON THE PROPERTIES OF CHI-SQUARE-TESTS IN THE ANALY-SIS OF CATECORICAL DATA. * V. L. MOTE, R. L. ANDERSON BIOKA65
- 111 DESIGNS WHICH MINIMIZE MODEL INADEQUACIES. CUBOIDAL RECIONS OF INTEREST * N. R. DRAPER, W. E. LAWRENCE BIOKA65 119 THE MILLS RATIO AND THE PROBABILITY INTEGRAL FOR A
- PEARSON TYPE IV DISTRIBUTION. * L. R. SHENTON, J. A
- BIOKA65 127 SOME PROBLEMS OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS. * J. J. BARTKO, G. A. WATTERSON
- 139 AN APPROXIMATE DEGREES OF FREEDOM SOLUTION TO THE MUL-BIOKA65 TIVARIATE BEHRENS-FISHER PROBLEM * YING YAO 149 A COMPARISON OF TESTS OF THE WILKS-LAWLEY HYPOTHESIS BTOKA65
- IN MULTIVARIATE ANALYSIS. * N. N. MIKHAIL 157 SEQUENTIAL ANALYSIS OF DEPENDENT OBSERVATIONS. I * R BTOKA65
- M PHATARFOD 167 INTEGRAL EXPRESSIONS FOR TAIL PROBABILITIES OF THE BTOKA65 MULTINOMIAL AND NEGATIVE MULTINOMIAL DISTRIBU-
- TIONS. * I. OLKIN, M. SOBEL BIOKA65 181 A CHANCE IN LEVEL OF A NON-STATIONARY TIME SERIES * G. E. P. BOX, G. C. TIAO
- 193 EQUATORIAL DISTRIBUTIONS ON A SPHERE. * C. S. WATSON

- BIOKA65 200 APPENDIX TO 'EQUATORIAL DISTRIBUTIONS ON A SPHERE' * M. A. STEPHENS
- GENERALIZED WILCOXON TEST FOR COMPARING ARBITRARILY BIOKA65 SINGLY-CENSORED SAMPLES * E . A . GEHAN
- 225 EXPLICIT ESTIMATES FROM CAPTURE-RECAPTURE DATA WITH BIOKA65 BOTH DEATH AND IMMIGRATION-STOCHASTIC MODEL. * C. M. JOLLY
- BIOKA65 249 A NOTE ON THE MULTIPLE-RECAPTURE CENSUS. * G. A. F. SEBER
- 261 THE DISTANCE FROM A RANDOM POINT TO THE NEAREST POINT BIOKA65 OF A CLOSELY PACKED LATTICE. * P. HOLGATE
- BIOKA65 263 CLUSTERING OF RANDOM POINTS IN TWO DIMENSIONS. * J. I. NAUS
- 267 APPROXIMATION TO THE BEHRENS-FISHER DISTRIBUTIONS. BIOKA65 * V. H. PATIL 271 THE ESTIMATION OF PARAMETERS FROM THE SPREAD OF A DIS-BIOKA65
- EASE BY CONSIDERING HOUSEHOLDS OF TWO. * R. W. MORGAN 275 FITTING A POLYNOMIAL TO CORRELATED EQUALLY SPACED OB-BIOKA65
- SERVATIONS. * P. SPRENT 277 THE DISTRIBUTION OF SUM-O-TO-M OF F(Y-SUB-T), WHERE BIOKA65
- (Y-SUB-O, Y-SUB-1,...) IS A REALIZATION OF A NON-HOMOGENEOUS FINITE-STATE MARKOV CHAIN * W. J.
- 279 A NOTE ON ESTIMATION IN THE TRUNCATED POISSON * K. A. BIOKA65 SUBRAHAMANTAM
- BIOKA65 2B2 TABLES OF PERCENTAGE POINTS OF ROOT (B1) AND B2 IN NOR-MAL SAMPLES, A ROUNDING OFF * E. S. PEARSON
- BIOKA65 2B5 A METHOD OF CONSTRUCTING BALANCED INCOMPLETE DESIGNS * E. R. MULLER
- 2BB A PROPERTY OF THE MEAN DEVIATION FOR A CLASS OF CON-BTOKA65 TINUOUS DISTRIBUTIONS. * A. R. KAMAT
- 2B9 ON PAIRS OF INDEPENDENT RANDOM VARIABLES WHOSE BTOKA65 PRODUCT FOLLOWS THE GAMMA DISTRIBUTION: * I. KOTLAR-SKI
- BIOKA65 295 A MOVINC AVERAGE REPRESENTATION FOR RANDOM VARIABLES COVARIANCE STATIONARY ON A FINITE TIME INTERVAL * D. R. BRILLINGER

BIOKA65	29B	ON THE EFFECT OF REMOVINC PERSONS WITH N OR MORE ACCIDENTS FROM AN ACCIDENT PRONE POPULATION. * F. A. HAICHT	BIOKA65	533	APPROXIMATE MEANS AND STANDARD DEVIATIONS BASED ON DISTANCES BETWEEN PERCENTACE POINTS OF FREQUENCY CURVES. * E.S. PEARSON, J. W. TUKEY
BIOKA65	301	THE APPROXIMATE DISTRIBUTION OF THE CORRELATION BETWEEN TWO STATIONARY LINEAR MARKOV SERIES. II. *	BIOKA65	547	TABLES TO FACILITATE FITTINC S-SUB-U FREQUENCY CURVES. * N. L. JOHNSON
BIOKA65	303	J.R.MCCRECOR,U.M.BIELENSTEIN THE DISTRIBUTION OF THE COEFFICIENT OF VARIATION, COMMENT ON A CRITICISM MADE BY KOOPMANS, OWEN AND	BIOKA65	559	UPPER BOUNDS ON THE MOMENTS AND PROBABILITY INEQUALITIES FOR THE SUM OF INDEPENDENT, BOUNDED RANDOM VARIABLES. * G. BENNETT
BIOKA65	305	ROSENBLATT. * N. L. JOHNSON, B. L. WELCH CORRICENDA, 'THE CHOICE OF A SECOND ORDER ROTATABLE	BIOKA65	571	THE SIMPLE STOCHASTIC EPIDEMIC CURVE FOR LARCE POPU- LATIONS OF SUSCEPTIBLES * T. WILLIAMS
BIOKA65		DESIGN' * C.E.P.BOX, N.R.DRAPER CORRICENDA, 'A NEW TABLE OF PERCENTACE POINTS OF THE	BIOKA65	581	THE DISTRIBUTION OF RESPONSE TIMES IN A BIRTH-DEATH PROCESS * T. WILLIAMS
BIOKA65		CHI-SQUARE DISTRIBUTIONS'*H. LEON HARTER CORRICENDA, 'THE SPECTRAL ANALYSIS OF TWO-DIMEN-	BIOKA65	5B7	SOME REMARKS ON DOUBLE SAMPLING FOR STRATIFICATION. *
		SIONAL POINT PROCESSES' * M.S. BARTLETT	BIOKA65	591	B.D.SINCH, D.SINGH AN ANALYSIS OF VARIANCE TEST FOR NORMALITY (COMPLETE
BIOKA65		THE GOODNESS OF FIT STATISTIC V-SUB-N, DISTRIBUTION AND SIGNIFICANCE POINTS * M. A. STEPHENS	BIOKA65	613	SAMPLES) * S. S. SHAPIRO, M. B. WILK A SOLUTION OF THE GENERAL STOCHASTIC EPIDEMIC. * V.
BIOKA65		THE PROBABILITY OF GOVERING A SPHERE WITH N CIRCULAR CAPS. * E. N. CILBERT	BIOKA65	617	SISKIND ON A PARTIAL DIFFERENTIAL EQUATION OF EPIDEMIC
BIOKA65 BIOKA65		THE CONVEX HULL OF A RANDOM SET OF POINTS * B. EFRON TESTS OF RANDOMNESS BASED ON DISTANCE METHODS. * P.	BIOKA65	623	THEORY. I. * J. CANI A PARADOX INVOLVINC QUASI PRIOR DISTRIBUTIONS * M.
BIOKA65	355	HOLGATE THE BAYESIAN ESTIMATION OF COMMON PARAMETERS FROM	BIOKA65	627	STONE, B. C. F. SPRINGER THE INDEX OF DISPERSION AS A TEST STATISTIC. * B. SELBY
BIOKA65	367	SEVERAL RESPONSES * G. E. P. BOX, N. R. DRAPER ON LINEAR FUNCTIONS OF ORDERED CORRELATED NORMAL RAN- DOM VARIABLES * S. S. CUPTA, K. C. S. PILLAI	BIOKA65	630	GHI-SQUARE APPROXIMATIONS FOR THE DISTRIBUTIONS OF GOODNESS-OF-FIT STATISTICS, U-SQUARE-SUB-N AND W-SQUARE-SUB-N * M. L. TIKU
BIOKA65	381	SOME PROPERTIES OF THE 'HERMITE' DISTRIBUTION * C. D. KEMP, ADRIENNE KEMP	BIOKA65	633	A NOTE ON THE ANALYSIS OF INCOMPLETE BLOCK EXPERIMENTS. * J. A. JOHN
BIOKA65	395	COUNTING DISTRIBUTIONS FOR RENEWAL PROCESSES. * F. A. HAIGHT	BIOKA65 BIOKA65		ON RANDOM ROTATIONS IN R-CUBE. * R. E. MILES CORRELATION IN A SINGLY TRUNCATED BIVARIATE NORMAL DISTRIBUTION. II. RANK CORRELATION * M. A. AITKIN,
BIOKA65	405	ON THE DISTRIBUTION OF THE LARCEST CHARACTERISTIC ROOT OF A MATRIX IN MULTIVARIATE ANALYSIS. * K. C. S. PILLAI	BIOKA65	643	M. W. HUME A NOTE ON THE QUEUEINC SYSTEM M-M-1 WITH BALKING. * G. GREGORY, P. R. SATYAMURTY
BIOKA65	415	LAGUERRE SERIES FORMS OF NON-CENTRAL CHI-SQUARE AND F DISTRIBUTIONS * M. L. TIKU	BIOKA65	645	SOME MULTIVARIATE DENSITY FUNCTIONS OF PRODUCTS OF GAUSSIAN VARIATES. * K, S. MILLER
BIOKA65	429	THE PERFORMANCE OF SEVERAL TESTS FOR OUTLIERS * H. A. DAVID, A. S. PAULSON	BIOKA65	647	A NOTE ON ESTIMATION OF RATIOS BY QUENOUILLE'S METHOD. * J. N. K. RAO
BIOKA65	437	A SPECIAL CASE OF A BIVARIATE NON-GENTRAL T-DISTRIBU- TION * D. B. OWEN	BIOKA65	650	A GENERALIZED TWO-SAMPLE WILCOXON TEST FOR DOUBLY- CENSORED DATA. * E. A. GEHAN
BIOKA65	447	THE THEORY OF LEAST SQUARES WHEN THE PARAMETERS ARE	BIOKA65	653	BOUNDS IN A MINIMAX CLASSIFICATION PROGEDURE * K. S. BANERJEE, L. F. MARCUS
		STOCHASTIC AND ITS APPLICATION TO THE ANALYSIS OF CROWTH CURVES. * C. R. RAO	BIOKA65	654	ANALYSIS OF CATEGORIAL DATA. * C. E. HAYNAM, F. C. LEONE
BIOKA65	459	LOCALLY ASYMPTOTICALLY MOST STRINGENT TESTS AND LACRANGIAN MULTIPLIER TESTS OF LINEAR HYPOTHESES.	BIOKA65		SIGNIFICANCE POINTS FOR THE TWO-SAMPLE STATISTIC U- SQUARE-SUB-M, N * M. A. STEPHENS
BIOKA65	469	*B.R.BHAT,B.N.NACNUR SOME PROBLEMS OF STATISTICAL PREDICTION * J.	BIOKA65	664	ESTIMATION OF THE PARAMETERS FOR A MULTIVARIATE NOR- MAL DISTRIBUTION WHEN ONE VARIABLE IS DICHOTOMISED.
BIOKA65	405	AITCHISON, DIANE SCULTHORPE SHORT-CUT MULTIPLE COMPARISONS FOR BALANCED SINGLE	BIOKA65	669	* J. F. HANNAN, R. F. TATE CORRICENDA, 'ON THE SUM OF SQUARES OF NORMAL SCORES' *
BIONAGS	400	AND DOUBLE CLASSIFICATIONS. PART 2. DERIVATIONS AND APPROXIMATIONS. * T. E. KURTZ, R. F. LINK, J. W TU-KEY, D. L. WALLACE	BIOKA65		H. RUBEN CORRIGENDA, 'ROBUSTNESS TO NON-NORMALITY OF REGRES- SION TESTS' * G. E. P. BOX, G. S. WATSON
BIOKA65	499	O N ELEMENTARY SYMMETRIG FUNCTIONS OF THE ROOTS OF TWO MATRICES IN MULTIVARIATE ANALYSIS, * K. C. S. PILLAI	BIOKA65	669	CORRIGENDA, 'TABLE OF PERCENTAGE POINTS OF PEARSON GURVES, FOR CIVEN ROOT(BETA-1) AND BETA-2, EX- PRESSED IN STANDARD MEASURE' * N. L. JOHNSON, ERIG
BIOKA65	507	SEQUENTIAL SAMPLING. TWO DECISION PROBLEMS WITH	D.T.O.V.4.05	666	NIXON, D. E. AMOS, E. S. PEARSON
		LINEAR LOSSES FOR BINOMIAL AND NORMAL RANDOM VARIA- BLES. * D. V. LINDLEY, B. N. BARNETT	BIOKA65	669	CORRICENDA, 'SOME INEQUALITIES ON CHARACTERISTIC ROOTS OF MATRICES' * T. W. ANDERSON, S. DAS GUPTA
		BIOMETRIKA VO	NUMB 57	1060	
		DIOMETRIKA AC	LUME JJ,	T > 00	

BIOMETRIKA VOLUME 53, 1966

BIOKA66	1 STRUCTURAL PROBABILITY AND A CENERALIZATION * D. A.S. FRASER	BIOKAG6 121 THE ORTHOCONAL POLYNOMIALS OF POWER SERIES PROBABILI- TY DISTRIBUTIONS AND THEIR USES * D. F. I. VAN HERR-
BIOKA66	11 BAYESIAN COMPARISON OF MEANS OF A MIXED MODEL WITH AP-	DEN, H. T. GONIN
	PLICATION TO RECRESSION ANALYSIS * G. C. TIAO	BIOKA66 129 LINEAR ESTIMATES WITH POLYNOMIAL COEFFICIENTS * F.
BIOKA66	27 UNEQUAL CROUP VARIANCES IN THE FIXED-EFFECTS ONE-WAY	DOWNTON
	ANALYSIS OF VARIANCE, A BAYESIAN SIDELIGHT * N. R. DRAPER, I. GUTTMAN	BIOKA66 143 MAXIMUM-LIKELIHOOD PAIRED COMPARISON RANKINGS * R. REMAGE JR, W. A. THOMPSON JR
BIOKA66	37 A MENDELIAN MARKOV PROCESS WITH BINOMIAL TRANSITION	BIOKA66 151 EVALUATION OF THE MAXIMUM-LIKELIHOOD ESTIMATOR WHERE
	PROBABILITIES * R. G. KHAZANIE, H. E. MCKEAN	THE LIKELIHOOD EQUATION HAS MULTIPLE ROOTS * V. D.
BIOKA66	49 MODELS FOR THE NON-INTERACTIVE JOINT ACTION OF A MIX-	BARNETT
	TURE OF STIMULI IN BIOLOGICAL ASSAY * J. R. ASHFORD,	BIOKAG6 167 TESTING FOR HOMOGENEITY. I. THE BINOMIAL AND MUL-
	C.S.SMITH	TINOMIAL DISTRIBUTIONS * R. F. POTTHOFF, M. WHIT-
BIOKA66	61 ON THE HOMOCENEOUS BIRTH-AND-DEATH PROCESS AND ITS	TINCHILL
	INTEGRAL * P. S. PURI	BIOKA66 183 TESTING FOR HOMOCENEITY. II. THE POISSON DISTRIBUTION
BIOKA66	73 CLOSED SEQUENTIAL TESTS FOR BINOMIAL PROBABILITIES *	* R. F. POTTHOFF, M. WHITTINGHILL
22011100	D. W. ALLING	BIOKA66 191 CORRELATION OF RANCES OF CORRELATED DEVIATES * T. E.
BIOKA66	B5 AN APPLICATION OF SEQUENTIAL SAMPLING TO ANALYTICAL	KURTZ, R. F. LINK, J. W. TUKEY, D. L. WALLACE
DIOWAGO	SURVEYS* J. SEDRANSK	BIOKAGE 199 SOME MONTE CARLO RESULTS ON THE POWER OF THE F-TEST
		UNDER PERMUTATION IN THE SIMPLE RANDOMIZED BLOCK
BIOKA66	99 DISTRIBUTION FREE TESTS BASED ON THE SAMPLE DISTRIBU-	DESIGN * R. O. COLLIER JR, F. B. BAKER
	TION FUNCTION * C. F. CROUSE	310KA66 205 ITERATIVE MAXIMUM-LIKELIHOOD ESTIMATION OF THE
BIOKA66	109 THE AVERACE CRITICAL VALUE METHOD FOR ADJUDGING RELA-	PARAMETERS OF NORMAL POPULATIONS FROM SINGLY AND
	TIVE EFFICIENCY OF STATISTICAL TESTS IN TIME SERIES	DOUBLY CENSORED SAMPLES (CORR. 69 229) * H. L.
	REGRESSION ANALYSIS * R. C. GEARY	HARTER, A. H. MOORE

BIOKA66	5 215 A SIMPLE EXAMPLE OF A COMPARISON INVOLVINC QUANTAL DATA * D. R. COX	BIOKAG6 397 ON THE USE OF THE DIRECT MATRIX PRODUCT IN ANALYSINC CERTAIN STOCHASTIC POPULATION MODELS * J. H. POLLARD
BIOKA66		BIOKAG6 417 SMOOTH EMPIRICAL BAYES ESTIMATION FOR ONE-PARAMETER DISCRETE DISTRIBUTIONS * J. S. MARITZ
BIOKA66		
BIOKA66		BIOKA66 439 SEQUENTIAL ESTIMATION OF QUANTAL RESPONSE CURVES, A
BIOKA66	5 241 BIVARIATE CENERALIZATIONS OF NEYMAN'S TYPE A DIS- TRIBUTION * P. HOLCATE	BIOKA66 455 THE OUTER NEEDLE OF SOME BAYES SEQUENTIAL CONTINUA- TION RECIONS * J. W. PRATT
BIOKA66	SAMPLES FROM A NORMAL DISTRIBUTION * R. P. BLAND, R.	* R. BOHRER
BIOKA66	D. GILBERT, C. H. KAPADIA, D. B. OWEN 248 ON THE USE OF PATNAIK TYPE CHI APPROXIMATIONS TO THE RANGE IN SIGNIFICANCE TESTS * F. E. GRUBBS, HELEN J.	BIOKAG6 477 BAYESIAN ANALYSIS OF RANDOM-EFFECT MODELS IN THE ANALYSIS OF VARIANCE. II. EFFECT OF AUTOCORRELATED ERRORS * G. C. TIAO, W. Y. TAN
BIOKA66	COON, E. S. PEARSON 5 252 THE CURVE THROUGH THE EXPECTED VALUES OF ORDERED	BIOKAG6 497 SOME BALANCED INCOMPLETE BLOCK DESIGNS FOR TWO SETS OF TREATMENTS * D. A. PREECE
	VARIATES AND THE SUM OF SQUARES OF NORMAL SCORES * J. G. SAW, B. CHOW	BIOKA66 507 BALANCED CONFOUNDING OF FACTORIAL EXPERIMENTS * E.R. MULLER
BIOKA66	BRUCE'S SPIDER * D. E. BARTON, F. N. DAVID	BIOKAGG 525 DESIGN OF EXPERIMENTS FOR PARAMETER ESTIMATION IN MULTIRESPONSE SITUATIONS * N. R. DRAPER, W. G. HUN- TERR
BIOKA66	TRIBUTION OF CORRELATION COEFFICIENT * B. K. GHOSH	BIOKAG6 535 TESTS OF HYPOTHESES ABOUT THE PARAMETERS OF THE LO- GISTIC FUNCTION * SHIRLEY E. HITCHCOCK
BIOKA66	FERENCES. II * D. J. BARTHOLOMEW, E. E. BASSETT	BIOKAG6 545 CONSISTENT STATISTICS FOR ESTIMATING AND TESTINC HYPOTHESES FROM GROUPED SAMPLES * D. R. MCNEIL
BIOKA66	CLAERBOUT	BIOKAG6 559 A QUICK METHOD OF ESTIMATING THE STANDARD DEVIATION * R.A. MEAD
BIOKA66	V. WEIR 5 269 SOME RELATIONSHIPS AMONG THE VON MISES DISTRIBUTIONS	BIOKAG6 565 ESTIMATION OF THE PARAMETERS OF THE LOGISTIC DIS- TRIBUTION * S. S. GUPTA, M. CNANADESIKAN
BIOKA66	OF DIFFERENT DIMENSIONS * T. D. DOWNS 5 272 A CONSERVATIVE TEST FOR THE CONCURRENCE OF SEVERAL	BIOKAG6 571 ON TWO METHODS OF BIAS REDUCTION IN THE ESTIMATION OF RATIOS * J. N. K. RAO, J. T. WEBSTER
BIOKA66	REGRESSION LINES AND RELATED PROBLEMS * J. G. SAW 5 275 A NECESSARY AND SUFFICIENT CONDITION FOR THE SQUARE OF	BIOKA66 579 A K-SAMPLE ANALOGUE OF WATSON'S U-SQUARE STATISTIC * U.R.MAAG
	A RANDOM VARIABLE TO BE GAMMA * C. ROBERTS, S. GEISSER	BIOKA66 585 KOLMOGOROV'S REMARK ON THE HOTELLING CANONICAL COR- RELATIONS * H.O. LANCASTER
BIOKA66	DISTRIBUTION. III. CORRELATION BETWEEN RANKS AND	VARIATES * J. C. GOWER
BIOKA66		BIOKA66 590 THE NON-NULL DISTRIBUTION OF A STATISTIC IN PRINCIPAL COMPONENTS ANALYSIS * A. M. KSHIRSAGAR
BIOKA66		
BIOKA66	USING GROUPED DATA * B. K. KALE 285 A GENERALIZATION OF JOHNSON'S PROPERTY OF THE MEAN DEVIATION FOR A CLASS OF DISCRETE DISTRIBUTIONS * A.	LAWRENCE
BIOKA66	R. KAMAT 5 2B7 A PROPERTY OF THE MEAN DEVIATION FOR THE PEARSON TYPE	
BIOKA66		BIOKA66 603 ON CHARACTERIZING THE NORMAL DISTRIBUTION BY STU- DENT'S LAW * I . KOTLARSKI
BIOKA66		BIOKAG6 606 A NOTE ON APPROXIMATING TO THE NON-CENTRAL F DISTRIBU- TION * M. L. TIKU
BIOKA66		
BIOKA66		
BIOKA66	AND RELATED PROBLEMS* C. R. RAO 5 347 EXACT DISTRIBUTIONS OF WILKS'S LIKELIHOOD RATIO CRITERION*M.SCHATZOFF	GRAY, P. L. ODELL BIOKA66 617 POISSON AND BINOMIAL FREQUENCY SURFACES * H. T. CONIN BIOKA66 619 COMPARATIVE VALIDITY OF THE CHI-SQUARE AND TWO
BIOKA66 BIOKA66	359 MEASURING THE LENGTH OF A CURVE * P. A. P. MORAN	MODIFIED CHI-SQUARE GOODNESS-OF-FIT TESTS FOR SMALL BUT EQUAL EXPECTED FREQUENCIES * M. J. SLAKTER
	J. R. PHILIP 375 A NOTE ON THE WEIBULL RENEWAL PROCESS * Z. A. LOMNICKI	BIOKA66 623 THE NULL DISTRIBUTION OF THE FIRST SERIAL CORRELATION
	5 383 THE SUPERPOSITION OF RANDOM SEQUENCES OF EVENTS * M. TENHOOPEN, H. A. REUVER	BIOKAGG 627 AN ALTERNATIVE DERIVATION OF THE HERMITE DISTRIBUTION * ADRIENNE W. KEMP, C.D. KEMP

BIOKA66 BIOKA66	359 MEASURING THE LENGTH OF A CURVE * P. A. P. MORAN 365 SOME INTEGRAL EQUATIONS IN CEOMETRICAL PROBABILITY * J. R. PHILIP 375 A NOTE ON THE WEIBULL RENEWAL PROCESS * Z. A. LOMNICKI 383 THE SUPERPOSITION OF RANDOM SEQUENCES OF EVENTS * M. TEN HOOPEN, H. A. REUVER 391 SOME EFFECTS OF FLUCTUATING OFFSPRING DISTRIBUTIONS ON THE SURVIVAL OF A GENE * E. POLLAK	BIOKA66	627	MODIFIED CHI-SQUARE GOODNESS-OF-FIT TESTS FOR SMALL BUT EQUAL EXPECTED FREQUENCIES * M. J. SLAKTER THE NULL DISTRIBUTION OF THE FIRST SERIAL CORRELATION COEFFICIENT * D. R. COX AN ALTERNATIVE DERIVATION OF THE HERMITE DISTRIBUTION * ADRIENNE W. KEMP, C. D. KEMP CORRECTION, 'SOME METHODS OF CONSTRUCTING EXACT TESTS.' * J. DURBIN
	BIOMETRIKA	VOLUME 54,	1967	
BIOKA67	1 STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. XV. THE HISTORICAL DEVELOPMENT OF THE GAUSS LINEAR MODEL * H. L. SEAL		127	DESIGNS FOR THE SIMULTANEOUS ESTIMATION OF FUNCTIONS OF VARIANCE COMPONENTS FROM TWO-WAY CROSSED CLAS- SIFICATIONS * M. G. MOSTAFA
BIOKA67	25 SOME REMARKS ON THE ANALYSIS OF TIME-SERIES * M. S. BARTLETT	BIONAGI	133	UNLIMITED SIMULTANEOUS DISCRIMINATION INTERVALS IN REGRESSION * G. J. LIEBERMAN, R. G. MILLER JR, M. A.
BIOKA67	39 SOME TESTS OF SEPARATE FAMILIES OF HYPOTHESES IN TIME SERIES ANALYSIS * A. M. WALKER			HAMILTON
BIOKA67	69 DISTRIBUTION OF THE RESIDUAL SUM OF SQUARES IN FITTING INEQUALITIES * J. A. HARTIGAN		147	THE USE OF PRIOR DISTRIBUTIONS IN THE DESIGN OF EX- PERIMENTS FOR PARAMETER ESTIMATION IN NON-LINEAR SITUATIONS*N.R. DRAPER, W. G. HUNTER
BIOKA67	85 THE TWO MEANS PROBLEM A SECONDARILY BAYES APPROACH * M. B. BROWN	BIOKA67	155	ESTIMATING THE MEAN AND STANDARD DEVIATION FROM A CEN- SORED NORMAL SAMPLE * M. L. TIKU
BIOKA67	93 MAXIMUM-LIKELIHOOD ESTIMATION FOR THE MIXED ANALYSIS OF VARIANCE MODEL * H. O. HARTLEY, J. N. K. RAO		167	ESTIMATION OF THE PROBABILITY OF AN EVENT AS A FUNC-
BIOKA67	109 BAYESIAN ANALYSIS OF A THREE-COMPONENT HIERARCHICAL DESIGN MODEL * G. C. TIAO, G. E. P. BOX		201	TION OF SEVERAL VARIABLES * S. H. WALKER, D. B. DUN-CAN

BIOKA67	181	ON THE BIAS OF VARIOUS ESTIMATORS OF THE LOCIT AND ITS VARIANCE WITH APPLICATION TO QUANTAL BIOASSAY * J.	BIOKA67	419	THE DISTRIBUTION OF THE MEAN HALF-SQUARE SUCCESSIVE DIFFERENCE * W. M. HARPER
BIOKA67	189	J.CART, J.R.ZWEIFEL UPPER PERCENTACE POINTS OF THE LARCEST ROOT OF A	BIOKA67	435	SMOOTH EMPIRICAL BAYES ESTIMATION FOR CONTINUOUS OIS- TRIBUTIONS (CORR. 68 597) * J. S. MARITZ
DIOVAC7	105	MATRIX IN MULTIVARIATE ANALYSIS * K. C L. PILLAI	BIOKA67	451	A SUPPLEMENTARY SAMPLE NON-PARAMETRIC EMPIRICAL
BIUNAGI	195	POWER COMPARISONS OF TESTS OF TWO MULTIVARIATE HYPOTHESES BASED ON FOUR CRITERIA * K. C. S. PILLAI,			BAYES APPROACH TO SOME STATISTICAL DECISION PROBLEMS * R. C. KRUTCHKOFF
DIOVACO	011	K. JAYACHANDRAN TESTS FOR THE DISPERSION AND FOR THE MODAL VECTOR OF A	BIOKA67		TESTS OF RELATEDNESS * D. W. ALLING
BIOKA67	211	DISTRIBUTION ON A SPHERE * M. A. STEPHENS	BIOKA67	471	ANALYSIS OF PLANT COMPETITION EXPERIMENTS FOR DIF- FERENT RATIOS OF SPECIES * C. MCGILCHRIST
BIOKA67	225	EXTENSION OF TABLES OF PERCENTAGE POINTS OF THE LAR-	BIOKA67	479	NESTED BALANCED INCOMPLETE BLOCK DESIGNS * D. A.
		GEST VARIANCE RATIO S-SQUARE-MAX-OVER-S-SQUARE- SUB-0 * C. CHAMBERS	BIOKA67	4B7	PREECE RANK SUM MULTIPLE COMPARISIONS IN ONE AND TWO-WAY
BIOKA67	229	A CLASS OF SITUATIONS IN WHICH A SEQUENTIAL ESTIMATION	DIOWAGE	400	CLASSIFICATIONS * B. J. MCDONALD, W. A. THOMPSON
		PROCEDURE IS NON-SEQUENTIAL * P. WHITTLE, R. O. D. LAND	BIOKA67	499	ON SAMPLINC WITHOUT REPLACEMENT WITH UNEQUAL PROBA- BILITIES OF SELECTION * M. R. SAMPFORD
BIOKA67	235	SOME CONTRIBUTIONS TO CONTINCENCY-TYPE BIVARIATE	BIOKA67	515	UPPER AND LOWER PROBABILITY INFERENCES BASED ON A SAM-
BIOKA67	251	DISTRIBUTIONS (CORR. 6B 597) * K. V. MARDIA A MULTIVARIATE IMMIGRATION WITH MULTIPLE DEATH			PLE FROM A FINITE UNIVARIATE POPULATION * A. P. DEMPSTER
		PROCESS AND APPLICATIONS TO LUNAR CRATERS * A. H.	BIOKA67	529	CORRELATION OF THE RANCES OF CORRELATED SAMPLES * K.
BIOKA67	263	MARCUS INTEGRALS OF BRANCHING PROCESSES * P. JACERS	BIOKA67	541	V. MARDIA ON THE EXTREME VALUES AND RANCE OF SAMPLES FROM NON-
BIOKA67		EXTREMES IN A RANDOM ASSEMBLY * MARGARET CREIG	DIOVACE		NORMAL POPULATIONS * C. SINGH
BIOKA67	200	RECURRENCE RELATIONS BETWEEN THE P.D.F.'S OF ORDER STATISTICS OF DEPENDENT VARIABLES, AND SOME APPLI-	BIOKA67	221	LINEAR ESTIMATES OF A POPULATION SCALE PARAMETER * F. C. BARNETT, K. MULLEN, J. C. SAW
DIOVACE	007	CATIONS * D. H. YOUNG	BIOKA67	555	SIMPLIFIED TECHNIQUES FOR ESTIMATING PARAMETERS OF
BIOKA67	293	REDUCTION OF THE MULTIVARIATE NORMAL INTECRAL TO CHARACTERISTIC FORM * D. R. CHILDS			SOME CENERALIZED POISSON DISTRIBUTIONS * P. HINZ, J. GURLAND
BIOKA67	301	A COMPARISON OF SEVERAL VARIANCE COMPONENT ESTIMATORS * Y. Y. WANG	BIOKA67		FIELLER'S THEOREM AND A CENERALIZATION * D. R. COX DISCRIMINATION BETWEEN ALTERNATIVE BINARY RESPONSE
BIOKA67	305	MULTIVARIATE T AND THE RANKING PROBLEM * H. FREEMAN,	BIOKA67	5/3	MODELS * ELIZABETH A. CHAMBERS, D. R. COX
DIOKACE	700	A. KUZMACK, RITA MAURICE	BIOKA67	579	THE PROBABILITIES OF EXTINCTION FOR BIRTH-AND-DEATH PROCESSES THAT ARE ACE-DEPENDENT OR PHASE-DEPEN-
BIOKA67	300	THE AVERAGE CRITICAL VALUE METHOD AND THE ASYMPTOTIC RELATIVE EFFICIENCY OF TESTS * A . STUART			DENT * L. A. COODMAN
BIOKA67	310	ON FINDING LOCAL MAXIMA OF FUNCTIONS OF A REAL VARIA- BLE * F S G. RICHARDS	BIOKA67	597	ASYMPTOTIC VALUES OF THE FIRST TWO MOMENTS IN MARKOV RENEWAL PROCESSES * A. M. KSHIRSAGAR, Y. P. CUPTA
BIOKA67	312	A NOTE ON THE FIRST TWO MOMENTS OF THE MEAN DEVIATION OF	BIOKA67	605	TESTING A MARKOV HYPOTHESIS WITH INDEPENDENCE OF IN-
		THE SYMMETRICAL MULTINOMIAL DISTRIBUTION * D. H. YOUNG	BIOKA67	615	TERMEDIATE STATES AND RESTRICTED ORDER * J. THIEBAUX THE ANGLE-COUNT METHOD * P. HOLGATE
BIOKA67	314	A NOTE ON THE ULTIMATE SIZE OF A GENERAL STOCHASTIC	BIOKA67		A MONTE CARLO SOLUTION OF A TWO-DIMENSIONAL UNSTRUC-
BIOKA67	316	EPIDEMIC * F. DOWNTON STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS	BIOKA67	620	TURED CLUSTER PROBLEM * F. D. K. ROBERTS EXTREME TAIL PROBABILITIES FOR THE NULL DISTRIBUTION
DIONAGI	010	XVI. RANDOM RANDOM MECHANISMS IN TALMUDIC LITERA-			OF THE TWO-SAMPLE WILCOXON STATISTIC * M. STONE
BIOKA67	321	TURE * A. M. HASOFER THE PRECISION OF MICHEY'S UNBIASED RATIO ESTIMATOR *	BIOKA67	641	SOME KOLMOCOROFF-TYPE INEQUALITIES FOR BOUNDED RAN- DOM VARIABLES * W. L. STEIGER
		J. N. K. RAO	BIOKA67		ON A SYSTEM OF DISCRETE DISTRIBUTIONS * J. K. ORD
BIOKA67 BIOKA67		A RESULT ON ACCIDENT PRONENESS * S. K. BHATTACHARYA THE EMPIRICAL BAYES APPROACH, ESTIMATING THE PRIOR	BIOKA67	657	THE CAPACITY OF AN UNCONTROLLED INTERSECTION * J. C. TANNER
		DISTRIBUTION * J. R. RUTHERFORD, R. C. KRUTCHKOFF	BIOKA67	659	NOTE ON TESTING HYPOTHESES IN AN UNBALANCED RANDOM EF-
BIOKA67	329	AN EXAMPLE OF DISCREPANCIES IN INFERENCES UNDER NON- INFORMATIVE STOPPING RULES * W. A. ERICSON	BTOKA67	662	FECTS MODEL * M. G. MOSTAFA THE USE OF PRIOR DISTRIBUTIONS IN THE DESIGN OF EX-
BIOKA67	330	THE JOINT DISTRIBUTION OF ASCENDING PAIRS AND ASCEND-	2=0		PERIMENTS FOR PARAMETER ESTIMATION IN NON-LINEAR
BIOKA67	333	ING RUNS IN A RANDOM SEQUENCE * N. KRICHNAJI (ACKNOWLEDCEMENT OF PRIORITY), 'A PROPERTY OF THE			SITUATIONS MULTIRESPONSE CASE * N. R. DRAPER, W. C. HUNTER
		MEAN DEVIATION FOR THE PEARSON TYPE DISTRIBUTIONS'	BIOKA67	665	A NOTE ON AN APPROXIMATE FACTORIZATION IN DISCRIMI-
BIOKA67	333	* A.R. KAMAT CORRECTION, 'DISTRIBUTION FREE TESTS BASED ON THE	BIOKA67	668	NANT ANALYSIS * J. RADCLIFFE ON THE CHOICE OF VARIABLES IN CLASSIFICATION PROBLEMS
		SAMPLE DISTRIBUTION FUNCTION' * C. F. CROUSE			WITH DICHOTOMOUS VARIABLES * JANET D. ELASHOFF, R.
BIOKA67	341	STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. XVII. SOME REFLEXIONS ON CONTINUITY IN THE DEVELOP-	BIOKA67	670	M. ELASHOFF, G. E. GOLDMAN A NOTE ON LINEAR STRUCTURAL RELATIONSHIPS WHEN BOTH
		MENT OF MATHEMATICAL STATISTICS, 18B5-1920 * E. S.	D T O V 1 O T	017.0	RESIDUAL VARIANCES ARE KNOWN * V. D. BARNETT
BIOKA67	357	PEARSON THE DISCARDING OF VARIABLES IN MULTIVARIATE ANALYSIS	BIOKWO.	672	THE EMPIRICAL BAYES APPROACH ESTIMATING POSTERIOR QUANTILES * J. R. RUTHERFORD
BIORVED	7.07	* E. M. L. BEALE, M. G. KENDALL, D. W. MANN ON METHODS OF ASYMPTOTIC APPROXIMATION FOR MUL-	BIOKA67	675	ANOTHER TEST FOR THE UNIFORMITY OF A CIRCULAR DIS-
DIOUNG	501	TIVARIATE DISTRIBUTIONS * J. M. CHAMBERS	BIOKA67	677	TRIBUTION * G. S. WATSON A NOTE ON THE ASYMPTOTIC EFFICIENCY OF FRIEDMAN'S CHI-
BIOKA67	385	TESTING FOR CORRELATION BETWEEN NON-NEGATIVE	22311101	2.1	SQUARE-SUB-R-TEST * P. K. SEN
BIOKA67	395	VARIATES * P. A. P. MORAN TESTING FOR SERIAL CORRELATION WITH EXPONENTIALLY	BIOKA67	679	SOME TWO-SAMPLE TESTS WHEN THE VARIANCES ARE UNEQUAL. A SIMULATION STUDY * B. P. MURPHY
BIOKA67	403	DISTRIBUTED VARIATES * P. A. P. MORAN TIME SERIES WITH PERIODIC STRUCTURE * R. H. JONES, W.	BIOKA67	6B3	A NOTE ON TABLES FOR THE COMPARISION OF THE SPREAD OF
		M. BRELSFORD			TWO NORMAL DISTRIBUTIONS * G. C. TIAO, R. H. LOCHNER
BIOKA67	409	THE ESTIMATION OF A LACGED REGRESSION RELATION * E. J. HANNAN	BIOKA67	6B4	SOME RELATIONSHIPS BETWEEN THE NORMAL AND VON MISES DISTRIBUTIONS * T. D. DOWNS, A. L. GOULD
		BIOMETRIKA VO	LUME 55, 1	96B	

BIOKA6B	1 PROBABILITY PLOTTING METHODS FOR THE ANALYSIS OF DATA * M . B . WILK, R . GNANADESIKANN	BIOKAGB 53 OPTIMAL DESIGNS IN REGRESSION PROBLEMS WITH A GENERAL CONVEX LOSS FUNCTION * P. J. LAYCOCK, S. D. SILVEY
BIOKA6B	19 LAGRANGIAN COEFFICIENTS FOR INTERPOLATION BETWEEN	BIOKA6B 67 SERIAL FACTORIAL DESIGN * H. D. PATTERSON
	TABLED PERCENTAGE POINTS * E. S. PEARSON	BIOKA68 83 ON THE SMOOTH EMPIRICAL BAYES APPROACH TO TESTING OF
BIOKA6B	29 INVERSE CUMULATIVE APPROXIMATION AND APPLICATIONS *	HYPOTHESES AND THE COMPOUND DECISION PROBLEM * J.S.
	M. E. TARTER	MARITZ
BIOKA6B	43 EXPERIMENTAL DEVELOPMENT OF NUTRITIVE MEDIA FOR	BIOKA68 101 BAYESIAN ANALYSIS OF LINEAR MODELS WITH TWO RANDOM
	MICRO-ORGANISMS * V. D. FEDORV, V. N. MACIMOV, V. G.	COMPONENTS WITH SPECIAL REFERENCE TO THE BALANCED
	BOGOROV	INCOMPLETE BLOCK DESIGN * G. C. TIAO, N. R. DRAPER

- BIOKA68 119 A BAYESIAN APPROACH TO SOME OUTLIER PROBLEMS * G. E. P.
 BOX. G. C. TIAO
- BIOKA68 131 SOME BAYESIAN STRATIFIED TWO-PHASE SAMPLING RESULTS
 * N. R. DRAPER. I. GUTTMAN
- BIOKA68 141 LINEAR-LOSS INTERVAL ESTIMATION OF LOCATION AND SCALE
 PARAMETERS * J. AITCHISON, I. R. DUNSMORE
- BIOKA68 149 EXPONENTIAL RECRESSION WITH CORRELATED OBSERVATIONS
 * ANN F. S. MITCHELL
- BIOKAGS 163 A METHOD OF ANALYSING UNTRANSFORMED DATA FROM THE
 NECATIVE BINOMIAL AND OTHER CONTACIOUS DISTRIBUTIONS * P. HINZ, J. GURLAND
- BIOKA6B 171 ON THE DISTRIBUTION OF A STATISTIC USED FOR TESTING A COVARIANCE MATRIX * B . P . KORIN
- BIOKA6B 179 CONTINCENCY TABLES WITH CIVEN MARCINALS * C. T. IRE-LAND, S. KULLBACK
- BIOKAGB 1B9 STOCHASTIC BIRTH, DEATH AND MICRATION PROCESSES FOR SPATIALLY DISTRIBUTED POPULATIONS * N. T. BAILEY
- BIOKA68 199 A PERTURBATION APPROXIMATION OF THE SIMPLE STOCHASTIC EPIDEMIC IN A LARGE POPULATION * N. T. J. BAILEY
- BIOKA68 211 A SYSTEM OF MODELS FOR THE LIFE CYCLE OF A BIOLOGICAL ORGANISM * K. L. Q. READ, J. R. ASHFORD BIOKA68 223 A SYSTEM OF TWO SERVERS WITH LIMITED WAITING ROOMS AND
- CERTAIN ORDER OF VISITS * G. C. GHIRTIS
 BIOKA68 229 SEQUENTIAL OCCUPANCY WITH CLASSIFICATION * D. E. BAR-
- BIOKA68 229 SEQUENTIAL OCCUPANCY WITH CLASSIFICATION * D. E. BAR-TON F. N. DAVID
- BIOKA68 243 APPROXIMATIONS TO DISTRIBUTION FUNCTIONS WHICH ARE HYPERGEOMETRIC SERIES * J. K. ORD
- BIOKA68 249 STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS.
 XVIII. THOMAS YOUNG ON COINCIDENCES * M. G. KENDALL
- BIOKAGB 251 THE MEAN EFFICIENCY OF EQUI-REPLICATE DESIGNS * S. C PEARCE
- BIOKA68 254 ON USING AN INCORRECT VALUE OF SIGMA-SQUARE-SUB-B-OVER-SIGMA-SQUARE IN BALANCED INCOMPLETE BLOCK DESIGNS * V. SISKIND
- BIOKA68 255 RANDOM MINIMAL TREES * F. D. K. ROBERTS
- BIOKAGB 25B A THREE-DIMENSIONAL CLUSTER PROBLEM * F. D. K ROBERTS, S. H. STOREY
- BIOKA68 261 ON THE STRUCTURE OF THE TETRACHORIC SERIES * M. A. HAM-DAN
- BIOKA6B 262 A NOTE ON CONTINGENCY-TYPE BIVARIATE DISTRIBUTIONS * G. P. STECK
- BIOKAGB 264 QUICK POWERFUL TESTS WITH GROUPED DATA * D. R. MCNEIL
- BIOKAGE 269 STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS.

 XIX. FRANCIS YSIDRO EDCEWORTH (1845-1926) * M. G.

 KENDALL
- BIOKA68 277 THE ULTIMATE SIZE OF CARRIER-BORNE EPIDEMICS * F.
- BIOKA68 291 AGE-DEPENDENT BRANCHING PROCESSES UNDER A CONDITION
 OF ULTIMATE EXTINCTION * W. A. O'N. WAUGH
- BIOKA68 297 CHANCEOVER DESIGNS BALANCED FOR THE LINEAR COMPONENT
 OF FIRST RESIDUAL EFFECTS * I. I. BERENBLUT
- BIOKAGB 305 ON ESTIMATION BY THE SWEEP-OUT METHOD (CORR. 69 229) *
 M. ATIQULLAH
- BIOKAGB 313 ON THE BIAS OF SOME LEAST-SQUARES ESTIMATORS OF VARI-ANCE IN A GENERAL LINEAR MODEL * B. F. SWINDEL
- BIOKA6B 317 TESTING THE HOMOGENEITY OF A SET OF CORRELATED VARI-ANCES * CHIEN-PAIHAN
- BIOKA68 327 TESTS FOR CORRELATION MATRICES * M. A. AITKIN, W. C. NELSON, KARENH. REINFURT
- BIOKA68 335 POWER COMPARISIONS OF TESTS OF EQUALITY OF TWO COVARIANCE MATRICES BASED ON FOUR CRITERIA * K. C. S. PILLAI, K. JAYACHANDRAN
- BIOKA68 343 A SIMPLE TEST FOR UNIFORMITY OF A CIRCULAR DISTRIBU-
- BIOKAGB 355 SOME RESULTS ON TESTS OF SEPARATE FAMILIES OF HYPOTHESES * O. A. Y. JACKSON
- BIOKAGB 365 ON THE EFFICIENCY OF MATCHED PAIRS IN BERNOULLI TRIALS
 * G. R. CHASE
- BIOKA68 371 EXTREME TAIL PROBABILITIES FOR SAMPLING WITHOUT

 REPLACEMENT AND EXACT BAHADUR EFFICIENCY OF THE TWOSAMPLE NORMAL SCORES TEST * M. STONE
- BIOKA68 377 PERCENTACE POINTS OF THE RANGE FROM A SYMMETRIC MUL-TINOMIAL DISTRIBUTION * B. M. BENNETT, E. NAKAMURA
- BIOKA68 3B1 A NOTE ON THE ASYMPTOTIC RELATIVE EFFICIENCIES OF COX
 AND STUART'S TESTS FOR TESTING TREND IN DISPERSION
 OF A P-DEPENDENT TIME SERIES (CORR. 69 457) * R.
 SUBBARAO
- BIOKA68 387 CLOSED SEQUENTIAL TESTS FOR AN EXPONENTIAL PARAMETER
 * D. G. HOEL
- BIOKA68 393 SERIAL SAMPLING ACCEPTANCE SCHEMES FOR LARGE BATCHES
 OF ITEMS WHERE THE MEAN QUALITY HAS A NORMAL PRIOR
 DISTRIBUTION * G. E., G. CAMPLING

- BIOKA68 401 A FIXED SUBSET-SIZE APPROACH TO THE SELECTION PROBLEM
 * M. M. DESU, M. SOBEL
- BIOKA6B 411 SOME EXTENSIONS OF SOMERVILLE'S PROCEDURE FOR RANKING MEANS OF NORMAL POPULATIONS * W. R. FAIRWEATHER
- BIOKA68 419 STATISTICAL THEORY OF A HIGH-SPEED PHOTOELECTRIC PLANIMETER * P. A. P. MORAN
- BIOKA68 422 AN INEQUALITY INVOLVING MULTINOMIAL PROBABILITIES * C. L. MALLOWS
- BIOKAGB 424 THE JOINT DISTRIBUTION OF THE STUDENTIZED REGRESSION COEFFICIENTS * E. MOHN
- BIOKA6B 426 TESTING FOR HOMOGENEITY OF A BINOMIAL SERIES * T. K. M WISNIEWSKI
- BIOKA68 42B FURTHER PERCENTACE POINTS FOR W-SQUARE-SUB-N
 +(CRAMER-VON MISES COODNESS-OF-FIT STATISTIC) * M.
 A.STEPHENS, U.R. MAAG
- BIOKA68 431 A MONTE CARLO INVESTICATION OF THE SIZE AND POWER OF TESTS EMPLOYING SATTERTHWAITE'S SYNTHETIC MEAN SQUARES* J. D. HUDSON JR, R. G. KRUTCHKOFF
- BIOKA68 433 CORRELATION BETWEEN THE SAMPLE VARIANCES IN A SINGLY
 TRUNCATED BIVARIATE NORMAL DISTRIBUTION * B. R. RAO,
 M. L. GARC, C. C. LI
- BIOKAGB 437 CORRELATION IN A SINCLY TRUNCATED BIVARIATE NORMAL
 DISTRIBUTION IV. EMPIRICAL VARIANCES OF RANK CORRELATION COEFFICIENTS * M. A. AITKIN, M. W. HUME
- BIOKAGB 43B ON THREE PROCEDURES OF SAMPLING FROM FINITE POPULA-TIONS * P. S. R. S. RAO
- BIOKA6B 441 TWO TABLES CONNECTED WITH GOODNESS-OF-FIT TESTS FOR EQUIPROBABLE ALTERNATIVES * J. N. CRONHOLM
- BIOKA68 445 STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS.

 XX. SOME EARLY CORRESPONDENCE BETWEEN W.S. GOSSETT,

 R.A. FISHER AND KARL PEARSON, WITH NOTES AND COMMENTS * E. S. PEARSON
- IOKAGB 459 STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS.

 XXI ON THE EARLY HISTORY OF THE LAW OF LARGE NUMBERS

 * O. B. SHEYNIN
- BIOKAGB 469 STOCHASTIC MODELS FOR THE POPULATION CROWTH OF THE SEXES*L.A.GOODMAN
- BIOKAGB 4B9 SIMULTANEOUS TEST PROCEDURES IN MULTIVARIATE ANALY— SIS OF VARIANCE * K. R. GABRIEL
- BIOKAGB 505 PERCENTAGE POINTS OF THE EXTREME ROOTS OF A WISHART MATRIX * R. C. HANUMARA, W. S. THOMPSON
- BIOKA6B 513 ON TESTING A SET OF CORRELATION COEFFICIENTS FOR EQUALITY. SOME ASYMPTOTIC RESULTS * L. J. GLESER
- BIOKA6B 519 PREDICTIVE ZERO-MEAN UNIFORM DISCRIMINATION * S. GEISSER, M. M. DESU
- BIOKA68 525 THE USE OF EMPIRICAL BAYES ESTIMATORS IN A LINEAR REGRESSION MODEL * B. A. CLEMMER, R. G. KRUTCHKOFF
- BIOKA68 535 A DESIGN BALANCED FOR TREND * E. J. SNELL, J. BRYAN-JONES
- BIOKAGB 541 ON MODIFIED SYSTEMATIC SAMPLING * D. SINGH, K. K. JIN-DAL, J. N. GARG
- BIOKA68 547 A NEW ESTIMATION THEORY FOR SAMPLE SURVEYS * H. O. HARTLEY, J. N. K. RAO
- BIOKA6B 559 USE OF THE PEARSON DENSITIES FOR APPROXIMATING A SKEW DENSITY WHOSE LEFT TERMINAL AND FIRST THREE MOMENTS ARE KNOWN * A . B . HOADLEY
- BIOKA68 565 A ONE-SIDED PROBABILITY INEQUALITY FOR THE SUM OF IN-DEPENDENT, BOUNDED RANDOM VARIABLES * G. BENNETT
- BIOKA68 571 AN APPROXIMATION FOR STUDENT'S T-DISTRIBUTION * W. M. GENTLEMAN, M. A. JENKINS
- BIOKA6B 573 GINI'S MEAN DIFFERENCE REDISCOVERED * H. A. DAVID
- BIOKA68 575 FURTHER REMARKS ON EXPONENTIAL RECRESSION WITH CORRELATED OBSERVATIONS * ANN F. S. MITCHELL, MARCARET A. BOOR
- BIOKA68 57B A NOTE ON ESTIMATION FOR QUANTAL RESPONSE DATA * R. E. LITTLE
- BIOKA68 580 ON THE PERCENTAGE POINTS OF THE SAMPLE COEFFICIENT OF VARIATION * B. IGLEWICZ, R. H. MYERS, R. B. HOWE
- BIOKA68 5B2 ADDING A POINT TO VECTOR DIAGRAMS IN MULTIVARIATE ANALYSIS* J. C. GOWER
- BIOKAGB 5BG A NOTE ON DISCRIMINATION IN THE CASE OF UNEQUAL COVARIANCE MATRICES * CHIEN-PAIHAN
- BIOKA6B 5B7 BAYESIAN STRATIFIED TWO-PHASE SAMPLING RESULTS, K CHARACTERISTICS * N. R. DRAPER, I. GUTTMAN
- BIOKA68 589 A NOTE ON MULTI-TYPE CALTON-WATSON PROCESSES WITH RANDOM BRANCHING PROBABILITIES * J. H. POLLARD
- BIOKA68 591 A NOTE ON A SEQUENTIAL OCCUPANCY PROBLEM * D. H. YOUNG
 BIOKA68 593 SOME REMARKS CONCERNINC KHATRI'S RESULT ON QUADRATIC
 FORMS * D. N. SHANBHAG
- BIOKA68 595 A NOTE ON THE CORRELATION OF RANGES IN CORRELATED NOR-MAL SAMPLES * W. B. SMITH. H. O. HARTLEY

		BIOMETRIKA VOLUME
DIOWAGO	,	
BIOKA69	1	TESTS FOR SERIAL CORRELATION IN RECRESSION AWALYSIS BASED ON THE PERIODOCRAM OF LEAST-SQUARES RESIDUALS * J. DURBIN
BIOKA69	17	COMPARISON OF THE SENSITIVITIES OF SIMILAR INDEPENDENT AND NON-INDEPENDENT EXPERIMENTS * A. SCHOEMAN, D. E. W. SCHUMANN
BIOKA69	33	THE USE OF RESIDUALS AS A CONCOMITANT VARIABLE * A. C. ATKINSON
BIOKA69	43	THE ANALYSIS OF VARIANCE OF SOME NON-ORTHOGONAL DESIGNS WITH SPLIT PLOTS * D. H. REES
BIOKA69	55	THE CHOICE OF VARIABLES IN THE DESIGN OF EXPERIMENTS FOR LINEAR REGRESSION * P. DAVIES
BIOKA69	65	NUMERICAL OPTIMIZATION IN THE PRESENCE OF RANDOM VARIABILITY. THE SINGLE FACTOR CASE * B. C. F. SPRINCER
BIOKA69	75	AN EXACT TEST FOR COMPARING MATCHED PROPORTIONS IN CROSSOVER DESIGNS* J. J. GART
BIOKA69	В1	MULTIVARIATE PAIRED COMPARISONS. THE EXTENSION OF A UNIVARIATE MODEL AND ASSOCIATED ESTIMATION AND TEST PROCEDURES * R. R. DAVIDSON, R. A. BRADLEY
BIOKA69	97	BAYESIAN ESTIMATION OF LATENT ROOTS AND VECTORS WITH SPECIAL REFERENCE TO THE BIVARIATE NORMAL DISTRIBU- TION * G. C. TIAO, S. FIENBERG
BIOKA69	109	ON THE EXACT DISTRIBUTION OF WILKS'S CRITERION * K. C. S. PILLAI, A. K. GUPTA
BIOKA69	119	TESTING EQUALITY OF MEANS IN THE PRESENCE OF CORRELATION * J. S. MEHTA. J. GURLAND
BIOKA69	127	THE PERFORMANCE OF SOME TWO-SAMPLE TESTS IN SMALL SAM- PLES WITH AND WITHOUT CENSORING * E. A. CEHAN, D. C. THOMAS
BIOKA69	133	SOME EMPIRICAL BAYES TECHNIQUES IN POINT ESTIMATION * J. R. RUTHERFORD, R. G. KRUTCHKOFF
BIOKA69	139	CO-ORDINATE TRANSFORMATIONS TO NORMALITY AND THE POWER OF NORMAL TESTS FOR INDEPENDENCE * C. J. KOWAL-SKI, M. E. TARTER
BIOKA69		TESTS FOR THE VON MISES DISTRIBUTION * M. A. STEPHENS A GOODNESS-OF-FIT STATISTIC FOR THE CIRCLE, WITH SOME
BIOKA69	169	COMPARISONS * M. A. STEPHENS MULTI-SAMPLE TESTS FOR THE FISHER DISTRIBUTION FOR DIRECTIONS * M. A. STEPHENS
BIOKA69	183	THE SIMPLE STOCHASTIC EPIDEMIC FOR SMALL POPULATIONS WITH ONE OR MORE INITIAL INFECTIVES * R. T. HILL, N. C. SEVERO
BIOKA69	197	THE PROBABILITIES OF SOME EPIDEMIC MODELS * N. C. SEVERO
BIOKA69		APPROXIMATIONS TO THE CHARACTERISTICS OF SOME SEQUEN- TIAL TESTS * B. F. J. MANLY
BIOKA69		ASYMPTOTIC APPROXIMATION TO THE EXPECTED SIZE OF A SELECTED SUBSET * B. J. TRAWINSKI
BIOKA69		CONDITIONS FOR A QUADRATIC FORM TO HAVE A CHI-SQUARED DISTRIBUTION * I. J. GOOD
BIOKA69		ON TESTING THE EQUALITY OF K COVARIANCE MATRICES * B. P. KORIN
BIOKA69		SOME COMMENTS ON THE ACCURACY OF BOX'S APPROXIMATIONS TO THE DISTRIBUTION OF M * E. S. PEARSON
BIOKA69		EPSILON ASYMPTOTIC OPTIMALITY OF EMPIRICAL BAYES ESTIMATORS* J. R. RUTHERFORD, R. G. KRUTCHKOFF
BIOKA69		THE IDENTIFICATION OF VECTOR MIXED AUTOREGRESSIVE— MOVING AVERAGE SYSTEMS * E. J. HANNAN
		THE DISTRIBUTION OF INANIMATE MARKS OVER A NON- HOMOGENEOUS BIRTH-DEATH PROCESS *T. WILLIAMS BURNED RELATIONS OF SOME CONTESTANDER ENDER PRO
IOKA69		THE BEHAVIOUR OF SOME SIGNIFICANCE TESTS UNDER EX- PERIMENTAL RANDOMIZATION * O. KEMPTHORNE, T. E. DOERFLER
BIOKA69		ON LOOKING AT LARGE CORRELATION MATRICES * M. HILLS
BIOKA69		TABLE OF PERCENTACE POINTS OF NON-CENTRAL CHI * N. L. JOHNSON, E. S. PEARSON
BIOKA69	273	ON THE COMPUTATION AND USE OF A TABLE OF PERCENTAGE

POINTS OF BARTLETT'S M * E. HARSAAE

327 A MIXED MODEL OF REGRESSIONS * A. HUSSIAN

KINSON

TION * J. S. MARITZ

ORDER * D. R. BRILLINGER

R. C. KRUTCHKOFF

S. BARTLETT

283 CYCLIC CHANCE-OVER DESIGNS * A. W. DAVIS, W. B. HALL

301 A COMPARISON OF SOME SEQUENTIAL DESIGNS * N. E. DAY

313 QUADRATIC UNBIASED ESTIMATION OF VARIANCE COMPONENTS OF THE ONE-WAY CLASSIFICATION * D. A. HARVILLE

337 A TEST FOR DISCRIMINATING BETWEEN MODELS * A. C. AT-

349 EMPIRICAL BAYES ESTIMATION FOR THE POISSON DISTRIBU-

361 AN EMPIRICAL BAYES SMOOTHING TECHNIQUE * C. H. LEMON,

367 EMPIRICAL BAYES ESTIMATORS IN A MULTIPLE LINEAR

375 ASYMPTOTIC PROPERTIES OF SPECTRAL ESTIMATES OF SEGOND

391 DISTRIBUTIONS ASSOCIATED WITH GELL POPULATIONS * M

REGRESSION MODEL * H. F. MARTZ, R. G. KRUTCHKOFF

295 ROUND-ROBIN TOURNAMENT SCORES * H. E. DANIELS

- BIOKA69 401 NEAREST NEICHBOURS IN A POISSON ENSEMBLE * F. D. K. ROBERTS 407 SOME PROPERTIES OF A METHOD OF ESTIMATING THE SIZE OF BIOKA69 MOBILE ANIMAL POPULATIONS * B. F. J. MANLY 411 ON ESTIMATING THE PARAMETERS OF THE LOCARITHMIC SE-BTOKA69 RIES AND NECATIVE BINOMIAL DISTRIBUTIONS * C. CHAT-FIELD BTOKA69 415 ORDER STATISTICS FROM A CLASS OF NON-NORMAL DISTRIBU-TIONS * K. SUBRAHMANIAM BTOKA69 429 ESTIMATION OF THE PARAMETERS OF THE EXTREME VALUE DIS-TRIBUTION BY USE OF TWO OR THREE ORDER STATISTICS * KHATABM. HASSANEIN BIOKA69 437 STUDIES IN THE HISTORY OF PROBABILITY AND STATISTICS. XXII. PROBABILITY IN THE TALMUD * N. L. RABINOVITCH 443 SOME TESTS FOR CORRELATION MATRICES * M. A. AITKIN BIOKA69 446 ON HODCES'S BIVARIATE SIGN TEST AND A TEST FOR BIOKA69 UNIFORMITY OF A CIRCULAR DISTRIBUTION * G. K. BHAT-TACHARYYA, R. A. JOHNSON 449 THE PERFORMANCE OF SOME TESTS OF INDEPENDENCE FOR CON-BIOKA69 TINCENCY-TYPE BIVARIATE DISTRIBUTIONS * K. V. MAR-DTA 452 TABLES OF SIMULTANEOUS GONFIDENCE LIMITS FOR THE BIOKA69 BINOMIAL AND AND POISSON DISTRIBUTIONS * P. A. LACHENBRUGH BIOKA69 NO.3 THE DERIVATION OF NONPARAMETRIC TWO-SAMPLE TESTS FROM TESTS FOR UNIFORMITY OF A CIRCULAR DISTRIBUTION * R. J. BERAN BIOKA69 NO.3 A NOTE ON THE ESTIMATION OF VARIANCE COMPONENTS BY THE METHOD OF FITTING CONSTANTS * E. P. CUNNINGHAM BIOKA69 NO.3 ESTIMATING THE COMPONENTS OF A MIXTURE OF NORMAL DIS-TRIBUTIONS * N. E. DAY BIOKA69 NO.3 MAXIMUM LIKELIHOOD PAIRED COMPARISON RANKING BY LINEAR PROGRAMMING * J. S. DE CANI BIOKA69 NO.3 A NOTE ON THE EXPECTED VALUE OF AN INVERSE MATRIX * T CROVES, T. ROTHENBERC BIOKA69 NO.3 THE ESTIMATION OF MIXED MOVING-AVERAGE AUTOREGRES-SIVE SYSTEMS * E. J. HANNAN BIOKA69 NO.3 ESTIMATION OF THE PARAMETERS OF THE LOGISTIC DIS-TRIBUTION BY SAMPLE QUANTILES * K. M. HASSANEIN BIOKA69 NO.3 ON THE APPLICATION OF GROUP THEORY TO THE EXISTENCE AND NON-EXISTENCE OF ORTHOCONAL LATIN SQUARES * A. HEDAYAT, W. T. FEDERER BIOKA69 NO.3 INFERENCE ABOUT THE INTERSECTION IN TWO-PHASE REGRES-SION * D. V. HINKLEY BIOKA69 NO.3 ON THE RATIO OF TWO CORRELATED NORMAL RANDOM VARIABLES * D. V. HINKLEY BIOKA69 NO.3 SPECIES FREQUENCY DISTRIBUTIONS * P. HOLGATE BIOKA69 NO.3 ON MULTIVARIATE RATIO AND PRODUCT ESTIMATORS * S. JOHN BIOKA69 NO.3 THE PROBABILITY THAT A RANDOM TRIANCLE IS OBTUSE * E. LANGFORD BIOKA69 NO.3 THE ANALYSIS OF VARIANCE FOR THE TWO-WAY CLASSIFICA-TION FIXED EFFECTS MODEL WITH OBSERVATIONS WITHIN A ROWSERIALLY CORRELATED * W. A. LARSEN BIOKA69 NO.3 ON EVALUATION OF WARRANTY ASSURANCE WHEN LIFE HAS A WEIBULL DISTRIBUTION * N. R. MANN, S. C. SAUNDERS BIOKA69 NO.3 ON UTILIZING INFORMATION FROM A SECOND SAMPLE IN ESTI-MATING VARIANCE * J. S. MEHTA, J. GURLAND BIOKA69 NO.3 THE ASYMPTOTIC VALUES OF CERTAIN GOVERAGE PROBABILI-TIES * R. E. MILES BIOKA69 NO.3 STATISTICAL INFERENCE WITH BIVARIATE CAMMA DISTRIBU-TIONS * P. A. P. MORAN BIOKA69 NO.3 APPROXIMATION TO THE GENERALIZED BEHRENS-FISHER DIS-TRIBUTION INVOLVING THREE VARIATES * V. H. PATIL BIOKA69 NO.3 EXACT FIRST AND SECOND ORDER MOMENTS OF ESTIMATES OF COMPONENTS OF COVARIANCE * C. A. ROHDE, G. M. TALLIS BIOKA69 NO.3 NONPARAMETRIC SYMMETRY TESTS FOR CIRCULAR DISTRIBU-TIONS * S. SCHACH BIOKA69 NO.3 ON THE INVERSE OF THE COVARIANCE MATRIX OF A FIRST ORDER MOVING AVERAGE * P. SHAMAN BIOKA69 NO.3 DERIVATION OF APPROXIMANTS TO THE INVERSE DISTRIBU-TION FUNCTION OF A CONTINUOUS UNIVARIATE POPULATION FROM THE ORDER STATISTICS OF A SAMPLE * G. P. SILLIT-
 - BIOKA69 NO.3 THE USE OF RANDOM ALLOCATION FOR THE CONTROL OF SELEC-TIONBIAS * S. M. STICLER
 - BIOKA69 NO.3 THE ROLE OF EXPERIMENTAL RANDOMIZATION IN BAYESIAN STATISTICS, FINITE SAMPLING AND TWO BAYESIANS * M. STONE
 - BIOKA69 NO.3 THE ROLE OF SIGNIFIGANCE TESTING, SOME DATA WITH A MESSAGE * M. STONE
 - BIOKA69 NO.3 NOTE ON A CALIBRATION PROBLEM * G. M. TALLIS
 - BIOKA69 NO.3 DISTRIBUTION FREE TESTS FOR MIXED PROBABILITY DIS-
 - TRIBUTIONS * E. A. C. THOMAS BIOKA69 NO.3 ON THE THEORY OF SCREENING FOR CHRONIC DISEASES * M ZELEN, F. FEINLEIB

BTOKA69

BIOKA69

- JASA 56 1 CONFESSION OF FAITH, 1955 * RALPH J. WATKINS 12 STATISTICIAN AND POLICY MAKER, A PARTNERSHIP IN THE JASA 56 MAKING * WERNER Z. HIRSCH
- JASA 56 17 A TEST OF THE ACCURACY OF A PRODUCTION INDEX * CHARLES F. CARTER, MARY ROBSON
- 24 ON SIMPLIFICATIONS OF SAMPLING DESIGN THROUGH REPLI-JASA 56 CATION WITH EQUAL PROBABILITIES AND WITHOUT STAGES * W. EDWARDS DEMING
- 54 INVESTIGATING THE PROPERTIES OF A SAMPLE MEAN BY EM-JASA 56 PLOYING RANDOM SUBSAMPLE MEANS * HOWARD L . JONES B4 SOME THEORETICAL ASPECTS OF THE LOT PLOT SAMPLING IN-JASA 56
- SPECTION PLAN * LINCOLN E. MOSES 108 THE OPERATING CHARACTERISTIC CURVE FOR SEQUENTIAL JASA 56 SAMPLING BY VARIABLES WHEN THE PRODUCER'S AND CON-
- SUMER'S RISKS ARE EQUAL * NORMAN R. GARNER JASA 56 111 TABLE OF PERCENTAGE POINTS OF KOLMOGOROV STATISTICS LESLIEH. MILLER
- 122 MULTIPLE REGRESSION WITH MISSING OBSERVATIONS AMONG JASA 56 THE INDEPENDENT VARIABLES * GEORGE L . EDGETT JASA 56 132 ON LINEAR COMBINATIONS OF SEVERAL VARIANCES * B. L.
- 149 TABULAR ANALYSIS OF FACTORIAL EXPERIMENTS AND THE USE JASA 56 OF PUNCH CARDS, CORR. 56 650 * J. R. BAINBRIDGE,
- ALISON M. GRANT, U. RADOK 209 A SAMPLING PROCEDURE FOR MAILED QUESTIONNAIRES * M. A. JASA 56
- EL-BADRY JASA 56 228 THE ECONOMIC DESIGN OF MEAN CHARTS USED TO MAINTAIN
- CURRENT CONTROL OF A PROCESS * ACHESON J . DUNCAN 243 ECONOMICALLY OPTIMUM ACCEPTANCE TESTS * JOHN V JASA 56 BREAKWELL.
- 257 ANALYSIS OF SENSITIVITY EXPERIMENTS WHEN THE LEVELS JASA 56 OF STIMULUS CANNOT BE CONTROLLED, CORR. 56 650 * ABRAHAM GOLUS, FRANK E. GRUBBS
- 266 A NOTE ON UNIFORMLY SEST UNBIASED ESTIMATORS FOR VARI-JASA 56 ANCE COMPONENTS * FRANKLIN A. GRAYBILL, A. W. WORTHAM
- 269 SOME ESTIMATORS IN SAMPLING WITH VARYING PROBABILI-JASA 56 TIES WITHOUT REPLACEMENT * DES RAJ
- 285 THE EFFICIENCIES OF TESTS OF RANDOMNESS AGAINST NOR-JASA 56 MAL REGRESSION * ALAN STUART
- 288 A NOTE ON MATRIX INVERSION BY THE SQUARE ROOT METHOD * JASA 56 DAVID DURAND

- JASA 56 293 ON APPROXIMATING THE POINT BINOMIAL, CORR. 56 651 * MORTONS, RAFF
- 304 FISCAL-YEAR REPORTING FOR CORPORATE INCOME TAX * W L JASA 56 CRUM
- 429 THE OPTIMUM STRATEGY IN BLACKJACK, CORR. 59 810 * ROGER R. BALDWIN, WILBERT E. CANTEY, HERBERT MAISEL, JASA 56 JAMES P. MACDERMOTT
- JASA 56 440 TWO SEQUENTIAL TESTS AGAINST TREND * GOTTFRIED E NOETHER
- 451 EQUIVALENCE OF TWO ESTIMATES OF PRODUCT VARIANCE * D. JASA 56 W. GAYLOR
- 454 THE ECONOMICS OF THE PRESIDENT'S ECONOMIC REPORTS * JASA 56
- ARNOLD C. HARBERGER
 461 ANALYTICAL GRADUATION OF FERTILITY RATES * IVO LAH JASA 56
- 467 ASYMPTOTIC EFFICIENCIES OF A NONPARAMETRIC LIFE TEST JASA 56 FOR SMALLER PERCENTILES OF A GAMMA DISTRIBUTION ' JOHN E. WALSH
- JASA 56 481 ESTIMATES OF BOUNDED RELATIVE ERROR FOR THE RATIO OF VARIANCES OF NORMAL DISTRIBUTIONS * STANLEY REITER
- 489 MACHINE COMPUTATION OF HIGHER MOMENTS * NATHAN JASPEN JASA 56
- 565 THE AUTOMATIC COMPUTER IN INDUSTRY * THORNTON C . FRY JASA 56 576 THE EFFECT OF RESPONDENT IGNORANCE ON SURVEY RESULTS JASA 56
- * ROBERT FERRER JASA 56 587 A METHOD OF ESTIMATING THE INTERCENSAL POPULATION OF
- COUNTIES * ALBERTH. CROSETTI, ROBERT C. SCHMITT JASA 56 591 RESEARCH ON METROPOLITAN POPULATION, EVALUATION OF
- DATA * OTTS DUDI.EY DUNCAN JASA 56 597 MEASURING SPATIAL ASSOCIATION WITH SPECIAL CON-
- SIDERATION OF THE CASE OF MARKET ORIENTATION OF PRODUCTION * WILLIAM WARNTZ
- 605 PRACTICAL VALUE OF INTERNATIONAL EDUCATIONAL JASA 56 STATISTICS * GUSTAVE ZAKRZEWSKI
- JASA 56 615 REGRESSION TECHNIQUES APPLIED TO SEASONAL COR-RECTIONS AND ADJUSTMENTS FOR CALENDAR SHIFTS * HARRY EISENPRESS
- 621 THE RANKING OF VARIANCES IN NORMAL POPULATIONS * H. A. JASA 56 DAVID
- JASA 56 627 THE CONDITION FOR LOT SIZE PRODUCTION * MYRON J. GOR-DON, WILLIAM J. TAYLOR
- JASA 56 637 DISTRIBUTIONS POSSESSING A MONOTONE LIKELIHOOD RATIO * SAMUEL KARLIN, H. RUBIN
- JASA 56 644 QUADRATIC EXTRAPOLATION AND A RELATED TEST OF HYPOTHESES * A . DE LA GARZA

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION VOLUME 52, 1957

- 1 STATISTICAL FRONTIERS * GERTRUDE M COX JASA 57
- 13 A SHORT-CUT GRAPHIC METHOD FOR FITTING THE BEST JASA 57 STRAIGHT LINE TO A SERIES OF POINTS ACCORDING TO THE CRITERION OF LEAST SQUARES * S. I. ASKOVITZ
- 18 RAPID ANALYSIS OF 2X2 TABLES * IRWIND. J. BROSS, ETHEL JASA 57 L. KASTEN
- 29 A NOTE ON THE EFFECTS OF NONRESPONSE ON SURVEYS * K. A. JASA 57 BROWNIEE
- JASA 57 33 A MODIFICATION OF KENDALL'S TAU FOR THE CASE OF AR-BITRARY TIES IN BOTH RANKINGS * LETA MACKINNEY ADLER 36 TWO CONFIDENCE INTERVALS FOR THE RATIO OF TWO PROBA-JASA 57
- BILITIES AND SOME MEASURES OF EFFECTIVENESS * GOTT-FRIEDE. NOETHER 46 A SYSTEMATIC METHOD OF FINDING DEFINING CONTRASTS * JASA 57
- CLARKHOLLOWAY JR
- JASA 57 53 ON THE INDEPENDENCE OF TESTS OF RANDOMNESS AND OTHER HYPOTHESES * I. RICHARD SAVAGE
- JASA 57 58 TABLES FOR BEST LINEAR ESTIMATES BY ORDER STATISTICS OF THE PARAMETERS OF SINGLE EXPONENTIAL DISTRIBU-TIONS FROM SINGLY AND DOUBLY CENSORED SAMPLES * A . E . SARHAN, B. G. GREENBERG
- JASA 57 88 TABLES FOR TOLERANCE LIMITS FOR A NORMAL POPULATION BASED ON SAMPLE MEAN AND RANGE OR MEAN RANGE * SUJIT KUMAR NITRA
- JASA 57 133 ERRORS OF THE THIRD KIND IN STATISTICAL CONSULTING * A. W. KIMBALL
- JASA 57 143 SAMPLING IN A NUTSHELL * MORRIS JAMES SLONIM
- JASA 57 162 NATIONAL INCOME STATISTICS OF UNDERDEVELOPED COUN-TRIES * HARRY T. OSHIMA
- JASA 57 175 ESTIMATING THE SERVICE LIFE OF HOUSEHOLD GOODS BY AC-TUARIAL METHODS, CORR. 57 57B * JEAN L. PENNOCK, CAROL M. JAEGER
- JASA 57 1B6 AN APPLICATION OF MULTIVARIATE QUALITY CONTROL TO PHOTOGRAPHIC PROCESSING * J. EDWARD JACKSON, ROBERT H MORRIS
- JASA 57 200 MAXIMUM LIKELIHOOD ESTIMATES FOR A MULTIVARIATE NOR-MAL DISTRIBUTION WHEN SOME OBSERVATIONS ARE MISSING * T. W. ANDERSON

- JASA 57 204 THE ANALYSIS OF INCOMPLETE BLOCK DESIGNS * MARVIN ZELEN
- 21B NON-ADDITIVITIES IN A LATIN SQUARE DESIGN * M. B. JASA 57 WILK. OSCAR KEMPTHORNE
- 237 TRANSFORMATIONS TO NORMALITY USING FRACTIONAL POWERS JASA 57
- OF THE VARIABLE * P. G. MOORE
 247 LINEAR TRANSFORMATION TO A SET OF STOCHASTICALLY DE-JASA 57 PENDENT NORMAL VARIABLES * WILLIAM J . MOONAN
- 253 THE REGIONS OF UNIMODALITY AND POSITIVITY IN THE AB-JASA 57 BREVIATED EDGEWORTH AND GRAM-CHARLIER SERIES * GERALD D. BERNDT
- 257 THE PRESIDENT'S ECONOMIC REPORT * ARCH RUSSELL JASA 57
- JASA 57 301 LEADING AMERICAN STATISTICIANS IN THE NINETEENTH CEN-TURY * PAUL J. FITZPATRICK
- 322 STATISTICS AND SCIENCE * E. J. G. PITMAN
 331 NONPARAMETRIC STATISTICS * I. RICHARD SAVAGE JASA 57
- JASA 57
- 345 CHARTS OF THE 10 PERCENT AND 50 PERCENT POINTS OF THE JASA 57 OPERATING CHARACTERISTIC CURVES FOR FIXED EFFECTS ANALYSIS OF VARIANCE F TESTS, ALPHA EQUALS 0.01 AND 0.05 * ACHESON J. DUNCAN
- 350 A PROBLEM IN LIFE TESTING * D. J. BARTHOLOMEW JASA 57
- JASA 57 356 HISTORICAL NOTES ON THE WILCOXON UNPAIRED TWO-SAMPLE TEST * WILLIAMH. KRUSKAL
- 415 SEASONAL ADJUSTMENTS BY ELECTRONIC COMPUTER METHODS JASA 57 * JULIUS SHISKIN, HARRY EISENPRESS
- JASA 57 450 PROBLEMS IN MEASURING LONG TERM GROWTH IN INCOME AND WEALTH * ALEXANDER GERSCHENKRON 458 THE RATIONAL ORIGIN FOR MEASURING SUBJECTIVE VALUES *
- JASA 57 L.L. THURSTONE, LYLE V. JONES 472 APPLICATIONS OF A NEW GRAPHIC METHOD IN STATISTICAL JASA 57
- MEASUREMENT * JACOB MINCER 479 GRAPHIC COMPUTATION OF THE MULTIPLE CORRELATION COEF-JASA 57 FICIENT, CORR. 58 1031 * FREDERICK V. WAUGH, KARL A.
- FOX 4B2 CONFIDENCE INTERVALS FOR THE PRODUCT OF TWO BINOMIAL JASA 57 PARAMETERS * ROBERT J. BUEHLER
- 494 OPTIMUM SAMPLING IN BINOMIAL POPULATIONS * PAUL N. JASA 57 SOMERVILLE

JASA 57 503 ESTIMATES OF SAMPLING VARIANCE WHERE TWO UNITS ARE	JASA 57 537 THE MIDRANGE OF A SAMPLE AS AN ESTIMATOR OF THE POPULA-
SELECTED FROM EACH STRATUM * NATHAN KEYFITZ	TION MIDRANGE * PAUL R . RIDER
JASA 57 511 APPLICATIONS OF MULTIVARIATE POLYKAYS TO THE THEORY	JASA 57 543 NOTE ON GROUPING * D. R. COX
OF UNBIASED RATIO-TYPE ESTIMATION * D. S. ROBSON	JASA 57 548 USE OF DUMMY VARIABLES IN REGRESSION EQUATIONS *
JASA 57 523 ESTIMATION OF PARAMETERS FROM INCOMPLETE MUL-	DANIEL B. SUITS
TIVARIATE SAMPLES * GEORGE E. NICHOLSON JR	JASA 57 552 FITTING A STRAIGHT LINE TO CERTAIN TYPES OF CUMULATIVE
JASA 57 527 TRUNCATION TO MEET REQUIREMENTS ON MEANS * F. EUGENE	DATA * JOHN MANDEL
CLARK	JASA 57 567 ESTIMATING THE LOGISTIC CURVE * H. SILVERSTONE

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION VOLUME 53, 1958

							1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JASA	58	1	AN OUTLOOK REPORT * WILLIAM R. LEONARD	JASA	58	457	NONPARAMETRIC ESTIMATION FROM INCOMPLETE OBSERVA-
JASA	58	11	THE CONTRIBUTIONS OF KARL PEARSON * HELEN M. WALKER				TIONS * E. L. KAPLAN, PAUL MEIER
JASA	58	23	KARL PEARSON, AN APPRECIATION ON THE HUNDREDTH AN-	JASA	58	4B2	INADMISSIBLE SAMPLES AND CONFIDENCE LIMITS * HOWARD
			NIVERSARY OF HIS BIRTH * SAMUEL A. STOUFFER				L. JONES
JASA	58	28	SMOKING AND LUNG CANCER, SOME OBSERVATIONS ON TWO	JASA	58	491	THE PRECISION OF UNBIASED RATIO-TYPE ESTIMATORS,
			RECENT REPORTS * JOSEPH BERKSON				CORR. 63 1162 * LEO A. GOODMAN, H. O. HARTLEY
JASA	58	39	AN EXPERIMENT WITH WEIGHTED INDEXES OF CYCLICAL DIF-	JASA	58	509	ON NONCOVERAGE OF SAMPLE DWELLINGS * LESLIE KISH,
7404			FUSION * BERT G . HICKMAN	1404		505	IRENE HESS
JASA	58	54	A STATISTICAL ANALYSIS OF PROVISIONAL ESTIMATES OF	JASA	58	525	COMPLETE COUNTERBALANCING OF IMMEDIATE SEQUENTIAL
			GROSS NATIONAL PRODUCT AND ITS GOMPONENTS, OF SELECTED NATIONAL INCOME GOMPONENTS, AND OF PER-				EFFECTS IN A LATIN SQUARE DESIGN, CORR. 58 1030 *
			SONAL SAVING * ARNOLD ZELLNER	JASA	50	E 20	JAMES V. BRADLEY FRACTORIAL EXPERIMENTATION IN SCHEFFE'S ANALYSIS OF
JASA	58	66	USE OF VARYING SEASONAL WEIGHTS IN PRIGE INDEX CON-	UASA	56	525	VARIANCE FOR PAIRED COMPARISONS * OTTO DYKSTRA, JR.
******	00	00	STRUCTION * DORIS P. ROTHWELL	JASA	58	543	DESIGN AND OPERATION OF A DOUBLE-LIMIT VARIABLES SAM-
JASA	5B	7B	PHILIPPINE STATISTICAL PROGRAM DEVELOPMENT AND THE	011011	-	0.0	PLING PLAN * ACHESON J. DUNCAN
			SURVEY OF HOUSEHOLDS * MILTON D. LIEBERMAN	JASA	58	551	EMPIRIC INVESTIGATION OF A TEST OF HOMOGENEITY FOR
JASA	58	В9	TINBERGEN ON ECONOMIC POLICY * KENNETH J. ARROW				POPULATIONS COMPOSED OF NORMAL DISTRIBUTIONS * G. A.
JASA	5B	98	ON THE RELATIVE ACCURACY OF SOME SAMPLING TECHNIQUES				BAKER
			* DES RAJ	JASA	5B	635	INFLUENCE OF THE INTERVIEWER ON THE ACCURACY OF SURVEY
JASA	58	102	PROBABILISTIC INTERPRESTATIONS FOR THE MEAN SQUARE				RESULTS * ROBERT H. HANSON, ELIS. MARKS
			CONTINGENCY, GORR. 58 1030 * H. M. BLALOGK JR	JASA	5B	656	DEMAND FOR FARM PRODUCTS AT RETAIL AND THE FARM LEVEL.
JASA	58	106	FITTING STRAIGHT LINES WHEN ONE VARIABLE IS CON-				SOME EMPIRICAL MEASUREMENTS AND RELATED PROBLEMS *
***			TROLLED * HENRY SHEFFE				REX F. DALY
JASA	58	118	LINEAR CURVE FITTING USING LEAST DEVIATIONS * OTTO J. KARST	JASA	58	669	INVESTMENT ESTIMATES OF UNDERDEVELOPED COUNTRIES, AN
JASA	50	133	A MODIFIED DOOLITTLE APPROACH FOR MULTIPLE AND PAR-	***	c.p.		APPRAISAL * WILLIAM I. ABRAHAM
UNUN	56	100	TIAL CORRELATION AND REGRESSION * RICHARD J. FOOTE	JASA	DB	680	MANUFACTURERS' INVENTORY GYCLES AND MONETARY POLICY * DORIS M. EISEMANN
JASA	58	144	A PROCEDURE FOR GOMPUTING REGRESSION COEFFICIENTS.	JASA	E 0	600	LEADING AMERICAN STATISTICIANS OF THE NINETEENTH CEN-
*****	-		CORR. 59811 * DUDLEY J. COWDEN	URSA	56	005	TURY II * PAUL J. FITZPATRICK
JASA	58	151	A STATISTICAL MODEL FOR LIFE-LENGTH OF MATERIALS * Z.	JASA	5B	702	RECTIFYING INSPECTION OF A CONTINUOUS OUTPUT, CORR.
			W. BIRNBAUM, S. G. SAUNDERS	011011	-		59810 * F. J. ANSCOMBE
JASA	58	161	ON THE DISTRIBUTION OF SOLUTIONS IN LINEAR PRO-	JASA	5B	720	RANKING METHODS AND THE MEASUREMENT OF ATTITUDES * R.
*	=-		GRAMMING PROBLEMS * HARVEY M. WAGNER				JARDINE
JASA	58	164	ON RANKING PARAMETERS OF SCALE IN TYPE III POPULATIONS * K. C. SEAL	JASA	5B	729	RANDOMIZATION TESTS FOR A MULTIVARIATE TWO-SAMPLE
JASA	50	176	USE OF RANDOMIZATION IN THE INVESTIGATION OF UNKNOWN				PROBLEM * J. H. CHUNG, D. A. S. FRASER
UADA	56	110	FUNCTIONS * ROBERT HOOKE	JASA	58	736	A METHOD OF ADJUSTMENT FOR DEFECTIVE DATA * MORRIS
JASA	58	187	SOME ASPEGTS OF THE USE OF THE SEQUENTIAL PROBABILITY	TACA		D7 43	JAMES SLONIM, CHESTER H. MACCALL JR
			RATIO TEST * M. H. DEGROOT, JACK NADLER	JASA			A TEST OF VARIANCES * K. V. RAMACHANDRAN 'STUDENT' AND SMALL SAMPLE THEORY * B. L. WELCH
JASA	58	259	MEASURING RECESSIONS * GEOFFREY H. MOORE	JASA JASA			ON GROUPING FOR MAXIMUM HOMOGENEITY * WALTER D. FISHER
JASA	58	317	THE ACCURACY AND STRUCTURE OF INDUSTRY EXPECTATIONS	JASA			SIGNIFICANCE TESTS IN PARALLEL AND IN SERIES * I. J.
			IN RELATION TO THOSE OF INDIVIDUAL FIRMS * ROBERT	UNDA	00	155	GOOD
			FERBER	JASA	58	814	ORDINAL MEASURES OF ASSOCIATION * WILLIAM H. KRUSKAL
JASA	58	336	AN INDEX OF MANUFACTURING PRODUCTION IN NEW ENGLAND *	JASA			CURTAILED SAMPLING FOR VARIABLES * NORMAN R. GARNER
TACA	E0	7.40	HARRY 8ENJAMIN ERNST EFFECT OF VARYING DEGREES OF TRANSITORY INCOME ON IN-	JASA	58	В6В	ON THE STUDENTIZED SMALLEST CHI-SQUARE, CORR. 59 B12
JASA	28	348	COME ELASTICITY OF EXPENDITURES * MARILYN DUNSING,				* K. V. RAMACHANDRAN
			MARGARET G. REID	JASA	58	873	THE ESTIMATION OF THE PARAMETER OF A LINEAR REGRESSION
JASA	5B	360	THE FIRST 1,945 BRITISH STEAMSHIPS * J. R. T. HUGHES,				SYSTEM OBEYING TWO SEPARATE REGIMES * RICHARD E.
0111011	0.5		STANLEY REITER				QUANDT
JASA	5B	382	THE USE OF RANDOM WORK SAMPLING FOR COST ANALYSIS AND	JASA	58	BB1	ALTERNATIVE DEFINITIONS OF THE SERIAL CORRELATION
			CONTROL, CORR. 58 1031 * A. C. ROSANDER, H. E. GUTER-				COEFFICIENT IN SHORT AUTOREGRESSIVE SEQUENCES * AB- BOTT S. WEINSTEIN
			MAN, A. J. MACKEON	JASA	50	903	A STOCHASTIC ANALYSIS OF THE SIZE DISTRIBUTION OF
JASA	58	398	THE TRENTILE DEVIATION METHOD OF WEATHER FORECAST	URDA	50	030	FIRMS, CORR. 59810 * IRMA G. ADELMAN
			EVALUATION * MORRIS JAMES SLONIM	JASA	58	905	SOME ANALYSES OF INCOME-FOOD RELATIONSHIPS * MAR-
JASA	28	408	WEIGHT-HEIGHT STANDARDS 8ASED ON WORLD WAR II EX- PERIENCE * 8ERNARD D. KARPINOS				GUERITE C. BURK
TACA		400	ESTIMATION OF SURVIVORSHIP IN CHRONIC DISEASE, THE	JASA	58	928	A CROSS-SECTION ANALYSIS OF NON-BUSINESS AIR TRAVEL *
JASA	28	420	'ACTUARIAL' METHOD * LILA ELVESACK				JOHN B. LANSING, DWIGHT M. BLOOD
TACA	E0	4.43		JASA	58	948	APPROACHES TO NATIONAL OUTPUT MEASUREMENT * PAUL B.
JASA	28	441	GRAPHIC COMPUTATION OF TAU AS A COEFFICIENT OF DISAR- RAY * HAROLD D. GRIFFIN			0.65	SIMPSON
TACA	50	440	A NEW BIVARIATE SIGN TEST * ISADORE 8LUMEN	JASA	58	963	NOTES ON IMMIGRATION STATISTICS OF THE UNITED STATES * E. P. HUTCHINSON
JASA	20	446	WINDH DIAWLTHIE SIGN IEST - TOWDOVE OFOWER				E. F. HUTCHINSON

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION VOLUME 54, 1959

JASA 59	JR	JASA 59	E. CUYLER HAMMOND
JASA 59	12 SOME SOVIET STATISTICAL 800KS OF 1957 * E8ERHARD M. FELS	JASA 59	52 PANEL MORTALITY AND PANEL BIAS * MARION GROSS SOBOL
JASA 59	30 PUBLICATION DECISIONS AND THEIR POSSIBLE EFFECTS ON INFERENCES DRAWN FROM TESTS OF SIGNIFICANCE, OR VICE VERSA * THEORDORE D. STERLING	JASA 59	69 SOME PROBLEMS OF THE HOUSEHOLD INTERVIEW DESIGN FOR THE NATIONAL HEALTH SURVEY * HAROLD NISSELSON, THEODORED, WOOLSEY

ı	JASA	59	88	MINIMUM VARIANCE STRATIFICATION, CORR. 63 1161 * TORE DALENIUS, JOSEPH L. HODCES JR	JASA	59	535	SOME METHODOLOCICAL NOTES ON THE DEFLATION OF CON- STRUCTION * NORMAN M. KAPLAN
l	JASA	59	102	HOW MANY OF A CROUP OF RANDOM NUMBERS WILL BE USABLE IN SELECTING A PARTICULAR SAMPLE * HOWARD L. JONES	JASA	59	556	AN ECONOMETRIC MODEL FOR UNITED STATES ACRICULTURE * WILLIAM A. CROMARTY
l	JASA	59	123	MEASURES OF ASSOCIATION FOR CROSS CLASSIFICATIONS, II. FURTHER DISCUSSION AND REFERENCES * LEO A. GOOD-	JASA	59	575	A NOTE ON THE RELATIONSHIP BETWEEN EARNING EXPECTA- TIONS AND NEW CAR PURCHASES * PETER E. DE JANOSI
ľ	TASA	50	164	MAN, WILLIAM H. KRUSKAL COMPACT TABLE OF TWELVE PROBABILITY LEVELS OF THE SYM-	JASA	59	578	THE ACCURACY OF CENSUS LITERACY STATISTICS IN IRAN * CHARLES WINDLE
	UNDA	00	104	METRIC BINOMIAL CUMULATIVE DISTRIBUTION FOR SAMPLE SIZES TO 1,000, CORR. 59 Bl 1 * WILLIAM J. MACKINNON	JASA	59	5B2	SOURCES OF STATISTICS ON CRIME AND CORRECTION * RONALD H. BEATTIE
	JASA	59	173	THE FITTING OF STRAIGHT LINES WHEN BOTH VARIABLES ARE SUBJECT TO ERROR, CORR. 59 B12 * ALBERT MADANSKY	JASA	59	593	PUBLICATION DECISIONS AND TESTS OF SIGNIFICANCE, A
	JASA	59	206	LINEAR PROGRAMMING TECHNIQUES FOR RECRESSION ANALY— SIS * HARVEY M. WAGNER	JASA	59	594	COMMENT * GORDON TULLOCK SOME FINITE POPULATION UNBAISED RATIO AND RECRESSION ESTIMATORS, CORR. 60 755 * M. R. MICKEY
	JASA	59	213	COMMENTS ON 'THE SIMPLEST SIGNED-RANK TESTS' * JOHN E. WALSH	JASA	59	613	CONFIDENCE INTERVALS FOR THE MEANS OF DEPENDENT NOR-
	JASA	59	225	WALSH SIMPLIFIED BETA-APPROXIMATIONS TO THE KRUSKAL-WAL- LISH TEST * DAVID L. WALLACE	JASA	59	622	MALLY DISTRIBUTED VARIABLES * OLIVE JEAN DUNN A BASIS FOR THE SELECTION OF A RESPONSE SURFACE DESIGN
	JASA	59	231	A PRODUCTION MODEL AND CONTINUOUS SAMPLING PLAN * I.	JASA	59	655	* G. E. P. BOX. NORMAN R. DRAPER REMARKS ON ZEROS AND TIES IN THE WILCOXON SIGNED RANK
Į,	JASA	59	248	RIGHARD SAVACE A SINGLE SAMPLING PLAN FOR CORRELATED VARIABLES WITH A SINGLE-SIDED SPECIFICATION LIMIT * K. C. SFAL	JASA	59	668	PROCEDURE * JOHN W. PRATT GRAPHIC METHODS BASED UPON PROPERTIES OF ADVANCING
	JASA	59	260	A SINGLE-SIDED SPECIFICATION LIMIT * K. C. SEAL MINIMUM RISK SPECIFICATION LIMITS * F. H. TINCEY, J. A. MERRILL	JASA	59	674	CENTROIDS * S. I. ASKOVITZ OPTIMAL GONFIDENCE INTERVALS FOR THE VARIANCE OF A
	JASA	59	275	LOWER BOUND FORMULAS FOR THE MEAN INTERCORRELATION COEFFICIENT * RICHARD H. WILLIS	JASA	59	6B3	NORMAL DISTRIBUTION * R. F. TATE, G. W. KLETT EXTENDED TABLES OF THE PERCENTAGE POINTS OF STUDENT'S T-DISTRIBUTION * ENRICO T. FEDERICHI
	JASA	59	281	STATISTICAL DATA AVAILABLE FOR ECONOMIG RESEARCH ON CERTAINTYPES OF RECREATION * MARION GLAWSON	JASA	59	689	PERCENTAGE POINTS FOR THE DISTRIBUTION OF OUTGOING OUALITY*G.P.STECK, D.B.OWEN
	JASA	59	335	A GUIDE TO THE LITERATURE ON STATISTICS OF RELIGIOUS AFFILIATION WITH REFERENCES TO RELATED SOCIAL STU-	JASA	59	717	PROBLEMS IN ESTIMATING FEDERAL GOVERNMENT EXPENDITIVES * SAMUEL M. COHN
	JASA	50	35R	DIES, CORR. 59811 * BENSON Y. LANDIS INCREASE IN RENT OF DWELLING UNITS FROM 1940 TO 1950 *	JASA	59	730	ANALYSIS OF VITAL STATISTICS BY CENSUS TRACT * ELIZABETH J. COULTER, LILLIAN GURALNICK
	JASA			MARGARET G. REID THE DEMAND FOR FERTILIZER IN 1954, AN INTER-STATE	JASA	59	741	A CHECK ON GROSS ERRORS IN CERTAIN VARIANCE GOMPUTA- TIONS * HYMAN B. KAITZ
	JASA			STUDY * ZVI GRILLICHES MAPS BASED ON PROBABILITIES * MIEGZYSLAW CHOYNOWSKI	JASA	59	744	AUTOMATIC PROGRAMMING FOR AUTOMATIC COMPUTERS *
	JASA			PARAMETER ESTIMATES AND AUTONOMOUS GROWTH, CORR. 59 812* W. A. NEISWANGER, T. A. YANCEY	JASA	59	755	MATRIX INVERSION, ITS INTEREST AND APPLICATION IN ANALYSIS OF DATA * B. G. CREENBERG, A. E. SARHAN
	JASA	59	403	ON THE PROBLEM OF MATCHING LISTS BY SAMPLES * W. ED- WARDS DEMING, GERALD J. GLASSER	JASA	59	767	A MULTIPLE CCMPARISON SIGN TEST, TREATMENTS VERSUS CONTROL * ROBERT G. D. STEEL
	JASA	59	416	ON VARIANCES OF RATIOS AND THEIR DIFFERENCES IN MULTI-	JASA	59	776	THE LADY TASTING TEA, AND ALLIED TOPICS * N. T. GRIDGEMAN
				STAGE SAMPLES, CORR. 63 1162 * LESLIE KISH, IRENE HESS	JASA	59	7B4	TABLES FOR THE SIGN TEST WHEN OBSERVATIONS ARE ESTI- MATES OF BINOMIAL PARAMETERS * ARTHUR COHEN
	JASA	59	447	ACCURACY REQUIREMENTS FOR ACCEPTANCE TESTING OF COM- PLEX SYSTEMS * C.R. GATES, J.P. FEAREY	JASA	59	794	COMPARISON OF ESTIMATES OF CIRCULAR PROBABLE ERROR, CORR. 60 755 * P. B. MORANDA
	JASA	59	465	CORRELATION BETWEEN SAMPLE MEANS AND SAMPLE RANGES * BERNARD OSTLE, GEORGE P. STECK	JASA	59	801	A NOTE ON MEAN SQUARE SUCCESSIVE DIFFERENCES * J. N. K. RAO
-	JASA	59	472	PROBLEMS IN MENTAL TEST THEORY ARISING FROM ERRORS OF MEASUREMENT * FREDERIC M. LORD	JASA	59	834	LINEAR REGRESSION ANALYSIS WITH MISSING OBSERVATIONS AMONG THE INDEPENDENT VARIABLES * M. GLASSER

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION VOLUME 55, 1960

JASA 60 26B CHANCES IN THE RATE AND COMPONENTS OF HOUSEHOLD FORMATION * SHERMAN J. MAISEL

JASA 60 284 A STATISTICAL INVESTIGATION OF THE INDUSTRIALIZATION CONTROVERSY* STEPHEN SPIEGELCLAS

JASA 60 299 OPTIMAL PROPERTIES OF EXPONENTIALLY WEICHTED FORECASTS, CORR. 62 919 * JOHN F. MUTH

				TURY * PAUL J. FITZPATRICK	JASA	60	307 LARGE-SAMPLE COVARIANCE ANALYSIS WHEN THE CONTROL	
J	ASA	60	71 '	THE FEMALE LABOR FORCE, A CASE STUDY IN THE IN-			VARIABLE IS FALLIBLE * FREDERIC M. LORD	
ŀ				TERPRETATION OF HISTORICAL STATISTICS * ROBERT W.	JASA	60		
				SMUTS			TRIBUTION * PAUL R. RIDER	
_	ASA			WHERE DO WE GO FROM HERE * JOHN W . TUKEY	JASA	60	*** **** ** ***	
J	ASA	60	94	A TEST PROCEDURE WITH A SAMPLE FROM A NORMAL POPULA-			SYSTEM OBEYS TWO SEPARATE REGIMES * RICHARD E.	
				TION WHEN AN UPPER BOUND TO THE STANDARD DEVIATION IS			QUANDT	
			*	KNOWN * THEODORE COLTON	JASA	60		
J	ASA	60	105	DESIGN AND ESTIMATION IN TWO-WAY STRATIFICATION * ED-			LIAM L. HAYS	
				WARD C. BRYANT, H. O. HARTLEY, R. J. JESSEN	JASA	60		
J	ASA	60	125	EXTENSION OF THE WILCOXON-MANN-WHITNEY TEST TO SAM-			ZEROS AND SOME ONES ARE MISSINC * A. CLIFFORD GOHEN	
				PLES CENSORED AT THE SAME FIXED POINT, CORR. 60 755 *			JR	
				MAXHALPERIN	JASA	60		
J	ASA	60	139 I	ESTIMATING THE PARAMETERS OF A MODIFIED POISSON DIS-			REFERENCE TO THE STUDY OF SMOKING AND LUNG CANCER,	
ļ				TRIBUTION * A. GLIFFORD COHEN JR			CORR. 60 754 * JOSEPH BERKSON, LILA ELVEBACK	
J	ASA	60	144 (ON TESTING THE EQUALITY OF PARAMETERS IN K RECTANCULAR	JASA	60	429 A NONPARAMETRIC SUM OF RANKS PROCEDURE FOR RELATIVE	
1,				POPULATIONS * C. G. KHATRI			SPREAD IN UNPAIRED SAMPLES, CORR. 61 1005 * SIDNEY SIEGEL, JOHN W. TUKEY	
J	ASA	60	148	VARIANCE OF THE MEDIAN OF SMALL SAMPLES FROM SEVERAL	JASA	60		
				SPECIAL POPULATIONS * PAUL R. RIDER	JASA	60	K. A. BROWNLEE	
J	ASA	60	151	REGIONAL CYCLES OF MANUFACTURING EMPLOYMENT IN THE	JASA	60		
				UNITED STATES, 1914-1953, CORR. 60 755 * GEORGE H.	UADA	00	TION OF SOCIAL PROGRAMMES * OCTAVIO CABELLO	
				BORTS	JASA	60		
J, J	ASA	60	245	A MULTIPLICATIVE MODEL FOR ANALYZING VARIANCES WHICH	Onon	-	HAROLD W. GUTHRIE	
				ARE AFFECTED BY SEVERAL FACTORS * ROBERT E.	JASA	60		
				BECHHOFER	JASA			
.1	ASA	60	265 (CERTAIN UNCORRELATED STATISTICS * ROBERT V. HOGG			PARISONS * H. D. BRUNK	
0	non	-	200	OBMINING ON COMMEDIATED DIRITOTION MODERTY. NOO				

JASA 60

1 THE DUAL FUNCTION OF STATISTICS * RENSIS LIKERT

JASA 60 8 THREE SOURCES OF DATA ON COMMUTINC, PROBLEMS AND POSSIBILITIES * LEO F . SCHNORE

JASA 60 23 PROCESSING UNDERDEVELOPED DATA FROM AN UNDERDEVELOPED AREA * GLIFTON R. WHARTON JR

JASA 60 38 LEADING BRITISH STATISTICIANS OF THE NINETEENTH CEN-

JASA 60	521 TABLES OF CONFIDENCE LIMITS FOR THE BINOMIAL DISTRIBUTION * JAMES PACHARES	JASA 60 660 A NOTE ON THE LIMITING RELATIVE EFFICIENCY OF THE WALD SEQUENTIAL PROBABILITY RATIO TEST * ROBERT E.
JASA 60	534 A METHOD OF ANALYZING LOG-NORMALLY DISTRIBUTED SUR-	BECHHOFER
	VIVAL DATA WITH INCOMPLETE FOLLOW-UP * MANNING FEIN- LEIB	JASA 60 664 INTERNAL MIGRATION STATISTICS FOR THE UNITED STATES * EVERETTS. LEE, ANNES. LEE
JASA 60	546 ON THE CHOICE OF PLOTTING POSITIONS ON PROBABILITY	JASA 60 698 BIVARIATE EXPONENTIAL DISTRIBUTIONS * E. J. GUMBEL
	PAPER * BRADFORD F. KIMBALL	JASA 60 708 ON THE EXACT VARIANCE OF PRODUCTS, CORR. 61 917 * LEO A.
JASA 60	561 BIBLIOGRAPHY ON SEQUENTIAL ANALYSIS * J. EDWARD	GOODMAN
	JACKSON	JASA 60 714 ON CONDITIONAL EXPECTATIONS OF LOCATION STATISTICS * ROBERT V. HOGG
JASA 60	625 INDETERMINISM IN SCIENCE AND NEW DEMANDS ON STATISTI-	
	CIANS * JERZY NEYMAN	JASA 60 718 A NEW BINOMIAL APPROXIMATION FOR USE IN SAMPLING FROM FINITE POPULATIONS * PETER J. SANDIFORD
JASA 60	640 MARKET GROWTH, COMPANY DIVERSIFICATION AND PRODUCT	
	CONCENTRATION 1947-1954 * RALPH L. NELSON	THE STATE OF THE S
*****		JASA 60 732 EFFECTS OF BIAS ON ESTIMATES OF THE CIRCULAR PROBABLE
JASA 60	650 ON FINITE SAMPLE DISTRIBUTIONS OF GENERALIZED CLASSI-	ERROR * P. B. MORANDA
	CAL LINEAR IDENTIFIABILITY TEST STATISTICS * R. L.	JASA 60 736 BIBLIOGRAPHY ON SIMULATION, GAMING, ARTIFICIAL IN-
	BASMANN	TELLIGENCE AND ALLIED TOPICS * MARTIN SHIBIK

			JOURNAL OF THE AMERICAN STATISTIC	CAL ASS	SOCI.	ATION	VOLUME 56, 1961
JASA	61	1	COOPERATION AMONG STATISTICAL AND OTHER SOCIETIES * MORRISH. HANSEN	JAS#	61	363	PARTIAL CORRELATIONS IN REGRESSION COMPUTATIONS * ROBERTL.GUSTAFSON
JASA	61	11	SOME NONPARAMETRIC TESTS FOR COMOVEMENTS BETWEEN TIME SERIES * LEO A. GOODWIN, YEHUDA GRUNFELD	JASA	61	368	FACTORIAL TREATMENTS IN RECTANGULAR LATTICE DESIGNS * LEROY STANLEY BRENNA, CLYDE YOUNG KRAMER
JASA	61	27	SOME ASPECTS OF SEASONALITY IN THE CONSUMER PRICE INDEX * H. E. RILEY	JASA	61	379	A QUARTERLY ECONOMETRIC MODEL OF THE UNITED STATES * LOWELL E. GALLAWAY, PAUL E. SMITH
JASA	61	36	ALMOST LINEARLY-OPTIMUM COMBINATION OF UNBIASED ESTIMATES * MAX HALPERIN	JASA	61	493	ESTIMATING A MIXED-EXPONENTIAL RESPONSE LAW * F. J. ANSCOMBE
JASA	61	44	BIAS IN ESTIMATES OF THE UNITED STATES NONWHITE POPU- LATION AS INDICATED BY TRENDS IN DEATH RATES *	JASA	61	503	A CLASS OF DISTRIBUTIONS APPLICABLE TO ACCIDENTS * CAROL B. EDWARDS, JOHN GURLAND
JASA	61	5.0	RICHARD F. TOMASSON MULTIPLE COMPARISONS AMONG MEANS * OLIVE JEAN DUNN	JASA	61	518	EX ANTE AND EX POST DATA IN INVENTORY INVESTMENT * MUR-
JASA			ON SOME MEASURES OF FOOD MARKETING SERVICES * GEORGE W LADD	JASA	61	535	RAY BROWN ON AN INDEX OF QUALITY CHANGE * IRMA ADELMAN, ZVI GRILICHES
JASA	61	70	UNBIASED RATIO ESTIMATORS IN STATIFIED SAMPLING,	JASA	61	549	LENGTH OF CONFIDENCE INTERVALS * JOHN W. PRATT
			CORR. 64 1298 * JOSE NIETO DE PASCUAL	JASA			A COMPARISON OF MAJOR UNITED STATES RELIGIOUS GROUPS
JASA	61	88	A REPRODUCIBLE METHOD OF COUNTING PERSONS OF SPANISH				* BERNARD LAZERWITZ
			SURNAME * ROBERT W. BUECHLEY	JASA	61	580	FURTHER COMMENTS ON THE 'FINAL REPORT OF THE ADVISORY
JASA	61	98	RESIDUAL ANALYSIS, CORR. 61 1005 * RUDOLF J. FREUND,				COMMITTEE ON WEATHER CONTROL' * JERZY NEYMAN,
JASA	61	105	RICHARD W. VAIL, C. W. CLUNIES-ROSS NOTE ON STEPWISE LEAST SQUARES * ARTHUR S. GOLDBERGER	JASA	61	601	ELIZABETH L. SCOTT THE USE OF SAMPLE RANGES IN SETTING EXACT CONFIDENCE
JASA			A PARAMETRIC ESTIMATE OF THE STANDARD ERROR OF THE	UNDA	01	001	BOUNDS FOR THE STANDARD DEVIATION OF A RECTANGULAR
			SURVIVAL RATE, CORR. 63 1161 * FRED EDERER				POPULATION * H. LEON HARTER
JASA	61	119	A NOTE ON FOLLOW-UP FOR SURVIVAL IN THE PRESENCE OF	JASA	61	610	BIAS IN PSEUDO-RANDOM NUMBERS * PAUL PEACH
			MOVEMENT * D. J. THOMPSON, D. KODLIN	JASA			A NOTE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS
JASA	61	125	THE PROBABILITY OF REVERSAL ASSOCIATED WITH A TEST				OF GENERALIZED CLASSICAL LINEAR ESTIMATORS IN TWO
			PROCEDURE, WHEN DATA ARE INCOMPLETE * BERNARD S.				LEADING OVER-IDENTIFIED CASES * R. L. BASMANN
7464	6.3	125	PASTERNACK, JUNJIRO OGAWA	JASA	61	637	DISTRIBUTIONS OF CORRELATION COEFFICIENTS IN
JASA	91	135	VARIANCE ESTIMATES IN 'OPTIMUM' SAMPLE DESIGNS * ALAN ROSS	JASA	61	657	ECONOMIC TIME SERIES * EDWARD AMES, STANLEY REITER FITTING OF STRAIGHT LINES AND PREDICTION WHEN BOTH
JASA	61	143	ON STABILIZING THE BINOMIAL AND NEGATIVE BINOMIAL	JASA	. 01	051	VARIABLES ARE SUBJECT TO ERROR * MAX HALPERIN
011011	0.2	1 10	VARIANCES * NICO F. LAUBSCHER	JASA	61	670	THE OTHER SIDE OF THE LOWER BOUND. A NOTE WITH A COR-
JASA	61	151	ON MATCHING LISTS BY SAMPLES * DES RAJ				RECTION * JOSEPH BERKSON
JASA	61	156	PROBABILITY TABLE FOR NUMBER OF RUNS OF SIGNS OF FIRST	JASA	61	675	A MODEL FOR MIGRATION ANALYSIS * RALPH THOMLINSON
			DIFFERENCES IN ORDERED SERIES * EUGENE S. EDGINGTON	JASA	61	687	A NOTE ON THE ASYMPTOTIC NORMALITY OF THE MANN-
JASA	61	223	SIGNIFICANCE TESTS IN DISCRETE DISTRIBUTIONS, CORR.				WHITNEY-WILCOXON STATISTIC * JACK CAPON
JASA	61	235	62919*H.O.LANCASTER MULTIPLE REGRESSION ANALYSIS OF A POISSON PROCESS *	JASA	61	692	ESTIMATION OF LOCATION AND SCALE PARAMETERS IN A TRUN- CATED GROUPED SECH SQUARE DISTRIBUTION * P. R. FISK
UNDA	01	200	DALE W. JORGENSON	JASA	61	703	THE PROGRESS OF THE SCORE DURING A BASEBALL GAME * G. R.
JASA	61	246	CONFIDENCE CURVES, AN OMNIBUS TECHNIQUE FOR ESTIMA-	OADA	01	, 00	LINDSEY
			TION AND TESTING STATISTICAL HYPOTHESES * ALLAN	JASA	61	729	MULTIPLE LINEAR REGRESSION ANALYSIS WITH ADJUSTMENT
			BIRNBAUM				FOR CLASS DIFFERENCES * M. DAVIES
JASA	61	250	CHANGES IN THE SIZE DISTRIBUTION OF DIVIDEND INCOME *	JASA	61	736	A NOTE ON GRIFFIN'S PAPER 'GRAPHIC COMPUTATION OF TAU
7404	0.7	0.00	EDWIN B. COX			mo =	AS A COEFFICIENT OF DISARRAY' * S. M. SHAH
JASA	61	260	THE USE OF SAMPLE QUASI-RANGES IN SETTING CONFIDENCE INTERVALS FOR THE POPULATION STANDARD DEVIATION * F.	JASA	61	783	OCCUPATIONAL COMPONENTS OF EDUCATIONAL DIFFERENCES IN INCOME * OTIS DUDLEY DUNCAN
			C. LEONE, Y. H. RUTENBERG, C. W. TOPP	JASA	61	793	TESTING THE INDEPENDENCE OF REGRESSION DISTURBANCES
JASA	61	273	THE STATISTICAL WORK OF OSKAR ANDERSON * GERHARD	011011	0.1	, , ,	* H. THEIL, A. L. NAGAR
			TINTNER	JASA	61	807	RECTIFYING INSPECTION OF LOTS * F. J. ANSCOMBE
JASA	61	281	A PROBLEM CONCERNED WITH WEIGHTING OF DISTRIBUTIONS *	JASA	61	824	RESIDENCE HISTORIES AND EXPOSURE RESIDENCES FOR THE
			COLERIDGE A. WILKINS				UNITED STATES POPULATION * KARL E. TAEUSER, WILLIAM
JASA	61	293	EXACT AND APPROXIMATE DISTRIBUTIONS FOR THE WILCOXON				HAENSZEL, MONROEG. SIRKEN
JASA	61	200	STATISTIC WITH TIES * SHIRLEY YOUNG LEHMAN	JASA	61	835	A SIMPLE THEORETICAL APPROACH TO CUMULATIVE SUM CON-
JASA	OI	299	ON THE USE OF PARTIALLY ORDERED OBSERVATIONS IN MEA- SURING THE SUPPORT FOR A COMPLETE ORDER * R. F. TATE				TROL CHARTS * N. L. JOHNSON
JASA	61	314	A NOTE ON MEASUREMENT ERRORS AND DETECTING REAL DIF-	JASA	61	841	STATISTICAL METHODS FOR THE MOVER-STAYER MODEL * LEO
			FERENCES * EUGENE ROGOT				A. GOODMAN
JASA	61	320	AN ANALYSIS OF CONSISTENCY OF RESPONSE IN HOUSEHOLD	JASA			FORECASTING INDUSTRIAL PRODUCTION * H. O. STEKLER
			SURVEYS * CAROL M. JAEGER, JEAN L. PENNOCK	JASA	61	878	NON-ADDITIVITY IN TWO-WAY ANALYSIS OF VARIANCE * JOHN
JASA	61	328	RANDOMIZED ROUNDED-OFF MULTIPLIERS IN SAMPLING				MANDEL
JASA	61	375	THEORY * M. N. MURTHY, V. K. SETHI	JASA	61	889	ON COMPARING INTENSITIES OF ASSOCIATION SETWEEN TWO
			BIVARIATE LOGISTIC DISTRIBUTIONS * E. J. GUMBEL UNBIASED COMPONENTWISE RATIO ESTIMATION, CORR. 63				BINARY CHARACTERISTICS IN TWO DIFFERENT POPULA-
UNUN	01	550	1163 * D. S. ROBSON, C. VITHAYASAI	7464	61	000	TIONS * AGNES BERGER

JASA 61 909 FAILURE OF ENUMERATORS TO MAKE ENTRIES OF ZERO, ERRORS

* M. A. EL-SADRY

IN RECORDING CHILDLESS CASES IN POPULATION CENSUSES

JASA 61 359 A NOTE ON CURVE FITTING WITH MINIMUM DEVIATIONS BY

LINEAR PROGRAMMING, CORR. 62 917 * WALTER D. FISHER

- JASA 61 925 THE STATISTICAL ANALYSIS OF INDUSTRY STRUCTURE, AN APPLICATION TO FOOD INDUSTRIES * LEE E. PRESTON, EARL J. BELL.
- JASA 61 933 NOTE ON THE MISSING PLOT PROCEDURE IN A RANDOMIZED BLOCK DESIGN * JOHN LEROY FOLKS, DELLON WEST
- JASA 61 942 GAMMA DISTRIBUTION IN ACCEPTANCE SAMPLING BASED ON LIFE TESTS * SHANTIS. GUPTA, PHYLLIS A. GROLL
- JASA 61 971 A BIVARIATE EXTENSION OF THE EXPONENTIAL DISTRIBUTION
 * JOHN F. FREUND
- JASA 61 97B ON THE RESOLUTION OF STATISTICAL HYPOTHESES * ROBERT V. HOGG
- JASA 61 990 THE ASYMPTOTIC VARIANCES OF METHOD OF MOMENTS ESTIMATES OF THE PARAMETERS OF THE TRUNCATED BINOMIAL
 AND NEGATIVE BINOMIAL DISTRIBUTIONS * S. M. SHAH
- JASA 61 995 A NOMOGRAPH FOR COMPUTING PARTIAL CORRELATION COEFFI-CIENTS, CORR. 62 917 * RUTH W. LEES, FREDERIC M. LORD
- JASA 61 998 STEPWISE LEAST SQUARES, RESIDUAL ANALYSIS AND SPECIFICATION ERROR * ARTHUR S. GOLDBERGER

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION VOLUME 57, 1962

- JASA 62 1 STATISTICS WE LIVE BY * MARTIN R. GAINSBRUGH
 JASA 62 10 THE COMBINATION OF TESTS BASED ON DISCRETE DISTRIBUTIONS * W M KINCAID.
- JASA 62 20 ON THE USE OF CORRELATION TO AUGMENT DATA * MYRON B
- FIERING

 JASA 62 33 PROBABILITY INEQUALITIES FOR THE SUM OF INDEPENDENT
- RANDOM VARIABLES * GEORGE BENNETT

 JASA 62 46 ON THE JOINT EFFICIENCY OF THE ESTIMATES OF THE PARAMETERS OF NORMAL POPULATIONS BASED ON SINGLY AND
- JASA 62 54 THE VARIANCE OF THE PRODUCT OF K RANDOM VARIABLES * LEO
 A.GOODMAN
- JASA 62 61 ESTIMATION OF MEANS AND TOTALS FROM FINITE POPULA-TIONS OF UNKNOWN SIZE, CORR. 64 1297 * JAMES K. KIN-DAHL.
- JASA 62 92 STUDIES OF INTERVIEWER VARIANCE FOR ATTITUDINAL VARI-ABLES * LESLIE KISH
- JASA 62 116 A DISTRIBUTION-FREE TEST OF INDEPENDENCE WITH A SAM-PLE OF PAIRED OBSERVATIONS * GERALD J. GLASSER
- PLE OF PAIRED OBSERVATIONS * GERALD J. GLASSER

 JASA 62 134 CHANGE CONSTRAINTS AND NORMAL DEVIATES * A. CHARNES,
- W.W.COOPER JASA 62 149 THE USE OF AN ITERATED MOVING AVERAGE IN MEASURING
- SEASONAL VARIATIONS * Y. S. LEONG

 JASA 62 172 SOME PROPERTIES OF PASCAL DISTRIBUTION FOR FINITE
- POPULATION, CORR. 62 919 * T. I. MATUSZEWSKI

 JASA 62 175 A NOTE ON THE CENSUS SURVIVAL RATIO METHOD OF ESTIMAT—
- ING NET MIGRATION * K. C. ZACHARIAH

 JASA 62 184 ON TWO METHODS ON UNBIASED ESTIMATION WITH AUXILIARY
- VARIATES * W. H. WILLIAMS

 JASA 62 187 MOMENTS OF THE RADIAL ERROR, CORR. 65 1251 * ERNEST M.
- SCHEUER

 JASA 62 191 SOME MORE ESTIMATES OF CIRCULAR PROBABLE ERROR * A. R.
- KAMAT

 JASA 62 269 ON THE FOUNDATIONS OF STATISTICAL INFERENCE * ALLAN
 BIRNBAUM
- JASA 62 307 DISCUSSION OF 'ON THE FOUNDATIONS OF STATISTICAL INFERENCE' * L. J. SAVAGE, GEORGE BARNARD, IRWIN D. J.
 BROSS, JEROME CORNFIELD, G. E. P. BOX, I. J. GOOD, D.
 V. LINDLEY, C. W. CLUNIES-ROSS, JOHN W. PRATT,
 HOWARD LEVENE, THOMAS GOLDMAN, A. P. DEMPSTER, OSCAR
 KEMPTHORNE, ALLAN BIRNBAUM
- JASA 62 327 A GENERALIZATION OF THE BALLOT PROBLEM AND ITS APPLI-CATION IN THE THEORY OF QUEUES * LAJOS TAKACS
- JASA 62 338 THE CASE OF THE INDIANS AND THE TEEN-AGE WIDOWS * AN-SLEY J. COALE, FREDERICK F. STEPHAN
- JASA 62 34B AN EFFICIENT METHOD OF ESTIMATING SEEMINGLY UNRELATED REGRESSIONS AND TESTS FOR AGGREGATION BIAS * ARNOLD ZELLINFR
- JASA 62 369 BEST LINEAR UNBIASED PREDICTION IN THE GENERALIZED LINEAR REGRESSION MODEL * ARTHUR S. GOLDBERGER
- JASA 62 376 DISTRIBUTION OF TOTAL SERVICE TIME FOR A FIXED OBSER-VATION INTERVAL * W. S. CONNOR, NORMAN C. SEVERO
- JASA 62 387 DEVELOPMENT OF SAMPLING PLANS BY USING SEQUENTIAL,
 ITEM BY ITEM, SELECTION TECHNIQUES AND DIGITAL COMPUTERS * C. T. FAN, MERVIN E. MULLER, IVAN REZUCHA
- JASA 62 403 SEQUENCES OF FRACTIONAL REPLICATES IN THE 2-TO-THE-(P-Q) SERIES, CORR. 62 919 * CUTHBERT DANIEL
- JASA 62 430 LATENT CLASS ANALYSIS AND DIFFERENTIAL MORTALITY * C.
 R. MILLER, G. SABAGH, H. F. DINGMAN
- JASA 62 439 EXPECTED VALUES AND STANDARD DEVIATIONS OF THE RECIPROCAL OF A VARIABLE FROM A DECAPITATED NEGATIVE BINOMIAL DISTRIBUTION * PAUL R. RIDER
- JASA 62 446 JOINT ESTIMATION OF THE PARAMETERS OF TWO NORMAL POPU-LATIONS * R. I. FIELDS, C. Y. KRAMER, C. W. CLUNIES-ROSS

- JASA 62 455 A SEQUENTIAL METHOD FOR SCREENING EXPERIMENTAL VARIA-BLES* CHOU HSIUNG LI
- JASA 62 551 ON SEQUENTIAL TESTS WHICH MINIMIZE THE MAXIMUM EX-PECTED SAMPLE SIZE * LIONEL WEISS
- JASA 62 567 A NOTE ON CALCULATING TAU AND AVERAGE TAU AND ON THE SAMPLING DISTRIBUTION OF AVERAGE TAU WITH A CRITERION RANKING * DONALD W. STILSON, VINCENT N. CAMPBELL
- JASA 62 572 NON-LINEAR REGRESSION WITH MINIMAL ASSUMPTIONS * HAR-VEY M. WAGNER
- JASA 62 579 ITERATED TESTS OF THE EQUALITY OF SEVERAL DISTRIBU-TIONS * ROBERT V. HOGG
- JASA 62 586 MORE ON LENGTH OF CONFIDENCE INTERVALS * ALBERT MADAN-SKY
- JASA 62 590 REGRESSION ANALYSIS IN SAMPLE SURVEYS, CORR. 63 1162
 * H.S. KONIJN
- JASA 62 607 WAGE, PRICE, AND TAX ELASTICITIES OF OUTPUT AND DISTRIBUTIVE SHARES * HANS BREMS
- JASA 62 622 THE VARIANCE OF AN ESTIMATOR WITH POST-STRATIFIED WEIGHTING * W. H. WILLIAMS
- JASA 62 628 SOME RATIO-TYPE ESTIMATORS IN TWO-PHASE SAMPLING * BALKRISHNA V. SUKHATME
- JASA 62 633 A FORECASTING MODEL OF FEDERAL PURCHASES OF GOODS AND SERVICES * MURRAY BROWN. PAUL TAUBMAN
 JASA 62 648 VARIANCE FORMULAS FOR THE MEAN DIFFERENCE AND CORFFT-
- JASA 62 648 VARIANCE FORMULAS FOR THE MEAN DIFFERENCE AND COEFFI-CIENT OF CONCENTRATION * GERALD J. GLASSER JASA 62 655 HARMONIC ANALYSIS OF SEASONAL VARIATION WITH AN AP-
- PLICATION TO HOG PRODUCTION * MARTIN E ABEL

 JASA 62 668 SOME EXPERIMENTAL DESIGN PROBLEMS IN ATTRIBUTE LIFE
- TESTING, CORR 63 1161 * SYLVAIN EHRENFELD

 JASA 62 680 THE VALIDITY OF INCOME REPORTED BY A SAMPLE OF FAMI—

 LISS WHO PERTYER WELFARE ASSISTANCE DIDENIC 1059 *
- LIES WHO RECEIVED WELFARE ASSISTANCE DURING 1959 *
 MARTIN DAVID

 JASA 62 6B6 A METHOD TO DETERMINE THE RELIABILITY OF TELEMETRY
- SYSTEMS REPORTS * CHARLES MARTINEZ JASA 62 727 MEMORIAL TO SIR RONALD AYLMER FISHER, 1B90-1962 * \mbox{W} J. YOUDEN
- JASA 62 729 THE INTERPOLATION OF TIME SERIES BY RELATED SERIES *
- JASA 62 758 INTEGRAL OF THE BIVARIATE NORMAL DISTRIBUTION OVER AN OFFSET CIRCLE * DENNIS C. GILLILAND
- JASA 62 769 A SEQUENTIAL TEST OF THE EQUALITY OF PROBABILITIES IN A MULTINOMIAL DISTRIBUTION * LIONEL WEISS
- JASA 62 775 SOME TWO-SIDED DISTRIBUTION-FREE TOLERANCE INTER-VALS OF A GENERAL NATURE * JOHN E. WALSH
- JASA 62 785 A MULTI-STAGE PROCEDURE FOR THE SELECTION OF THE BEST OF SEVERAL POPULATIONS * R. J. TAYLOR, H. A. DAVID
- JASA 62 797 CHANGES IN CONCENTRATION OF DOMESTIC MANUFACTURING ESTABLISHMENT OUTPUT 1939-1958 * HENRY ADLER EIN-HORN
- JASA 62 804 A SIMILARITY BETWEEN GOODMAN AND KRUSKAL'S TAU AND KENDALL'S TAU, WITH A PARTIAL INTERPRETATION OF THE LATTER * ROBERT H. SOMERS
- JASA 62 813 CONSTANTS AND COMPROMISE IN THE CONSUMER PRICE INDEX
 * ABNER HURWITZ
- JASA 62 B26 THE CONCEPT OF CAPACITY * FRANK DE LEEUW
- JASA 62 841 EVALUATION OF CENSUS SURVIVAL RATES IN ESTIMATING IN-TERCENSAL STATE NET MIGRATION * JAMES D. TARVER
- JASA 62 863 THE RATIO BIAS IN SURVEYS * LESLIE KISH, N. KRISHNAN NAMBOODIRI, R. KRISHNA PILLAI
- JASA 62 B77 ASYMPTOTIC POWER OF TESTS OF LINEAR HYPOTHESES USING
 THE PROBIT AND LOGIT TRANSFORMATIONS, CORR. 64 1297
 * JAMES E. GRIZZLE
- JASA 62 895 CURRENT WEIGHT-HEIGHT RELATIONSHIPS OF YOUTHS OF MILITARY AGE * BERNARD D. KARPINOS
- JASA 62 906 THE RECIPROCAL OF THE DECAPITATED NEGATIVE BINOMIAL VARIABLE, CORR. 63 1162 * ZAKKULA GOVINDARAJULU

			YOURNAL OF THE AMERICAN CTATEO
			JOURNAL OF THE AMERICAN STATIS
JASA			STATISTICS AND SOCIETY * PHILIP M. HAUSER
JASA	63	13	PROBABILITY INEQUALITIES FOR SUMS OF BOUNDED RANDOM VARIABLES * WASSILY HOEFFDING
JASA	63	31	THE ESTIMATION OF SEASONAL VARIATION IN ECONOMIC TIME SERIES, CORR. 63 1162 * E. J. hannan
JASA	63	45	TECHNIQUES FOR CONSTRUCTING FRACTIONAL REPLICATE PLANS * SIDNEY ADDELMAN
JASA	63	72	THE THREE-PARAMETER LOCNORMAL DISTRIBUTION AND BAYE- SIAN ANALYSIS OF A POINT-SOURCE EPIDEMIC * BRUCE M. HILL
JASA	63	85	MARK TWAIN AND THE QUINTUS CURTIUS SNODGRASS LETTERS, A STATISTICAL TEST OF AUTHORSHIP * CLAUDE S.
JASA	63	97	BRINEGAR TESTS OF HOMOCENEITY FOR CORRELATED SAMPLES * ALBERT MADANSKY
JASA	63	120	COMPUTATION WITH MULTIPLE K-STATISTICS * ESTHER SCHAEFFER, PAULS. DWYER
JASA	63	152	ESTIMATION OF ERROR VARIANCE FROM SMALLEST ORDERED CONTRASTS * M. B. WILK, R. GNANADESIKAN, ANNE E. FREENY
JASA	63	161	A NOTE ON THE EXACT FINITE SAMPLE FREQUENCY FUNCTIONS OF CENERALIZED CLASSICAL LINEAR ESTIMATORS IN A LEADING THREE-EQUATION CASE * R. L. BASMANN
JASA	63	172	CONSTRUCTING UNIFORMLY BETTER ESTIMATORS * VANAMAMALAISESHADRI
JASA	63	176	SOME PERCENTAGE POINTS OF THE NON-CENTRAL T-DISTRIBU- TION, CORR. 63 1163 * ERNEST M. SCHEUER, ROBERT A. SPURGEON
JASA	63	1B3	SAMPLING WITH VARYING PROBABILITIES WITHOUT REPLACE- MENT, ROTATING AND NON-ROTATING SAMPLES * IVAN P. FELLEGI
JASA	63	202	ON THREE PROCEDURES OF UNEQUAL PROBABILITY SAMPLING WITHOUT REPLACEMENT * J. N. K. RAO
JASA	63	216	ORDERED HYPOTHESES FOR MULTIPLE TREATMENTS, A SIGNIFICANCE TEST FOR LINEAR RANKS * ELLIS BATTEN PAGE
JASA	63	231	THE LOGNORMAL DISTRIBUTION AND THE TRANSLATION METHOD, DESCRIPTION AND ESTIMATION PROBLEMS, CORR. 63 1163 * ANDRE G. LAURENT
JASA	63	236	HIERARCHICAL GROUPING TO OPTIMIZE AN OBJECTIVE FUNCTION * JOE H. WARD JR
JASA			ON UNCORRELATED LINEAR FUNGTIONS OF ORDER STATISTICS * K. R. AIYAR
JASA	63	275	INFERENGE IN AN AUTHORSHIP PROBLEM * FREDERICK MOSTELLER, DAVID L. WALLAGE
JASA	63	310	MEASURES OF ASSOCIATION FOR CROSS CLASSIFICATIONS, 111. APPROXIMATE SAMPLING THEORY * LEO A. COODMAN, WILLIAM H. KRUSKAL
JASA			SEQUENTIAL MEDICAL TRIALS * F. J. ANSCOMBE
JASA			SEQUENTIAL MEDICAL TRIALS, SOME COMMENTS ON F. J. AN- SCOMBE'S PAPER * P. ARMITACE
JASA			A MODEL FOR SELECTING ONE OF TWO MEDICAL TREATMENTS * THEODORE COLTON
JASA	63	401	ON THE USE OF INCOMPLETE PRIOR INFORMATION IN REGRES- SION ANALYSIS * H. THEIL
JASA	63	415	PROBLEMS IN THE ANALYSIS OF SURVEY DATA, AND A PROPOSAL * JAMES N. MORCAN, JOHN A. SONQUIST
JASA	63	435	AN ITERATED PROCEDURE FOR TESTING THE EQUALITY OF SEVERAL EXPONENTIAL DISTRIBUTIONS * ROBERT V. HOGG, ELLIOT A. TANIS
JASA	63	444	MIGRATION EXPECTANCY IN THE UNITED STATES * GEORGE L. WILBER
JASA	63	454	THE USE OF ROTATING SAMPLES IN THE CENSUS BUREAU'S MONTHLY SURVEYS * RALPHS. WOODRUFF
JASA	63	46B	RECURRENGE RELATIONS FOR THE INVERSE MOMENTS OF THE POSITIVE BINOMIAL VARIABLE * ZAKKULA GOVINDARAJULU
JASA	63	474	PRECISION OF SIMULTANEOUS MEASUREMENT PROCEDURES * W. A. THOMPSON JR
JASA	63	480	ROBUSTNESS OF NON-IDEAL DEGISION PROCEDURES * MERVYN STONE
JASA	63	487	TAXPAYER COMPLIANCE IN REPORTING INTEREST INCOME UNDER THE WISGONSIN STATE INDIVIDUAL INCOME TAX * NORMANADLER
JASA	63	497	INDEX NUMBERS FOR FACTORIAL EFFECTS AND THEIR CONNECTION WITH A SPECIAL KIND OF IRREGULAR FRACTIONAL PLANS OF FACTORIAL EXPERIMENTS * K. S. BANERJEE

- JASA 63 535 A NOTE ON THE EXACT DISTRIBUTIONS OF THE CENERALIZED CLASSICAL LINEAR ESTIMATORS IN TWO LEADING OVER-IDENTIFIED CASES * D. C. KABE JASA 63 611 INTERVAL ESTIMATION OF NON-LINEAR PARAMETRIC FUNC-TIONS * MAX HALPERIN, NATHAN MANTEL 62B PROBABILITY AND CRIMINALISTICS * ELMER B. MODE JASA 63 JASA 63 641 ON THE SUFFICIENCY AND LIKELIHOOD PRINCIPLES * D. A. S. FRASER JASA 63 64B CONSUMER DURABLE COODS EXPENDITURES, WITH MAJOR EMPHASIS ON THE ROLE OF ASSETS, CREDIT AND INTEN-TIONS * JANET A. FISHER JASA 63 65B ON ESTIMATING SCALE AND LOCATION PARAMETERS * LIONEL WEISS 660 MULTIVARIATE ANALYSIS OF VARIANCE FOR A SPECIAL JASA 63 COVARIANCE CASE, CORR, 64 1296 * SEYMOUR GEISSER 670 SOME INFERENCES ABOUT GAMMA PARAMETERS WITH AN APPLI-JASA 63 CATION TO A RELIABILITY PROBLEM * M. M. LENTNER, R. J BUEHLER JASA 63 678 THE NUMBER AND WIDTH OF CLASSES IN THE CHI-SQUARE TEST * M. A. HAMDAN JASA 63 690 GHI-SQUARE TESTS WITH ONE DEGREE OF FREEDOM, EXTEN-SIONS OF THE MANTEL-HAENSZEL PROCEDURE * NATHAN MAN-TEL JASA 63 701 PARTITIONING OF A PATIENT POPULATION WITH RESPECT TO DIFFERENT MORTALITY RISKS * SIDNEY J. CUTLER, LIL-LIANM. AXTELL JASA 63 713 EARLY DECISION IN THE WILCOXON TWO-SAMPLE TEST * DAVID W. ALLINC JASA 63 721 PROBABILITY MODELS FOR THE VARIATION IN THE NUMBER OF BIRTHS PER COUPLE * S. N. SINGH JASA 63 72B A QUICK TEST FOR SERIAL CORRELATION SUITABLE FOR USE WITH NONSTATIONARY TIME SERIES * C. W. J. GRANGER JASA 63 737 SOME RECENT ADVANCES IN SAMPLING THEORY * M. N. MURTHY JASA 63 756 SOME CONTRIBUTIONS TO THE AVERACE RANK CORRELATION METHODS AND TO THE DISTRIBUTION OF THE AVERACE RANK CORRELATION GOEFFICIENT * WILSON L. TAYLOR, CHING FONG 770 STEPWISE MULTIVARIATE LINEAR RECRESSION * D. C. KABE JASA 63 774 A DEMOGRAPHIC MODEL FOR ESTIMATING AGE-ORDER SPECIFIC JASA 63 FERTILITY RATES * D. PETER MAZUR 7B9 INITIAL STOCK AND CONSUMER INVESTMENT IN AUTOMOBILES JASA 63 * DAVID S. HUANC 799 THE DEVELOPMENT OF NUMERICAL CREDIT EVALUATION JASA 63 SYSTEMS * JAMES H. MYERS, EDWARD W. FORCY JASA 63 807 PRODUCT DIVERSIFICATION AND THE COST OF LIVING, CORR. 64 1296 * HENRY ANDERSON 879 SOME NUMERICAL ASPECTS OF THE USE OF TRANSFORMS IN JASA 63 STATISTICS * SYLVAIN EHRENFELD JASA 63 894 EFFICIENCY OF THE WILCOXON TWO-SAMPLE STATISTIC FOR RANDOMIZED BLOCKS * GOTTFRIED E . NOETHER JASA 63 B99 TEN YEARS OF CONSUMER ATTITUDE SURVEYS, THEIR FORECASTING RECORD * EVA MUELLER JASA 63 918 INFORMATION FOR ESTIMATING THE PROPORTIONS IN MIX-TURES OF EXPONENTIAL AND NORMAL DISTRIBUTIONS * BRUCE M. HILL JASA 63 933 A RECRESSION METHOD FOR REAL ESTATE PRICE INDEX CON-STRUCTION * MARTIN J. BAILEY, RICHARD F. MUTH, HUGH O. NOURSE JASA 63 943 REMARKS CONCERNING THE APPLICATION OF EXACT FINITE SAMPLE DISTRIBUTION FUNCTIONS OF GENERALIZED CLAS-SICAL LINEAR ESTIMATORS IN ECONOMETRIC STATISTICAL INFERENCE, CORR. 64 1296 * R. L. BASMANN JASA 63 977 ESTIMATORS FOR SEEMINGLY UNRELATED REGRESSION EQUA-TIONS, SOME EXACT FINITE SAMPLE RESULTS * ARNOLD ZELLNER JASA 63 993 SEASONAL ADJUSTMENT OF ECONOMIG TIME SERIES AND MUL-TIPLE RECRESSION ANALYSIS * MIGHAEL G. LOVELL JASA 63 1011 THE VARYING QUALITY OF INVESTMENT TRUST MANAGEMENT * IRA HOROWITZ JASA 63 1033 ESTIMATION OF QUASI-LINEAR TREND AND SEASONAL VARIA-TION * C. E. V, LESER JASA 63 1044 SAMPLE SIZE REQUIRED TO ESTIMATE THE RATIO OF VARI-ANCES WITH BOUNDED RELATIVE ERROR * FRANKLIN A CRAYBILL, TERRENCE L. CONNELL
- JASA 63 519 ESTIMATION OF PARAMETERS OF A TRUNCATED BIVARIATE
 NORMAL DISTRIBUTION * C. G. KHATRI, M. C. JAISWAL

 JASA 63 527 EXTENSION OF COCHRAN'S FORMULAE FOR ADDITION OR OMIS-

JASA 63 509 SAMPLING FROM A TRIANGULAR POPULATION * PAUL R. RIDER

JASA 63 513 SOME TECHNIQUES FOR ANALYZING A SET OF TIME SERIES

SUBJECT TO A LINEAR RESTRICTION * FRANK T. DENTON

- JASA 63 527 EXTENSION OF COCHRAN'S FORMULAE FOR ADDITION OR OMIS-SION OF A VARIATE IN MULTIPLE REGRESSION ANALYSIS * D.C. KABE
- JASA 63 1048 SOME EMPIRICAL DISTRIBUTIONS OF BIVARIATE T-SQUARE
 AND HOMOSCEDASTICITY CRITERION M UNDER UNEQUAL
 VARIANCE AND LEPTOKURTOSIS * J. W. HOPKINS, P. P. F.
 CLAY
- JASA 63 1054 MULTIVARIATE REGRESSION OF DUMMY VARIATES UNDER NOR-MALITY ASSUMPTIONS * STANLEY L. WARNER
- JASA 63 1064 ON THE PROBABILITY OF WINNING WITH DIFFERENT TOURNA-MENT PROCEDURES * DONALD T. SEARLS

- JASA 63 1082 TABLES FOR CONSTRUCTING CONFIDENCE LIMITS ON THE MUL-TIPLE CORRELATION COEFFICIENT * K. H. KRAMER
- JASA 63 10B6 THE WILCOXON TWO-SAMPLE STATISTIC, TABLES AND BIBLIOCRAPHY * JAMES E. JACOBSON
- JASA 63 1104 PRELIMINARY RECIONAL FORECASTS FOR THE OUTCOME OF AN ESTIMATION PROBLEM * JAMES C. HICKMAN
- JASA 63 1113 ILLUSTRATIVE TABLES OF SCHOOL LIFE, CORR. 64 1299 * EDWARD G. STOCKWELL, CHARLES B. NAM
- JASA 63 1125 A NOTE ON RESIDUAL ANALYSIS * CEORCE ZYSKIND
- JASA 63 1133 ANALYSIS OF VARIANCE OF PROPORTIONS WITH UNEQUAL FREQUENCIES * K. R. CABRIEL

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION VOLUME 59, 1964

- JASA 64 1 THE AMERICAN STATISTICAL ASSOCIATION AND FEDERAL STATISTICS * RAYMOND T. BOWMAN
- A STUDY OF RESPONSE ERRORS IN EXPENDITURES DATA FROM JASA 64 HOUSEHOLD INTERVIEWS * JOHN NETER, JOSEPH WAKSBERG
- 56 ON THE DIFFICULTIES INHERENT IN FISHER'S FIDUCIAL AR-JASA 64 GUMENT * A. P. DEMPSTER
- 67 SAMPLINC PLANS WHICH APPROXIMATELY MINIMIZE THE MAX-JASA 64 IMUM EXPECTED SAMPLE SIZE * DAVID FREEMAN, LIONEL WEISS
- 89 TWO THEOREMS FOR INFERENCES ABOUT THE NORMAL DIS-JASA 64 TRIBUTION WITH APPLICATIONS IN ACCEPTANCE SAMPLING * BOB E. ELLISON
- JASA 64 96 DESIGN OF AN OPTIMAL SEQUENCE OF INTERRELATED SAM-PLING PLANS * C. S. BEICHTLER, L. G. MITTEN
- 105 NOTE ON THE CONSISTENCY OF SOME DISTRIBUTION-FREE JASA 64
- TESTS FOR DISPERSION * CONSTANCE VAN EEDEN 120 CONTROL OF QUALITY OF CODING IN THE 1960 CENSUSES * JASA 64 HERMAN H. FASTEAU, J. JACK INCRAM, CEORGE MINTON
- 133 A TWO-PARAMETER FAMILY OF HYPER-POISSON DISTRIBU-JASA 64 TIONS * GEORGE E. BARDWELL, EDWIN L. CROW
- 142 EFFECT OF NON-NORMALITY ON THE POWER FUNCTION OF THE JASA 64 SICN TEST * JEAN D. CIBBONS
- 149 INCENTIVE CONTRACTS AND PRICE DIFFERENTIAL AC-JASA 64 CEPTANCE TESTS * BETTY J. FLEHINCER, JAMES MILLER
- 160 THE TESTING OF UNIT VECTORS FOR RANDOMNESS * M. A. JASA 64 STEPHENS
- 168 INTERVAL ESTIMATION OF NON-LINEAR PARAMETRIC FUNC-JASA 64 TIONS, II * MAX HALPERIN
- JASA 64 182 CONFIDENCE BANDS IN STRAIGHT LINE RECRESSION * A. V. CAFARIAN
- 214 ESTIMATES FOR THE POINTS OF INTERSECTION OF TWO JASA 64 POLYNOMIAL REGRESSIONS * D. E. ROBISON
- 225 ESTIMATION OF THE PROBABILITY THAT AN OBSERVATION JASA 64 WILL FALL IN A SPECIFIED CLASS * WALTER A. HENDRICKS
- 233 EFFICIENT CROUPINC, REGRESSION AND CORRELATION IN JASA 64 ENCEL CURVE ANALYSIS * J. S. CRAMER
- 251 THE USE OF SYSTEMATIC SAMPLING WITH PROBABILITY PRO-JASA 64 PORTIONATE TO SIZE IN A LARCE SCALE SURVEY * DES RAJ JASA 64
- 256 PROBLEMS IN THE INTERNATIONAL STANDARDIZATION OF INTER-INDUSTRY TABLES, CORR. 64 1299 * SHUNTARO SHISHIDO
- JASA 64 319 SIMPLE METHODS FOR ANALYZING THREE-FACTOR INTERAC-TION IN CONTINCENCY TABLES * LEO A. COODMAN
- JASA 64 353 THE FOUNDATIONS OF DECISION UNDER UNCERTAINTY AN ELEMENTARY EXPOSITION * JOHN W. PRATT, HOWARD RAIF-FA. ROBERT SCHLAIFER
- JASA 64 376 CONTINUOUS SAMPLINC PLANS UNDER DESTRUCTIVE TESTING * FREDERICKS. HILLIER
- 402 RECRESSION ANALYSIS OF SEASONAL DATA * CEORCE W. LADD JASA 64
- JASA 64 422 RECRESSION WITH SYSTEMATIC NOISE * D. MICHAEL MILDER JASA 64 429 APPROXIMATE DISTRIBUTION OF EXTREMES FOR NONSAMPLE
- CASES * JOHN E. WALSH JASA 64 437 ERRORS IN THE 1960 CENSUS ENUMERATION OF NATIVE WHITES * MELVIN ZELNIK
- JASA 64 460 A NOTE ON ESTIMATION FROM A CAUCHY SAMPLE * THOMAS J ROTHENBERC, FRANKLIN M. FISHER, C. B. TILANUS
- JASA 64 464 OPTIMALITY AND THE OPERATING CHARACTERISTIC CURVE FOR THE WALD SEQUENTIAL PROBABILITY RATIO TEST * JAMES A. LECHNER
- JASA 64 469 A PRICE AND PRODUCTIVITY INDEX FOR A NONHOMOCENEOUS PRODUCT * DOUCLAS C. DACY
- JASA 64 481 ON FORMING STRATA OF EQUAL ACCRECATE SIZE * DES RAJ
- JASA 64 A TWO-VARIABLE CENERATING FUNCTION FOR COMPUTING THE SAMPLINC PROBABILITIES OF A CLASS OF WIDELY USED STATISTICS * JAMES N. CRONHOLM
- JASA 64 492 ROTATION DESIGNS FOR SAMPLING ON REPEATED OCCASIONS * J. N. K. RAO, JACKE. GRAHAM
- 510 ESTIMATING THE PARAMETERS OF MIXTURES OF BINOMIAL JASA 64 DISTRIBUTIONS * W. R. BLISCHKE
- 529 ON A NEW METHOD OF CAPACITY ESTIMATION * BERT C. JASA 64 HICKMAN
- 550 SAMPLE SIZE REQUIRED TO ESTIMATE THE PARAMETER IN THE JASA 64 UNIFORM DENSITY WITHIN D UNITS OF THE TRUE VALUE * FRANKLIN A. CRAYBILL, TERRENCE L. CONNELL
- 557 SOME GENERALIZATIONS OF THE DISTRIBUTIONS OF PRODUCT JASA 64 STATISTICS ARISING FROM RECTANGULAR POPULATIONS * N. A. RAHMAN

- JASA 64 564 LEAST SQUARES ESTIMATES AND PARABOLIC RECRESSION WITH RESTRICTED LOCATION FOR THE STATIONARY POINT * T.
- JASA 64 645 ONE SAMPLE LIMITS OF SOME TWO-SAMPLE RANK TESTS * LIN-COLN E. MOSES
- JASA 64 652 ON THE NORMAL SCORES TWO-SAMPLE RANK TEST * J. H. KLOTZ
- 665 ROBUSTNESS OF SOME PROCEDURES FOR THE TWO-SAMPLE LO-JASA 64 CATION PROBLEM * JOHN W. PRATT
- 681 MINIMUM VARIANCE, LINEAR, UNBIASED SEASONAL ADJUST-JASA 64 MENT OF ECONOMIC TIME SERIES, CORR. 65 1250 * DALE W. JORCENSON
- 725 TAKINC A COVARIABLE INTO ACCOUNT * IRWIND. J. BROSS JASA 64
- 737 THE USE OF WEALTH TO COMPARE HOUSEHOLDS' AVERACE SAV-JASA 64 INC * PHILLIP CACAN
- JASA 64 746 INCOME, WEALTH, AND THE DEMAND FOR MONEY, SOME EVIDENCE FROM CROSS-SECTION DATA * TONC HUN LEE
- 763 BAYESIAN ANALYSIS OF THE RECRESSION MODEL WITH AUTO-JASA 64 CORRELATED ERRORS * ARNOLD ZELLNER, CEORCE C. TIAO
- JASA 64 779 SOME COMPARISONS OF METHODS OF FITTING THE DOSACE RESPONSE CURVE FOR SMALL SAMPLES * ELLIOT M. CRAMER
- JASA 64 794 ANALYSIS OF EMPIRICAL BIVARIATE EXTREMAL DISTRIBU-
- TIONS*E. J. CUMBEL, NEIL COLDSTEIN
 JASA 64 817 A NEW CLASS OF DESICNS, CORR. 65 1250 * C. RAMANKUTTY NAIR
- JASA 64 B45 ITERATIVE ESTIMATION OF A SET OF LINEAR RECRESSION EQUATIONS * LESTER C . TELSER
- JASA 64 B63 A NOTE ON THE EQUIVALENCE OF TWO METHODS OF FITTING A STRAICHT LINE THROUGH CUMULATIVE DATA * J. L. JAECH
- B67 ON THE BOUNDS OF THE NUMBER OF COMMON TREATMENTS JASA 64 BETWEEN BLOCKS OF SEMI-RECULAR CROUP DIVISIBLE DESIGNS * HIRALAL ACRAWAL
- JASA 64 B72 CORRECTING THE AVERAGE RANK CORRELATION COEFFICIENT FOR TIES IN RANKINGS * WILSON L. TAYLOR
 JASA 64 877 DISTRIBUTION OF PRODUCT AND OF QUOTIENT OF MAXIMUM
- VALUES IN SAMPLES FROM A POWER-FUNCTION POPULATION * PAULR RIDER
- BB1 ON THE EXACT DISTRIBUTIONS OF THE CENERALIZED CLASSI-JASA 64 CAL LINEAR ESTIMATORS IN A LEADING THREE-EQUATION CASE * D. C. KABE
- JASA 64 B95 A NOTE ON THE VARIANCE OF THE RATIO ESTIMATE * DES RAJ
- JASA 64 B99 AN APPROXIMATION FOR THE EXACT DISTRIBUTION OF THE WILCOXON TEST FOR SYMMETRY * S. A. FELLINGHAM, D. J. STOKER
- JASA 64 906 NONPARAMETRIC UPPER CONFIDENCE BOUNDS, AND CON-FIDENCE LIMITS, FOR THE PROBABILITY THAT Y IS LESS THAN X, WHEN X AND Y ARE NORMAL * D. B. OWNE, K. J CRASWELL, D. L. HANSON
- JASA 64 925 AN EXTENDED TABLE OF CRITICAL VALUES FOR THE MANN-WHITNEY-WILCOXON TWO-SAMPLE STATISTIC * ROY C. MIL-TON
- JASA 64 935 TABLE FOR BOTH THE SICN TEST AND DISTRIBUTION-FREE CONFIDENCE INTERVALS OF THE MEDIAN FOR SAMPLE SIZES TO 1,000 * WILLIAM J. MACKINNON
- JASA 64 957 ANOTHER DERIVATION OF THE NON-CENTRAL CHI-SQUARE DIS-TRIBUTION * WILLIAM C. GUENTHER
- JASA 64 987 THE PREDICTIVE ABILITY OF CONSUMER ATTITUDES, STOCK PRICES, AND NON-ATTITUDINAL VARIABLES * IRWIN FRIEND, F. GERARD ADAMS
- JASA 64 1006 SEQUENTIAL ANALYSIS WITH DELAYED OBSERVATIONS * T. W ANDERSON
- JASA 64 1016 RESPONSE VARIANCE AND ITS ESTIMATION * IVAN P. FELLEGI
- JASA 64 1042 A UNIFIED DERIVATION OF SOME NONPARAMETRIC DISTRIBU-TIONS * CARL-ERIK SARNDAL
- JASA 64 1054 SAMPLE SELECTION AND THE CHOICE OF ESTIMATOR IN TWO-WAY STRATIFIED POPULATIONS * W. H. WILLIAMS
- JASA 64 1063 THE ESTIMATION OF A CHANCINC SEASONAL PATTERN, CORR 66 1247 * E. J. HANNAN
- JASA 64 107B ON LEAST SQUARES WITH INSUFFICIENT OBSERVATIONS, CORR. 65 1249 * JOHN S. CHIPMAN
- JASA 64 1112 INTERVAL ESTIMATION IN LINEAR RECRESSION WHEN BOTH VARIABLES ARE SUBJECT TO ERROR * MAX HALPERIN
- JASA 64 1121 THE EXTENT OF REPEATED MICRATION, AND ANALYSIS BASED ON THE DANISH POPULATION RECISTER * SIDNEY GOLDSTEIN
- JASA 64 1133 CRITERIA FOR BEST SUBSTITUTE INTERVAL ESTIMATORS. WITH AN APPLICATION TO THE NORMAL DISTRIBUTION * H LEON HARTER

- JASA 64 1141 INTERVAL ESTIMATION FOR LINEAR COMBINATIONS OF MEANS
 * MINORU SIOTANI
- JASA 64 1165 THE IDENTIFICATION OF EFFECTIVE INTERVIEWERS * STAN-LEY W. STEINKAMP
- JASA 64 1175 A NOTE ON THE MAXIMUM LIKELIHOOD ESTIMATION OF A LINEAR STRUCTURAL RELATIONSHIP * M. W. BIRCH
- JASA 64 1179 EFFICIENCIES FOR STEPWISE RECRESSIONS * T. D. WALLACE
- JASA 64 11B3 THE VARIABILITY OF PROFITIBILATY WITH SIZE OF FIRM, 1947-1958 * H. O. STEKLER
- JASA 64 1194 INCOME INCOME CHANGE, AND DURABLE GOODS DEMAND * MAW
- JASA 64 1203 CONDITIONAL MEANS AND COVARIANCES OF NORMAL VARIABLES
 WITH SINGULAR COVARIANCE MATRIX * CEORGE MARSACLIA
- JASA 64 1205 2 TO THE POWER OF P FACTORIAL EXPERIMENTS WITH THE FACTORS APPLIED SEQUENTIALLY * R. R. PRAIRIE, W. J. ZIMMER
- JASA 64 1217 ON THE ANALYSIS OF GROUP DIVISIBLE DESIGNS * C. H. KAPADIA, D. L. WEEKS
- JASA 64 1220 A NOTE ON THE NECATIVE MOMENTS OF A TRUNCATED POISSON VARIATE * M. L. TIKU
- VARIATE * M. L. TIKU

 JASA 64 1225 THE UTILIZATION OF A KNOWN COEFFICIENT OF VARIATION IN
- THE ESTIMATION PROCEDURE * DONALD T. SEARLS

 JASA 64 1227 A SIMPLE APPROACH TO THE BAYES CHOICE CRITERION, THE
- METHOD OF EXTREME PROBABILITIES * ALVISE BRAGA-ILLA
- JASA 64 1231 A SUPPLEMENT TO MENDENHALL'S BIBLIOGRAPHY ON LIFE
 TESTING AND RELATED TOPICS, CORR. 65 1249 * ZAKKULA
 GOVINDARAJULU

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION VOLUME 60, 1965

- JASA 65 1 QUALITY AND QUANTITY IN HIGHER EDUCATION * ALBERT H. BOWKER
- JASA 65 16 A TWO-PARAMETER MODEL FOR THE SURVIVAL CURVE OF
 TREATED CANCER PATIENTS* J. L. HAYBITTLE
- JASA 65 27 A HISTORY OF DISTRIBUTION SAMPLING PRIOR TO THE ERA OF THE COMPUTER AND ITS RELEVANCE TO SIMULATION, CORR. 65 1251 * DANIEL TEICHROEW
- JASA 65 50 PROBABILISTIC PREDICTION * HARRY V. ROBERTS
- JASA 65 63 RANDOMIZED RESPONSE, A SURVEY TECHNIQUE FOR ELIMINAT-ING EVASIVE ANSWER BIAS * STANLEY L. WARNER
- JASA 65 70 APPLICATIONS OF PROBABILITY THEORY IN CRIMINALISTICS * CHARLES R. KINGSTON
- JASA 65 B1 A BAYESIAN APPROACH TO THE ANALYSIS OF DATA FROM CLINICAL TRIALS * MELVIN R. NOVICK, JAMES E. GRIZZLE
- JASA 65 97 SYSTEMATIC STATISTICS USED FOR DATA COMPRESSION IN
 SPACE TELEMETRY * ISIDORE EISENBERGER, EDWARD C.
- JASA 65 134 SOME NON-PARAMETRIC TESTS FOR M-DEPENDENT TIME SERIES
 * PRANAB KUMAR SEN
- JASA 65 14B THE RELIABILITY OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS, TIME-DEPOSITS * ROBERT FERBER
- JASA 65 164 PREDICTION OF AN AUTOREGRESSIVE VARIABLE SUBJECT BOTH
 TO DISTURBANCES AND TO ERRORS OF OBSERVATION * MAR—
 TIN J. BAILEY
- JASA 65 1B2 MINIMAL SUFFICIENT STATISTICS FOR THE TWO-WAY CLAS-SIFICATION MIXED MODEL DESIGN * ROBERT A. HULTQUIST, FRANKLIN A. GRAYBILL
- JASA 65 193 RATIOS OF NORMAL VARIABLES AND RATIOS OF SUMS OF UNIFORM VARIABLES * GEORGE MARSAGLIA
- JASA 65 205 DESIGN FOR OPTIMAL PREDICTION IN SIMPLE LINEAR REGRESSION*D.W.CAYLOR, H.C.SWEENY
- JASA 65 217 ERRORS OF CLASSIFICATION IN A BINOMIAL POPULATION * MARION R. BRYSON
- JASA 65 225 OPTIMUM ALLOCATION OF SAMPLING UNITS TO STRATA WHEN
 THERE ARE R RESPONSES OF INTEREST * JOHN LEROY FOLKS,
 CHARLES E. ANTLE
- JASA 65 234 PRINCIPAL COMPONENTS REGRESSION IN EXPLORATORY STATISTICAL RESEARCH * WILLIAM F. MASSY
- JASA 65 257 CONFIDENCE INTERVALS BASED ON THE MEAN ABSOLUTE DEVIATION OF A NORMAL SAMPLE * ERNA M. J. HERREY
- JASA 65 270 ON A METHOD OF USING MULTI-AUXILIARY INFORMATION IN SAMPLE SURVEYS * DES RAJ
- JASA 65 278 VARIANCE ESTIMATION IN RANDOMIZED SYSTEMATIC SAM-PLING WITH PROBABILITY PROPORTIONATE TO SIZE * DES RAJ
- JASA 6: 285 ON THE F-TEST IN THE INTRABLOCK ANALYSIS OF A CLASS OF TWO ASSOCIATE PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS * N. CIRI
- JASA 65 294 COMPARISON OF SOME RATIO ESTIMATORS * MYINTTIN
- JASA 65 308 AN ESTIMATION PROCEDURE FOR RANGE COMPOSITION PROBLEMS * DENNIS J. AIGNER
- JASA 65 320 THE POWER OF STUDENT'S T-TEST, CORR. 65 1251 * D. B. OWEN
- JASA 65 334 SOME GRAPHS USEFUL FOR STATISTICAL INFERENCE * WIL-LIAM C. GUENTHER, P. O. THOMAS
- JASA 65 344 A NOMOGRAM FOR CHI-SQUARE, CORR. 66 1246 * WILLIAM C BOYD
- JASA 65 347 BAYESIAN ANALYSIS OF THE INDEPENDENT MULTINORMAL PROCESS, NEITHER MEAN NOR PRECISION KNOWN * ALBERT ANDO, G. M. KAUFMAN
- JÁSA 65 395 R. A. FISHER AND THE LAST FIFTY YEARS OF STATISTICAL METHODOLOGY * M. S. BARTLETT
- JASA 65 410 THE ASYMPTOTIC RELATIVE EFFICIENCY OF GOODNESS-OF-FIT TESTS AGAINST SCALAR ALTERNATIVES * JOSEPH CELZER, RONALD PYKE
- JASA 65 420 EXPECTED SIGNIFICANCE LEVEL AS A SENSITIVITY INDEX FOR TEST STATISTICS * A . P . DEMPSTER, M . SCHATZOFF
- JASA 65 437 A COMBINATORIAL TEST FOR INDEPENDENCE OF DICHOTOMOUS RESPONSES * PAUL W. MIELKE JR, M. M. SIDDIOUI

- JASA 65 442 A COMPARISON OF A MODIFIED 'HANNAN' AND THE BUREAU OF LABOR STATISTICS * MARC NERLOVE
- JASA 65 492 FOURIER METHODS FOR EVOLVING SEASONAL PATTERNS * NIGEL F. NETTHEIM
- JASA 65 503 APPROXIMATIONS DATA AND THE INVESTMENT DECISION * ED-WARD GREENBERG
- JASA 65 516 A CLASS OF BIVARIATE DISTRIBUTIONS * R. L. PLACKETT
- JASA 65 523 UNIFIED LEAST SQUARES ANALYSIS * C. A. ROHDE, J. R. HARVEY
- JASA 65 52B A RELATION BETWEEN T AND F-DISTRIBUTIONS, CORR. 65 1249 * THEOPHILOS CACOULLOS
- JASA 65 532 THE DISTRIBUTION OF THE SIZE OF THE MAXIMUM CLUSTER OF POINTS ON A LINE * JOSEPH I: NAUS
- JASA 65 539 SOME TESTS FOR HOMOSCEDASTICITY * STEPHEN M. GOLD-FELD, RICHARD E. QUANDT
- JASA 65 54B ON SOME TESTS OF HYPOTHESES RELATING TO THE EXPONEN-TIAL DISTRIBUTION WHEN SOME OUTLIERS ARE PRESENT, CORR. 65 1249 * A. P. BASU
- JASA 65 560 ESTIMATION FOR A ONE-PARAMETER EXPONENTIAL MODEL *
 JANACE A. SPECKMAN, RICHARD G. CORNELL
- JASA 65 573 ESTIMATION OF MULTIPLE CONTRASTS USING T-DISTRIBU-TIONS * OLIVE JEAN DUNN, FRANK J. MASSEY JR
- JASA 65 584 INSENSITIVITY TO NON-OPTIMAL DESIGN IN BAYESIAN DECI-SION THEORY * GORDON R. ANTELMAN
- JASA 65 602 A BAYES APPROACH FOR COMBINING CORRELATED ESTIMATES * SEYMOUR CEISSER
- JASA 65 608 PREDICTION AND DECISION PROBLEMS IN REGRESSION MODELS
 FROM THE BAYESIAN POINT OF VIEW (CORR. 68 1551) * ARNOLD ZELLNER, V. KARUPPAN CHETTY
- JASA 65 617 THE METROPOLITAN AREA CONCEPT, AN EVALUATION OF THE 1950 STANDARD METROPOLITAN AREAS * ALLANG. FELDT
- JASA 65 637 ON A CLASS OF LINEAR ESTIMATORS IN SAMPLINC WITH VARY-ING PROBABILITIES WITHOUT REPLACEMENT * S. G. PRABHU AJGAONKAR
- JASA 65 699 ASYMPTOTICALLY OPTIMAL TESTS OF COMPOSITE HYPOTHESES
 FOR RANDOMIZED EXPERIMENTS WITH NONCONTROLLED PREDICTOR VARIABLES * JERZY NEYMAN, ELIZABETH L. SCOTT
- JASA 65 722 A REVIEW OF 'SMOKINC AND HEALTH' * K. A. BROWNLEE
 JASA 65 740 DEMAND FOR MANUFACTURERS' SERVICES FOR BAKERY
- JASA 65 740 DEMAND FOR MANUFACTURERS' SERVICES FOR BAKERY PRODUCTS AND FRUITS AND VEGETABLES * WILLIAM H. WAL-DORF
- JASA 65 750 OPTIMUM STRATIFIED SAMPLING USING PRIOR INFORMATION
 * W. A. ERICSON
- JASA 65 772 STRATIFIED SAMPLING AND DISTRIBUTION-FREE CON-FIDENCE INTERVALS FOR A MEDIAN * PHILIP J. MACCARTHY
- JASA 65 784 DOUBLE SAMPLING FOR STRATIFICATION ON SUCCESSIVE OC-CASIONS * D. SINGH, B. D. SINCH
- JASA 65 793 THE INVERTED DIRICHLET DISTRIBUTION WITH APPLICA-TIONS, CORR. 65 1251 * GEORGE C. TIAO, IRWIN GUTTMAN
- JASA 65 B06 INFERENCE ABOUT VARIANCE COMPONENTS IN THE ONE-WAY
 MODEL* BRUCE M. HILL
- JASA 65 B26 SEQUENTIAL RANCE TESTS FOR COMPONENTS OF VARIANCE, CORR. 65 1249 * B.K. CHOSH
- JASA 65 837 EXACT DISTRIBUTION OF THE SUM OF INDEPENDENT IDENTI-CALLY DISTRIBUTED DISCRETE RANDOM VARIABLES, CORR. 66 1246 * H. A. DAVID, J. E. NORMAN JR
- JASA 65 843 ON THE ASYMPTOTIC EFFICIENCY OF THE KOLMOGOROV-SMIR-NOV TEST * JACK CAPON
- JASA 65 854 A COMPARISON OF THE PEARSON CHI-SQUARE AND KOLMOGOROV
 GOODNESS-OF-FIT TESTS WITH RESPECT TO VALIDITY,
 CORR. 66 1249 * MALCOLM J. SLAKTER
- JASA 65 859 ON AN EXTREME RANK SUM TEST WITH EARLY DECISION * D. CHUN
- JASA 65 864 EXTENDED TABLES OF THE WILCOXON MATCHED PAIR SIGNED
 RANK STATISTIC * ROBERT L. MACCORNACK

 JASA 65 872 TABLES OF BOUNDS FOR DISTRIBUTIONS WITH MONOTONE
- JASA 65 872 TABLES OF BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE * RICHARD E. BARLOW, ALBERT W. MARSHALL
- JASA 65 891 GENERAL THEORY OF PRIME-POWER LATTICE DESIGNS * W. T. FEDERER, B. L. RAKTOE

- JASA 65 905 MULTIVARIATE ACCEPTANCE SAMPLING PROCEDURES FOR CENERAL SPECIFICATION ELLIPSOIDS * MELVIN F. SHAK-
- 914 QUADRATIC REGRESSION WITH INEQUALITY RESTRAINTS ON JASA 65 THE PARAMETERS * R. R. HOCKING
- JASA 65 939 SAMUEL S. WILKS * FREDERICK F. STEPHAN, JOHN W. TUKEY, FREDERICK MOSTELLER, ALEX M. MOOD, MORRIS H. HANSEN, LESLIEE. SIMON, W. J. DIXON
- JASA 65 967 THE UP-AND-DOWN METHOD FOR SMALL SAMPLES * W. J. DIXON 979 ON THE PERFORMANCE OF THE TRUNCATED SEQUENTIAL PROBA-JASA 65 BILITY RATIO TEST, CORR. 66 1247 * ABRAHAM GENIZI
- JASA 65 985 A DOUBLE SAMPLING SCHEME FOR ANALYTICAL SURVEYS * J. SEDRANSK
- JASA 65 1005 THE EFFECT OF MIS-MATCHING ON THE MEASUREMENT OF RESPONSE ERRORS * JOHN NETER, E. SCOTT MAYNES, R. RAMANATHAN
- JASA 65 1028 APPLICATIONS OF PROBABILITY THEORY TN CRIMINALISTICS. II * CHARLES R. KINGSTON
- JASA 65 1035 THE DETECTION OF A CORRELATION BETWEEN THE SEXES OF ADJACENT SIBS IN HUMAN FAMILIES * RICHARD A. CREEN-BERG. COLIN WHITE
- JASA 65 1046 A MATHEMATICAL MODEL WITH APPLICATIONS TO A STUDY OF ACCIDENT REPEATEDNESS AMONG CHILDREN * CLEN D. MELLINCER, DAVID L. SYLWESTER, WILLIAM R. GAFFEY, DEAN I. MANHEIMER
- JASA 65 1060 ON A DISCRETE DISTRIBUTION WITH SPECIAL REFERENCE TO THE THEORY OF ACCIDENT PRONENESS * S. K. BHATTACHA-RYA. M. S. HOLLA

- JASA 65 1067 THE ANALYSIS OF DISTURBANCES IN REGRESSION ANALYSIS * H. THEIL
- JASA 65 1080 A NOTE ON THE STATISTICAL TESTABILITY OF 'EXPLICIT CAUSAL CHAINS' ACAINST THE CLASS OF 'INTERDEPEN-DENT' MODELS * R. L. BASMANN
- JASA 65 1094 A STOCHASTIC ANALYSIS OF THE SPATIAL CLUSTERING OF RETAIL ESTABLISHMENTS * ANDREI ROGERS
- JASA 65 1104 A BAYESIAN INDIFFERENCE PROCEDURE * MELVIN R. NOVICK, W. J. HALL
- JASA 65 1118 ON SOME TWO-SAMPLE NON-PARAMETRIC TESTS, CORR. 66 1249 * S. ROSENBAUM
- JASA 65 1127 PERCENTILE MODIFICATIONS OF TWO-SAMPLE RANK TESTS * JOSEPH L. CASTWIRTH
- JASA 65 1142 TOLERANCE LIMITS FOR THE CENERALIZED GAMMA DISTRIBU-TION * LEE J. BAIN, DAVID L. WEEKS
- JASA 65 1153 ON MODELS AND HYPOTHESES WITH RESTRICTED ALTERNATIVES * ROBERT V . HOGG
- JASA 65 1163 SOME SCHEFFE-TYPE TESTS FOR SOME BEHRENS-FISHER-TYPE REGRESSION PROBLEMS * RICHARD F. POTTHOFF
- JASA 65 1191 INTERVAL ESTIMATION OF NON-LINEAR PARAMETRIC FUNC-TIONS, 111 * MAX HALPERIN
- JASA 65 1200 APPLICATION OF GREENBERG AND SARHAN'S METHOD OF IN-VERSION OF PARTITIONED MATRICES IN THE ANALYSIS OF NON-ORTHOGONAL DATA * M. BHASKAR RAO
- JASA 65 1203 A UNIQUENESS THEOREM CONCERNING MOMENT DISTRIBUTIONS * R. K. ZEIGLER

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION VOLUME 61, 1966

JASA 66 1 PRESIDENTIAL ADDRESS * W. ALLEN WALLIS

JASA 66

- 11 SOME ASPECTS OF EXPERIMENTAL INFERENCE * OSCAR KEMPTHORNE
- JASA 66 35 RECOGNIZING THE MAXIMUM OF A SEQUENCE * JOHN P. GIL-BERT, FREDERICK MOSTELLER
- JASA 66 74 STRATIFICATION, A PRACTICAL INVESTIGATION * IRENE
- HESS, V. K. SETHI, T. R. BALAKRISHNAN JASA 66 91 THE RELIABILITY OF CONSUMER SURVEYS OF FINANCIAL HOLDINGS, DEMAND DEPOSITS * ROBERT FERBER
- JASA 66 104 THE RELATIVE EFFICACY OF INVESTMENT ANTICIPATIONS * MICHAEL K. EVANS, EDWARD W. GREEN
- JASA 66 117 LABOR FORCE ENTRY AND ATTACHMENT OF YOUNG PEOPLE, CORR. 66 1248 * JOHN KORBEL
- 128 A NOTE ON AN 'ERRORS IN VARIABLES' MODEL * TONY LAN-JASA 66 CASTER
- JASA 66 136 ON THE SENSITIVITY OF SIMULTANEOUS-EQUATIONS ESTIMA-TORS TO THE STOCHASTIC ASSUMPTIONS OF THE MODELS * J. G. CRAGO
- 152 TIME SERIES ANALYSIS BY MODIFIED LEAST-SQUARES JASA 66 TECHNIQUES * RICHARD M. DUVALL
- JASA 66 166 INEQUALITY RESTRICTIONS IN REGRESSION ANALYSIS * G G. JUDGE, T. TAKAYAMA
- 1B2 CONFIDENCE BANDS OF UNIFORM AND PROPORTIONAL WIDTH JASA 66 FOR LINEAR MODELS * DAVID C. BOWDEN, FRANKLIN A. GRAYBILL
- 199 A NUMERICAL PROCEDURE TO GENERATE A SAMPLE COVARIANCE JASA 66 MATRIX, CORR. 66 1248 * P. L. ODELL, A. H. FEIVESON
- 204 CRITICAL REGIONS FOR TESTS OF INTERVAL HYPOTHESES JASA 66 ABOUT THE VARIANCE * WILLIAM C. GUENTHER, MARY G. WHITCOMB
- 220 ESTIMATORS WITH PRESCRIBED BOUND ON THE VARIANCE FOR JASA 66 THE PARAMETERS IN THE BINOMIAL AND POISSON DISTRIBU-TIONS BASED ON TWO-STAGE SAMPLING * ESTER SAMUEL
- 228 A NOTE ON THE EQUIVALENCE OF TWO TEST CRITERIA FOR JASA 66 HYPOTHESES IN CATEGORICAL DATA * V. P. BHAPKAR
- 236 LAMP TESTS OF LINEAR AND LOCLINEAR HYPOTHESES IN MUL-JASA 66 TINOMIAL EXPERIMENTS, CORR. 66 1246 * B. R. BHAT, S. R. KULKARNI
- 246 BIAS OF THE ONE-SAMPLE CRAMER-VON MISES TEST * RORY JASA 66 THOMPSON
- 248 BEST LINEAR ESTIMATES UNDER SYMMETRIC CENSORING OF JASA 66 THE PARAMETERS OF A DOUBLE EXPONENTIAL POPULATION * ZAKKULA GOVINDARAJULU
- 259 ON ESTIMATING THE PARAMETER OF A DOUBLY TRUNCATED JASA 66 BINOMIAL DISTRIBUTION * S. M. SHAH
- 305 A LIFE TABLE THAT AGREES WITH THE DATA * NATHAN KEYFITZ JASA 66 JASA 66 313 A FAVORABLE SIDE BET IN NEVADA BACCARAT * EDWARD O. THORP, WILLIAM E. WALDEN
- 329 BEST K OF 2K-1 COMPARISONS * HERBERT MAISEL JASA 66
- 345 THE RELATIVE SENSITIVITY TO SPECIFICATION ERROR OF JASA 66 DIFFERENT K-CLASS ESTIMATORS * FRANKLIN M. FISHER
- 357 A LARGE SAMPLE SEQUENTIAL TEST, USING CONCOMITANT IN-JASA 66 FORMATION FOR DISCRIMINATION BETWEEN TWO COMPOSITE HYPOTHESES * C. PHILIP COX. THOMAS D. ROSEBERRY

- JASA 66 36B A SIMPLE MATHEMATICAL RELATIONSHIP AMONG K-CLASS ESTIMATORS * ASATOSHI MAESHIRO
- 375 COMPUTER EDITING OF SURVEY DATA, FIVE YEARS OF EX-JASA 66 PERIENCE IN BLS MANPOWER SURVEYS * WALTER J. STUART
- 384 AN EXACT FORMULA FOR THE PROBABILITY THAT TWO JASA 66 SPECIFIED SAMPLING UNITS WILL OCCUR IN A SAMPLE DRAWN WITH UNEQUAL PROBABILITIES AND WITHOUT REPLACEMENT * W. S. CONNOR
- 391 SOME REMARKS ON A SIMPLE PROCEDURE OF SAMPLING WITHOUT JASA 66 REPLACEMENT * DES RAJ
- 397 A NOTE ON THE ESTIMATION OF AMPLITUDE SPECTRA FOR JASA 66 STOCHASTIC PROCESSES WITH QUASI-LINEAR RESIDUALS * L. H. KOOPMANS
- 403 ASSESSING THE ACCURACY OF MULTIVARIATE OBSERVATIONS JASA 66 * JOSEPHL. FLEISS
- 413 A THEOREM ON LEAST SQUARES AND VECTOR CORRELATION IN JASA 66 MULTIVARIATE LINEAR REGRESSION * GREGORY C. CHOW
- 415 SENSITIVITY COMPARISONS AMONG TESTS OF THE GENERAL JASA 66 LINEAR HYPOTHESIS * MARTIN SCHATZOFF
- JASA 66 436 A COMPUTER METHOD FOR CALCULATING KENDALL'S TAU WITH UNGROUPED DATA * WILLIAM R. KNIGHT
- JASA 66 440 DISTRIBUTION OF THE SAMPLE VERSION OF THE MEASURE OF ASSOCIATION, GAMMA * IRENE ROSENTHAL
- CONFIDENCE INTERVAL COMPARISON OF TWO TEST JASA 66 454 A PROCEDURES PROPOSED FOR THE BEHRENS-FISHER PROBLEM * S. JAMES PRESS
- 467 UNBAISED ESTIMATION OF THE COMMON MEAN OF TWO NORMAL JASA 66 DISTRIBUTIONS BASED ON SMALL SAMPLES OF EQUAL SIZE * S. ZACKS
- CONDITIONAL-NORMAL REGRESSION MODELS * ROBERT F. TATE JASA 66 477 490 A NOTE ON TAKING A COVARTABLE INTO ACCOUNT * HANS K. URY JASA 66
- 496 USE OF A REGRESSION TECHNIQUE TO PRODUCE AREA BREAK-JASA 66 DOWNS OF THE MONTHLY NATIONAL ESTIMATES OF RETAIL TRADE * RALPHS. WOODRUFF
- JASA 66 505 PRODUCER AND CONSUMER RISKS FOR ASYMMETRICAL TESTS AND SPECIFICATION LIMITS * H. R. SINGH
- 514 EXACT MOMENTS AND PRODUCT MOMENTS OF THE ORDER JASA 66 STATISTICS FROM THE TRUNCATED LOGISTIC DISTRIBU-TION * MICHAEL E. TARTER
- JASA 66 577 A BAYESIAN TEST OF SOME CLASSICAL HYPOTHESES, WITH AP-PLICATIONS TO SEQUENTIAL CLINICAL TRIALS * JEROME CORNFIELD
- JASA 66 595 MISSING VALUES IN MULTIVARIATE STATISTICS, I. REVIEW OF THE LITERATURE * ROBERT M. ELASHOFF, A. AFIFI
- 605 CONFIDENCE, PREDICTION, AND TOLERANCE REGIONS FOR THE JASA 66 MULTIVARIATE NORMAL DISTRIBUTION * VICTOR CHEW
- JASA 66 61B ASYMPTOTIC PROPERTIES OF SOME ESTIMATORS OF QUANTILES OF CIRCULAR ERROR * WALLACE R. BLISCHKE, ALAN HALPIN JASA 66 633 LIGHT BULB STATISTICS, CORR. 66 1248 * NATHAN MANTEL,
- BERNARD PASTERNACK JASA 66 640 AN INTRODUCTION TO RANKING AND SELECTION PROCEDURES *
- DAVIDR.BARR, M. RIZVI
 JASA 66 647 RECENT EFFORTS TO IMPROVE LAND USE INFORMATION *
- MARION CLAWSON

- JASA 66 65B CONSUMER BUYING INTENTIONS AND PURCHASE PROBABILITY, AN EXPERIMENT IN SURVEY DESIGN * F. THOMAS JUSTER JASA 66 697 ASPECTS OF MAXIMUM LIKELIHOOD ESTIMATION OF THE LO-CISTIC CROWTH FUNCTION * F. R. OLIVER 706 SEASONAL VARIATION OF DEATHS IN THE UNITED STATES, 1951-1960 * IRA ROSENWAIKE JASA 66 720 UNBIASED MULTIPLE REGRESSION COEFFICIENTS ESTIMATED FROM ONE-WAY-CLASSIFICATION TABLES WHEN THE CROSS CLASSIFICATIONS ARE UNKNOWN * YOEL HAITOVSKY JASA 66 729 RESPONSE ERROR IN SURVEY REPORTS OF EARNINGS INFORMA-TION * MICHAELE. BORUS 739 SYSTEMATIC SAMPLINC WITH UNEQUAL PROBABILITY AND WITHOUT REPLACEMENT * H. O. HARTLEY JASA 66 749 PROBABILITY SAMPLING WITH QUOTAS * SEYMOUR SUDMAN JASA 66 772 THE WILCOXON, TIES, AND THE COMPUTER * JEROME KLOTZ JASA 66 7BB PRODUCT DIVERSIFICATION AND LIVING COSTS, A FURTHER JASA 66 COMMENT * HENRY ANDERSON BOO ALTERNATIVE AXIOMATIZATIONS OF SEASONAL ADJUSTMENT JASA 66 * MICHAEL C. LOVELL JASA 66 BO3 ON DEPENDENT TESTS FROM A NON-ORTHOCONAL DESIGN * ${\tt J}$. T. WEBSTER, JOE A. BALLAS JASA 66 B13 SOME EMPIRICAL RESULTS ON VARIANCE RATIOS UNDER PER-MUTATION IN THE COMPLETELY RANDOMIZED DESIGN * FRANK B. BAKER, RAYMOND O. COLLIER JASA 66 821 GENERALIZED LATTICE SQUARE DESIGN * WALTER T FEDERER, B. L. RAKTOE B33 THE EVALUATION OF H 106 CONTINUOUS SAMPLING PLANS JASA 66 UNDER THE ASSUMPTION OF WORST CONDITIONS * LEON S. WHITE JASA 66 B42 LOCAL-MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAME-TERS OF THREE-PARAMETER LOGNORMAL POPULATIONS FROM COMPLETE AND CENSORED SAMPLES, (CORR. 66 1247, CORR. 68 1549) * H. LEON HARTER, ALBERT H. MOORE
 JASA 66 B52 A NOTE ON THE ESTIMATION OF THE LOCATION PARAMETER OF THE CAUCHY DISTRIBUTION * DANIEL BLOCH B56 ON TESTING THE EQUALITY OF UNIFORM AND RELATED DIS-JASA 66 TRIBUTIONS * DAVIDR. BARR 897 MARKET MAKING AND REVERSAL OF THE STOCK EXCHANGE * JASA 66 VICTORNIEDERHOFFER, M. F. M. OSBORNE JASA 66 917 MULTIPLE REGRESSION WITH STATIONARY ERRORS * DAVID B DUNCAN, RICHARD H. JONES JASA 66
- JASA 67 1 THE QUALITY OF STATISTICAL INFORMATION AND STATISTI-INFERENCE IN A RAPIDLY CHANCINC WORLD FREDERICK F. STEPHAN JASA 67 10 MISSING OBSERVATIONS IN MULTIVARIATE STATISTICS II. POINT ESTIMATION IN SIMPLE LINEAR REGRESSION * A.A. AFIFI, R. M. ELASHOFF 30 A MULTIVARIATE EXPONENTIAL DISTRIBUTION * ALBERT W. JASA 67 MARSHALL, INGRAMOLKIN 45 LIFE-TESTING RESULTS BASED ON A FEW HETEROGENEOUS JASA 67 LOCNORMAL OBSERVAITONS * A. J. MCCULLOCH, JOHN E. WALSH 4B BAYESIAN APPROACH TO LIFE TESTING AND RELIABILITY JASA 67 ESTIMATION * SAMIR KUMAR BHATTACHARYA 63 OPTIMAL SAMPLE DESIGN WITH NONRESPONSE * W. A. ERICSON JASA 67 JASA 67 79 A NOTE ON FELLEGI'S METHOD OF SAMPLINC WITHOUT
- REPLACEMENT WITH PROBABILITY PROPORTIONAL TO SIZE * K. R. W. BREWER JASA 67 B6 STEP-WISE CLUSTERING PROCEDURES * BENJAMIN KIN JASA 67 102 ON THE METHOD OF INCLUSION AND EXCLUSION * LAJOS TAKACS JASA 67 114 AN ALGORITHM FOR OBTAINING THE ZERO OF A FUNCTION OF THE DISPERSION MATRIX IN MULTIVARIATE ANALYSIS * IRENE M. TRAWINSKI JASA 67 124 THE ROBUSTNESS OF HOTELLING'S T-SQUARE * LOIS N. HOL-LOWAY, OLIVE J. DUNN JASA 67 137 SEASONAL ADJUSTMENT OF DATA FOR ECONOMETRIC ANALYSIS * DALE W. JORCENSON JASA 67 141 THE UNBIASEDNESS OF ZELLNER'S SEEMINCLY UNRELATED REGRESSION EQUATIONS ESTIMATORS * N. C. KAKWANI 143 RECIONAL DISPARITIES IN HOUSEHOLD CONSUMPTION IN JASA 67

INDIA * N. BHATTACHARYA, B. MAHALANOBIS

1B4 WILCOXON CONFIDENCE INTERVALS FOR LOCATION PARAME-

TERS IN THE DISCRETE CASE * GOTTFRIED E. NOETHER

JASA 67 162 MEASURES OF CONCENTRATION * MARSHALL HALL, NICOLAUS

JASA 67 169 SOME FURTHER NOTES ON DISTURBANCE ESTIMATES IN REGRESSION ANALYSIS * JOHAN KOERTS

TIDEMAN

- 929 ON ROBUST PROCEDURES * JOSEPH L. GASTWIRTH 949 A DEVELOPMENT OF TUKEY'S QUICK TEST OF LOCATION * JASA 66 HENRY R. NEAVE 965 THE POWER OF CHI SQUARE TESTS FOR CONTINGENCY TABLES * JASA 66 DOUGLAS G. CHAPMAN, ROSA C. MENG
- JASA 66 976 ON CHARACTERIZING THE CHI SQUARE DISTRIBUTION BY THE STUDENT LAW * ICNACY KOTLARSKI 982 POTENTIALS IN APPLYING LINEAR PROGRAMMING TO THE CON-JASA 66
- SUMER PRICE INDEX * JOHN NETER, WILLIAM WASSERMAN JASA 66 995 ESTIMATION OF AN ACCELERATED DEPRECIATION LEARNING FUNCTION * TERENCE J. WALES
- JASA 66 1010 A STOCHASTIC MODEL OF CREDIT SALES DEBT * HASKEL BENISHAY
- JASA 66 1029 POINT ESTIMATION OF RELIABILITY OF A SYSTEM COMPRISED OF K ELEMENTS FROM THE SAME EXPONENTIAL DISTRIBUTION * HERBERT C. RUTEMILLER
- JASA 66 1033 THE EFFICIENCIES IN SMALL SAMPLES OF THE MAXIMUM LIKELIHOOD AND BEST UNBIASED ESTIMATORS OF RELIA-
- BILITY FUNCTIONS * S. ZACKS, M. EVEN
 JASA 66 1052 MINIMUM VARIANCE UNBIASED AND MAXIMUM LIKELIHOOD ESTIMATORS OF RELIABILITY FUNCTIONS FOR SYSTEMS IN SERIES AND IN PARALLEL * S. ZACKS, M. EVEN
- JASA 66 1063 A GENERALIZATION OF THE GAUSS-MARKOV THEOREM * T. O. LEWIS, P. L. ODELL
- JASA 66 1067 MAXIMUM LIKELIHOOD ESTIMATION OF THE DISTRIBUTIONS OF TWO STOCHASTICALLY ORDERED RANDOM VARIABLES * DAVID LEE HANSON, H. D. BRUNK, W. E. FRANCK, ROBERT V. HOGG
- JASA 66 1081 SIMULTANEOUS TEST PROCEDURES FOR MULTIPLE COM-PARISONS ON CATEGORICAL DATA * K. R. GABRIEL JASA 66 1097 FITTING SEGMENTED CURVES WHOSE JOIN POINTS HAVE TO BE
- ESTIMATED * DEREK J. HUDSON JASA 66 1130 SMALL SAMPLE BIAS DUE TO MISSPECIFICATION IN THE 'PAR-TIAL ADJUSTMENT' AND 'ADAPTIVE EXPECTATIONS'
- MODELS * ROGER N. WAUD JASA 66 1153 SOME METHODS OF CONSTRUCTION OF DESIGNS FOR TWO-WAY
- ELIMINATION OF HETEROGENEITY, I * HIRALAL AGRAWAL JASA 66 1172 ESTIMATION EMPLOYING POST STRATA * WAYNE A. FULLER
- JASA 66 1184 A CORRELATION MODEL USEFUL IN THE STUDY OF TWINS * CHARLES A. ROBERTS
- JASA 66 1191 SOME PROBABILITIES, EXPECTATIONS AND VARIANCES FOR THE SIZE OF LARGEST CLUSTERS AND SMALLEST INTERVALS * J. I. NAUS
- JASA 66 1200 AN ESTIMATOR FOR A POPULATION MEAN WHICH REDUCES THE EFFECT OF LARGE TRUE OBSERVATIONS * DONALD T. SEARLS
- JASA 66 1205 ORDER STATISTICS ESTIMATORS OF THE LOCATION OF THE CAUCHY DISTRIBUTION * V. D. BARNETT
- JASA 66 1219 ON THE STATISTICAL DISCREPANCY IN THE REVISED UNITED STATES NATIONAL ACCOUNTS * F. GERARD ADAMS, PETER E.

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION VOLUME 62, 1967

- JASA 67 189 A PARTIAL COEFFICIENT FOR GOODMAN AND KRUSKAL'S CAMMA * JAMES A. DAVIS JASA 67 194 TIES IN PAIRED-COMPARISON EXPERIMENTS. A GENERALIZA-TION OF THE BRADLEY-TERRY MODEL (CORR. 6B 1550) * P.
- V. RAO, L. L. KUPPER JASA 67 205 SEQUENCES BALANCED FOR PAIRS OF RESIDUAL EFFECTS * C. RAMANKUTTYNAIR
- JASA 67 226 EQUAL AND PROPORTIONAL FREQUENCY SQUARES * SIDNEY AD-DELMAN
- 241 THE COMBINATION OF ESTIMATES FROM SIMILAR EXPERI-JASA 67 MENTS, ALLOWING FOR INTER-EXPERIMENT VARIATION * PAMELAM. MORSE, A. BIKLE
- JASA 67 251 A NOTE ON REGRESSION IN THE MULTIVARIATE POISSON DIS-TRIBUTION * D. M. MAHAMUNULU
- JASA 67 259 DISTRIBUTION OF SOME STATISTICS IN SAMPLES FROM EX-PONENTIAL AND POWER-FUNCTION POPULATIONS * JIRI LIKES
- JASA 67 272 ESTIMATION OF THE PROBABILITY OF ZERO FAILURES IN M BINOMIALTRIALS * HERBERT C. RUTEMILLER
- JASA 67 278 THE MOMENTS OF A DOUBLY NONCENTRAL T-DISTRIBUTION * MARAKATHA KRISHNAN
- 2BB NOTE ON A UNIQUENESS RELATION IN CERTAIN ACCIDENT JASA 67 PRONENESS MODELS * N. L. JOHNSON
- JASA 67 321 SOME QUANTITATIVE TESTS FOR STOCK PRICE GENERATING MODELS AND TRADING FOLKLORE * M. F. M. OSBORNE
- JASA 67 341 A PROCEDURE FOR AUTOMATIC DATA EDITING * R. J. FREUND, H. O. HARTLEY
- JASA 67 353 ROBUST ESTIMATION OF LOCATION * EDWIN L. CROW, M. M. SIDDIQUI
- JASA 67 390 GOODNESS OF FIT * HANS RIEDWYL JASA 67
 - 399 ON THE KOLMOGOROV-SMIRNOV TEST FOR NORMALITY WITH MEAN AND VARIANCE UNKNOWN * HUBERT W. LILLIEFORS
- JASA 67 403 LINEAR SEGMENT CONFIDENCE BANDS FOR SIMPLE LINEAR MODELS * F. A. GRAYBILL, D. C. BOWDEN
- JASA 67 409 ON THE QUESTION OF WHETHER A DISEASE IS FAMILIAL * R. Z. GOLD, S. M. BERMAN, A. BERGER

JASA 67

- JASA 67 421 THE NEW DESIGN OF THE CANADIAN LABOUR FORCE SURVEY * I.
 P. FELLEGI, G. B. GRAY, R. PLATEK
- JASA 67 454 OUTCOME PROBABILITIES FOR A RECORD MATCHING PROCESS WITH COMPLETE INVARIANT INFORMATION * GAD NATHAN
- JASA 67 470 DATA REVISIONS AND ECONOMIC FORECASTING * H. O. STE-KLER
- JASA 67 484 DISCRETE SAMPLES AND MOVING SUMS IN STATIONARY STOCHASTIC PROCESSES * LESTER G. TELSER
- JASA 67 500 EFFICIENT ESTIMATION OF A SYSTEM OF REGRESSION EQUA-TIONS WHEN DISTURBANCES ARE BOTH SERIALLY AND CON-TEMPORANEOUSLY CORRELATED * RICHARD W. PARKS
- JASA 67 510 REDUCING A RANDOM SAMPLE TO A SMALLER SET, WITH APPLI-CATIONS * LEE J. BAIN
- JASA 67 520 ON ITERATED TESTS OF HYPOTHESES * CHANDAN K. MUSTAFI
- JASA 67 525 TABLES OF THE POWER OF THE F-TEST (CORR. 6B 1551) * M L. TIKU
- JASA 67 540 SAMPLING FOR CONFIDENCE * K. T. WALLENIUS
- JASA 67 54B EXPONENTIAL LIFE TEST PROCEDURES WHEN THE DISTRIBU-TION HAS MONOTONE FAILURE RATE * RICHARD E. BARLOW, FRANK PROSCHAN
- JASA 67 561 EXPONENTIAL SURVIVAL WITH COVARIANCE * MARVIN GLASSER
 JASA 67 569 SOME ANALYTICAL PROPERTIES OF BIVARIATE EXTREMAL DISTRIBUTIONS * E. J. GUMBEL, C. K. MUSTAFII
- JASA 67 5B9 A BIVARIATE WARNING-TIME, FAILURE-TIME DISTRIBUTION
 *G.A.MIHRAM, R.A.HULTQUIST
- JASA 67 600 ON THE FIXED POINT PROBABILITY VECTOR OF REGULAR OR

 ERGODIC TRANSITION MATRICES * HENRY P. DECELL JR, P.

 L. ODELL
- JASA 67 603 AN INEQUALITY ON A BIVARIATE STUDENT'S 'T' DISTRIBU-TION * MAXHALPERIN
- JASA 67 607 SOME APPLICATIONS OF MATRIX DERIVATIVES IN MUL-
- TIVARIATE ANALYSIS * PAULS. DWYER

 JASA 67 626 RECTANGULAR CONFIDENCE REGIONS FOR THE MEANS OF MULTIVARIATE NORMAL DISTRIBUTIONS * ZBYNEK SIDAK
- JASA 67 634 ON MULTIVARIATE PREDICTION INTERVALS FOR SAMPLE MEAN AND COVARIANCE BASED ON PARTIAL OBSERVATIONS * D. G.
- JASA 67 638 UNIFORMLY BETTER COMBINED ESTIMATORS IN FACTORIAL AR-RANGEMENTS WITH CONFOUNDING * K. R. SHAH
- JASA 67 643 THE DISPLACED POISSON DISTRIBUTION-REGION B * P. L STAFF
- JASA 67 655 MULTIVARIATE LOGARITHMIG SERIES DISTRIBUTION AS A PROBABILITY MODEL IN POPULATION AND COMMUNITY ECOLOGY AND SOME OF ITS STATISTICAL PROPERTIES * G. P. PATIL, S. BILDIKAR
- JASA 67 675 MAXIMUM-LIKELIHOOD ESTIMATION, FROM CENSORED SAM-PLES, OF THE PARAMETERS OF A LOGISTIG DISTRIBUTION * H. LEON HARTER, ALBERT H. MOORE
- JASA 67 685 THE TWO CONCEPTS OF INFORMATION * S. KULLBACK
- JASA 67 763 INFORMATIVE STOPPING RULES AND INFERENCES ABOUT POPU-LATION SIZE * HARRY V. ROBERTS
- JASA 67 776 THE ASSESSMENT OF PRIOR DISTRIBUTIONS IN BAYESIAN ANALYSIS * ROBERT L. WINKLER
- JASA 67 B01 FINITE SAMPLE MONTE CARLO STUDIES. AND AUTOREGRESSIVE ILLUSTRATION * HODSON THORNBER
- JASA 67 B19 AN APPRAISAL OF LEAST SQUARES PROGRAMS FOR THE ELEC-TRONIC COMPUTER FROM THE POINT OF VIEW OF THE USER *
- JASA 67 B42 RANDOM WALK DESIGN IN BIO-ASSAY * R. K. TSUTAKAWA
- JASA 67 B62 ON THE INTERPRETATION OF AGE DISTRIBUTIONS * NATHAN KEYFITZ, DHRUVA NAGNUR, DIVAKAR SHARMA
- JASA 67 875 SCHOOLING, EXPERIENCE, AND GAINS AND LOSSES IN HUMAN

 CAPITAL THROUGH MIGRATION * MARY JEAN BOWMAN, ROBERT
 G. MYERS
- JASA 67 899 SAMPLING ERROR IN THE CONSUMER PRICE INDEX * MARVIN WILKERSON
- JASA 67 915 EXACT MOMENTS OF THE ORDER STATISTICS OF THE GEOMETRIC
 DISTRIBUTION AND THEIR RELATION TO INVERSE SAMPLING
 AND RELIABILITY OF REDUNDANT SYSTEMS * BARRY H. MARGOLIN, HERBERTS. WINOKUR JR
- JASA 67 926 ON MEDIANS AND QUASI-MEDIANS * J. L. HODGES JR, E. L. LEHMANN
- JASA 67 932 ASYMPTOTIC EFFICIENCY OF THE TWO SAMPLE KOLMOGOROV-SMIRNOV TEST * JEROME KLOTZ
- JASA 67 939 ASYMPTOTIC EFFICIENCY OF TWO NONPARAMETRIC COMPETI-TORS OF WILCOXON'S TWO SAMPLE TEST * MYLES HOLLANDER
- JASA 67 950 ASYMPTOTICALLY ROBUST ESTIMATORS OF LOCATION * M. M. SIDDIQUI, K. RAGHUNANDANAN
- JASA 67 954 EFFICIENCY LOSS DUE TO GROUPING IN DISTRIBUTION-FREE TESTS * D. R. MCNEIL
- JASA 67 966 DISTRIBUTION AND POWER OF THE ABSOLUTE NORMAL SCORES
 TEST * RORY THOMPSON, Z. GOVINDARAJULU, K. A. DOKSUM
- JASA 67 976 A CRITICAL COMPARISON OF THREE STRATEGIES OF COLLECT-ING DATA FROM HOUSEHOLDS * JOSEPH R. HOCHSTIM

- JASA 67 990 A MULTI-PROPORTIONS RANDOMIZED RESPONSE MODEL *
 ABDEL-LATIF A. ABUL-ELA, BERNARD G. GREENBERG,
 DANIELG, HORVITZ
- JASA 67 1009 GENERALIZED MULTIVARIATE ESTIMATOR FOR THE MEAN OF FINITE POPULATIONS * PODURIS. R. S. RAO, GOVIND S. MUDHOLKAR
- JASA 67 1013 AN OPTIMUM PROPERTY OF THE HORVITZ-THOMSON ESTIMATE * VIJAYA S. HEGE
- JASA 67 101B ON FRACTIONAL POWERS OF A MATRIX * FREDERICK V. WAUGH, MARTIN E. ABEL
- JASA 67 1022 ORTHONORMAL BASES OF ERROR SPACES AND THEIR USE FOR
 INVESTIGATING THE NORMALITY AND VARIANCES OF
 RESIDUALS * JOSEPH PUTTER
- JASA 67 1037 A STRUCTURAL REGRESSION APPROACH TO COVARIANCE ANALY— SIS WHEN THE COVARIABLE IS UNCONTROLLED * WILLIAMS. MALLIOS
- JASA 67 1050 SHORTER CONFIDENCE BANDS IN LINEAR REGRESSION * MAX HALPERIN, SURESH C. RASTOGI, IRWIN HO, Y. Y. YANG
- JASA 67 1068 THE NORMAL APPROXIMATION TO THE SIGNED-RANK SAMPLING
 DISTRIBUTION WHEN ZERO DIFFERENCES ARE PRESENT * EDWARD E. CURETON
- JASA 67 1105 THE QUANTIFICATION OF JUDGMENT. SOME METHODOLOGICAL SUGGESTIONS * ROBERT L. WINKLER
- JASA 67 1121 DESIGNING SOME MULTI-FACTOR ANALYTICAL STUDIES * J. SEDRANSK
- JASA 67 1140 REPRESENTATION OF SIMILARITY MATRICES BY TREES * J. A. HARTIGAN
- HARTIGAN

 JASA 67 1159 ON SOME INVARIANT CRITERIA FOR GROUPING DATA * H. P.
- FRIEDMAN, J. RUBIN

 JASA 67 1179 SOME OBSERVATIONS ON ROBUST ESTIMATION * ROBERT V.

 HOGG
- JASA 67 1187 RANK ANALYSIS OF COVARIANCE * DANA QUADE
- JASA 67 1201 ON SOME MULTISAMPLE PERMUTATION TESTS BASED ON A CLASS OF U-STATISTICS * PRANAB KUMAR SEN
- JASA 67 1214 ON SOME OPTIMUM NONPARAMETRIC PROCEDURES IN TWO-WAY LAYOUTS * MADAN LAL PURI, PRANAB KUMAR SEN
- JASA 67 1230 OPTIMAL ROBUSTNESS. A GENERAL METHOD, WITH APPLICA-TIONS TO LINEAR ESTIMATORS OF LOCATION * ALLAN BIRN-BAUM. EUGENE LASKA
- JASA 67 1241 EFFICIENCY ROBUST TWO-SAMPLE RANK TESTS * ALLAN BIRN-BAUM, EUGENE LASKA
- JASA 67 1252 ASYMPTOTIC DISTRIBUTION FOR A GENERALIZED BANACH MATCH BOX PROBLEM * T. CACOULLOS
- JASA 67 125B THE MAXIMUM LIKELIHOOD ESTIMATE OF THE NON-CENTRALITY
 PARAMETER OF A NONCENTRAL CHI-SQUARE VARIATE * PAUL
 MEYER
- JASA 67 1265 APPROXIMATE SPECIFICATION AND THE CHOICE OF A K-CLASS ESTIMATOR * FRANKLIN M. FISHER
- JASA 67 1277 AN APPLICATION OF VARIABLE WEIGHT DISTRIBUTED LAGS * P. A. TINSLEY
- JASA 67 1290 THE VARIANCE OF WEIGHTED REGRESSION ESTIMATORS *
 JAMES S. WILLIAMS
- JASA 67 1302 A NECESSARY AND SUFFIGIENT CONDITION THAT ORDINARY
 LEAST-SQUARES ESTIMATORS BE BEST LINEAR UNBIASED *
 F. W. MCFLROY
- JASA 67 1305 ASYMPTOTIC VARIANCES FOR DUMMY VARIATE REGRESSION UNDER NORMALITY ASSUMPTIONS * STANLEY L. WARNER
- JASA 67 1315 COMPUTER SIMULATION EXPERIMENTS WITH ECONOMIC
 SYSTEMS. THE PROBLEM OF EXPERIMENTAL DESIGN * THOMAL
 H NAYLOR DONALD S RURDICK W FARL-SASSER
- JASA 67 133B A COMPUTER SIMULATION MODEL OF THE TEXTILE INDUSTRY * THOMAS H. NAYLOR, WILLIAM H. WALLACE, W. EARL SASSER
- JASA 67 1365 STRAIGHT LINE CONFIDENCE REGIONS OF LINEAR MODELS * JOHN LEROY FOLKS, CHARLES E. ANTLE
- JASA 67 1375 STATISTICAL DEPENDENCE BETWEEN RANDOM EFFECTS AND THE NUMBERS OF OBSERVATIONS ON THE EFFECTS FOR THE UNBALANCED ONE-WAY RANDOM GLASSIFICATION * DAVID A HARVILLE
- JASA 67 1387 CORRELATED ERRORS IN THE RANDOM MODEL * BRUCE M. HILL
- JASA 67 1401 SEQUENTIAL ANALYSIS OF VARIANCE UNDER RANDOM AND MIXED MODELS * B. K. GHOSH
- JASA 67 141B THE MIGRATION OF EMPLOYED PERSONS TO AND FROM METROPOLITAN AREAS OF THE UNITED STATES * ANN R. MILLER
- JASA 67 1433 METHOD OF CONSTRUCTION OF ATTRITION LIFE TABLES FOR
 THE SINGLE POPULATION BASED ON TWO SUCCESSIVE CENSUSES (CORR. 68 1550) * JOGINDER KUMAR
- JASA 67 1452 CONFIDENCE LIMITS FOR THE RELIABILITY OF SERIES SYSTEMS* A.H. EL MAWAZINY, R.J. BUEHLER
- JASA 67 1460 A NOTE ON MULTIVARIATE DISTRIBUTIONS WITH SPECIFIED MARGINALS * BARRY C. ARNOLD
- JASA 67 1462 COMPUTATION AND STRUCTURE OF OPTIMAL RESET POLICIES *
 ELLIS L. JOHNSON

 JASA 67 14BB SMALL SAMPLE PROBABILITY LIMITS FOR THE RANGE CHART
- (CORR. 68 1549) * FREDERICK S. HILLIER
- JASA 67 1494 A THEOREM ON LEAST SQUARES IN MULTIVARIATE LINEAR REGRESSION * C.G. KHATRI

			JOURNAL OF THE AMERICAN STATIST	ICAL AS	SOCI	ATIO	N VOLUME 63, 1968
JASA	6B	1	ASSOCIATION AND ESTIMATION IN CONTINGENCY TABLES * FREDERICK MOSTELLER	JASA	6B	55B	A TEST OF THE MEAN SQUARE ERROR CRITERION FOR RESTRIC- TIONS IN LINEAR REGRESSION * CARLOS TORO-VIZCARRON-
JASA	6B	29	ON MEASURING THE EXTREME AGED IN THE POPULATION * IRA ROSENWAIKE	JASA	6B	573	DO, T. D. WALLACE SIMULTANEOUS ESTIMATION BY PARTIAL TOTALS FOR COM-
JASA	68	41	RECENT RESEARCH IN REINTERVIEW PROCEDURES * BARBARA A . BAILAR	ONDA	05	010	PARTMENTAL MODELS * JOHN J. BEAUCHAMP, RICHARD G. CORNELL
JASA	6B	64	THE ANALYSIS OF VARIANCE OF DATA FROM STRATIFIED SUB- SAMPLES * HOWARD L. JONES	JASA	6B	584	SOME ESTIMATORS FOR A LINEAR MODEL WITH RANDOM COEFFI- CIENTS * CLIFFORD HILDRETH, JAMES P. HOUCK
JASA	68	В7	SOME NONRESPONSE SAMPLING THEORY WHEN THE FRAME CONTAINS AN UNKNOWN AMOUNT OF DUPLICATION * J. N. K. RAO	JASA JASA			IMPROVED ESTIMATORS FOR COEFFICIENTS IN LINEAR REGRESSION * STANLEY L. SCLOVE A MODIFIED COMPOUND POISSON PROCESS WITH NORMAL COM-
JASA	6B	91	BOUNDS FOR THE ERROR-VARIANCE OF AN ESTIMATOR IN SAM- PLING WITH VARYING PROBABILITIES FROM A FINITE POPU-	JASA		614	POUNDING * S. JAMES PRESS TWO K-SAMPLE SLIPPAGE TESTS * W. J. CONOVER
JASA	68	99	LATION* S. G. PRABHU AIGAONKAR ESTIMATES IN SUCCESSIVE SAMPLING USING A MULTI-STAGE DESIGN* D. SINGH	JASA	6B	627	ON A GENERAL SYSTEM OF DISTRIBUTIONS, I. ITS CURVE- SHAPE CHARACTERISTICS II. THE SAMPLE MEDIAN * IRVING W. BURR, PETER J. CISLAK
JASA	68	113	SOME SHRINKAGE TECHNIQUES FOR ESTIMATING THE MEAN * JAMES R. THOMPSON	JASA	68	636	ON A GENERAL SYSTEM OF DISTRIBUTIONS, III. THE SAMPLE RANGE * IRVING W. BURR
JASA JASA			ESTIMATING FROM MISCLASSIFIED DATA * S. JAMES PRESS ESTIMATING THE PARAMETERS OF LOG-NORMAL DISTRIBUTION FROM CENSORED SAMPLES * M. L. TIKU	JASA	68	644	FRACTIONAL REPLICATION OF 2-TO-THE-P FACTORIAL EX- PERIMENTS WITH THE FACTORS APPLIED SEQUENTIALLY * R. R. PRAIRIE, W. J. ZIMMER
JASA			ESTIMATION OF THE INNOVATION VARIANCE OF A STATIONARY TIME SERIES * HERBERT T. DAVIS, RICHARD H. JONES	JASA	6B	653	OPTIMAL SAMPLE SIZE IN TWO-ACTION PROBLEMS WHEN THE SAMPLE OBSERVATIONS ARE LOGNORMAL AND THE PRECISION
JASA JASA			ESTIMATION OF THE PARAMETER N IN THE BINOMIAL DIS- TRIBUTION * DORIAN FELDMAN, MARTIN FOX ESTIMATION OF PARAMETERS IN THE MULTIVARIATE NORMAL	JASA	6B	660	H IS KNOWN* GORDON M. KAUFMAN ROBUSTNESS OF THE F-TEST TO ERRORS OF BOTH KINDS AND THE CORRELATION BETWEEN THE NUMERATOR AND DENOMINA-
JASA	68	174	DISTRIBUTION WITH MISSING OBSERVATIONS * R. R. HOCKING, WILLIAM B. SMITH BAYESIAN ESTIMATION OF MEANS FOR THE RANDOM EFFECT	JASA	6B	677	TOR OF THE F-RATIO * THEODORE S. DONALDSON POSTERIOR DISTRIBUTION OF PERCENTILES. BAYES' THEOREM FOR SAMPLING FROM A POPULATION * BRUCE M.
JASA	68	182	MODEL * G. E. P. BOX, G. C. TIAO GROUPING ESTIMATORS IN HETEROSCEDASTIC DATA (CORR. 68	JASA	68	692	HILL THE FIRST-MEDIAN TEST. A TWO-SIDED VERSION OF THE CON-
JASA	68	192	1550)* TONY LANCASTER APPLICATIONS OF TIME-SHARED COMPUTERS IN A STATISTICS CURRICULUM * MARTIN SCHATZOFF	JASA	6B	707	TROL MEDIAN TEST * J. L. GASTWIRTH CERTAIN UNCORRELATED NONPARAMETRIC TEST STATISTICS * MYLES HOLLANDER
JASA	68	209	A CHANCE MECHANISM OF THE VARIATION IN THE NUMBER OF BIRTHS PER COUPLE * S. N. SINGH	JASA	6B	715	ON THE EVALUATION OF DISTRIBUTION FUNCTIONS * H. L. GRAY, W.R. SCHUCANY
JASA	68	217	MINIMIZING RESPONSE ERRORS IN FINANCIAL DATA. THE POSSIBILITIES * E. SCOTTMAYNES	JASA	68	B01	CROSSROAD CHOICES FOR THE FUTURE DEVELOPMENT OF THE FEDERAL STATISTICAL SYSTEM * RAYMOND T. BOWMAN
JASA			MARKET GROWTH AND INDUSTRY CONCENTRATION * DAVID R. KAMERSCHEN	JASA			SOME PROPERTIES OF SYMMETRIC STABLE DISTRIBUTIONS * EUGENE F. FAMA. RICHARD ROLL
JASA JASA			A SIMPLIFICATION OF THE BLUS PROGEDURE FOR ANALYZING REGRESSION DISTURBANCES * HENRI THEIL ON CASH EQUIVALENTS AND INFORMATION EVALUATION IN	JASA	68	837	STATISTICAL INFERENCE IN THE CLASSICAL OCCUPANCY PROBLEM. UNBIASED ESTIMATION OF THE NUMBER OF CLASSES * BERNARD HARRIS
			DECISIONS UNDER UNCERTAINTY, PARTS I, II, AND III * IRVING H. LAVALLE	JASA			PARAMETER ESTIMATION FOR A MULTIVARIATE EXPONENTIAL DISTRIBUTION * BARRY C. ARNOLD
JASA JASA			OPTIMUM GHOICE OF GLASSES FOR CONTINGENCY TABLES * M. A. HAMDAN BIASIN MULTINOMIAL CLASSIFICATION * P. KRISHNASWAMI,	JASA	68	853	SOME TESTS OF HYPOTHESES CONCERNING THE THREE-PARAMETER WEIBULL DISTRIBUTION * LEE J. BAIN, DARREL R. THOMAN
JASA			REJESHWAR NATH AN ALGORITHM FOR THE DETERMINATION OF THE ECONOMIC	JASA	68	861	ESTIMATION OF THE LARGEST OF TWO NORMAL MEANS * SAUL BLUMENTHAL, ARTHUR COHEN
			DESIGN OF X-CHARTS BASED ON DUNCAN'S MODEL * A. L. GOEL, S. C. JAIN, S. M. WU	JASA			ANALYSIS OF EXTREME-VALUE DATA BY SAMPLE QUANTILES FOR VERY LARGE SAMPLES * KHATAB M. HASSINEIN
JASA	. 68	321	THE INVERSION OF CUMULANT OPERATORS FOR POWER-SERIES DISTRIBUTIONS, AND THE APPROXIMATE STABILIZATION OF VARIANCE BY TRANSFORMATIONS * M. G. K. TWEEDIE, A. VEEVERS	JASA	6B	889	MAXIMUM-LIKELIHOOD ESTIMATION, FROM DOUBLY CENSORED SAMPLES, OF THE PARAMETERS OF THE FIRST ASYMPTOTIC DISTRIBUTION OF EXTREME VALUES * H. LEON HARTER, ALBERTH. MOORE
JASA	6B	329	GENERALIZED HYPERBOLIC SECANT DISTRIBUTIONS * W. L. HARKNESS, M. L. HARKNESS	JASA	6B	902	AN EMPIRICAL STUDY INTO FACTORS AFFECTING THE F-TEST UNDER PERMUTATION FOR THE RANDOMIZED BLOCK DESIGN *
			ROBUSTNESS OF SUM OF SQUARED RANKS TEST * BENJAMIN S. DURAN, PAUL W. MIELKE JR	JASA	68	912	FRANK B. BAKER, RAYMOND O. COLLIER ACCURACY OF AN APPROXIMATION TO THE POWER OF THE CHI-
JASA	6B	345	AN INVESTIGATION INTO THE SMALL SAMPLE PROPERTIES OF A TWO SAMPLE TEST OF LEHMANN'S * A. A. AFIFI, R. M. ELASHOFF, P. G. LANGLEY	JASA	6B	919	SQUARE GOODNESS OF FIT TEST WITH SMALL BUT EQUAL EX- PECTED FREQUENCIES * MALGOLM J. SLAKTER KOLMOGOROV-SMIRNOV TESTS OF FIT BASED ON SOME GENERAL
JASA	68	353	REGURSIVE GENERATION OF THE DISTRIBUTION OF SEVERAL NON-PARAMETRIC TEST STATISTICS UNDER GENSORING *				BOUNDS * GIITIRO SUZUKI THE ESTIMATION OF PROBABILITY DENSITIES AND CUMULA-
JASA	68	395	ROGER A. SHORACK CONVERGENCE OF A HUMAN POPULATION TO A STABLE FORM * ANSLEY J. COALE	7404	60	057	TIVES 8Y FOURIER SERIES METHODS * R. KRONMAL, M. TARTER ACCURACY SORROWING IN THE ESTIMATION OF THE MEAN BY
JASA	68	436	*H.O. STEKLER, SUSAN W. BURCH				SHRINKAGE TO AN INTERVAL* JAMES R. THOMPSON OPTIMAL ALLOCATION IN STRATIFIED AND MULTISTAGE SAM-
JASA			LINEAR APPROXIMATIONS TO THE CENSUS AND BLS SEASONAL ADJUSTMENT METHODS * ALLAN H. YOUNG				PLES USING PRIOR INFORMATION * WILLIAM A. ERICSON USE OF DOMAIN ESTIMATORS WITH UNEQUAL PROBABILITY IN
JASA	68	472	SPECTRAL EVALUATION OF 8LS AND CENSUS REVISED SEASONAL ADJUSTMENT PROCEDURES * HARRY M. ROSEN-	TACA	60	007	SAMPLE SURVEYS * JAMES R. CONNER, DELANE E. WELSCH

JASA 68 502 FUNCTIONAL FORM IN THE DEMAND FOR MONEY * PAUL ZAREM8-KA 512 STANDARD ERRORS FOR INDEXES FROM COMPLEX SAMPLES *

BLATT

LESLIE KISH

SEASONAL ADJUSTMENT PROCEDURES * HARRY M. ROSEN-

JASA 68 530 MULTIVARIATE STRATIFIED SURVEYS * SAMPRIT CHATTERJEE JASA 68 535 ON PRODUCT MOMENTS FROM A FINITE UNIVERSE * S. N. NATH

JASA 68 542 MULTINOMIAL SAMPLING WITH PARTIALLY CATEGORIZED DATA * SAUL SLUMENTHAL

JASA 68 552 ESTIMATION IN A HETEROSCEDASTIC REGRESSION MODEL * HERSERT C. RUTEMILLER, DAVID A. BOWERS

JASA 68 993 A TWO-STATE MARKOV MODEL FOR BEHAVIORAL CHANGE * MARY H. REGIER

JASA 68 1000 NEGATIVE VARIANCE ESTIMATES AND STATISTICAL DEPEN-DENCE IN NESTED SAMPLING * RICHARD 8. MCHUGH, PAUL W. MIELKEJR

JASA 68 1004 SERIES REPRESENTATIONS OF THE DOUBLY NONCENTRAL T-DISTRIBUTION * MARAKATHA KRISHNAN

JASA 68 1013 A NOTE ON REPRESENTATIONS OF THE DOUBLY NON-CENTRAL T DISTRIBUTION * W. G. 8ULGREN, D. E. AMOS

JASA 68 1020 CONFIDENCE SANDS IN LINEAR REGRESSION WITH CON-STRAINTS ON THE INDEPENDENT VARIABLES * MAX HAL-PERIN, JOANGURIAN

- JASA 6B 1028 A NOTE ON CONFIDENCE BANDS FOR A REGRESSION LINE OVER A FINITE RANGE * OLIVE JEAN DUNN
- JASA 68 1034 A NOTE ON LOG-LINEAR REGRESSION * DALE M. HEIEN
- JASA 68 1039 A NOTE ON ESTIMATING THE MEAN OF A NORMAL DISTRIBUTION
 WITH KNOWN COEFFICIENT OF VARIATION * RASUL A. KHAN
- JASA 68 1042 A NOTE ON LINEAR REGRESSION IN TRIVARIATE DISTRIBU-TIONS * G. K. EAGLESON
- JASA 68 1091 THE ANALYSIS OF CROSS-CLASSIFIED DATA, INDEPENDENCE,
 QUASI-INDEPENDENCE, AND INTERACTIONS IN CONTINGENCY TABLES WITH OR WITHOUT MISSING ENTRIES * LEO A.
 GOODMAN
- JASA 68 1132 DIVIDEND POLICY, AN EMPIRICAL ANALYSIS * EUGENE F.
 FAMA. HARVEY BABIAK
- JASA 68 1162 MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION OF TRANSI-TION PROBABILITIES. * T. C. LEE, G. G. JUDGE, A. ZELLNER
- JASA 68 1180 SMALL SAMPLE PROPERTIES OF ALTERNATIVE ESTIMATORS OF SEEMINGLY UNRELATED REGRESSIONS * JAN KMENTA, ROY F. GILBERT
- JASA 68 1201 ESTIMATION AND INFERENCE FOR LINEAR MODELS IN WHICH
 SUBSETS OF THE DEPENDENT VARIABLE ARE CONSTRAINED *
 TIMOTHY W. MCGUIRE, JOHN U. FARLEY, ROBERT E. LUCAS
 JR. L. WINSTON RING
- JASA 68 1214 THE EXACT DISTRIBUTION OF A STRUCTURAL COEFFICIENT ESTIMATOR * DAVID H. RICHARDSON
- JASA 6B 1227 ON THE POWER OF THE BLUS PROCEDURE * J. KOERTS, A. P. J. ABRAHAMSE
- JASA 68 1237 EFFICIENCY OF THE SAMPLE MEAN WHEN RESIDUALS FOLLOW A
 FIRST-ORDER STATIONARY MARKOFF PROCESS * JOHN S.
 CHIPMAN, KOTESWARA RAO KADIYALA, ALBERT MADANSKY,
 JOHN W PRATT
- JASA 68 1247 A NOTE ON THE MEASUREMENT OF COST-QUANTITY RELATION-SHIPS IN THE AIRCRAFT INDUSTRY * A. R. GALLANT
- JASA 68 1253 A LIFE TABLE THAT AGREES WITH THE DATA. II * NATHAN
- JASA 68 1269 AN OLD APPROACH TO FINITE POPULATION SAMPLING THEORY
 * RICHARD ROYALL
- JASA 68 1280 SEVERAL METHODS OF RE-DESIGNING AREA SAMPLES UTILIZ-ING PROBABILITIES PROPORTIONAL TO SIZE WHEN THE SIZES CHANGE SIGNIFICANTLY * G. B. GRAY, R. PLATEK
- JASA 68 1298 APPROXIMATELY OPTIMAL STRATIFICATION * R. J. SERFLING

- JASA 6B 1310 THE USE OF A STRATIFICATION VARIABLE IN ESTIMATION BY
 PROPORTIONAL STRATIFIED SAMPLING * CARL-ERIK SARNDAL
- JASA 68 1321 A MODEL FOR OPTIMUM LINKAGE OF RECORDS * BENJAMIN J. TEPPING
- JASA 68 1333 ON POOLING MEANS WHEN VARIANCE IS UNKNOWN * CHIEN-PAI HAN, T. A. BANCROFT
- JASA 68 1343 A COMPARATIVE STUDY OF VARIOUS TESTS FOR NORMALITY * S.S. SHAPIRO, M.B. WILK, MRS.H.J. CHEN
- JASA 68 1373 NONPARAMETRIC CONFIDENCE REGIONS FOR SOME MUL-TIVARIATE LOCATION PROBLEMS * MADAN LAL PURI, PRANAB KUMAR SEN
- JASA 6B 1379 ESTIMATES OF THE REGRESSION COEFFICIENT BASED ON KEN-DALL'S TAU * PRANAB KUMAR SEN
- JASA 68 1390 ORDER STATISTICS FOR DISCRETE POPULATIONS AND FOR GROUPED SAMPLES * H. A. DAVID, R. S. MISHRIKY
- JASA 6B 1399 ON DISCRIMINATION USING QUALITATIVE VARIABLES * ETHEL S. GILBERT
- JASA 68 1413 APPROXIMATING THE LOWER BINOMIAL CONFIDENCE LIMIT (CORR. 69 669) * T. W. ANDERSON, HERMAN BURSTEIN
- JASA 6B 1416 A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON, RELATED TAIL PROBABILITIES, I * DAVID B. PEIZER, JOHN W. PRATT
- JASA 6B 1457 A NORMAL APPROXIMATION FOR BINOMIAL, F, BETA, AND OTHER COMMON. RELATED TAIL PROBABILITIES, II * JOHN W. PRATT
- JASA 6B 14B4 STATISTICAL DEPENDENCE BETWEEN SUBCLASS MEANS AND THE NUMBERS OF OBSERVATIONS IN THE SUBCLASSES FOR THE TWO-WAY COMPLETELY-RANDOM CLASSIFICATION * DAVID A. HARVILLE
- JASA 68 1495 CUBICAL AND SPHERICAL ESTIMATION OF MULTIVARIATE PROBABILITY DENSITY * THOMAS A. ELKINS
- JASA 68 1514 ON THE INVERSE GAUSSIAN DISTRIBUTION FUNCTION * JONATHAN SHUSTER
- JASA 68 1517 ESTIMATING FINITE-TIME MAXIMA AND MINIMA OF A STA-TIONARY GAUSSIAN ORNSTEIN-UHLENBECK PROCESS BY MONTE CARLO SIMULATION * IRVING I. GRINGORTEN
- JASA 68 1522 HOW DEVIANT CAN YOU BE. * PAUL A. SAMUELSON
- JASA 6B 1526 CONSTRUCTING AN UNBIASED RANDOM SEQUENCE * PAUL A. SAMUELSON

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION VOLUME 64,1969

- JASA 69 1 FORECASTING SHORT-TERM ECONOMIC CHANGE * GEOFFREY H
- JASA 69 23 A SUBJECTIVE EVALUATION OF BODE'S LAW AND AN 'OBJEC-TIVE' TEST FOR APPROXIMATE NUMERICAL RATIONALITY * I. J. GOOD
- JASA 69 50 DISCUSSION OF 'A SUBJECTIVE EVALUATION OF BODE'S LAW
 AND AN 'OBJECTIVE' TEST FOR APPROXIMATE NUMERICAL
 RATIONALITY' *H .O . HARTLEY, IRWIN D. J. BROSS, HERBERT A. DAVID, MARVIN ZELEN, ROLF E. BARGMANN, FRANCIS J. ANSCOMBE, MILES DAVIS, R. L. ANDERSON
- JASA 69 67 ANTICIPATIONS AND INVESTMENT BEHAVIOR IN UNITED STATES MANUFACTURING 1947-1960 * JAMES A. STEPHEN-SON, DALE W. JORGENSON
- JASA 69 90 ECONOMETRIC EXPLORATION OF INDIAN SAVING BEHAVIOR
- JASA 69 102 WORKING LIFE TABLES FOR MALES IN GHANA 1960 * G. M. K. KPEDEKPO
- JASA 69 111 SOME STOCHASTIC VERSIONS OF THE MATRIX MODEL FOR POPU-LATION DYNAMICS * Z. M. SYKES

 JASA 69 131 PLAY THE WINNER RULE AND THE CONTROLLED CLINICAL TRIAL
- * MARVIN ZELEN

 JASA 69 147 THE MULTIPLE SAMPLE UP-AND-DOWN METHOD IN BIOASSAY *
- BARTHOLOMEW P. HIST

 JASA 69 163 A SOLUTION TO THE PROBLEM OF LINKING MULTIVARIATE
- DOCUMENTS * N. S. D'ANDREA DU BOIS

 JASA 69 175 SOME METHODS OF PROBABILITY NON-REPLACEMENT SAMPLING
- JASA 69 194 CONCEPTS OF INDEPENDENCE FOR PROPORTIONS WITH A A GENERALIZATION OF THE DIRICHLET DISTRIBUTION *
- JAMES E. MOSIMANN, ROBERT J. CONNOR

 JASA 69 207 LAMST AND THE HYPOTHESES OF NO THREE FACTOR INTERACTION IN CONTINGENCY TABLES * B. N. NAGNUR
- JASA 69 216 THE COMPOUND MULTINOMIAL DISTRIBUTION AND BAYESIAN
 ANALYSIS OF CATERGORICAL DATA FROM FINITE POPULATIONS * A . BRUCE HOADLEY
- JASA 69 230 NOTE ON THE MULTIVARIATE AND THE GENERALIZED MUL-TIVARIATE BETA DISTRIBUTIONS * WAI-YUAN TAN
- JASA 69 242 THE T-RATIO DISTRIBUTION * S. JAMES PRESS
- JASA 69 253 SMALL-SAMPLE PROPERTIES OF SEVERAL TWO-STAGE REGRES—
 SION METHODS IN THE CONTEXT OF AUTOCORRELATED ERRORS
 * ZVI GRILICHES, POTLURI RAO

- JASA 69 273 ON THEIL'S MIXED REGRESSION ESTIMATOR * R. A. V. B. SWAMY, J. S. MEHTA
- JASA 69 277 THE EQUILIBRIUM COVARIANCE MATRIX OF DYNAMIC ECONOMETRIC MODELS * JOHN CONLISK
- JASA 69 2BO TESTS FOR RANDOMNESS OF DIRECTIONS AGAINST TWO CIRCU-LAR ALTERNATIVES * MICHAEL A. STEPHENS
- JASA 69 290 A GENERALIZATION OF THE T-METHOD OF MULTIPLE COM-PARISONS * P. K. SEN
- JASA 69 296 INTERVAL ESTIMATION OF THE LARGEST MEAN OF K NORMAL POPULATIONS WITH KNOWN VARIANCES * K. M. LALSAXENA, Y. L. TONG
- JASA 69 300 ASYMPTOTIC JOINT DISTRIBUTION OF LINEAR SYSTEMATIC STATISTICS FROM MULTIVARIATE DISTRIBUTIONS * M. M. SIDDIQUI, CALVIN BUTLER
- JASA 69 306 EXACT THREE, ORDER STATISTIC CONFIDENCE BOUNDS ON RE-LIABLE LIFE FOR A WEIBULL MODEL WITH PROGRESSIVE CENSORING * NANCY R. MANN
- JASA 69 316 A NEW TEST FOR HETEROSKEDASTICITY * H. GLEJSER
- JASA 69 324 SIMULTANEOUS CONFIDENCE INTERVALS FOR VARIANCES * DONALDR. JENSEN, M. Q. JONES
- JASA 69 333 AN INEQUALITY FOR A CLASS OF BIVARIATE CHI-SQUARE DIS-TRIBUTIONS * DONALD R. JENSEN
- JASA 69 337 MISSING OBSERVATIONS IN MULTIVARIATE STATISTICS, III
 * ROBERT M. ELASHOFF. A. A. AFIFI
- JASA 69 359 MISSING OBSERVATIONS IN MULTIVARIATE STATISTICS, IV

 *ROBERT M. ELASHOFF, A. A. AFIFI

 JASA 69 366 CORRELATION COEFFICIENTS MEASURED ON THE SAME IN-
- DIVIDUALS * OLIVE JEAN DUNN, VIRGINIA CLARK
 JASA 69 378 SHORTER CONFIDENCE INTERVALS USING PRIOR OBSERVA-
- $\label{total constraints} {\tt TIONS*W.J.ZIMMER,JOHNDEELY}$ ${\tt JASA~69~387}$ ON THE KOLMOGOROV-SMIRNOV TEST FOR THE EXPONENTIAL
- DISTRIBUTION WITH MEAN UNKNOWN * H. W. LILLIEFORS

 JASA 69 415 VALIDATION OF CONSUMER FINANCIAL CHARACTERISTICS,

COMMON STOCK * ROBERT FERBER, JOHN FORSYTHE, HAROLD

- W. GUTHRIE, E. SCOTT MAYNES

 JASA 69 433 AGE PATTERNS OF MORTALITY OF AMERICAN NEGROES, 190002 TO 1959-61 * MARVIN ZELNIK
- JASA 69 452 THE ACCURACY OF INTERNATIONAL TRADE DATA, THE CASE OF SOUTHEAST ASIAN COUNTRIES * SEIJI NAYA, THEODORE MORGAN

- JASA 69 468 EXAMPLES OF LIKELIHOODS AND COMPARISON WITH POINT ESTIMATES AND LARGE SAMPLE APPROXIMATIONS * D. A. SPROTT, JOHN D. KALBFLEISCH
- JASA 69 4B5 SOME ASPECTS OF THE STATISTICAL ANALYSIS OF 'SPLIT PLOT' EXPERIMENTS IN COMPLETELY RANDOMIZED LAYOUTS * CARY G. KOCH
- JASA 69 506 INTEGER PROGRAMMING AND THE THEORY OF GROUPING * HRISHIKESHD.VINOD
- JASA 69 520 THE UNRELATED QUESTION RANDOMIZED RESPONSE MODEL,
 THEORETICAL FRAMEWORK * BERNARD G. GREENBERG,
 ABDEL-LATIF A. ABUL-ELA, WALT R. SIMMONS, DANIEL G.
 HORVITZ
- JASA 69 540 AN EMPIRICAL STUDY OF THE STABILITIES OF ESTIMATORS
 AND VARIANCE ESTIMATORS IN UNEQUAL PROBABILITY SAMPLING OF TWO UNITS PER STRATUM * J. N. K. RAO, D. L.
 BAYLESS
- JASA 69 560 PLANNING SOME TWO-FACTOR COMPARATIVE SURVEYS * GORDON BOOTH. J. SEDRANSK
- JASA 69 574 COMPARISON OF FOUR RATIO-TYPE ESTIMATES UNDER A MODEL
 * PODURI S. R. S. RAO
- JASA 69 5B1 SPECTRAL PROPERTIES OF NON-STATIONARY SYSTEMS OF LINEAR STOCHASTIC DIFFERENCE EQUATIONS * GREGORY C. CHOW. RICHARD E. LEVITAN
- JASA 69 591 AN APPROXIMATION TO THE WILCOXON-MANN-WHITNEY DISTRIBUTION * N. BUCKLE, C. H. KRAFT, C. VAN EEDEN
- JASA 69 600 A RECURRENCE RELATION FOR DISTRIBUTION FUNCTIONS OF ORDER STATISTICS FROM BIVARIATE DISTRIBUTIONS * CHANDAN KUMAR MUSTAFI
- JASA 69 602 DISCRETE DISTRIBUTION ESTIMATORS FROM THE RECURRENCE EQUATION FOR PROBABILITIES * C. A. MCGILCHRIST
- JASA 69 610 TWO-SIDED TOLERANCE LIMITS FOR NORMAL POPULATIONS, SOME IMPROVEMENTS * W. G. HOWE
- JASA 69 621 LIFE TESTING AND RELIABILITY ESTIMATION FOR THE TWO PARAMETER EXPONENTIAL DISTRIBUTION * S. D. VARDE
- JASA 69 632 A TABLE FOR ESTIMATING THE MEAN OF A LOGNORMAL DISTRIBUTION * HANSPETER THONI
- JASA 69 637 CRITICAL VALUES FOR BIVARIATE STUDENT T-TEST * F. E. STEFFENS
- JASA 69 647 NEW CHEBYSHEV POLYNOMIAL APPROXIMATIONS TO MILLS'
 RATIO*PHILIPRABINOWITZ
- JASA 69 655 THE DISTRIBUTION OF THE LOGARITHM OF THE SUM OF TWO LOG-NORMAL VARIATES * J. I. NAUS
- JASA 69 660 CONFIDENCE REGIONS FOR VARIANCE RATIOS OF RANDOM MODELS*L.D.BROEMELING
- JASA 69 665 THE COMPUTATION OF THE UNRESTRICTED AOQL WHEN DEFEC-TIVE MATERIAL IS REMOVED BUT NOT REPLACED * ALLEN C . ENDRES
- JASA 69 739 PROBLEMS OF STATISTICAL INFERENCE IN HEALTH WITH SPE-CIAL REFERENCE TO THE CIGARETTE SMOKING AND LUNG CANCER CONTROVERSY * B. G. GREENBERG
- JASA 69 759 AN ADAPTIVE PROCEDURE FOR SEQUENTIAL CLINICAL TRIALS
 * JEROME CORNFIELD, MAX HALPERIN. SAMUEL W. GREEN-HOUSE
- JASA 69 771 THE MEASUREMENT OF PRICE CHANGES IN CONSTRUCTION * JOHN C. MUSGRAVE
- JASA 69 787 GROSS STATE PRODUCT AND AN ECONOMETRIC MODEL OF A STATE * W. L. L'ESPERANCE, G. NESTEL, D. FROMM
- JASA 69 80B USING FACTOR ANALYSIS TO ESTIMATE PARAMETERS * JAG-DISH N. SHETH
- JASA 69 823 THE EXCEEDANCE TEST FOR TRUNCATION OF A SUPPLIER'S DATA * J. J. DEELY. D. E. AMOS, G. P. STECK
- JASA 69 B30 ESTIMATION IN MULTI-STAGE SURVEYS * ALASTAIR SCOTT, T.M.F.SMITH
- JASA 69 B41 VARIANCE ESTIMATION WITH ONE UNIT PER STRATUM * H. O HARTLEY, J. N. K. RAO, GRACE KIEFER
- JASA 69 852 THE EFFECT OF NON-SAMPLING ERRORS ON MEASURES OF AS-SOCIATION IN 2-BY-2 CONTINGENCY TABLES * GARY G.
- JASA 69 B64 MORE RESULTS ON PRODUCT MOMENTS FROM A FINITE UNIVERSE
 * S. N. NATH
- JASA 69 B70 TABLES OF CRITICAL VALUES OF SOME RENYI TYPE
 STATISTICS FOR FINITE SAMPLE SIZES * Z. W. BIRNBAUM
 B.P. LIENTZ
- JASA 69 B7B FACTORS FOR CALCULATING TWO-SIDED PREDICTION INTER-VALS FOR SAMPLES FROM A NORMAL DISTRIBUTION * GERALD H. HAHN
- JASA 69 B89 ON THE CLASSICAL RUIN PROBLEMS * LAJOS TAKACS
- JASA 69 907 A NOTE ON HOEFFDING'S INEQUALITY * O. KRAFFT, N. SCHMITZ
- JASA 69 913 AITKEN ESTIMATORS AS A TOOL IN ALLOCATING PREDETER-MINED AGGREGATES * ALAN POWELL
- JASA 69 923 THE EXACT SAMPLING DISTRIBUTION OF ORDINARY LEAST
 SQUARES AND TWO-STAGE LEAST SQUARES ESTIMATORS *
 TAKAMITSU SAWA
- JASA 69 93B A COMPARISON BETWEEN THE POWER OF THE DURBIN-WATSON
 TEST AND THE POWER OF THE BLUS TEST * A. P. J.
 ABRAHAMSE. J. KOFRTS
- JASA 69 949 A NOTE ON BLUS ESTIMATION * H. NEUDECKER

- JASA 69 953 SOME THEOREMS ON MATRIX DIFFERENTIATION WITH SPECIAL REFERENCE TO KRONECKER MATRIX PRODUCTS * H. NEU-DECKER
- JASA 69 964 ON A RESTRICTED LEAST SQUARES ESTIMATOR * M. ATIQULLAH
 JASA 69 969 A USEFUL LEMMA FOR PROVING THE EQUALITY OF TWO
 MATRICES WITH APPLICATIONS TO LEAST SQUARES TYPE
 QUADRATIC FORMS * GARY G. KOCH
- JASA 69 971 THE MEDIAN SIGNIFICANCE LEVEL AND OTHER SMALL SAMPLE
 MEASURES OF TEST EFFICIENCY * BRIAN L. JOINER
- JASA 69 986 THE EQUAL PROBABILITY TEST AND ITS APPLICATIONS TO SOME SIMULTANEOUS INFERENCE PROBLEMS * UMESH D. NAIK
- JASA 69 999 TESTING AND ESTIMATING OF SCALE PAREMENTERS * GALEN R. SHORACK
- JASA 69 1014 ESTIMATORS OF VARIANCE COMPONENTS IN THE BALANCED IN-COMPLETE BLOCK * LEONE Y. LOW
- JASA 69 1031 DISCRIMINATION INTERVALS FOR PERCENTILES IN REGRES-SION * ROBERT G. EASTERLING
- JASA 69 1042 COMBINATIONS OF UNBIASED ESTIMATORS OF THE MEAN WHICH
 CONSIDER INEQUALITY OF UNKNOWN VARIANCES * J. A.
 MEHTA, JOHN GURLAND
- JASA 69 1056 ON NON-REGULAR ESTIMATION, I. VARIANCE BOUNDS FOR
 ESTIMATORS OF LOCATION PARAMETERS * W. R. BLISCHKE,
 A.J. TRULOVE, P.B. MUNDLE
- JASA 69 1073 SCORING RULES AND THE EVALUATION OF PROBABILITY AS-SESSORS * ROBERT L. WINKLER
- JASA 69 1079 CURVE FITTING BY SEGMENTED STRAIGHT LINES * RICHARD BELLMAN, ROBERT ROTH
- JASA 69 NO.4 WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR
 WILLIAM N. HURWITZ. PROFESSOR WILLIAM N. HURWITZ **
 MORRIS H. HANSEN
- JASA 69 NO.4 WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. SOME BASIC PRINCIPLES OF STATISTICAL SURVEYS * JOSEPH F. DALY
- JASA 69 NO.4 WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR
 WILLIAM N. HURWITZ. THE DEVELOPMENT OF HOUSEHOLD
 SAMPLE SURVEYS * MAX A. BERSHAD, BENJAMIN J. TEPPING
- JASA 69 NO.4 WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR
 WILLIAM N. HURWITZ. CHANGES IN CENSUS METHODS *
 JOSEPH WAKSBERG, LEON PRITZKER
- JASA 69 NO.4 WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR
 WILLIAM N. HURWITZ. ON WILLIAM HURWITZ * W. EDWARDS
 DEMTING
- JASA 69 NO.4 WASHINGTON STATISTICAL SOCIETY MEMORIAL MEETING FOR WILLIAM N. HURWITZ. COMMENTS * LESTER R. FRANKEL
- JASA 69 NO.4 STATISTICAL PROBLEMS IN SCIENCE. THE SYMMETRIC TEST
 OF A COMPLETE HYPOTHESIS * JERZY NEYMAN
- JASA 69 NO.4 REGRESSION ON A RANDOM FIELD * AYALA COHEN, RICHARD H.
- JASA 69 NO.4 A THEORY FOR RECORD LINKAGE * IVAN P. FELLEGI, ALAN B. SUNTER
- JASA 69 NO.4 A STATISTICAL MODEL OF BOOK USE AND ITS APPLICATION TO
 THE BOOK STORAGE PROBLEM * A. K. JAIN, F. F. LEIMKUHLER, V. L. ANDERSON
- JASA 69 NO.4 THE FORECASTING ACCURACY OF CONSUMER ATTITUDE DATA * S. W. BURCH, H. O. STEKLER
- JASA 69 NO.4 HIGHER FEMALE THAN MALE MORTALITY IN SOME COUNTRIES OF SOUTH ASIA, A DIGEST * M. A. EL-BADRY
- JASA 69 NO.4 RELATIVE COSTS OF COMPUTERIZED ERROR INSPECTION PLANS
 * ROBERT T. O'REAGAN
- JASA 69 NO.4 INSPECTION AND CORRECTION ERROR IN DATA PROCESSING *
 GEORGE MINTON
- JASA 69 NO.4 A NOTE ON 'LEARNING CURVES' * EUGENE W. PIKE
- JASA 69 NO.4 STUDENT'S T-TEST UNDER SYMMETRY CONDITIONS * BRADLEY EFRON
- JASA 69 NO.4 USING SUBSAMPLE VALUES AS TYPICAL VALUES * J. A. HAR-TIGAN
- JASA 69 NO.4 SOME REMARKS ON SCHEFFE'S SOLUTION TO THE BEHRENS-FISHER PROBLEM * MORRIS L. EATON
- JASA 69 NO.4 SYMMETRY AND MARGINAL HOMOGENEITY OF AN R-BY-R CON-TINGENCY TABLE * C. T. IRELAND, H. H. KU, S. KULLBACK
- JASA 69 NO.4 BAYES SEQUENTIAL DESIGNS OF FIXED SIZE SAMPLES FROM FINITE POPULATIONS * SHELLEY ZACKS
- JASA 69 NO.4 A NOTE ON THE 'NECESSARY BEST ESTIMATOR' * JACKL. OGUS
- JASA 69 NO.4 PARAMETRIC AUGMENTATIONS AND ERROR STRUCTURES UNDER
 WHICH CERTAIN SIMPLE LEAST SQUARES AND ANALYSIS OF
 VARIANCE PROCEDURES ARE ALSO BEST * GEORGE ZYSKIND
- JASA 69 NO.4 VARIANCE OF WEIGHTED REGRESSION ESTIMATORS WHEN SAM-PLING ERRORS ARE INDEPENDENT AND HETEROSCEDASTIC * T. R. BEMENT, J. S. WILLIAMS
- JASA 69 NO.4 MEAN SQUARE EFFICIENCY OF ESTIMATORS OF VARIANCE COM-PONENTS* J. H. KLOTZ, R. C. MILTON, S. ZACKS
- JASA 69 NO.4 APPLICATION OF AN ESTIMATOR OF HIGH EFFICIENCY IN
 BIVARIATE EXTREME VALUE THEORY * JOHN C. ASHLOCK,
 EDWARD C. POSNER, EUGENE R. RODEMICH, SANDRA LURIE
- JASA 69 NO.4 A COMPOUNDED MULTIPLE RUNS DISTRIBUTION * JAMES E. DUNN
- JASA 69 NO.4 FIRST AND SECOND MOMENTS OF THE RANDOMIZATION TEST IN
 TWO ASSOCIATE PBIB DESIGNS * ROBERT CLEROUX

- JASA 69 NO.4 ERRORS IN THE ESTIMATION OF NET MICRATION IN THE STU-DIES OF INTERNAL MICRATION * M. SIVAMURTHY
- JASA 69 NO.4 ON THE EXACT COVARIANCE OF PRODUCTS OF RANDOM VARIA-BLES * GEORGE W. BOHRNSTEDT, ARTHURS. COLDBERCER
- JASA 69 NO.4 THE SAMPLINC DISTRIBUTION OF THE RANCE FROM DISCRETE
 UNIFORM FINITE POPULATIONS AND A RANCE TEST FOR
 HUNGSPHILDER FORDER L. GONNO.
- HOMOCENEITY*ROBERT J. CONNOR

 JASA 69 NO.4 ESTIMATION OF FINITE MIXTURES OF DISTRIBUTIONS FROM
 THE EXPONENTIAL FAMILY*VICTOR HASSELBLAD
- JASA 69 NO.4 SOME CRITERIA FOR ACINC * MAURICE C. BRYSON, M. M. SID-DIQUI
- JASA 69 NO.4 A BAYES RULE FOR THE SYMMETRIC MULTIPLE COMPARISONS PROBLEM * DAVID B. DUNCAN. RAY A. WALLER
- JASA 69 NO.4 TWO-STACE NORMAL SAMPLING IN TWO-ACTION PROBLEMS WITH LINEAR ECONOMICS * ARTHURS. SCHLEIFER JR
- JASA 69 NO.4 A NOTE ON A DOUBLE SAMPLE TEST * JOHN E. HEWETT, WILLIAM C. BULCREN. D. E. AMOS
- JASA 69 NO.4 A CLASS OF SEQUENTIAL TESTS FOR AN EXPONENTIAL PARAME-TER*D.C.HOEL, M.MAZUMDAR
- JASA 69 NO.4 MOMENTS OF THE DISTRIBUTION OF SAMPLE SIZE IN A SPRT * B. K. CHOSH

- JASA 69 NO.4 MULTIVARIATE MAXIMA AND MINIMA WITH MATRIX DERIVA-TIVES * DERRICKS. TRACY, PAULS. DWYER
- JASA 69 NO.4 A MULTIVARIATE EXTENSION OF FRIEDMAN'S CHI-SQUARE-SUB-R-TEST * THOMAS M. CERIC
- JASA 69 NO.4 MISSINC OBSERVATIONS IN MULTIVARIATE REGRESSION, EF-FICIENCY OF A FIRST ORDER METHOD * H. H. KELEJIAN
- JASA 69 NO.4 BOUNDS AND APPROXIMATIONS FOR THE MOMENTS OF ORDER STATISTICS * PRAKASH C. JOSHI
- JASA 69 NO.4 ON THE EXACT AND APPROXIMATE SAMPLINC DISTRIBUTION OF THE TWO SAMPLE KOLMOCOROV-SMIRNOV CRITERION D-SUB-MN, M LESS THAN OR EQUAL TO N * P. J. KIM
- JASA 69 NO.4 SOME NUMERICAL COMPARISONS OF SEVERAL APPROXIMATIONS
 TO THE BINOMIAL DISTRIBUTION * FRIEDRICH CEBHARDT
- JASA 69 NO.4 PERCENTACE POINTS OF A TEST FOR CLUSTERS * L. ENGEL-MAN, J. A. HARTICAN
- JASA 69 NO.4 TABLES FOR THE MEAN SQUARE ERROR TEST FOR EXACT LINEAR RESTRICTIONS IN RECRESSION * T. D. WALLACE, C. E. TORO-VIZCARRONDO
- JASA 69 NO.4 A NOMOCRAM FOR THE 'STUDENT'*FISHER T TEST * WILLIAM C.BOYD

JRSSB54	1 DISTRIBUTION-FREE TESTS IN TIME-SERIES BASED ON THE	JRSSB54	186 LIMITS
	BREAKING OF RECORDS (WITH DISCUSSION) * F. G.		MONIC
	FOSTER, A. STUART	JRSSB54	195 CONFIDE
JRSSB54	23 A POOR MAN'S MONTE CARLO (WITH DISCUSSION) * J. M. HAM-		TOREG
	MERSLEY. K. W. MORTON	IRSSR54	223 PROBLEM

K22B24	20	APU	NAM AU	S MON .		SUPO (MITHI	DISCOSSION) - J. M. HAM-	
		ME	RSLEY,	K. W.	MORT	ron			
RSSB54	39	THE	APPLIC	CATION	OF	AUTOMATIC	COMPUTERS	TO SAMPLING	

- EXPERIMENTS (WITH DISCUSSION) * K. D. TOCHER JRSSB54 76 TRANSPOSED BRANCHING PROCESSES * J. M. HAMMERSLEY, K. W. MORTON JRSSB54 80 ON QUEUEING PROCESSES WITH BULK SERVICE * N. T. J.
- BAILEY JRSSB54 88 THE DISTRIBUTION OF HETEROGENEITY UPON INBREEDING *
- J.H. BENNETT JRSSB54 100 THE FACTORIAL ANALYSIS OF CROP PRODUCTIVITY * CHAR-LOTTE BANKS
- JRSSB54 112 SOME EXPERIMENTS ON THE PREDICTION OF SUNSPOT NUMBERS * P. A. P. MORAN
- 11B GRADING WITH A GAUGE SUBJECT TO RANDOM OUTPUT FLUCTUA-JRSSB54 TIONS * L. MANDEL
- JRSSB54 131 CONTROL CHARTS FOR THE MEAN OF A NORMAL POPULATION * E. S. PAGE
- 136 AN IMPROVEMENT TO WALD'S APPROXIMATION FOR SOME PRO-JRSSB54 PERTIES OF SEQUENTIAL TESTS * E. S. PAGE 140 THE ERRORS OF LATTICE SAMPLING * H. O. PATTERSON
- JRSSB54
- 151 SAMPLING INSPECTION AND STATISTICAL DECISIONS (WITH JRSSB54 DISCUSSION) * G. A. BARNARD
- 175 SOME PROBLEMS IN INTERVAL ESTIMATION (WITH DISCUS-JRSSB54 SION) * E. C. FIELLER

EVENTS (WITH DISCUSSION) * D. R. COX

- FOR THE RATIO OF MEANS (WITH DISCUSSION) * CAA. CREASY
- DENCE INTERVALS FOR PARAMETERS IN MARKOV AU-GRESSIVE SCHEMES (WITH DISCUSSION) * S. T. DAVID
- JRSSB54 223 PROBLEMS OF SAMPLE ALLOCATION AND ESTIMATION IN AN AGRICULTURAL SURVEY * B. M. CHURCH
- JRSSB54 236 A METHOD OF SAMPLING WITH PROBABILITY EXACTLY PROPOR-TIONAL TO SIZE * P. M. GRUNDY
- JRSSB54 239 A SIMPLE PRESENTATION OF OPTIMUM SAMPLING RESULTS * A. STUART
- JRSSB54 242 THE ANALYSIS OF A FACTORIAL EXPERIMENT (WITH CON-FOUNDING) ON AN ELECTRONIC CALCULATOR * J. G. ROWELL
- JRSSB54 247 TRACES AND CUMULANTS OF QUADRATIC FORMS IN NORMAL VARIABLES * H. O. LANCASTER
- JRSSB54 255 A FURTHER APPROXIMATION TO THE DISTRIBUTION OF WIL-COXON'S STATISTIC IN THE GENERAL CASE * R. M. SUNDRUM
- 261 TESTING THE APPROXIMATE VALIDITY OF STATISTICAL HYPOTHESES * J. L. HODGES JR., E. L. LEHMANN JRSSB54
- 269 ON THE CUMULATIVE EFFECT OF CHANCE DEVIATIONS * F. JRSSB54 BERZ.
- 285 A TABLE FOR PREDICTING THE PRODUCTION FROM A GROUP OF JRSSB54 MACHINES UNDER THE CARE OF ONE OPERATIVE * D. R. COX
- 288 A CONTINUOUS TIME TREATMENT OF A SIMPLE QUEUE USING JRSSB54 GENERATING FUNCTIONS * N. T. J. BAILEY
- 292 A REVISED TEST FOR SYSTEMATIC OSCILLATION * J. JOHN-JRSSB54 STON

* V. P. GODAMBE

296 A NOTE ON THE MULTIPLYING FACTORS FOR VARIOUS CHI-JRSSB54 SQUARE APPROXIMATIONS * M. S. BARTLETT

	JOURNAL OF THE ROYAL STATISTICAL	SOCIETY,	SERIES B VOLUME 17, 1955
JRSSB55	1 PERMUTATION THEORY IN THE DERIVATION OF ROBUST CRITERIA AND THE STUDY OF DEPARTURES FROM ASSUMPTION	JRSSB55	165 AN OUTLINE OF LINEAR PROGRAMMING AN OUTLINE OF LINEAR PROGRAMMING (WITH DISCUSSION) * S. VAJDA
JRSSB55	(WITH DISCUSSION) * G. E. P. BOX, S. L. ANDERSEN 35 SOME PROBLEMS IN THE STATISTICAL ANALYSIS OF EPIDEMIC	JRSSB55	173 ON MINIMIZING A CONVEX FUNCTION SUBJECT TO LINEAR IN- EQUALITIES (WITH DISCUSSION) * E . M . L . BEALE
	DATA (WITH DISCUSSION) * NORMAN T. J. BAILEY	JRSSB55	185 A CONTRIBUTION TO THE 'TRAVELLING-SALESMAN' PROBLEM
JRSSB55	69 STATISTICAL METHODS AND SCIENTIFIC INDUCTION * SIR RONALD FISHER	JRSSB55	(WITH DISCUSSION) * G. MORTON, A. H. LAND
JRSSB55	79 PIVOTAL QUANTITIES FOR WISHART'S AND RELATED DIS-	7422822	204 STATISTICAL CONCEPTS IN THEIR RELATION TO REALITY * E. S. PEARSON
	TRIBUTIONS, AND A PARADOX IN FIDUCIAL THEORY * J. G.	JRSSB55	20B THE COMPARISON OF MEANS OF SETS OF OBSERVATIONS FROM
JRSSB55	MAULDON 86 CONFIDENCE INTERVALS FOR THE PARAMETER OF A DISTRIBU-		SECTIONS OF INDEPENDENT STOCHASTIC SERIES * G. H. JOWETT
01100200	TION ADMITTING A SUFFICIENT STATISTIC WHEN THE RANGE DEPENDS ON THE PARAMETER * V . S . HUZURBAZAR	JRSSB55	228 A NOTE ON THE PERIODOGRAM OF THE BEVERIDGE WHEAT PRICE INDEX*J.C.GOWER
JRSSB55	91 LEAST SQUARES REGRESSION ANALYSIS FOR TREND-REDUCED TIME SERIES * G. H. JOWETT	JRSSB55	235 SOME DISTRIBUTION AND MOMENT FORMULAE FOR THE MARKOV CHAIN * P. WHITTLE
JRSSB55	105 A NUMERICAL INVESTIGATION OF LEAST SQUARES REGRESSION INVOLVING TREND-REDUCED MARKOFF SERIES * J. F.	JRSSB55	243 SOME APPLICATIONS OF ZERO-ONE PROCESSES * Z. A. LOM- NICKI, S. K. ZAREMBA
	SCOTT, V. J. SMALL	JRSSB55	
JRSSB55	115 A SAMPLING EXPERIMENT ON THE POWERS OF THE RECORDS TESTS FOR TREND IN A TIME SERIES * F. G. FOSTER, D.	JRSSB55	262 A NOTE ON EQUALISING THE MEAN WAITING TIMES OF SUCCES- SIVE CUSTOMERS IN A FINITE QUEUE * NORMAN T. J. BAILEY
	TEICHROEW	JRSSB55	264 ON THE WEIGHTED COMBINATION OF SIGNIFICANCE TESTS * I.
JRSSB55	122 MOMENTS OF NEGATIVE ORDER AND RATIO-STATISTICS * H. A. DAVID	ID 00D	J. GOOD
JRSSB55	124 A RECTIFYING INSPECTION PLAN * ZIVIA S. WURTELE	JRSSB55	266 A SIGNIFICANCE TEST FOR THE DIFFERENCE IN EFFICIENCY BETWEEN TWO PREDICTORS * M. J. R. HEALY

	JOURNAL OF THE ROYAL STATISTICAL	L SOCIETY, SERIES B VOLUME 18, 1956
JRSSB56	1 SOME TESTS OF SIGNIFICANCE WITH ORDERED VARIABLES * F. N. DAVID, N. L. JOHNSON	JRSSB56 129 RANDOM QUEUEING PROCESSES WITH PHASE-TYPE SERVICE * R. R. P. JACKSON
JRSSB56	32 ECONOMIC CHOICE OF THE AMOUNT OF EXPERIMENTATION * P. M. GRUNDY, M. J. R. HEALY, D. H. REES	JRSSB56 133 THE WITHIN-ANIMAL BIOASSAY WITH QUANTAL RESPONSES * P. J. CLARINGBOLD
JRSSB56	56 ON A TEST OF SIGNIFICANCE IN PEARSON'S BIOMETRIKA TA- BLES (NO. 11) * SIR RONALD FISHER	JRSSB56 139 GENERALIZATIONS OF TCHEBYCHEFF'S INEQUALITIES (WITH DISCUSSION) * C. L. MALLOWS
JRSSB56	61 A TEST OF SIGNIFICANCE FOR AN UNIDENTIFIABLE RELATION * P. A. P. MORAN	JRSSB56 177 SOME STATISTICAL PROBLEMS IN EXPERIMENTAL PSYCHOLOGY (WITH DISCUSSION) * VIOLET R. CANE
JRSSB56	65 CONFIDENCE LIMITS FOR THE GRADIENT IN THE LINEAR FUNC- TIONAL RELATIONSHIP * MONICA A. CREASY	JRSSB56 202 GENERALIZED HYPERGEOMETRIC DISTRIBUTIONS * C. D. KEMP, A.W.KEMP
JRSSB56	70 ALGEBRAIC THEORY OF THE COMPUTING ROUTINE FOR TESTS OF SIGNIFICANCE ON THE DIMENSIONALITY OF NORMAL MUL-	JRSSB56 212 NEW TABLES OF BEHREN'S TEST OF SIGNIFICANCE * R. A. FISHER, M. J. R. HEALY
1000000	TIVARIATE SYSTEMS * F. E. BINET, G. S. WATSON	JRSSB56 217 FUDUCIAL DISTRIBUTIONS AND PRIOR DISTRIBUTIONS, AN
JRSSB56	79 SOME NOTES ON ORDERED RANDOM INTERVALS * D. E. BARTON, F. N. DAVID	EXAMPLE IN WHICH THE FORMER CANNOT BE ASSOCIATED WITH THE LATTER * P. M. GRUNDY
JRSSB56	95 A SEQUENTIAL TEST FOR RANDOMNESS OF INTERVALS * D. J. BARTHOLOMEW	JRSSB56 222 SOME METHODS OF ESTIMATING THE PARAMETERS OF DISCRETE HETEROGENEOUS POPULATIONS * JOHN E. FREUND
JRSSB56	104 PARTITIONS IN MORE THAN ONE DIMENSION * J. H. BENNETT	JRSSB56 227 THE ASYMPTOTIC POWERS OF CERTAIN TESTS BASED ON MULTI-

JRSSB55 129 SOME STATISTICAL METHODS CONNECTED WITH SERIES OF JRSSB55 269 A UNIFIED THEORY OF SAMPLING FROM FINITE POPULATIONS

- 113 ON THE ESTIMATION OF SMALL FREQUENCIES IN CONTINGENCY PLE CORRELATIONS * E. J. HANNAN JRSSB56 234 TESTS FOR RANDOMNESS IN A SERIES OF EVENTS WHEN THE AL-TABLES * I. J. GOOD JRSSB56 125 AN ELEMENTARY METHOD OF SOLUTION OF THE QUEUEING TERNATIVE IS A TREND * D. J. BARTHOLOMEW
 - PROBLEM WITH A SINGLE SERVER AND CONSTANT PARAMETERS JRSSB56 240 REGRESSION ANALYSIS OF RELATIONSHIPS BETWEEN AU-TOCORRELATED TIME SERIES * J. WISE * D. G. CHAMPERNOWNE

JRSSB56 280 ON MACHINE INTERFERENCE * P. NAOR JRSSB56 257 EXPECTED ARC LENGTH OF A CAUSSIAN PROCESS ON A FINITE INTERVAL * IRWIN MILLER, JOHN E. FREUND 288 NOTE ON AN ARTICLE BY SIR RONALD FISHER * JERZY NEYMAN JRSSB56 259 ANALYSIS OF DISPERSION WITH INCOMPLETE OBSERVATIONS JRSSB56 JRSSB56 295 COMMENT ON SIR RONALD FISHER'S PAPER. 'ON A TEST OF ON ONE OF THE CHARACTERS * C. RADHAKRISHNA RAO SICNIFICANCE IN PEARSON'S BIOMETRIKA TABLES (NO. JRSSB56 265 ON LIMITING DISTRIBUTIONS ARISING IN BULK SERVICE 11) ' * M. S. BARTLETT QUEUES * F. DOWNTON 275 SOME EQUILIBRIUM RESULTS FOR THE QUEUEINC PROCESS E-297 NOTE ON SOME CRTICISMS MADE BY SIR RONALD FISHER * B. L. JRSSB56 JRSSB56 SUB-K-M-1 * R. R. P. JACKSON, D. G. NICKOLS WELCH JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B VOLUME 19, 1957 1 THE SPECTRAL ANALYSIS OF TIME SERIES (WITH DISCUS-JRSSB57 179 COMMENT ON THE NOTES BY NEYMAN, BARTLETT AND WELCH IN JRSSB57 SION) * C. M. JENKINS, M. B. PRIESTLEY THIS JOURNAL (VOL. 18, NO. 2, 1956) * SIR RONALD 13 ON ESTIMATING THE SPECTRAL DENSITY FUNCTION OF A JRSSB57 FISHER STOCHASTIC PROCESS (WITH DISCUSSION) * Z. A. LOM-JRSSB57 1B1 PROBLEMS IN THE PROBABILITY THEORY OF STORAGE SYSTEMS (WITH DISCUSSION) * J. GANI NICKI, S. K. ZAREMBA 3B CURVE AND PERIODOCRAM SMOOTHING (WITH DISCUSSION) * 207 SOME PROBLEMS IN THE THEORY OF DAMS (WITH DISCUSSION) JRSSB57 JRSSB57 P. WHITTLE * D. C. KENDALL 64 DISTRIBUTIONS ASSOCIATED WITH RANDOM WALK AND RECUR-JRSSB57 JRSSB57 234 ROUTINE ANALYSIS OF REPLICATED EXPERIMENTS ON AN RENT EVENTS (WITH DISCUSSION) * J. C. SKELLAM, L. R. ELECTRONIC COMPUTER (WITH DISCUSSION) * F. YATES, M. SHENTON J. R. HEALY, S. LIPTON JRSSB57 119 A COMPARISON OF TWO SORTS OF TEST FOR A CHANCE OF LOCA-JRSSB57 255 A MINIMAX PROCEDURE FOR CHOOSING BETWEEN TWO POPULA-TION APPLICABLE TO TRUNCATED DATA * D. E. BARTON TIONS USING SEQUENTIAL SAMPLING * R. J. MAURICE JRSSB57 125 CONFIRMING STATISTICAL HYPOTHESES * M. C. BULMER JRSSB57 262 SUFFICIENT STATISTICS, SIMILAR RECIONS AND DISTRIBU-1.33 SEQUENTIAL CONFIDENCE INTERVALS FOR THE MEAN OF A NOR-JRSSB57 TION-FREE TESTS * C. S. WATSON MAL POPULATION WITH UNKNOWN VARIANCE * W. D. RAY JRSSB57 268 ON THE USE OF THE NORMAL APPROXIMATION IN THE TREAT-JRSSB57 144 JOINT ASYMPTOTIC DISTRIBUTION OF THE MEDIAN AND A U-MENT OF STOCHASTIC PROCESSES * P. WHITTLE STATISTIC * B. V. SUKHATME 282 THE VARIANCE OF THE MEAN OF A STATIONARY PROCESS * E. J. JRSSB57 JRSSB57 149 THE EFFICIENCY OF THE RECORDS TEST FOR TREND IN NORMAL HANNAN RECRESSION * A. STUART 2B6 METHODS OF CONSTRUCTION AND ANALYSIS OF SERIALLY JRSSB57 154 SOME EXPERIMENTAL DESIGNS OF USE IN CHANGING FROM ONE JRSSB57 BALANCED SEQUENCES * M . R . SAMPFORD SET OF TREATMENTS TO ANOTHER, PART 1 * G. H. FREEMAN JRSSB57 163 SOME EXPERIMENTAL DESIGNS OF USE IN CHANCING FROM ONE JRSSB57 305 THE MODIFIED LATIN SQUARE * B. ROJAS, R. F. WHITE SET OF TREATMENTS TO ANOTHER, PART 2, EXISTENCE OF JRSSB57 318 ANALYSIS OF VARIANCE AS AN ALTERNATIVE TO FACTOR ANAL-THE DESIGNS * G. H. FREEMAN YSIS * M. A. CREASY 166 THE EFFICIENCY OF N MACHINES UNI-DIRECTIONALLY JRSSB57 JRSSB57 326 SOME FURTHER RESULTS IN THE NON-EQUILIBRIUM THEORY OF PATROLLED BY ONE OPERATOR WHEN WALKING TIME AND A SIMPLE QUEUE * N. T. J. BAILEY REPAIR TIMES ARE CONSTANTS * C. MACK, T. MURPHY, N. JRSSB57 334 NORMAL APPROXIMATION TO MACHINE INTERFERENCE WITH L. WEBB MANY REPAIR MEN * P. NAOR JRSSB57 173 THE EFFICIENCY OF N MACHINES UNI-DIRECTIONALLY PATROLLED BY ONE OPERATOR WHEN WALKING TIME IS CON-342 STATIONARY DISTRIBUTIONS OF THE NEGATIVE EXPERIMEN-JRSSB57 STANT AND REPAIR TIMES ARE VARIABLE * C. MACK TAL TYPE FOR THE INFINITE DAM * J. GANI. N. U. PRABHU

JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B VOLUME 20. 1958 JRSSB58 1 STATISTICAL APPROACH TO PROBLEMS OF COSMOLOGY (WITH JRSSB58 193 THE ANALYSIS OF LATIN SQUARE DESIGNS WITH INDIVIDUAL CURVATURES IN ONE DIRECTION * C. P. COX DISCUSSION) * J. NEYMAN, ELIZABETH L. SCOTT JRSSB58 JRSSB58 44 ON CHI-SQUARE GOODNESS-OF-FIT TESTS FOR CONTINUOUS 205 DILUTION SERIES, A STATISTICAL TEST OF TECHNIQUE DISTRIBUTIONS (WITH DISCUSSION) * G. S. WATSON (CORR. 59 23B) * W. L. STEVENS JRSSB58 73 THE MATCHING DISTRIBUTIONS, POISSON LIMITING FORMS JRSSB58 215 THE REGRESSION ANALYSIS OF BINARY SEQUENCES (WITH AND DERIVED METHODS OF APPROXIMATION * D. E. BARTON DISCUSSION) (CORR. 59 238) * D. R. COX JRSSB5B 93 THELINDISFARNE SCRIBES ' PROBLEM * S. D. SILVEY JRSSB58 243 RENEWAL THEORY AND ITS RAMIFICATIONS (WITH DISCUS-102 FIDUCIAL DISTRIBUTIONS AND BAYES' THEOREM * D. V. SION) * WALTER L. SMITH JRSSB5B LINDLEY JRSSB58 303 ON ASYMPTOTICALLY EFFICIENT CONSISTENT ESTIMATES OF JRSSB5B 108 ON THE EXACT DISTRIBUTION OF A TEST IN MULTIVARIATE THE SPECTRAL DENSITY FUNCTION OF A STATIONARY TIME ANALYSIS * D. P. BANERJEE SERIES * EMANUEL PARZEN 111 THE INSPECTION OF A MARKOV PROCESS * S. R. BROADBENT 323 THE ESTIMATION OF THE SPECTRAL DENSITY AFTER TREND JRSSB5B JRSSB58 JRSSB58 120 THE FITTING OF MARKOFF SERIAL VARIATION CURVES * HILDA REMOVAL * E. J. HANNAN M. DAVES, G. H. JOWETT 334 ON THE SMOOTHING OF PROBABILITY DENSITY FUNCTIONS * P. JRSSB58 JRSSB5B 143 THE ASYMPTOTIC POWERS OF CERTAIN TESTS OF GOODNESS OF WHITTLE FIT FOR TIME SERIES * E. J. HANNAN JRSSB5B 344 EXPERIMENTS WITH MIXTURES (CORR. 59 238) * HENRY JRSSB5B 152 BANDWIDTH AND VARIANCE IN ESTIMATION OF THE SPECTRUM SCHEFFE * U. GRENANDER JRSSB5B 361 THE INTERACTION ALGORITHM AND PRACTICAL FOURIER ANAL-158 THE COMPARISON OF CORRELATIONS IN TIME-SERIES * M. H. JRSSB5B YSIS * I. J. GOOD QUENOUILLE JRSSB58 373 EQUALLY CORRELATED VARIATES AND THE MULTINORMAL IN-JRSSB58 165 A DIFFERENCE EQUATION TECHNIQUE APPLIED TO THE SIMPLE TEGRAL * ALAN STUART 379 FORMULAE FOR CALCULATING THE OPERATING CHARAC-QUEUE * B. W. CONOLLY JRSSB58 16B A DIFFERENCE EQUATION TECHNIQUE APPLIED TO THE SIMPLE JRSSB58 TERISTIC AND THE AVERAGE SAMPLE NUMBER OF SOME SEQUENTIAL TESTS * K. W. KEMP QUEUE WITH ARBITRARY ARRIVAL INTERVAL DISTRIBUTION * B. W. CONOLLY JRSSB5B 3B7 ON CORRECTIONS TO THE CHI-SQUARED DISTRIBUTION * J. H. JRSSB58 176 THE CONTINUOUS TIME SOLUTION OF THE EQUATIONS OF THE DARWIN SINGLE CHANNEL QUEUE WITH A GENERAL CLASS OF JRSSB58 393 SAMPLING WITHOUT REPLACEMENT WITH PROBABILITY PRO-SERVICE-TIME DISTRIBUTIONS BY THE METHOD OF PORTIONAL TO SIZE * W. L. STEVENS GENERATING FUNCTIONS * G. LUCHAK JRSSB58 398 MULTIVARIATE QUANTAL ANALYSIS * P. J. CLARINGBOLD JRSSB58 JRSSB5B 182 THE EFFECT OF THE SIZE OF THE WAITING ROOM ON A SIMPLE 406 A CONCISE DERIVATION OF GENERAL ORTHOGONAL POLYNOMI-QUEUE * P. D. FINCH ALS * C. P. COX JRSSB58 1B7 INTERVAL ANALYSIS AND THE LOGARITHMIC TRANSFORMATION JRSSB5B 408 A SIMPLIFIED MODEL FOR DELAYS IN OVERTAKING ON A TWO-

JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B VOLUME 21, 1959

LANEROAD * J. C. TANNER

JRSSB59 1 GEOMETRIC DISTRIBUTIONS IN THE THEORY OF QUEUES (WITH JRSSB59 36 BEHAVIOUR SEQUENCES AS SEMI-MARKOV CHAINS (WITH DISCUSSION) * C. B. WINSTEN DISCUSSION) * VIOLET R. CANE

* P. G. MOORE

JRSSB59	59	ON A MULTIVARIATE VERSION OF FIELLER'S THEOREM * B. M. BENNETT	JRSSB59 JRSSB59	201 EXPERIMENTS WITH MIXTURES * M. H. QUENOUILLE 203 A DIFFERENT LOSS FUNCTION FOR THE CHOICE BETWEEN TWO
JRSSB59	63	THE PROCESS CURVE AND THE EQUIVALENT MIXED BINOMIAL WITH TWO COMPONENTS * M. K. VACHOLKAR	JRSSB59	POPULATIONS * RITA J. MAURICE 214 CENSORED OBSERVATIONS IN RANDOMIZED BLOCK EXPERI-
JRSSB59 JRSSB59		THE INFORMATION IN AN EXPERIMENT * C. L. MALLOWS THE BEHRENS-FISHER DISTRIBUTION AND WEICHTED MEANS *	JRSSB59	MENTS * M. R. SAMPFORD, J. TAYLOR 239 CONTROL CHARTS AND STOCHASTIC PROCESSES (WITH DISCUS-
JRSSB59	91	G.S. JAMES THE ESTIMATION OF RELATIONSHIPS WITH AUTOCORRELATED	JRSSB59	SION)* C. A. BARNARD 272 OPTIMUM EXPERIMENTAL DESIGNS (WITH DISCUSSION) * J.
		RESIDUALS BY THE USE OF INSTRUMENTAL VARIABLES * J. D. SARCAN	JRSSB59	KEIFER 320 A CONTRIBUTION TO THE THEORY OF BULK QUEUES * RUPERT C.
JRSSB59 JRSSB59		ON SOME PROBLEMS OF MACHINE INTERFERENCE * S. K. NASR ON THE DISTRIBUTION OF VARIOUS SUMS OF SQUARES IN AN	JRSSB59	MILLER JR 33B MAXIMIZING A FUNCTION IN A CONVEX REGION * G. ZOUTEN-
		ANALYSIS OF VARIANCE TABLE FOR DIFFERENT CLASSIFI- CATIONS WITH CORRELATED AND NON-HOMOGENEOUS ERRORS * B. R. BHAT	JRSSB59	DIJK 356 ESTIMATION OF LOCATION AND SCALE PARAMETERS FOR THE RECTANGULAR POPULATION FROM CENSORED SAMPLES * A. E.
JRSSB59		CONTACIOUS OCCUPANCY * D. E. BARTON, F. N. DAVID	IBGG050	SARHAN, B. G. GREENBERG
JRSSB59		THE LIMITING FREQUENCIES OF INTEGERS WITH A GIVEN PAR- TITIONAL CHARACTERISTIC * W. F. BODMER	JRSSB59 JRSSB59	364 THE DISTRIBUTION OF VACANCIES ON A LINE * E.S. PAGE 375 THE OUTPUT PROCESS OF THE QUEUEING SYSTEM WITH ONE
JRSSB59	144	SOME SIMPLE DURATION-DEPENDENT STOCHASTIC PROCESSES * A. MERCER		SERVER AND WHICH INTERARRIVAL AND SERVINC DISTRIBU- TIONS ARE EXPONENTIAL AND CENERAL INDEPENDENT
JRSSB59 JRSSB59		CYCLIC QUEUES WITH FEEDBACK * P. D. FINCH A STATISTICAL THEORY OF REMNANTS * J. AITCHISON	JRSSB59	RESPECTIVELY*P.D.FINCH 3B1 THE EFFICIENCY OF AUTOMATIC WINDING MACHINES WITH
JRSSB59		BANDWIDTH AND RESOLVABILITY IN STATISTICAL SPECTRAL ANALYSIS * Z. A. LOMNICKI, S. K. ZAREMBA	JRSSB59	CONSTANT PATROLLING TIME * A. J. HOWIE, L. R. SHENTON 396 THE COMPARISON OF REGRESSION VARIABLES * E. J. WIL-
JRSSB59		ON A PROPERTY OF INCOMPLETE BLOCKS * R. MORLEY JONES		LIAMS
JRSSB59		A RENEWAL PROBLEM WITH BULK ORDERING OF COMPONENTS * D.R.COX	JRSSB59	400 THE MOST ECONOMICAL SEQUENTIAL SAMPLING SCHEME FOR INSPECTION BY VARIABLES * G. B. WETHERILL
JRSSB59	190	THE DISPERSION OF A NUMBER OF SPECIES * D. E. BARTON, F. N. DAVID	JRSSB59	409 NOTE ON FISHER'S TRANSFORMATION OF THE CORRELATION COEFFICIENT* N. F. LAUBSCHER
JRSSB59	195	ON A DISCRIMINATORY PROBLEM CONNECTED WITH THE WORKS OF PLATO * D. R. COX, L. BRANDWOOD	JRSSB59	411 THE ANALYSIS OF EXPONENTIALLY DISTRIBUTED LIFE-TIMES WITH TWO TYPES OF FAILURE * D. R. COX
		JOURNAL OF THE ROYAL STATISTICAL	SOCIETY,	SERIES B VOLUME 22, 1960
JRSSB60	1	ON SELECTING THE LARCEST OF K NORMAL POPULATION MEANS	JRSSB60	270 A PROBLEM OF DELAYED SERVICE, 2 * A. BEN-ISRAEL, P.
JRSSB60	41	(WITH DISCUSSION) * C. W. DUNNETT CONFIDENCE REGIONS IN NON-LINEAR ESTIMATION (WITH	JRSSB60	NAOR 277 ON THE TRANSIENT BEHAVIOUR OF A SIMPLE QUEUE * P.D.
JRSSB60	89	DISCUSSION) * E. M. L. BEALE THE BUSY PERIOD IN RELATION TO THE SINGLE-SERVER	JRSSB60	FINCH 285 QUEUEING AT A SINGLE SERVING POINT WITH CROUP ARRIVAL
		QUEUEING SYSTEM WITH GENERAL INDEPENDENT ARRIVALS AND ERLANGIAN SERVICE-TIME * B. W. CONOLLY	JRSSB60	*8.W.CONOLLY 299 ON SOME EXTENSIONS OF BAYESIAN INFERENCE PROPOSED BY
JRSSB60	97	A NOTE ON PREDICTION FROM AN AUTORECRESSIVE PROCESS USING PISTIMETRIC PROBABILITY * A. D. ROY	JRSSB60	MR LINDLEY * R. A. FISHER 302 A METHOD OF ESTIMATION OF MISSING VALUES IN MUL-
JRSSB60	104	SOME RESULTS FOR THE QUEUE WITH POISSON ARRIVALS * N. U. PRABHU	01.00000	TIVARIATE DATA SUITABLE FOR USE WITH AN ELECTRONIC COMPUTER * S. F. BUCK
JRSSB60	108	A QUEUEINC PROBLEM IN WHICH THE ARRIVAL TIMES OF THE CUSTOMERS ARE SCHEDULED * A. MERCER	JRSSB60	307 ESTIMATION OF PARAMETERS OF A MULTIVARIATE NORMAL POPULATION FROM TRUNCATED AND CENSORED SAMPLES *
JRSSB60	114	THE TWO-PACK MATCHING PROBLEM * A. W. JOSEPH, M. T. L.	IDGGDCO	NAUNIHALSINCH
JRSSB60	131	BIZLEY ON THE THEORY OF CLASSICAL RECRESSION AND DOUBLE SAM-	JRSSB60	312 NECESSARY RESTRICTIONS FOR DISTRIBUTIONS A POSTERI- ORI * D. A. SPROTT
JRSSB60	139	PLINCESTIMATION * B. D. TIKKIWAL ESTIMATION OF PARAMETERS IN TIME-SERIES REGRESSION	JRSSB60	319 WEICHT OF EVIDENCE, CORROBORATION, EXPLANATORY POWER, INFORMATION AND THE UTILITY OF EXPERIMENTS
		MODELS * J. DURBIN	JRSSB60	(CORR. 6B 203) * I. J. GOOD 332 THE LOGISTIC PROCESS, TABLES OF THE STOCHASTIC
JRSSB60	154	MAXIMUM-LIKELIHOOD ESTIMATION PROCEDURES AND AS- SOCIATED TESTS OF SIGNIFICANCE * J. AITCHISON, S. D. SILVEY		EPIDEMIC CURVE AND APPLICATIONS * EDWIN MANSFIELD, CARLTON HENSLEY
JRSSB60	172	REGRESSION ANALYSIS WHEN THERE IS PRIOR INFORMATION ABOUT SUPPLEMENTARY VARIABLES * D.R.COX	JRSSB60 JRSSB60	338 SOMENOTES ON PISTIMETRIC INFERENCE * A. D. ROY 348 EVALUATION OF DETERMINANTS, CHARACTERISTIC EQUA- TIONS AND THEIR ROOTS FOR A CLASS OF PATTERNED
JRSSB60	177	A TABLE OF THE INTECRAL OF THE BIVARIATE NORMAL DISTRIBUTION OVER AN OFFSET CIRCLE * J. R. LOWE	JRSSB60	MATRICES * S. N. ROY, B. G. GREENBERC, A. E. SARHAN 360 BOUNDS FOR THE EXPECTED SAMPLE SIZE IN A SEQUENTIAL
JRSSB60	188	ON THE DISTRIBUTION OF THE WEICHTED DIFFERENCE OF TWO	JRSSB60	PROBABILITY RATIO TEST * M. N. GHOSH 36B A NOTE ON TESTS OF HOMOCENEITY APPLIED AFTER SEQUEN-
JRSSB60	195	INDEPENDENT STUDENT VARIABLES * H . RUBEN MODELS IN THE ANALYSIS OF VARIANCE (WITH DISCUSSION)	JRSSB60	TIAL SAMPLING * D. R. COX 372 THE INTERACTION ALGORITHM AND PRACTICAL FOURIER ANAL-
JRSSB60	21B	* R. L. PLACKETT DISCRETE STOCHASTIC PROCESSES IN POPULATION GENETICS	JRSSB60	YSIS, AN ADDENDUM * I. J. GOOD 376 APPROXIMATE SOLUTIONS OF GREEN'S TYPE FOR UNIVARIATE
JRSSB60	245	(WITH DISCUSSION) * W. F. BODMER A PROBLEM OF DELAYED SERVICE, 1 * A. BEN-ISRAEL, P.	JRSSB60	STOCHASTIC PROCESSES * H. E. DANIELS 402 THE WILLOXON TEST AND NON-NULL HYPOTHESES * G. B.
		NAOR		WETHERILL
		JOURNAL OF THE ROYAL STATISTICAL	SOCIETY,	SERIES B VOLUME 23, 1961
JRSSB61	1	CONSISTENCY IN STATISTICAL INFERENCE AND DECISION (WITH DISCUSSION) (CORR 66 252) * C A B SMITH	JRSSB61	143 A BULK-SERVICE QUEUEINC PROBLEM WITH VARIABLE CAPACI-

	JOURNAL OF THE ROYAL STATISTICAL	SOCIETY, SERIES B VOLUME 25, 1961
JRSSB61	1 CONSISTENCY IN STATISTICAL INFERENCE AND DECISION (WITH DISCUSSION) (CORR. 66 252) * C.A.B. SMITH	JRSSB61 143 A BULK-SERVICE QUEUEINC PROBLEM WITH VARIABLE CAPACITY*N. K. JAISWAL
JRSSB61	38 DELAYS ON A TWO-LANE ROAD (WITH DISCUSSION) * J. C. TANNER	JRSSB61 149 THE AVERAGE RUN LENGTH OF THE CUMULATIVE SUM CHART WHEN A V-MASK IS USED * K. W. KEMP
JRSSB61	64 A QUEUEING MODEL FOR ROAD TRAFFIC FLOW (WITH DISCUS- SION) * A. J. MILLER	JRSSB61 154 AN UNBIASED ESTIMATOR FOR POWERS OF THE ARITHMETIC MEAN * G. J. GLASSER
JRSSB61 JRSSB61	91 A SIMPLE METHOD OF TREND CONSTRUCTION * C. E. V. LESER 108 CONFIDENCE LIMITS FOR MULTIVARIATE RATIOS * B. M. BENNETT	JRSSB61 160 ESTIMATION OF THE PARAMETERS OF A LINEAR FUNCTIONAL RELATION * M. DORFF, J. GURLAND
JRSSB61	113 THE SOLUTION OF QUEUEINC AND INVENTORY MODELS BY SEMI- MARKOV PROCESSES * A. J. FABENS	JRSSB61 171 REPLY TO MR QUENOUILLE'S COMMENTS ABOUT MY PAPER ON MIXTURES * H. SCHEFFE
JRSSB61	12B THE ASYMPTOTIC EFFICIENCY OF DANIELS'S CENERALIZED CORRELATION COEFFICIENTS * D. J. G. FARLIE	JRSSB61 173 THE TIME-DEPENDENT SOLUTION FOR AN INFINITE DAM WITH DISCRETE ADDITIVE INPUTS * G. F. YEO

JRSSB61	1BO THE REAL STABLE CHARACTERISTIC FUNCTIONS AND CHAOTIC ACCELERATION * I. J. COOD	JRSSB61	385 CLOSED QUEUEINC SYSTEMS, A CENERALIZATION OF THE MACHINE INTERFERENCE MODEL * F. BENSON, G CRECORY
	1B4 INACCURACY AND INFERENCE * D. F. KERRIDCE 195 A TEST OF HOMOCENEITY FOR ORDERED VARIANCES * S. E.	JRSSB61	394 TESTING FOR A JUMP IN THE SPECTRAL FUNCTION * E. J. HAN-
	VINCENT	JRSSB61	405 MOMENTS OF A TRUNCATED BIVARIATE NORMAL DISTRIBUTION
	207 A NOTE ON VACANCIES ON A LINE * F. DOWNTON 215 A SIMPLE CONCESTION SYSTEM WITH INCOMPLETE SERVICE *	JRSSB61	* S. ROSENBAUM 409 MIXTURES OF CEOMETRIC DISTRIBUTIONS * H. E. DANIELS
	D.R.COX	JRSSB61	414 PREDICTION BY EXPONENTIALLY WEICHTED MOVING AVERACES
JRSSB61	223 THE MOMENT CENERATING FUNCTION OF THE TRUNCATED MULTI-NORMAL DISTRIBUTION * C. M. TALLIS	JRSSB61	AND RELATED METHODS * D. R. COX 423 THE RANDOMIZATION BASES OF THE PROBLEM OF THE AMALCA-
JRSSB61	230 A NOTE ON THE RENEWAL FUNCTION WHEN THE MEAN RENEWAL LIFETIME IS INFINITE * W. L. SMITH	0.100001	MATION OF WEIGHTED MEANS * D. E. BARTON, C. L. MAL- LOWS
JRSSB61	239 A TEST OF HOMOCENEITY OF MEANS UNDER RESTRICTED ALTER-	JRSSB61	434 ESTIMATION FROM QUANTILES IN DESTRUCTIVE TESTING * H.
JRSSB61	NATIVES (WITH DISCUSSION) * D. J. BARTHOLOMEW 282 OPTIMAL PROGRAMMERS FOR VARIETAL SELECTION (WITH	.IRSSB61	P. STOUT, F. STERN 444 A NOTE ON MAXIMUM-LIKELIHOOD IN THE CASE OF DEPENDENT
	DISCUSSION) * R. N. CURNOW	01100001	RANDOM VARIABLES * S. D. SILVEY
JRSSB61	319 SOME STOCHASTIC PROCESSES WITH ABSORBING BARRIERS * T. L. SAATY	JRSSB61	453 ON SOME PROPERTIES OF THE ASYMPTOTIC VARIANCE OF THE SAMPLE QUANTILES AND MID-RANGES * P. K. SEN
JRSSB61	335 SOME SEQUENTIAL TEST USING RANGE * W. C. CILCHRIST	JRSSB61	460 SIMILARITIES BETWEEN LIKELIHOODS AND ASSOCIATED DIS-
JRSSB61	343 FIRSTEMPTINESS IN A FINITE DAM * B. WEESAKUL	JRSSB61	TRIBUTIONS A POSTERIORI * D. A. SPROTT 469 A METHOD OF MAXIMUM-LIKELIHOOD ESTIMATION * F. S. G.
JRSSB61	352 THE CONSTRUCTION OF OPTIMAL DESIGNS FOR THE ONE-WAY CLASSIFICATION ANALYSIS OF VARIANCE * J. AITCHISON		RICHARDS
JRSSB61	36B SOME SIMPLE WEAR-DEPENDENT RENEWAL PROCESSES * A.	JRSSB61	476 THE INTERVALS BETWEEN RECULAR EVENTS DISPLACED IN TIME BY INDEPENDENT RANDOM DEVIATIONS OF LARGE
	MERCER		DISPERSION * T. LEWIS
JRSSB61	377 AN EXACT DISTRIBUTION OF THE BEHRENS-FISHER-WELCH STATISTIC FOR TESTING THE DIFFERENCE BETWEEN THE	JRSSB61	4B4 AN APPROACH TO THE SCHEDULING OF JOBS ON MACHINES * E. S. PAGE
	MEANS OF TWO NORMAL POPULATIONS WITH UNKNOWN VARI-	JRSSB61	493 ON QUADRATIC ESTIMATES OF THE INTERCLASS VARIANCE FOR
	ANCES * W. D. RAY, A. E. N. T. PITMAN		UNBALANCED DESIGNS * R. R. READ
	JOURNAL OF THE ROYAL STATISTICAL	SOCIETY,	SERIES B VOLUME 24, 1962
JRSSB62	1 SOME RESULTS ON INVENTORY PROBLEMS (WITH DISCUSSION) * A. R. THATCHER	JRSSB62	265 CONFIDENCE SETS FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION (WITH DISCUSSION) * C. M. STEIN
JRSSB62	46 EFFICIENT ESTIMATES AND OPTIMUM INFERENCE PROCEDURES IN LARCE SAMPLES (WITH DISCUSSION) * C. R. RAO	JRSSB62	297 SOME STATISTICAL ASPECTS OF ADAPTIVE OPTIMIZATION AND CONTROL (WITH DISCUSSION) * G. E. P. BOX, C. M. JEN-
JRSSB62	73 A WAITING LINE WITH INTERRUPTED SERVICE, INCLUDING	VD 000000	KINS
JRSSB62	PRIORITIES * D. P. GAVER JR 91 TIME-DEPENDENT SOLUTION OF THE 'HEAD-OF-THE-LINE'	JRSSB62	344 THE GENERAL BULK QUEUE AS A HILBERT PROBLEM (CORR. 64 487) * J. KEILSON
	PRIORITY QUEUE * N. K. JAISWAL	JRSSB62	359 QUEUES IN SERIES * A. GHOSAL
JRSSB62	102 INEQUALITIES FOR FIRST EMPTINESS PROBABILITIES OF A DAM WITH ORDERED INPUTS * J. GANI, R. PYKE	JRSSB62	364 ON THE LENCTHS OF INTERVALS IN A STATIONARY POINT PROCESS (CORR. 63 500) * J. A. MCFADDEN

	JOURNAL OF THE ROYAL STATISTICAL	SOCIETY,	SERIES B VOLUME 24, 1962
JRSSB62	1 SOME RESULTS ON INVENTORY PROBLEMS (WITH DISCUSSION) * A.R. THATCHER	JRSSB62	265 CONFIDENCE SETS FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION (WITH DISCUSSION) * C. M. STEIN
JRSSB62	46 EFFICIENT ESTIMATES AND OPTIMUM INFERENCE PROCEDURES IN LARCE SAMPLES (WITH DISCUSSION) * C. R. RAO	JRSSB62	297 SOME STATISTICAL ASPECTS OF ADAPTIVE OPTIMIZATION AND CONTROL (WITH DISCUSSION) * G. E. P. BOX, C. M. JEN-
JRSSB62	73 A WAITINC LINE WITH INTERRUPTED SERVICE, INCLUDING PRIORITIES * D. P. GAVER JR	JRSSB62	KINS 344 THE GENERAL BULK QUEUE AS A HILBERT PROBLEM (CORR. 64
JRSSB62	91 TIME-DEPENDENT SOLUTION OF THE 'HEAD-OF-THE-LINE'		487) * J. KEILSON
	PRIORITY QUEUE * N. K. JAISWAL	JRSSB62	359 QUEUES IN SERIES * A. GHOSAL
	102 INEQUALITIES FOR FIRST EMPTINESS PROBABILITIES OF A DAM WITH ORDERED INPUTS * J. GANI, R. PYKE	JRSSB62	364 ON THE LENCTHS OF INTERVALS IN A STATIONARY POINT PROCESS (CORR. 63 500) * J. A. MCFADDEN
JRSSB62	107 CONGESTION SYSTEMS WITH INCOMPLETE SERVICE (CORR. 64	JRSSB62	
	365) * F. DOWNTON	JRSSB62	393 SOME OPTIMAL SEQUENTIAL SCHEMES FOR ESTIMATING THE
JRSSB62	112 SUBSIDIARY SEQUENCES FOR SOLVING LESER'S LEAST-		MEAN OF A CUMULATIVE NORMAL QUANTAL RESPONSE CURVE *
	SQUARES CRADUATION EQUATIONS * A. W. JOSEPH		B. L. MARKS
JRSSB62	11B SOME EXAMPLES OF BAYES' METHOD OF THE EXPERIMENTAL		401 PROBLEMS OF SELECTION WITH RESTRICTIONS * C. R. RAO
	DETERMINATION OF PROBABILITIES A PRIORI * SIR ROLAND FISHER	JRSSB62	406 FURTHER RESULTS ON TESTS OF SEPARATE FAMILIES OF HYPOTHESES * D. R. COX
JRSSB62	125 EXACT FIDUCIAL LIMITS IN NON-LINEAR ESTIMATION * E. J. WILLIAMS	JRSSB62	425 ON THE CONSISTENCY OF THE FIDUCIAL METHOD * D. A. S. FRASER
	140 ON THE EFFECT OF NON-NORMALITY ON THE ESTIMATION OF COMPONENTS OF VARIANCE * M. ATIQULLAH	JRSSB62	435 ESTIMATION OF MEANS AND STANDARD ERRORS IN THE ANALY- SIS OF NON-ORTHOGONAL EXPERIMENTS BY ELECTRONIC COMPUTER *G H. FREEMAN. J. N. R. JEFFERS
JRSSB62	148 ON THE DISTRIBUTION OF CERTAIN QUADRATIC FORMS IN NOR-	ADCCDCO	447 ON THE COMPARISON OF THE SENSITIVITIES OF EXPERIMENTS
vn aanaa	MAL VARIATES * B. R. BHAT	JK22B65	*S.N.DAR
JK22862	152 A NOTE ON A CENERALIZED INVERSE OF A MATRIX WITH APPLI- CATIONS TO PROBLEMS IN MATHEMATICAL STATISTICS * C.	JRSSB62	454 APPROXIMATE CONFIDENCE LIMITS FOR THE RELATIVE RISK
	R. RAO		(CORR. 63 234) * J. J. GART
	159 ON MULTIVARIATE SICN TESTS * B. M. BENNETT	JRSSB62	464 THE USE OF CONTROL OBSERVATIONS AS AN ALTERNATIVE TO
JRSSB62	162 A NOTE ON INTERACTIONS IN CONTINGENCY TABLES * R. L.		INCOMPLETE BLOCK DESIGNS * M. ATIQULLAH, D. R. COX
	PLACKETT		472 A SIMPLE RANDOMIZATION PROCEDURE * M. SANDELIUS
	167 ON THE ASYMPTOTIC SUFFICIENCY OF CERTAIN ORDER STATISTICS * M. S. ROHATCI	JRSSB62	4B2 ON A SIMPLE PROCEDURE OF UNEQUAL PROBABILITY SAMPLING WITHOUT REPLACEMENT * J. N. K. RAO, H. O. HARTLEY, W.
JRSSB62	177 A NEW ASYMPTOTIC EXPANSION FOR THE NORMAL PROBABILITY		C. COCHRAN
JRSSB62	INTEGRAL AND MILL'S RATIO * H. RUBEN 180 ESTIMATORS FOR THE PRODUCT OF ARITHMETIC MEANS * C. J.	JRSSB62	492 SAMPLING PROPERTIES OF TESTS OF COODNESS-OF-FIT FOR LINEAR AUTORECRESSIVE SCHEMES * K. C. CHANDA
	GLASSER	JRSSB62	511 ANALYSIS OF STATIONARY PROCESSES WITH MIXED SPECTRA,
	1B5 THE ESTIMATION OF SPECTRAL DENSITIES * H. E. DANIELS		2 * M. B. PRIESTLEY
JRSSB62	199 THE ESTIMATION OF SLOPE WHEN THE ERRORS ARE AUTOCORRE—	JRSSB62	530 THE USE OF A GENERALIZED MULTINOMIAL DISTRIBUTION IN
JRSSB62	LATED * G. M. JENKINS, J. CHANMUGAN 215 THE ANALYSIS OF STATIONARY PROCESSES WITH MIXED SPEC-		THE ESTIMATION OF CORRELATION IN DISCRETE DATA * G. M. TALLIS
	TRA, 1 * M. B. PRIESTLEY	IDEEDEO	535 CUMULANTS OF TRUNCATED MULTINORMAL DISTRIBUTIONS * D.
JRSSB62	234 LARGE-SAMPLE RESTRICTED PARAMETRIC TESTS * JOHN	SOGGAN	555 COMMULANTS OF TRUNCATED MULTINORMAL DISTRIBUTIONS * D.

	DIRITOI W. D. NORRIOI	Wallood the bitographs of the third the control of the
JRSSB62	177 A NEW ASYMPTOTIC EXPANSION FOR THE NORMAL PROBABILITY	C. COCHRAN
	INTEGRAL AND MILL'S RATIO * H. RUBEN	JRSSB62 492 SAMPLING PROPERTIES OF TESTS OF COODNESS-OF-FIT FOR
JRSSB62	180 ESTIMATORS FOR THE PRODUCT OF ARITHMETIC MEANS * C. J.	LINEAR AUTORECRESSIVE SCHEMES * K. C. CHANDA
	GLASSER	JRSSB62 511 ANALYSIS OF STATIONARY PROCESSES WITH MIXED SPECTRA.
JRSSB62	1B5 THE ESTIMATION OF SPECTRAL DENSITIES * H. E. DANIELS	2 * M. B. PRIESTLEY
JRSSB62	199 THE ESTIMATION OF SLOPE WHEN THE ERRORS ARE AUTOCORRE-	JRSSB62 530 THE USE OF A GENERALIZED MULTINOMIAL DISTRIBUTION IN
	LATED * G. M. JENKINS, J. CHANMUGAN	THE ESTIMATION OF CORRELATION IN DISCRETE DATA * G.
JRSSB62	215 THE ANALYSIS OF STATIONARY PROCESSES WITH MIXED SPEC-	M. TALLIS
	TRA, 1 * M. B. PRIESTLEY	
JRSSB62	234 LARGE-SAMPLE RESTRICTED PARAMETRIC TESTS * JOHN	JRSSB62 535 CUMULANTS OF TRUNCATED MULTINORMAL DISTRIBUTIONS * D.
	AITCHISON	J. FINNEY
JRSSB62	251 INTERACTIONS IN MULTI-FACTOR CONTINGENCY TABLES * J.	JRSSB62 537 NOTE ON A PAPER BY RAY AND PITMAN +(FISHER-BEHRENS-
	N. DARROCH	STATISTIC) * J. GURLAND
	JOURNAL OF THE ROYAL STATISTIC	CAL SOCIETY, SERIES B VOLUME 25, 1963
JRSSB63	1 SEQUENTIAL ESTIMATION OF QUANTAL RESPONSE CURVES	JRSSB63 100 ON DIRECT PROBABILITIES * A. P. DEMPSTER
	(WITH DISCUSSION) * G. B. WETHERILL	JRSSB63 111 SOME LOGICAL ASPECTS OF THE FIDUCIAL ARGUMENT * G. A.
JRSSB63	49 CONTROL CHARTS AND THE MINIMIZATION OF COSTS (WITH	BARNARD
	DISCUSSION) * J. A. BATHER	
JRSSB63	81 TESTS OF GOODNESS OF FIT * F. J. ANSCOMBE	JRSSB63 115 ON SUFFICIENCY AND THE EXPONENTIAL FAMILY * D. A. S.
JRSSB63	95 A COMPARISON OF THE DIRECT AND FIDUCIAL ARGUMENTS IN	FRASER
	THE ESTIMATION OF A PARAMETER * E . J . WILLIAMS	JRSSB63 124 THE LOGIC OF LEAST SQUARES * G. A. BARNARD
		493
		170
374 - 53	35 O = 70 = 32	

JRSSB63	128	FIDUCIAL LIMITS FOR A VARIANCE COMPONENT * M. J. R. HEALY	JRSSB63	348	MULTIVARIATE LINEAR HYPOTHESIS WITH LINEAR RESTRIC- TIONS * D. G. KABE
		THE EPOCHS OF EMPTINESS OF A SEMI-INFINITE DISCRETE RESERVOIR * E. H. LLOYD	JRSSB63	352	APPLICATIONS OF JORDAN'S PROCEDURE FOR MATRIX INVERSION IN MULTIPLE REGRESSION AND MULTIVARIATE
JRSSB63	137	THE DISTRIBUTION OF THE TIME-TO-EMPTINESS OF A DIS- CRETE DAM UNDER STEADY DEMAND * J. L. MOTT	JRSSB63	35B	DISTANCE ANALYSIS * G. H. JOWETT HOTELLING'S GENERALIZED T SQUARE IN THE MULTIVARIATE
JRSSB63	140	MODELS FOR A BACTERIAL GROWTH PROCESS WITH REMOVALS * J GANI	JRSSB63	368	ANALYSIS OF VARIANCE * M. N. GHOSH POSTERIOR DISTRIBUTIONS FOR MULTIVARIATE NORMAL
JRSSB63	150	A MULTI-STAGE RENEWAL PROCESS * D. J. BARTHOLOMEW			PARAMETERS * SEYMOUR GEISSER, JEROME CORNFIELD
JRSSB63	169	A CONTRIBUTION TO COUNTER THEORY * D. L. BENTLEY	JRSSB63	377	ON THE INDEPENDENCE OF QUADRATIC EXPRESSIONS (CORR.
JRSSB63	179	ON PLACKETT'S TEST FOR CONTINGENCY TABLE INTERACTIONS			66 584) * I, J. GOOD
		* L. A. GOODMAN	JRSSB63	3B3	QUADRATICS IN MARKOV-CHAIN FREQUENCIES, AND THE BI-
JRSSB63	189	ON THE NORMAL STATIONARY PROCESS, AREAS OUTSIDE GIVEN			NARY CHAIN OF ORDER 2 * I. J. GOOD
		LEVELS * M. R. LEADBETTER	JRSSB63	392	ON A PROPERTY OF THE LOGNORMAL DISTRIBUTION * C. C.
JRSSB63	195	A NOTE ON THE ASYMPTOTIC EFFICIENCY OF AN ASYMPTOTI-	*D00000	70.	HEYDE
		CALLY NORMAL ESTIMATOR SEQUENCE (CORR. 67 196) * A.			THE CORRELATED UNRESTRICTED RANDOM WALK * ASHA SETH
		M. WALKER	JK22B63	401	A LOWER BOUND FOR THE CRITICAL PROBABILITY IN THE ONE—
JRSSB63	201	ON COMBINING ESTIMATES OF A RATIO OF MEANS * B. M.			QUADRANT ORIENTED-ATOM PERCOLATION PROCESS * J. BISHIR
*D00000		BENNETT	IDCCDC7	405	THE DIFFUSION EQUATION AND A PSEUDO-DISTRIBUTION IN
JRSSB63		ESTIMATION OF THE PARAMETERS IN SHORT MARKOV SEQUENCES* A. W. F. EDWARDS			GENETICS * W. J. EWENS
JRSSB63	209	SOME REMARKS ON A METHOD OF A MAXIMUM-LIKELIHOOD ESTI- MATION PROPOSED BY RICHARDS * B. K. KALE	JRSS863	413	HIGHER-ORDER PROPERTIES OF A STATIONARY POINT PROCESS * J. A. MCFADDEN, WALTER WEISSBLUM
JRSSB63	213	POWER OF TUKEY'S TEST FOR NON-ADDITIVITY * M. N. GHOSH, D. SHARMA	JRSSB63	432	AN APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION OF RENEWAL THEORY * D. J. BARTHOLOMEW
JRSSB63	220	MAXIMUM LIKELIHOOD IN THREE-WAY CONTINGENCY TASLES *	JRSSB63	442	PERIODOGRAM ANALYSIS AND VARIANCE FLUCTUATIONS * LAU- RENCE J. HERBST
JRSSB63	235	THE SIMPLEX-CENTROID DESIGN FOR EXPERIMENTS WITH MIX- TURES (WITH DISCUSSION) * HENRY SCHEFFE	JRSSB63	451	A TEST FOR VARIANCE HETEROGENEITY IN THE RESIDUALS OF A GAUSSIAN MOVING AVERAGE * LAURENCE N. HERBST
JRSSB63	264	THE SPECTRAL ANALYSIS OF POINT PROCESSES (WITH	JRSS863	455	A CORRECTION TO 'THE SOLUTION OF QUEUEING AND INVENTO-
		DISCUSSION) * M. S. BARTLETT	31.00000	100	RY MODELS BY SEMI-MARKOV PROCESSES' * A. J. FABENS, A. G. A. D. PERERA
JK22B63	297	A MINIMAX-REGRET PROCEDURE FOR CHOOSING BETWEEN TWO POPULATIONS USING SEQUENTIAL SAMPLING * N. L. JOHN-	JRSSB63	457	TREATMENT OF THE NON-EQUILIBRIUM THEORY OF SIMPLE OUTUES BY MEANS OF CUMULATIVE PROBABILITIES * R. A.
IDGGD 67	705	SON, RITA J. MAURICE			SACK
JK22B63	305	HIGHER MOMENTS OF A MAXIMUM-LIKELIHOOD ESTIMATE * L.	IRSSR63	164	ON THE ASYMPTOTIC BEHAVIOUR OF QUEUES * J. KEILSON
JRSSB63	710	R. SHENTON, K. BOWMAN ON FORMULAE FOR CONFIDENCE POINTS BASED ON INTEGRALS			SOME NUMERICAL RESULTS FOR THE QUEUEING SYSTEM WITH
JNSSD65	218	OF WEIGHTED LIKELIHOODS * B. L. WELCH, H. W. PEERS	UNDDDOO	711	ONE SERVER, WHILE THE INTERARRIVAL AND SERVING DIS-
JRSSB63	330	CONFIDENCE INTERVAL ESTIMATION IN NON-LINEAR REGRES-			TRIBUTIONS ARE DETERMINISTIC AND GAMMA OF ORDER K
01100000	550	SION * MAXHALPERIN			RESPECTIVELY * M. C. PIKE
JRSSB63	334	ON THE RANDOMIZATION DISTRIBUTION AND POWER OF THE	.IRSSB63	4R9	COMPETITIVE QUEUEING, IDLENESS PROBABILITIES UNDER
01.20200	004	VARIANCE RATIO TEST * M. ATIQULLAH	0	100	PRIORITY DISCIPLINES * DONALD P. GAVER JR

JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B VOLUME 26, 1964

JRSSB64	1	THEORY OF CYCLIC ROTATION EXPERIMENTS (WITH DISCUSSION) * H.D. PATTERSON	JRSSB64	267	NOTE ON INTERVAL ESTIMATION IN NON-LINEAR REGRESSION WHEN RESPONSES ARE CORRELATED * M. HALPERIN
JRSSB64	46	ON LOCAL UNBIASED ESTIMATION * D. A. S. FRASER	JRSSB64	270	A NOTE ON THE BARTLETT DECOMPOSITION OF A WISHART
JRSSB64	52	LOCAL CONDITIONAL SUFFICIENCY * D. A. S. FRASER			MATRIX * D. G. KABE
JRSSB64	63	BAYESIAN ESTIMATION OF THE VARIANCE OF A NORMAL DIS-	JRSSB64	274	COMMENTS ON A POSTERIOR DISTRIBUTION OF GEISSER AND
		TRIBUTION * I.G. EVANS			CORNFIELD * M. STONE
JRSSB64	69	POSTERIOR ODDS FOR MULTIVARIATE NORMAL CLASSIFICA-	JRSSB64	277	ON THE BAYESIAN ESTIMATION OF MULTIVARIATE REGRESSION
		TION * S. GEISSER			* GEORGE C. TIAO, ARNOLD ZELLNER
JRSSB64	77	ON THE MONOTONICITY PROPERTY OF THE THREE MAIN TESTS	JRSSB64	286	CHARACTERIZATION THEOREMS FOR SOME UNIVARIATE PROBA-
		FOR MULTIVARIATE ANALYSIS OF VARIANCE * J. N.			BILITY DISTRIBUTIONS * G. P. PATIL, V. SESHADRI
		SRIVASTAVA	JRSSB64	293	ON THE POWER OF TWO-SAMPLE RANK TESTS ON THE EQUALITY
JRSSB64	82	FURTHER MODELS FOR ESTIMATING CORRELATION IN DISCRETE			OF TWO DISTRIBUTION FUNCTIONS * JEAN D. GIBBONS
		DATA * G. M. TALLIS	JRSSB64	305	A PROPOSED TWO-SAMPLE RANK TEST, THE PSI TEST AND ITS
JRSSB64	В6	SIMULTANEOUS CONFIDENCE LIMITS FOR CROSS-PRODUCT			PROPERTIES * JEAN D. GIBBONS
		RATIOS IN CONTINGENCY TABLES * L. A. GOODMAN	JRSSB64	313	THE DETECTION OF PARTIAL ASSOCIATION, 1, THE 2 BY 2
JRSSB64	103	SOME APPLICATIONS OF EXPONENTIAL ORDERED SCORES * D.	-Dags 0.4		CASE * M. W. BIRCH
		R. COX	JRSSB64	325	SOME PROPERTIES OF COUNTS OF EVENTS FOR CERTAIN TYPES
		A NOTE ON KURTOSIS * H. M. FINUCAN	*DGGDG4	770	OF POINT PROCESS * T. LEWIS, L. J. GOVIER
JRSSB64	113	PREDICTION BY PROGRESSIVE CORRECTION * C.S. VAN DOB- BEN DE BRUYN			A NOTE ON THE SOLUTION OF DAM EQUATIONS * E. H. LLOYD, S. ODOOM
JRSSB64	123	ESTIMATION OF THE SPECTRAL DENSITY FUNCTION IN THE			A MODEL FOR RAINFALL OCCURRENCE * J. R. GREEN
		PRESENCE OF HARMONIC COMPONENTS * M. B. PRIESTLEY	JRSSB64	354	SPECTRAL ANALYSIS IN THE PRESENCE OF VARIANCE FLUC-
JRSSB64	133	SOME RESULTS FOR FIXED-TIME TRAFFIC SIGNALS * D. J.			TUATIONS * L. HERBST
		BUCKLEY, R. C. WHEELER	JRSSB64	361	STATIONARY AMPLITUDE FLUCTUATIONS IN A RANDOM SERIES
JRSSB64	141	A DEFORMATION METHOD FOR QUADRATIC PROGRAMMING * S.	TDGGBG 4	7.00	* L. HERBST
1DCCDC 4	101	ZAHL	JRSSB64	367	SOME STATISTICAL PROBLEMS CONNECTED WITH CRYSTAL LAT- TICES (WITH DISCUSSION) * C. DOMB
JR55B64	161	BAYESIAN TOLERANCE REGIONS (WITH DISCUSSION) * J. AITCHISON	JRSSB64	700	A BRANCHING POISSON PROCESS MODEL FOR THE ANALYSIS OF
TPSSB64	176	RELATIONSHIPS BETWEEN BAYESIAN AND CONFIDENCE LIMITS	40dcc7t	230	COMPUTER FAILURE PATTERNS (WITH DISCUSSION) * P. A.
01/05/04	110	FOR PREDICTIONS (WITH DISCUSSION) * A.R. THATCHER			W. LEWIS
IRSSB64	211	AN ANALYSIS OF TRANSFORMATIONS (WITH DISCUSSION) * G.	JRSSB64	457	A BIVARIATE SIGNED RANK TEST * B. M. BENNETT
0110000-1	~ 1 1	E. P. BOX. D. R. COX	JRSSB64		CONFIDENCE-REGION TESTS * J. AITCHISON
JRSSB64	253	ON LOCAL INFERENCE AND INFORMATION * D. A. S. FRASER	JRSSB64		ESTIMATION IN THE UNIFORM COVARIANCE CASE * S. GEISSER
		THE LINEAR HYPOTHESTS AND IDEMPOTENT MATRICES * G. A.	JRSSB64		ON AN IDENTITY FOR THE VARIANCE OF A RATIO OF TWO RANDOM
	~	F. SEBER	3		VARIABLES* J. C. KOOP

JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B VOLUME 27, 1965

1 ON COMPARISONS BETWEEN CONFIDENCE POINT PROCEDURES IN JRSSB65
THE CASE OF A SINGLE PARAMETER * B. L. WELCH JRSSB65

9 ON CONFIDENCE POINTS AND BAYESIAN PROBABILITY POINTS IN THE CASE OF SEVERAL PARAMETERS * H. W. PEERS

JRSSB65	17 USING THE OBSERVATIONS TO ESTIMATE THE PRIOR DIS- TRIBUTION * M. CLUTTON-BROCK	JRSSB65	23B ON SIMPLE RULES FOR THE COMPOUND DECISION PROBLEM * ESTER SAMUEL
JRSSB65	2B THE ROBBINS-MONRO METHOD FOR ESTIMATING THE MEDIAN LETHAL DOSE * W. G. COCHRAN, M. DAVIS	JRSSB65	245 LIKELIHOOD RATIO AND CONFIDENCE-REGION TESTS * J. AITCHISON
JRSSB65	45 ON CIRCULAR FUNCTIONAL RELATIONSHIPS * NAING. CHAN 57 PROBABILITY BOUNDS FOR A UNION OF HYPERSPHERICAL	JRSSB65	251 ANALYSIS OF FACTORIAL EXPERIMENTS BY ESTIMATING
JRSSB65	CONES * KEEWHAN CHOI	JRSSB65	MONOTONE TRANSFORMATIONS OF THE DATA * J. B. KRUSKAL 264 ANALYTICAL SURVEYS WITH CLUSTER SAMPLING * J.
JRSSB65	74 FORMULAE TO IMPROVE WALD'S APPROXIMATION FOR SOME PROPERTIES OF SEQUENTIAL TESTS * G. M. TALLIS, M. K.	JRSSB65	SEDRANSK 279 BAYESIAN ESTIMATION OF PARAMETERS OF A MULTIVARIATE
	VAGHOLKAR	UKSSBOS	NORMAL DISTRIBUTION * I. G. EVANS
JRSSB65	B2 NOTE ON A CHI-SQUARE APPROXIMATION FOR THE MUL- TIVARIATE SIGN TEST * B. M. BENNETT	JRSSB65	2B4 FINITE STOPPING TIME AND FINITE EXPECTED STOPPING TIME*I.R.SAVAGE, L.J.SAVAGE
JRSSB65	B6 THE DETERMINATION OF SAMPLING DISTRIBUTIONS AND MO- MENT GENERATING FUNCTIONS BY SOLVING DIFFERENTIAL	JRSSB65	290 DERIVATION OF A CLASS OF FREQUENCY DISTRIBUTIONS VIA BAYES'S THEOREM * CARL-ERIK SARNDAL
	EQUATIONS * A. REITSMA	JRSSB65	301 PLANE TRUNCATION IN NORMAL POPULATIONS * G. M. TALLIS
JRSSB65	91 MOMENT CROSSINGS AS RELATED TO DENSITY CROSSINGS * G. MARSAGLIA, A. W. MARSHALL, F. PROSCHAN	JRSSB65	30B MOMENTS OF A SERIAL CORRELATION COEFFICIENT * L. R. SHENTON, W. L. JOHNSON
JRSSB65	94 ON CERTAIN PROPERTIES OF THE EXPONENTIAL-TYPE FAMI- LIES*G. P. PATIL, R. SHORROCK	JRSSB65	321 APPLICATION OF STOCHASTIC APPROXIMATION TO PROCESS CONTROL * J. P. COMER JR
JRSSB65	100 ASSOCIATION BETWEEN RANDOM VARIABLES AND THE DISPER- SION OF A RADON-NIKODYM DERIVATIVE (CORR. 65 533) *	JRSSB65	332 ON THE ESTIMATION OF THE INTENSITY FUNCTION OF A STA- TIONARY POINT PROCESS * D. R. COX
	S. M. ALI, S. D. SILVEY	JRSSB65	33B THE BASIC BIRTH-DEATH MODEL FOR MICROBIAL INFECTIONS
JRSSB65	108 A FURTHER RESULT ON THE RELEVANCE OF THE DISPERSION OF	IPSSB65	*T. WILLIAMS 361 ON THE BUSY PERIOD OF A FACILITY WHICH SERVES
	A RADON-NIKODYM DERIVATIVE TO THE PROBLEM OF MEASUR- ING ASSOCIATION * S. M. ALI, S. D. SILVEY	UNDEDOO	CUSTOMERS OF SEVERAL TYPES * P. D. WELCH
JRSSB65	111 THE DETECTION OF PARTIAL ASSOCIATION, 2. THE GENERAL CASE * M. W. BIRCH	JRSSB65	DISCUSSION) * P. WHITTLE
JRSSB65	125 ON A PROPERTY OF THE RANDOM WALKS DESCRIBING SIMPLE	JRSSB65	395 SPACINGS (WITHDISCUSSION) * R. PYKE
ID GGDGG	QUEUES AND DAMS * R. M. LOYNES	JRSSB65	450 MIXTURE DESIGNS FOR THREE FACTORS * N. R. DRAPER, W. LAWRENCE
JRSSB65	130 APPLICATIONS OF A BALLOT THEOREM IN PHYSICS AND IN ORDER STATISTICS * L. TAKACS	JRSSB65	466 THE NUMERICAL SOLUTION OF SOME NON-LINEAR EQUATIONS,
JRSSB65	13B A BRANCHING PROCESS ALLOWING IMMIGRATION * C. R.	IDCCDCE	USEFUL IN THE DESIGN OF EXPERIMENTS * E. L. ALBASINY 473 MIXTURE DESIGNS FOR FOUR FACTORS * N. R. DRAPER. W.
IDCCDCE	HEATHCOTE 144 POLYNOMIAL PROJECTING PROPERTIES OF MULTI-TERM PRE-	000000	LAWRENCE
JASSBOS	DICTORS OR CONTROLLERS IN NON-STATIONARY TIME SE-	JRSSB65	479 TRANSFORMATIONS AND SUFFICIENCY * D. A. SPROTT
	RIES * W. D. RAY, C. WYLD	JRSSB65	4B6 ADDITIONAL RESULTS CONCERNING ESTIMABLE FUNCTIONS
JRSSB65	159 THE STATISTICAL FOURIER ANALYSIS OF VARIANCES * L. J. HERBST	JRSSB65	AND GENERALIZED INVERSE MATRICES * S. R. SEARLE 491 ON THE WAITING-TIME DISTRIBUTION FOR QUEUES IN SERIES * R. M. LOYNES
JRSSB65	166 SUPPLEMENT TO'A DEFORMATION METHOD FOR QUADRATIC PRO- GRAMMING'*S. ZAHL	JRSSB65	497 A TWO-DIMENSIONAL POISSON GROWTH PROCESS * R. W. MORGAN, D. J. A. WELSH
JRSSB65	169 BAYESIAN INTERPRETATION OF STANDARD INFERENCE STATE- MENTS (WITH DISCUSSION) * JOHN W. PRATT	JRSSB65	505 CERTAIN PROPERTIES OF GAUSSIAN PROCESSES AND THEIR FIRST PASSAGE TIMES * C. B. MEHR, J. A. MCFADDEN
JRSSB65	204 EVOLUTIONARY SPECTRAL AND NON-STATIONARY PROCESSES (WITH DISCUSSION) * M. B. PRIESTLEY	JRSSB65	523 RECURSIVE RELATIONS FOR PREDICTORS OF NON-STATIONARY PROCESSES * P. WHITTLE

JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B VOLUME 2B, 1966

JRSSB66	1	ALLOCATION RULES AND THEIR ERROR RATES (WITH DISCUS- SION) * M. HILLS	JRSSB66	21B	ON STREAMS OF EVENTS AND MIXTURES OF STREAMS * M. R. LEADBETTER
JRSSB66	70	ESTIMATION BY RANKING PARAMETERS * J. A. HARTIGAN	JRSSB66	222	DESIGN RELATIONS FOR NON-STATIONARY PROCESSES * M. B.
JRSSB66		ON EFFICIENT MULTINOMIAL ESTIMATION * B. R. BHAT, N.	JRSSDOO	ZZD	PRIESTLEY
JKSSB66	45				
		V. KULKARNI	JRSSB66	241	EXPONENTIAL SMOOTHING FOR MULTIVARIATE TIME SERIES *
JRSSB66		ON A FIDUCIAL EXAMPLE OF C. STEIN * R. S. PINKHAM			R. H. JONES
JRSSB66	55	NOTE ON THE CONFIDENCE-PRIOR OF WELCH AND PEERS * J. A.	JRSSB66	253	QUASI-STATIONARY DISTRIBUTIONS AND TIME-REVERSION
		HARTIGAN			INGENETICS (WITHDISCUSSION) * E. SENETA
JRSSB66	57	EXPECTED-COVER AND LINEAR-UTILITY TOLERANCE INTER-	JRSSB66	27B	A GENERALIZED LEAST-SQUARES APPROACH TO LINEAR FUNC-
		VALS * J. AITCHISON			TIONAL RELATIONSHIPS (WITH DISCUSSION) * P. SPRENT
JRSSB66	63	SEQUENTIAL COMPOUND RULES FOR THE FINITE DECISION	JRSSB66		LOCALLY UNBIASED TYPE M TEST * M. KRISHNAN
		PROBLEM * ESTER SAMUEL	JRSSB66	310	A NEW APPROACH TO SAMPLING FROM FINITE POPULATIONS. I
JRSSB66	73	ASYMPTOTIC SEQUENTIAL DESIGN OF EXPERIMENTS WITH TWO			* V. P. GODAMBE
		RANDOM VARIABLES * L. R. ABRAMSON	JRSSB66	320	A NEW APPROACH TO SAMPLING FROM FINITE POPULATIONS. II
JRSSB66	B8	AN EXPERIMENTAL STUDY OF CERTAIN SCREENING PROCESSES			* V. P. GODAMBE
		* D. J. FINNEY	JRSSB66	329	THE ALMOST FULL DAM WITH POISSON INPUT * A. M. HASOFER
JRSSB66	110	THE ANALYSIS OF VARIANCE OF DESIGNS WITH MANY NON-	JRSSB66	336	ON THE CORRELATION STRUCTURE OF THE DEPARTURE PROCESS
		ORTHOGONAL CLASSIFICATIONS * D. H. REES			OF THE QUEUE WITH ONE SERVER, WHILE THE INTERARRIVAL
JRSSB66	118	CLASSIFYING YOUDEN RECTANGLES * D. A. PREECE			AND SERVING DISTRIBUTIONS ARE EXPONENTIAL AND GAMMA
JRSSB66	131	A GENERAL CLASS OF COEFFICIENTS OF DIVERGENCE OF ONE			OF ORDER LAMBDA RESPECTIVELY * J. H. JENKINS
		DISTRIBUTION FROM ANOTHER * S. M. ALI, S. D. SILVEY	JRSSB66	345	CYCLIC INCOMPLETE BLOCK DESIGNS * J. A. JOHN
JRSSB66	143	CHARACTERIZATION THEOREMS FOR SOME UNIVARIATE PROBA-	JRSSB66	361	AN EXTENSION OF THE TRIANGULAR ASSOCIATION SCHEME TO
		BILITY DISTRIBUTIONS * M. V. MENON			THREE ASSOCIATE CLASSES * P. W. M. JOHN
JRSSB66	146	A NOTE ON THE ASYMPTOTIC EFFICIENCY OF BENNETT'S	JRSSB66	366	ON THE EVALUATION OF PROBABILITIES OF CONVEX
		BIVARIATE SIGN TEST * G . K . BHATTACHARYYA			POLYHEDRA UNDER MULTIVARIATE NORMAL AND T-DIS-
JRSSB66	150	THE CHI-SQUARE TEST FOR HETEROGENEITY OF PROPORTIONS			TRIBUTIONS * S. JOHN
01100-00		AFTER ADJUSTMENT FOR STRATIFICATION (ADDENDUM 67	JRSSB66	370	SOME ASYMPTOTICALLY EXTINCT SEQUENTIAL PROCEDURES
		197) * P. ARMITAGE	01100000	0.0	FOR RANKING AND SLIPPAGE PROBLEMS * M. S. SRIVASTAVA
JRSSB66	164	ALTERNATIVE ANALYSIS OF CONTINGENCY TABLES * J. J.	1000000	7D.1	
0110000		GART	JRSSB66	3B1	THE DECISION THEORY APPROACH TO SAMPLING INSPECTION
JRSSB66	180	A TEST FOR 'INTRINSIC CORRELATION' IN THE THEORY OF			(WITH DISCUSSION) * G. B. WETHERILL, G. E. G. CAM-
31.22230		ACCIDENT PRONENESS (ACKNOWLEDGEMENT 66 5B5) * K.			PLING
		SUBRAHMANIAM	JRSSB66	417	AN APPROACH TO THE STUDY OF MARKOV PROCESSES (WITH
JRSSB66	190	THE ERGODIC QUEUE LENGTH DISTRIBUTION FOR QUEUEING			DISCUSSION) * J. F. C. KINGMAN
51.20200	100	CVCTENC TITLE CADACITY + 1 VETICON	JRSSB66	44B	THE ALMOST FULL DAM WITH POISSON INPUT. FURTHER

SYSTEMS WITH FINITE CAPACITY * J. KEILSON
JRSSB66 202 DELAY AT TRAFFIC INTERSECTIONS * A.G. HAWKES

JRSSB66 213 CORRECTIONS AND COMMENTS ON THE PAPER 'A BRANCHING

PROCESS ALLOWING IMMIGRATION' * C. R. HEATHCOTE

JRSSB66 44B THE ALMOST FULL DAM WITH POISSON INPUT, FURTHER

JRSSB66 456 ON A GENERALIZED QUEUEING SYSTEM WITH POISSON AR-

RESULTS * A . M . HASOFER

RIVALS * D. N. SHANBHAG

- JRSSB66 459 THE RELIABILITY OF MULTIPLEX SYSTEMS WITH REPAIR * F. DOWNTON
- 477 A TECHNIQUE FOR DISCUSSING THE PASSAGE TIME DISTRIBU-JRSSB66 TION FOR STABLE SYSTEMS * J. KEILSON
- JRSSB66 487 ON THE SIZE OF AN EPIDEMIC AND THE NUMBER OF PEOPLE HEARING A RUMOUR * VIOLET R. CANE
- JRSSB66 491 FIRST-PASSACE PERCOLATION * J. M. HAMMERSLEY
- JRSSB66 497 SOME ASPECTS OF THE ESTIMATION OF QUANTILES * R. M. LOYNES
- JRSSB66 513 SOME NEW RESULTS ON THE DISTRIBUTION OF THE SAMPLE CORRELATION COEFFICIENT * H. RUBEN
- JRSSB66 526 ON THE DISTRIBUTION OF THE F-TYPE STATISTICS IN THE ANALYSIS OF A CROUP OF EXPERIMENTS * T. CALINSKI JRSSB66 543 SOME ASPECTS OF RANDOMIZATION * C. E. P. BOX, I. GUTT-
- JRSSB66 559 BALANCED FACTORIAL DESIGNS * A. M. KSHIRSACAR

MAN

- JRSSB66 568 A BAYESIAN APPROACH TO CLASSIFICATION * I.R. DUNSMORE
- JRSSB66 578 A DERIVATION OF THE PROBABILISTIC EXPLICATION OF IN-FORMATION * I. J. COOD
- 582 ON THE INDEPENDENCE OF QUADRATIC FORMS * D. N. SHANB-

	JOURNAL OF THE ROYAL STATISTICAL	L SOCIETY,	SERIES B VOLUME 29, 1967
JRSSB67	1 TOPICS IN THE INVESTICATION OF LINEAR RELATIONS FITTED BY THE METHOD OF LEAST SQUARES (WITH DISCUS- SION) * F. J. ANSCOMBE	JRSSB67	282 INFERENCES CONCERNING A POPULATION CORRELATION COEF- FICIENT FROM ONE OR POSSIBLY TWO SAMPLES SUBSEQUENT TO A PRELIMINARY TEST OF SIGNIFICANCE * S. R.
JRSSB67	53 HYPOTHESIS TESTING WHEN THE SAMPLE SIZE IS TREATED AS A RANDOM VARIABLE (WITH DISCUSSION) * D. J. BARTHOLOMEW	JRSSB67	SRIVASTAVA, T. A. BANCROFT 292 ON A SPECIAL SUBSET GIVING AN IRREGULAR FRACTIONAL REPLICATE OF A 2 TO THE POWER N FACTORIAL EXPERIMENT
JRSSB67	83 THE USE OF THE CONCEPT OF A FUTURE OBSERVATION IN GOOD- NESS-OF-FIT PROBLEMS * I. GUTTMAN	JRSSB67	* K. S. BANERJEE, W. T. FEDERER 300 OPTIMIZATION OF A HOT ROLLING MILL * D. C. DOWSON
JRSSB67	101 LINEAR APPROXIMATION USING THE CRITERION OF LEAST TOTAL DEVIATIONS (ACKNOWLEDCEMENT 67 587) * M. DA-		320 A NON-PARAMETRIC TEST FOR THE BIVARIATE TWO-SAMPLE LOCATION PROBLEM * K.V. MARDIA
JRSSB67	VIES 110 ON SHARPENING SCHEFFE BOUNDS * R. BOHRER	JRSSB67	343 NON-HOMOGENEOUS BRANCHING POISSON PROCESSES * P. A. W. LEWIS
	115 OPTIMUM ALLOCATION IN MULTIVARIATE SURVEYS, AN ANALYTICAL SOLUTION * A. R. KOKAN, S. KHAN	JRSSB67	355 METHODS OF ESTIMATION INVOLVING DISCOUNTINC * W. G. GILCHRIST
JRSSB67	126 A GENERALIZATION OF FIELLER'S THEOREM TO THE RATIO OF COMPLEX PARAMETERS * M. HALPERIN	JRSSB67	370 A CHANGE-OVER DESIGN FOR TESTING A TREATMENT FACTOR AT FOUR EQUALLY SPACED LEVELS (CORR. 67 586) * I. I. BE-
JRSSB67	132 ON FIXED-WIDTH CONFIDENCE BOUNDS FOR REGRESSION PARAMETERS AND MEAN VECTOR * M. S. SRIVASTAVA	JRSSB67	RENBLUT 374 OPTIMUM UTILIZATION OF AUXILIARY INFORMATION, (PI)PS
	141 ASYMPTOTIC RENEWAL RESULTS FOR A NATURAL CENERALIZA- TION OF CLASSICAL RENEWAL THEORY * C. C. HEYDE		SAMPLING OF TWO UNITS FROM A STRATUM (ADDENDUM 69 192) * T. V. HANURAV
	151 A MODIFIED MODEL FOR RAINFALL OCCURRENCE * J. R. GREEN	JRSSB67	392 ON THE CHOICE OF A STRATEGY FOR A RATIO METHOD OF ESTI-
JRSSB67	154 EXPOST DETERMINATION OF SIGNIFICANCE IN MULTIVARIATE RECRESSION WHEN THE INDEPENDENT VARIABLES ARE ORTHOCONAL*R.C.CEARY		MATION*T.J.RAO 399 A BAYESIAN SIGNIFICANCE TEST FOR MULTINOMIAL DIS- TRIBUTIONS (WITH DISCUSSION)*I.J.GOOD
JRSSB67	162 ASYMPTOTIC PROPERTIES OF BAYESIAN SINGLE SAMPLINC PLANS (CORR. 67 5B6) * A. HALD		432 THE THEORY OF RISK (WITH DISCUSSION) * K. BORCH 468 TESTS OF HYPOTHESES CONCERNING MATCHED SAMPLES (CORR.
JRSSB67	174 THE BEHAVIOUR OF THE VARIANCE FUNCTION OF THE DIF- FERENCE BETWEEN TWO ESTIMATED RESPONSES * A. HERZ- BERC		69 194) * B. M. BENNETT 475 CONSIDERING STATISTICAL AND TIME AVERAGES IN A RECU- LATION PROBLEM * E. KOUNIAS
JRSSB67	180 ESTIMATING THE COVARIANCE AND SPECTRAL DENSITY FUNC- TIONS FROM A CLIPPED STATIONARY TIME SERIES * D. R.		489 ON A CLASS OF CAUSSIAN PROCESSES FOR WHICH THE MEAN RATE OF CROSSINGS IS INFINITE * J. A. MCFADDEN 503 ON THE ECONOMIC CHOICE OF EXPERIMENT SIZES FOR DECI-
	MCNEIL		SION RECARDING CERTAIN LINEAR COMBINATIONS * W. A.
JRSSB67	199 THE ANALYSIS OF ASSOCIATION AMONG MANY VARIABLES (WITH DISCUSSION) * E. J. WILLIAMS	JRSSB67	
JRSSB67	243 ON JOHN'S CYCLIC INCOMPLETE BLOCK DESIGNS * W. H. CLATWORTHY	JRSSB67	Z. A. LOMNICKI 525 ESTIMATION OF THE PARAMETER OF AN EXPONENTIAL DISTRIBUTION * G. M. EL-SAYYAD
JRSSB67	248 FORMAL EXPRESSIONS WHICH CAN BE USED FOR THE DETER- MINATION OF THE OPERATING CHARACTERISTIC AND	JRSSB67	540 AN ANALYSIS OF DEPARTURES FROM THE EXPONENTIAL DIS- TRIBUTION * 0. A. Y. JACKSON
	AVERAGE SAMPLE NUMBER OF A SIMPLE SEQUENTIAL TEST * K.W.KEMP	JRSSB67	533 THE LIKELIHOOD AND INVARIANCE PRINCIPLES * J. A. HAR- TIGAN
JRSSB67	263 A SIMPLE PROCEDURE FOR DETERMINING UPPER AND LOWER LIMITS FOR THE AVERAGE SAMPLE RUN LENGTH OF A CUMULA-	JRSSB67	550 FOUR-LETTER WORDS. THE DISTRIBUTION OF PATTERN FREQUENCIES IN RING PERMITATIONS * D. E. BARTON F.

S/US	1000 i	LIMITS FOR THE AVERAGE SAMPLE RUN LENGTH OF A CUMULA- TIVE SUM SCHEME * K. W. KEMP	JRSSB67	550 FOUR-LETTER WORDS. THE DISTRIBUTION OF PATTERN FREQUENCIES IN RINC PERMUTATIONS * D. E. BARTON, F. N. DAVID
JRS	SB67 2	266 MODELS OF THE SECOND KIND IN REGRESSION ANALYSIS * P. R. FISK	JRSSB67	570 ON THE PREDICTION OF NON-STATIONARY PROCESSES * N. A. ABDRABBO, M. B. PRIESTLEY
		JOURNAL OF THE ROYAL STATISTICAL	SOCIETY,	SERIES B VOLUME 30, 1968
JRS	SSB6B	1 ON THE CONCEPT OF THE SPECTRUM FOR NON-STATIONARY PROCESSES (WITH DISCUSSION) * R. M. LOYNES	JRSSB6B	176 THE STATIONARY DISTRIBUTION OF A BRANCHING PROCESS ALLOWING IMMIGRATION, A REMARK ON THE CRITICAL CASE
JRS	SSB68	31 THE CHOICE OF VARIABLES IN MULTIPLE REGRESSION (WITH DISCUSSION) * D. V. LINDLEY	JRSSB68	* E. SENETA 1BO AN EXTENSION OF QUENOUILLE'S TEST FOR THE COMPATI-
JRS	SSB6B	67 MISSING DATA IN REGRESSION ANALYSIS * Y . HAITOVSKY	011000	BILITY OF CORRELATION STRUCTURES IN TIME SERIES * J.
JRS	SSB68	B3 SMALL SAMPLE POWER OF A NON-PARAMETRIC TEST FOR THE		ROSENHEAD
		BIVARIATE TWO-SAMPLE LOCATION PROBLEM IN THE NORMAL CASE * K. V. MARDIA	JRSSB68	185 A QUEUE WITH RANDOM ARRIVALS AND SCHEDULED BULK DEPAR- TURES * A. MERCER
JRS	SSB68	93 PLANT COMPETITION, THREE SPECIES PER POT * C. A. MC- GILCHRIST	JRSSB68	190 THE BAYESIAN ESTIMATION OF A LINEAR FUNCTIONAL RELA- TIONSHIP * D. V. LINDLEY, G. M. EL-SAYYAD
JRS	SB6B 1	10B SOME PROBLEMS OF OPTIMAL STOPPING * M. H. DEGROOT	JRSSB6B	205 A CENERALIZATION OF BAYESIAN INFERENCE (WITH DISCUS-
JRS	SSB68	123 EXPERIMENTS WITH MIXTURES, A GENERALIZATION OF THE		SION) * A. P. DEMPSTER
		SIMPLEX-LATTICE DESIGN * D. P. LAMBRAKIS	IRSS868	24B A GENERAL DEFINITION OF RESIDUALS (WITH DISCUSSION) *

BRILLINGER JRSS868 160 ON A DISTRIBUTION ASSOCIATED WITH CERTAIN STOCHASTIC

PROCESSES * A. W. KEMP, C. D. KEMP

JRSSB68 137 EXPERIMENTS WITH P-COMPONENT MIXTURES * D. P. LAM-

145 ESTIMATION OF THE CROSS-SPECTRUM OF A STATIONARY

BIVARIATE GAUSSIAN PROCESS FROM ITS ZEROS * D. R.

BRAKTS

JRSS868 164 SOME APPLICATIONS OF MULTIPLE-TYPE BRANCHINC PROCESSES IN POPULATION CENETICS * W. J. EWENS

- JRSS868 24B A GENERAL DEFINITION OF RESIDUALS (WITH DISCUSSION)
- D.R.COX, E.J.SNELL JRSS868 276 A RELATIVELY SIMPLE FORM OF THE DISTRIBUTION OF THE
- MULTIPLE CORRELATION COEFFICIENT * J. GURLAND JRSSB68 284 A NOTE ON THE EFFICIENCY OF LEAST-SQUARES ESTIMATES *
- D. R. COX, D. V. HINKLEYY JRSSB68 290 THE OCCURRENCE OF REPLICATIONS IN OPTIMAL DESIGNS OF EXPERIMENTS TO ESTIMATE PARAMETERS IN NON-LINEAR

MODELS * M .I. BOX

JRSSB68

JRSSB6B	303 THE COMBINATION OF INFORMATION IN CENERALLY BALANCED	JRSSB68	461 A MULTI-STAGE TEST FOR A NORMAL MEAN * A. SCOTT
	DESIGNS * J. A. NELDER	JRSSB68	469 THE CHOICE OF THE DEGREE OF A POLYNOMIAL MODEL * H.
JRSSB6B	312 ASYMPTOTICALLY EFFICIENT TESTS BY THE METHOD OF N		HAGER, C. ANTLEE
- D C C D C C	RANKINCS * P. K. SEN	JRSSB68	472 ESTIMATION OF PARAMETERS OF A FINITE MIXTURE OF DIS-
JK22868	31B A NOTE ON A MODIFIED EXPONENTIALLY WEICHTED PREDICTOR	ID CCD CD	TRIBUTIONS * A. B. M. L. KABIR
IDECDED	*B. J. N. BLICHT	JRSSB6B	4B3 RANK ORDER TESTS OF LINEAR HYPOTHESES * B. M. BENNETT
DNOODD	321 SOME APPLICATIONS OF PROBABILITY CENERATING FUNC- TIONALS TO THE STUDY OF INPUT-OUTPUT STREAMS * D.	JRSSB6B	490 LEAST-SQUARES EFFICIENCY FOR VECTOR TIME SERIES * E. J. HANNAN
	VERE-JONES	JRSSB6B	499 THE ERCODIC THEORY OF SUBADDITIVE STOCHASTIC
JRSSB6B	334 AN APPLICATION OF BIORTHONORMAL EXPANSIONS IN THEORY		PROCESSES * J. F. C. KINCMAN
	OF STOCHASTIC PROCESSES * C. B. MEHR	JRSSB68	511 MULTIVARIATE BETA DISTRIBUTION AND A TEST FOR MUL-
JRSSB68	338 THE ASYMPTOTIC POWERS OF MULTIVARIATE TESTS WITH		TIVARIATE NORMALITY * B. WACLE
	CROUPED DATA * D. R. MCNEIL	JRSSB6B	517 RANDOM PERMUTATIONS * R. L. PLACKETT
	349 MODELS FOR THE RESPONSE OF A MIXTURE * N. C. BECKER	JRSSB6B	535 CONFIDENCE PROPERTIES OF BAYESIAN INTERVAL ESTIMATES
JRSSB68	359 THE MIXED BINOMIAL DISTRIBUTION AND THE POSTERIOR		* H. W. PEERS
	DISTRIBUTION OF P FOR A CONTINUOUS PRIOR DISTRIBU-	JRSSB6B	545 NOTE ON DISCORDANT OBSERVATIONS * J. A. HARTICAN
	TION * A. HALD	JRSSB6B	551 DISTRIBUTION-FREE SUFFICIENCY IN SAMPLING FINITE
JRSSB6B	36B NOTE ON CHI SQUARE TESTS FOR MATCHED SAMPLES * B. M.		POPULATIONS * V. M. JOSHI
IDCCDCO	BENNETT	JRSSB68	(, (,
SOGGCAL	371 A UNIFIED APPROACH FOR CONSTRUCTING A USEFUL CLASS OF		A METHOD OF HANURAV * K. VIJAYAN
	NON-ORTHOCONAL MAIN EFFECT PLANS IN K TO THE N FAC- TORIALS * B. L. RAKTOE, W. T. FEDERER	JRSSB68	567 A REMARK ON SOLVINC EQUATIONS IN SUMS OF POWERS * S. R.
IDCCDCD	3B1 ON THE LINEAR CONTROL OF A LINEAR SYSTEM HAVING A NOR-		SEARLE
dodccar	MAL STATIONARY STOCHASTIC INPUT * D. C. DOWSON	JRSSB68	570 A NOTE ON THE ASYMPTOTIC DISTRIBUTION OF SAMPLE QUAN- TILES * A. M. WALKER
JRSSB6B	396 A BAYESIAN APPROACH TO CALIBRATION * I. R. DUNSMORE	JRSSB6B	576 ON THE SUPERPOSITION OF POINT PROCESSES * E. CINLAR,
JRSSB6B	407 A CENERAL APPROACH TO SOME SCREENING AND CLASSIFICA-		R. A. ACNEW
	TION PROBLEMS (WITH DISCUSSION) * A. W. MARSHALL, I.	JRSSB68	582 A SIMPLIFIED MONTE CARLO SIGNIFICANCE TEST PROCEDURE
	OLKIN		* ADERY C. A. HOPE
JRSSB68	444 AN ESTIMATION PROCEDURE FOR MIXTURES OF DISTRIBUTIONS	JRSSB68	599 A CENTRAL TOLERANCE RECION FOR THE MULTIVARIATE NOR-
	* K. CHOI, W. C. BULCREN		MAL DISTRIBUTION * S. JOHN

	* K. CHOI, W. C. BULCREN	MAL DISTRIBUTION * S. JOHN
	JOURNAL OF THE ROYAL STATISTICAL	SOCIETY, SERIES B VOLUME 31, 1969
JRSSB69	1 STOCHASTIC MODELS OF CAPITAL INVESTMENT (WITH DISCUS- SION) * R. L. PLACKETT	JRSSB69 NO.2 SUBJECTIVE BAYESIAN MODELS IN SAMPLINC FINITE POPULATIONS (WITH DISCUSSION) * W. A. ERICSON
JRSSB69	29 MULTIPARAMETER BAYESIAN INDIFFERENCE PROCEDURES (WITH DISCUSSION) * M. R. NOVICK	JRSSB69 NO.2 AN ALTERNATIVE TO THE SIMPLEX-LATTICE DESIGN FOR EX- PERIMENTS WITH MIXTURES * D. P. LAMBRAKIS
JRSSB69 JRSSB69	65 ON A TEST FOR SEVERAL LINEAR RELATIONS * A. O. BASU 72 ON EXTREMAL FACTORIZATION AND RECURRENT EVENTS * C. C.	JRSSB69 NO.2 A FIDUCIAL ARCUMENT WITH APPLICATION TO SURVEY SAM- PLINC * V. P. GODAMBE
JRSSB69	HEYDE BO ON THE ASYMPTOTIC BEHAVIOUR OF POSTERIOR DISTRIBU-	JRSSB69 NO.2 EXACT BAYESIAN ANALYSIS OF A TWO-BY-TWO CONTINCENCY TABLE, AND FISHER'S 'EXACT' SIGNIFICANCE TEST *
JRSSB69	TIONS * A. M. WALKER 89 FOUNDATIONS FOR THE THEORY OF LEAST SQUARES * B. M.	PATRICIA M. E. ALTHAM JRSSB69 NO.2 SOME NONORTHOCONAL FRACTIONS OF 2-TO-THE-N DESIGNS *
	HILL	P.W.M.JOHN
JRSSB69	9B ON THE NULL DISTRIBUTION OF A NON-PARAMETRIC TEST FOR THE BIVARIATE TWO-SAMPLE PROBLEM * K. V. MARDIA	JRSSB69 NO.2 ESTIMATED RECRESSION FUNCTION OF THE Q-SUB-1 TO Q- SUB-N BY M-SUB-1 TO M-SUB-N MULTIPLE-LATTICE DESIGN
JRSSB69	103 ON COX AND SNELL'S DEFINITION OF RESIDUALS * R. M.	* D.P. LAMBRAKIS JRSSB69 NO.2 A SEQUENTIAL PROCEDURE FOR TESTING A NULL HYPOTHESIS
JRSSB69	107 REGRESSION PROBLEMS WHEN THE PREDICTOR VARIABLES ARE PROPORTIONS * N. G. BECKER	AGAINST A TWO SIDED ALTERNATIVE HYPOTHESIS * L. BIL- LARD, M. K. VAGHOLKAR
JRSSB69	113 LEAST-SQUARES FITTING OF A POLYNOMIAL CONSTRAINED TO BE EITHER NON-NEGATIVE, NON-DECREASING OR CONVEX *	JRSSB69 NO.2 ON THE DISTRIBUTIONS OF THE TIMES BETWEEN EVENTS IN A STATIONARY STREAM OF EVENTS * R. LEADBETTER
JRSSB69	D. J. HUDSON 119 A NOTE ON AN ALLOCATION PROBLEM * A. J. SCOTT	JRSSB69 NO.2 MAJORANTS OF THE CHROMATIC NUMBER OF A RANDOM GRAPH * P. HOLGATE
	123 DISCRIMINATION BETWEEN K POPULATIONS WITH CON- STRAINTS ON THE PROBABILITIES OF MISCLASSIFICATION	JRSSB69 NO.2 INFERENCE CONCERNING PROBABILITIES AND QUANTILES * J. R. GREEN
	* J. A. ANDERSON	JRSSB69 NO.2 STRUCTURAL PROBABILITY AND PREDICTION FOR THE MUL-
JRSSB69	140 A TEST FOR NON-STATIONARITY OF TIME-SERIES * M. B. PRIESTLEY, T. SUBBARAO	TIVARIATE MODEL * D. A. S. GRASER, M. S. HAQ JRSSB69 NO.2 A NOTE ON THE POSTERIOR MEAN OF A POPULATION MEAN * W. A. ERICSON
JRSSB69	150 FILTERING NON-STATIONARY SIGNALS * N. A. ABDRABBO, M. B. PRIESTLEY	JRSSB69 NO.2 TESTS FOR SPECIFICATION ERRORS IN CLASSICAL LINEAR LEAST-SQUARES RECRESSION ANALYSIS * J. B. RAMSEY
JRSSB69	160 REGULATION AND OPTIMIZATION * I. R. DUNSMORE	JRSSB69 NO.2 THE MAXIMUM LIKELIHOOD SOLUTION TO THE PROBLEM OF
JRSSB69	171 MULTIVARIATE STOCHASTIC PROCESSES WITH PERIODIC COEFFICIENTS * V. SISKIND	ESTIMATING A LINEAR FUNCTIONAL RELATIONSHIP * MARY E. SOLARI
JRSSB69	181 ESTIMATING THE PARAMETERS OF A CONVOLUTION * S. L. SCLOVE, J. VANRYZIN	JRSSB69 NO.2 TESTING FOR LINEAR CONTAGION, INVERSE SAMPLING * E. SHLOM, E. PERITZ

SOUTH AFRICAN STATISTICAL JOURNAL VOLUME 1, 1967

	SOUTH AFRICAN STATIST.	ICAL JOURNAL VOLUME 1, 1967
SASJ 67 SASJ 67	1 THE SOUTH AFRICAN STATISTICAL ASSOCIATION, A SKETCH OF ITS ORICINS AND CROWTH * J. E. KERRICH 3 PROBABILITY MEASURES ON PRODUCT SPACES * J. H. VENTER	SASJ 67 55 A STUDY OF THE MATRIX OF FITTING OF A SERIES OF DISCRETE FREQUENCY FUNCTIONS ANALOGOUS TO THE TYPE A SERIES * H. T. CONIN
SASJ 67	21 NONCENTRAL MULTIVARIATE DIRICHLET DISTRIBUTIONS * C.	CACL OF SO A OVACT NUMERINONTAL TURBLE OF COMMITTERS OF THE STATE OF T
SASJ 67	C.TROSKIE 33 ABOUT SENSITIVITY ANALYSIS IN LINEAR PROCRAMMING	SASJ 67 59 A QUASI-MULTINOMIAL TYPE OF CONTINCENCY TABLE * G. J. RUDOLPH
	MODELS * P. E. R. ARMSEN	SASJ 67 67 DISTRIBUTION-FREE ANALYSIS OF VARIANCE FOR THE TWO-
SASJ 67 SASJ 67	43 ON A PROBLEM OF RECRESSION * A. M. MATHAI 49 THE ORTHOCONAL POLYNOMIALS OF THE FACTORIAL POWER SE-	WAY CLASSIFICATION * H. H. LEMMER, D. J. STOKER
5850 01	RIES PROBABILITY DISTRIBUTIONS * D. F. I. VAN HEER- DEN, H. T. CONIN	SASJ 67 75 A CLASS OF DISTRIBUTION-FREE ANALYSIS OF VARIANCE TESTS * C. F. CROUSE
	SOUTH AFRICAN STATIST	ICAL JOURNAL VOLUME 2, 1968
SASJ 6B	1 EIENSKAPPE VAN WAARSKYNLIKHEIDSVERDELINCS DEUR DIE	SASJ 6B 67 SINCLE AND MULTIPLE DISCRIMINATION REGIONS IN MULTI-
SASO OD	GEBRUIK VAN DIFFERENSIAALVERCELYKINCE * H. S. STEYN	PLE LINEAR REGRESSION * N. F. LAUBSCHER
SASJ 68	9 A DISTRIBUTION-FREE ANALYSIS OF VARIANCE TECHNIQUE FOR BLOCK DESIGNS * H. H. LEMMER, D. J. STOKER, S. C. REINACH	SASJ 6B 77 AN ASYMPTOTIC DISTRIBUTION FOR THE DETERMINANT OF A NON-CENTRAL B STATISTIC IN MULTIVARIATE ANALYSIS * D. J. DE WAAL
SASJ 6B	33 ON COMPARINC TWO SIMPLE LINEAR RECRESSION LINES * F.	SASJ 68 B5 ON THE USE AND MISUSE OF CORRECTIONS FOR CONTINUITY * C. J. RUDOLPH
SASJ 6B	55 OPSOMMING VAN LESINGS. (SUMMARY OF PAPERS)	SASJ 68 101 A DISTRIBUTION-FREE METHOD OF ANALYZING A 2 TO THE M
SASJ 6B	61 ON SOME BILHARZIA INFECTION AND IMMUNISATION MODELS * H. LINHART	FACTORIAL EXPERIMENT * C. F. CROUSE SASJ 6B 109 STATISTICS INSOUTH AFRICA * J. E. KERRICH
	SOUTH AFRICAN STATIST	TCAL JOURNAL VOLUME 3 1969

	SOUTH AFRICAN STATISTIC	CAL JOURNAL VOLUME 3, 1969
SASJ 69	1 DISTRIBUTIONS OF RANDOM VARIABLES WITH RANDOM PARAME- TERS * H. KAUFMAN, A. M. MATHAI, R. K. SAXENA	SASJ 69 NO.2 THE NONCENTRAL MULTIVARIATE BETA TYPE TWO DISTRIBU- TION * D. J. DE WAAL
SASJ 69	9 ON THE DISTRIBUTION AND POWER OF A TEST FOR A SINCLE OUTLIER * D. M. HAWKINS	SASJ 69 NO.2 'N BENADERINC VIR 'N MAGREEKS WAARSKYNLIKHEIDSVER- DELINC * C. J. J. VAN RENSBURC
SASJ 69	17 A STEPWISE MULTIVARIATE T-DISTRIBUTION * F. E. STEF-FENS	SASJ 69 NO.2 THE GENERALIZED MULTIPLE CORRELATION MATRIX * C. G. TROSKIE
SASJ 69	27 APPLICATION OF SPECIAL FUNCTIONS IN THE CHARACTERIZA- TION OF PROBABILITY DISTRIBUTIONS * A. M. MATHAI, R. K. SAXENA	SASJ 69 NO.2 APPROXIMATE DISTRIBUTION FOR LARCEST AND FOR SMALLEST OF A SET OF INDEPENDENT OBSERVATIONS * J. E. WALSH SASJ 69 NO.2 A DISTRIBUTION-FREE TWO SAMPLE TEST FOR DISPERSION
SASJ 69	35 A MULTIPLE COMPARISON RANK PROCEDURE FOR A ONE-WAY ANALYSIS OF VARIANCE * C. F. CROUSE	FOR SYMMETRICAL DISTRIBUTIONS * C. F. CROUSE, F. E. STEFFENS
SASJ 69 NO).2 ON THE NONCENTRAL DISTRIBUTION OF THE LARCEST CANONI- CAL CORRELATION COEFFICIENT * D. J. DE WAAL	SASJ 69 NO.2 A COMPARISON OF CERTAIN TESTS OF NORMALITY * P. VAN DER WATT

		1, 1355
TECH 59	1 RESPONSE SURFACE DESIGNS FOR THREE FACTORS AT THREE LEVELS * R. DEBAUN	TECH 59 217 SIMPLIFIED ESTIMATORS FOR THE NORMAL DISTRIBUTIO WHEN SAMPLES ARE SINCLY CENSORED OR TRUNCATED * A
TECH 59	9 THE ANALYSIS OF LIFE TEST DATA * R. L. PLACKETT	CLIFFORD COHEN JR
TECH 59	21 MATHEMATICAL PROBABILITY IN THE NATURAL SCIENCES * R. A. FISHER	TECH 59 239 CONTROL CHART TESTS BASED ON CEOMETRIC MOVIN AVERACES * S. W. ROBERTS
		TECH 59 251 THE MEASURINC PROCESS * JOHN MANDEL
TECH 59	31 A QUICK COMPACT TWO SAMPLE TEST TO DUCKWORTH'S	TECH 59 269 FACTORIAL EXPERIMENTS IN LIFE TESTING * MARVIN ZELEN
	SPECIFICATIONS * J. W. TUKEY	TECH 59 289 THE USE OF LAGRANCE MULTIPLIERS WITH RESPONSE SUR
TECH 59	49 SOME STATISTICAL ASPECTS OF THE ECONOMICS OF ANALYTI- CAL TESTINC * O. L. DAVIES	FACES * A. W. UMLAND, W. N. SMITH TECH 59 293 A STATISTICAL MODEL OF EVALUATING THE RELIABILITY O
TECH 59	63 PARTIAL DUPLICATION OF FACTORIAL EXPERIMENTS * 0. DYKSTRA	SAFETY SYSTEMS FOR PLANTS MANUFACTURINC HAZARDOU PRODUCTS * LOUIS B. KAHN TECH 59 311 USE OF HALF-NORMAL PLOTS IN INTERPRETINC FACTORIA
TECH 59	77 CONDENSED CALCULATIONS FOR EVOLUTIONARY OPERATION PROCRAMS * C. E. P. BOX, J. S. HUNTER	TWO LEVEL EXPERIMENTS * CUTHBERT DANIEL TECH 59 343 ON THE ANALYSIS OF FACTORIAL EXPERIMENTS WITHOUT
		REPLICATION * ALLAN BIRNBAUM
TECH 59	101 MEASUREMENTS MADE BY MATCHINC WITH KNOWN STANDARDS *	TECH 59 359 QUALITY CONTROL METHODS FOR SEVERAL RELATED VARIABLE
	W. J. YOUDEN, W. S. CONNOR, N. C. SEVERO	* J. EDWARD JACKSON
TECH 59	111 RANDOM BALANCE EXPERIMENTATION * F. E. SATTERTHWAITE	TECH 59 379 ANALYSIS OF LATIN SQUARES WITHIN A CERTAIN TYPE 0
TECH 59	139 THE APPLICATION OF RANDOM BALANCE DESIGNS * T. A. BUDNE	ROW-COLUMN INTERACTION * JOHN MANDEL
mpau so		TECH 59 3B9 A CRAPHICAL ESTIMATION OF MIXED WEIBULL PARAMETERS I
TECH 59	157 DISCUSSION OF THE PAPERS OF MESSRS. SATTERTHWAITE AND	LIFE TESTINC ELECTRON TUBES * JOHN H. K. KAO
	BUDNE * W. J. YOUDEN, OSCAR KEMPTHORNE, J. W. TUKEY, G. E. P. BOX, J. S. HUNTER	TECH 59 409 EVALUATION OF CHEMICAL ANALYSES ON TWO ROCKS * W. J YOUDEN

-20	W. J. YOUDEN, W. S. CONNOR, N. C. SEVERO	TECH 59	359	QUALITY CONTROL METHODS FOR SEVERAL RELATED VARIABLES
TECH 59	111 RANDOM BALANCE EXPERIMENTATION * F. E. SATTERTHWAITE	TECH 59	379	* J. EDWARD JACKSON ANALYSIS OF LATIN SQUARES WITHIN A CERTAIN TYPE OF
TECH 59	9 139 THE APPLICATION OF RANDOM BALANCE DESIGNS * T. A. BUDNE	TECH 59		ROW-COLUMN INTERACTION * JOHN MANDEL A CRAPHICAL ESTIMATION OF MIXED WEIBULL PARAMETERS IN
TECH 59	157 DISCUSSION OF THE PAPERS OF MESSRS. SATTERTHWAITE AND		-	LIFE TESTINC ELECTRON TUBES * JOHN H. K. KAO
	BUDNE * W. J. YOUDEN, OSCAR KEMPTHORNE, J. W. TUKEY, G. E. P. BOX, J. S. HUNTER	TECH 59		EVALUATION OF CHEMICAL ANALYSES ON TWO ROCKS * W. J. YOUDEN
TECH 59	195 QUICK ANALYSIS METHODS FOR RANDOM BALANCE SCREENING EXPERIMENTS * F. J. ANSCOMBE	TECH 59	419	ERRATA, 'THE APPLICATION OF RANDOM BALANCE DESIGNS' * T. A. BUDNE
	TEGHNOMETRICS	VOLUME 2	, 1960	
TECH 60	1 SOME REMARKS ON WILD OBSERVATIONS * W. H. KRUSKAL	TROU CO	0.47	OPDED CHARTCHICC EDON THE CANNA DICEPTRUCTON * C C
TECH 60	5 STATISTICAL ESTIMATION OF THE GASOLINE OGTANE NUMBER			ORDER STATISTICS FROM THE GAMMA DISTRIBUTION * S. S. GUPTA
	REQUIREMENT OF NEW MODEL AUTOMOBILES * C. S. BRINEGAR, R. R. MILLER	TECH 60		PARALLEL FRACTIONAL REPLICATES * C. DANIEL THE COMPOUND HYPERGEOMETRIC DISTRIBUTION AND A SYSTEM
TECH 60		12011 00	210	OF SINGLE SAMPLING INSPECTION PLANS BASED ON PRIOR DISTRIBUTIONS AND COSTS * A. HALD
	PRODUCT QUALITY * M. HALPERIN, G. L. BURROWS	TECH 60	341	SOME REMARKS ON THE BAYESIAN SOLUTION OF THE SINGLE
TECH 60		mrau ee		SAMPLING INSPECTION SCHEME * C. B. WETHERILL
TECH 60	43 SYSTEM EFFICIENCY AND RELIABILITY * R. E. BARLOW, L. C. HUNTER	TECH 60	353	SERIAL SAMPLING ACCEPTANCE SCHEMES DERIVED FROM BAYES'S THEOREM * D. R. COX
TECH 60	55 AIDS FOR FITTING THE GAMMA DISTRIBUTION BY MAXIMUM	TECH 60	361	DISCUSSION OF THE PAPERS OF MESSRS. HALD, WETHERILL
	LIKELIHOOD * J. A. GREENWOOD, D. DURAND			AND COX * G. A. BARNARD, D. V. LINDLEY, B. HILL, F. J.
TECH 60	67 EXPERIMENTAL DESIGNS TO ADJUST FOR TIME TRENDS * HU- BERT M. HILL	TECH 60	373	ANSCOMBE, I. J. GOOD, G. HORSNELL VARIATIONS FLOW ANALYSIS * NORBERT L. ENRICK
TECH 60		TECH 60		A SEMI-GRAPHICAL METHOD FOR THE ANALYSIS OF COMPLEX
	DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART			PROBLEMS * E. ANDERSON
TECH 60	I*B. EPSTEIN 103 PROGRAMMING FISHER'S EXACT METHOD OF COMPARINC TWO	TECH 60		INTER-PLANT STORAGE IN CONTINUOUS MANUFACTURING * H. D. MILLER
TEGH 60	PERCENTAGES * W. H. ROBERTSON 109 MISCLASSIFIED DATA FROM A BINOMINAL POPULATION * A.	TECH 60	403	ESTIMATION OF THE PARAMETERS OF TWO PARAMETER EX- PONENTIAL DISTRIBUTIONS FROM CENSORED SAMPLES * B.
	CLIFFORD COHEN JR			EPSTEIN
TECH 60	121 ERRATA, 'FACTORIAL EXPERIMENTS IN LIFE TESTING' *	TECH 60		CONCLUSIONS VS DECISIONS * J. W. TUKEY
TECH 60	MARVIN ZELEN 123 REJECTION OF OUTLIERS * F. J. ANSCOMBE	TECH 60	435	STATISTICAL LIFE TEST ACCEPTANCE PROCEDURES * BENJAMIN EPSTEIN
	149 LOCATING OUTLIERS IN FACTORIAL EXPERIMENTS * C.	TECH 60	447	ESTIMATION FROM LIFE TEST DATA * BENJAMIN EPSTEIN
	DANIEL	TECH 60	455	SOME NEW THREE LEVEL DESIGNS FOR THE STUDY OF QUAN-
TECH 60	DANIEL * W. H. KRUSKAL, T. S. FERGUSON, J. W. TUKEY,	TECH 60	477	TITATIVE VARIABLES * G. E. P. BOX, D. W. BEHNKEN GRAPHICAL PROCEDURE FOR FITTING THE BEST LINE TO A SET
	E. J. GUMBEL	IECH OC	411	OF POINTS * J. L. DOLBY
TECH 60	167 TESTS FOR THE VALIDITY OF THE ASSUMPTIONS THAT THE UN- DERLYING DISTRIBUTION OF LIFE IS EXPONENTIAL, PART	TECH 60	483	TABLES OF TOLERANCE-LIMIT FACTORS FOR NORMAL DIS- TRIBUTIONS * ALFRED WEISSBERG, GLENN H. BEATTY
	II * B. EPSTEIN	TECH 60	501	ON THE EVALUATION OF THE NECATIVE BINOMIAL DISTRIBU-
TECH 60) 185 PARTIAL DUPLICATION OF RESPONSE SURFACE DESIGNS * 0. DYKSTRA			TION WITH EXAMPLES * G. P. PATIL
TECH 60	197 A RANK SUM TEST FOR COMPARINC ALL PAIRS OF TREATMENTS * R. G. D. STEEL	TECH 60	507	ON METHODS OF CONSTRUCTING SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES USING A COMPUTER * R. C.
TECH 60				BOSE, I. M. CHAKRAVARTI. D. E. KNUTH
TECH CO	CUMULANTS * R. A. FISHER, E. A. CORNISH	TECH 60	523	ERRATA, 'THE PERCENTILE POINTS OF DISTRIBUTIONS HAV- ING KNOWN CUMULANTS' * R. A. FISHER, E. A. CORNISH
IECH 60	227 AN APPROXIMATION OF THE NEGATIVE MOMENTS OF THE POSI- TIVE BINOMIAL USEFUL IN LIFE TESTING * W. MEN-	TECH 60	523	ERRATA, 'ORDER STATISTICS FROM THE GAMMA DISTRIBU-
	DENHALL, E. H. LEHMAN JR	15011 00	رمن	TION' * S. S. GUPTA

TECH 60	185 PARTIAL DUPLICATION OF RESPONSE SURFACE DESIGNS * 0. DYKSTRA		TION WITH EXAMPLES * G . P . PATIL
	197 A RANK SUM TEST FOR COMPARINC ALL PAIRS OF TREATMENTS * R. G. D. STEEL	TECH 60	507 ON METHODS OF CONSTRUCTING SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES USING A COMPUTER * R. C. BOSE, I. M. CHAKRAVARTI. D. E. KNUTH
TECH 60	209 THE PERCENTILE POINTS OF DISTRIBUTIONS HAVING KNOWN CUMULANTS * R. A. FISHER, E. A. CORNISH	TECH 60	523 ERRATA, 'THE PERCENTILE POINTS OF DISTRIBUTIONS HAV-
TECH 60	227 AN APPROXIMATION OF THE NEGATIVE MOMENTS OF THE POSI-		ING KNOWN CUMULANTS' * R. A. FISHER, E. A. CORNISH
	TIVE BINOMIAL USEFUL IN LIFE TESTING * W. MEN- DENHALL, E. H. LEHMAN JR	TECH 60	523 ERRATA, 'ORDER STATISTICS FROM THE GAMMA DISTRIBU- TION'*S.S.GUPTA
	DEMIREE, E. H. LEHMAN ON		TION S.S. GOPTA
	TECHNOMETRICS	VOLUME 3,	1961
TEGH 61	1 CUMULATIVE SUM CHARTS * E. S. PAGE	TECH 61	55 MULTI-COMPONENT SYSTEMS AND STRUCTURES AND THEIR RE-
TEGH 61	11 AVERAGE RUN LENGTHS IN CUMULATIVE CHART QUALITY CON- TROL SCHEMES * P. L. GOLDSMITH, H. WHITFIELD		LIABILITY * Z. W. BIRNBAUM, J. D. ESARY, S. C. SAUN- DERS
TECH 61	21 PREDICTION REGIONS FOR SEVERAL PREDICTIONS FROM A	TECH 61	79 AN ASYMPTOTIC DISTRIBUTION FOR AN OCCUPANCY PROBLEM
	SINGLE REGRESSION LINE * GERALD J. LIEBERMAN		WITH STATISTICAL APPLICATIONS * M. HALPERIN, G. L.
TECH 61	29 THE ROBUSTNESS OF LIFE TESTING PROCEDURES DERIVED		BURROWS
	FROM THE EXPONENTIAL DISTRIBUTION * MARVIN ZELEN, MARY G. DANNEMILLER	TECH 61	91 OUTLIERS IN PATTERNED EXPERIMENTS. A STRATEGIC AP- PRAISAL*IRWIND.J.BROSS
TECH 61	51 AN APPLICATION OF A BALANCED INCOMPLETE BLOCK DESIGN	TECH 61	103 MULTIPLE COMPARISIONS WITH A CONTROL IN BALANCED IN-
	* PETER W. M. JOHN		COMPLETE BLOCK DESIGNS * D. S. ROBSON
			400

- TECH 61 107 ESTIMATES OF BOUNDED RELATIVE ERROR FOR THE MEAN LIFE
 OF AN EXPONENTIAL DISTRIBUTION * BENJAMIN EPSTEIN
 - ECH 61 111 ON METHODS OF CONSTRUCTING SETS OF MUTUALLY ORTHOCONAL LATIN SQUARES USING A COMPUTER. II * R. C. BOSE, I. M. CHAKRAVARTI, D. E. KNUTH
- TECH 61 131 ERRATA. 'THE EFFECT OF SEQUENTIAL BATCHING FOR AC-CEPTANCE-REJECTION SAMPLING UPON SAMPLE ASSURANCE OF TOTAL PRODUCT QUALITY' * M. HALPERIN, G. L. BUR-ROWS
- TECH 61 133 CENERAL CONSIDERATIONS IN THE ANALYSIS OF SPECTRA * G.
 M. JENKINS
- TECH 61 167 MATHEMATICAL CONSIDERATIONS IN THE ESTIMATION OF SPECTRA * EMANUEL PARZEN
- TECH 61 191 DISCUSSION, EMPHASIZING THE CONNECTION BETWEEN ANALYSIS of VARIANCE AND SPECTRUM ANALYSIS * JOHN W. TUKEY
- TECH 61 221 SOME COMMENTS ON SPECTRAL ANALYSIS OF TIME SERIES * N.
- TECH 61 229 COMMENTS ON THE DISCUSSIONS OF MESSRS. TUKEY AND COOD-MAN * C. M. JENKINS, EMANUEL PARZEN
- TECH 61 235 SPECTRAL ANALYSIS COMBINING A BARTLETT WINDOW WITH AN ASSOCIATED INNER WINDOW * THOMAS A . WONNACOTT TECH 61 245 FREQUENCY RESPONSE FROM STATIONARY NOISE, TWO CASE
- TECH 61 245 FREQUENCY RESPONSE FROM STATIONARY NOISE, TWO CASE
 HISTORIES * N. R. GOODMAN. S. KATZ, B. H. KRAMER,
 M. T. KUO
- TECH 61 269 THE MODIFIED GAUSS-NEWTON METHOD FOR THE FITTING OF NON-LINEAR RECRESSION FUNCTIONS BY LEAST SQUARES * H.O. HARTLEY
- TECH 61 281 ON THE POSSIBILITY OF IMPROVING THE MEAN USEFUL LIFE
 OF ITEMS BY ELIMINATING THOSE WITH SHORT LIVES * C.
 S. WATSON, W. R. WELLS
- TECH 61 311 THE 2-TO-THE-(K-P) FRACTIONAL FACTORIAL DESIGNS * G. E. P. BOX, J. S. HUNTER
- TECH 61 353 PARTIAL CONFOUNDING IN FRACTIONAL REPLICATION * W. J YOUDEN
- TECH 61 359 FINDING NEW FRACTIONS OF FACTORIAL EXPERIMENTAL DESIGNS*R.E.FRY
- TECH 61 371 A STUDY OF THE CROUP SCREENING METHOD * G. S. WATSON
- TECH 61 389 MISSING VALUES IN RESPONSE SURFACE DESIGNS * NORMAN R. DRAPER

- TECH 61 399 THE OPTIMUM ALLOCATION OF SPARE COMPONENTS IN SYSTEMS
 * DONALD F. MORRISON
- TECH 61 407 USE OF TABLES OF PERCENTACE POINTS OF RANCE AND STU-DENTIZED RANCE * H. LEON HARTER
- TECH 61 413 THE RELIABILITY OF COMPONENTS EXHIBITING CUMULATIVE DAMACE EFFECTS * GEORGE H. WEISS
- TECH 61 423 AN ANALYSIS OF SOME RELAY FAILURE DATA FROM A COM-POSITE EXPONENTIAL POPULATION * R. R. PRAIRIE, B. OSTLE
- TECH 61 429 APPLICATIONS OF TRUNCATED DISTRIBUTIONS IN PROCESS START-UPS AND INVENTORY CONTROL * H. SMITH, D. W. GRACE
- TECH 61 433 ESTIMATING THE POISSON PARAMETER FROM SAMPLES THAT
 ARE TRUNCATED ON THE RIGHT * A. CLIFFORD COHEN JR
- TECH 61 449 THE 2-TO-THE-(K-P) FRACTIONAL FACTORIAL DESIGNS, II
 * C. E. P. BOX, J. S. HUNTER
- TECH 61 459 REDUCED DESIGNS OF RESOLUTION FIVE * JOHN C. WHITWELL, G. K. MORBEY
- TECH 61 479 IRREGULAR FRACTIONS OF THE 2-TO-THE-N FACTORIAL EX-PERIMENTS * SIDNEY ADDELMAN
 TECH 61 497 A CENERAL SIMULATION PROGRAMME FOR MATERIAL FLOW IN
- BATCH CHEMICAL PLANTS * J. DYSON, P. L. GOLDSMITH, J. S. M. ROBERTSON
 TECH 61 509 A PROBLEM OF OPTIMUM ALLOCATION ARISING IN CHEMICAL
- ANALYSES BY MULTIPLE ISOTOPE DILUTION * H. WEILER
 TECH 61 519 SEQUENTIAL CHI-SQUARE AND T-SQUARE TESTS AND THEIR
 APPLICATION TO AN ACCEPTANCE SAMPLING PROBLEM * J.
 E. JACKSON, RALPH BRADLEY
- TECH 61 535 TABLES FOR MAXIMUM LIKELIHOOD ESTIMATES. SINGLY TRUN-CATED AND SINGLY CENSORED SAMPLES * A. CLIFFORD COHEN JR
- TECH 61 543 THE FOLDED NORMAL DISTRIBUTION * F. C. LEONE, L. S. NELSON, R. B. NOTTINGHAM
- TECH 61 551 THE FOLDED NORMAL DISTRIBUTION. TWO METHODS OF ESTI-MATING PARAMETERS FROM MOMENTS * REGINA C. ELANDT
- TECH 61 563 THE ESTIMATION OF 'TRANSFER FUNCTIONS' OF QUADRATIC SYSTEMS* LEO J. TICK
- TECH 61 576 ERRATA, 'SOME NEW THREE LEVEL DESIGNS FOR THE STUDY OF
 QUANTITATIVE VARIABLES' * G. E. P. BOX, D. W. BEHNKEN
 TECH 61 576 ERRATA, 'TABLES OF TOLERANCE-LIMIT FACTORS FOR NORMAL
- TECH 61 576 ERRATA, 'TABLES OF TOLERANCE-LIMIT FACTORS FOR NORMAL DISTRIBUTIONS' * ALFRED WEISSBERG, GLENN H. BEATTY

TECHNOMETRICS VOLUME 4, 1962

- TECH 62 1 PROBABILITY PLOTS FOR THE GAMMA DISTRIBUTION * M. B WILK, R. GNANADESIKAN, MISS M. J. HUYETT
- TECH 62 21 ORTHOCONAL MAIN-EFFECT PLANS FOR ASYMMETRICAL FACTORIAL EXPERIMENTS * SIDNEY ADDELMAN
- TECH 62 47 SYMMETRICAL AND ASYMMETRICAL FRACTIONAL FACTORIAL PLANS*SIDNEY ADDELMAN
- TECH 62 59 ESTIMATION OF SAMPLE SIZE * N. L. JOHNSON
- TECH 62 69 ON CERTAIN REDUNDANT SYSTEMS WHICH OPERATE AT DISCRETE TIMES * GEORGE WEISS
- TECH 62 75 PARAMETER-FREE AND NON-PARAMETRIC TOLERANCE LIMITS,
 THE EXPONENTIAL CASE * LEO A. GOODMAN, ALBERT MADANSKY
- TECH 62 97 CUMULATIVE SUM SCHEMES USING CAUGING * E. S. PAGE
- TECH 62 111 SYSTEMATIC ERRORS IN PHYSICAL CONSTANTS * W. J. YOUDEN
- TECH 62 125 A CLASSIFICATION OF FALLACIOUS ARGUMENTS AND IN-TERPRETATIONS*I.J.GOOD
- TECH 62 133 AN ANALOGUE OF TCHEBYCHEFF'S INEQUALITY IN TERMS OF THE RANGE * G. A. BARNARD
- TECH 62 134 AN UPPER BOUND FOR THE SAMPLE STANDARD DEVIATION * H. E. GUTERMAN
- TECH 62 135 ON THE CALCULATION OF CERTAIN CONSTRAINED MAXIMA * WEN
 M. CHOW
 TECH 62 138 DISTRIBUTION OF RADICAL ERROR IN THE BIVARIATE ELLIP-
- TICAL NORMAL DISTRIBUTION * VICTOR CHEW, RAY BOYCE
- TECH 62 140 COMPARATIVE COST OF TWO LIFE TEST PROCEDURES * JAMES D.RILEY
- TECH 62 151 LIFE TEST SAMPLING PLANS FOR NORMAL AND LOGNORMAL DIS-TRIBUTIONS * SHANTIS. GUPTA
- TECH 62 177 SOME ACCEPTANCE SAMPLING PLANS BASED ON THE THEORY OF RUNS*R.R. PRAIRIE, W. J. ZIMMER, J. K. BROOKHOUSE
- TECH 62 187 THREE FACTOR ADDITIVE DESIGNS MORE GENERAL THAN THE LATIN SQUARE * RICHARD F. POTTHOFF
- TECH 62 209 GROUP SCREENING WITH MORE THAN TWO STACES * M. S. PATEL TECH 62 219 THIRD ORDER ROTATABLE DESIGNS IN THREE FACTORS. ANAL-
- YSIS * NORMAN R. DRAPER
 TECH 62 235 ON THE EMPTY CELL TEST * M. CSORGO, IRWINGUTTMAN
- TECH 62 249 THE FOLDED NORMAL DISTRIBUTION, III. ACCURACY OF ESTIMATION BY MAXIMUM LIKELIHOOD * N L JOHNSON
- TECH 62 257 THE EFFICIENCY OF STATISTICAL SIMULATION PROCEDURES
 *S.EHRENFELD, S.BEN-TUVIA
- TECH 62 277 DISTRIBUTIONS OF PRODUCTS OF INDEPENDENT VARIABLES * G.A. BARNARD

- TECH 62 278 ON THE GENERATION OF NORMAL RANDOM VECTORS * E. M. SCHEUER, D. S. STOLLER
- CECH 62 282 MODIFIED SQUARE ROOT METHOD OF MATRIX INVERSION * A. E. SARHAN, B. G. GREENBERG, ELEANOR ROBERTS
- TECH 62 301 A USEFUL METHOD FOR MODEL BUILDING * GEORGE E. P. BOX,
 WILLIAM G. HUNTER
 TECH 62 319 BULK SAMPLING. PROBLEMS AND LINES OF ATTACK * ACHESON
- J. DUNCAN
- TECH 62 345 ON A CLASS OF SIMPLE SEQUENTIAL TESTS ON MEANS * C. C. CRAIG
- TECH 62 361 FOUR FACTOR ADDITIVE DESIGNS MORE GENERAL THAN THE GRECO-LATIN SQUARE *RICHARD F. POTTHOFF TECH 62 367 AN OPTIMAL SEQUENTIAL ACCELERATED LIFE TEST. * S.
- * BESSLER, H. CHERNOFF, A. W. MARSHALL
 TECH 62 381 OPTIMAL ACCELERATED LIFE DESIGNS FOR ESTIMATION *
- HERMAN CHERNOFF
 TECH 62 409 MINIMUM VARIANCE UNBIASED ESTIMATORS FOR POISSON
 PROBABILITIES * CERALD J. CLASSER
- TECH 62 419 NOTE ON A METHOD FOR CALCULATING CORRECTED SUMS OF SQUARES AND PRODUCTS * W. P. WELFORD
- TECH 62 421 DECIMAL CORRECTION ERROR, AN EXAMPLE IN STATISTICS * RANDALL M. CONKLINE
- RANDALL M. CONKLINE
 TECH 62 426 A NUMERICAL ANALYSIS PROBLEM IN CONSTRAINED QUADRATIC
- REGRESSION ANALYSIS * W. J. WESTLAKE
 TECH 62 430 POWER FUNCTIONS FOR COX'S TEST OF RANDOMNESS AGAINST
 TREND * EDWIN MANSFIELD
- TECH 62 440 ERRATA, 'ORTHOGONAL MAIN-EFFECT PLANS FOR ASYMMETRI-CAL FACTORIAL EXPERIMENTS' * SIDNEY ADDELMAN
- TECH 62 440 ERRATA. 'AN UPPER BOUND FOR THE SAMPLE STANDARD DEVIATION '* DONALD L. MEYER
 TECH 62 441 SEQUENTIAL APPLICATION OF SIMPLEX DESIGNS IN OPTIMIS—
- ATION AND EVOLUTIONARY OPERATION * W. SPENDLEY, C. R. HEXT, F. R. HIMSWORTH
- TECH 62 463 SIMPLEX LATTICE DESIGNS FOR MUTICOMPONENT SYSTEMS *
 J. W. GORMAN, J. E. HINMAN
 TECH 62 489 SOME SYSTEMATIC SUPERSATURATED DESIGNS * KATHLEEN H.
- V. BOOTH, D. R. COX
 TECH 62 497 SOME LIMIT THEOREMS FOR THE DODGE-ROMIG LTPD SINGLE
- TECH 62 497 SOME LIMIT THEOREMS FOR THE DODGE-ROMIG LTPD SINGLE SAMPLING INSPECTION PLANS* ANDERSHALD
- TECH 62 515 SURVEILLANCE PROGRAMS FOR LOTS IN STORACE * FREDERICK
 S. HILLIER
 TECH 60 51 TECHNOLOGY OF THE EXPERIENCE OF THE PROGRAM AND THE PROGRAM AN
- TECH 62 531 TRANSFORMATION OF THE INDEPENDENT VARIABLES* G. E. P. BOX, PAUL W. TIDWELL

- TECH 62 551 BASIC CONSIDERATIONS IN THE ESTIMATION OF SPECTRA * M. B. PRIESTLY
- TECH 62 565 LINEAR ESTIMATION AND THE ANALYSIS OF CAMMA RAY PULSE-HEICHT SPECTRA * BERNARD S. PASTERNACK
- TECH 62 573 TESTS FOR CONTINCENCY TABLES AND MARKOV CHAINS * S KULLBACK, M. KUPPERMAN, H. H. KU
- TECH 62 609 A NOTE ON THE NECATIVE BINOMIAL DISTRIBUTION * JOHN J BARTKO
- TECH 62 610 A SEQUENTIAL SEARCH PROCEDURE FOR LOCATING A RESPONSE JUMP * JOSEPH J. MODER
- 622 ERRATA, 'MODIFIED SQUARE ROOT METHOD OF MATRIX INVER-SION ' * A. E. SARHAN, B. C. CREENBERC, ELEANOR TECH 62 ROBERTS

TECHNOMETRICS VOLUME 5, 1963

- TECH 63 1 WHEN AND HOW TO USE CU-SUM CHARTS * W. D. EWAN
- 23 VALIDATING RESULTS OF SAMPLING INSPECTION BY AT-TECH 63 TRIBUTES * HENRY ELLNER
- 47 SAMPLING PROCEDURES BASED ON PRIOR DISTRIBUTIONS AND TECH 63 COSTS * J. PFANZACL
- TECH 63 63 SOME PROPERTIES OF A DISTRIBUTION SPECIFIED BY ITS CU-MULANTS * D. J. FINNEY
- 71 PARTIALLY DUPLICATED FRACTIONAL FACTORIAL DESIGNS * TECH 63 M. S. PATEL
- TECH 63 85 RESERVOIRS WITH SERIALLY CORRELATED INPUTS * E. H. LI.OYD
- TECH 63 95 PROGRAMMING UNIVARIATE AND MULTIVARIATE ANALYSIS OF VARIANCE * R. DARRELL BOCK
- TECH 63 119 ON THE EQUIVALENCE OF BINOMIAL AND INVERSE BINOMIAL ACCEPTANCE SAMPLING PLANS AND AN ACKNOWLEDGEMENT *
- G P PATTI. TECH 63 121 ROBUSTNESS OF UNIFORM BAYESTAN ENCODING * H. O. POSTEN 134 ERRATA, 'FINDING NEW FRACTIONS OF FACTORIAL EXPERI-TECH 63
- MENTAL DESIGNS' * R. E. FRY TECH 63 141 THE EXAMINATION AND ANALYSIS OF RESIDUALS * F. J. AN-
- SCOMBE, JOHN W. TUKEY TECH 63 161 ANALYSIS OF SURVIVAL DATA BY REGRESSION TECHNIQUES *
- SCOTT A. KRANE TECH 63 175 ESTIMATION OF THE SHAPE AND SCALE PARAMETERS OF THE
- WEIBULL DISTRIBUTION * M. V. MENON TECH 63 1B3 RELATIONSHIP BETWEEN SYSTEM FAILURE RATE AND COM-
- PONENT FAILURE RATES * JAMES D. ESARY, FRANK PROSCHAN
- TECH 63 191 COHERENT STRUCTURES OF NON-IDENTICAL COMPONENTS * JAMES D. ESARY, FRANK PROSCHAN
- TECH 63 211 RANDOM HAZARD IN RELIABILITY PROBLEMS * D. P. GAVER JR
- AN EXAMPLE OF THE ESTIMATION OF LINEAR OPEN LOOP TECH 63 TRANSFER FUNCTION * G . M . JENKINS
- TECH 63 247 THE EFFECTS OF ERRORS IN THE FACTOR LEVELS AND EXPERI-MENTAL DESIGN * G. E. P. BOX
- TECH 63 263 STATISTICAL EVALUATION OF SPLITTING LIMIT CRITERIA IN MEASUREMENT DISPUTES * FREDH. TIMGEY 269 GENERATION OF RANDOM SAMPLES FROM THE BETA AND F DIS-TECH 63
- TRIBUTIONS * BENNETT L. FOX TECH 63 295 APPROXIMATIONS TO THE NON-CENTRAL T, WITH APPLICA-
- TIONS * MAX HALPERIN TECH 63 307 CONTROLLING THE STANDARD DEVIATION BY CUSUMS AND
- WARNING LINES * E . S . PAGE TECH 63 317 A QUICK METHOD FOR CHOOSING A TRANSFORMATION * JAMES
- TECH 63 327 PROGRESSIVELY CENSORED SAMPLES IN LIFE TESTING * A CLIFFORD COHEN JR

L. DOLBY

TECH 64

- 341 APPLIED MULTIPLEX SAMPLINC * DAVIDH. EVANS TECH 63
- 361 THE SAMPLINC DISTRIBUTION OF AN ESTIMATE ARISINC IN TECH 63 LIFE TESTING * D. J. BARTHOLOMEW
- 375 THEORETICAL EXPLANATION OF OBSERVED DECREASE FAILURE TECH 63 RATE * FRANK PROSCHAN
- TECH 63 385 EFFECTS OF SLOW-DOWNS AND FAILURE ON STOCHASTIC SER-VICESYSTEMS * M. M. EISEN
- 393 ON THE RENEWAL FUNCTION FOR THE WEIBULL DISTRIBUTION TECH 63 * W. L. SMITH, M. R. LEADBETTER
- 397 A NOTE ON 'A STUDY OF THE CROUP SCREENING EXPERIMENT' TECH 63 * M.S. PATEL
- 398 A NOTE ON CONTINGENCY TABLES INVOLVING ZERO FREQUEN-TECH 63 CIES AND THE 21 TEST * H. H. KU TECH 63 400 ONE-SIDED CONFIDENCE INTERVALS FOR THE QUALITY IN-
- DICES OF A COMPLEX ITEM * HELEN CHMURA KRAEMER
- 404 DIMENSIONAL CHAINS INVOLVING RECTANGULAR AND NORMAL TECH 63 ERROR-DISTRIBUTIONS * C. P. BHATTACHARJEE, S. N. N. PANDIT, R. MOHAN
- 417 ERRATA, 'SOME PROPERTIES OF A DISTRIBUTION SPECIFIED TECH 63 BY ITS CUMULANTS' * D. J. FINNEY
- 417 ERRATA, 'THE 2-TO-THE-(K-P) FRACTIONAL FACTORIAL TECH 63 DESIGNS' * G. E. P. BOX, J. S. HUNTER
- 417 ERRATA, 'AN UPPER BOUND FOR THE SAMPLE STANDARD DEVIA-TECH 63 TION' * H. E. GUTERMAN
- TECH 63 421 A COMPARISON OF THREE DIFFERENT PROCEDURES FOR ESTI-MATING VARIANCE COMPONENTS * NORMAN BUSH, R. L. ANDERSON
- TECH 63 441 NON-NEGATIVE ESTIMATES OF VARIANCE COMPONENTS * W. A THOMPSON JR, JAMES R. MOORE
- 451 CUMULATIVE SUM CHARTS FOR THE FOLDED NORMAL DISTRIBU-TECH 63 TION * N. L. JOHNSON
- TECH 63 459 ESTIMATION OF THE PROBABILITY OF DEFECTIVE FAILURE FROM DESTRUCTIVE TESTS * A. C. NELSON JR, J. S. WIL-LIAMS, N. T. FLETCHER
- TECH 63 RIDCE ANALYSIS' OF RESPONSE SURFACES * NORMAN DRAPER 469
- TECH 63 4B1 THE DESIGN OF SCREENING TESTS * O. L. DAVIES
- TABLES FOR A PRECEDENCE LIFE TEST * LLOYD S . NELSON TECH 63 491
- TECH 63 501 TABLES FOR TESTING SIGNIFICANCE IN A 2-BY-3 CONTIN-GENCY TABLE * B . M . BENNETT, E . NAKAMURA
- TECH 63 513 CONVERCENCE IN NON-LINEAR REGRESSION * TEONARD TORN-HEIM
- 514 RELATIONS AMONG MOMENTS OF ORDER STATISTICS IN SAM-TECH 63 PLES FROM TWO RELATED POPULATIONS * Z. GOVINDARAJULU
- 518 DISTRIBUTION FREE TOLERANCE LIMITS. ELIMINATION OF TECH 63 REQUIREMENT THAT CUMULATIVE FUNCTIONS BE CONTINU-OUS * D. L. HANSON, D. B. OWEN
- 522 APPROXIMATIONS TO THE MEAN AND STANDARD DEVIATION OF TECH 63 RECIPROCALS OF OBSERVATIONS * C. TIPLITZ

TECHNOMETRICS VOLUME 6, 1964

- 1 ESTIMATION OF WEIGHTING FACTORS IN LINEAR REGRESSION TECH 64 AND ANALYSIS OF VARIANCE * JOHN MANDEL
- TECH 64 27 SOME WAITING TIME DISTRIBUTIONS FOR REDUNDANT SYSTEMS WITH REPAIR * MAX HALPERIN
- 41 SEQUENTIAL FACTORIAL ESTIMATION * J. S. HUNTER TECH 64
- 57 THE DISCRIMINATION BETWEEN TWO WEIBULL PROCESSES * A TECH 64 S. OURETSHT
- 77 SERIAL DESIGNS FOR ROUTINE QUALITY CONTROL AND EX-TECH 64 PERIMENTATION * H. R. THOMPSON, K. E. SEAL
- 99 CONTROLLING THE PROPORTION DEFECTIVE FROM CLASSIFI-CATION DATA * C. P. QUESENBERRY 101 GENERATING A VARIABLE FROM THE TAIL OF THE NORMAL DIS-TECH 64
- TRIBUTION * G . MARSAGLIA
- TECH 64 103 QUERY, INADMISSIBLE RANDOM ASSIGNMENTS * W. J. YOUDEN 104 QUERY, THE SUM OF VALUES FROM A NORMAL AND A TRUNCATED TECH 64 NORMAL DISTRIBUTION * M. A. WEINSTEIN
- TECH 64 133 MODEL BUILDING WITH THE AID OF STOCHASTIC PROCESSES * HARALD CRAMER
- TECH 64 161 NEW CRITERIA FOR SELECTING CONTINUOUS SAMPLING PLANS * F. S. HILLIER
- TECH 64 179 ON THE PERFORMANCE OF THE LINEAR DISCRIMINANT FUNC-TION * WM . G . COCHRAN

- TECH 64 191 LARGE SAMPLE SIMULTANEOUS CONFIDENCE INTERVALS FOR MULTINOMIAL PROPORTIONS * C. P. QUESENBERRY, D. C. HURST
- TECH 64 197 MATRIX INVERSION WITH THE SQUARE ROOT METHOD * PAUL S. DWYER
- TECH 64 215 ESTIMATES OF RELIABILITY FOR SOME DISTRIBUTIONS USE-FUL IN LIFE TESTING * A . P . BASU
- 220 A NOTE ON SMALL ORTHOGONAL MAIN EFFECT PLANS FOR FAC-TECH 64 TORIAL EXPERIMENTS * THOMAS H. STARKS
- 222 ESTIMATION OF A COMPONENT OF A CONVOLUTION, WHEN THE TECH 64 OTHER COMPONENT IS OF EXPONENTIAL TYPE * P. SCHEINOK 225 QUERY, RECRESSION ANALYSIS OF CUMULATIVE DATA * JOHN TECH 64
- MANDEL 228 QUERY, REJECTION OF OUTLYING VALUES * W. J. DIXON TECH 64
- 240 ERRATA, 'THE DISCRIMINATION BETWEEN TWO WEIBULL TECH 64 PROCESSES' * A. S. QUREISHI
- 241 MULTIPLE COMPARISIONS USING RANK SUMS * OLIVE JEAN TECH 64 DUNN
- 253 SOME TWO-LEVEL FACTORIAL PLANS WITH SPLIT PLOT CON-TECH 64 FOUNDINC * SIDNEY ADDELMAN
- TECH 64 259 SEQUENTIAL OPTIMUM PROCEDURES FOR UNBIASED ESTIMA-TION OF A BINOMIAL PARAMETER * M. T. WASAN

- TECH 64 273 A SIGNIFICANCE TEST FOR SIMULTANEOUS QUANTAL AND QUANTITATIVE RESPONSES * H. WEILER
- TECH 64 287 ON THE DISTRIBUTION OF THE FIRST SAMPLE MOMENTS OF SHOT NOISE * H. LINHART
- TECH 64 293 A PROGRAM TO ESTIMATE MEASUREMENT ERROR IN NON-DESTRUCTIVE EVALUATION OF REACTOR FUEL ELEMENT QUALITY* J. L. JAECH
- TECH 64 301 EXACT CONFIDENCE BOUNDS, BASED ON ONE ORDER STATISTIC
 FOR THE PARAMETER OF AN EXPONENTIAL POPULATION * H.
 LEON HARTER
- TECH 64 319 A NOTE ON THE DETERMINATION OF CONNECTEDNESS IN AN N-WAY CROSS CLASSIFICATION * DAVID L. WEEKS, DONALD R. WILLIAMS
- TECH 64 325 APPLICATIONS OF THE BIVARIATE NORMAL DISTRIBUTION TO
 A STRESS VS. STRENGTH PROBLEM IN RELIABILITY ANALY—
 SIS*M.LIPOW.*R.L.EIDEMILLER
- TECH 64 329 QUERY, DISTRIBUTION OF A RANKED OBSERVATION * NORMAN L.JOHNSON
- TECH 64 331 QUERY, THE MEAN OF THE TAIL OF A DISTRIBUTION * F. E. SATTERTHWAITE
- TECH 64 343 METHODS FOR ESTIMATING THE COMPOSITION OF A THREE COM-PONENT LIQUID MIXTURE * RAYMONDH. MYERS
- TECH 64 357 GENESIS OF BIMODAL DISTRIBUTIONS * ISIDORE EISENBERGER
- TECH 64 $\,$ 365 DESIGNS FOR THE SEQUENTIAL APPLICATION OF FACTORS * $\,$ SIDNEY ADDELMAN
- TECH 64 371 BLOCKING OF 3-TIMES-2-TO-THE-(N-K) * PETER W. M. JOHN

- TECH 64 377 CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL DISTRIBUTION * D. B. OWEN
- TECH 64 389 A PROCEDURE FOR CONSTRUCTING INCOMPLETE BLOCK DESIGNS
 * SIDNEY ADDELMAN, SEYMOUR BUSH
- TECH 64 405 ESTIMATION OF THE PARAMETERS OF THE GAMMA DISTRIBU-TION BY SAMPLE QUANTILES * CARL ERIK SARNDAL
- TECH 64 415 ESTIMATION OF WEIBULL DISTRIBUTION SHAPE PARAMETER
 WHEN NO MORE THAN TWO FAILURES OCCUR PER LOT * J. L.
 JAECH
- TECH 64 423 ESTIMATING MACHINING ERRORS IN SET-UPS WITH AUTOMATIC RESETTING * R. MOHAN, A. K. BHATTACHARYYA, R. MISHRA
- TECH 64 439 THE POWER FUNCTION OF THE EXACT TEST FOR THE 2-BY-3
 CONTINGENCY TABLE * B. M. BENNETT, E. NAKAMURA
- TECH 64 459 SYSTEMS STRUCTURE AND THE EXISTENCE OF A SYSTEM LIFE * J. D. ESARY, A. W. MARSHALL
- TECH 64 463 A NOTE ON COMBINING CORRELATED ESTIMATES OF A RATIO OF MULTIVARIATE MEANS * B. M. BENNETT
- TECH 64 469 QUERY, THE SUM OF VALUES FROM A NORMAL AND A TRUNCATED NORMAL DISTRIBUTION (CONTD) * M. LIPOW, N. MANTEL, J. W. WILKINSON
- TECH 64 471 QUERY, SAVINGS IN TEST TIME WHEN COMPARING WEIBULL SCALE PARAMETERS * JOHN H. K. KAO
- SCALE PARAMETERS * JOHN H. K. KAO
 TECH 64 482 ERRATA, 'APPROXIMATIONS TO THE NON-CENTRAL T, WITH
 APPLICATIONS' * MAX HALPERIN
- TECH 64 4B3 ERRATA, 'EXACT CONFIDENCE BOUNDS, BASED ON ONE ORDER
 STATISTIC FOR THE PARAMETER OF A ONE-PARAMETER NEGATIVE EXPONENTIAL POPULATION'* H. LEON HARTER

TECHNOMETRICS VOLUME 7, 1965

- TECH 65 1 A METHOD FOR DISCRIMINATING BETWEEN FAILURE DENSITY
 FUNCTIONS USED IN RELIABILITY PREDICTIONS * J. T.
 WEBSTER, VAN B. PARR
- TECH 65 11 DESIGN AND EVALUATION OF A REPETITIVE GROUP SAMPLING PLAN * ROBERTE. SHERMAN
- TECH 65 23 THE EXPERIMENTAL STUDY OF PHYSICAL MECHANISMS * WIL-LIAMG. HUNTER, G. E. P. BOX
- TECH 65 43 ESTIMATING THE FRACTION OF ACCEPTABLE PRODUCT * JOHN L. FOLKS, DONALD A. PIERCE, CHARLES STEWART
- TECH 65 51 MAXIMUM LIKELIHOOD ESTIMATORS OF REGRESSION COEFFI-CIENTS FOR THE CASE OF AUTOCORRELATED RESIDUALS * TRYGVER. LERWICK
- TECH 65 59 A METHOD OF FITTING THE REGRESSION CURVE $E\left(Y\right) = A + DX + BC TO X*B \text{. K. SHAH, C. G. KHATRI}$
- TECH 65 67 AN INEQUALITY FOR THE SAMPLE COEFFICIENT OF VARIATION
 AND AN APPLICATION OF VARIABLES SAMPLING * ROBERT D.
 SUMMERS
- TECH 65 69 A NOTE ON FRACTIONS OF 3-TO-THE-(4N+1) DESIGNS * D. RAGHAVARAO
- TECH 65 71 AN APPROXIMATION OF STUDENT'S T * DONALD A. GARDINER, BARABARA F. BOMBAY
- TECH 65 73 QUERY, CALCULATION OF THE SAMPLING DISTRIBUTION OF THE RANGE * IRVING W. BURR
- TECH 65 75 QUERY, NEGATIVE VARIANCE ESTIMATES * R. L. ANDERSON TECH 65 93 ERRATA. 'SEQUENTIAL FACTORIAL ESTIMATION' * J. S. HUNTER
- TECH 65 95 SHORT-CUT MULTIPLE COMPARISONS FOR BALANCED SINGLE
 AND DOUBLE CLASSIFICATIONS. PART 1, RESULTS * T. E.
 KURTZ, B. F. LINK, J. W. TUKEY, D. L. WALLACE
- TECH 65 163 COMMENTS ON PAPER BY KURTZ, LINK, TUKEY AND WALLACE *
 J. EDWARD JACKSON, FRANCIS J. ANSCOMBE
- TECH 65 169 AUTHOR'S REPLY TO ANSCOMBE'S COMMENTS * T. E. KURTZ, B. F. LINK, J. W. TUKEY, D. L. WALLACE
- TECH 65 171 A BAYESIAN APPROACH TO MULTIPLE COMPARISONS * DAVID B. DUNCAN
- TECH 65 223 A REMARK ON MULTIPLE COMPARISON METHODS * D. R. COX
- TECH 65 225 ON SOME MULTIPLE DECISION (SELECTION AND RANKING) RULES * SHANTIS. GUPTA
- TECH 65 247 ON SIMULTANEOUS CONFIDENCE INTERVALS FOR MULTINOMIAL PROPORTIONS * LEO A. GOODMAN
- TECH 65 255 A NOTE ON MULTIPLE COMPARISONS USING RANK SUMS * ELLEN SHERMAN
- TECH 65 257 QUERY, CONFIDENCE LIMITS FROM RANK TESTS * LINCOLN E MOSES
- TECH 65 260 QUERY, ERROR RATE BASES * L. N. BALAAM, W. T. FEDERER
- TECH 65 2B1 ERRATA, 'A NOTE ON THE DETERMINATION OF CONNECTEDNESS

 IN AN N-WAY CROSS CLASSIFICATION' * DAVID L. WEEKS,

 DONALD R. WILLIAMS
- TECH 65 2B3 STATISTICAL PROCESS CONTROL AND THE IMPACT OF AUTO-MATIC PROCESS CONTROL * GERALD J. LIEBERMAN
- TECH 65 293 TABLES FOR A TREATMENTS VERSUS CONTROL MULTIPLE COM-PARISONS SIGN TEST * A. L. RHYNE, ROBERT G. D. STEEL
- TECH 65 307 DESIGNS FOR DISCRIMINATING BETWEEN TWO RIVAL MODELS * WILLIAM G. HUNTER, ALBEY M. REINER
- TECH 65 325 CHOICE OF LEVELS OF POLYNOMIAL REGRESSION WITH ONE OR TWO VARIABLES * DR. VIRGINIA CLARK

- TECH 65 335 THE USE OF INCOMPLETE BETA FUNCTIONS FOR PRIOR DIS-TRIBUTIONS IN BINOMIAL SAMPLING * H. WEILER
- TECH 65 349 PARAMETER ESTIMATION FOR A GENERALIZED GAMMA DISTRIBUTION * E. W. STACY, G. A. MIHRAM
- TECH 65 359 ON PRECEDENCE LIFE TESTING * JOAN EILBOTT, JACK NADLER
- TECH 65 379 SOME STATISTICAL CHARACTERISTICS OF A PEAK TO AVERAGE RATIO * MILTON MORRISON, FILBERT TOBIAS
- TECH 65 3B7 APPROXIMATE DESIGN OF DIGITAL FILTERS * H. H. ROBERT-SON
- TECH 65 405 POINT AND INTERVAL ESTIMATORS, BASED ON M ORDER STATISTICS, FOR THE SCALE PARAMETER OF A WEIBULL POPULATION WITH KNOWN SHAPE PARAMETER * H. LEON HARTER, ALBERTH. MOORE
- TECH 65 423 ASYMPTOTIC PROPERTIES OF SEVERAL ESTIMATORS OF WEIBULL PARAMETERS * SATYA D. DUBEY
- TECH 65 435 NOTE ON AN APPLICATION OF FOUR MOMENT INEQUALITIES TO A PROBLEM IN QUEUES * HENRY DE CICCO
- TECH 65 439 CONSTRUCTION OF A 2-TO-THE-(17-9) RESOLUTION V PLAN
 IN EIGHT BLOCKS OF 32 * SIDNEY ADDELMAN
- TECH 65 444 A NOTE ON G.S. WATSON'S PAPER 'A STUDY OF THE GROUP SCREENING METHOD' * R. N. CURNOW
- TECH 65 447 QUERY, TESTING TWO CORRELATED VARIANCES * WILLIAM G
- TECH 65 449 QUERY, COMBINATION OF A NORMAL AND A UNIFORM DISTRIBU-TION * PAUL GUNTHER
- TECH 65 462 ERRATA. 'ESTIMATION OF A COMPONENT OF A CONVOLUTION,
 WHEN THE OTHER COMPONENT IS OF EXPONENTIAL TYPE' *
 PERRY A. SCHEINOK
- TECH 65 463 SEQUENTIAL RANK TESTS I. MONTE CARLO STUDIES OF THE
 TWO-SAMPLE PROCEDURE * RALPH A. BRADLEY, DONALD C.
 MARTIN, FRANK WILCOXON
- TECH 65 485 PRODUCT TEST PLANNING FOR REPAIRABLE SYSTEMS * BETTY J. FLEHINGER
- TECH 65 495 APPROXIMATE CONFIDENCE LIMITS FOR THE RELIABILITY OF SERIES AND PARALLEL SYSTEMS * ALBERT MADANSKY
- TECH 65 505 ESTIMATION OF PARTICLE SIZE DISTRIBUTION BASED ON OB-SERVED WEIGHTS OF GROUPS OF PARTICLES * J. L. JAECH
- TECH 65 517 THE APPLICATION OF EXTREME VALUE THEORY TO ERROR-FREE COMMUNICATION * EDWARD C. POSNER
- TECH 65 531 A REAPPRAISAL OF THE PERIODOGRAM IN SPECTRAL ANALYSIS
 * RICHARD H. JONES
- TECH 65 543 THE CONSTRUCTION OF GOOD LINEAR UNBIASED ESTIMATES
 FROM THE BEST LINEAR ESTIMATES FOR A SMALLER SAMPLE
 SIZE * JOHN I. MC COOL
- TECH 65 553 ESTIMATION OF POWER SPECTRA BY A WAVE ANALYZER * MAU-RICE PRIESTLEY, C. H. GIBSON
- TECH 65 561 BALANCED SETS OF BALANCED INCOMPLETE BLOCK DESIGNS OF BLOCK SIZE THREE * DAVID H. DOEHLERT
- TECH 65 579 MAXIMUM LIKELIHOOD ESTIMATION IN THE WEIBULL DIS-TRIBUTION BASED ON COMPLETE AND ON CENSORED SAMPLES * A. CLIFFORD COHEN JR

- TECH 65 5B9 SAMPLING INSPECTION PLANS FOR DISCRIMINATING BETWEEN TWO WEIBULL PROCESSES * A. S. QUREISHI, K. J. NABAVI-AN. J. O. ALANEN
- TECH 65 603 PATTERNS IN RESIDUALS, A TEST FOR REGRESSION MODEL ADEQUACY IN RADIONUCLIDE ASSAY * BERNARD PASTER-NACK, ANTHONY LIUZZI
- TECH 65 623 ON BEALE'S MEASURES OF NON-LINEARITY * IRWIN GUTTMAN, DUANE A. MEETER
- TECH 65 639 MAXIMUM LIKELIHOOO ESTIMATION OF THE PARAMETERS OF GAMMA AND WEIBULL POPULATIONS FROM COMPLETE AND FROM CENSORED SAMPLES * H. LEON HARTER, ALBERT H. MOORE
- TECH 65 644 COMPLETE SET OF LEADING COEFFICIENTS FOR ORTHOGONAL POLYNOMIALS UP TO N = 26 * 0. WILKIE
- TECH 65 649 QUERY, MISSING VALUES IN FACTORIAL EXPERIMENTS * GEORGE ZYSKIND

TECHNOMETRICS VOLUME B. 1966

TECH	66	1	EOITOR1	AL *	FREO C	. LE	EONE
TECH	66	3	LINEAR	ESTI	MATES	OF	PARAME

- ETERS IN THE EXTREME VALUE DISTRIBUTION * FRANK DOWNTON
- 19 A SIMPLE SYSTEM OF EVOLUTIONARY OPERATION SUBJECT TO EMPIRICAL FEEOBACK * GEORGE E . P . BOX TECH 66 27 SELECTION OF VARIABLES FOR FITTING EQUATIONS TO OATA
- * J. W. GORMAN, R. J. TOMAN 53 RELIABILITY GROWTH OURING A DEVELOPMENT TESTING PRO-TECH 66
- GRAM * RICHARO E. BARLOW, ERNEST M. SCHEUER TECH 66 61 AN INVESTIGATION OF THE BURN-IN PROBLEM * M.
- LAWRENCE TECH 66 73 THE PRESENT STATUS OF AUTOMATIC PRODUCTION AND CON-TROL DEVICES AND EXPECTED FUTURE DEVELOPMENTS *
- THEOOORE J. WILLIAMS TECH 66 91 SAMPLING RATES AND APPEARANCE OF STATIONARY GAUSSIAN PROCESSES * LEO JOSEPH TICK, PAUL SHAMAN
- TECH 66 107 OEVELOPMENT OF RANDOMIZEO LOAD SEQUENCES WITH TRANSI-TION PROBABILITIES BASED ON A MARKOV PROCESS * R. A. HELLER, MASANOBU SHINOZUKA
- 115 AN APPROXIMATION TO TWO-SIDEO TOLERANCE LIMITS FOR TECH 66 NORMAL POPULATIONS * OONALO A. GARDINER, NORMA C. HULL
- 123 PRICING POLICIES CONTINGENT ON OBSERVEO PRODUCT TECH 66 QUALITY * EUGENE P. DURBIN
- 135 AN EXACT ASYMPTOTICALLY EFFICIENT CONFIDENCE BOUND TECH 66 FOR RELIABILITY IN THE CASE OF THE WEIBULL DISTRIBU-TION * M. V. JOHNS JR. G. J. LIEBERMAN
- 177 THE INVERSE YATES ALGORITHM * J. S. HUNTER TECH 66 184 A NOTE ON AUGMENTED DESIGNS * GEORGE E . P . BOX TECH 66
- TECH 66 188 COMBINING INTRA AND INTER BLOCK ANALYSIS OF GROUP
- DIVISIBLE OESIGNS * C. H. KAPAOIA TECH 66
- 193 QUERY, SMALL TRIMMED SAMPLES * I. M. CHAKRAVARTI 195 A TRIBUTE TO FRANK WILCOXON * CHARLES W. DUNNETT TECH 66
- 215 ERRATA, 'MISCLASSIFIED DATA FROM A BINOMIAL POPULA-TION' * A. CLIFFORD COHEN JR TECH 66
- 216 INDEX TO TECHNOMETRICS, VOLUMES 1-7 * P. V. RAMACHAN-TECH 66 DRAMURTY
- TECH 66 217 SEQUENTIAL LIFE FOR THE EXPONENTIAL OISTRIBUTION WITH CHANGING PARAMETER * LEO A. AROIAN, D. E. ROBISON
- TECH 66 229 ANALYSIS OF DATA WHEN THE RESPONSE IS A CURVE * ALONZO CHURCH JR
- TECH 66 247 STATISTICAL PROPERTIES OF A CERTAIN PERIODIC BINARY PROCESS * ARTHUR WOUK
- TECH 66 259 FACTORIAL 2-TO-THE-(P-Q) PLANS ROBUST AGAINST LINEAR AND QUADRATIC TRENDS * CUTHBERT DANIEL, FRANK WIL-COXON
- TECH 66 279 THE ORTHOGONALIZATION OF UNOESIGNED EXPERIMENTS * OTTO DYKSTRA JR
- TECH 66 291 CONFIDENCE INTERVALS FROM CENSORED SAMPLES. II * MAX HALPERIN
- TECH 66 303 PATHS AND CHAINS OF RANDOM STRAIGHT-LINE SEGMENTS * NORMANL. JOHNSON
- TECH 66 319 SIMULTANEOUS NONLINEAR ESTIMATION * JOHN J. BEAUCHAMP, RICHARD G. CORNELL
- TECH 66 327 A COEFFICIENT MEASURING THE GOOONESS OF FIT * H. WEILER
- 335 PRODUCER AND CONSUMER RISKS IN NON-NORMAL POPULATION TECH 66 * H. R. SINGH
- TECH 66 345 APPROXIMATING THE NEGATIVE BINOMIAL * JOHN J. BARTKO
- 351 APPLICATIONS OF THE PSEUDOINVERSE TO MODELING * W. A. TECH 66 HARRIS JR, T. N. HELVIG
- 358 APPROXIMATION TO THE CUMULATIVE T-DISTRIBUTION * TECH 66 CLYDEY. KRAMER
- TECH 66 360 LEAST SQUARES ESTIMATION OF THE COMPONENTS OF A SYM-METRIC MATRIX * HAROLD J. LARSON
- 363 COMMENTS TO, EOWARD C. POSNER, 'THE APPLICATION OF EX-TECH 66 TREME VALUE THEORY TO ERROR FREE COMMUNICATION' * E. J. GUMBEL, C. K. MUSTAFI
- 367 QUERY, CONFIDENCE INTERVAL FOR STANOARD OEVIATION TECH 66 FROM A SINGLE OBSERVATION * JUDAH ROSENBLATT
- TECH 66 36B QUERY, JOINT CONFIDENCE LIMITS FOR RANKED OBSERVA-TIONS * H. O. HARTLEY, A. W. WORTHAM

- TECH 66 387 ERRATA TO INOEX TO TECHNOMETRICS, VOLUMES 1-7 * P. V. RAMACHANDRAMURTY
- 3B9 EVOLUTIONARY OPERATION. A REVIEW * WILLIAM G. HUNTER, TECH 66 J. R. KITTRELL
- TECH 66 399 A COMMUNICATIONS SATELLITE REPLENISHMENT POLICY * MENACHEM DISHON, GEORGE H. WEISS
- TECH 66 411 A COMPARISON OF SOME CONTROL CHART PROCEDURES * S. W. ROBERTS
- TECH 66 431 ESTIMATION OF PARAMETERS FOR A MIXTURE OR NORMAL DIS-TRIBUTIONS * VICTOR HASSELBLAD
- TECH 66 445 DISCUSSION OF 'ESTIMATION OF PARAMETERS FOR A MIXTURE OF NORMAL DISTRIBUTIONS' BY VICTOR HASSELBLAO * A. CLIFFORO COHEN
- TECH 66 447 EXTREME VERTICES DESIGN OF MIXTURE EXPERIMENTS * R. A. MC LEAN, V. L. ANDERSON
- TECH 66 455 DISCUSSION OF 'EXTREME VERTICES DESIGN OF MIXTURE EX-PERIMENTS' BY R.A. MCLEAN AND V.L. ANDERSON * J. W. GORMAN
- TECH 66 457 SAMPLING DISTRIBUTIONS OF VARIANCE COMPONENTS I. EM-PIRICAL STUDIES OF BALANCEO NESTEO DESIGN * FREO C. LEONE, LLOYD S. NELSON
- TECH 66 469 AUGMENTING 2-TO-THE-(N-1) OESIGNS * PETER W. M. JOHN
- 4B1 CUMULATIVE SUM CONTROL CHARTS AND THE WEIBULL DIS-TECH 66 TRIBUTION * N. L. JOHNSON
- TECH 66 493 A POWER COMPARISON OF TWO TESTS OF NON-RANOOM CLUSTER-ING * JOSEPH I. NAUS
- TECH 66 519 OPTIMIZATION OF QUALITY CONTROL IN THE CHEMICAL LABORATORY * BARTHOLONEW P . HSI
- TECH 66 535 DIFFICULTIES INVOLVED IN THE ESTIMATION OF A POPULA-TION MEAN USING TRANSFORMED SAMPLE DATA * R. L. PAT-TERSON
- TECH 66 539 QUERY, LIFE TESTING AND EARLY FAILURE * A CLIFFORD COHEN
- TECH 66 570 ERRATA, 'CONTROL OF PERCENTAGES IN BOTH TAILS OF THE NORMAL DISTRIBUTIONS' * D. B. OWEN
- TECH 66 570 ERRATA, 'MAXIMUM LIKELIHOOD ESTIMATION IN THE WEIBULL DISTRIBUTION BASED ON COMPLETE AND ON CENSORED SAM-PLES' * A. CLIFFORD COHEN
- TECH 66 571 A REVIEW OF RESPONSE SURFACE METHODOLOGY. A LITERA-TURE SURVEY * WILLIAM J. HILL, WILLIAM G. HUNTER
- TECH 66 591 DISTRIBUTION-FREE LIFE TEST SAMPLING PLANS * RICHARD E. BARLOW, SHANTIS. GUPTA
- TECH 66 615 SEQUENTIAL RANK TESTS II. MOOIFIED TWO-SAMPLE PROCEDURES * RALPH A. BRADLEY, SARLA D. MERCHANT, FRANK WILCOXON
- TECH 66 625 USE AND ABUSE OF REGRESSION * GEORGE E. P. BOX
- 631 BINOMIAL GROUP-TESTING WITH AN UNKNOWN PROPORTION OF TECH 66 DEFECTIVES * MILTON SOBEL, PHYLLIS A. GROLL
- TECH 66 657 DISCRIMINANT ANALYSIS WHEN THE INITIAL SAMPLES ARE MISCLASSIFIED * PETER A. LACHENBRUCH
- TECH 66 663 THE CORRECT USE OF THE SAMPLE MEAN ABSOLUTE DEVIATION IN CONFIDENCE INTERVALS FOR A NORMAL VARIATE ' RICHAROG, KRUTCHKOFF
- TECH 66 675 AN A POSTERIORI PROBABILITY METHOD FOR SOLVING AN OVERDETERMINED SYSTEM OF EQUATIONS * WAYNE E. SMITH
- TECH 66 6B7 PERCENTAGE POINTS OF THE BETA DISTRIBUTION FOR USE IN BAYESIAN ANALYSIS OF BERNOULLI PROCESSES * JEROME BRACKEN
- TECH 66 695 TESTING FOR THE INCLUSION OF VARIABLES IN LINEAR REGRESSION BY A RANDOMISATION TECHNIQUE (ERRATA, 69 627) * NORMAN R. DRAPER, DAVID M. STONEMAN
- TECH 66 700 A NOTE ON THE VARIANCE OF THE DISTRIBUTION OF SAMPLE NUMBER IN SEQUENTIAL PROBABILITY RATIO TESTS * C. PHILIP COX, THOMAS D. ROSEBERRY
- TECH 66 705 ON AODELMAN'S 2-TO-THE-(17-9) RESOLUTION V PLAN * D. A. PREECE
- TECH 66 705 ON ADDELMAN'S 2-TO-THE-(17-9) RESOLUTION V PLAN * D. LLOYD S. NELSON
- TECH 66 731 ERRATA, 'THE ORTHOGONALIZATION OF UNDESIGNED EXPERI-MENTS'* OTTO OYKSTRAJR

- TECH 67 1 SOME THEORY OF SAMPLINC WHEN THE STRATIFICATION IS SUBJECT TO ERROR * TORE DALENIUS, S. P. CHOSH
- TECH 67 15 ESTIMATION IN MIXTURES OF TWO NORMAL DISTRIBUTIONS * A.C. COHEN JR
- TECH 67 29 STATISTICAL CONTROL OF A CAUSSIAN PROCESS * HOWARD TAYLOR
- TECH 67 43 BEST LINEAR UNBIASED ESTIMATORS OF THE PARAMETERS OF
 THE LOCISTIC DISTRIBUTION USINC ORDER STATISTICS *
 SHANTI S. CUPTA. A. S. QUREISHI, B. K. SHAH
- TECH 67 57 DISCRIMINATION AMONG MECHANISTIC MODELS * C. E. P. BOX, WILLIAM J. HILL
- TECH 67 73 A DYNAMIC PROCRAMMING APPLICATION IN PRODUCTION LINE INSPECTION * PETER M. PRUZAN, J. T. R. JACKSON
- TECH 67 83 THE ACE REPLACEMENT PROBLEM * CERALD J. GLASSER
- TECH 67 93 A CENERAL APPROACH TO THE ESTIMATION OF VARIANCE COM-PONENTS * CARY C. KOCH
- TECH 67 119 SOME PERCENTILE ESTIMATORS FOR WEIBULL PARAMETERS *
 SATYA D. DUBEY
- TECH 67 131 DIAMONO-PIN LOCATION * RAMESH MOHAN
- TECH 67 149 USE OF MEAN DEVIATION IN THE ANALYSIS OF INTERLABORA-TORY TESTS * KENNETH H. KRAMER
- TECH 67 154 ON THE POWER OF PRECEDENCE LIFE TESTS * ROCER A. SHORACK
- TECH 67 159 MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF A
 FOUR- PARAMETER GENERALIZEO GAMMA POPULATION FROM
 COMPLETE AND CENSOREO SAMPLES * H. LEON HARTER
- TECH 67 170 QUERY, ANALYSIS OF FACTORIAL EXPERIMENT (PARTIALLY CONFOUNDEO 2-CUBE) * D. R. COX, ACNES HERZBERG, CUTHBERT DANIEL, O. J. FINNEY
- TECH 67 195 ERRATA, 'MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF GAMMA AND WEIBULL POPULATIONS FROM COMPLETE AND FROM CENSOREO SAMPLES' * H. LEON HARTER, ALBERT H. MOORE
- TECH 67 195 ERRATA, 'A COEFFICIENT MEASURING THE GOODNESS OF FIT' * H. WEILER
- TECH 67 197 PROBIT ANALYSIS AS A TECHNIQUE FOR ESTIMATING THE RE-LIABILITY OF A SIMPLE SYSTEM * R. R. PRAIRIE
- TECH 67 205 PROPORTIONAL SAMPLING IN LIFE LENGTH STUDIES * S. BLU-MENTHAL
- TECH 67 219 ESTIMATION OF FRACTION DEFECTIVE IN CURTAILEO SAM-PLING PLANS BY ATTRIBUTES * A. G. PHATAK, N. M. BHATT
- TECH 67 229 SOME NEW FAMILIES OF PARTIALLY BALANCEO DESIGNS OF THE LATIN SQUARE TYPE AND RELATED DESIGNS * W. H. CLAT-WORTHY
- TECH 67 245 SYSTEMATIC METHOOS FOR ANALYZING 2-TO-THE-N-TIMES-3-TO-THE-M FACTORIAL EXPERIMENTS WITH APPLICATIONS * B . H . MARGOLIN
- TECH 67 261 LIKELIHOOD DISTRIBUTIONS FOR ESTIMATING FUNCTIONS
 WHEN BOTH VARIABLES ARE SUBJECT TO ERROR * M.
 CLUTTON-BROCK
- TECH 67 271 THE DISTRIBUTION OF THE MAXIMUM SUM OF RANKS * R. E. $00\mathrm{EH}$
- TECH 67 279 DETERMINATION OF THE EXACT OPTIMUM ORDER STATISTICS
 FOR ESTIMATING THE PARAMETERS OF EXPONENTIAL DISTRIBUTION IN CENSOREO SAMPLES * A. K. SALEH
- TECH 67 293 ON SOME PERMISSIBLE ESTIMATORS OF THE LOCATION
 PARAMETER OF THE WEIBULL AND CERTAIN OTHER OISTRIBUTIONS * S O DURBEY
- TECH 67 309 ERRORS OF PREDICTION IN MULTIPLE REGRESSION * D. KER-RIDCE
- TECH 67 312 NOTE ON SOME SQUAREO RANK TESTS WITH EXISTING TIES * P
 W. MIELKE JR
- TECH 67 315 A NOTE ON MOMENTS OF GAMMA ORDER STATISTICS * P. R. KRISHNAIAH, M. H. RIZVI
- TECH 67 319 INTERFERENCE IN THE MANUFACTURE OF NUCLEPORE FILTERS
 * J. L. JAECH
- TECH 67 325 A NOTE ON ESTIMATION FROM A TYPE I EXTREME-VALUE OIS-TRIBUTION * H. L. HARTER, A. H. MOORE
- TECH 67 332 RELIABILITY ESTIMATION OF THE TRUNCATED EXPONENTIAL MODEL * M. S. HOLLA
- TECH 67 337 QUERY, COMPARISON OF SAMPLE SIZES IN INVERSE BINOMIAL SAMPLING * D. E. BARTON
- TECH 67 339 QUERY, RESIOUAL ANALYSIS * J. E. JACKSON, W. H. LAW-TONN
- TECH 67 353 ERRATA 'SIMULTANEOUS NONLINEAR ESTIMATION' * JOHN J. BEAUCHAMP, RICHARD C. CORNELL

- TECH 67 355 A TWO-STACE SUBSAMPLINC PROCEDURE FOR RANKINC MEANS
 OF FINITE POPULATIONS WITH AN APPLICATION TO BULK
 SAMPLINC PROBLEMS * R. E. BECHHOFER
- TECH 67 365 SAMPLINC MIXTURES OF PARTICLES * MARTIN KNOTT
- TECH 67 373 ESTIMATION OF VARIANCE COMPONENTS IN TWO-STACE NESTED
 DESIGNS WITH COMPOSITE SAMPLES * KEITH KUSSMAUL, R.
 L. ANDERSON
- TECH 67 391 ESTIMATION OF SPECTRA AFTER HARD CLIPPING OF CAUSSIAN
 TIME PROCESSES * MELVIN HINICH
- TECH 67 401 THE DETERMINATION OF SINCLE SAMPLING ATTRIBUTE PLANS
 WITH CIVEN PRODUCER'S AND CONSUMER'S RISK * A HALD
- TECH 67 417 VARIABLES SAMPLINC PLANS BASED ON THE NORMAL DISTRIBUTION * D. B. OWEN
- TECH 67 425 CLASSICAL AND INVERSE RECRESSION METHODS OF CALIBRA-TION * RICHARD C. KRUTCHKOFF
- TECH 67 441 AN APPLICATION OF NUMERICAL INTECRATION TECHNIQUES TO STATISTICAL TOLERANCINC * DAVID H . EVANS
- TECH 67 457 AN EXAMPLE OF ERRORS INCURRED BY ERRONEOUSLY ASSUMING
 NORMALITY FOR CUSUM SCHEMES * KENNETH W. KEMP
- TECH 67 465 A CONFIDENCE INTERVAL FOR THE AVAILABILITY RATIO * H.
 L. GRAY, TRUMAN LEWIS
- TECH 67 472 THREE OIMENSIONAL MODELS OF EXTREME VERTICES OESIGNS
 FOR FOUR COMPONENT MIXTURES * W. J. DIAMONO
- TECH 67 476 ON THE DISTRIBUTION OF THE BIVARIATE RANCE * T. CACOULLOS, H. DECICCO
- TECH 67 4B1 A NOTE ON THE GRAPHICAL ANALYSIS OF MULTIDIMENSIONAL CONTINGENCY TABLES * D. R. COX, ELIZABETH LAUH
- TECH 67 489 QUERY, DEGREES OF FREEOOM OF CHI-SQUARE * H. CHERNOFF TECH 67 490 QUERY, ANALYSIS OF FACTORIAL EXPERIMENT (PARTIALLY
- TECH 67 490 QUERY, ANALYSIS OF FACTURIAL EXPERIMENT (PARTIALLY CONFOUNDEO 2-CUBE) * ARTHÜR F. JOHNSON, RAM AVRAHALLY TECH 67 400 EDDATA 'ADDROYIMATING THE NECATIVE DINOMIAL' * IOHN
- TECH 67 498 ERRATA, 'APPROXIMATING THE NECATIVE BINOMIAL' * JOHN J. BARTKO
- TECH 67 49B ERRATA, 'OIAMOND-PINLOCATION' * RAMESH MOHAN
- TECH 67 499 COMPARISONS OF DESIGNS AND ESTIMATION PROCEOURES FOR
 ESTIMATING PARAMETERS IN A TWO-STAGE NESTED PROCESS
 * R. L. ANDERSON, P. P. CRUMP
- TECH 67 517 SEQUENTIAL DESIGNS FOR SPHERICAL WEIGHT FUNCTIONS *
 N. R. DRAPER, W. E. LAWRENCE
- TECH 67 531 SELECTION OF THE BEST SUBSET IN RECRESSION ANALYSIS*
 R.R.HOCKING, R.N.LESLIE
- TECH 67 541 ANALYSIS OF OUTLIERS WITH ADJUSTEO RESIDUALS * G. C. TIAO, IRWIN GUTTMAN
- TECH 67 561 A TABLE FOR RANK SUM MULTIPLE PAIREO COMPARISONS *
 ETHEL TOBACH. MARK SMITH, GEORGE ROSE, DONALO
 RICHTER
- TECH 67 569 SATURATED FRACTIONS OF 2-TO-THE-N AND 3-TO-THE-N FACTORIAL OESIGNS * R. L. RECHTSCHAFFNER
- TECH 67 577 A PROCEOURE TO ESTIMATE THE POPULATION MEAN IN RANDOM EFFECTS MODELS * G. G. KOCH
- TECH 67 587 REMARKS ON LARGE SAMPLE ESTIMATORS FOR SOME DISCRETE DISTRIBUTIONS * L. R. SHENTON, K. O. KOWMAN
- TECH 67 599 APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATES FROM GROUPEO OATA * C. M. TALLIS
- TECH 67 607 MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF
 THE BETA DISTRIBUTION FROM SMALLEST ORDER
 STATISTICS * R. GNANAOESIKAN, R. S. PINKHAM, L. P.
 HUGHES
- TECH 67 621 ESTIMATION OF PARAMETERS IN THE WEIBULL DISTRIBUTION
 * L. J. BAIN, C. E. ANTLE
- TECH 67 629 TABLES FOR OBTAINING THE BEST LINEAR INVARIANT ESTI-MATES OF PARAMETERS OF THE WEIBULL DISTRIBUTION * NANCY R. MANN
- TECH 67 647 A USEFUL APPROXIMATION TO THE NORMAL DISTRIBUTION FUNCTION, WITH APPLICATION TO SIMULATION * IRVING W.
- TECH 67 652 A STUOY OF ROBUST ESTIMATORS * FRED C. LEONE, TOKE JAYACHANORAN, STANLEY EISENSTAT
- TECH 67 661 A MINIMUM COST MODEL OF SPARE PARTS INVENTORY CONTROL
 * ALVIN D. WIGGINS
- TECH 67 666 TABLES OF THE DISTRIBUTION OF THE MANN-WHITNEY-WIL-COXON U-STATISTIC UNDER LEHMANN ALTERNATIVES * ROCER A. SHORACK
- TECH 67 679 QUERY, BIVARIATE SAMPLES WITH MISSING VALUES * JACK NAOLER
- TECH 67 6B2 QUERY, COMPLETED RUNS OF LENCTH K ABOVE AND BELOW MEOIAN * D. E. BARTON

TECHNOMETRICS VOLUME 10, 1968

TECH 6B 1 ESTIMATION OF ERROR RATES IN DISCRIMINANT ANALYSIS *
PETER A. LACHENBRUCH, M. RAY MICKEY

TECH 68 13 MULTIPLE CLASSIFICATION ANALYSIS FOR ARBITRARY EX-PERIMENTAL DESIGN * HUCH E. BRADLEY TECH 6B 29 BAYESIAN CONFIDENCE LIMITS FOR RELIABILITY OF REOUNDANT SYSTEMS WHEN TESTS ARE TERMINATED AT FIRST
FAILURE * MELVIND. SPRINGER. W. E. THOMPSON

- TECH 68 37 COMPARISON OF TWO METHODS OF OBTAINING APPROXIMATE
 CONFIDENCE INTERVALS FOR SYSTEM RELIABILITY * J. M.
 MYHRE, SAM C. SAUNDERS
- TECH 68 51 STATISTICAL ESTIMATION PROCEDURES FOR THE 'BURN-IN'
 PROCESS * FRANK PROSCHAN, RICHARD E. BARLOW, ALBERT
 MADANSKY, E. M. SCHEUER
- ESTIMATION * ROBERT I. JENNRICH, P. F. SAMPSON
 TECH 68 73 AUCMENTINC EXISTINC DATA IN MULTIPLE RECRESSION * D.
 W. CAYLOR, J. A. MERRILL
- TECH 68 83 APPROXIMATE BEHAVIOR OF THE DISTRIBUTION OF WIN-SORIZED T (TRIMMINC-WINSORIZATION 2) * W. J. DIXON, JOHN W. TUKEY
- TECH 68 99 DOUBLE SAMPLING PLANS WHERE THE ACCEPTANCE CRITERION IS THE VARIANCE * R. K. ZEICLER, G. L. TIETJEN
- TECH 68 107 HYPOTHESES OF 'NO INTERACTION' IN MULTI-DIMENSIONAL CONTINCENCY TABLES * V. P. BHAPKAR, CARY C. KOCH
- TECH 68 125 SEQUENTIAL ANALYSIS, DIRECT METHOD * LEO A. AROIAN
- TECH 68 133 STOCHASTIC COALESCENCE * ALLENH. MARCUS
- TECH 6B 145 A JOINT DESIGN CRITERION FOR THE DUAL PROBLEM OF MODEL
 DISCRIMINATION AND PARAMETER ESTIMATION * WILLIAM
 C. HUNTER, WILLIAM J. HILL, DEAN W. WICHERN
- TECH 68 161 THE USE OF FRACTIONAL MOMENTS FOR ESTIMATING THE
 PARAMETERS OF A MIXED EXPONENTIAL DISTRIBUTION * C.
 M. TALLIS, R. LIGHT
- TECH 6B 177 RESPONSE SURFACE DESIGNS FOR FACTORS AT TWO AND THREE LEVELS * NORMAN R. DRAPER, DAVID M. STONEMAN
- TECH 68 193 A CRAPHICAL VERSION OF TUKEY'S CONFIDENCE INTERVAL FOR SLIPPAGE * MARTIN SANDELIUS
- TECH 68 195 TESTINC OF MEANS WITH DIFFERENT ALTERNATIVES * C. A. MCCILCHRIST, J. Y. HARRISON
- TECH 68 199 THE RELATIONSHIP BETWEEN NEYMAN AND BAYES CONFIDENCE
 INTERVALS FOR THE HYPERGEOMETRIC PARAMETER * G. P.
 STECK, W. J. ZIMMER
- TECH 68 204 COMMENTARY ON 'ESTIMATION OF ERROR RATES IN DISCRIMI-NANT ANALYSIS' * W. G. COCHRAN
- TECH 68 207 QUERY, TOLERANCE INTERVAL IN REGRESSION * DAVID C. BOWDEN
- TECH 68 219 A BLACK BOX OR A COMPREHENSIVE MODEL * D. A. S. FRASER
- TECH 68 231 POINT AND INTERVAL ESTIMATION PROCEDURES FOR THE TWO-PARAMETER WEIBULL AND EXTREME-VALUE DISTRIBUTIONS * NANCY R. MANN
- TECH 68 257 MULTIPLE REGRESSION IN PROCESS DEVELOPMENT * JOHN D.
- TECH 68 271 THE DESIGN OF EXPERIMENTS FOR PARAMETER ESTIMATION *
 ANTHONY C. ATKINSON, WILLIAM G. HUNTER
- TECH 68 291 NON-ORTHOGONAL DESIGNS OF EVEN RESOLUTION * S. R. WEBB TECH 68 301 FACTOR CHANGES AND LINEAR TRENDS IN EIGHT-RUN TWO LEVEL FACTORIAL DESIGNS * NORMAN R. DRAPER, DAVID S. STONEMAN
- TECH 68 313 ASYMMETRICAL ROTATABLE DESIGNS AND ORTHOGONAL TRANS-FORMATIONS * J. S. MEHTA, M. N. DAS
- TECH 68 323 SIMULTANEOUS PREDICTION INTERVALS * VECTOR CHEW
- TECH 68 331 SEQUENTIAL TESTING OF SAMPLE SIZE * DAVID C . HOEL
- TECH 68 343 SAMPLE SIZE DETERMINATION FOR TOLERANCE LIMITS * G
 DAVID FAULKENBERRY, DAVID L. WEEKS
- TECH 68 349 CONDITIONAL MAXIMUM-LIKELIHOOD ESTIMATION, FROM SINGLY CENSORED SAMPLES, OF THE SCALE PARAMETERS OF TYPE II EXTREME-VALUE DISTRIBUTIONS * H. LEON HARTER, ALBERT H. MOORE
- TECH 68 361 ON THE DETERMINATION OF A SAFE LIFE FOR CLASSES OF DIS-TRIBUTIONS CLASSIFIED BY FAILURE RATE * SAM C. SAUN-DERS
- TECH 68 379 A LEARNING MODEL FOR PROCESSES WITH TOOL WEAR * BAR-NARD E. SMITH, R. R. VEMUGANTI
- TECH 68 389 DESIGN FOR INTERACTIONS * R. J. DEGRAY
- TECH 68 392 A NOTE ON TOLERANCE LIMITS WITH TYPE I CENSORING * ROBERT BOHRER
- TECH 68 393 A NOTE ON REGRESSION TRANSFORMATION FOR SMALLER ROUNDOFF ERROR * D. CHUN
- TECH 68 397 APPROXIMATIONS FOR MEAN SQUARE SUCCESSIVE DIFFERENCE
 CRITICAL VALUES * R. S. BINGHAM JR
 TECH 68 401 QUERY, PSEUDO RANDOM NORMAL NUMBERS * GEORGE MAR-
- SAGLIA
 TECH 68 439 ISN'T MY PROCESS TOO VARIABLE FOR EVOP. * G. E. P. BOX,
- NORMAN DRAPER
 TECH 68 445 A SURVEY OF PROPERTIES AND APPLICATIONS OF THE NONCENTRAL T-DISTRIBUTION * DON B. OWEN
- TECH 68 479 THE ECONOMIC DESIGN OF CUMULATIVE SUM CONTROL CHARTS
 * HOWARD TAYLOR

- TECH 6B 489 MISCLASSIFIED DATA FROM CURTAILED SAMPLINC PLANS * A.
- TECH 6B 497 EXACT CRITICAL VALUES FOR MOOD'S DISTRIBUTION-FREE
 TEST STATISTIC FOR DISPERSION AND ITS NORMAL APPROXIMATION * N. F. LAUBSCHER, F. E. STEFFENS, E. M. DELANCE
- TECH 6B 509 A MONTE CARLO STUDY COMPARING VARIOUS TWO-SAMPLE
 TESTS FOR DIFFERENCES IN MEAN * HENRY R. NEAVE, C. W.
 J. CRANCER
- TECH 68 523 BESTLINEAR UNBIASED ESTIMATION FOR MULTIVARIATE STA-TIONARY PROCESSES * ROBERT H. SHUMWAY, WILLIAM DEAN
- TECH 6B 535 SATURATED SEQUENTIAL FACTORIAL DESIGNS * STEVE R.
- TECH 6B 551 SOME FURTHER REMARKS CONCERNINC 'A CENERAL APPROACH
 TO THE ESTIMATION OF VARIANCE COMPONENTS' * CARY C.
 KOCH
- TECH 6B 559 ORTHOCONAL MAIN-EFFECT 2-TO-THE-N-TIMES-3-TO-THE-M

 DESIGNS AND TWO-FACTOR INTERACTION ALIASINC * B. H.

 HARCOLIN
- TECH 6B 575 THE EXTENSION OF YATES' 2-TO-THE-N ALCORITHM TO ANY COMPLETE FACTORIAL EXPERIMENT * B . E . COOPER
- TECH 68 57B SOME NONPARAMETRIC TESTS FOR MULTISAMPLE PROBLEMS * V.P.BHAPKAR, J.V.DESHPANDE
- TECH 6B 586 A NOTE ON A METHOD FOR THE ANALYSIS OF SIGNIFICANCE EN MASSE * PAUL SEECER
- TECH 68 594 A STATISTICAL TEST FOR EQUALITY OF TWO AVAILABILITIES
 * WAYNE B. NELSON
- TECH 6B 605 A CHART FOR SEQUENTIALLY TESTING OBSERVED ARITHMETIC

 MEANS FROM LOCNORMAL POPULATIONS ACAINST A CIVEN
 STANDARD * A. D. JOFFE, H. S. SICHEL
- TECH 68 612 QUERY, PREFERENCE SCORES (REVISITED) * H. FAIRFIELD SMITH
- TECH 68 637 ERRORS OF MEASUREMENT IN STATISTICS * WILLIAM G.
- TECH 68 667 BAYESIAN SINGLE SAMPLING ATTRIBUTE PLANS FOR CONTINU-OUS PRIOR DISTRIBUTIONS ** ANDERS HALD TECH 68 685 THE AVERAGE SAMPLE NUMBER FOR TRUNCATED SINGLE AND
- TECH 68 685 THE AVERAGE SAMPLE NUMBER FOR TRUNCATED SINGLE AND DOUBLE ATTRIBUTES ACCEPTANCE SAMPLING PLANS * C. C. CRAIG
- TECH 68 693 SINCLE-STAGE PROCEDURES FOR RANKING MULTIPLY-CLAS-SIFIED VARIANCES OF NORMAL POPULATIONS * ROBERT E. BECHHOFER
- TECH 68 715 MULTIPLE COMPARISONS WITH A CONTROL FOR MULTIPLY—
 CLASSIFIED VARIANCES OF NORMAL POPULATIONS * ROBERT
 E. BECHHOFER
- TECH 68 719 SAMPLING DISTRIBUTIONS OF VARIANCE COMPONENTS II. EM-PIRICAL STUDIES OF UNBALANCED NESTED DESICNS * FRED C. LEONE, L. S. NELSON, N. L. JOHNSON, STAN EISENSTAT
- TECH 68 739 RESPONSE SURFACE DESIGNS FOR MIXTURE PROBLEMS * WIL-LIAM O. THOMPSON, RAYMOND H. MYERS
- TECH 68 757 ON TESTING FOR THE DEGREE OF A POLYNOMIAL * PAUL C. HOEL TECH 68 769 EFFICIENT CALCULATION OF ALL POSSIBLE REGRESSIONS *
- TECH 68 769 EFFICIENT CALCULATION OF ALL POSSIBLE REGRESSIONS *
 MARTIN SCHATZOFF, S. FEINBERC, R. TSAO
 TECH 68 781 TESTING THE MEAN AND STANDARD DEVIATION OF A NORMAL
- DISTRIBUTION USING QUANTILES * ISIDORE EISENBERGER TECH 68 793 A LINEAR APPROXIMATOR FOR THE CLASS MARKS OF A GROUPED
- FREQUENCY DISTRIBUTION, WITH ESPECIAL REFERENCE TO THE UNEQUAL INTERVAL CASE * DENNIS J. AICNER TECH 68 811 OPTIMAL EXPERIMENTAL DESIGNS FOR ESTIMATING THE INDE-
- PENDENT VARIABLE IN REGRESSION * R. LYMAN OTT,
 RAYMOND H. MYERS
- FECH 68 825 THE JOINT ASSESSMENT OF NORMALITY OF SEVERAL INDEPENDENT SAMPLES * MARTIN B. WILK, S. S. SHAPIRO
- TECH 68 841 THE ROUND ROBIN (ERRATA, 69 627) * DICK DEGRAY
- TECH 68 843 APPLICATION OF A MODIFICATION OF DAVIDON'S METHOD TO NONLINEAR RECRESSION PROBLEMS * PATRICK A. VITALE, G. TAYLOR
- TECH 68 850 A NOTE ON PREDICTION INTERVALS BASED ON PARTIAL OBSER-VATIONS IN CERTAIN LIFE TEST EXPERIMENTS * JOHN E. HEWETT
- TECH 68 854 CENSORED SAMPLING IN CURTAILED SAMPLINC PLANS BY AT-TRIBUTES * A. G. PHATAK
- TECH 68 861 APPROXIMATIONS FOR THE NULL DISTRIBUTION OF THE W-STATISTIC + (TEST FOR NORMALITY) * S. S. SHAPIRO, M. B. WILK
- TECH 68 867 QUERY, BIVARIATE SAMPLES WITH MISSING VALUES, II * WILLIAM B. SMITH

TECHNOMETRICS VOLUME 11, 1969

- TECH 69 1 PROCEDURES FOR DETECTING OUTLYING OBSERVATIONS IN SAMPLES* FRANKE. GRUBBS
- TECH 69 23 TRANSFORMATIONS, SOME EXAMPLES REVISITED * NORMAN R. DRAPER, W. G. HUNTER
- TECH 69 41 INFORMATION AND SAMPLING FROM THE EXPONENTIAL DISTRIBUTION * G. M. EL-SAYYAD
- TECH 69 47 HALF-RECTIFIED TRUNCATED DISTRIBUTIONS, SAMPLING THEORY AND HYPOTHESIS TESTING * ROBERT H. RIFFENBURCH

- TECH 69 61 SEQUENTIAL RELIABILITY ASSURANCE IN FINITE LOTS * K.
 T. WALLENIUS
- TECH 69 75 COMPARISON OF ANOVA AND HARMONIC COMPONENTS OF VARI-ANCE * J. EDWARD JACKSON, W. H. LAWTON
- FECH 69 91 THE SPECTRUM OF A MODEL II NESTED ANOVA AND ITS APPLI-CATIONS * J. EDWARD JACKSON, W. H. LAWTON
- TECH 69 103 FOURIER METHODS IN THE STUDY OF VARIANCE FLUCTUATIONS
 IN TIME SERIES ANALYSIS * WALID A. NURI, L. J. HERBST
- TECH 69 115 CONTROLLING DIMENSION IN CENTERLESS-GRINDING WITH AUTOMATIC RESET DEVICE * R. MOHAN
- TECH 69 137 COMPUTER AIDED DESIGN OF EXPERIMENTS * R. W. KENNARD, L. A. STONE
- TECH 69 149 ON THE DISTRIBUTION OF STATISTICS SUITABLE FOR EVALUATING RAINFALL STIMULATION EXPERIMENTS * K. R. CABRIEL, PAUL FEDER
- TECH 69 161 FILL WEICHT VARIATION RELEASE AND CONTROL OF CAP-SULES. TABLETS, AND STERILE SOLIDS * C. ROBERTS
- TECH 69 177 A NEW TABLE OF PERCENTAGE POINTS OF THE PEARSON TYPE
 III DISTRIBUTION * H. LEON HARTER
- TECH 69 189 A NOTE ON RECRESSION METHODS IN CALIBRATION * E. J. WILLIAMS
- TECH 69 193 A NOTE ON A NON-PARAMETRIC APPROACH TO THE 2-CUBE FAC-TORIAL DESIGN * EDWARD P. C. KAO
- TECH 69 197 A SHORT-CUT RULE FOR A ONE-SIDED TEST OF HYPOTHESIS FOR QUALITATIVE DATA * R. L. OTT, S. M. FREE
- TECH 69 201 QUERY, TOLERANCE LIMITS FOR A BINOMIAL DISTRIBUTION * C. MACK
- TECH 69 223 BOOK REVIEWS, 10 YEAR INDEX (1959-196B)
- TECH 69 241 SOME GENERAL REMARKS ON CONSULTING IN STATISTICS * CUTHBERT DANIEL
- TECH 69 247 THE STATISTICAL CONSULTANT IN A SCIENTIFIC LABORATORY
 * J. M. CAMERON
- TECH 69 255 A GENERALIZED APPLICATION OF INSTRUMENTAL VARIABLE
 ESTIMATION OF STRAICHT-LINE RELATIONS WHEN BOTH
 VARIABLES ARE SUBJECT TO ERROR * WILLIAMS. MALLIOS
- TECH 69 265 A NUMERICAL INVESTIGATION OF SEVERAL ONE-DIMENSIONAL SEARCH PROCEDURES IN NONLINEAR REGRESSION PROBLEMS
 * P.D.FLANAGAN, P.A. VITALE, J. MENDELSOHN
- TECH 69 285 SAMPLING MIXTURES OF MULTI-SIZED PARTICLES, AN APPLI-CATION OF RENEWAL THEORY * RICHARD L. SCHEAFFER
- TECH 69 299 SMALL SAMPLE POWER CURVES FOR THE TWO SAMPLE LOCATION PROBLEM* PAUL LEAVERTON, JOHN J BIRCH
- TECH 69 309 WHICH PRODUCT IS BETTER * WILLIAM G. HUNTER, DAVID E. TIERNEY
 TECH 69 321 A GRAPHICAL METHOD FOR MAKING MULTIPLE COMPARISONS OF
- TECH 69 321 A GRAPHICAL METHOD FOR MAKING MULTIPLE COMPARISONS OF FREQUENCIES * MAYNARD S. RENNER
- TECH 69 331 ESTIMATION OF A MEAN WHEN ONE OBSERVATION MAY BE SPU-RIOUS * JAMES R. VEALE, D. V. HUNTSBERGER
- TECH 69 341 PROCEDURES AND TABLES FOR EVALUATING DEPENDENT MIXED ACCEPTANCE SAMPLINC PLANS * E. G. SCHILLINC, H. F. DODGE
- TECH 69 373 THE MOMENTS OF LOG-WEIBULL ORDER STATISTICS * JOHN S. WHITE
- TECH 69 3B7 A CONFIDENCE REGION FOR THE LOG-NORMAL HAZARD FUNC-TION * ARTHUR NADAS
- TECH 69 389 A NOTE ON THE CAIN IN PRECISION FOR OPTIMAL ALLOCATION
 IN RECRESSION AS APPLIED TO EXTRAPOLATION IN S-N
 FATIGUE TESTING * R. E. LITTLE, EMILH. JEBE
- TECH 69 393 EXACT TESTS OF SIGNIFICANCE IN CONTINGENCY TABLES * M.
 J. R. HEALY
- TECH 69 396 A NOTE ON DESIGNS FOR MODEL DISCRIMINATION, VARIANCE UNKNOWN CASE * WILLIAM J. HILL, WILLIAM G. HUNTER
- TECH 69 411 A METHOD OF FITTING EMPIRICAL SURFACES TO PHYSICAL AND CHEMICAL DATA * J. MANDEL
- TECH 69 431 RESULTS ON FACTORIAL DESIGNS OF RESOLUTION IV FOR THE
 2-T0-THE-N AND 2-T0-THE-N TIMES 3-T0-THE-M SERIES
 * B. H. MARGOLIN

- TECH 69 445 INFERENCES ON THE PARAMETERS OF THE WEIBULL DISTRIBU-TION * D. R. THOMAN, L. J. BAIN, C. E. ANTLE
- TECH 69 461 MINIMUM BIAS ESTIMATION AND EXPERIMENTAL DESIGN FOR RESPONSE SURFACES * R. J. HADER, M. J. KARSON, A. R. MANSON
- TECH 69 477 SEQUENCES OF TWO-LEVEL FRACTIONAL FACTORIAL PLANS *
 S. ADDELMAN
- TECH 69 511 SOME OPERATORS FOR ANALYSIS OF VARIANCE CALCULATIONS
 * E.B. FOWLKES
- TECH 69 527 INVESTICATION OF RULES FOR DEALING WITH OUTLIERS IN SMALL SAMPLES FROM THE NORMAL DISTRIBUTION, 2. ESTI-MATION OF THE MEAN * I. CUTTMAN, D. E. SMITH
- TECH 69 551 SPEARMAN SIMULTANEOUS ESTIMATION FOR A COMPARTMENTAL MODEL * J. J. BEAUCHAMP, R. C. CORNELL
- TECH 69 561 A SURVEY OF COVERACE PROBLEMS ASSOCIATED WITH POINT AND AREA TARCETS * A. R. ECKLER
- TECH 69 591 TABLES OF INVERSE GAUSSIAN PERCENTACE POINTS * M. T. WASAN, L. K. ROY
- TECH 69 605 CLASSICAL AND INVERSE RECRESSION METHODS OF CALIBRATION IN EXTRAPOLATION * R.C. KRUTCHKOFF
- TECH 69 609 MINIMUM VARIANCE UNBIASED ESTIMATION OF RELIABILITY
 FOR THE TRUNCATED EXPONENTIAL DISTRIBUTION * S. D.
 VARDE, Y. S. SATHE
 TECH 69 613 BALANCED INCOMPLETE BLOCK DESIGNS WITH SETS OF
- TECH 69 613 BALANCED INCOMPLETE BLOCK DESIGNS WITH SETS OF IDENTICAL BLOCKS * D. A. PREECE
- TECH 69 616 CONSTRAINED MAXIMISATION AND THE DESIGN OF EXPERI-MENTS * A. C. ATKINSON
- TECH 69 NO.4 SUMMARY OF RECENT WORK ON VARIABLES ACCEPTANCE SAM-PLINC WITH EMPHASIS ON NON-NORMALITY * D. B. OWEN
- TECH 69 NO.4 MODIFIED SAMPLING, BINOMIAL AND HYPERCEOMETRIC CASES
 * W. C. GUENTHER
- TECH 69 NO.4 ESTIMATION OF A LINEAR FUNCTION FOR A CALIBRATION LINE, CONSIDERATION OF A RECENT PROPOSAL * J. BERK-SON
- TECH 69 NO.4 DIRECT METHODS FOR EXACT TRUNCATED SEQUENTIAL TESTS
 OF THE MEAN OF A NORMAL DISTRIBUTION * L. A. AROÌAN,
 D. E. ROBISON
- TECH 69 NO.4 PROTECTION AGAINST ASSUMING THE WRONG DEGREE IN
 POLYNOMIAL REGRESSION * K. KUSSMAUL
- TECH 69 NO.4 MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF THE CAMMA DISTRIBUTION AND THEIR BIAS * S. C. CHOIR. WETTE
- TECH 69 NO.4 ESTIMATING THE DEGREES OF FREEDOM FOR LINEAR COMBINA-TIONS OF MEAN SQUARES BY SATTERTHWAITHE'S FORMULA * D. W. GAYLOR, F. N. HOPPER
- TECH 69 NO.4 UNFOLDING PARTICLE SIZE DISTRIBUTIONS * W. L. NICHOL-SON, K. R. MERCKX
- TECH 69 NO.4 CHAIN-POOLING ANALYSIS OF VARIANCE FOR TWO-LEVEL FAC-TORIAL REPLICATION-FREE EXPERIMENTS * A. G. HOLMS, J. N. BERRETTONI
- TECH 69 NO.4 ORTHOGONAL MAIN-EFFECT PLANS PERMITTING ESTIMATION
 OF ALL TWO-FACTOR INTERACTIONS FOR THE 2-TO-THE-N
 TIMES 3-TO-THE-N FACTORIAL SERIES OF DESIGNS * B. H.
 MARGOLIN
- TECH 69 NO.4 RESTRICTED LEAST SQUARES REGRESSION AND CONVEX QUADRATIC PROGRAMMING * N. MANTEL
- TECH 69 NO. 4 ADAPTIVE NONPARAMETRIC CLASSIFICATION * C. R. PELTO
- TECH 69 NO.4 PROGRESSIVELY CENSORED SAMPLES FROM LOC-NORMAL AND LOGISTIC DISTRIBUTIONS * A. V. GAJJAR, C. G. KHATRI
- TECH 69 NO.4 TWO SAMPLE TESTS IN THE WEIBULL DISTRIBUTION * D. R. THOMAN, L. J. BAIN
- TECH 69 NO.4 COMPUTER EVALUATION OF THE NORMAL AND INVERSE NORMAL DISTRIBUTION FUNCTIONS * R. C. MILTON
- TECH 69 NO.4 SOME APPLICATIONS OF THE SINGULAR DECOMPOSITION OF A MATRIX * I. J. GOOD
- TECH 69 NO.4 QUERY, MAXIMUM LIKELIHOOD ESTIMATE IN INTRACLASS COR-RELATION MODEL * CHIEN-PAI HAN

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.

The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Measurement Services and the following technical divisions:

Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic and Molecular Physics—Radio Physics ²—Radio Engineering ²—Time and Frequency ²—Astrophysics ²—Cryogenics.²

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; develops, produces, and distributes standard reference materials; relates the physical and chemical properties of materials to their behavior and their interaction with their environments; and provides advisory and research services to other Government agencies. The Institute consists of an Office of Standard Reference Materials and the following divisions:

Analytical Chemistry—Polymers—Metallurgy—Inorganic Materials—Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations in the development of technological standards, and test methodologies; and provides advisory and research services for Federal, state, and local government agencies. The Institute consists of the following technical divisions and offices:

Engineering Standards—Weights and Measures — Invention and Innovation — Vehicle Systems Research—Product Evaluation—Building Research—Instrument Shops—Measurement Engineering—Electronic Technology—Technical Analysis.

THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center consists of the following divisions:

Reactor Radiation—Linac Radiation—Nuclear Radiation—Applied Radiation.

THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in the selection, acquisition, and effective use of automatic data processing equipment; and serves as the principal focus for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards—Computer Information — Computer Services — Systems Development—Information Processing Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System, and provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

Office of Standard Reference Data—Clearinghouse for Federal Scientific and Technical Information ³—Office of Technical Information and Publications—Library—Office of Public Information—Office of International Relations.

* Located at Boulder, Colorado 80302.

Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.

³ Located at 5285 Port Royal Road, Springfield, Virginia 22151.

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

Physics and Chemistry

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$9.50; foreign, \$11.75*.

• Mathematical Sciences

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$5.00; foreign, \$6.25*.

• Engineering and Instrumentation

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, \$5.00; foreign, \$6.25*.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \$3.00; foreign, \$4.00*.

* Difference in price is due to extra cost of foreign mailing.

Order NBS publications from:

Superintendent of Documents Government Printing Office Washington, D.C. 20402

NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitive data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89–306, and Bureau of the Budget Circular A–86 entitled, Standardization of Data Elements and Codes in Data Systems.

CLEARINGHOUSE

The Clearinghouse for Federal Scientific and Technical Information, operated by NBS, supplies unclassified information related to Government-generated science and technology in defense, space, atomic energy, and other national programs. For further information on Clearinghouse services, write:

Clearinghouse
U.S. Department of Commerce
Springfield, Virginia 22151

